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ABSTRACT

This thesis is concerned with an error analysis of
numerical methods for two point boundary value problems
and much of the investigation is concentrated on
collocation methods from an 'a posteriori' point of view.

Most of the previous work on error bounds for boundary
value problems has been of an 'a priori' nature, requiring
knowledge of the inverse of the differential operator under
consideration and furnishing convergence proofs and
theoretical bounds on the error. There are however a few
results of the converse nature and in this thesis means of
determining error bounds in practice are developed, much
of the analysis also applying to Fredholm integral equations
of the second kind.

In more detail, having firstly considered certain
preliminaries the setting for the theory and the principal
results for later use are presented. It is demonstrated
how the approximate solution by collocation of linear
differential equations fits into this background and
different 'a priori' approaches are examined by example
and shown to be rather unsatisfactory.

The 'a posteriori' outlook is then considered and
to achieve practical results the inverse of the approxi-
mating operator is related to the inverse of the collocation
matrix. However the problem of obtaining a suitable bound
on the norm of this inverse operator is encountered and
after examination of the most obvious approach which proves

unsatisfactory a convenient bound is developed.



Certain interesting computational properties of
matrices involved in the process are discussed and a brief
examination of condition numbers is given.

A different theoretical analysis using the concept
of a 'collectively compact sequence of operators' is
considered and it is demonstrated that the approximate
solution by collocation of linear differential equations
can be 'extended' to satisfy the conditions for this
theory. Again the error bounds are reduced to a more
practical level and subsequently a generalisation of the
notion of this extension is suggested.

The implementation of the various practical error
bounds which have been deduced is then considered in
detail and formulae for their evaluation are presented.
The numerical results of examples of this application
are then given followed by a discussion of certain
relevent points concerning the experiments.

In the final chapter certain possible extensions of
the analysis herein are briefly examined and lastly a
review of the work of this thesis with appropriate

conclusions is given.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Numerical Methods for Boundary Value Problems

In this section we survey the general background of
numerical methods prior to the main part of the thesis
which is concerned with error analysis.

We are primarily interested in certain aspects of the
numerical solution of two point boundary value problems.

A fairly general equation of this type may be regarded in

the form

m

g“:ﬁ + £(s,x,x), L x®Ly o g (1.1a)

ds
over some interval [a,b] say with f a nonlinear function
in the m+l variables s,x,x(l), .o x(m—l) and will be
subject to m boundary conditions, say

(1) (m=1),

vilk,x ), L x =0 (i =1... m) (1.1b)

where the Vi are certain nonlinear functions in the m

(1) L (m-1)

variables x,x ;e which are evaluated at either

of the end points a or b.
However we deal mainly with linear equations which
may be expressed as

Lx = y(s) (1.2a)
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subject to



U, (x,x ’ (i =1 ... m) (1.2b)

Ly . X(m-l))= Y4
where now the U, are linear functions of the m variables
again evaluated at either a or b and the Yi are constants.
We shall usually assume that pj(s) (j =0 ... m1) and
y(s) are continuous and shall employ the abbreviation
Ui(x) =Y (i =1 ... m) for (1.2b).

Problems of either type are rarely solvable
analytically and for this reason numerical methods of
obtaining an approximate solution have been developed.
There are a number of such approaches but they are all
comprised of similar stages.

Consider for example the numerical solution of a
linear problem of the form (1.2). Generally speaking
any method for its approximate solution involves the
following steps.

(a) A choice of a characterisation of the approxim-
ation in terms of certain unknown constants,
(b) A means of forming linear algebraic equations

for the unknowns,

(c) A means of solving the algebraic equations, and
sometimes the fourth stage
(d) Determination of the approximate solution from

the constants.

For example the collocation and Rayleigh Ritz methods

would involve all four processes with the numerical

solution specified by some constants aj;,a, ... a, say and
n

represented by a finite sum ajwj(s) for some independent
j=1

set of functions {wj}jzl‘ The particular method then sets



up the equations which are subsequently solved by some
means. The fourth step then determines the approximation
by forming the finite sum at any desired point.

Finite difference approaches can also be viewed in
this way with the numerical solution characterised by a
set of its values at mesh points throughout the interval
[a,b]. These point values are determined by applying a
finite difference operator at the grid points to set up
equations which may be solved for instance by a band-
matrix algorithm. Since the unknowns are in fact values
of the approximate solution no fourth stage is generally
performed but one could visualise this if an interpolant
of these point values were constructed.

Shooting methods may also be regarded in a similar
manner to the finite difference case. We do not wish to
consider this aspect in detail and it is in any case
rather an unnatural way of looking at these methods.

In this thesis we concentrate on the collocation
method and a detailed description of this is presented
in section 1.3.

A consideration of finite difference and shooting
methods is given by Keller (1968) or more recently by
Roberts and Shipman (1972). An introduction to the
Rayleigh Ritz and Galerkin methods may be found in
Collatz (1960) with more detailed accounts of the Ritz
method given by, for example, Gould (1957), Kantorovich
and Krylov (1958), Mikhlin and Smolitskiy (1967) and
Mikhlin (1970). There has been a considerable amount
of recent work in this field, for example a series of

Papers by Ciarlet, Schultz and Varga with the latest in



1969, but it is not the aim of this thesis to discuss
these developments.

When nonlinear problems of the form (1.1) are
encountered we have a choice of procedure. Either non-
linear algebraic equations are set up and solved by an
iterative technique or the problem itself is linearised
and solved successively. Under certain circumstances
these two approaches are equivalent.

An example of the second of these alternatives is
Newton's method for operator equations. Application of
this process to an equation of type (1.1) entails the

successive approximate solution of linear differential

equations
m m-1 .
dx : of (1) (m-1) (3)
dsmk+1 + jzoax(j) (8,% /X 0 wee Xy )X 11
= - f(s,xk,xél) - xém-l))
m=-1 .
+ jzo 55737 (s,xk,xél), .o xém l))xlij) (1.3a)

subject to the linearised boundary conditions

m-1 3V,
1

(1) (m=1),.(3)
j:o 8X(J) (Xklxk roe e Xk )xk+l
T It
m=1 9V, .
i (1) (m-1),, (3)
+ j£o m (Xk,Xk 7 een Xk )Xk

(k > 0) (i=1l...m) (1.3b)



That is, an initial guess X is chosen and then the
problem (1.3) is solved by a numerical method for a first
iterate xl(s) (or set of point values if a difference
method is employed) and so on until some criterion, for
example the proximity of successive iterates, is used for
terminating the iteration.

The convergence of this process has been investigated
by Kantorovich who gives sufficient conditions for local
convergence - see for example Kantorovich and Akilov (1964,
Chapter 18). Further discussions relating to the Newton
(Kantorovich) method are given in Mikhlin and Smolitskiy
(1967), Rall (1969) and Roberts and Shipman (1972). Altern-
atively if certain monotonicity properties are satisfied
global convergence can be established, see Bellman and
Kalaba (1965) and Collatz (1966).

Thus we see that for the approximate solution of any
boundary value problem it is quite likely that linear
differential equations would be encountered.

This completes a brief review of the most popular
methods for the numerical solution of two point boundary
value problems. In the next two sections we are more
specific and consider a class known as projection methods

and the collocation method in particular.

1.2 Projection Methods

As we have mentioned we are principally concerned
with the numerical solution of differential equations,
however much of the theory which we shall encounter

utilises concepts of functional analysis and applies to



more general operator equations. Several methods for
the approximate solution of such equations can be
classified as projection methods and a brief description
of these is given below. It is assumed that the reader
is familiar with the basic concepts and notation of
functional analysis.

Let X and Y be linear spaces with M a linear
operator mapping X =+ Y and suppose we are given an

equation
Mx =y (yeY) (1.4)

to solve for xeX.
Let X and Y be subspaces of X and Y respectively of
equal dimension. Let ¢ be a projection from Y + Y

ie. 6(Y) = Y = 4(¥).

With this background we shall define a projection

method as a method which seeks an approximate solution

%X to (1.4) satisfying an equation

¢(MX - y) = O (1.5)

For any approximation R to the solution of (1.4) we
should like the residual MX - Yy to be as close to zero
as possible (since this is so for the true solution)
and projection methods seek an X% such that the corres-
ponding residual is mapped to zero under the influence
of the projection operator.

There are other definitions of projection methods



but for the purposes of this thesis we shall adhere to

the above specification.

1.3 Collocation

The collocation method is now described in detail
and it is subsequently shown that it can usually be a
projection method. Latterly the main literature on the
subject is briefly reviewed.

Suppose we wish to solve numerically a problem of
type (l1.2). There are two essentially equivalent
variations of the application of the collocation process
and both are described.

In one approach the collocation method seeks an
approximate solution X in the form of a finite sum,

n+m

%(s) = jzl ajwj(s) (L.6)

n+m

j=1 are real constants and the basis functions

where {aj}
{wj}?ZT form a linearly independent set and are chosen
by the user. An obvious choice for the {wj} is a set of
polynomials, for example simple powers, Chebyshev poly-—
nomials or Legendre polynomials. Spline functions are
another popular selection for the basis functions.

A set of n points {Si}?=l known as the collocation
points or nodes are chosen distributed throughout the
interval [a,b]. When polynomial basis functions are
employed the zeros of the nth degree Chebyshev or
Legendre polynomial are often taken as the nodes.

The method then sets up equations for the unknown

constants by collocating on the selected points, that



is by requiring that the residual LxX - y vanish at the

collocation points. This leads to n equations satisfied
by the constants {aj}?ZT, namely
%1+m
a.L Y. = y(s.,) (i =1 ... n) (1.7)
j=1 ] J s=s, 1

The remaining m equations needed to determine the
unknowns are found by constraining the approximation

(1.6) to satisfy the boundary conditions, i.e.

U, (X)) = ' (i =1 ... m) (1.8)

Equations (1.7) and (1.8) together constitute n+m
algebraic equations to be solved for the n+m constants.
The best method of solution of these algebraic equations
depends upon the form of the corresponding matrix,
however Gaussian Elimination is very often the most
suitable technique.

The process described so far has consisted of the
appropriate steps (a), (b) and (c) of a general method
discussed in Section 1l.1.

Having determined the unknowns the approximate
solution is then obtained at any point s by forming
the sum (1.6).

The second approach which may yield the same answer
as the former is to require that the approximation x*
explicitly satisfies the boundary conditions (1.2b).

That is, X* is sought in the form



n
X*(s) = g£(s) ) a* y.(s) (1.9)

with the function £ (s) such that the equations
Ui(i*) = v (i =1 ... m) are automatically satisfied

for all choices of constants {a*}" If the conditions

j 3=1°
(1.2b) are complicated this may not be possible and it
would be necessary to revert to the earlier approach.
Further if these two representations are to furnish the

same answer we must have that for any choices of {aj}

and {ag} the two sets

n+m
{%:% = jzl ajwj}n {(:0, (%) = v; 1 =1...m}
n
and {&*:%* = ¢ ]} agwj} are equivalent. With the
j=1

representation (1.9) the same collocation points are used
and the rest of the procedure is as before.
We shall now describe the usual manner in which the
method is employed for our purposes. For example,
suppose that (1.2a) is of even order m = 2r over [-1,1]
and suppose that the end conditions (1l.2b) are
x Py = xM ey = 0o @w=1... 0.
We shall take the wj as polynomials of degree
j-1 (3 > 1) and the function £(s) is taken as (s® - 1)¥
which satisfies the requirements. A popular represent-
ation of the form (1.9) is
n-1

- 1F I oeT,(s) (1.10)
j20 373

where Tj is the Chebyshev polynomial of degree j and c.

is taken as dg+l (j =0 ... n-1).
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The symbol }' means that the first term in the finite

CO'TO

2 7

sum is to be halved. That is, the first term is now
this being a convenience and not a necessary condition.

It is now briefly demonstrated that this collocation
process can be viewed as a projection method. This is
considered in more detail in section 2.2.

Let Y be the space of continuous functions. Y is
to a large extent arbitrary and can be spanned by any n
functions as long as the interpolation problem is soluble.
With'{si}?.=l as the collocation points let ¢ be the pro-
jection Y - Y that maps each continuous function into its
interpolant formed by interpolating at the nodes. That
is, for a continuous function y, ¢y can be expressed as a
combination of the n functions and is such that
(¢y)(si) = y(s;) (1 =1...n). We do not specify the
space X here but leave a more rigorous description until
section 2.2. However we take X as the set of functions
of the form (1.10) and we see that both X and Y have

dimension n. Then since the method requires that the

residual vanish at the nodes, i.e. (Lx* - vy) g=g. = O
i

(i =1 ... n) this means that the polynomial of degree
n-1 interpolating the residual at these n points must be
identically zero, i.e. ¢ (LX* - y) = O. Thus the approx-
imation satisfies an equation of the form (1.5) showing
that we have indeed a projection method. We have been
fairly specific here but collocation is in fact a pro-
jection method under very general circumstances.

This concludes our description of the basic method.
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The origins of the method are not clear but it seems
that theoretical investigations relevent to collocation
were first conducted in Russia by Kantorovich (1934,1948)
although these have not been consulted. Other early
results were obtained by Karpilovskaja (1953). In 1959
Kanorovich and Akilov (English transl. 1964) produced
what is generally regarded as the major work on this and
other topics, presenting convergence theorems for the
approximate solution of a wide class of operator equations.
Improved but more specific convergence results were
achieved by Karpilovskaja (1963).

The use of a Chebyshev series in the approximation
was considered by Lanczos (1938) and later other practical
aspects and the application of the method to nonlinear
problems were examined by Clenshaw and Norton (1963) and
Wright (1964). A survey of the method of weighted
residuals of which collocation is a particular case was
given by Finlayson and Scriven (1966).

Theoretical results for nonlinear problems were later
obtained by Vainikko (1965,1966,1969) with the paper in
1966 perhaps containing the most useful achievements.
Other aspects of the method have been investigated by
Shindler (e.g. 1969).

More recent studies of projection methods have been
conducted by de Boor (1966), Phillips (1969,1972) and
Coldrick (1972). Perhaps the most significant work within
the last two years has been concerned with the use of
splines in the approximation and the development of
corresponding theoretical results. The main achievements

are those of Lucas and Reddien (1972), Russell and
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Shampine (1972) and the further advances of deBoor and
Swartz (1973).

The numerical solution by collocation of linear
partial differential equations has been investigated by
Karpilovskaja (1970) who considers trignometric approx-
imations and presents convergence results based on the
theory of Kantorovich and Akilov (1964).

A theory of a different nature designed primarily
for quadrature methods for integral equations has been
developed by Anselone (1971) and in this thesis Anselone's
work will emerge as a useful basis for further investi-

gations.

1.4 Green's Functions

We now briefly introduce the idea of a Green's
function. These functions will be used throughout to a
great extent for both theoretical and practical purposes.

Consider for example the boundary value problem of

(1.2a) subject to the homogeneous end conditions
Ui(x) = 0 (i=1 ... m) (1.2¢c)

Then the Green's function g(s,t), when it exists, is a

function such that
b
x(s) = [ g(s,t)y(t)dt
a

This relationship has to hold for all continuous inhomo-

geneous terms y(s).
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The Green's function depends on the boundary
conditions and knowledge of it enables us to invert
the differential operator (l.2a) subject to the end
conditions (1l.2c).

By far the most common Green's function which we
shall encounter is that for the differential operator
QEE operating on x say, over [-1,1] subject to
i?-l) = x(+1) = 0. The literature, for example
Keller (1968, p.l1l08) generally gives the Green's

functions for interval [0,1] but when this is trans-

formed to [-1,1] we have

(s + 1) (t - 1) s <t
g(s,t) ={
(s - 1) (£ + 1) s >t
For s < t -g—g(s,t) = L(t - 1) and for s > t
$(s,t) = K(t+ 1).

We shall also have cause to use the quantities

+1 +1 5
[ lgt(s,t)|at anda | lgg (s,t) |dt.
-1 -1 ‘%

After elementary manipulation we obtain

+1 )
[ lg(s,t)|at = %(1 - s%) (1.11)
-1

and
1, ,
[ 152(s,t)ldt = %1 + s9) (1.12)
-1

1.5 Aim and Summary

Having introduced numerical methods for boundary
value problems and considered certain preliminaries we

now summarise the aim and content of this thesis.
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As was mentioned in section 1.1 there are several
methods for the numerical solution of differential
equations. Having found an approximate solution by
some means the following question arises. 'How good
are our answers?'. This is the field of error analysis
of which there are two basic types, 'a priori' which
examines the error before the numerical problem is
tackled and 'a posteriori' which is applied after the
approximate solution has been computed and utilises
this knowledge.

We are principally concerned with collocation
methods and the literature cited in section 1.3 contains
a considerable amount of work on error bounds which are
usually expressed in more general functional analysis
terms with the differential equation together with the
boundary conditions treated as an operator equation.
However most of these results are of an 'a priori'
nature and are derived in terms of the inverse of the
given operator. This approach leads to convergence and
order of convergence proofs but is of little use if a
computable bound on the error is required since knowledge
of the inverse of the given differential operator is
tantamount to knowing the true solution and is clearly
not a very practical possibility.

There are some results of the converse 'a posteriori'’
nature but these seem to have remained as theoretical
rather than practical bounds. It is the principal aim
of this thesis to examine the 'a posteriori' theory and
deduce, primarily for polynomial approximation, means of

forming computable bounds which are subsequently applied



_15_

to sample two point boundary value problems. Much of the
analysis given throughout is also pertinent to the numerical
solution of Fredholm integral equations. Generally in these
investigations the effect of rounding error is ignored,
however at an appropriate stage relevent matrix condition
numbers are given some consideration.

In Chapter 2 the functional analysis background for
the theory is described and the main theorems are presented.
In particular, the results of Kantorovich and Akilov (1964)
are stated in a slightly simplified form for projection
methods. These are followed by less involved but essentially
similar theorems based on the work of Phillips (1969,1972)
and Coldrick (1972). Finally the theory due to Anselone
(1971) is summarised. The 'a posteriori' bounds given in
these results are the object of our main investigation as
a more practical approach is developed throughout the thesis.

The application of the theory for projection methods
to the approximate solution by collocation of linear :liffer-
ential equations is considered in Chapter 3. Firstly it is
demonstrated how to relate the numerical problem to the
functional analysis setting and the study of 'a posteriori'
approaches is motivated by examination of the 'a priori'
results which are shown to be rather unsuitable. The main
part of Chapter 3 is concerned with the 'a posteriori'
bounds and various means of expressing these in terms of
the inverse of the collocation matrix are examined. This
investigation encounters awkward problems but eventually
suitable results are achieved. During the course of this

analysis interesting properties of certain matrices are
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revealed and these are explored more fully in the final
section.

In Chapter 4 the theory due to Anselone (1971) is
studied and it is demonstrated how to 'extend' the
collocation method to satisfy criteria necessary for
the application of this theory. Again the problem of
expressing the theoretical 'a posteriori' bounds in
terms of computable gquantities is successfully investi-
gated. In the last section a generalisation of the
earlier ideas is suggested.

Chapter 5 is concerned with the implementation on
the machine of the computable bounds. The results
derived in Chapters 3 and 4 based on the theorems of
Chapter 2 are only applicable if a sufficiently large
number of collocation points is employed. Actual
values of this number presented later in the chapter
for certain sample boundary value problems are sometimes
found to be quite large and to avoid this difficulty
more easily applicable estimates of the bounds are
developed. In the last section the results of test
applications of the different error bounding techniques
are presented and compared with actual computed errors.
This is followed by a discussion of certain pertinent
points.

Chapter 6 examines certain areas where the analysis
given might be usefully extended and ends by summarising
appropriate conclusions to be drawn from this work.

This completes the summary of the thesis and for

convenience we state here that all computations throughout
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this work were performed on an IBM 360/67 computer using

double length arithmetic.
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CHAPTER 2

THEORY OF APPROXIMATION METHODS

2.1 Introduction

In this chapter we introduce the setting for certain
operator equations and their approximate solution. 1In
the former sections theorems based on the work of
Kantorovich and Akilov (1964), Phillips (1969,1972) and
Coldrick (1972) are given. These are both of an 'a
priori' and an 'a posteriori' nature. In the latter
sections theorems of a different type due to Anselone
(1971) are presented.

These theorems are of a general nature with several
possible areas of application. 1In later chapters we
concentrate on the numerical solution by collocation
methods of boundary value problems in ordinary differ-
entiai equations, much of the analysis also being
relevent for Fredholm integral equations. Other
applications of the theory include Galerkin methods for
both ordinary and partial differential equations and
some of these topics are examined in Chapter 6.

We now introduce the background for the theory

based on the work of Kantorovich and Akilov.

2.2 Setting for the Projection Method Theory

Let X and Y be normed linear spaces and let |l -]l
and H-HX denote the norms in the spaces Y and X
respectively. Let [X,Y] denote the space of bounded

linear operators mapping X - Y with the subordinate
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norm. Let X and Yn be subspaces of X and Y respect-
ively with ¢n a bounded linear projection Y - Yn' The
subscript n will have significance later denoting the
dimension of the subspaces but no restriction on
dimensionality is made here.

Consider two equations

Gx - Tx = Yy (2.1)
and Gxn - ¢nTxn = ¢ny (2.2)
where xe€X, x €X and yeY. Here G,T €{X,Y] and we
further assume that G has a linear inverse and that G
restrictaed to Xn establishes a bijection between Xn

1

and Yn. That is G(Xn) = Yn and G “(Y.) = X_. (2.1)

n n

is the given equation and we might seek an approximation
to its solution x by solving (2.2) for xnexn. (2.2) is
the approximate equation and can be derived by seeking
an x €X such that ¢n{(G-T)xn - y} = O since

¢nGx = GxneYn. An intuitive concept of the situation

n

described is illustrated below.

G-T

X Y

G- ¢nT

G-T: X~>Y
G=-¢.T: X ~+Y
n n n
Note that G - ¢nT is regarded as being restricted to

domain X_.
n
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Most of the theorems given later require the
operators to satisfy the relationships above together
with some extra conditions on the operators and spaces.
However this is the basic setting and it is now shown
that the numerical solution by collocation of a linear
differential boundary value problem can be regarded in
this way and we follow the description of Kantorovich

and Akilov. For example, suppose we wish to solve the

following thh order linear equation over the interval
[-1,1]:
Lix) = &%, (0yx 2™ () 4 (t)yx 1) (&)
2m © Pam-1'%/% e Py
dt
+ po (£)x(t) = y(¢) (2.3a)

subject to the boundary conditions
x(j)(-l) = x(j)(+l) =0 (3 =0 ... m=1) (2.3b)

In keeping with the description of section 1.3 we seek

an approximate solution in the form

2 m BTl
xp(t) = (¢ - 1) kg a, ¥, (t) (2.4)
=0
where {wk}i;é are n independent polynomials of up to
degree n-1. For example wk(t) = tk or wk(t) = Tk(t)
(k = O ... n-1) could be selected. Let the chosen set

of collocation points be {tj}rjl= and the method requires

1
Lixgdlpap, = ¥(t) (G =1 ... m). Zet ¢ D [-1,1] ve
3
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the space of functions which are g times continuously
(0)

differentiable over [~-1,1] with C[-1,1l] = C [-1,1]
and let B be the set of those continuous functions
which satisfy the conditions (2.3b). Now define

X = C(zm)[—l,l]nIBand let Xn be the space of functions
of the form (2.4). Y is chosen as C[-1,1] and

Yn = Pn-l the set of polynomials of degree up to n-1.
The projection ¢n is defined as the mapping projecting
each continuous function into its unique interpolating
polynomial at the collocation points. Define G and T

by Gx = x (20 (2m-1) L (D)

and Tx = —(p2m_lx + ...+ Py + pox).
Thus the differential equation (2.3a) plus the end con-
ditions (2.3b) is eguivalent to the operator equation

Gx - Tx = y. Note that in principle G could be chosen
differently but this would cause complications in the
choice of subspaces and in knowledge of the inverse of G.
This point is discussed again in Chapter 6. Kantorovich
consideres a parameter A in (G - AT)x = y but this is
omitted explicitly for simplicity and can be considered

as occurring in T. We choose the norm in the space Y as

the infinity norm and the norm in X is chosen as

hxlly = lGxll = llx(zm)ll°° and we shall call this the X-norm.
We require pieC[-l,l] (i =0, ... 2m-1) and this together
with the above definition of H-Hx ensure that G,Te[X,Y].

This is shown later in more detail in section 3.2.

Clearly G(X_) =Y . For yeC[-1,1],
+1 B n
(G ly)(s) = [ g(s,t)y(t)dt where g(s,t) s the Green's
-1 2m
function for the differential operator 5o subject to

dt
the conditions (2.3b) and is known explicitly. If
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§€Yn then G_l§ = X where X is a polynomial of degree

2m + n - 1 which must satisfy (2.3b) and so is of the

form (2.4). Thus G is a bijection between Xn and Yn'
As described in section 1.3 the application of

the collocation method means that we seek an xneXn such

that (G - T)xnl = y(tj) (j =1 ... n). Thus

=t.
t J

¢n{(G - T)x, - y} = 0 or (G - ¢nT)xn = ¢, vV (since
GxneYn) and it has been shown that the approximate
solution of a 2mth order boundary value problem can be
regarded in the functional analysis background given
previously. As was mentioned earlier this is only one

application of the theory and more general aspects are

left until the final chapter.

2.3 Definitions of Compactness

Before proceeding to the statements of the theorems
we introduce the concepts of compactness which will be
used throughout this chapter. We follow the definitions
given by Anselone (1971). Let S be a subset of a normed
linear space X and let [X] be the space of bounded linear
operators on X. Then S is compact iff every open cover of

S has a finite subcover. S is said to be relatively

compact iff the closure of S is compact. This situation
differs slightly from that in Kantorovich and Akilov where,
for sets, the term compact is equivalent to Anselone's

relatively compact. The set S is sequentially compact iff

each sequence in S has a convergent subsequence with the
limit in X. The properties of relative and sequential

compactness are equivalent.
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Let U be the unit ball {zeX:llzll<1l} then Ke[X] is
compact iff the set KU is relatively compact (in X).
This means in effect that a compact operator maps bounded
sets onto relatively compact sets. This definition of a
compact operator agrees with Kantorovich and Akilov's

concept of a completely continuous operator.

2.4 The Theory of Kantorovich and Akilov

We now present in a slightly simplified form the
theorems of Kantorovich and Akilov which apply to the
solution of operator equations of the type (2.1) and
(2.2) previously introduced. Firstly some further
requirements must be satisfied. The norm in the space
X is defined by HzHX = IGzll, zeX. This is primarly for
convenience in the theory but for the example of the
approximate solution by collocation of differential
boundary value problems is necessary to ensure bounded
operators G and T (see sectiors 2.2 and 3.2). Subscripts
on the norms H'HX or H'HY will be used occasionally to
clarify certain points. Also Xn and Yn should be complete
subspaces of X and Y respectively. This requirement holds
trivially if Xn and Y are finite dimensional - see Brown
and Page (1970, p.147).

The following three conditions are used:

I For every zeX there exists a ?eYn such that

Itz - ¥l < ulllzll where "N is indepcndeht of z.
II There exists an element §eYn such that

ly = 91l < wu,lyl where y, may depend on y.

IIT G - ¢nT satisfies the condition that the existence of

a solution X in X, to (G - ¢nT)§ = ¥ for every §eYn

implies its uniqgueness.
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Throughout the following four theorems G - ¢nT means

1

G - ¢ T restricted to X and (G - ¢nT)— is an operation

with domain Yn'
We now state,

Theorem 1 (Kantorovich and Akilov)

If condition I holds, the linear operation (G - T)—l

L

exists and § = u1H¢n(G - ™I (G - T)~ < 1 then

(G - ¢nT)i = ¥ has a solution X for all ?eYn, with

g D 5 _ -l
IZll < 3=l ¥l where D = (1 + G =) .

