
Architectural Soup:
A proposed very general purpose computer

Ian Weaver

NEWCASTLE UNIVERSITY LIBRARY

Ph.D. Thesis

University of Newcastle upon Tyne
September 1989

...

,BEST COpy
..

•

, .AVAILABLE'

. Variable print quality

ABSTRACT

This thesis is concerned with architecture for long term
general purpose computers. The work is based on current
trends in machine architecture and technology. Projections
from these generated "Architectural Soups". An Architectural
Soup has the potential to emulate many different machine
architectures. The characteristics of this class of machine
are, three dimensional, simple cells and a simple
communications topology, which can be reconfigured at a very
low level. This thesis aims to show potential usefulness and
viability of machines with such capability.

Methods of programming are considered, and important design
issues are investigated. A specific implementation
architecture is described and illustrated through
simulation. An assessment is made of the architecture and of
the simulator used. In addition, the implementation
architecture is used as the basis for a VLSI design, which
shows the simplicity of a Soup cell, and provides estimates
of the possible number of cells in future machines.

ACKNOWLEDGEMENTS

Although this work is declared as mine, I am indebted to
many people for their assistance and opinion. I particularly
wish to acknowledge the considerable help and useful
comments received from my supervisor, Richard Hopkins, and
the members of my supervisory committee, Martin McLauchlan
and Brian Randell.

I also wish to acknowledge support which has indirectly
assisted, from Mike Brudenell, Shirley craig, John Clowes,
Pete Lee, Ian Scoins, all at BNFL, Andy, Bart, my family and
Tree.

Funding was provided by the Science and Engineering Research.
council.

INPEX

1 Introduction 1
1.1 INTRODUCTION 1
1.2 VON NEUMANN AND THE NEED FOR PARALLELISM 3
1.3 TRENDS IN ARCHITECTURE 6
1.4 TECHNOLOGICAL PROSPECTS 12
1.5 SOME MOTIVATIONS FOR LONG TERM GENERAL 14

PURPOSE ARCHITECTURE
1.5.1 A programmable array of nand gates 16

1.6 THE AIMS AND STRUCTURE OF THIS THESIS 17

2 Architectural Soup 20
2.1 INTRODUCTION 20
2.2 ARCHITECTURAL SOUP 21

2.2.1 A basis architecture 22
2.2.2 Simulation and Emulation 24
2.2.3 Why this architecture is proposed 25

2.3 PROGRAMMING CONCERNS 28
2.3.1 Machines with no dynamic reprogramming 31

capacity
2.3.2 Machines with dynamic reprogramming 32

capacity
2.3.3 Highly dynamic machines 35
2.3.4 Discussion of programming methods 38

2.4 SUMMARY 40

3 Directions for investigation 43
3.1 INTRODUCTION 43
3.2 THEORETICAL ASPECTS 44
3.3 PROPERTIES OF SILICON-STYLE MATERIALS 48
3.4 SURFACES AND INTERFACE CONSIDERATIONS 50
3.5 THE INITIALISATION PROBLEM 53
3.6 SYNCHRONISATION ISSUES 55
3.7 CONTROL CIRCUITRY REVISITED 58
3.8 FAULT TOLERANCE 60
3.9 ALTERNATIVE TECHNOLOGY 63

3.9.1 Optical computers 64
3.9.2 Biological computers 65
3.9.3 Embedded computers 67
3.9.4 Interfacing dedicated architectures 68

3.10 SUMMARY 69

4 On the implementation of an Architectural Soup 70
4.1 MOTIVATIONS FOR A CHOICE OF ARCHITECTURE 70
4.2 THE ARCHITECTURE 72

4.2.1 General description
4.2.2 Function of the control unit
4.2.3 Logic
4.2.4 The multiplexor
4.2.5 The program register
4.2.6 The control unit revisited

72
81
82
85
88
89

4.3 IS THIS AN ARCHITECTURAL SOUP?
4.4 ARCHITECTURE SUMMARY

92
93

4.5 ARCHITECTURE ASSESSMENT 95

5 simulation work 101
5.1 SIMULATION ENVIRONMENT 102

5.1.1 Circuit description
5.1.2 Preprocessor
5.1.3 The Simulator
5.1.4 Graphical display of results

102
105
106
108

5.2 PROGRAMMING EXAMPLES 111
5.2.1 An illustration of loading
5.2.2 Inverting wires
5.2.3 External reprogramming
5.2.4 Edge detection
5.2.5 Internal reprogrammer

111
114
117
120
126

5.3 AN ASSESSMENT OF THE SIMULATION ENVIRONMENT 133
5.4 AN ASSESSMENT OF THE ARCHITECTURE IN LIGHT OF 136

SIMULATION
5.5 SOME SUGGESTED FURTHER DESIGN AND SIMULATION 138

WORK
5.6 SUMMARY AND CONCLUSION 143

6 On a VLSI implementation 145
6.1 THE DESIGN 146

6.1.1 Design omissions 150
6.2 A FURTHER ARCHITECTURAL ASSESSMENT 151
6.3 AREA ESTIMATES 152

6.3.1 Long term estimates from computer 154
technology predictions

6.4 SUMMARY AND CONCLUSION 157

7 Summary and conclusions
7.1 SUMMARY

7.2 FURTHER WORK
7.3 CONCLUDING REMARKS

159

159

166

168

REFERENCES 171

APPENDIX 182

Chapter 1: Introduction

1.1 INTRODUCTION

Any computer is ultimately bound by its physical size, the
speed of light, the properties of the technology and the
construction methods used to build it. Any other
restrictions that a computer may have are due to the
imposition of man-made architectural decisions.

Broadly speaking there is a spectrum of computer
architecture, ranging between general purpose and dedicated
purpose. The former is intended to be applicable to many
different types of problem, whereas the latter is optimised
for a specific class or classes of tasks. Dedicated purpose
computers are usually easier to design as the use for which
they are intended can be rigorously defined. This is not the
case with general purpose machines. A key concept in the

1

generality of an architecture is the notion of its
efficiency. The dedicated purpose computer is poor for
general purpose use as its optimisation will normally
prevent efficient solution of tasks other than those for
which it was intended. Similarly, a general purpose computer
is unlikely to be the optimum for anyone particular task as
it has not been optimised towards the task. The criterion
for the 'ultimate' general purpose architecture, therefore,
is the ability to emulate ALL possible dedicated purpose
machines as EFFICIENTLY as possible.

There are often many approaches to solving the same problem.
To give a specific example, in the area of image processing
[ROS82] examines methods of utilising cellular computers for
parallel processing of images at the region level. He
expresses the need for a cellular computer with the ability
to dynamically re-configure itself, in parallel. An
alternative approach is taken by [FOU85], who illustrates
the applicability of three-dimensional MIMD controlled
processor structures such as pyramids and cubes. This is a
different algorithm for the same problem. A general purpose
machine should be good for both approaches, not biased in
favour of either.

This chapter will examine current architecture and
technology. Based on this, the suggestion will be made that
a method by which a general purpose machine can perform such

2

emulation, without favouritism, is to be reconfigurable at a
very low level. The remainder of this thesis is concerned
with detailed examination of low level reconfigurability.

1.2 VON NEUMANN AND THE NEED FOR PARALLELISM

A consequence of the Von Neumann architecture is that the
small amount of silicon devoted to processing, usually only
2-3%, is kept very busy, whilst silicon devoted to memory is
relatively idle [HIL85]. As machines get larger more
opportunity will be lost due to the poor use made of the
majority of silicon. Even in the higher utilised processing
elements there is inefficient use of transistors. This
wasted capacity can make machines with simple instruction
sets faster than machines with comprehensive ones (see
reduced instruction set computers [KAT84]).

The Von Neumann architecture is a poor candidate for the
'ultimate architecture' due to the Von Neumann bottleneck.
Methods used to speed up Von Neumann machines include
caching, pipelining, vector processing, and the
interconnection of small numbers of machines. These
computers ARE faster, but hard to program well. On

3

supercomputer architecture [DEN80] writes "Current
architectures require intricate programming to obtain a
fraction of their potential." Usually, the effective
performance of supercomputers ranges between only 5 and 25
percent of peak performance [HWA87].

Hardware is inherently parallel [GOL85] so the available
resource will be under-utilised as a consequence of imposing
a sequential architecture upon it. Also, to efficiently
emulate any particular dedicated purpose circuit, the
emulator must be parallel. Consider neural computers. Here
there is a requirement for large numbers of switches where
each switch only performs a simple operation in order to
alternate between two states [ABU87]. In this case a high
degree of parallelism and inter-connectivity seem of more
importance than the speed of the individual switching
actions. It is likely that future machines will be highly
parallel [MEA80]. The present trend is pushing the
granularity of parallelism down [HWA87].

To illustrate trade-offs between sequential and parallel
architectures consider two computers, both efficiently
implemented, using similar technology and the same amount of
silicon real-estate. One machine is Von Neumann architecture
and the other is highly parallel with simple processing
elements. The Von Neumann machine will be appropriate for
sequential algorithms. However, it is unlikely to be as

4

appropriate as the parallel machine for highly parallel
tasks requiring simple processing operations. The efficiency
of a parallel machine for parallel tasks will depend on how
well the tasks map on to the machines particular
architecture. For sequential tasks the parallel machine is
unlikely to be as efficient. The simplicity of each
processing element will make execution of the task on an
individual element complex. The sequentiality of the task
will make efficient utilisation of the majority of the
processing elements difficult, and if feasible at all, the
speed of solution will be restricted by the communications
overhead between the elements.

Arguably, any computer which has a fixed architecture must
be biased in favour of the algorithms which map well on to
it. (Thus no computer is truly general purpose.) The more
dynamic the architecture the more general it will be,
provided any overheads incurred in control and communication
are not large. In order to have an architecture which is
good for both parallel and serial problems, I propose
examination of a machine with the simplest possible
underlying architecture. This could be dynamically
programmed to emulate other architectures. The thesis aims
to show the viability of the principle of such machines.
From the outset it is clear that control and communication
overheads could be large, so such machines might never be of
practical use. The thesis will examine these overheads and

5

illustrate some trade-off benefits which can be incurred as
a result of high flexibility. This thesis also aims to give
insight into the capability and flexibility possible in
future general purpose machines. It is hoped that such
examination will give insight into future design
considerations.

1.3 TRENDS IN ARCHITECTURE

Current trends in architecture were examined, in particular,
machines which were not Von Neumann architecture.
Distinction was made between technology improvement and
architectural improvement. These factors are often related.
On a basic level, improved technology can permit more
complex architectures, an example being a decrease in
feature size, permitting faster components and higher
density. An example of architectural improvement is parallel
as opposed to sequential. Technological improvements can be
estimated long term by examining the theoretical
capabilities of materials and assuming all production
difficulties will be overcome. (For a discussion of the
maximum theoretical capabilities of silicon see [MEASO].)
Architectural innovation is harder to predict, but by

6

combining the assumptions of capability of future technology
and examining the trends in current architecture it should
be possible to obtain indications of the architecture of
future machines.

There are many alternatives to pure Von Neumann
architecture, for example, Illiac IV [51071], Burroughs
Scientific Processor [ST077], Cray-l [BAS77] [KOZ80],
Massively Parallel Processor [FUN77] [BAT80], Cyber 205
[KOZSO], Apiary Network Architecture [HEWSO], Systolic
Arrays [MEASO] [M0086], Heterogeneous Element Processor
[SMISl], NYU Ultracomputer [GOT82], Configurable Highly
Parallel computer [SNYS2], data-flow and reduction machines
[DEN80] [TRE82], Cray X-MP-2 [CHE83], Erlangen
Multiprocessor System [FRI83], Semantic Network Array
Processor [MOLS4], Reduced Instruction Set Computers
[KAT84], Geometric Arithmetic Parallel Processor [DAV84],
the Connection Machine [HIL8S] [KUN86] [HIL87], INMOS
Transputer [INM8S], CLIP [FOU8S], Hypercubes [KUN86], and
the Encore Multimax [ENC86] [LEE87]. Much of the following
work is based on an examination of these architectures and
on a recent survey reviewing the 'state of the art' in
supercomputer architecture ([HWA87]).

Generally speaking there are two approaches to parallelism.
Firstly, to have a small number (O(10A1» of very powerful
processors, as in the Cray, and secondly, to have a large

7

number (O(lOA2) - O(lOA5» of simple processors, as in the
Connection Machine or array processors. In both of these
approaches there is a high degree of regularity in
processing units, the individual processors within a machine
usually have similar (if not identical) function and a
similar communications topology. [HEW80] identifies this as
a need for both homogeneity and isotropy in an architecture
in order to simplify software so that complicated
optimisations do not need to be performed. (Homogeneity
being each processing unit appearing the same in order that
there are no distinguished locations. For isotropy there are
no distinguished directions.) Considering the first approach
of small numbers of powerful processors, closer examination
reveals more similarity with the second approach. The
powerful processors are typically speeded up using pipelines
and vector processing units. If each section in a pipeline
and each element of a vector processor is counted as a
separate processor then each of these large processing
elements can be considered to be a number of smaller
elements grouped together. A difference between these two
approaches to parallelism is in the degree of regularity.
The systems which comprise of large numbers of simple
processors are more regular.

Five basic architectural trends can be identified amongst
multiprocessor systems which have large numbers of simple
processing elements. Firstly the number of processing

8

elements is increasing. Secondly the processors have
progressively simpler functions. Thirdly processors are
tending towards a multiple instruction stream and multiple
data stream (MIMD) architecture ([AND87]) with each
processor capable of processing instructions and data
independently of other processors in the machine. There are
designs now for MIMD parallel machines comprising of
thousands of autonomous processing elements such as the NYU
ultracomputer [GOT82]. Fourthly, having a larger number of
processing elements is enforcing a simple regular
communications topology between elements. The trend is
towards a near neighbour mesh, although there are practical
restrictions as the building of a large mesh will generate
complex interconnection wiring if many circuit boards are
required. Alternative interprocessor communication schemes
in supercomputers can be seen in [HWA87], and a taxonomy of
schemes is given in [LIP87]. The near-neighbour mesh is
particularly popular in Wafer Scale Integration for the
interconnection of physically adjacent processors, for
example work see [JES86]. The mesh permits exploitation of
locality, but data movement is often limited to adjacent
processing elements [SNY82]. One consequence is that
distribution of data to a large number of elements may
require significant time. The last trend identified is that
memory is becoming more incorporated into each individual
processing element. This is because communications
bottlenecks are common when using a large global memory. In

9

a typical computer more than 90 percent of silicon is
devoted to memory [HIL87]. Distribution of the addressing of
this memory amongst a number of processors permits faster
access and a higher degree of parallelism. Doubling the
amount of silicon afforded to the processors does not
significantly effect the total amount of silicon required
for the machine since the percentage currently afforded to
processors is small in comparison with the percentage
afforded to memory. It should be possible for future
machines to have an increased degree of processing power
without significantly effecting memory capacity.

An additional issue highlighted through examination of
architecture, concerns the difficulty of designing optimal
circuits. switching theory provides formal methods for
minimising the number of gates required. Unfortunately this
does not necessarily give best solutions as the topological
properties of the circuit interconnections must also be
considered. Designs requiring more gates but having simpler
more regular interconnection topology are often faster
[MEA80]. "As switching components become smaller and less
expensive, we begin to notice that most of our costs are in
wires, most of our space is filled by wires, and most of our
time is spent transmitting from one end of the wire to the
other." [HIL8S]. Even in the simple communication topology
of the NYU ultracomputer most of the machine volume is
occupied by the communications network and its assembly is

10

seen as being the dominant cost [GOT82]. One of the problems
in the architecture of parallel computers is in the choice
of processor communication scheme [RUZ86]. For example, the
"workers" in an "Apiary" [HEW80] do not share any physical
memory but communicate by packet-switching message passing.
Passing messages of arbitrary sizes and performing complex
operations on these messages demand powerful node processors
[HWA87]. For some tasks the penalty paid for such large
processors may be prohibitive. However, flexibility is
needed in the communications network in order to enable
formation of a large number of processing elements in a
pattern best suited to the problem at hand [HIL87]. It will
be difficult to obtain such flexibility with simpler
communication processors.

Some issues in the architecture of the processors, memory
and communications schemes have been illustrated. The
section which follows will investigate future technology to
identify forms of architecture which may be favoured.

11

1.4 TECHNOLOGICAL PROSPECTS

New strategies for interconnection and architecture will
have to be devised to cope with the problems of size
reduction [BATSS]. "In the foreseeable future, short-channel
effects and the non-statistical behaviour of devices
spanning only a few tens or hundreds of silicon atoms will
require a drastic rethinking of the basic device technology
underlying most of present-day circuit integration."
[NUDSS]. Trends in technology suggest, future machines will
be much larger in terms of numbers of active devices
possible. The complexity of the DESIGN problem will
necessitate machines being constructed in a highly
repetitive manner from very simple atomic structures
[BERSS]. Uniformity is of major importance in VLSI [SNYS2].
The difficulty is that "seen from the software user, these
same machines must show a different face: they are dynamic
information structures which can be arbitrarily modified in
order to adapt them to the immense diversity of sequential
and parallel software" [BER8S]. The architecture therefore
needs to be simple and repetitive but capable of performing
complex tasks.

The component density permissible on a chip is increasing
but fundamental limits are being approached [NUDSS]. Perhaps
within a decade reductions in feature size will run up

12

against the limits of circuit technology [BAT88]. Once the
limit has been reached then increasing the number of
components on a chip will require that the chips are
physically larger. Research in this area includes work on
Wafer Scale Integration [JES86] and three-dimensional
computers such as [PRES3] [GRI84] [NUD85]. An attempt at a
three-dimensional computer can be seen in [NUD85] where
silicon wafers are stacked on each other. Although
connectivity between the wafers is poor this research
suggests that forms of three dimensional technology will be
available within the foreseeable future. [NUD85] predicted
that it would be possible to produce a working version of
his three-dimensional cellular machine by approximately
1990. Chip layering of 20-30 layers is apparently feasible
with existing technology [GRI84] [NUD85] [POR87]. The
anticipated benefits of three-dimensional silicon circuits
are, easier more systematic wire routing, shorter wires, and
as a consequence more compact circuits [ROS83]. ([ROS83]
demonstrates dramatic efficiency improvements in circuit
realisations over those attainable in two dimensions.)

An important manufacturing characteristic of cellular
three-dimensional computers is the potential for low cost
fabrication. The construction of conventional computers
involves many processes that are time-serial. Assembly of
cellular three-dimensional machines could be more parallel
[GRI84]. There are still many problems to be surmounted,

13

such as power distribution (heat) and the creation of an
apparently fault-free medium, but the trends suggest that
these problems can eventually be overcome for general
purpose architecture. The design of large DEDICATED
three-dimensional structures will be more complex than
current VLSI design, in order to take advantage of three
dimensional connectivity, because dedicated architectures
are likely to be irregular. Even with current design tools,
the production of a two-dimensional chip is an extremely
time consuming process due to the complexity of the
electrical factors. This design complexity again suggests
the need for simple regular architecture.··

1.5 SOME MOTIVATIONS FOR LONG TERM GENERAL PURPOSE
ARCHITECTURE

It has been suggested that future technology is likely to be
three-dimensional and that general purpose architectures
imposed upon this technology will be parallel. Trends in
architecture, compounded with the three-dimensional
construction complications, suggest that the machine will
have a large number of simple processing elements. Each
element will contain its own small memory and will only be

14

capable of direct communication with immediate neighbours.
Software and hardware arguments have suggested the system
needs to be simple and regular in order to facilitate
design. Increased technological complications suggest that
the design of any irregular architecture, such as a
dedicated architecture for such technology, could be
significantly more complex.

It was seen in section 1.2 that flexibility is required in
the size of the architecture's processing elements in order
to obtain high utilisation. Flexibility is required in
memory organisation to permit parallel access, if required,
and fast sequential access when parallel access is not.
Flexibility is required in the communications network in
order to permit reconfiguration of the memory and processing
elements towards the task in hand, however, the elements of
the communications system should be simple. The
reconfiguration control of a large communications system
consisting of many small communications elements will be a
complex task. This will be augmented, because only simple
processing and memory elements are available within the
machine for such control. In the event of a machine being
designed which has the flexibility suggested above, the
ability to control the architecture will therefore be of
crucial importance.

15

1.5.1 A programmable array of nand gates

It is theoretically possible to design a machine comprising
a regular programmable array of NAND gates. Conceptually,
ignoring temporal issues, the nand gates can be organised to
make any functional circuit required. The processing element
of a machine can be provided through arbitrary
interconnection of two input nand gates which can generate
all of the Boolean functions of two variables [GIB83]. A
simple memory element can be created via the interconnection
of two nand gates to form an SR flip-flop [GIB83].
Communication can be provided by chains of gates with the
unconnected input held high to make gates act as inverters.

By programming an array of gates it should be possible to
create processing elements, memory and communication paths
where they are required, to create architectures which fit
the application algorithms. The problem with this solution
is that there are still many design decisions to be made.
For example, the size (numbers of inputs and outputs) and
interconnection topology of the individual nand gates will
influence the interconnection possibilities, and hence
favour different architectures. The control of the
interconnection of the gates will be of paramount
importance. There are many possibilities. For example, the
architecture could be programmed via a mesh of busses which

16

are externally programmed in a similar manner to the way
memory is addressed, with connections being made or broken
depending on the conditions at the bus intersections. Long
busses will be slow. An alternative is that topologies could
permit a cell to be programmed by examining the state of the
cells surrounding it, raising the possibility of internal
reprogramming. A penalty is that cell complexity would
increase in order to perform this examination. The benefits
of internal reprogramming and local communication must be
considered against the simplicity of a global bus system.

The notion of a mass of programmable nand gates can be used
to conceptualise the possibilities of a machine with limited
architectural restriction. The implementation possibilities
are large and there are still many architectural decisions
which need to be made. This thesis will examine areas
requiring such decisions.

1.6 THE AIMS AND STRUCTURE OF THIS THESIS

This chapter has examined trends in computer architecture.
It has made the distinction between dedicated purpose and
general purpose machines, problems with current

17

architectures have been stated, and long term predictions
for future computers made. This thesis will examine some
possible architectures for general purpose computers in the
very long term based on these predictions.

Chapter 2 proposes a type of parallel architecture based on
the projections made in chapter 1. Components of the
architecture are, simple, homogeneous and general purpose.
The possible capabilities of such machines will be discussed
and similarities with some existing ideas and architectures
are identified.

Chapter 3 details implementation issues. A broad set of
topics are examined, as factors which now require little
consideration will become more important in future
architecture. A consequence of this broadness is that
individual topics are not considered in depth.

Chapter 4 discusses a specific design, meeting the
considerations discussed in the previous chapters. The
machine discussed is symmetrical in three-dimensions, hence,
cannot be built with current technology.

Chapter 5 illustrates this design through simulation.
Experience with programming and simulation of a
three-dimensional computer and directions for further
experimental work is given.

18

Chapter 6 presents a VLSI design for one processing element
of the architecture illustrated, to show the design's
simplicity, and the simplicity of the architecture. The
design is then utilised to obtain a projection for the
possible number of processing elements in a future
realisation.

The final chapter presents a summary and makes concluding
remarks on the validity of work done, with direction for
further work.

19

Chapter 2: Architectural Soup

2.1 INTRODUCTION

Computational problems frequently have many methods of
solution. For any rigorously specified problem that may be
solved by computer there will be optimal electronic
circuits. The closer the architecture of a computer to a
'minimum solution circuit' the faster the solution can be
found. 'Architectural Soup' is a proposed type of computer
with the capability to be reconfigured at a very low level
to, it is hoped, efficiently emulate such circuits. (The
term Architectural Soup is derived from the myriad of
potential architectures available from within the machine.)

When considered at a low level, computers consist of
processing elements, memory and wires. Consider a machine
with simple cells, which may be dynamically reconfigured to
provide these components as required. Such a machine should

20

be able to imitate the function of any feasible computer,
however, there will be differences in the speed of
individual components and in the size limitation of the
machine.

This chapter will define Architectural Soups. The
architecture of such machines will be shown to be an
extension of the trends identified in chapter 1. This is
followed by an examination of the possible capabilities and
limitations of such machines should fabrication become
feasible.

2.2 ARCHITECTURAL SOUP

Architectural Soup is a class of architectures as opposed to
any single architecture. There are many possibilities for
machines with simple processing elements which have the
capability to. emulate other machines. In order to define the
class, a basis architecture will be defined. Membership of
the class is determined by assessment of a candidate
machines ability to emulate this basis architecture.

21

2.2.1 A basis architecture

Consider a three dimensional machine consisting of a very
large number of simple cells. For example lOoxlOOx100 cells
is small. (Estimates for the total number of cells in a
future machine will be made in chapter 6.) The cells must
exhibit the properties of homogeneity and isotropy in that
they have identical function and that orientation is of no
concern. (Discontinuity problems at the surface of the
machine will be examined in section 3.4 .) The technology of
the machine must be sufficiently stable and the architecture
be such that the actions of all cells are controllable and
deterministic so that repetition of the same operation from
the same starting state will yield the same result. The
basis is not defined as having a global clock to aid in
these control issues as Soup cells could also function
asynchronously. (Synchronisation issues will be considered
in section 3.6.)

Cells in this basis architecture are cubic. Each has six
immediate neighbours, left, right, back, front, up and down.
Up and down are included in order to utilise three
dimensional space, as opposed to two dimensional. Cells are
abutted in a three dimensional complete near-neighbour mesh.
Communication is with immediate neighbours only, via a one

22

bit wide input and a one bit wide output to each abutting
neighbour.

The functionality of cells is provided by programming the
required primitives between the six inputs and six outputs
of a cell. The method by which this programming could be
performed will be discussed later in this chapter. The
functional primitives required in each cell are a wire, a
one bit memory and a simple processing element. The wire -
It should be possible to program the interconnection between
ANY input to and ANY output from, the cell. An additional
desirable characteristic of the wire function is that there
should be no noticeable degradation over a path through the
machine which consists of many such wire functions. The
memory - A memory primitive has two inputs and one output.
When the control input is signaled, the value on the data
input is stored in the memory. The processing element - This
can be provided by a two input nand gate, two input nand
gates can be interconnected in order to provide all the
possible functions of two Boolean variables [PR087] and
hence all functions of N Boolean variables. In order for the
machine to be isotropic, it must be possible to place nand
gates, memory elements and wires between any inputs and
outputs of a Soup cell. In addition to these functional
primitives, the Boolean constants 1 and 0 are required. It
must therefore be possible to program any output of a cell
to generate these constants.

23

2.2.2 Simulation and Emulation

Many machines will be capable of simulating the basis
Architectural Soup but in order to emulate it they will
require simple cells and a simple communication topology.
Based on the dictionary definition [OED33] the difference
between a simulation and an emulation, in this case, is that
an emulation is much closer to the true speed of the target
architecture. An emulator would require a very direct
correspondence to the elements and connections in the basis.
It will require large numbers of simple processing elements,
a highly distributed memory, and the capacity for fast local
communication. Consider a simulation of the functionality of
the basis machine on current Von Neumann machines. This
would not be a Soup as the quality of emulation would be
poor. Consider a machine identical to the basis, with the
exception that each cell has only one nand gate which is
positioned between left and right inputs and the front
output. Such a machine would be able to emulate the basis
architecture by programming a group of these cells to act
similarly to one basis cell. This provides routing such that
nand gates 'appear' to have the ability to be connected in
every feasible orientation. As the number of cells in such a
group will be small this architecture would consequently be
an Architectural Soup.

24

2.2.3 Why this architecture is proposed

Taking into consideration the requirements and trends
established in chapter 1, the first architectural
requirement of a Soup is that the number of processing
elements must be large. This should be fulfilled as a
consequence of the simplicity of the soup's cells and
communication topology. It should be remembered that the
simplest cells do not necessarily give the most space
efficient architecture, due to the amount of control
circuitry required. Cells which have more complex function
but require less control may permit a denser packing. Cells
with functions simpler than memory, nand gates and wires
could be considered, for example, the interconnection of
several cells'to form a single nand gate. A possible benefit
of this would be to achieve higher cell density. Control of
such an architecture, however, is likely to require more
control circuitry, and be a prohibitively complex task.

A second trend identified was that a machines individual
cells have very simple functions. The cells in a Soup have
simplicity which, in fact, renders them incapable of
meaningful computation on their own. with such simplicity
there would be little purpose in every cell of the machine
performing the same function at the same time. It is
suggested that such a machine must require both a multiple

25

instruction stream and a multiple data stream, that is to
say the third trend.

The fourth trend suggests that the communication system in
the basis has a near-neighbour mesh topology. By Soup
definition, any machine capable of emulating the basis will
require a topology close to the near-neighbour mesh,
otherwise the quality of emulation will be poor. (Due to the
simplicity of·the cells and topology, circuit switching
techniques will likely be used as opposed to packet)
switching.)

The final trend identified was that of memory being
incorporated with each processing element. In the above
architecture there is a one bit memory for each one bit nand
gate processing element. This represents maximum
memory/processor interleaving.

This style of architecture appears to be an appropriate
candidate for.three-dimensional technology. Cells are simple
and identical so permitting a simple design. For example, a
small area consisting of a few cells of the machine can be
designed in detail and used to make generalisations for a
larger machine based on simple repetition. As the active
devices are in a regular lattice, modelling of this
architecture is simplified. One of the major problems with
three dimensional machines is heat generation. The ability

26

to model heat generated in a lattice of cells will simplify
this complex aspect of design. Considering manufacturing
characteristics, it has been mentioned in section 1.4 that
manufacture of a three-dimensional machine could be
simplified by using parallelism in the manufacturing
processes. A regular array of simple processing elements
will make the Soup a candidate for such parallelism.

The flexibility aspects, identified in chapter 1, must also
be considered as motivations for general purpose
architecture. The simplicity of the Soup's cells are such
that the machine can be programmed so that processing
elements, memory and wire, are configured as required. This
provides the potential for flexibility in processing, in the
memory and also in communication. An important consequence
of this is that, theoretically, a machine with the above
capabilities could be efficient at executing both parallel
and serial algorithms. As the architecture is highly
parallel, it should be possible to reconfigure the machine
in order to emulate a variety of parallel architectures.
This could include any future alternative machine
architectures which follow the trends outlined. In addition,
due to the simplicity of the cells, it should still be
possible to reconfigure the machine to emulate serial
architectures. Penalties for this flexibility will be, the
amount of control hardware required, the overhead of any

27

unused elements within each cell when it is programmed, and
the delay incurred in programming the control circuitry.

2.3 PROGRAMMING CONCERNS

It has been shown that an Architectural Soup follows
projections of machine trends. Consideration will now be
given to the means by which such a machine could be
programmed. It is proposed that it will be possible to
program at this low level because machine trends imply this
style of architecture. The programming of the architecture
can be viewed from two standpoints, firstly as being at a
level just above that of silicon chip design, and secondly
at a level below machine code programming.

