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ABSTRACT

This thesis is concerned with an error analysis of

numerical methods for two point boundary value problems

and much of the investigation is concentrated on

collocation methods from an 'a posteriori' point of view.

Most of the previous work on error bounds for boundary

value problems has been of an 'a priori' nature, requiring

knowledge of the inverse of the differential operator under

consideration and furnishing convergence proofs and

theoretical bounds on the error. There are however a few

results of the converse nature and in this thesis means of

determining error bounds in practice are developed, much

of the analysis also applying to Fredholm integral equations

of the second kind.

In more detail, having firstly considered certain

preliminaries the setting for the theory and the principal

results for later use are presented. It is demonstrated

how the approximate solution by collocation of linear

differential equations fits into this background and

different 'a priori' approaches are examined by example

and shown to be rather unsatisfactory.

The 'a posteriori' outlook is then considered and

to achieve practical results the inverse of the approxi-

mating operator is related to the inverse of the collocation

matrix. However the problem of obtaining a suitable bound

on the norm of this inverse operator is encountered and

after examination of the most obvious approach which proves

unsatisfactory a convenient bound is.developed.



Certain interesting computational properties of

matrices involved in the process are discussed and a brief

examination of condition numbers is given.

A different theoretical analysis using the concept

of a 'collectively compact sequence of operators' is

considered and it is demonstrated that the approximate

solution by collocation of linear differential equations

can be 'extended' to satisfy the conditions for this

theory. Again the error bounds are reduced to a more

practical level and subsequently a generalisation of the

notion of this extension is suggested.

The implementation of the various practical error

bounds which have been deduced is then considered in

detail and formulae for their evaluation are presented.

The numerical results of examples of this application

are then given followed by a discussion of certain

relevent points concerning the experiments.

In the final chapter certain possible extensions of

the analysis herein are briefly examined and lastly a

review of the work of this thesis with appropriate

conclusions is given.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Numerical Methods for Boundary Value Problems

In this section we survey the general background of

numerical methods prior to the main part of the thesis

which is concerned with error analysis.

We are primarily interested in certain aspects of the

numerical solution of two point boundary value problems.

A fairly general equation of this type may be regarded in
the form

dmx (l) (m-l)+ f(s,x,x , ... x } = 0
dsm

(1. la)

over some interval [a,b] say with f a nonlinear function
. (L) (m-l)in the m+l varlables s,x,x , ... x and will be

subject to m boundary conditions, say

. .. x (m-l}) = 0 (i = 1 ... m) (Llb)

where the Vi are certain nonlinear functions in the m
variables x,x(l), ... x(m-l) which are evaluated at either

of the end points a or b.

However we deal mainly with linear equations which

may be expressed as

Lx
m-ll p.(s}x(j}(s)
j=O J

= y(s} (1. 2a)

subject to



-2-

(i = 1 ... m) (1. 2b)

where now the U. are linear functions of the m variables
l

again evaluated at either a or b and the Yi are constants.

We shall usually assume that Pj (s) (j = 0 •.. rn+ L) and

y(s) are continuous and shall employ the abbreviation

U.(x) =y. (i=l ... m) for (1.2b).
l l

Problems of either type are rarely solvable

analytically and for this reason numerical methods of

obtaining an approximate solution have been developed.

There are a number of such approaches but they are all

comprised of similar stages.

Consider for example the numerical solution of a

linear problem of the form (1.2). Generally speaking

any method for its approximate solution involves the

following steps.

(a) A choice of a characterisation of the approxim-

ation in terms of certain unknown constants,

(b) A means of forming linear algebraic equations

for the unknowns,

(c) A means of solving the algebraic equations, and

sometimes the fourth stage

(d) Determination of the approximate solution from

the constants.

For example the collocation and Rayleigh Ritz methods

would involve all four processes with the numerical

solution specified by some constants al,a2 ... an say and
n

represented by a finite sum 2 a.¢. (s) for some independent
j=l J J

set of functions {¢j}j~l. The particular method then sets
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up the equations which are subsequently solved by some

means. The fourth step then determines the approximation

by forming the finite sum at any desired point.

Finite difference approaches can also be viewed in

this way with the numerical solution characterised by a

set of its values at mesh points throughout the interval

[a,b]. These point values are determined by applying a

finite difference operator at the grid points to set up

equations which may be solved for instance by a band-

matrix algorithm. Since the unknowns are in fact values

of the approximate solution no fourth stage is generally
performed but one could visualise this if an interpolant

of these point values were constructed.

Shooting methods may also be regarded in a similar

manner to the finite difference case. We do not wish to

consider this aspect in detail and it is in any case

rather an unnatural way of looking at these methods.

In this thesis we concentrate on the collocation

method and a detailed description of this is presented

in section 1.3.

A consideration of finite difference and shooting

methods is given by Keller (1968) or more recently by

Roberts and Shipman (1972). An introduction to the

Rayleigh Ritz and Galerkin methods may be found in

Collatz (1960) with more detailed accounts of the Ritz

method given by, for example, Gould (1957), Kantorovich

and Krylov (1958), Mikhlin and Smolitskiy (1967) and

Mikhlin (1970). There has been a considerable amount

of recent work in this field, for example a series of

papers by Ciarlet, Schultz and Varga with the latest in
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1969, but it is not the aim of this thesis to discuss

these developments.

When nonlinear problems of the form (1.1) are

encountered we have a choice of procedure. Either non-

linear algebraic equations are set up and solved by an

iterative technique or the problem itself is linearised

and solved successively. Under certain circumstances

these two approaches are equivalent.
An example of the second of these alternatives is

Newton's method for operator equations. Application of

this process to an equation of type (1.1) entails the

successive approximate solution of linear differential

equations

x (m-I) )x (j )
k k+l

= x (rn-l) )
k

rn-l af
+ l: ...;.._..,.-.,-,-

j=O ax(j)
(l)(s,xk,xk ' ... x (m-I) )x (j )

k k (1. 3a)

subject to the linearised boundary conditions

(1)
(xk ' xk ' ••• x (m-l) )x (j )

k k+l

= x(rn-l»
k

(k > 0) (i=f1. •• m) (1. 3b)
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That is, an initial guess x is chosen and then theo

problem (1.3) is solved by a numerical method for a first

iterate Xl (s) (or set of point values if a difference

method is employed) and so on until some criterion, for

example the proximity of successive iterates, is used for

terminating the iteration.

The convergence of this process has been investigated

by Kantorovich who gives sufficient conditions for local

convergence - see for example Kantorovich and Akilov (1964,

Chapter 18). Further discussions relating to the Newton

(Kantorovich) method are given in Mikhlin and Smolitskiy

(1967), RaIl (1969) and Roberts and Shipman (1972). Altern-

atively if certain monotonicity properties are satisfied

global convergence can be established, see Bellman and

Kalaba (1965) and Collatz (1966).

Thus we see that for the approximate solution of any

boundary value problem it is quite likely that linear

differential equations would be encountered.

This completes a brief review of the most popular

methods for the numerical solution of two point boundary

value problems. In the next two sections we are more

specific and consider a class known as projection methods

and the collocation method in particular.

1.2 Projection Methods

As we have mentioned we are principally concerned

with the numerical solution of differential equations,

however much of the theory which we shall encounter

utilises concepts of functional analysis and applies to
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more general operator equations. Several methods for

the approximate solution of such equations can be

classified as projection methods and a brief description

of these is given below. It is assumed that the reader

is familiar with the basic concepts and notation of

functional analysis.

Let X and Y be linear spaces with M a linear

operator mapping X ~ Y and suppose we are given an

equation

Mx = Y (yeY) (1. 4)

to solve for xeX.

Let X and Y be subspaces of X and Y respectively of

equal dimension. Let ¢ be a projection from Y ~ Y
-Le. ¢(Y) = Y = ¢(Y).

With this background we shall define a projection

method as a method which seeks an approximate solution
-xeX to (1.4) satisfying an equation

¢(Mx - y) = 0 (1. 5)

For any approximation ~ to the solution of (1.4) we

should like the residual MX - Y to be as close to zero

as possible (since this is so for the true solution)

and projection methods seek an x such that the corres-

ponding residual is mapped to zero under the influence

of the projection operator.

There are other definitions of projection methods
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but for the purposes of this thesis we shall adhere to

the above specification.

1.3 Collocation

The collocation method is now described in detail

and it is subsequently shown that it can usually be a

projection method. Latterly the main literature on the

subject is briefly reviewed.
Suppose we wish to solve numerically a problem of

type (1.2). There are two essentially equivalent

variations of the application of the collocation process
and both are described.

In one approach the collocation method seeks an

approximate solution x in the form of a finite sum,

x(s) =
n+m
L

j=l
a .l/I . (s)
J J

(1. 6)

n+mwhere {a.}. 1 are real constants and the basis functions
J J=

{ }n+ml/Ij j=l form a linearly independent set and are chosen

by the user. An obvious choice for the {~.} is a set of
J

polynomials, for example simple powers, Chebyshev poly-

nomials or Legendre polynomials. Spline functions are

another popular selection for the basis functions.

A set of n points {s.}~ 1 known as the collocation
J. J.=

points or nodes are chosen distributed throughout the

interval [a,b]. When polynomial basis functions are

employed the zeros of the nth degree Chebyshev or

Legendre polynomial are often taken as the nodes.