Further if condition III holds or in particular if

G_l¢nT is a compact operator €[X ] then the linear

1 1 D
< 1=

operator (G - ¢nT)— exists and |l (G - ¢nT)_
Theorem 2 (Kantorovich and Akilov)

If conditions I, II and III are satisfied and
equation (2.1) has the solution x then llx - x [ < nllxl

where xn is the solution of (2.2) and

n= (ug ol (G- DI+ G- o)

¢n(G - T)l).
Alternatively if it is known that there exists an

iexn such that llx - Xl < ellxll then the above error

bound holds without the use of conditions I and II,

where now n = (1 + Il (G - ¢>nT)—l

9, (G - D).
If we have sequences of spaces X, and Y (n =1,2...)

with corresponding mappings then with the conditions of

lim

the theorem we have convergence in _ llx - x I = 0
. lim _ lim _
provided _ ., u1H¢nH = oo u2H¢nH = On

Now a theorem of a slightly different nature is given.

Theorem 3 (Kantorovich and Akilov)

Given sequences of spaces xn and Yn and corresponding
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approximate equations of the form (2.2) then if (G - r) 1

exists, the space Y is complete, iiﬂ ¢ny =y (ye€Y) and

G "T is a compact operator €[X] we have that the approx-

imate equations are solvable for sufficiently large n and

the approximate solutions converge to the exact solutions
The theorems presented so far are essentially of an

'a priori' nature. We now give a result which deduces

information about the solubility of the given equation

from the approximate equation.

Theorem 4 (Kantorovich and Akilov)

If the linear operation (G - cbnT)_l exists, condition

1

I holds and § = u (1 + (G - ¢nT)' 9,(G - T)l) < 1 then

G - T has a linear left inverse with

1+ 06 -6 ™ el + 1 -6 T

1 -39

¢ (G - Tl

Ly <

(G - T)

Further if it is true that the uniqueness of the solution
of equation (2.1) implies its solubility for every right
hand side then the two-sided linear inverse (G - T)—l
existsH

These then are the most relevent parts for our
purposes of the theory of Kantorovich and Akilov. They
actually consider a slightly more general situation with
an operator ie[Xn,Yn] of which $,T restricted to X is
a special case. However for the approximate solution of

differential equations by collocation or Galerkin methods

the theory reduces to this form.
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The above results are proved by reducing the given
and approximate equations to equations with operators
mapping the space X into itself. This is done by
applying G—l to equations (2.1) and (2.2) to give

¢l - mx = ¢ 1y

= x-clrx = ¢y (2.1%)
and x_ - G—l¢ Tx = G_l¢ y or
n n-n n
-1 -1 -1 -1 .
x, - (619 66 nx, = (@t ey (2.27)

(2.17) and (2.2°) are now in the form (I - K)x = Y, and
(I - PnK)xn = P ¥, with Y X, Ke[ X1, P a projection
mapping X -+ Xn and I the identity operator on X. We
shall consider later a similar process and shall not
proceed further with this suffice it to say that once
this form is achieved Kantorovich and Akilov then apply
their theory for equations of the second kind to derive
the theorems presented above.

It has been shown previously that the approximate
solution by collocation methods of differential boundary
value problems can be seen in the context of the theory.
The extra conditions required for the application of the
theorems are shown to the true in section 3.2 of the next
chapter. Also an example of their 'a priori' application
is considered proving the solubility of the approximate

equation and finding the error bounds predicted by the

theory.
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2.5 Theory Developed from a More Recent Approach

We now however proceed to consider and modify recent
work due to Coldrick (1972) of a related nature to that
presented above. Similar investigations have been pursued
by Phillips (1969,1972). The theory is designed for
application to the numerical solution of integral equations
but it is shown that this can be altered to prove results
which can be later applied to the approximate solution of
differential equations. This is achieved in a manner
analagous to that which Kantorovich and Akilov use to
reduce the equations (2.1) and (2.2) to the forms (2.17)
and (2.27).

The approach seems less confusing than that of
Kantorovich and leads to theorems of an 'a posteriori'
character more suited to practical application than the
theory above.

The setting for the theory initially described here
is a normed linear space X (with norm denoted by | -il) «nd
[X] is the space of bounded linear operators on X, with
the subordinate norm. We now state a theorem which is
standard when X is a Banach space but which is gquoted from

Coldrick (1972).

Theorem 5 (Coldrick (1972, p.14))
Let K,Le[X] and (I - K)_le[x] . Suppose further that

either K and L are compact or the linear space X is complete.

Define 6§ = I (I - K)_lHHK - LIl and suppose § < 1, then
(1 - 1) telx] ana (- )7 <@ - g7 w
1-96

We are concerned with the approximate solution of an

equation
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(I -K)x =y (2.5)

in X with yeX, I the identity operator on X and Kel X]
and we seek xeX. Let X be a subspace of X and P

a linear projection mapping X - Xn' We might hope

to find an approximation X, to x where xnexn by solving

an approximate equation of the form

(I - PnK)x (2.6)

1l
el
]
-
o]
el

n n

With X, satisfying (2.6) and seeking an x satisfying

(2.5) we now give the following theorem.

Theorem 6 (This result is essentially given by Coldrick
but with the roles of I - K and I - PnK
reversed).

Let Xn be a subspace of a normed linear space X and
let Pn be a bounded linear projection mapping X - xn'
Suppose that Ke[ X] is compact and (I - PnK)-le[X]. Then
if 6 = I (x - PK) HI(T - P_)KI<1 we have (I - K)~%

exists €[ X] and

IR G 3 I S
(a) (I - K) ~ll < — ’
- 1 8
n

(b) with x and X satisfying (2.5) and (2.6) respectively

we have the error bound

" ” 5, (- k)71

x - x|l < Ix I+ ~ h(x - P _)yl.
n 1 -5, n 1 S n

This is a result of an 'a posteriori' nature.
Notice that here (I =~ P K) and (I - PnK)—le[x] and are

not restricted to the subspace Xn.
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Proof (a) Since K is compact and Pn is bounded, PnK is
compact - see Brown and Page (1970, p.245). Thus sub-
stituting PnK for K and K for L in Theorem 5 we achieve
the result (a).

(b) Thus there exists a unique x such that
(I -~ K)x =y. Now (I - K)(x - x ) =y - (I- K)x_
=y - Pny + (K - PnK)xn

3 _ - -1
DX - X = (1 K)

(I - P )y + (I-K I - P_)Kx_

and (b) follows.

Corollary Let {Xn} (n =1,2 ...) be a sequence of sub-
spaces of the normed linear space X and let {Pn} be a
sequence of bounded, but not necessarily uniformly bounded,
projections mapping X - X (n =1,2 ...). Suppose that for
n > no,(I - PnK)"l exists €[ X] and that for n > n, > ng

1

= (X = P_K) "Ml (I - B_)KI<1, then (I - K) ! exists e[X]

6n
and for n »> ny (a) and (b) provide different bounds on

I - g™y

and error bounds for IIx - an respectively®m
So far for Theorems 5 and 6 we have only considered
operators in one space X only. This situation is applied
to integral equations of Fredholm type by Coldrick. Similar
application is also considered by Kantorovich and Akilov.
We now consider two spaces X and Y with subspaces
X, and Y, and exactly as described at the start of this
chapter we wish to solve approximately a given equation of
the form (2.1), namely (G - T)x = y by means of an approxi-
mate equation of the form (2.2). The operators ¢n' G, T
and their properties together with the rest of the setting
is precisely as described earlier in section 2.2. It was

shown that the numerical solution by collocation of a

boundary value differential equation could be seen in this
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light. To derive results analagous to those of Theorem 6
which can be applied to the approximate solution of
differential equations we reduce the equations (2.1) and
(2.2) to the form (2.1°) and (2.27), wholly in X. This
process is carried out by Kantorovich and Akilov to prove
their results for the approximate solution of (G - T)x = y
and was mentioned briefly before. This is now described
in more detail.

By operating on the left throughout equations (2.1)

and (2.2) we derived the equations (2.17) and (2.27), namely
(I - ¢ Imx = ¢ty and [1 - (6 1o 6) (G Im)lx_ = (G‘l¢nc)c"1y
respectively. Since G_l:Y + X, vy = G-ly-ex and G_lT maps

o
X + X. For zeX, GzeY =) ¢ GzeY =) G_l¢nGzeXn and also

(G-l¢nG)(G—l¢nG) = G-l¢nG thus proving that G—l¢nG is a
projection from X -+ Xn. Further if the norms in the spaces
X and Y are related by Hsz = ||Gz||Y where H-HY represents
the norm in the space Y then lIGl = lc™M = 1 and if Tel X,Yl
then G™ 1T [X]. Thus writing G IT as K, G_l¢nG as P_ and
G_ly as y, (2.1°) and (2.2°) are of the forms (2.5) and
(2.6) respectively. Therefore transforming (2.1) and (2.2)
in this way the situation is precisely as described before
the statement of Thecorem 6 which can now be used to give

results for the approximate solution of (2.1). We now give

Theorem 7
Let Xn and Yn be subspaces of X and Y respectively and
let ¢n be a bounded linear projection mapping Y - Yn' Suppose

1

that Te[X,Y] and G "T is compact €[ X]. Suppose further that

(G - ¢nT)_le[Y,X] and § = l (G - ¢nT)-1H”(I - ¢n)TH < 1. Then



(G - ¢nT"ln

1 -39
n

-1

Ly

(G- T) exists el[Y,X] and (a) (G - T) "Il <

With x and X, satisfying (2.1) and (2.2) respectively

5. e - ¢ 17t

we have (b) llx - x Il < T-:_E;”Xn” + T ez - ¢ vl
G - ¢ ™7

or more simply llx - x [l < T3 - mx - yl.

Notice that G - ¢nT and (G - dJnT)_l

are regarded as operators
between the whole spaces and not the subspaces.
Proof It was shown above how equations (2.1) and (2.2) could

be transformed to the forms (2.5) and (2.6) and so with these

relationships we have to show that the conditions of Theorem

6 are satisfied. We have K - G-lT and Pn~ G-l¢n(3 and so
Al . . .
HPnH = |G ¢nGH < H¢nH. Thus if ¢, is bounded so also is P_.
_ -1 . _ ~1 -1.,-1 _ _ -1
Now (I PnK) (I G ¢nGG T) (G ¢nT) G
-1 _ _ -1 _
= (I - P K) “e[X]. Also §_ =1(G - ¢ T) “II(T - ¢ )Tl <1

= @G- ¢ e - ¢nGG'1)Tu <1

= (I - PnK)’lun(I - P )KI < 1 and this is the condition

1

required for Theorem 6. Thus (I - K) ~ exists e[X]

1

= (I - ¢ Im~lg™l = (¢ - )7l exists e[ ¥Y,X] and the results

(a) and (b) follow on substitution. The latter result of

(b) is derived from (G - T) (x - xn) =y - (G- T)xn which

1

implies (x - xn) = (G -T) (y - (G - T)xn) where

y - (G - T)xn is the residual on substitution of X, into
the given equation®
In Theorem 7 we have occurring the quantity

(G - ¢nT)—lH where (G - ¢nT)-le[Y,X] not [Yn'xn]' However

we can employ the following argument to utilise (G - ¢nT)—l

. , -1 -1
restricted to Y , i.e. (G ¢nT)Y . (G ¢nT)

(G=-¢.T) =1
n n
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1 1

= (G-9¢T) G=1I+ (G- ¢T) “¢T
R _ -1 _ -1 _ -1 -1
=2 (G q;nT) =G + (G ¢nT) ¢, TG
Thus
G -0 T Y <1 +106- ¢ e Tl (2.7)
n - n'’y n

n

Using (2.7) we can now state

Corollary If the conditions of Theorem 7 are satisfied

and if B, denotes (G - ¢nT);lH then provided
n
Gn = (1 + BnH¢nT")H(I - ¢n)TH < 1 we have the bound
+ B T
G - m™ <t +1B n¢n1ﬁ?nt1 =L
n n n

With this result the error bounds (b) of Theorem 7
may then be employed.

Phillips (1969,1972) considering in particular
integral equations has presented similar results to those
given above but does not use them in practice. We intend
that these bounds be applied in an 'a posteriori' manner
to the approximate solution by collocation of linear
ordinary differential equations. The conditions required
for these results are shown to hold in the section 3.5
of the next chapter. The bounds are then calculated by
finding a bound on B, = I (G - ¢nT);lH in terms of the
inverse matrix from the collocationnequations.

Clearly 'a priori' bounds analagous to those of
Theorem 7 could be given. Roughly, if (G - 7)1 is known
to exist then for sequences of subspaces with corresponding

lim
n-+o°

mappings, 1f 10 (1 - ¢ )7l = 0 and

n-+oo

(T - ¢ )yl =0

then with n sufficiently large (G - ¢nT)'l exists €e[Y,X]



_33_

and we have the 'a priori' error bound

) -1
_ n |l (G - T) ~I, _
Il x an < T_:_E_HX” + 1 =% (T ¢n)yH
n n
where §_ = || (G - T)—lHH(I - ¢_ )Tl and lim lx - x Il =
n n n-+o0 n

(2.8)

0.

2.6 Connections between the Conditions for 'a priori'

Error Bounds

Theorem 2 due to Kantorovich and Akilov (1964)
requires the conditions
I For every z€X there exists a ?eYn such that
Itz - 3l < uleH and
IT There exists an element ern such that
ly = ¥l < u2HyH and for convergence they demand
D ge = M e I = o,

The result (2.8) requires

lim -

n+w”(I - ¢n)TH = 0

lim _
and AT = ¢ )yl = ©

n-—+o°

Suppose that the conditions (2.9) hold. Then (2.9%a)

(T - ¢_T)zll
sSup n
270 Tzl + 0 as n + « and for each n let
(T - ¢_T)zl
sup n _
z¥0 Tzl = n,. Thus for all zeX

(T - ¢nT)zH < nnHzH and letting ¥ ¢, Tz we have
Tz - yll < nnHzH, which is condition I required by

Kantorovich and Akilov.

(2.9a)

(2.9Db)
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If (2.9b) holds then with {n = |ly - ¢nyN we have

lim _ . .
Pso00 {, = 0. Now fory # 0 it is true thatg

= n s . _n
ly = ¢ vl = Tyl lyll. Thus writing & Tyl
ly - ¢nyH < EnHyH (for all y) and with y = 0¥

ly = gl < EnHyH which is condition II.

Conversely if the conditions of Kantorovich and
Akilov hold then I implies that for all zeX there exists
a yeY such that itz - ¥l < wuqllzll. Thus
Tz - ¢nTzH =Tz - ¥ + Y - ¢nTzH < itz - gl +

6 (F - T2)ll < (1 + llo hullall

Tz - ¢nTzH
B < Ul(l + “¢n||) (z # 0)
lTz - ¢_Tzl
sup n
% 270 Tzl < ]Jl(l + ||¢n||)

= T = ¢, T < uy(1 + ¢ 1) O as n »

¢ lim _

If condition II holds then similarly

ly = ¢yl < (1 + o iy = Fl < wyliyl (1 + Ho ) and
lim lim

1f e Hollo l = 0= oy = ¢ vl

This shows the relationship between the two sets

O.

of conditions required for convergence.

2.7 Background for Anselone's Theory

We now present a different theory for approximation
methods due to Anselone (1971). As earlier in the chapter
for the theory of Kantorovich and Akilov (1964) we first

introduce the background for the results and then state the
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theorems. These will be shown later in sections 4.2 and
4.3 to be suitable for application to the approximate
solution by collocation of differential equations and will
be used in practice in Chapter 5.
Thus following Anselone, let X be a real Banach space
with [ X] the Banach space of bounded linear operators on X
with the subordinate norm and I as the identity operator on X.
Pointwise convergence of an operator sequence {Sn} with
Sne[X] (n > 1) to Se[X] is denoted by Sn + S and is defined by
the requirement that Snz + Sz as n » ° for all zeX. This is
. different from convergence in norm which means IISn - st - O.
Anselone's. theory uses the weaker pointwise convergence but
- requires that sequences of operators {Sn} which will be used
in some sense as approximations to a given operator satisfy
additional compactness conditions. In section 2.3 the term
compact applied to a single operator was defined. Anselone
utilises an extension of this concept defined in the following

manner. A . set V& [X] is collectively compact iff the set

VU = {Sz : SeV,zeU} is relatively compact, where U is the unit
ball {zeX : llzll < 1}. A sequence of operators in [X] is

collectively compact iff the corresponding set is.

Before presenting the theorems we describe the types
of equations to which they are applied. Let yeéX and K,Kn e[ X].
We are concerned with the approximate solution of a given

operator equation

(I - K)x

It

y (2.10)

where the true solution x is given by x = (I - K)-ly when
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the inverse exists. An approximation xnex to x is sought

satisfying an equation of the form
(I - Kn)xn =y (2.11)

and xn = (I - Kn)—ly when I - Kn has an inverse. With
this setting we are now in a position to state the
theoretical results of Anselone which deal with sequences
of approximations of the form (2.11) to the given equation

(2.10).

2.8 Convergence Theorems and Error Bounds for Methods using
a Sequence of Collectively Compact Operators to
Approximate a. Given Operator

Theorem 8 (Anselone (1971, p.1l0))

Let K,Kn e[X] (n=1,2, ...) and assume that the three
conditions, K, * K, K is compact and {Kn} is collectively
compact are satisfied. Suppose (I - K)~l exists and define

An = | (1 - K)-lllll(Kn - K)KnH. Then An + 0 as n » «© and for
1 .

An < 1,(I - Kn) exists € [ X] with

-1
1+ 01X =-K TR

il 1 -4
n

<

(1 - K.)

Error bounds are given by

(L + 1 - &7HIK DIy - (T - K )xl
1l - An

I A

(1) hx - an or

-t -
H(x = k) “Hix y - Kyl + & lxl
I -4,

| A

(ii) IIx - an giving

X - +> On
Ix = x I >0



_37—

This is a result of an 'a priori' nature since it depends
upon knowledge of (I - K)_l. Theorems 1, 2 and 3 require
analagous assumptions. However we are primarily concerned
in this thesis with, hopefully computable, ' a posteriori'’
error bounds and these are furnished by Theorems 9 and 10

to follow.

Theorem 9 (Anselone (1971, p.1ll))

Let X,K, el x] (n 1,2, ...) and assume that the

same three conditions hold, namely Kn+ K, K is compact and

1

{Kn} is collectively compact. Whenever (I - Kn)_ exists

define A" = (T - Kn)_lllll(Kn - K)KII. If for a particular

1

value of n, such that (I - Kn)— exists, we have A" < 1

1

then (I - K) ~ exists with

-1
) 1 + (T - Kn) HIK

gl a
1 -A

l(x - )~

Error bounds are given by

-1
(1 + II(1T - K.) My = (1 - K)an

(1) Tx - x Il <
n - 1 - AR
where y - (I -~ K)xn is the residual or
-1 n
(I - K ) "MKy - K + A7l=x_ll
(11) Ix =~ x I < = =7 T =
1 - A

Nothing has so far been said concerning the uniform bounded-

1

ness of the (I - Kn)— or the possibility of convergence as

n + °, However having obtained by the above result that

1

(I - K) ~ exists we can then apply Theorem 8 to show that
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(I - Kn)-1 exists for all n sufficiently large and that its

norms are uniformly bounded. Furthermore l[x - an + 0 as

n + © and the properties of a collectively compact sequence

(Anselone (1970, p.8)) give A" + 0. These deductions ensure

1“ are

that the estimates from Theorem 9 for Il (I - K)
uniformly bounded with respect to n as n -+ .
We shall later use the following generalisation which

is a simple extension based on suggestions by Anselone.

Theorem 10

Let the operators K, Kn (n =1,2, ...) satisfy the

hypothesis of Theorem 9. Now however when (I - Kn)—l

exists define Ag = || (I - Kn)_lllll(Kn - K)KdH (d integer > 1)
and if for a particular n (I - Kn)—l exists and Ag < 1 then
(I - K)~! exists with
IR T R S I e S TS

(X - K) *II < :

- 1 - AR

d

The simplest error bound is llx - x Il < I(I - K)_l"”y - (I - K)x/l

lH is bounded by the above expression®

where Il (I - K)
As was mentioned earlier it will be shown in Chapter 4

(sections 4.2 and 4.3) that the approximate solution by

collocation of linear differential equations can be modified

so as to satisfy the criteria for Theorems 8, 9 and 10 and

practical results will be given in Chapter 5.
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CHAPTER 3

APPLICATION OF PROJECTION METHOD THEORY

3.1 Introduction

In this chapter we consider the application to the
numerical solution of differential equations of the
projection method theory given in sections 2.2-2.5 of
the previous chapter. Firstly it is demonstrated that
the solution by collocation of ordinary differential
boundary value problems does indeed satisfy the con-
ditions for the theory of Kantorovich and Akilov (1964).

Next the 'a priori' approach is examined by example and

it is shown that this is unsatisfactory not only because

it requires knowledge of the inverse of the given

operator but also due to the fact that error bounds

are predicted which are far too conservative. An alter-
native approach is suggested which for fairly simple

problems leads to improvements. The main part of the

chapter is concerned with applying the 'a posteriori'

results for projection .method solution and the major

problem is finding a realistic computable bound on the

norm of the inverse of the approximate operator, i.e. a

. bound on |l (G - ¢nT);iH from the inverse collocation matrix.
The 'a priori' theory predicts, subject to certain conditions,
that these quantities be uniformly bounded as n increases but
to devise practical bounds is seen to be an awkward problem.
Interesting computational properties of matrices involved are

examined and finally the use of row and column secaling to

improve condition numbers is considered.
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3.2 Application of Kantorovich and Akilov Theory to
Boundary Value Problems

In section 2.2 it was shown in keeping with Kantorovich
and Akilov how the approximate solution by collocation of
an ordinary differential boundary value problem could be
set in the functional analysis background for the theory.
Let us briefly remind ourselves of the situation

described earlier. The example chosen was

2m
g&___.{.

p (2m—-1)
dtzm 2m-1

(t)x (£) + ...+ 2 )x P (o)
+ P (B)x(t) = y(t) (3.1a)
over say [-1,1] subject to

3y = x4y = 0 (G =0...m1) (3.1D)

The Pi(t) are assumed to be at least continuous

(1 =0 ... 2m-1). An approximation x of the form
n-1
_ 2 _ m
x,(8) = (£7 - 1) rzo a ¥, (), (3.2)

where the wr(t) are polynomials of up to degree n-1, was
n

k=1°
(2m) [

sought by collocation at the n points {tk} The space

X was chosen as the space of functions in C -1,1]
satisfying (3.1b) with Xn the subspace of functions of
the form (3.2). Y was the space of continuous functions
with Yn as the space of polynomials of degree n-1. (3.la)

(3.1b) were shown to be equivalent to an operator equation

of the form
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(G- T)x =y (3.3)
dzmx
between the spaces X and Y, with Gx = 5 and
dt
= - (2m-1) . - .
Tx = = (P, 1 + ... + P x). G is a bijection between
X, and Y and G—l exists €[ Y,X]. The approximate solution
X, satisfies the equation
(G - ¢nT)Xn = ¢,y (3.4)

between Xn and Yn where ¢_ can be taken to be the projection

n
mapping each continuous function to its interpolating poly-
nomial of degree n-1 at the collocation points.

There is more than one choice of norm for the space Y
e.g. L, L2 etc. but we shall use the infinity norm. 1In
order that G,T be in [X,Y], and in particular be bounded
we take the norms in the spaces X and Y to be related by
Il zll = |Gzl = ”Z(Zm)" (zeX) and this point is

X Y o0

considered shortly. We shall continue on occasions to use
subscripts to emphasise with which norms we are dealing.

In order to apply their theory Kantorovich and
Akilov show that the conditions we gave as I, II and III

in section 2.4 hold. This is now described.

For zeX we can say

. ¥l .5
2 (s) = | 3—-31 (s,£)z®™ (t)at (j =0 ... 2m-1)
-1 9s

where g(s,t) is the Green's function for the operator
2m
> subject to the homogeneous conditions (3.l1b). Thus

dt
(Tz) (s) can be expressed as
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+1 a2m—l (2m)
-{pyp-q (8) { ;—55:%(S,t)z (t)dt + ...
- S
+1
p () [ g(s,t)2®™ (t)ate)
-1
or
+1 (2m)
(Tz) (s) = [ k(s,t)z "™ (t)at
-1
where
32m—l
k(s,t) = -(pzm_l(s)——gasm_l(s,t) + ...

+ p,(s)g(s,t)).

Since k(s,t) has only a jump discontinuity at s
pj(s) is continuous over [-1,1] (j

sure that k(s,t) is bounded and integrable.

+1

| (T2) ()| < [ |k(s,t)|athz @™y

Thus

(3.5)

t and

2m-1) we can be

and [Tzl < konHX giving T as a bounded operator with our

choice of norms. (This verifies Te[ X,Y] as was mentioned

in section 2.2).

Now
2m-1

a_ = -4 (1)

dt(Tz) dt(izo Pz )
2m-1 e

= _':.Z. (pfz,(.i)-v_'_--,piz(i"’l))
i=

provided

pi(t) € C(l)[-l,l] (1 =0 ...

Thus Il (Tz)"ll, < klﬂz(zm)nm for some constant k,.

1

(3.6)
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Therefore by Jackson's Theorem (Cheney (1966, p.147)) there

exists a ?eYn, i.e. a polynomial of degree n-1, such that

k k
- m X1, (2m) _ m X1 L
Il Tz vl < > 11”2 N, = > nHzIIX and condition I holds
with
Tk

Remark The assumption (3.6) is an important one and will

be referred to later in this chapter in connection with a

bound on the norm of the inverse of the approximate operator®
For condition II we can say that there exists a ?eYn

(Cheney (1966, p.1l47)) such that

k (k)

- = l]'_ "Y || : . (k) - -
Ily. 2 ) s ooy LF vee [-1,1] (lzkz<n-1).
Thus lly - yll < uzﬂyﬂ where

k (k)
_ T Ly >
Wy = &) ey . T (ke Ty (3.8)

and hence condition II holds.

If we can find a solution iexn to (G - ¢nT)§ = ¢ for
every ?eYn then this means there exists at least one set of
coefficients agr @y eee @4 for every right hand vector in
the linear collocation equations. But if the algebraic
equations have a solution for every right hand vector it
is well known that the solutions are unique. Thus there
exists a unique X such that (G - ¢nT)i = ¥ for every ?eYn,
giving condition III. If Chebyshev zeros are used as
collocation points we have ll¢ Il < 8 + % 1n(n) (Natanson

(1965, p.48)) whereas if Gauss points are employed
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H¢nH = O(n%). So in either case provided the coefficients
and right hand side in the differential equation have at

lim _
e Il = o

least one continuous derivative we have

lim

S ule il = o.

and
We are now in a position to apply the theorems of
Kantorovich and Akilov and in particular from Theorems 1
and 2 we have for sufficiently large n, that the inverse
of the approximate operator exists. Further the approxi-
mate solutions converge to the exact solution with an

iﬂﬁﬂl) for Chebyshev points or

error bound of at worst Of

..% N - _ = =
O(n *) for Gauss points. If Pom-1 = Pom—2 = +++ = Popx o
(k > 1) and yeC(])[—l,l] (J > 2) then higher order con-

vergence is guaranteed.

3.3 An 'a priori' Example

We now consider in some detail the 'a priori'
application of the theory to a particular example to
derive numerical bounds on the norms of the inverse
operators and errors involved. These bounds hold for the
number of collocation points being sufficiently large
and these values of n are noted. The results predicted
by this 'a priori' theory can be compared to those from
an 'a posteriori' approach. (See TABLE 22).

The example examined is the problem

d——’z‘ - %% = y(t) (A real, > 0O) (3.9a)
dt

with
x(-1) = x(+1) = 0 (3.9b)

+ Natanson (1965), p.S5.
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2
Thus here Gx = Q_% and Tx = Azx. The theoretical
dat

results are independent of the particular bases used for
Xn and Yn and depend primarily on the approximating
properties of the subspaces. We shall be concerned with
an approximation of the form
2 nol n-1
x,(8) = (£ - 1) ] auw (t) where the {y_(t)} __
r=0

are then any independent set of polynomials of up to
degree n-1. The n collocation points used will be the
zeros of the Chebyshev polynomial of degree n and Yn
will be the space of polynomials of degree n-1.

