
Replication and Fault-Tolerance in
Real- Time Systems.

by

Adrian Waterworth

NEWCASTLE UNIVERSITY LIBRARY----------------------------
092 51753 7----------------------------

Ph.D Thesis

September 1992

University of Newcastle upon Tyne Department of

Computing Science

Abstract.

The increased availability of sophisticated computer hardware and the corresponding

decrease in its cost has led to a widespread growth in the use of computer systems for real-

time plant and process control applications. Such applications typically place very high

demands upon computer control systems and the development of appropriate control

software for these application areas can present a number of problems not normally

encountered in other applications.

First of all, real-time applications must be correct in the time domain as well as the value

domain: returning results which are not only correct but also delivered on time. Further,

since the potential for catastrophic failures can be high in a process or plant control

environment, many real-time applications also have to meet high reliability requirements.

These requirements will typically be met by means of a combination of fault avoidance and

fault tolerance techniques.

This thesis is intended to address some of the problems encountered in the provision of fault

tolerance in real-time applications programs. Specifically,it considers the use of replication

to ensure the availability of services in real-time systems. In a real-time environment,

providing support for replicated services can introduce a number of problems. In particular,

the scope for non-deterministic behaviour in real-time applications can be quite large and

this can lead to difficulties in maintainingconsistent internal states across the members of a

replica group. To tackle this problem, a model is proposed for fault tolerant real-time

objects which not only allows such objects to perform application specific recovery

operations and real-time processing activities such as event handling, but which also allows

objects to be replicated. The architectural support required for such replicated objects is

also discussed and, to conclude, the run-time overheads associated with the use of such

replicated services are considered.

Acknowledgements.

First of all, I would like to thank my supervisor, Professor Santosh Shrivastava, who

suggested this area of research and with whom I have had countless discussions over the

years. His guidance and advice have been invaluable, as have his comments upon the

numerous drafts of this thesis. Further thanks go to Dr. Paul Ezhilchelvan, who has also

given of his time to read and comment upon the work presented here.

I am also grateful to all of my colleagues in the Computing Laboratory for providing me

with such a stimulating and friendly working environment Although there are far too many

people to mention all of them individually, special thanks must go to Dr. Mark Little, Dr.

Stuart Wheater and Dr. Graham Parrington, for numerous technical discussions over the

years, and Peter Barrett of the Dependable Computing Systems Centre, for helping to

clarify my understanding of the Delta-4 system.

Finally, I am deeply indebted to my family and my friends for all of the support and

encouragement they have given me during my studies. In particular, I would like to thank

my parents, who have helped me through all of the trials and tribulations of the past four

years and without whom none of this would have been possible.

Financial support for much of the work described in this thesis was provided by a grant

from the Science and Engineering Research Council, with further thanks being due to the

British Aerospace Dependable Computing Systems Centre for my employment over the past

year.

ii

Table of Contents.

Chapter 1 : Introduction 1
1.1 : Real-Time Systems •••.••••••••••••••2
1.2: Objects and Actions in Real-Time Programs •••••••••••••••••••••••••••••••••••••3

1.2.1 : Objects in Real-Time Systems 4
1.2.2 : Using Transactions 4

1.3 : Exceptions and Replication 5
1.3.1 : Exception Handling 5
1.3.2: Replication 6

1.4 : Thesis AillB 7
I.S : Thesis Structure •••...•••••••••••••••••..•7

Chapter 2 : Real-Time Systems and Fault-Tolerant Programs 9
2.1 : Real- Time Services 9

2.1.1 : Specifying Timing Constraints 9
2.1.2 : Periodic and Aperiodic Services 10
2.1.3 : Hard and Soft Services 11

2.2 : Real-Time SclJeduling 12
2.2.1 : Precedence and Priority 13
2.2.2 : Single Processor Scheduling 13
2.2.3: Scheduling with Resource Constraints 14
2.2.4 : Multi-Processor and Distributed Scheduling 15

2.3 : Supporting Fault Tolerance 15
2.3.1 : Atomic Actions (Transactions) 16

2.3.1.1 : Nesting and Top-Level Actions 18

2.3.1.2: Atomic Actions: Advantages and Disadvantages 19
2.3.2 : Exception Handling 20

2.3.2.1 : Anticipated and Unanticipated Exceptions 21
2.3.2.2 : Termination vs. Resumption 22

2.3.2.3 : Single-level vs. Multi-level., 22
2.3.2.4: Parameter Passing 23

2.3.2.5: Exception Handling: Use and Advantages 23
2.4 : Some Existing Systems ••••••••••••••••••••••••••••••••••~•••••••••••••••••••••••••••••••••••••24

2.4.1 : The MARS System 25
2.4.1.1 : MARS Design and Computational Model 25
2.4.1.2 : Scheduling and Real-Time Tasks in MARS 26

2.4.1.3 : MARS Clock Synchronisation 27
2.4.1.4: Fault Tolerance in MARS 28

iii

2.4.2 : CHAOS _ 28
2.4.2.1 : CHAOS Application Structure 29
2.4.2.2 : Invocations in CHAOS 29
2.4.2.3 : CHAOS and Atomic Transactions 30

2.4.2.4 : Scheduling in CHAOS 31
2.4.3: MARUTI 31

2.4.3.1 : MARUTI Objects 32
2.4.3.2: Scheduling in MARUTI 33
2.4.3.3 : Fault Tolerance in MARUTI 34
2.4.3.4 : The MARUTI Programming Language 35

2.5: MARS, CHAOS and MARUTI : A Brief Evaluation ••••••••••••••••••••••.•3S
2.5.1 : MARS: Advantages and Disadvantages 36
2.5.2 : CHAOS: Advantages and Disadvantages 36
2.5.3 : MARUTI : Advantages and Disadvantages 37

2.6 : Chapter Summary 38

Chapter 3 : Object Replication in Real-Time Systems 39
3.1 : Fault and Failure Classification 4()

3.2 : Replication Protocols and Consistency 42
3.3 : Passive Replication 43

3.3.1 : Failure Modes and Failure Detection 44
3.3.2 : Communications Support 44

3.3.3 : Repeated Requests 45
3.3.4 : Passive Replication: Advantages and Disadvantages .46

3.4 : Active Replication 46
3.4.1 : The State Machine Model.. .47

3.4.1.1 : Communication Support for State Machines: The
Atomic Broadcast 48

3.4.2 : Failure Modes and Failure Detection 50

3.4.3: Active Replication: Advantages and Disadvantages 51

3.5 : Replication in Real-Time Systems •.••••...•••••••••••••••.••••••••..••••••.•••••.••••.•52
3.6 : Sources of Non-determlnlsm ...•••..•••••••.•••••••••••••••••••••••.••••••...•••••.•••....•53
3.7 : Solving tile Non-determinism 56

3.7.1 : Prevention of Non-determinism 57
3.7.2: Non-determinism in the Delta-4 System 58

3.7.2.1 : Active Replication for Multi-Threaded Objects 58
3.7.2.2: Semi-Active Replication 59

3.7.3: Ail Application-level Approach 61
3.7.3.1 : Non-deterministic Constructs and Incoming

Messages 61

iv

3.7.3.2 : Environmental Interactions 61
3.7.3.3 : Event Handling and Mode Changes : 62
3.7.3.4: Timing Constraints 64
3.7.3.5: Internal Concurrency 66

3.7.4 : Impact of the Proposed Approach 67

3.8 : Chapter Summary 67

Chapter 4 : A Model for Fault-Tolerant Real-Time Objects ••••••••••••69
4.1 : Object Structure .•.••....••••••••.••••••.•.69

4.1.1 : Object Granularity 70
4.1.2: Active Objects 71
4.1.3 : Inter-Object Communications 71
4.1.4 : Atomic Actions and Exceptions 71
4.1.5 : Initial Overview 72

4.2: Active Objects, Method Selection and Event Handling .•••••.••••••..•.••.74
4.2.1 : Processes vs. Active Objects 75
4.2.2 : Active Objects and Method Selection 78
4.2.3 : Method Selection and Event Handling 79
4.2.4 : Threads and Procedures 79
4.2.5 : Concurrency Control in Active Objects 80

4.3 : Timing Comtraints 80
4.3.1 : Time-base: Absolute and Relative Times 82
4.3.2 : Timing Errors 83
4.3.3 : Propagation of Timing Constraints 83

4.4 : A tomic Actions 84
4.4.1 : Operation-Based Recovery : Application Specific Abort 84

4.4.2 : Application Specific Commit 85

4.4.3 : Definition and Use 86
4.4.4 : Nesting 87
4.4.5 : Serialisability and Distributed Actions 89

4.5 : Exception Handling 9()

4.5.1 : Timing Exceptions 92

4.6 : A Summary of tile Object Model 93
4.7 : Supporting Object Replication 96

4.7.1 : Objects as State Machines 97

4.8 : Comparison witlt Existing Models 98
4.8.1 : The Object Model of Kopetz and Kim 98

4..8.1.1 : Comparison 99

4.8.2: The ARTS Real-Time Object Model.. 1OO
4.8.2~1 : Comparison 101

v

4.9 : Chapter Summary 102

~1t1lJ)t~..~ : ~JJJJli~ti()1l~"IlIllJlI~s•••Jl()'I
5.1 : Subsidiary Algorithms and Device Handling ••••••••.•••••••••••••••••••..•••••..l05

5.1.1 : Subsidiary Algorithms 105
5.1.2: I>evice Handling 106

5.2 : Call Control Example ••••••••••••••••••••••••••.••••••••••••••••••••••.•••••..•.•••••.•••••.•••108
5.2.1 : Telephones 109
5.2.2: Call Controller 110
5.2.3 : Call Control Example: General Notes 112

5.3 : Assembly Line Quality Controller ••113
5.3.1 : Quality Monitor 113
5.3.2: Arm Controllers 114
5.3.3 : Assembly Line Example: General Notes 116

5.4 : The A.S.V. (Autonomous Suspension Vehicle) 116
5.4.1 : Master Controller 117
5.4.2: Leg Controllers 120
5.4.3 : ASV Example: General Notes 121

5.5 : Train Contr-ol Example •••122
5.5.1 : Layout Controller 124
5.5.2: Train Controllers 125
5.5.3 : Track Controllers 128
5.5.4 : Train Control Example: General Notes 129

5.6 : Chapter Summary •••I3Cl

Chapter 6 : Architectural Support for Real-Time Objects •••••••••••••••131
6.1 : General Features ••••••••••••...•••••••••••••••••••.••••..••••.•••••••••••.••••••••••••.•••••.••••131

6.1.1 : Exception Handling 132

6.1.2: Timing Constraints 132
6.1.2.1 : Replicated Timing Constraints 133

6.1.3 : Method Selection 134

6.2 : Atomic Actions and Application Specific Recovery 135
6.2.1 : The Arjuna Atomic Action Mechanism 135

6.3 : Supporting Object Replica Groups 139
6.4 : Active Replication: Fail-arbitrary Processing Nodes ••••••••••••••••••••••••I40

6.4.1 : Assumptions 140

6.4.2 : The Start Task 142

6.4.3 : The Relay Task 143
6.4.4 : The End Task 145
6.4.5 : The Atomic Broadcast Protocol and Object Replica Groups 145

vi

6.5 : Active Replication: Fail-silent Processing Nodes ••••.••••••••••••••••••~••••••146
6.5.1 : Network Properties 147
6.5.2: Protocol Execution 148

6.5.3: Protocol Correctness: Assumptions and Order Properties 150
6.5.4 : The AMp Protocol and Object Replica Groups 151

6.6 : An Alternative Strategy: Semi-Active Replication •••••••••••••••••••••••••••152
6.6.1 : The reVRELr-atomic Protocol 152

6.6.2: The reVRELr-atomic Protocol and Object Replica Groups 155
6.7 : Chapter Summary ••.••.••••••••.•••••.••••••..156

Chapter 7 : Estimating the Cost of Replication 157
7.1 : Replication and TIming COlIStraints ••.•158
7.2: Response Times for Replica Groups •••162
7.3: Active Replication on Fail-Silent Hosts 163

7.3.1 : Response Times with Failures 165
7.3.2: Overheads and Reliable Networks 168
7.3.3: Computation Times: Cmax 169
7.3.4: Descheduling : 8 170

7.3.4.1 : System Descheduling 170

7.3.4.2 : Application Descheduling 171
7.3.4.3 : Calculation 8 171

7.3.5 : Timing Constraints 172
7.3.6 : Partial Multicasts 173

7.4 : Leader-Follower Replication ••••••••••••••••••••••••••••••••••.....•••••••••••••••••••••••174
7.4.1 : Response Times with Failures 176

7.4.2 : Overheads 178

7.4.3 : Computation Times: Cmax 179
7.4.4 : Descheduling : 8 180

7.4.5: Synchronisation Messages : Osync ··· 180
7.4.6: Timing Constraints and Partial Multicasts 181

7.S : Passive Replication •.•.••••••....•••••.••••••••••••••••••••••••••••••••••••...•••••.•••••••••••••182
7.5.1 : Response Times with Failures 184

7.5.2: Overheads 187
7.5.3 : Computation Times: Cmax 189
7.5.4: Descheduling : 8 189

7.5.5: Checkpointing: Ccp ·················· 190
7.5.6: Timing Constraints 191

7.6 : Chapter. Summary •••••••..•.••.••.•.•••••••••••...•••.•••••••••••.••••••..••.••••••..•.•••••••••191

vii

Chapter 8 : Conclusions and Further Research ••••••••••••••••••••••••••••h•••192
8.1 Thesis Summary •..•.•..•••.•.......•••....•••••••••.•••••••.•..•••.....••••....•.•.•..••....•••••192
8.1 Contributions 01the Thesis •••••••••••••••••••.•••••••.••••••••..•••••.•...••••...•.•...•.•194
8.3 : Furdler Research ••••••••••••••••••••.•••.•••.••.•••••••••••••••••••••.•••••••••.••••••.•..•....•196

R4ejf~..~Il~~s••.•••••••••••••••.....•••...••••..••Jl~1I

viii

List of Figures.
Figure 2.1 : Value of real-time service vs. delivery time
Figure 2.2 : Hard real-time task with negative value outside timing constraint
Figure 2.3 : Value of soft real-time task vs. delivery time
Figure 2.4 : Dependency between uncommitted actions
Figure 2.5 : Nested atomic actions
Figure 2.6: Nested top-level atomic actions
Figure 2.7 : Standard and exceptional input domains
Figure 2.8 : Exception handling in the CLU language

10
11
12

17
18
19
21

23124

Figure 3.1 : Fault and failure classification hierarchy
Figure 3.2 : Object groups and inconsistency
Figure 3.3 : .elect ... accept language construct
Figure 3.4 : Implementation of .elect construct
Figure 3.5: The generic inputfunction

41
42

62
63
64

Figure 4.1 : General language features : Interface Declaration
Figure 4.2 : General language features: Object Declaration
Figure 4.3 : Active object declaration
Figure 4.4 : Syntax of .elect and acceptstatements
Figure 4.5 : Use of method selection
Figure 4.6 : Asynchronous invocation
Figure 4.7 : Periodic and aperiodic temporal scopes
Figure 4.8 : Expressing different timing constraints. (Examples.)
Figure 4.9: System timing exceptions
Figure 4.10: Declaration of abort types
Figure 4.11 : Declaration of commit types
Figure 4.12 : Using programmed commit and abort operations
Figure 4.13 : Nested atomic actions
Figure 4.14 : Nested top-level atomic actions
Figure 4.15 : Exception and exception handler syntax
Figure 4.16 : Default exception handler
Figure 4.17: Re-raising an exception by re-use of exception name
Figure 4.18 : Syntax and use of timing exceptions
Figure 4.19: Example artobject declaration in ARTS/C++

73
73/74

76
77

78/79

79
81

81

83

85
86

86/87

87
88
91

91

92

93
100/101

Figure 6.1 : The generic input function
Figure 6.2 : The Arjuna class hierarchy

134
135

ix

Figure 6.3: The Arjuna AtomicAction interface
Figure 6.4: Outline of AtomicAction: :End() operation
Figure 6.5 : Outline of AtomicAction: :Abort () operation
Figure 6.6 : Outline implementation for application specific abort
Figure 6.7 : Atomic broadcast "Start" task
Figure 6.8 : Atomic broadcast "Relay" task
Figure 6.9: Atomic broadcast "End" task
Figure 6.10: The AMp Atomic Multicast protocol
Figure 6.11 : reVREL transmitter process
Figure 6.12 : REL procedure
Figure 6.13 : reVREL receiver process
Figure 6.14 : Receiver process monitor thread

136
137
138

1381139
142

143/144
145
148
153
153
154
155

Figure 7.1 : Deterministic implementation of temporal scope
Figure 7.2 : Approximate overheads for leader-follower replication
Figure 7.3 : Approximate overheads for passive replication (1)
Figure 7.4: Approximate overheads for passive replication (2)

158/159
179
188
188

x

Chapter 1.

Introduction.

The increased availability of sophisticated computer hardware and the corresponding

decrease in its cost has led to a widespread growth in the use of computer systems for real-

time plant and process control applications. For example, modem manufacturing cells make

extensive use of industrial robots with microprocessor-based controllers, while flight control

systems in military and civilian aircraft have grown in sophistication from simple trim

controllers to complex auto-pilots and automatic landing systems. Such applications

typically place very high demands upon computer control systems and the development of

appropriate control software for these applications can present a number of problems not

normally encountered in other application areas. [Stankovic 88a]

First of all, real-time programs are expected to perform correctly in the time domain as well

as the value domain. That is to say, it is not sufficient for a particular operation simply to

return the correct value when it is carried out, it must also return that value within some

specified time interval. In fact, there may be cases where returning an approximate, or even

inaccurate, value on time is preferable to returning an accurate value too late. Secondly,

real-time applications may also have higher reliability requirements than "ordinary", non-

real-time applications. For instance, flight control, nuclear plant control and weapons

systems are just three examples of applications where the consequences of a failure may be

disastrous and where the reliability of both the system hardware and control software must

be ensured. Finally, the development of real-time software is complicated by the nature of

the real-time environment itself. Hardware in a large real-time system may be distributed,

consisting of several computers and a number of intelligent device controllers all connected

by some kind of network. Control software must be appropriate to the underlying hardware

configuration and it must be able to process incoming sensor signals from the environment

and provide appropriate driver outputs for actuators.

1

Chapter 1 Introduction.

This thesis considers some of the difficulties associated with the implementation of

dependable real-time control software. In particular, it considers the use of replication to

provide fault tolerance in real-time applications programs. In order to tolerate component

failures, some form of replication scheme must be used, however supporting replicated

components in a real-time environment can present a number of problems. This thesis

examines the problems that can arise and proposes some possible solutions. The research

areas covered include the development of an appropriate model for real-time objects and an

analysis of the overheads associated with replicated services based upon that object model.

First however, the remainder of this chapter gives a brief introduction to some of the

underlying concepts of real-time computing and dependability.

1.1. Real-Time Systems.

There are many different definitions of the term "real-time system" however, for the

purposes of this thesis, the following defmitions, based upon those of [PDCS 90], will be

adopted. A real-time service can be defmed as a service that is required to be delivered

within time intervals dictated by its environment'. A real-time system is then any system that

delivers at least one real-time service. In other words, a real-time system can be loosely

defmed as a system that must interact with an external environment within defmed timing

constraints.

In general, it is possible to identify two distinct classes of real-time system. A hard real-time

system is one in which at least one of its timing failure modes is costly or damaging to the

system's environment Hard systems therefore need to be able to offer guaranteed

performance and design-time assurances of both timeliness and correctness should, ideally,

be obtained. A soft real-time system, on the other hand, is one in which all possible timing

failures are benign (Le. delivery of a service at the wrong time may be useless but it will not

be catastrophic). Hence, a soft system will not need to offer the same level of guaranteed

performance as a hard system, however the basic design problem remains the same. The

1Note that to deliver a service may mean to sample an input rather than to produce an output.

2

Chapter 1 Introduction.

system should be able to respond appropriately to events in its environment and produce

outputs that are not only correct in value, but also delivered at the correct time.

Scheduling a set of real-time services in such a way that they all meet their timing

constraints can be a difficult problem and, in some cases, a feasible schedule may not exist

at all. However, a number of effective real-time scheduling mechanisms are already known

and research in this particular field still continues. Although a full description of the current

state of the art in real-time scheduling theory would be beyond the scope of this thesis,

some of the fundamental concepts of real-time computing and real-time scheduling are

discussed in more detail at the beginning of the following chapter.

1.2. Objects and Actions in Real-Time Programs.

At the heart of any application or system program can be found some form of abstract

computational model or program structuring technique upon which the detailed

implementation of that software is based. One such computational model that has grown in

popularity in recent years is the object-based or object-oriented model, in which programs

are structured as collections of interacting or communicating objects. An object consists of

an internal state and a set of operations (or methods) that characterise its externally visible

behaviour. Objects can only interact by means of invoking one another's methods and the

internal implementation details of an object are hidden from the users of that object. Hence,

objects provide the two highly desirable properties of encapsulation and data abstraction.

Also, since all communication between objects takes place through method invocations, the

flow of information in an object-based system is confmed to specific, well-defmed pathways.

This not only prevents unwanted interactions between different parts of the system, it also

makes it easier to provide transparent support for distributed applications since remote

invocations can be identified and an appropriate remote procedure call [Birrell 84]

[Shrivastava 82] or network message passing mechanism used.

3

Chapter 1 Introduction.

1.2.1. Objects in Real-Time Systems.

From the point of view of real-time applications, adopting an object-based computational

model and structuring programs in terms of interacting objects can offer a number of

advantages. First of all, by having objects correspond to specific device or sub-system

controllers, the logical structure of the control software can be made to reflect the physical

structure of the system hardware. The control laws and interactions between different parts

of the system can then be represented in the method invocations between different objects.

Secondly, by allowing objects to have internal timing properties and including implicit or

explicit scheduling parameters in method invocations, timing constraints on real-time

services can be expressed as an integral part of the application software. Appropriate

scheduling mechanisms can then be employed to ensure that the specified constraints are

met, if possible. Finally, if objects are allowed to be active, that is if they are allowed to

contain internal threads of control that carry out processing independently of incoming

method invocations, then continuous monitoring or cyclic control law processing can be

carried out within the object-based framework. This allows such activities to be assigned to

appropriate objects, thereby maintaining the correspondence between the logical structure

of the control software and the overall structure of the whole system.

1.2.2. Using Transactions.

Another advantage of the object-based approach is that the interfaces between objects

provide a natural boundary for the containment of faults or errors. This can be exploited by

structuring the activity of an application in terms of transactions or atomic actions (see, for

example, [Wheater 90]). A transaction is, essentially, an all-or-nothing operation that either

succeeds, having its intended effect, or fails, having no effect at all. This behaviour is usually

achieved by means of a checkpoint and recovery mechanism that takes a copy of local state

information before an operation begins and restores the system to that state if the operation

fails. If all method invocations are executed as transactions, both error recovery within

objects and error confinement across object boundaries can be supported. Hence,

4

Chapter 1 Introduction.

transactions can be used to ensure that objects only undergo correct and consistent state

changes.

1.3. Exceptions and Replication.

Although transactions are one good way to support fault tolerance in programs, there are

other techniques which can also be used, either to complement the transaction mechanism

or to provide fault tolerance coverage for situations that the transaction mechanism cannot

handle. For example, exception handling can be used to provide a flexible mechanism for

error detection and recovery [Cristian 89][Campbell 86], while the availability of software

components (objects, processes) can be ensured by replicating them on distinct processing

nodes in a distributed or multiprocessor system (see, for example, [Little 90][Little 92]).

Both of these techniques have been used in a number of systems and they are of particular

interest for the real-time applications domain.

1.3.1. Exception Handling.

Like transactions, exception handling can be viewed as a structuring method for fault

tolerant programs. The basis of the exception handling technique is the identification of

anticipated exceptional inputs for which services cannot return correct results. For

example, consider a procedure that takes two real numbers, x and y, and divides one by the

other to return x+y. An anticipated exceptional input for this "service" would be y=O, which

under normal circumstances would lead to a system error. However, by deftning a "Divide-

By-Zero" exception that is raised by the division procedure whenever it is passed a divisor

of zero, the error can be trapped and signalled back to the caller. The caller can then include

an exception handler that implements an appropriate recovery strategy for this particular

error.

The major advantage of exception handling is that it allows a high degree of flexibility in

error recovery, since both exceptions and handlers can be freely defined by the application

programmer and used wherever they are needed. However, there is also the disadvantage

that exceptions, by definition, can only be defined for anticipated faults or errors.

5

Chapter 1 Introduction.

Fortunately, this particular problem can be overcome by combining exception handling with

some other fault tolerance technique, such as transactions, that can handle unanticipated

errors. In fact, the combination of exceptions and transactions can be particularly effective,

giving a unified fault tolerance mechanism that is both flexible and widely applicable.

1.3.2 Replication.

While techniques such as transactions and exception handling can help to ensure that an

object provides correct service when requested, they cannot ensure the continued

availability of an object when it is needed. In a distributed system, it is possible for some

processing nodes to fail while others remain in service. When this happens, any objects that

were resident on a failed node will, necessarily, be unavailable for as long as the node is off-

line and requests intended for those objects will either be lost or remain unanswered until

the node is repaired. If a system is intended to meet high reliability requirements, this

problem must be addressed and an appropriate mechanism must be used to ensure object

availability. The only suitable technique for this task is the use of some form of replication

scheme, whereby several copies of an object are maintained within the system in order to

ensure that the loss of a single copy (or some bounded number of copies) will not lead to a

loss of the services which the object provides.

Unfortunately, replicating objects for availability is not as simple as it may, at first, seem.

First, a multicast communications protocol may be needed to handle communication

between groups of replicas or between single objects and groups. Second, replica group

management protocols are required to ensure that the internal states of all the members of a

group remain mutually consistent. This not only includes state information regarding

incoming invocations and replies from other groups, but also changes in the membership of

the group itself due to node failures and subsequent repairs. Finally, a number of problems

can arise with non-determinism in replica groups. If two replicas can observe events in a

different order, for example by receiving invocations in a different order due to differing

communication delays, then the internal states of those two replicas can diverge and the

replicas will produce different outputs. This is, of course, unacceptable, but the potential for

6

Chapter 1 Introduction.

such state divergence can be very high. Incoming messages, whether invocations or replies,

event signals from the system's environment, interactions with a local clock or timebase and

non-deterministic language constructs are all potential sources of divergence. Hence, to be

effective, replica management protocols must also include mechanisms to handle problems

such as these. The practical details of object replication therefore tum out to be far more

complex than the basic concept

1.4. Thesis Aims.

As described earlier, this thesis attempts to address some of the problems associated with

the provision of fault tolerance in real-time applications software. Specifically, it considers

the case where an application may be running on a distributed system, allowing replication

techniques to be used to enhance the availability of software components (objects). The

major research areas covered include:

• Development of an object model which is appropriate for use in a real-

time environment and which not only allows objects to engage in real-time

processing activities but also allows them to be replicated for availability.

• Provision of an integrated atomic action and exception handling

mechanism within the framework of the real-time object model

• An examination of the architectural support required for implementing

such objects, as well as the overheads associated with replicated real-time

services.

1.5.Thesis Structure.

Chapter 2 begins with a more extensive examination of some of the basic concepts of real-

time computing, before moving on to a more detailed discussion of atomic actions and

exception handling mechanisms. Brief descriptions of three existing fault tolerant real-time

operating systems are also given.

7

Chapter 1 Introduction.

Issues relating to object replication are discussed in chapter 3. Passive and active replication

strategies are described and their relative suitability for use in real-time applications

assessed. The problems arising from replica state divergence are examined in more detail

and appropriate methods for dealing with such state divergence are described.

Following on from this, chapter 4 introduces the real-time object model and programming

notation which has been developed. Small examples demonstrate the usefulness of the

features which have been incorporated into the model, as well as showing their use at the

language level. Chapter 5 builds upon this by presenting some more complete, larger

examples of real-time application programs.

In chapter 6, the implementation of the proposed object model will be considered. This will

include an examination of the way in which the mechanisms that have been included in the

model could be implemented, along with a discussion of the underlying architectural support

that would be required if objects are to be replicated for availability. Chapter 7 then

continues on the subject of replication, considering the overheads associated with the use of

replicated, as opposed to non-replicated, services.

Finally, chapter 8 gives a summary of the thesis, including the main contributions of this

research thus far, along with an outline of further work which remains to be done in the

areas covered by this thesis.

8

Chapter 2.

Real-Time Systems and Fault-Tolerant Programs.

The previous chapter gave a brief definition of the term "real-time system" and introduced

the concepts of atomic actions and exception handling as methods for supporting fault

tolerance in programs. This chapter expands upon those basic ideas, considering real-time

services and real-time scheduling in a little more detail before moving on to concentrate on

fault tolerance issues and discussing both atomic actions and exception handling at greater

length. The chapter concludes with brief descriptions of three existing fault tolerant real-

time systems.

2.1. Real-Time Services.

As defmed earlier, a real-time service is one that is required to be delivered within time

intervals dictated by its environment However, this defmition can cover a wide range of

different service requirements. It will therefore be worthwhile to take a closer look at the

overall concept of real-time services, beginning with an examination of their defming

characteristic: timing constraints.

2.1.1. Specifying Timing Constraints.

The timing constraints on a real-time task are usually specified by giving a liveline, which

defmes the earliest time at which the service may be delivered, and a deadline, which

defmes the latest time at which it may be delivered. It is also possible to specify a targetline,

which is the time at which the system designer actually intends the service to be delivered.

Such constraints can be represented using a graphical notation, due to Jensen et al [Jensen

85], in which the value or utility of the service is considered as a function of time. For

example, figure 2.1 represents a real-time service that has a liveline of tl and a deadline of

t2' The service is only useful if it is delivered within the interval [tl,t21 and the targetline for

9

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

the service should, by defmition, lie within this interval. Note that the graph has been

extended so that it also shows the cost of never delivering the service. This is to allow for

certain classes of real-time service where the cost of not delivering the service at all differs

from the cost of delivering the service at the wrong time.

Increasing
Benefit

Delivery
~ ~~~~ ~~T_lm_e ~ ~

t(: t2

Decreasing
Benefit

(Increasing
Cost)

Liveline ' Deadline

Targetline

Figure 2. 1. Value of real-time service vs. delivery time.

1.1.1. Periodic and Aperiodic Services.

Although livelines and deadlines can be used to define bounds on the delivery of a real-time

service, they do not capture the long term behaviour of the service or express its more

general timing properties. In particular, they do not capture the notion of periodicity. Real-

time services can be grouped into two distinct classes: periodic and aperiodic. A periodic

service is one that is required to be delivered repeatedly on a regular basis, for example

every 50 milliseconds, every 10 seconds, etc. The timing constraints on such a service may

correspond to the beginning and end of each period, or they may be given as explicit start

and end times, in which case the service should be delivered within the appropriate interval

in each period. Periodic services are common in a wide range of real-time applications,

particularly those that are based upon the repeated application of well-defined control laws,

and they possess the advantage that it is possible to calculate their worst-case processing

requirements in advance, since both the period and maximum computation time per period

must be known.

10

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

Aperiodic services are those that are required to be delivered at irregular intervals, typically

as responses to events in a system's environment, and their timing constraints are usually

given directly in terms of a liveline and a corresponding deadline. These might be expressed

either as absolute time values according to some clock or as relative times, measured from

the occurrence of the triggering event to which the service is responding. In principle, the

worst case processing requirements for an aperiodic service cannot be calculated in

advance, since there may be no limit on the number of simultaneous service requests that

might be generated at a given time. However, in some cases, it can be assumed that a bound

does exist on the number of simultaneous requests from the same source, allowing worst

case figures to be obtained. Services that fall into this restricted aperiodic class are usually

referred to as sporadic services.

2.1.3. Hard and Soft Services.

Delivery
~ -+__~~ ~~Time ~ ~

t1

Increasing
Benefit

Decreasing
Benefit

(Increasing
Cost) Liveline

"Never" Cost
"

, : Deadline

Targetline

Figure 2.2. Hard real-time task with negative value outside timing constraint.

The other important property of any real-time service is the potential cost when it misses its

timing constraint. In some cases, missing a deadline might carry no penalty, or it might only

lead to a slight degradation in the performance of a system, however in other cases, the

consequences of missing a timing constraint can be much more costly or damaging, both to

the system and its environment. An analysis of such costs can only be carried out on a case

11

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

by case basis, since different services will have different service requirements and failure

modes, however it is possible to identify two broad classes of real-time service: hard and

soft.) A hard real-time service has negative or zero utility if it is delivered outside its

specified time interval, where negative utility represents some cost to the application or

system. Figure 2.1 therefore represents a hard service, as does figure 2.2, which shows a

service that has a negative utility outside its timing constraints. Soft real-time services have a

positive, but sub-optimal, value to the system if delivered outside their specified timing

constraint and only have a negative or zero value if delivered outside some wider time

interval. This is illustrated in figure 2.3, which shows a soft real-time task that has

increasing value between its liveline and its targetline, constant value between its targetline

and its deadline and decreasing value thereafter.

Increasing
Benefit

Delivery
t1 't Time1----..,.--:---:-' 2__ ~_ ----> 00

"Never" Cost

Decreasing
Benefit

(Increasing
Cost)

Liveline: : Deadline

Targetline

Figure 2.3. Value of soft real-time task vs. delivery time.

2.2. Real-Time Scheduling.

Finding feasible execution schedules for sets of real-time services is one of the central

problems of real-time systems design ([Bums 88][Cheng 88]). A feasible schedule is one in

which all services meet their timing constraints and the calculation of such a schedule can be

extremely difficult Real-time scheduling algorithms must not only take account of the

IThe terms hard and soft as applied to individual real-time services should not be confused with the same
terms as applied to entire real-time systems. However, there is a correspondence in their meanings.

12

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

processing requirements of each service, they must also take account of the timing

constraints involved and the relative importance of different services for the continued

operation of the system as a whole. This can give rise to situations where some sets of

services cannot be scheduled at all because a system does not possess sufficient processing

capacity to allow all timing constraints to be met

2.2.1. Precedence and Priority.

In those cases where a set of services is such that it can be scheduled, there are a number of

real-time scheduling algorithms than can be employed to find an appropriate, feasible

schedule. The common requirement that all such algorithms must meet is that they have to

be able to make correct decisions regarding which of a set of real-time service requests

should be handled at any given time. In order to make such decisions, the scheduling

algorithm must rely on some notion of precedence. The precedence of a real-time service

can be defmed as a generic representation of the necessary timeliness requirements of the

service as perceived by a system designer [Bond 91]. In most cases, this can be taken to be

some combination of the service's timing constraint (e.g. targetline or deadline) and its

priority, which is a measure of the cost of the service missing its timing constraint. The

priority of a service is an important parameter in the majority of real-time scheduling

algorithms, since it expresses the importance of delivering the service on time. Hard services

are therefore given high priority values while soft services are given lower ones.

2.2.2. Single Processor Scheduling.

Although there are several different real-time scheduling algorithms that can be used to

schedule tasks on a single processor, they all fall into one of two basic classes. Off-line or

static schedulers, such as the Rate Monotonic algorithm [Liu 73][Sha 86] and its

derivatives, are used during system design and they produce fixed schedules for all

anticipated service requests. The result is a timetable with slots reserved for all process

executions and message transmissions. Events that require a change in the behaviour of the

system at run-time are detected in a pre-determined slot and an alternative fixed schedule is

13

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

installed. The fixed schedules also take account of dependencies between different services

so that delays are not introduced. The great advantage of this approach is that it can give

guaranteed performance and the schedulability of services can be assured. However, static

scheduling is largely limited to periodic and sporadic services, since processing requirements

need to be known or estimated in advance to generate the fixed schedules.

The other class of real-time schedulers does not suffer from this disadvantage, but it cannot

offer the same degree of guaranteed performance as static scheduling. On-line or dynamic

schedulers, such as the Earliest Deadline First (EDF) or Least Laxity First (LLF)

algorithms, are executed at run-time when a system is in service. Using heuristics that must

not themselves impose a significant system load, an appropriate schedule is generated for

service requests as and when they arrive. Dependencies and deadlocks must either be

avoided by the adoption of a suitable system design, or the resultant delays must be

minimised either by the use of priority inheritance protocols [Babaoglu 90] or by the use of

distributed deadlock detection mechanisms. The advantage of the dynamic approach is its

flexibility, but the fact that it cannot give an advance guarantee of schedulability means that

it is often regarded as being unsuitable for safety-critical applications or applications with

strict timeliness requirements.

2.2.3. Scheduling with Resource Constraints.

The problem of scheduling a set of tasks on a single processor is further complicated when

precedence or resource constraints are introduced. If two tasks must share some resource in

a controlled manner (e.g. mutual exclusion) or if they must obey some precedence

relationship (e.g. task A must execute before task B), any real-time scheduling algorithm

that is used to schedule those tasks must not only take account of the timing constraints

involved, but also the precedence or resource constraints. A simple application of the rate

monotonic or earliest deadline first algorithms may not, therefore, be sufficient to produce a

feasible schedule. In fact, it has been shown that the problem of deciding whether it is

possible to schedule a set of periodic processes that use semaphores to enforce mutual

exclusion is NP-hard [Mok 83]. However, in spite of such complexity, appropriate

14

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

scheduling algorithms can be developed to fmd feasible schedules for particular classes of

task or task set (for example, see [Blazewicz 79], [Zhao 87a], [Zhao 87bD.

2.2.4. Multi-Processor and Distributed Scheduling.

Just as the problem of scheduling a set of tasks with timing and mutual exclusion constraints

is known to be NP-hard, so is the problem of finding an optimal schedule for a set of tasks

on a multiprocessor system. Hence, the approach that is usually taken in such cases is to

find some way to simplify the problem and produce an adequate, although sub-optimal,

solution. Similarly, in distributed systems the problem of fmding a feasible execution

schedule for a set of real-time tasks can be very complex. In such systems, a two-level

approach is often taken, with the tasks on each processing node being scheduled using a

suitable single processor (or multiprocessor) scheduling algorithm, while a higher level,

global scheduling strategy is employed to handle communications between tasks on different

nodes and, where necessary, the allocation of tasks to nodes.

As with single processor scheduling under time and resource constraints, a number of

scheduling algorithms have been developed for multiprocessor and distributed systems. For

example, see [Muntz 70], [Ramamritham 90], [Chang 86], [Cheng 86] and [Ramamritham

84].

2.3. Supporting Fault Tolerance.

Another feature of the real-time applications domain is that real-time systems often have to

meet reliability as well as timeliness requirements. Such reliability goals can be attained by

adopting two complementary approaches. Fault avoidance techniques, such as formal

specification and verification methods, can be used in an attempt to ensure that the system

specification, design and implementation are as free from errors as is possible. Fault

tolerance mechanisms can then be built into the system to ensure that, at run-time, it

continues to provide an acceptable level of service even in the presence of a bounded

number of internal faults.

15

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

Two techniques that have been widely used to support fault tolerance in programs are

atomic actions (or transactions) and exception handling. Both of these can be regarded as

program structuring techniques that provide a framework for error processing, in particular

error recovery and, in the case of atomic actions, error containment.

2.3.1. Atomic Actions. (Transactions.)

In essence, an atomic action or transaction [Lomet 77][Lampson 81][Spector 83] is an "all

or nothing" operation which either completes successfully (commits) having its intended

effect or fails entirely (aborts) having no effect upon the state of the system. In more formal

terms, the atomic action is said to possess the following three fundamental properties:

Failure Atomicity

Atomic actions either complete successfully having their intended effect upon

the state of the system, or fail entirely having no effect at all.

Serialisability

The net effect of the concurrent execution of two or more atomic actions is

equivalent to the net effect of some serial order of execution of those two

actions. That is to say, there is no interference between parallel atomic

actions.

Permanence of Effect

The effects of correctly terminated atomic actions are reflected in the system

state and not lost as a result of su~sequent errors or failures.

The first of these properties, failure atomicity, can be achieved by the use of an appropriate

error recovery mechanism and this will often be based upon backward (state-based) error

recovery. With a backward recovery scheme, aborting an atomic action causes the system to

be restored to the state that it was in before the action began. This can be implemented

using a checkpoint and recovery technique as follows. When an atomic action begins, a

checkpoint of the current state of the system is taken. This could be a full checkpoint of all

16

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

state information within the system or it might only include those parts of the system state

that the atomic action can affect. Once this has been done, the action can be allowed to

proceed. Later, if the action commits, any changes that it has made to the system state

during its execution can be made permanent and the checkpoint discarded, however if the

action aborts, any state changes that it has made can be ignored and the original system

state restored from the checkpoint. This is, essentially, a version of the recovery block

technique [Homing 74][Anderson 76] and it has become a popular implementation strategy.

Action B begins.
I
I
I

Action A begins. I
I
I

A writes value X into
state variable.

B reads X
I
I
I
I
I
I

A aborts, removing X from state
variable. B must also abort.

I

Time

Figure 2.4. Dependency between uncommitted actions.