The method then sets up equations for the unknown

constants by collocating on the selected points, that
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is by requiring that the residual Lx - y vanish at the

collocation points. This leads to n equations satisfied
n+mby the constants {aj}j=l' namely

n+m II a.L ~. = y(s.)
j=l J J s=s. 1

1

(i = 1 ... n) (1.7)

The remaining m equations needed to determine the

unknowns are found by constraining the approximation

(1.6) to satisfy the boundary conditions, i.e.

= (i = 1 ... m) (1.8)

Equations (1.7) and (1.8) together constitute n+m

algebraic equations to be solved for the n+m constants.

The best method of solution of these algebraic equations

depends upon the form of the corresponding matrix,

however Gaussian Elimination is very often the most

suitable technique.

The process described so far has consisted of the

appropriate steps (a), (b) and (c) of a general method

discussed in Section 1.1.

Having determined the unknowns the approximate

solution is then obtained at any point s by forming

the sum (1.6).

The second approach which may yield the same answer

as the former is to require that the approximation i*
explicitly satisfies the boundary conditions (1.2b).

That is, i* is sought in the form
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x*(s) = (1. 9)

with the function ~(s) such that the equations

= (i = 1 ... m) are automatically satisfied

for all choices of constants {a~}~ 1. If the conditions
J J=

(1.2b) are complicated this may not be possible and it

would be necessary to revert to the earlier approach.

Further if these two representations are to furnish the

same answer we must have that for any choices of {a.}
J

and {a~} the two sets
J

{x:x =
n+m
Lj=l

a.1jJ.}n{x:U. (x)
J J 1

= = 1 ... m) }

and {x*:x* =
n

~I a~1jJ.}are equivalent. With the
j=l J J

(1.9) the same collocation points are usedrepresentation

and the rest of the procedure is as before.

We shall now describe the usual manner in which the

method is employed for our purposes. For example,

suppose that (1.2a) is of even order m = 2r over [-1,1]

and suppose that the end conditions (1.2b) are
x (i) (-I) = x(i)(+l) = o (i = 1 ... r).

We shall take the 1jJ.as polynomials of degree
J

j-l (j ~ 1) and the function ~(s) is taken as (s2 - l)r

which satisfies the requirements. A popular represent-

ation of the form (1.9) is

(s2
n-l

x* = - l}r II C.T.(s) (1.10)
j=O J J

where T. is the Chebyshev polynomial of degree j and cjJ
is taken as • (j = 0 n-l) •aj+l ...
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The symbol Il means that the first term in the finite
CoTosum is to be halved. That is, the first term is now --2--'

this being a convenience and not a necessary condition.

It is now briefly demonstrated that this collocation

process can be viewed as a projection method. This is

considered in more detail in section 2.2.
-Let Y be the space of continuous functions. Y is

to a large extent arbitrary and can be spanned by any n

functions as long as the interpolation problem is soluble.

With {si}~=l as the collocation points let ¢ be the pro-
-jection Y + Y that maps each continuous function into its

interpolant formed by interpolating at the nodes. That

is, for a continuous function y, ¢y can be expressed as a

combination of the n functions and is such that

= (i = 1 ... n). We do not specify the

space X here but leave a more rigorous description until
-section 2.2. However we take X as the set of functions

of the. form (1.10) and we see that both X and Y have

dimension n. Then since the method requires that the

residual vanish at the nodes, i.e. (Lx* - y) I _ = 0s-s.
1.

(i = 1 .•• n) this means that the polynomial of degree

n-l interpolating the residual at these n points must be

identically zero, i.e. ¢(Lx* - y) = O. Thus the approx-

imation satisfies an equation of the form (1.5) showing

that we have indeed a projection method. We have been

fairly specific here but collocation is in fact a pro-

jection method under very general circumstances.

This concludes our description of the basic method.
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The origins of the method are not clear but it seems

that theoretical investigations relevent to collocation

were first conducted in Russia by Kantorovich (1934,1948)

although these have not been consulted. Other early

results were obtained by Karpilovskaja (1953). In 1959

Kanorovich and Akilov (English transl. 1964) produced

what is generally regarded as the major work on this and

other topics, presenting convergence theorems for the

approximate solution of a wide class of operator equations.

Improved but more specific convergence results were

achieved by Karpilovskaja (1963).
The use of a Chebyshev series in the approximation

was considered by Lanczos (1938) and later other practical

aspects and the application of the method to nonlinear

problems were examined by Clenshaw and Norton (1963) and

Wright (1964). A survey of the method of weighted

residuals of which collocation is a particular case was

given by Finlayson and Scriven (1966).

Theoretical results for nonlinear problems were later

obtained by Vainikko (1965,1966,1969) with the paper in

1966 perhaps containing the most useful achievements.

Other aspects of the method have been investigated by

Shindler (e.g. 1969).

More recent studies of projection methods have been

conducted by de Boor (1966), Phillips (1969,1972) and

Coldrick (1972). Perhaps the most significant work within

the last two years has been concerned with the use of

splines in the approximation and the development of

corresponding theoretical results. The main achievements

are those of Lucas and Reddien (1972), Russell and
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Shampine (1972) and the further advances of deBoor and

Swartz (1973).

The numerical solution by collocation of linear

partial differential equations has been investigated by

Karpilovskaja (1970) who considers trignometric approx-

imations and presents convergence results based on the

theory of Kantorovich and Akilov (1964).

A theory of a different nature designed primarily

for quadrature methods for integral equations has been

developed by Anselone (1971) and in this thesis Anselone's

work will emerge as a useful basis for further investi-

gations.

1.4 Green's Functions

We now briefly introduce the idea of a Green's

function. These functions will be used throughout to a

great extent for both theoretical and practical purposes.

Consider for example the boundary value problem of

(1.2a) subject to the homogeneous end conditions

(i = 1 ... m) (1.2c)

Then the Green's function g(s,t), when it exists, is a

function such that

b
x(s) = J g(s,t)y(t)dt

a

This relationship has to hold for all continuous inhomo-

geneous terms y(s).
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The Green's function depends on the boundary

conditions and knowledge of it enables us to invert

the differential operator (1.2a) subject to the end

conditions (1.2c).

By far the most common Green's function which we

shall encounter is that for the differential operator
d2 [-1,1] subject to---2 operating on x say, over
ds
x (-1) = x(+l) = 0. The literature, for example

Keller (1968, p.108) generally gives the Green's

functions for interval [0,1] but when this is trans-

formed to [-1,1] we have

__ { ~ (s + 1) (t - 1)
g(s,t)

~ (s - 1) (t + 1)

s $ t

s > t

For s < t t;(S,t) =
~(t+l).

~(t - 1) and for s > t
~dS(S,t) =
We shall also have cause to use the quantities

+1
f !g(s,t) !dt
-1

and
+1 d
f !* (s,t) [d t ,
-1

After elementary manipulation we obtain

+1
~(l - s2)f !g(s,t) Idt = (1. 11)

-1
and

+1
!*(S,t) !dt ~(l + s2)f = (1. 12)

-1

1.5 Aim and Summary

Having introduced numerical methods for boundary

value problems and considered certain preliminaries we

now summarise the aim and content of this thesis.
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As was mentioned in section 1.1 there are several

methods for the numerical solution of differential

equations. Having found an approximate solution by

some means the following question arises. 'How good

are our answers?'. This is the field of error analysis

of which there are two basic types, 'a priori' which

examines the error before the numerical problem is

tackled and 'a posteriori' which is applied after the

approximate solution has been computed and utilises

this knowledge.

We are principally concerned with collocation

methods and the literature cited in section 1.3 contains

a considerable amount of work on error bounds which are

usually expressed in more general functional analysis

terms with the differential equation together with the

boundary conditions treated as an operator equation.

However most of these results are of an 'a priori'

nature and are derived in terms of the inverse of the

given operator. This approach leads to convergence and

order of convergence proofs but is of little use if a

computable bound on the error is required since knowledge

of the inverse of the given differential operator is

tantamount to knowing the true solution and is clearly

not a very practical possibility.

There are some results of the converse 'a posteriori'

nature but these seem to have remained as theoretical

rather than practical bounds. It is the principal aim

of this thesis to examine the 'a posteriori' theory and

deduce, primarily for polynomial approximation, means of

forming computable bounds which are subsequently applied



-15-

to sample two point boundary value problems. Much of the

analysis given throughout is also pertinent to the numerical

solution of Fredholm integral equations. Generally in these

investigations the effect of rounding error is ignored,

however at an appropriate stage relevent matrix condition

numbers are given some consideration.

In Chapter 2 the functional analysis background for

the theory is described and the main theorems are presented.

In particular, the results of Kantorovich and Akilov (1964)

are stated in a slightly simplified form for projectior

methods. These are followed by less involved but essentially

similar theorems based on the work of Phillips (1969,1972)

and Coldrick (1972). Finally the theory due to Anselone

(1971) is summarised. The la posteriori' bounds given in

these results are the object of our main investigation as

a more practical approach is developed throughout the thesis.