We shall use Theorem 1 to find the values of n
required for applicability and also to bound the norm
of the inverse of the approximate operator. Theorem 2
then gives the appropriate error bounds. All quantities
occurring in Theorems 1 and 2 must therefore be bounded.

By Jackson's theorem (Cheney (1966, p.147)) there

exists a ?eYn such that

A2 x" )

———, We can therefore
n(n-1)

2
lx - 1 = 12%% - 91 < ()

2 A2
n(n-1)"

choose ul = (1)

? 1f yec ®)[-1,1] u, is given

by (3.8).
Examining the statements of the theorems it is seen
that ¢ I, (G = DI, 1(G~ 1" and I (6 - 6_ T I have
n-"Yn,

still to be bounded.

H¢nH < 8 + % ln(n) by Natanson (1965, p.48) (3.10)
sup
(G - T)Il = xex {ll (G - T)xHY}. Now

HxHX =1
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2 2 *i
(G-T)x(s) = x"(s) - A%x(s) = x"(s) - A f g(s,t)x"(t)dt
-1
where g(s,t) is the simple Green's function of section 1.4
2
for g—% over [-1,1] with the conditions (3.9b). Thus
dt

+1
I (e-T)l < (1412 ¥ Jlg(s,t)]at)ll x"ll,. Therefore by (1.11)
-1

2 2
I(G-T)l < 1+ 5= ™% (1-5%) =1+ % (3.11)
— s 2
We now show how to find H(G—T)_lH.
lG-m) "t = , 5% | (e-m) T¢I, = SUP ”gf_ (6-T) Y (s)
lyll=1 TR T yl=17 5 2 Y157 oo
I1f gA(s,t) is the Green's function for x" - Azx over [-1,1]
subject to (3.9b) then
-1 sup ,a° *i
b A - R |
p.108) gives the Green's function for x" - Azx over [O,1]
and on transformation to [=-1,1] we have
1 sinhA (s+1)sinhAX (t-1) s s t.
g, (s,t) = s=%=>57
A Asinh2} “oinna (s-1)sinh) (t+1) s > t.
2 +1
To find 9—5 f gA(s,t)y(t)dt we could split the range of
ds -1

integration and differentiate under the integral sign.

However it is quicker to notice that from the differential

eqguation
d2 -1 2 -1
— (G-T) “y(s) = AT (G-T) "y(s) = y(s) and so
ds”™
a2 -1 2 1
S5 (6-T) y(s) = y(s) +1° [ g,(s,t)y(t)dt

ds -1
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2 , s
=) 9—5 (G-T) "Ly (s) = y(s) + As;?ggéi L) [ sinhi(t+1)y(£)dt
-1

ds

Asinh. (s+1) z sinh) (t-1)y (t)dt
= IZ—; (6-1) "Ly (s)| < |y(s)| + {xsigﬁﬁg-s) ICOSh)\(tﬂ)]fl
Asinh) (s+1) [ - coshA(l-t)]l}”y”
sinh2A A s
using |sinhA(s~l)| = sinhA(1-s) if 2 > O.
= e < 1+ max (SIBAGES) [oogna (s+1) - 1]
SIphALstl) [~ 1 + coshi(1-s)]}.
After elementary manipulation we can achieve
-t < 2 - =2 (3.12)

coshA

Note that when A = O,H(G-T)_lH and Il (G-T)ll are bounded by

unity which is what we would expect since lIGll = HG-lH = 1.

Also we see H(G-T)_lH

< 2 for all ) whereas [ (G-T)Il is
unbounded as A -+ oo,

There now only remains H(G-¢nT);lH to be bounded and
n

as in Theorems 1-4 we shall represent this by H(G—¢nT)-lH.
This is bounded from Theorem 1 by Igg where
D = (l+uy)ll (6-1) !l provided § = u1u¢n(G—T)uu(G—T)'ln < 1.

Thus we have to choose n large enough to give § < 1 and
from (3.10), (3.11) and (3.12) we require

2 2 2
G s+ 2 nm) .+ 3.2 -

'ETH:TT'( <1

1
cosha
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Three values of A where chosen and the table below shows the

values of n needed to give § < 1.

Applicability of the Theory to an 'a priori' Example

A2 n required to
give ¢ < 1
0.5 5
1 8
2 14

TABLE 1

With n greater than the appropriate one of these values
the error bound is now given by Theorem 2 as Ilx-x I <nilxl

with n = (ul+u2n(G—T)n)(1+u(G-¢nT)'1¢n(G-T)M) and

Il < I (G-T)"Hiliyl. Thus llx-x_ll is less than
2 2 n-1 (n-1)
T A ™ ly L G=THy y (peormy =1
[ 3). i @ AT Ty 10 (G=1) Uiyl
(141 (G- _T) "t (G-T)I)

if yéC(n_l)[-l,l] as would often be the case. Note that

the norm ||x - xnn is the norm in the X space and so

Ix - x I, = lx» - x"_ . To relate this to the error
n' X n +1
IIx - x oo we use (x = x ) (s)= -{ g(s,t) (x = x )" {(t)dat.

where g(s,t) is the Green's function for Q—E subject to

+1 dt 1 2
(3.9b). Thus |[(x-x_)(s)]| < £l|g(s,t)|Hx-anx < 5=s%)lx-x Iy
' - Ly x-
by (1.11) = llx-x [l < 3llx=-x lly. Examining the error bound

we can see this has the form

(n-l) "

Ix-x I < E; (m)liyl + E, (n)lly (3.13)
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1n(n) . m.n=-1 1n(n)
n2 ) and E2 (n) is O((E) T) .

Clearly the accuracy predicted by this 'a priori'

where El(n) is O(

approach is limited by the term El(n) which depends
on My

Values of El and E2 were calculated for the three
values of Az chosen above and the results are shown in

TABLE 2 below.

Sample Results for an 'a priori' Error Bound

A2 n E, (n) E, (n)
8 0.36 1.2'-2
0.5 10 0.19 2.8'-4
12 0.12 4.8"-6
12 0.52 1.3'-5
1 15 0.27 1.57-8
18 0.17 1.1'-11
18 1.1 4.67-11
2 20 0.71 2.4'-13
25 0.35 2.8"-19
TABLE 2

The error bound (3.13) is very conservative. This can
be seen by comparison of the above results with actual
maximum errors computed by evaluation. Consider for

instance the equation

—5 - A"x = cosh(l) with =x(-1) = x(+1) = 0.

(When A = 1 this has solution x = cosh(x) - cosh(l)).
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lx = xg I < 2.6'-10
2

For A% = 0.5 we have { llx - x,ll < 2.2"-13
- L
Ix = %, < 4.3"-16
With the values of n in TABLE 2 for A2 =1, 2 the actual

errors are dominated by roundoff even using double
length arithmetic and so are not given for comparison
purposes. The 'a priori' bounds for this example are

of the forms cosh(l).El(n) which are clearly far inferior
to the true bounds. It will be seen later that certain
bounds of the form (2.8) are restricted by the factor
H(I-¢n)TH which we saw in section 2.6 was very much
connected with My - It is for this reason and also the
fact that we do not normally have an 'a priori' bound on
the inverse of G-T that we are later concerned with
developing more realistic computable 'a posteriori'

bounds.

3.4 Alternative Approach

A different approach is now presented which could be
used to give either 'a priori' or 'a posteriori' error
bounds. We shall consider for simplicity second order
differential equations although the analysis carries
through in a similar manner for higher order problems.

Suppose we wish to solve approximately the
equation (G-T)x(t)= x"(t)+p(t)x' (t)+g(t)x(t) = y(t) with
x(=1) = x(+1) = O, where p, q and yeC‘V)[-1,1]1, (v > 0).
(v)[_

This gives x"eC 1,1] by induction. If x  is found
by applying the collocation method as before then in

keeping with the earlier notation we have by Theorem 2
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that if there exists an XeX such that Ilx-%Il < elixll then
Hx—xnn < e(l+H(G-¢nT)—l¢n(G—T)”HxH)- This € is used in
the alternative conditions of Theorem Z  and
like My and My is independent of the approximate method
and depends on the approximating properties of the
subspace Yn'
However it 1s simpler to proceed directly as follows.

If there exists an %eX such that llx-kl < { then
1

”X-xnﬂ < lx=%ll + Hxn-xH = llx=%l + Il (G-¢ T) ¢ (G-T)x -
_ -1 oy _ -1 _ o
(G=¢,T) "¢ _(G-T)xll < (1 + N (G-¢,T) “¢,(G-T)lI )i x=%ll. Thus
-1
Ix=-x Il < §(1 + I (G=¢,T) "¢ _(G-T)II) (3.14)
Now [|x~%ll is a norm in the X space, i.e. Hx—iHX = IIx"-3ll

where_? = GieYn. So we are seeking a ?eYn = G_l(xn) to
approximate x" and the corresponding X is given by G_l§.
Now we are therefore approximating x" by a polynomial of
degree n-1 so that Jackson's theorem can be applied. Since
x"'e€ C(V)[-l,l], by Jackson's theorem of Cheney (1966, p.147)

there exists a polynomial ¥ of degree n-1 such that

L L Lty I
hx =yl < (3) n(n-1) ... (n=v+l)

(n > v+l)

So if we assume henceforth that p, g and y are infinitely

differentiable over [-1,1] then this result simplifies to

- wy (n=1)
Ix" -yl , < (%)n 1ex )n' [F= (for all n). Hence with
- ’ _ (n+1)
% = 671§ we have lx-%lly < ¢ where ¢ = ()71 12 llee,

Thus we can apply the error bound (3.14) and this can then
be modified to produce either 'a priori' or 'a posteriori'

bounds.
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Since we know ‘x"+px'+gx = y this enables us to

express higher derivatives of the solution x in terms of

lower ones. That is, x ®t1) - x")(n_l)=(y—px'—qx)(n_l)
and so on until finally we reach x(n+l)(t) = An(t) +
Bn(t)x(t)+Cn(t)x'(t)+Dn(t)x"(t).. Now
+1 +13
x(s) = [ g(s,t)x"(t)d  and x'(s) = fsg(s,t)x"(t)dt
-1 -1
where g(s,t) is the simple Green's function we have met
2
before for d—% with z(-1) = z(+1) = O. Thus, in theory
dt
at least, we can find using (1.11) and (1.12) positive con-

stants c_and d_ such that Hx(n+l)|l°c

< cptall x" e We
therefore have the error bound

B '
(cn+dn” x" 1)

T,n-1 _ -1 _
lx-x_ll, < (3) — [ 1+ (G-¢_T) "6 _(G-T)II]
or
Ix=-x_lly < e +£ Ixlly (3.15)
where e = (1) Le_ (14l (G-¢,T) 1o (6-T)II) /n!
and £ = (D)™l (4l (G-¢, 1) e (G-T)II) /0! .

From (3.15) we get the 'a priori' bound
-1
II'x anX < en+an(G T) Iyl (3.16)

Using lIxll < lIx-x I + lix Il we deduce from (3.15)

e +f Han

Ix=-x Il < —e—am—s—o
n - (l—fn)

provided £ < 1,

and this is an 'a posteriori' bound not requiring a bound

on I (G-T) "1y -1

if H(G-¢nT) is obtained independently.
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As an illustration of the procedure the example used

in section 3.3 is considered 'a priori'. Here x"- Azx =
Yy = x" =y + Azx. Thus x(n+l) = (}v')(n-l) (y + Azx)(n_l)=
(v" + 22" ) P73 oy 1% + a%) ™) 414 so on.  Finally

we reach, assuming for simplicity that n+l is even,

n-1
2 . .
x(n+1) _ z An-l-2jy(2j) + An-lx (3.17)
j=1
n-1
2 . .
Thus IIx P < § An71723)y (230 4 0y ey
j=1
n-1
3 . . _
and c_ = § APT1723y 230y ang a_ = AP,
n sE n

If n+l is odd n is even and (3.17) can be employed. After

similar manipulation and utilising (1.12) we achieve

n
2 . :
-2 2j-1
c, = 1 A" Iy (2371 ang a = 2.
j=1
Now if we further take y(t) = cosh(l) as before then
- - Ly g
¢, = O and we have the error bound llx-x Il < Flx=x I,
1 mon-1 2" P . —my~L
<3 (2) el [ 1+ (G ¢nT) ¢n(G TN (G-T) “llcosh(l)

where n” = n-1 if n is odd and n if n is even. Numerical
values of this error bound are shown for various choices
of Az and n in TABLE 3 below. Theorem 1 is used to bound

I(G=9,,) "

'a priori' as in section 3.3 and these
results are to be compared with those of the form

El(n)cosh(l) derivable from TABLE 1.
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Example of an Alternative 'a priori' Error Bound

A2 = 0.5 A2 o= 1 A2 = 2
n Ix=x Il o n Ilx=x_Il n Ix=x_ 1,
8 3.8'-4 12 5.4'-6 18 7.6'=9
10 4.5'-6 15 6.3'-9 20 8§.0'-11
12 3.9'-8 18 4.6'-12 25 3.8'-16
TABLE 3

Thus we see that great improvements can be made by this
technique but still the results are fairly inaccurate
compared with actual maximum errors (section 3.3). Of
course often the differential equation will be too com-
plicated to permit the successive differentiation required

for this higher order result.

3.5 Application of 'a posteriori' Error Bounds

We have examined 'a priori' results and although
they can be used for convergence proofs we have found them
to be rather unsuitable for practical error bounds. We
now for the major part of this chapter consider 'a
posteriori' error bounds of the forms given by Theorem 7
and its corollary. However firstly we must show that the
approximate solution of linear ordinary boundary value
problems does indeed satisfy the required conditions for
the theory. We have seen in section 2.2 and again briefly
in section 3.2 how the collocation method applied to a

2mth

order differential equation fits into the functional
analysis setting and assuming this knowledge it now only

remains to show that the particular conditions of Theorem
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7 are satisfied. 1In section 3.2 we verified the criteria
necessary for the theory of Kantorovich and Akilov and
this section is along similar lines.

The same equation as used previously 1is considered,
namely (3.la) subject to the boundary conditions (3.1b).
Using the usual notation it was seen in section 3.2 that
T was bounded €[ X,Y] and it has to be shown that G—lT is

lT to be compact we need G_lT(U) to be

compact. For G
relatively compact in X where U is the unit ball,

{zeXx : HzHX < 1} or equivalently G_lT(U) to be sequentially
compact ~ see section 2.3. Let {zn} be a sequence in

¢ lr(u). Then ;o zneG'lT(U) =? Gz €T(U). So if we can
show that any sequence in T(U) has a convergent subsequence
then {Gzn} will have a convergent subsequence with limit

v say. Then this gives {zn} containing a convergent sub-

1 . -1 - -
v since I|zn G vllx = IIGzn V”Y-

sequence with limit G
Thus it has to be shown that T(U) is relatively compact
in ¥ = cl-1,1]. Now T(U) = {ueY:u=1Tzpllzlly < 1}, so if
ueT(U) = |u| < Tzl < T, proving T(U) is uniformly

bounded. Further if t,t"e¢[-1,1] then if 2zeU and u = Tz

lu(t) = u(t?)| = | (T2) (£) - (Tz) (¢7) ]
+1
= | [ (k(t,7) = k(t",1))2" (1)dr| where k(s,t) is as
-1
defined in section 3.2. The range of integration can now
+1 t t” +1
be split by [ = [+ [ + | assuming without loss of
-1 -1 t t”
generality that t < t“. In the intervals [-1,t) and

(t7,11 k(s,t) is a continuous function of s, whereas for

TG[E,t'] we can use the boundedness of k(s,T) to get
t

| | (k(t,1) = k(t°,1)) 2" (1)dt| < C|t”-t|liz" | for some
t

constant C. Thus given any € > O there exists a § and
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|[t“-t| < & = |Ju(t)-u(t”)| < ¢ for all zeU. This proves
equicontinuity. Therefore by the Arzela Ascoli theorem
(Kantorovich and Akilov (1964, p.22)) T(U) is relatively
compact in Y = C[-1,1]. Thus T(U) is also sequentially
compact and G_lT is a compact operator.

To apply the theory we need § =H(G—¢nT)-lH”(I-¢n)TH
< 1 and we would like H(I—¢n)TH to get smaller as n
increases. 1In section 2.6 we showed that H(I—¢n)TH <
ul(l + "¢nH) and for our polynomial approximation i, was
found via Jackson's theorem and is bounded by (3.7).1f we
are using Chebyshev points for collocation then H¢nH is
O(In(r)) and so as we choose n larger H(I-¢n)TH is
O(iE%Elf which decreases.

We later consider the problem of bounding H(G—¢nT)_lH
Basically if the collocation matrix is non singular then

1

(G-¢nT);l exists and hence so does (G—¢nT); and its norm
n

is bounded by (2.7).

Remark The 'a priori' results of Theorem 1 which we
discussed in section 3.2 would predict that for n
sufficiently large (G-cpnT);l exists and its norms are
uniformly bounded as n incrgases._ Thus we would expect
by taking enough collocation points to ensure
Gn.= H(G-¢nT);lH”(I—¢n)TH < 1 for Theorem 7=

This theorem in.(b) gives two possible error bounds.
The former contains the term I:%—Hxnﬂ and we have seen
that H(I-¢n)TH in Gn is only o(lglgl) in general as n is
chosen large (for Chebyshev pointg). This is clearly

unsuitable being far too coarse if we are seeking a realistic

computable error bound. Note that the 'a priori' result
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(2.8) is similarly influenced by the factor H(I~¢n)TH,
(c.f. section 3.3).

We are thus led to consider the latter bound from
(b) of the form

I (G=¢_T) 7t I (G-¢_m)7H
—— _ .
-5 I (G-T)x -yl where I-s_ is a

X—
I an

bound on H(G-T)—lﬂ and this one is used for numerical

results given in Chapter 5.

Theorem 4 due to Kantorovich and Akilov gives

another 'a posteriori' bound on H(G-T)—lH by
-1 -1
- 1 + (1(G-¢_T) “o_ Il + 1 (G-¢_T) “¢_(G-T)I
I (Ge-1) "1 < n n n n if
- T - &
S =, A+ I (G=¢_T) "1o_(G-T)I) < 1. However it is

difficult to .see how, with this, one can avoid using
”(G'¢nT)-l¢n“ < "(G-¢nT);i””¢n” and (with Chebyshev
zeros) H¢nH < 8 + % ln(n) and is large if n is chosen
large. Clearly § will tend to zero very slowly and
moreover we get a very poor bound on G- 1. 1t is
for this reason that Theorem 7 is preferred in practice.
This contains the term H¢nTH but which is simply bounded

by ¢ T < ITh + I (T-¢ )Tl .

3.6 Direct Approach to Bounding the Norm of the Inverse of
the Approximate Operator

We showed in section 3.5 that the 'a posteriori'

Theorem 7 and its corollary could be applied once H(G-¢nT)_lH

is bounded. Equation (2.7) relates this to H(G'¢nT);l” and
n

we now consider in detail the problem of finding a reasonable

bound on H(G-¢hT);lH when polynomial approximations are
n
sought.
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Firstly a direct approach is examined. The
abbreviations M_ = (G-¢ -t and B = IM 1l are intro-
n n Yn n n
duced. Thus in the usual notation Mn : Xn - Yn and as

described in section 2.2 we have the situation illustrated

below. G-T

X Y

’

Mn

For simplicity the approximate solution by collocation of
a second order differential equation with the solution
being zero at the end points + 1 is considered but higher
order problems could be examined in a similar way.
Thus X = {zeC‘?)[-1,11: 2z(-1) = OA z(+1) = O} and
we choose Xn as the space of functions of the form
n-1

2 n-1 .
(t“-1) 7§ b ¥ _(t) where {wr}r=0 are a basis for P_

r=0 -1

(the space of polynomials of up to degree n-1) and the

br(r =0 ... n-1l) are real numbers. Y = C[-1,1] and

Y = P _,- Let ¢ map each continuous yeC[{-1,1] into

its interpolating polynomial at the collocation points
n

{eyio-

The aim of this section is to try to bound Bn by

-1

breaking up the operator Mn into its different parts

and then bounding these separately.

We have B_ = IM 1| = sup M 7y
n n ~ n
ern

hgl=1
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or B

_sup llem "hgI, (3.18)
y:liyl=1

When the collocation method is applied we have a set of

linear equations
Aa = l (3.19)

to solve for the coefficients of the approximation

n-1

x = (t2—l) 2 a_y to x. Here a,y eR", the space of
n reg Y'Y -
real n dimensional vectors. Define the mappings T: R? » xn
and p:JRp»+,Yn as follows:

2 ncl n
r(p) = (t“-1) } b ¥ (beR’) and p(B) is the polynomial

r=0

of degree n-1 such that pg(ty) = 8; (L =1 ... n). That is,

i
p constitutes polynomial interpolation and p_l evaluation.

. . - -1 -1
Having solved the equations (3.19) for a = A lx = A lp ¢ny
the approximate solution X is found by xn(t) = (Ta) (t).
Thus Mn_l is related to the inverse collocation matrix by

-1 _ -1 -1

Mn = TA “p (3.20)

and this is illustrated below.
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m?.X Ib

for
i o

We choose the norm in R” by llbll = i

b = (b )eRn and we have from (3.20)

b= (b, b

L +ee by

B = ITA o™ < Nriia™tine ™ (3.21)
At first sight it is more obvious how to tackle the bound
(3.21) than the form (3.18) although we shall see in
section 3.7 that (3.18) can be utilised. We consider

separately each factor of (3.21). Firstly,

sup max

-1“ _ sup _
IFgll=1 1<i<n

IRA! |7 e | < 1.

e o~ L5l

As a slight digression from our present task we
briefly mention some computational properties of the matrix

A"l when Chebyshev zeros are used as collocation points

and the wr (r =1, ... n-1) are Chebyshev polynomials and
b T
o 2 -

It is found experimentally that for a given differ-

ential operator Ia”Y) remains virtually constant as n

increases. (It is in fact the first row of A"l which
gives the maximum modulus row sum). Further if H is the
n x n diagonal matrix diag(hl,hz, .o hn) with hl =1

and h, = (i-1)? (=2, ... n) then IHA"L| is roughly
constant as n increases, i.e. as more collocation points
are chosen. This is shown in TABLE 4 for the sample

Gx - Tx = . x" + (1 + t2)x.

Constancy Property of the Norms of Certain Matrices

n 5 10 15 20 15
na~dy 1.807549 1.807561 > N +
| HA™ L) 1.807549 1.807561 - > >

TABLE 4
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In the above table the symbol + means that the entry is
the same as the one on its left.

If simple powers are used, instead of Chebyshev poly-
nomials, in the basis for xn it is found that the above
matrix norms grow large as n increases and an example of
this property is given in section 3.8. In the above table
we notice HA_lH = 1AL, This holds for the particular
operator chosen here and is not necessarily true in
general as will be seen later.

These properties are relevant for following analysis
and so are mentioned now but being away from the main
theme of this and the next sections are left until section
3.8 to be considered in more detail.

We now return to the problem of bounding B, and

examine lITll which occurs in (3.21).

d2 5 n-1
ITI = sup IT )y = sup {max|——§(t ~1) } brwr(t)l}
beRP b:max|b,[=1 t dt r=0
Thll =1 *
. 2 n-1
= su {max| X" (t)]|} where %X(t) = (t“-1) ) by, ().
b:max|b,|=1 t r=0
|
We now consider two different choices for the b (t). If
V. (t) is taken as tf(r = 0 ... n-1) then we have
n-1 n-1 _ n-1 -
%7 (t) = 2 ] b tTHat | rb tT M+ (t%-1) ] r(r-1)p 72
r=0 r=1 r=2
(3.22)

n-1 n-1 n-1l
So |%™(t)] < 2 J 144 §J r+ ] r(r-1) and this expression is
r=0 r=1 r=2 3

0(n3) and so would give a bound of order n” or lITl. This
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is definitely unsuitable since in order to apply Theorem
7 we need §_ = Il (G-¢_ TGN (I-¢ )T < 1. 1(G-¢ Tl
depends on B, by (2.7) and clearly if HA_lH is constant
or increasing with n and Tl is O(n3) we are very likely
unable to achieve Gn < 1. The remark of section 3.5
suggests that we should be able to construct bounds for
Bn which do not increase with n and this is the basic
problem which we tackle.

If Chebyshev polynomials are used with X (t) of cthe

b
form (t -1) [2 T +b,T.+ ... + Db

1Ty n-lTn-l] which we write
2 n-1
as x(t) = (t“-1) )} ' b_T_(t) then
r=0 rr
n-1 n-1 n-1
R"(t) = .2 ] ' b T (t)+4t ] b T.'(t)+(t ) b T "(t).
=0 r=1 r=2

Now the Chebyshev polynomials satisfy the following

differential equation - see for example Davis (1963,

P.365): (L - t¥)T_ " - tT_'+ r’T. = O. Thus
2 _ woo_ 2 _ .
(t 1)Tr = r"T_(t) t Tr'(t) giving
n-1 n-1 n-1
X"(ty = 2 Z 'b T (t)+ ] r b T, (t)+4t Z b T ' (t)
=0 r=2 =1
n-1
- ] tb T '(t) and rearranging we have
r=2
n-1 -1
"(gL = .2 ) 'b T_(t)+ Z r2b LT (£)+3t E b T ' (t)
r=0 r=2 r=1
+ thy Ty ' (t) (3.23)

Now by Markoff's theorem (Todd (1962, p.138))|Tr'(t)] < r2.
- n-1 2 n-1 .

Thus |i"(t)|, < .2 ] '+ Jr‘+3 ) «r +l and this again is
= r=2 r=1
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an expression of O(n3) giving bounds on [ITll and B
uunsuitable for practical purposes.

A variation of the above approach is now considered.

Instead of saying B_ = ITA 1o 1 < ITHNA Mo M as in
(3.21) we investigate the possibility of using
B < ira~tine~t. ra”! is a mapping from R® to X, and

is independent of the basis used in X, but when bounding

its norm the inequalities used still lead to different

results.
-1, _ -1 _
fra = = sup IITA ng = sup HFQHX
ce R llell=1
lcll=1
where b = A_lg. If we take t° for y.(t) (r=0 ... n-1)
-1

we can use (3.22) where X = Tb = TA “c.

Now define B = (B,/8,, ---B)° by B, = b __,
1

(r=1 ... n) then with A"~ = (vij) we have

n
By = k£1 V. Ck (r=l ... n) (3.24)
where ¢ = (c,,C c )t Thus
- 1’ 2, * s 0 n .
n n n _
X"ey. = 29V ertr'1+4t ) (r-1)ertr'2+(t2-1) ) (r—l)(r-2)8rtr 3
r=1 r=2 r=3

and using (3.24) we have

Sy TR r-1 T 0 r-2
X"ty = 2r£1 kElvrkckt +4tr£2 kZl(r—l)vrkckt
+ (£2-1) ? ? (£-1) (r-2) v t7 73
r=3 k=1
Therefore Hi”x = %"l .
h n n n
< kzl{ngllvrk| + 4r£2(r-l)|vrk| + r£3(r-l)(r-2)lvrk|}
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if llcll < 1 and

-1 n n
ITa “ihy < kzl rzl{Zlvrk|+4(r-l)|vrk|+(r—l)(r-2)]vrk|}
-1 n n 2
= ITa™"l, < YY) (x +r) [v | (3.25)

" k=1 r=1

If Chebyshev polynomials are tried in the same way
as before and using a similar definition of B then from

(3.23) we have

n

L

;("11:‘)“ = 2 Ig 1R T + 3:1
‘ rr-1 z

2
R . (r-1)“B T __ +3t

'HEB
3 r 2

ZBrTr—l

We next employ (3.24) and take moduli throughout, utilising

|T__.'| < (r-1)2, to finally obtain

r-1

n n
L, < y 7 (4r2—8r+6)lv

(3.26)
X = g21 r=1

IITa rk|

Earlier in this section we mentioned certain com-
putational properties of the collocation matrices when
Chebyshev zeros are used as collocation points. Bearing
these in mind we should expect that the bound (3.25) would
increase wildly with n and this is shown by example in

TABLE 5 below. The inequality (3.26) can be rewritten

it <43 (] 2w | I 7 vl
TA 7l < 4 | (r=1)%|v ) + 2 v
r=1 k=1 rk k=1 r=1 Tk

1

In view of the results for ||HA || shown in TABLE 4 we

n
anticipate that |} (r-1)2 v is roughly constant and
k=1

therefore that

Il e-n?