The serialisability property of the atomic action is required to prevent dependencies forming

between uncommitted, concurrent actions. For example, consider the situation illustrated in

figure 2.4. An action, A, writes some value, X, into a state variable, from which it is read by

another action, B. The action A then aborts, causing the value X to be removed. At this

point, the action B must also be aborted, because it has "seen" X and may, therefore, have

acted upon erroneous information, The situation can be further complicated if B has already

committed when A aborts, since there may be other actions, dependent upon B, which must

also be aborted. This is a classic example of the cascading aborts, or cascade rollback,

problem and it should be avoided whenever possible. This is the purpose of the atomic

action serialisability mechanism, since it prevents the formation of dependencies like the one

described above. Methods that can be used to enforce serialisability include locking schemes

in which actions lock those resources which they use until commit or abort time (e.g.

[Eswaran 76]) and optimistic schemes [Kung 81], where some actions are allowed to

17

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

complete and others forced to abort when conflicts occur. (For a more complete discussion

of concurrency control for atomic actions, see for example [parrington 88]).

The third property of the atomic action, permanence of effect, ensures that failures or errors

do not lead to the loss of existing, committed results. This is usually implemented using

some kind of stable storage medium (e.g. disk storage) and write-ahead logs, in which

actions record their state updates and which are not made permanent (Le. written to stable

storage) until an action commits. Permanence of effect is particularly important in a

distributed environment, where processing nodes can suffer independent failures. When a

failed processing node is repaired or recovers and comes back on-line, its internal state will

be consistent and the effects of any committed atomic actions that were run on that node

before it failed will be preserved. This minimises the time required for the node to be

brought up to date with activities in the rest of the system.

2.3.1.1. Nesting and Top-level Actions.

Atomic actions, like any other block-structured programming construct, can be nested as

shown in figure 2.5. Nested actions behave in the same way as any other atomic action with

respect to error recovery, however when a nested action commits, any resources that it was

holding (e.g. any locks that it held) are not released. Instead, they are passed on to the

enclosing parent action. This is to allow for the situation in which the parent action

subsequently aborts, since it must then be able to recover the effects of those nested actions

that have committed.

A.Begin. Parent Action.

End B.Begin.Begin
Nested Action.

a.sna .

Time
) A.End

Figure 2.5. Nested Atomic Actions.

18

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

In some cases, an atomic action may be logicallynested, but its effects upon the state of the

system once it has committed should not be recovered, even if its parent action aborts. Such

an action is known as a nested top-level action, since it is regarded as being at the top (Le.

outermost) level of the nesting hierarchy for the purposes of error recovery (see figure 2.6).

Top-level actions can be useful in a number of situations, particularly where an action is

capable of causing external effects that cannot be recovered using the normal backward

recoverymechanisms.

A.Begin.
B.Top_Level_Begin.

Begin End
B.Top_Level_End.

Time)

A.End

Figure 2.6. Nested top-level atomic action.

2.3.1.2. Atomic Actions: Advantages and Disadvantages.

Generally, atomic actions provide a good structuring technique for distributed application

programs and their use helps to ensure that application state information remains consistent

even in the presence of errors or failures. The abort mechanism of the atomic action

provides error recovery and damage containment is, to some extent, provided through

serialisability.A wide range of faults can be handled, including unanticipated ones, so long

as the integrity of the atomic action mechanism itself is not compromised and, for general

classes of applications, atomic actions can be a very useful fault tolerance technique.

However, in real-time applications, the use of an atomic action mechanism can present

problems. First and foremost, the use of backward error recovery techniques (Le. state

restoration) to provide error recovery may be inappropriate. In particular, while the

processes of checkpointing and restoring state can themselves be made both fast and

efficient, the subsequent re-execution of an action or some alternative operation 'may be

19

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

time-consuming and cause deadlines to be missed. Furthermore, real-time systems have to

interface to an external environment and it is possible that the environment will not be able

to carry out any kind of state restoration. For instance, if some operation in a chemical plant

control system causes 100 litres of reactant Z to be flushed into a fully charged reaction

vessel and that operation is subsequently found to be in error, then there is no way in which

those 100 litres of reactant Z can be removed from the vessel other than emptying its entire

contents. That is to say, there is no direct way to restore the original state of the system and

alternative recovery techniques must be used to provide the abstraction of failure atomicity.

Another potential problem area with atomic actions in the real-time domain is the

requirement for serialisability. The majority of the mechanisms presently used to enforce

serialisability take no account of the timing constraints or criticality of different actions.

Consequently, tasks may be delayed arbitrarily while waiting for locks or aborted randomly

under optimistic schemes when conflicts occur. This indiscriminate treatment of potentially

critical tasks would be totally inappropriate in a real-time system, where the criticality of

different tasks and their different timing constraints must be taken into account. However,

other concurrency control mechanisms have been developed for use with transactions in

real-time databases (see, for example, [Stankovic 88b][Sha 88][Sha 91]) and such

alternative mechanisms could easily be used to enforce serialisability in more general classes

of transaction-based system.

2.3.2. Exception Handling.

Another fault tolerance technique which is ~ell-known and which has been widely used in a

number of systems is exception handling [Goodenough 75][Cristian 82]. Like atomic

actions, exception handling can be viewed as a program structuring technique that provides

support for error recovery, however where atomic actions provide a generic recovery

mechanism, exception handling is used to provide specific recovery operations for specific,

anticipated errors.

20

Chapter 2 Real-Time Systems and Fault-Tolerant Programs.

2.3.2.1. Anticipated and Unanticipated Exceptions.

Given some operation, which is intended to provide a particular service, the set of possible

inputs to that operation can be divided into two disjoint domains. The standard domain of

inputs contains those input values that lead to a correct output, while the exceptional

domain contains input values that cause an erroneous output to be produced. Values falling

in the exceptional input domain include those for which it is known that the operation

cannot provide a correct output (for example, negative inputs to a square root function) and

those for which the operation should return a correct output but, instead, returns an

incorrect one due to the existence of an internal fault. The difference between these two

types of exceptional input is of particular interest. Input values for which an output is not

defmed or for which it is known that a correct output cannot be produced, can be

anticipated and exceptions declared for them. Then, when an operation is invoked with one

of these input values, it can raise the appropriate exception to its caller. This signals to the

caller that correct service cannot be provided and the caller can then provide a

corresponding exception handler to perform appropriate error recovery. Thus, for any

operation it is possible to identify an anticipated exceptional domain, for which exceptions

are defined and an unanticipated exceptional domain (see Figure 2.7).

so

.Ini2!.Itin..;.

SO
AEO
UEO

Correct outputs.
Exceptional response.
Error or failure.

C)SO
Standard domain.

([]I) AEO
Anticipated exceptional domain.

(Anticipated exceptions.)

~ UEO
Unanticipated exceptional domain.

(Unanticipated exceptions.)

Figure 2.7. Standard and Exceptional Input Domains.

21

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

2.3.2.2. Termination vs. Resumption.

When designing an exception handling mechanism, there are three basic issues that must be

taken into consideration. The first of these is whether to adopt the termination model of

exception handling or the resumption model. In the former, when an exception is raised,

execution of the current operation is terminated and control returns to its caller where the

exception is handled. In the latter model, when an exception is raised, control returns to the

caller of the current operation for the exception to be handled, but execution then resumes

from the point in the current operation at which the exception was raised. In many cases,

there are strong arguments for adopting the termination model, since the detection of an

exception means, by defmition, that a standard (correct) service cannot be provided so it

will often be more appropriate to terminate the current operation entirely, rather than

attempt to handle the exception and then resume the operation. An exception handling

mechanism based upon the termination model is also likely to be somewhat easier to

implement than one based on the resumption model.

2.3.2.3. Single-Level vs. Multi-Level.

The second thing to consider when designing an exception handling mechanismis whether it

should be single-level or multi-level. With single-level exception handling, the caller of an

operation must provide handlers for all of the exceptions that the operation might signal

during its execution. Hence, an exception will only propagate as far as the scope of the

immediate caller of a failed operation, where it must be handled either by a specific declared

exception handler or by a default handler of some kind. In the event of the caller of an

operation not being able to provide such a handler and wishing to propagate the exception

to higher levels of the system, it must explicitly declare and raise that exception itself. This

is as opposed to multi-level exception handling where exceptions are allowed to propagate

back up the call stack until an appropriate handler is found. The net effect of this behaviour

is that exceptions raised by some operation X may be handled by any of the modules or

procedures higher than X in the current stack. For example, some exceptions may be

22

Chapter2 Real- Time Systems and Fault-Tolerant Programs.

handled by the immediate caller of operation X, while others are handled by the caller of

that module and still others are handled by the caller of that module and so on.

Single-level exception handling mechanisms are usually favoured because they can be easier

to implement than a multi-level mechanism. It can also be argued that they enforce good

programming practice when using exceptions, since exceptions must be handled at the point

at which they are initially detected and the propagation of exceptions to higher levels of the

system is made explicit

2.3.2.4. Parameter Passing.

The fmal decision to be made in the design of an exception handling scheme is whether or

not to allow parameters to be passed back to exception handlers when exceptions are raised.

The argument in favour of parameter passing is that it can be used give exception handlers

access to more specific state information about the operation that raised the exception, as

well as data regarding the exception itself. This, in tum, allows an exception handler to

select the most appropriate form of error recovery for the current situation. However,

introducing parameter passing into an exception handling mechanism complicates its

implementation and, in the majority of existing systems that provide some kind of exception

handling, parameter passing is not supported.

2.3.2.5. Exception Handling: Use and Advantages.

The inclusion of exception handling mechanisms as part of the native functionality of

programming languages has become com~on and several existing languages, including

CLU [Liskov 79], Mesa [Mitchell 79], Ada [Ada 80] and recent versions of C++

[Stroustrup 87][Koenig 90], provide support for exceptions. For example, in the CLU

language, a single level, termination mechanism was provided as shown in Figure 2.8.

div = proc(x,y:int) return. (int) .ignal. (divide_by_zero)
if y=O then

.ignal divide_by_zero
el••

return (x/y)
end div

23

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

z = div(a,b)
except when divide_by_zero:

z = 0
end

Figure 2.8. Exception Handling in the CLU Language.

The major advantage of exception handling is that it allows code for normal and exceptional

processing to be logically separated, thus providing a flexible and powerful, yet manageable,

error recovery mechanism for anticipated errors. Exception handling can also be used to

provide fault tolerance coverage for unanticipated errors. This can be achieved either by

extending the exception handling mechanism itself to permit the definition of default

exception handlers that implement some kind of generic recovery strategy, or by using

exception handling in conjunction with some other fault tolerance technique, such as atomic

actions, that is capable of handling those errors for which exceptions have not been defined.

For all practical purposes, the use of exception handling does not have any major

disadvantages. However, an important point to note is that, in real terms, exception

handling only provides a mechanism for error recovery. Processes such as error detection,

error containment and fault treatment are then handled explicitly by means of defining an

appropriate set of exceptions and providing appropriate handlers for them.

2.4. Some Existing Systems.

Before moving on to consider the problems associated with the use of replication to provide

fault tolerance in real-time applications, it will be worthwhile to examine some existing fault

tolerant real-time systems. Although there are several such systems currently in use or under

development, for example MARS, ARTS· [Tokuda 89], CHAOS, MARUTI, SPRING

[Stankovic 89] and Delta-4 XPA [Barrett 90], only three - specifically MARS, CHAOS and

MARUTI - will be considered here. All three of these systems are intended for use in a real-

time environment and they each incorporate some form of fault tolerance. Furthermore,

these three systems provide good examples of both the static (MARS) and dynamic

(CHAOS) approaches to real-time applications, as well as showing a way in which the two

approaches can be, to some extent, combined (MARUTI).

24

Chapter2

2.4.1. The MARS System.

The MARS (Maintainable Real-time System) [Kopetz 89][Damm 89] project has now been

Real-Time Systems and Fault-Tolerant Programs.

underway for over a decade, initially at the Technical University of Berlin, but now at the

Technical University of Vienna A first prototype of the system was built in 1984 and the

second prototype has been operational since 1988.

MARS is a fault tolerant, distributed real-time systems architecture intended for use in

closed loop (sensor - control system - actuator) process control applications. In order to

provide guaranteed levels of service, MARS is a completely static system with task

execution schedules and communications schedules all computed off-line and held in tables

which are consulted by the MARS operating system at run-time.

2.4.1.1. MARS Design and Computational Model.

The MARS design approach is based upon offering deterministic behaviour even when the

system is operating under peak load conditions. Since MARS is capable of meeting hard

real-time constraints under peak load, it can naturally accommodate low-load conditions as

well. MARS applications are based upon a transaction model in which sequences of inter-

related actions transfer the system from one consistent state to another. These actions may

themselves be made up of simpler, more primitive actions. An action is triggered by some

specified stimulus and produces some kind of response. If that response must be generated

within a given interval after the stimulus occurs, the action is regarded as being a real-time

transaction.

A MARS system configuration consists of a set of clusters (MARS clusters), each of which

is composed of several components interconnected by a synchronous real-time bus. An

individual component is a self-contained computer, including application software, and it

represents a combined hardware and software unit offering some given functionality and

performance. Each component will execute a set of real-time tasks and an identical copy of

the MARS operating system kernel.

25

Chapter2 Real- Time Systems and Fault-Tolerant Programs.

Tasks and components communicate by means of state messages. Conceptually, these are

similar to global variables in a programming language. Once produced, they are read-only,

but they can be read an arbitrary number of times by an arbitrary number of tasks. They are

used to exchange information about the state of the environment or some internal state of

the system itself. Each state message has a validity time, after which it will be discarded by

the system, and a cluster-wide unique name which refers to both its data type and its actual

semantic content (Le. what its value represents at the application level). Only one message

with a given name can be valid at any given time so, typically, more recent messages in a

sequence supersede the older ones.

The use of state messages in this way means that the number of message buffers used is

static and tasks can allocate an appropriate amount of buffer space based upon the messages

that they will generate or receive. Buffer management is then handled by the operating

system at run-time. Communication time over the MARS bus is pre-scheduled using a

TDMA (Time-Division Multiple Access) policy in which each task is given a specified set of

communication slots for its own dedicated use. This avoids problems with communication

conflicts, while the periodic nature of the system and the semantics of the state message

mechanism mean that explicit flow control is not required.

2.4.1.2. Scheduling and Real-Time Tasks in MARS.

MARS supports both hard and soft real-time tasks, the former being pre-scheduled

according to their worst-case execution times, while the latter execute in the spare

processing time that is available when hard real-time tasks complete early. Since the strictly

periodic nature of the MARS system makes dynamic scheduling unnecessary, all task

scheduling is performed off-line, taking into account the maximum execution times of tasks,

their co-operation by message exchange and the assignment of messages to TDMA slots.

Tables produced by the off-line scheduler give the start and end times of tasks and they are

linked into the core image of each individual component. At run-time, task switching is

performed within the MARS kernel's clock interrupt handler according to the scheduling

tables and tasks must release the CPU (using a suspend system call) before their specified

26

Chapter2 Real- Time Systems and Fault- Tolerant Programs.

end time otherwise the kernel will regard it as an error (time-limit exceeded). To provide

some degree of flexibility, several schedules may be calculated, deftning different operating

modes for the system. Switching between schedules is caused either by an explicit schedule

switch request from an application task or by the receipt of a message associated with a

schedule switch. Two different types of schedule switch can be performed. One is a "clean"

switch which guarantees the preservation of consistency within the application, but which

can only be performed at certain times defmed within the design of the application itself.

The other is a much faster switch which does not guarantee consistency, but which takes

effect at the next invocation of the major clock interrupt handler (every 8ms). This fast

schedule switch mechanism is purely intended for emergency situations where some form of

catastrophic failure must be avoided. The importance of the clock interrupt handler in the

above task and schedule switching mechanisms is due to fact that the clock interrupt,

coming from the clock synchronisation unit, is the only interrupt that is allowed in the

MARS system. All other interrupt handling, including device drivers, must be performed by

low-level routines which are themselves initiated by the clock interrupt routine.

2.4.1.3. MARS Clock Synchronisation.

As well as providing the clock interrupt to the processor, the clock synchronisation unit

(CSU) [Kopetz 87] co-operates with an operating system synchronisation task to

synchronise clocks between individual MARS components and MARS clusters. Whenever a

message is sent, the CSU provides a sender time-stamp to the network controller chip

which adds it to the outbound message. Then, whenever a message arrives, the network

controller chip generates an interrupt to the CSU to obtain a receiver time-stamp for the

message. These time-stamps are used to perform clock synchronisation using a fault tolerant

average algorithm. Synchronisation to an external time standard (International Atomic

Time) is provided from a radio source using signal modulation and processing techniques

and, in this case, a rate correction is broadcast to all clocks independently of the internal,

time-stamp based, synchronisation.

27

Chapter2 Real- Time Systems and Fault-Tolerant Programs.

2.4.1.4. Fault Tolerance in MARS.

Finally, fault tolerance in MARS is provided by using extensive self-checking in individual

components in conjunction with active replication. High error detection coverage is

provided by the use of software error detection mechanisms at the operating system level

and hardware mechanisms inherent in the processors themselves. MARS components

therefore provide, to a high degree, the abstraction of fail-silence. That is to say, when a

component suffers a failure, it ceases to produce outputs. Active replication of such

components does not require a voting mechanism, since failed replicas will not respond to

requests and the first response generated by any member of the replica group can be

assumed to be correct. This replication scheme provides an effective fault tolerance

mechanism, however it also imposes the restriction that computations must be deterministic,

otherwise the internal states of different replicas may diverge and inconsistent responses

may be received from the replica group if replies are received from different replicas at

different times. This is an unavoidable consequence of using active replication and it is not

unique to the MARS system implementation. Tolerance of communication faults is achieved

by sending all messages several times over duplicated real-time busses. The semantics of the

MARS state messages makes this a feasible and easily implemented fault tolerance strategy,

offering a high probability that components will receive at least one good copy of any

message.

2.4.2. CHAOS.

The CHAOS (Concurrent Hierarchical Adaptable Operating System) project [Schwan 90a]

[Gopinath 89] is intended to support the programming of real-time applications that are:

• Efficient where efftciency is loosely defmed as "not signiftcant system

overhead"

• Accountable At all times applications should attempt to meet

specifications imposed by the applications programmer

28

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

• Predictable Given similar sets of events, an application should respond

similarly in all cases.

To achieve these properties, CHAOS combines an object-based programming and execution

model [Schwan 87][Gheith 90] with a rich set of invocation primitives and a set of

adaptation mechanisms which facilitate both static and dynamic adaptation of application

software. Like MARS, CHAOS provides support for real-time transactions, but unlike

MARS CHAOS is a highly dynamic system which uses on-line task scheduling.

2.4.2.1. CHAOS Application Structure.

CHAOS applications are structured as sets of autonomous objects interacting by means of

operation invocations. Objects may be active (Le. contain internal threads of control and

undertake activity independently of incoming invocations) with a single co-ordinating

process which accepts invocations and schedules them for execution by one of the object's

server threads. Concurrency control within an object is provided either by the co-ordinator

process or by the use of real-time locks. These provide ordinary mutex (mutual exclusion)

locking, but with an associated timeout which prevents a thread holding locks for an

unbounded time and which circumvents the problems associated with unbalanced lock and

unlock instructions.

2.4.2.2. Invocations in CHAOS.

In many respects, the strength of CHAOS lies not in its object model, but within its

sophisticated range of invocation primitives. There are three basic classes of invocation,

giving the choice of a high-speed control invocation with no transfer of data, a stream

invocation which provides dedicated data transfer after an initial control phase establishes a

connection and a normal method invocation involving transfer of both control and data. Any

of these invocation types may be used synchronously or asynchronously and any invocation

may have explicit real-time constraints or scheduling parameters associated with it as well as

29

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

real-time attributes such as criticality. Sporadic, periodic or event-driven invocations are

supported and four different classes of real-time deadline are recognised:

Guaranteed deadlines which must bemet under all circumstances

Soft deadlines which may occasionally bemissed

Weak deadlines which allow tasks to return partial or incomplete results

Recoverable deadlines which cause programmed recovery actions to be

taken if they are missed.

When an invocation is made, much of the cost is borne by the invoked object, making

invocation requests cheap for the invoker. Further, if an appropriate mechanism is not

provided by CHAOS, the applications programmer can synthesise an appropriate invocation

primitive from a number of basic invocation building blocks. Such synthesised invocations

incur a slightly greater overhead than the optimised primitives provided by the system,

however this may still be preferable to using an inappropriate built-in invocation. This

invocation synthesis mechanism is one of the main static (Le. fixed at compile time)

adaptation mechanism provided by CHAOS and it allows individual CHAOS applications to

be optimised for their particular environment

2.4.2.3. CHAOS and Atomic Transactions.

CHAOS supports an atomic transaction model in which transactions are taken to be groups

of related invocations that are to be guaranteed as a single execution unit. These atomic,

real-time computations (as they are usually called in CHAOS terms) possess three classes of

attribute. Real-time attributes specify temporal restrictions on the execution of the

computation (e.g. start times and deadlines). Concurrency control attributes constrain the

execution of concurrent atomic computations in order to control access to shared resources

and to maintain serialisability. Recovery attributes are application dependent properties

required to guarantee that aborted computations leave the system in a consistent state.

30

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

Unlike MARS, in which real-time transactions are largely used as a structuring technique

for applications and fault tolerance is supported using active replication, the transaction

mechanisms in CHAOS are intended to provide both an application structuring technique

and fault tolerance. Application specific recovery for aborted computations is provided by

the use of anti-operations. These are private operations within objects which implement

appropriate recovery actions for the objects' normal, public operations. In some cases, an

anti-operation may simply provide backward recovery as with a classical transaction

mechanism, however anti-operations may also provide some form of compensation or

forward recovery when it is needed.

2.4.2.4. Scheduling in CHAOS.

As mentioned earlier, CHAOS is a dynamic system in the sense that all schedulability

analysis and task scheduling is carried out at run-time, taking account of task timing

constraints and criticality. An optimised implementation of the Earliest Deadline First

algorithm (see [Schwan 9Ob]) is used for all thread scheduling within CHAOS objects.

Naturally, this approach cannot hope to offer the guaranteed service or response times of

MARS and the overhead of scheduling at run-time must itself be included in the on-line

schedulabilityanalysis.However, this makes for a highly flexible system which is capable of

coping with highly dynamic and unpredictable operating environments. Dynamic adaptation

mechanisms that re-compute task deadlines or introduce lower functionality, higher

performance versions of objects at times of overload further help to ensure that the most

critical application tasks continue to be executed even under peak loading. Consequently,

CHAOS can handle a wide range of applications and operating conditions.

2.4.3. MARUTI.

The MARUTI project [Agrawala 89][Levi 89][Mosse 91b] at the University of Maryland

has studied the problems associated with the design, development and deployment of

distributed real-time applications which must meet specified security and dependability

requirements and which can be implemented on a heterogeneous, multi-machine platform.

31

Chapter2 Real- Time Systems and Fault-Tolerant Programs.

In essence, MARUTI represents an attempt to develop an integrated system according to a

comprehensive integrated development methodology and a prototype system has already

been implemented (on top of UNIX) to demonstrate the feasibility of this approach.

2.4.3.1. MARUTI Objects.

Like CHAOS, MARUTI is an object-based system in which the concept of objects has been

applied at all levels of the system itself. Interactions between objects are regarded as being

service requests in which the caller requests some service from the callee through a specified

Service Access Point (SAP). Applications and application tasks can then be viewed as a

rooted, directed graph (referred to as a computation graph) in which vertices represent

services and edges represent the invocation messages (possibly containing data) sent from

one service to another. This view corresponds directly to the usual notion of objects

interacting by means of invoking one another's methods, although in MARUTI the basic

model of invocation is one way (asynchronous) rather than the more common synchronous

remote procedure call (RPC).

A novel feature of MARUTI objects is the inclusion of an extra control part (called a joint)

within each object in addition to its usual state information and its methods. The joint is

basically an auxiliary data structure which maintains certain static and dynamic data about

the object itself. For example:

• User and owner information

• Resource and/or server requirements

• A ticket check mechanism (for protection and security purposes)

• Timing Constraints

• A replica/alternative control mechanism (for fault tolerance)

32

Chapter2 Real- Time Systems and Fault- Tolerant Programs.

This extension to the normal object model makes it easier for MARUTI to provide support

for hard, real-time computations, particularly with regard to achieving bounds and

guarantees for task execution times.

2.4.3.2. Scheduling in MARUTI.

Task scheduling in MARUTI is viewed as a resource allocation problem, where the

resource in question is execution time on a processor. When a job is submitted to the

system, the timing constraints for this execution are specified, typically in the form of a

ready time (earliest start time) and a deadline. Resource allocation for the new job then

takes place, including a schedule feasibilitycheck to ensure that there exists an execution

schedule including the new job in which all tasks (the new one and any existing, guaranteed

jobs) can meet their timing constraints. The schedulability check takes into account local

processor scheduling for a given object, as well as communication time and remote server

schedulingwhere necessary.

The actual schedulability check which is used in the MARUTI system is based upon a

formal, interval-based notion of time and it works, in simple terms, by trying to find a

window (or set of windows) of execution time that will allow the new task to be executed

within its timing constraint, but without jeopardising the execution of any other task which

has already been accepted. In order to find such a window, the execution of existing tasks

may have to be re-scheduled, so long as it does not cause the violation of a timing

constraint. The precise sequence of events that takes place on submission of an execution

request is as follows. When it arrives at an object, an incoming invocation's timing

constraint is tested for insertion into the object's calendar (an auxiliarydata structure in the

object's joint holding a schedule for accepted requests). Assuming that the request can be

scheduled, its timing constraint is inserted into the calendar and its computation interval is

reserved. The reservation will expire after some time if an acknowledgement is not received

from the initiator of the invocation request. This mechanism is required to handle those

cases where a task involves a number of requests which must all be guaranteed - the

acknowledgement will then only be sent if all invocations are accepted. In the event of an

33

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

invocation request failing, the initiator of the request is informed and it becomes the

initiator's responsibility to ensure that any successful reservations made elsewhere for the

failed request, or related ones, are cancelled.

At first glance, it might appear that scheduling in MARUTI is dynamic as in the CHAOS

system, however while execution requests for tasks are indeed submitted and scheduled at

run-time, MARUTI scheduling is actually more like static scheduling since the computation

graph for a job must be prepared in advance, including information such as resource and

server requirements. Further, when an execution request is refused, no account is taken of

the priority or criticality of the refused task. MARUTI therefore guarantees deadlines on a

first come first served basis and if a highly critical task is to be guaranteed in its execution,

reservations must be made in advance in the appropriate object calendars during application

design. Hence, MARUTI scheduling has more in common with the static scheduling

mechanisms of MARS than the dynamic EDF scheduling of CHAOS.

2.4.3.3. Fault Tolerance in MARUTI.

Fault tolerance in the MARUTI system is supported by means of replicating an application

or task computation graph in separate, failure independent partitions of the distributed

system on which it is to run [Mosse 91a][Zoubeir 91]. Only hardware faults such as power

supply, processor or communication link failures are considered and it is assumed that all

faults manifest themselves in the form of incorrect, late or missing messages. It is also

assumed that the underlying system is fully connected when a job is submitted to guarantee

that each node hosting a replica of the job will still be reachable even if a number of

communication link failures equal to the task's resiliency level occur. This ensures that votes

can be received from all replicas.

The underlying support for replication resides in the MARUTI communications system

which provides forkers and joiners between the service access points of different replicas. A

forker delivers a request to all members of a replica group, while joiners gather up requests

from replicas and vote upon them. before delivering the request to the appropriate service

34

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

access point if it proves to be correct. The precise voting policy to be used by a joiner can

be specified by the applications programmer and an appropriate number of copies of the job

will be allocated by the system according to the voting criteria and required resiliency level.

2.4.3.4. The MARUTI Programming Language.

A fmal interesting feature of the MARUTI system is the existence of MPL (the MARUTI

Programming Language) which has been specifically designed to allow the applications

programmer access to the features of the MARUTI system [Nirkhe 90]. MPL is an object-

oriented, statically-typed language which includes a range of real-time language constructs

including block structured timing constraints, real-time synchronisation primitives and

explicit loosely coupled or tightly coupled parallelism. MPL also offers an object group

management mechanism which interfaces to the underlying system to provide complete

transparency for issued such as naming, message transfer and object management.

2.5. MARS, CHAOS and MARUTI : A Brief Evaluation.

The three systems that have been described are all complete real-time operating systems in

their own right and each one has been designed with some specific purpose in mind. In the

MARS project, the major design goal was a drive for guaranteed, predictable performance

at all times, leading to a static system with comprehensive pre-scheduling and strictly

controlled run-time support mechanisms. The CHAOS system, on the other hand, was

designed to support adaptable real-time applications that can modify their behaviour in the

face of an unpredictable operating environment. This has led to a highly dynamic system

that uses techniques such as on-line scheduling and that includes specific adaptation

mechanisms within the operating system itself. Finally, the view taken in the design of the

MARUTI system is that the application development process, as a whole, should be

supported. Hence, the scope of MARUTI ranges from a methodology for application design

and implementation to the provision of appropriate operating support mechanisms for that

methodology.

35

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

Given the different goals and design approaches adopted in the three systems, it is only

natural that each system will have its own specific advantages and disadvantages. It will,

therefore, be interesting to consider this aspect of the MARS, CHAOS and MARUTI

systems, giving a brief summary of the potential strengths and weaknesses of each

approach.

2.5.1. MARS: Advantages and Disadvantages.

For hard real-time systems that must meet high dependability requirements, the MARS

approach offers several advantages. The use of static scheduling both for tasks and for the

communication between them makes it easy to reason about the run-time behaviour of the

system under different operating conditions. Also, the use of state messages for

communication avoids a number of problems (e.g. buffer overflows) and makes it easy to

provide fault tolerance simply by replicating components within the system. The provision

of fault tolerance is further simplified by the self-checking nature of MARS components,

since further error detection and voting mechanisms do not have to be provided.

Unfortunately, some of these strengths in the MARS system can just as easily be regarded

as potential weaknesses. Static scheduling requires tasks to be designed in such a way that

maximum execution times can be calculated in advance, although this is true for any hard

real-time system. More importantly, the use of static scheduling makes it difficult for the

MARS system to adapt to dynamic or changing environments and complicates the problems

associated with event handling. Further, the state message mechanism provides a

representation of the state of a task rather than explicitly providing inter-task

communication and the semantics of state messages can make producer-consumer or client-

server relationships difficult to model. This has the effect of constraining the development of

MARS applications, possibly to an undesirable extent in some cases.

2.5.2. CHAOS: Advantages and Disadvantages.

In many respects, the CHAOS system lies at the opposite end of the real-time spectrum to

the MARS system. The great strength of CHAOS lies in its dynamic structure and its ability

36

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

to adapt to external circumstances. This not only simplifies event handling, it also allows the

CHAOS system to tolerate transient overload conditions and, where necessary, to provide

for a graceful degradation of service in the face of failures.

However, considering disadvantages, the dynamic nature of the CHAOS system makes it

difficult to reason about the run-time behaviour of the system or any applications running

upon it. Although a great effort has been made to ensure as predictable and reliable a

response as possible from the system, the use of on-line scheduling means that advance

guarantees of schedulability, performance or correctness may be very difficult to obtain and

the overheads of the scheduling algorithms that are used must be borne by the system at

run-time. This further complicates the problem of analysing the run-time behaviour of

CHAOS applications.

2.S.3. MARUTI : Advantages and Disadvantages.

If CHAOS and MARS represent two ends of the spectrum of real-time systems, MARUTI

can largely be viewed as occupying the middle ground. Basically, it is a static system with

pre-scheduling and pre-allocation of resources and yet, at the same time, it has been

designed to support reactive real-time applications, with execution requests being generated

at run-time in response to external stimuli. The scheduling and schedulability analysis

mechanisms used in MARUTI are widely applicable to the real-time applications domain

and the MARUTI view of real-time objects and application development also possesses

some advantages, being both clear and well-structured.

On the other hand, MARUTI does have' its weaknesses. The approach taken to fault

tolerance may give cause for concern, since it is reliant upon being able to partition a

distributed system into k failure-independent partitions, each of which must be capable of

supporting an instance of the computation graph for a replicated task. The fault tolerance

mechanisms also make no allowance for non-deterministic computations. (The importance

of this latter topic will become clearer in the following chapter.) Finally, MARUTI

scheduling does have one or two unfortunate features. If an execution request is submitted

37

Chapter2 Real-Time Systems and Fault-Tolerant Programs.

that cannot be scheduled, then it is rejected regardless of the importance of the task. This

makes it necessary to design applications very carefully, making appropriate reservations

within the system for all critical tasks, even if they are only executed in exceptional

circumstances. Also. it is assumed that the network of machines is completely connected

whenever an execution request is submitted and this may not always be true in a system in

the presence of failures.

2.6. Chapter Summary.

This chapter has presented a review of some of the basic concepts in real-time and fault

tolerant computing. The concept of a real-time service was introduced and discussed in

some detail, including an examination of timing constraints and the notions of hard and soft

as well as periodic and aperiodic services. A short summary of the real-time scheduling

problem was then given, covering the basic concepts of precedence and priority and briefly

discussing single processor, multi-processor and distributed scheduling algorithms.

Turning to fault tolerance, both atomic actions and exception handling were considered in

detail. In the former case, this included a description of the basic properties of atomic

actions along with a discussion of nested and nested top-level actions, while the description

of exception handling covered both the termination and resumption models, as well as

considering single-level versus multi-level mechanisms and the use of parameter passing in

exceptions.

Finally, the chapter concluded with an examination of three existing fault tolerant real-time

operating systems; MARS, CHAOS and MARUTI, and a brief evaluation of their relative

strengths and weaknesses.

38

Chapter 3.

Object Replication in Real-Time Systems.

The use of replicated hardware or software components to provide fault tolerant services is

a well-known technique that has been used in a number of different systems. Essentially,

replication schemes provide the users of a service with the notion of an abstract component

that exhibits the properties of a single component but that is actually made up of many

replicas. The abstract component is then capable of continuing to provide normal service in

the presence of some bounded number of replica failures. In the hardware case, several

identical components (or non-identical ones designed to provide the same service) may be

used to provide the abstraction of fault tolerant hardware. Similarly, by replicating software

components (processes, objects, etc.) on different processing nodes in a distributed system,

the abstraction of a fault tolerant software component can be provided. This abstract

software component can be constructed in such a way as to tolerate faults in the underlying

system hardware (processors, network, communications links, etc.) and, if necessary, faults

in the individual software replicas themselves (by providing diverse implementations of the

same service - Le. N-version programming [Chen 78]).

In this chapter, and throughout the remainder of this thesis, it is the replication of software

components to tolerate underlying hardware faults that will be the major area of interest.

The abstract fault tolerant component can be represented by a replica group, which is a

group of replicas co-operating to provide the same service. All interactions with such a

replica group must be controlled by an appropriate replication protocol, in order to

preserve the notion of the abstract component despite failures in -individual replicas (see

[Birman 88]). The replication protocol is instrumental in masking failures so that the

replicated service can continue to function and, since there are several different types of

failure that can occur in a distributed system, there are several different replication protocols

that can be used. In any given case, the complexity of the protocol that is required depends

39

Chapter3 Object Replication in Real- Time Systems.

upon the type of faulty behaviour that is to be tolerated, so we will begin with a brief

classification of fault types, before moving on to discuss the replication protocols required

to deal with them.

3.1. Fault and Failure Classification.

Each component within a system will have associated with it a specification of its correct

behaviour for a given set of inputs. A non-faulty component will produce an output that is

in accordance with this specification, while the response from a faulty component need not

be specified and can, in principle, be anything. Adopting the view of [Shrivastava 90], the

response from a component for a given input will only be considered to be correct if the

output value is correct and if it is produced on time (Le. within a specified time limit). This

strictly defmes correct behaviour for the component and it is then possible to classify the

behaviour of a faulty component according to the way in which the component deviates

from this general specification. Four possible classifications are:

Omission Fault/Failure.

A component that fails by not producing any output is exhibiting an omission

failure and the corresponding fault is an omission fault. A communication

link: that occasionally loses messages is an example of a component suffering

from an omission failure.

Value Fault/Failure.

A fault that causes a component to respond within the correct time interval,

but with an incorrect value is termed a value fault (with the corresponding

failure called a value failure). A communication link: that delivers corrupted

messages on time suffers from a value fault

Timing FaultIF ailure.

A timing fault causes a component to respond with the correct value but

outside the specified time interval (either too early, or too late). The

corresponding failure is a timing failure. An overloaded processor that

40

CluJpter3 Object Replication in Real-Time Systems.

produces correct values, but with an excessive delay suffers from a timing

fault. Note that timing faults and timing failures can only occur in systems

where timing constraints have been imposed on components' responses.

Arbitrary Fault/Failure.

The previous failure classes have specified how a component can be

considered to fail in either the value domain or the time domain. It is also

possible for a component to fail in both domains in a manner which is not

covered by any of the previous classes. A failed component which produces

such an output will be said to be exhibiting an arbitrary or, as it is sometimes

known, Byzantine failure (after [Lamport 82]).

The last of these, an arbitrary fault can cause any unexpected violation of a component's

specified behaviour, while all other fault classes preclude certain types of faulty behaviour.

In fact, omission faults (which are the most restrictive class) and arbitrary faults represent

two ends of the fault classification spectrum with other fault types lying in between. Later

fault classifications subsume the characteristics of the classes before them. For instance,

omission faults can be treated as a special case of either value or timing faults. This

spectrum of fault classification is illustrated in Figure 3.1.

Value. • Timing

•
Arbitrary

Figure 3. 1. Fault and failure classification hierarchy.

41

Chapter3 Object Replication in Real- Time Systems.

The importance of these fault classifications is that the types of fault a component is

assumed to exhibit affects the complexity of the replication protocols needed if that

component is to be replicated for fault tolerance, availability or performance reasons. This is

discussed in more detail below.

3.2. Replication Protocols and Consistency.

The problem of managing replicated objects (or other software components) is more

complex than the management of replicated, passive data items. Essentially, the problem of

managing replicated objects amounts to that of managing replicated computations and it can

best be formulated in terms of the management of object groups, where each group will

represent a replicated object and groups interact via messages. To ensure consistent

behaviour within a group in the presence of concurrent invocations and failures, it is

necessary to ensure that incoming invocations and other events such as replica failures or

the insertion of new replicas are handled consistently by all of the correct replicas in the

group and seen in a consistent order by the users of that group. If appropriate protocols are

not used to achieve this, then the states of different replicas can diverge from one another

-----3~~CV a.-
Invocation from group A to B.

Reply from B to A 1.

Reply from B to-A2 (never sent).

Figure 3.2. Object groups and inconsistency.

(see [Pease 80][Frison 82]). For example, consider the situation shown in Figure 3.2. Some

object group GA (replicas Al and A2 executing in parallel) is invoking an operation on

42

Chapter3 Object Replication in Real- Time Systems.

group GB (a single object B) and B then fails during delivery of its reply to GA' Suppose

that the reply is seen by AI, but not by A2, in which case the subsequent action taken by Al

and A2 can diverge. This problem arises because the failure of B was "seen" by A2, but not

by AI.

In the following discussion, both passive and active replication protocols will be considered.

Both types of protocol deal with the consistency problems described above, however they

do so in different ways and they will often rely upon different underlying communication

mechanisms. Different protocols also make different assumptions about the computational

model and properties of the applications that they support. In the general case. this makes it

impossible to take a simplistic approach to the use of replication and applications must

either be designed with particular replication protocols in mind or appropriate protocols

must be chosen to match the requirements and features of a given application.

3.3. Passive Replication.

In a passive replica group, only one member of the group (the primary) receives, processes

and responds to client requests, while the other members of the group act as backups, ready

to take over the primary's task if it should fail (for example, see [Speirs 89]). To maintain

consistency across the replica group, the primary must send checkpoints of its state to its

backups. Then, if the backups detect the failure of the primary, they execute an election

protocol to select a new primary and the elected replica resumes execution from the most

recent checkpoint. This can lead to a break in service when the primary fails, since:

i) it will take a [mite, bounded· time for the backups to ascertain that the

primary has, indeed, failed. The length of this delay will depend upon the

failure detection mechanism that is employed.

ii) the execution of the election protocol will introduce a further, bounded,

delay.

and

43

Chapter3 Object Replication in Real- Time Systems.

iii) the new primary may have to re-execute operations that were carried out,

but not checkpointed by the old primary prior to its failure.

3.3.1. Failure Modes and Failure Detection.

Since requests are only processed by a single replica, passive replication schemes can only

handle a restricted class of failures, namely omission failures. Passive replication therefore

relies upon processing nodes being fail-silent. A fail-silent node is one that exhibits

permanent omission failures: that is, when a failure occurs, the node stops functioning.

Hence, a fail-silent node never performs erroneous state transitions. Although this is an

idealised abstraction of real processors, given sufficient hardware, it is possible to build

realistic approximations to such processors (see [Schlichting 83][Ezhilchelvan 90]). Given

this fail-silent property and using passive replication, it is then possible to tolerate K failures

using K+I replicas.

To allow other members of the replica group to detect the failure of the primary, passive

replication also requires some kind of failure detection mechanism. This can be implemented

in several different ways, but possibilities include the use of "I am alive" messages which the

primary periodically sends to the other replicas or polling, where the other replicas

periodically send a message to the primary to confirm that it is still running. The simplicity

of these failure detection strategies is largely due to the assumed fail-silent property of the

processing nodes, since the absence of an expected message or reply from a fail-silent node

can be taken as a sign that the node has failed.