Consider the view of programming being similar to silicon
design. It can be argued that we are not yet highly skilled
at programming in this manner. However, programmers of the
Soup will be less concerned with electrical factors, such as
power distribution, than a silicon designer, as these will
have been considered before the machine was manufactured.
Programming a Soup can be viewed as nearer semi-custom VLSI
design than full-custom. (For a description of semi-custom

28

design see [HIe83].) A two dimensional realisation of a Soup
could perhaps be conceptualised as a surface of gate-array
chips which have a dynamically programmable metal layer.

[GOL8S] states that integrated circuit design is currently
in a phase similar to that of software design thirty years
ago when the first compilers became available. The target
domain for silicon compilation is complex, but as the
possible number of features available on a chip increases,
designers are more concerned with aspects of size than of
obtaining high utilisation in the previously limited area of
silicon real-estate. As a consequence the tools used by
silicon designers are now tending towards software methods
[DAL84]~ A silicon compiler described by [KEL8S] can
automatically generate self-timed circuits from a
behavioural description. CA behavioural description
specifies the input/output mapping, as opposed to the
explicit physical structure of the architecture.) Algorithms
are viewed by the compiler as having two dimensions , which
are mapped directly onto the two dimensions available on
planar chips. One dimension is used for the flow of data
through the algorithm, the other for parallelism. This
suggests that it should be possible to produce a compiler
for Soup architecture, especially given the increased
flexibility of a third dimension.

29

Alternatively, the programming of a Soup could be viewed as
programming at a level below machine code. Considering this
approach, programmers are no longer concerned with writing
programs at the machine code level. It is assumed, in the
majority of cases, that compilers will generate efficient
code. For a suitable machine code it should be possible to
generate circuits which implement equivalent function. A
compiler could then specify which circuit primitives were
required as opposed to producing a machine code. A problem
of such a system will be synchronisation. Timing
difficulties exceed all other design problems by "an order
of magnitude" [KOE86]. [KOE86] goes on to state that the
self-timed approach is capable of tackling not only the
problems of timing, but also design complexity and testing.
A penalty of the approach is increased circuitry.

A Soup can be seen to be more software dependent when
compared to existing machines since the underlying hardware
has, effectively, had less structure imposed upon it. It
follows that some of the properties sought in hardware
design will also become sought in software design. For
example, simple regular structures may be preferred in
circuit generation as repetition is likely to be simple. A
speculation is that compilers may become more concerned with
environmental. issues, such as heat generation. Heat in
silicon is primarily generated from the active devices as
opposed to wires [ROS83]. synchronisation protocols may,

30

therefore, have an additional requirement of slowing down
circuits switching frequently, so as to prevent excessive
heat production.

considering both standpoints, programming a Soup in some
form does appear feasible. This will be at a level in
between that of machine code and silicon design.

Methods of programming will now be considered. The manner by
which a machine is to be programmed will influence the
manner in which it is controlled. The following discussion
is simplified, further issues will be considered in chapters
3, 4 and 5.

2.3.1 Machines with no dynamic reprogramming capacity

Consider first a machine which can only be programmed when
switched on. This type of machine has no capacity for
dynamic reprogramming of' its architecture. Assuming the
machine is in,a receptive starting state, it is possible to
consider specifying an architecture by using a high level
language similar in form to a VLSI description. This
description can be algorithmically decomposed to generate
the necessary programs for each individual cell of the Soup.
Once the Soup has been programmed, the users perform

31

applications programming on the emulated machine. This
architecture has similarities with the properties of static
microcode, that is, remaining the same for a period of time
but having capacity to change if required. (Microprogramming
is used to implement control of a processor in a "systematic
and flexible" manner [HAY78]. It is intended to permit
tailoring of a computer to a particular problem, or type of
problem, by providing a closer interface to the underlying
architecture [ECK79]. It is argued that the extra delay from
the circuitry required to implement the microcode is offset
by the improvements in speed gained from achieving a better
utilisation of the underlying resources [ECK79].) A benefit
of this capability in Soup architecture is that a general
purpose off-the-shelf hardware unit can be purchased and
tailored, using software methods, towards the particular
environment in which it is to be used.

2.3.2 Machines with dynamic reprogramming capacity

If a Soup has the capability for its architecture to be
changed dynamically, there is the possibility for individual
applications or programs selecting a favoured architecture
from a set of standard architectures, which can be loaded as
required. The, user programming language could permit
specification of the required architecture or give hints as

32

to which architecture might be preferred, leaving the final
choice to the compiler. The compiler could then generate
code optimised towards the chosen architecture. If a Soup
permits more rapid dynamic change then changing
architectures during execution could be considered. This
would benefit tasks where the amount of parallelism varies
depending on previous results. The complexity of performing
such transformations is likely to be large, requiring an
overhead of circuitry to detect when the change is required.
A benefit would be that the Soup architecture need show
little favouritism towards individual application languages
as it could restructure itself in a short period of time to
favour others. This is similar to the properties of a
dynamically changeable microcode. For example, a microcode
capable of changing its function during execution depending
on how the algorithm is executing. The speed benefits need
to be greater than the complexity of the programming task
and the speed at which the microcode can be changed. Little
attention has been paid to microcode with such dynamic
properties to-date. Such properties will be more complex to
control. Also, microcode has been predominately used on Von
Neumann architecture machines. As the architecture of the
underlying machine remains essentially Von Neumann there is
little benefit to be gained from dynamic change. An
important difference gained by use of a Soup is that a much
higher percentage of the architecture could be changed so
such dynamic flexibility may be beneficial.

33

For the programming methods discussed, there is a trade-off
between time spent generating and loading the initial
architecture and time spent running the application on it.
For example, an algorithm can be implemented as a regular
lattice of identical processing elements or alternatively as
an irregular lattice of several different elements. The
initialisation time saved by regular design could offset any
benefit from the irregular case being closer to a minimum
solution circuit.

A particular issue which arises from an ability to change
architecture is that, historically, there has been a need
for software developed for old computers to be supported by
new models. Given that the architecture of a machine could
be specified and compiled into programs for the Soup, the
Soup would then be able to emUlate any architecture (if it
had appropriate peripherals) and hence execute old software,
although there will likely be considerable speed reductions.
This is called upward compatibility. As there is the
physical three-dimensional restriction on the building of
any future computer and a Soup has such low level emulation
capacity, it would be able to emulate any FUTURE machine
architecture (including other Soups). It will therefore have
the ability to execute software for FUTURE machines for
silicon style, technology. I term this anomaly 'downward
compatibility. Obvious problems would arise in the possible
size and speed of the machine but previously it has been

34

more important that software can be executed (in acceptable
time) rather than that it executes well. Software would gain
in portability since it could execute on more machines. For
example, applications could incorporate a specification of
the required architecture in some form of standardised
specification language. It is important to remember that it
is the specification, rather than the 'circuit programs',
which can be transferred from one machine to another. It
will not necessarily be possible to transfer circuits since
any difference in feature size or material technology
between machines will effect timing considerations. For
example, in a silicon design a component may no longer
function if it is scaled down [MEA80].

2.3.3 Highly dynamic machines

If a soup has a highly dynamic architecture then
reprogramming of applications architectures from within the
machine can be considered. This would permit dynamic
creation of dedicated architectures. An example of work done
in dynamic switching can be seen in [POR87] where the
switching of arrays, both in form and structure, during the
course of computation, is considered. [POR87] states that
"Such capabilities are desirable to cope with the
computational demands of multi-stage algorithms.". {For a

35

discussion of highly parallel dynamic systems see [HIL85].)
A simple example relevant to a Soup is that an addition
operation specified in a program can be compiled into an
adder circuit no larger than required, with the appropriate
synchronisation to neighbouring circuits. A more complex
example would be a dynamic stack which claimed and released
Soup cells as required. This introduces two requirements on
the Soup architecture, the ability to identify free circuit
space and the ability of a circuit to replicate itself into
this free space. Many additional problems will result from
having such flexibility in Soup architecture. For example,
difficulty in deciding which circuits to use (a problem
encountered in optimising compilers), although the cost of
performing these decisions could be reduced by extraction of
parallelism. The issues involved in this flexibility are
comparable with those of tailoring microcode to provide the
specifically required function, and also of the microcode
modifying itself during execution depending on previous
actions taken~

An application where such dynamism might prove useful is
neural computing. Similar features which can be identified
when considering a neural computer and a Soup architecture
are the requirements for fine grain computation with massive
parallelism, the potentially very high communication
bandwidth, and a distributed and self-organising control
mechanism [HWA87]. In particular it is possible for a neural

36

computer to program itself [ABU87]. The ability for a
machine to modify its architecture from within, it is
proposed, will be of major importance.

Work on dynamic reconfiguration can be seen in Cellular
Automata theory [COD68] [PRE84] [WOL86]. One of the original
purposes for the study of Cellular Automata was to determine
how computers could be made to reproduce themselves [PRE84].
An automaton is similar to a Soup in that it consists of a
near neighbour mesh of identical processing elements. Such
machines are identified as having the ability to, in theory,
compute all computable functions, to reconfigure other parts
of the cellular space, to reproduce itself in any quiescent,
accessible and sufficiently large region of the space, and
to emulate other Automaton. It is stated that "If an
economical realisation can be found, Cellular Automata
provide the capability of extending the computing power of a
system in small or large increments and of reorganising
these increments to suit various special needs". [COD68].
(The Connection Machine is described as a realisation of a
Cellular Automaton [HIL85] [KUN86] [HIL87]. One important
similarity with a Soup is that any single cell within the
Connection Machine is incapable of meaningful computation on
its own, groups of cells are connected together to form
"active data-structures".) A difference between an Automaton
and a Soup is that cells in Automaton are defined as
synchronised to a global clock. An Automaton is one

37

realisation of a Soup. A Soup could emulate an Automaton and
hence possesses similar capabilities. However, there could
be other realisations of a Soup where cells are not
synchronised to a global clock.

2.3.4 Discussion of programming methods

Several programming methods with varying degrees of dynamism
have now been considered. It is important that an
Architectural Soup which can only be programmed once at
switch-on, can be used in a similar fashion to a machine
which can be dynamically programmed, by configuring the
machine to emulate the dynamically reconfigurable Soup
architecture. This ability to emulate other architectures is
a crucial factor when defining a machine as a Soup. There
will be emulation penalty, but this is offset by the
frequency of use of dynamism. Dynamism must be frequently
used, or there will be little benefit gained from an
architecture which has this capacity. The additional control
would make circuits which do not require such dynamic
changes run slowly.

It has been shown that there is a range of possible dynamism
within the program control circuitry. There are many
possibilities for Architectural Soup architectures, the

38

common factor being their ability to emulate each other. A
major issue appears to be the binding time of the
architecture. The method of programming which can be
employed is affected by the quantity of architecture
specified at time of manufacture, the quantity at switch on,
and the quantity which can be dynamically changed. The speed
of change will be important in deciding the relative merits
of any dynamic reconfiguration. For a system which does not
change dynamically, a global transmission system such as a
mesh of global busses which are controlled externally, would
suffice to force cells into the required configurations.
However, as the trends in chapter 1 suggest that
communication will only be local, a global bus is unlikely
to be a good solution. Alternatively, it can be considered
that a cell (or group of cells) has the capability to force
a neighbouring cell into a required configuration, with new
circuits only being loaded into the external cells of the
machine. Such a system will be illustrated in chapter 4. A
third possibility is that a cell switches itself, depending
on past events and its environment, such as in Cellular
Automata. However, this was thought unlikely to be of
practical use for machines with such simple cells, as the
circuitry required for this function would likely be
complex.

39

2.4 SUMMARY

In Chapter 1 the projection of technology trends supported a
prediction that future technology will permit large
three-dimensional arrays of transistors. A proposed style of
architecture for such technology is the Architectural Soup.
The main properties of this architecture are that it is
highly parallel, simple and regular. An Architectural Soup
could be used for particular tasks by configuring itself at
a very low level to emulate a good architecture on which to
solve the problem. The assessment of the quality of this
emulation is difficult as it is technology dependent. It can
be argued that as machine trends are leading towards this
style of architecture, it is likely that emulations will be
reasonable. Provided that the Soup is sufficiently large it
could, theoretically, be programmed to emulate directly
(more so than current computers) any existing or future
computer. The emulation would be slower than machines that
have been emulated, due to the overheads of set up and
control that will be required for a machine with simple
cells. It is argued that this is offset by the flexibility
benefits.

The technological design of three-dimensional systems will
be more complex than current machines. with the increased
importance of factors such as heat and non-statistical

40

behaviour, it may be that in practice it will ONLY be
possible to design a system which is simple and regular. The
simplicity of a Soup's basic cells would simplify hardware
design. For example, it is easier to model a regular system.
Regularity simplifies production, for example, there is
capacity for a high degree of parallelism to be employed in
manufacture. As software becomes more responsible for
concerns which were previously architectural considerations,
the properties sought in hardware design will become more
important in software design. Software designs possessing
simple regular structure will be favoured, and it is
possible that software may become concerned with factors
such as heat.

In section 2.2 it was shown that it is possible to conceive
an architecture which is efficient for both parallel and
sequential code. The run-time efficiency is dependent on the
control over-head required. The following chapter will
illustrate implementation issues in more detail, to assess
factors requiring control, and illustrate complexities of
the future design problem. A specific example of an
architecture with a capacity for internal reprogramming will
be illustrated in chapter 4.

As the control overhead for Architectural Soup machines is
likely to be high it is thought unreasonable to design a
computer with cells at the gate level other than for the

41

interest aspect of examining a machine with such
flexibility. However as current trends project to this style
of architecture, architectures with only slightly more
complex cells than the machines described here are likely to
be practical.

42

Chapter 3: Directions of investigation

3.1 INTRODUCTION

This chapter is concerned with implementation issues. Due to
the diversity. of topics which need to be considered when
designing a machine it is not possible to perform a thorough
investigation into all design issues. It is therefore
intended to present an overview of possible directions and
issues for investigation, in particular~ to illustrate
factors which are likely to be of increasing importance in
future machines. The factors which will be examined are,
theoretical considerations, material properties, surfaces
and interface considerations, initialisation problems,

.
synchronisation, control circuitry, fault tolerance and some
alternative technology to silicon style machines.

43

3.2 THEORETICAL ASPECTS

Restrictions on the architectural form of a machine can be
established from examination of relevant mathematical
theory. Consider the manner in which the cells of the
machine can be interconnected. This will effect the number
of neighbours which can abut an individual cell. The
physical interconnection architectures which are possible
can be determined by examining the theories of compacting
solids, for example work see [TOT64] [LOE76] [MAN82]. The
number of regular polyhedra which compact together to fill
an area of three dimensional space is finite. Some examples
of such space-filling polyhedra are shown in Figure 3.1.
Consider one cell of an Architectural Soup as being one such
polyhedron. The manner by which these polyhedra abut will
determine the number of immediate neighbours a cell has and
hence limit the interconnection topologies that are possible
between cells. (The theoretical topologies possible would,
in practice, be restricted to those permitted by the
properties of the material and limitations of construction
technologies. In particular some materials may not favour a
simple cubic design, such as in the basis.)

There is a trade-off of functionality between cells and
functionality within them. The functions available within a
cell will effect the number of neighbours that a cell should

44

Q
lJJ)

Figure 3.1: Examples of space-filling polyhedra

have. For example, if a cell has a complex processing
element or a large memory it may justify a complex
communications topology. When considering routing, there are
many possibilities available from within a Soup cell. Each
cell in the basis architecture, as described in chapter 2,
has six inputs and six outputs. For isotropy, it was
stipulated that it be possible to connect every input to
every output. This is an exhaustive method of routing and so
likely to be more complex than is required. Such a system
will need extensive control to select the required
combinations from the large number of wiring possibilities
available. It should also be noted that with this system,
the cost of increasing the number of neighbours will be
relatively high due to a combinatorial explosion in the
complexity of the cell. This suggests that a small number of
neighbours will be a major design aim for an exhaustive
approach to inter-cell routing.

The opposite of an eXhaustive routing set is the minimum
routing set. This utilises the smallest number of
connections which permit communication from any direction to
any other. One possibility for cells similar to the cubic
basis architecture, would be to have each input primarily
connected to the output on the opposite face, while
incorporating the ability to redirect the output to one
other face, as in Figure 3.2. For example the input to the
left face would primarily be routed to the output on the

46

right face, but it would also be possible to direct this
output to the front face if required. If cells remain
orthogonal then information can still be routed from any
direction to any other, by connecting together several
adjacent cells to route signals to the required direction.
Such a routing system would increase linearly in complexity
with the number of neighbours that a cell has, so permitting
a higher number of neighbours before the complexity of
routing control becomes prohibitive. A penalty with a
minimum routing set, however, is that where several cells
may be required, only one is required with the exhaustive
approach. An architecture based on a minimum routing set is
illustrated in chapter 4. This architecture was chosen for
its simplicity •

..
,.. :

r --, r-- , Soup-cell
I \. I P:
I I1.__ .J: .,~ :I. __ .J r-,

I I Routing circuitry
I._.J

r --,
: "-, : r-- ,

I .' I
I ~ I

Primary path of
_. communication

Secondary path of
communication

1.__ .J
....~

..

Figure 3.2: Example of a minimum routing set soup-cell
(simplified to two dimensions)

47

3.3 PROPERTIES OF SILICON-STYLE MATERIALS

Design of silicon at approaching minimum feature size is
complex. For a detailed analysis of the properties of
silicon and the complexity involved see [MEA80] [CAR80]
[CHI82] [LIN82] [GIB83]. This design problem will be
exacerbated by the increased complexity possible with three
dimensional circuits. For example, higher connectivity would
permit smaller more densely packed components [PRES3]
[ROSS3]. This shortening of wires in circuits will
potentially make components faster. However, this will also
increase other design problems, such as the amount of heat
generated. The scale of features in cells will effect the
manner in which they are implemented. For example, as VLSI
feature size reduces, the relative time cost of wiring
increases over the cost of the switching components [MEASO].
The distinction between switching states becomes blurred due
to current leakage and imperfections [BATSS]. Smaller active
circuits have a reduced drive capability [NUD8S]. These
factors suggest that the smallest possible cell size will
not necessarily be the best. Considering manufacturing
aspects, the smaller the feature the tighter the controls
needed and the lower the yield. Not all problems will
increase in building a large three-dimensional machine. For
example, a simplification of the power distribution problems
found in Wafer Scale Integration, unlike in current silicon

48

chips, is that there is no requirement for high power
driving circuitry needed for communication between several
chips within a wafer [GRI84].

The complexity of manufacturing three dimensional devices
will influence the resultant architecture. For example, if
it is as easy to use three dimensions as it is to use two
dimensions then cubic or spherical machines can be
considered. However, if utilisation of the third dimension
is difficult then machines will essentially be only a small
number of surface layers, such as the computer described in
[NUD8S] which consists of the interconnection of a few
two-dimensional wafers.

Section 2.2.2 illustrated the ability to model part of the
machine and make generalisations, due to the regularity of
the architecture. The design of a Soup should be simpler
than designing three-dimensional machines which are based on
existing architectures, due to the simplicity of the Soup
cells and the regularity of the inter-cell architecture. A
consequence of the simplicity is that it will be easier to
design and accurately model the electrical considerations of
an individual cell. Once this has been performed,
interaction in a regular group of such cells could be
examined and generalisations made for a larger machine based
on repetition. This would be a difficult task for complex

49

and irregular architectures as such generalisation can not
be made.

3.4 SURFACES AND INTERFACE CONSIDERATIONS

The surface area of a Soup is a factor in interface
considerations as it is the point from which communication
will occur. The ratio of surface area to volume is
important. A thin film of material provides a higher surface
area to Soup cell ratio than a sphere which has a low ratio.
The optimum ratio will be determined by the speed of the
Soup cells and the input/output requirements. (For insight
into possible capability of future input and output devices
see work on highly parallel optical stores such as [ABUS7]
or [HUTS7].) If the permissible input/output speed is a
restricting factor this may limit the maximum useful size of
the Soup. This problem is compounded in larger Soups as the
average communication path from Soup-cells to peripherals
interfaced to.the surface will also increase. Input/output
intensive tasks may, as a result, take longer to execute.

The surface of a material is particularly important for
controlling the materials behaviour and properties [JAS77].

50

For example, the abrupt termination of a crystal lattice at
the surface must result in a unique arrangement of the
surface atoms. The surface of a machine is most prone to
unpredictable external factors such as electrical
interference. The surface will also be required to dissipate
heat. These factors suggest that one of the most important
areas of the machine (input/output) is also likely to be the
most unstable if designed in the same manner as the cells in
the remainder of the machine. It is therefore suggested that
cells in the proximity of the surface will require a
different design from those cells at greater depth. This
will introduce a programming irregularity. Irregularity may
be acceptable, given that a programming irregularity at the
edge of the machine is inevitable due to the discontinuity
of material. In systolic arrays this problem is solved by
routing the outputs from one side of the machine back into
the inputs on the opposite side. Examples of rings and torus
architectures performing this function can be seen in
[MEASO] [MOOS6] [PORS7]. However, this is unlikely to be a
feasible solution for an Architectural Soup due to the large
communication distance between cells on opposite sides of
the machine relative to the distance between adjacent cells
within the machine. An alternative is that the architecture
can to an extent be folded to reduce this communication
distance. For example consider a cubic Soup. The left and
right surfaces of the machine could be folded together to
form a ring, and the top and bottom surfaces could be folded

51

to obtain a doughnut shape. (It is not possible to join the
front of this Soup to the back as these are now the internal
and external sides of the doughnut.) Such a machine is
likely to be hard to manufacture due to its irregularity,
and similarly hard to interface to and program. For these
reasons the cubic machine is favoured. If it were required,
a small 'doughnut architecture' machine could be emulated on
a large cubic Soup. •

Compatibility of a soup with the machines it is required to
communicate with will be an important factor. It is possible
that communication with the outside world may suggest a
communication mechanism for Soup cells in the proximity of
the surface. This may influence the communication topology
of all cells within the machine in order to maintain
regularity. For example, a fundamental problem with
input/output devices is metastability [MEASO] [KOES6]. This
necessitates determination of whether an intermediate signal
is of a high or low value. One method of tackling
metastability problems is to use asynchronous communication
protocols, the result being that occurrences of
metastability only cause the system to slow down temporarily
[KOE86]. If such an interface scheme were adopted it may be
desirable to make the remaining cells within the Soup
communicate using asynchronous protocols.

52

3.5 THE INITIALISATION PROBLEM

The initialisation problem concerns transformation of a
machine from an initial random state into a known and useful
state. For Soups the initialisation problem can be
subdivided at a cell level. Firstly, a cell must acknowledge
that it does not contain a valid program, and secondly, it

.must accept the required program. Considering the first
problem, cells could be designed which assume an empty state
when the machine is switched on by using the initial power
characteristics. An alternative is that a cell could be
forced into an empty state by the cell's neighbour(s), and
once in the empty state the cell could force a neighbour (or
any neighbours) which are not in an empty state similarly.
Cells on the surface of the machine could be forced into a
suitable state to start this process - it should not be
complex to generate programs consisting of all ones or all
zeros in the machines surface cells, by connecting every
surface cell's program input to all high or all low input
signals as appropriate. The architecture of the machine
could be such that a cell receiving an all-ones or all-zeros
program will send a similar message to its neighbours and
then place itself in the empty state ready to receive the
appropriate initial programming. After a period of time all
of the cells in the machine should be in the empty state.
The time taken for initialisation will depend upon either

53

the speed at which cells can be reprogrammed or the speed of
input to the Soup. A system based on this will be described
in chapter 4.

There will be problems with such a start up system. For
example, in a machine which can program itself internally
there will be a risk of some initial random state, such that
the machine will start reprogramming itself. This
programming may be resistant to any start up circuitry, for
example, if it can reprogram itself faster than the
initialisation circuitry can clear it. It must be ensured,
therefore, that the machine is unable to arrange itself into
a random state such that it cannot be initialised.
Similarly, there is the possibility of accidentally
generating an all-ones signal in one cell during execution
(for example as a result of external interference) which
could result in a reprogramming of the entire machine.
Another initial problem would be if a Soup cells initial
random state is an illegal electrical state such that the
cell does not function as expected. Avoidance of this
unintended function (as with all circuits) will require
special attention when cells are designed.

54

3.6 SYNCHRONISATION ISSUES

Both the designers and the programmers of a Soup will be
concerned with synchronisation. The designer must provide
sufficient synchronisation so that the system can be used,
while programmers must generate the required synchronisation
so that applications algorithms execute in the required
manner. The boundary between the designers concerns and the
programmers concerns is not distinct. Low levels of
synchronisation are concerned with controlling the function
of an individual Soup cell and the communication between the
cell and its immediate neighbours. In current silicon design
the preferred method for such synchronisation is to
distribute a global clock signal and synchronise circuits to
this signal. However even on a relatively small silicon chip
transmission of such signals can require much complexity and
thought (see [MEASO] [YAKS5] [KOES6]). For example the clock
signal needs to be clean and sharp at all locations. The
additional complexity incurred with the size of a large and
three dimensional machine will make clock distribution
difficult, although it should be noted that the simplicity
and regularity of the machines architecture should again
serve to simplify this design problem over irregular
alternatives for such technology. A synchronous system will
likely return a low Soup cell performance since the clock
must run at the speed of the slowest cell function. For

55

simple cells the disparity between the individual elements
such as wire and memory is likely to be large. Also, as
feature sizes get smaller, the increased wire delay relative
to device delay, due to the scaling, enforces a slowing down
of a synchronous system that distributes a common global
clock. The clock rate must be reduced to compensate for
signal skew [YAK85]. Clock skew removes any assumption that
all components of a design receive the clock signal
simultaneously [KOE86]. The greater the distance between a
cell and the clock source the more skewed and degraded the
signal will become. Regions of such a Soup would vary in
stability as cells closer to a clock will likely function
more reliably. A slow clock speed is not always a major
consideration. The extensive parallelism permitted in a
three dimensional computer described by (GRI84] permits many
operations utilising relatively slow clock speeds. ([GRI84]
also notes that having a slow clock speed in his
architecture reduces power dissipation problems.) Similar
results are obtained in neural computers where a slow
processing speed is offset by the massive parallelism
possible [HWA87][ABU87].

It is claimed by [YAK85] that the self-timed design approach
is capable of tackling the problem of timing. Self-timed
circuits offer benefits in better design and possible
increased speed but may require more circuitry. For a
machine with simple cells, the overhead of implementing

56

self-timed protocols in every cell is likely to be
expensive. This suggests a need for a simple system for
synchronisation within each cell and generating all other
synchronisation through software. To illustrate the
feasibility of this approach, where synchronisation is a
major concern, see work on the automatic translation of
algorithms from a high level language into self timed
systems [KEL85] [YAK85] [KOE86].

The compromise to the clock distribution problem, to date,
has been a hierarchy of communication. [KOE86] proposes a
hierarchy of communication levels with increasingly
sophisticated· protocols. At the bottom level there are
isochronic regions, at the next level simple protocols are
used, while at higher levels features such as in local or
wide area networks can be seen. The notion of self-timed
systems, where systems are structured by the interconnection
of self-timed modules communicating without the use of a
common clock is described in [YAK85]. For example, a Soup
might have a global clock to provide signals to ensure that
small groups of cells function correctly, but as clock skew
will occur, regions are assumed to have their own
equipotential domain. Communication across two domains
requires asynchronous protocols. One particular benefit of a
self-timed approach is interfacing to the outside world,
with a reduction of metastability problems ([KOE86]). A
problem is likely to arise in uniformity between Soup

57

machines, that is, in different machines differinq deqrees
of synchronisation will be left to the software.

3.7 CONTROL CIRCUITRY REVISITED

This section aims to illustrate control possibilities. The
discussion is qeneral in that it does not aim to illustrate
any particular possibility in detail. (A specific example of
an architecture will be qiven in chapter 4.) In section 2.3
it was noted that there will be many possibilities for the
proqram control circuitry. The form of circuitry will be
technoloqy dependent but will also be influenced by the
manner in which the machine is to be used. To consider all
possible control mechanisms for all possible technoloqies it
is necessary to consider the manner by which thinqs can
chanqe. It was proposed in chapter 2 that useful inference
can be made throuqh an examination of polymorphism.
Polymorphism is seen as beinq fundamental [SNY82] since
computers can radically chanqe their function by chanqinq
their proqrams. As there are many forms of polymorphic
transformation there will be many possibilities for the
means by which a computer may chanqe its function. (From the

58

standpoint of flexibility, a general purpose machine should
support many means of transformation.)

Decisions must be made concerning the functions that should
be contained within an individual Soup cell and how the
cells should be interconnected. To provide reprogramming
capacity, it is necessary to determine, if the Soup needs to
be in a particular state in order to perform a programming
event, the number of cells required to perform programming
of another cell, and maximum and minimum numbers of cells
which can be programmed in a single programming action. On
functionality, it is necessary to decide whether cells have
continuous or discrete function. Also, communication
distance and input/output bandwidths will effect
architectural decisions and hence effect the control
circuitry. In terms of general polymorphic transformations,
this suggests'consideration of the transformations which are
possible from within the Soup, the starting conditions
required for each transformation, and the grain size and
controllability of the transformation (for example, is it
possible to stop, change or reverse the course of the
transformation). Other factors important to polymorphism are
whether there. are any chain reactions or side effects which
must be considered and the importance of local environmental
factors to a transformation.

59

Clearly there are many properties to be considered when
deciding on control possibilities. A detailed examination of
polymorphism should determine these possibilities. For
example, a monotropic transformation is one which is
essentially one way [SOX76]. This suggests a write-once read
many times medium, with the possibility of particular
architectures being permanently set into a machine if a
design is satisfactory. This is similar to programming a
read only memory. Some benefits of such a Soup would be,
reducing initialisation delay over a general purpose machine
as the architecture configuration is permanently programmed,
and provision of dedicated machines could be simplified with
an ability to program a dedicated architecture from a
standard off-the-shelf general purpose component. Much
optimisation of circuits could be justified for machines
being designed on general purpose architecture where the
intention is to create such dedicated machines.

3.8 FAULT TOLERANCE

The more faults in a machine the less efficient it will be.
Effort will be required for fault tolerance. The yield of
VLSI and Wafer Scale Integration devices decreases

60

exponentially if the silicon area required for a device
increases [8U86]. The yield also decreases if smaller
feature sizes are used for the components of the device. The
construction of a large three dimensional solid which is
fault free is probably impossible. For example, dislocations
and fractures of material often occur during manufacture and
will stay with the machine throughout its working life.
Circuits will fail over time. If these faults are transient
then they need to be tolerated temporarily. If, however, the
failures are permanent then the removal of faulty components
will be difficult, if not impossible. A key concept in fault
tolerance is that weak spots in a design need to be
identified and improved [LIPS7]. Faults can occur in any
area of the machine. Consider global transmission systems
such as a power network. A single fault can potentially
corrupt the whole system unless cells of the machine have a
degree of independence enabling tolerance against unexpected
interactions from neighbouring cells. Faults could also
occur in the control mechanism, for example, effecting the
method by which a cell becomes initially loaded or
reprogrammed. The architecture must always permit some form
of input and output otherwise it will no longer be possible
to use the machine.