4 ( (r-1)“|v_, |
r=1 k=1 rk
borne out by the computed results below.

rk

) increases like 0O(4n). This is also
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Behaviour of the Direct Approach to Bounding the Norm
of the Inverse of the Given Operator

Gx - Tx = x" - x
n 5 10 15 20 25
' Bound on HFA—lH
(Powers) 22 1552 117373 9295153 7.4'8
Bound on HFA_lH
(Chebyshev) 9.2 28.8 48.9 72.1 94.9
Gx - Tx = x" + (1+t2)x
n 10 15 20 25

Bound on HFA-lH
(Chebyshev) 32.0 52.1 75.5 98.4

Gx - Tx = . x" + (8t2+2t-l)x'+(4.5t2+l.5t-l)x

n 10 15 20 25
Bound on [ITA™ %
(Chebyshev) 30.2 51.0 74.0 96.8
TABLE 5

Thus we see that although we can achieve better
results by (3.26) the bound on Bn still increases with n

and so is rather unsatisfactory.

Remark The remark of section 3.5 suggested we should be
able by the 'a priori' consideration of Theorem 1 to bound
the B, uniformly as n is chosen larger. However we noted
(remark in section 3.2) that we required the coefficients
in the linear differential operator to have at least one
continuous derivative in order to satisfy the conditions of
the theorem and boundedness cannot be guaranteed if this

does not hold. We have not required this property of the
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coefficient functions in this section and so are unlikely
to achieve a uniform bound on the B ="

In the next section an approach is considered which
does use the continuous differentiability and in which the
functions X" (t) are expressed in terms of the Lagrange
interpolation basis polynomials corresponding to the

collocation points.

3.7 Indirect Approach Using Second Derivative Values at
the Collocation Points

For this section second order differential equations
with their solutions being zero at the end points +1 are
considered and the spaces and subspaces of section 3.6 are
chosen.

Suppose the differential equation is of the form

Gx~-Tx x"(t) # plE)x' () + q(tix(t) = y(t) (3.27)

i

with x(-1) = x(+1) 0. Let yeC[=-1,+1] but let
p,qec{1)[-1,1] and this additional continuity will be

used later. The analysis can be carried over to higher
order problems. Here we have Xn as the space of functions

n-1
of the form (tz-l) )) b_¥_(t) for some choice of n
r=0

linearly independent polynomials wr(t) (r = 0,1, ... n-1).
So far in trying to bound B = sup IIGMn-llelo° by
yeyY
ng1=1

1 -1

15 in the form ra~lp

(3.18) we have expressed Mn— y or

I'(b) where b = 2715715 (employing the notation of the

previous section). We have then used
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2 2 n-
-1 _a _d 2
(@M “F) (t) = == {T(b) (t)} = == {(£°-1) ]

dt dt r=
That is, Mn—1? is formed in terms of the basis for Xn

1
P ()]

and then differentiated twice.
We now consider an approach which expresses

em "1
n

Ve Y directly in terms of the Lagrange inter-
polating basis polynomials corresponding to the

collocation points. That is, if X = Mn_l§ for ?eYn

n
we write X" (t) = ) i"(tj)l?(t) and to determine
j=1
ﬁ"(tj) (j =1 ... n) we proceed as below.
A
Define £ (t) = (£, (t),&,(8), ... & _(£)) by

£ (®) = {(£%-1)y_(£)}"(r = 0, ... n-1) and thus
the second derivative of any function in Xn is of the

form gt(t)g. Let the choice of collocation points be

{tl'tZ' ... t,} and for any right hand side y(t) we
find by applying the collocation method an approximate
: n-1
solution X(t) = (tz—l) ) a_y_(t) to an equation of
r=0

the type (3.27) by solving the algebraic equations
Aa = y where Y = (Yllel O Yn)t and Yy T Y(ti) (i=1 ... n).
The approach we now use expresses X" in terms of

{i"(tj)}j:l instead of {a.}?”! and we proceed as follows.

J°31=0
Consider firstly the equation X" = y(t) with
x(-1) = x(+1) = 0. Let the matrix formed be A_ and the
solution be xo(t) with coefficients g(o). Therefore

X" (t) = gt.g(°) = gt(A -ll). Now in this case row j

o
of A, 1s exactly gt(tj) and so

Doon - t -l - t —
X (tj) ¢ (tj)Ao Y = e5Y = Y5 where ey is the unit

J
vector with unity in the jth row and zeros elsewhere.

This of course is what we would expect.
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Now considering a differential equation of type (3.27)
we have an approximate solution X(t) with coefficient vector

a corresponding to a right hand side y(t) and

"(t) = ¢%(t)a = £5()aTly = gt(t)Ao'leA'll. Thus
o~ _ t _l = t
L X (tj) = ey AR Y = e Wy (3.28)
where W = (W,.) = A A"l 1£ 2 = (z,,2 z )% ang
i3 o™ z 17227 = 2y
2z, =xX"(t,) (j =1...n) then z = Wy determines the

J J
values of the second derivative of an approximate solution

at the nodes. W is independent of {y_(t)} since the
approximate solutions %x(t) are. This is discussed more
fully later in this section.

Now from (3.18),
-1

B, = sup IIGMn gl = sup Ix" (¢
I¥ll=1 Igll=1
s n
= sup I J %"(t;)15()ll
Igl=1 j=1 I
T (in
< A, sup {max| x" (t.)|} where A = max Iol1ie) |
Tug=1 3 J -1<t<l j=1
< A, sup {max|row,(W)y|} where
Tgl=r J
e ~ N t .th
Y = (y(tl),y(tz), .o y(tn)) now and rowj(W) is the j

row of W. Thus
B, < A, sup {max| X Wtiil}
Igl=1 3
L
< A_ max( Wool) < A _liwll
n 5 421 ji n 0

it is found experimentally that lIWll_, is virtually constant

with n and this is illustrated later in TABLE 6. However
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An < 8 + % In(n) (Natanson (1965, p.48)) if for instance
Chebyshev zeros were used as the nodes and consequently we
would expect this bound on Bn to increase with n. We are
led to consider an approach which utilises the fact that
the coefficients in the differential equation have a con-
tinuous derivative and we now describe this.

If the collocation points are chosen as the zeros of
a polynomial §n(t) of degree n belonging to a set of ortho-
gonal polynomials {tn(t)} with weight function w(t) over
[-1,1] then this implies (Natanson (1965, p.51)) that the
set {l?(t)}jz1 of basis polynomials are also orthogonal
with the same weight w(t). For instance {yn(t)} could be
Chebyshev polynomials with weight function w(t) = (l-tz)-!5
or Legendre polynomials with weight w(t) = l. As before

2, = fﬁ"(tk) (k =1 ... n) and choosing the collocation

points in the above way we have

+1 o n +H n n n n
_{w(t)x" (t')lj(t).dftt{waizzl zklk(t)lj (t)dt = z,U; where
+1 +1

n
vl = fW(t)(l?(t))zdt. So Jw(t) [ i"(t)]zdt = 3
_l _l j=

z2u",
j i3

1

Note that this result is precisely that of Gaussian quad-
2
rature since {[%"(t)] 1is a polynomial of degree 2n-2 and

so quadrature with Gaussian nodes will be exact. The U?

are the weights at the nodes. This suggests a new norm
I sz say, which we introduce for convenience, defined by

+1 2 k
Hszz = { [ w(t)[z"(t)] at} for all zeX, the whole space.

Note that this norm depends on the choice of collocation

points whereas before ||l |, was independent of the nodes.

X
This norm is well defined since XC:C(Z)[-l,l] and so z" (t)
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is continuous and so integrable. Also the basic definitions

of a norm are satisfied.

L - u<c—¢nw);ln using

It is now shown how to find IIMn
n

the X2-norm in X and the infinity norm in Y.

I "My, = sup 14,y
Y€
Iyl =2
= sup %)y, (where %(3) = M_~1§)
g:lgl=1
+1 2
= sup { [ (X"(t))“w(t)at}
gellgi=1 -1
n X
= sup  { ] zszjn} .
g:ligh=1 3=1

The an could be calculated individually but it is simpler

to say
n X
IIMn_lllX2 < sup {(max zi) _Z an} .
y:lyil=1 k j=1
By Natanson (1965, p.52) °
n n +1 n 2 +1
I v = 7wty fat = [ wit)de = q, say.
j=1 j=1 -1 -
So we have
im "N, < @%  sup {max z2}?
y:1¥ll=1 k

= qf sup (max [z, ]).

y:9l=1 k
Now from (3.28) z, = XxX"(t,) = etA A-l = etw and since
. k k! T EkTo™ I T &M
we are using the infinity norm I§l = 1 = [v,| <1

(i=1...n).
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n
Thus  sup (max|z, |) < max(.z Iij|) = llwll
y:ligh= 1 k k j=1
and we arrive at the bound
-1 %
|
LMn ”X2 < Q2w (3.29)
+1 5 %
For Chebyshev nodes Q@ = [ (1-t“) dt = m while for
-1
+1
Legrendre points Q@ = [ dt = 2.
-1

To illustrate the usefulness of this bound some examples
for different operators of Wl = HAOA—lH are shown in TABLE
6 for varying numbers, n, of collocation points. For these
results Chebyshev zeros have been used and Chebyshev poly-
nomials taken as the {wr(t)}. It is seen experimentally

that nAoA‘lu

is virtually constant as n varies and this
property is related to those discussed in section 3.6 and

will be considered again in the next section.

Illustration of the Constancy of the Norm of the Matrix AOA_l
Differential
Operator n 5 10 15 20 25 30
x" -x 1.0234 1.1315 1.2014 1.2362 1.2594 1.2738 |
x"+(l+t2)x 1.9318 1.9306 1.9321 1.9318 1.9321 1.9320
w2 ' 2 2.2096
X .(t+3%x (t+3)lx 2.0570 2.1727 2.1956 2.2038 2.2075 .
x"-E—i%illx 1.0148 1.0310 1.0388 1.0422 1.0441 1.0452
TABLE 6

Thus we have in (3.29) a bound on ||Mn-l||x2 which does not
increase significantly with n and this will be utilised later

in this section and also in the next chapter.
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Having given this analysis we turn again to the

-1 . .
[ in our original norm.

problem of bounding B = |IMn
It is found to be convenient to transform the equations
(G-T)x=y and (G--q)nT)xn = ¢ny to integral equations as

in section 3.2.

From (3.27) the given equation is

X" (s)+p(s)x'(s)+g(s)x(s) = y(s) with x(-1) = x(+1) = 0O,

+1 +1
=) x"(s)+p(S)fl%§(s,t)x"(t)dt+q(S)J' g(s,t)x"(t)dt = y(s)
- -1

2

where g(s,t) is the Green's function for g—% subject to
dt
z(~1l) = z(+1) = O. Thus writing u = x" we have
+1
u(s) - f[k(s,t)u(t)dt = y(s) (3.30)
-1
where k(s,t) = —p(S)%g(S,t) - g(s)g(s,t).

Since xexcc @) [-1,1]1 = weci-1,1] = Y and u satisfies
(I-K)u =y (3.31)

where K is a bounded linear operator on Y, i.e. Ke[Y].

Similarly if u, = X, then u, € Yn and satisfies

(I-¢nK)un = ¢,Y- (3.32)
-1~ o~
Now B_ = sup IM_ “¥ll, = sup Ix(y)Il
o= T F gg=1 X
= B, = sup TP, (3.33)
Il yll=1

where 4 = X ", and from (3.32) U satisfies
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(I-¢ K& = §. (3.34)

Thus from (3.34) 4 = ¥ + ¢nKﬁ, giving llall < Iyl + H¢nKﬁH.
(For the remainder of this section unless otherwise
specified infinity norms are used).

Therefore, using (3.33), we have
B, < H;ﬁzl (H§H+H¢nKﬁ(§)H), giving

B. <1+ sup ll¢_rRa(y)ll, (3.35)
n — 2 n
¥l =1

and we shall employ the inequality

H¢nKﬁ(§)H§HKﬁ(§)H+H¢nKﬁ(§)-Kﬁ(§)H. (3.36)

Consider firstly [IKill. From (3.30) and (3.31)

+1

IRl = max|[ k(s,t)U(t)dt| and by Cauchy's inequality
s -1
+1 2 L +1 2 L
Ikl < max{/ (k(s,t))“dt}?{f (Q(t))“atl}?. (3.37)
s -1 -1

Now with k__ = max|k(s,t) |,

s,t
+1 5 5
_{(k(s,t)) dt < 2k (3.38)
and since k(s,t) = -p(s)%g(s,t)-q(s)g(s,t), kmax can be

calculated. To utilise the second integral in (3.37) for

yii=1
choose the collocation points to be the roots of a poly-

+1
bounding Bn we must find ”sup {f (ﬁ(t»zdt}%. If we now
-1

nomial belonging to an orthonormal set with weight function

+1 2y %L 2.
w(t) then { [(f(t))%at}? < { [w(t) (F(t))“dt}? if w(t) > 1.
-1 -1
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+1 2 "
Now sup { [w(t) ({(t))“at}* = Ml ., giving
Igl=1 -1

+1
sup { f(ﬁ(t))zdt}% < Q%HAOA_lH (3.39)
hgtl=1 -1 -

+1
(where Q@ = [w(t)dt).
-1
Thus by (3.38) and (3.39) we can bound in a reasonable

manner the term sup IlKu(y)ll which comes from (3.35) and
gli= 1
(3.36). We have then

1

sup IKEP)I < (20) %k _ A A7M. (3.40)

hyll=1

We now have to consider the quantity

sup Il ¢ Ki (¥)-Kd (¥)
Igll=1

sup H¢nKﬁ(§)-§+§~Kﬁ(§)H, for any GeYn = P

1§l =1 n-1

~

sup (l+”¢nH)(HKﬁ(§)-$ﬂ)since ¢n§ = V.
I¥l=1

We now use the fact that p,q eC(l)[-l,l]. This point has

| A

been discussed in the remarks earlier in this chapter and
the usefulness of this requirement is now seen.

By Jackson's theorem if Kﬁ(?)ec(l)[-l,ll then for
any ¥ there exists a G(y)eYn (i.e. a polynomial of degree

n-1) such that

oA ad ]
ki @) -v @1 < TUREGN N 2166 for any zex,

Kz" = 17Tz (3.41)
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+1
since (Kz") (s) = fk(S,t)Z"(t)dti
-1

i

+1
- f{p(S)%%(s,t)+q(S)g(s,t)}z" (t)dt
-1

- p(s)z' (s)~-g(s)z(s) = (Tz) (s).

Thus Ku(y) = TX(y) = - pX'-gX and since we have assumed
p,qjeC(l)[—l,l] = Kﬁec(l)[—l,l]. Furthermore
(Ki)' = - px" -p'X'-gX'-q'X. By using the Green's

function g(s,t) as above we can therefore achieve
IH(xE) N < kq %", (3.42)

Thus using (3.42) we have

mk
sup 116 K (§)-K& (@) < (1406 gl & " (7). (3.43)
131=1
But Isup Nyl = IIMn-lIIX = B, by (3.33) and so from
|9l=1

(3.33), (3.35), (3.36), (3.40) and (3.43) we have

B_ < l+(29)%k A A'1M+(1+H ll)jﬂ B
n — max ~ o ¢n 2n °n°
nkl
Therefore finally if €, = (l+"¢n”)iﬁ“ < 1 we obtain
1+ouAOA'1u
B, £ —1= (3.44)

n

where o = (29);i k
max”’

This is now a bound on Bn (for en < 1) which does

1

not increase significantly with n provided HAOA- Il is

roughly constant.
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It was seen from (3.28) that if z = (21’22’ .o zn)t

-1
Y

is such that 25 = i"(tj) (J =1 ... n) then z = AA

"1 j5 the matrix to be inverted

Thus this means that AAO
for z if we apply the collocation method to an equation
of type (3.31) and seek an approximate solution in the
form 4(t) = 'El zjl?(t).‘ U will then satisfy the
equation (3.%2). This could be confirmed algebraically
by forming the matrix C = (cij) with Cjy = [(I—K)l?] (t;)

-1 does indeed

(i, =1 ... n) and verifying that AAo
equal C. Thus the matrix AOA-'l is clearly independent
of the basis in Xn.

Note that any differential equation (G-T)xn =y
could actually be solved approximately by finding an
approximation 4 to X" of the form u = _gl.i"(tj)ly(t)
by applying the collocation method to tﬂ; corresponding
integral equation of type (I-K)u = y. Then the approxim-
ation X to x is obtained by integrating twice (subject to
the end conditions) the polynomial u(t) = x"(t). However
although this is a convenient theoretical approach it is
practically quite difficult since we have the problem of
finding (I-K)l; (j =1 ... n) if this method is to be

applied directly.

Summary and Conclusions

The main aim of this section (and indeed most of the
latter part of this chapter) has been to show that if the

“1 exists and

inverse collocation matrix exists then Mn
its norm can be bounded by (3.44). Thus we can use the
'a posteriori' theory and, in particular, apply Theorem 7

and its corollary.
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We have seen in section 3.5 that the most suitable
error bound from the theorem is

Hx—anX < H(G—T)_lHH(G-T)xn-yH and using the corollary

we have
1+B_ll¢_ Tl
-1 n 'n
Il (G-T) ~II < —'—l:—g‘;——
for § = (l+BnH¢nTH)(H(I—¢n)TH) < 1.

In this expression B, is bounded by (3.44) for n large
enough to give € < 1. H¢nTH is treated by

H¢nTH < HTH+H(I-¢n)TH. Everything here is now calculable
and for a sufficiently large number of collocation points
we obtain computable error bounds by applying the above
results. Numerical examples of the size of n required
and of error bounds obtained by this technique are given
in Chapter 5. This concludes the main theory of this
chapter.

The bounds derived here and also in the next chapter
ignore the effect of rounding error of which the condition
number is a measure. In the next and final section some
computational properties of matrices we have encountered
which were mentioned briefly before are more fully

analysed.

3.8 Computational Consideration of Matrices and Condition
Numbers

In this section we consider some computational aspects
of collocation methods by examining the structures and
properties of matrices occurring in the application of the
methods, the use of scaling and lastly the condition

. numbers.
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In section 3.6 it was stated that, using Chebyshev
zeros as collocation points, when powers were used in the
basis for Xn the inverse collocation matrix has an un-
predictable form and it's norm grows wildly as the chosen
number of nodes increases. However when Chebyshev poly-
nomials are used in the representation of the approximate
solution it is found that the inverse matrix has a
structure with the elements in any column generally
decreasing in magnitude as the row number increases with
the largest elements in the first row. Furthermore the
infinity norm of the inverse matrix is more or less
constant with different numbers of collocation points.
This norm is in fact determined by the sum of the elements
in the first row since these turn out to be positive.

An illustration of these properties is given in
TABLES 7a-7d when the collocation method is applied using
the zeros of the Chebyshev polynomial of degree 10 as
the nodes to the sample operator x"+(l+t2)x. The tables
show the original and inverse matrices from using both
powers and Chebyshev polynomials in the representation
of the approximation. TABLE 7e shows for the same
example the values to 3 significant figures of the norms
of the two inverse matrices for varying numbers n of
collocation points. This demonstrates how the norm of

the inverse matrix from using powers increases with n.
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Norms of Inverse Matrices

n 5 10 15 20 25
Powers 0.932 6.93 210 8.14'3 3.84'5
Chebyshev
Polynomials 1.81 1.81 1.81 1.81 1.81

TABLE 7e

For brevity when powers are used to represent the
approximate solution we shall call the inverse of the
collocation matrix the "powers inverse matrix" and
similarly when Chebyshev polynomials are used in the
basis for Xn we shall call the corresponding matrix the
"Chebyshev inverse matrix".

The above mentioned properties of the Chebyshev
inverse matrix are not really surprising as the following
discussion suggests.

Consider the collocation method applied to the
problem Gx-Tx = f with the usual end conditions. We shall
later choose f in an appropriate manner. With n colloc-
ation points let the linear equations to be solved for

the coefficients of the approximation be Aa = f where

£=(£,,£, ... £)% with £, = £(¢t,) (1 = 1,2, ... n) and
{ti}izl as the collocation nodes. Then a = A_l£ and if
...l_
n
= a, = z v 1585 (3.45)

n
If we take f(t) = 1 then a, = Z vlj’ that is, the sum
j=1

of the first row of A Y. Now we would not expect that



-84-

ag would vary greatly as the number of collocation points
is increased and so we would anticipate that the sum of
the elements in the first row of A L would be roughly
constant. If these elements are positive then this would
give that the sum of the moduli of the terms in the first

row of A—l was reasonably constant.

In particular we shall investigate the simple

second order equation of the form x" = f subject to
x(-1) = x(+1) = O. With £(t) = 1, x(£) = %(t°-1), so
n-1
that if an approximation of the form (tz—l) Z 'ajTj(t)
j=0
is sought and the collocation equations are o2 = £ then
clearly we must have aj = 1, aj =0 (J=1... n-1). Thus
)
Qq. = 1 (3.46)
521 B
where Ao-l = (uij) and we see that for this problem the

sum of the elements in the first row of the inverse is

constant.

It is now shown that the elements in the first row

n n
of A "' all have the same sign so that | ¥ oa,s] = ) o 5]
(o} j=1 13 j=1 L]
If x(t) satisfies ' x"(t) = f(t) with £(t) a poly-
nomial degree < n-1 and x(t) = (t2-l)z(t) then z (t) must
n-1
be a polynomial of up to degree n-1, Z 'ajTj(t) say, so
j=0
that
5 +1 z(t)To(t)
a, = = [ ———-—4at (using the orthogonality)
-1 I-t2
3
2+ 2,72
= a, = -2 [ (1-t%) “x(t)at. (3.47)
-l

Now from (3.47) with the substitution t = sint and using
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integration by parts and the end conditions on x(t) we
can obtain

+
(1-t2) %4 (t)dt =

EREN)

a =2
(@) m

e

+1 n
J(1-t%) *f (t) dt. (3.48)
-1

For a particular value of n take f(t) as li(t) which is
a polynomial of degree n-1, then in this case f is such
that fk =1, fj = 0 (j k). 8Since the collocation

method for this problem will give the true solution and

this right hand side gives the special unit vector

described above we must have that the coefficient vector

k), t . . .
[ao(k),al(k), ce an-l( ) say, in this case is equal
to the k™ column of Ao_l. In particular by (3.45)
(k) _ § _ . .
a = j£1 oy 5F5 = ogye We thus have using (3.48) with
_ 4N
f(t) = lk(t)
+1 +1
(k) _ 2 .2, % _ 2 _,2.-%,. .2 .n
a == _{(1 t9) ' (t)at = 2 _{(1 t%) F(1-t9) 1 (t)dt
_2 ¥ ox 2. .n :
== (1-t5)1,. (t.) (since Gauss quadrature will
T 21 i7"k M1

be exact),

(k) _ 2 ,,_.2
= a == (1-t)). (3.49)

(k)

Therefore as |t, | < 1, a is positive giving a,

positive (k = 1, ... n) and the modulus of the sum of

the first row of AO-l is equal to the sum of the moduli
of the elements.
n
Equation (3.46) then gives | Ialjl = 1 and if
j=1

we knew that for any column the elements of largest
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-1

magnitude were . in the first row, this would give IIAo I =1
irrespective of the number of collocation points. Now
(k) 2 +1 z(t)Tj(t)
lay ™ = 21 [ ——F—at]
-1 1-t
+1 -5
=3|- ) (1-t2) 2T.(t)x(t)dt|
m J
-1
+1 -5
<2 [ (1-tH) ®|xv)]at
- T
-1
where aj(k) is the aj corresponding to the right hand
. n (k) _ s = _ s
side 1k(t) and aj = aj+l,k(3 l ... n-1) similarly
as for a (k). So if x(t) is of one sign then
®) gL ) n | *l n
la, "] < a . Now x"(t) = 1. (t) => x(s) = [g(s,t)1_(t)dt
J - o -1

where g(s,t) is the Green's function of section 1.4 and

applying Gauss-Chebyshev quadrature we have

n
x(s)a x*(s) = [ pg(s,t;)1p(t,)
i=1
>—(s+1) (t, -1) s <t
2n k = 7k
JL(s-l)(t +1) s > t, .
2n k k

Thus in either case we can say that x(s) = x*(s) < O,

confirming that |aj(k)l will usually be less than

(k)
o

|a .
This then suggests that the largest elements of
any column of Ao-l_occur in the first row and together
with (3.46) and (3.49) leads us to expect that HAo_lH
is constant (where in fact the constant is 1) with

varying n.
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We are generally concerned however with operators of
the form G-T with T not the zero operator and for problems
of this type often the Chebyshev collocation and inverse
Chebyshev matrices are not of a substantially different
structure to the simple case discussed. With this
assumption the above analysis hints that again the norms
of the inverse Chebyshev matrices, that is HA_lH, might
be reasonably constant with varied numbers of collocation
points.

With powers in the basis for Xn we do not have the
orthogonality result which has been utilised above and
we are unable to come to similar possible conclusions.

Although we have been considering collocation with
Chebyshev nodes, Legendre zeros lead in practice to
similar results concerning the norm of the inverse
Chebyshev matrix as is shown in TABLE 8 below for the

sample operator x"+(l+t2)x.

Norms of Inverse Chebyshev Matrices using Legendre Zeros

n 3 5 7 10 16
Norm of
Inverse
Chebyshev 1.761146 1.807759 1.807565 1.807561 1.8075¢61
Matrix
TABLE 8

These values can be compared to those given in TABLE
7e or in more detail to TABLE 4 when Chebyshev nodes are
used. The similarity of the norms of the inverse matrices
is probably due to the fact that for larger values of n

the corresponding zeros of the Chebyshev and Legendre
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polynomials of degree n are close.

Having discussed the form of the inverse collocation
matrices we turn to a topic which utilises the above
properties and consider the effect of column scaling.

If we have a matrix A then column scaling of A is equiv-
alent to postmultiplying A by a diagonal matrix D = diag
(dl’dZ' .o dn) say. That is, if B = AD then the elements

in the jth

column of B are dj times those in the corres-
ponding column of A for j =1, ... n.

In the notation we have used throughout consider
the matrix A we obtain in the application of the colloc-
ation method to the approximate solution of a second
order linear differential equation Gx-Tx = y with the
usual end conditions by seeking an approximation X, of
the form (tz-l) ? arwr(t). The {wr(t)} are taken to
be polynomials. r&érmally we have to solve the linear
equations, Aa = y say, for the coefficients a. However
we can solve a different set of equations Bb = y where
B = AD for D diagonal and represent X, by
(t2-l) rgl brir(t) where {gr}rzl are some set of poly-
nomials._ Then since we must find the same approximate
solution x_ this means {r(t) = drwr(t) (r =1 ... n)
since br = %—ar and we see that column scaling of the
collocation ;atrix A is equivalent to a certain
transformation of the basis in X That is, if
{(tz—l)fr(t)}rzl were chosen to represent the approxi-
mate solution then the collocation matrix would be

B = AD.

For our purposes column scaling can be utilised in
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principally two ways. The former of these concerns the
mapping I' introduced .in section 3.6 and used in (3.21)
to bound the norm of the inverse of the approximate
operator. Our latter application of scaling is to
improve the condition number of the linear collocation
equations and this is dealt with later.