3.3.2. Communications Support.

Communications support for passive replication can be broken down into two separate

problems. First of all, communication within the replica group itself and, secondly,

communication between a client and a replicated server. The former will typically be based

upon some form of multicast mechanism that will allow the primary to distribute

checkpoints to all of its backups, while the latter could be implemented either as a multicast

44

Chapter3 Object Replication in Real- Time Systems.

between the client and the server group, in which case the client does not need to know

which replica is the current primary, or as a unicast between the client and the current

primary, in which case some kind of name service or logical address mapping mechanism

must be provided to allow clients to identify primary replicas. Another consequence of using

a unicast between clients and replicated servers is that checkpoints must then include

information about the requests that the primary has processed, as well as the primary's

internal state.

From the point of view of a client, replies from a passively replicated server are simply

ordinary reply messages. The replication protocol guarantees that only one replica will

respond and, when this response is received, it is guaranteed that the current primary has

checkpointed its state to a sufficient number of functioning backups to be able to provide

the required level of fault tolerance (e.g. if the replicated service must be able to tolerate K

node failures, then K replicas must save the checkpoint as well as the primary). The

replication protocols also guarantee that only up to date backups are eligible to become the

new primary. This can be achieved by the primary excluding unresponsive backups from the

replica group until they have performed update actions, or it may be achieved as part of the

election protocol itself.

3.3.3. Repeated Requests.

Another important feature of passive replication protocols is that they must include a

mechanism for dealing with repeated requests. Since service is lost for some time after a

primary failure, clients may re-try requests, This can lead to problems if the requested

operation is not idempotent (Le. if executing the operation twice is not equivalent to

executing it once), so there must be a way for the new primary to recognise a repeated

request and respond appropriately. One such method is known as retained results [Birman

85], in which a new primary is provided with a record of requests that have already been

served and simply re-transmits the results of repeated requests. This also has an impact

upon clients, since they must have the ability to re-transmit requests and re-evaluate replies.

The latter requires that the client perform backward recovery, returning to the state that it

45

Cluzpter3 Object Replication in Real- Time Systems.

occupied when the failed primary last made a checkpoint. This leads to a trade-off between

the frequency of checkpointing and the quantity of state recovery that is required and an

appropriate decision must be made on a per application basis.

3.3.4. Passive Replication: Advantages and Disadvantages.

Perhaps the greatest advantage of passive replication is that replicas need not be

deterministic in nature. Since only one replica ever performs an operation at any given time,

possible non-deterministic behaviour can be hidden by the fact that the group response is

provided by the primary and the primary's view of the application's state is imposed upon

the backups by checkpoints. Another advantage is that the collation and voting of multiple

replies is not required, since the single reply from the primary can be assumed to be correct.

On the other hand, the greatest disadvantage of passive replication is the break in service

that can occur when the primary fails, since this not only means that clients may have to re-

try requests, it can also lead to timing failures if a client is running to a deadline and

awaiting a reply from the passive replica group. Also, the fact that passive replication can

only tolerate the simplest types of failure represents a further disadvantage.

3.4. Active Replication.

With active replication, all members of a replica group receive and execute all requests and

all members of the group send a reply. There is, therefore, no need for checkpointing as

with a passive replica group. However, there is a need for new group members to be

brought up to date with the existing members before being allowed to receive and respond

to requests. Active replication also entails an additional cost in terms of system resources

allocated to all members of the replica group so that they can process requests.

Since all members of an active replica group execute at all times, there is no break in service

when one of the replicas fails, however some kind of collation mechanism is required so that

replies (or requests from a replicated client) can be gathered together correctly. Maintaining

replica consistency also becomes more difficult, because there is no primary replica to

46

Chapter3 Object Replication in Real- Time Systems.

enforce a consistent view of the current state of the system upon the other group members.

To cope with this, special communication protocols are required and replicas must be

restricted to performing deterministic computations to ensure that their internal states do

not diverge. This is best illustrated by considering a specific model of active replication: the

State Machine.

3.4.1. The State Machine Model.

The State Machine approach [Schneider 87][Schneider 90] is perhaps the most widely used

model of active replication. The state machine method is a general way of implementing

fault-tolerant services by replicating individual servers and co-ordinating the interactions of

clients with the replicated server group. It has broad applicability in the implementation of

distributed and fault-tolerant systems and it provides a framework for understanding

replication management protocols for active replica groups.

A state machine consists of state variables, which encode its internal state, and commands

which transform that state and produce output. Each command must be implemented by a

deterministic program and the execution of any given command is atomic with respect to

the execution of all others. A command may modify state variables, produce some output,

or both. To specify the execution of a command, a client sends a message to the

appropriate, named state machine, naming the command to be performed and giving any

information (parameters, etc.) needed by that command. State machines process requests

one at a time, in an order consistent with causality, so clients can be programmed under the

assumptions that:

01 Requests issued by a single client to a given state machine sm are processed

by sm in the order in which they were issued

02 H the fact that request r was made to a state machine sm by client c could

have caused, or potentially caused, a request r' to be made to sm by another

client c' then sm processes r before r'.

47

Chapter3 Object Replication in Real- Time Systems.

The outputs from processing a request may be sent to some kind of actuator, to some other

peripheral device or to state machine clients that are awaiting responses.

From the properties described above, it can be seen that the defining characteristic of a state

machine is that it specifies a deterministic computation that reads a stream of requests and

processes each one, producing any necessary outputs. Semantically, each output from a

state machine is completely determined by its initial state and the sequence of requests that

it processes, independent of time or any other activity in the system. The use of active

replication to construct a fault tolerant state machine out of individual state machine replicas

is, therefore, relatively simple: so long as each replica running on a non-faulty processor

starts in the same initial state and processes the same requests in an identical order, it can be

guaranteed that the internal states of the non-faulty replicas will remain consistent and not

diverge. The requirement that replicas execute the same requests in an identical order can be

decomposed into two separate, specific constraints on the dissemination of information to

the replica group.

Agreement

Every non-faulty state machine replica receives all requests.

Order

Every non-faulty state machine replica processes the requests it receives in

the same relative order.

These agreement and order properties can be implemented in a number of different ways,

however the most commonly used protocols are based upon the use of an atomic broadcast

mechanism.

3.4.1.1. Communication Support for State Machines: The Atomic Broadcast.

An atomic broadcast is a multicast communication mechanism that possesses the following

three basic properties :

48

Chapter3 Object Replication in Real- Time Systems.

Termination

If the initiator of the broadcast (the sender) does not fail, then the broadcast

will complete successfully within a bounded time. That is to say, if the sender

begins the broadcast at some time t on its local clock, then the broadcast will

be guaranteed to complete by some fixed time t+A, where A is a known and

bounded quantity.

Atomicity

If the initiator of the broadcast does not fail, then all the non-faulty, intended

recipients of the broadcast will receive the message. Alternatively, if the

sender fails during the broadcast, then either all of the recipients will receive

the message or none of them will. (No partial broadcasts.)

Order

All broadcasts are received in the same order at all replicas.

The use of an atomic broadcast protocol for communication with a replicated state machine

guarantees the State Machine Agreement property and the state machine Order property

can be guaranteed by having all replicas process requests in the order in which they arrive,

(since the arrival of requests is ordered by the atomic broadcast). The use of an atomic

broadcast in this way will also preserve the causal relationships between requests as

required by the state machine causality assumptions, 01 and 02.

Although atomic broadcast mechanisms have been included in a number of existing systems,

the detailed implementation of an atomic broadcast primitive depends upon the types of

failures that are to be tolerated and the underlying low-level communications support upon

which the atomic broadcast is based. However, in general, the participants in an atomic

broadcast will have to exchange and compare messages that they have received to ensure

that the termination, atomicity and order properties are met. This may involve one or more

rounds of message exchange between all participants and the cost of executing an atomic

broadcast can be high in terms of both processing requirements and communications

49

Chapter3 Object Replication in Real- Time Systems.

overheads. This topic is discussed further in chapter six, where the implementation of two

different atomic broadcast protocols is described (one capable of tolerating arbitrary

failures, the other of tolerating omission failures).

3.4.2. Failure Modes and Failure Detection.

Where passive replication techniques are limited to handling permanent omission failures

and rely upon fail-silent processing nodes, active replication schemes can be used to tolerate

any class of failure, including arbitrary (Byzantine) failures. The number of replicas that are

required and the precise details of the replication protocols involved then depend upon the

type of fault that is to be handled. At one extreme, if it can be assumed that processing

nodes are fail-silent, then active replication can tolerate K faults using only K+I replicas. All

non-faulty replicas reply to all requests and a client of such an active replica group can

simply accept the first response that it receives (since the fail-silence property ensures that it

will be correct). The fact that all non-faulty replicas reply to all requests also means that

there will be no discernible break in service when an individual replica fails. However, an

atomic broadcast or similar protocol must be used for communication with the replica group

to ensure that messages will be received in a consistent order by different replicas. The cost

of executing such a protocol must, therefore, be included in the time taken to communicate

with the group.

At the other extreme, tolerating K Byzantine faults requires either 2K+l or 3K+l replicas:

the former if some kind of signature mechanism is available to allow messages to be

authenticated (e.g. a mechanism based upon [Rivest 78]) and the latter if an authentication

mechanism is not available. In either case, more complex agreement protocols are required

for communication with the group, since any protocol that is used needs to be able to

tolerate arbitrary faults in one or more participants. The replica group must also be able to

form a majority decision regarding the actions it is to take and the outputs that are to be

produced, so some kind of majority voting mechanism is usually required. As in the fail-

silent case, a client of the active replica group will receive replies from all of the non-faulty

replicas, but some, or all, of the faulty replicas may also produce replies. This means that the

50

Clulpter 3 Object Replication in Real- Time Systems.

client also needs to perform message collation and majority voting in order to determine the

correct reply for any given request. Once again, there is no discernible break in service when

a failure occurs, but the overhead on interactions with the replica group will include the cost

of message collation and majority voting as well as the agreement protocol.

3.4.3. Active Replication : Advantages and Disadvantages.

Considering disadvantages first, there are three major problems with active replication.

Firstly, there is the cost in system resources (processing time, etc.) of having all replicas

execute all requests. Secondly, there is the cost of the replication protocols themselves. As

mentioned above, atomic broadcasts and other agreement protocols can be very complex

and their execution can be costly in terms of both processing time and communication

overheads. Further overheads are introduced by the need for message collation and, in non-

fail-silent replica groups, majority voting amongst replicas. This, in tum, places extra

demands on the available resources within a system and response times for active replica

groups are typically slightly degraded when compared with corresponding, unreplicated

services. The third major disadvantage of active replication is that replicas must be

deterministic in their execution, otherwise the internal state of different replicas may

diverge. (Note that the State Machine model is particularly well-suited for active replication

precisely because State Machines are restricted to deterministic programs.)

In spite of such disadvantages, active replication schemes have been used in several systems.

This is largely due to two major advantages of the active approach. First of all, response

times for an active replica group are not degraded when failures occur, so active replication

can be particularly suitable for applications that have high reliability requirements or include

timing constraints. This issue is discussed further in section 3.5. The second major

advantage of active replication is that it can tolerate arbitrary' classes of fault. Active

replication can therefore be used in a wider range of applications than other replication

strategies and, in situations where it cannot be assumed that processors or processing nodes

are fail-silent, active replication is, in fact, the only replication strategy that can be used to

provide fault tolerance.

51

Chapter3 Object Replication in Real- Time Systems.

3.5. Replication in Real-Time Systems.

If replication is to be used to provide fault tolerance for a real-time application, the impact

of the replication protocols themselves on the overall performance of the system must be

taken into account. A simple first analysis might suggest that passive replication is more

appropriate for the real-time applications domain, since complex agreement and ordering

protocols do not need to be executed when service requests are made. The fact that passive

replicas can be permitted to perform non-deterministic computations can represent another

advantage, since this would seem to allow greater flexibility of execution and make it easier

to cope with events and signals coming from the system's environment. However, from a

real-time perspective, passive replication does suffer from disadvantages. There are

processing and communications overheads for constructing checkpoints and transmitting

them from the primary to the rest of the replica group. There is also the problem that

passive replica groups suffer a break in service whenever the primary replica fails (or is

detected to have failed by the backups). When this happens, the length of time for which the

service is unavailable is determined by:

LCd+Telect +Tupdate

where = Latency of the replica group failure detection mechanism,

Telect = Time to elect new primary replica

(Le. time to run election protocol),

= Time for new primary to bring itself up to date from the most

recent checkpoint.

This break in service can lead to problems elsewhere in the system, particularly when other

and Tupdate

tasks miss their deadlines while awaiting replies from the passive replica group. In the worst

case, there is also the risk that a primary replica might fail when the system is already

operating under emergency or heavy-load conditions. If this was to occur, the temporary

loss of service from the passive replica group might cause a more serious failure of the

system as a whole. Such a situation would be unacceptable in many real-time applications

and passive replication may, therefore, be regarded as being unsuitable for real-time

52

Chapter3 Object Replication in Real- Time Systems.

services. The fact that passive replication assumes fail-silent hardware can pose further

problems, since there are some applications (e.g. in safety-critical systems) where fail-

silence cannot be assumed unless appropriate hardware redundancy is employed to support

it, but where hardware implementation of fail-silent nodes may, nevertheless, be infeasible

or inappropriate.

Active replication, on the other hand, does not suffer from these disadvantages. Since all

replicas execute all requests, the failure of an individual replica will go unnoticed from the

point of view of the replica group's clients (Le. no loss of service). Furthermore, active

replication is not limited to fail-silent hardware. For these reasons, active replication would

appear to be the better replication strategy for real-time systems and for applications having

high dependability requirements. However, the disadvantages of active replication must also

be taken into account. As described earlier, there is the cost in terms of system resources of

having all replicas executing in parallel at all times. Fortunately, this does not necessarily

present any major difficulties and it can largely be regarded as a resource allocation

problem. More important is the cost of executing the necessary agreement and replica

consistency protocols. In a real-time environment, the trade-off between increased fault

tolerance and degraded response times must be weighed very carefully and situations may

arise where a system does not have sufficient processing or communications capacity to

handle the extra overheads of communication between active replica groups. In such cases,

an alternative fault tolerance strategy would have to be adopted. Finally, there are the

problems associated with non-determinism. The restriction of active replicas to deterministic

computations is particularly awkward for real-time systems because, as we shall see in the

following section, the potential for non-determinism in real-time programs can be high.

3.6. Sources of Non-determinism.

Although agreement protocols can ensure that the internal states of different replicas do not

diverge as a result of processing incoming messages in a different order, state divergence

can occur in other ways. Even if the restriction is made that all programming language

constructs in the programs performed by active replicas must be deterministic, there are

53

Chapter3 Object Replication in Real- Time Systems.

several other possible sources of non-deterministic behaviour. For example, consider the

situation where replicas each set a timeout while waiting for some message to arrive. As a

result of transmission delays in the network connecting the replicas, it is possible that some

replicas may see a copy of the message before their timeout expires, while others do not. If

this occurs, then the states of those replicas that saw the message in time will, in the general

case, diverge from the state of those replicas that didn't see the message in time. A similar

situation may arise with any other real-time constraint, where some replicas meet their

timing constraint while others, due to varying message or processing delays, do not. In both

of these cases, the fact that all replicas were executing deterministic programming language

constructs and that all invocations were agreed and ordered does not have any bearing on

the potentially divergent behaviour of the application. The problem here is that the replicas

were each responding to an entirely local, internal event (in the above examples, the expiry

of some timer) and such internal events must also be agreed and ordered across the replica

group.

Taking other possible sources of non-determinism into account and considering typical real-

time and distributed applications, six general classes of activity can be identified that may

lead to state divergence:

1. Non-deterministic language constructs.

The execution of non-deterministic language constructs by the replicas

themselves has already been mentioned as a source of state divergence. The

usual (and, typically, easiest) solution to this problem is to adopt an

appropriate replication model (such as the state machine) that does not allow

replicas to execute such non-deterministic primitives.

2. Invocation and group messages.

Non-determinism due to replicas serving different requests in different orders

or observing group membership changes at different times has also already

been discussed. Again, the solution is to adopt an appropriate replication

model such as the state machine and to execute appropriate agreement and

54

Cluzpter3 Object Replication in Real- Time Systems.

order protocols to ensure that replicas process the same messages in the

same order.

3. Environmental interactions.

If replicas are allowed to interact directly with their environment, for instance

receiving sensor readings or alarm signals, then it is possible that different

replicas could receive different values or receive signals at different times.

Such interactions with an external environment may cause different replicas

to follow different execution paths and their states to diverge.

4. Event handling and mode changes.

In a sense, this may be regarded as a special case of an environmental

interaction. If replicas may operate in different modes, depending upon

recent events in the system's environment or the current state of the

application itself, then changes from one mode of operation to another must

be made consistent across the replica group. The classic case of this type of

situation arises when replicas are waiting for two or more possible events and

subsequent processing depends upon which event has occurred. If different

replicas detect different events, then they may perform totally different

operations, to all intents and purposes immediately

5. Timing constraints.

As in the situations described earlier, the use of timeouts or timing

constraints can lead to state divergence if some replicas regard the timeout or

timing constraint to have expired while others regard it as having been met

Such a discrepancy in the replica group view may arise as a result of clock

synchronisation differences, variance in message delays between replicas or

from varying processing delays.

65

Chapter3 Object Replication in Real- Time Systems.

6. Internal concurrency.

The presence of internal parallelism in replicas, for instance the replicas of a

multi-threaded object, can cause state divergence if parallel threads are

allowed to interact. This could either be due to uncontrolled, concurrent

threads corrupting internal state information in some replicas or, if some

form of concurrency control is being employed, threads in different replicas

interacting at different points in their execution or different replicas enforcing

different concurrency control decisions.

Unfortunately, classes three, four and five represent types of activity that are common in a

wide range of real-time applications and the use of internal concurrency may also be

common, either for reasons of performance or as a result of a system's environment

including a high degree of parallel activity. It may therefore appear that the use of active

replication to support fault tolerance in real-time services is also doomed to failure as a

result of replica state divergence. However, this is not necessarily the case.

3.7. Solving the Non-Determinism Problem.

By and large, if a system has enough resources to support it and if the problems associated

with non-deterministic computations c.an be solved, the use of active replication can be an

effective fault tolerance technique for real-time applications. The resource allocation issue,

both for the replicas themselves and for the underlying support mechanisms that are

required, can only be addressed on a case by case basis, since different applications will have

different requirements. The "non-determinism problem", on the other hand, does admit

more general solutions and the remainder of this section describes some possible

approaches: first, straightforward prevention of non-determinism as enforced in the MARS

and SIFf systems; second, some less restrictive approaches that have been used in the

Delta-4 system and, finally, some proposals for an application level solution to this problem.

56

Chapter3 Object Replication in Real- Time Systems.

3.7.1. Prevention of Non-determinism.

The MARS system described in the previous chapter and the SIFf system [Melliar-Smith

82] [Weinstock 80] both make use of active replication to provide fault tolerance and both

systems follow the state machine model in restricting all tasks or processes to purely

deterministic computations. For example. in SIFf all processes are iterative. repeatedly

accepting input data, performing some specified. deterministic calculation and producing an

appropriate output. Given this determinism property, the only possible source of state

divergence in either system is then the ordering of requests or messages at different replicas.

To prevent state divergence arising from this source, both systems rely upon a combination

of static scheduling and broadcast communication mechanisms. In MARS, all

communication between tasks is by means of state messages and all access to the underlying

communications medium is pre-scheduled during system design, while in SIFf, hardware

support is provided for broadcast messages and an interactive consistency algorithm is

periodically executed by all the replicas of a process to agree upon the set of messages that

have arrived or are about to arrive. Hence, in both systems, it can be ensured that all

replicas process the same set of messages in the same order and thus remain in mutually

consistent states.

This restrictive approach to the problem of non-deterministic computations in active replica

groups is effective and has been adopted in a number of systems, however it does tend to

constrain the run-time behaviour of a system. For example, non-deterministic language

constructs cannot be used (including useful constructs such as the select ... accept and

rendezvous mechanisms used in Ada tasking) and internal parallelism within individual tasks

cannot easily be supported. Problems can also arise if tasks are allowed to be pre-empted at

arbitrary points in their execution, so pre-emptive scheduling disciplines must usually be

avoided. (It is notable in this regard that both of the systems mentioned above use a static

scheduling policy in which task start and end times are pre-defined.)

57

Cluzpter3 Object Replication in Real- Time Systems.

3.7.2. Non-determinism in the Delta-4 System.

In the Delta-4 system, two different solutions to the problem of non-determinism in replica

groups have been adopted: one based upon the use of active replication and the other based

upon the use of an alternative replication strategy known as semi-active or leader-follower

replication. In both cases, the approach that is taken to non-deterministic computations is

less restrictive than that in the MARS or SIFI' systems, however it can still be ensured that

the internal states of the members of a replica group will remain mutually consistent and not

diverge.

3.7.2.1. Active Replication for Multi-threaded Objects.

In the case of active replication (see [Chereque 92]), replicas must still conform to the state

machine model, however certain non-deterministic mechanisms are allowed, notably pre-

emptive multi-threading within objects. As in the MARS and SIFf systems, non-

determinism due to the ordering of requests or messages at different replicas is prevented by

using an appropriate broadcast communications mechanism to ensure that replicas receive

the same messages in the same order. Internal non-determinism due to multi-threading

within objects is then handled at the task scheduling level by ensuring that thread scheduling

occurs at the same place in computation and uses the same scheduling data in all replicas.

This is achieved by having the thread scheduler invoked exclusively from well-defmed

points in computation, such as at the execution of certain well-defined language constructs

(e.g. rendezvous, .elect, etc.) or on entry to or exit from compilation units, system or

standard procedures or well-chosen library procedures. In essence, this can be viewed as a

co-routine based implementation of multi-threaded objects.

Once again, this can be an effective strategy to adopt, but it does have certain drawbacks.

First and foremost, it requires alterations to be made within the task scheduling primitives of

the real-time operating system upon which an application is to run. While this may be

feasible for applications that are being developed upon a bare hardware platform (since such

an application will incorporate its own task scheduler), it will be impossible for applications

58

Chapter3 Object Replication in Real- Time Systems.

that are being developed to run on an existing operating system, unless the existing

scheduler already provides the necessary support or it can be modified to do so. Another

disadvantage with the scheduler based approach is that it can only really be applied within a

fixed, static scheduling regime, since it depends upon all replicas being de-scheduled at the

same, fixed point during their execution and this may not necessarily be true in a dynamic

system.

3.7.2.2. Semi-active Replication.

The semi-active replication strategy used in the Delta-4 XPA (Extra Performance

Architecture) system [Barrett 90] represents another approach to the non-determinism

problem. Semi-active, or leader-follower, replication is an attempt to combine the

advantages of passive and active replication techniques. In a semi-active replica group, all

replicas receive and process all requests, but only a single replica, the leader, will send a

reply. The leader is also responsible for dictating the order in which service requests should

be processed by the replica group and for informing the other members of the replica group

(thefollowers)l of the outcome of any non-deterministic choices made during the course of

execution. This is done by means of synchronisation messages. When it selects a new

request to be processed, the leader sends a synchronisation message- informing the

followers of the request that has been chosen. Similarly, when the leader makes a non-

deterministic choice, it sends a synchronisation message informing the followers of the

outcome of that choice. Hence, the followers will execute the same sequence of operations

as the leader and the leader's choice can be forced upon the followers when they are faced

with a non-deterministic decision. Problems with state divergence are, therefore, avoided.

As well as handling the ordering of requests and the results of non-deterministic program

constructs, the synchronisation message mechanism can also be used to allow the pre-

emption of requests. In those cases where the processing of a request may be pre-empted by

1Hence the alternative name, leader-follower replication.
lIn fact, synchronisation messages are sent on behalf of the leader by a task in the underlying
communication layer of the leader's host node (or its network interface). This is to relieve the leader of the
responsibility for managing message transmission. However, but for performance implications, this is
equivalent to the leader sending the synchronisation messages itself.

59

Chapter3 Object Replication in Real- Time Systems.

the arrival of a higher priority message or signal, the pre-emption must be synchronised

across all replicas to ensure replica determinism. In a semi-active replica group, this can be

achieved by introducing the concept of a pre-emption point, which is a pre-defmed point in

a software component at which it may be pre-empted. Each time the leader reaches a pre-

emption point, a counter is incremented. When a message arrives at the leader, a check is

made to determine whether this message requires the leader to be pre-empted. If this is so,

the pre-emption point at which this will take place is selected (given by the current value of

the counter plus one) and a synchronisation message is sent to the followers containing this

value and identifying the message that caused the pre-emption. On arriving at the assigned

pre-emption point (Le. when their counters match the assigned value), each replica then

begins to process the pre-emption.

The use of semi-active replication to tackle the non-determinism problem has two particular

advantages. Firstly, since the ordering of requests across the replica group is enforced by

the synchronisation message mechanism, communication with a semi-active replica group

only requires a reliable (atomic, unordered as opposed to ordered) multicast protocol (see

chapter 6). Secondly, the ability to pre-empt the processing of a request can be extremely

useful in real-time applications. However, the use of semi-active replication also has some

disadvantages. Like passive replication, semi-active replication requires fail-silent processing

nodes, since only a single replica (the leader) replies to requests. Further, for the pre-

emption point mechanism to work, the followers must always be executing at least one step

behind the leader, where a step constitutes the receipt of a synchronisation message due

either to a pre-emption or to the consumption of an input message by the leader. This could

lead to followers falling too far behind the leader, although "dummy" synchronisation

messages (which would also double as "I am alive" messages) could be sent periodically by

the leader to avoid this problem. Fmally, it is unlikely that the pre-emption point mechanism

could be made completely transparent to the application programmer, since it involves the

insertion of appropriate pre-emption point code into the application software.

60

Chapter3 Object Replication in Real- Time Systems.

3.7.3. An Application-level Approach.

The fmal approach to the non-determinism problem, proposed in this thesis, is to attempt to

prevent state divergence at the application programming level, as and when it occurs. This

objective will be achieved by developing a real-time object model, based upon the state

machine, which imposes certain restrictions upon the computational model used for

applications, but which also copes with the six different classes of non-deterministic activity

listed earlier. The general approach in each of the six cases is either to impose a particular

structuring of activity at the application level such that state divergence can be prevented, or

to develop equivalent, message based implementations of non-deterministic constructs such

that agreement and ordering protocols can be performed where required.

The details of the real-time object model will be discussed more fully in the following

chapter, however the strategies employed to handle non-deterministic activity are described

below.

3.7.3.1. Non-deterministic Constructs and Incoming Messages.

These are handled in the usual State Machine fashion, by restricting replicas to deterministic

computations (except where the constructs to be described below are involved) and

executing appropriate agreement and order protocols on invocations between replica

groups.

3.7.3.2. Environmental Interactions.

For environmental interactions such. as sensor readings or alarm signals, the easiest

approach is to convert such stimuli into message based primitives. The message associated

with a particular reading or signal can then be agreed and ordered as for any other

communication with the replica group. For signals from intelligent device controllers,

mapping the signal to some kind of message may be relatively straightforward, while dumb

devices would require an appropriate interface module or interface object to be

61

Chapter3 Object Replication in Real- Time Systems.

implemented in order to carry out the required marshalling of values and transmission of the

message. However, in principle, the technique remains simple.

3.7.3.3. Event Handling and Mode Changes.

In this case, some mechanism is required to limit the set of invocations that an object is

prepared to accept at a given time. One possible solution is to have an active object (Le. one

containing an independent, internal thread of control) which executes a .elect ...accept

mechanism similar to that used in the Ada language. By mapping possible events to

invocations and, at any given time, only accepting those invocations that correspond to

meaningful events, the future execution path of the object can be restricted to an

appropriate subset of its possible modes of operation. The correspondence between events

and subsequent operational modes is also easily supported, since an accept operation may

have associated with it a defined sequence of operations that are to be executed if the

accept succeeds. This seemingly non-deterministic mechanism can be used to handle events

in this way because it is possible to implement the .elect •••accept construct in such a

way that replica consistency is preserved, even though the selection of messages remains

non-deterministic at the application level. This is achieved as follows:

Consider the situation where a task is prepared to accept one of a number of messages,

mt.m2 ...mo' with a timeout of t seconds should no message arrive. This is shown, in terms

of the .elect construct, in figure 3.3 .

•el.ct
accept ml ~ actionl

o
accept m2 ~ action2

o
o

accept mn ~ actionn i

o
delay(t) ~ timeout_action

end .elect i

Figure 3.3.• elect •••accept language construct.

62

Chapter3 Object Replication in Real- Time Systems.

One possible implementation of this construct, at the level of processes and messages, is

shown in figure 3.4. The messages mI .•• mn are identified by the port upon which they

arrive (Pl ... Pn respectively) and all messages for the process S are placed in a message

queue, from which they are retrieved using the receivefrom(P,t) primitive. Now, if an

atomic broadcast protocol, or similar mechanism, is used to ensure that all the replicas of S

have identically ordered message queues and if the receivefrom primitive returns the first

appropriate message found in the queue, then it can be guaranteed that in those cases where

at least one message arrives in time, each replica will process the same message.

proc... S
var m message,

t : timevalue,
P : •• tof ports

P := P[Pi· .. Pnl
t := <timeout value>
m := receivefrom(P,t)
if m ;I; Dull -7 if m.port=Pl -7 act fonj

o m.port=P2 -7 action2
/* m = ml */
/* m = m2 */

o m.port=Pn -7 actionn /* m = mn */
fio m = Dull -7 timeout_action

fi
end S

Figure 3.4. Implementation of •• lect construct.

However, since the input operation is non-blocking and times out after some interval, t,

different replicas may still perform different actions. This can happen if an appropriate

message is placed in the message queues of some of the replicas just before the timeout

expires, while other replicas do not see the message in time. To solve this problem, what is

needed is some means whereby the timeout event can be agreed and ordered just like an

incoming message. This can be achieved by having each replica send a marker message to

itself when it detects the expiry of the timeout (see figure 3.5).· This self-directed message

will be broadcast to the replica group and agreed and ordered in the same way as any other.

It can therefore be guaranteed that either all replicas will select the same message from a

member of P or all replicas will select the marker message. Replica consistency will thus be

63

Chapter 3 Object Replication in Real- Time Systems.

maintained.' Furthermore, since message queues are ordered identically at all replicas,

prioritised messages can also be handled consistently by having each replica await the arrival

of the marker message and then search through its message queue, as far as the marker, for

the highest priority acceptable message that has arrived. Clearly, if some high priority

message, mH, is selected by one correct replica, the same message will be in the queues of

the other correct replicas and will, similarly, be selected.

procedure receivefrom(p : •• tot ports, t timevalue)
return. m : message

begin
within t do

(m := RECElVEFROM(P) /* Returns first message */
timeout: /* in queue from PiE P. */

{ send (self, marker)
m := RECElVEFROM([P,self) }

od
it m = marker ~ m := null
[] m :F- marker ~ .kip
fi

end

Figure 3.5. The generic input function.

The implementation of the recei vefrom() primitive shown in figure 3.5 has been referred

to as the generic input function since it can be used as the basis for a deterministic

implementation of any type of message input primitive, not just the .elect ... accept

construct (for further details, see [Tully 90][Tully 91][Shrivastava 92bD·

3.7.3.4. Timing Constraints.

To handle timing constraints, it is possible to develop a message based implementation of

the "temporal scope" construct that relies upon using the deterministic implementation of

the .elect ••• accept mechanism described above. Since the violation of a timing

constraint will then be represented by a message, it can be agreed and ordered for the entire

replica group.

For example, consider the following timing constraint:

3 Note also that it must be assumed that the atomic broadcast used to distribute the marker message includes
some form of collation and duplicate removal mechanism to ensure that each replica will only receive a
single copy of any given marker.

64

Chapter3 Object Replication in Real- Time Systems.

do
S

.tart_in{EST,LST) i

fini.h_in {EFT,LFT) i

Early_start : A i Late_start : B]
Early_finish : X ; Late_finish Y

The interpretation of this constraint is that operation S should be executed, starting within

the closed interval [EST, LST] and completing within the closed interval [EFT, LFT]. If S

is started prior to EST, the exception Early_start will be raised and exception handler A

will be executed. Similarly, if S has not started by LST, the exception Late_start is raised

and handler B is executed. Completion before EFT is signalled by Early_finish and

handled by handler x, while late completion (Le. after LFT) is signalled by Late_finish

and handled by handler Y. This construct permits an equivalent implementation of the form :

par
send{self,"start") ; S send{self,"finish")

II
.elect

accept "start" ~ A
o

delay (EST) ~
.elect

accept ·start" ~
.elect

accept "finish" ~ X
o

delay (EFT) ~
.elect

accept "finish" ~ null
o

delay (LFT) ~ Y
end .elect

end .elect
o

delay (LST) ~ B i

end .elect
end .elect

end par i

where the statement IIdelay (t) ~ S i" represents a guarded command that will delay

until time t and then execute s.

The way in which this alternative implementation works is quite simple. Two parallel

threads are created, one of which sends a IIstart II message, executes operation S and sends

a "finish" message', while the other thread waits for the incoming messages using a nested

4 Note that, for absolute correctness, the transmission of the "start" message and the beginning of operation
S must be atomic. Similarly, the end of operation S and the transmission of the "finish" message must also

65

Chapter3 Object Replication in Real- Time Systems .

•elect mechanism. Each .elect has only two branches: either accept an incoming

message ("start" or "finish") or, after the pre-defmed delay, proceed to the next level of

nesting. Now, consider the situation when execution begins. If the first accept for message

"start" succeeds, then the parallel thread has begun execution too early (Le. before EST),

so operation A (the exception handler operation) is performed. On the other hand, if

execution of S is not begun too early, the first delay statement (for EST) will expire and the

next level of nesting will be entered. Here, if the "start" message arrives before the next

delay expires (LST), then all is well and execution proceeds. However, if delay (LST)

expires, then the parallel thread has not begun execution on time and the handler operation

B is performed. This pattern of execution is repeated for the earliest and latest finish times

(EFT and LFT). It can be seen that the net effect of this mechanism is the same as the net

effect of the timing constraint described earlier, however in this case, exceptional events

such as Late_start or Early_finish are mapped to the arrival of start or finish messages

and an appropriate agreement protocol can therefore be executed for these events.

3.7.3.5. Internal Concurrency.

In this case, the best approach is to impose a restriction upon the computational model such

that state divergence cannot occur. First of all, an operation is only allowed to generate

internal threads using the par ••• end par construct if the threads thus created do not

interact with one another, other than via the exchange of messages or via invocations to

common objects. This ensures that all such interactions are visible at the message level and

can, as required, be agreed and ordered between replicas. The second restriction is that

active objects may only contain multiple threads if those threads meet the same criteria: Le.

that they do not interact other than via the exchange of messages of via invocations to

common objects. This even applies when an internal thread. needs to access an object's

internal state information: such access must be via an operation invocation, although in this

case, the invoked operation may be private rather than public. Under these conditions, it can

be atomic. A correct implementation of this mechanism must, therefore, ensure that the thread executing S
cannot be suspended immediately after transmitting "start", or immediately before transmitting "finish".

66

Chapter3 Object Replication in Real-Time Systems.

be ensured that the thread's activity is agreed and ordered both at remote objects and locally

to the active object itself.

3.7.4. Impact of the Proposed Approach.

If the mechanisms proposed in section 3.7.3 are to be used, some thought must be given to

the impact that they will have on the design of systems and the performance of such systems

at run-time. From the point of view of system design, the restrictions that have been

imposed are unlikely to prove too limiting, since they are mainly recommendations of the

way in which particular activities should be supported, rather than prohibitions. For

example, internal parallelism in objects is not actually disallowed, it is simply restricted to

certain well-defined mechanisms.

Considering system performance, the mechanisms that will have the greatest impact are

those that have been proposed for event handling and timing constraints. The use of the

.elect ... accept construct in the implementation of the temporal scope primitives and the

use of marker messages in the deterministic implementation of select will introduce

execution overheads at run-time. These overheads will vary from system to system, being

dependent upon factors such as the latency of the underlying communications protocols that

are used. Chapter 7 considers this subject in greater detail and gives a brief analysis of the

run-time costs associated with the suggested timing constraint mechanism.

3.8. Chapter Summary.

In this chapter, the use of replication to provide fault tolerant, abstract software components

has been examined. A brief description of the classes of fault and failure which can be

attributed to components in a distributed system was given, before moving on to a general

description of both passive and active replication techniques. The major features of passive

replication protocols were discussed, including the need for fail-silent host computers and

the freedom of passive replicas to execute non-deterministic computations. Active

replication was then considered in the form of the state machine model, illustrating the

ability of active replica groups to tolerate arbitrary failures, but also the requirement for

67

Chapter3 Object Replication in Real- Time Systems.

deterministic execution in active replica groups. The relative advantages and disadvantages

of these two types of replication strategy were then compared in terms of their usefulness in

a real-time environment: the conclusion being that active replication, in spite of its

requirement for determinism, was the most appropriate technique. Finally, some of the

major sources of non-deterministic behaviour (and, hence, replica state divergence) were

identified and mechanisms proposed that can allow these types of activity to be undertaken

in an active replica group without compromising the consistency of replica states.

68

Chapter 4.

A Model for Fault-Tolerant Real-Time Objects.

This chapter presents a model for real-time objects that is based upon an extended version

of the state machine (see also [Shrivastava 91aD. The model includes a programmed error

recovery mechanism that is based upon a combination of atomic transactions and exception

handling. Active (threaded) objects are also supported and language constructs are provided

that allow real-time constraints to be expressed and enforced at the application

programming level. The notion of time can therefore be regarded as a first-class

programming entity, similar to any other block-structured programming language primitive.

The final important feature of the object model proposed here is that it allows certain,

controlled forms of non-deterministic behaviour, while still being amenable to active

replication. This may be achieved by adopting the computational restrictions and

implementation techniques described at the end of the previous chapter.

4.1. Object Structure.

The object oriented programming model provides a good structuring technique for large or

complex software systems. The data abstraction and encapsulation features of the object

oriented approach can be used to develop a well-defined decomposition of a large system

into an appropriate set of functional sub-units with a known pattern of information flow

between them.

An object is defined to be an instance of some type or class and it consists of a number of

instance variables which define its internal state and a set of operations or methods which

serve to define its externally visible behaviour. All interactions between objects take place

by means of method invocations and the only way to gain access to an object's state

information is by invoking one of its methods. Objects therefore provide a natural boundary

69

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

for fault containment and the restriction of object interactions to method invocations across

defmed interfaces aids traceability and provides some support for damage assessment

4.1.1. Object Granularity.

One of the issues that arises in the context of object-oriented systems is the granularity of

objects. In a pure object-oriented system such as Smalltalk, all entities are objects, even

down to the level of individual integers or characters. All interactions are method

invocations (in the case of Smalltalk, viewed as message passing) and inheritance is used

extensively to develop more sophisticated objects from existing ones. At the other extreme,

objects in some systems are very large. For example, in CLOUDS [Dasgupta 91], objects

may encapsulate entire programs and span several nodes in a distributed system.

For reasons of performance and manageability, choosing an appropriate object granularity

can be an important design decision and this is particularly true for real-time applications. If

a very small granularity is used, it may entail considerable overheads for inter-object

communication during normal processing and, in a time-constrained environment, this

would usually be unacceptable. On the other hand, a large granularity does not offer the

usual structuring advantages in terms of data abstraction, encapsulation and the

management of complexity within programs. Fortunately, in many cases, the appropriate

granularity for objects in a given real-time application is dictated by the application itself.

For example, by having objects represent individual devices or control sub-systems, a

natural separation of concerns can be achieved at the software level, corresponding to the

structure of the application and the underlying system hardware. This level of granularity

will also usually provide an acceptable level of abstraction without incurring excessive

overheads at run-time and the object model presented here is geared towards such medium

grain entities. This view is similar to that taken in the development of the Alpha kernel

[Northcutt 87] and the reasoning upon which it is based follows similar lines.

70

Chapter4

4.1.2. Active Objects.

It is also often advantageous for real-time objects to be active. An active object is one

A Modelfor Fault-Tolerant Real-Time Objects.

which contains its own internal process or thread of control and which is capable of carrying

out processing independently of invocations received from other objects. The degree of

autonomy that this provides allows continuous monitoring and control activity to be

supported within the object-based framework without having to rely on any kind of explicit

process-based mechanism. For most applications, a combination of active and passive

objects will usually be appropriate, with the passive sub-systems of the application providing

required services to the active processing sub-systems.

4.1.3. Inter-Object Communications.

For interactions between objects, both synchronous and asynchronous invocation

mechanisms should be available. The former can then be used to support the traditional

client-server style of programming while the latter may be useful for supporting activity in

event-driven systems where certain conditions can cause invocations to be generated for

which replies are not required. Since it is the abstraction of synchronous and asynchronous

invocations that is important rather than the actual implementation, this could be achieved

by having separate synchronous and asynchronous communication mechanisms or by

implementing both types of invocation primitive on a single synchronous or asynchronous

communications layer.

4.1.4. Atomic Actions and Exceptions.

Given that the interfaces between objects provide a logical boundary for fault containment,

fault tolerance mechanisms can be introduced to ensure that erroneous state information and

incorrect results cannot be propagated freely across invocations. Other mechanisms can then

be used to provide appropriate error detection and recovery within the objects themselves.