The application of the theory for projection methods

to the approximate solution by collocation of linear :iiffer-

ential equations is considered in Chapter 3. Firstly it is

demonstrated how to relate the numerical problem to the

functional analysis setting and the study of 'a posteriori'

approaches is motivated by examination of the 'a priori'

results which are shown to be rather unsuitable. The main

part of Chapter 3 is concerned with the 'a posteriori'

bounds and various means of expressing these in terms of

the inverse of the collocation matrix are examined. This

investigation encounters awkward problems but eventually

suitable results are achieved. During the course of this

analysis interesting properties of certain matrices are
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revealed and these are explored more fully in the final

section.

In Chapter 4 the theory due to Anselone (1971) is

studied and it is demonstrated how to 'extend' the

collocation method to satisfy criteria necessary for

the application of this theory. Again the problem of

expressing the theoretical 'a posteriori' bounds in

terms of computable quantities is successfully investi-

gated. In the last section a generalisation of the

earlier ideas is suggested.

Chapter 5 is concerned with the implementation on

the machine of the computable bounds. The results

derived in Chapters 3 and 4 based on the theorems of

Chapter 2 are only applicable if a sufficiently large

number of collocation points is employed. Actual

values of this number presented later in the chapter

for certain sample boundary value problems are sometimes

found to be quite large and to avoid this difficulty

more easily applicable estimates of the bounds are

developed. In the last section the results of test

applications of the different error bounding techniques

are presented and compared with actual computed errors.

This is followed by a discussion of certain pertinent

points.

Chapter 6 examines certain areas where the analysis

given might be usefully extended and ends by summarising

appropriate conclusions to be drawn from this work.

This completes the summary of the thesis and for

convenience we state here that all computations throughout
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this work were performed on an IBM 360/67 computer using

double length arithmetic.
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CHAPTER 2

THEORY OF APPROXIMATION METHODS

2.1 Introduction

In this chapter we introduce the setting for certain

operator equations and their approximate solution. In

the former sections theorems based on the work of

Kantorovich and Akilov (1964), Phillips (1969,1972) and

Coldrick (1972) are given. These are both of an la

priori' and an 'a posteriori' nature. In the latter

sections theorems of a different type due to Anselone
(1971) are presented.

These theorems are of a general nature with several

possible areas of application. In later chapters we

concentrate on the numerical solution by collocation

methods of boundary value problems in ordinary differ-

ential equations, much of the analysis also being

relevent for Fredholm integral equations. Other

applications of the theory include Galerkin methods for

both ordinary and partial differential equations and

some of these topics are examined in Chapter 6.

We now introduce the background for the theory

based on the work of Kantorovich and Akilov.

2.2 Setting for the Projection Method Theory

Let X and Y be normed linear spaces and let 11·11

and 11·11 denote the norms in the spaces Y and X
X

respectively. Let [X,Y] denote the space of bounded

linear operators mapping X ~ Y with the subordinate
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norm. Let X and Y be subspaces of X and Y respect-n n
ively with ¢n a bounded linear projection Y ~ Yn. The

subscript n will have significance later denoting the

dimension of the subspaces but no restriction on

dimensionality is made here.

Consider two equations

Gx - Tx = y (2.1)

(2.2)and Gx - ~ Tx = ~ yn 'l'nn 'l'n

where XEX, x EX and yEY. Here G~ E[X,Y] and wen n

further assume that G has a linear inverse and that G

restricted to Xn

and Y. That isn

establishes a bijection between Xn
G(Xn) = Yn and G-l(yn) = Xn. (2.1)

is the given equation and we might seek an approximation

to its solution x by solving (2.2) for XnEXn. (2.2) is

the approximate equation and can be derived by seeking

an x EX such that ¢ {(G-T)x - y} = 0 sincen n n n
¢ Gx = Gx EY. An intuitive concept of the situationn n n n
described is illustrated below.

G - T: X ~ Y

G - cP T: X ~ Yn n n
Note that G CPnT is regarded as being restricted to

domain X .n
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Most of the theorems given later require the

operators to satisfy the relationships above together

with some extra conditions on the operators and spaces.

However this is the basic setting and it is now shown

that the numerical solution by collocation of a linear

differential boundary value problem can be regarded in

this way and we follow the description of Kantorovich

and Akilov. For example, suppose we wish to solve the
following 2mth order linear equation over the interval

[-1,1] :

L[ x] _ d2mx + (t) (2m-l) (t)
dt2m P2m-l x + .•. PI (t)x (1)(t)

+ PO(t)x(t) = yet) (2. 3a)

subject to the boundary conditions

x(j) (-1) = x(j) (+1) = 0 (j = 0 ••• rn-I) (2.3b)

In keeping with the description of section 1.3 we seek

an approximate solution in the form

= (2. 4 )

n-lwhere {~k}k=O are n independent polynomials of up to

degree n-I. For example ~k(t) = tk or ~k(t) = Tk(t)

(k = 0 ... n-l) could be selected. Let the chosen set

of collocation points be {t.}~ 1 and the method requires
J J=

L[xn] It=t. = y(tj) (j = 1 .•. n ), Let c(q) [-1,1] be
J
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the space of functions which are q times continuously

differentiable over [-1,1] with C[-l,l] == c(O) [-1,1]
and let B be the set of those continuous functions

which satisfy the conditions (2.3b). Now define
X == C (2m) [-1, l]()Band let X be the space of functionsn

of the form (2.4). Y is chosen as C[-l,l] and

Y == P 1 the set of polynomials of degree up to n-l.n n-
The projection ¢ is defined as the mapping projectingn

each continuous function into its unique interpolating

polynomial at the collocation points.
by Gx == x(2m) and Tx == _(p x(2m-l)2m-l

Define G and T

+ ... +

Thus the differential equation (2.3a) plus the end con-

ditions (2.3b) is equivalent to the operator equation

Gx - Tx = y. Note that in principle G could be chosen

differently but this would cause complications in the

choice of subspaces and in knowledge of the inverse of G.

This point is discussed again in Chapter 6. Kantorovich

consideres a parameter A in (G - AT)x = y but this is

omitted explicitly for simplicity and can be considered

as occurring in T. We choose the norm in the space Y as

the infinity norm and the norm in X is chosen as

IIxIIX = IIGxll = IIx (2m)II00 and we shall call this the X-norm.

We require PifC[-I,I] (i = 0, 2m-I) and this together

wi th the above def inition of "ollx ensure that G, Te [X,Y] •

This is shown later in more detail in section 3.2.

Clearly G(X ) = Y. For yeC[-I,I],+1 n n
(G-ly) (s) = J g(s,t)y(t)dt where g(s,t) E the Green's

-1 2m
function for the differential operator ~ subject to

dt m
the conditions (2.3b) and is known explicitly. If
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YEY then G-ly = x where x is a polynomial of degree
n

2m + n - 1 which must satisfy (2.3b) and so is of the

form (2.4). Thus G is a bijection between X and Y .n n

As described in section 1.3 the application of

the collocation method means that we seek an x EX suchn n
that (G - T)xnlt=t. = y(tj) (j = 1 ... n) . Thus

J
4>n{(G - T)x - y} = 0 or (G - 4>T)x = 4>nY (sincen n n
Gx €Y ) and it has been shown that the approximaten n
solution of 2mth order boundary value problem can bea

regarded in the functional analysis background given

previously. As was mentioned earlier this is only one

application of the theory and more general aspects are

left until the final chapter.

2.3 Definitions of Compactness

Before proceeding to the statements of the theorems

we introduce the concepts of compactness which will be

used throughout this chapter. We follow the definitions

given by Anselone (1971). Let S be a subset of a normed

linear space X and let [X] be the space of bounded linear

operators on X. Then S is compact iff every open cover of

S has a finite subcover. S is said to be relatively

compact iff the closure of S is compact. This situation

differs slightly from that in Kantorovich and Akilov where,

for sets, the term compact is equivalent to Anselone's

relatively compact. The set S is seguentially compact iff

each sequence in S has a convergent subsequence with the

limit in X. The properties of relative and sequential

compactness are equivalent.
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Let U be the unit ball {zex:IIzll< L} then Ke[ xt is

compact iff the set KU is relatively compact (in X).

This means in effect that a compact operator maps bounded

sets onto relatively compact sets. This definition of a

compact operator agrees with Kantorovich and Akilov's

concept of a completely continuous operator.

2.4 The Theory of Kantorovich and Akilov

We now present in a slightly simplified form the

theorems of Kantorovich and Akilov which apply to the

solution of operator equations of the type (2.1) and

(2.2) previously introduced. Firstly some further

requirements must be satisfied. The norm in the space

X is defined by IIzllx= IIGzII,zeX. This is primarly for

convenience in the theory but for the example of the

approximate solution by collocation of differential

boundary value problems is necessary to ensure bounded

operators G and T (see sectiom 2.2 and 3.2). Subscripts

on the norms II·IIxor II·IIy will be used occasionally to

clarify certain points. Also X and Y should be completen n
subspaces of X and Y respectively. This requirement holds

trivially if Xn and Yn are finite dimensional - see Brown

and Page (1970, p.147).

The following three conditions are used:

I For every zeX there exists a yeYn such that

IITz - yll2. lll"z" where. "'1 i$ il'1depel1cotent of 7. .