Consider now the mapping T:R" - Xn such that

n
T(b) = (£°-1) ] b y_(t) (beR") where
r=1

2 n . .
{(t -l)wr(t)}r=l is a basis for Xn. Equation (3.21)

Y. column scaling

gave the bound B < ieiia™ i e”
can now be used on the matrix A to determine a basis
for X such that ITH is greatly reduced in comparison
with the original bases of section 3.6 and such that
12" remains bounded as more collocation points are
chosen. This process is now described.

If we column scale with D = diag (dl,d2 cea dn)
then we saw above that this means we change the basis
in X, from {(tz-l)wr(t)} to {(tz—l)ir(t)} =
((t2-1)a_y_(£)}. Thus it is most likely that we shall

have to choose |d_| < 1 if we are to reduce IITIl = IIT.l

say, using the new basis since

HF§H = bsgg H(tz-l) rzl brfr(t)Hx. Now when A is
Mol =1
column scaled this means A—l is row scaled since (AD)_l
= D-lA—l. We have discussed earlier the structure of
the matrix A_1 when an approximate solution is sought in
the form (t2-1) nE(l)'arTr(t) and Chebyshev zeros are used
r=

as the nodes. Recall that the elements in any column
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generally decreased in magnitude with increasing row
number with the first row as the one with the largest
elements. Further it was mentioned in section 3.6

ol

(TABLE 4) that |HA™ was found to be reasonably

constant with varying n, where H was the matrix

. . _ i 22
diag (hl’hZ’ . e hn) with hl =1, hi = (i-1)
(i=2 ... n). Thus we can take D = H 1 so that d, =1,
di = _—l__f (i=2 ... n) and with this choice we expect
o mn? _
B lH = || (AD) lH = ||HA 1” to vary little as more

collocation points are used. Two further examples,

lH and

to support TABLE 4, of the variations of |A™
IB™Ll are shown in TABLE 9 below.
With this choice of D we have determined a

. . 2 n _
different basis {(t l)i‘r(t)}r=l in X where {l = T,

T,._q (t)
fr = —5;2—7 (r =2 ... n). So now
(r-1)
d2 2 nil
Tl = sup H=—x{(t"-1) 'b_d_T__. (t)}
£ Ipll=1 at? r=o * ¢ ¥l >
[where now b = (b_,b, ... b__)"]. Substitution in

(3.23) and rearranging gives

nil br nil
T .l = sup {b_T_ (t)+2 —=T_(t) + b_T_(t)
© pi=1 °° r=1 r? * r=2 T
n~1 br
% ' '
+ 3t r£1 rzTr (t)+tb, T, (t)}.
On using |T,'(t)| < r’ this simplifies to
‘ n-1
Hrgn < 142 ) =5+4 (n-1) < 4n-1.
r=1 r

Thus employing the scaling we have



-931-

6 dATIVL

08CVPPT"T CTL6ETIT"T ST16%V90°T1T <CLOELTL6" 86¥%L9C6” =H|m=
X (T-3G"T+z36 ' 7) +
6LIETLL" 6L9E€TLL” 6L9ETLL™ TVZVILL® 8T86S6L" =AI¢= .xAHIUN+N#wV+ u X
=XJ-X9

8LSEET"T LSL660°T 9SP8EO0"T 0Z09%E6" . ¥80OSTZEL" =Hlm=
X— , X2
SLOGZEL” GLOSZEL™ SLOGZEL® GLOGZEL®™ ¥80GZEL” =Hl<= XL-XD

T4 oc¢ ST o1 S u

S9DTI3R ©SIDAUI PoTeOS UWNTO) pue [RUTBTI0 9U3z JO SWION oYl JO UOIIRTIRA



...92_
B < HF§HHBH = 0(4n) giving an improvement upon the earlier
results with the original basis. This, of course, is still
unsuitable for application in the formulae for error bounds
but illustrates the scope of column scaling.

The condition numbers of matrices occurring in the
application and theory of the collocation method are now
considered and it is shown how for certain matrices column
scaling can be utilised to achieve improvements.

The condition number of a matrix A is defined by
cond (A) = HAHHA_lH and the magnitude of this number is a
- guide to the effect of perturbations in the matrix upon
the solution of algebraic equations which require in-
version of A. (For a fuller explanation see e.g. Wilkinson
(1965)). Smaller values of cond(A) suggest less possible
perturbation in the solution. Gaussian elimination with
row interchanges is .in fact invariant under column scaling
but the condition number is not and we are interested in
finding a scaling which will reduce the condition number.
This gives a more realistic indication of the effect of
rounding .errors.

Now we have seen how, using Chebyshev polynomials

with Chebyshev zeros as collocation points, column scaling

of the collocation matrix A by D = diag (dl,d2 ces dn),

where d1 = 1, di = ———i—i (i =2, ... n) gave values of
- - (i-1)

B 1” = || (AD) 1y which were reasonably constant with

varying n. Moreover bearing in mind the form of the
matrix A seen earlier in this section with, in any row,
the larger elements occurring in the later columns we
should therefore expect [IBll to be considerably less than

lAl giving a much improved condition number. This is
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three operators are used as test examples:

Ex. 1 x"

following

-X
Ex. 2 x" +(l+t2)x
Ex. 3 x" +(8t%42t-1)x"+(4.5t%+1.5¢-1)x.
The Use of Column Scaling to Improve Condition Numbers
n 5 10 15 20 25
cond (A) 68 591 2062 4973 9815
Ex. 1
cond (B) 12 31 52 73 93
cond (A) 165 1457 5088 12272 24220
Ex. 2
cond (B) 29 60 90 119 149
cond (A) 96 669 2241 5329 10450
Ex. 3
cond (B) 37 63 89 113 136
TABLE 10

The above table shows clearly the smaller values of
the condition number when this column scaling is employed
and suggests a more reasonable guide to the rounding
errors.

Throughout this section we have for simplicity
restricted our attention to the one particular choice of

scaling above but slightly different selections e.g.

d, = 15 (r =1 ... n) also lead to similar results.
r
Finally we consider the condition number of the

-1

G . \ -1
matrix AAo of section 3.7 whose inverse AOA we saw

was involved with the theory of that section concerned

with bounding the inverse of the approximate operator.

1

Also it was shown that AAO- is the matrix to be inverted
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if we are solving directly for the values at the
collocation points of the second derivative of the
approximate solution. Examples of the condition number
of this matrix are given in TABLE 11 below for which
the same three sample operators of TABLE 10 are again

employed to illustrate the results.

Condition Numbers of the Matrix AA ~©
n 5 10 15 20 25
Ex. 1 cond(AAo-l) 1.54 1.68 1.80 1.85 1.89
Ex. 2 cond(AAo_l) 2.07 2.37 2.53 2.61 2.67
Ex. 3 cond(AAo'l) 63.6 84.7 90.9 93.1 94.2

TABLE 11

We observe that cond(AAO—l) does not grow sub-
stantially with n, unlike cond(A) and cond (B) above,
presumably due to the fact that the second derivative approx-
imaﬁknssatisfy a type of integral equation.

This completes the work of this section on the
consideration of the numerical properties of matrices
occurring in the application of collocation methods.

In particular we have seen how the structure of certain
. matrices can be utilised by the application of column

scaling to reduce condition numbers.
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CHAPTER 4
APPLICATION OF COLLECTIVELY COMPACT OPERATOR
APPROX IMATION THEORY

4,1 Introduction

In this chapter we are primarily concerned with the
application of the theory of Anselone (1971) to the
approximate solution by collocation of linear crdinary
differential equations but much of the theory wiil %y
default hold for Fredholm integral equations sincz 102
differential problem is regarded as an integrai one.

The approximate solution by collocation of integral
equations or of boundary value problems seen in this
form, which was discussed in the earlier part of
Chapter 2 and in Chapter 3 does not fit directly into
the setting for Anselone's theory described in secrion
2.7. This is clearly seen from the fact that Anselone's
approach requires from (2.11) that the approximating
equation have a richt hand side y whereas the *heory
of Kantorovich and Akilov has a projection of this t='m
(c.f. (2.2), (2.27)).

Tt is demonstrated in section 4.2 how to extend the
collocation method to achieve equations of the appropriate
form for the theory and in section 4.3 these 'extended'
equations are shown to satisfy the required conditions
of the theorems given in section 2.8. 1In section 4.4
convergence proofs for the usual polynomial collocation
method are derived from this alternative theory and it
is subsequently discussed how to relate the new concepts

to the familiar previously considered quantities of
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Chapter 3. In section 4.7 the applicability of Theorems
9, 10 and 7 is discussed and finally a generalisation

of the earlier theory is given.

4.2 Adaptation . of Collocation for Differential Equations
to the Theoretical Background

We have seen (sections 3.2, 3.7) how a linear

boundary value problem, e.g.

2m _
-mx = X p (x4 L.
dat
+py)x P (e) + p B)x(t) = y(t) (4.1)
over [-1,1] with x(j)(il) =0 (j =0,1 ... m1) and
y(t), pi(t)e c[-1,1] (i =0,1 ... 2m~1) can be trans-

formed to an integral equation of the form

+1

X(Zm)(S) i k(s,t)x(zm)(t)dt = y(t) where
-1
5 2m-1
k(s,t) = = {p, _;(s) ggiﬁ:I(s,t) + ...+ py(s)gls,t)}
S

and g(s,t) is the Green's function for the operator
2m

dt2m
ditions. If the solution x(t) to the above differen-

h

subject to the above homogeneous boundary con-

. . t
tial problem exists it must have a continuous (2m)

derivative and u = x(2m)

satisfies the operator
.equation . (I-K)u = y in C[-1,1], where
+1
(Rv).(s) = [ k(s,t)v(t)dt (veC[-1,1]). Here Ke[C]
-1
since k(s,t) has only a jump discontinuity at s = t

in the closed interval [-1,1] and
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+1
IRvil , < llvll .max { [|k(s,t)|dt}. Now the space of
s -1

continuous functions with the infinity norm is a Banach
space so that since we are attempting to fit our problem
to the setting of section 2.7 we take the space X of
that section as C[-1,1] and we have yeX and Ke[X]. The
given equation is (I-K)u = y, where we have u replacing
the x of (2.10). 1If X, is the usual approximation to

X yielded by the collocation method applied to the
differential equation (4.1) then we have seen in section
2.2 that Xp satisfies an equation of the form

Gxn-¢nTxn = ¢ny (where ¢n constituted polynomial inter-

polation at .the collocation points {tj}jzl’ i.e.

n
¢y = Y 1%(t)y(t,) for yec[-1,11). Thus
n =1 J J
_ (2m) _ o
un = xn = Gxn satisfies
(I-¢nK)un = ¢ny (4.2
since T = KG.

To achieve the desired framework for Anselone's
theory we need . somehow to modify our collocation
method to obtain approximating equations of the form
(I-Kn)zn = y with K e[X]and z _eX (replacing x, in
(2.11)) an approximation to u. This process is now
described.

With u, as the second derivative of the
approximate solution found by straightforward
application of our collocation method we make the

following definitions. For each n = 1,2 ... define
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LR

z €X by

z2, =Y + Kuy (4.3)
= 9,2, = ¢,y + ¢ Ku =u by (4.2). Let K :X > X
be such that, with veX

K.,v = K¢ v. (4.4)

Then (I-Kn)zn (I-K¢ ) (y + Ku )

y - K¢ny + Kun - K¢nKun

y + K (un - ¢nKun - ¢ny).

Thus by (4.2)

(I-K )z = y. (4.5)

With these definitions we shall call z, the 'extended'
collocation approximation and (4.5) the 'extended’
approximate equation.

This approach is similar to the Nystrdm extension
of the quadrature method applied to Fredholm integral
equations which is considered by Anselone and this is
indicated .as follows. If a quadrature is applied to

an integral equation say

+]1
u(s) - [ k(s,t)u(t)dt = y(s) for a general kernel
-1
n
k(s,t) then let {vj} be obtained as approximate
j=1

values to u at the nodes. The Nystrom extension,
v(s) say, gives approximate values between the nodes

e, )"
3151 P¥
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n
vis) = y(s) + ]

. y . 4.6
54 ka(s tj)vJ ( )

where the {wj} are the appropriate weights. Equation (4.6)

is then analagous to (4.3) which may be rewritten as

+1 n
n ,

z (s) =y(s) + [ k(s,t) ] lj(t)un(tj)dt (with

-1 j=1
{tj} as the collocation points). Rearranging gives

n +1 n
z (s) =y(s) + ) ([ k(s,t)1.(t)dt)u_(t.), illustrating
n j=1 -1 J nod

the similarity.
A further demonstration of the meaning of the
extended approximation is to compare directly the

equations .satisfied by u, and Z,- We have

(I-¢nK) un = ¢ny ’

(I—Kq)n)zn =y
and also z, - Kun = {lby (4.3).
Thus z_(s) = y(s) + J k(s,t)u (t)dt
-1

y(s) + (Txn)(S)

y(s) - {p2m_1(S)xg2m-l)(s) + ...

+ po(S)xn(S)}

so that if cn(s) is such that cn(2m)(s) = zn(s) and

< satisfies the end conditions of (4.1) then

cn(zm)(s) + pZm_l(s)xn(zm_l)(s)+

Notice that our extended approximation z, is no longer
a polynomial as was u, and this has been necessary to
satisfy an equation of the form (4.5) with right hand

side y.
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We shall not subsequently actually solve for z, but
the theory of its solution, in particular the inversion
of I-Kn, can be used, as we shall see later in this

chapter, in the theorems of Chapter 2 to bound the norm

of (I-K)_l. We can then relate the bound on H(I-K)_lﬂ
L to Il (e-m) 7L

derived.from.H(I—Kn)_ by the following

argument. Recall the relationship between the operators

KG. Thus I-K = I-TG 1 = (G-T)G—l and

L

T and ‘K, viz. T
1

Ly

(1-x) "1 = ge-m ™t B 1 (x-v ", = e = I (c-1) "

X
where this last term is the usual norm of the inverse
operator which we encountered in the former sections of
Chapter 2 and in Chapter 3.

The error in the solution from the usual collocation

method is x-x_ = (-1 "t y- (- x )

-1

= le-xnllX Il (G-T) xIly-(G-T)xnll, (4.7)
(c.f. Theorem 7). Thus we see that if by the theory of
sections 2.7 and 2.8 we are able to bound H(I-K)_lH we
can then.bound.ll(G-T)—lIlx and hence obtain error bounds
by (4.7).

Computational considerations and numerical results

of applying this strategy are given in Chapter 5.

4.3 Satisfaction of the Criteria for the Application of
the Theorems

We show here that the operators K, Kn (n=1,2 ...)
defined .in the previous section do indeed satisfy the
conditions required for the theory of sections 2.7 and

2.8 provided .we use orthogonal polynomial zeros as
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collocation points, e.g. Chebyshev zeros, Legendre
zeros etc.
We therefore wish to prove Kn + K, K is compact and

{K } is collectively compact.

Lemma 1 The sequence {Kn} is uniformly bounded.

Proof Kl = sup IK vl = sup max| (K v)(s)]|.
veX Ivil=1 s
fvil=1
+1
Now | (K v)(s)| = | (R, V) (s)| = | [ k(s,t) (¢ _v)(t)at|

+1 ¥ + 2 %

< o f[k(s t)] dt} { f[(¢ v) (t)] dt} by Cauchy's

Inequality. |[k(s,t)| has been discussed previously

and is bounded independently of n, of course. Now

(¢nv)(t) is a polynomial of degree n-1 and so Gaussian
2

quadratures for the integration of [(¢nv)(t)] will be

exact. Thus if we choose Chebyshev zeros as the

collocation points {t-} then

+1 +1 -k 2 n 2

f[(¢ v) (t)] dt < f(l -t?) [0, v) (8)] at = [ w,vo(ty)
i=1

where {w,} are the weights of the quadrature formula.

Now we can say

%
wi} = 7k

e~

p { Z WiV (tj_)};5 < {
NvH-l i=1 T oi=1
(see e.g. Natanson (1965, p.l04)).
Thus lIK Il can be bounded independently of n and {Kn}

is uniformly boundeds
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Lemma 2 Kn -+ K.

Proof To verify the above statement we have to show
Knv + Kv (for all veX). Now
+1
IR v-Kvll = max | [k(s,t)] (¢,Vv) (t)-v(t)lat]
s -1
+1 2 ¥ +1 2 X
<max { [[k(s,t)] at} { f[(¢nv)(t)-V(t)] dat} .
] -1 -1
As before the first factor is independent of v and n.
Now veCl-1,1] and therefore we have
+1 2 - 2
lim [ (1-t%) [ (¢ v) (£)-v(t)] at = O
n-»oo -3
since this is the convergence result for the inter-

polation of continuous functions in the weighted L?

norm, (see e.g. Natanson (1965, p.55)).

Lemma 3 K is compact and {Kn} is collectively compact.

Proof For K to be compact we need KU to be

relatively compact in X (where U is the unit ball
{vex:llvi < 1}). To prove {Kn} is collectively compact
we require the set XU = {Knv:neN, veU} to be relatively
compact, . (N being the .set of positive integers).

These results are obtained by means of the Arzel3-
Ascoli theorem, .given for example by Kantorovich and
Akilov (1964, p.22), by proving equicontinuity and
uniform;boundedness of the appropriate sets. Thus for
veU, IRvll < lIKl giving KU uniformly bounded. Now for

-l < sy < S, < +1,
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+1 ,
| [ [x(sq.t)=k(s,,t)]v(t)dt]
-1

| (®v) (s7) = (xv) (s,) |

+1
_{ |k (s, t)-k(s,,t) |dt.

| A

In general k(s,t) will have a discontinuity at s=t and

in view of this we split the above range of integration

+1 %1 %2 1
by [ = ] + [+ [ . For t in the intervals [-l,sl)

-} -1 S, s,
and (sz,l] k(s,t) is a continuous function of s for
s > s, and s < s, respectively, and the corresponding
integrals can be made arbitrarily small by choosing

|s,=s;| sufficiently small. Now

S

2

[ lx(sy,t) - k(s,,t)]|dt < 2|s,-s,|max|k(s,t)| and so
1 2 = 27°%1

sl s,t

this term can again be made arbitrarily small. Thus we
have proved equicontinuity and by the Arzela-Ascoli
theorem we have that K is compact.

In Lemma 1 we showed {Kn} was uniformly bounded and
thus it only remains to satisfy the equicontinuity

condition for X U. As before with -1 < s; < s, < 1 say

and veU
+1
| (R v) (s7)= (R v) (s,) ] = | {[k(sl,t)-k(szlt)](¢nV)(t)dt|
+1 2 % +1 2
< ([ Ixtsp,0)k(sp, 001 aed { [T (o) ()] ae} .
= ~1

We now deal with this expression by treating the former
factor by splitting the range of integration as earlier
in this lemma and the latter by the technique of Lemma 1.
This proves equicontinuity and hence that XU is
‘relatively compact in X, showing {Kn} is collectively

compacts
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We have now satisfied the required conditions on the
operators K, {Kn} for Theorems 8, 9 and 10 so that if we
assume that the appropriate inverse operators exist then
these results can be applied to give convergence proofs
and error bounds for Hu-an. As was mentioned in section
4.2 we do not actually.solve for z, but in the next
section we see it can be used for convergence proofs
for Ix-x Il and in sections 5 and 6 we consider a more

qualitative approach.

4.4 Convergence Proofs for the Usual Polynomial
Collocation Method

We here give alternative convergence proofs to those
of Kantorovich and Akilov type for the ordinary poly-
nomial approximation X, ve have used in the earlier part
of Chapter 2 and .in .Chapter 3. Recall that u, = Gxn is
also a polynomial.

1 exists

Firstly we note that if we assume (I-K)
then Theorem.8 gives, in the infinity norm, Hu—an + 0.

.Now u-u. .= u- -
u-u, u ¢nu+¢nu u,

u-¢nu+¢n(u-zn) (since ¢nzn = un)'

So in any norm llu-ugll < flu=¢ ull + ¢ (u-z )Il. However
if u is merely continuous then in the infinity norm
lu=¢ ull # O in general. This suggests the use of an

12 norm which we take as the one with the Chebyshev

weight function and we denote this norm by H-Hz.
+1 2 X

i.e. livll, = { [ wit)vi(t)at}  (vecl-1,1])
-1

with w(t) = (1—t2) . Then in this norm we have

llu-unll2 < Hu-¢nuH2 + |I¢n(u-zn)ll2 and the term
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Hu-¢nuH2 + 0. (Natanson (1965, p.55)). Now
5 +1 2
he, (u-z ), “ = _{ w(t)[¢ (u-z ) (t)] dt

n 2 n n
= jzl wj[u(tj)-zn(tj)] where {wj}j=l and {tj}j=l

are the weights and nodes respectively. Therefore

||¢(u-zn)l|22 < T max [u(tj)-zn(tj)lz.
Now [lu-z I, + O from gbove and therefore llu-u i, + O
as n + o, Thus to emphasise this point we have u, *u
in the 12 norm whereas z, *u in the infinity norm.

From the theory of Kantorovich and Akilov applied
in section 3.2 we had llx-x Iy = lu-u I, > O as n » o
but this was only after we had required some extra
continuity of derivatives from the coefficients and
right hand side in the differential equation. This
result of convergence in the weighted 17 norm when no
extra continuity conditions are assumed agrees with
that of Vainikko (1965).

To obtain the convergence result llx-x Il + O as
n + o we proceed as follows.

+1

|x(s)-x_ (s)| .= [ g(s,t)[u(t)-u (t)]dt where g(s,t)

where g(s,t) is the usual Green's function for G with

the given homogeneous boundary conditions. We can now
+1 2k +1 2 %

get |x(s)-x (s)| < { [l[g(s,t)] at} { [[u(t)-u (t)] dt}
-1 -1 B

by Cauchy's inequality. The former integral is bounded

and .the latter is less than
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_+l 2 35
{_{W(t)[u(t)-un(t)] dat} = Hu-unll2 > 0 as n > oo,

This proves llx-x ll, > O as n » e

4.5 The Relationship between the Inverses of the
'Extended' and the . 'Usual' Approximate Operators

In section 4.2 we defined the extended approxim-
ation.zn and .this was .shown to satisfy (I—Kn)zn =y
or (I-K¢>n)zn = y, whereas the usual polynomial
approximation u, to u = Gx satisfies (I-¢nK)un = ¢ny.
In this section we establish the connection between
the inverses of the operators I—Kn and I-¢nK.

Assume that (I-¢nK) restricted to the polynomial
subspace of C[-1,1] has an inverse denoted by

(I-¢nK)-l. Now take any yeX = C[-1,1] then

= (- -1 _
u, = (I-¢,K) oY (4.8)
satisfies‘(I-(an)un = ¢ny. For this y and u, define
z, by (4.3) then
(I-Kn)zn =y or (I-Kn)(y+Kun) =y

y by (4.8)

-1
= (I-K)) (y+K(I=¢ K) "¢ ¥)

-1 -
= (I-K,) (I+K(I-¢, K) "¢ )y =y

and I+K(I-can)_l

¢n is a right side inverse of I-K, .
Now we also wish to show that this operator is
also a left side inverse and so is the unique inverse

of I—Kn. Thus,
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[I+K(I—¢nK)'l¢n][I-Knly = [I+K(I—¢nK)'l¢n][I—K¢n]y
= y+K(I—¢nK)—l¢ny - Koy - K(I—¢nK)_l¢nK¢ny
= y+Kl (I~ %) "1-T16_y - K(I-6_X) 1o K¢y

= y+K(I-¢nK)'l[I-(I—¢nK)]¢ny - K(I-¢nK)_l¢nK¢nY

= y+K(I-¢_K) 19 K¢ y - K(I-¢ K) 19 Ko y

=Y
" Therefore
(I-K )1 = I+K(I-¢ x) "¢ (4.9)
n n n y
This shows that whenever (I—d>nK)—l exists then
(I-Kn)—l exists also and is expressed by (4.9). Now
(I-can)_l = G(G—¢nT);1 and in section 3.6 we gave the
n -
relationship (3.20) between Mnl = (G-d)nT)Yl and the

n
inverse of the collocation matrix, A l. Thus we can

employ the logical argument that if the collocation

matrix is non singular, i.e. AL exists = (I-can)_l

1

exists = (I-Kn)_ exists. This approach will be

used for the application .of the 'a posteriori'

1

theorems 9, 10 to bound Il (I-K) ~ll for use in (4.7).

That is, the inverse matrix is known to exist and

1 exists also and so we have in con-

hence (I-Kn)
junction with the results of section 4.3 the required
conditions for the theory.

To apply theorems 9 and 10 practically we have to

lH. Equation (4.9) yields

be able to bound H(I-Kn)-
I(z-x ) " < 1+KIN (2-6_K) M6l but e, is O(In(n))
for Chebyshev zeros for instance and this expression
will increase as more collocation points are chosen

making it difficult to achieve A" < 1 for Theorem 9
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or Ag < 1 for Theorem 1O0.
The next section shows how to find a more satisfactory

bound.

4.6 A Bound on the Norm of the Inverse of the Extended
Approximate Operator

In the previous section the relationship between the
inverses of the extended and the usual approximate
operators was seen. We here give a more practical means

of bounding the norm of the inverse of our extended

operator.
-k )M = sup 0 (1-K ) 7'yl = sup Nz (y)Il where
lyll=1 lyll=1
2z, y) = (I-Kn);l. Using the definition (4.3) we can say
I(z- ) "M < sup {Iyl+IKu_(y)ll} where u_ = (I-¢_K) o y.
yll=1
Thus
-1 +1 2 X
(-8 )77l <1+ sup (max { [[k(s,t)] at} -
lyl=1 s -1
+1 2 X +1 2 X
{ f[un(t)] at} ) <1+ /2 k . sup { f[un(t)] dt}
-1 lyll=1 -1
where k = max |k(s,t)|.
S,t

Now un(t) is a polynomial of degree n-1 and if our

th degree

collocation points {ti}i:1 are the zeros of an n
polynomial belonging to an orthogonal set with weight

function w(t) > 1 then we can say

+1 2 +1 2
[Tu (£)] at < [wit)[u (£)] at
-1 -1
4 2 n
= ) 2z U, using Gaussian quadrature.
551 373

Here zj = un(tj) and the U? are the weights at the nodes

(3 =1 ... n). This is a similar situation to that
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discussed early in section 3.7 and used later to derive
the result (3.39). Analagously to (3.28) (the derivation
of which was shown for the example of second order

problems), we would have (using the previous notation),

- ota -1 A
zj = ngoA Y (3 =1 ... n)
with y = [Yl'Yz' ces yn]t and v; = y(t;) (1 =1 ...n).
n 3 n
Now sup { ) 22u") < sup (maxlzk[)( Yy uh
lyl=1 3j=1 3 hyll=1 X j=1

and following the arguments of the early part of

section 3.7,

sup  (max|z,[) < HAOA-IH
lyl=2 k
since llyll= 1 means |y;| <1 (i =1 ... n). BAs before
n n +1
) U. = Q where @ = [ w(t)dt.
j=1 -1

Thus if for example we are using collocation with

Chebyshev zeros we then have

o L

<1+ (22) %k __ A _a”

(4.10)
max o

M(I-Kn)'

(where @ = 7 in this case).

l" were given in TABLE 6 in section

Examples of HAOA_
3.7 and it was illustrated that this quantity was
virtually constant as more collocation points were
chosen. Thus (4.10) provides a reasonable bound on
H(I‘Kn)-lﬂ.which can be used in Theorems 9 and 10 to

obtain bounds on H(I-K)_l"

for application to inequal-
ities of the form (4.7). Chapter 5 contains some

numerical. examples of this.process.
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4.7 Comparison of Different Approaches

We have mentioned that Theorems 9 and 10 will be used
in practice later and in this section a comparison of

the applicability of these results and those of Theorem 7

is given.
Theorems 9 and 10 gave bounds on H(I-K)_lH in terms
of H(I-Kn)_lH provided A" = H(I-Kn)-lHH(Kn-K)KH < 1 and
Ag = M(I—Kn)-lHH(Kn—K)KdH < 1 respectively. The advantage
of using the second result is now explained. (Note that
A% = AT

Recall that K K¢, by (4.4) so that

d d
(K-K )K" = K(I-¢ )K

d a
= I(&-K )X < IKINI(I-¢, )K"

= Ikl sup {Il (-9 )K%VII} (vec[-1,1])
Ivli=1

Ikl sup (Il (T-¢,) KOv-3+71l}
vl =1

for v a polynomial of degree n-1. Thus

dy

I (k-%_)R3 < IKI (1+16_I1) sup 1K v-3ll. (4.11)

fvil=1
By Jackson's theorem (Cheney (1966, p.147)) there

exists a polynomial \7€Pn_l such that

1 (xdv) (@)

n(n-1)...(n-d+1) (4.12)

1x3v-31l < (54

provided“KdVGC(d)[-l,ll.
We now prove that Kdv does indeed have d continuous

derivatives so that (4.12) can be applied in (4.11).
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dveC(d)[-l,ll, provided that

Lemma If veC[-1,1] then K
the coefficients in the differential equation are

sufficiently differentiable.