One combination of fault tolerance techniques that is particularly well-suited to this task is

the use of atomic actions alongside a suitable exception handling construct. By executing all

operations as atomic actions, an effective error recovery mechanism is provided within

71

Cluzpter4 A Model/or Fault-Tolerant Real-Time Objects.

objects and interference between concurrent invocations is prevented. The use of atomic

actions in this way can also help in allowing objects to be regarded as a form of state

machine, since state machine operations must also execute atomically (with respect to

concurrency). Exceptions can then be used to signal failed invocations to the caller, where

exception handlers can provide further recovery if it is required.

4.1.5. Initial Overview.

In the following pages, several features of this real-time object model, including the atomic

action and exception handling mechanisms will be considered in greater detail, however it

will be worthwhile at this point to summarise the model's basic structure. Thus far, five

basic properties have been identified:

1. Objects are of medium granularity, typically corresponding to specific

devices or control sub-systems.

2. Objects may be active, containing one or more threads of control.

(Typically, the number of threads required in a multi-threaded object will

be small, but no explicit limit is placed upon this.)

3. Objects may communicate via synchronous or asynchronous invocations.

4. An object is only permitted to have a single interface.

5. All operations are performed as atomic actions.

The restriction that objects are only' allowed to possess a single interface is enforced to

maintain a degree of simplicity in the interactions between objects. In principle, there is no

fundamental reason why this restriction should not be relaxed to allow an object to possess

multiple interfaces and to support some form of interface trading or interface checking

mechanism, however a number of test applications have already been considered within the

framework of this model and it is interesting to note that the need to support objects with

multiple interfaces has not yet been apparent

72

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

Figures 4.1 and 4.2 illustrate some of the general features of a programming notation based

upon this object model. The syntax for general language constructs is broadly similar to

Pascal or Modula-2, however other features, to be described later, have been based upon

other languages or systems.

XHTZRPACB Integer_Stack XS

Push(XH integer) r.turn. boolean
Pop r.turn. integer ;
Clear_All

JDID. /* End of interface declaration. */

Figure 4.1. General language features: Intelface Declaration.

OBJECT Integer_Stack XS

/* Implements a stack for up to 100 positive integers. */

STATB
integer top, Stack[100]

/* Private state variables. */

METHOD Push (XX integer
action

if top < 100 then
begin

Stack[top] := i
top := top+1 ;
r.turn TRUE ;

end
.l.e

return FALSE
end action

i) return. boolean

/* If stack not already full, */
/* add element to top of stack */
/* and return TRUE. */

/* Return FALSE if stack full. */

METHOD Pop r.turn. integer
action

integer return_val

if top <= 0 then
return -1

.1••
begin

return_val := Stack[top]
Stack[top] := 0 ;
top := top-1 ;
return return_val

/* Return -1 if stack empty. */

'/* Otherwise return top element. */

end;
end action ;

METHOD Clear_All
action

while top >= 0 do
begin

Stack[top] := 0

/* Clear all stack entries. */

73

Chapter4 A Modelfor Fault-Tolerant Real-Time Objects.

top := top-l
end;
top := 0 ;

end action

DD. /* End of object declaration. */

Figure 4.2. General language features: Object Decla;ation.

While the basic structure of the model is adequately summarised by the above list of basic

points and the example code of Figures 4.1 and 4.2, these descriptions actually represent

nothing more than a skeleton to which more detailed concepts can be added. The remainder

of this chapter will flesh out this basic framework, describing the use of active objects,

language support for timing constraints and appropriate mechanisms for atomic actions and

exception handling. However, an important point to note before proceeding is that the

major purpose of the programming notation shown here is not to propose a "new" real-time

programming language. Its main aim is to provide a vehicle for expressing the ideas upon

which the real-time object model is based and it is the development and application of the

model that is the major focus of this thesis.

4.2. Active Objects, Method Selection and Event Handling.

As well as responding to service requests from system operators or users, a real-time

control system must also carry out processing independently of those requests, monitoring

its environment and responding appropriately to external conditions. Typically, such

independent monitoring activity takes the form of one or more cyclic tasks which read

values from external sensors, process those values according to the present state and

operating conditions of the system and produce appropriate driving signals for external

actuators. For example, consider a quality control sub-system which monitors containers of

liquid passing along a conveyor belt in a factory. If a defective container is detected, it must

be removed from the belt. This sub-system is easily implemented as a cyclic task which

reads a value from some sensor capable of detecting faulty containers. If the sensor value

indicates that the current container is defective, appropriate actions can be initiated to have

that container removed. This type of closed-loop activity is encountered across a wide range

74

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

of real-time control applications and any programming system or computational model

intended for real-time use should provide suitable mechanisms to support such functionality.

4.2.1. Processes vs. Active Objects.

In a process-based programming system, it is very easy to support continuously executing,

cyclic tasks, since each task can be implemented as a separate, cyclic process. However,

when working within an object-based or object-oriented framework, it becomes more

difficult to provide an appropriate mechanism for repetitive closed-loop activities. In many

object-based systems, objects are essentially passive entities, simply responding to

invocation messages as and when they arrive. This execution model is ill-suited to cyclic

tasks, since it does not allow objects to carry out independent processing and an alternative

mechanism must be provided to drive cyclic activities. For example, one possibility is to

allow application programs to be designed as a combination of objects providing services

and processes providing cyclic control, but this should be regarded as a poor compromise.

Being neither solely process-based nor solely object-based, it runs the risk of being poorly

structured, inefficient and awkward to implement cleanly while not offering any great

advantages over either individual computational model. For object-based real-time

applications, a better solution is to support active objects. These are objects which contain

an internal process or thread of control that may carry out processing independently of any

invocations received by the object. In essence, active objects can be regarded as an object-

based encapsulation of a process. However, they can be used to extend the normal process

concept in a number of ways. First of all, an active object may still contain ordinary methods

and interact with other objects in the usual fashion. By taking advantage of this, the internal

process of an active object can be isolated from direct contact with other objects in the

application, communicating instead by means of updates to local state information which is

then accessed externally via one of the active object's methods. This can help to prevent

failed or faulty processes propagating errors throughout the rest of the system. Secondly,

there is no reason why an active object need encapsulate only a single thread or process.

Multi-threaded objects can be constructed, each encapsulating a number of related threads

75

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

which need access to the same local state information. This may be more efficient than

having a collection of related, but logically independent, processes and it may also allow the

application programmer to develop a more appropriate logical structure for the application

software as a whole.

OBJECT Sensor IS

STATZ
real old, last, latest

KBTHOD Read_New_Values
action

old := last;
last := latest
latest := /* Get value from sensor hardware. */

/* Private method for reading */
/ * new sensor value etc. * /

end action ;

KBTHOD Average_Reading return. real
action

real average_value ;

average_value := (old+last+latest)/3
return average_value

end action ;

KBTHOD Latest_Reading return. real
action

return latest
end action

THREAD /* Declaration of internal thread of control. */
cycle /* (Several threads can be declared * /

Read_New_Values /* if they are needed.) */
end cycle

JDID.

Figure 4.3. Active object declaration.

Figure 4.3 shows a typical active object declaration. This is identical to the declaration for a

passive object, but for the inclusion of declarations for internal processes or threads of

control. An active object may contain more than one thread and a thread may perform one·

of three distinct functions :

1. Object initialisation

All threads begin execution immediately when an active object is instantiated.

A non-periodic thread can therefore be used to perform initialisation within

76

Clulpter4 A Model/or Fault-Tolerant Real-Time Objects.

the object. This thread will carry out its activities immediately upon creation

of the object and then terminate.

2. Background (Control) processing

Cyclic threads within active objects can be used to perform closed-loop

control processing such as that described earlier. In most applications, this

will probably be the most common use of active objects.

3. Method Selection

In some applications, for example event-driven systems, it may be necessary

for objects to restrict the order in which they accept invocations. An active

object may contain one thread which performs this particular task, using a

select/accept mechanism (see Figure 4.4). A more detailed description of this

mechanism is given below .

•elect
accept Request_l ~ accept Request_2 ;

[J

accept Request_3 ~ /* FUrther processing. */
[J

delay (lOOrns) ~ /* Timeout processing. */
end ••lect ;

Rgure 4.4. Syntax of select and accept statements.

An important point to note is that in those objects which include a thread performing

method selection (as described above), all incoming method invocations to the object are

mediated and controlled by the method selection thread. However, such objects may still

include other background threads that execute independently of the method selection

thread. Also, in objects that do not employ method selection, incoming invocations are

passed directly to the appropriate methods within the object, as. in any other object-oriented

programming system.

rt

CluJpter4 A Model/or Fault-Tolerant Real-Time Objects.

4.2.2. Active Objects and Method Selection.

The inclusion of the method selection mechanism shown in Figure 4.4 allows the

implementation of sophisticated control algorithms in which future activity is dependent

upon past events in the environment or past actions within the control system. For instance,

consider the following simple sub-system, which might be implemented as a single object.

There are four operations, A, B, C and D. Requests to execute these operations may arrive

in any order, however there are only two valid execution sequences: A-B-C or D-C. Also, if

the latter sequence of operations is executed, some kind of internal processing must follow

the completion of C. If a request arrives that is not currently valid (e.g. request D

immediately following A), then it should be queued until it can be served. In most object-

based systems, ensuring that only the correct execution sequences were followed would be

quite difficult, however if the object contains a thread limiting the set of invocations that it is

prepared to serve, the problem can be solved quite neatly. Figure 4.5 shows a possible

implementation of such an object. The select/accept mechanism is similar to that used in the

Ada language. The use of .elect is limited to the non-deterministic selection of one of a

number of accept statements, and accept can only be performed on an object's public

(exported) methods.

OBJECT Example IS

STATZ
/* State variables. */

IIBTROD A (••.)
action

end action

IIBTROD B (..•)
action

end action

/* Declarations for methods C and D. */

THRBAD
begin

cycle
.elect

accept A -+ accept B -+ accept C

78

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

[]

accept D --+ accept C --+ begin
/* Further processing. */

end ;
end .elect

end cycle
end

DD.

Figure 4.5. Use of method selection.

4.2.3. Method Selection and Event Handling.

Another area where the method selection mechanism proves to be useful is in structured

event-driven applications. For example, consider the case where operations A, B, C and D

of Figure 4.5 are handlers for four different external events that can occur concurrently.

Further, impose the restriction that events should only be accepted and processed in the

order A, B, C or D, C. The mechanism described earlier would allow such event sequences

to be processed correctly, whether two or more of the events occurred concurrently or not.

Object_A.Method_l{ ... > ; /* -Normal- synchronous
/ * invocation.

*/
*/

AObject_A.Method_2{ ... > / * Asynchronous invocation. * /
/* (Signified by leading A). */

Figure 4.6. Asynchronous invocation.

Also, by using the method selection technique in conjunction with asynchronous

communications (the syntax of which is shown in Figure 4.6), objects can be allowed to

perform cyclic monitoring activities, where outgoing invocations are generated in response

to local events while the object continues to carry out its monitoring function. This is

illustrated more clearly in the call control example given in the next chapter.

4.2.4. Threads and Procedures.

A final point of note regarding active objects is that they can also contain definitions of

"procedures". A procedure, in this context, is simply an encapsulated thread that can be

called by any of the other .threads within the object to perform some particular task.

79

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

Procedures are private, in that they cannot be called from outside the object. Neither can

they be called by any of the object's methods, only by its internal threads. Hence, a

procedure is, essentially, just a "sub-thread" that provides a specific operation and the

inclusion of this particular construct is purely intended as a code-saving device for those

situations where one or more threads need to carry out the same activity. An example of

this can also be seen in the call control application given in the next chapter.

4.2.5. Concurrency Control in Active Objects.

Throughout all of the above, it has been assumed that concurrent threads within an active

object obey the internal concurrency restrictions described in the previous chapter. That is,

threads are either completely independent, or only interact through local or remote method

invocations. Since it is assumed that all methods are executed as atomic actions, it follows

that concurrency control for parallel threads will be provided by the concurrency control

mechanisms that are used to enforce serialisability. Hence, it is ensured that interactions

between concurrent threads within a single object will be suitably controlled.

4.3. Timing Constraints.

One of the most important aspects of any real-time programming system is the way in which

timing constraints are handled. Since the notion of time is central to the real-time

application domain, it is appropriate that time should be treated as a "first-class" entity in

any real-time programming language or programming model. There are several ways in

which this can be achieved. For example, in the CHAOS system, any invocation may have

real-time constraints (start time, deadline etc.) associated with it. An alternative approach,

taken in the MARUTI system and also adopted here, is to provide language constructs for

timing constraints. In MARUTI, a range of primitives are supported including every,

after, before, at or within. However, the model proposed here relies upon only two

such mechanisms - one for periodic tasks and one for aperiodic (sporadic) tasks - illustrated

in Figure 4.7. Used appropriately, these two constructs can subsume the functionality of the

80

Clulpter4 A Model/or Fault-Tolerant Real-Time Objects.

individual timing primitives used in the MARUTI system, as illustrated in the examples

given in Figure 4.8.

every 50ms do
lead_time (5ms)

Operation1

/* Periodic temporal scope.
/* Initial delay before execution.

*/
*/

/* Code for operations. */
OperationN

lag_time (7ms)
end every

/* Required free time at end of period. */

do /* Aperiodic temporal scope. */
Operation1

/* Required operations. */
OperationN

.tart_in (5s,7s)
tini.h_in (15s,20s)

/* Start interval. (Relative) */
/* Finish interval. (Relative) */

Figure 4.7. Periodic and aperiodic temporal scopes.

The major reason for adopting a language-level approach to timing constraints, rather than

an approach based solely upon placing timing constraints on method invocations is that it

allows timing constraints to be specified for groups of operations without having to

encapsulate those operations as a particular method within some object. Also, it helps to

make timing constraints more explicit within the structure of an application and, as will be

seen later, allows individual timing exceptions to be supported in a clear and direct manner.

at t do S ; within t do S ;

can be expressed as· can be expressed as

do
S

.tart_in(t,t)

do
S

tini.h_in(t,t) ;

Figure 4.8. Expressing different timing constraints. (Examples.)

With regard to scheduling, in a dynamic system, the timing primitives that have been

adopted would be used to pass task scheduling information to the underlying run-time

scheduler provided by a real-time operating system, while in a static system, they would

provide a means of detecting and trapping unexpected timing errors.

81

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

4.3.1. Time-base: Absolute and Relative Times.

For most real-time applications, it is reasonable to assume that all objects have access to a

global time-base that will allow them to determine the current time (relative to some known

reference) and measure the passage of time intervals with some known, bounded accuracy.

In a centralised, single-processor system, such a time-base can be provided by the system

clock, while processing nodes in a distributed system can have local real-time clocks that are

synchronised to some known level of accuracy using an appropriate clock synchronisation

algorithm (see, for example, [Halpern 84][Lamport 85][Srikanth 87]).

If an appropriate time-base is available, timing constraints can then be expressed using either

absolute or relative times. For instance, if some event occurs at time 't according to an

object's local clock value and it initiates an action which must be completed within lOOms,

then the deadline for that action could be expressed as 100 ms (relative time) or as 't+100

(absolute time). These different means of expressing the same constraint each have their

own advantages and disadvantages. While absolute times are most useful for synchronising

internal system actions with forthcoming external events (e.g. action A must complete by

6:(0), relative times are best suited to periodic tasks (e.g. repeat task T every lOs) or

responses to external events (e.g. given than event E has occurred, a response must be

generated within 5s). Also, when mapping timing constraints between objects during the

course of an invocation, the use of relative times requires that allowances be made for

communications delays at both the caller and the callee, while the use of absolute times

restricts such allowances to the callee but requires that an adjustment be made for clock

synchronisation.

For generality, it is assumed that a synchronised clock service is available and the language

constructs shown in Figure 4.7 can be used for either absolute or relative timing constraints

by adopting the convention that constraints given with units (seconds, milliseconds, etc.)

represent relative times, while those given without units refer to absolute times.

82

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

4.3.2. Timing Errors.

To deal with timing errors, built-in timing exceptions are associated with both types of

temporal scope. Six exceptions are supported and these are listed, along with their

meanings, in Figure 4.9. The raising of these exceptions and the provision of appropriate

exception handlers is discussed in more detail in the section on exception handling later in

this chapter.

Exception. Meaning.

Early_Start Aperiodic task started too early.
Periodic task started too early. (Delay in execution at
beginning of period too short.)

Late_Start Aperiodic task started too late. (Missed its start time.)

Early_Finish Aperiodic task finished too early.

Late_Finish Aperiodic task finished too late (Missed its deadline.)
Periodic task finished too late. (Specified free time not
available at end of period.)

Period. Periodic task missed period completely.

Figure 4.9. System timing exceptions.

4.3.3. Propagation oC Timing Constraints.

Invocations made from within a timing constraint have an implicit parameter associated with

them giving the caller's current deadline. If the called operation does not have its own timing

constraint, this deadline information is used to calculate a latest finish time for the callee,

allowing for communications delay in .its reply to the caller. Typically, if the callee cannot

meet this implicit timing constraint, it will perform local state restoration and the

responsibility for external error recovery will lie with the caller. This seems to be a sensible

strategy to adopt, since:

L it would be difficult to ensure that the callee performed an appropriate

local recovery operation unless one had been specified as part of a local

timing constraint,and

83

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

ii. the violation of the timing constraint at the callee implies that the original

constraint at the caller will also be violated and the caller will, therefore,

already be committed to performing error recovery.

4.4. Atomic Actions.

While atomic actions offer an excellent structuring technique for fault tolerant distributed

applications, the use of a traditional transaction mechanism in a real-time environment

would suffer from a number of disadvantages. In particular, a transaction system that relied

solely upon the use of backward (state based) error recovery would be unsuitable for use in

a real-time system. Since real-time control software interacts with an external environment,

it may be impossible to restore a system to an earlier state. Even where state restoration is

feasible, its use may cause deadlines to be missed, since it does not serve to further the

current activity of the control system.

4.4.1. Operation-Based Recovery: Application Specific Abort.

What is needed is a method by which atomic actions may be aborted using programmer

defined, application specific recovery operations, similar to the anti-operations used in the

CHAOS system. For example, consider the following application. A robot manipulator must

pick up a gear-wheel from a moving conveyor belt, align it with a spindle on another

conveyor belt and lower the gear into place. This operation must be performed every five

seconds. If the operation is regarded as an atomic action and, for some reason, the

manipulator cannot position the gear-wheel correctly, then there is no easy way to restore

the state of the system and re-attempt the action. The gear-wheel cannot simply be returned

to its own conveyor belt, since the belt has continued moving. However, assume that there

is a return belt for unused gears and spindles. An obvious (and 'simple) recovery action for

the manipulator would be to place the "faulty" gear-wheel and spindle onto the return belt,

pick up the next gear-wheel and attempt to fit that to the next spindle. It is likely that this

recovery action could be performed in a sufficiently short time not to jeopardise the timing

of the system as a whole and the returned gears and spindles could either be re-directed

84

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

onto the appropriate conveyors or checked for defects by some quality control system. By

allowing this type of application specific recovery, the failure atomicity property of atomic

actions can be preserved without sacrificing efficiency at the application level.

For maximum flexibility, objects are allowed to possess a number of abort types (as shown

in Figure 4.10). All operations are executed as atomic actions and any operation may call

any of the available abort types, according to requirements. Further, an operation may call

different abort types depending upon its internal state and the type of error that occurs. For

example, if an error is detected early during execution, then state-based recovery may be

appropriate, whereas at a later point, operation-based (forward) recovery may be more

suitable.

OBJECT Abort_Example IS

STATE
/* State variables. */

ABORT
ABORT_TYPE_l :begin

/* Code for application specific */
/* recovery operation. */

end i

ABORT_TYPE_2 :begin
/* Other recovery operation. */

end i

/* Definition of other abort types if required. */

/* Declaration of methods, threads etc. as normal. */

BRD.

Figure 4. 10. Declaration of abort types.

4.4.2. Application Specific Commit.

A logical further extension to this mechanism would be to allow atomic actions to carry out

application specific commit operations (see Figure 4.11). There may be some activities in

real-time control applications which do not require their state to be committed to stable

storage when they complete. At one extreme, some functions may not require an explicit

commit operation (Le. a null commit), while, at the other, the required commit operation

85

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

may involve a complex interaction with the system's environment In such circumstances,

the ordinary state-based commit processing used in many transaction systems would be

inappropriate.

OBJBCT Commit_Example IS

STATZ
/* State variables. */

COIOlIT
COMMIT_TYPE 1 begin

/* Code for application specific */
/* commit operation. */

end ;

/* Definition of other application specific commit */
/* operations (if required). */

ABORT
/* Definition of Abort types. */

/* Normal Method and Thread declarations etc. */

ZRD.

Figure 4. 11. Declaration of commit types.

4.4.3. Definition and Use.

The definition and use of these application specific commit and abort types is illustrated in

Figure 4.12. For actions that require them, the normal state-based commit and abort

mechanisms are provided as a default and called by omitting the commit or abort type

specifier in the commit or abort command.

OBJBCT Launch_Controller IS

/* Simple defensive missile launcher. (Very unrealistic, */
/* but it illustrates the major points very well.) */

STATZ
/* State variables. */

COIIIUT
ARM: /* Arm missile. */
FIRE /* Send launch signal to hardware. */

ABORT
DISARM
DETONATE

/* Disarm missile. */
/* Send abort (detonate) signal to missile. */

86

Clulpter4 A Model/or Fault-Tolerant Real-Time Objects.

METHOD Acquire_Target (IN Coords T)
action

/* Engage tracking radar to acquire target. */
it NO_TARGET then

Abort; /* State-based (default) abort. */
end action: Commit (ARM)

METHOD Confirm_IFF
action

/* Check target identification, Friend/Foe. */
it TARGET_FRIENDLY then

Abort (DISARM) ;
end action: Commit (FIRE)

METHOD Track_Launch
action

/* Engage tracking radar for outgoing missile. */
it MISSILE_FAULT then

Abort (DETONATE) ;
end action : Commit ; /* State-based (default) commit. */

THREAD
begin

cycle
accept Acquire_Target ~ begin

Confirm_IFF ;
Track_Launch

end ;
end cycle

end

BND.

Figure 4.12. Using programmed commit and abort operations.

4.4.4. Nesting.

As described in chapter 2, atomic actions can be nested (see Figure 4.13), in which case the

effects of the nested action (B) do not become permanent until such time as its parent action

(A) commits. Further, if the nested action commits, but its parent action subsequently

Time

Action B called from within action A.

Figure 4. 13. Nested atomic actions.

87

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

aborts, then the effects of the nested action must also be undone. Such nesting can be

common in transaction based systems, however it can cause problems in a real-time

environment The issue of performance must be considered, since a nested action cannot

complete its execution (from the point of view of the rest of the system) until its parent

action completes and the parent action, while running, must retain exclusive access to all

resources that were used by the nested action, even if they are no longer required. The other

major problem with nested actions in real-time systems is that situations can arise where the

effects of a nested action are immediatelyvisible throughout the system because the action

has performed some operation that has an effect upon the system's external environment

For example, consider a nested action in a flight control system that causes an engine to be

shut down. Such an action may well be nested with respect to the logical structuring of

actions in the application, but its effects will be instantly visible to the rest of the system and

there is no way for its parent action to prevent this.

Action A

Time

Action B executed as top-level action from within action A.

Figure 4. 14. Nested top-level atomic action.

In real-time applications, actions that can have an effect on the external environment of the

system are best treated as being nested top-level actions (Figure 4.14), since their external

effects may be observed by other ongoing actions. This approach would seem to be more

sensible than attempting to ensure exclusive access to sets of external devices or attempting

to derive nesting information for actions that interact through agencies external to the

computer system. The potential loss of concurrency that might result from either of these

88

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

alternative strategies would typically be much more problematic than the restriction to top-

level actions. However, correctly identifying those actions that can cause visible external

effects and enforcing a strict division into actions that can be properly nested and those that

cannot may also prove to be difficult An easier and more tractable approach is to impose

the restriction that all operations are performed as top-level actions, regardless of their

logical nesting. This does not have an impact upon the expressive power of the object model

(as the next chapter will demonstrate), but it does help to ensure that actions with external

effects are handled properly and it allows the outputs from an action to be made available to

the rest of the system as soon as the action commits.

4.4.5. Serialisability and Distributed Actions.

Another aspect of the atomic action mechanism that must be examined more closely if

actions are to be used in a real-time environment is the requirement for serialisability. A

number of methods have been proposed to ensure that concurrent atomic actions do not

share data and become interdependent, since this can lead to situations where cascading

aborts may take place (see Section 2.3.1). However, many of these serialisability

mechanisms do not take any account of the timing constraints or relative priorities of the

actions that they affect. For example, in ordinary two-phase locking schemes, once an

action has acquired a lock, other actions are forced to wait for that lock to be released, even

if they are of higher priority or more urgent than the action currently holding the lock.

Similarly, when conflicts occur under optimistic concurrency control schemes, high priority

actions may be forced to abort when conflicts occur with lower priority actions. In real-time

applications, alternative concurrency control strategies must be adopted that take account of

the priority and urgency of actions. A number of research efforts are already under way in

this field and real-time concurrency control mechanisms such as those described in [Wolfe

91] or [Haritsa 90] could be used to support serialisability in real-time transaction-based

systems.

Finally, an important point to note with regard to the atomic action scheme proposed here is

that actions are not permitted to be distributed. In some systems, a single atomic action may

89

Chapter4 A Modelfor Fault-Tolerant Real-Time Objects.

encompass activity in several objects and, in distributed systems, this may involve execution

at several different processing nodes. This situation can arise when an action invokes nested

actions at other objects or when an action invokes other remote operations that are not

themselves atomic actions. In the latter case, the remote operation will fall within the scope

of the invoking action for the purposes of concurrency control and recovery. This can

complicate the serialisabilitymechanisms that are required and it may lead to a degradation

in performance of the system as a whole. However, imposing the restriction that all

operations are performed as top-level actions again serves a useful purpose in dealing with

this particular problem. By effectively prohibiting distributed actions, it confines all

concurrency control decisions to the scope of individual objects and makes it feasible to

employ a simpler concurrency control mechanism (for example, simple mutual exclusion

within objects). The restriction to local, top-level actions also makes it unnecessary to

execute a distributed two-phase commit protocol when actions terminate. This is another

important feature for real-time applications, since a distributed two-phase commit can take a

considerable time to execute and, in the worst case, can be non-terminating in the presence

of failures.

4.5. Exception Handling.

While the use of an atomic action mechanism can help to maintain consistency within

individual objects and prevent the flow of erroneous information between objects, situations

may arise where errors or failures cannot be handled properly within the scope of a single

object. Under such circumstances, an object may need to return some form of error

indication to its caller so that error recovery can be performed at a higher level within the

system. Normally, in a transaction based system, the only such indication that the caller

would receive would be a signal that the called action had aborted. This is very much in

keeping with the program structuring concepts that the atomic action embodies, but it runs

the risk of allowing inefficient or, in the worst case, inappropriate error recovery in the

caller. If a more specific error indication could be returned from the failed operation, more

efficient and appropriate error recovery could be provided. One of the best ways to support

90

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

such functionality would be by means of an exception handling mechanism. By allowing

exceptions to be raised when an action aborts, the caller of that action can be given some

indication of the nature of the error that has occurred. Further, in this case, the exception

handling mechanism can be made relatively simple. A single-level, termination mechanism is

most appropriate and, since error recovery within the called object would be performed as

part of the atomic action abort operation, there is no need to make large amounts of local

state information available to the caller. So, in essence, exception handling is mainly used as

a structured return code mechanism, hence its simplicity.

KETHOD Safe_Div (IN real dividend, divisor)
r.turn. real
SIGNALS Div_bY_Zero

action
if (divisor=O) then

.ig.na1 Div_by_Zero
.1••

r.turn dividend/divisor
end action ;

/* Declare exceptions that
/* may be raised.

*/
*/

/* Raise exception. */

C = Safe_Div{a,b) [Div_by_Zero begin
/* Code to handle */
/* exception. */

end] ;

Figure 4. 15. Exception and exception handler syntax.

The syntax which has been adopted for exceptions and exception handlers is based on that

used in [Cristian 82] and is shown in Figure 4.15. Whenever an action aborts, an exception

is raised to the caller. This may be a user-defmed exception, raised using a signal

statement, or the default exception (Fail) which is raised automatically whenever actions

KETHOD Default_Handler_Example
action

Operationl(x,y,z) [Exceptionl : b.gin ••••nd] ;

/* Code for remainder of method, including other */
/* specific exception handlers where required. */

end action : Commit : [b.gin
/* Code for default */
/* exception handler. */

end] ;

Figure 4. 16. Default exception handler.

91

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

abort without raising any user-defined exception. When calling an operation, the caller must

provide a handler for any exception that might be raised, with the proviso that two or more

exceptions may share the same handler and the caller may also provide a default handler to

catch any exceptions not explicitly covered (see Figure 4.16).

There is no mechanism to support the implicit or direct re-raising of an exception, however,

where such functionality is required, an exception handler may itself explicitly raise an

exception using a signal statement and the same exception name may be re-used at the

application programmer's discretion (see Figure 4.17). Fmally, exception handlers may be

nested. Although it can be argued that the excessive use of nested exception handling points

to flaws in the design or structure of an application program, there may be occasions when

it is necessary within an exception handler to call operations that might themselves raise

exceptions. Itwould, therefore, seem to be best to allow the nesting of exception handlers if

the application requires it

KETROD Re_Raise_Exarnple
SIGNALS B_Exception

action
Operation_A() ;
Operation_B() [B_Exception : .ignal B_Exception] ;

end action : Commit

Figure 4. 17. Re-raising an exception by re-use of exception name.

4.5.1. Timing Exceptions.

As mentioned earlier, the temporal scope constructs used to express timing constraints

provide a set of default timing exceptions that can be used to trap timing errors. When a

timing error occurs, the appropriate exception is raised by the temporal scope statement

that expressed the violated timing constraint. So, for example, exceptions such as

Early_Start or Late_Start are raised by the start_in or lead_time statements, while

exceptions relating to a task's finish time are raised by the finish_in or lag_time

statements. Similarly, the Period exception can only be raised at the end of a periodic

temporal scope. This assignment of exceptions to specific parts of the temporal scope

constructs helps to maintain the logical correspondence between a given exception and the

92

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

timing constraint to which it relates. It also helps to break down what might otherwise be a

lengthy and complex exception handling block at the end of each temporal scope.

every 50ms do
lead_time (5ms) [Early_Start: ...] ;

Operation1

OperationN
lag_time (7ms) [Late_Finish ...]

end every [Period: ...] ;

do
Operationl

OperationN
.tart_in (ls,3s) ; [Early_Start: ; Late_Start:]
tiniah_in (5s,9s) ; [Early_Finish: ; Late_Finish .

Figure 4. 18. Syntax and use of timing exceptions.

Precise meanings for each of these exceptions were given in the table of Figure 4.9. It

should also be noted that timing exceptions are special in that the applications programmer

is not always obliged to provide handlers for all timing exceptions. In particular, the

Early_Start and Early_Finish exceptions may be disregarded, in which case tasks that

start early would simply be suspended until their earliest start time, while tasks that end

early would be prevented from returning their results until after their earliest fmish time.

The major advantage of using exception handling techniques to deal with timing errors is

that it allows application specific recovery actions to be performed when tasks violate their

timing constraints. The application programmer is therefore free to implement the most

appropriate and efficient recovery operations for any given task failure. In a real-time

environment, this is a highly desirable feature, since the violation of a timing constraint may

lead to a subsequent catastrophic failure of the whole system and appropriate recovery

measures should be effected as rapidly as possible.

4.6. A Summary of the Object Model.

It will be worthwhile at this point to summarise the features that are offered by the object

model that has been proposed and to consider the advantages that it might offer the real-

93

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

time applications programmer. As a starting point for this summary, consider the following

features that were originally listed in section 3.1 :

1. Objects are of medium granularity.

Typically, application objects will correspond to specific devices, device

controllers or control sub-systems. This not only offers a good trade-off

between the advantages and disadvantages of the object-oriented approach,

it should also allow the application programmer to mirror the physical

structure of the real-world system in the logical structure of the control

software.

2. Objects may be active

Objects may possess independent, internal threads of control. This provides

support for continuous cyclic activities without having to resort to a separate

process-based primitive.

3. Objects may communicate via synchronous or asynchronous invocations.

Although the synchronous model of communication is common in many

object-based systems, a corresponding asynchronous mechanism should be

provided since it may sometimes be more appropriate for the real-time

environment This is particularly true in event driven systems or for

interactions where one object only needs to notify another of some condition

(e.g. alarm conditions).

4. An object is only permitted to have a single interface.

This restriction avoids problems with the management of multiple interfaces

and allows communications between objects to be more rigidly defined.

5. All operations are performed as atomic actions.

By executing all methods as atomic actions, fault tolerance can be provided

both within objects and across invocations between objects. The non-

interference (serialisability) property of the atomic action is also useful if

94

ChIlpter4 A Modelfor Fault-Tolerant Real-Time Objects.

objects are to be considered as extended state machines for replication (see

below).

These five basic properties serve to define the general structure of objects and their

methods, however four other specific features that help to provide support for real-time

applications can now be added to the list:

6. All atomic actions are executed as top-level actions.

Executing all operations as top-level atomic actions, even if they are logically

nested, has three major advantages in a real-time environment First,

operations that have external effects on the system's environment cannot be

treated properly as nested actions, so the restriction to top-level actions

ensures that such operations can always be handled correctly. Secondly, the

blanket use of top-level actions simplifies some of the concurrency control

problems associated with serialisability by prohibiting complex distributed

actions. Fmally, the outputs from a top-level action can be made available to

the rest of the system as soon as the action commits and the resources or

locks that it was holding can be released for use by other actions.

7. Application specific recovery mechanisms.

By allowing atomic actions to perform programmed commit and abort

operations, application specific error recovery can be supported. More

efficient and flexible recovery operations can therefore be provided, taking

into account real-time constraints, interactions with external devices and

system safety constraints. The provision of an exception handling mechanism

further facilitates error recovery, since it allows a failed operation to pass

specific error indications back to its caller.

8. Support for timing constraints.

The notion of time and timing constraints is central to the real-time

applications domain.· The provision of both periodic and aperiodic temporal

95

ChIlpter4 A Model/or Fault-Tolerant Real-Time Objects.

scope constructs at the language level allows real-time constraints to be

directly expressed within the application software. Built-in timing exceptions

can then be provided to allow timing errors to be trapped and handled

immediately at their point of occurrence.

9. Mode changes and event handling.

A method selection mechanism is provided for active objects. This serves

two separate purposes, allowing complex execution paths to be specified for

an object (e.g. mode changes) and providing support for event-driven

applications (since events can then be mapped to method invocations and the

set of acceptable events at any given time limited by method selection.)

Objects constructed according to this model are well-suited to the real-time applications

domain. The temporal scope constructs allow timing constraints to be specified very easily

and the atomic action and exception handling mechanisms allow the programmer to provide

application specific recovery operations for timing and other errors. System mode changes

and event handling can both be supported, while active objects provide an effective

mechanism for closed loop, cyclic processing. However, none of the features described so

far have any bearing on the run-time availability of objects. Availability requirements can

only be met by employing some form of object replication scheme and this, in tum, places

constraints upon any computational model that is to be used. Care has therefore been taken

to ensure that objects constructed according to the model shown here can be replicated

using any type of replication strategy.

4.7. Supporting Object Replication.

The choice of object replication strategy for a given application will depend upon a number

of factors: the types of fault that are to be tolerated, available resources within the system,

performance constraints, etc. It will also depend upon the computational model that

underlies the objects themselves. As explained in chapter three, any replication strategy

embodies a set of assumptions about the communications support provided by the system

96

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

and the failure modes and computational properties of individual replicas. Hence, if a

particular replication strategy is to be used for some application, appropriate constraints

must be placed upon the computational model used in the application software.

Alternatively, if the computational model of an application is already fixed, it may be

impossible to employ certain replication techniques in that application.

Passive replication schemes, although they rely upon replicas being fail-silent, do not impose

any restrictions upon basic computational properties and there are no major restrictions on

the types of object that can be replicated using passive techniques. The impact of passive

replication on the object model proposed here is, therefore, very small. Active replication

schemes, on the other hand, impose the constraint that all computations must be

deterministic and it is this particular restriction that has guided the development of this

object model.

4.7.1. Objects as State Machines.

In some ways, the object model proposed here is similar to the state machine model

described in the previous chapter. Like state machines, objects consist of internal state

variables and a set of commands (the object's methods) which transform that state and

produce outputs. Further, the abstract process of invoking a method closely mirrors the

execution of a state machine command and, since all operations are executed as atomic

actions, the execution of any given method is atomic with respect to the execution of all

others. However, where one of the defining characteristics of a state machine is that it

specilles a deterministic computation and is, therefore, amenable to active replication, the

objects described here can include several potential sources of non-determinism. This would

seem to make such objects unsuitable candidates for any active replication technique, but

this is not, in fact, the case.

Although objects may contain internal threads of control, set timing constraints and interact

with their environment, the techniques described at the end of the previous chapter can be

used to ensure that the execution of such operations is deterministic from the point of view

97

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

of an object replica group. It has been shown that the .elect ... accept mechanism used

for mode changes and event handling can be implemented in such a way as to allow non-

deterministic selection to be agreed between replicas. This mechanism can then be used at a

lower level to provide a non-divergent implementation of the temporal scope constructs.

Internal threads, either in active objects or created within a method by use of the par ... end

par mechanism, can be handled deterministically by imposing the restriction that they only

interact or manipulate state information by means of message passing or method

invocations. FInally, interactions with an external environment can be mapped to

appropriate method invocations. Given these mechanisms, objects can be regarded as an

extended form of state machine for the purpose of replication and the use of an appropriate

communications protocol (e.g. atomic broadcast) for interactions between objects and

object groups will ensure that the states of different replicas do not diverge.

4.8. Comparison with Existing Models.

To conclude this chapter, it will be interesting to compare the object model described here

with two other existing real-time object models: the model proposed by Kopetz and Kim in

their analysis of temporal uncertainty [Kopetz 90] and the model adopted in the ARTS real-

time system [Mercer 90]. In each case, a brief description of the appropriate object model

will be given, followed by a short discussion of the way in which the model shown here

relates to that existing model.

4.8.1. The Object Model of Kopetz and Kim.

The model of Kopetz and Kim is largely concerned with the behaviour of distributed real-

time control systems in the time domain and preventing or minimising the uncertain timing

behaviour of such systems. First of all, it is assumed that the local clocks of the nodes within

a system are synchronised to some known precision 1t and the granularity (Le. time between

successive ticks, as measured by some external reference clock) of this synchronised

timebase is assumed to be g, where a value of g is chosen such that:

1t < g < 21t.

98

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

This is to ensure that globally meaningful time stamps can be generated. The concept of a

real-time entity (RT-entity) can now be introduced. This is something of relevance to the

system's purpose, which contains a time-varying internal state. For example the temperature

of a particular vessel, the speed of a vehicle, etc. Since the state of such an RT-entity

changes with the progression of time, it can only be represented within an object-based

framework if the classical notion of an object is extended to include knowledge about real-

time. A real-time object (RT-object) is therefore defmed to be an object, Ot, which has a

synchronised clock Ck of granularity gk » g associated with it.

The clock Ck defmes a synchronous time-grid for the object Ot and the granularity of this

time-grid is chosen to agree with the dynamics of the RT-entity that Ot represents. At every

tick of the clock Ck, a message is sent to one of the methods of the RT -object. This may be

the only message that can activate the RT-object, in which case the object is synchronous

and all other incoming messages are queued until they are polled by the procedure that is

activated by the clock message. Alternatively, an RT-object may be asynchronous, in which

case any message can activate one of its methods and the clock message will result in a null

action most of the time. In either case, there is a state visibility constraint that restricts the

external visibility of the internal states of the RT-object to those states that are occupied at

points on the object's time grid.

4.8.1.1. Comparison.

The real-time object model that has just been described was developed as part of a larger,

system-level model that attempts to support reasoning about the consistency and accuracy

of real-time data and about the performance of real-time communication protocols. The

object model proposed in this thesis, on the other hand, is entirely geared towards the

programming of real-time applications software. The main result of this fundamental

difference in purpose is that Kopetz and Kim's model is time-triggered, with actions being

initiated in response to the passage of time, whereas the model proposed here is event-

triggered, with actions being initiated in response to events in a system's environment The

time-triggered approach is particularly well-suited for analysis, since it essentially represents

99

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

a static system in which events are handled at pre-scheduled times. Conversely, the event-

triggered approach corresponds to dynamic systems, thus gaining a greater degree of

flexibility at the expense of being less amenable to analysis.