II There exists an element yeY such thatn
II y - yll2. 11211yll whe1'e JJz. lt1C2~dept"Q on ~ .

III G - .nT satisfies the condition that the existence of

a solution x in Xn to (G - .nT)x = y for every yeYn
implies its uni ueness.
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Throughout the following four theorems G - ¢nT means
G - ¢nT restricted to Xn and (G - ¢nT)-l is an operation
with domain Y .n

We now state,
Theorem 1 (Kantorovich and Akilov)

If condition I holds, the linear operation (G - T)-l
exists and 0 = )..Illl¢n(G- T)IIII(G - T)-lll < 1 then
(G - ¢ T)x = y has a solution x for all yeY , withn n

IIxll2 l~ollYIlwhere 0 = (1 + )..11)11 (G - T)-lil.
Further if condition III holds or in particular if

G-l¢nT is a compact operator e[xn] then the linear
operator (G - ¢nT) -1 exists and II(G - ¢nT) -111 2. l~o.

Theorem 2 (Kantorovich and Akilov)
If conditions I, II and III are satisfied and

equation (2.1) has the solution x then IIx- x II < nll xlln -

where x is the solution of (2.2) andn
11 = (lll+ 11211 (G - T)II) (1 + II(G - ¢nT)-1¢n (G - T) II ) •

Alternatively if it is known that there exists an
xe X such that IIx - xII < Ellxii then the above errorn
bound holds without the use of conditions I and II,
where now 11 = E(l + II (G - ¢ T)-l¢ (G - T)II).n n

If we have sequences of spaces X and Y (n = 1,2 ...)n n

with corresponding mappings then with the conditions of
the theorem we have convergence in lim Ilx Xnll 0- =n==
provided lim limn-+oollill¢nll = n-+OO 11211 ¢nll = O·

Now a theorem of a slightly different nature is given.

Theorem 3 (Kantorovich and Akilov)
Given sequences of spaces Xn and Yn and corresponding
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approximate equations of the form (2.2) then if (G - T)-l
. t th Y . 1 t lim ~ (Y) deX1S s, e space 1S comp e e, n+~ ~ny = y ye an

G-IT is a compact operator e[X] we have that the approx-

imate equations are solvable for sufficiently large nand

the approximate solutions converge to the exact solution.

The theorems presented so far are essentially of an

'a priori' nature. We now give a result which deduces

information about the solubility of the given equation

from the approximate equation.

Theorem 4 (Kantorovich and Akilov)
If the linear operation (G - et> T)-l exists, conditionn

et> T)-1et> (G - T) II) < 1 then
n nI holds and 0 = ]11(1 + II (G -

G - T has a linear left ~nverse with

Further if it is true that the uniqueness of the solution

of equation (2.1) implies its solubility for every right

hand side then the two-sided linear inverse (G - T)-l

exists·

These then are the most relevent parts for our

purposes of the theory of Kantorovich and Akilov. They

actually consider a slightly more general situation with
-an operator Te[X ,Y ] of which et> T restricted to X isn n n n

a special case. However for the approximate solution of

differential equations by collocation or Galerkin methods

the theory reduces to this form.
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The above results are proved by reducing the given

and approximate equations to equations with operators

mapping the space X into itself. This is done by

applying G-l to equations (2.1) and (2.2) to give
G-l(G - T)x = G-ly

-1x - G Tx = -1G Y (2.1'")

or

= (2.2"')

(2.1"')and (2.2"')are now in the form (I - K)x = y ando

(I - PnK)Xn = PnYo with yoex, Ke[X], Pn a projection

mapping X ~ X and I the identity operator on X. Wen

shall consider later a similar process and shall not

proceed further with this suffice it to say that once

this form is achieved Kantorovich and Akilov then apply

their theory for equations of the second kind to derive

the theorems presented above.

It has been shown previously that the approximate

solution by collocation methods of differential boundary

value problems can be seen in the context of the theory.

The extra conditions required for the application of the

theorems are shown to the true in section 3.2 of the next

chapter. Also an example of their 'a priori' application

is considered proving the solubility of the approximate

equation and finding the error bounds predicted by the

theory.
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2.5 Theory Developed from a More Recent Approach

We now however proceed to consider and modify recent

work due to Coldrick (1972) of a related nature to that

presented above. Similar investigations have been pursued

by Phillips (1969,1972). The theory is designed for

application to the numerical solution of integral equations

but it is shown that this can be altered to prove results

which can be later applied to the approximate solution of

differential equations. This is achieved in a manner

analagous to that which Kantorovich and Akilov use to

reduce the equations (2.1) and (2.2) to the forms (2.1~)
and (2.2~).

The approach seems less confusing than that of

Kantorovich and leads to theorems of an 'a posteriori'

character more suited to practical application than the

theory above.

The setting for the theory initially described here

is a normed linear space X (with norm denoted by 11·11) and

[xl is the space of bounded linear operators on X, with

the subordinate norm. We now state a theorem which is

standard when X is a Banach space but which is quoted from

Coldrick (1972).

Theorem 5 (Coldrick (1972, p.14))
Let K,Le[X] and (I - K)-le[x] Suppose further that

either K and L are compact or the linear space X is complete.

Define IS= II (I - K)-lIlIlK- LII and suppose IS< 1, then

(I - L)-lE[X] and II (I - L)-lll < II (I - K)-lll •
1 - IS

We are concerned with the approximate solution of an
equation
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(1 - K)x = y (2. 5 )

in X with yeX, 1 the identity operator on X and Ke[x]

and we seek xeX. Let X be a subspace of X and Pn n

a linear projection mapping X ~ X. We might hopen
to find an approximation x to x where x eX by solvingn n n
an approximate equation of the form

(1 - P K)x = P Yn n n (2. 6 )

With x satisfying (2.6) and seeking an x satisfyingn

(2.5) we now give the following theorem.

Theorem 6 (This result is essentially given by Coldrick

but with the roles of 1 - K and 1 - P Kn
reversed) .

Let Xn be a subspace of a normed linear space X and

let P be a bounded linear projection mapping X ~ X .n n
Suppose that Ke[X] is compact and (1 - P K)-le[X]. Then

n

if c = II (1 - P K)-llill(1 - P )KII<lwe have (1 - K)-ln n n
exists e[X] and

(a)

(b) with x and x satisfying (2.5) and (2.6) respectivelyn

we have the error bound

IIx - x II<n
cn

1 - cn

This is a result of an 'a posteriori' nature.
-1Notice that here (1 - PnK) and (1 - PnK) e[X] and are

not restricted to the subspace Xn•
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Proof (a) Since K is compact and P is bounded, P K isn n
compact - see Brown and Page (1970, p.245). Thus sub-

stituting P K for K and K for L in Theorem 5 we achieven

the result (a).

(b) Thus there exists a unique x such that

(I - K)x = y. Now (I - K) (x - xn) = y - (I - K)Xn
= y - P Y + (K - P K)xn n n
~x - x .= (I - K)-l(I - P )y + (I - K)-l(I - P )Kxn n n n

and (b) follows.

Corollary Let {Xn} (n = 1,2 ..•) be a sequence of sub-

spaces of the normed linear space X and let {p } be an

sequence of bounded, but not necessarily uniformly bounded,

projections mapping X ~ Xn (n = 1,2 ...). Suppose that for

n > no ,(I - PnK)-l exists e[X] and that for n > nl > no

o = II(I - P K)-llill(I - P )KII<l, then (I - K)-l exists e Ixln n n

and for n > nl (a) and (b) provide different bounds on

II(I - K)-lll and error bounds for IIx- xnll respectively.

So far for Theorems 5 and 6 we have only considered

operators in one space X only. This situation is applied

to integral equations of Fredholm type by Coldrick. Similar

application is also considered by Kantorovich and Akilov.

We now consider two spaces X and Y with subspaces

Xn and Yn and exactly as described at the start of this

chapter we wish to solve approximately a given equation of

the form (2.1), namely (G - T)x = y by means of an approxi-

mate equation of the form (2.2). The operators ¢n' G, T

and their properties together with the rest of the setting

is precisely as described earlier in section 2.2. It was

shown that the numerical solution by collocation of a

boundary value differential equation could be seen in this
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light. To derive results analagous to those of Theorem 6

which can be applied to the approximate solution of

differential equations we reduce the equations (2.1) and

(2.2) to the form (2.1~) and (2.2~), wholly in X. This

process is carried out by Kantorovich and Akilov to prove

their results for the approximate solution of (G - T)x = y

and was mentioned briefly before. This is now described

in more detail.

By operating on the left throughout equations (2.1)

and (2.2) we derived the equations (2.l~) and (2.2~), namely
(I - G-1T)X= -1 -1-1G Y and [I - (G ¢nG) (G T)]Xn

-1 -1Since G :Y + X, Yo = G Yrespectively.