Proof We use mathematical induction. Firstly

xdy = K(Kd-lv) = Kw where w = K9 lv. Now
a +1
(K"v) (s) = [k(s,t)w(t)dt
-1
- pzm_l(s)xw(zm'l)(s) + .o+ psix, P (s)

+ po(S)xw(S)

if the differential equation involved in the definition
of X was of type (4.1) and x,6 = ¢ lw. Thus weC(J)[-l,l]

= xweC(2m+j)[

-1,1] and if we assume p.(s)ec(d)[—i}l]
J
(3=0,1...2m-1) then wec‘@ 1 [-1,1] = kwec(¥[-1,1]. The
case for d = 1 is certainly true and therefore by induction
the lemma holds®
Thus provided that we have sufficient differentiability
of the coefficients (4.12) can be utilised in (4.11) to

NKH(1+H¢nH)
n(n-1l)... (n+d=-1)

d

sup Il (xv) @)y,
ffvii=1

. | ™
give I (R-K )Xl < (3)
The problem now is to bound (Kdv)(d) in the manner
I (xk%v) (40 < kgllvil for some constant ky so that

sup I xSy (40 <k Note that we could have obtained

ul a*
iziziar results for H(K-Kn)KH which would require
evaluation of sup H(Kv)(d)ﬂ. However it is not possible
in general for"guzlz to express I (gv) (41 in the form of
a (constant) times livl. This could be seen by considering
an example of a second order equation and with d = 2 it
would be clear that bounds on first derivatives of v were

required. After sufficient algebraic manipulation however
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we are able to achieve [ (k%) (4 < kgltvll. Roughly
speaking this is possible because we perform d
integrations of v and then d differentiations. 1In

section 5.3 it is shown how to evaluate the constants

kd for 4 = 2.
Thus we see the advantage in using Theorem 10
n . eI n .
beﬁzuﬁe Ad is O(n(n-l)...(n-d+l)) whereas A" is
O 1? ) and it is likely that the number of collocation

points needed for applicability will be much less in
the case of Theorem 10. Theorem 7 using the Kantorovich
and Akilov approach requires
= - -1 - . i
4Nﬁn = |l (G ¢nT)Yn””(I'¢n)T" < 1 with | ”X as the norm in
~the: X space of the first part of Chapter 2 and of

Chapter 3. .Now

H(I—¢n)TH = sup..H(Ir¢n)TzH
Izl =1
< (1o ) sup ITz-%ll for VeP _,.
Izl =1
So that with v = Gz, llzlly = liGzll, = llvil we have
I (I-¢ )Tl = sup (1+N¢nH)HKv-§H since T = KG and
Ivil=1

this is the same situation encountered as for the

Anselone .results.of Theorem 9 and only yields Gn as
e I
n

n

of ).

To summarise then the work of this section, we
expect that Theorem 10 will be applicable for much
smaller numbers of collocation points than either
Theorems 9 or 7 and so will be more suitable for
practical bounds.

In the next Chapter in TABLES 13 and 14 the

numerical results of some comparisons are given.
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4.8 Generalisation of the Extension

To conclude this chapter we suggest a generalisation
of the extended approximation discussed in section 4.2.
The NystrOm extension is implemented to improve upon the
quadrature method for integral equations. However the
extension we have introduced for collocation could be
applied to any projection method to hopefully achieve
results of a theoretical or practical nature.

We consider a general Banach space X instead of
merely the space of continuous functions with the

ihfinity norm. Let the given equation for ueX be
(I-K)u = y (4.13)

with I as the identity operator on X, yeéX and Ke[X].
Let ¢n be any bounded linear projection of X into a
subspace.xn”of.x, then we can regard I-¢nK as a
mapping . from xn to itself. When the operator

(I-¢nK)-l exists e[Xn] we can make the following

definitions:
_ _ -1
u, = (I ¢nK) ¢ny (= unexn)
z, =y + Kug (= z €X)

and Kn:X -+ X is such that Knv = K¢nv for veX. Then the
above three definitions imply (I—Kn)zn = y following the
same argument as in section 4.2.

This extension could be applied to any projection
method to define an .'extended projection' method and
‘generalises the .previous work. For example, if K is

-.an .integral operator of the form
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+1
(Kv) (s) = [kx(s,t)v(t)dt (v integrable) for some kernel
-1
k(s,t), we could consider the application of Galerkin's
method. We choose a suitable function space X with
the set Pn-l of polynomials of degree n-1 as the subspace
Xn. In this case we could define ¢n by

n-1 +1
(6. v)(s) = ] ( fL.(t)v(t)dt)L.(s) (veX)
n L _373 j
j=0 1
where Lj(s) is the Legendre polynomial of degree j. If
u, is found from the Galerkin method in the usual way as
an approximation to u satisfying (4.13) with K as above then
‘with z, = y+Kun we have
+1 n-1 +1
z (s) - [k(s,t){ ] [Li(1)z (1)dT} Li(t)dt = y(s).
e J n J
-1 j=0 -1
With suitable choices for the space X and its norm we
might then hope to be able to apply the theory of
sections 2.7 and 2.8 to deduce useful results concerning
the Galerkin method.

This then illustrates one possible application of

the generalisation.
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CHAPTER 5

DETAILED CONSIDERATION OF ERROR BOUNDS
AND NUMERICAL EXPERIMENTS

5.1 A Review of the Error Bounds and their Application

It was demonstrated in Chapter 3 and 4 that the
theories of Chapter 2 could be applied to give error bounds
for the approximate solution by collocation of linear
ordinary differential boundary value problems. We are
here concerned with the practical implementation of the 'a
posteriori' bounds given in Theorems 7, 9 and 10, and this
topic is considered in detail. We shall continue to employ
the same notation as has been used throughout.

For the purposes of earlier chapters problems of the
form (3.1) (or (4.1)) have been regarded as operator
equations Gx - Tx = y and it was seen (section 4.2) that
the differential equation for x could be transformed to an
integral equation for u = Gx of the form (I-K)u = y where
K = TG L,

With x, as the polynomial approximation to x it was

shown in section 3.5 that the most suitable means of

bounding lIx - an was to use the inequality
Ix = x Il < I (G-1) "M (e-m)x_ - vl (5.1)

To utilise this in practice we have to find an 'a posteriori'

-1

bound on || (G-T) and it was seen that Theorem 7 and its

corollary provided a suitable result. Moreover
By =1(G =~ ¢nT);lH occurring in the corollary was investigated

n
in section 3.7 and was bounded by the inequality (3.44).
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Other possible means of bounding H(G-T)—lﬂ were discussed in
section 4.2 where it was shown that H(G-T)-lﬂ which is

i in the infinity

measured in the X~norm was equal to Il (I-K)
norm. Utilising the inequality (4.10) Theorems 9 and 10 can
then be applied subject to certain conditions to produce

_lH and hence on H(G—T)_ln

'a posteriori' bounds on | (I-K)
for use in (5.1).

All the results furnished by Theorems 7, 9 and 10
require the number of collocation points n to be sufficiently
large and some numerical examples of values of n required
are given in section 5.5. Examples of computed error bounds
along with estimates discussed in the next section are
presented in section 5.6 and the results of further experi-
ments are given in the Appendix.

Before the bounds are considered in detail in the
following two sections care must be taken over the norms
used for measuring the errors. Our bounds are derived
from (5.1) in which we use the X-norm of Chapter 2. This
has been necessary in order to be able to apply the theory
of that chapter to bound (G-T)—l in some norm. An alter-
native would be to use llu-u |l < H(I-K)-lHH(I-K)un~yN in the
infinity norm where u, = Gx_. However this is of course

n
equivalent to (5.1) since

lu—u o, = NG (x=x ), = lx=x_Il .

Thus if we wish a bound on lx-x Il we are faced with the
problem of bounding this from knowledge of llx-x |l,. This
difficulty is treated by the following argument.

+1
x(s) - x(s) = [ gis,t) (x ™ (e) - x #™ (e))at
-1
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where g(s,t) is the usual Green's function for the
2m

dth

ditions (3.1b). Thus

operator

subject to the homogeneous boundary con-

- * -
Iz = x Il < g*llx = x Il (5.2)

where g* = mzx +}|g(s,t)|dt.

The inequaliZ; (5.2) will generally be a rather coarse
bound on lIlx - x Il , but seems unavoidable and its effect
will be illustrated later in the results of section 5.6
where it will be seen that our 'a posteriori' error bounds
are in better agreement with actual computed bounds when

the X-norm is used compared with the infinity norm.

5.2 Detailled Formulation of the Error Bounds and their
Estimates

The various means of deriving bounds on N(G-T)_lH were
cited in the previous section and by combining the Theorems
7, 9 and 10 of Chapter 2 with the more practical results

of Chapters 3 and 4 the detailed description of (5.3), (5.4)
and (5.5) below can be given.

Chebyshev polynomials are used in the representation
of the approximate solution and Chebyshev zeros are chosen
as the collocation points. The bounds presented below are
in fact independent of the basis used for the polynomial
subspace but Chebyshev polynomials lead to more desirable
condition number properties than simple powers and so are
preferred.

With k(s,t) as the kernel when the differential

problem is transformed to an integral one as in sections
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3.2 and 4.2 and K : Cc[-1,1] - ¢c[-1,1] such that for

+1
veC[-1,1] (Rv)(s) = [ k(s,t)v(t)dt, we make the following
-1
definitions.
_ max
Knax = -l<s,t<l [k (s,t) |
ko = |IKll. (Also kg = ITl since for veC[=-1,1] Kv = Tz

where z = G_lv).

k, is such that for vecl-1,11, I (kv)'ll < Xk lvi.

k, is such that for veC[-1,1], H(K%)"ﬂ'i kol .

We must of course have sufficient differentiability of
the coefficients in the differential equation for the
latter two definitions.

In section 5.3 the problem of finding the constants

k k., k is considered but meantime three more

max’ o 1 and k

2
quantities are defined using the above specifications as

follows.
% Ty
o= (2m°k o1 €5 = (i+n¢nu) -5 and
(2) _ T, 2 2
en = e ) R srETye
We have seen how there are three possible ways of

bounding Il (G-T) LI

for use in (5.1), namely by Theorems
7, 9 and 10. For Theorem 10 the choice of d = 2 is most
suitable for practical purposes because otherwise with

d > 3 the algebraic manipulation involved in bounding
Ag can become lengthy.

1| furnished by

Let the computable bounds on |l (G-T)
Theorems 7, 9 and 10 for a particular value of n be
denoted by Bl(n), B2(n) and B3(n) respectively. Then we
have

1+ (ko + en)Bn

(5.3)
1l - Gn

Bl(n) =
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for Gn = [l+(ko+en)Bn]en < 1 where Bn is bounded by
1+ olla_a™dy
T provided €, < 1,
n
1 +kC
o'n
2 1 koCn€n

for A" = k C e _ < 1 where

_ -1 _ -1
H(I-K)) "Il <Cc =1+ olaa "l
and 2
1 +k_+ kZC
B,(n) = o on (5.5)
3 1 -k cel?)
onn
for Ag = k C e (2) < 1 as expressions suitable for
onn

numerical evaluation.
An example of the manner in which these bounds are
applied in section 5.6 is now given. For instance, if n

is large enough to give Ag < 1 then

Ix - x Iy < By (G-T)x, - vl

provides an 'a posteriori' bound on lix - anx. Further we

obtain

Ix = x ll, < g*B; () (G-T)x - yl

by (5.2). 1In such error bounds II(G—’I‘)xn - yll is computed
approximately by evaluation of the residual (G-T)xn -y
at several points throughout the interval [1,-1] and
taking the maximum of these values. This is not a

rigorous bound but although it would be possible to
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determine such a bound it is not thought worthwhile since
this would involve a great deal of computing time and is
not the main point of our analysis.

On examination it can be seen, as in section 4.7,
that the bound from Theorem 10, namely B3(n), will
generally be applicable for smaller numbers of collocation
points than either of the others. That is, for any n Ag
is likely to be less than A" or §, and so the result (5.5)
is able to be utilised for smaller values of n than either
(5.3) or (5.4). Results comparing the values of n
required are given in section 5.5 where it will be seen
that they can be fairly large. This means that the number
of collocation points used in practice to solve a problem
might not be large enough to satisfy the conditions for
the theory. 1In this case we would then have to increase n
and invert a larger matrix (to compute HAOA_l") in order
to obtain a bound on Il (G-T) Y. This bound could then be used
for ' the original value of n, evaluating the residual
appropriately. However having inverted the larger matrix
we have essentially solved for a higher order approximation
and could then obtain an error bound for this. This
process would be rather unsatisfactory except perhaps for
the situation where it was required to solve problems with
the same differential operator but with a number of
different right hand sides when it would be necessary only
once to invert a large matrix, the residuals being
recalculated each time.

- To avoid such possible difficulties we now develop
estimates of the bounds given in (5.3), (5.4) and (5.5)

which do not require any stipulation about the size of n
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and which are applicable for all numbers of collocation
points.

It was seen in section 3.7 (for the second order
examples chosen for TABLE 6) that HAOA_lH was virtually
constant with varying numbers of collocation points.
This property can be utilised to derive estimates of
the bounds given in (5.3), (5.4) and (5.5). For example,

-1
l+k°Cn l+ko(l+0HAoA 1)

B, (n) = +— = =T and in this
2 1 koCnen 1 ko(1+oHAoA II)en

. . -1
expression as n increases €_ decreases whereas HAOA I

remains reasonably constant. Thus with n taken large

the denominator will be close to unity and the

numerator will be much the same as for smaller values

fi and we should expect that a good estimate of the

bound B, (n) would be

B, (i) = 1+ko(1+o'JIAoA'1ll)|n=ﬁ = 1+k Cq. Here fi is the

smaller value of n actually being used in any calculation.

That is, for the error bound the same value i of n would

be employed for evaluation of both §2(ﬁ) and the residual.
Similar estimates of bounds, El(ﬁ) and §3(ﬁ) can be

derived from Bl(n) and B3(n) respectively. For Bl(n) we

have to implement the estimating scheme twice to achieve

gl

B_ = 1+0HA°A

n = Cn = Cﬁ and then Bl(n) > Bl(ﬁ) = l+kocﬁ

(since 6, * O for n large). Thus for any number n of

collocation points we should hope that

Bl(n) = 1+koCn
Bz(n) = l+koCn (5.6)
= _ 2

and B3(n) = l+ko+ko Cn
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would provide good estimates of the bounds on Il (g-m) "Ly
(We notice that Bl(n) and Bz(n) both reduce to the same
estimate).

The numerical experiments performed later indicate
that the values El(n) and §3(n) are indeed good estimates
of their respective more rigorous bounds and are in fact
likely to be closer to the actual norm of (G—T)_l.

It is next shown how to calculate the remaining items

needed for the various bounds.

5.3 . Further Quantities Needed for the Numerical Evaluation
of the Bounds

In this section it is demonstrated how to compute for a

given differential equation the quantities km Kos k, and

ax’ 1

kz.defined at the beginning of the previous section.
For simplicity we shall again consider second order

equations of the form
(Gx-Tx).(s). = X" (s)+p(s)x"'(s)+q(s)x(s) = y(s) (5.7)

- with x(-1) = x(+1) = 0 and we shall require at times
certain differentiability properties of the coefficients
p(s) and gq(s). For these problems

k(s,t) = -p(s) %g(s,t) - gq(s)g(s,t) with g(s,t) the simple
Green's function of section 1.4. The results of that

section concerned with g(s,t) will be used frequently and

are restated here for convenience.

T [ %5(s+l) (t-1) s < t
g(s,t) =

k(s=1) (t+l) s > t
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+1 5
[lg(s,t)|dt = %(1-s%) from (1.11)
-1
+1 ,
[152(s,t)|at = %(1+s%) from (1.12)
-1
Further max J{g(s,t)| =%
=-1<s,t<1
and max [2d(s,0)| = 1.
~1l<s,t<1

To simplify the notation we define
pj(s) = 1p3) (s)| ana aj(s) = g3 (s

provided p,qec‘I’[-1,1] (5 = 0,1,2) (where c¢‘©) = ¢).
We now show how to determine with a minimum of
manipulations the constants kmax’ ko’ kl and k2 for a

given differential operator.

Knax = max|k(s,t)]| = maxlp(s)%g(s,t)+q(s)g(s,t)!
5,t s,t
= koo S mzx {p, (s)+%q_(s)} (5.8)
ko = IRl = sup I Rvll
VGC[ -lll]
lvil= 1
+1 +1
= sup max| [ k(s,t)v(t)dt| < max [|k(s,t)]|dt
ivil=1 s -1 s -1
= k_ < max {p_(s) (1+s%)+}q_(s) (1-s%)}. (5.9)
s

k, was such that for veC[-1,1], II(Rv)'ll < k llvi.

1

Now (Kv)' (Tz)' where z = G v = z" = v. Thus

-(Kv)' (s) p‘(s)z'(s)+p(s)z"(s)+q'(s)z(s)+q(s)z'(s)
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+1 3
= -(kv)'(s) = p(s)z™ (s)+ [{[p'(s)+q(s)I5E(s,¢t)
-1
+ q'(s)g(s,t)}z* (t)dt (5.10)

and we can take

k, = max [po(s)+%(l+sz)|p'(s)+q(s)|+%(l-52)ql(s)]

1 s
(5.11)
We recall that k2 was such that for wvecC[ -1,1]
I (K%v)" | < k,livll and moreover K%v = K(Kv) = Kw"
-1 +1
where w(s) = (G "Kv)(s) = [ g(s,t) (Kv) (t)dt. Thus
-1
- (KZV) ] - - (TW) " o pllw|+2plw" +pVV"' +qllw
+2g'w' +qw" . (5.12)

+1
Now |w(s)| < IIRvll [|g(s,t)]|dt < % (1-s%) I kvl and
-1
+1 o 2
lwi(s)| < lixvll [l|zd(s,t) |at < 5 (1+s*)Ixvl.
-1

Using lIkvl < koHvH, where k_ is given by (5.9), we can

then bound every term in (5.12) except pw "' .

IQ-

Now w"'(s) = 4 Kv) (s) = (Tz) (s) and we can apply

ds
(5.10) and (5.11) to obtain

[oF

s

|w ™ (s)]| < kqlivl

kl being given by (5.11).
Thus applying .these bounds throughout (5.12) we have

| (sz) “as=) | i k2||v|| where
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2
2 (l+s7) (p, (s)+2g, (s))
— (1-s7) N 2 1
k, = mgx {ko[———i——qz(s). 5
+.2pl(s)+qo(s)] + klpo(s)}. (5.13)

Convenient means of determining the constants km

ax’

ko, kl and k2.are therefore provided by (5.8), (5.9),
(5.11) and (5:13) respectively, and to illustrate the
application.of these .we consider the sample operator
:x"(s)+a(l+sz)x(s)~with a parameter o >0, say. In this
case

o,

p(s)

q(s) = a(l+s®)=d q'(s)=2as=) q"(s) = 20,
and qo(s)-= a(l+sz), ql(S) = 2al|s]|, qz(s) = 2a.

Applying the formulae we have

Kax < m:x {%(l+52)} = a,

k_ < max {3(1+sz)(l-sz)} = max{g(l-s4)} =2
o= "T5" "2 s 2 2’

ky = max {$(1+s?) (L+s?)+5 (1-s%) 2a]s )

S

< % max {l+252+s4+2-252} < 20
s
_ 2 2 2
and k, = max {k_[%(1-5%)2a+%(1+s Y4o|s|+a(1+4s°)]}
s
o . 2 2,.. .2
= max {E—ll-s +2+28“+1+s5°] }
s
az 2 2
= 3— max (28"+4) = 3a°.

s
In the calculations above we have been able at

various points to make use of cancellation to obtain a

lower bound than with straightforward minimisation of

the individual terms. The next section contains a
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specification of test problems to which the error bounding
techniques discussed -earlier are applied. For these or
indeed any other problems when the formulae given here

for finding the constants are used there will generally

be possible a certain amount of cancellation. Further

the bounds for the constants computed by a coarse
implementation of these schemes may possibly be slightly
refined if more sophisticated techniques are employed

for determining the maximum value of functions over a

given interval.

5.4 Specification .of Test Problems

In this section test examples are described to
which the strategies previously discussed for finding
. error bounds are later applied. The numerical results
. relating to this process are examined in sections 5.5
and 5.6 with further tables given in the Appendix.

We now present the six basic sample problems
with a parémeter.a so that the equations are of the

form Gx-aTx = y.

Problem 1

:x"+a(l+t?)x.= 1, x(-1) = x(+1) = O
This example with a = 1 is considered by Collatz (1960,
p.143) and we take .this particular problem and variations
of-it as ones toQbe,discussed in detail in section 5.6
to illustrate the features of the different techniques

. for error bounds.
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Problem 2

“x"-ax = cosh(l), x(-1)=x(+1)=0
When a = 1 this equation has the solution cosh(x)-cosh (1)
and is transformed from the example, x"-4x = 4cosh(l)
over [0,1] with x(0) = x(1) = O, considered by Ciarlet,

Schultz and Varga (1967, p.426).

Problem 3

" 20, 1

T T X T T 3TEE5) x(-1)=x(+1)=0

This problem with a = 1 is a transformation to the

interval [-1,1] of the equation

a’x 2 1
—3 T T3x = -3 subject to x(2) = x(3) = O with the
ds s
\ 1 2 36

exact solution x(s) = 35(195 - 58° = E_) and 1s taken
from Collatz (1960, p.178).
Problem 4

L
x"eaf2X o 2x o _1 % (=1)=x (+1) =0

(t+3) (t+3)

| (t+3) 2
The linear equation above is derived for o = 1 after a

certain amount of manipulation as a linearised version

of the nonlinear problem
a2z 1 dz, 2

-5t 3 [1+(5=) ] = 0 over [0,1] with z(0) =1, z(1l) = 2
ds z ds

from Milne (1953, p.104). To achieve this we have used

several adaptations. The nonlinear equation over [O,1]

is transformed to one over the interval [=-1,1] which is

subsequently linearised in accordance with the process

described in section 1.1. 1Into this equation, in the

t+3

- dependent .variable z(t) say, the function zo(t) = =3
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is substituted as an initial approximation satisfying

the boundary conditions and after the further substitution
x(t) = z(t) - %(t+3) we obtain after some manipulation
that x satisfies Problem 4 with the above homogeneous

boundary conditions.

Problem 5
3
X" - %ﬁ n?(¢)x = 2 ét) - %thz(t), x(=1)=x(+1)=0,

where h(t) = (t2 + % + %).

Again with o = 1 this is a linearisation of a nonlinear
problem which in this case is the following equation
considered by Ciarlet, Schultz and Varga (1967, p.425).

dzz

d52

= -%(z+s+l)3 subject to z(0) = z(1) = 0. As for
Problem 4 we change the variable from se[0,1] to te[-1,1]
and linearise the nonlinear equation. The problem already
has homogeneous boundary conditions and the substitution

of zo(t) = t2-1 into the linearised equation yields our

test example.

Problem 6
X" +%t2 (t+l)x = ‘%(tﬂ)tz (£%-2), x (-1)=x(+1)=0.

This problem is again the result of linearising a non-

linear equation, namely

2 m
Q_% = asz?, 2(0) = z(1) =1, a form of which is considered
ds

by Collatz (1960, p.201l). As before several trans-
formations have been performed to derive the equation of

Problem 6. In the linearised equation zo(t) is chosen
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as t2 and finally the substitution x(t) = z(t) - 1
gives x(t) satisfying the desired equation.

This completes the description of the six basic
examples chosen to demonstrate the results on
application of the error bounding techniques.

For further illustrations we shall consider
equations constructed using the same operators as
Problems 1-6 but with, in turn, one of three additional
fixed right hand sides. The extra right hand sides are

as follows:

5 Sin (3t) ¢ o000 A’
_—2—"]:— ® 00 000 B,
t” + 0.1
£3+ 2+ sin(t) -1 <t <O
and ceeess Co
t
(2-t)e O<t<1l

Each of these possesses a different property. The
right hand side A is oscillatory in [-1,1], B has a
'near singularity' at t = O and C has a discontinuous
third derivative. We shall employ the notation that
the problem formed by the operator J (J = 1,2 ... 6)
and right hand side X.(X = A,B or C) be denoted by
Problem JX. (When X is absent this represents the
original Problem J as before).

Before the numerical results are presented the

values of the constants kma ’ ko' k1 and kz for each

X
of the six operators are given. It would be tedious
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to include all the elementary manipulation involved and
the numerical values are simply stated for brevity in
TABLE 12. These have been calculated according to the
strategies of section 5.3 as for Problem 1 which was
used to demonstrate the process and as was mentioned
there cancellation has been utilised where possible.
Also these numbers are- upper bounds and may possibly

. be refined by the .application of more powerful
techniques. -However the estimates of bounds discussed

in section 5.2 employ only the gquantities km and ko

ax

and in computing these simpler terms there is less

scope for possible variation.

Values of the Constants kmax’
for the Test Problems

kcl kl and k2

kmax ko k1 'k2

Operator m = = ;5

Problem 1 1 % 2 3
1 1 1l

Problem 2 3 3 1 5
1 1 5

Problem 3 1€ e 33 0.018
5 5 9

Problem 4 Z -4' z‘ 6.26
3 3 27

Problem 5 7 vy e 9.75
1 4 9 16

Problem 6 vy 35 3 ¥l
TABLE 12

5.5 Applicability of the Practical Bounds

We have seen that the practical bounds on the norm
of the inverse of the operator G-T derivable from

Theorems 7, 9 and 10 only hold for a sufficiently large
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number of collocation points. Three bounds Bl(n), Bz(n)

and B3(n) were formulated in section 5.2 and were given

by (5.3), (5.4) and (5.5) respectively. 1In this section

we are concerned with finding and comparing the actual

values of n for which these formulae become applicable.
Firstly we introduce some notation. Each of the

three bounds required some quantity say delta(n) 1less

than unity in magnitude and for any of these let the

value of n needed to give the corresponding delta < §

be Ny . Thus for any of the 'a posteriori' bounds

given by (5.3), (5.4) or (5.5) the appropriate value

of n required for applicability is denoted by ny,

delta (nl) )

being less than 1 in magnitude.