However, in spite of differences in their basic purpose and underlying structure, there are

some interesting parallels that can be drawn between the two models. For example, RT-

objects essentially provide the same abstraction as active objects. In a sense, synchronous

RT-objects correspond to those active objects that employ method selection to control their

execution or that contain an internal thread but no public methods. Similarly, asynchronous

RT-objects correspond to the more general class of active objects that contain both internal,

cyclic threads and freely-accessible public methods. Also, the object model proposed in this

thesis includes a mechanism that is equivalent to the state visibility constraint of Kopetz and

Kim's model. Specifically, since all methods are executed as atomic actions, the state of an

object will only be visible to other objects at those times when it is known to be consistent

4.8.2. The ARTS Real- Time Object Model.

ARTS is a distributed real-time operating system designed for a real-time systems testbed

being developed at Carnegie-Mellon University [Tokuda 89]. As part of the ARTS project,

a real-time object model has been developed that includes a time-fence protocol which is

used at every invocation in an object to detect the origin of timing errors. Every

computational entity in the ARTS system is represented as an object, called an "artobject",

and each operation that an artobject provides can be associated with a worst case execution

time ("time-fence") value and a time exception handling routine. If an operation is called and

its worst case execution time is greater than the remaining execution time for that operation

at the caller, the operation is aborted as a time fence error.

cl••• Sample_Artobject
(

II Specification.

type private_data_object
type abort_opr!() i

type abort_opr2() i

Thre.d Thread_Root()

II Note: These are timing
II exception handlers

public:
type opr! (...) 11# within time except abort_opr!()

100

Chapter4 A Modelfor Fault-Tolerant Real-Time Objects.

type opr2 (...) 11# within time except abort_opr2()

}

II Class Sample body.
II
Thread Sarnple_Artobject::Thread_Root() II Active object.
{

Accept (&invocation_dsc, &req_msg_dsc)

DoComputation(&req_msg_dsc, &rep_msg_dsc)

Reply (&invocation_dsc, &rep~sg_dsc)
}
type Sarnple_Artobject::oprl(...)

11# within time except abort_oprl()
{ ...}
type Sarnple_Artobject::opr2(...)

11# within time except abort_opr2()
{ ...}
type Sarnple_Artobject::abort_oprl(){ }
type Sarnple_Artobject::abort_opr2() { }

Figure 4. 19. Example artobject declaration in ARTS/C++.

An artobject can be passive or active, in which case it may contain one or more internal

threads of control and the designer of the object is responsible for providing appropriate

concurrency control between concurrent operations. Active objects can also contain a root

thread that is created and run immediately when a new instance of the object is created.

Threads within artobjects can be defmed to support periodic or aperiodic tasks and their

timing attributes can include a value function as well as worst case execution time, period,

phase and delay parameters. The objective of all these different features is to support time

encapsulation among real-time objects and to bound timing errors at every object

invocation. An example of an artobject ·declaration, written in the ARTS/C++ language (see

also [Ishikawa 90]), is shown in Figure 4.19.

4.8.2.1. Comparison.

Like the real-time object model described in this thesis, the ARTS object model is intended

to be a programming model rather than a model for analysis. The two object models

therefore share many common features. For instance, both include mechanisms for

101

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

expressing timing constraints and dealing with timing errors and both models allow objects

to be passive or active and allow active objects to have multiple threads. Also, both models

are event-triggered rather than time-triggered. However, there are also some important

differences. The ARTS object model, like the CHAOS system, places timing constraints

upon an object's operations, whereas the model proposed in this thesis takes a similar

approach to the MARUTI system and uses a language-level timing primitive. In terms of

fault tolerance, the ARTS model only provides recovery for timing errors, while the model

described here provides more general fault tolerance coverage by means of the atomic

action and exception handling mechanisms. Also, the ARTS object model has not been

designed to allow for active replication and issues relating to event handling and operational

modes have largely been ignored. These differences reflect a difference in the emphasis of

the two models. ARTS is concerned with scheduling issues, at all levels from application

programming down to basic operating system mechanisms, and the ARTS object model

only represents a small part of the ARTS project as a whole. The model proposed here, on

the other hand, has concentrated solely upon application level requirements and it is

specifically geared towards supporting fault tolerance in real-time application programs. The

end result is that the two object models differ in their scale and in their view of the

programming problem, but not in their basic philosophy.

4.9. Chapter Summary.

This chapter has presented a model for fault-tolerant real-time objects. The general features

of the object model were described, including the need to provide support for active objects,

before moving on to consider mechanisms for expressing timing constraints and the

provision of fault tolerance in real-time programs. An extended form of atomic action was

illustrated, allowing application specific commit and abort operations to be defined, and the

use of exception handling with this transaction-based mechanism was described. The use of

system-defined timing exceptions to provide application specific recovery for timing errors

was also described.

102

Chapter4 A Model/or Fault-Tolerant Real-Time Objects.

After summarising the overall structure of the object model, the use of object replication

was discussed and it was shown that objects constructed according to this model can be

regarded as extended state machines for the purposes of replication. The chapter then

concluded with a brief examination of two other real-time object models, including brief

comparisons of these existing models with the new model that had been described earlier.

103

Chapter 5.

Application Examples.

In the last chapter, a model for real-time objects was presented. A programming notation

based upon this object model was also illustrated. The use of programmed commit and

abort operations was shown, along with mechanisms for expressing timing constraints,

raising and handling exceptions and managing active objects. Throughout all of this, care

was taken to adopt a computational model and associated set of language constructs and

support mechanisms that would allow such real-time objects to be replicated using state

machine based active replication techniques. This, naturally, has imposed certain constraints

on the object model and restricted the scope of activity for real-time objects. However, in

this chapter, it will be shown that the general applicabilityof the object model to a range of

different real-time applications has not been compromised as a result of these restrictions.

This will be demonstrated by giving outline implementations of a number of different

applications.

The examples that are to be used consist of a call-control system, two different robot

control applications and a larger, train control application intended for use on a digitally-

controlled model train layout. Each example will be introduced by a brief description of the

system under consideration, before moving on to give an outline of a possible

implementation in the programming notation described in chapter 4. At the end of each

example, the general features of that application will be discussed, with regard to those

features within the object model that are most useful in supporting applications of that type.

At this point, it must also be emphasised that the examples shown in this chapter are purely

intended to illustrate the flexibility of the techniques and mechanisms adopted in the

proposed object model. In particular, it must be understood that the development of the

model thus far has been geared towards the practical aspects of real-time applications

programming. Theoretical issues relating to analysis and verification, either of the model

104

ChapterS Application Examples.

itself or of individual applications,are not considered in this thesis and it is not possible, at

the present time, to prove specific properties (e.g. safety or liveness) for any of the example

applications. The examples should, therefore, be regarded as proof of principle in the

practical, rather than the theoretical or formal, sense.

Since the detailed code for each application would, typically, be quite long and complex, the

implementations shown are outlines, in the sense that they omit some of the unnecessary

detail associated with the complexities of internal algorithms and device-handling

mechanisms. Before moving on to show the first example, the precise nature of these

omissions will be discussed to show that they do not have an impact upon the applicability

of the object model, or the expressivity of the programming notation that is to be used.

5.1. Subsidiary Algorithms and Device Handling.

The omission of unnecessary detail in the examples that are to follow has largely been

restricted to two specific cases. The details of some of the internal algorithms upon which

the main control algorithms of the system depend and details regarding the interface

between the application software and the underlying hardware, specifically devices such as

sensors, actuators, etc. In neither of these cases would the omitted code contain language

constructs or mechanisms that violate any of the assumptions of the object model. Neither

would it contain code providing access to functions that application objects would

otherwise be unable to perform, although in the case of device drivers or device handling

routines it would necessarily include calls to system and hardware specific library code. To

illustrate this, two short examples (taken from the application examples) are given below.

5.1.1. Subsidiary Algorithms.

In many cases, the main control algorithms of an application rely upon subsidiary, support

algorithms to provide some required function, typically involving the manipulation of local

state information or some numerical calculation. By and large, the required algorithms are

straight-forward computational processes or standard control operations and they have been

omitted from the examples purely because they may, in some cases, prove to be lengthy

105

ChapterS Application Examples.

sections of code. For instance, consider the calculation of alternative routes for blocked

trains in the train control example. Basically, this would consist of searching through the

track layout information for a branching point at which the blocked train could be diverted.

A route from that branch point to some other, from which the train could resume its

interrupted journey, would then have to be found. The conceptual simplicity of this problem

hides the fact that the program code required for this operation would probably be quite

long and depend upon the level of detail in the track layout information maintained by the

track controller. If a list of pre-calculated diversionary routes was available to the

controller, then finding an appropriate alternative route would only entail a table lookup

operation or two. On the other hand, if no such list was available, then each diversion would

have to be calculated on demand and an appropriate algorithm would have to be used that

allowed diversions to be found as quickly as possible. A third possibility would be some

form of monitor system that calculated diversions whenever accidents or blockages

occurred and stored that information until the problem was cleared. Then, any train affected

by the blocked sections of track could be informed of the appropriate diversion as quickly as

possible. It has been assumed that this is the type of solution that has been adopted in the

train set control example, with the track controller calculating diversions when a train

reports that it has broken down or been stopped.

In the examples themselves, the outlines for such subsidiary algorithms are given largely in

the fonn of comments, or as a mixture of comments and pseudo-code (both given in italics,

but the former being enclosed in C-style comment delimiters, / * ... * /, while parts of the

latter may be enclosed in angle brackets, < •.. ».

5.1.2. Device Handling.

Code to perform device handling for external, hardware resources (sensors, actuators, etc.)

may also be lengthy, particularly where sequences of torques, joint angles or other impulses

need to be calculated. Also. the functions that provide the actual interface to the device will

vary from system to system and from one type of device to another. For instance, in the

case of an intelligent device controller, it might only be necessary to make an appropriate

106

ChapterS Application Examples.

library call with the correct parameters, while other, less sophisticated, devices might have

status or control registers mapped into the memory space or 110 vector of a processor, in

which case appropriate values would need to be calculated and then assigned to the correct

memory location or sent to the correct 110 port.

To illustrate this more clearly, consider the movement of a robot arm in the Quality Control

example. If the robot arm is controlled by a sophisticated internal control sub-system, then

the application level operation, ARM_MOVE (Coords), may map directly to a system library

call or the transmission of a message, containing appropriate parameters, to the arm

controller's network address. Alternatively, if the controller interface for the robot arm is

very basic and will only accept a list of joint angles and stepper motor impulses in some

defmed format, then all of the necessary calculations would need to be performed by the

application and the final set of results sent to the appropriate controller address. This might

entail a large set of intensive computations, mapping between different coordinate systems

used by the application and the arm controller, working out appropriate angles and motor

impulses for each individual joint in the arm and then converting all of these values into the

appropriate controller format. The algorithm used would also have to be designed to avoid

singularities in the arm's workspace (Le. places which the arm cannot physically reach). It

should immediately be apparent that the actual program code for such computations would

probably be extremely long, even though the necessary mathematical transformations and

control laws are, individually, very easy to express and program in any notation.

For the above reason, device handling code has largely been omitted from the examples.

However, to show where such device handling operations are required, a high-level

procedure call interface to the underlying hardware has been assumed. Such interface

procedures are always given names in upper-case and any required parameters are passed to

the operation in the normal way (e.g. ARM_MOVE (coords)), It is assumed that such

procedures simply provide a higher level interface to device controller operations such as

those discussed above.

107

ChapterS Application Examples.

5.2. Call Control Example.

This application illustrates an event-driven system. A call controller object supports a

dedicated bi-directional "hot-line" service between two telephones. When the receiver is

lifted at one telephone, the other telephone begins to ring. If the ringing telephone is

answered within a certain time then the call is connected, otherwise the call is abandoned,

the ringing stops and a signal is transmitted to the calling telephone to alert the user to

replace the receiver. Once a connection has been established, the call is not cleared until one

party replaces their receiver (or both). The full sequence of events for a single call is

therefore as follows:

1. Receiver lifted at caller's telephone, initiating call.

2. Callee's telephone rings for a pre-determined length of time.

3. If the receiver is lifted at the callee's telephone while it is still ringing, the

ringing stops and the call is connected by the call controller. Alternatively,

if the call is not answered within the pre-determined "ring time", the call

controller will stop the callee's telephone ringing and transmit a "Call

Disconnected" signal to the caller's telephone to alert the caller to replace

their receiver.

4. If the call was connected successfully, it is allowed to continue until such

time as either the caller or the callee hangs up. If only one side of the call

is cleared in this way, then the call disconnected signal is, once again, sent

to the other telephone.

This serves to defme a normal call, however there are two other possible call sequences that

might occur. In one, the caller gives up and replaces their receiver just as the callee answers,

while in the other, the call is timed out and disconnected by the controller just as the callee

answers. In the former case, the call controller must transmit the call disconnected signal to

108

ChapterS Application Examples.

the callee's telephone. while the latter situation requires that the call disconnected signal be

sent to both telephones.

The implementation of the system shown here is broken down into three objects of two

distinct types: two identical telephone objects and a call control object. The telephone

objects are. essentially. simple state machines. while the controller is an active object that

receives invocations (signalling events) from the telephones and processes them according

to the current state of the system (using the .elect •••accept mechanism).

5.2.1. Telephones.

Two identical telephone objects provide software support for the telephones themselves. A

telephone object offers an interface consisting of the operations (methods) Ring and

Stop_Ring. to the call controller. These methods allow the controller to initiate or

terminate ringing at a telephone. The latter operation also returns status information to the

call controller. allowing it to deduce the current state of the telephone. Each telephone

object also implements two private methods that are assumed to be invoked internally in

response to appropriate signals from the telephone hardware. The Receiver_Lifted

operation initiates or answers a call. depending upon the current state of the system. while

the Receiver_Dropped operation terminates calls. From the point of view of the telephone

object. a call takes place in the interval between a Receiver_Lifted invocation and the

following Receiver_Dropped invocation.

INTBRPACB Telephone IS
Ring i
Stop_Ring return. Call_Status

BND.

OBJECT Telephone IS

STATB
TelephoneNo MyNo
Call_status Current_State

METHOD Receiver_Lifted
action

if Current_State = Call_Coming_In then
begin

STOP_RING i

ACall_Control.Answer_Call / * Asynchronous * /
/* invocation. */end

109

ChapterS Application Examples.

1.
ACall_Control.Start_Call(MyNo)

current_State := Call_in_Progress ;
end action ;

KBTHOD Receiver_Dropped
action

ACall_Control.Clear_Call(MyNo)
Current_State .- No_Call

end action ;

IIBTHOD Ring
action

START_RING
Current_State .- Call_Coming_In

end action ;

METHOD Stop_Ring RETURNS Call_Status
action

it Current_State = Call_Coming_In then
begin

STOP_RING ;
Current_State := No_Call

end ;
return Current_State

_nd action ;

END.

5.2.2. Call Controller.

The call controller software is an active object, offering methods for starting, answering and

clearing calls. It is responsible for managing the connection between the telephones when a

call is made or subsequently terminated. The internal thread of the call controller object uses

an accept statement to wait for an incoming Start_Call invocation. Having received the

Start_Call message, the controller waits for the call to be answered, abandoned or timed

out (in the event of no-one answering) using the select mechanism. If the call is answered,

the call controller waits for one party (or both) to clear the call. If only one party clears the

line, the controller connects the remaining telephone to a "Disconnected" signal. This will

also be done if a call is abandoned just as the callee answers or if the controller itself times

out the call just as it is answered.

INTERPACE Call_Control IS
Start_Call(IN TelephoneNo
Answer_Call
Clear_Call(IN TelephoneNo

BND.

110

ChapterS Application Examples.

OBJECT Call_Controller IS

STATZ
Telephone Caller, Callee

Directory Phones

/* Hold caller and callee */
/* identifiers while call */
/* is in progress. */

/* Contains mapping from telephone */
/* numbers to telephone object */
/* identifiers. */

METHOD Start_Call(IN TelephoneNo CallerNo
action

CalleeNo := <FUnction of CallerNo - only 2 telephones.>
Caller := Phones[CallerNo]
Callee := Phones[CalleeNo]
Callee.Ring

end action ;

METHOD Answer_Call
action

CONNECT (Caller, Callee)
end action ;

METHOD Clear_Call(IN TelephoneNo T)
action

DISCONNECT(Phones[T]) ;
if Phones[T] = Caller then

Caller .- No_Connection
el.e

Callee .- No_Connection
end action

THRBAD
cycle

Caller := No_Connection
accept Start_Call ;
.elect

accept Answer_Call -4

accept Clear_Call -4

Callee .- No_Connection

begin
Disc := <Whoever didn't hang up>
Disconnection (Disc)

end ;
o

accept Clear_Call _; if <Callee still ringing> then
Disconnection (Callee) ;

[J

delay (Ring_Tirne) -4 par
Disconnection(Ca~ler)

II
Disconnection (Callee)

end par ;
end .elect

end cycl. ;

111

ChapterS Application Examples.

PROCBDURE Disconnection(IN Telephone T
begin

CONNECT(T, Disconnected_Signal)
.elect

accept Clear_Call ;
o

delay (Disc_Time) -+ DISCONNECT(T)
end .elect

end

BND.

5.2.3. Call Control Example: General Notes.

The major important feature of this call control example is that it shows a fully event-driven

application. The use of the .elect and accept constructs in an active controller object,

along with the use of asynchronous invocations, allows the software to respond to

environmental events as and when they occur. The telephone objects need to use

asynchronous invocations for communication with the controller because a telephone object

must continue to monitor its local state while invocations are processed. For example, the

receiver may be lifted, causing the telephone object to invoke the Start_Call operation,

however while this invocation is being processed, the person who lifted the receiver might

change their mind and terminate the call. In such cases, the telephone object must be able to

detect that the receiver has been replaced and invoke the Clear_Call operation, even if the

Start_Call operation is still being handled at the call controller. Hence, considering that

invocations such as Start_Call or Clear_Call do not need to return values, it is

appropriate to have telephone objects use asynchronous invocations for such events and,

thereby, be able to continue monitoring their local state while such invocations proceed.

The call control application used in this example is relatively simple, however it IS

representative of a general class of event-driven applications: specifically, those applications

where asynchronous activity in a system's environment triggers .defmed control operations.

It is likely that the approach adopted in this example would be suitable for a wide range of

applications of this type.

112

ChapterS

S.3. Assembly Line Quality Controller.

Application Examples.

In this example, the system under consideration is an assembly line in a plant where

containers of chemicals are processed (see [Davidson 89][Davidson 91][Wolfe 90]).

Occasionally, a container may be defective, in which case it must be carefully removed and

discarded, preferably without stopping the line. This task is carried out by two robot arms

which also serve the line in other capacities. Defective containers are detected by a Quality

Control system which then co-ordinates its activity with the two arms in order to lift the

container from the line. In order to allow a faulty container to reach the arms, the lifting

operation cannot begin until 5 seconds after detection. It must then be completed within 10

seconds of detection to make way for the next container to arrive. Hence, before a faulty

container can be lifted, each arm must know that the current operating conditions will allow

it to lift the container within the specified timing constraint. If the container cannot be

grasped correctly or cannot be lifted, then the assembly line must be safely stopped, the

container removed manually and the line reset. Similarly, if the deadline expires while the

arms are still in the process of lifting their load, the assembly line must again be stopped and

the arms cleared by an operator in order to prevent spillage or other hazards.

This application is a classical process control problem where independent controllers must

co-ordinate their activity in order to perform some task. As with the call control system, the

implementation is broken down into three objects of two distinct types (two arm controllers

and a quality monitor).

5.3.1. Quality Monitor.

This is an active object that continuously monitors containers as they pass down the line.

When a faulty container is detected, a local Remove_Container operation is invoked. This

first of all calls parallel Prepare_Li ft operations at the two arm controllers. If both of

these preparatory operations succeed then two parallel Perform_Lift operations are

invoked, otherwise the line is stopped and reset. Expiry of the deadline for removing the

113

ChapterS Application Examples.

container during either the Prepare_Lift or Perform_Lift phases causes the quality

monitor to shut down the assembly line.

OBJBCT Quality_Monitor IS

STATB
Arm-Controller Arms[2)
Status Line_Status

COIOlIT
DEFAULT <State-based commit>

ABORT
HALT /* Stop assembly line and alert */

/* operator to remove container. */

METHOD Remove_Container(IN Time Start_Time, IN Time MY_DL)
action

integer i ;
Status_Flag C_Flag

do
par tor i := 1 to 2

Arms [i).Prepare_Lift(MY_DL) [Fail
end par

Abort (HALT))

par tor i := 1 to 2
Arms [i) .Perform_Lift(My_DL) [Fail Abort (HALT))

end par
.tart_in (Start_Time) I

tini.h_in (My_DL) [Deadline Abort (HALT)]

end action

THRBAD
begin
every Period do

it <Current container defective> then
Remove_Container (Ss,lOs)

end ;

BRD.

5.3.2. Arm Controllers.

The robot arms that co-operate to remove defective containers from the line also serve the

line in other capacities. The object that corresponds to the arm controller will therefore have

a range of operations relating to its normal activities. In the interests of clarity and brevity,

these operations are not explicitly shown in the following implementation, since the only

operations that are of interest for this example are the Prepare_Lift and Perform_Lift

114

ChapterS Application Examples.

operations. The former attempts to move the ann into position ready to pick up the faulty

container from the line. If the movement fails (for example because the ann cannot reach the

appropriate position) or the timing constraint is violated, the ann is locked in position and a

Fail exception is raised to the quality monitor to initiate further recovery. Alternatively, if

the Prepare_Lift operation is successful, the ann controller will then wait for the

corresponding Perform_Lift operation to be invoked. This causes the ann to grasp the

faulty container and attempt to remove it Any failure during this activity again causes the

ann to be locked in position and a Fail exception raised.

To ensure that the ann controllers perform their operations in the correct sequence,

specifically only allowing Perform_Lift to follow Prepare_Lift, the ann controller is

also an active object in which the internal thread uses select and accept to guarantee the

correct sequencing of these operations.

INTBRFACB Arm_Controller IS
Emergency_Release ;
Prepare_Lift(IN Time
Perform_Lift(IN Time

END.

OBJECT Arm IS

STATB
position Current

COMIIIT
DEFAULT : <State-based commit>

ABORT
LOCK : <Lock arm in position>

KETHOD Prepare_Lift(IN Time My_DL
action

do
/* Work out motion plan to reach pick-up point. */
ARM_MOVE«Pick up point» ;

fini.h_in (My_DL) [Fail, Deadline: begin
Abort (LOCK)
.ignal Fail

end] ;
end action ;

KETHOD Perform_Lift(IN Time My_DL)
action

do
ARM_GRAB
/* Work out motion plan to raise arm. */

115

Chapter 5 Application Examples.

ARM_MOVE {<Motion plan» ;
finiah_in (My_DL) [Fail I Deadline : begin

Abort (LOCK)
aignal Fail

end] ;
end action

'l'BRBAD
cycle

.elect
accept Prepare_Lift ~ accept Perform_Lift

o
/* Other robot arm services. */

end .elect
end cycle

BND.

5.3.3. Assembly Line Example: General Notes.

This example has a number of features that are common to a range of process control

applications. The requirement for programmed error recovery, the co-ordination of several

different sub-system controllers to perform a task, timing constraints on operations and a

cyclic monitor that initiates a defmed sequence of activity when it detects a certain event in

the system's environment (the arrival of a faulty container in this case). From the point of

view of the object model and programming notation proposed here, all of these features can

be easily supported and expressed. The availability of programmed commit and abort

operations and an exception handling mechanism makes programmed recovery

straightforward while the constructs proposed for timing constraints make it easy to specify

start times and deadlines for operations. Since objects can be active, a cyclic monitor object

can be programmed with little difficulty and the use of the select and accept constructs once

again (as in the previous example) allows the activity of the system to be limited to a defmed

execution path when required.

5.4. The A.S.V. (Autonomous Suspension Vehicle).

The Autonomous Suspension Vehicle (ASV) is a six-legged walking robot that moves by

taking a sequence of steps determined by some overall motion plan (see [Gheith 89][Gheith

90]). Its six legs are arranged in three pairs (front, centre and rear) and each leg is

controlled by a separate actuator. A single step consists of moving each leg forward

116

ChapterS Application Examples.

individually and then pushing all of the legs backwards simultaneously, hence moving the

body of the ASV forwards. To maintain stability, certain constraints are placed upon the

movement of the legs. First of all, a comer leg (anyone of the front or rear pairs) can only

be moved when all of the other legs are safely on the ground. The middle pair of legs

however can both be moved together, so long as all four comer legs are safely in place. If

the stability of the ASV is threatened by the violation of any of these constraints then

recovery actions must be taken such as forcibly placing a failed leg back in contact with the

ground. Similarly, if stability is threatened by an unbalanced load, then all legs may have to

be placed on the ground. Finally, there is also a requirement that each leg does not remain

off the ground for longer than a specified time, 't, while it is moving. This is to prevent

excess strain on the body of the robot.

Like the previous example, this system illustrates a general class of plant control

applications, however the structuring of the control software in this case is much more

hierarchical in nature. Three distinct object types are required, one for the central ASV

controller, one for the leg controller software and one to provide an appropriate

synchronisation mechanism so that the constraints on the movement of legs are not violated.

For the sake of brevity, this third object will not be shown and the following outline only

gives the implementation of the ASV and leg controllers. (Note that the synchronisation

object is only needed because this example attempts to match as closely as possible the

functionality of the ASV as described in [Gheith 90]. Given an alternative implementationof

the system, in which the individual legs of the ASV are placed more directly under the

control of the master ASV controller, the need for a synchronisation object could be

avoided.)

5.4.1. Master Controller.

The ASV controller object offers an interface which includes the operation Move, possibly

along with other status or control operations not shown here. It is assumed that calls to the

ASV controller are issued by some component in the user interface for the ASV and that

exceptions, where raised, are returned to the user-interface level. Returning to the Move

117

ChapterS Application Examples.

operation, it takes a position and a deadline as its parameters and it attempts to move the

robot to the specified position within the given time. A move is performed as a sequence of

Step invocations, each intended to move the robot nearer to its fmal destination. A single

step operation consists of making appropriate invocations to the leg controllers to move the

legs and then push all of the legs backwards. Failures during any of these operations may

cause the ASV controller to initiate appropriate recovery, either stopping the ASV entirely

or adapting its activity to match the current state of the application (for example, re-trying a

failed Step operation or re-calculating the overall motion plan).

The master ASV controller is also an active object, containing a background thread that

monitors the robot's stability. In the event of the ASV becoming unstable, this background

thread forces the ASV to shut down and alerts the operator. A similar emergency procedure

is followed if the robot becomes unstable due to a leg failure.

XHTBRPACB ASV_Control XS
Move(xx Position, xx Time)

SXGHALS Danger, Out_of_Time
BHD.

OBJBC'l' ASV XS

S'l'A'l'B
Position Current i

Leg_Controller Legs[6]

COIOU'l'
DEFAULT <State based commit>

ABOR'l'
DEFAULT : <State restoration> i

STEP_FAILED: f* Application specific recovery. *f
PANIC: begin

HALT_ASV r.
f* Set off alarm to alert operator. *f

end

KBTHOD Step(xu Position dest, XU Time My_Deadline)
SXGHALS Danger

action
Position LegPos[6]
integer i i

Time Push_Time

do
par tor i := 1 to 6

LegPos[i]:= <New position for leg i»

118

ChapterS Application Examples.

Legs[i) .Move(LegPos[i)
[Fail: <Record move failure for leg i>

end par
it <Any move failed> then Abort (STEP_FAILED)

Push_Time := <NOW + 8 > ;
par tor i := 1 to 6

Legs[i) .Push (Push_Time)
[Fail: <Record push failure for leg i>

Push_Failure: aigoal Danger ;) ;
end par
it <Any push failed> then Abort (STEP_FAILED) ;

tini.h_in (My_Deadline)
[Deadline: Abort (STEP_FAILED) ;)

end action ;

KBTHOD Move(IN Position Dest, IN Time Master_DL
SIGNALS Danger, Out_of_Time

action
Time i_deadline
Position i_pos ;
boolean Step_OK ;

/* Intermediate step deadline. */
/* Intermediate step positions. */

do
while Current != Dest do
begin

i_deadline := <FUnction of Master_DL and time>
i_pos := <FUnction of Current and Dest> ;
Step_OK := TRUE;
do

Step (i_pos, i_deadline)
[Fail : Step_OK := FALSE;

Danger : it <ASV unstable> then
begin

Abort (PANIC)
aigoal Danger

end
el.e

Step_OK := FALSE;) ;
tiniah_in i_deadline

[Deadline
it Step_OK then

Current := i_pos
elae

/* Calculate new current position. */
tiniah_in Master_DL

Step_OK := FALSE;) ;

[Deadline : aigoal Out_of_Time ;
end action

TIIRBAD
begin

every Ss do
it <ASV unstable> then Abort (PANIC)

end

BRD.

119

ChapterS Application Examples.

5.4.2. Leg Controllers.

The master ASV controller relies upon six individual leg controllers to handle the movement

of the robot's legs. Each leg controller provides a Move and a Push operation. The former

takes as a parameter a new position to which the leg must be moved and, obtaining

permission from the leg synchronisation object (Move_Permission), attempts to move the

leg to the new position within 't time units. If the movement does not succeed or the leg is

not returned to the ground in time, a recovery operation is called to put the leg back on the

ground and the default failure exception will be raised to the master controller. The Push

operation takes as a parameter a start time at which the leg should be pushed backwards

and it attempts to perform the necessary push at the appropriate time. If the operation fails,

it will either raise the leg from the ground causing the default failure exception to be

signalled (if this is the first failure), or it will explicitly signal a push_Failure exception,

causing the master controller to halt the ASV (since its stability may now be jeopardised).

ZHTBRPACB Leg_Controller ZS
Move(ZH Position) ;
Push(ZH Time)

SZGHALS Push_Failure
BRD.

OBJBCT Leg ZS

STATB
Leg_Type My_Type
Position Current

/* = MIDDLE or CORNER. */

ABORT
PUSH RAISE_LEG;
MOVE begin

if <Leg clear of ground> then
LOWER_LEG ,;

Current := <Final position of leg>
Move_Permission. Release (My_Type)

end ;

KETROD Move(ZH Position Dest)
action

if Move_Permission. Request (My_Type) != GRANTED then
Abort ;

/* Now, move leg from current position to destination. */
/* Must perform move within t time units to minimise */
/* stresses on robot body. */

120

ChapterS Application Examples.

do
MOVE_LEG (Dest)

finiah_in (t) [Fail, Deadline begin
Abort (MOVE)
.ignal Fail

end] ;
Move_Perrnission.Release(My_Type)

end action ;

KBTROD Push(IX Time Start_Time
SIGNALS Push_Failure

action
/* At specified time, push leg backwards. */
do

PUSH_LEG [Fail: if <This is first failure> then
begin

Abort (PUSH)
.ignal Fail

end
elae

aignal Push_Failure
atart_in (Start_Time)

end action

BHD.

5.4.3. ASV Example: General Notes.

The ASV control system falls into the same general class of applications as the assembly line

controller shown earlier. However, where the quality monitor and the arm controllers of the

previous example are independent sub-systems that occasionally co-operate to perform a

certain task, the interaction of the control sub-systems in this example is much more

hierarchical, with the leg controllers being subordinate to the master ASV controller at all

times. This hierarchical arrangement is easily expressed in the object model by having the

leg controllers declared as part of the internal state of the master controller. The most

important features of the object model for this particular application are probably the

availability of programmed recovery operations, exception handling and timing constructs.

These three mechanisms are central to much of the activity of both the master controller and

the leg controllers: the former because it must attempt to meet the deadline imposed upon

the move operation and it must be able to adapt its motion plan to changing circumstances;

the latter because they must interface with the leg control hardware and perform

compensating operations when legs fail. Being able to make the master controller an active

121

ChapterS Application Examples.

object and include a background thread to monitor the stability of the ASV is also a useful

feature.

s.s. Train Control Example.

This example gives an outline for the implementation of the most sophisticated system yet

considered for this object model. The application is a reliable real-time control system for a

large, digitally-controlled model train layout. The amount of information which must be

stored and processed is much greater than that in previous examples, since a map of the

overall track layout is required (including connectivity information), a timetable (with route

information) must be maintained and appropriate control and state information must be

managed for each individual train and each section of track. In order to simplify the

presentation of the controller objects, it will be assumed that a number of user-defmed

object types are already available, supporting an appropriate set of data structures for the

representation of such information. For reference, these are briefly described below:

TrackList

A TrackList is a linked list containing IDs of track sections. Instances can be

used to hold an overall list of the track sections in the layout and to hold

low-level route information. (Individual elements of the list are instances of

the class TrackListEntry.)

StageList

This is another linked list containing route information for train journeys. It

consists of a number of TrackLists, each representing one stage of a train's

journey. Each stage also has a stage number and an associated start time and

deadline. (Individual list elements are instances of the class StageListEntry.)

ITEntry

A TTEntry consists of a StageList (which represents a train journey) along

with a Train ID (the train which will make that journey) and some status

122

ChapterS Application Examples.

information (journey in progress, journey completed, journey abandoned,

etc.).

TimeTable

A TimeTable is simply a structured collection of TTEntries. (It would

probably be implemented as yet another linked list.)

TrainPos

This is an implementation of a simple data record which can be used to hold

position information (Le. journey stage number and current track section

number) for trains.

D_List

This is an array or a list of TrackLists, each of which holds the route

information required to divert trains around a known breakdown. The D_List

can be indexed by the section IDs of the blocked sections of track and can be

allowed to grow and shrink dynamically as trains break down and are

subsequently cleared.

C_Map

An array structure to hold connectivity information for the track layout.

P_Map

Instances of this class hold mapping information for sets of points. (Any

track section which includes a set of points will have a points map relating

points settings to track section IDs - the points can then be set correctly to

pass trains on to the appropriate next section on their journey.)

The application software is broken down into a number of control objects. A central

controller manages information regarding the layout of the track, routes and the timetable

for train journeys. This controller interacts with a number of individual train controllers (one

for each train), instructing them to begin their journeys, giving them route or timing

123

ChapterS Application Examples.

information and providing assistance when problems arise (Le. working out diversions,

etc.). There are also a number of track objects (one for each section of track). These handle

reservations, as and when requested by the train controllers and provide route control by

setting points appropriately.

5.5.1. Layout Controller.

This is the central controller part of the system and its main function is to act as an

information base and co-ordinator for all of the trains. It holds a list of all the track sections

in the layout, as well as connectivity data for the sections. It reads a timetable from some

source (e.g. a me on disk) and trains are then run along specified routes at specified times in

accordance with the timetable entries. When a train completes a journey successfully, its

timetable entry is logged as completed. However, it is possible that some trains may

encounter problems during their journey, so appropriate recovery actions are also supported

by the layout controller. For example, a train may break down. This causes the controller to

log the broken train's timetable entry as failed and alert an operator to clear the occupied

sections of track. The controller also works out an alternative route (or routes) that can be

taken by trains that are held up as a result of the breakdown.

INTBRPACB Controller IS
Load_Timetable(IN Timetable) i

Re_Route(INOUT TTEntry, IN TrainLocation) i

Re_Schedule(INOUT TTEntry, IN TrainLocation)
Start_Trains

BND.

OBJECT Train_Controller IS

STAT!:
TrackList Sections
C_Map connectivity
TimeTable TT

CODIT
COMPLETE begin

TTE.Status .- COMPLETED
exit 1

end
ABORT

FAILED begin
TTE.Status .- FAILED
exit;

end i

124

ChapterS Application Examples.

KBTHOD Clear_Line(INOUT TTEntry TTE, IN Train ThisTr)
action

/* Find location of train and alert operator to clear */
/* line. Also work out a diversion which other trains */
/* can use to avoid the blocked sections of track. */

end action ;

IIBTHOD Run_Train (INOUT TTEntry TTE)
action

Train ThisTrain

ThisTrain := get_server(TTE.TrainID)
[Fail: Abort (FAILED)] ;

ThisTrain.Set_Route(TTE) [Fail: Abort (FAILED)] ;
ThisTrain.Run [Fail Abort (FAILED) ;

Broken : begin
Clear_Line (TTE, ThisTrain)
Abort (FAILED)

end ;]
end action ;

METHOD Re_Route(INOUT TTEntry TTE, IN TrainLocation TL)
action

/* Work out an alternative route for this train or */
/* force the train to wait. */

end action ;

KBTHOD Re_Schedule(INOUT TTEntry TTE, IN TrainLocation TL
action

/* Work out a new journey schedule for this train. */
end action ;

KBTHOD Load_Timetable(IN Timetable T)
action

TT := T
end action

KBTHOD Start_Trains
action

integer i

par for i .- 1 to TT.No_of Entries
Run_Train(TT.Entry(i»

end par
end action ;

BND.

5.5.2. Train Controllers.

Each train has a corresponding control object in the application software. Each train

controller has an identifier, a route, a speed and a current position. After receiving its

instructions (route, etc.) from the layout controller, the train controller handles the train on

125

ChapterS Application Examples.

its journey along the assigned route, reserving and releasing sections of track as it proceeds.

If, for some reason, a train cannot begin its journey, a default failure exception will be

signalled to the layout controller. Similarly, if the train breaks down while en route, the

Broken exception is raised and the layout controller will then provide appropriate error

recovery.

Another possible problem is that a train may be unable to reserve a section of track because

some other train is already using it. In this case, a request is made for an alternative route

and the layout controller will either supply diversion information or force the train to wait.

Finally, each train controller includes an internal thread that monitors the train's progress

(according to its timetable). If the train is running late and the delay is outside some

acceptable bound, a request will be made to the layout controller to have the train re-

scheduled.

IHTBRPACB Train IS
Set_Route(IN TTEntry TTE) i

Locate return. TrainLocation
Run

SIGNALS Broken i

BRD.

OBJBCT Train IS

STATB
integer TrainID, Speed i

TTEntry MyRoute i

TrainLocation CurrentPosition
Time Monitor_Period i

boolean Running := FALSE i

CODIT
STOP begin

HALT
Running .- FALSE

end i

NULL .kip i

ABORT
STOP HALT
NULL .kip

KETROn SetRoute(IN TTEntry TTE)
action

MyRoute := TTE i
if TTE.Route.FirstSection.Acquire != GRANTED then

Abort i

end action i

126

ChapterS Application Examples.

KBTHOD Locate RETURNS TrainLocation
action

return CurrentPosition
end action ;

METHOD MoveCycle(INOUT StageList S)
SIGNALS Breakdown, Blocked

action
integer i ;

for i := 1 to <Number of sections remaining> do
begin

Speed := <Required speed to complete stage on time>
SET_SPEED(Speed) [FAIL : begin

Abort ;
.igna1 Breakdown

end;];
do

<Attempt to acquire next section of track.>
fini.h_in «Time to next section»

[Deadline: begin
Abort
.igna1 Blocked

end;];

Next_Section.Set_Points(Curr_Section, Dest_Section) ;

/* Wait until train has cleared previous section */
Last_Section.Release() ;

/* Update CurrentPosition, route information, */
/* server information etc. */

end ;
end action

KBTHOD Run SIGNALS Broken
action

integer i ;

Running .- TRUE
for i .- 1 to MyRoute.Route_Info.No_of_Stages do
begin

do
while <Stage incomplete> do

MoveCycle(Current_Stage)
[Fail : if <This is the first failure> then

<Make another attempt>
e1.e

Abort
Blocked: Controller.Re_Route

(MyRoute,CurrentPosition)
Breakdown : .igna1 Broken

.tart_in (Current_Stage.Start_Time)
Current_Stage := Current_Stage.Next

end ;
end action ;

127

ChapterS Application Examples.

THREAD
every Monitor_Period do

if Running and <Train running late> then
Controller.Re_Schedule{MyRoute, CurrentPosition)

BRD.

5.5.3. Track Controllers.

There is a track controller object for each section of track in the layout. Each section has a

unique identifier, a list of adjacent track sections and a points map which gives the

appropriate points setting for routing trains to adjacent sections. (Naturally, straight

sections without points have empty points maps.) Each section controller also contains a

flag to indicate whether the section is currently reserved, the identifier of any train currently

holding the section, a record of the current points setting and a default points setting which

is used to set the points when the system is initialised.

When trains are running, a track section will receive a stream of reservation requests from

different trains. For a given request, if the section is currently available for that train, the

request is granted and the appropriate reservation made. If the section is not available, the

request fails and appropriate recovery is left in the hands of the train and layout controllers.

For a train that has reserved a section, the train controller can request that the points be set

appropriately. For this operation, the train controller specifies the next section that it needs

to reach and the track controller selects the correct points setting from the points map.

INTBRPACB Track IS
Acquire{ IN integer) RETURNS Lock_Status
Set_Points{ IN integer, IN integer) ;
Release{ IN integer) .;

BND.

OBJEC'l' Track IS

S'l'A'l'B
integer TrackID, TrainID, Default_points_Setting
Connections Adjacent_Tracks[MAX_TRACK_CONNECTIONS]
P_Map Points ;
boolean Locked ;

METHOD Set_Points{ IN integer IncomingID,
IN integer DestinationID

action
/* Look up appropriate points setting to route the */

128

Chapter 5 Application Examples.

/* incoming train to the right destination. */
SET_POINTS«Appropriate Setting»

end action ;

KBTHOD Acquire(IN integer TID) RBTURRS LocK_Status
action

if not LocKed then
begin

LocKed := TRUE
TrainID := TID
r.turn GRANTED

end ;
.1••

return FAILED
end action ;

KBTHOD Release(IN integer TID)
action

if <Locked by train TID> then
begin

LOCKed := FALSE
TrainID := 0 ;

.nd ;
.nd action

BRD.