GzeY =t ¢ GzeY =t G-l¢ GzeX and alson n n n
= G-l¢nG thus proving that G-l¢nG is a

X + X. For zeX,

projection from X + X. Further if the norms in the spaces
n

X and Yare related by II zllX = II GzilY where II ·11 Y represents
the norm in the space Y then II Gil= II G-lil = 1 and if re [ X,y]

Thus writing G-IT as K, G-l¢ G as P andn n
-1G Y as Yo (2.1~) and (2.2~) are of the forms (2.5) and

(2.6) respectively. Therefore transforming (2.1) and (2.2)

in this way the situation is precisely as described before

the statement of Theorem 6 which can now be used to give

results for the approximate solution of (2.1). We now give

Theorem 7

Let Xn and Yn be subspaces of X and Y respectively and

let ¢n be a bounded linear projection mapping Y + Yn· Suppose
that TelX, Y] and G-IT is compact e [ X] • Suppose further that

(G - ¢ T}-ldY,X] and on = II (G - ¢nT)-11111 (I - <Pn)Til < l. Thenn
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" (G - ¢ T-lil(G - T)-l exists e[Y,X] and (a) II(G - T)-lll'::' 1 _ ~
n

With x and xn satisfying (2.1) and (2.2) respectively
<5 II(G - ¢ T)-lll

we have (b) IIx - xnll .::.1 _n8 Ilxn" + 1 _ ~ II(I - <pn)yll
n n

II(G - ¢ T)-lll
n1 - <5 II (G - T)xn - yll.
n

or more simply IIx - x II<n -

Notice that G - ¢ T and (G - ¢ T)-l are regarded as operatorsn n
between the whole spaces and not the subspaces.
Proof It was shown above how equations (2.1) and (2.2) could
be transformed to the forms (2.5) and (2.6) and so with these
relationships we have to show that the conditions of Theorem
6 are satisfied. We have K _ G-1T and P - G-l¢ G and so

n n

IIPnll= IIG-l¢nGIl < II¢nll• Thus if ¢ is bounded so also is P .- n n
Now (I _ P K)-l - (I _ G-l¢ GG-lT)-l = (G - ¢ T)-lGn n n
~ (I - PnK)-le[X). Also <5 = II(G - ¢nT)-11111 (I - ¢n )Til< 1n
~ II(G - ¢nT)-lGIIIIG-l(I - <PnGG-l)Til<1

~ II(I PnK)-lllll(I - Pn)KII < 1 and this is the condition
required for Theorem 6. Thus (I - K)-l exists e[X)

=+ (I - G-IT)-lG-l = (G - T)-l exists ery,x] and the results
(a) and (b) follow on substitution. The latter result of
(b) is derived from (G - T) (x - xn) = y - (G - T)Xn which
implies (x - x ) = (G - T)-l(y - (G - T)x ) wheren n
y - {G - T)xn is the residual on substitution of xn into
the given equation.

In Theorem 7 we have occurring the quantity
II(G - ¢nT)-lll where (G - <PT)-le[ Y,X] not [yn,xn], Howevern
we can employ the following argument to utilise (G - ¢ T)-ln
restricted to Y i.e. (G - -1 (G - <pnT)-l(G - <pnT) In' <p T)y • =n n



-32-

(G -
(G -

Thus

II(G - <PnT)-111 < 1 + II(G - <PnT)~lllll<PnT11
n

(2 • 7 )

Using (2.7) we can now state
Corollar:i If the conditions of Theorem 7 are satisfied
and if B denotes II(G - <PnT);lllthen providedn n
<5 = (1 + Bnll<PnTII)II(I- <Pn) Til < 1 we have the boundn

With this result the error bounds (b) of Theorem 7
may then be employed.

Phillips (1969,1972) considering in particular
integral equations has presented similar results to those
given above but does not use them in practice. We intend
that these bounds be applied in an 'a posteriori' manner
to the approximate. solution by collocation of linear
ordinary differential equations. The conditions required
for these results are shown to hold in the section 3.5
of the next chapter. The bounds are then calculated by
finding a bound on Bn = II(G - ¢nT)~ll1 in terms of the

n
inverse matrix from the collocation equations.

Clearly 'a priori' bounds ana1agous to those of
Theorem 7 could be given. Roughly, if (G - T)-l is known
to exist then for sequences of subspaces with corresponding

mappings, if ~!!!II(I - ¢n)TII = 0 and ~!:II (I - ¢n)yll = 0
then with n sufficiently large (G - ¢ T)-l exists e[Y,X]n
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and we have the 'a priori' error bound

(2.8)

where 0 = II (G - T)-llill(I - <pn)TIIand lim IIx - xn" = O.n n~oo

2.6 Connections between the Conditions for 'a priori'
Error Bounds
Theorem 2 due to Kantorovich and Akilov (1964)

requires the conditions
I For every zeX there exists a yeYn such that

IITz - yll ~ ]11"z" and
II There exists an element yeY such thatn

lIy - yll 2. Jl2"ylland for convergence they demand
lim limn-+OO].l1"<Pnll= n-+oo]12"<pn"= o.
The result (2.8) requires

limll(I - <P )TII = 0n-+-oo n
(2.9a)

and (2.9b)

Suppose that the conditions (2.9) hold. Then (2.9a)
sup II(T - <pnT)zll

=9 z:;eo II zll -+ 0 as n -+ 00 and for each n let

sup
z:;eo

II(T - <pnT)zll
II zll = Thus for all zeX

II(T - <pnT}zll < n IIzlland letting y = <PTz we have- n n
IITz - yll < n IIzll,which is condition I required by- n

Kantorovich and Akilov.
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If (2.9b) holds then with tn = lIy - <t>nyllwe have
limn+OO t n = o. Now for y * 0 it is true that

tn tnirY1I II yll. Thus wri ting ~n = iiYlI=
Iiy - A, II < ~ Ilyll(for all y) and with y = ¢ y~ny - n n
IIy - yll < ~ IIyll which is condition II.

- n
Conversely if the conditions of Kantorovich and

Akilov hold then I implies that for all zeX there exists

a yeY such that IITz - yll < lllilzll. Thusn -
IITz - ¢n Tzil = IITz - Y + y - ¢ Tzil < IITz - STII+n -
lI¢n(Y - Tz)lI < (1 + II<t>nll)lllllzll-

(z * 0)

=+ liT - 4>nTII< lll(l + lI¢nll}+ 0 as n + 00

If condition II holds then similarly

lIy - <t>nyll~ (1 + lI¢nll}lly- yll ~ 112"yll(1 + lI¢nll)and
lim lim IIif n+= 11211¢nll = 0 ~ n+OO y - ¢nyll = O.

This shows the relationship between the two sets
of conditions required for convergence.

2.7 Background for Anselone's Theory
We now present a different theory for approximation

methods due to Anselone (1971). As earlier in the chapter
for the theory of Kantorovich and Akilov (1964) we first
introduce .the background for the results and then state the
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theorems. These will be shown later in sections 4.2 and

4.3 to be suitable for application to the approximate

solution by collocation of differential equations and will

be used in practice in Chapter 5.

Thus following Anselone, let X be a real Banach space

with [xl the Banach space of bounded linear operators on X

with the subordinate norm and I as the identity operator on X.

Pointwise convergence of an operator sequence {S } withn

Sne[Xl (n ~ 1) to se[xl is denoted by Sn + S and is defined by

the requirement that Snz + Sz as n + 00 for all zeX. This is

different fr.om.convergence in norm which means liS - sil+ o.n
Anselone's.theory uses the weaker pointwise convergence but

requires that sequences of operators {Sn} which will be used

in some sense. as approximations to a given operator satisfy

addi.tional compa.ctness conditions. In section 2. 3 the term

compact applied to a single operator was defined. Anselone

utilises an extension of this concept defined in the following

manner. A set VC[X] is collectively compact iff the set

VU = {Sz : SeV,zeU} is relatively compact, where U is the unit

ball {zeX : IIzll.s. I}. A sequence of operators in [xl is

collectively compact iff the corresponding set is.

Before presenting the theorems we describe the types

of equations to which they are applied. Let yeX and K,Kn e[xl.

We are concerned with the approximate solution of a given

operator equation

(I - K)x = y (2.10)

where the true solution x is given by x = (I - K)-ly when
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the inverse exists. An approximation x eX to x is soughtn
satisfying an equation of the form

(I - K ) x = yn n (2.11)

and x = (I - K )-ly when I - K has an inverse. Withn n n
this setting we are now in a position to state the

theoretical results of Anselone which deal with sequences

of approximations of the form (2.11) to the given equation
(2.10) •

2.8 Convergence Theorems and Error Bounds for Methods using
a Sequence of Collectively Compact Operators to
Approxima.te a .Given .Oper ator

Theorem 8 (Anselone (1971, p.10))

Let K,Kn e ] x) (n = 1,2, •.•) and assume that the three

conditions, Kn -+- K, K is compact and {Kn} is collectively

compact are satisfied. Suppose (I - K)-l exists and define

~n = II (I - K)-llill(Kn - K)Kn". Then b.n -+- 0 as n ~ 00 and for
~ < 1 (I-K)-lexists,rX] withn I n

Error bounds are given by

(i)

(i1) giving

II x - x II -+- O.n
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This is a result of an 'a priori' nature since it depends

upon knowledge of (I - K)-l. Theorems 1, 2 and 3 require

analagous assumptions. However we are primarily concerned

in this thesis with, hopefully computable, , a posteriori'

error bounds and these are furnished by Theorems 9 and 10

to follow.