One of the main fault tolerance techniques used is
redundancy. This can either be physical (replicated
hardware/software) or temporal (repeated execution) [LIPS7].

61

On a Soup, fault tolerance could be performed by software,
for example, the automatic generation of N-Modular
Redundancy circuits. ([KOE86] describes the generation of
such circuits and also illustrates applicability of
self-timed systems to fault tolerance.) The degree of fault
tolerance in an application could be varied by software
methods. An alternative is that each Soup cell incorporates
its own redundancy circuitry. A problem with this approach,
however, is that each cell needs a minimum of three copies
of its circuitry and additionally three adjudicators. As a
result the cells of the machine are likely to be
significantly larger. An alternative technique used in
hardware fault tolerance is to maintain spare areas of
circuits which may be switched in to replace an area known
to contain a faulty component. For an example, see work on
Wafer Scale Integration and array processors such as
[LIP87]. Due to cell simplicity, the maintenance and control
of areas of spares, and the extra programming complication
and communication distances which will result to communicate
across these areas, suggest that this also is not a good
solution. It is suggested that fault tolerance could be more
a software concern than a hardware one.

An interesting possibility is that an unreliable
Architectural Soup could be used to emulate a more reliable
one, although the cells of the emulated machine would be
slower and fewer in number. If the emulated machine was

62

still unsatisfactory then the emulation could be ,repeated so
that the emulated machine emulated a machine identical to
itself (except in size and speed). A recursive emulation
could be performed until a machine of sufficient reliability
is achieved. (This only applies to the functionality aspects
of the cell, as it is still necessary to have inherently
fault-tolerant power networks. A fault in this could prevent
any utilisation of any of the cells of the machine.)
Different applications will require differing degrees of
fault tolerance. One solution is to implement a system which
has little hardware fault tolerance in the cells but permits
the user to use software methods to emulate a more
fault-tolerant Soup if required.

3.9 ALTERNATIVE TECHNOLOGY

The discussion in this chapter has focused primarily on
digital silicon systems. It is possible that the cells of a
Soup could be analogue, with infinite function controlled by
a continuous voltage. The complexity of deterministic
control for such circuitry would be immense. If it is
feasible then a possible application would be in the area of
self-learning systems, such as neural networks, where

63

systems adjust to a problem over a period of time. Some
example work has been done in the area of analogue
perceptrons in [LPM87]. Note that the emulation of an
analogue system on a digital system and vice-versa has not
been examined. These are likely to be non-trivial tasks.
This suggests the possibility of there being two types of
Architectural Soup, those primarily synchronous digital and
those primarily asynchronous analogue.

Some alternative construction mediums to silicon style
materials are optical systems and biological systems.
Differences are likely in machine manufacture and
flexibility of use. Little investigation was performed into
these materials but for illustration of capabilities a brief
synopsis is given.

3.9.1 optical computers

An optical computer differs from silicon machines in that
photons are used as opposed to electrons. Optical processors
have the potential of computation far beyond the foreseen
limits for electronic processing technologies [KUN86]. For
example, it is possible to multiplex multiple information
streams simultaneously through the same transistors,
"multiple beams of light can pass through lenses or prisms

64

and still remain separate." [ABU87]. This suggests a Soup
which has multiple tasks executing in the same Soup cells
but at different wavelengths. Heat is also less of a problem
as there is no resistive heating when light moves through
conductors or channels. (Heat is likely to be a major
concern in three-dimensional construction technologies.)
This would make optical technology a good candidate for
large three-dimensional Soups. Considering the material
properties of optical components, they have the benefit of
being naturally very radiation hard but a drawback in a
tendency shatter on physical impact [KUN86]. A good example
of current work in optical computing and a possible
application to the neural computing problem of pattern
matching can be seen in [ABU87]. The possibility of a high
density three dimensional information store using optical
holography is·mentioned in [KUN86].

3.9.2 Biological computers

A biological computer uses chemical interaction. One
possible construction medium is organic semiconductors.
Memory and processors based on these are discussed in
[AND87] and [JAS77]. Individual cells of such computers are
likely to be significantly slower than optical or electronic
machines. [HWA87] gives example speed estimates for a

65

biological neuron as being lOA-3 as opposed to lOA-l3 for
optical and lOA-l6 for electronic equivalents. Some of the
main benefits of biological systems lie in its flexibility
and the generation of a three dimensional machine should not
represent significant difficulty. Liquids also have the
additional capability that component parts can be physically
moved, unlike solids where the underlying hardware cannot
move, such effects are achieved by movement of 'state'.
Liquid computers are likely to be slower due to the extra
control that will be required for the liquid properties. An
interesting possibility with regards to a Soup is that it
may be possible to increase the processing power of a liquid
machine by simply adding more liquid. Similarly, a liquid
computer would be more susceptible to the installation and
removal of the systems component parts whilst in service,
for example, for fault tolerance and maintenance purposes.
(Such physical dynamic reconfiguration whilst the system is
in service is an aim in a silicon architecture described in
[HEW80].) A wilder speculation is that gaseous computers may
be considered. This offers the possibility of an extremely
flexible system, but the sparsity of the elements will
likely make such computers prohibitively slow, if feasible
at all.

66

Given that there are alternatives to silicon style
materials, the combination of several construction materials
should be considered for future machines. For example
[HWAS7] states that we may never build a pure optical
computer. More likely is a system with electronic logic and
optical interconnects. Such a system is described by
[HUTS7], consisting of both optical and electronic elements
on a single semiconducting substrate. This system could be
applied to a Soup to provide a fast optical global bus, such
as a three dimensional machine which is primarily silicon
but has a regular optical communication system. This could
facilitate faster circuit loading and input/output, as the
surface restriction of a purely silicon machine could be
reduced. The benefits of this are offset by the
technological and manufacturing complexity of interfacing
between the two technologies within the machine.

3.9.3 Embedded computers

The environment in which a Soup is to be used may effect the
choice of construction medium. For example, consider
embedded computers which reside within the devices they
control and where the compatibility of the machine to its
environment may become of paramount importance. Materials
have many properties, for example, hardness, toughness,

67

elastic and plastic stress and strain, thermal expansion,
thermal conductivity, and electrical resistivity. (See
[VAN70] [VAN73] [JAS77] for a general examination of
materials and their properties.) It is insufficient to
consider electrical properties alone when designing a Soup
as factors such as stability, durability and ability to
manufacture the material are also major concerns. These
factors are influenced by the environment in which the Soup
is to be used~

3.9.4 Interfacing dedicated architectures

A dedicated computer should always be faster at solving the
problems for which it is intended than a general purpose
machine, due to the overhead of the extra flexibility
required to be general purpose. If certain architectures are
consistently used in particular environments it may be
beneficial to build a dedicated machine and interface it to
the general purpose Soup. When appropriate tasks are
identified they can be transferred from the general purpose
machine to the dedicated machine (and vice-versa in a
primarily dedicated environment). The compiler and operating
system have the additional complexity of deciding when it is
beneficial to use the dedicated machine considering factors

68

such as communication delay and competition for the resource
by other processes.

3.10 SUMMARY

This chapter aimed to highlight the diversity of topics
which need to be considered when designing a machine. A
consequence of the necessary broad discussion is that
individual topics could not be considered in depth. Many
factors are related so making a decision with respect to
one, influence the possibilities for another. Factors such
as theoretical restriction, properties of implementation
technology, surface and interface considerations,
initialisation, synchronisation, control and fault tolerance
aspects all require consideration. In deciding on a
particular design factor, other related factors must be
taken into account. As there are many architectural
trade-offs that may be made there are likely to be many
possibilities for future machines. The following chapters
will investigate one possible architecture in more detail.

69

Chapter 4: On the implementation of an Architectural Soup

This chapter will describe a specific implementation of an
Architectural Soup and highlights motivations for the choice
of architecture and problems identified with this
implementation. Chapter 5 will detail experience with a
simulator for this implementation and chapter 6 will
illustrate a VLSI design for one processing element.

4.1 MOTIVATIONS FOR A CHOICE OF ARCHITECTURE

It is not possible to manufacture a working Soup prototype
due to two-dimensionality and the currently limited area
with VLSI technology. A specific implementation architecture
will be proposed in this chapter and a small

70

three-dimensional machine will later be simulated. The
primary aim is for illustration purposes. Once an
architecture is designed simulation techniques can be used
to show if it is possible to program a machine from an
initial random state. If this is possible, then the
complexity of designing programs/circuits for the machine
will need examination due -to the increased flexibility over
current VLSI given by a third dimension. simUlation can also
examine some of the dynamic programming issues in order to
assess the difficulty involved. (Dynamic programming
considerations were discussed in chapter 2 and chapter 3.)
Considering the complexity of such a simUlation task,
insight may also be obtained into future simulation
difficulties in general from problems with the simulator
itself. Two-dimensional VLSI simulators require large
computational resource and it is difficult to represent the
simUlation results in a clear manner. It is possible that a
low-level simulator of a three-dimensional machine will be
prohibitively slow and the results impossible to understand.
A purpose of simUlation work is to assess what is feasible
to simulate.

Designing an architecture requires consideration of the work
detailed in the previous chapters and also for the aims
outlined above, as this will facilitate implementation of
illustration. An architecture which is simple and regular

71

will make illustration of the machines internal state less
complex.

4.2 THE ARCHITECTURE

This section gives a general description of a specific
architectural Soup architecture, followed by an examination
of each cell primitive component required.

4.2.1 General Description

The functional requirements of chapter 2 were that each
processing element in the basis Soup contained the
primitives of a wire, a memory element, a nand gate, and the
constants 1 and O. In order to design a Soup-cell using
these elements, some form of selection must be provided to
determine which outputs from the Soup-cell logic should be
routed to the inputs of the neighbouring Soup-cells. This
selection is performed using a multiplexor which is
controlled using a register called the multiplexor program
register. Applications circuits specify the required

72

multiplexor programs for every Soup-cell multiplexor within
the Soup. (An example of a multiplexor program will be given
later in this chapter.) A program is a series of multiplexor
routing definitions. For a multiplexor to become programmed
without the use of a global bus it must receive its program
from the surrounding Soup-cells. In order to do this there
is a need for some form of control unit in each Soup-cell to
supervise the loading of multiplexor program registers. A
cell in this machine will, therefore, comprise of logic,
multiplexor, multiplexor register, and control circuitry.

To examine the functional aspects of Soup-cells without the
complication of three-dimensionality, consider a cell which
has a single 'previous' cell sending information to its
logic and only one 'following' cell to which information is
sent, see Figure 4.1. such a cell will be called a
'face-cell' as opposed to a Soup-cell for reasons that will
be explained later in this section. The face-cell requires
inputs from the previous face-cell to its one bit memory and
nand-gate. In'order to decide which information should be
input to the following face-cell, the face-cell's
multiplexor must select between output from, memory, the
nand gate and also the constants 1, 0 and undefined.

Many such face-cells could be joined together to form a
string with uni-directional communication. Each face-cell in
the string would take input from its previous face-cell and

73

next
face-cell

inputs
face-cell

outputs

give output to the following face-cell. Consider the initial
loading of the multiplexor programs of such a string. It has
been suggested that cells in a Soup should receive their
multiplexor programs from the neighbouring cells. In this
architecture there is a choice of two cells (the two
immediate neighbours) from which a face-cell can receive its
multiplexor program. Loading multiplexor programs in the

previous
face-cell

same manner as the processing elements communicate will make
for a design which is easy to understand, see Figure 4.2.
This is facilitated by multiplexor programs being loaded at
the start of the face-cell string and permitted to travel
the length of the string until their progress is blocked.
Blocking may result from either the following face-cell
multiplexor containing a program or because the far end of
the string has been reached. This movement of face-cell

Figure 4.1: Simple face-cell string architecture

74

multiplexor programs along a string is controlled by the
control unit in each face-cell.

control control
signals signals

control ~ • control 4 • control

program program
register ~ register , register

inputs outputs
logic ~ logic ~ logic

Figure 4.2: Face-cell program loading architecture

A uni-directional string of such face-cells would of course
serve little purpose. Also, the architecture needs to be
extended to utilise three dimensions. In the basis
architecture of chapter 2 a machine consists of a regular
three-dimensional lattice of cubes abutting in a
near-neighbour mesh, each cube having six neighbours, each
abutting one face of the cube. A cube is termed a Soup-cell.
Consider now placing a face-cellon each face (hence the
name face-cell) of each Soup-cell, with each face-cell
communicating in a different direction. When Soup-cells are
abutted in three-dimensional space, face-cells can be
connected to corresponding face-cells in the previous and
following Soup-cells in order to form the string

75

architecture described above. Each soup-cell comprises six
face-cells, which are themselves components of six
independent face-cell strings, which communicate in six
orthogonally different directions. (This Soup-cell contains
six times the functionality required for the basis, that is
six nand gates and six memory elements.) Face-cells on the
same faces of Soup-cells are connected in strings which
receive input from the face-cell communicating in the same
direction in the previous Soup-cell, and send output to the
following face-cell communicating in the same direction in
the following Soup-cell, Figure 4.3. For example, consider a
Soup-cell at coordinate [height, width, depth] in the Soup.
It has six face-cells communicating in six different
directions. Consider the face-cell which communicates
upwards. It will take its input from the upward
communicating face-cell in the soup-cell below , [height-I,
width, depth], and passes its output to the upwards
communicating face-cell at [height+l, width, depth].

Since no communication has yet been defined between the six
face-cells in a single Soup-cell, such an architecture is
little improvement on the single face-cell string
architecture above. Three-dimensional space is now being
utilised but it is not possible to communicate from a
face-cell string to any other face-cell string, or even
backwards along the same string. Consider adding a limited
communication between the six face-cells within the same

76

............· .· .
..!.,.

: right :-+. .· .
: face·cell :·· .· .
: left : ..-4---+--+-. '.
; facHell ~··· .

Soup
Cell ·

: front : back

: face-<eU : : f.CHell :·

... :
: : ,.

i

·
• : right : --4----4-~-+:: r:

: face-cell :

............· .
: left ; ..-4---+--+-: :~
: face-cell :·· .

: front

Soup
Cell

·

............· .· .
: back

.......;::::::::: :; ~ : ;::::::::::; ~ :

: right :-+: :
; f.ce-cell ;

r:
·· .

· .. .
. .· .

·
: left "-4---+--+-: .•
: faee-<ell :

: left •4-4---+--+-: :,.
: faee-<ell :· .. .

............· .
: front

. .· .

Soup
Cell ·

: front : bad

~ f,,«ell : : fac«ell :· .. . Soup
Cell

............· .· .
: front : back

l.~~~~~.~I~.~~.~~~~~~~~.~
............· .·· .· .

t i... ~..
..!·: : . .
_____..: right : .1>. : : right :----,.. .--+---t---t -+: :

L:~~~~~~.~ L~~~:~~~~.~............· .
: left+-:
: face-<ell :

. .· .· .
: left :+-. .,-
: face·cell :· .. .

..............· .· .
: front

·

· .. .
............ . .·· .· .

. .· .· .
: back

.. .· .·· .· .

L~~~:~~~~.;L~~:~.~'~,;SOUp 1.~~~~·~~.'~)L~~~:·.c~'~.j.. SOUp
~ t. Cell ! i; ;Cell

:::: :::~:.::::::: ::;:::::::: :::::::=::: :~:::: ::::; ; ::::: ::~:::::::.:::::::::::::::::: :::::::::::::::: :: :::::: ~.:.:.:::·:·::::i :::::::::::::::::::~::::::::~
.. .

: right : ---1----1--4 ::_,. :right ~ ~~-t ~right j --I----+_-+
-+ ~'ace-cell 1 --" : : ~ faee·eell : j j : face·cell j

. .

: back : front

i

.· .. '.
j left : ~ j +- j left : :: +-; left : 4-4---+--+--. . ,-4-4---+--:: : :4-,,4---+--:: : :,-
L~~~:~~'~.; . L~~~~~~~.~ : : ;,~~~:.~~.I~.;............· .· .

: front

............ ..· .
: back : back : front : back·

SOUp L~~~::c.~I~)L~~~::c.e.I~.1:: SOUp L~~~:~.e~~.jL~~~:~.e.I~.~.. SOUp

...~.~~~ + .T. j l ~~~~ + .T. ; ; ~~~~ + J. ;

Figure 4.3: Face-cell chains (simplified to two dimensions)

Soup-cell by extending the multiplexor of each face-cell, so
that it included one more input and one more output. The six
face-cells then become connected by a ring when the inputs
and outputs are linked together. Since it is possible to

77

communicate between two face-cells. within a Soup-cell and
along the face-cell strings, it is possible from any
face-cell in a Soup-cell to communicate along a face-cell
string in any direction. By communicating through a path
consisting of multiple face-cell strings in different
directions it is possible to communicate from any Soup-cell
in the machine to any other Soup-cell, and also from any
face-cell in any face-cell string to any other face-cell
anywhere in the Soup.

The architecture of a face-cell can be seen in Figure 4.4
and in detail in Figure 4.5. This architecture will be
described further in the following sections. Figure 4.6
shows the interconnectivity between six face-cells in the
same Soup-cell, using the 'from previous dimension' input
and 'to next dimension' output illustrated in Figure 4.4 to
form the ring.

The remainder of this section is concerned with more
detailed explanation of the function of the component units
of a face-cell of this architecture, namely the face-cells
control unit, the logic component, the multiplexor, the
multiplexor's program register, and a review of the control
unit to explain how dynamic programming ability was
incorporated into the face-cells architecture.

78

prl!VIOu$cell$ next cell$

control unit control unit

< >
..............

< >: Control Unit:..............

~

...........

~

: Program ·• to M.t cells

: Register •• program regi$ter...........
!

from ptl!vioU$ dimen$lon
to next cellsr.. ·· ..· .. . memory

: L . :... : Multip ·from previous ·• oglC. • · .. to next cell$
cell$ memory • .: -Iexor :· n.ndgate.. ·....... r-----.from prevloU$ to next dimension
cl!lI$ nand gate

Figure 4.4: Simplified schematic for one face-cell

............· .· .
. '· .· .

up

f8ce·cell

front : right

: face·cellface-cell :

t
: back

: face·cell : . .· .· . ··
: down

: face·cell :·

Figure 4.6: Interconnectivity between face-cells in the
same soup-cell using 'from previous dimension'
and 'to next dimension'

79

from cell in previous dimenlion

programmer lock

CONTR08.
lock

"':." ."e·~·::::"·8
next cells

control unit

~ ~

+
Enableldi",ble

multiplexor

previous cells

control unit

...

PROGRAM
REGISTER

to next cells
program regilter

select requited mulitplexor programming

LOGIC ... ---------,---.,
I ,
IENABLE I
I ~

I
(O.'.U)~

\: :.
.'._O"_ ~
cellsmult.plexor L/

from previous dimenl'on

'----1
I
I ... to next cells

I
I
I

from prev,ou_,_~""I._~1---:lrI.... I ... to nex, cells
cell, m~ltiple"or I ,. ., I memory

L _ ~ .:~:R~M~:O~K_J_~

MULTIPLEXOR nand gate

Figure 4.5: Face-cell architecture in more detail

80

4.2.2 Function of the control unit

The control unit is essentially a simple state machine. It
can be seen at the top of Figure 4.4 and Figure 4.5. The
states permitted are, empty, full and locked. Consider first
the states empty and.full. If a face-cell is empty, this is
signaled to the control unit of the previous face-cell in
the string. If the previous face-cell's state is full then
it contains a valid multiplexor program in its program
register. The program is copied (in parallel) into the empty
face-cell. The state of the empty face-cell is changed to
full and the previous face-cells state is changed to empty.
If all face-cells in a string are empty then a program
placed at the' start of the string (an outside edge of the
Soup) will traverse the whole string length, stopping only
when the far end has been reached, the opposite outside edge
of the Soup. If a second multiplexor program then placed at
the start of the string it will only run as far as the
face-cell which is one previous in the string to the
face-cell containing the first program. By repeating this
for all strings in the machine, on all six faces of the
Soup, every face-cell may be programmed.

The control unit is also delegated responsibility for
enabling and disabling the multiplexor. If a face-cell is
empty, or if the following face-cell is empty, this implies

81

the program in this face-cell is about to move to the
following face-cell, then the multiplexor of the face-cell
is disabled. (In Figure 4.5 the control unit can be seen to
be connected to the multiplexor enable.) This prevents any
spurious output results from the face-cells during loading
of the multiplexor programs.

4.2.3 Logic

The logic component of the face-cell can be seen in the
bottom left of Figure 4.4 and Figure 4.5. There are three
inputs from associated face-cells, namely the memory input,
the nand input and the 'from-face-cell in other-dimension'
input. The memory element takes its input from the previous
face-cell, as does one input to the nand gate in accordance
with Figure 4.1 • The other-dimension input forms the
inter-face-cell communication ring within a soup-cell, in
accordance with Figure 4.6 • The other-dimension input also
serves as the second input to the nand gate.

Due to the need to disable face-cell multiplexors in the
architecture,· it was decided to use three-state (ternary)
logic ([INT87] [MUK86]) in the logic component of
face-cells. The three states used are 1, 0, and undefined.
The implementation used for this requires two physical wires

82

for every signal, namely high and low. If high-O and low-1
then the signal was a zero, if high=l and low=O then the
signal was a one, if high=O and low=O then the signal was
undefined. The signal high=l and low=l was unused. (A
similar two-rail ternary signal is described in [YAK85].)
For an example of a ternary memory element consisting of two
flip-flops see Figure 4.7. A ternary one or zero input
signal to this circuit results in the same respective output
signal. An undefined input signal would result in the output
remaining as before. Note that a signal with both high=l and
low=l would render this memory element into an unstable
state. There is a risk of glitching during transit from a
high to a low output, or vice versa, as the output signal
could temporarily be such that both high and low are 1. The
risk of such glitches occurring can be reduced, for example,
by ensuring that the flip-flops clear faster than they set,
by introducing a clock to synchronise local communication
(see section 3.6 for the difficulty involved) or by
designing the circuit using true three-state systems (for
example experimental work [INT87] examines three-state
transistors).

Figure 4.8 shows an implementation of a ternary nand gate
which gives an undefined output (high=O and low-O) unless
both of the inputs are either one or zero signals, when it
gives the nand of the inputs as the result. Similarly to the
memory element, this circuit is susceptible to glitches.

83

· s Q .. High

High - r-I'" r Q

Low
~ s Q Low

Q~ r

Figure 4.7: Asynchronous ternary memory element

High
Low

High
Low

Figure 4.8: 2 input asynchronous ternary nand gate

Low

High

84

4.2.4 The multiplexor

The multiplexor can be seen at the bottom of Figure 4.4 and
Figure 4.5. Its purpose is to route the ternary output from
the logic of the face-cell to the inputs of the following
face-cell in the string and also to the
'face-cell-in-other-dimension' input of the next face-cell
in the intra-soup-cell ring architecture. In addition the
multiplexor can route a ternary one, zero or undefined. The
undefined signal is included to provide a means of
preventing unused capacity in any of the multiplexors from
interfering with the intended programming. This can be
facilitated by routing the undefined signal to unused
multiplexor outputs when circuits are specified. Also when a
multiplexor is disabled it will give a ternary undefined
signal on all outputs.

When the multiplexor is enabled it is controlled by the
contents of the face-cell multiplexor program register. Some
optimisation has been performed on the manner in which the
program register controls the multiplexor in order to
simplify the face-cell architecture. Consider routing every
input of the multiplexor to every output. The inputs to the
multiplexor are from the face-cells nand gate, memory, the
input from one other face-cell within the same soup-cell,
and the constants 1, 0 and undefined. The outputs are to the

85

next face-cells nand gate and memory, and to one other
face-cell within the same Soup-cell. This is a total of six
inputs and three outputs. In order to route any input to one
output, a three bit binary register is required to select
from the six possibilities. For all three of the
multiplexors outputs a nine bit register would, therefore,
be required. Each output of the multiplexor will also need
six selector circuits controlled by decoding the appropriate
three bits of the register. This would require a total of
eighteen selectors in each face-cell. The feeling during the
design of the face-cell was that the multiplexor was likely
to dominate its design. The usefulness of having all inputs
was therefore examined in more detail so that optimisation
could be considered.

Consider the input to the face-cells memory element.
Connecting, a constant zero or one output from the previous
face-cell to the input of the memory serves little purpose,
as the face-cell multiplexor could be programmed to give
this one or zero output directly. Consider connecting two
consecutive memory elements together. Again this serves
little purpose as the second memory element will act as a

\
wire for the first. The useful inputs to memory are
therefore likely to be the input from the nand gate or the
input from other-dimension. (Either of these inputs could be
used to route a 1, 0 or undefined signal to the memory
element if required.) Hence in this architecture, only a 1

86

bit register is used to select between the two useful
possibilities for the memory input. Similar reductions can
be made for the output to the next face-cells nand gate and
the output to the following face-cell in the same soup-cell.
The program mapping that was used can be seen in Appendix 1.
The resultant register sizes required for this architecture
are 2 bits long in each case. The number of register bits
required to program the multiplexor has been reduced from
nine to five. Penalties paid for the lack of regularity in
the face-cell multiplexor will be discussed later in this
chapter and also in chapter 5.

As an example of a multiplexor program consider the program
'001101'. The most significant digit is zero, which
specifies that the program is a normal multiplexor
specification' as opposed to a programming or locking cell
(see later). The second digit specifies the input to the
next face-cells memory. As it is a zero, it can be seen from
Appendix 1 that the input to the next face-cells memory is
to be the input to this face-cell from the previous
face-cell in the intra-Soup-cell architecture. The third and
fourth digits are both 1. These specify the input to the
next face-cells nand gate, and in this case the input is the
output from this face-cells nand gate. The fifth and sixth
digits are 0 and 1 respectively. These specify the output to
the next face-cell in the intra-Soup-cell architecture, and
in this case are the output from this face-cells memory.

87

4.2.5 The program register

The multiplexor program register is six bits wide. (A full
explanation of the mapping used is given in Appendix 1). If
the most significant bit of a program is a zero then the
remaining five bits are used to program the multiplexor as
described in section 4.2.4. If the most significant bit is
set then the cell can perform special programming and
locking actions. For example, one special program is 111111,
which traverses a face-cell string emptying all cells as it
goes, and continues until either the far end of a string or
a locked cell is reached. (An 'all-ones' program is detected
by "AND"ing together all of the bits stored in the program
register.) If a locked cell is reached then the lock is
cleared and this face-cell is left in the empty state. This
permits a Soup with cells in an initially random states to
be initialised by the input of a stream of all-ones messages
on all external face-cells of the machine. All face-cells
should eventually be forced empty.

88

4.2.6 The control unit revisited

In addition to the full and empty states, the control unit
has a locked state. Face-cells have two additional outputs
which float to undefined if the most significant bit in the
program register is a zero. If the most significant bit is a
one then the face-cell can be used to lock or program, see
Appendix 1 for the program codes used. The lock and program
outputs are used to permit dynamic programming and can be
used to control another face-cell within the same Soup-cell.
For simplicity it was decided that the controlled face-cell
would be the same cell that followed the face-cell in the
intra-Soup-cell ring architecture already described. See
Figure 4.9 and the top and bottom of Figure 4.5 for the
locking topology used. A use of locking a face-cell is that
a program in a locked face-cells program register will not
move further along its string if the face-cell following
becomes empty.

Cells may also act as programmer cells. A face-cell forced
to act as a programmer effectively rotates up its program
register one bit resulting in the least significant five
bits becoming the most significant five bits for a new
program for the face-cell which follows it in the string. A
new least significant bit is generated using the
other-dimension input, a transition of undefined to 1 or 0

89

. .. .

up

face<ell

front :

face<ell :

: right

: face<ell

t.............· .· .
............. .

: facHell :·
f-.-..... 1 down 1 ~

: face-cell :

: back

lface<ell :

.
key

X --... x can lock y and
y x can 'reprogram' y

Figure 4.9: Face-cell locking and programming topology

on this input generates the programming event. A programmer
face-cell forces the next face-cell in the string to accept
the new program by means of a 'new program' signal from the
control unit, see Figure 4.10. By abutting six such
programmer cells a new six bit program can be generated, see
Figure 4.11. Note that there is a potential problem in
locations along this programmer chain as it would be
possible to accidentally generate an all-ones program, which
would then travel through the following face-cells and empty
them. This is avoided by designing the control unit such
that all all-ones messages are ignored when a cell is acting
as a programmer.

90

next face-cell
in stringface-cell

Aetas a
programmer

new program

controlcontrol

;'b"';· .· .· .program

=1l
:a ::b:· .· .
.c ::d:
~e ~
~f ~· .

: c :
:d:· .· .
~e ~
: f :· .· .
~X :

X

(from previous dimenSion; ~

logic logic

Figure 4.10: A face-cell generating a new program for the
face-cell following in the string

face face face face face face face
-cell -cell -cell -cell -cell -cell -cell
1 2 3 4 5 6 7

';a........ ~ ';a........ ';a. ';a........ ';a.......
: control -+ : con trot : ecntrol : (ontrol : control -+ : control -+ control--+ --+ --+

~0 ~
~0 ~
: 1 ;
: 1 :· .
: 0 :
~ t ~· .· .

100ic

Figure 4.11: An example of the generation of a new G-bit
mutliplexor program

91

4.3 IS THIS AN ARCHITECTURAL SOUP?

The definition of a basis architecture for an Architectural
Soup was given in chapter 2. Two of the main properties are
seen as being homogeneity and isotropy. The cells of this
architecture are homogeneous in that they are all identical.
As each Soup-cell is functionally identical irrespective of
which face-cell is being examined and the Soup-cells are in
a regular lattice, they also exhibit isotropy. A requirement
of the basis was that it was controllable and deterministic.
This will be illustrated through simulation work in chapter
5. The Soup-cells in this architecture have the same
inter-cell communication topology as the basis, i.e. six
immediate neighbours abutted in a cubic near-neighbour mesh.
Each face-cell contains the required primitives of, a wire,
a one-bit memory, a simple processing element, and the
ability to generate the constants zero and one. As each
Soup-cell consists of six face-cells, it has in fact the
required functional primitives of a basis cell six times
over.

A Soup-cell in this implementation does not have the ability
to place its functional primitives between any of the inputs
to the Soup-cell and any outputs as required. There are
restrictions within the Soup-cell as to which outputs it is
possible to route data to. However, by combining a few of

92

these implementation soup-cells a cell with the required
functionality in intra-cell routing could be emulated. As
the penalty of such emulation should not be significant this
architecture is an Architectural Soup.