5.5.4. Train Control Example : General Notes.

This example is interesting since it potentially represents a larger scale of application than

the previous examples and it is a hybrid system in that it consists of process control

elements (notably the train controllers) and a real-time information processing component

(the layout controller and, to a certain extent, the track controllers). The pattern of control

interactions in the system is also a hybrid, having both hierarchical and co-operative

elements. For example, interactions between the layout controller and the train controllers

are, basically, hierarchical with the train controllers being subordinate to the layout

controller whereas interactions between train controllers and track controllers are of a more

co-operative nature with neither object strictly having control over the other.

From the point of view of the object model, this example serves three major purposes.

Firstly, it illustrates that the object model and notation can be used to express a very general

class of real-time information processing applications. Secondly, it highlights the potential

for easily combining process control sub-systems that include operation-based recovery with

information processing sub-systems that use state-based recovery. Finally, it shows that a

129

ChapterS Application Examples.

complex pattern of activity and interactions between a large number of objects can still be

supported within the framework imposed by the object model.

5.6. Chapter Summary.

This chapter has demonstrated the versatility of the object model and programming notation

that was described in chapter 4. This has been done by giving brief outline implementations

of four different examples, ranging in complexity from a relatively simple call-control

system to a more complex real-time control system for a model train layout. Each example

also included a brief discussion of the general class of application that it represented and

listed the two or three specific features of the object model that are likely to be most useful

for applications of that type. Throughout all of the examples, none of the constraints

imposed by the object model have been violated, yet a wide range of different activities and

system behaviours have been supported. This can be taken as a straightforward, intuitive

argument both for the general expressivity of the proposed programming notation and for

the useful potential of the object model upon which it is based.

130

Chapter 6.

Architectural Support for Real-Time Objects.

In the previous chapter, the versatility of the real-time object model proposed in chapter

four was illustrated by means of four different application examples. However, one

important aspect of the object model that has not yet been discussed is its implementation,

either in terms of specific mechanisms (e.g. the atomic action mechanism) or in terms of the

underlying architectural support that would be required to support object replica groups

constructed using this model. Such issues are important; insofar as the object model is

intended to be geared towards the programming of real-time applications and, as such, must

itself be capable of being implemented.

Unfortunately, any attempt to describe a complete implementation of all of the features and

mechanisms included in the model would be both long and complex. The purpose of this

chapter is, therefore, to give a brief outline of the way in which some of the more important

parts of the object model can be supported. This will include an overview of the support

required for general features of the model, such as the exception handling and timing

constraint mechanisms, as well as the method selection (aelect ... accept) primitive. The

provision of application specific recovery operations within the atomic action mechanism

will then be discussed. Finally, three specific multicast protocols will be considered to show

the way in which object replica groups can be supported: in one case, on fail arbitrary

processing nodes and, in the others, on nodes that are fail-silent

6.1. General Features.

Although the object model does include certain features that are not common in current

programming languages, much of the general structure of the model is based upon existing

languages or systems. It is based upon the imperative style of programming, like many

common languages such as Pascal, Modula 2 or C, and the overall structure of objects and

131

Chapter6 Architectural Support for Real- Time Objects.

their interfaces is broadly similar to that found in existing object-oriented languages such as

C++. The concept of active objects is not new, having already been used in systems such as

ARTS and CHAOS, and the use of both synchronous and asynchronous invocation

primitives reflects a similar approach to communication found in the CONIC system

[Kramer 83] [Sloman 87]. The fact that such similar mechanisms exist in other systems and

languages means that the implementation of these aspects of the object model is unlikely to

present any new problems and need not be discussed in any great detail.

Given that the general structure of the model is implementable, there are specific

mechanisms that remain to be considered. In particular, the atomic action and exception

handling mechanisms have not been examined and the temporal scope and method selection

mechanisms are not wholly based upon existing constructs. The implementation of forward

recovery within atomic actions will be described in more detail in section 6.2, but first, the

exception handling, temporal scope and method selection constructs must be discussed.

6.1.1. Exception Handling.

The exception handling mechanism that has been used in the object model is based upon the

termination model of exception handling and, as such, it is similar to mechanisms used in

existing languages like CLU. In fact, the semantics of the exception handling functions and

the syntax used for exception handling in the examples have been developed directly from

the mechanisms described in [Cristian 82] and [Cristian 89] and no real changes have been

made to their basic functionality. Hence, the implementation of such an exception handling

mechanism, like the implementation of.the object model's general programming constructs,

should prove to be relatively straightforward and could be based upon an existing

implementation used in some other system.

6.1.2. Timing Constraints.

The temporal scope constructs that have been used to express timing constraints are similar

to the language constructs used to express timing constraints in MPL (the MARUTI

Programming Language), however there are two major differences that should be noted.

132

Chapter6 Architectural Support/or Real-Time Objects.

First of all, MPL uses six basic timing primitives, whereas the object model proposed here

uses only two, more general constructs. From the point of view of an. underlying real-time

scheduling mechanism, there is no real difference between these two approaches and the

mapping between application-level timing constraints and task scheduling parameters could

be implemented in a similar manner in both cases. The other, more fundamental, difference

between the constructs used here and those used in MPL is that the MPL timing primitives

do not include the use of exceptions or exception handling to deal with timing errors. This is

because the MARUTI system employs pre-scheduling for all real-time tasks and it can,

therefore, be assumed that tasks will not exhibit timing errors at run-time. However, the

integration of the exception handling mechanism that has already been included in the object

model with the temporal scope mechanisms would be unlikely to be difficult.

6.1.2.1. Replicated Timing Constraints.

The implementation of timing constraints across a replica group is another issue that must

be considered. If each replica in a replica group is executing a temporal scope, differences in

clock synchronisation or communications delay between different replicas can lead to

situations where some replicas regard their timing constraint as being met while others

regard it as being missed. This can lead to state divergence between different replicas, so

some mechanism is required whereby decisions regarding timing constraints can be agreed

across the replica group. In chapter three, it was shown that a temporal scope of the form:

do
S

.tart_in(EST,LST) ;
tinish_in(EFT,LFT) ;

Early_start : A ; Late_start : B
Early_finish : X ; Late_finish : Y]

permits an equivalent implementation, using the .elect ... accept mechanism, that will

allow events such as Early_start, Late_finish or the successful completion of S to be

agreed between replicas. The correct implementation of replicated timing constraints

therefore depends upon an implementation of the .elect mechanism that is deterministic

across replica groups. Such a mechanism is already required within the object model and its

implementation is described below.

133

Chapter6 Architectural Support/or Real-Time Objects.

6.1.3. Method Selection.

Considering method selection in active objects, a different implementation problem presents

itself. The .elect ...accept construct that can be used to control the execution of an

active object is directly based upon a similar mechanism used to handle task entry calls in

the Ada language. Its implementation should, therefore, pose no problems. This would be

true if the object model did not permit the use of active replication, but the fact that an

object may be part of an active replica group means that an alternative implementation of

the .elect ...accept mechanism must be developed which prevents replica state

divergence by ensuring that non-deterministic selection can be agreed across replica groups.

procedure receivefrom(P:.etof ports,
return. m:message

begin
within t do

{ m := RECElVEFROM(P) }
timeout:

{ send (self, marker)
m := RECElVEFROM([P,self]) }

t:timevalue)

/* Returns first message */
/* in queue from PiE P. */

od

if m = marker -7 m := null
o m :F- marker -7 .kip
fi

end

Figure 6. 1. The generic input function.

Fortunately, such a "deterministic" implementation of the .elect ...accept construct is

possible and it has already been described in some detail in chapter three. At the most

fundamental level, it relies upon the use of an atomic broadcast protocol or similar

mechanism to ensure ordered message queues at each replica. Each replica then uses the

generic input function (see figure 6.1) to select the first suitable message from its local

queue. In those cases where an appropriate message has arrived from some source, this

guarantees that each replica will select the same message. Similarly, the use of marker

messages to signal timeouts ensures that such events are processed consistently across the

replica group. It can then be guaranteed that either all of the replicas will accept and process

the same message or all of the replicas will regard the input operation as having timed out

134

Chapter6 Architectural Support for Real- Time Objects.

6.2. Atomic Actions and Application Specific Recovery.

Several systems have been developed that use atomic actions to provide fault tolerance and

the implementation of state-based atomic action mechanisms is. quite well understood.

However, the atomic action mechanism proposed in chapter 4 is slightly different in that it

also allows application specific, forward recovery operations to be defined. Consideration

must therefore be given to the way in which such an extended atomic action mechanism

might be implemented. The approach suggested here is based upon the current

implementation of atomic actions in the Arjuna system and it illustrates one way in which

application specific recovery might be supported.

6.2.1. The Arjuna Atomic Action Mechanism.

The Arjuna system [Shrivastava 91b][Dixon 88] provides tools that assist in the

construction of fault-tolerant, distributed applications structured as atomic actions operating

on persistent objects. Arjuna is written in C++ and makes extensive use of the type

User-defined
Classes

User-defined
Locks

LockRecord RecoveryRecord

Figure 6.2. The Arjuna class hierarchy.

inheritance facilities provided by that language to allow user-defmed objects to inherit

desirable characteristics such as persistence or recoverability. The Arjuna class hierarchy is

shown in figure 6.2.

135

Chapter6 Architectural Support for Real- Time Objects.

The class StateManager provides an interface to the Arjuna object store, allowing instances

of all classes derived from StateManager to be persistent. User-defmed classes that are to be

accessed using atomic actions are derived from the class LockManager, with the class Lock

providing standard two-phase locking facilities. If any special forms of locking are required,

this can be achieved by deriving new classes from Lock. The co-ordination of all these

mechanisms to allow the application programmer to begin, end and abort atomic actions is

provided by the class AtomicAction and it is this class which is of most interest here.

cla •• AtomicAction : public StateManager

protected:
PrepareOutcome Prepare()
void Commit () ;

public:
.tatic AtomicAction *Current

AtomicAction() ;
AtomicAction(Uid*)
virtual -AtomicAction()

virtual bool save_state (ObjectState*, object_type) ;
virtual bool restore_state (ObjectState*, object_type)

virtual Action_Status Begin()
virtual Action_Status End() ;
virtual Action_Status Abort()

bool add(AbstractRecord*)
AtomicAction* Parent() ;

Figure 6.3. The Arjuna AtomicAction interface.

Figure 6.3 shows part of the interface to the AtomicAction class. Of the operations shown,

the two that are of most relevance to the current discussion are End (),which is called by

the user to commit an action and Abort (),which is called to abort an atomic action.

Outline descriptions of the current implementation of these operations are shown in figures

6.4 and 6.5.

ActionStatus AtomicAction::End()
{

/* Check for superfluous invocation. */
if ((actionStatus == COMMITTED) I I (actionStatus -- ABORTED»

return actionStatus ;

136

Chapter6 Architectural Support for Real- Time Objects.

/* Ensure that this is the currently active action. */
if ((currentAct != 0) && (currentAct != this) &&

(currentAct->isAncestor(get_uid(»»

/* Active action is one of this action's children. */

/* Prevent Commit of parent actions (ensures safety). */
/* Abort child actions. */

if (actionStatus == RUNNING)
{

if (prepare() == PREP_NOTOK)
{

/* Phase 1 of commit protocol (preparing to commit */
/* state changes to stable storage) has failed */
/* for some reason, so abort the action. */
phase2Abort()

e1.e
{

/* Prepare phase completed successfully, so go ahead */
/* and commit the action. (Commit state changes.) */
phase2Commit() ;

/* For top-level actions or nested top-level actions */
/* remove intention list from object store. */

}

return (actionstatus)

Figure 6.4. Outline of AtomicAct ion: :End ()operation.

Using the existing operations as a starting point, it should be possible to implement an

atomic action mechanism that permits application specific commit {End (» and abort

operations as follows. First of all, allow each operation to take a parameter that specifies the

type of commit or abort processing that is to be carried out. Then, within each operation,

use a .witch (ca.e) statement on that parameter to select the appropriate operation, with

the default selection being the state-based commit or abort shown above. Such an

implementation of the Abort ()operation is outlined in figure 6.6.

ActionStatus AtomicAction::Abort ()
{

/* Check for superfluous invocation. */
if ((actionStatus == COMMITTED) I I (actionStatus -- ABORTED»

return actionStatus ;

/* Ensure that this is the currently active action. */

137

Chapter6 Architectural Support for Real- Time Objects.

if «currentAct != 0) && (currentAct != this) &&
(currentAct->isAncestor(get_uid(»»

{
/* Active action is one of this action's children. */

/* Prevent Commit of parent actions (ensures safety). */
/* Abort child actions. */

if «actionStatus == RUNNING I I actionStatus == PREPARING I I
actionStatus -- UNPREPARED I I
actionStatus == PREPARED I I actionStatus == ABORTING»

{
actionStatus = ABORTING ;

/* Abandon any state changes that the action would have */
/* caused. (Information stored in pendingList). */
doAbort(*pendingList) ;

actionStatus = ABORTED ;
currentAct = parentAction

}

return (actionstatus)i
}

Figure 6.5. Outline of AtomicAction: :Abort ()operation.

This is, perhaps, the simplest way in which application specific commit and abort operations

could be supported within the Arjuna framework and other implementations could be

developed that would present a more efficient and friendly interface to the applications

programmer. However, as far as the object model proposed in this thesis is concerned, the

important point is that the implementation of an atomic action mechanism with application

specific recovery and commit operations is, indeed, possible.

ActionStatus AtomicAction::Abort (AbortType AT)
{

/* Check for superfluous invocation. */
if «actionStatus == COMMITTED) I I (actionStatus -- ABORTED»

return actionStatus ;

/* Since all actions are top-level (or nested top-level) */
/* there is no need to check if this is the currently */
/* active action or to process parent or cnild actions. */

if «actionStatus == RUNNING I I actionStatus == PREPARING I I
actionStatus -- UNPREPARED I I
actionStatus == PREPARED I I actionStatus == ABORTING»

actionStatus = ABORTING ;

138

Chapter6 Architectural Support for Real- Time Objects .

•witch(AT)
{

ca.e TYPE_l:
/* User-defined abort operation 1. */
break i

ca.e TYPE_2:
/* User-defined abort operation 2. */
break i

ca.e TYPE_3:
/* ... and so on. */
break i

default:
/* Default, state-based abort. */
doAbort(*pendingList)
break i

}

actionStatus = ABORTED i
currentAct = parentAction

return (actionStatus)i

Figure 6.6. Outline implementation for application-specific abort.

6.3. Supporting Object Replica Groups.

As well as considering the implementation of mechanisms used within the object model

itself, some thought must also be given to the underlying communications support that will

be required if objects are to be replicated. The type of communication mechanisms that are

needed will depend upon the replication strategy that is to be employed. Further, the way in

which those mechanisms are implemented will depend upon the properties and assumed

failure modes of the communications medium. This makes a general discussion of the issues

involved very difficult, so the approach adopted here will be to examine three specific

implementations. First of all, the use of active replication to tolerate Byzantine faults in a

system where processors are connected using point-to-point links. Secondly, the use of

active replication to tolerate omission faults in a system connected over a broadcast

network. Finally, the use of an alternative replication strategy, known as semi-active or

leader-follower replication, to tolerate permanent omission (fail-silent) faults in a system

connected over a broadcast network.

139

Chapter6 Architectural Support for Real- Time Objects.

6.4. Active Replication: Fail-arbitrary Processing Nodes.

Consider a distributed system that consists of N processing nodes connected by means of a

point-to-point communications network. H it is assumed that nodes, or the communications

links connecting them, can exhibit Byzantine (arbitrary) failures, the only way to enhance

the availability of objects within the system is to use some form of active replication. As

described in chapter 3, this will entail the use of a suitable communications protocol, such as

an atomic broadcast, to ensure that interactions between object replica groups are handled

correctly. Such a protocol, developed by Cristian et al [Cristian 86], is described below.

6.4.1. Assumptions.

There are six basic assumptions upon which the implementation of the atomic broadcast

protocol depends:

1. It is assumed that any processor or link failures that occur during the

course of a broadcast leave the remaining processors in the system

connected, in the sense that any two correct processors can still

communicate over some route.

2. Network transmission delay is bounded. That is, if s and r are objects

running on two correct processors, s and r, which are connected by a

correct link, I, then a message sent from s to rover 1is delivered to rand

processed by r in at most S time units. Note also that a distinction is made

between reception of a message by a processor, r, and the delivery of that

message to an object, r, running on that processor.

3. The clocks of correctly functioning processors measure the passage of

time accurately and are synchronised, so that the measurable difference

between the readings of correct clocks at any instant is bounded by a

known constant, E.

140

Chapter6 Architectural Support for Real- Time Objects.

4. The operating system provides a "schedule(T,t,p)" command that allows a

task T to be scheduled for execution at time t with parameters p. Multiple

invocations of "schedule(T,t,p)" have the same effect as a single

invocation and, if two tasks T} and T2 are scheduled for times t} and t2

(t} < t2)' then T} is started before T2.

5. The clocks of correct processors are monotone (never set back) and no

correct processor can issue the same timestamp twice, i.e. the granularity

of time measurement is fme enough to discriminate between separate

clock readings.

6. It is assumed that each processor, p, has a signature such that it is highly

improbable that p'« signature could be forged by any other processor.

Every processor also has access to an authentication procedure that

allows it to verify the authenticity of a signature with a high probability.

Methods for designing such signature and authentication schemes are

discussed in [Rivest 78].

Given that these six assumptions are valid, it is possible to implement a broadcast layer that

provides an atomic broadcast protocol capable of tolerating Byzantine faults in processors

and communications links. The implementation can be broken down into three separate

tasks that must be run on each processor in the system: a Start task that initiates broadcasts;

a Relay task that ensures that broadcast messages are propagated throughout the system

and an End task that delivers broadcast messages to their intended recipients. Note that

throughout the following discussion, the term "request" refers to the contents of a

broadcast, Le. an application-levelmessage (an invocation message, etc.) that the broadcast

protocol is delivering, while the term "message" will be used to refer to the broadcast

messages themselves, i.e. an application-level message plus its associated signatures,

timestamps, etc. that are generated by the broadcast protocol.

141

Chapter6 Architectural Support for Real- Time Objects.

6.4.2. The Start Task.

A high level description of this task is given in figure 6.7. An object that wishes to broadcast

a request, o, passes it to the local copy of the start task where it is received using the

command "taketo)". The broadcast of this request is identified by the local time, t, at which

o is received by the start task (line 5) and the identity, s, of the sender which is obtained by

invoking the function "myid" (line 6). The identifiers returned by the function "myid" on

distinct processors are guaranteed to be distinct and two broadcast identifiers, (t},s}) and

(t2,s2)' are only equal if t}=t2 and s}=82' Hence, by assumption 5, every correct processor

generates broadcast identifiers that are unique system-wide.

1 . ta.k Start

2. con.t ~ = n(S + e) + Dn,A + e
3. var t:Time ;

0:App1ication_request
s:Sender_ID ;
x: Signed_message

4. cycle take (0) ;

5.
6.
7.
8.
9.

t := clock
s := myid ;
sign(t,o,x) ;
send_all (x) ;
H := H El) (t,s,o) /* Update history */

10. .chedule(End,t+~,t)
11. endcycle;

Figure 6.7. Atomic broadcast "Start" task.

After generation of the broadcast identifier, the message is signed by the processor using the

"signit.c,x)" primitive and transmitted on all outgoing links from the processor. The fact

that a broadcast (t,s) of a request o lias been initiated is then recorded in a local history

variable, H, that is shared by all of the broadcast layer tasks running on the node. Once this

has been done, the End task is scheduled to start at local clock time t+~, at which time the

value cr will be delivered to any destination objects resident on the node. ~ is the

termination time for the protocol and it is given by:

1t(8 + e) + Dn,A + e

142

Chapter6 Architectural Support for Real- Time Objects.

where 1t and A. are the numbers of processor failures and link failures respectively, 0 and £

are the network transmission delay and clock synchronisation accuracy defmed earlier and

the term, On,).., is the worst case message diffusion time in the presence of at most 1t

processor faults and A. link faults that do not disconnect the network. Strictly, On,).. is

equivalent to ~,).., where 0 is as defmed above and dn,).. is the diameter of the surviving

network, Le. the greatest distance, measured along a shortest path, between any two nodes.

However, note that for the purpose of calculating A, any upper bound on On,).. could be

used: for example (n-1t-l)0.

6.4.3. The Relay Task.

The Relay task is shown in figure 6.8 and it works as follows. When a message is received,

it is checked for authenticity (line 6). If the message has been corrupted, either by a faulty

processor or a faulty link, it is discarded, Otherwise, the sequence of signatures appended to

the message by other processors that have already accepted it is examined to ensure that

there are no duplicates. If a duplicate signature is found, the message is discarded (line 7).

(This is achieved using the iterate statement, which causes the task to abandon the

remainder of its current execution cycle and to begin its next cycle - that is, to return to line

4 and begin processing the next message.) Also, since signatures are authenticated, the

number of signatures appended to a message can be trusted and used as a hop count in

determining its timeliness (lines 8,9 and 10).

1. task Relay

2. const A = n(o + £) + D~,)..+ £
3 . var t ,'t : Time i

G:Application_request
s:Processor_ID i

x,y: Signed_message i

1:link i

S:Sequence_of_Processor_ID

4. cycle receive(x,l) i

5.
6.
7.
8.
9.

't := clock i

authenticate(x,t,G,S) [forged: iterate] i

if duplicates(S) ~ iterate i /* Duplicate. */
o 't < t-£ISI ~ iterate i /* Too early. */
o 't > t+(£+O) lSI ~ iterate i /* Too late. */

143

Chapter6 Architectural Support for Real- Time Objects.

10.
11.
12.

o 't > t+~ ~ iterate
fi
s := first (S) i

/ * Too late. */

13.
14.
15.
16.
17.
18.
19.

if tedom(H) and sedom(H(t» ~
if H(t, s) = a ~ iterate /* Already seen */
o H(t,s) =.1 ~ iterate /* Faulty sender*/
fi
H(t,s) :=.1 i

o
/* ·New· faulty sender */

H := H Ea (t,s,a) /* Newbroadcast */
20. schedule(End,t+~,t)
21. fi i

22. co_sign(x,y)
23. send_all_but(l,y)
24. endcycle i

Figure 6.B. Atomic broadcast "Relay" task.

Assuming that the incoming message is authentic, has no duplicate signatures and is timely,

the history variable H is examined to determine whether the message is the first of a new

broadcast. If this is the case, then H is updated with the information that the sender s

(identified by the first signature appended to the message) has sent a new request a at time t

(line 19). The End task is then scheduled to start processing the received message at local

clock time t+A (line 20) and the message is co-signed and forwarded on all links except the

one upon which it arrived (lines 22 and 23).

If the message does not represent a new broadcast, there are three possible scenarios:

1. The received request may already be recorded in H because it has already

arrived via an alternate route. In this case, the message should be

discarded (line 14).

2. There may already be an entry in H for this particular broadcast, but

specifying a different request. In this case, the sender must be faulty and

this fact is recorded in H by setting the value associated with the

broadcast to null, .1 (line 17). The message is then co-signed and

forwarded (lines 22 and 23) so that other correct processors can also note

the fault.

144

Chapter6 Architectural Support/or Real-Time Objects.

3. The final scenario is that the received request is associated with a

broadcast that has already been identified as coming from a faulty sender.

In this case, the broadcast will already be associated with the null value in

H and the message can be discarded (line 15).

6.4.4. The End Task.

The End task (figure 6.9) is started on every correct processor at local clock time t+A to

deliver the messages broadcast correctly at clock time t. H a unique request has been

received for a broadcast initiated at time t then that request will be delivered to the

appropriate recipients. H, on the other hand, two or more different requests have been

received for a given broadcast, then the null value will be associated with that broadcast in

H. This indicates that the sender must have been faulty and no request should be delivered.

In either case, the details associated with the broadcast are deleted from the history, H.

1. ta.k End(t:Time)

2. var p: Processor_ID;
req: (Application_request u (~}) ;

3. req:= H(t) ;
4. while dom(req) :I:. 0 do
5. p := min(dom(req» ;
6. if req(p) :I:. .L ~
7. deliver (req (p))
8. ti ;
9. req := req\p
10. od;
11. H: = H\t ;

/* Broadcasts made at time t. */

/* Only deliver if sender not */
/* faulty, Le. H(t,p) :I:. ~. */

/* Delete H(t,p) from H(t). */

/* Delete H(t) from H. */

Figure 6.9. Atomic broadcast "Encr task.

6.4.5. The Atomic Broadcast Protocol and Object Replica Groups.

The atomic broadcast mechanism described above· provides all of the necessary

communications support for active replica groups. Considering an object constructed

according to the model proposed in chapter 4, there are two types of message that it may

receive: external messages such as method invocations and internal messages such as the

self-directed marker messages used in the implementation of the .elect construct (see

145

Chapter6 Architectural Support for Real- Time Objects.

figure 6.1). If all such messages, whether they are external or internal, are transmitted using

the services provided by the broadcast layer, it can be ensured that all of the objects

comprising an active replica group will receive the same set of messages in the same order.

All replicas will, therefore, process the same set of requests in the same order and handle

events such as method selection and the expiry of timing constraints consistently. State

divergence will thus be avoided and tolerance of K Byzantine faults can be guaranteed using

groups of 2K+I replicas.

The replies generated by a replica group are handled as follows. For any given request, each

replica generates its own reply and sends it, either using the atomic broadcast mechanism if

the originator of the request was itself a replicated object or, possibly, using some form of

reliable unicast if the originator of the request was a single object. The originator of the

request can collate the replies that it receives and apply an appropriate majority voting

algorithm to determine the correct response to its request. (Note that the same technique

would also have to be applied to requests from a replicated client so that the server could

determine the correct request to serve.)

6.5.Active Replication : Fail-silent Processing Nodes.

Where the above example considers a distributed system in which processing nodes

communicate over point-to-point links and are subject to Byzantine faults, the example

given here considers a distributed system in which processing nodes are connected by some

form of broadcast network such as Ethernet or Token Ring. Further, it is assumed that

processing nodes are fail-silent and that. the network connecting them only exhibits bounded

omission failures. The former assumption can be justified either by the use of appropriate

fail-controlled processors or by using fail-controlled interface units to connect processors to

the network.

The replication strategy to be examined will, once again, be active replication, so a suitable

atomic broadcast protocol will be needed for communication with replicated objects.

However, owing to the differences in the underlying system and its assumed failure modes,

146

Chapter6 Architectural Support for Real- Time Objects.

a different implementation of the atomic broadcast mechanism will be required. For

example, there is no need for a node to relay broadcast messages to its neighbours because

the initiator of a broadcast will be able to send network messages directly to each of the

intended recipients. Also, message authentication is not necessary because the protocol only

needs to be able to cope with omission faults.

6.5.1. Network Properties.

The protocol that will be used for this particular example is one version of the AMp atomic

multicast protocol [Verissimo 89] that is used in the Delta-s system [powell 88]. This

protocol is based on the two-phase commit principle described in [Gray 78] and it depends

upon five basic network properties:

1. Although frames (Le. network packets/messages) may be lost, when

destinations receive a frame, they receive the one that was transmitted.

2. The number of consecutive transmission errors of a correct network is

lower than some known value (0.

3. Any frame queued for transmission is sent on a non-faulty network within

some known delay, T td.

4. Any two frames received at any two sites are received in the same order.

(This property is referred to as Network Order.)

5. The sender itself is also included in this ordering property as a recipient

Although these five properties might, at first, seem difficult to achieve, they can be

implemented in any ISO 880210cal area network or in the FDDI.fibre-optic network and an

implementation of the AMp protocol is already running on an 880214 Token Bus system.

147

Chapter6 Architectural Support for Real- Time Objects.

6.5.2. Protocol Execution.

AMp works in terms of multicast groups, allowing the members of such a group to

communicate with one another using the multicast protocol. To avoid confusion,

throughout the following description the term "group" will be used to refer to such

multicast groups, while the term "replica group" will be used when referring to the set of

replicas of a replicated object

Responses

Multicast Frame

Dissemination Phase.

Time.

Decision.
Decision Phase.

~ : : ~: : : __ Decision Acknowledge.
~ _ - .:> - (Only for reject decisions.)
~-

Emitter Receivers

Dissemination and Decision phases may be repeated up to Cl) +1 times.

Figure 6.10. The AMp Atomic Multicast protocol.

Given the network properties listed earlier, execution of the AMp protocol proceeds as

follows. For each multicast group currently active on a node (i.e. each group that currently

has a member executing on that node), several AMp communication entities are required.

The AMp Emitter Machine (EM) and Receiver Machine (RM) are responsible for

executing the AMp protocol for the multicast group and together constitute the Group

Communicator (GC). The local Group Monitor (GM) executes certain critical functions

related to the correct functioning of the multicast protocol, for example recording node

failures so that a consistent local Group View (GV) can be maintained. Finally, the Receive

148

Chapter6 Architectural Support for Real- Time Objects.

Queue (RQ) is managed by the receiver machine and holds any incoming messages for the

multicast group.

To initiate a multicast to its group, the Emitter sends an information frame containing the

broadcast message, implicitly querying the recipients if they can accept it. This

dissemination phase is implemented using "transmission-with-response" rounds and ends

after all of the expected responses have been received. In the worst case, this may take as

many rounds as the omission degree of the network (co)plus one and any node that does not

respond within this number of rounds is assumed to have failed.

When the dissemination phase is complete, either because replies have been received from

all of the intended recipients of the broadcast or because (0)+ 1) rounds have been

completed, the emitter analyses the responses and issues its decision, either accept or reject

(decision phase). The accept (proceed with broadcast) decision is only issued when

unanimity can be reached. For example, if one of the intended recipients will not accept the

message, the reject decision is issued and the message is rejected by all. Like the

dissemination phase, the worst case duration of the decision phase is (0)+ 1) rounds. (The

execution of this protocol is illustrated in figure 6.10.)

Failures during the decision phase are tolerated in two different ways, depending upon the

decision that was made. H the decision was to reject the broadcast, then all recipients must

acknowledge the rejection message and the lack of one or more acknowledgements will

cause the emitter to re-transmit its decision (up to the re-try limit of the network - 0>+1

attempts). As before, if a node does not reply to the decision message within the re-try limit,

then it is assumed to have failed.

For an accept decision, the situation is quite different. When a group member receives the

initial dissemination phase message, it sets an internal timer. If the timer expires before a

decision has been received, an explicit decision request will be sent to the emitter of the

broadcast. Since emitters, in the case of a reject decision, will only start a new transmission

after assuring that all group members received the "reject" message, an emitter that receives

a decision request can proceed as normal if it is still processing the broadcast in question or

149

Chapter6 Architectural Support for Real-Time Objects.

answer with an immediate accept if it is not. In the event of an emitter not responding to a

decision request, the request will be re-transmitted until a reply is received or until the re-try

limit is reached. In the latter case, it will be assumed that the emitter has failed and the

group monitor will be called upon to terminate the broadcast and update the group view for

the surviving group members.

6.5.3. Protocol Correctness: Assumptions and Order Properties.

The correctness of the AMp implementation described above depends upon three

assumptions about protocol execution:

1. At any time, at most one AMp Emitter Machine is running at each node.

(In fact, in the current implementation of AMp in the Delta-4 system, an

emitter machine, once started, executes atomically.)

2. Each node runs as many AMp Receiver Machines as the currently active

atomic multicast transmissions that it takes part in, each RM managing the

state of the relevant Receive Queue.

3. If the decision for a broadcast is Reject, then the emitter positively

confirms that it is received by all nodes belonging to its Group View.

(Hence the use of positive acknowledgements and re-transmissions as

described above.) This assumption allows an emitter to respond to

decision requests as described above and avoids the need to maintain

history lists for broadcas~.

Assumption 2 is a source of external parallelism in AMp, in the sense that the protocol will

allow several concurrent executions for different groups to run simultaneously. Internal

parallelism within a multicast group is ensured by allowing group members to run their

Emitter Machines competitively in a fully decentralised fashion. Several transmissions from

different nodes may be initiated simultaneously; order and agreement are then achieved by

150

Chapter6 Architectural Support for Real- Time Objects.

the network order property and the error detection and recovery mechanisms provided by

the protocol.

Unlike the global ordering provided by the atomic broadcast protocol described in section

6.4, AMp provides incomplete orderings within multicast groups. All members of a group

will observe the same set of messages in the same order and, if two messages mt and m2 are

causally related (m t ~ m2), then they will be delivered to the group in the appropriate order

(mt ,ID2). However, if two messages are not causally related, they will be delivered in the

same order to all members of the multicast group, but that order will not necessarily reflect

the order in which the messages were originally transmitted. This is reminiscent of the

causal ordering provided by the CBCAST primitive in the ISIS system [Birman 87][Joseph

88] and it is this property that allows parallel multicasts to different groups.

6.5.4. The AMp Protocol and Object Replica Groups.

The incomplete ordering property of AMp is sufficient for supporting active replica groups,

since the fundamental criterion that all of the members of a replica group receive the same

set of messages in the same order is still met. Communication with active replica groups

could therefore be handled in the following way. An object that wished to transmit a request

to an active replica group would join the existing multicast communication group that

contained the replicas and multicast its request. Internal messages between replicas during

the course of processing a request would be multicast to the group as a whole and would

have to be accepted by the client object, but could subsequently be ignored. Then, when the

request has been processed, each replica could either multicast its reply to the entire group

or unicast its reply directly to the client. In either case, the client can proceed when it

receives the first such response, since the system is assumed to exhibit only omission failures

and any message received can, therefore, be assumed to be correct.

In the case of a replicated client, the procedure would be the same, but each client replica

would join the multicast group and transmit its request independently. A server replica can

simply respond to the first request that it receives and discard any duplicates that arrive

151

Chapter6 Architectural Support for Real- Time Objects.

later, while each client replica could ignore the duplicate service requests transmitted by the

others. On completion of service, a multicast reply to the replicated client would be initiated

by each replica in the server group.

6.6. An Alternative Strategy: Semi-Active Replication.

The last replication strategy that will be examined is the semi-active, or leader-follower,

strategy used in the Delta-4 system and described earlier in chapter 3. Since semi-active

replication requires fail-silent processing nodes, we assume a similar system to the one used

in the previous example, however since semi-active replication only requires a reliable

(atomic, unordered) broadcast communications mechanism, it will be assumed that the

reVRELr-atomic multicast protocol [Shrivastava 92a] is to be used for communication with

the replica group.

6.6.1. The rellRELr-atomic Protocol.

When a message, m, is multicast to a group G by a sender using this protocol, the following

two receive-atomicity conditions are guaranteed:

1. If the sender completes the multicast, m is received by all functioning

recipients in G.

2. If the sender crashes during the multicast, m is either received by all of the

functioning recipients in G or it is received by none of them.

The protocol also ensures that successive multicasts from the same sender are received in

the order in which they were sent, however this property is not important for the purpose of

the example considered here.

The protocol consists of two layers. The lower layer, rel, provides a reliable multicast

transport service for one-to-many communication. This service could be implemented in

several different ways. For example, on a broadcast network such as an Ethernet, a

multicast datagram service (unordered and unreliable), combined with acknowledgements

and selective re-transmissions could form the basis for an implementation of rel. The higher

152

Chapter6 Architectural Support for Real- Time Objects.

layer of the protocol then makes use of this lower-level transport service to provide receive-

atomic multicasts as follows. It is assumed that every processing node has a transmitter

process (running in its network interface) to which objects wishing to perform multicasts

'l'RAHSJlI'l"l'BR t

cycle
getl(m) -+ REL(m)
II
get2(m) -+ REL(m)
II

II
getn(m) -+ REL(m)

end cycle

Figure 6. 11. reVREL transmitter process.

can send their messages via FIFO (first-in, first-out) queues. The transmitter process has a

number of concurrent threads which cyclically pick up messages from these queues

(geti (m» and invoke a procedure, REL, for network transmission (see figure 6.11).

It is assumed that a message contains a list of destination addresses and a type field (type

first for the first round of the protocol and type second for the second round). The

algorithm for the procedure REL is then:

procedure REL(m:message)
{

m.type .- first i rel(m)
m.type := second i rel(m)

/ * First round. * /
/ * Second round. * /

}

Figure 6.12. REL procedure.

Every host also has a receiver process (figure 6.13) which is responsible for picking up

messages. When the receiver process receives a new first round message, m, it creates a

thread to monitor the progress of the multicast that gave rise to m and passes the message

to this thread. The receiver process also accepts second round .messages, which it passes to

the appropriate threads, and deathnotices, which come from the threads that it has created.

Upon receiving a deathnotice from a thread that monitored the multicast for message, m,

the receiver process will deliver m to the appropriate destination objects on its node and

then act according to the value of the boolean, successful, returned by the thread. If the

153

Chapter6 Architectural Support for Real- Time Objects.

value "true" was returned, the multicast was completed successfully and the receiver

process need take no further action. However, if the value "false" was returned, the

multicast did not complete successfully and a new first round multicast for the message, m,

will have been performed by the thread. The receiver process therefore has to complete the

multicast by sending the corresponding second round message.

DeRIVER:
cycle

receive(m) /* Receive message from network. */
ca.e m.type of

first: if m is a duplicate ~ discard
o
m is not a duplicate ~ start a thread for m and

deposi t m in the queue
for this thread.

ti
second:i! m is a duplicate ~ discard

o
m is not a duplicate ~ deposit m in the queue

of the thread for m.
ti

end ca.e
II

deathnotice(i) ~ /* Thread i looking after m */
/* has died, so ... */

deposit m in queues of m.dest objects on this host.
if successful(i) ~ .kip /* Successful multicast. */
o
not successful(i) ~ rel(m.type=second)

/* Unsuccessful multicast */
/* so complete it. */

ti
end cycle

Figure 6.13. reVREL receiver process.

A thread (see figure 6.14) that is created by the receiver process to monitor a multicast

accepts the first round message that is passed to it and starts a timer. Two sub-threads are

then created: one waiting for the second round message to arrive and one waiting for the

timer to expire. If the second round message arrives in time, successful is set to true and the

entire monitor thread is immediately killed. On the other hand, if the timer expires before the

second round message arrives, the monitor thread will still be killed, but, first, a new first

round multicast will be performed for the thread's message, m, and successful will be set to

154

Chapter6 Architectural Support for Real-Time Objects.

false. This behaviour, combined with the fact that a message will only be delivered to its

local destination objects after the corresponding monitor thread has died, ensures that the

'l'IIRBAD:
{

get(m)
start_timer(td)

/* Get message from queue. */
/* Now, wait for second message. */

do
get(m) -+ return(successful=TRUE)i 4ie

/* Multicast successful. */
II

timeout -+ rel(m.type=first)i return(successful=FALSE)i d1e
/* Multicast unsuccessful. Start 1st round. */

04
}

Figure 6.14. Receiver process monitor thread.

message is guaranteed to be received at all other functioning destination nodes. Hence, if a

sender crashes during a multicast, its message will either be delivered to all functioning

destinations or it will reach none of them.

6.6.2. The rellRELr-atomic Protocol and Object Replica Groups.

Use of the reVRELr-atomic protocol with leader-follower replica groups is straightforward.

Any object that wishes to send a request to a replica group passes the message to the local

transmitter process running on its node, specifying the members of the replica group as the

destination for the message. The multicast protocol then ensures that each member of the

replica group receives the request (assuming that the sender does not fail during the

multicast). Synchronisation messages sent by the leader of a replica group must also be

transmitted using the rellREL protocol to ensure that they are received by all of the

followers. For objects such as those proposed in this thesis, identifying points at which

synchronisation messages must be generated is easy. Possible points of non-determinism in

such objects have already been identified in order to allow agreement and order protocols to

be executed for active replica groups. Hence, all that is required for a leader-follower

replica group is the replacement of the agreement protocols that would be used in such

places with the appropriate synchronisation message protocol.

155

Chapter6 Architectural Support for Real- Time Objects.

The treatment of replies in this example is also very straightforward: the replica group will

only generate a single reply (from the leader) and this will be unicast back to the client

(assuming that the client is not itself replicated). As with the previous example, if the client

object was itself replicated, each client replica could multicast its request to the server group

independently and the server replicas could discard duplicates. The reply would then be

multicast to the client replica group by the leader of the server group.

6.7. Chapter Summary.

This chapter has considered the implementation of some of the mechanisms proposed for

the object model that was described in chapter 4. A brief overview of the general structure

of the model was given, showing that much of the basic functionality involved can already

be found in existing programming languages and systems. As well as basic programming

language constructs, this also included the exception handling mechanisms, timing

constraint primitives and the method selection mechanism

A more detailed examination of the atomic action mechanism required by the model was

then undertaken. In particular, the implementation of an atomic action construct that allows

forward recovery operations was illustrated, based upon the existing atomic action

construct found in the Arjuna system.

Finally, the chapter studied the communications support that is required for object replica

groups. This consisted of an examination of three specific cases: the use of active replication

to tolerate Byzantine failures in a point-to-point distributed system; the use of active

replication in a system where fail-silent processors are connected by a broadcast network

that is subject to omission failures; and the use of leader-follower replication in a similar

broadcast-based system. In each case, a suitable communications protocol was described

and the use of that protocol for communication with object replica groups was discussed.

156

Chapter 7.

Estimating the Cost of Replication.

Given that the object model proposed in chapter 4 can be implemented and that objects

constructed according to that model can be replicated for availability, this chapter considers

the overheads associated with the use of replication. In particular, it examines the issue of

response times for replicated objects. In most cases, the response time for a replicated

object will be slightly worse than that for a single, unreplicated object providing a similar

service. This may be due to the need for sophisticated communication protocols, such as

atomic broadcast, or it may be due to extra processing that a replica is required to perform,

for example the construction and transmission of checkpoints (in the case of passive replica

groups).