Theorem 9 (Anselone (1971, p.ll))

Let K,Kn e [ X] (n = 1,2, ...) and assume that the

same three conditions hold, namely Kn""* K, K is compact and

{Kn} is collectively compact. Whenever (I - Kn)-l exists
define b,.n = II (I - K )-11111 (K - K)KII• If for a particularn n
value of n, such that (I - K )-1 exists, we have b,.n< 1

n

then (I - K)-l exists with

1 + II (I - Kn) -11111 K II
<

1 - b,.n

Error bounds are given by

(i)

where y - (I - K)Xn is the residual or

(ii)

Nothing has so far been said concerning the uniform bounded-

ness of the (I - K )-1 or the possibility of convergence asn

n ""*~. However having obtained by the above result that

(I - K)-l exists we can then apply Theorem 8 to show that
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(I - Kn)-l exists for all n sufficiently large and that its
norms are uniformly bounded. Furthermore" x - x II ~ 0 asn

n ~ ~ and the properties of a collectively compact sequence
(Anselone (1970, p.8» give ~n ~ O. These deductions ensure
that the estimates from Theorem 9 for" (I - K)-l" are
uniformly bounded with respect to n as n ~ ~.

We shall later use the following generalisation which
is a simple extension based on suggestions by Anselone.

Theorem 10

Let. the operators K, K (n = 1,2, ... ) satisfy then
hypothesis of The.orem 9. Now however when (I - Kn)-l
exists define ~nd= " (I - K )-1"" (K - K)Kdll (d integer ~ 1)n n
and if for a par.ti.cularn (I - Kn)-l exists and ~~ < 1 then
(I - K)-l exists with

II(I - K)-lll
1 + IIKII+ ••. + IIKd-11i+ II(I - Kn)-IIlIlKdll

<
I _ ~n

d

The simplest error bound is IIx- xnll~ II(I - K)-lll"y - (T - K)Xn"
where II(I - K)-lll is bounded by the above expression-

As was mentioned earlier it will be shown in Chapter 4
(sections 4.2 and 4.3) that the approximate solution by
collocation of linear differential equations can be modified
so as to satisfy the criteria for Theorems 8, 9 and 10 and
practical results will be given in Chapter 5.
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CHAPTER 3

APPLICATION OF PROJECTION METHOD THEORY

3.1 Introduction

In this chapter we consider the application to the

numerical solution of differential equations of the

projection method theory given in sections 2.2-2.5 of

the previous chapter. Firstly it is demonstrated that

the solution by collocation of ordinary differential

boundary value problems does indeed satisfy the con-

ditions for the theory of Kantorovich and Akilov (1964).

Next the 'a priori' approach is examined by example and

it is shown that this is unsatisfactory not only because

it requires. knowledge of the inverse of the given

operator but aLso due to the fact that error bounds

are predicted which are far too conservative. An alter-

native approach is suggested which for fairly simple

probl.ems leads to improvements. The main part of the

chapter i.sconcerned with applying the 'a posteriori'

results for projection.method solution and the major

problem is finding a realistic computable bound on the

norm of the inverse of the approximate operator, i.e. a

The 'a priori'
<I> T>;lll from the inverse collocation matrix.
n n

theory predicts, subject to certain conditions,

bound. on II (G -

that these quantities be uniformly bounded as n increases but

to devise practical bounds is seen to be an awkward problem.

Interesting computational properties of matrices involved are

examin.ed and finally the use of row and column soaling to

improve condi ti.on numbers is considered.
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3.2 Application of Kantorovich and Akilov Theory to
Boundary Value Problems
In section 2.2 it was shown in keeping with Kantorovich

and Akilov how the approximate solution by collocation of

an ordinary differential boundary value problem could be

set in the functional analysis background for the theory.

Let us briefly remind ourselves of the situation

described earlier. The example chosen was

d~m + (2 1)P (t)x m- (t)
dt2m 2m-l

+ P (t)x(t) = y(t)o
(3.la)

over say [-1,1] subject to

x(j) (-1) = x(j) (+1) = 0 (j = 0 •.• m-l) (3.lb)

The Pitt) are assumed to be at least continuous

(i = 0 ...2m-l). An approximation xn of the form

= (3.2)

where the ~ (t) are polynomials of up to degree n-l, wasr

sought by collocation at the n points {tk}~=l' The space
X was chosen as the space of functions in c(2m) [-1,1]

satisfying (3.lb) with Xn the subspace of functions of

the form (3.2). Y was the space of continuous functions

with Yn as the space of polynomials of degree n-l. (3.la)

(3.lb) were shown to be equivalent to an operator equation

of the form
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(G - T)x = y (3.3)

d2mxbetween the spaces X and Y, with Gx = ---- and
dt2m

G is a bijection(2m-I)Tx = -(P2m-lx + ••. + Pox). between

X and Y and G-l exists e[Y,x]. The approximate solutionn n

xn satisfies the equation

( 3 • 4 )

between Xn and Yn where ~n can be taken to be the projection
mapping each continuous function to its interpolating poly-

nomial of degree n-l at the collocation points.

There is more than one choice of norm for the space Y

e.g. ~, ~ etc. but we shall use the infinity norm. In

order that G,T be in [X,Y], and in particular be bounded

we take the norms in the spaces X and Y to be related by

= II Gzily = and this point is

considered shortly. We shall continue on occasions to use

subscripts to emphasise with which norms we are dealing.

In order to apply their theory Kantorovich and

Akilov show that the conditions we gave as I, II and III

in section 2.4 hold. This is now described.

For zeX we can say

z (j) (s) = +fl aja )~ (s,t)z(2m (t)dt
-1 asj

(j = 0 ••• 2m-l)

where g(s,t) is the Green's function for the operator
d2m~ subject to the homogeneous conditions (3.lb). Thus
dt
(Tz) (s) can be expressed as
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+1 2m-1
-{P2m-1(S) J a 2 Y(S,t)z(2m) (t)dt + ...

-1 as m-

p (s)
o

+1
f g(s,t)z(2m) (t)dt}
-1

or

(Tz)(s) =
+1f k (s,t) z (2m) (t)dt
-1

(3.5)

where

k(s,t) =
2m-1a g-(P2m-1 (s) 2m-1(s,t) + .•.as

+ po(s)g(s,t».

Since k(s,t) has only a jump discontinuity at s = t and
Pj (s) is continuous over [-1,1] (j = 0 ••• 2m-1) we can be
sure that k(s,t) is bounded and integrable. Thus

+1
I(Tz) (s)I < f Ik(s,t) Idtllz(2m)1I00

-1

and IITzll~ kollzllxgiving T as a bounded operator with our

choice of norms. (This verifies T€[X,y] as was mentioned
in section 2.2).

Now
ddt (Tz)

2m-1
= - £_( L Piz(i»

dt i=O

provided

(i = 0 ... 2m-1) (3.6)

Thus II (Tz)' 1100 _< kIllz (2m)1100 for some constant kl•
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Therefore by Jackson's Theorem (Cheney (1966, p.147» there

exists a yeYn, i.e. a polynomial of degree n-l, such that
IITz - yll < 2!. klllz(2m)1I =!. klllzil and condition I holds

- 2 n 00 2 n X

with

fll = (3. 7 )

Remark The assumption (3.6) is an important one and will

be referred to later in this chapter in connection with a

bound on the norm of the inverse of the approximate operator.

For condition II we can say that there exists a yeY n

(Cheney (1966, p.147» such that

lIy- yll
k

< (l!.)
2

if ye C (k)[-1 ,1]n (n-l) ... (n-k+l)

Thus IIy - yll < fl211YII where

=
k

(2!. )
2 n(n-l) ... (n-k+l)liyll (3. 8 )

and hence condition II holds.

If we can find a solution xeXn to (G - ¢nT)x = 9 for

every yeY then this means there exists at least one set ofn

coefficients a , al ••• a 1 for every right hand vector ino n-
the linear collocation equations. But if the algebraic

equations have a solution for every right hand vector it

is well known that the solutions are unique. Thus there

exists a unique x such that (G - ¢nT)x = y for every yeYn,

giving condition III. If Chebyshev zeros are used as
4collocation points we have lI¢nll~ 8 + :rr In(n) (Natanson

(1965, p.48» whereas if Gauss points are employed
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t
lI~nll= O(n~). So in either case provided the coefficients

and right hand side in the differential equation have at
limleast one continuous derivative we have n+s= l-llil~nll = 0

limand n== l-l211~nll= o.
We are now in a position to apply the theorems of

Kantorovich and Akilov and in particular from Theorems 1

and 2 we have for sufficiently large n, that the inverse

of the approximate operator exists. Further the approxi-

mate solutions converge to the exact solution with an
error bound of at worst O(ln(n» for Chebyshev points or

n

O(n-~) for Gauss points. If P2m-l = P2m-2 = ... = P2m-k = 0

(k ~ 1) and s» C (j.) [ -1,1] (j > 2) then higher order con-

vergence is guaranteed.

3.3 An 'a priori' Example

We now consider in some detail the la priori'

application of the theory to a particular example to

derive numerical bounds on the norms of the inverse

operators and errors involved. These bounds hold for the

number of collocation points being sufficiently large

and these values of n are noted. The results predicted

by this 'a priori' theory can be compared to those from

an 'a posteriori' approach. (See TABLE 22).