TABLE 13 below contains values of n, for the
bounds Bl(n) and Bz(n) applied to the operators of
Problems 1-6. To illustrate the dependence of the
results upon the magnitude of the coefficients in the
linear differential equations two values of the para-
meter o have been chosen. The values presented in
TABLE 13 are not in fact exact but are not more than
5 greater than the precise n, and are intended more
as a guide to illustrate the order of the sizes of n

required.
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Values of n, for Bl(n) and Bz(n) Applied

to the Test Operators

o Problem 1 2 3 4 5 6
0.5 75 30 5 130 >100 30
Bl(n)
1l >100 90 5 >130 >100 65
0.5 15 5 5 60 30 5
B, (n)
1 >100 30 5 >100 >100 5
TABLE 13

It is seen from these examples that the values of
n needed to apply the bound Bz(n) are often significantly
less than those for Bl(n). From (5.3) and (5.4) Bl(n)

requires

6n = [l+(ko+€n)Bn]en <1 (for e < 1)

whereas for Bz(n) we must have

The better results for the bound from Theorem 9 are

“n

explained by the fact that for €,<1l, By < I:E;

, and
hence the bound on Gn is

(k_+¢_)C

[1 + -2 DN,

_ AR
I-€_ 2 koCpfp = 47

n

It is clear from TABLE 13 that even for the better result
large numbers of collocation points may still be involved.
The applicability of the bound B3(n) from Theorem 10 is
now considered and as was predicted in sections 4.7 and
5.2 this leads to improvements.

Now before these results are presented we consider

the situation where B3(n) is to be used in practice in



-133-
the inequality (5.1). In this case it would not be
satisfactory merely to choose the computed bound
resulting from.n equal to Ny, that is to take

Il (G-1) "3y

< B3(nl) because clearly the corresponding
value of Ag is close to unity and consequently B3(n1)
will be large. . Instead we shall seek the numbers of

collocation points required to give Ag < 0.2, namely

nO.Z’ and with this value of . n a much more reasonable
bound would be expected.

and n

Values of n along with B3(nl) and

1 0.2
B3(nO ,) are given in TABLE 14 below.

To explain

the format of the table a typical block under the
heading of a problem operator with a particular value
of the parameter o contains 4 entries which are the
appropriate results for the 4 quantities mentioned

in the previous sentence and are presented in the

layout n, By (n,)
Ny,2 B3(Rg o)
Applicability of the Bound B3(n)

| o\ Problem 1. 2 3 4 5 6
s 4.a3]2 3.46]2 1.03] 11 44.6 |8 23.5|2 1.31
> 10 1.69 |4 1.52|2 1.03 25 3.65 |18 2.04 [ 2 1.31

18 28.5 |5 9.32 |2 1.08 | 48 645 | 28 30l |3 3.06
%130 3.70 | 10 2.62 | 2 1.08 | >100 (19.3) | 65 4.38 |5 1.47

>100 17 487 |2 1.34 | >100 >100 8 9.29
e 41 8.19 [ 2 1.34 17 1.85

TABLE 14
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(Note that for Problem 4 with o = 1, is greater than

Po.2 .
100 but however when n = 100 the value of B3(lOO) is 19.3).
On comparison of the results of TABLE 14 with those

.of TABLE .13 the clear improvement can be seen. The values
B3(no.2),are used where possible in the next section to
provide error bounds. Nevertheless some of the numbers
of ecollocation points required are still large and it is
for this reason that the estimates discussed in section
5.2 were introduced.
Finally the values of n, from TABLE 14 for Problem 2
can be compared to the 'a .priori' results of TABLE 1,

for the same sample operator, which yielded numbers of

-roughly similar magnitude.

5.6 Error Bounds .and Estimates of Bounds

In this section .we present and discuss the numerical
results when the error bounds and estimates we have
~derived are applied in practice. These are all based on
-the ‘inequality (5.1) .and .utilise different means of
bounding |l (G=T). LIl

As was .mentioned briefly in section 5.2 although it

~ypwould.béwpossible.withia fair amount of work to find a

-Strict ‘bound .on the residual it would be a deviation
from the main aim.of our analysis and the infinity
normwef;(G-T)xn-y is estimated accurately by evaluation
of this residual at several points and by taking the
‘maximum of these. 20 points equally spaced throughout

- the interval [-1,1] are chosen for this purpose and for
any value of n the resulting computed maximum is denoted

by RES(n).
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It was seen in the previous section that large numbers
of collocation points were needed to apply the bounds Bl(n)
and Bz(n) and for this reason they are not considered for

practical purposes. The rigorous bound B
4

3(ng,p) on
N (c-T) is utilised however where possible along with

the.estimates.ﬁl(n) and 53(n). The following notation

is used.
E3(n) = B3(no.2) X RES(n)
El(n) = ﬁl(n) x RES (n)
Ey(n) = 1'33 (n) x RES(n)

E(n) is to represent the X-norm of the actual error,
namely Hxn-xux or‘Hxﬁ-x" l, and is computed in the same
way as the residual by evaluation at 20 equally spaced
points in the interval [-1,1], the exact solution x
having been found by solving the problem with a large
number of collocation points.

The above error bounds are all measured in the
X-norm. However if we wish to predict results in the
" infinity norm we have to employ the rather coarse
strategy, discussed in section 5.1, which produced the

“inequality (5.2). The quantity

+1
g* = max [|g(s,t)|dt in that result is found from
s -1

‘section 1.4.as.max.%(l-sz) = %. Thus the error bounds
s
~We obtain in the infinity norm are merely half those

in the X=-norm.
We shall employ the notation

Ey(n) _ E, (n) - E, (n)
F3(n) = 5" Fl(n) = 3 and F3(n) = N
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Thus F,(n), Fl(n) and F3(n) are computed 'a posteriori'
results for bounding the error in the infinity norm. We
shall represent the actual computed error in the functions
X by F(n).

In this section we give detailed results for Problem
1 and discuss certain general points, results for the
other test examples being contained in the Appendix.

Finally before presentation of the tables two points
concerning the notation should be clarified. From
TABLE 14 it can be seen that for certain problems, with
the parameter .o .equal to 2, n, can be greater than 100
(and consequently is not thought worthy of calculation).
In this case we take .the bound B3(n) to be inapplicable
and hence .we are unable to form the error bound E3(n).
Should this situation arise the corresponding entry
.consists of the symbol ****,

The second point, perhaps an obvious one, is that
the capital letter N now represents the number of
. eollocation points .and that the integer subscripts
are now replaced by normal size numeric characters.
‘Thus.for.example,AEl(n) is replaced by EL (N).

The .sample tables illustrating the results on
.application .of the different techniques for bounding
the error are now presented. TABLES 15-17 demonstrate
the results. for Problem 1 with a = 0.5, 1.0 and 2.0
"whereas TABLES .18-20 .are .concerned with Problems 1A,

1B and .l1C respectively when o has been chosen as unity.
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APPLICATION OF THE LRROR BOUNDS AND LSTIMATLS

BL(N)
B3 (N)

KES(N)

F3(14§)
E1(N)
E3(N)

E(N)

F3(N)
FL(N)
F3(N)

F(N)

PROBLEM 1

l.60
1.42

BOU(’.-U"

8.55'-04
8.42'-04
Tel6'~04

5.07'=04

4,27 =04

1".21."0‘0

. 3058"04

1.42""05

167
1,42
4,06'-05

6.85.'05
6.75'-05
5074"05

4.,09'=-05

3.43'=05
3- 38'-05
2087"05

7'25 '-07

TABLE 15

ALPHA= UL.5

3033.’07

5.63'-07
5.55'=07

4.72'-07

3.36'-07

2.82'-07
2.77'-07
2-36"07

3.02'-09

12

1e38'~"4

de36'-08
¢e31v-98
Le96*-00

1.39'=-08

lelV7'-28
1,0 lf".-'.)a
9081 ' -9

10‘)?"‘1':‘
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APPLICATION OF THE ERRGR BOUNDS AND ESTIMATLS

N

B1{N)
B3(N)
RES(N)

£3(N)
E1(N)
F3(N)

E(H)

E3(N)
F1(N)
F3(H)

F i)

PROBLEM 1

3.91

2496
 2.87'-03
1.06"-02
1.12'-02

B+4Yt-03

2.89'-03

5431'-03
5.621=03

©e25'-03

9013"05

3.92

2.96

2.21'=04

8417'=04

8.65'=064

6.54 =04
2425'=04
4.09'=04

4.33'-04

'3.27.-04

4.08.-06

TABLE 16

ALPHA= 1.0

10

392
2496

3.79'-06

. Le40'~05

1049"05

1012"05

3062'-06

C TeU2'-06

T.43'=06
5.61'-06

3.55'-08

12

2e96

le4B'-07

5047"07

) 5030.‘07

4.38'-07

1,49'-07

2.741-07
20901 =07
2.190-07

lell'-09
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APPLICATIUON UF THE ERROR BOUNDS AND ESTIMATES

TABLE 17

PROCLLEM 1 ALPHA= 2.0
N 6 8 10 12
BL(N) 69.0 6944 695 Gig o b
B3(N) 70.0 70.4 70.5 Ted
RES (M) Te56'-(2 5,27'-03 2.010=04 677 ~06
E3(M) Aok - o de sk Ao de
C1(N) 5.229400 3,66'=01 1e401=02 Ge 6TV =04
E3(N) 5.29'400 3,71'-01 1e62°=02 46,74 =04
E(N) $.89'=02 - 5.,54'=03 2.04%-04 6084 =06
F3(1) Aee e ok sk oK P e o e o
CFLIN) 2.61'400 . 1.83'~01 6.98'=03 2.360= 4
F3(N) 2,65 400 1.86'-01 7.08'=03 20370 =04
F (M) 7425'=03 1.34'=04 2.75'-06 6.27%-08
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APPLICATION OF THE ERROR BOUNDS AND ESTIMATES

PRUDLEM 1A ALPHA= 1.0

N 6 8 10 12
G1(N) 3.91 3492 3,92 3,92
B3(N) 2,96 2.96 2496 2496
RES (1) 2,58'-02  4.39'=04  7.28'-06 1e621-07
E3(N) 9.541=02 1.631=03 2.69%-05  6.0GL1-3T
E1(N) 1.01'=01 1.72'=03  2.85'-05 6e351=07
E3(N) 1e62'-02 1.30'-03  2416'-05  4,800-07
E(N) 2.60'=02  4.40%=04 7433'-06 1.63%-07
F3(N) 4.77'-02  8.13'-04 1e35%=05  3,000-(7
FL(N) 5.05'=02 Be61'=04 1.43'-05 3.18'-07
F3{N) 3.811-02 6.50'=04 1.08'=05 240107
FUN) 6.67'=04  4.20'-06 Tel1'-10

TABLE 18

4.01'-08
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APPLICATION OF THE FRROR BOUNDS AND ESTIMATLS

N

PL(N)
B3(N)

PES (N)

E3(N)

F3(N)
F1(N)
F3(N)

F (i)

PROBLEM 10

3.92

2.'2:,6

9,29'-02

30_"‘9"01

3.64'-01

2.75°'-01

. 9.20'-02

1.721-01

1.82'-01
1.371=01

1.97'-03

20

3.92

2.96

3.96'-02

l.47'~01
1.55'=-01

1017"01.

3.98'-02

7.33'=-02
T.77'=02
5.87'-02

1.90'=04

TABLE 19

ALPHA= 1.0

25

4.06'=03

IQSU'-OZ
1.59'=-02
1.20%=-02

"o 07.‘03

7.51'-03
7.96'-03
6.01'=03

8.53'=-06

30

3.92
2ol

1.76'-03

be53'-03
6092 -3
H5e22'-03

le76'=03

372607

3.6 '-03

261103

2¢29Y-06
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APPLICATION UF THE ERROR BOUNDS AND [STIMATES

B1(N)
R3(H)

RES{N)

E3(N)

E1(N)
E3(N)

tIN)

F3(N)
F1(N)
F3(N)

F(N)

PROBLEM 1C

3.92

2¢96 -

342902

1.22'-01

1.29°=01

'9075'-02

2426'-02

6.09'=D2
64502
4.87'-02

2,80'-03

3.92
2.96

2¢33'-03

8.62'~03
9.13'-03
6.89'-03

251703

4,31'~03
4.56.‘03
3045"03

1-95'-04

TABLE 20

ALPHA= 1.0

12

7.66"04

2.83'-03
3.00'-03
2.27'-03

7.81'-04

1.42%=03
1.50%=03
1.13'=03

3.45'-05

15

3090
20 ”()

leb64 =" 4

6o UU ."\,‘{!
bollh ' -4
4o 86 V-0

176 =04

304 V=14
32204
243 '=04

104‘4""5
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Several points concerning these results are now
discussed.

As was suggested in section 5.1 it can be seen that
.error predictions in the X-norm are closer than those
measured in the infinity norm. For example, the ratios
E3(n):E(n) given in TABLE 15 are less than 2:1 and
from TABLE 16. are roughly 3:1. . The corresponding
valueS’efuﬁ3(n):F(n) however are greater and also
increase with .the number of collocation points.

The results. .for .Problem 1 with a = 2 are not so
consistent as with the other choices. of the parameter
and this situation is a special case .which we shall
‘now consider... .Examining.TABLE.l7 where o = 2 we notice
. that there are quite large discrepancies between the
predicted and .the actual errors. The reason for this
. behaviour would .appear .to.be that the problem
x".+A(1+t2)x.;,O with x(-1) = x(+1) = O has an eigen-
value A with ) close to 2. The quantities El(n) and
53(n).can be seen to be large, roughly 70 in magnitude
and this .is not surprising as these involve the norm
of the matrix AbAf}.which increases when o is near 2.
The variation of HAOA-lH with o is shown in TABLE 21
below where it can also be seen that the approximate
. constancy with n of these matrix norms still holds, two
.. different numbers of collocation points having been

.chosen. to illustrate this.
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1

Variation of |A_.A""ll in the Neighbourhood

of an Eigenvalue

n\ o 1 2 2.1  2.15 2.19 2.2 2.5 3 4

10 1.931 13.47 31.09 88.62 187.2 105.4 7.59 3.92 3.16
20| 1.932 13.49 31.15 88.82 187.6 105.6 7.88 4.36 3.32

TABLE 21

Thus these results explain why 51(n) and B, (n) are large
and since both approximate operators (n = 10 and n = 20)
have an eigenvalue A with A close to 2.19 this suggests
that the original differential problem also has this
eigenvalue. However this has not explained why there is
such a large discrepancy between the estimated and the
actual bounds, the latter being little affected by this
eigenvalue.

Let us now consider the relative merits of the
different results E,;(n), E;(n) and EB(n). All of these
employ the reliable estimate RES(n) of the norm of the
residual. E3(n) utilises the rigorous bound B3(no.2)

on H(G*T)-lH

which is slightly larger than the estimate
53(n) and the errors from the approximate result can
be seen to be closer to the actual computed errors.
These tables demonstrate that the norm of the residual
can be in fact close to the X-norm of the actual error,
that is, the error in the second derivative and so

RES (n) could be taken as an approximation to llx"=xgll.
This process. however is rather unsatisfactory and

- yields an .unjustified estimate of the X-norm of the

. error .as .distinct from the more rigorous estimates of

. bounds on the .corresponding error. Clearly for a
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practical estimate we should choose the smaller of El(n)
and 53(n). For our examples 53(n) usually yields slightly
better results but the deciding factor is essentially
the magnitude of the constant kO defined in section 5.2.
Recall that

ﬁl(n) = 1+k_C_ whereas By(n) = 1+ko+k(2)Cn
and certainly for k, > 1 we should have B, (n) < By (n).

The errors in the infinity norm are of course
related similarly to those discussed above.

A further interesting observation concerns the
application of the schemes to problems with the right
- hand sides B or C. It can be seen from TABLE 19 and
- from TABLES 24, 28, 32, 36, 40 in the Appendix or
from TABLE. 20 with TABLES 25, 29, 33, 37, 41 in the
Appendix that for large numbers of collocation points
- the residuals _are very close irrespective of the
differential operator. The.actual errors in the second
.derivatives, E(n), are also fairly close for these
values of n but the values of F(n) do not agree to the
same extent. This behaviour appears due to the fact
that when n is taken large the right hand sides B or
C tend to dominate the collocation method which is
essentially interpolating the particular right hand
side independently of the operator T in the differen-
tial problem. That is, in applying collocation we are
interpolating the right hand sides y by functions
(G—T)xnw' with x polynomials and for large values of
n with the right hand sides B or C the terms Gxn which
are polynomials seem to dominate the process so that

. the residual is approximately Gxn-y. The right hand
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terms in the basic examples and the function A are
smoother and .do not influence matters to the same degree.
It should be pointed .out however that the results of our
bounding .techniques .do vary for all these problems.

Finally, a brief comparison of these 'a posteriori'
bounds with .'a .priori' values can be furnished by
relating TABLE 22 in the Appendix to TABLES 2 and 3 of
Chapter 3. The big improvement on using the 'a posteriori’
approach is clearly seen.

This completes our discussion of the error bounds
applied in practice and as has been mentioned previously
the results of the additional numerical experiments for

Problems 2-6 are given in the Appendix.
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CHAPTER 6

EXTENSIONS AND CONCLUSIONS

6.1 Introduction

In this chapter several possible areas of extension
for the application of the theory are discussed. In this
thesis we have been primarily concerned with the approx-
imate solution of collocation of two point linear boundary
" value problems and have considered the example (3.1) (or
(4.1)) with G defined as the operator differentiating 2m
times. Furthermore we have mainly been working with the
infinity norm. The theory of Kantorovich and Akilov
“outlined in Chapter 2 can in fact be applied to a more
general class of problems by suitable definitions of G
and choices of norms in the spaces X and Y.

For example the numerical solution by collocation
of a system of linear initial value problems adjusted to
have homogeneous initial conditions can be placed in the

setting of the theory. Let the r equations be

dx
35 ~ M(s)x(s) = y(s) (6.1)
with x(0) = 6. Here x = (zl, Zgr e zr)t say, M(s)

is an r x r matrix with elements which are continuous
functions of s and y = [yl(s), yz(s), oo yr(s)]t with
Y4(s) continuous (j =1 ... r). @ represents the zero
7/
vector and A is a scalar.
Take X as the space of r x 1 vectors whose components

are continuously differentiable and are zero at s = O. Let

Y be the space of vectors whose elements are continuous
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then with G : X + Y as the operator differentiating com-

ponentwise we can write (6.1l) as

Gx - A\Tx = y (6.2)

where (Tx) (s) M(s)x(s). Equation (6.2) is now in the
form for the theory. An approximate solution can be sought

in the form

x, = Cy

where y = [swl(s), swz(s), . e swn(s)]t with {wj}?=l

independent polynomials forming a basis for the polynomial

n

subspace of degree n-1 (for some n) and where C is the

n Xx n matrix of unknown coefficients. If

Y = (yl,yz, .cee yr)t €Y let the norm in ¥ be such that
_ max
lylly = 1<i<r Iy, (s)l
and for x = (z,,2 4 )tex let
= l' 2' e o o r
_ max : =
=l = l1<i<r Ilzi(s)ll°° ( HG§HY ).

Clearly we could choose suitable collocation points and
define appropriate subspaces xn and Yn and projection
¢, ¢ ¥+ Y in a related manner to section 2.2. The
appropriate results of Chapter 2 could then be applied
from a practical as well as a theoretical point of view.

However collocation as a means of numerically solving

imitial value problems is unlikely to compare favourably



-149-

with the well developed and well known specialised methods
and for this reason is nét conéidered as a suitable topic
for further investigation but nevertheless the above
description illustrates the wide scope of the theory.

We have considered first order equations above but
there are however extensions which can be applied in
principle to second order boundary value problems of the
type previously considered. These could possibly be
 furnished by choosing G as an operator different from
iii. However for any choice of G we must be sure that

s

the operator G ! exists. For example we could in principle

choose G such that for xeX

d2x \
(Gx) (s) = =5 - ux(s)

ds

with 1 a constant so that an equation
x"(s) + p(s)x'(s) + q(s)x(s) = y(s)

could be regarded in the form Gx - Tx = y where

Tx = -px' - (q + u)x. Having chosen the space X and the
subspace xn we would have to ensure that Y and Yn were
such that G : X -+ Y had a linear inverse, that is that

H was not an eigenvalue, and that G was a bijection
between Xnvand Yn since these conditions are necessary
for the application of thevtheory. Moreover in any
application of the theory, for some choice of G, T and
the norms, we would need to be able to approximate Tx

for xe¢X and y by elements of Yn. Thus these requirements

could clearly cause problems. Since the norms in the
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spaces X and Y will be co-ordinated by IIxIIX = IIleIY the
above approximation might be achieved by relating, for

ey - ¢"1y)

example, |[Tx - ylly for ?eYn to the norm lIG
in X and approximating in the X space.

An example of a more general definition of G is
considered by Kantorovich and AkiIOV'(1964, pp.590-595)

where they discuss the equation

d ax, . d
3t [pa%] - A{agqu] + rx} =y (6.3)
over [0,1] with x(0) = x(1) = O and define G as the

operator %E(p %E)' Such a choice of G might be useful in
dealing with equations which contain a singularity but as

was mentioned previously we must . ensure that G has an inverse.
We shall not give a detailed investigation of this example
but shall present in the next section the main points of the
.argument.

. In section 6.3 we consider work on the use of splines
. for two point boundary.value problems and examine the
‘pPossibility of employing 'a posteriori' error analysis.

. Aspects of the application of the theory to nonlinear
-erdinary and. linear partial differential equations are
.discussed:briefly in sections 6.4 and 6.5 respectively and
lastly a review . of the work of this thesis with appropriate

-conclusions is given in the final section.

6.2 An Illustration of a More General Application

- We here examine the important steps in the application
~of the theory.given in sections 2.2 - 2.4 to an equation of

the form (6.3) which is considered by Kantorovich and Akilov.
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It is assumed that p, g are continuously different-
iable with p(t) > O and that r,y €cl0O,1]. Galerkin's
method is applied to.determine an approximate solution

in the form

n
x (£) = ) a,w,(t) (6.4)
n 521 373
where wj(t)ec(l)[o,l] and wj(o) = wj(l) =0 (j=1...n).
With w'(t) = d_ { | -(i—s-——}]5 it is assumed that the
o p(t) o P(s)

system {wi} (k = 0,1, ...) is complete and orthonormal with

respect to the weight p(t).
1 .
i.e. £ p(t)wi(t)wﬁ(t)dt = ij (3, k = 0,1, ...) (6.5)

Now if X is the space of functions z(t) say in c®o,1]

d d
EE(p ag)

with z(o) = z(1) = 0 and ¥ is C[O,1] then if G

equation (6.3) may be written as
. _ d
Gx - A\Tx = Yy, with Tx = EE[qX] + rx.
The reason for requiring the condition (6.5) becomes clearer
when an inner product (°, *) is introduced on X such that
for zl,zé_ex,

1
(29, 2)) = £ p(t)z] t)zj(t)dt,

the norm being defined by lzll = (z,z)%. Corresponding

inner products and norms are introduced in Y relating them



-152-

1

to those in X by G That is,
(v1,¥p)y = (G lyy, ¢ty
and lyll, = IlG Lyl
Y X'
1l

(Note that for yeY, G

4
dt

X is chosen as the set of elements of the form (6.4) with

y is the element zeX such that
z(o) = z(l) = 0 and (p %%) = y). The subspace X of

n
Y as the set of functions of the form ] a 6wy .
j=1
To complete the specification of the spaces and
mappings for the theory Kantorovich and Akilov take $n
as the orthogonal projection of Y onto Y, which means
H¢nH = 1.

With the above definitions, for yeY

n

6,y

(S |
kzl (G "y,wy )y Gwy

n 1 -1
I { ] p(t) (6 7y) wy atlew,
k=1 o

and employing.integration by.parts it is shown that
1 -1 }
[ p(cT y)'wy at = - [ yw, at. (6.6)
o o

Thus since Galerkin's method requires

1
/ (Gx, = ATx_ - y)w (t)dt = 0 (k=1 ... n)
)
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this means from (6.6) that the method is equivalent to

¢n[Gxn - ATxn -yl = 0, or

Gxn - A¢nTxnﬂ

¢ (6.7)
Equation (6.7) is now in the form we have frequently
encountered (apart from the constant A which can be included
in T) and we now have the framework for the theory and are
in a position to examine the conditions required for its
application.

To utilise the theorems it is required to find My and
Uy for the donditions I and II of section 2.4. It is not
thought necessary to present in detail the work of
Kantorovich and Akilov on this topic and we simply give an
-outline of their analysis.

For condition I we need to find a ¥y such that for all
2€X there exists a JeY and ITz - g < ulzll. The strategy
mentioned in the previous section is employed when G-sz
is approximated by an element % of X since
ITz - §l, = N6 'tz - %I, where & = G '§. With v = G Tz

it is shown that there is a kernel K(s,t) such that

1
vi(s) = [ K(s,t)z'(t) dt.
o

The approximation %X to v is found from

%' (s) = K, (s,£)2' (t) at

O =

where Kn(s,t) is a partial sum of the Fourier expansion of
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K(s,t) in {wg(s)} (j = 1,2, ...). That is,

n

K (s,t) = ] c.i(t)wi(s)
n 55 S3TYS

1

where c,(t) = / P(s)K(s,t)w}(s)ds and furthermore

o
Lin [ ]2as = 0<t<1
nve ) p(s)lK(s,t) - K (s,t) s =0 (O<t<1l).

After further analysis it is demonstrated that a suitable
H, can indeed by obtained and that By, O as n + o,
To find the Uy for condition II a similar approach
is followed, approximating G 1y by an element of X .
Kantorovich and Akilov consider the example where
trignometric functions are used:as.the‘{wk}. In particular

for
Wk(t) = sin(kwt) (k= 1,2, «..)

it is found that ul,and u2 are both O(n-%) so that with x
as the true solution to (6.'3.)‘a'nd.xri as the solution from

the Galerkin method,. Theorem 2 yields
Ix - x Iy = o(n’%

as a measure. of convergence ‘in this special norm.. (Note
that H¢nﬂ =1).

This then is a brief account of a possible general-
isation investigated by Kantorovich and Akilov which is

- essentially an 'a priori'-examination.
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However we could attempt an 'a posteriori' error analysis
of this problem and an approach similar to that of section 3.6
would probably be the most suitable means of bounding the norm
of the inverse of the approximate operator. This would need
careful definitions of the appropriate mappings and norm for
the space R™ of vectors and there is clearly scope for further

investigation into this topic.

6.3. The Use of Splines'

There has been recently some very interesting work on
two point linear and nonlinear boundary value-problems
concerned with the use of splines in the representation of
the approximation.

th

In particular for an m"~ order problem.ever.[a,b] say

and given a partition T, P &= 8 < 8) < ...< 8 = b of
[a,b]l, Russell and Shampine .(1972) seek:approximate spline
- solutions which for integer d are polynomials of degree

m + d,in.each:subintervaltef~nﬁ:and;haverm‘eontinuous
derivatives throughout. the whole interval. ' These splines
are further required to.satisfy the m given boundary
conditions. = To.obtain the appropriate number of egquations

for determining the .coefficients . in the representation

- ..8uitable collocation points.are.needed. These -are furnished

by subdividing each :subinterval [s,,s;, .1, (0 < 1 < n-1) by
a further (d-1) similarly placed internal points so that
there is a total of nd+l points throughout [a,b].
Russell and Shampine prove in particular for linear
.problems,the;uniferm{boundedneSS;of"the.inverée of their
th

approximate operator- concerned with the m"" derivative of

-the approximate.solutien and . also achieve convergence.
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These results are analagous.to.those-of our Theorems 1
and 2.

Further advances.in the . field of nonlinear problems
have been achieved by deBoor.and Swartz. (1973) where
they obtain improved.rates.of convergence over those
given by Russell.and.Shampine . (1972) by ‘choosing the

{sj}jgo as a.strict partition of [a;b], and with
Gauss points in each subint erval.

.As with the case when polynomials are used 'as the
approximating :subspace-the theory employing splines is
--mainly of an .'a:priori' form with.error bounds depending
;uponwknnwledgenefmthe“true.solutioﬂa' For linear
Problems at least it seems that the roles of the given
and approximate.operatars:in the . theoretical results might

be able to be interchanged .to deduce.'a:posteriori’

... .bounds:-for. the erroer of a similar nature to those of

. Theorem 7.