4.4 ARCHITECTURE SUMMARY

A face-cell is a simple processing element consisting of
logic (a nand gate and a 1 bit memory), a multiplexor, a
program register and a control unit. A Soup-cell contains
six independent face-cells which communicate in six
different directions. These face-cells also have limited
communication between the other five face-cells within the
same soup-cell. A Soup is a three-dimensional lattice of
Soup-cells which have been abutted such that the face-cells
in the same orientation lie in long straight strings which
stretch from one side of the Soup to the other.

The control unit of a face-cell can be in one of four
states:, empty, full, locked or programmer. A face-cell's
control unit is in the empty state if the multiplexor
program register does not contain a multiplexor program.
Conversely, a full state denotes the presence of a program,

93

unless the face-cell is in the locked or programmer states.
If a face-cell is locked then its program (and all programs
behind the locked cell in this face-cell string) is unable
to move further along the face-cell string. Locks can only
be cleared via an all-ones program. If a face-cell is in the
programmer state then it is controlled by another face-cell
within the same Soup-cell, in order to generate new
face-cell programs. This new program is generated from the
current program's five least significant bits shifted up one
bit, and the other-dimension input generating a new least
significant bit. Programmer cells will typically be used in
blocks of six in order to generate the six bits required for
a new multiplexor program.

A multiplexor program is a six bit program specifying which
inputs to the face-cell should be routed to the face-cells
outputs. An all-ones program is a special multiplexor
program used for deleting unwanted multiplexor programs. An
all-ones program will travel along a face-cell string and
place each face-cell into the empty state. It will only stop
travelling along the string when either the end of the
string or a locked face-cell is reached. If a locked cell is
reached then the lock is cleared.

Ternary Soup Logic is three-state logic which is used in the
logic component of a face-cell. It has the traditional 1 and
o of binary logic and an additional undefined signal. One

94

particular use for an undefined signal is to provide a means
of preventing any unused multiplexor capacity from
generating unwanted output, which can interfere with other
face-cells.

4.5 ARCHITECTURE ASSESSMENT

considering topics of previous chapters, it can first be
seen that the Soup architecture described can be programmed
from an initial state through repeated generation of
all-ones messages. The probability of the system being in a
state from which it can not be initialised, as discussed in
section 3.5, is small, and could be further reduced by
making the restriction that all face-cells are forced into
an empty state when the machine is switched on. The loading
process is deterministic in that programs stay in the same
order within their respective face-cell strings. It is
possible to communicate from any face-cell to any other,
although doing so will restrict the functionality of the
face-cells along the communication path, as some functional
capacity of the intermediate cells will be required for this
path. An example communication path might be constructed out
of a string of nand gates. Cells along the path would
therefore lose the ability to use their nand gate. There is

95

an element of dynamic programming capability in the
architecture as described in chapter 2. (In the event of a
face-cell program moving, the contents of the one bit memory
does not move with it. The significance of this has not been
examined).

The intra-Soup-cell architecture meets the criteria of
chapter 2 of regularity and no global bus. Consequently it
generalises for different face-cell interconnection
topologies such as different compacting polyhedra as
discussed in chapter 3. For example, an architecture could
have only five face-cells in a Soup-cell, which are
similarly connected to each other as a ring. For such an
architecture it would be difficult to place face-cell
strings in straight lines, as the Soup-cells would be
pentahedral as opposed to cubic.

Before undertaking any simulation some design restrictions
in the architecture can be identified. Firstly, there are
problems with a string type architecture. The speed of
program input to a string is restricted by the speed of the
strings slowest elements. This should not be significant as
all of the cells are identical but it emphasises the
importance of the constructional difficulty of aiming for
regularity throughout the machine. Secondly, the time taken
for a circuit to stop moving is dependant upon the length of
the string. For example, when a program is input to an empty

96

string it must travel to the end. For larger Soups the time
taken for a program to traverse the length of the string
increases. Considering implementation issues, despite some
optimisation, the size of the program register is still
large in comparison to the size of the logic component of
the cell. This suggests having a greater logic component in
a face-cell, such as more nand gates or a larger memory. One
possibility would be to have several replications of the
functional elements using the same program register, but
having different connection topologies to neighbouring
cells. This would have the penalty of further complexity of
programming, in addition to the increased complexity
resulting from optimisations performed on the program
register. There is some unused capacity in the program
register which could perhaps be used, see Appendix 1. For
example, it can be seen that there are several methods of
obtaining the output from the nand gate of a face-cell. It
is thought that there is likely to be much capacity for
improvement in this multiplexor architecture.

There is a fault in the dynamic aspect of face-cells,
concerning the mobility of circuits in the architecture.
This prevented significant investigation into the ability of
such machines to reprogram themselves using circuits
dynamically created within the Soup itself. Consider an
individual Soup-cell. It contains six face-cells with each
having its own multiplexor program. If all the face-cells in

97

the six soup-cells abutting this Soup-cell are empty then
all of the face-cell programs will move. The problem
essentially is that each program will move in a different
direction and to a different Soup-cell. For example, the
right face-cell program will move to the Soup-cellon the
right while the left face-cell program will move to the
Soup-cellon the left. The intra-face-cell communication
then has no meaning as the six face-cell programs are in six
different Soup cells, see Figure 4.12. This suggests a need
for some form of "directional" element in a Soup-cell to
control the direction of motion of face-cell programs. This
is not possible with the string architecture defined as the
direction is inherent in its architecture.

Considering use of such a machine, there would likely be the
requirement that if more than one task is executing within
the machine, they do not corrupt each other. Unfortunately,
with the current architecture this could happen. For
example, a program which continuously generated all-ones
messages could eventually reprogram the whole of a string,
despite the possibility that part of the string might be
being used by another task. This suggests having two types
of lock, a user-lock and a system-lock. Users would not be
able to set a system-lock, and a user-generated all-ones
program would not remove this system-lock. The system-lock
would be used for restricting tasks to regions within the

98

D
DDD

D 0-1 D
0 4 [!] 0OD ~~ DO

Bl (a) Initial state with all
surrounding face-cells empty.DD The arrows indicate the
direction of motion of the
multiplexor programs.

0
0D~

I 0 D 0
[!] 0 0
DD DO DO

D
D (b) Face-cell programs

have moved to different

~O soup-cells.

Figure 4.12: Illustration of the dynamic reprogramming problem
(simplified to two dimensions)

Soup, and only cleared by an appropriate system-alI-ones
message which can not be generated by a user task. In the
event of the system wishing to move a task it could
temporarily clear all user-locks and then reset them on the
new destination being reached.

Finally, consider the fault tolerance issues discussed in
chapter 3. Although no fault tolerance circuitry is
incorporated into the architecture there is capacity for
it's inclusion. For example, the detection of a high=l and
lowal on any ternary signal must indicate a fault. A problem
with string architecture is that in the event of a face-cell
being irrevocably damaged there is a potential for all
following face-cells to become unusable, due to
inaccessibility. with the architecture described it is
possible to use these face-cells. They are reprogrammable by
other face-cells via the internal other-dimension
interconnect, as the source face-cells for the reprogramming
input are in different face-cell strings. However, this will
be a complex task.

100

Chapter 5: simulation work

Ideas of previous chapters were illustrated through
simulation. The simulation environment will be described.
This will be followed by detail of the programming examples
used to demonstrate the feasibility of the architecture,
including justification for the choice of these examples.
The work of this chapter should be read in conjunction with
the material contained in Appendix 1 to Appendix 5. Results
from this work include a critique of the simulation
environment and of the specific implementation of Soup
architecture. In light of this, suggestions for further work
are,made.

101

5.1 SIMULATION ENVIRONMENT

The simulation environment can be seen in Figure 5.1. This.
can be considered as four units, namely, the generation of
an application circuit description to be simulated, a
preprocessor to translate the description into suitable
input for the Soup, the simulator itself, and graphical
display of results. An overview of each of these sections
will be given.

5.1.1 Circuit description

Circuits were described by means of Pascal procedure calls.
A representation of a Soup which comprised of a rectangular
array of cells was first initialised blank. The choice for a
rectangular Soup was made taking into consideration the
Pascal array data structure. (There are many alternatives to
a cubic machine.) Each Soup-cell was represented by six
face-cell multiplexor registers. It is these face-cell
multiplexor programs that are defined through Pascal
procedure calls to describe a circuit. The definition
procedures provided permitted specification of each
component in the multiplexor architecture, this having been
described in section 4.2.4. The procedures are documented in

102

Figure 5.1 - Simulation Environment

~
~ %include /

soup
input processor

soup- face
input processor

SOUP
SIMULATOR

(Nel.Turing) output.gks

(Ncl.Cheviot)

(Ncl.Graphics)

photo
(GKS front end)

Appendix 2. When the required circuit has been defined,
remaining capacity in the multiplexors was padded out by
circuitry likely to have low distractional effect to the
qraphical output method described in 5.1.4. The algorithm
used to perform this was to attempt to route an undefined
signal to any undefined face-cell outputs, although this was
restricted by the capability of the multiplexor design. For
example, the to-other-dimension output of any face-cell
could be directly connected to a ternary undefined signal if
the output was not being used. other multiplexor outputs
could either be connected to the from-ather-dimension input
or the previous nand input. A nand output could be undefined
if either of its two inputs were undefined. The procedure
used for performing this function can be seen in Appendix 2.

The relationship of the circuit description to the
simulation environment can be seen at the top of Figure 5.1,
circuit descriptions specified in a user-routine
incorporated into a Pascal program, which in turn contained
the library routines. The resultant program was compiled and
then executed in order to generate a three-dimensional
complete array of face-cell multiplexor definitions, each
Soup cell being represented by six triplets. Each triplet
describes the multiplexor program of one of the Soup-cells
face-cells. As an example of a triplet consider NMl. From
Appendix 1 it can be seen that the first character, N,
defines the output from this face-cell to the memory element

104

of the next face cell in the string to be the output from
this face-cells nand gate. The second character specifies
the output to one input of the following face-cells nand
gate, and is the output from this face-cells memory in this
case. The third character specifies the output to the
intra-Soup-cell communication architecture (see section
4.2), and is a constant 1 in this case. other examples of
triplets can be seen in part 1 of Appendix 5 and an
explanation of their meaning is given in Appendix 1. The
Pascal library can be seen in Appendix 2 and the
user-routines for the examples shown later in this chapter
can be seen in Appendix 3.

5.1.2 Preprocessor

The Soup input processor took as input the circuit
description array described in the previous section. This
preprocessor translated the face-cell multiplexor triplets
to the required six bit face-cell programs, the mapping is
given in Appendix 1. For an example of such translation
consider the face-cell multiplexor stub HMl which was
described in the previous section. The preprocessor takes
this stub and converts it into the corresponding binary
program which is suitable for input to a face-cell string.

105

From Appendix 1 it can be seen that in this case the program
would be 010100.

One restriction of the Soup architecture is that in order to
load a new circuit description into a Soup, input for a
string of face-cells must occur at the start of the string.
Each Soup-cell consists of six different face-cells, each
face-cell is in a different face-cell string. As a
consequence the input data for a Soup-cell has to be input
from six different external faces of the Soup. For this
reason the output of the input processor was the circuit
array broken down into the appropriate order for external
input to the faces of the Soup. The format of this output
can be seen in part 2 of Appendix 5.

5.1.3 The Simulator

The simulator treats each individual face-cell within the
Soup as four separate components; logic, multiplexor,
control and program register. If a component's state
changed, events were scheduled in the other components of
this face-cell, and appropriately in any components of
neighbouring ~ace-cells which might be effected. (For
simplicity, the component units relative speeds were assumed
to be approximately the same.) The three-dimensionality of

106

the architecture to be simulated enforced a major
restriction in the maximum possible simulation. The maximum
size that could be represented on the computing facilities
available was a 60 by 60 by 60 Soup-cell machine. This size
had to be further reduced during simulation due to the
requirement of memory to maintain a large event list.

The simulator could be controlled at a low level through a
command language. Explanation of the simulator commands are
given in Appendix 4. For example, it was possible to step
though a number of individual simulation events and at any
point examine the current state of the event list.
Throughout this process it was possible to examine and
"photo" part of the current Soup state, or obtain a more
detailed description as to the state of any individual
Soup-cell if required.

The circuit descriptions from the input processor were
entered directly into the first cell of the appropriate
face-cell strings. This avoided interface considerations.
The period frequency between two consecutive load events to
the same string was defined to be significantly greater than
the duration of any other event in the simulator. This
ensured a multiplexor program which was loaded first would
move along the face-cell string before the next program was
input.

107

5.1.4 Graphical display of results

One particular command available during a simulation was
that of taking a snapshot of the memory elements contents in
one region of the simulated Soup. When the simulation was
complete these 'photos' were exported to a machine which
possessed graphics capabilities. A display program plotted
the photos by drawing an outline box for a memory element if
it contained a 1. No box was drawn if the memory contained a
zero. The position of this box was drawn relative to its
position in the Soup, the three dimensional position in two
dimensional space was calculated using a cabinet projection.
Memory elements for face-cells which communicated in
different directions were drawn in different colours. For

I

example, if a face-cell communicated upwards and its memory
element was set then a box was drawn in red. Example output
from the display program can be seen in Plate 5.1 • The top
portion of this Plate illustrates the use of different
colours to show the direction of face-cell communication.
The six different coloured boxes overlapping at the top of
the Figure show how a single Soup-cell would be displayed if
all six of its face-cell memory elements contained a 1. The
bottom half of the Plate shows a Photo of a random Soup,
such as might be observed when a Soup was switched on. The
time stated at the bottom of each Photo is the total real

108

. .
,Illustration of direction of communication in face-cells

/ /
L /"

l> i:"

-- _/

, V /

.< 7'

T ~
L. 7'

~ ~ ~ ~ ..
----7

, ,7

/~
~- ~
L _.7

~~~~

L ,7
v-

L 7

Plate 5.1 .

Photo of a random Soup

~

.fJ___I'rt-. .. VJ J ~

I'll ,,/

• n (~ ~"..,.JJ.~ .
~7'J? .-,

i

0
- ...r.

c. -:::;::>' , ::lI - I ,.____ I'"
~~~ . -.-

t ,... l-
~

~ - 7-L-~E ~ '" -
Lt

~~
P-! ett . - 7Ei!=:JI

.,...1 ' I :=:; --:7.
. ~ .

L-t--:7.£.:.. .
IZ Ulj II 1

.~
-it ~I

-I '::1 .r UI. II .. lA [I .. -I ' ... JY~.~t1 n 'T ' .It,

II- I 1/~V lE=::1-. III
1- -:

1

simulation time to the Photo being taken. In this case, the
initial state, this is o. The times are elapsed times taken
using one processor on a lightly loaded Encore Multimax.
(See [LEES7] for a description of the system, note that no
use was made of the machines multiprocessing capability.)
Percentage processor time afforded to the simulator rarely
dropped below 95% thus the elapsed times can be used as
indication of real processor "time, hence the computational
complexity of the simulations. To the right of the time is a
box containing six arrows. The direction and colour of these
arrows corresponds with the directional information in the
diagram in the top half of this Plate. The arrows also serve
to show which face-cell information is being displayed. For
example, to reduce the amount of information displayed to
aid illustration, it may be desired to display only the
upward communicating processors, the up-arrow alone would be
drawn in this box. To the right of these arrows are the
height, width and depth of the region of a Soup being
displayed, given in numbers of Soup-cells. The final digit
at the right-hand side is a Photo index, in the eventuality
of there being a sequence of Photos related to a particular
simulation.

110

5.2 PROGRAMMING EXAMPLES

The aim of the simulation work is to illustrate ideas of
previous chapters. In particular to show that it is possible
to program an Architectural Soup, that it is possible to
program at such a low level, and to program with the extra
flexibility of a third dimension. The simulations performed
include; an illustration of loading, an illustration of
external reprogramming of the machines architecture, a
parallel edge detection, and finally, dynamism through
internally generated reprogramming. The program definitions
associated with each of these examples can be seen in
Appendix 3. This Appendix illustrates the level at which the
machine was programmed.

5.2.1 An illustration of loading

This first example aims to show that from an initial state,
with random memory elements and all face-cells containing no
program, it is possible to load programs into each face-cell
which clear all memory elements. (The assumption that all of
the face-cells program registers can be initially forced

111

into the empty state is inherent in the face-cell
architecture design. This would be achieved through
generation of a continuous stream of all-ones programs to
every face-cellon the peripheries of the soup.) The initial
random state is shown by the Photo at the top of Plate 5.2 •
Only the up, down, left, and right communicating processors
are drawn (two arrows are missing at the bottom of the
Photo). This is to make the photos clearer. What is
happening in the processors drawn also happens in those not
drawn.

The circuit consists of a three dimensional array, routing a
zero to every face-cells memory element. The circuit
description is Appendix 3.1 • When a face-cells program is
input from the edge of the Soup, it will travel in a
straight line along the face-cell string until reaching a
face-cell that is either full or the opposite edge of the
Soup. obtaining a zero for input to a memory element
requires two face-cells to be programmed, both at the same
coordinate height width and depth, but in different
face-cell strings. In the majority of cases it will take
different times for the two face-cells programs to load to
the required location. For example, one of the face cells
might be input from the left-hand side and the other from
the bottom. It is only when both programs arrive at the
required location that both multiplexors will be enabled and
the zero generated. The input to memory is undefined until

112

-Plate 5.2

Illustration of loading: In~tial random state

1T-+ l+-

Illustration of loading: Partially completed load

2T-

this point, it will then be set to zero and the memory
cleared.

The loading process can be seen in the Photos at the bottom
of Plate 5.2 and the top of Plate 5.3 • The first Photo is
part way through the load, whilst the second is completed.
The memory elements in the final image which still contain
ones are at the start of strings ie. the face-cells have no
predecessors and hence have had no input to their memory
elements.

Since it has been shown that it is possible to set all of
the memory elements to zero, it will be assumed that all
memory elements are initially zero in the following
examples. This assumption was made to decrease simulation
effort.

5.2.2 Inverting wires

This example aims to show two points. Firstly that a more
complex circuit can be loaded and secondly to give
understanding of the output format. A wire was simulated as
a series of nand gates, see Figure 5.2 • It can be seen from
the figure that at each stage along the wire the input will
be inverted. The output from each stage is routed to the

114

Illustration of loading: Load complete

o 0

I+--...

Inverting wires

/' -:

~ ~~~~~~~~~~

-: -:
lime: 0:41 :15 T~ 1+--/ W 1

7 1soUP 19

Plate 5.3

3

•••• 00 •• 00 0 00 •••• 0 O. 0 0 •• 0 •• 00 00 •• 0 •• 0.... • •••••••••••••• 00 •• 0 ~ 0 ••• 0 •••••.•••••••••• ~ •••••••••• O. 0 ••••• O. ~ ••••••••••••••• 0 •••••· . .· . .·-~D
Input
image

. . .
••••••••• 0 •••• 0" ••••••• 0 •••••• 0 •••••••••••••• O. O ••••••••• 0 ••••••• 0 ••• 0 ••••••••••••••••••••••••••••• 0... 0 ••••••••••••• O' 0 ••••

Figure 5.2: The inverting wire example

input to the next nand and also to the input of the next
memory so as to display the result at each stage. Results
can be seen in the lower Photo on Plate 5.3 • A 3 by 3 bit
array of data was used for input. This can be seen on the
left-hand side of the Photo. The 'wires' ran through the
face-cell processors which communicate to the right. The
input array can be seen to invert at the first stage of the
wire and then invert back to the original at the second
stage. In total there are five inverted stages and five
non-inverted stages. The wider gap which can be observed
between the input bit array and the first memory elements
along the wire (on the left-hand side of the Photo) can be
explained through examination of the interconnect topology.
This is illustrated in figure 5.2 •

The first observation that can be made from this simUlation
is that it has been possible to deterministically load a
specified circuit, albeit a simple one. Secondly, all of the

116

face-cell memory elements are being drawn (all six arrows
are displayed at the bottom of the Photo), and no memory
cells have been displayed other than those expected, hence
the circuit padding algorithm has not interfered with the
display in this case. A third observation is that no
multiplexor has become enabled before the programs have
reached the required destination along the face-cell
strings. This would have resulted in other memory elements
becoming set. A significant saving in simulation effort was
achieved in all of the following simulations by making the
assumption that a face-cells multiplexor will not become
enabled until both its predecessor and successor in the
string contain a program.

5.2.3 External reprogramming

This example aims to show that it is possible to route
information in directions other than a straight line, to
completely reprogram the Soup externally, and also that
information in memory elements is not lost during such a
reprogramming operation.

The Photos in Plate 5.4 correspond to the initial circuit.
The bottom Photo is drawn with the same data as the top but
with the central portion removed. Essentially, this circuit

117

External reprogr~mming: 'B' copied front, back and right

Plate 5.4

1
Simplified version of above

1

is similar to the inverting wire example with the input bit
array (the B on the left) being copied to the right-hand
side of the Soup. Information is also routed towards the
front and back face-cell strings along a diagonal in this
routing area (see Figure 5.3 (a». Information is then
similarly wired to display areas at the front and back of
the Soup (areas 4 and 5 in Figure 5.3 (a» •

..:............................ 5.:<)..~(---..,.;_....,.....,

(a)
: ~.'

." :.:
. ~.. ,' :. : :

. ">::c::i::: \!: ::0.: :.0:":: :
~~;; ::::: i: V;.::.. + :..:

(b) 7

1. Input image
2. Routing area
3,4,5,6,7. Copy NAND output to memory

Figure 5.3: The external reprogramming example

The circuit loading for this example took 15 minutes, real
time, to simulate. The Soup was then emptied by placing a
single 111111 program in every face-cellon the periphery of
the Soup. One all-ones message is guaranteed to empty all

119

multiplexor programs in a face-cell string as all cells are
in the full state, none having been made locked. The Photos
in Plate 5.4 correspond to the memory elements after the
reprogramming has taken place. The memory elements have
retained their contents despite all face-cells now being
empty. (In the top photo in Plate 5.4 a few downward memory
elements have been set. This is as a result of the padding
algorithm.)

A second circuit definition was then input to the Soup. The
results of this can be seen in Plate 5.5 • It is similar to
the first circuit except that the bit array is now copied up
and down as opposed to left and right, see Figure 5.3 Cb).
The B's remaining in the final image were from the initial
circuit. The second circuit does not use these memory cells.
consequently they are padded to undefined inputs. This
results in their contents remaining the same.

5.2.4 Edge detection

This example shows a parallel combinational logic task. The
input image was a 2-D array of pixel information, a pixel
being either 1 (set) or 0 (clear). The edge detection
algorithm used compares each individual pixel with its four
immediate neighbours. If a pixel was set and any

120

'Plate 5.5

IExternal reprogramming: 'A' copied up, down and right

2
Simplified version of above

2

neighbouring pixels were not set then the pixel was on an
edge. The circuitry for this algorithm is in two sections.

Firstly, a circuit to perform a one bit edge detection. By
examining the central pixel at a location and its four
neighbouring pixels, a circuit was derived to perform the
above algorithm. Naming the central pixel as X and four
neighbours as A, B, C and 0, the following gives the result
1 if X is on an edge :-

(X nand (A nand B » nand (X nand (C nand 0 »

Placing one such circuit for each pixel of the input image,
the second problem is to route the pixels pertaining to the
input image to the appropriate inputs of these one bit edge
detectors. The routing required can be seen at the right of
Figure 5.4 • If a pixel was on the outside boundary of the
image, a zero would be routed in place of the missing
neighbour information. The resultant circuitry for a one bit

\

edge detector was 3 Soup cells high by 3 wide. The input and
output images were therefore spaced accordingly.

Results can be seen in Plate 5.6 and Plate 5.7 • Plate 5.6
shows a simple triangle edge detection. The bottom Photo was
drawn utilising the same information used for the top Photo.
The central information is removed to show the input and
output images only. Despite the smallness of this image, it

122

Plate 5.6

Edge detection:, Circuit

1
Edge detection: Extraction of input and result

- 1

~ 0

o 0 0 o ~ 0
000 0

o 0
o 0

0
o 0

0
0

000 0
0

o 0 o ~

0

Plate 5.7

Edge detection: A more complex image

o
Bor;

§DDDD§
D 0DOO[]fJO

[] ro
B
°

000000o 0

§ B::B §
o 0onOOfJO

H 1 53
~ 1 M 1

Figure 5.4: The edge detection example

, _"f9;
; r72
ED.
1 re
ED.
l f
ED. f
iC71LY:.: :..'

1 2 3

' ••••• 0 .,

0'": ,0':

.' ".~

.C]t__j). .
0
0
'" :

.' ,0 :

BJBil jC7I jEb~fjj
jl jC7I ~

Eb.~~11/B. ..····....
~.,LJ) .
:.: : .

b

..
: : x:
~ :
'A: b

a "~ x:............ x: e

....
: .

: E :.:
........................ .

. d .

Pixel routing for a
, bit edge detector

4

1. Input image
2. Routing circuitry
3. 1bit edge detectors
4. Output image

is hard to interpret the top Photo. This is exacerbated by
the image size in Plate 5.7 • The two sub-frames in Plate
5.7 were obtained by reading data out of the bit-array used
to plot the circuit on the left of the Photo. Note that the
width of the circuit array is the same in both Plate 5.6 and
Plate 5.7. As only height and depth change for this circuit,
circuit size increases in direct proportion to image size.
It is important that if such an algorithm were to be used on
a Soup, it would show no discrimination in terms of speed

125

for large or small images. (Note that there is a higher
degree of padding interference this example.)

As an aside, although the examples used in this section
involved static images, they could in theory be dynamic,
with the output edge detected image changing as the input
image changed. The algorithm would need to be examined for
spikes due to this asynchronous behaviour.

5.2.5 Internal Reprogrammer

A final example shows an internally generated reprogramming,
the use of locks, and the use of a counter. The circuit
consisted of a counter selecting programs from a 6 bit wide
memory, and using these programs to reprogram an area of the
Soup. The architecture can be seen in Figure 5.5 •

The counter consists of a series of delay lines comprising
long chains of memory elements. An assumption made is that
all memory elements will initially contain zero. A one
placed at the start of the chain will travel through each
memory element. Examining this chain at regular intervals
gives a crude counter, with all of the bits below a point
set to 1, and all of those above it to o. This is the basis
of the register in Figure 5.5. The counter can be made to

126

1

1. Delay lines
2. Feedback path
3. Register
4. Register decode
(store selection and
programmer signals)

s. Program stores
6. Store routing
7. Programmer cells
8. Display area

reset by taking the output signal from the far end of the
chain, inverting it, and feeding it back to the input. This

Figure 5.5: The internal reprogrammer example

counter-register can be decoded to act as a memory selector
and to send an enable signal to the programmer cells when
the memory is being read. The algorithm used was that if bit
2n is set and bit 2n+2 is clear, then the memory plane at
column n is selected. If bit 2n+1 is set and bit 2n+2 is
clear, then the memory is assumed to have been read. As a

127

result a programmer enable signal is sent to generate the
required programming event.

The top Photo on Plate 5.8 shows a small counter and
associated register decode. The regular component making up
the majority of this image is the delay line counter. The
line of green squares at the bottom is the feedback path.
The less regular component to the right of the Photo is the
register decode circuitry.

In order to illustrate the reprogramming, a series of
programs were stored in memory, which, if programmed in
correct sequence, would send either a 1 or a 0 to the cell
in next dimension. This data is used to build up an image in
order to illustrate the reprogramming progression. In this
case the ones and zeros were generated by the face-cells
which communicate to the right, and the face~cells in the
next dimension to these are those at the front. A 111111
message was initially generated to empty the cells up to the
next locked cell, making space for the image circuit.

The middle Photo on Plate 5.8 illustrates the 6 bit wide
memory which can be seen at the back left-hand side. (The
padding algorithm has made interpretation difficult.) In
front of this is an area of green, which corresponds to the
program memory store and associated routing. The
implementation used for a 1 bit memory circuit was 2

128

Internal reprogramrner: Part A; delay line counter and decode

Internal reprogrammer: Part B; program memory and routing

Internal reprogrammer: Part C; display area and locked cells

......._ .. _

.......

.......

Plate 5.8

1

2

1

Soup-cells wide and so required some routing to connect the
outputs to 6 consecutive Soup cells for the programmer
cells. The path of the programmer enable signal can be seen
as the line of blue cells in the foreground. Note that the
signal actually travels in the opposite direction to the
memory cells highlighted. These memory elements have only
been set as a result of the padding algorithm. The left edge
of the display area can be seen as the series of diagonal
green lines on the right hand side of the Photo. The
diagonal lines were the initial pattern chosen.

The circuit was executed for a larger data set, a 12 by 15
bit-array consisting of a smiling face and an arrow. The
initial pattern of the display area is shown in the bottom
Photo on Plate 5.8. The orange cells are the locked cells,
the red cells are the bits set in memory from the previous
dimension in order to set the lock. There was initially a
line of locks on the far left-hand side of the image, but
these were removed by an initial generation of a 111111
message. Next, there is a straight line of locks. The
generation of an all-ones message on the right-communicating
face-cells will travel as far as this lock, clear the lock,
and then stop. On one full cycle through the memory all bits
of the image are generated in sequence. Each will travel to
the right until the multiplexor of the face-cell following
is full. The resultant display can be seen in the top Photo
on Plate 5.9 •

130

Plate 5.9

Internal reprogrammer: stages of a repeated reprogramming action

2

• • • • • • • •

··~IIIIIIIt51··ltllltIttftII·· ...
r t tt t r tr't .IItlr-tLJ· •._.- .

~
....... ,H::l ,

, -. • •

lime: 34:41 :45 1+-/ ~ ~ 1~ 3--+-

.. J ~ •
t:t:::t::t:t::t:t:t+:~ . . lit t II II I IItt I tIg I ' '.

• 111 ,IIIIII!!,
~

. HE :+ §
:-11Ir-: '.IIIll' , •
~ t~ •

. . , , , .
~-+-+-t-+-~ • , ~ tI I fill I I I til tI 0 I • " " t:t:t:H::t:H-+:~.

,III .1,11111
'. ~ ,

::: +
,.....

,~5 r+ 5
~Ilr-: '.11111' •.

• •

..... ...
"R',liIII' :

, ,

4

5

The next band of locks are not a straight line, and so the
image will be harder to understand. This can be seen in the
second Photo in Plate 5.9 (numbered 3). Note that the
multiplexor programs have passed through the face-cells
which were used to generate the first image, as these
face-cell multiplexors are now empty. The fourth band of
locks are again in a straight line, thus a similar image to
that in the top Photo of Plate 5.9 is generated. Here the
image has partially overlapped the previous image, so some
memory cells have been reprogrammed for a second time.

There are now no locks remaining, so further generation of
all-ones messages will result in the emptying of the
face-cells up to the edge of the Soup. This can be seen in
the bottom Photo of Plate 5.9. The circuit will count ad
infinitum and so keep programming the appropriate code for
the image. These programs will keep travelling to the far
edge of the Soup but will display the same image. The
display will no longer change.