Since overheads will not only be different for different replication strategies, but also for

different implementations of the same strategy, the approach taken here will be to consider

three specific examples, each covering a different replication technique. In each case,

theoretical worst case estimates will be derived for the response time of a replicated object,

as compared with the corresponding single object. These estimates will be obtained by

considering the extra functions and communications protocols that must be provided to

support the replicated service. The resulting expressions will be in terms of system

parameters, such as protocol latencies and scheduling delays, which must themselves be

evaluated on a system-by-system or application-by-application basis.

The decision to consider worst case, rather than average case, estimates for the overheads

of replication is due to the fact that we are primarily interested in real-time services. In a

real-time system, it will often be necessary to predict worst case execution times for

services, either to allow schedulability analysis to be performed, or to generate an actual

schedule. Similarly, to permit guarantees to be given as to the continued provision of service

157

Chapter 7 EstillUlting the Cost of Replication.

in the presence of component failures, it will often be necessary to know the worst case

response times for a replicated service.

Fmally, another important issue that will be addressed in this chapter is the impact of

replication upon the timing primitives used in the object model. In this case, the only

replication strategy to have any major effect is active replication and processing overheads

arise as a result of the need to ensure replica consistency on decisions regarding timing

constraints. This is discussed in more detail below, before moving on to study the examples

mentioned above.

7.1. Replication and Timing Constraints.

In passive and leader-follower replication schemes, the primary or leader can initiate

recovery for timing errors as soon as they occur. The state of the application will then

reflect the fact that the relevant timing constraint was not met and this view will be forced

upon the other members of the replica group by means of checkpoints or synchronisation

messages. In active replica groups, however, the situation is more complex. To maintain

replica consistency, decisions regarding timing constraints must be agreed across the replica

group and this requires communication between replicas. The temporal scope constructs

that are used to express timing constraints must, therefore, be implemented in such a way as

to allow the appropriate agreement protocol to be executed and this will have an impact on

the time taken to initiate recovery for timing errors.

par
send(self, "start") ; S ; send(self, "finish")

II
.elect

accept "start" ~ A
o

delay (EST) ~
.elect

accept II start" ~
.elect

accept "finish" ~ X
o

delay (EFT) ~
.elect

accept "finish" ~ null
o

158

Chapter1 Estimating the Cost of Replication.

delay (LFT) ~ y ;
end .elect

end .elect
o

delay (LST) ~ B ;
end .elect

end .elect
end par;

Figure 7. 1. Deterministic implementation of temporal scope.

An implementation of the temporal scope mechanism that allows timing decisions to be

agreed across a replica group has already been described in chapter three and is shown once

again in figure 7.1. Two parallel threads are created, one sending a start message, executing

the real-time operation S and then sending a finish message while the other thread awaits

the arrival of the start and finish messages (with appropriate timeouts) using the

.elect ...accept construct. If the waiting thread uses a deterministic implementation of

the .elect mechanism, timeout events can then be agreed and ordered across a replica

group like any other type of message.

Assuming that the .elect construct is implemented using the generic input function as

described in chapter three, the actual sequence of events when a timing constraint expires is

as follows. The waiting thread sends a marker message to itself. If that marker message is

received before the relevant start or finish message arrives, then the timing constraint is

regarded as being missed. In an active replica group, marker messages and start and finish

messages will be multicast throughout the group, validated (if necessary) and ordered like

any other message. All replicas will therefore have a consistent view of whether or not a

timing constraint has been met. However, in those cases where a timing constraint is agreed

to have been missed, recovery for the timing error will not be able to begin until such time

as the appropriate marker message has been received, validated and delivered. This

introduces a delay, which in the worst case will be given by :

where !l. = time for broadcast to group

and Tv = time taken to validate marker message.

159

Chapter7 Estimating the Cost of Replication.

The value of A will depend upon the multicast protocol that is used. For example, the AMp

atomic broadcast protocol used in the Delta-4 system and described in the previous chapter

can have a worst case execution time of:

ID.[Tr(x) +Tr(1)] +TWd+ k.[Tr(x) +Tgm] + 2.r

where ID= number of network omission failures,

Tr(x) = value of timeout set when sending a message and waiting for x

responses,

x = size of multicast group-I,

Twd= timeout at recipients waiting for decision from emitter (sender),

k = number of crash failures (of group monitors),

Tgm = timeout to detect failure of a group monitor and activate a new one,

and r = worst case network transmission delay.

The situation in which this arises is particularly pessimistic, assuming that:

i. The emitter only succeeds in transmitting its original broadcast message

on its final attempt and then fails.

ii. The recipients wait to receive the decision message and must then query

the emitter, deducing after IDattempts that the emitter has failed.

iii. There are k failures of active group monitors during the attempt to

complete the broadcast and establish anew, consistent group view.

The value of Tv depends upon the assumed failure modes of replicas in the replica group.

For Byzantine failures, the marker message can only be validated and delivered if a majority

of the replicas send it correctly. In the absolute worst case, it is conceivable that a correct

replica transmits its marker at some time, t, and that all of the other replicas in the group are

slower than this replica by some bounded value, cr. The original transmitter will therefore

have to wait until at least t+cr for transmission of the other marker messages to commence.

Assuming that the marker message only achieves a majority when the last member of the

160

Chapter7 Estimating the Cost of Replication.

group transmits it, there may be a further delay of (N-l).A (where N is the number of group

members and A is the time for a broadcast to the group) before the marker message can be

properly validated and delivered. The overall worst case delay from the first correct replica

detecting a timing error to the replica group being able to initiate recovery is, therefore :

a+N.A

(Note that A in this case would be for a Byzantine fault tolerant atomic broadcast, not for

the AMp multicast protocol mentioned above.)

For absolute timing constraints (Le. timing constraints specified using absolute rather than

relative times), a can be bounded by E, where E is the accuracy of clock synchronisation

between processing nodes. For relative timing constraints however, this is not the case and

a will depend upon the time at which different replicas began execution of the relevant

temporal scope operations.

For fail-silent active replicas, the value of Tv is implementation dependent. At one extreme,

the first marker message may be taken to be valid and delivered immediately, in which case

the first replica to detect a timing error would be able to initiate recovery after a delay of A.

However, this also means that a timing error at one replica would cause the whole replica

group to regard the timing constraint as missed. At the other extreme, it may be possible to

implement a validation procedure for marker messages which ensures that the message is

only delivered if a majority of the current group membership send markers. In this case, a

single replica cannot dictate the outcome of a timing constraint to the rest of the replica

group, but the worst case delay between first detection of a timing error at one replica and

the initiation of recovery would then be :

a+ (LN / 2J+ 1).A

where a = worst case de-synchronisation between replicas (as before),

N = current membership of replica group,

A = time taken for a broadcast to the replica group.and

161

Chapter7 Estimating the Cost of Replication.

Taking this particular example and assuming an absolute timing constraint, clock

synchronisation between processing nodes of 8ms, five group members and a worst-case

broadcast latency (in the presence of failures) of I5ms, this could represent a delay of the

order of 53ms before recovery could be initiated for a timing error. Alternatively, taking the

same figures for clock synchronisation and group size, but assuming a broadcast latency

(with no failures) of 6ms, then the corresponding delay would be of the order of 26ms.

7.2. Response Times for Replica Groups.

As mentioned at the beginning of the chapter, response times for replicated objects may be

worse than those for single objects that provide a similar service. In the following sections,

this particular issue will be addressed in more detail by considering implementations of three

specific replication techniques. First of all, the use of active replication in a system where

processing nodes are fail-silent and connected by a broadcast network that suffers only

omission failures. This is the same as the system that was considered in section 6.6 in the

previous chapter and it will be assumed that the same broadcast protocol (AMp) is to be

used. The second example is also taken from the previous chapter, being the use of leader-

follower replication with the reVRELr-atomic protocol as described in section 6.7. Finally,

the third example will consider the use of passive replication in a similar LAN-based

distributed system.

Before moving on to study these examples, it will be worthwhile to establish the baseline

against which each one is to be compared. The worst case response time for a client to

receive some service from a server in the singleton (non-replicated) case can be given by :

Ro = 2.d +Cmax + e

where Ro = response time,

d = worst case message delay for a unicast,

Cmax =worst case computation time at server (includes queuing time at server),

and e =worst case descheduling of server by other tasks.

162

Chapter 7 Estimating the Cost of Replication.

This is simply the time taken for the client to send its request to the server (d), the total time

for the server to process the request (Cmax+9) and the time taken for the server to send its

response to the client (d). The extra term for descheduling (9) represents the length of time

during the processing of a request that the server is suspended while other tasks execute.

This contribution to the overall service time has been included as an independent term

because it is highly variable, being dependent upon the system scheduler and the other tasks

or services that are running on the same processing node as the server. Corresponding terms

will be found in all of the examples, where the impact of descheduling will be discussed at

greater length.

Note that the above expression is for the response time in the absence of failures, since there

is little to be gained by considering the response time for a failed server and a failure on the

part of the network to deliver messages would simply entail re-transmissions, each of which

would cause a further delay of d. In the following examples however, the failure of server

replicas (up to the fault tolerance degree of the server) will be considered so that best and

worst case response times can be estimated. In all cases, it will be assumed that the client is

a single object and that the client does not itself fail. These assumptions ensure that the

expressions obtained reflect the overheads due to replication at the server and allow a fair

comparison to be made with the non-replicated case.

7.3. Active Replication on Fail-Silent Hosts.

We begin by examining one of the systems and replication strategies that was considered in

the previous chapter. The system is ,based upon a broadcast local area network (such as

Ethernet or Token Ring) that is assumed to exhibit only bounded omission failures and the

host computers (processing nodes) connected to that network are assumed to be fail-silent

Given such a system, the continued availability of objects in the presence of K host failures

can be ensured by having K+1 replicas running on different hosts. In this particular case,

active replication will be. assumed, with the AMp atomic multicast protocol being used to

ensure the correct ordering of requests and messages at the replicas. In the absence of

failures, the response time for the replicated service will be given by :

163

Chapter 7 Estimating the Cost of Replication.

RA(0) = Il + emax + d + 9resp

RA(0) = response time,

Il= time to execute AMp atomic multicast protocol (transmitting request),

Cmax = time for server to process request (including queuing time),

d = time for replica to unicast reply to client,

9resp = descheduling of server replica that responds to request.

Since it is assumed that the host computers in the system are fail-silent, the client can accept

where

the first response that it receives and it is sufficient for each member of the replica group to

unicast its reply directly to the client. Hence the service time for a request will consist of the

time taken to broadcast the request to the server using the AMp protocol (Il), plus the time

taken to process the request by the first replica that responds (emax + 9resp)' plus the time

taken for that replica to unicast its reply (d). Recalling that AMp is a two-phase protocol in

which the first phase (dissemination) is performed using transmission-with-response rounds

and the second phase (decision) is performed without acknowledgement (in the case of an

accept decision), the termination time of the protocol in the absence of failures is given by :

where Tresp(N) = time to transmit a network broadcast and receive N responses,

N = number of replicas in replica group,

Tdec = time to transmit decision message (time to send a network broadcast

message).

Over a broadcast network such as ~ Ethernet or a Token Ring, it is likely that the time

taken to transmit a broadcast or multicast network message will be comparable with the

time taken to transmit a unicast. Hence, if we let d* be the time for a broadcast over the

network and if, during the dissemination phase, each member of the replica group unicasts

its response to the client, the previous expression reduces to :

Il = d" + N.d + d"

= 2.d* + N.d

164

Chapter7 Estimating the Cost of Replication.

==(N+2).d

Hence the response time for the replica group, in the absence of failures, will be :

RA(O) = 2.d* + N.d + emax + d + 9resp

==(N+3).d + Cmax + 9resp

7.3.1. Response Time with Failures.

For the system considered here, there are two types of failure that can occur: omission

failures on the network and crash (fail-silent) failures of the host computers themselves. The

former will increase the time taken to perform a multicast to a replica group and the time

taken for replicas to send their replies to a client, while the latter will also be responsible for

increasing the time taken to perform a multicast and may also have an impact, from the

client's point of view, on the response times of individual replicas (if the failed replicas were

the ones that had been giving the fastest responses).

If rol and ~ are, respectively, the numbers of omission faults in the dissemination and

decision phases of the AMp protocol, 0>:3the number of omission faults during the reply to

the client and k the number of crash faults, the response time for the replica group becomes:

RA(rol,~,0>:3,k) = A(rol'~,k) + emax + (0):3+1).d+ 9resp

RA(rol,~,0>:3,k) = response time for replica group,

A(rol ,~,k) = AMp execution time with rol dissemination omission errors, ~

decision omission errors and k failed recipients,

Cmax = processing time at server replica,

(0):3+1).d= time to unicast reply to client (0):3+1attempts, each taking d),

and 9resp = descheduling delay at replica that provides first response.

where

In the event of omission errors, the AMp protocol proceeds by having the emitter time out

and re-transmit the initial dissemination message until either it receives all of the expected

responses or it has transmitted the message (Q+l) times, where Q is the omission degree of

the network (i.e. maximum. number of consecutive omissions). If, after (Q+l) attempts,

165

Chapter7 Estimating the Cost of Replication.

there are still responses missing, then those stations that have not responded are assumed to

have failed. Since we are considering the situation in which one or more of the intended

recipients has failed, the emitter cannot receive all of the expected responses and the initial

message will be transmitted (0+ I) times, regardless of the values of 0)1 and k.

For errors during the decision phase, each recipient sets a timeout when it receives the initial

dissemination message. If a decision message has not been received before that timeout

expires, the recipient will send an explicit "decision request" message, to which the emitter

will reply with the appropriate decision. Since it is assumed, for the purposes of this

example, that the emitter does not fail, a recipient that requests a decision will be

guaranteed to receive a valid response after (~+I) attempts, where ~ is the number of

omission errors during the decision phase. In the worst case, this would entail (0+1)

attempts like the dissemination phase. Hence, the overall time for the execution of AMp in

the presence of failures is given by :

A(O)l,~,k) = (O+I).Tout(N) + TWd+ (~-I).Tout(l) + Tresp(l)

= (O+I).Tout(N) + Tdec

if~>O

if~=O

A(0)1 ,~,k) = execution time of protocol

o= omission degree of network (maximum number of consecutive omission

errors),

Tout(N) = timeout set for transmitting a message and receiving N responses,

N = number of replicas in replica group,

TWd= timeout at recipient (waiting for decision),

~ = number of omission errors when requesting decision (:$; 0),

Tout(l) = timeout set for transmitting a message and receiving one response,

Tresp(1) = time taken to transmit a message and receive one response

and Tdec= time to transmit decision message.

where

If the time to transmit a broadcast message across the network is d" and the corresponding

time for a unicast message is d, the time for transmitting a message and receiving N

responses will be (d" + N.d). Hence, the timeout set when transmitting a message and

166

Chapter7 Estimating the Cost of Replication.

expecting to receive N responses must be at least this large and the previous expression, for

the general case of ffi2> 0, can be reduced to :

A(rot,ffi2,k) = (O+l).(d* + N.d +~) + TWd + (ffi2-1).(2.d +~) + 2.d

....(O+l).(N+l).d + 2.ffi2.d + TWd

if d" is comparable to d and ~ is small. This gives an overall service time for the replica

group, in the presence of failures, of :

RA(rol,ffi2,~,k)= (O+l).(d* + N.d +~) + TWd + (ffi2-1).(2.d +~) + 2.d

+ Cmax + (~+l).d + 9resp

....(O+l).(N+l).d + 2.ffi2.d + TWd + Cmax + (~+l).d + 9resp

Further, TWd must be at least (O+l).(d* + N.d + ~) + d", since this is the time that it will

take the emitter to transmit its decision, giving :

RA(rol,ffi2,~,k)= 2.(0+1).(d* + N.d +~) + d" + (ffi2-1).(2.d +~) + 2.d

+ Cmax + (~+l).d + 9resp

....2.(0+1).(N+l).d + 2.ffi2.d + d + Cmax + (~+l).d + 9resp

This expression is not dependent upon the number of replica failures (k) or the number of

omission failures during dissemination (rot), because the dissemination phase of the AMp

protocol will always require (0+1) transmission-with-response rounds if any of the intended

recipients have failed. Similarly, the decision phase and the reply phase (Le. transmission of

the response to the client) only depend upon the number of network omission failures that

occur during that particular phase. In the worst case, ffi2and ~ will both be 0, hence :

RA(O) = 2.(0+1).(d* + N.d +~) + d" + (0-1).(2.d +~) + 2.d

+ Cmax + (O+l).d + 9resp

....2.(0+1).(N+l).d + 2.0.d + d + Cmax + (O+l).d + 9resp

....2.(0+1).(N+l).d + (3.0+2).d + Cmax + 9resp

However, note that this situation will probably only arise in exceptional circumstances, since

it assumes the maximum number of omission failures in all three phases of communication

167

Chapter7 Estil1Ulting the Cost of Replication.

(dissemination, decision and reply). A more likely scenario for errors would be single

failures in each phase or multiple failures in only a single phase, giving response times that

are worse than the non-failure case, but better than the above.

7.3.2. Overheads and Reliable Networks.

Returning to the expression for the best-case response time, RA(0), derived earlier, it can be

seen by comparison with corresponding expression for the non-replicated case, Ro, that the

response-time overhead of communication with an active replica group, in the absence of

failures, is given by:

OA(O) = 2.d* + (N - l).d

....(N + l).d

where N is the number of replicas in the group, d" is the time to transmit a broadcast

message over the network and d is the time to transmit a unicast message over the network.

On a network with a worst-case unicast transmission delay of, say, 3ms, this would

represent an overhead of the order of 12ms for a group of 3 replicas or 18ms for a group of

five. (Note that the possible difference in descheduling delay between the singleton object

and the replicas of the replicated object has been ignored. This issue is discussed further in

section 7.3.4.)

In the event of network omission failures, this response time degrades further. Given a

network with an omission degree of 0 (Le. at most 0 consecutive omissions), the worst

case overhead increases to :

OA(O) = 2.(0 + 1).(d* +N.d) + d" + (3.0 - l).d + (3.0 - 1).0

....2.(0 + 1).(N + 1).d + 3.0.d (d"d, 0 = 0)

if there are omission failures during the decision phase of the broadcast to the replica group

(Le. ~ > 0) and :

OA(O) = (0 + 1).(d* +N.d) + d* + (0 - 1).d + (0 - 1).0

....(0 + 1).(N + 1).d +O.d (d*d, 0 = 0)

168

ChIlpter 7 Estimating the Cost of Replication.

if there are no failures during the decision phase (Le. ffi2 = 0). If 0=2, d=3ms and there are

omission failures during the decision phase of the broadcast protocol, this gives worst-case

response time overheads for an active replica group of the order of 90ms for three replicas

or 126ms for five replicas. Similarly, if 0=2 and d=3ms, but there are no failures during the

decision phase, the overheads would be of the order of 42ms for three replicas or 60ms for

five replicas.

It is important to note that, since none of these overheads are dependent upon the number

of replica failures but only upon the number of network errors, in cases where it can be

assumed that the network is reliable and will always deliver messages correctly then the

worst case overhead becomes the same as that in the non-failure case. This can be seen by

setting il=O in the previous expression :

OA(O = 0) = (0 + 1).(d* + N.d) + d* + (0 - 1).d + (0 - 1).8

= 2.d* + (N - 1).d - 8

... (N + 1).d

This is, of course, one of the advantages of active replication in a system such as the one

assumed in this example. So long as the group communication mechanism is reliable and

does not lose or corrupt messages, response times for an active replica group will be more

or less constant, regardless of how many replica failures have occurred. (Assuming that the

fault tolerance degree of the replica group is not exceeded, Le. that at least one functioning

replica remains.)

7.3.3. Computation Times: Cmax .

An important point that has not yet been discussed in any detail is the difference in the value

of Cmax at different replicas. This term is used to represent ~e maximum execution time

(including queuing time) for a given service request, as measured while the server is

running. In other words, Cmax is the time that it would take to process the request if the

server was allowed to execute constantly without any interruption from other tasks. Using

this definition, two objects that provide the same service should have similar values of Cmax

169

Chapter7 Estimating the Cost of Replication.

for the same service request, so long as they have similar queues of requests to serve at the

time. Now, since the members of an active replica group have identical message queues at

all times, it follows that the value of Cmax for a given request will be the same at each

replica. Also, note that in the above calculation of overheads for the replica group, it has

been assumed that the value of Cmax for a request at a non-replicated object will be the

same as that at the replicated object While this assumption may not be entirely justified, it is

likely that, for the same set of requests from the same set of clients, the values of Cmax in

the two cases would be comparable, since the arrival pattern and queuing of requests would

be similar in both cases.

7.3.4. Descheduling : 9

Given that Cmax only defmes the time spent processing a request while the server is active,

the importance of e now becomes apparent. In most systems, it is possible that a server may

be pre-empted or interrupted while processing a request. When this occurs, the server will

be "descheduled". That is to say, its execution will be suspended for a fmite time and some

other task will be allowed to run. Broadly speaking, there are two possible sources of such

descheduling: system service tasks which are executed by the underlying operating system

to provide some specific function or to perform "housekeeping" activities and other

application tasks (Le. other clients or servers) running on the same processing node.

7.3.4.1. System Descbeduling.

For an active replica group, it is likely that the amount of descheduling due to operating

system activities will be approximately the same for each replica, since each processing node

will be supporting similar operating system services. However, this degree of descheduling

will not necessarily be the same as that for a single, non-replicated object. For example,

consider the situation when communications protocols are executed on the host computers

rather than on dedicated network interface units. If this is the case, processing nodes in a

system that does not support replication will not necessarily need to run group

communication protocols such as atomic broadcasts. Hence, descheduling due to the

170

Chapter7 Estimating the Cost of Replication.

execution of such protocols will be observed in the replicated system, but not in the non-

replicated system.

7.3.4.2. Application Descheduling.

The amount of descheduling due to other application tasks will not only be different for

replicated and non-replicated objects, it will also vary across the replicas in a replica group.

Given a fixed processing capacity (Le. systems with identical sets of processing nodes), an

application that uses active replication to enhance the availability of objects will load the

system more heavily than the corresponding non-replicated application. The competition for

processing resources at each node will therefore be greater and the degree to which

application tasks are descheduled by other application tasks will probably increase.

Differences in descheduling across the members of a replica group will arise as a result of

the differing load on each node in the system. At a given node, the probability of a server

being descheduled during its execution will depend upon the number and priority of other

tasks running on the same node and upon the scheduling algorithm that is being used. The

length of time for which it is descheduled will then depend upon the scheduling algorithm

and the execution characteristics of the other tasks (execution time, blocking, etc.). In the

general case, although the scheduling algorithm that is used may be the same at all nodes,

the distribution of tasks will be such that different nodes execute different task sets and

replicas executing on different nodes will suffer different amounts of descheduling. This is

the reason why a failure of some of the replicas in an active replica group can have an

indirect effect on the response time ~f the group, as perceived by a client, since the failed

replicas might have been those that were running on lightly loaded processing nodes and,

therefore, producing the fastest responses.

7.3.4.3. Calculating O.

Unfortunately, it is very difficult to calculate, or even estimate, values for the amount of

descheduling experienced by a server. System descheduling depends upon the

implementation of the underlying operating system and the set of services that it provides,

171

Chapter 7 Estimating the Cost of Replication.

while application descheduling depends upon the set of application tasks running on each

node and the scheduling algorithm that is being used. Values for e can, therefore, only be

obtained on a per-system and per-application basis. For example, given a system such as the

MARS system, where application tasks and their interactions across the network are all

statically scheduled, it should be relatively easy to calculate the worst-case descheduling

time for any task. On the other hand, given a highly dynamic system, such as CHAOS

(which uses a dynamic thread scheduling algorithm), the worst case descheduling

experienced by a given task could only be calculated by performing an extensive and

complex analysis of the entire system.

Since descheduling is so dependent upon the detailed implementation of the system and the

application task set, for the purposes of the analysis given here it has been assumed that it is

approximately constant across a replica group and across replicated and non-replicated

objects. While this is not necessarily true, there are circumstances in which it serves as a

good approximation. For example, when considering the highest priority task in a particular

system or when presented with a system in which all scheduling is static (as in MARS) and

servers are allowed to execute requests to completion without being interrupted or pre-

empted.

7.3.5. Timing Constraints.

In this particular example, it is also necessary to consider the impact of timing constraints on

the response time of the replica group. As described earlier in section 7.1, if the members of

an active replica group are to execute timing primitives in a consistent manner, the detection

of timing errors must be made visible across the entire replica group using a message-based

mechanism. This can introduce delays when timing errors occur because the replica group

must agree that the timing constraint has been missed before recovery can proceed. Hence,

although the response time of an active replica group may not be degraded further when it

meets timing constraints, its response time will be increased when timing errors occur. The

overheads that are involved are described in more detail in section 7.1, which also gives an

172

Chapter 7 Estimating the Cost of Replication.

expression for the associated multicast delay (in the presence failures) that can arise if using

the AMp protocol that has been assumed in this example.

7.3.6. Partial Multicasts.

Before moving on to consider the next example, a final point must be made regarding failed

and partial multicasts. The expressions that have been derived for response times in the

presence of failures effectively consider the effect of a partial multicast to the replica group

in which some of the recipients do not receive the message. However, there are two other

possible types of failure that can occur with a multicast: a partial failure in which the sender

fails and a failed multicast in which one of the recipients is not prepared to accept the

message and the sender must transmit a reject decision to the rest of the group. Since the

analysis presented here is mainly concerned with the response time for successful requests

and it is assumed that the sender does not fail, neither of these cases have been considered.

However, it should be noted that the occurrence of sender and multicast failures will have

an indirect effect upon response times from the point of view of other clients and other

requests. In the case of a sender failure, the activation of a group monitor to terminate the

current multicast will affect the descheduling of other application tasks, while failed

multicasts will make it necessary for a client to re-transmit requests and it will only be

possible for the client to do so when the reject decision for the failed multicast has been

transmitted. In the presence of failures, this can represent a delay of :

Drail = (COl + l).(d* + N.d) + (~ + l).(d* + N.d)

where Drail = time to terminate afailed multicast,

col = number of network omission failures before first "reject" response arrives

(in worst case, COl = Q),

d" = time to transmit a network broadcast message,

N = number of replicas,

d = time to transmit a network unicast

173

Chapter 7 Estimating the Cost of Replication.

and ~ = number of network omissions during transmission of "reject" decision

(if a replica has failed, or in the worst case, ~ = Q).

7.4. Leader-Follower Replication.

In this example, the system under consideration is the same as in the previous example,

however a different replication technique will be assumed: semi-active or leader-follower

replication. In this case, all replicas execute all requests, but only a single replica (the leader)

sends a reply to the client and all non-deterministic events (input message selection, expiry

of timing constraints etc.) are processed by the leader, whose decision is then forced upon

the other members of the replica group by means of synchronisation messages.

Clients must multicast their requests to the replica group, however the only requirement for

the multicast is that all recipients should receive the message and there is no need for

ordering since this will be dictated by the leader. Hence, it will be assumed that the

reVRELr-atomic multicast protocol described in section 6.7 is to be used and the response

time for the replica group, in the absence of failures, can then be given by :

RLF(O) = L, + Cmax + d + Osync+ 9

where RLF(O) = response time of replica group,

Lr = latency of reVRELr-atomicmulticast protocol,

Cmax = processing time for service request at leader (includes queuing),

d = time to unicast reply to client,

Osync = overhead for transmission of synchronisation messages

and 9 = descheduling of leader during execution of service request

This is simply the time taken for the request to be transmitted to the replica group (Lr), plus

the total time for the leader to process the request (Cmax + 0sync + 9), plus the time for

the leader to unicast its reply to the client (d).

174

Chapter7 Estimating the Cost of Replication.

The reVRELr-atomic protocol consists of two rounds. each of which involves the sender

transmitting its message using the rei reliable multicast service. In the absence of failures.

the latency for the protocol. Le. is therefore equal to :

Lr= 2·teet

where teet = execution time of rei reliable multicast

On a reliable broadcast network that can be assumed not to lose or corrupt messages. teet

would be equal to d", where d" is the network transmission delay for a broadcast message.

Alternatively. on a network that exhibits only bounded omission failures (as in the previous

example). rei could be implemented using positive acknowledgements with re-

transmissions. This would be similar to the transmission-with-response rounds used in the

dissemination phase of the AMp protocol. giving an execution time of :

teet = d" + N.d

in the absence of failures. The overall response time for the replica group. in the absence of

failures, would therefore be :

RLF(O) = 2.d* + emax + d + Osync+ 9

... 3.d + emax + Osync+ 9 (ifd* ...d)

for a reliable network and :

RLF(O) = 2.(d* + N.d) + emax + d + Osync+ 9

... (2.N + 3).d + emax + Osync+ 9 (if d" ... d)

for a network subject to bounded omission failures.

The term. Osync. is intended to cover the overheads (at the leader) of sending

synchronisation messages to the other members of the replica group. This particular aspect

of the leader-follower replication strategy is discussed in more detail in section 7.4.S.

175

Chapter7 Estinuzting the Cost of Replication.

7.4.1. Response Times with Failures.

In the event of failures, the situation for leader-follower replication is more complex than

that for active replication. H a follower fails, there is no impact on the service provided by

the replica group, however if the leader fails, this must be detected by the followers and one

of the followers must then assume the role of leader. This will introduce a slight delay in

execution whenever a leader fails.

H it is assumed that the followers are ordered using some kind of ranking scheme (to allow

a new leader to be elected quickly without having to run a complex election protocol), the

response time for the replica group in the presence of leader failures becomes :

k
RLF(k) =t, +k.<I»+Cmax +d +Osync + Lei

i=O

where RIF(k) = response time for replica group with k failures,

Le = latency of reVRELe-atomicprotocol,

k = number of failures,

<I»= worst-case failure detection latency (time for followers to detect failure

of leader),

Croax = maximum computation time for request (includes queuing at first

leader),

d = time to unicast reply to client,

Osync= overhead for synchronisation messages

and ei= descheduling during execution at successive leaders (i = O...k)

This corresponds to the response time in the absence of failures, plus an overhead for failure

detection (kx<l» in the case of k leader failures), and with the. descheduling at successive

leaders taken into account. The total execution time for the request will still be Croax' since

the followers execute any given request at the same time as the leader (see section 7.3.3),

and the total overhead for synchronisation messages, Osync' remains the same (see section

7.3.4).

176

Chapter7 Estimating the Cost of Replication.

The failure detection latency, <p, will depend upon the failure detection mechanism that is

employed. In a system such as the one in this example, the easiest way to implement failure

detection is by means of "I am alive" messages that are broadcast by the leader (or on the

leader's behalf by its network interface) to the rest of the replica group at regular intervals.

Since nodes are assumed to be fail-silent, the absence of such a message when one is

expected can be taken as an indication of the failure of the leader. For a reliable network,

the maximum failure detection latency using such a scheme would be equal to the time

interval between successive messages, plus an allowance for clock synchronisation and

message transmission across the network. The corresponding latency for a network subject

to bounded omission failures would be equal to the time interval between successive

messages, plus an allowance for clock synchronisation, plus an allowance for repeated

message transmissions over the network (up to the network omission degree).

The latency of the reVRELr-atomic protocol in the presence of failures depends upon the

underlying network. For a reliable network, L, would still be equal to 2.trel = 2.d*. This is a

direct consequence of the assumption that the client does not fail during a request, since a

partial broadcast will only arise with the rellREL protocol if the sender fails and, in this

case, the sender is the client Hence, for a reliable network, the latency of the multicast

protocol will be given by 2.d*, regardless of receiver failures.

For the bounded omission network and assuming the implementation of rei mentioned

earlier, the latency of the protocol would be given by :

L, = «(01 + l)(d* +N.d) + (ffil + l)(d* +N.d)

where

and

(01 = number of omissions during first round

ffil = number of omissions during second round.

(In the presence of any replica failures or for worst-case omission failures, both (01 and ffil

would be equal to 0, the omission degree of the network.)

Chapter7 Estil1Ulting the Cost of Replication.

7.4.2. Overheads.

Given the previous expressions for RLF(O) and RLF(k) and the corresponding expression for

Ro, it can be seen that the response time overheads for communication with a leader-

follower replica group, using the rellRELr-atomic protocol on a reliable network, are :

Or.F(O)= 2.d* - d + Osync

in the absence of failures and :

Or.F(k) = 2.d* - d + k.cp+ Osync

in the presence of failures, where d" is the time to send a broadcast message over the

network, d is the time to send a unicast, k is the number of failures, q, is the latency of the

failure detection mechanism that is used and Osync is the overhead due to the transmission

of synchronisation messages from the leader replica to the followers.

The corresponding response time overheads using the rellRELr-atomic protocol over a

bounded omission network are :

Or.F(O)= 2.(d* +N.d) - d + Osync

in the absence of failures and :

Or.F(k) = 2.(0 + l).(d* + N.d) - d + k.q, + Osync

in the presence of k replica failures, where 0 is the omission degree of the network and all

other terms are as before.

In deriving these expressions for the overheads, note that two major assumptions have been

made. First of all, that the value of ~ax for a leader-follower replica group is the same as

that for a single, non-replicated object, even in the case where execution of a request is

spread across several successive leaders. It is likely that this assumption may be reasonable

in the absence of failures (Le. when a single leader serves the entire request) and, as will be

shown in the following section, it can also be justified in the presence of failures. The

second major assumption is that the descheduling (8) for a non-replicated server is the same

as that for the leader-follower replica group, whether the request is served by a single leader

178

Chapter7 Estimating the Cost of Replication.

or it is served by a succession of leaders, each of which is descheduled for an appropriate

fraction of the overall time. This assumption is unlikely to be accurate, but it is impossible to

calculate or estimate values for this parameter without considering a specific system and

application.

Given the above assumptions and further assuming that d" == d and that Dsync is negligible

(which may be the case in some systems), the following table gives order of magnitude

estimates for the overheads of leader-follower replication (for d = 3ms, n = 2 and cl> =

l Sms).

3 replicas 5 replicas

Reliable: no failures 3ms 3ms

Reliable : worst-case 33ms 63ms

Omission : no failures 21ms 33ms

Omission: worst case 99ms 165ms

Figure 7.2. Approximate overheads for leader-follower replication.

7.4.3. Computation Times: Cmax

Adopting the same definition for Cmax as used in the previous example, the computation

time for a given request at a leader replica should be comparable to that at a non-replicated

object in most cases. However, in this example it has also been assumed that the

computation time for a request will be the same if it is executed to completion by a single

leader or if it is executed in consecutive sections by several successive leader replicas. For

the purposes of the analysis shown here, this assumption can be justified, since:

i. Although the followers in a leader-follower replica 'group must lag slightly

behind the leader in order for the synchronisation message mechanism to

work, this delay is typically very slight

and

179

Chapter7 Estimating the Cost of Replication.

ii. In the expressions for response times in the presence of failures, the worst

case failure detection latency has been assumed for all failures. Hence,

where a failure is detected quickly, the delay in execution at the new

leader will be subsumed in the over-estimate for failure detection and,

where a failure is only detected after the maximum failure detection

period, the followers will have continued to execute while failure

detection was performed and, therefore, have reached the same point in

their execution as the failed leader. In either case, the total computation

time for the request can still be taken as Cmax•

7.4.4. Oescheduling : 9

As in the previous example, it is impossible to calculate or estimate values for the

descheduling experienced by an individual replica or by a non-replicated object without

considering an entire system and a specific application. In the analysis presented above, it

has therefore been assumed that the descheduling suffered by a leader replica during the

course of a request will be similar to that suffered by the corresponding single object. It has

also been assumed that, in the case of failures, the sum of the descheduling at a series of

leaders is similar to the total descheduling that would be experienced by a single leader

serving the same request to completion. Although these assumptions may be justified from

the point of view of system descheduling, particularly where communications protocols are

executed on dedicated network interface units rather than on the host computers

themselves, both assumptions may p~ove to be inaccurate when considering descheduling

due to other application tasks.

7.4.5. Synchronisation Messages: Osync

Estimating the overhead due to the transmission of synchronisation messages by the leader

in a leader-follower replica group is quite difficult. For input synchronisation messages,

which are used to dictate the order in which requests should be processed, the situation is

quite simple because there is one synchronisation message transmitted to all of the followers

180

Chapter7 Estimating the Cost of Replication.

each time a new request begins execution. However, synchronisation messages may also be

transmitted during the course of a request, either to inform the followers of the outcome of

a non-deterministic choice made by the leader or to inform the followers that the leader has

passed a particular pre-emption point (Le. a point at which the execution of the current

request might have been pre-empted to allow a higher priority request to be served). For

this type of synchronisation message, it is much more difficult to give a general estimate of

the overheads involved since the number of such messages is dependent upon the operation

being performed.

Fortunately in some systems, such as the Delta-4 system, the overheads for transmitting

synchronisation messages are negligible because the transmission is handled by a node's

network interface unit on behalf of leader replicas running on that node. Alternatively, in

cases where the leader must handle the transmission of such messages itself, but only input

synchronisation messages are used, it becomes easier to estimate the overheads involved. In

such cases, each request will generate one synchronisation message, which must be

transmitted to all of the follower replicas. Assuming that the reVRELr-atomic protocol is

used to transmit the message, the overhead at the leader in the absence of failures will be

L,= 2·!re1'while the overhead for completion of the multicast in the event of a leader failure

during transmission will be (!reI + td) + 2.!re1' where td is the timeout set by a node while

waiting for a second round message to arrive and !reI is as defmed earlier. (Note: td must be

greater than !reI.) These are the worst case overheads in the sense that they assume a simple

implementation in which the leader handles the message transmission directly or creates a

thread to do so (since the thread m~y simply deschedule the leader in order to execute).

Also, note that an optimisation is possible when all but one of the replicas have failed, since

the last remaining replica will not need to transmit any synchronisation messages at all.

7.4.6. Timing Constraints and Partial Multicasts.

In this example, the expiry of a timing constraint at the leader would cause a

synchronisation message to be transmitted to the followers informing them of the timing

error. However, once this message has been transmitted, the leader is free to initiate

181

Chapter7 Estimtlting the Cost of Replication.

recovery. This is the only overhead associated with timing constraints for leader-follower

replication and in cases where a timing constraint is met, no message need be generated at

all.

For the purposes of this example, partial multicasts could not occur since it was assumed

that the client did not fail and the client was the initiator of the broadcast. However, as in

the previous example, it should be noted that when such partial multicasts do occur, they

will have an impact on other clients in the system because it will be necessary for the

remaining nodes to continue execution of the rellREL protocol in order to complete the

multicast. (As mentioned above, the latency of the rellREL protocol when the sender fails is

given by !reI + lei + 2·!re1)

7.5. Passive Replication.

The last replication strategy to be considered here is passive replication, in which one

member of the replica group (the primary) receives and responds to all requests, while the

other members of the group act as passive backups to which the primary will periodically

send checkpoints of its internal state. Then, if the backups detect the failure of the primary,

a new primary is elected and resumes processing from its most recent checkpoint

It will once again be assumed that the underlying system consists of fail-silent processing

nodes connected to a broadcast network, however in this case it will be assumed that the

network is reliable (Le. does not lose or corrupt messages). It is also assumed that some

kind of logical group addressing or name server mechanism is provided by the operating

system to allow clients to obtain the address of the primary replica in a passive replica

group. Clients can then unicast their requests to the appropriate primary, which will process

the request and send its reply. At the end of each request, the primary will also checkpoint

its state to its backups. Since it is important that all functioning backups receive each

checkpoint, it will be assumed that the re1lRELr-atomic protocol used in the previous

example to transmit requests and synchronisation messages is used in this example to

transmit checkpoints. Further, since it is useful to make the operation of sending a

182

Cluzpter 7 Estimating the Cost of Replication.

checkpoint and transmitting a reply to a client atomic, it is assumed that both the checkpoint

and the reply are sent in a single multicast, addressed to the client and all of the backups.

The client can then simply discard the checkpoint information and the backup replicas can

discard the reply (if appropriate).

In such a system, the response time for the passive replica group, in the absence of failures,

will be given by :

RP(O)= d + Cmax + Ccp + Lr + a

Rp(O) = response time for replica group,

d = time to unicast request to primary,

Cmax = processing time for request,

Ccp = time taken to construct a checkpoint,

Lr = latency of rellRELr_atomicprotocol (for transmitting checkpoint and reply),

and a = descheduling of primary during execution of request

where

Since it is assumed that the network is reliable, the latency of the rellRELr-atomic protocol in

the absence of failures will be :

where

and

Lr = 2·teel= 2.d*

""'2.d (if d" = d)

teel= time for a multicast using the rei reliable multicast service,

d* = time to transmit a multicast message over the network.

giving an overall response time for the replica group of :

Rp(O) = d + Cmax + Ccp + 2.d* + a
= 3.d + Cmax + Ccp + a (if d" = d)

The time taken to construct a checkpoint (Ccp) depends upon the amount of state

information in the server object and the checkpointing scheme that is used. This is discussed

in more detail in section 7.5.5.

183

Cluzpter 7 Estimating the Cost of Replication.