The example examined is the problem

(A real, > 0) (3.9a)

with

x(-l) = x(+l) = 0 (3. 9b)
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Thus here Gx = 2
" x. The theoretical

results are independent of the particular bases used for

Xn and Yn and depend primarily on the approximating

properties of the subspaces. We shall be concerned with

an approximation of the form

= n-lwhere the {lJir(t)}r= 0

are then any independent set of polynomials of up to

degree n-l. The n collocation points used will be the

zeros of the Chebyshev polynomial of degree nand Yn
will be the space of polynomials of degree n-l.

We shall use Theorem 1 to find the values of n

required for applicability and also to bound the norm

of the inverse of the approximate operator. Theorem 2

then gives the appropriate error bounds. All quantities

occurring in Theorems 1 and 2 must therefore be bounded.

By Jackson's theorem (Cheney (1966, p.147» there

exists a yeY such thatn

2 (2!.)2 ,,2I1x"rIIITx - yll = II" x - yll2 2 n (n-l) . We can therefore

choose ].11
by (3.8).

n(n-l)· If yeC(k)[-l,l] ].12is given

Examining the statements of the theorems it is seen

that II<Pnll,II (G - T) II, II (G - T) -111 and II (G - <Pn T) ;111 have
n

still to be bounded.

lI<Pnll< 8 + !In(n) by Natanson (1965, p.48) (3.10)

II {G - T)II
sup

= xe X {II (G - T) xII y}.
IIxlix =1

Now
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(G-T)x (s) = X II (s) - A2x (s) =
+1

X"(S) _.:\2 f g(s,t)x"(t)dt
-1

where g(s,t) is the simple Green's function of section 1.4
2

for d x2over [-1,1] with the conditions (3.9b). Thus
dt

II(G-T)II< (1+.:\2maxs
+1
Jlg(s,t) Idt)IIx"lloo'
-1

Therefore by (1.11)

(3.11)

We now show how to find II (G-T)-lli.

II -1 sup --.tIl sup d2 -1(G-T) II= ll yll=L II (G-T)'Y X = IIyll=111dS2(G-T) y(s)lloo'

If g.:\(s,t) Green's function for x" 2is the - .:\x over [-1,1]
subject to (3.9b) then

2 +1
II(G-T)-111 = sup II~ f g.:\(s,t)y (t)dtll00' Keller (1968,Ilylloo=lds2 -1
p.108) gives the Green's function for XII

2- ).x over [0, 1]
and on transformation to [-1,1] we have

g). (s,t) =

d2To find
ds2

1 sinh),(s+l)sinh),(t-l)
Asinh2A {sinh).(s-l)sinhA(t+l)

+1
J g).(s,t)y(t)dt we could split the range of
-1

s ~ t.

s ;;> t.

integration and differentiate under the integral sign.
However it is quicker to notice that from the differential
equation

= yes) and so

+1= yes) +).2 f gA(s,t)y(t)dt
-1
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d2 -1 )..sinh)..(s-l)s
~ ds2

(G-T) y (s) = y(s) + J sinh)"(t+l)y(t)dtsinh2).. -1

)..sinh>..(s+l)1+ sinh2>.. f sinhA (t-1)y (t)dt
s

~
d2 (G-T)-ly(s) 1 1y (s) 1 {AsinhA(l-S) [cosh (t+1)]s1- < +
ds2 - sinh2A A -1

XsLnh),(s+1) cosh>"(l-t)] 1
+ [- }II yllsinh2>.. A s

using IsinhA(s-l) 1 = sinh)"(l-s) if >..> o.

=1 II (G-T) -111 < 1 + max {sinhA (l-s) [cosh)" (s+1) - 1]s sinh2A

+ sinhA(s+l) [_ 1 + coshA(l-s)]}.sinh2)..

After elementary manipulation we can achieve

(3.12)

Note that when A = 0,11 (G-T)-lll and II (G-T) II are bounded by
unity which is what we woul.d expect since II Gil = II G-llI = l.

Also we see II (G-T)-111 < 2 for all A whereas II (G-T) II is
unbounded as A ~ ~.

There now only remains II (G-cpT);l11 to be bounded and
n n

as in Theorems 1-4 we shall represent this by II (G-<pnT)-ll1.
DThis is bounded from Theorem 1 by 1-0 where

D = (1+l-l1)II (G-T)-111 provided 0 = 11111<Pn(G-T) 1111(G-T)-111 < l.

Thus we have to choose n large enough to give 6 < 1 and
from (3.10) I (3.11) and (3.12) we require

TI 2 1..2 4 1..2 1
('2) "n In+L) " (8 + TI Ln In l L. (1 + 2)· (2 - coshA) < 1
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Three values of A where chosen and the table below shows the
values of n needed to give 0 < 1.

Applicability of the Theory to an 'a priori' Example

1

n required to
give 0 < 1

0.5 5

8

2 14

TABLE 1

With n greater than the appropriate one of these values
the error bound is now given by Theorem 2 as IIx+x II< nil xIIn -

with n = (lll+]J211 (G-T) II)(1+1I (G-<I>nT)-l<l>n(G-T) II) and
IIxII < II(G-T) -11111 yll. Thus IIx-xnll is less than

{1+1I (G-<I>T) -1<1> (G-T) II)n n

if y~C{n-l)[-l,l] as would often be the case. Note that
the norm IIx - X IIis the norm in the X space and son
IIX - xnllX = IIXl. - x·nll00. To relate this to the error

n +1
IIx - xnlloowe use (x - Xn) Cs) = f g(s,t) (x - xn) "(t)dt.

-1 2
where g{s,t) is the Green's function for d 2 subject to

+1 dt 1 2
(3.9b). Thus I(x-xn) (s) I < f Ig{s,t) IlIx-xnllx~ 2{1-s )lIx-xnIlX

-1
by (loll) =+ IIx-xnlloo~ ~lIx-xnllx. Examining the error bound
we can see this has the form

(3.13)
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where El(n) is O(lnin» and E2(n) iSO«~)n-l ln~~».
n

Clearly the accuracy predicted by this 'a priori'

approach is limited by the term El(n) which depends
on

Values of El and E2 were calculated for the three

values of A2 chosen above and the results are shown in

TABLE 2 below.

Sample Results for an 'a priori' Error Bound

A2 n El (n) E2(n)

8 0.36 1.2'-2
0.5 10 0.19 2.8'-4

12 0.12 4.8'-6

12 0.52 1.3 '-5

1 15 0.27 1.5'-8

18 0.17 1.1'-11

18 1.1 4.6-'-11

2 20 0.71 2.4'-13

25 0.35 2.8'-19

TABLE 2

The error bound (3.13) is very conservative. This can

be seen by comparison of the above results with actual

maximum errors computed by evaluation. Consider for
instance the equation

d2x 2--- - A x = cosh(l) with x(-l) = x(+l) = O.
dt2

(When A = 1 this has solution x = cosh(x) - cosh(l».
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{ IIx - Xs II< 2.61-10
For ),2 = 0.5 we have Ilx- xloll < 2.21-13

Ilx- x12" < 4.3'-16

With the values of n in TABLE 2 for A2 = 1, 2 the actual

errors are dominated by roundoff even using double

length arithmetic and so are not given for comparison

purposes. The' a pr.iori' bounds for this example are

of the forms cosh(l).El(n) which are clearly far inferior

to the true bounds. It will be seen later that certain

bounds of the form (2. S) are restricted by the factor

II (I-<I>n)Tilwhich we saw in section 2.6 was very much

connected with ~l' It is for this reason and also the

fact that we do not normally have an 'a priori' bound on

the inverse of G-T that we are later concerned with

developing more realistic computable 'a posteriori'

bounds.

3.4 Alternative Approach
A diff_erent approach is now presented which could be

used to give either 'a priori' or 'a posteriori' error

bounds. We shall consider for simplicity second order

differential equations although the analysis carries

through ina similar manner for higher order problems.

Suppose we wish to solve approximately the

equation (G-T)x(t)~ ~n(t)+p(t)x' (t)+q(t)x(t) = yet) with

x(-I) = x(+l) = 0, where p , q and yec(V)[-l,l], (v ~ 0).