132

5.3 AN ASSESSMENT OF THE SIMULATION ENVIRONMENT

It has been shown that it was possible to design circuits
using the Pascal procedure call method described. For the
more complex circuits it was necessary to design in small
sections to ensure each component functioned as expected.
The computation effort required for the circuit description
stage was not high for these (small) examples. It is
suggested that more time could reasonably be afforded to
better padding algorithms. The padding algorithm used was
simple but proved effective for most of the examples. A more
advanced algorithm could examine the surrounding circuitry
in detail to make more use of the undefined signals
available. Such padding would be aided by the availability
of more undefined signals in the face-cell multiplexor
architecture.

The pre-processor for the simulator typically required more
computation effort than the circuit description stage due to
the quantity of input and output involved. The size of the
output file was typically an order of magnitude larger than
the size of the circuit description array. (The sizes of
both could be reduced by using a more compact data format.)
Note that the. preprocessor is performing a simple repetitive
task which is a good candidate for parallel programming.

133

The simulator was capable of simulating a small Soup but was
slow, which was not surprising considering the speed of
two-dimensional VLSI simulators written in a similar manner.
An avenue for speed improvement is in the insertion of
events into the event list. A profiling of the simulator
revealed that 95% of the computation effort was spent on
event list manipulation. This is the expected result for
such a low-level simulator written using a single event
list. The events themselves are simple and so require little
effort to perform, whereas maintenance of a lonq and ordered
event list requires more effort. The simulator reduced
effort by only generating new events in a local environment
to any events which have generated change, not over the
whole machine. This is of undoubted benefit towards the end
of a simulation, when the number of events is much smaller
than the total number of multiplexors in the machine. Larqe
event lists occur initially when the machine is loaded,
however, which suggest that it might be beneficial to test
and perform the events for every cell in the machine, in
order to avoid the cost incurred in maintaining this list.
Another possibility for increasing the simulator efficiency
may be to partially sort an event list by locality with the
aim of reducing any high paging demands.

The simulation is a highly parallel task. A method of
implementing a parallel version would be to consider the
Soup as a collection of sub-Soups and simulate each one on a

134

different processor. There would be a high degree of
inter-processor communication for the information at the
boundaries of each simulated sub-Soup but this should be
local to the processors of the simulating machine. Due to
the small size of the Soup architecture processing elements
the processors of the simulator would need to be tightly
coupled with respect to their simulation clocks in order to
allow for all interaction between neighbouring sub-Soups to
complete. If the majority of calculation becomes localised
to one or two processors, a large number of processors will
become idle for a large percentage of the time. In this case
the parallel version would only benefit in reducing
initialisation work.

The graphical output is a significant improvement on an
earlier display routine, which had attempted to draw a true
three dimensional circuit diagram. This diagram rapidly
became unintelligible as circuit size was increased. Even
this new version is difficult to understand for much more
than a 10 by 10 by 10 circuit unless the application
circuitry has regular structure. The graphical output photos
were static. A real-time display of the memory elements as
they changed was considered. This would give more insight
into the behaviour of an application but would require
significant computation to perform. Possible benefit of a
display of this form would be as a debugger in
synchronisation problems, to identify areas where values in

135

memory are changing and areas where they are not, hence,
which components of the application circuit appear to be
functioning.

5.4 AN ASSESSMENT OF THE ARCHITECTURE IN LIGHT OF SIMULATION

The simulations have shown that from an initial random state
the architecture can be externally programmed (inverting
wire and edge detection), externally reprogrammed (the A and
B example), and internally reprogrammed in a limited
capacity (smiling face example). A sequential task can be
seen as the counter in the internal reprogramming example. A
parallel task is the edge detection. The display area in the
internal reprogramming example is an example of different
tasks being executed in different dimensions. On these
grounds it has been shown to be possible to program an
Architectural Soup, and to program with the extra
flexibility of a third dimension. The three dimensional
programming of this architecture proved less difficult than
had been anticipated. (Once a set of circuits providing the
required primitive function have been designed, the
application circuit design task need not be at such a low
level. Application circuits could be created by generating

136

the required interconnection between a selection of
appropriate primitives, similar to a program calling
standard library routines.) Some of the factors not shown by
these simulations include several independent tasks in
progress at the same time, the ability to dynamically move
such tasks around a Soup, and surface interface
considerations.

The programmability of the face-cells was made more complex
as a result of the lack of orthogonality in the multiplexor.
For example, the output to-next-dimension could not be the
same as the output to-next-memory. Programming the nand gate
was often confusing as the two inputs come from different
face-cells in different Soup cells. A possible
simplification would be to take the from-other-dimension
input from the same face-cell as the other nand gate input.

Cells locking whilst loading in the internal reprogrammer
was a particular problem for this prevented the external
load from completing as expected. A suggested solution is to
connect to a common enable all those cells which are to be
locked together, and make the generation of this enable from
the last face-cell programs to be loaded. Similarly,
components of.circuits starting execution whilst other parts
are still loading (especially circuits containing counters)
will be error prone. This suggests the size of any
equichronic region should be smaller than a counter, so

137

preventing circuits starting early by means of the
equichronic region communications protocol.

The circuit design method can subsequently lead to
inefficient circuit design as much of the Soups multiplexor
capacity may be unused. Some form of algorithmic circuit
compression would result in circuits utilising fewer Soup
cells. A detrimental effect would be increased difficulty in
identifying what was going on in a circuit if it were
compressed. This is similar to trying to understand the code
produced by an optimising compiler.

5.5 SOME SUGGESTED FURTHER DESIGN AND SIMULATION WORK

One particular area requiring examination is that of
circuits which dynamically change their configuration during
computation depending on the course the computation is
taking. (This topic was discussed in section 2.3.3 .) This
could not be performed using the architecture illustrated
due to the mobility design fault discussed in 4.5 • A
suggested illustration for a suitably designed Soup would be
a dynamic stack which claimed and released Soup-cells as
demands on the stack varied. Synchronisation issues also

138

need examination. I suggest implementation of self-timed
protocols, such as described in [YAK85] and the Muller
C-element [MEA80] [YAK85] as illustration. Another area not
examined was multitasking. The architecture illustrated was
not appropriate for several independent tasks that executed
simultaneously, especially if they started and finished at
different time, since loading a new circuit would interfere
with any existing circuit. Some form of simulation of a
multitasking environment or of several dynamic stacks
competing for space would act as illustration.

There has been no examination of input and output issues
from the machine. These will be technology dependent.
However, simulation work could perhaps give insight into the
forms of real-world interface which might be favoured.
Particularly useful would be an examination of the trade-off
between the time it .takes a circuit to load and the time it
takes to execute.

Given an improved architecture in light of the above, one
aim would be to illustrate a non-trivial task, such as the
implementation of a functional language. A functional
language would be an interesting candidate due to the
parallelism inherent, and also because of the small grain
size of this parallelism [JON87]. [JON87] examines current
research work in parallel implementations of functional
languages. The implementation problem is identified as

139

ensuring a system is feasible to program, that it is highly
concurrent, and that communication is minimised. Concurrency
is inherent in the Soup architecture in that the machine is
highly parallel. The ability to exploit the parallelism in a
task is only restricted by the communications protocols and
the size of any isochronic regions used. Communication
ability is similarly inherent in that the restrictions are
created by the method of implementation. The point of
contention is the feasibility of programming the Soup
architecture. Combination primitives of the functional
language (such as adder circuits) could be implemented in a
similar manner to the examples described in this chapter.
Dynamic creation and interconnection of such primitives is a
more complex task and will require more examination. This
problem could be simplified by emulating a functional
architecture ([JON87]) on an Architectural Soup. solving the
dynamic allocation issues of a functional language at the
low level of a Soup will be complex. It is more feasible to
emulate a higher level machine which is better suited to
this task.

There is a need for some form of examination into the
utilisation of the Soup-cell's component parts, in order to
assess their relative importance. This again will be
technology dependent as component timings depend on their
method of implementation. An interesting simulation would be
of the Soup emulating itself, to estimate speed reduction

140

and the number of soup-cells in the emulated machine. Once
utilisation estimates have been examined, more efficient
face-cells can be designed.

other aspects of the architecture which can be varied, are
the face-cell interconnect, the Soup-cell interconnect, and
the external shape of the Soup. The external shape of the
Soup has been rectangular in all of the examples of this
chapter. This. need not be the case, in fact a perfectly
rectangular machine is unlikely due to the material
restrictions discussed in chapter 3. Programming issues
involved in other shapes such as pyramids or spheres require
consideration. The Soup-cell interconnect is based on the
conclusion from chapter 1 that the near-neighbour mesh is
becoming predominant. Other connection architectures could
be examined, but they are likely to result in more complex
face-cells or more complex programming. The interconnection
of face-cells within a Soup-cell, however, could be altered,

with little complexity increase. Figure 5.6 Ca) has the
logic communication in the opposite direction to the program
and lock communication. This may provide for some subtle
programming differences. Figure 5.6 Cb) shows a less regular
interconnection topology. Figure 5.6 (c) has two separate
program and lock loops, with very different topology. Figure
5.6 (d) is partially disjoint, and has some interesting
possibilities in that one of the face-cells can never be
locked and so could act as some form of supervisor to the

141

(a)/";0;~~"'~

RGJ-+lJJ8.... 6 5 .'
'. ~... ~ ...

Cb) ...····.0···.~·..···....
.: 2 -+ 3 "-:
: ~ .R~~" 8.....GJ-+lJ'.

(c) .·····~~~··0······:···1i..··~··· ·:::~::······. Cd) ··.0 ~ .
/..... 2 3~ 2 3;' r+ ~ .' . r+ ~ .(·..t~ 1 1 [3\:) D . [j.......v-r. r;l.J/.;..-' \~r;l"'r;l</.........L:J "".,LJ,.·L:J ..···LJ.....

. . kev

Figure 5.6: Some alternative interconnections

----. to nand & memory
......... to other dimension

--.. to program and lock
circuitry

other face-cells. The more irregular a topology becomes, the
less general purpose it is likely to be, since it represents
a programming complication.

142

5.6 SUMMARY AND CONCLUSION

The work described in this chapter was aimed at a
consolidation of the ideas already discussed, and an
examination of the feasibility and difficulties involved.
The simulator simulated a Soup of microscopic proportions,
(the size will be estimated in chapter 6), but it served to
show that this architecture could be programmed. A degree of
internal programming was possible but the architecture was
generally not appropriate for this. A criticism of the
simUlation work is that no real time timing estimates were
obtained. It is not possible, therefore, to assess the
likely speed of this machine with respect to other general
purpose machines. However, the parallelism inherent in the
architecture is unquestionable. The assessment of timing
performance is seen as one of the most important factors
requiring examination.

This chapter concludes by considering whether the
architecture described would be a good candidate for a first
architectural Soup. Some positive aspects of the
architecture are its functionality, that it can be loaded,
and that it has been possible to specify small circuits
which execute on it. The dynamic aspects of the machine, in
the form of program and locking circuitry, were not so
successfully designed. If suitable material and

143

manufacturing technology became available to build a Soup
then it is proposed that this architecture would be a good
initial candidate without the dynamic circuitry. (Omission
of this would have the additional benefits of simpler
program register and control circuitry resulting from
decreased face-cell complexity.) Such a machine could then
be used as an emulator for testing any new Soup
architectures.

144

Chapter 6: On a VLSI implementation

This chapter illustrates. a VLSI design for one face-cell of
the architecture described in chapter 4. A further
architecture assessment resulting from this design is
performed, and estimates based on this are made for the size
of best possible designs.

It was not the aim of the VLSI implementation to produce a
working design, but to produce a close approximation of a
face-cell, and illustrate the simplicity of its design. The
implementation identifies the components of the design
likely to represent greater cost in terms of silicon area
and hence the greater complexity. Area estimates will be
used to obtain an overall estimate as to the number of
processing elements in a futuristic machine. This requires
relating a two-dimensional implementation of a face cell to
some of the opportunities and problems of full
three-dimensional implementation.

145

6.1 THE DESIGN

The face-cell was designed using STRICT [CAM8S]. The STRICT
description is Appendix 6. The resultant design can be seen
in Plates 6.1 and 6.2. Plate 6.2 is drawn using the same
description as Plate 6.1 except it is expanded to the level
of individual 'and' 'or' and 'pass' gates.

The control section in Plate 6.1 comprises of CTL VO which
is the main control unit, and MEN_VO which is the
multiplexor enable circuitry. The control unit is
essentially three SR flip-flops, which act as the
state-machine. There is associated circuitry to examine the
current state and the environment, to determine if a change
of state is required. The circuit described does not include
timing circuitry. Timing circuitry would be required to
ensure the flip-flops switch deterministically. This is
unlikely to significantly effect area. The multiplexor
enable circuitry enables the multiplexor outputs if the
face-cell multiplexor program register is full, and the
previous face-cell in the face-cell string has acknowledged
receiving a full signal. The block PRG_VO is the multiplexor
program register. Each bit of the register is implemented by

146

Plate 6.1

Silicon design for one face-cell

CTL MEN_va

Iv1UX

Plate 6.2

Silicon design in detail

148

an SR flip-flop with a pass transistor on the input and
output. There is also circuitry to shift the program
register up one bit in the event of the cell being used as a
programmer. Input and output pass transistors are controlled
by the face-cells control unit. Logic of the face-cell is
implemented using ternary logic as described in chapter 4.
The nand gate is NAN_VO, the memory element is MEM_VO, the
'from-face-cell in other-dimension' input is two wires into
the multiplexor. The multiplexor itself is MUX_VO. Program
and lock circuitry associated with the multiplexor is
PAL_VO. Note that the programming circuitry is based on an
earlier version of face-cell architecture, the program and
lock protocol having been significantly changed. The
proportional area, however, should not be significantly
different.

From Plate 6.1 it can be seen that no component of the
design dominates the area. This suggests that no component
of the design is complex, and secondly, that the design is
balanced, so no component is likely to be of a significantly
different speed. The two components of the design which take
up the most area are the program register and the
multiplexor. From the STRICT description it can be seen that
the multiplexor area is mainly built out of selector block
primitives. These were approximately ten times larger than
they need to be (see later). The program register is built
up from six one-bit registers, each consisting of an BR

149

flip-flop, two inverters, three pass transistors and an 'or'
gate. A functionally similar cirouit is given in [MEASO]
consisting of two pass transistors and two inverters only,
thus there is muoh soope for optimisation. If the design
were optimised, it would be expected that the proportionate
size of the mqltiplexor would beoome approximately the same
as the oontrol seotion, and the area of the program register
would be less.

6.1.1 Design omissions

As stated above, there is a need for a looal olook in order
to maintain sharp edges within the control unit. The
distribution of suoh a olook was disoussed in ohapter 3.
Also, oirouitry has not been examined for spikes, in
partioular, a spike whioh generated a high-l and 10w-1 on a
ternary output wire from the multiplexor has potential
oatastrophio result. This again suggests some form of
synohronisation, suoh as a local olook or some form of
self-timed meohanism. An estimate will be made in section
6.3 for the proportion of silicon area suoh synchronisation
meohanisms might require.

150

6.2 A FURTHER ARCHITECTURAL ASSESSMENT

Accepting that the STRICT description is a good
approximation to a face-cell, an important result is that no
part of the design takes up significantly different amounts
of space. The design is not optimum, but despite this, it
bas still resulted in a believably sized processor chip
which could be manufactured with existing technology. TWo
major area costs appear to be the control unit and the
multiplexor. Much of the area associated with the control
circuitry is to do with the program and lock operations.
Area would be reduced if this were improved. (It was
suggested in chapter 5 that it could be omitted completely.)
The multiplexor circuitry would be reduced if it were not
dealing with a two wire ternary system, by passing three
signals along a single wire, (see [INTB7] for experimental
work on three state transistors), or by designing a cell
which was not ternary.

Designing with the aim of fabricating a face-cell, in order
to obtain true timing estimates, would be beneficial in that
relative timing costs of ~ace-cell functional components can
be similarly assessed. Consider the internal reprogramming
of cells. The frequency of use of this capability will
determine the required speed and ease of use associated with

151

it. There will be a series of trade-offs of this form
between all component units, to obtain highest utilisations.

6.3 AREA ESTIMATES

The chip was designed using nmos design rules and lambda of
3 microns. It measures 4.9 mm by 5.3 mm. This gives a chip
area of 26 mmA2. As stated previously the chip design does
not include any timing circuitry. The cell is essentially
asynchronous so the proportion of timing circuitry will be
small. It is estimated that it would generate a maximum of a
25% increase in area. This gives :-

Face-cell area - 32.5 mmA2

By examining the design in Plate 6.2 it is clear that there
is unused silicon area and a high proportion of routing.
This design was produced whilst the STRICT design system was
still in development, and using only 45 minutes of processor
effort on a Microvax. As the face-cell is to be replicated
many millions of times, large processor effort can be
justified for optimisation. Given many thousands of hours
spent on optimisation, with best possible place and route

152

algorithms, the resultant design is estimated to be 50t
smaller, thus :-

Best implementation of this design - 16 mmA2

Reductions in complexity will result in reductions in the
numbers of components and the amount of routing between
them. There are two complexity issues to consider. Firstly,
the face-cell which has been implemented was not optimal due
to limitations on the time available for production of the
design. There are unnecessary repetitions of Boolean
functions within the different components of the machine and
the design is primarily "and" and "or" gate oriented as
opposed to "nor" gates which take less silicon area. An
example of poor use of area is the selector cell, (there are
18 in the design), which was implemented using an or-gate,
an inverter and two pass transistors. The resulting size of
the selector is of the order of 10 times larger than a
selector primitive could be. See [MEASO] Plate 7 for an
example. Secondly, as previously discussed, the face-cell
design has a percentage of unused capacity in its
multiplexor. Taking this into account, we can consider a
smaller face-cell implementation for a different face-cell'
architecture of equal functionality. For these factors

153

combined, I allow a reduction of area of at least another
50%, thus :-

Area of best face-cell design - 8 mmA2

6.3.1 Long term estimates from computer technology
predictions

silicon feature size is decreasing. Estimates for the
smallest feature sizes possible vary between 0.3 microns
[MEA80], and 0.03 microns implied by [BAT88]. ([POR87]
states that feature sizes may shrink to 0.3 lambda by 1997.)
The figure of 0.1 microns was chosen as an approximate
estimate. The electrical properties of components will
change as the feature size is reduced [MEA80], but it is
assumed that a direct scaling down of the chip design will
give an approximate estimate of the size of a minimum
feature size functionally equivalent circuit. The design
previously discussed uses a lambda of 3 microns. Lambda is a
measurement of length. Halving the size of lambda would
result in a chip area of a quarter of the original size.
consequently :-

Long term best face-cell design - (8AO.5 * (0.1/3»A2
- 0.01 mmA2

154

As design processes improve it will become possible to build
larger chips, so permitting the inclusion of more components
within a single chip. See [JES86] and [GRI84] for examples
of wafer scale integration. Current computers typically
consist of 1 mA2 of silicon [JESS6]. If a continuous perfect
chip of this size is assumed then the face-cell architecture
is such that they will abut into long strings. Several
strings could be laid in parallel across the chip as an
estimation of face-cell numbers in the same orientation on
such a chip. (A machine with this architecture would be of
little use. A generalisation will follow for a machine with
the architecture discussed in chapter 4.)

The number of face-cells of one particular orientation in 1

mA2 is :-

- 1mA2 / 0.01mmA2

- 100000000

A bolder assumption, introduced in chapter 1, is that future
technologies will be three-dimensional. Experimental work is
currently being performed for three dimensional silicon,
such as [ROSS3] [NUD85] [GRI84]. For simplicity, it is
assumed (and this is a massive assumption) that the
dimensionality problems, such as power distribution and
flaws in the implementation materials, will be surmounted.
Generalising from the estimate of ImA2 for current machines,

155

a volume of 1 mA3 is taken as a speculation of possible
volume of a future machine.

A Soup-cell consists of six face-cells in different
orientations, left, right, front, back, up and down.
Consider laying six two-dimensional face-cells in a stack.
These can be interconnected in the third dimension, using
the 'to-face-cell in other-dimension' connections, to form
the ring between the six face-cells in a Soup-cell.
Similarly, connections can be made between the inputs and
outputs of the face-cells and the inputs and outputs of
corresponding face-cells in neighbouring Soup-cells, to form
the string topology described in Chapter 4. The left, right,
front and back face-cells could, in fact, abut to the
neighbouring Soup-cells to form the required topology, as
each of these communicates in the horizontal plane, only in
different direction. The up and down face cells communicate
in the vertical plane. The circuitry for these face-cells
has been placed in the horizontal plane, but the
interconnection can be provided by routing wires up and
down. (This wiring should not have significant effect on the
area estimation, so is ignored in the volume calculation
below.) In summary, a Soup-cell is now being considered as
six two-dimensional face-cell circuits, interconnected in
the third dimension. Assuming that the silicon design rules
used in two dimensions (see [MEASO]) can be used as an
estimate of required width between circuits in a third

156

dimension, the estimate is made that face-cells can be
spaced 6 lambda apart :-

Height of one soup-cell ~ 6 * 0.1 * 6
= 3.6 microns

So, in 1 mA3 of silicon it is estimated that there will be
of the order :-

100000000 / 3.6*10A-6
~ 3*10A13 Soup-cells.

6.4 SUMMARY AND CONCLUSIONS

The silicon chip design gave insight to the complexity of
the face-cell design. It also showed the likely relative
costs of each of the face-cell component units. The ternary
logic component takes up less than a quarter of the design.
Firmer conclusions could be made through production of a
working design, ideally, a chip containing a number of
face-cells intercommunicating. Relative timing statistics
would aid in determination of function cost.

An estimate has been made for the number of Soup-cells in a
future silicon machine. These figures will vary depending on

157

the technology being considered. In particular, consider
feature sizes :-

Minimum feature size number of cells in 1mA3 using different
lambda :-

0.3 microns [MEASO] •••••••••••••••• 1 * 10A12

0.1 microns •••••••••••••••••••••••• 3 * lOA13

0.03 microns [BATSS] ••••••••••••••• 1 * 10A15

There will be much debate of such figures, particularly
since many factors have been taken into consideration. For
example, three dimensions routing takes less area due to the
extra flexibility [ROSS3] [PRE83]. This could make
Soup-cells smaller. This benefit is likely to be more than
offset by the three dimensional building complications such
as power distribution (heat).

As an aside, one of the largest simulations described in
chapter 5 used 30000 Soup cells to perform an edge detection
on a 12 by 15 pixel image. It took 9 hours to simulate on
one processor of an Encore Multimax [LEE87]. On the above
volume estimate for a 0.1 micron feature size this
represents a volume of Soup of less than 1 mmA3.

158

Chapter 7: Summary and conclusions

This chapter comprises of a summary of the work contained in
this thesis and suggestions for general further work.
(Specific further work was detailed in the sections to which
it referred.)· The chapter concludes with remarks on the
usefulness and validity of the work performed.

7.1 SUMMARY

Chapter 1 made distinction between dedicated purpose and
general purpose architecture. Dedicated computers are
usually easier to design, as the problems for which they are

159

intended can be defined. A capability for future general
purpose computers was identified as the ability to emulate
many different dedicated architectures.

A consequence of Von Neumann architecture has been that the
silicon in machines is being under-utilised. Hardware is
essentially parallel but the architectures imposed on it are
sequential. It is argued that low level reconfigurability
could increase utilisation.

Existing architecture was examined and trends were
identified. The number of processing elements in general
purpose machines is increasing. These processors have
simpler function. Memory is being incorporated into each
individual element. The large number of elements is
enforcing a simple communication topology with a trend
towards near-neighbour mesh. There is a trend towards
multiple instruction stream and multiple data stream (MIMO)
architecture.

Trends in technology suggest that future machines are likely
to permit much larger numbers of components. It is also
likely that machines will be three-dimensional. In order to
simplify the design and production complexity which will be
involved with such technology, it will likely be necessary
to have simple and regular architectures.

160

Chapter 2 proposed a class of architectures which can be
programmed at very low levels. These were termed
'Architectural Soups' due to the myriad of 'potential'
architectures available from within a machine. Soups were
classified through closeness to a basis architecture. This
basis was shown to follow the architecture and technology
trends identified in Chapter 1. It therefore follows that
any machine with similar architecture to this basis must
also follow these trends and aims.

Each cell of the basis machine communicates with its six
immediate neighbours using a three dimensional near
neighbour mesh topology. The functionality of each cell is
provided through the ability to program a nand gate, or a
one-bit memory, or a wire between any inputs and outputs of
any cell within the machine. It is also possible to program
a constant binary one or zero to any output of a cell. Other
properties of the basis architecture are that it is:
homogeneous, isotropic, controllable and deterministic.

Some methods of programming a machine of this style were
examined. A pessimistic view was that it would be similar to
the design of VLSI silicon chips, whose method of design has
not yet been perfected. In addition, use of the third
dimension must now be considered. An alternative, more
optimistic view, is that such programming is at a level just
below machine code. For the majority of tasks on existing

161

machines it is now assumed a compiler will generate
efficient machine code. A compiler could similarly generate
circuit descriptions for the Soup. It was argued that as the
trends identified in Chapter 1 suggest this style of
architecture, it is conceivable to be both possible and
useful to program a Soup. CA benefit identified was that it
could be efficient for both parallel and sequential
algorithms.)

Some programming methods were illustrated, the main
variation being in the dynamism of the ability to change the
machine architecture. The usefulness of dynamic change will
determine which style of architecture is the most practical.

possible benefits from Soup architecture were identified aSl
increased flexibility, increased speed of solution,
decreased system size required, and decreased system design
costs and software costs. In conclusion, it was felt that it
may be unreasonable to design a machine with processing
elements at this gate level, although such a machine would
be of interest from the point of view of examining such
flexibility. As trends project towards this style of
architecture, it is suggested that future machines would
essentially be of this form, with the exception of having
slightly more complex cells. Investigation of Architectural
Soup architecture may therefore reveal capability and
limitation of future general purpose computers.

162

Chapter 3 examined some implementation issues. A diversity
of topics must be considered in implementing Architectural
Soup styles of architecture. It was not possible to perform
a thorough investigation into all issues.

There are theoretical limitations on machine design. Example
work illustrated was mathematical theory in compacting
solids. Properties of silicon style technology were then
examined. Design for large three dimensional machines will
be complex. A benefit of the regularity in Architectural
Soup architecture is the ability to model a small component
and make generalisations for large machines. The surface of
the machine presents technology considerations due to the
discontinuity of the material. The surface also presents
programming complexity due to discontinuity of the Soup
cells. Problems with interfacing compatibility and the

•

related problem of initialisation were discussed.
synchronisation issues were considered on two levels,
firstly, for deterministic function of the machine, and
secondly, for appropriate synchronisation mechanisms between
the component parts of application circuits. The importance
of fault tolerance in circuit design was emphasised and
suggestions made. In particular, an unreliable Soup could
emulate a more reliable one. Finally some alternative
technology such as optical and biological machines were
examined.

163

Chapter 4 described a specific architecture in detail. The
primary aim was to illustrate issues of previous chapters,
in particular, a possible control mechanism. The
architecture consisted of the repetition of a simple cell. A
cell consisted of, a control unit, program register,
multiplexor and ternary logic.

This architecture was shown to be an Architectural Soup.
Some important characteristics of the architecture were,
that it had no global bus, that it was possible to
initialise and deterministically program the machine, and
that the design has a degree of internal reprogramming
capacity. An assessment of the design was given, in
particular the dynamic aspect of the cell design did not
function in the way one would like.

Chapter 5 described the simulation of a small portion of a
machine with the architecture of chapter 4. The complexity
of performing such a simulation on existing machines was
highlighted and the environment used detailed. Some of the
difficulties were, in the size of the machine which could be
simulated, the amount of processor effort required to
perform the simulation, the representation of the simulated
machines internal state, and extraction of results from the
example calculations~ Simulation work was described.
Application programming of the architecture was through a
Pascal procedure call method. The Soup did not prove to be

164

as difficult to program as had been expected. The
simulations firstly showed an architecture in an initial
random state, then the ability to deterministically load and
execute a circuit description, perform several different
types of task, and the ability to both externally and
internally reprogram the machine architecture. An assessment
of the architecture and of the simulation environment were
made. The chapter concluded by examining whether, in light
of simulation, the architecture used could be considered as
a good candidate for the first architecture to be
implemented when such three dimensional 'technology is
available. The conclusion was, with exception of the dynamic
aspect of the design (the internal reprogramming capacity),
the architecture would be a good candidate.

Chapter 6 described how a fraction of the machine (one sixth
of a cell) was designed in silicon. It is not possible
currently to implement a full Soup due to its size and three
dimensionality. The purpose of the design given, was to
illustrate simplicity. It was found that the design was of a
believable size for implementation on a silicon chip.

The size of the chip design was used to obtain rough
estimates for the number of processing elements in future
machines. A speculation for the number of cells in a large
three dimensional machine with simple processing elements

165

was calculated as being of the order of 10 to the power 13
cells.

7.2 FURTHER WORK

The majority of this thesis comprises a feasibility study
for Architectural Soup architecture. consequently, and as
with any feasibility study, further work can be performed.
Specific work was detailed in the sections where relevant. A
general aim for further work is to consolidate the
completeness of the work of this thesis, an example being, a
more thorough investigation of the topics considered in
chapter 3. A topic which was not discussed in chapter 3 is
the possible use of analogies from material structures. Due
to the small grain size of the processing elements of an
Architectural Soup, there is a similarity to the molecules
found in materials. study of molecular bonding may give
insight into the complexity of cells and identify
communication topologies which may be feasible. A study of
flaw types, such as dislocations, which occur naturally in

166

material, may give insight into fault tolerance
considerations.

A major simulation goal for the future was identified as the
full implementation of a functional language. It may also be
of benefit to examine alternative Soup architectures to the
one described in chapter 4. An observation which can be made
is that in all aspects of Soup design there is a large
design space of possible configurable architectures.
Motivations for choice within this design space is required.

FUrther work should also assess the viability and efficiency
of Soup machines in relation to the potential performance of
other architectures. Assessment in the long term could
perhaps be through full three-dimensional implementations.
CUrrently it would be possible to examine a surface of
soup-cells, for example, using Wafer Scale Integration
techniques.

167

7.3 CONCLUDING REMARKS

This thesis examined some architectures for general purpose
computers in the very long term, based on projections of
existing architecture and technology trends. It has examined
the concept of a computer which is re-configurable at a very
low level. The architecture is simple and repetitive yet
capable of performing complex tasks. This architecture was
shown to have potential to emulate both parallel and serial
machines. A limitation is the control overhead which may be
incurred to control this flexibility.

This thesis has examined the potential usefulness, and
viability in principle, of an Architectural Soup. It has
shown that it has been possible to design a simple regular
architecture for large three-dimensional technology. A cell
for a small-grain reconfigurable architecture could be
designed. It has been possible to simUlate a small portion
of the architecture and it has also been possible to program
the machine. The flexibility offered by the architecture
suggests that it would be a reasonable initial candidate for
implementation in the event of suitable technology becoming
available.