7.5.1. Response Times with Failures.

For the system considered in this example, a client would receive no response to its request

if the primary replica failed while processing it. This situation arises because request

messages are unicast to the primary and a new primary will, therefore, have no way of

knowing which request the old primary was processing at the time of its failure. Under these

circumstances, clients have to set a timeout while waiting for replies and simply re-transmit

their requests if a response is not received. However, if it assumed that there is some

mechanism whereby a primary can inform its backups of the next request that it will

execute, for example by transmitting a copy of its outstanding request queue with each

checkpoint, it may be possible for a new primary to begin processing the appropriate

request immediately upon detecting the failure of its predecessor.

Even assuming the existence of such a mechanism, the response time for a passive replica

group can degrade quite badly when failures occur. On the one hand, if the primary fails

during the processing of a request, then the backup which becomes the new primary will

have to commence execution from its most recent checkpoint, thus repeating any processing

that had already been done, but not checkpointed, by the failed primary. On the other hand,

if the primary fails during transmission of its reply and checkpoint, then the latency for the

reVRELr-atomic protocol will increase, since an attempt will then be made to complete the

multicast

As in the previous example, a failure detection mechanism will also be required to allow the

backup replicas to detect the failure of the primary. Thus, considering the case where the

primary fails before initiating a multicast for its checkpoint and reply, the response time for

the replica group in the presence of k failures is given by :

k
Rp(k) =d+k.(q,+Cmax +Ccp)+Cmax +Ccp -t., + Lei

i=O

with Lr = 2·lrel = 2.d*

184

Chapter 7 Estimating the Cost of Replication.

where Rp(k) = response time for replica group,

d = time to unicast request to primary,

k = number of failures,

~ = worst case latency of failure detection,

Cmax = processing time for request,

Ccp = time to construct checkpoint,

Le = latency of rel/REL protocol,

9i = descheduling at successive primaries (i = O...k),

tee. = time for rei multicast,

and d" = time to transmit a broadcast message over the network.

This is very much a worst-case estimate for k failures, insofar as it assumes that each

successive primary completes both the processing of the request and the construction of its

checkpoint and then fails before initiating a multicast to transmit its checkpoint and reply

message. Thus, the term k.(~ + Cmax + Ccp) represents the wasted execution time at each

failed primary (Cmax + Ccp)' plus the worst case failure detection latency (~), which is how

long it may take for the backups to discover that the primary has failed in each case. To

avoid the need to run an election protocol, it has been assumed that the backups have been

ranked to determine the order in which they become primary (as with the followers in the

previous example).

In the case where a primary fails during the transmission of its response and checkpoint (Le.

after initiating the multicast), the situation can become even more complex. The

rellRELe-atomic protocol attempts to terminate partial multicasts by completing them, rather

than aborting them. This is achieved by having any recipients which receive a first round

message, but not a second round message, effectively re-start the multicast Hence, so long

as a primary initiates a multicast, it is guaranteed that the multicast will complete, however

if the node that is acting as a sender in an attempt to complete the multicast also fails, then a

further delay will be introduced because the multicast will be started yet again elsewhere.

The response time for the replica group in such situations therefore becomes:

185

Chapter 7 Estimating the Cost of Replication.

k
Rp(k,f) = d+k.(cI>+Cmax +Ccp)+Lr(f)+ L9i

i=O

with Lr(f) = f·(leel + tcJ) + 2·leel

= f.(d* + tcJ) + 2.d*

where Rp(k,f) = response time with k primary failures and f multicast failures,

k = number of primary failures,

Lr(f) = latency of the rellREL protocol with f sender failures,

f = number of sender failures during multicast,

td = timeout set by receivers waiting for second round message (tcJ ~ leel)

and all other terms are as before.

In this case, there is a saving of (Cmax+Ccp) because the last primary to fail does not do so

until it has initiated the multicast and the work that it has done is, therefore, not wasted.

However, the latency of the multicast protocol is increased from 2.d* to f.(d* + ~) + 2.d*

where f is the number of sender failures during completion of the multicast Note that f will

be at least 1, since the primary that initiates the multicast is assumed to fail, and that (k + f)

must be less than the fault tolerance degree of the replica group for the client still to receive

a reply.

An important point to note in both of the above expressions is that the term for

descheduling represents the descheduling experienced by each primary replica during the

k
entire execution of a request. That is, the term L9i will be approximately equal to (k+ 1).9

i=O

where 9 is the descheduling experienced by a single primary that processes the same request

to completion. This is as opposed to the case for leader-follower replication, where each

successive leader was assumed to experience a suitable fraction of the overall descheduling

k
time, giving: L9i =9.

i=O

186

Chapter 7 Estimtlling the Cost of RepUcation.

7.5.2. Overheads.

Considering once again the response time for a non-replicated object, Ro, the response time

overheads for a passive replica group, in the absence of failures, can be seen to be :

Op(O} = 2.d* - d + Ccp

=d+Ccp (ifd* = d)

where it has been assumed that the descheduling experienced by the primary replica is

similar to that experienced by a single, non-replicated object (see section 7.5.4). If d = 3ms

and it takes 3ms to construct a checkpoint, this represents an overhead of the order of 6ms

on each request.

In the presence of failures, the overheads involved will depend upon whether a primary fails

while processing a request or while multicasting its response. In the former case, we have :

* k
Op(k} = 2.d -d+Ccp +k.(cp+Cmax +Ccp}+ L8i-8

i=O
k

=d+Ccp +k.(cp+Cmax +Ccp}+ L8i-8
i=O

while, in the latter case, the corresponding expression is :

* k
Op(k,f} = z.a" + f.(d +td }-d+cp+Ccp +(k -1}.(cp+Cmax +Ccp)+ L8i -8

i=O
. k

= (3.f+I}.d+cp+Ccp +(k-I}.(cp+Cmax +Ccp)+ L8i-8
i=O

where 8 represents the descheduling experienced by a single, non-replicated server, all other

terms are as defined earlier and it has been assumed in the approximation that ~ ... !reI.

If it is assumed that the descheduling experienced by each successive primary is the same as

that for the single object (that is, 8i = 8 for i = O..•k), then the above expressions reduce to:

187

Chapter 7 Estimating the Cost of Replication.

Op(k) = 2.d* - d + Ccp + k.(cj)+ Cmax + Ccp) + k.e

""d + Ccp + k.(cj)+ Cmax + Ccp) + k.e

and:

Op(k,f) = 2.d* + f.(d* + ~) - d + cj)+ Ccp + (k - 1).(cj)+ Cmax + Ccp) + k.e

""(3.f + 1).d + cj)+ Ccp + (k-l).(cj) + Cmax + Ccp) + k.e

Unfortunately, since these expressions include terms for descheduling, it is impossible to

give estimated figures for these overheads without considering a specific application and

system. However, if it is assumed that a primary is not descheduled while processing a

request, which may be true in certain systems (e.g. in a MARS-like, static system), and

Cmax=25Oms k=1 k=2 k=3

f=O: OP(k) 274ms 542ms 810ms

f=1 : OP(k,l) 30ms 298ms 566ms

f=2 : OP(k,2) 39ms 307ms 575ms

Figure 7.3. Approximate overheads for passive replication (1).

appropriate values are assumed for the other terms, it is still possible to calculate order of

magnitude figures. Figures 7.3 and 7.4 give such figures, for different values of k and f and

assuming that d = 3ms, Ccp = 3ms, cj)= 15ms and Cmax = 250 or 500ms.

Cmax=500ms k=1 k=2 k=3

f=O: Op(k) 524ms 1.042s 1.560s

1=1 : OP(k,l) 30ms 548ms 1.066s

1=2 : Op(k,l) 39ms 557ms 1.075s

Figure 7.4. Approximate overheads for passive replication (2).

Note the improvement in those cases where a primary fails after initiating its multicast rather

than before. This is a result of the reVREL protocol terminating multicasts by completion

188

Chapter7 Estimtlting the Cost of Replication.

rather than abortion, since this ensures that the processing carried out by the failed primary

does not have to be re-executed.

7.5.3. Computation Times: Cmax

For the purpose of receiving and processing a request, the primary replica in a passive

replica group can be regarded as being the same as a single, non-replicated object. Hence,

for a given request, the value of Cmax at a primary replica is likely to be the same as that at

the single object. In the above analysis, it has also been assumed that, in case of failures, the

value of Cmax at successive primaries is the same. While this may not necessarily be true, it

is likely to be an over-estimate of the required computation time rather than an

underestimate because Cmax at the first primary to serve a given request will probably

include a greater contribution for queuing time than at subsequent primaries (which can

commence execution of the current request immediately upon detecting their predecessor's

failure).

7.5.4. Descheduling : 8

As in the other examples, this particular term is by far the most difficult to quantify without

referring to a specific system and application. However, the assumption that the amount of

descheduling suffered by a primary replica is approximately the same as that suffered by a

non-replicated object is much more justiftable than the corresponding assumptions made for

the active or leader-follower replication strategies. As far as application tasks are

concerned, the load that a particular application places on a system will be approximately

the same whether passive replication is used or not, since there is only one copy of any

given object active at a given time. The difference in system descheduling is also likely to be

slight, particularly if the multicast protocol for replies and checkpoints is executed by

network interface units rather than the host computers.

On the other hand, the assumption that successive primary replicas will suffer a similar

amount of descheduling during the processing of a given request is not so easily justified,

189

Chapter7 Estimating the Cost of Replication.

However, given a system in which processing load is balanced evenly across all hosts, it may

still serve as a useful approximation.

7.5.5. Checkpoin1ing : Ccp

The only term that remains to be considered is the overhead due to checkpointing, Cep. Like

descheduling, this term is also difficult to quantify, since it depends upon the type of

checkpoints used and the times at which they are taken. Considering the type of a

checkpoint, there are two basic options: either checkpoint the entire internal state of an

object or only checkpoint those changes that have been made to the internal state since the

last checkpoint was taken (incremental checkpointing). Typically, the former approach will

generate larger checkpoint messages but the overhead for checkpointing will be more or

less constant for a particular object. With the latter approach, smaller checkpoints will

usually be generated, however the time taken to construct them will depend upon the

operation that is being performed and the number of changes made to the internal state of

the object.

The checkpointing strategy, in terms of the times at which checkpoints are taken, is also

important. The approach used in this example, whereby a checkpoint is taken each time an

operation is completed, is common in a number of systems and, typically, represents a

reasonable trade-off between the overheads incurred and the amount of re-processing that

must be performed by a new primary. If checkpoints are taken more frequently, a new

primary will have less processing to do in order to bring itself up to date, but the overheads

for checkpointing will increase (even though, for incremental checkpoints, the size of each

individual checkpoint message will probably be smaller). Conversely, if checkpoints are

taken less frequently, the overhead due to checkpointing will decrease, but a number of

operations may have to be re-executed when a primary fails, thus lengthening the break in

service which occurs at such times.

Finally, as with synchronisation messages in the leader-follower replication strategy, it is

possible to optimise any checkpointing scheme when the fault tolerance degree of a passive

190

Chapter7 Estimating the Cost of Replication.

replica group is reached, since there is then no need for the last surviving replica to transmit

checkpoints.

7.5.6. Timing Constraints.

Tuning constraints introduce no overheads at all in a passive replica group, since the

primary can initiate recovery immediately upon detecting a timing error and the resulting

application state will be reflected in the next checkpoint that is transmitted to the other

members of the replica group.

7.6. Chapter Summary.

This chapter has concentrated on the overheads associated with the use of replicated

services. First of all, the cost of executing timing primitives consistently across an active

replica group was considered and it was shown that each replica will only be able to initiate

recovery for timing errors after a short delay, during which the members of the replica

group reach agreement as to whether the current timing constraint has, in fact, been missed.

The remainder of the chapter then studied response times for specific implementations of

three different replication strategies: active, leader-follower and passive. In each case, an

appropriate underlying system and suitable communications protocols were assumed,

allowing theoretical expressions to be derived for the response time overheads associated

with using a replicated, as opposed to non-replicated, service. The expressions obtained all

included terms for application and system specific parameters such as descheduling delays

and communications latency and, for each example, the factors affecting such parameters

were discussed at some length. Each example also included estimated figures for the

overheads involved, although these can only be taken as order of magnitude figures

because, in each case, a number of simplifying assumptions had to be made to permit the

relevant calculations to be made.

191

Chapter 8.

Conclusions and Further Research.

This chapter summarises the material that has been covered in this thesis, highlighting the

contribution made by this work and suggesting further areas of research which have been

identified.

8.1. Thesis Summary.

The thesis began with an introduction to the problems associated with providing fault

tolerance in real-time programs. The use of objects and atomic actions as a structuring

technique for real-time programs was briefly discussed and the basic concepts of exception

handling and replication were outlined.

In chapter two, some of these areas were examined in more detail. The concept of a real-

time service was introduced, including the notion of hard and soft services, and the issues

that arise in the scheduling of such services were considered. The focus then switched to

fault tolerance, with a more detailed discussion of the use of atomic actions as a structuring

technique for fault tolerant programs. This was followed by a similar discussion on

exception handling and the chapter closed with a short description and analysis of three

existing fault tolerant, real-time systems.

Chapter three concentrated upon increasing the availability of services through the use of

replication, with particular regard to its use in real-time systems. The various types of fault

and failure that can occur in a distributed system were considered and the importance of

maintaining consistency in replica groups was highlighted. .Both passive and active

replication strategies were then described, the latter in terms of the State Machine model.

For both replication strategies, this included an examination of the types of fault that can be

tolerated, the level of communications support that is required and the advantages and

disadvantages of using that particular strategy. This led to a discussion of the relative

192

ChapterS Conclusions and Further Research.

suitability of the two strategies for use in a real-time environment, with the conclusion that

active replication appears to be the better replication strategy for real-time use. The

remainder of the chapter therefore addressed the problems associated with maintaining

replica consistency in the presence of non-determinism. Possible sources of non-

deterministic behaviour in real-time programs were identified and some existing approaches

to dealing with such non-determinism were described. An alternative strategy for

maintaining replica consistency was then proposed, based upon a set of application-level

techniques that can be used to handle non-deterministic events.

The next part of the thesis continued the development of this idea, with chapter four

describing a model for fault tolerant real-time objects. The general structure of the object

model was outlined, before moving on to consider support for active objects and event

handling. The inclusion of language-level support for timing constraints was discussed and

an atomic action mechanism specificallygeared towards the real-time applications domain

was described. The provision of exception handling in the object model was also described

and it was shown that, using the techniques described earlier in chapter three, objects

constructed according to this model can be regarded as an extended form of State Machine

for the purpose of replication. A brief comparison of the object model with two other

existing models for real-time objects was then given and, in chapter five, the versatility of

the proposed object model was illustrated by giving outline implementations of four

different real-time applications.

In chapter six, some of the implementation and architectural support issues for the object

model were examined. This included a short description of the way in which the general

programming constructs used in the model could be implemented, as well as a more detailed

description of the implementation of the atomic action and method selection mechanisms.

The underlying support required for object replication was also considered and

implementations of three specific replication schemes were described, demonstrating the

level of communications support that would be needed and outlining the way in which

object method invocations could be mapped to the appropriate communications primitives.

193

ChapterS Conclusions and Further Research.

To conclude the thesis, chapter seven studied the overheads, in terms of response times,

associated with the use of replicated objects. The cost of executing timing primitives

consistently across an active replica group was examined and, finally, an analysis of the

response times for replicated services under three different replication strategies (active,

semi-active and passive) was presented.

8.2. Contributions of the Thesis.

It has been claimed that the next generation of real-time systems will need to be dynamic

rather than static [Stankovic 88a]. That is to say, systems will increasingly need to adopt an

event-driven approach to the real-time applications domain, as opposed to the time-driven

approach that has been widely used to date in systems such as MARS. Considering the

current growth in the use of computer systems for a wide range of different real-time

control applications, it is likely that this claim will prove to be more than justified, however

from the point of view of fault tolerance, a problem arises. One of the great strengths of the

static, time-driven approach, alongside its predictability, is that it is relatively

straightforward to make time-driven systems fault tolerant by using replication techniques.

The use of replication to provide fault tolerance in event-driven systems, on the other hand,

has not been extensively studied (with the exception of the work carried out in recent years

within the ESPRIT Delta-4 project). This thesis has, therefore, concentrated on developing

an object model that is well-suited for structuring event-driven systems and examined the

impact of object replication on that model.

The major contributions of this thesis centre upon the development of the object model, in

terms of providing support for replicated objects, and the analysis presented in chapter

seven. Inbrief, the main points can be summarised as follows:

i) Identification of the possible sources of non-determinism, and hence replica

state divergence, in real-time programs.

When replicating a service using an active replication strategy, care must be

taken to ensure that uncontrolled non-determinism cannot arise and cause

194

ChapterS Conclusions and Further Research.

replica state divergence. However, real-time programs include several

possible sources of non-deterministic behaviour, some of which are quite

subtle and which may not be immediately apparent to the real-time

applications programmer. This thesis has identified the five general classes of

activity that can lead to such non-deterministic behaviour in a real-time

application, thus allowing possible sources of replica state divergence to be

recognised.

ii) Proposal of mechanisms and techniques to deal with such non-determinism

in real-time programs.

This thesis has also proposed a small set of mechanisms and program

structuring techniques that allows real-time programs to handle such non-

deterministic activities in a way which still permits the use of active

replication. The mechanisms and techniques proposed can be applied at the

application level, or implemented as part of a programming language, and

thus do not require specialised operating system support.

iii) Development of a model for real-time objects.

The mechanisms and techniques described above have been embodied in a

model for fault tolerant real-time objects. This model includes a real-time

atomic action mechanism that allows the defmition of forward recovery

operations. Objects can be subject to timing constraints, handle external

events or system mode changes and contain internal threads of control, but

they can still be regarded as State Machines for the purpose of replication

and, hence, replicated for availability using active replication techniques.

iv) Analysis of response time overheads for replicated objects.

Finally, the thesis has explicitly identified the factors that contribute to the

response time of a replica group, both in terms of system-level and

application-levelparameters. An analysis of the overheads for three different

195

ChIlpter8 Conclusions and Further Research.

replication strategies has been presented, demonstrating the way in which

estimated response times for a replicated service may be calculated in

advance. This type of analysis could be used during the initial stages of the

design of a system to calculate the degree of replication that can be

supported for a given application or to scale the system in order to meet its

fault tolerance requirements.

In conclusion, it cannot be emphasised too strongly that, unless special techniques like the

thread scheduling mechanism adopted in the Delta-4 system are employed, the overheads

discussed in the previous chapter are unavoidable. This can be regarded as the "negative

side" of using replication to provide fault tolerance and it is important that the designers of

current and future event-driven real-time systems understand this and take into

consideration the constraints imposed by the use of replicated services.

8.3. Further Research.

The work described in this thesis only represents the first stages of the research that can be

done into this topic and further development is possible in several areas. In particular, the

following three aspects of this work are of special interest:

iJ Further development of the object model.

There are some facets of the real-time object model that deserve further

consideration. A particular case in point is concurrency control for replicated

real-time actions. Although several effective concurrency control mechanisms

have been developed for real-time transactions, none of them consider

replicated transactions running on the members of a replica group. In such

situations, different concurrency control decisions could be made at different

replicas, leading to state divergence. At the moment, the object model

prevents this happening by using only top-level actions and enforcing total

mutual exclusion for concurrent operations. However, an interesting area of

research would be to develop a concurrency control mechanism that allowed

196

ChapterS Conclusions and Further Research.

parallel actions to interact more freely, but which also guaranteed that the

same concurrency control decisions would be made at different replicas.

ii) Implementation of the object model.

Perhaps the most important piece of work remaining to be done on the object

model is an initial test implementation. This would involve the development

of appropriate language support, either in the form of a suitable

programming language and compiler or, more likely, in the form of a pre-

processor and appropriate extensions to an existing language such as c++. It

would also involve the development of the necessary run-time support

systems, such as the atomic action and method selection mechanisms. (It is

hoped that it will be possible to begin a partial test implementation sometime

in the near future.)

iii) Further analysis of overheads.

In this area, there are two important tasks to be undertaken. First of all,

simulation studies and, where possible, system tests should be carried out to

test the validity of the expressions derived in chapter seven. Once again, it is

hoped that the opportunity may arise to carry out such work sometime in the

near future.

Secondly, a more complete analysis of the response time overheads for

replica groups should also be attempted, using stochastic modelling

techniques for example. In this way, estimates of average case, as well as

worst case, response times could be obtained.

197

References.

[Ada 80]
U.S. Department of Defense, "Reference Manual for the Ada Programming
Language", 1980.

[Agrawala 89]
A. K. Agrawala, O. Gudmundsson and D. Mosse, "Mission Critical Operating
Systems Requirements and the MARUTI Project", University of Maryland

Department of Computer Science Technical Report CS-TR 2342, November 1989.

[Anderson 76]
T. Anderson and R. Kerr, "Recovery Blocks in Action: A System Supporting High
Availability", Proceedings of the 2nd International Conference on Software
Engineering, 1976.

[Babaoglu 90]
O. Babaoglu, K. Marzullo and F. B. Schneider, "Priority Inversion and its
Prevention in Real-Time Systems", PDCS Technical Report No. 17 (TR 90-1088),
March 1990.

[Barrett 90]

P. A. Barrett, P. G. Bond et al, "The Delta-4 Extra Performance Architecture
(XPA)", Proceedings ofFTCS-20, Newcastle upon Tyne, 1990.

[Birman 85]

K. P. Birman et al, "Implementing Fault-Tolerant Distributed Objects", IEEE
Transactions on Software Engineering, June 1985.

[Birman 87]

K. P. Birman and T. A. Joseph, "Exploiting Virtual Synchrony in Distributed
Systems", 11th ACM Symposium on Operating Systems Principles, Austin, Texas,
November 1987.

[Birman 88]
K. P. Birman and T. A. Joseph, "Exploiting Replication", Cornell University
Department of Computer Science Technical Report TR 88-917, June 1988.

[Birrell 84]
A. D. Birrell and B. J. Nelson, "Implementing Remote Procedure Calls", ACM
Transactions on Computers Systems, Vol. 2, No.1, February 1984.

[Blazewicz 79]
J. Blazewicz, "Deadline Scheduling of Tasks with Ready Times and Resource
Constraints", Information Processing Letters, Vol. 8, No.2, February 1979.

198

[Bond 91]
P. Bond, D. Seaton, P. Verissimo and J. Waddington, "Real-Time Concepts",
Chapter 5 in "Delta-4 : A Generic Architecture for Dependable Distributed
Computing", Ed. D. Powell, ESPRIT Research Reports Series, Springer-Verlag,

1991.

[Burns 88]
A Burns, "Scheduling Hard Real-Time Systems: A Review", University of

Bradford Computer Science Report CSI3-88.

[Campbell 86]
R. H. Campbell and B. Randell, "Error Recovery in Asynchronous Systems", IEEE

Transactions on Software Engineering, Vol. SE-12, No.8, August 1986.

[Chang 86]
H-Y. Chang and M. Livny, "Distributed Scheduling under Deadline Constraints: A
Comparison of Sender-Initiated and Receiver-Initiated Approaches", Proceedings

of 7th mEE Real-Time Systems Symposium, 1986.

[Chen 78]
L. Chen and A. Avizienis, "N-version Programming: A Fault-Tolerance Approach
to Reliability of Software Operation", Proceedings ofFTCS-8, Toulouse, 1978.

[Cheng 86]
S-C. Cheng, J. A Stankovic and K. Ramamritham, "Dynamic Scheduling of
Groups of Tasks with Precedence Constraints in Distributed Real-Time Systems",
Proceedings of 7th mEE Real-Time Systems Symposium, 1986.

[Cheng 88]

S-C. Cheng, 1.A. Stankovic and K. Ramamritham, "Scheduling Algorithms for

Hard Real-Time Systems: A Brief Survey", IEEE Tutorial on Real-Time Systems,

1988.

[Chereque 92]
M. Chereque, D. Powell et al, "Active Replication in Delta-4", Proceedings of
FTCS-22, Boston, 1992.

[Cristian 82]
F. Cristian, "Exception Handling and Software Fault Tolerance", mEE
Transactions on Computers, Vol. C-31, No.6, June 1982.

[Cristian 86]
F. Cristian, H. Aghili, R. Strong and D. Dolev, "Atomic Broadcast: From Simple

Message Diffusion to Byzantine Agreement", mM Research Division Research

Report RJ-5244, July 1986.

199

[Cristian 89]
F. Cristian, "Exception Handling", Chapter 4 in "Dependability of Resilient

Computers", Ed. T. Anderson, Blackwell Scientific Publications, 1989.

[Damm 89]
A. Damm, 1. Reisinger, W. Schwabl and H. Kopetz, "The Real-Time Operating
System of MARS", ACM Operating Systems Review, Vol. 2'3, No.3, Iuly 1989.

[Dasgupta 91]
P. Dasgupta, R. J. LeBlanc, M. Ahamad and U. Ramachandran, "The Clouds
Distributed Operating System", IEEE Computer, November 1991.

[Davidson 89]
S. B. Davidson, I.Lee and V. Wolfe, "Language Constructs for Timed Atomic

Commitment", Proceedings of FfCS-I9, 1989.

[Davidson 91]
S. B. Davidson, I.Lee and V. Wolfe, "Timed Atomic Commitment", IEEE
Transactions on Computers, Vol. C-40, No.5, May 1991.

[Dixon 88]
G. N. Dixon, "Object Management for Persistence and Recoverability", (PhD
Thesis), University of Newcastle upon Tyne Computing Laboratory Technical
Report No. 276, December 1988.

[Eswaran 76]
K. P. Eswaran, 1. N. Gray, R. A. Lorie and I. L. Traiger, "The Notions of

Consistency and Predicate Locks in a Database System", Communications of the

ACM, Vol. 19, No. 11, November 1976.

[Ezhilchelvan 90]
P. D. Ezhilchelvan, S. K. Shrivastava and N. A. Speirs, "An Examination of Fail-
Stop Processor Architectures for Distributed Systems", University of Newcastle

upon Tyne Computing Laboratory Technical Report.

[Frison 82]
S. G. Frison and J. H. Wensley, "Interactive Consistency and its Impact on the
Design oflMR Systems", Proceedings of FfCS-I2, 1982.

[Gheith 89]
A. Gheith and K. Schwan, "CHAOSart : Support for Real-Time Atomic
Transactions", Proceedings of FfCS-I9, 1989.

200

[Gheith 90]
A. Gheith and K. Schwan, "CHAOSarc: Kernel Support for Multi-Weight Objects,

Invocations and Atomicity in Real-Time Applications", Georgia Tech. School of

Information and Computer Science Technical Report GIT-ICS-90/06, January
1990.

[Goodenough 75]
J. Goodenough, "Exception handling, issues and a proposed notation",
Communications of the ACM, Vol. 18, No. 12, December 1975.

[Gopinath 89]

P. S. Gopinath and K. Schwan, "CHAOS: Why One Cannot Have Only an

Operating System for Real-Time Applications", ACM Operating Systems Review,
Vol. 23, No.3, July 1989.

[Gray 78]
J. N. Gray, "Notes on Database Operating Systems", in "Operating Systems: An
Advanced Course", Lecture Notes in Computing Science, Vol. 60, Springer-
Verlag, 1978.

[Halpern 84]

J. Y. Halpern, B. Simons, R. Strong and D. Dolev, "Fault Tolerant Clock
Synchronisation", Proceedings of the 3rd ACM Symposium on Principles of

Distributed Computing, Vancouver, August 1984.

[Haritsa 90]
J. R. Haritsa, M. 1. Carey and M. Livny, "Dynamic Real-Time Concurrency

Control", Proceedings of the 11th IEEE Real-Time Systems Symposium, Lake
Buena Vista, Florida, December 1990.

[Horning 74]

J.1. Homing, H. C. Lauer, P. M. Melliar-Smith and B. Randell, "A Program
Structure for Error Detection and Recovery", Proceedings of the Conference on
Operating Systems, IRIA, 1974.

[Ishikawa 90]

Y. Ishikawa, H. Tokuda and C. W. Mercer, "Object-Oriented Real-Time Language
Design: Constructs for Timing Constraints", Proceedings of OOPSLA 90,
Ottawwa, October 1990.

[Jensen 85]

E. D. Jensen, C. D. Locke and H. Tokuda, "A Time-Driven Scheduling Model for
Real-Time Operating Systems", Proceedings of the 6th IEEE Real-Time Systems
Symposium, 1985.

201

[Joseph 88]
T. A. Joseph and K. P. Birman, "Reliable Broadcast Protocols", Cornell University
Department of Computer Science Technical Report TR 88-918, June 1988.

[Koenig 90]
A. Koenig and B. Stroustrup, "Exception Handling for C++ (revised)",
Proceedings of USENIX C++ Conference, 1990.

[Kopetz 87]
H. Kopetz and W. Ochsenreiter, "Clock Synchronization in Distributed Real-Time
Systems", IEEE Transactions on Computers, Vol. C-36, No.8, August 1987.

[Kopetz 89]
H. Kopetz, A. Damm et al, "Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach", IEEE Micro, February 1989.

[Kopetz 90]
H. Kopetz and K.H. (Kane) Kim, "Temporal Uncertainties in Interactions among
Real-Time Objects", Proceedings of the 9th Symposium on Reliable Distributed
Systems, Huntsville, Alabama, October 1990.

[Kramer 83]
J. Kramer, J. Magee, M. S. Sloman and A. M. Lister, "CONIC: an integrated
approach to distributed computer control systems", lEE Proceedings (Part E), Vol.
130, No. I, 1983.

[Kung 81]
H. T. Kung and 1. T. Robinson, "On Optimistic Methods for Concurrency
Control", ACM Transactions on Database Systems, Vol. 6, No.2, June 1981.

[Lamport 82]
L. Lamport, R. Shostak and M. Pease, "The Byzantine Generals Problem", ACM
TOPLAS, Vol. 4, No.3, July 1982.

[Lamport 85]
L. Lamport and P. M. Melliar-Smith, "Synchronizing Clocks in the Presence of
Faults", Journal of the ACM, Vol. 32, No. I, January 1985.

[Lampson 81]
B. W. Lampson, "Atomic Transactions", Chapter 11 in "Distributed Systems-
Architecture and Implementation", Springer-Verlag, 1981.

[Levi 89]
S-T. Levi, S. K. Tripathi, S. D. Carson and A. K. Agrawala, "The MARUTI Hard
Real-Time Operating System", ACM Operating Systems Review, Vol. 23, No.3,
July 1989.

202

[Liskov 79]
B. H. Liskov and A Snyder, "Exception Handling in CLU", IEEE Transactions on

Software Engineering, Vol. SE-5, No.6, November 1979.

[Little 90]
M. C. Little and S. K. Shrivastava, "Replicated K-Resilient Objects in Arjuna",
Proceedings of IEEE Workshop on the Management of Replicated Data, Houston,

Texas, November 1990.

[Little 92]
M. C. Little, "Object Replication in a Distributed System", (phD Thesis),
University of Newcastle upon Tyne Computing Laboratory Technical Report No.
376, February 1992.

[Liu 73]
C. L. Liu and 1.W. Layland, "Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment", Journal of the ACM, Vol. 20, No.1, January 1973.

[Lomet 77]
D. B. Lomet, "Process Structuring, Synchronization and Recovery using Atomic
Actions", ACM SIGPLAN Notices, Vol. 13, No.3, March 1977.

[Melliar-Smith 82]
P. M. Melliar-Smith and R. L. Schwartz, "Formal Specification and Mechanical
Verification of SIFT: A Fault-Tolerant Flight Control System", IEEE Transactions
on Computers, Vol. C-31, No.7, July 1982.

[Mercer90]
C. W. Mercer and H. Tokuda, "The ARTS Real-Time Object Moder', Proceedings

of the 11th IEEE Real-Time Systems Symposium, Lake Buena Vista, Florida,

December 1990.

[Mitchell 79]
J. Mitchell et al, "Mesa Language Manual", Xerox PARC Report CSL-79-3, 1979.

[Mok 83]
A. K.Mok, "Fundamental Design Problems for Distributed Systems for the Hard
Real-Time Environment", Ph.D. Thesis, MIT/LCSffR-299, 1983.

[Mosse 91a]

D. Mosse and A. K. Agrawala, "Resilient Computation Graphs for Distributed

Real-Time Environments", University of Maryland Department of Computer
Science Technical Report CS-TR-2613, February 1991.

203

[Mosse 91b]
D. Mosse, O. Gudmundsson and A. K. Agrawala, "The MARUTI System and its
Implementation", University of Maryland Department of Computer Science
Technical Report CS-TR-2694, June 1991.

[Muntz 70]
R. R. Muntz and E. G. Coffman (Jr), "Preemptive Scheduling of Real-Time Tasks
on Multiprocessor Systems", Journal of the ACM, Vol. 17, No.2, April 1970.

[Nirkhe9O]
V. M. Nirkhe, S. K. Tripathi and A. K. Agrawala, "Language Support for the
MARUTI Real-Time System", Proceedings of the 11th IEEE Real-Time Systems
Symposium, Lake Buena Vista, Florida, December 1990.

[Northcutt 87]
J. D. Northcutt, "Mechanisms for Reliable Distributed Real-Time Operating
Systems: The Alpha Kernel", Perspectives of Computing Series Vol. 16,
Academic Press, 1987.

[Parrington 88]
G. D. Parrington, "Management of Concurrency in a Reliable Object-Oriented
Computing System", (phD Thesis), University of Newcastle upon Tyne Computing
Laboratory Technical Report No. 277, December 1988.

[PDCS 90]
Esprit Project No. 3092 (PDCS : Predictable Dependable Computing Systems)
First Year Report, "Timeliness, Specification and Design for Dependability".

[Pease 80]
M. Pease, L. Lamport and R. Shostak, "Reaching Agreement in the Presence of
Faults", Journal of the ACM, Vol. 27, No.2, April 1980.

[Powe1l88]
D. Powell, P. Verissimo et al, "The Delta-4 Approach to Dependability in Open
Distributed Computing Systems". Proceedings ofFTCS-18, 1988.

[Ramamritham 84]
K. Ramamritham and 1.A. Stankovic, "Dynamic Task Scheduling in Hard Real-
Time Distributed Systems", IEEE Software, Vol. 1, No. 3,July 1984.

[Ramamritham 90]
K. Ramamritham, J. A. Stankovic and P-F. Shiah, "Efficient Scheduling Algorithms
for Real-Time Multiprocessor Systems", IEEE Transactions on Parallel and
Distributed Systems, Vol. 1, No.2, Aprill990.

204

[Rivest 78]
R. Rivest, A Shamir and L. Adleman, "A Method of Obtaining Digital Signatures
and Public-key Cryptosystems", Communications of the ACM, February 1978.

[Schlichting 83]
R. D. Schlichting and F. B. Schneider, "Fail-stop Processors: an Approach to
Designing Fault-Tolerant Computing Systems", ACM Transactions on Computing

Systems, Vol. 1, No.3, 1983.

[Schneider 87]
F. B. Schneider, "The State Machine Approach", Cornell University Technical
Report 86-800, December 1986, (Revised June 1987).

[Schneider 90]
F. B. Schneider, "Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial", ACM Computing Surveys, December 1990.

[Schwan 87]
K. Schwan, P. Gopinath and T. Bo, "CHAOS: Kernel Support for Objects in the
Real-Time Domain", IEEE Transactions on Computers, Vol. C-36, No.8, August
1987.

[Schwan 9Oa]
K. Schwan, A. Gheith and H. Zhou, "From CHAOSbase to CHAosarc : A Family

of Real-Time Kernels", Proceedings of the 11th IEEE Real-Time Systems
Symposium, Lake Buena Vista, Florida, December 1990.

[Schwan 9Ob]
K. Schwan and H. Zhou, "Optimum Preemptive Scheduling for Hard Real-Time
Systems: Towards Real-Time Threads", Georgia Tech. College of Computing

Technical Report GIT-ICS-90/28, September 1990.

[Sha 86]

L. Sha, J. P. Lehoczky and R. Rajkumar, "Solutions for Some Practical Problems

in Prioritized Preemptive Scheduling", Proceedings of the 7th IEEE Real-Time
Systems Symposium, 1986.

[Sha 88]
L. Sha, R. Rajkumar and J. P. Lehoczky, "Concurrency Control for Distributed
Real-Time Databases", ACM SIGMOD Record, Vol. 17, No.1, March1988.

[Sha 91]
L. Sha, R. Rajkumar, S-H. Son and C-H. Chang, "A Real-Time Locking Protocol",

IEEE Transactions on Computers, Vol. C-40, No.7, July 1991.

205

[Shrivastava 82]
S. K. Shrivastava and F. Panzieri, "The Design of a Reliable RPC Mechanism",
IEEE Transactions on Computers, Vol. C-31, No.7, July 1982.

[Shrivastava 90]
S. K. Shrivastava, P. D. Ezhilchelvan and M. C. Little, "Understanding Component
Failures and Replication in Distributed Systems", ISA Project Report UNTffRl,
May 1990.

[Shrivastava 91a]
S. K. Shrivastava and A. Waterworth, "Using Objects and Actions to provide Fault
Tolerance in Distributed, Real-Time Systems", Proceedings of 12th IEEE Real-
Time Systems Symposium, San Antonio, Texas, December 1991.

[Shrivastava 91b]
S. K. Shrivastava, G. N. Dixon and G. D. Parrington, "An Overview of the Arjuna
Distributed Programming System", IEEE Software, 1991.

[Shrivastava 92a]
S. K. Shrivastava and P. D. Ezhilchelvan, "reVREL : A Family of Reliable
Multicast Protocols for Distributed Systems", University of Newcastle upon Tyne
Computing Laboratory Technical Report. ([0 be issued.)

[Shrivastava 92b]
S. K. Shrivastava and A. Tully, "Active Replication of Distributed Programs:
Problems and Solutions", University of Newcastle upon Tyne Computing
Laboratory Technical Report. (To be issued.)

[Sloman 87]
M. S. Sloman and 1. Kramer, "Distributed Systems and Computer Networks",
Prentice-Hall, 1987.

[Spector 83]
A. Z. Spector and P. M. Schwartz, "Transactions: A Construct for Reliable
Distributed Computing", ACM Operating Systems Review, Vol. 17, No.2, April
1983.

[Speirs 89]
N. A. Speirs and P. A. Barrett, "Using Passive Replicates in Delta-4 to Provide
Dependable Distributed Computing", Proceedings ofFTCS-19, 1989.

[Srikanth 87]
T. K. Srikanth and S.Toueg, "Optimal Clock Synchronization", Journal of the
ACM, Vol. 34, No.3, July 1987.

206

[Stankovic 88a]
J. A. Stankovic, "Misconceptions about Real-Time Computing: A Serious
Problem for Next-Generation Systems", IEEE Computer, October 1988.

[Stankovic 88b]
J. A. Stankovic, "On Real-Time Transactions", ACM SIGMOD Record, Vol. 17,

No. I, March 1988.

[Stankovic 89]
J. A. Stankovic and K. Ramamritham, "The Spring Kernel: A New Paradigm for
Real-Time Operating Systems", ACM Operating Systems Review, Vol. 23, No.3,

July 1989.

[Stroustrup 87]
B. Stroustrup, "The C++ Programming Language", Addison-Wesley, 1987.

[Tokuda 89]
H. Tokuda and C. W. Mercer, "ARTS: A Distributed Real-Time Kernel", ACM
Operating Systems Review, Vol. 23, No.3, July 1989.

[Tully 90]
A. Tully and S. K. Shrivastava, "Preventing State Divergence in Replicated
Distributed Programs", Proceedings of the 9th Symposium on Reliable Distributed
Systems, Huntsville, Alabama, October 1990.

[Tully 91]
A. Tully, "Preventing State Divergence in Replicated Distributed Systems", (PhD

Thesis), University of Newcastle upon Tyne Computing Laboratory Technical

Report No. 328, June 1991.

[Verissimo 89]
P. Verissimo, L.Rodrigues and M. Baptista, "AMp: A Highly Parallel Atomic

Multicast Protocol", Delta-4 Technical Report E89.076IDI/C, March 1989.

[Weinstock 80]
C. B. Weinstock, "SIFT: SystemDesign and Implementation", Proceedings of

FfCS-I0, 1980.

[Wheater 90]
S. M. Wheater, "Constructing Reliable Distributed Applications using Actions and

Objects", (PhD Thesis), University of Newcastle upon Tyne Computing
Laboratory Technical Report No. 316, June 1990.

[Wolfe 90]
V. Wolfe, S. Davidson and I.Lee, "Supporting Real-Time Concurrency", IEEE

Real-Time Systems Newsletter, Vol. 6, No.2, Spring 1990.

207

[Wolfe 91]

V. Wolfe, "Supporting Real-Time Concurrency", Ph.D. Thesis, University of
Pennsylvania, 1991.

[Zhao 87a]

W. Zhao, K. Ramamritham and J..A. Stankovic, "Scheduling Tasks with Resource
Requirements in Hard Real-Time Systems", IEEE Transactions on Software.
Engineering, Vol. SE-13, No.5, May 1987.

[Zhao 87b]
W. Zhao, K. Ramamritham and J. A. Stankovic, "Preemptive Scheduling under
Time and Resoure Constraints", IEEE Transactions on Computers, Vol. C-36, No.

8, August 1987.

[Zoubeir 91]

N. F. Zoubeir, "Fault-Tolerance Implementation for MARUTI, a Real-Time

Distributed Operating System", University of Maryland Department of Computer
Science Technical Report CS-TR-2728, July 1991.

208