For such results splines would have, in theory, a
definite advantage over polynomials since it is known (see
Russell and Shampine (1972)) that the norms of the pro-
jections equivalent to our ¢n are uniformly bounded. For
instance, if appropriately scaled Chebyshev zeros are used
as the points over each subinterval then the norm of the
projection is the Lebesgue constant 8 +‘% In(d + 1) and
this is independent of n as the partition'nn is refined.
This would mean that the applicability of the. bounds
given by results of similar. form to. Theorem 7 would
probably. be improved over. the polynomial case since the
correspondingv&n~wou1d.not involve a projection ¢n with

H¢ﬁ" as. 0(ln(n)). However in practice this 'is not likely
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to make a great difference because of the very gradual
increase with n of the function 1ln(n).

Another advantage in using splines might be the
computational properties of the band matrices if B-splines
(which have compact support) are employed as the basis
functions for the approximation.

In section 4.8 it was seen that for a projection
- method we could define an 'extended projection' method and
it may be that this process could be applied to the usual
polynomial spline solution to yield useful results.

Thus we see that there are areas where the work on
the use of polynomials. in this thesis might be able to
be applied to splines and further research could be under-

taken.

6.4 - Nonlinear Problems

»The~apprpxima£eLsolution;by,palynemial_collocation
of nonlinear equations. has :been:considered:by Vainikko
(1965, 1966, 1969). As. was mentiened in the previous
section spline approximations:for: such preblems have been
investigated by .Russell and:Shampine::(1972) and deBoor
‘and ‘Swartz (1973). .Results from the above work are
essentially of. an ‘'a priori' nature,assuming knowledge
of the true solution and :deriving order of convergence
. proofs.

We have not howeveraexaminedrthewﬁossibility of an
'a posteriori' error analysis énd:therevarercertain
problems.which would be:encountered but it would seem
‘that with further. investigation advances might be

achieved.
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6.5 Elliptic Partial Differential Equations

Kantorovich and Akilov consider  two linear elliptic
problems and show with appropriate choices of spaces,
mappings and norms that their theory can be applied to

the Galerkin method: The two examples-discussed are

' 2 2
1) V% + Aa(x,y)u = 2—% + ﬁ_% + Aa(x,y)u = vVv(x,y)
9x oY
and
2 Ju Ju _
(11) VG + Ma(x,y)u + bix,y) 57 + c(x,y) 3§} = vi(x,y)

with a, b and ¢ continuously differentiable functions
and in each case the equations hold over a domain D
bounded by a circle T' with the boundary condition that
u vanishes on T.

We shall not discuss these in any depth and the
reader is referred to Kantorovich and Akilov (1964,
pp. 595-601) for a full description. We shall simply
- mention that for both problems G is taken to be the
operator VZ, but for example (i) if u is twice contin-

uously differentiable

Tat = { ff lvﬁ-lzdxdy}Js
D

whereas for example (ii) the norm is such that
2 2 x
= du u
Null = {gf [G) + G ] dxdy?} .

To derive their results Kantorovich and Akilov seek
an approximate solution which involves not .only a poly-

nomial in x and y but also another special function
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required to satisfy certain conditions.

If, in some setting, an 'a posteriori' approach is
to be examined it would appear that the main problem
would be to find a suitable approximating subspace.
That is, one for which there were results available
concerning its approximating properties in the chosen
norm. Also the Green's: function for the differential
operator- G would have to be known explicitly. If these
criteria were satisfied it woumld seem feasible that
progress. might be. made.

... . Karpilevskaja (1970). has examined the. collocation
method with-the-possibility of approximating: by trigno-
metric polynomials and utilises their properties to
-derive cenvergence .results:via the 'general theerems of
.Kantoroviéhxand“Akilov.

An 'a priori' application of the theory due to
Anselone has been considered for the numerical solution
of elliptic partial differential equations by Gilbert

and Colton (1971).

6.6 Conclusions

The principal work of this thesis has been in
-developing algorithms for'computing“errorrbéunds for the
. numerical- solution by polynomial- collocation of linear
differential  egquations. ' This has been achieved by
adapting the main theoretical results for 'a posteriori'

boundS’givenrin:Chapter'2'torprndncermore"readily practical

. formulae  and has-entailed-relating the inverses of the

‘approximating operators: to- the inverses of the matrices

“involved in determining- the- approximate solution.
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The most suitable form of error bound was seen to be
Ix = x I < BND. . (norm of the residual)

where BND is a computed 'a posteriori.' beund .on the norm
of the inverse of the given-differential  operator. Three
rigorous expressions for. BND were given by Bl(n), Bz(n)
and'B3(n) in equations (5.3, (5.4) and (5.5) respectively.
Estimates of these bounds were shown to be §l(n) = Ez(n)
and By (n) of (5.6).

All the different results for BND ‘involve the norm

1 which- we saw was ‘independent: of the

of the matrix AeA
basis used for the polynomial subspace and moreover varied

- little with the number of: collocation peints. The approxi-
mateusolution4xn is of course invariant with the basis and
thus. so also are.the-erroruboundsrfurnished"Ey'our approaches
if rounding- errors-.are ignored.- However rounding errors
occur in practice and:we;havehseen.cellocatihg:on Chebyshev
zeros that the:inverse :matrix with Chebyshev: pelynomials

- as a basis.possessed an interesting structure with the
property that its norm did not change:rgreatly: as larger
values.of,;:werextakenxﬂ-Ihisuleads;te smaller cendition

numbers than when-simple pewers. are: employed, thus mini-

" mising the effect of romndoff.  -Alse improvements in the

condition number could be made by the use of column scaling
and although this scaling does not: affect the Gaussian
elimination process, which may: be employed-in any application,
it does lead-to-better bounds-en-the condition numbers and
for these reasons Chebyshev pelynomials are recommended as a

suitable choice of basis- funetions. = (It is quite likely



-161-

that Legendre polynomials would also be a convenient
selection).

We now consider the question of which is the most
suitable of the various expressions for BND to apply in
Practice. The rigorous formulae for this quantity only
hold for a sufficiently large number of collocation points
and, as a comparison, values of n required for these
.Fesults.were.given“in TABLES 13 and 14. It is concluded
from these figures that the rigorous bounds Bl(n) and Bz(n)
are not really a practical proposition whereas that B3(n)
would be applicable in certain cases but not in others. To
avoid this difficulty  the estimates of these: bounds were
. developed.. These hold for- any number of collocation points
and the corresponding- errors: wexe seen from the tables to
provide=reliablevrésults,_being'closer to the-actual norm
than the more rigorous. bounds.

Clearly in any application the smaller of the two
values B (n) and Bj(n) should be chosen:  This is principally
determined by the magnitude of the constant k, for the
operator under consideration. The size of ko is in turn
dependent. upon the coefficients in the linear differential
- equation. = Coefficients: which-are fairly small would give ko
small,and,henceMEBXn) as the lesser: of the two. Conversely
for: larger functions. in' the operator we should expect ﬁl(n)
to give the better result.

We discussed the point that the errer bounds directly
from the theory were measured in- the X-norm which for second
order: problems was. the infinity norm of the second derivative
of the errer. . Very good predicted results were achieved in

this norm but when we related these: to values- in the infinity
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norm our bounds were not in such good agreement with the
corresponding actual computed error due to coarse in-
equalities in the transformation.

We now mention two points concerning the implement-
ation on the machine of our bounds.

We have said that the norm of the residual is
calculated by evaluation at several points and by selection
of the maximum in magnitude of these values. This is
oconsiderably less work than computing a strict bound but
even this process does involve a certain amount of computing
time and it would be convenient if reasonable bounds could
be found which avoided this but it does not seem that this
would be possible.

Secondly, we have seen that in obtaining values for

our constants kma ’ ko, kl and k2 from the formulae of

b
Section 5.3 cancellation within the algebraic expressions

is often possible, yielding quite small results. However
these formulae could be more automated, consequently

requiring less work from the user but giving larger answers.
The estimates of the bounds however involving only kmax and

ko' for which the expressions are simpler,may be more suited
to automation since cancellation is less likely.

Finally we. have examined briefly areas in which possible
extensions or generalisations of our analysis might be applied.
We suggest that the development of 'a posteriori' bounds when
Splines are chosen as the approximating functions would be the
topic most likely to yield useful results, but there would

seem to be several fields where further investigation could

usefully be undertaken.
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Additional Numerical Examples of the

Application of the Error Bounds and Estimates
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APPLICAYIUM OF THE ERROR BUUNDS AND ESTIMATES

El(h)
B3(N)
NES(N)
b3dn)
T1(N)
F:LHN)

L)

F34N)
FiiN)
F3(N)

F{H)

PROPLEM 2

2438

4.56'-05

1.20'-04
9.85'-05
9.48'=05
4.45'=05

5.98'-05
“092'-05
4eT4°=05

1028"06

2019

2.01'=07

- 5426'=07

4.38'-07
4020"07

1.98'=-07

2.63'=-07
2.19'=07
2.10'=-07
3.38'-09

TABLE 22

ALPHA= 1.0

10

2ol

5453'=-10

1.“5'-09
1.22'-09
lel6'-09

5.48'-10

7.25'=10
6.11'-10
5.82'~-10
5.58'~12

L2

10U4'-12

2eTG'-12
2.33%'=-12
2.21'~12

1.06'~12

1.37%-12
1.16'-12
lel'-12
Te22'~15
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APPLICATIUN OF THE ERROR BOUNDS AND ESTIMATES

BL{H)
B3

RES (N)

£3(1)
E1(N)
F3(N)

EG

F3(N)
F1(N)
F3(N)

FAN)

PROELEM 2A

2016
2e0) 8

BdT2'=02

9.76'“02
8004'-02
7474102

3.71'=02

4,88'=02

4.02.—02

3087"02

Gebl'=04

2.18
2.9

1.22'-03

3,19'-03
2.65'=03
2.541=03

1.22'-03

1.59'=-03
1.33'-03
1.27°'-03

1.13°-05

TABLE 23

ALPHA= 1.¢

2421
2410

Ze58'-05

6.75'-05
e 69'-05
5.42'-05

2457'-05

3.38'-05

2.85'-05

2.71'=-05

1039"07

12

3.37'-07

BeB&'-07
1.52'~07
Tel3 =07

3¢36'-07

442007
3.0 =07
3057"07

lo45'°09
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APPLICATIUN OF THE LERRUR BOUNDS AND ESTIMATES

i

BLIN)
B3(N)

PES(N)

E3(N)
CLIN)
E3(N)

t(u)

F3(N) -

FL(N)
F3(N)

F(IN)

PROBLEM 2B

15

2.25

2613

©9.28'-02

2¢43'=01
2009'“01
1,97'=C1

9,28'-02

1.22'-01
1.05'=01
Y.87'=02

1.67"03

20

3-96.‘02

1004'-01
9001"02
Bea7'=02

3.95'-02

5.19'=02
4-51.'02
4426402

1449'=04

TABLL 24

ALPHA= 1.0

2429
2.14

4e36'-03

1006"02
9.29"'03
8.70'-03

4,05'-03
5¢32'-03
4e65'-03

4.35'-03

6493706

2e 3!
Zolb

1070"03

4e62'-03
400 '-11 3
3,79'-03

1.76'=03

2431'-03
24 731-03
leU'=03

220 '-06b
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APPLICATION OF THE ERRCR BOUNDS AND ESTIMATES

BL{N)
B3(N)

RES(N)

E3(N)
F1(N)
E3(1)

L)

F3{t)
F1(N)
F3(N)

F{N)

PROGLLM 2C

“

2.14
207

6.22'-03

1,63'=02
1033"02
1.29'=02

hed8'-03

del51=03
6.66'-03
bet4'=03

6+83'=04

2.18
209

2.82'=-03

T¢39'~03
6.,15'-03
5.89'=03

2.69"03

3.69'=03
3LT'=03
2¢95'«03

1007.-04

TABLE 25

ALPHA= 1.0

12

2.23
2.11

766504

2.00'~03
1.71'-03
1062.’03

7.28'=04

L.00'=03

8.53"04
B.09'=-04

1.76'-05

2413

lebut=0)4

4.30'-04

3.700-04

34491 =04

leb4t-1rg

Coelh =014
le8351' =04
1.75'=04

De6l'=06
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APPLICATION OF THE ERROR BOUNDS AND ESTIMATES

N

BLIN)
E3(N)

RES(N) -

E3(N)

FL(N) -

E3(H)

F{N)

F3(l)
FL(N)
F3(N)

F(N)

PROBLEM 3

L.07

107

2e20'=06

2038"06

2436'-06

2(35"06
2.20'=06

1.19'_06
1.18'f06

1.18'=06

6,78'-08

1.07
lo027

3.69!‘08

3.99'-08

3.96'-08
3094"08

3.69'=08

2.,00'-08

l.98'-08
1.97'-08

5.34'-10

TABLE 26

ALPHA= 1.9

10

1.07
1.07

5.61'~-10

6.06'~10

6.C1'-10

5.98"10

5.60'-10

3403'=10
3001"10
2¢99'=-10

4.83'-12

Teb6T'=12

Be288'-12
8,23%-12
HelB'=12

Teb6T7'~12

Goltnt=-12
4.11"12
4.”9.‘12

GeT2'=14
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APPLICATION OF THE ERROR DOUNDS AND FSTIMATES

B1(H)
Pa

RES(N)

E3(10)
E1(N)
E3(N)

E(N)

r3(n)
CFLU)
F3ii)

F{N)

PROBLEM 3A

1.07
1.07

4.16'-02

4e49'-02

4446'=02

4 o464 =02

4016"02

2.24°=02
2.23'=02

2.22'-02

1.02'=-03

1.371'=-03

1048.-03

l.47'-03

le46'-03

1.377=03

To41'-04
7.36'“04
7032'-04

1.29'-05

TABLE 27

ALPiHA= 1.7

10

1.07

2093"05

3.17'-05
3,141=05
3,13'-05

293'~05

1.58'-05

le57'=-05
1.56“05

1.59'-07

12

1007'
1.07

3607

Go17'-07

Al =07

4012"07

3.86'~07

2603007
2007.-07
2¢06'=-07

1.60'-09
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APPLICATIUN UF THE ERRUOR BOUNDS AND ESTIMATES

N

BLIN)
B3(N)
RES(N)

E3(N)
CEL(N)
F3(N)
E(N)

F3(N)

F1(i)
F3(N)

FIN)

PROGLEM 38

15

le07
l.07

e29'=-(}2
1.00*-01
9e96'-02

74914=02

9,29-02

5.02%=02

4.98'-02

4496'=02

1.29'-93

20

1.07

1.07

3.961=02

4-28 "02

4.25'-02.

4,23'=02
3.961-02

2014.‘02
2413%-02
2.11'=02

1.59'=04

TABLE 28

ALPHA= 1.9

1.07
l.07

4.06'-03

4,38'-03
4,35'-03
%.33'-03

4,06'-03

2.19'=03

2.181'-03

2417'-03

74301=06

1.7(3"".)5

I.91%«02

lets9V=023

1-88"’:"3

le76'-03

GeS30=1 4
Ve h6s ¥ =1t
De b2t =04

el V=110



APPLICATION OF

N

B1(N)
B3(M)

KLES(N)

F3(N)
C1(N)
E3(N)

C(N)

F3(1)
F1(N)
F3(N)

F{I)

PRORLEM 3C

1e37
1e17

8,01'-03

Beb5"'=03
8.59'=03
Be55'=073

8.02.-03

 4433'=03

4.29'=03
4,27'-03

F.T1'=06

- 173 -

THE LRIRCR BOUNDS

1.07
1.07

2.83'-03

3456'-03
3.04"‘03
3.02'-03

2.80'~03

1.539=03
1.520=03
1.510=03

1.30'=04

TABLE 29

AND ESTIMATES

ALPHA= 1.0

12

1.07
1.07

Te66'=0¢

8027"’04
8.21'-04
BelT7'-04

Te45'=04

4.13'-04

4a11'-04
4.09" =004

2.16"‘05

lb

lo'b‘.(
le 7

LeGO'=04

Lo 77 0=04
Le76 =114
1.75'=04

le61'-04

8.8B7 V=015
BeBl'~05
CelT'=(H

8-43'"(‘6
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APPLICATION OF THE CRROR BOUNDS AND ESTIMATES

B1IN)
B3 (1)

RES(N)

E3(H)
EL(N)
E3(N)

E(N)

F3(n)
F1(h)
F3(N)

F(N)

PROBLEM 4

6

105
14.1

l.16'-03

2024.'02

le2l1'=-y2

1le63'=02

1417'=03

le12'-02
6.,07'-03
8.17'=03
2.64'-05

10.7
14.3

0+45'-05

1.25'-03
6.88"'-04
F¢25'=04

6.31'=(05

642304
3.44'=04

4462'-04

8.32.-07

TABLE 30

ALPHA= 1,0

10

10.8
14.4

3038"06

6.52'-015
306‘0"05
4.88'-05

3.32"06

" 3.26'-05

1.82'-05

2:44'-05

2.62'-08

12

17.8
la.5

1e50*=07

2,891=76
1.6?.-06
2:17'=00

Leta8*=07

let45%=026
Hell*=027
l.09'=-06

Be22'-10
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APPLICATION OF THE ERRUR BOUNDS AND ESTIMATES

BLIN)
B3(N)

RES(N)

E3(N)
E1(N)
C3(N)

L

F3(N)
F1(N)
F3(N)

F(N)

PROVLEM 4A

105
l4.1

4,95'-02

9055"'01

" 5419'=01

6.98'~01

4,901=(2

4.78'-01
24601-01

3449'=01

1.34'<03

10,7
L’OOB

1.60'-03

3.08'-02
1.70'-02

2.29'-02

1.63'=03

1.54%=02
Be51'=03

lel4t-02

1.58'=05

TABLE 3

ALPHA= 1.0

10

1V.8
lbd.4

3.59'-05

6.92"04
3.86'~04
5.18'=04

3.61."05

3.46%-04
1093"04
2-59"0‘0

2411'=07

12

1ve8
l4.5

4elBt-i7

8.02'-00
4.491-06
6.231-06

4e17°=07

4.01'=06
Le2Hh V=04
3401"-06

le87'-09
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APPLICATION OF THE ERRCR BOUNDS AND ESTIMATES

M

1)
B3(N)

RES(N)

E3(N)
EL(K)
E3(N)

E(N)

F3(N)
FLIN)
Fa(h)

F(N)

PROBLEM 4B

15

19.8
14.06

9.50'-02

1.83'+00
103430
1.38'+00

9.601-02

9.16'-01
5.15'=01
6491'=01
1.24'~03

20

10.9
14.6

3.96'-02

T.64'-01
4,31'=-01
5.78'=-01

3.95'=02

3.82'-01
2.15'-01
<.89'=-01

1.57'=04

TALLE 32

ALPHA= 1.0

10.9
14.6

4.12"03

7094102
4.48"02

6s02'~02

4'13"03

3097"02
2.241-02
3.01'=02

7-23"06

LU .Y
1’*.6

l.76*-U3

3eu(r=02

1e92'=02

2e58V-02

1.7(’"("3

1 o7£ ' "02

. ‘1’.61"',‘3

Led9t=02

2422006



APPLICATION OF

M

PES(N)

E3(N)
C1(N)
E3(N)

E(N)

CF3(N)
F1(N)
F3(N)

F(N)

PROBLEM 4(

103
13.9

1.13'=02

2.18'-01
1.17'=-901
1.57'-01

l1.,0l'=02

1.09'=01

. 5.83'-02

7.861=02
1.069-03

- 177 -

10.7
14.3
2:76"03

5.33'=-02

- 2495'-02

3.96'-02

2.68'-03

2+67'=02
1e47'-02
1098"02

1.24-04

TABLE 33

ALPHA= 1.0

12

10.8
1445

7.64'=04

le48'-02
Be26'-03
le11'-D2
7.35'-04

7.381=03
4.13'-03
5¢551=03

2.08'-05

THE ERROR BOUNDS AND ESTIMATES

15

IRy
1"’0("

leGl'=04

‘3011"03

le 7503
2034'°Q5

1065"04

Le55 =0T
8.73%=04
1.17'-03

8..8'-u06
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APPLICATION OF THE ERROR BOUNDS AND ESTIMATES

i

BL(N)

B3(N)

RES(N)

CE3(N)
CL(N)
E3(N)

ELN)

F3(N)
Fien
F3(N)
F(N)

PRODLEM 5

3.24
3e43

2¢91'-03

le27t=02
Ge4l'=0N3
9.97"03

2.90'=-03

- 6436'-03

4.71'=03

4,98'-03

6.42'-05

3.28
3.46

6.4T'=04

2-83"03

" 2.12'-03

2¢24'-03

bo46'°04

leal'-03
loUé"UB

1012"03

6.57"“6

TABLE 34

ALPHA= 1.0

10

3629

3647

3,06'=05

1034"04
1.01'-0¢4
l.06'-04

3.05'=05

6.71'-05
5.,04'=05
5¢317'=05

2e30'=07

12

Jeay

oD V=01

ng7'“06

Lot =06
Le2 '-010
Lel0:'=006

A 28109



APPLICATIUN OF THE

N

CL(N)

B3(N)

RES(N)

E3(N)
EL(N)
C3(N)
E(MN)

E3(N)
FL(N)
F3(N)
FN)

- PROBLEM 5A

3.4
3.43

4¢55'=D2

le99t'=01

- le&7'=01

1.56'=01

4¢54'=02

9,951=)2
7.36'-02
7.80'-02

1.08'=-03

- 179 -

ERROR BOUNDS

3.40

1.93'-03

Be45'=013
6032'“93
6.67'=03

1093"03

4,23'-03
3.16'-03
3.34'-03
3.17'-05

TABLL 35

AND ESTIMATES

ALPHA= 1.0

1)

1.90'-04

8.32'-04
6e24'-04
6.58'-34

1.,89'=04

4.16'-04
3.12'-04
3.29'-04

1.66'=06

3.48

T.02'~06

30()8'_-’5
2032"05
ettt ¥ =1H

TeQl'=06

LeHa ' =00
lelb =05
1.22'=05

3.53'=0N



- 180 -~

APPLICATION OF THE ERROR BOUNDS AND ESTIMATLS

N

BLIN)
B3(N)
RES(N)

C3(N)
EL(N)
E3(N)

E(N)

F3(N)
F1(N)
F3(N).
F(N)

PRUFLEM 5B

15

| 3.49

‘_9029"02

4.07'=C1
34i08'=01

3.24'~-01

1 9030'902

2.041-01

.~ 1s454'-01

l.62'-01

1427'~03

20

350

3.96'-02

1074'-01
1,32'=01
1.39'-01

3;96,f02

8.68'-02
6.61'-02
6.Y4'=02

1.58'-0¢

TABLE 36

ALPHA= 1.0

25

3434
350

4.06'=-03

1.78'-02
1e36'-02
1.42'-02
4.,06'-03

8,89'-03
6.78'-03
Te12'=03

7.28'-06

ae

1.76'-03

Tel130=03
HeWl =03
6420103

1.70"03

3.80'=113
2.95'=03
Jelli¥=03)

2.22'=76
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APPLICATIUN UF THE ERROR BOUNDS AND ESTIMATLS

N

31(N)
P3(N)

RES{N)

E3(N)
E1(N)
E3(N)
E(H)

F3(N)
CFL(N)
F3 (1)

FIN)

PROBLEM 5C

(93]

3.22
3.4[

5.07'=02

2.22'=01

1.63'-01

1073"01

SoOQ"UZ

Lell'-01
8016"02
8+.66'-02

24559=03

3.28
3.46

2-88.'03

1026'-02
9045"03
9.97'=-03

2.85'-03

6432103
4.73'=03

4¢99'-03

1.29'=04

TABLE 37

ALPHA= 1.0

12

T.64'-04

'3435'-03 .

2¢53%=03

Le66'-03

7043.-04

1,67¢-03
1.26'-03
1¢33*-03

2.12"05

1b

3432
3.49

1e64 1=ith

7.200-04
H5e5 =04
5. 73'-‘("1’

l.e61'-04

3.,600=-004
2.73"04
2-87"“4

Ge261=016



APPLICATION OF THE ERROR

N

PL1{N)
B3(N)
RLS (N)

EA(N)
Tt
E3(N)
E(N)

F3(N)

F1(N)

Fatn)
Fn)

PROLLEM 6

1.18

32.13'-04

4ha6UT1=04

3¢09'=2¢4

3.717-04

3013"0‘0

2+30'-04

1.95'-04

1.85'-04

9.02'-06

- 182 -

3

1.18

le14'-05

1.68'=05

1l.42'-05
1.36'=05
1.14'-05

8.41.'06'

7.12'-06

6.18'406

1.41-07

TABLE 38

BOUNDS

AND ESTIMATLES

ALPHA= 1<

W

10

le24
1.18

l.32'-06

1.95"‘[.‘6

1.65'-06

Le57=06

1.,32'=-06

9.73"07
B.23'=07
Te84'=-007

1.30'-08

12

l. 2‘0
1.18

Bet6'=-09

1o30'-08
lolivtv=04
1.759=-23

BeB6'=1i9

Hal V=39
5.51'-09
525000

605("-11



APPLICATIUN GF

F1(N)
B3(N)

RES(N)

E3(N)
EL(N)
E3(N)

E(N)

F3(N)
F1(N)
F3UN)

FIN)

PROULEM 6A

6

4e39'=-02

Te33'=02

C 6420'=02

5.91°=02

‘4.99'“02

3.67'=02

3010"02

2095"02

1.27%*-03

- 183 -

8

2.67'-03

3.,93'-03

3.32'-03

3.17°'-03

2.67'-03

L.e36%'-03
le66'=03

1.58'-03

3.15'=05

TABLE 39

ALPHA= 1.1

10

1019"04

1.75'-04

1.48'-04

1e41'-04

1.19'-04

‘8073"05

7039"05
Te03'=05

1003"06

THE ERROR BOUNDS AND ESTIMATES

12

3.651-06

5.37'-16
“055'-00
4,33'=016

3.65'=1;6

2eb9'=00
el =020
2el?=06

20018
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APPLICATION COF THE ERROR BOUNDS AMD ESTIMATLS

i

BL(N)
B3 ()

RES(N)

C3(N)
C1(n)
E3(N)

EAN)

F3(1)
FL(N)
F3(N)

F(N)

PROBLEM 6B

15

le37'-01
101(’"01
l.10'=-01

9.29"'02

6083"02

5.78'=02

550'=-02

1.30"‘03

20

l.24
1.18

3.96'-02

5e83'=02
449 "02
4o70'-02

3096"‘02

2¢91'=02
2¢47T'=02
2.35 .“02

1.60'=04

TABLE 40

ALPHA= 1.0

4.06'-03

5.97'-03
$5.06'-03
4.81'-03

h.06'—03

£498'-03
2453'-U3
2.40'-03

Te34'-06

30

Lo20
l.18

10 ’6 ! "‘.‘3

2e¢59'=(}
202[)'"\.'3
2.09'=03

le76?'-013

le30%-03

lo],l" -L)5

1.3

2423'-06



APPLICATION OF

BL(N)
B3(N)

RES(N)

C3(N)
FL(N)
E3(N)

()

F3(H)
FL(N)
F3(N)
FN)

PRORLLEM 6C

Lot
1018

2430'=-02

3.38'=02
Ce806'-02
2.72'=02

2.30'=02

1.69'-02
l.43%-y2
1.36'=02

1459'-03

- 185 =

2.32'=)3

4014'-03
3450'=03

3.34'-03

2.80'=03

2:07'=03
1.75'-03
1.67'-03
1.32'=04

TABLE 41

ALPHA= 1.0

12

TeG6'=04

1.13'-03
9,53'-04
9.07'=04

7.47'-04

5.63'-04
407"-34
4,541 =D4

220'=05

THE ERRGR BOUNDS AND ESTIMATES

102“
1.1R

le G4 V=it

2042"(4
2e05Y=04
1.95'-04

l1e61'-04

le2it=04
lei2 =04
9e 7305

Beb9'=016