168

The concepts of Architectural Soup serve as an illustrative
tool for the sorts of capability that will be possible in
general purpose machines in the very long term. For example,
a conclusion which can be drawn from this work is that a
single ultimate general purpose computer, or one ultimate
general "purpose architecture, is unlikely due to the
diversity of architecture and technology choices which can
be made.

The concepts involved in Architectural Soup architecture may
be worthy of more detailed long term research. This would
serve to collate a diversity of related material. As trends
have suggested that future machines may be of this form,
collation of material would prove useful in the design of
any similar machines. Work should ideally remain general as
it is difficult to assess factors which will be of greatest
concern in future machines. Factors which currently have low
significance may become increasingly important.

This thesis began by stating that computers are bound by
physical size, the speed of light, and the properties of the
technology and the construction methods. Any other
restrictions that a computer may have are due to the
imposition of man-made architectural decisions.

169

Architectural Soup is an architecture which reduces the
man-made restriction through provision of a flexible
underlying architecture. The usefulness of such flexibility
may be offset by increased control. For Architectural Soup
machines it is possible that too much flexibility is
available, and too much control is required. Future general
purpose machines will likely lie in between current
architecture, and the architecture of an Architectural Soup.

170

REFERENCES

[ACM84]
The Fifth Generation Challenge, ACM 1984 annual
conference, ISBN 0-89791-144-x

[ABUS7]
y.s. Abu-Mostafa & D. Psaltis, Optical Neural
Computers, Scientific American, March 1987, 66-73

[AND87]

G. Anderla & A. Dunning, computer Strategies 1990-9:
Technologies-Casts-Markets, 1987, ISBN 0-471-91585-8

[BARS4]

H.G. Barrow, Proving the Correctness of Digital
Hardware Designs, VLSI design, July 1984, 64-77

[BAS77]
F. Basket & T.W. Keller, An Evaluation of the Cray-1
Computer, in [KUC77] 71-84

[BAT80]
K.E. Batcher, Design of a Massively Parallel Processor,
IEEE Transactions on Computers, Volume C-29, Number 9,_
September 1980, 836-840

[BAT8S]
R.T. Bate, The Quantum-Effect Device: Tomorrow's
Transistor?, Scientific American, March 1988

[BEA85]

P. Beadle & J. Wiles & L.M. Goldschlager,
Implementation of an ALU by a Parallel Machine, 1985,
in [BER85] 153-165

171

[BER8S]
P. Berto1azzi & F. Luccio, VLSI: Algorithms and
Architectures, Proceedings from international workshop
on parallel computing and VLSI, Ama1fi, Italy, May
23-25 1984, ISBN 0-9510708-0-0

[BRA8S]
H.N. Brady, A MIMD organisation for the Execution of
Interconnection Routing Algorithms, IEEE circuits and
devices magazine, March 1985, 39-43

[BUC83]
I.Y. Bucher, The Computational speed of Supercomputers,
Proceedings ACM siqmetrics conference on measurement
and modelling of computer systems, August 1983,
151-165, also in [HWA84] 74-88

[CAM8S]
R. Campbell & A. Koe1mans & M. McLauchlan, STRICT: A
Design Language for Strongly Typed Recursive Integrated
Circuits, lEE proceedings, March 1985, 108-115

[CAR80]
J.E. Carroll, Physical Models for Semiconductor
Devices, 1980, ISBN 0-7131-3308-2

[CHA68]
Chambers Encyclopaedia, 1968

[CHE83]
S. Chen, Large-scale and High-Speed Multiprocessor
System for Scientific Applications, CRAY X-MP-2 series,
proceedings NATO advanced research workshop on high
speed computing, June 1983, revised in [HWA84] 46-58

[CHI82]
P.M. Chir1ian, Analysis and Design of Integrated
Electronic Logic Circuits, Volume 2: Digital
Electronics, 1982, ISBN 0-06-318215-7

[COD68]
E.F. Codd, Cellular Automata, ACM monograph series,
1968

172

[DAL84]

C.u. smith & J.A. Allen, Future Directions for VLSI and
Software Engineering, Lecture notes in computer
science: VLSI engineering - beyond software
engineering, 1984

[DAVS4]
R. Davis & D. Thomas, Systolic Array Chip Matches the
Pace of High-Speed Processing, Electronic design,
October 31 1984. Related articles in next three issues.

[DENSO]
J.B. Dennis, Data Flow Supercomputers, Computer,
November 1980, 48-56

[ECK79]
R.E. Eckhouse & R.L. Morris, Minicomputer Systems,
1979, ISBN 0-13-583922-x

[ENCS6]
Multimax Technical Summary, Encore computer
corporation, 726-01759 rev c, September 1986

[FEN81]
T. Feng, A Survey of Interconnection Networks,
Computer, December 1981, 12-27

[FER8S]
D.K. Ferry, Interconnection Lengths and VLSI, IEEE
circuits and devices magazine, July 1985, 39-41

[FOU85]
T.J. Fountain, Plans for the CLIP7 Chip, Integrated
technology for parallel image processing, 1985, ISBN
0-12-444820-8, 199-214

[FRI83]
G. Fritsch & W. Kleinoeder & C.U. Linster & J. Volkert,
EMSYS5-The Erlangen Multi-Processor System for a Broad
Spectrum of Applications, Proceedings 1983
international conference on parallel processing,
325-330

173

[FUN77]

L. Fung, A Massively Parallel processing Computer, in
[KUC77] 203-204

[GIB83]
J.R. Gibson, Electronic Logic Circuits, 1983, ISBN
0-7131-3491-7, Chapter 7

[GOA82]
G.B. Goates & T.R. Harris & R.E. Oettel & H.M. Waldron,
Storage/Logic Array Design: Reducing theory to
practice, VLSI design, July 1982, 56-62

[GOL8S]
A.V. Goldberg & S.S. Hirschorn & K.J. Lieberherr,
Approaches Toward Silicon Compilation, IEEE circuits
and devices magazine, May 1985, 29-38

[GOT82]
A. Gottlieb & R. Grishman & C.P. Kruskal & K.P.
McAuliffe & L. Rudolph & M. Snir, The NYU Ultracomputer
-- Designing a MIMD Shared-Memory Parallel Machine,
IEEE 0149-7111/82/0000/0027

[GRI84]
J. Grinberg & G.R. Nudd & R.D. Etchells, A Cellular
VISI Architecture, COMPUTER, January 1984, 69-81

[HAD64]
H. Hadwiger & H. Debrunner & V. Klee, Combinatorial
Geometry in the Plane, 1964, LCCCN 64-10297

[HAY78]
J.P. Hayes, Computer Architecture and Organisation,
1978, ISBN 0-07-027363-4

[UEW80]
C. Hewitt, The Apiary Network Architecture for
Knowledgeable Systems, 1980

[HIC83]
P.J. Hicks, Semi-custom IC design and VISI, 1983, ISBN
0-86341-011-1

174

[HIL85]
w.o. Hillis, The Connection Machine, 1985, ISBN
0-262-08157-1

[HIL87]
w.o. Hillis, The Connection Machine, Scientific
American, June 1987, Volume 256, Number 6, 86-93

[HUT87]
L.D. Hutcheson & P. Haugen & A. Husain, Optical
Znterconnects Replace Hardwire, IEEE spectrum, March
1987, 30-35

[HWA84]
K. Hwang, Supercomputers: Design and Application, IEEE
computer society press, 1984, ISBN 0-8186-0581-2

[HWA87]
K. Hwang, Advanced Parallel Processing with
Supercomputer Architectures, Proceedings of the IEEE,
Volume 75, Number 10, October 1987

[INM85]
INMOS, Transputer, INMOS publication 72-TRN-010-002

[INT87]
Special Issue on Multi-valued Logic Systems,
International journal of electronics, Volume 63, Number
2, August 1987

[JAN85]
P.A. Janson, Operating Systems - structures and
mechanisms, 1985, ISBN -12-380230-X

[JAS77]
Z.D. Jastrebski, The Nature and properties of
Engineering Materials, 2nd Edition, 1977, ISBN
0-471-02859-2

[JES86]
C.R. Jesshope & W. Moore, Wafer Scale Integration,
proceedings of a workshop held at the University of
Southampton, July 1985, ISBN 0-85274-497-8

175

[JON87]
S.P. Jones, The Implementation of Functional
Programming Languages, 1987, ISBN 0-13-453325-9

[JOS84]
M. Joseph & V.R. Prasad & N. Natarajan, A
Multiprocessor operating System, 1984, ISBN
0-13-605170-7

[KAII77]
G. Kahn & D.B. MacQueen, Coroutines and Networks of
Parallel Processes, IFIP congress proceedings, 993-998

[KAT84]
M.G. Katevenis, Reduced Instruction Set Computer
Architectures for VISI, ACM doctoral dissertation award
1984, ISBN 0-262-11103-9

[KEL85]

S.H. Kelem, A Method for the Automatic Translation of
Algorithms from a High-Level Language into Self-Timed
Integrated Circuits, IEEE circuits and devices
magazine, March 1985, 17-21

[KOE86]
A. Koelmans, System Structure for Asynchronous Fault
Tolerant VISI Circuits, SRM 428, University of
Newcastle upon Tyne computing Laboratory, 1986

[KOS84]
A. Koster, Compiling Prolog Programs for Parallel
Execution ona Cellular Machine, in [ACM84] 167-178

[KOZ80]
E.W. Kozdrowicki & D.J. Theis, Second Generation of
Vector Supercomputers, Computer, November 1984, 71-83

[KRAS1]
G.D. Kraft & W.N. Toy, Microprogrammed Control and
Reliable Design of Small Computers, 1981, ISBN
0-13-581140-6

176

[KDC77]
D.J. Kuck & D.H. Lawrie & A.H. Sameh, High Speed
Computer and Algorithm Organisation, symposium on high
speed computer and algorithm organisation, University
of Illinois, 1977, ISBN 0-12-427750-0

[KUNSO]
H. T. Kung & C.E. Leiserson, Algorithms for VLSI
Processor Arrays, in [MEA80] Section 8.3, 271-292

[KUN86]
S.Y. Kung, VLSI Array Processors, 1986, in [M0086] 7-24

[LAE71]
A.E. Laemmel, General Purpose Cellular Computers,
Presented at the symposium on computers and automata,
Polytechnic Institute of Brooklyn, April 13-15, 1971

[LEES7]
P.A. Lee, Parallel Processing on the Multimax Computer
System, PPM/001 Computing Laboratory, University of
Newcastle upon Tyne, August 1987

[LIN82]
N.R. Lincoln, Technology and Design Tradeoffs in the
Creation of a Modern Supercomputer, IEEE transactions
on computers, Volume C-31, Number 5, May 1982, 349-362

[LIP87]
G.J. Lipouski & M. Malek, Parallel computing - theory
and comparisons, 1987, ISBN 0-471-82262-0

[LOE76]
A.L. Loeb, Space Structures - Their Harmony and
Counterpoint, 1976, ISBN 0-201-04650-4

[LPM87]
R.P. Lippmann, An Introduction to computing with Neural
Nets, IEEE ASSP Magazine, April 1987, 4-22

[MANS2]
B.B. Mandelbrot, The Fractal Geometry of Nature, 1982,
ISBN 0-7167-1186-9

177

[MCCS6]
J. McCanny & J. McWhirter, The Derivation and
utilisation of Bit Level Systolic Array Architectures,
1986, in [M0086] 47-59

[MEASO]
C.A. Mead & L.A. Conway, Introduction to VLSI systems,
1980, ISBN 0-201-04358-0

[MEL86]
R. Melhem, Irregular Wave fronts in Data-Driven
Data-Dependent Computations, 1986, in [M0086] 303-312

[M0L84]
D. Moldovan, An Associative Array Architecture Intended
for Semantic Network Processing, in [ACM84] 212-221

[MOOS6]
w. Moore & A. McCabe & R. Urquhart, Systolic Arrays,
International workshop on systolc arrays, July 1986,
ISBN 0-85274-826-4

[MUKS6]
M. Mukaidono, Regular Ternary Logic FUnctions - ternary
logic functions suitable for treating ambiguity,
Transactions on computers, Volume c-35, Number 2,
February 1986

[NUDSS]
G.R. Nudd & R.D. Etchells & J. Grinberg,
Three-Dimensional VLSI Architecture for Image
Understanding, Journal of parallel and distributed
computing, Number 2, 1985, 1-29

[OED33]
The Oxford English Dictionary, 1933

[PEA8S]
J. Pearl, Heuristics - intelligent search strategies
for computer problem solving, 1985, ISBN 0-201-05594-5

178

[POR87]
W.A. Porter & J.L. Aravena, Orbital Architectures with
Dynamic Reconfiguration, lEE proceedings, Volume 134,
part E, Number 6, November 1987

[PRE83]
F.P. Preparata, optimal Three-Dimensional VLSI Layouts,
Mathematical systems theory 16, 1983, 1-8

[PRE84]
K. Preston & M.J. Duff, Modern Cellular Automata, 1984,
ISBN 0-306-41737-5

[PR087]
F.P. Prosser & D.E. winkel, The Art of Diqital Desiqn -
an introduction to top-down design, 2nd edition, 1987,
ISBN 0-13-046673-5

[ROB84]
F.S. Roberts, Applied combinatorics, 1984, ISBN
0-13-039313-4

[ROS82]
A. Rosenfeld & A. Wu, Cellular Computers for Parallel
Reqion-Level Imaqe processinq, Pattern recognition,
Number 15, 1982, 41-60

[ROS83]
A.L. Rosenberg, Three-Dimensional VLSI: A Case Study,
Journal of the ACM, Volume 30, Number 3, July 1983,
397-416

[ROZ86]
W.L. Ruzzo, Simple Universal Parallel Computers Based
on Hypercube Interconnections (detailed abstract),
Computer Science Department, University of Washington,
Seattle, 1986

[SCI71]
Computers and Computation, readings from Scientific
American, ISBN 0-7167-0936-8

179

[SL07l]
D.L. Slotnick, The Fastest Computer, in [SCI71]

[SOX76]
Supplement to The Oxford English Dictionary, 1976, ISBN
0-19-861123-4

[SMI81]
B.J. Smith, Architecture and Applications of the REP
Multiprocessor Computer System, Real Time Signal
Processing IV, Proceedings SPIE, 1981, 241-248, also in
[HWA84] 231-238

[SMI82]
K.F. smith & T.M. Carter & C.E. Hunt, Structured Logic
Design of Integrated Circuits using the Storage/Logic
Array (SLA), IEEE journal of solid-state circuits,
Volume sc-17, Number 2, April 1982, 395-406

[SNY82]
L. Snyder, Introduction to the Configurable, Highly
Parallel Computer, COMPUTER, January 1982, 47-56

[ST077]
R.A. Stokes, Burroughs Scientific Processor, in [KUC77]
85-89

[SU86]
S. su & M. CUtler & M. Wang & K. Saluja, Self-Diagnosis
of Linear and Mesh Systolic Arrays by Signature
Comparison, 1986, 217-227 in [M0086]

[TOT64]
L.F. Toth, Regular Figures, International series of
monographs on pure and applied mathematics, Volume 48,
1964, LCCCN 63-10121

[TRE82]
P.C. Treleaven & D.R. Brownbridge & R.P. Hopkins, .
Data-Driven and Demand-Driven Computer Architecture,
Computing surveys Volume 14, Number 1, March 1982

180

[VAN70]
L.H. Van Vlack, Materials Science for Enqineers, 1970,
LCCN 74-91151

[VAN73]
L.H. Van Vlack, A Textbook of Materials Technology,
1973, ISBN 0-201-08066-4

[W0L86]

S. Wolfram, Theory and Applications of Cellular
Automata, 1986, ISBN 9971-50-123-6

[YAK85]
A. Yakovlev, Desiqninq Self-Timed Systems, VLSI systems
design, September 1985, 70-90

[YUE86]
C.K. Yuen, Essential Concepts of Operating Systems,
1986, ISBN 0-201-12917-5

181

APPENDICES

index

1. Program-stub to program mapping.
2. Pascal user library.
3. User routines.
4. Simulator commands.
5. Examples of program output.
6. STRICT cell description.

182

Appendix 1

Program-stub to program mapping
This appendix shows the possibilities for programming a
face-cell multiplexor. It also shows the mapping between the
higher level program stubs and lower level six-bit program
for an individual face-cell multiplexor. (A face-cell is one
sixth of a soup-cell.) The architecture upon which this
Appendix is based is described in Chapter 4. A program used
in the simulation environment, which performs the
translation of stubs into six-bit programs, is the 'soup
face input processor' in Figure 5.1.
Multiplexor program stubs usually consist of three
characters. The first two characters of an individual stub
define the information to be routed to the corresponding
face-cell in the next soup-cells memory and half of the
input for the corresponding face-cells nand gate. (The other
half of the input to the nand gate comes from within the
soup-cell itself, see Chapter 4.) The third character
defines which information is to be routed to the next
face-cell within the same soup-cell. Multiplexor program
stubs may be other than three characters long when used to
specify one of the face-cells programming or locking
functions.
Multiplexor programs are six bits long. The most significant
bit is used to determine if the face-cell is to be used in
the normal manner or one of the special locking or
programming modes. If the former is the case then the
second-most-significant bit of the program is used to define
the information to the following face-cells memory, the
third and fourth most significant bits specify the
information to be routed to the nand gate and the fifth and
sixth bits specify the input to the next face-cell within
the same soup-cell. The mapping used for this and also the
mapping used for the programming and locking functions is
explained over leaf.

Stub: Program:

Program-Stub to Program Mapping

N..
F ..

01???? Input to next cells memory is output from this cells nand.
OO???? Input to next cells memory is the input to this cell from the

cell in the previous dimension.

Program until a lock is found. Leave all cells in the empty
state after passing through them until either the last cell in
the soup is reached, or a locked cell is found. Ifso then clear
the lock. 'abed' is an index which is used for debugging; to
show where the programming message was generated. For
example the simulators input processor always uses 110001.

Use a cell in lockmode. A cell has the capability to lock the
cell in the following dimension. Once locked, a cell's program
cannot move along the soup. Unlocking can only be achieved
via all ????reprogramming. To facilitate easy abutment of
cells of the types below, the multiplexor outputs to nand and
memory are predefined as 1 and the current value in memory
respectively.

LK 10??1? Set lock on the cell in next dimension if the value in memory is
1, or as soon as it becomes 1.

.N. 0?11??

. F . 0?10??

. M. 0?01??

.0. O?OO??

•. M 0???01
.. 1 O???OO
..N 0???10
.. F

.. ? 0???11

P 11abcd

L 10????

Input to next nand is the output from this cells nand .
Input to next nand is the input to this cell from the cell in the
previous dimension.
Input to next nand is the output from this cells memory .
Input to next nand is a zero.

Output to the cell in next dimension the value in memory .
Output to the cell in next dimension a one.
Output to the cell in next dimension the input to
the next cells nand or the input from the cell in the previous
dimension BUT the stub component must not be the same as
the input to next cells memory i.e. the stubs N?N and F?F do
not occur .
Output to the cell in next dimension is disabled.

LP 10???1 Use as a programmer. Shift up the program register of the cell
in next dimension 1 bit, when the input to the programmer
cell from previous dimension goes from undefined to 1 or 0 use
this as a new least significant program bit and hence obtain a
new program for the successor. The successor is forced into the
empty state, a transition on memory from high to low at the
programmer cell sets the state to full. A programmer cell
automatically locks the cell in next dimension on it's first
attempt to program.

LKP 10??11 Use as a programmer with lock explicitly set from memory.

Appendix 2

Pascal users library
This appendix shows the library of routines provided to aid
users in circuit definition. This library program is
compiled using a pascal compiler and 'includes' the required
user routine in the form of a procedure called 'main'. The
purpose of the library is described in more detail in
Chapter 5 and its position in the simulation environment can
be seen at the top left of Figure 5.1.
It can be seen from the program over leaf that the library
provides pre-defined constants such as indices to the six
face-cells of a soup-cell and three multiplexor outputs of a
face-cell. Some 'types' were also defined in the library.
For example, soup_type defines a cubic soup of maximum size
30 by 30 by 30 soup cells. (This size can be increased but
the program performance will be effected for larger soups.
Most of the simulations performed did not require this
maximum size to be altered.) The main procedures provided
are

to initially blank out the soup array.
to program one particular multiplexor component
within a soup.
to fill in any unused multiplexor capacity once a
circuit description is finished so that the
description is 'complete'.

WRITE_OUT print out the padded circuit array in suitable
form for input into the stub filter (soup-face
input processor).

CLEAR

P SOUP

PAD_OUT

Some library some routines provide diagnostic information.
The procedure P_SOUP will flag an attempt to program an
element of a multiplexor which has already been programmed
by a previous call to P_SOUP. The procedure PAD_OUT reports
the number of multiplexor elements which have required
padding.

IPROGRAM: The PASCAL library for the users application routine. The users routine is I1included, and is initially passed an empty circuit array.The output from this program is one or more three-dimensional 'complete' arrays of'stubs' which describe the required circuit. The output must be run through a filterto break down the stubs into the required a-bit binary programs before input to thesimulator.
PROGRAM input_processor(input,output,soup out,user):

ITNPUT,OUtPUT: Used for diagnostics. !SOUP OUT : Output of the three-D circuit arrays.USER- : Predefined for use by the lincludedroutine if required.CONST max_height· 30: The maximum height. width and depth of the circuitmax width - 30: arrays. Larger values require longer initialisation.max-depth - 30:no_of_faces - 6: {Number of faces in a cubic cell }
up • 1right - 5 down • 4front • 3

left - 2 : {The indices to the faces, corresponding with the}back - a ; {indices used in the stub filter and simulator. }
Multiplexor output indices. Output 1 goes to thefollowing cells 1-bit memory. output 2 to one inputof the following cells NAND, and output 3 to the cellin the next dimension.output_from_nand • 'N': The names defining which signal to place on whichoutput_from_other_dim. 'F'; multiplexor output. For example 'N' on output 1 meansoutput_from memory • 'M': place the NAND output on the input to the followingoutput undefined - '1': cells memory.{also have 0 and 10utputs 'O','1'}

to_memory • 1:to nand - Z:to:other_dim • 3;

TYPE
cell_length - 3: {The number of outputs from the multiplexor, defining}{the maximum stub length.cell type· PACKED ARRAY[1 ..cell length] OF char: {One stub.soup:type - ARRAY[1 ..max_height,I •.max_width,1 ..max_depth,1 ..no_of_faces] OF cell_type:

{A 3-d array of cubic cells. }VAR soup:soup_type:soup out,user:text:
height,width,depth,i:integer:pr,su:ARRAY[1 .•no_of_faces] OF 1..no of faces:{'iuccessor'{the cell in{PROCEDURE: To initialise the circuit array blank.

(Initialised as 'predecessor' and 1arrays for the face indices. For exampledimension following 'up' is su(up]

PROCEDURE c1ear(VAR soup:soup_type):VAR h,w,d,f:integer:
BEGINwriteln('Initialisation begins ••••):FOR h:-l TO max_height DO

FOR w:-1 TO max width DOFOR d:-l TO max_depth DOFOR f:-1 TO no_of_faces DO soup(h,w,d,f]:-'writeln(' ••• initialisation ends.'):END:

{
PROCEDURE: To find the largest actual height width and depth that were used by the user. to Idetermine how big a circuit needs to be Simulated. For most of my simulations thiswas not required as calculations could easily be made to determine size.

'.,

PROCEDURE inquire_size(VAR max_h,max_w,max_d:integer:VARVAR h,w,d,f:integer:BEGIN
max h:·1:max w:-l:max d:-l;FOR-h:-l TO max_height 00
FOR w:-1 TO max width 00FOR d:·l TO max_depth DOFOR f:-1 TO no of faces DOIF soup[h,w,d1rfJo' , THENIF h>max h TREN max h:.hELSE IF-w>max w TH[N max w:.wELSE IF d>max_d THEN max_d:-d:

soup:soup_type);

END;

~
PROCEDURE: The standard procedure for programming part of a cell stub. This procedure willgive error diagnostics for illegal program combinations and any attempt toreprogram a multiplexor output which has already been defined.

PROCEDURE p_soup(VAR face:cel1_type:mux_index:integer:data:char):VAR i:integer:BEGIN
FOR i:-1 TO cell length DO {Lock cells have ALL their mux outputs predefined, so }IF (face(i1 IN r'L','K','P']) THEN {attempting to program them must be an error. }writeln{'ERROR: ',face.' <- attempted to reprogram a "lock" cell.'):
IFB~~t~e(mux_index].' ') OR (face[mux_index]-data) THEN

IF (face(mux_index].data) THEN writeln('?',mux index,' ',data,':',face):
{Attempting to reprogram a mux output with the value }

f {it has already been programmed to. }acermux index]:-data:
IF (Pacerto_memory).face(to_other_dim) AND (face(to memory]<>' ') THEN_ writeln('ERROR: ',face):

{The mux output to memory must be different to the mux}

ENDELSE wr1te1n('Attempt to reprogram :"',face,'" ',mux_index,' ',data):
END:

{output to the other dimension. }

!PROCEDURE: To take a users circuit description array and make it 'complete' by padding out 1the stub. Note that the method used below is not the only way of padding, a goodalgorithm needs to program all of the unused multiplexor capacity without. interfering with the user circuit.
PROCEDURE pad_out(VAR soup:soup_type;height,width,depth:integer);VAR h,w,d,f,pad_count,laid count,i:integer;BEGIN _
writeln('padding .•• ');
pad count:=O; laid count:=O:FOR-h:-1 TO height-DOFOR w:-1 TO width DO

FOR d:-1 TO depth DOFOR f:-l TO no of faces DOIF NOT (soup[n,w~d][f][I] IN ['L','P']) THEN {mux outputs predefined; no padding required}BEGINFOR i:-1 TO cell length DOIF soup[h,w,d][1][i]a' , THEN pad count:·pad count+l
ELSE laid_count:-1aTd_count+1;

IF soup[h.w.dl[fl[to_memory]-' , THEN (Pad memory inlut as NAND output if possible.)
IF soup[h,w,a]['][to_other_dim]-'N' THEN SOUP~h'W.d ~fl[to_memorYJ:-'F'ELSE sour h.W,d f [to memorYl:-'N';IF SOUP[h.W,d]ff~tto nand]·' , THEN soup ,w,d]] to nand]:- F': fposs. undefined}IF soup[h,w,d] f to-other dim]=' , THEN soup h,w.d] f] to:other_dim]:- 7'; {undefined}END; --

EN01teln(laid_count,' things placed'); writeln(pad_count,' pads performed'):

{PROCEDURE: To output the circuit description. }

PROCEDURE write_out(VAR soup:soup_type;height,width,depth:integer:wait_time:integer);VAR h,w,d,f:integer:BEGIN
pad_outtsoup,height,width,depth);writeln soup out,hei ht,width,depth):FOR h:· TO neight Da {The ordering of these loops must correspondFOR w:-l TO width DO {ordering in the proceeding filter.FOR d:-l TO depth DOBEGIN

FOR f:-1 TO no_of_faces DO write(soup_out,soup[h,w,d][f],' ');writeln(soup out);END: -
writeln(soup out,wait time):END: - _

with the I

{PROCEDURE: To perform a complete reprogram of the machine. This is broken down by the filter}
{ into a series of reprogram codes ('111111'), one for each cellon an outside face.}
PROCEDURE reprogram(height,width.depth.wait_time:integer);VAR h,w,d:integer;BEGIN .
write1n(soup_out,-I·height,-1·width,-1·depth);writeln(soup_out,wait_tfme): {Wait_time is the number of 'load' cycles to waitEND: {whilst the soup settles before continuing.

{PROCEDURE: Places a cell in lock mode iff it has had no multiplexors programmed. }

PROCEDURE use in lock mode(VAR face:cell type);BEGIN - _ - -
IF face<>' 'THEN writeln('ERROR: attempt to use defined cell as a lock cellELSE face:.'L '; " face)

END;
{PROCEDURE: Use lock iff the cell is in lock mode, error if attempt to program lock bit twice.}
PROCEDURE use 10ck(VAR face:cell type):BEGIN _ _
IF (facea'L ') OR (facea'LP ') THEN IF facea'LP , THEN face:.'LKP'

ELSE face:a'LK 'ELSE writeln('ERROR: cannot use_lock on ,,,,face, 'I , I) :END;
{PROCEDURE: Use prog iff the cell is in lock mode, error if attempt to program prog bit twice.}
PROCEDURE use programmer(VAR face:cell type):BEGIN _ -
IF (facea'L ') OR (face-'LK ') THEN IF face-'LK , THEN face:a'LKP'

ELSE face:-'LP ,ELSE writeln('ERROR: cannot use_programmer on "',face,""):END;
{PROCEDURE: To route between two cells at the same height width and depth but in a different }
{ dimension by wiring through any intermediarry cells at this location. }
PROCEDURE route_between(h,w,d:integer;from_face:integer;from_mux_output:char:to_face:integer:

VAR soup:soup_type);

BEGINP soup(soup[h,w,d][from face],to other dim, from mux output):R£PEAT _ _ _ _ _
from_face:·surfrom_facel:IF from face<5to face TAEN p_soup(soup[h,w,d][from_face],to_other_dim,output_from_other_dim):

UNTIL (from_face.to_face):
END:
{PROCEDURE: A stub for an inverting wire of length 1 cell. Abut cells for longer wires. }
PROCEDURE wirel(h,w,d:integer:face:1nteger:VAR soup:soup type):BEGIN _
p_soup(soup[h,w,d][pr[face]],to other_dim,'l'): (Make one input to the NAND a 1. }p~soup(soup[h,w,d][face],to_nana,outPut_from_nand): {Pass NAND result to next cells NAND gate}

ENu:
linclude user_routine
BEGINwriteln: writeln('SOUP input routine processor V2.00'): writeln; writeln:
rewrite(soup_out,'/tmp/soup.input'):clear(soup):height:-O: width:zO: depth:-O:FOR i:-2 TO no of faces-l DO BEGIN prri]:·i-1: suril:·i+l: END:prrl]:.no_of fices: su[1]:-2: pr[no_of_'aces]:-no_o'_'aces-l; su[no_of_faces]:·l:maln{soup,heTght,width,depth): {Call the users routine.

END.
}

Appendix 3

User routines
This appendix shows the user routines which were used for
the illustrations in Chapter 5, namely for the simple
loading example, the external reprogramming example, the
edge detection example and the internal reprogramming
example. The routines were combined with, and make extensive
use of, the library routines in Appendix 2. In the
simulation environment described in Chapter 5, the user
routine can be seen at the top right of Figure 5.1.
The first routine is used to illustrate the external loading
process associated with the 'string' architecture that was
implemented. In this example the circuit array set up by the
user routine was identical for every multiplexor. It
consisted of generating a zero on the input to the
multiplexors and routing this to the memory element which
directly follows each multiplexor. The order of loading
could be observed by examining the order in which the memory
elements of the soup were set to zero.
The second routine is used to show external reprogramming,
by using the circuit of Figure 5.3. The procedure
set_up_picture_data is used to set up a two dimensional
input image in a plane of memory elements. The procedure
copy_to_faces copies this image to the right of the soup and
also either front and back or up and down depending upon the
parameters the procedure is called with. The main program
calls the procedure twice to generate the two circuit
descriptions that are required, Plate 5.4 and Plate 5.5.
The third routine is the edge detection circuit. The
procedure set_up_picture_data is similar to the previous
example except that the pixels of the image are spaced
further apart to allow for the size of the edge detection
circuitry required, see Figure 5.4. The procedure
place_1bit_detect is the circuitry for a one bit edge
detector using the algorithm

(X nand (A nand B)) nand (X nand (C nand D))
as described in Chapter 5. The procedure route_image
provides the required routing between the pixels of the
input image and the edge detectors.

The fourth routine is a more complex example which shows
internal reprogramming. The circuit is illustrated in Figure
5.5. The procedure delay_block creates the required delay
line using long chains of memory elements. It also generates

the feedback path and the register. The register decode is
performed by the procedure register_decode, the read-only
memory and associated address lines and routing of data by
memory_block, the actual programmer circuits and appropriate
paths for control signals are set up by programmer_circuit,
and the display area is set up by the procedure
display_area. The main part of the user routine positions
these elements with the required relative spacings according
to the size of the input image.

$USER ROUTINE: Used to illustrate a 'load'. Every cell places a zero on it's output to the ~l following cells memory. i
PROCEDURE main(VAR soup:soup_type:VAR she1ght,swidth,sdepth:integer):CONST max_h- 10: max_w· 10: max_d- 10: {For a 10 by 10 by 10 circult. }VAR x,y,z,h:integer:BEGINFOR x:-l TO max h DO {For every cube in the soup ••• }FOR y:-1 TO max_w DOFOR z:-l TO max d DO

FOR h:-l TO 6 ~ {For every face processor in the cube... }BEGINp_soup(soup[x,y,z][h],to_memory,output_from_other dim): (Make next cells memory input l
~the input to this cell from the previous dimension.

P_SOUP(SOuPfX,y,z~fprth~~,to_nand, 0'): (Send a zero from the previous dimension.p soup(soup x,y,z pr h ,to other dim,output from nand):END: _ _ _ _
write out(soup,max h.max w,max d,O): {Output this circuit array. }END: _ _ _ _

$USER ROUTINE: The external reprogramming example. Two images are read from a data file and ~
~ routed to different areas within the soup. i
PROCEDURE main(VAR soup:soup_type:VAR sheight,swidth,sdepth:integer):CONST indent - 2:VAR hl,w1,d1:integer:
(FUNCTION: To read one 'bit' of data from the input file.~UNCTION read_pixel(VAR f:text):boolean:VAR ch:char:BEGINIF EOLN(f) THEN read pixel:-FALSE

ELSE BEGIN read(f,ch~:IF ch()' THEN read_pixe1:-true ELSE read_pixel:-false:END:

}

END:
{PROCEDURE: To set up and display the inputPROCEDURE set_up_picture_data:VAR x,y,max x.max_Y,h,w.d:integer:

image:P~CKED ARRAY[1 ••100,l .•100] OFBEGINreadln(user,max x,max_y):
FOR y:-max_y DOWNTO 1 DOBEGIN FOR x:-l TO max x DOread1n(user}: _
END:

image on the left hand side of the soup. }

boolean;
{The height and width of the image.(Read in the data.image[x.y]:-read_pixe1(user);

FOR x:·l TO max x DOBEGIN _
FOR y:-1 TO max y DOIF image[x,y]-TRUE THENBEGIN

h:-y+indent: d:-x+indent; write('.'): {Calculate appropriate height and depth in soup. }
p souPlsouPlh'l'd~~left],to memory,output from other dim);p:soup soup h,l,d pr[left]l,to other_d1m7'1'): {Display a 10n 'left' proc. at (h,2,d).}p soup soup h,Z,d left],to_nano,output_from_memory):END EL E B GIN {Otherwise the image is a 0 so ••• }h:.y+indent:d:-x+indent~. write(' '}: {Calculate appropriate height and depth in soup. }
p_souPlsouPlh,z,dllleft ,to_nand,output_from_memory):p_soup soup h,l,d left ,to memory,output_from_other_dim);p_soup soup h,1,d pr[left]l,to_other dlm,output from_nand):

ECD~oUP soup h,l,d pr[left] ,to_nand,TO'); {DispTay a zero.
writeln:END;

sheight:-max_x+Z·indent; swidth:-Z:END:

{For each column •.• }

{For each row
{If the image is a 1 •••

}

}

}

{Calculate the maximum soup height, width and depthsdepth:-max_y+Z·indent: (required by this procedure.

~
PROCEDURE: To copy an image from the left of the soup to the right, and also either up anddown faces or ~ack and front faces.ROCEDURE copy to_faces(fl,fZ:integer); fThe valid combinations are ft-up & fZ·down orVAR h,w,d,w1oth 10,W1dth hi,1:integer: fl-back & f2-frontBEGIN _ _
width_lo:-swidth: {The starting width is the input images width. 1IF she1ght)sdepth THEN width hi:-sheight-Z ELSE width hi:-sdepth-Z; {To provide enough space_ {to route up and down as well as left and right.
IF «width_hi MOD 2)-0) THEN width hi:-width_hi+l: {An odd value would result in an inverted_ {image as routing is via chains of inverting NOR gatesFOR h:-indent+l TO sheight-indent 00 {For every pixel in the image .••FOR d:·indent+l TO sdepth-indent 00

FOR w:-1 TO width hi DO {For every point in the routing area ••• }BEGIN _
wirel(h,w+width lo,d, left, soup): {Copy input to the right. ' }
IF ((d-indent-w, AND (ft-back» tHE~ {If on the diagonal then route to the front and back}B£~IN

route_between(h,w+width_lo+l,d, left, output_from_memory,fl,soup);

1

P_SOUP(SOUP[h'W+Width_10+1,d][f2~,to_nand,outPut_from_0ther_dim): .p soup(soup[h,w+width lo+l,d][fl ,to nand,output from other dim):FOR 1:-1 TO (w-1) DO wire1(h,w+w dth-lo+l,d-i, fI, soup): (Route to the front.FOR i:-l TO (width hi-1-w-i) DO wirel(h,w+width lo+l,d+i, fl, soup): (Route to back.
P_SOUP!SOUPlh'W+Width_10+1'~J[pr~f2]],to_other_aim"1'): (Display at front.p soup soup h,w+width 10+1,2 [f2 ,to memorl,output from nand):p:soup soup h,w+width:lo+l,s ept -1]fpr[flJ],to_other_dTm,'1'): (Display at back.

E~DsouP soup h,w+width_lo+l,sdepth-1] f1],to_memory,output_from_nand):
ELSEIF ((h-indent-w) AND (f1-up» THEN {If on the diagonal then route up and down.

BEGiNroute_between(h,w+width_lo+l,d, left, output_from memOry'fl'SOU~):P_SOUP(SOUP[h'W+Width_10+1'd]~fZ],to_nand,outPut_rrom_other_dim :p soup(soup[h,w+w1dth 10+1,d] f1],to nand,output from other dim:FOR i:-l TO lW-1) DO wirel(h- ,w+width 10+1,d, fI, soup): (Route to the bottom. }FOR i:-1 TO width hi-1-w-i) DO wire1(h+i,w+width_lo+1,d, 11, soup): (Route to top.
P_SOUP!SOUPI 'W+Width_10+1,d~[pr[fZ]],to_other_dim"11): (Display at the bottom.p soup soup 2,w+width 10+1,d [fZ],to memory output from nandl;p:soup soup sheight-1:w+widt _10+1,dJfpr~f1j],to_other_a1m,' '); {Display at the top.}p soup soup sheight-l,w+width 10+1,d f1 ,to memory,output from nand);END - _ _ _

END: {Width is the input image width plus the routing area lswidth:-swidth+width hi+2; plus the right-hand display area.FOR h:·indent+l TO sheight-indent DO The right-hand display area ..•
FOR d:-indent+l TO sdepth-indent DOBEGIN P_SOUP(SOUPfh,Swidth-1,d~fleft],to memory,output_from_nand);p_soup(soup h,swidth-l,d pr[left]l,to other dim,'l');END; _ _

END;

}

}

BEGINreset(user,'pic.dat'):set_up_picture data;
copy_to_faces(back,front):write_out(soup,height,width,depth,20);reprogram(height,w1dth,depth,1):

{Read in the first image into the soup.{Route it to the back and to the front.

clear(soup);set_up_picture_data:copy_to_faces(up,down);
write_out(soup,height,width,depth,O):

END:
I

Aftera delay (20 load times) place a 111111 message Ion the face of everv cellon the edge of the soup. Asno cells have been locked' this has the effect ofcompletely reprogramming the machine.Clear the circuit array ready for the next circuitdescription. } (Set up the second image.This time copy it up and down, but not back or front.

~USER ROUTINE: Edge detection. This has four main components: the input, a routing section, ~t the edge detection section, and displaying the results (done by 'edge_detect').i
PROCEDURE main(VAR soup:soup_type;VAR sheight,swidth,sdepth:integer);
CONST indent - 0; pix_height.3: pix_depth -3: {The required pixel spacingVAR hl,wl,dl,max_y,max_x:integer;
FUNCTION read_pixel(VAR f:text):boolean; {As previously explained}VAR ch:char;BEGINIF EOLN(f)

of the input image}

END;
(PROCEDURE: As previously explained, but note the changes in calculation of pixel hand d.PROCEDURE set_up picture_data;VAR x,y,h,w,d:Tnteger;

image:PACKED ARRAY[1 .•100,1 ..100] OF boolean:BEGINreadln(user,max x,max y);FOR I:·max_y DOiNTO 1-00BEG N FOR x:-1 TO max x DO image[x,y]:-read_pixel(user);readln(user): _END;
FOR x:-l TO max x DOBEGIN -

FOR y:-1 TO max y DO
IF image(x.y~.TRUE THENBEGIN write '.'):

h:·(Y-1)·p x_height + {PiX_height+1) DIV 2 +indent;d:.{x-1)·pix depth + ~ix depth+1) DIY 2 +indent:
p_souPtsouP,h'l,d]~lef],to memory,output from other dim):

EPftsouEPsoup h,l,d] pr[leftll,to_other_dim7'1'); {Output is a 1.Nu L E 8 GIN wr te{' '):
h:·(y-1)·pix_height + (pix height+1) DIY 2 +indent·d:·(x-1)·pix depth + (~ix-depth+1) DIY 2 +indent:
p_souPiSOUP~h'l'd~~left],to memory,output from oth~r dim):p_soup soup h,1,d pr(left]},to other dim:output from nand):
p_soup soup h,1,d pr(left]],to:nand,TO'); (Output is a zero.

THEN read pixel:-FALSE
ELSE BEGIN read(f,ch):IF ch()' r THEN read_p1xel:.true ELSE read_p1xel:.false:

END:

}

}

}

END:write1n:END:sheight:-max x·pix height+Z·indent:END: _ _
(PROCEDURE: Performs the edge detection.PROCEDURE edQe detect:VAR h,w,d:lnteger: .

(As before, except height and depth are now bigger.
swfdth:·Z: sdepth:·max_y·pix_depth+Z·indent:

}

}

(PROCEDURE: A one bit edge detector. The output is a 1 iff X is a 1 and one or more of the }PROCEDURE place Ibit_detect(h,w,d:integer): {neighbouring pixels (a,b,c,d) are zero. }VAR hi,wi,di:Tnteger:BEGIN
write1n('P1acing 1 bit detector at ',h,w,d): ~Diagnostic. . ~p_souP~SOUP~h+l'W 'd+Z~!left],to nand,output from memory); Route A and B together andp_soup soup h+l,w+l,d+Z prf1eft]J,to other_dTm,'lT): NAND them to give A NAND B.
p_soup soup h+l,w+l,d+Z 1e'tl,to nana,output_from_nand):route_between(h+l,w+l,d+ ,1eft,output_from_nand, front,soup):
p_souPlsouPlh+l,W+l,d+Z][front],to_memory,output_from_other_dim):p_soup soup h+l,w+l,d+l][front],to_nand,output_from_memory):
p_soup soup h+l'W+l,d]~pr(front]],to other_dim,'l'):p_soup soup h+l,w+l,d] frontJ,to_nana,output_from_nand):route_between(h+l,w+l, ,front,output_from_nand, left,soup):
p_soup SOUP!h+l,W,d]fleftl,to nand,output from memory);p soup soup h+l'W+l,a]~le'tJ,to nand ,output from nand):p:soup soup h+l,w+Z,d] left ,to:memory,output:from:nand):
p_soup soup h+2,w ,d+ ~Ile t],to nand,output from memory): {Route C and D together and }p soup soup h+Z,w+l,d+l prf1eft]J,to other dTm,'lT); {NAND them to give C NAND D. }p:soup soup h+Z,w+l,d+l le1tl,to_nana,output_from_nand):route_between(h+2,w+l,d+ ,1efi,output_from_nand, down,soup):
p_souPlsouPlh+2,W+l,d+l][dOWn],to_memory,output_from_other_dim):p_soup soup h+l,w+l,d+l][down],to_nand,output_from_memory):
p_soup soup h'W+l'd+l]~pr[dOWn]],to other_dim,'I');p_soup soup h,w+l,d+l] down],to nana,output_from_nand);route_between(h,w+l,d+ ,down,output_from_nand, left,soup):
p_soup SOUP!h,W,d+l]f1eftl,to_nand,output_from memory);p_soup soup h'W+l,d+I]~le'tJ,to_nand ,output_from_nand);p_soup soup h,w+2,d+l] left ,to memory,output_from_nand);p_soup soup h+l,w ,d+ ~Ile t],to nand,output from memory); {move out X to this width. }p_soup soup h+l,w+l,d+l prfleftJJ,to_other_dTm,'lT):p_soup soup h+l,w+l,d+l left],to_memory,output_from_nand);route_between(h+l,w+2,d+ ,left,output_from_memory,down,soup);
p souPlsouPlh+l'W+2'd+ll~front],to nand ,output from other dim); lNAND X with the two Ip:soup soup h+l,w+2,d+l down],to:nand ,output-from:other:dim); previous results to givep soup soup h ,w+2,d+l pr[down]],to other dim,Tl'): (X NAND (A NAND B» andp:soup soup h,.+2,d+l]f own],to_nand,output:from_nand); (X NAND (C NANO D».route_between(h ,W+Z,a+l,down,outjut_from_nand, left,soup);p soup(soup[h+l,w+2,d][pr(front] ,to other dim,'l'):p:soup(soup[h+l,w+2,d][front],to_nano,output_from_nand);{for route_between}route_between(h+l,w+Z,d ,front,output from_nand, left,soup);route_between(h ,w+3,d+l,left,output_7rom_memory, up,soup): {NAND these two values. }p_soup(soup(h ,w+3,d+l]rup],to_memory,output_from_other_d1m):route_between(h+l,w+3,d+I,up,output_from_memory, front,soup):p_soup(soup(h+l,w+3,d+l]rfront],to_memory,output_from other dim);route_between(h+l,w+3,d,'ront,output_from_memory, lefi,souP/:{Displ ay the edge detect ion result: }

{ (X NAND (A NAND B) NAND (X NAND (C NAND D» }
p SOUP(SOUP[h+l,W+2,djfleftj,to nand ,output from nand~;p-soup(soup[h+l,w+3,d left ,to-memory,output-from-nand ;END; _ _ _

(PROCEDURE: Route the input image data to the 1 bit edge detectors as required. }PROCEDURE route_image(h,w,d:integer);
FUNCTION in soup(h,d:integer):boo1ean; {Returns true if (h,d) is part of the image. }BEGIN _
IF (h)·I) AND (h(.sheight) AND (d).I) AND (d(·sdepth) THEN in_soup:·trueELSE in soup:·false;ENO; _

(PROCEDURE: Forces a zero into the memory of cell [h,w+l,d][left]. }PROCEDURE zero left(h,w,d:integer):BEGIN _
p_souPtsouP~h,w'd~~pr~left]],to nand,'O');p_soup soup h,.,d pr left]],to:other d1m,output from nand):

ENC;sOUP soup h,w,d le t],to_memory,output_from_other_aim);

BEGIN
route_between(h,w d,left, output from memory, 1eft,soup): {Copy input pixel to the output}p_SOuP(SOUP(h,w,djrleft],to memory,output from other dim); {directly opposite. }route_between(h,w+I,d,left,-output from memory: 1eft:soup):
ppsoup(sOuprh,w+l,dlr1eft],to memory,output from other dim):Ir in soup(fi+2,d) TAEN _ _ _ _

BEGTN {If there is a pixel above then route this data up for}
p_soUPfSOUP~h'W'd]fUt],to_nand,outPut_from other_dim): {use by it's 1 bit edge detector.}p_soup soup h+l,w,a] pr(up]],to other dim,Tl'):
p_soup soup h+l,w,d] up],to memory,output from nand);route_between(h+2,w, ,up, output from memory, Teft,soup):P_SOup(Soup[h+2,w,d]rleft],to nand ,output from other dim):p_soup(SoUP(h+2,w+l,a][pr[left]],to_other_dTm,'lT): _

p soup(soup[h+2,w+l,d][leftl,to memory,output from nand);END ELSE zero left(h+l,w+l,a); _ {If not then place a zero on the top edge of the data.}IF in soup(h-2,d] THEN
BEGIN {If there is a pixel below then route this data down. }
P_SOUPISOUP!h,w+l,d]rdownJ,to_nand,output_from other_dim):p_soup soup h-l,W+l,allpr[down]],to other_dim,TI');p_soup soup h-l,w+l,d down],to nano,output from nand);p_soup soup h-2,w+l,d pr[down]J,to other_dTm,'IT);p_soup soup h-2,.+1,d down],to_nano,output_from nand); {for route_between}route_between(h-2,w+l, ,down, output_from_nand, Teft,soup); .p soup(soup[h-2,w+t,dl[leftl,to_memory,output_from_other_dim):

END ELSE zero left(h-l,w+l,a); {If not then place a zero on the bottom edge. }IF in soup(h,d+Z] THENBEGIN {If there is a pixel to the right (deeper in the soup)}
p_souPiSOUP~h'W'd]rbaCk],to nand,output_from other_dim}; {then route further back. }p soup soup h'W'd+I]~pr[baCk]J,to other dim,Tl');p:soup soup h,.,d+l] backl,to_memory,output_from nand);route_between(h,w,d+ ,back, output_from_memory, Teft,soup);
p souPlSOUP~h'.'d+2]rleft~,to nand ,output from other dim);p:soup soup h,w+l,d+2][pr left]],to_other_dTm,'lT): _
p soup soup h,w+l,d+2][le tl,to_memory,output_from_nand);END EL E zero left(h,w+l,d+I); {If not then place a zero on the righthand edge. }IF in soup(h,d-2] THEN

BEGIN (If there is a pixel to the left (shallower) then }
P_SOUPISOUP!h,W+l,d]rfrontl,to_nana,output_from other_dim): {route towards the front. }p_soup soup h,w+l,d-Il!pr[,ront]],to other_dim,Tl'};p_soup soup h,w+l,d-1 front],to nana,output from nand);p_soup soup h,w+1,d-2 pr[front]J,to other_dTm,'lT);p_soup soup h,w+1,d-2 front],to_nana,output_from nand): {for route_between}route between(h.w+l,d- ,front. output from nand, Teft.soup):p soup(soup[h,w+l,d-Z][leftl,to_memory,output_from_other_dim);END ELSE zero_left(h,w+l,d-!); {If not then place a zero on the lefthand edge. }

END: ,
BEGINFOR h:·1 TO max_' DO (For every pixel in the imageFOR d:·l TO max x DOBEGIN

route image(h-l)·pix height+2,swidth,(d-l)·pix depth+2);place:lbit_detect«h-T)·pix_height+l,sw1dt~+2,(a-l)·p1x_depth+1);END;swidth:·swidth+2+5 {Width is image width plus routing width (2)END; (edge detector and display area width (5).
BEGIN
reset(user,'pic.dat');set_up_picture_data;edge detect;
write out(soup,height,width,depth,O):END; _

}

plus the ~

$USER ROUTINE: The internal reprogramming example. The major components of this are a delay ~t line counter, a register, decode, memory, and internal reprogramming cells. }
PROCEDURE main(VAR soup:soup type;VAR sheight,swidth,sdepth:integer);(NOTE: must be loaded using rORCELOAD because of 'lock' cells, (Explained in main text), }tYPE image_type-PACKED ARRAY[1 •.100,1 ••100] DF boolean:VAR image:image_type:

x,y,m_x,m_y,max_x,max_',max_z.pso_h,pso_w,pso_d:integer:
(PROCEDURE: To copy the input signal in the memory cellon face 'f' to the next cellsPROCEDURE r straight(h,w,d,f:integer); {route straight}BEGIN routi_between(h,w,d,f,output_trom_memory.f,soup); (Route through all 6 faces.p_soup(soup[h.w,d][f],to memory,output from other aim); {Foreward the answer.END; _ _ _ _

memory. }

~

(PROCEDURE: To route the input signal from memory at (h,w,d,f) up 1 cell and back in the }PROCEDURE r up(h,w,d,f:integer): {route up} { oppOSite direction.BEGIN routi_between(h,w,d,f,output from memory,up7soup); (route from 'f to 'up'.p_soup(Soup[h,w,d][up],to_memory,output_from_other_aim);
route_between(h+l,w,d,ue,output from memory,pr[pr[pr[f]]], soup); {route from 'up' baCk}P_soup(Soup[h+l,w,d][pr[pr[pr[fJ]]],to_memory,output_from_other_dim): (in oppositeEND: {direction to 'f'.

(PROCEDURE: To create n abutted delay blocks. Delay is obta1ned through long chains of memory}PROCEDURE delay_block(n,h_lo,h_hi,w_lo,w_hi,start_depth:integer): {elements, }VAR h,w,d:integer:BEGIN
IF «hrhi-hrlO) MOD 2)-0 THEN h hi:·h hi-1: {Ensure output is in opposite direction to input.}p_soup soup h 10,w hi-l,start depth-Zl!pr[back]],to other dim,'l'): {Place a I on an input top_soup soup h:lo,w:h1-1,start:depth-Z back],to_nana,output_from_other dim): {a NAND gate.p_soup soup h lo,w hi-I, start depth-1 back],to memory,output from nani):
route_betweenfh_lO=I,w hi-l,start dep -l,front~ output from memory,up,soup): !Place feedbaCklp_soup(soup[h lo-l,w hT-1,start depth-l][up],to memory,output from other dim): on the otherroute_betweenTh_lo,w-hi-l,start-depth-l,up, output from memory,back,SOuP}; input. Thisroute_between(h_lo,w-hi-t,start-depth+n,back, output from memory,down,soup): creates an
p_souP(SOUP[h7lo,w_hT-t,start_depth+n]rdown],to_memory,output_from_other_d1m); infinite loop.
route_between\h_lO-l,w_hi-I,start_depth+n,down, output_from_memory,front,souP)j

P soup(soup[h 10-1,w hi-1,start_depth+n][front],to_memory,output_from_other_dim);
FOR d:-start aepth TO (start depth+n-l) 00BEGIN _ _

r straight(h 10-1,. hi-l,d,front); (The feedback path. ~route between(h 10,; hi-l,d,back, output from memory,right,soup): (The input signal to thisp_soup(soup[h lo.w_hT-l.d][right].to_memory.output_from_other dim); {delay line.route betweenTh lo,w hi,d,aown, output from memOry,right,soupT; {The output signal fromp_soup(soup[h lo.w_hT.d][right],to_memory,output_from_other_d m); {this delay line.route_between(h_lo,w hi-I,d,right, output_from_memory,back,soup): {The delay line •••p_soup(soup[h lo,w hT-l,dl[back].to_memory,output_from_other_dim);
r_straight(fi_ni,w ni-l,d,Teft):route_between(h hT,w hi,d,left, output_from_memory,down,soup);p soup(soup[h_hT,._hT,d][down],to~memory,output from_other_dim):FOR h:=h_lo+l TO h_hi-l DO r_stralght(h,w_hi,d,aown):
P_SOUP!SOUP!h_10+2'W_hi'd][left~,to_nand.outPut_from other_dim): {Output the answer: the}p soup soup h 10+2,w hi+l,allpr left]],to other dim,T1'): {delay line register. }p-soup soup h-10+2,w-hi+l,d le t],to nana,output from nand):p-soup soup h-10+2,w-hi+2,d pr[left]J,to other dTm.'lT):p-soup soup h-lo+2,w-hi+2,d le't],to memory,ou{put_from_nand);FOR h:=h_lo TO h hi DO {Main body: long chains of memory elements. }
I~E~i~h-h_lO) ~D 2) - 0) THEN

FOR w:·w_hi-2 DOWNTO w_lo+l DO r_straight(h,w,d,right):
r up(h,w lo,d,right):FOR w:-w-lo+l TO w hi-2 00 r straight(h+l,w,d,left);IF (h<>h-hi) AND (n<>h hi-l)-THEN r up(h+1,w hi-l,d,left):END:.- _ _ _

END;
END;
(PROCEDURE: The display area. }~ROCEDURE set_up display_area(h_lo,h_hi,w_lo,d,pic_width:integer);
VAR x,y,z,h,w_ni,rel_w:integer:

(PROCEDURE: To set a lock at cell (x,y,z). }PROCEDURE loc(bottom:boolean:x,y,z:integer):BEGIN {Put a 1 on the lock enable line if required. }
IF bottom THEN BEGIN p_soup(soup[x-l,y,z][pr[up]],to_other dim,'l');p_soup(soup[x-l,y,z][up],to_memory,ou{put_from_other_dim};

END:use_in_lock_mode(soue[x,~,z][up]):use_lock(soup[x,y,z]luP]):END:
BEGINw hi:-w 10+4.pic width+S: z:.d+l: (Make display wide enough for 4 images.writelnT'Display-:'); writeln(' hlo,hh;',h_10:3, h hi:3); (Diagnostics._riteln(' wlo,whi',_ 10:3, w_hi:3): write1n(' dlo,ahi',d:3, d+1:3};
FOR x:-h 10 TO h hi DOBEGIN _ _

FOR y:=w 10 TO w hi DO (For every cell in the display area •••BEGIN _ _
p soup(soup[x,y,z][frontl,to memory,output from other dim); {Copy input to memory. IIt «(x+y) ~D 5)-1) THEA P_iOUP(SOUP[x,y'i1fpr~front1]'to_other_d1m"l') {Place a 1 onELSE p_soup(soup[x,y,z pr front],to_other_d1m,'?'):{the output toEND; {every 5 d agona • NB pr[front] - left

}

10c(x.h_10,x,w_10+2,z); lPlace locks at width=2 -this is because of a spike inlthe circuit sending a 111111 message at switch-on.10clx.h_10,x,w_10+Pic_width+2,Z); Place a column of locks wide enough for one picture.loc true,x,w 10+2·pic _idth+2+3-2+(x 00 3),z); {Place the jagged column.
E~g~ xah_10,x7w_10+«S·pic_w1dth) otv 2}+2+3,z}; {Place another straight column.

END;
(PROCEDURE: To set up a bank of programmer cells.PROCEDURE programmer_circuit(bottom:boo1ean:h,w,d,pso_h,pso_w,pso_d:integer);VAR i:integer;

}

(PROCEDURE: To route the enable signal from the register decode. }PROCEDURE prog_signal_route(hl,wl,dl,h2,w2,d2:1nteger):VAR h,w,d:1nteger: {ordering of routing is front then down then right(through 'left' procs)}BEGIN
IF (hl<h2) OR (wl>w2) OR (dl<d2) THEN writeln('Routing fails'): {Assumptions made about thei(location of the register decode block.FOR d:-dl DOWNTO d2+1 00 r_straight(hl,wl,d,front): {Route signal to the front.route_between(h1,w1,d2,front, output_from_memory,down,soup):p soup(soup[hi,wl,d21[down],to memory,output from other dim);FOR h:-hl-1 DOWNTO h2+1 00 r_siraight(h.wl,dI,down): {Route signal downwards. }
route_between(hZ,wl,d2,down, output from memory,lett,soup):F soup(soup[h~,wl,d2][left],to memory,ou{put from other d~m);

ENg~ w:-w1+1 TO w2 DO r_straigh{(h2,w,d2,left,; {Route sTgna1 to the right. }

BEGIN
IF bottom THEN {Connect the programmer enable Signal.BEGIN prog_signal route(pso h,pso w,pso_d,h-2,w-l,d):

P_Soup(Souprh-2,w-1,dl[leftJ,to nand,output from memory):END; _ _ _
FOR i:-O TO 5 DO {There are six bits in a the program word.BEGIN

IF bottom THEN

}

}

BEGIN
P_SOUP(SOUP[h-Z'W+i,d]~prrleft]],to other_dim,'l'): (Route the enable signal to all of }p_soup(soup[h-Z,w+i,d] leFt],to_nano,output_from_nand): {the cells ••• }
route between(h-Z,w+i, ,left, output from nand, up,soup):IF (i-MOO Z)-O THEN _ _
BE~IN
P_SOUP!SOUP!h-Z'W+i'd~~UP~,to nand,output from other_dim):p_soup soup h-l,w+i,d pr up]J,to_other_dTm,'IT):p soup soup h-l,w+i,d up ,to_memory,output_from_nand):END EL E B GINp_soup(soup[h-Z,w+i,d]rup],to_memory,output_from_other_dim):route between(h-1,w+i,a,Uj' output from memory, up,soup);

E~D~OUP(SOUP[h-l,W+i,d][UP ,to_memory,output_from_other_dim):
END:use_in_lock_mode(soup[h,w+i,d][up]): {Define as a programmer cell, programmers should be }use_lock(soup[h,w+i,d][up]): { locked. }use programmer(soup[h,w+i,d][upl):route_between(h,w+i,d,front, output_from_memory , up,soup); {Route in the cells data from }END; { the program store. }

END:
FUNCTION read_pixel(VAR f:text):boolean:{To read 1 'bit' of data from the input file.VAR ch:char:BEGINIF EOlN(f) THEN read pixel:-FALSE

ELSE BEGIN read(f,ch~:IF ch<>' THEN read_pixel:-true ELSE read_pixel:·false:
END:

}

END:
(PROCEDURE: To read in the input image into the boolean array 'image'.PROCEDURE set_up_picture_data(VAR image:image_type;VAR m_x,m_y:integer):VAR x,y:integer:
BEGINreadln(user,m x,m_y):FOR y:·m y DOiNTO 1 DO

BEGIN FOR x:-l TO m x DO image[x,y]:.read_pixel(user):readln(user);-END:END:

}

~
PROCEDURE: To create a bank of memory holding the required sequence of programs to generate }

a display of memory elements identical to the image. }ROCEOURE memory block(h offset,w offset,d offset:integer:image:image type:_ _ _ _ image width,image height:integer):
CONST obr_h • l: obr_w. Z: obr_d. Z : {Dimensions of 'one_Dit_registerT block. }VAR x,y,z,p,y_pos,picture_width:integer:

1PROCEDURE: A one bit register which places it's data on the output if it is selected, }if not, it copies the output from the previous cell to it's output. }
ROCEDURE one bit register(data:inteQer:first,last:boolean;h,w,d:integer):BEGIN - _ {No more than I cell in chain must be selected at a time}IF first THEN p_soup(sou~[h,w,d][front],to_memory,output_from_nand): (Output the result.
P_SOUP(SOUP[h'W,d]~front],to nana,output from nand); (Invert result.p soup(soup[h,w,d] pr[front]J,to other dTm,'lT):route_between(h,w+ ,d+l,Uj,output_from:memory, up,soup): {The enable signal. }
p SOUP(SOUP~h'W+1,d+I][UP ,to memory,output from other dim};p-soup(soup h,w+l,d+l][right]7to nand,output from other dim):It data-1 T EN _ {The data to-be stored. Note that it is inverted. }

BEGIN P SOUP(SOUP[h,w'd+11[pr~right]~,to nand,'O'):p-soup(soup[h,w,d+1 [pr ri~ht] ,to:other dim,output from_nand):END ELS[P soup(soup[h,w, +1] pr rig t]1,to other dim,'1'T:p soup(soup[h7w,d+l]rright], to nan ,output from nano): {For route between.route_between(h,w,d+I,r1ght, output_from_nand, front, soup): (NAND-previous output with
p soup(Souprh,w,d+I][front],to nand,output from nand): {this value.Ir last THEA _ {Put i 1 at the beyinning of the chain.
BEGIN P_SOUP(SOUP[h,W,d+2~fpr[front]],to other_dim,'l):p soup(soup[h,w,d+Z front],to nana,output from other dim):END: _ _ - - -

END:
BEGINpicture width:-S:
FOR x:·Y TO image height DOFOR z:-O TO picture width-Z DOBEGIN _
y pos:·picture width.Z-I:FOR ~:.picture:width DOWN TO I DOBEGINIF (~>z+l) THEN .

BEGIN y_pos:·y pos-l:
route_between(h offset+x,w offset+y pos,d offset+z,front,output from memory,front, soup)'
p"soup(SoUprh offset+x,w_offset+y_pos,d_offset+z][front],to_memory,output_from_other_dim);E D ELSE BEGIN y pos:.y pos-Z'
route_between(h offiet+x,w-offsei+y pos,d offset+z,front,output from memory,left, soup):p_soup(soup[h offset+x,w offset+y pos,d offset+z]rleft],to memory,output from other dim):route_betweenfh offset+x7w offset+y pos+l,d offsei+z,left,output from memory,front.-soup):
~,,~~uP(SOUP[h_offset+x,w_offset+y_POS+l,d_o7fset+Z][front].to_memory,output_from_other_dim):

END;END;

lA six bit program, so have a 8 bit wide store. IFor every 'one bit register' about to be placed,route in the silect (enable) signal trom the registerdecode block.

d offset:=d_offset+picture_width-l: !The store routing area: Each one bit_register is one 1FnR z:·O TO image width DO cell high, but two cells wide. Tnis code routes theFOR x:-O TO picture_width·obr_w-l DO outputs into abutting blocks one cell high by one
BEGIN cell wide.p soup(soup[h offset,w offset+x,d offset+l+z·obr d]~prrleft]],to other dim,'1'):p:soup(soup[h-offset,w:offset+x,d:offset+l+z.obr-d] left],to_nana,output_from_nand):route_betweenTh offset,. offset+x,d offset+l+z·obr ,left,output_from_nand,up,soup):
ECn~OUP(SOUP[h_offset,w_offset+x,d_offset+1+z.obr_dJ[Up],to_memory,output_from_other_dim):

h offset:·h_offset+l: {Place the one_bit_registers as required. }FnR z:-O TO image_width DOFOR y:-O TO image_height-1 DOFOR p:"O TO picture width-1 DOIF z"O THEN _ {Start with a 111111 program. }
one bit reg1ster(1,true,z·image width,h offset+y·obr h,w offset+p·obr w,d offset+z·obr d)ELSE- _ _ _ _ _ _ _ _

IF (p=4) THEN .
IF image[image width-z+1,y+1] THEN {OOOOOO prog: sends a 1 to cell in the next dimensionlone bit_registir(O,false,z.image_width,h offset+y·obr h,w_offset+p·obr_w,d_offset+z·obr_dELSE {000a10 prog: senas a 0 to cell in the next dimensionone bit register(l,false,z·image width,h offset+y·obr h,w offset+p·obr w,d offset+z·obr dELSe- _ _ _ - _ _ _ _

one_bit_register(O,false,z·image_width,h_offset+y.obr_h,w_offset+p·obr_w,d_offset+z·obr_d):
END:
(PROCEDURE: To decode the delay line register signal into memory select and programmer enable.}PROCEDURE register decode(h,w,d,image_depth:integer:VAR pso_h,pso_w,pso_d:integer):VAR i,d_i,i_dept": integer:BEGINi depth:-(image_depth+1).2: {Spacing of memory select is every 2 delay registers. }FnR i:-O to i_depth DOIF (i MOD 2)=0 THEN

BEGIN {Firstly do memory select: 1route between(h,w,d+i,left,output from memory, left,soup): Iselect iff delay register[i]
P_SOUPISOUP!h'W'd+i]~leftJ,to_memory,outPut_from_other_dim): is 1 and delay register[i+Z]p_soup soup h,w,d+i] left ,to nand,output_from_memory): is zero.
p_soup soup h,w+1,d+ ~~le t],to nand,output from nand):p soup soup h,w+2,d+i prrleft]J,to other dTm,'lT):p:soup soup h,w+2,d+i le't],to_memory,output_from_nand):route_between(h,w+l,d+ ,left,output_from_memory, front,soup):
P_SOUP{SOUP~h'W+l,d+i]rfrontl,to_nand,outPut_from other_dim):p_soup soup h'W+l,d+i-I]~pr[front]],to_other_dim,Tl'):p_soup soup h,w+l,d+i-l] front],to_memory,output_from nand):route between(h,w+1,d+i- ,front,output from memory,left,soup):p_soup(soup[h,w+3,d+i][left],to_nand,output:from_memory): {The memory select result. }{Now do programmer enable signal:}
p SOUP{SOUP~h'W'd+i][Ut],to nand,output from other dim):{(routed above)}p:soup soup h+l,w,d+l] pr[up]],to other:dim,T1'): _ {Send a 1 iff delay register}p soup soup h+1,w,d+i] up],to nana,output from nand): [1] is a 1 and delayroute_between(h+1,w,d+ ,up,output_from_nand,left,soup): reg1ster [i+1] is a zero.
P_SOUP{SOUP~h+1'W'd+i]rleft~,to_nand,outPut_from other_dim):p_soup soup h+1'W+1,d+l]~pr left]],to other_dim,Tl'):p_soup soup h+l,w+1,d+i] le t],to nana,output_from_nand):route_between(h+1,w+1,d+ ,1eft,output_from_nand, front, soup):route_between(h,w,d+i+1,left,output_from memory, up,soup):
p_souPlSOUP~h'W'd+i+1]rUt],to_nand,outPut_from other_dim):p soup soup h+1,w,d+i+l] pr[up]],to other dim,Tl'):p:soup soup h+l,w,d+i+1] up],to_nana,output_from nand): {for route_between}route_between(h+l,w,d+i+ ,up,output_from_nand,le1t,soup):p_soup(soup[h+l,w,d+i+l]rleft],to_memory,output_from other_dim):route_between(h+1,w+l,d+l+l,left,output_from_memory,front,soup):p_soup(soup[h+1,w+l,d+i+l1[front],to_nand,output_from_other dim):p_soup(soup[h+l,w+1,d+i]rfront],to nand,output_from_nand): {for route_between}route_between(h+l,w+l,d+l,front,output_from_nand,up,soup):p soup(soup[h+l,w+l,d+i][up],to memor~,output from other dim):
It i-12.image_depth) THEA p_soup(soUp[h+2,w+17d+i]rfrontJ,to_nand,'O'): {Place a zero at }IF i< 2·image depth) THEN {the start of the chain. }BEGI _

p_soup(SOup[h+2,w+l,d+i+l][pr(front]],to other d1m,'1'): {Combine with the previous }p_soup(soup[h+2,w+1,d+i+l][front],to nano,output from nand): {result. }route_between(h+2,w+l,d+i,up,output_from_memory,front:soup):
PrSOUP(SOUP[h+2,w+l,d+i][front],to nand,output from nand):I i-O THEN _ _ _
BEGIN pso h:.h+2: pso w:-w+1: eso d:-d-l: {The location of the result. }
ECn~OUP(SOUP[h+2,w+1,d+i][front],to_memory,outPut_from_nand):

END:END:END:
BEGINreset(user,'pic.dat'):
set_uPrPicture_data~image,m x,m y\: {Read in the image into boolean array.delay ulock«m_x+3) Z,2,m y+4,17Z'm x+5,3+8): {Delay lines and register,reg1sterTdeCode(2+~,2.m x+5+3,3+8,m-x+1,pso h,pso w,pso d): {Abut register decode.memory_b ock(Z+~,Z·m x+o+3+4,3,imagi,m x,m_1): {Abut RcA memory.FOR y:-O TO m_y-1 DO-programmer_circuit(y.O,~+2+1+y,2.m_x+5+3+4+6,3-1,pso h,pso_w,pso_d):

{Number of programmers required - "eight of the image'lset_up_display_area(Z+2+1-2,Z+2+1+1+m y,Z.m x+5+3+4+5+6,3-1-1,m x): {Abut display area .. inquire_SiZe(maX_x,max_y,max_z,sou):- {Fino out how big this cTrcuit is.write_out(soup,max x,max v,max z,O ;END; _ _.J _

I

Appendix 4

Simulator cOmmands
This appendix shows the commands which could be issued to
the Soup Simulator described in Chapter 5. These commands
control simulation through features such as breakpoints,
stepping through events, and detailed examination of the
simulators event list. Macros of commands could be built
using 'routines'.

Variables:
DEFINE name [value]

UNDEFINE name

SHOW-VARS
INCREMENT name [value]
DECREMENT name [value]

Predefined variables:
UP
DOWN
LEFT
RIGHT
FRONT
BACK
HEIGHT
WIDTH
DEPTH
RUN-TIME
SIM-TIME

Diagnostics:
DISPLAY namel [name2 ...]
DISPLAY CELL h w d
DISPLAYEVENT-UST n
COUNT-LIST

COUNT-LIST n

Directives:
SIMULATE

SIMULATE n
BREAKPOINT t
PHOTO hl .. hh wI .. wh dl .. dh

STOP

Routines:
ROUTINE name [pl .. pn]
[statements]
NEXT-IF var op var
statement
[statements]
END

SJrOP

SHOW-RTN
SHOW-RTN name

Simulator Commands

Define a variable called 'name' with initial
value 'value' or zero otherwise. Names
must be in upper case, 10 characters or less.
Delete most recently defined variable
called 'name'.
List all variables.
Add 'value' or 1 to variable.
Subtract'value' or 1from variable.

1 The indices of the face processors.
4
2
5
3
6
Hieght, width and depth of the simulation.

Elapsed real time in seconds.
The current value of the simulation clock.

Print the value of the variables named.
Print information about the cell at (h,w,d).
Print the first n elements of the event list.
Print the number of elements in the event
list.
Print the number of elements in the event
list scheduled for before time 'n'.

Simulate until a breakpoint is reached or
the event list is empty.
Simulate for 'n' events.
Set a breakpoint at time 't'.
Take a snapshot of the memory elements
for later graphical display.
End the simulation.

Parameters are the variables p1 to pn.

Execute the next statement iff condition is
true. Routines may be called recursively.

- < > <= >=
Exit all routines, return to command line
processor.
List all routine names.
List the lines of the named routine.

Appendix 5

Examples of program output
This appendix shows some examples of program output from
within the simulation environment. The simulation
environment is described in Chapter 5 and can be seen in
Figure 5.1.
The first output is from the input processor. The input
processor is a combination of the standard library of
Appendix 2 and a user routine such as in Appendix 3. The
output generated is a three-dimensional (complete) array of
program stubs. An explanation of an individual stub is given
in Appendix 1.
The second output is from the stub filter program (soup-face
input processor in Figure 5.1) which has broken down the
stubs according to the mapping in Appendix 1, and presented
the expanded array in a suitable ordering so that it can be
input at the six separate external faces of the cubic soup,
to form the required circuit array within the Soup.
The third output is part of a 'photo' taken during a
simulation run. The data forms a three-dimensional bit array
showing which memory elements of the soup contained a 1 and
which were 0 at the instant the photo was requested.

Examples of Program Output

1. Sample output stubs from the input processor (users routine):

NF? NF? NF? NF? NF? NF? Each line contains the program stubs
NFF FFM NFF NFF NFF NFF for one cubic soup cell i.e. six face
FON FF? NF? NF? NF? NF? processors.
NFF FFM NFF NFF NFF NFF
NFF FFI FNN NFF NFF NFF
NFF FF? NFl FNN NFF NFF The output lines have a strict ordering
NFl FNN NFF FF? NF? NF? corresponding with the input ordering
NFF NN? NFl FNN NFF NFF of the stub filter program.
FF? NFM NFF NFF NFF NFF
NFF FFM NFF NFF NFF NFF
FON FF? NF? NF? NF? NF?
NFl NFl NN? NF? NF? NF?
NFF NF? NFM NFF NFF NFF
NFM NFF FF? NF? NF? NF?

2. Sample output from the stub filter (soup-face input processor):

433011010
463010111
123011000
142000010
223011111
232011100
234001110
262011100
368001011
o
463001011
226010111
233001001
234001000
235011000

Instruction to load the program 011010
at face 4 (down)position (3,3).

Every program line has a 1:1
correspondence with a stub from the
input file.

Marks the end of the list ofload
information to be processed within
the next load cycle period.

3. Sample output from the simulator for graphical display:

1 8 1 11 1 8 +- Height width and depth information.
o 0 23 +- Time in hours, mins and sees.

The array of memory elements, 3 bits
ofinformation are stored in each digit:

000
000000020000000006100002100000000202022200000000200400240000000200060200020
0010000010000000002000002000000000010
0000100
000022000022002000000000202022200000000201400241000000200060200020000000

APpendix 6

STRICT cell description
This appendix shows the STRICT description upon which
Chapter 6 is based. The aims were to show the simplicity of
the architecture and to obtain a crude estimate for the
number of cells in a futuristic machine. It should be noted
that at the time of this work the STRICT design system was
not complete so was unusable for simulation or fabrication
purposes.
In STRICT descriptions, 'blocks' are built through
instancing a combination of other blocks and primitives, and
specifying the interconnects between them. The positioning
of these sub-blocks within a block can be influenced through
a 'place' statement. Inputs and outputs to the block can be
specified using a 'having' statement.
The blocks CTL (main control unit), PRG (six bit program
register), NAN (ternary nand gate), MEM (ternary memory
element), MUX (multiplexor), MEN (the additional control
circuitry for the multiplexor enable) and PAL (the
additional control circuitry for the program and lock
functions) are CTL_VO, PRG_VO, NAN_VO, MEM_VO, MUX_VO,
MEN_VO and PAL_VO in the silicon design for one face-cell,
Plate 6.1. Plate 6.2 shows the same circuit but at the level
of individual STRICT primitives. From the STRICT description
these primitives can be seen to be a 1 bit inverter gate, a
pass transistor, and two input 'or', 'nor' and 'and' gates.

IARCHITECTURAL SOUP VERSION 1 APRIL 1988
I Description for ONE face processor, this design has not been tested andI therefore will likely contain errors. The purpose of this STRICT
I description was to obtain area estimates for a silicon chip, and henceI for a futuristic machine.
II Technology: 3 micron nmos, Z metal layer routingI The following were inherited from a test libraryI ogZ - two input ORI agZ - two input ANDI nrgZ - two input NORI ntg - one input INVERTERI pass - a pass transistorBUILD
iNSTANCEasl: prc
USINGasl(program_inputs, from_o_dim, nand_in, mem_in, acting as prog, lock,empty_in, force reprog, reprog in, previous mux enaDleo,

previous empty Tn, reprog done'MAKE - - - I
program_output ::. asl.prog outputs Output of 8 bit programout_to_nand ::. asl.mux_out! Outputs from multiplexorout_to_mem ::. asl.mux_outZ .out to other dimension ::. asl.mux out3proQ_and_lock_info ::. JOIN (WIRE TZ1 I aSl.out_act_as_prog, aSI.out_lock)control_out_info ::- asl.ctl_prog_ln'o I Control outputs ...
empty_out ::. asl.empty outforce_reprog_out ::. asT.force_reprog_outreprog_out ::. asl.reprog_outmux enabled ::. asl.mux enabledto_previous_empty ::. asl.to_prev_emptyreprog done out ::. asl.reprog done out

~IVEN - - _ -
lOne face processorBLOCK prcHAVING

lOne face processor.

(prog inputs aWl WIRE [61 from other dim eN. nand in eN.mem_Tn eN: WIRE [2] actIng as_programmer eN, lock-eN: WIRE [1]
empty_in eE, force_rep rag ~W. reprog_in SW,previous mux enabled SW, previous empty in ew,reprog_done iE: WIRE [11): (prog_outputs 8E: WIRE [6]
mux outl 8E, mux out2 eE. mux out3 eEl WIRE [Z]out-act as prog is, out lock is: WIRE [1] empty out SW,
force reprog out @E, reprog out 8E, mux enabled IE,to priv empty 8E, reprog_done_out 8W: WIRE [1])USE STRUCTURE -

{ INSTANCEcontrol: ctl prog reg: prg nand: nan memory: memmultiplexor: mux mux_enable: men prog_and_lock: pal
I The components of one processor.

PLACE(control; mux enable) I prog reg I_ «nand I (memory; prog_and_lock»; multiplexor)
USINGcontrol (acting_as_programmer, lock, empty_in, reprog_done,force reprog, reprog_in, prog_reg.reprog_done,-prog_reg.reprog_request, from_other_dim)

prog_reg(prog_inputs, control.to_prog_reprog,control.prog next. from other dimr1]}
nand(nand_in[Ol, nand_in~l~' from_othir_dim[O],from_otner_aim[l])memory(mem 1n[I], mem in 0)multiplexor(from_other_d m 0], from_other_dimrl]. nand.out_lo.nand.out_hi, memory.lo_oui. memory.hi_out.prog_reg.prog, mux_enable.enable_mux)
mux enable(control.full out, previous mux enabled,_ previous_empty:1n.-control.d1sable_mux)
prog and lock(prog reg.prog[O], prog re~.~rOg[l],_ -mux enabli.enable mux, nand-in 1 , from other dim[1])MAKE - _ _ _-
prog_outputs ::. prog_reg.outsmux outl ::. multiplexor.out to nandmux:outZ'::. multiplexor.out:to:memmux_out3 ::. multiplexor.out to other dimout_act as_prog ::. prog_and:lock.actTng_as_a_programmerout_lOCk ::- prog and_lock.lockempty_out ::. control.empty outforce_reprog_out ::. controT.force_reprog_out
repr09_out ::. control.reprog_outmux enabled ::. mux enable.enabledreprog_done_out ::.-control.reprog_done_outto_prev_empty ::. control.empty_out }ENDI Processors control unit.BLOCK ctlHAVING (acting_as_prog 8N, lock 8N, empty_in 8E, reprog doneforce_rep rag @W, reprog SW. from_prog reprag IS:reprog_control 85: WIRE [1] f o_dim Is: WIRE [Z]):(empty_out SW, reprog_done_out lW, to_prog_reprog QS,prog next 8E, force reprog out 8E, re~rog out 8E,disaDle_mux 85, fulT_out 9~: WIRE (11) -

8E,

USE STRUCTURE{ INSTANCE 1 ffp's form a state machine. The other components
1 to generate the required control signals.
lockd, empty, full: ffp passl, passZ: passandl, andZ, and3, and4, and5, and6: ag2or7, orS, org, orlO, orlt, orl2, or f 0 dim, or_'ock: og2
nott, not2, not3: ntg - - -

PLACE

!

notl lor8 I org); (not2 I passl I pass2);not3 I and2 I and3); (orl2 I orll IoriO):
andl I or lock): (10ckd; empty; full):and6 I or1 I and4); (and5 I or f 0 dim)USING - - -or_f_o dim(JOIN (WIRE [2] 1 f_o_dim[t],f_o_dim[O]»

or_lock(JOiN (WIRE [21 1 lock,acting as_prog»nott orS) notZ locka.q) not3(actTng_as_prog)
andl JOIN IWIRE 21 acting_as_prog,reprog_control»andZ JOIN WIRE Z not3.out,reprog_control»
and3 JOIN WIRE Z not3.out,reprog done»and4 JOIN WIRE Z full.q,empty_in»and5 JOIN WIRE Z reprog_control,full.q»and6 JOIN WIRE 2 andl.out,or f 0 dim.out»
Or7! OIN ~WIRE ~ 1 I and6.out,ando.out»orS JOIN WIRE 2 not2.out,force_reprog»org JOIN WIRE Z reprog,force reprog»
ort IJOINiWIRE ~ ~ I empty.q,lockd.q»orll JOIN WIRE Z passl.out,loCkd.q»orlZ JOIN WIRE Z and3.out,and2.out»
pass !frOm_prog_reprog, orB.outlpassZ from prog reprog, orB.outempty orll~out,-orlZ.out) ful (passZ.out, orlO.out)
lockd or lock.out, reprog controi)MAKE _ -
empty_out ::a empty.qreprog_done_out ::. from_prog_reprog
to_prog_reprog ::a org.outprog_next ::. acting_as prog
force_reprog_out ::- or7.outreprog_out ::. and4.outdisable mux ::a or7.out
ful'_out ::- fu".q }

are

ENDIThe processors 6 bit program register
BLOCK prg .HAVING (ins ew: WIRE [Sl re~r09 @N,prog next @N,f 0 dim hi as: QIRE [t]): (outs iW,prog as: WIRE [S]

reprog aone @N, reprog request @N: WIRE [1])
USE STRUCTURE - -

{ INSTANCEsr1, sr2, sr3, sr4, sr6, srS: ffp reprog_control: ag2
nott, notZ, not3, not4, notS, notS: ntgin_pt, in_pZ, in_p3, in_p4, in_p5, in_pS: passout pt, out pZ, out p3, out_p4, out_p5, out_pS: selPLACE _ _ -reprog_control; «(in pt I notl); srt) I (out pt»: «(in_p2 I
not2); srZ) I (out p2»: (l(in p3 I not3): srl) I(out p3»: «(in_pl I not4 : sr4) I (out p4»: «(in_p5 Inot5): srS)) (out pS»: ((in_pS I notS): sr6) I (out_pS»

USING -
in_Ptlins!o~, reprogl in_p2~insfl~' reprog!in_p3 ins Z ,reprog in_p4 ins 3 , reprogin_pS ins 4 ,reprog in_p6 ins 5 , reprog
nott~ n_p .out) notZ(in_pZ.out) not3(in_P3.outlnot4 in p4.out) not5(in p5.out) not6(in pS.out
srli n_pt.out, nott.out! _ srZ\in_Pz.out, notZ.outsr3 in_p3.out, not3.out sr4 in_p4.out, not4.outsr5 in pS.out, notS.out sr6 in_p6.out, not6.out
out_ptlsrl.q, srZ.q, prog_nextout_pZ sr2.q, sr3.q, out_pl.se ect_outlout_p3 sr3.q, sr4.q, out_pZ.select_outout_p4 sr4.q, srS.q, out_p3.select_outout p5 sr5.q, sr6.q, out p4.select outout:pS srB.q, f 0 dim hi: out pS.select out)reprog control(JO!N (iIRE [2]-1 srl.q,srZ.q»MAKE _
outs ::. JOIN (WIRE [6] 1 out_pl.out,out_p2.out,out_p3.out,out_p4.out,out_ps.out,out_pS.out)
prog ::. JOIN (WIRE [6] I srt.q,sr2.q,sr3.q, sr4.q,sr5.q,srS.q)
reprog_done ::. reprogrepr09_request ::. reprog_control.out }

ENDIProcessors asynchronous ternary nand function
BLOCK nanHAVING ~ilh @W, ill @W, iZh @W, i21 @W: WIRE [1]):out hi @E, out 10 eE: WIRE [t])USE STR CTURE _

{ INSTANCEandt, andZ, and3, and4, andS, andB, and7, andB: agZort, or2: ogZ nott, notZ, not3, not4: ntg
PLACE(nott I notZ I not3 I not4): (andl I and2 I and3 I and4):

(andS I and6 I and7 landS); (orl I or2)USI~Gnotl 111) notZ 1th not3(iZl) not4(iZh)
and1 JOIN WIRE 2 ilh,not1.outlland2 JOIN WIRE 2 not2.out,itland3 JOIN WIRE 2 12h,not3.out
and4 JOIN WIRE 2 i21,not4.outandS JOIN WIRE 2 andl.out,and .outand6 JOIN WIRE 2 and2.out,and3.outand7 JOIN WIRE 2 andl.out,and4.outandS JOIN WIRE 2 andZ.out,and4.outor1(OIN (WIRE [] and6.out,and7.out)or2(JOIN (WIRE [2] andS.out,or1.out»MAKE
out hi ::- or2.outout:lo ::- andS.out }END

Iprocessors 1 bit ternary memoryBLOCK memHAVING (hi in 0W, 10 in @W: WIRE [1]): (hi_out @E, la_out @E: WIRE [1])USE STROCTURE -{ INSTANCE hiff, loff: ffp(collapse)PLACE hiff I loffUSING h1ff(hi_1n, 10 in) loff(lo_in, hi_in)MAKE hi out ::- hiff.qlo:out ::- loff.q }ENDI The multiplexor. Routes trom the 'logie' parts of this cell to theI inputs of the following cell and the cell in other dimension.BLOCK muxHAVING(f 0 dim 10 lW, f 0 dim hi lW, nand 10 lW, nand hi aw, mem 10 lW,mim-hi iw: WIRE [1J prog 0N: WIRE-r6] enable-eN: WIRE [Ill:(out-to nand @E, out to mem @E, out to other dim @E: WIRE [2])USE stRucTURl - - - - -
{ INSTANCEout1, out2, out3, out4, outS,smem1, smem2, snand1, snand2, out6: ag2snand3, snand4, snandS, snand6,stodl, stod2, stod3, stod4: seltodim nand a, todim and: ag2 todim nand n: ntgPLACE - - - - -

!

Smem2 I smem1 I snandl); (snand2 I snand3 I snand4);snandS I snand6 I stodt); (stod2 I stod3 I stod4);todim nand a I todim nand n I outl I out2 I out3);out4 7 tOdTm_and loutS l-out6)
USING

Smeml{nand_lo, f_o_dim_lo, prOgI1])smem2 nand hi, f 0 dim hi, proi 1])
snand Imem-hi, nand hi: prOg~2snand2 mam-lo, nand-lo, prog 2snand3 f_o:dim_hi, ~, prog[2) snand4(f_o_d1m_h1, 1, prog[Z])
snandS snand1.out, snand3.out, prog[3]1snand6 snand2.out, snand4.out, prog[3]
stod1~mem hi, 0, prog[4]) stod2~mem_ 0, 1, prog[4])
stod3 stodl.out, f_o_aim_hi, prog 51lstod4 stodZ.out. f 0 dim 10, prog Stodim_nand_a~JOIN {WIRE [2] I prog[,prog[5]»todim nand nltod1m nand a.out)~~~~!~g~=I=I~~l~]:~:~~:::~:~~~:~~~IJout3 JOIN WIRE 2 enable.smem1.out)out4 JOIN WIRE 2 enable,smem2.out)tod1m and(OIN (I E [2] I todim_nand n.out,enable»
out5(JOIN (WIRE [2] I todim and.out,stod3.out»out6(JOIN (WIRE [Z] todim:and.out,stod4.out»MAKEout_to_nand ::- JOIN (WIRE rZ] I outt.out,outZ.out)out to mam ::. JOIN (WIRE [21 I out3.out,out4.out)out:to:other_d1m ::. JOIN (WIRE [2] I outS.out,out8.out) }ENO

IMultiplexor enable, dependant on this cells state, and the previousIcells state.BLOCK men
HAVING (control full @N, previous_mux_enabled @W. previous_empty aw,

locked_but_not_programmer @N: WIRE [1]):(enable mux @S, ena led @E: WIRE [1])USE STROCTURE _
{ INSTANCE

ant, an2: ag2 ntt, nt2: ntg nrt: nrg2 srt: ftpPLACE
(an2 I ant I ntt); sr1; (nrt I nt2)USIMG
an1!JOIN (WIRE ~2] I previous mux_enabled,~revious_empty»an2 JOIN (WIRE 2] control full,anl.out»)ntt control ful) srt(an2.out, ntt.out) ntZ(nrl.out)

MAK~rt JOIN (WIRE [~] I sri.q,locked_but_not_programmer»
enabled ::. sr1.q
enable_mux ::. nt2.out}END

Iprogrammer and lock circuitry, acts on the cell in next dimension.BLOCK pal

HAVING (pt ON, p2 ON, enabled eN, hi fo mem ew, p nand out hi
OW: WIRE [1]):(acting as a programmer @S,-lock-@S:-WIREUSE STRUCTURE - --

{ INSTANCE
andl, and2, and3, and4: ag2 not2: ntgPLACE
not2 I (andl; and2) I (and3; and4)USING
not21P2) andt(JOIN (WIRE [2] I pt,not2.out»
and2 JOIN {WIRE ~2~ I andl.out,enabled»and3 JOIN WIRE 2 and2.out,p nand_out hi»and4 JOIN WIRE 2 and2.out,hT fo mem)}MAKE - -
acting_as_a programmer ::a and4.outlock ::. and3.out }

[t])

ENDIsr flip-flop
BLOCK ffpHAVING (s @W,USE STRUCTURE{ INSTANCEPLACEUSING

r OW: WIRE [t]):(q @E, q_ @E: WIRE [t])

END
ISelector, to choose between inputs a and bBLOCK selHAVING

(a @W, b OW, select @N: WIRE [l]):(out @E, select_out as: WIRE [1])USE STRUCTURE
{ INSTANCE pi, p2: pass notl: ntg ort: og2PLACE (nott I pi): (p2 I ort)

USING notl(select) ~l(a, select) p2(b, nott.out)orl(JOIN (WtRE LZ] I pt.out,pZ.out»MAKE out ::. ort.out
select_out ::. select}

norl, nor2: nrgZnorl I nor2
norl(JOIN ~WIRE [2] I s,norZ.out»norZ(JOIN WIRE [2] r,norl.out»q ::·nor.outq_ ::. norl.out }MAKE

END