This gives x~ec(V)[-l,l] by induction. If x is foundn
by applying the collocation method as before then in

keeping with the earlier notation we have by Theorem 2
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that if there exists an xeX such that IIx-xii < c ll xll thenn
Ilx-xn" < E(l+II(G-<PT)-l<p (G-T)IIIIxll).This £ is used in_ n n

t.he alternative c.ol1att:.Lot1$ of TI,e,ore.m 2. and
like ~l and ~2 is independent of the approximate method
and depends on the approximating properties of the
subspace Y .n

However it is simpler to proceed directly as follows.
If there exists an xeXn such that IIx-xil2 r then

= IIx-xII + II(G-<p T)-l<p (G-T)x -n n
+ II(G-<pnT)-l<Pn(G-T)II)llx-xli.Thus

IIx-x II < IIx-xII + IIx -xIIn _ n

(G-<pnT)-l<Pn(G-T)xll< (1

(3.14)

Now Ilx-xllis a norm in the X space, Le. Ilx-xliX= IIx"-ylloo
-1where y = GxeYn• So we are seeking a yeYn = G (Xn) to

approximate x" and the corresponding x is given by G-ly.
Now we are therefore approximating x" by a polynomial of
degree n-l so that Jackson's theorem can be applied. Since
x,,·€C(v)[-l,l], by Jackson's theorem of Cheney (1966, p.147)
there exists a polynomial y of degree n-l such that

IIx " -yll00 2 (7T2) v n(n-l) ••. (n-v+l)
II(x") (v)lIoo

(n .:: v+1) •

So if we assume henceforth that p, q and yare infinitely
differentiable over [-1,1] then this result simplifies to
Ilx" -II 7T n-1 II(.x") (n-l)lIoo-y 00 2 (2) n! (for all n). Hence with

(n+l)
x = G-ly we have IIx-xlix_< r where r = {!.)n-l Ilx 11002 n!
Thus we can apply the error bound (3.14) and this can then
be modified to produce either 'a priori' or 'a posteriori'
bounds.
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Since we know ·Xfl+pXi+qx = y this enables us to
express higher derivatives of the solution x in terms of
lower ones. That is, x(n+l) = (x") (n-l)=(Y_Px'_qx) (n-l)
and so on until finally we reach x(n+l) (t) = A (t) +n

Bn(t)X(t)+cn(t)X~(t)+Dn(t)X"(t}. Now
+1

x (s) = f g (s,t)x" (tldt ~ and x' (s )
-1

+1
= ft;(S,t)X1l(t)dt

-1

where g(s,t) is the simple Green's function we have met
2

before for d ~ with z(-l) = z(+l) = O. Thus, in theory
dt

at least, we can find using (1.11) and (1.12) positive con-
stants cn and dn such that IIx (n+l)II00 2. cn+dn" x" II00' We
therefore have the error bound

(c +d llx'"] )
"x-xn"x < (!)n-l n n 00 [1+11(G-<1>T)-l<1>(G-T)1I12 n! n n
or

(3.15)

where en

and fn = (.'!!.2)n-ld(1+11(G-<1>T)-l<1>(G-T) II )/n!n n n

From (3.15) we get the 'a priori' bound

(3.16)

Using IIxll< "x-xn" + IIxnllwe deduce from (3.15)

IIx-x II <n

e +f IIx IIn n n
(l-fn)

provided f < 1,n

and this is an 'a posteriori' bound not requiring a bound
on II(G-T)-lll if II(G-<1>nT)-lllis obtained independently.
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As an illustration of the procedure the example used
in section 3.3 is considered 'a priori'. Here 2x"- A X =

y=+ x" = 2y + A x.
(y.n + A2x" ) (n-3) = (y" + A2y + A4x) (n-3) and so on. Finally
we reach, assuming for simplicity that n+l is even,

x(n+l)
n-l
-2-

Lj=l
n-l-2j (2j) n-lA y + A X (3.17)=

Thus IIX (n+l)II<

n-l-2-

Lj=l

and = n-lA •=

If n+l is odd n is even and (3.17) can be employed. After
similar manipulation and utilising (1.12) we achieve

=

n
"2l An-2jlly(2j-l)1I and

j=l
=

Now if we further take yet) = cosh(l) as before then
1cn = 0 and we have the error bound IIx-xnlloo~ "211 x-xnllX

where n~ = n-l if n is odd and n if n is even. Numerical
values of this error bound are shown for various choices
of A2 and n in TABLE 3 below. Theorem 1 is used to bound
II(G-~nT)-lli'a priori' as in section 3.3 and these
results are to be compared with those of the form
El(n)cosh(l) derivable from TABLE 1.
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Example of an Alternative 'a priori' Error Bound

2 = 0.5 ;\2 1 ;\2 2x = =

n IIx-xnlloo n II x-xnll00 n II x-xnll00

8 3.8'-4 12 5.4'-6 18 7.6'-9
10 4.5'-6 15 6.3'-9 20 8.0'-11
12 3.9'-8 18 4.6'-12 25 3.81-16

TABLE 3

Thus we see that great improvements can be made by this
technique but still the results are fairly inaccurate
compared with actual maximum errors (section 3.3). Of
course often the differential equation will be too com-
plicated to permit the successive differentiation required
for this higher order result.

3.5 Application of 'a posteriori' Error Bounds
We have examined 'a priori' results and although

they can be used for convergence proofs we have found them
to be rather unsuitable for practical error bounds. We
now for the major part of this chapter consider 'a
posteriori' error bounds of the forms given by Theorem 7
and its corollary. However firstly we must show that the
approximate solution of linear ordinary boundary value
problems does indeed satisfy the required conditions for
the theory. We have seen in section 2.2 and again briefly
in section 3.2 how the collocation method applied to a

th2m order differential equation fits into the functional
analysis setting and assuming this knowledge it now only
remains to show that the particular conditions of Theorem
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7 are satisfied. In section 3.2 we verified the criteria

necessary for the theory of Kantorovich and Akilov and

this section is along similar lines.

The same equation as used previously is considered,

namely (3.1a) subject to the boundary conditions (3.1b).

Using the usual notation it was seen in section 3.2 that

T was bounded e[x,y] and it has to be shown that G-IT is

compact. For G-IT to be compact we need G-IT(U) to be

relatively compact in X where U is the unit ball,

{zeX : IIzllx'::'I} or equivalently G-lT(U) to be sequentially

compact - see section 2.3. Let {z } be a sequence inn

G-IT (U)• Then'_·· zneG-IT (U) ~ Gzne T (U). So if we can

show that any sequence in T(U) has a convergent subsequence

then {GZn} will have a convergent subsequence with limit

v say. Then this gives {z } containing a convergent sub-n

sequence with limit G-lv since IIzn - G-lvllx = IIGzn - vlly.

Thus it has to be shown that T(U) is relatively compact

in Y - C[-l,l]. Now T(U) = {ueYe u =Tz/\ Ilzllx'::'I}, so if

uET(U) ~ lui 2. IITzlI2. IITII,proving T(U) is uniformly

bounded. Further if t,t~e[-l,l] then if zeU and u = Tz

[u t t ) - u(t"')I = I(Tz) (t) - (Tz) (t"')I
+1

= I f (k(t,T) - k(t~,T»Z" (T)dTI where k(s,t) is as
-1

defined in section 3.2.
+1 t t ~

be split by f = J + J
-1 -1 t

generality that t < t~.

The range of integration can now
+1

+ J assuming without loss of
t~

In the intervals [-l,t) and

(t~,l] k(S,T) is a continuous function of s,whereas for

Te[t,t~] we can use the boundedness of k(S,T) to gett~
I J (k(t,T) - k(t~,T»:t" (T)dTI .::.Clt~-tlllz"llfor some
t

constant C. Thus given any E > 0 there exists a 0 and
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It'-tl < ° =9 lu(t)-u(t') I < £ for all zeU. This proves
equicontinuity. Therefore by the Arzela Ascoli theorem
(Kantorovich and Akilov (1964, p.22» T(U) is relatively
compact in Y = C[-l,l]. Thus T(U) is also sequentially

-1compact and G T is a compact operator.
-1To apply the theory we need on =11 (G-<PnT) 1111 (I-<Pn)Til

< 1 and we would like II(I-<Pn)TIIto get smaller as n
increases. In section 2.6 we showed that II (I-CP)TII<n

lll(l + lI<Pnll)and for our polynomial approximation 111was
found via Jackson's theorem and is bounded by (3.7).If we
are using Chebyshev points for collocation then II cP IIis

n

o (LnIn) J. and so as we choose n larger II (I-CP ) Til isn
o (In,(n) ) which decreases.

n
-1We later consider the problem of bounding II(G-<pnT) II

Basically if the collocation matrix is non singular then
(G-<pnT);1 exists and hence so does (G-<pnT);l and its norm

n
is bounded by (2.7).

Remark The 'a priori' results of Theorem 1 which we
discussed in section 3.•2 would predict that for n

-1suffi.ciently large (G-<pnT)y exists and its norms are
n

uniformly bounded as n increases.. Thus we would expect
by taking enough collocation pOints to ensure

-1on = II(G-<pnT)y 1111 (I-<Pn)Til< 1 for Theorem 7-
This theorem in (b) gives two possible error bounds.

. <5

The former contains the term l-~ IIxn" and we have seen
n

that II(I-<Pn)TIIin On is only O(ln(n» in general as n is
n

chosen large (for Chebyshev pOints). This is clearly
unsuitable being far too coarse if we are seeking a realistic
computable error bound. Note that the 'a priori' result
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(2.8) is similarly influenced by the factor II (I-<Pn) Til,

(c.f. section 3.3).

We are thus led to consider the latter bound from

(b) of the form

II (G- <PnT) -111
IIx-xnll < 1-0 II(G-T)xn-yll where

n

II (G-<p T) -111
n

1-0n
is a

bound on II (G-T)-lll and this one is used for numerical

results given in Chapter 5.

Theorem 4 due to Kantorovich and Akilov gives

another 'a posteriori' bound on II(G-T)-lll by

1 + II (G-<pnT)-l<Pnll + II (G-<pnT)-l<Pn (G-T) II
< 1 - 0 if

o = "i (1 + II (G-ct> T) -l<p (G-T) II) < 1. However it isn n

difficult to see how, with this, one can avoid using

II (G-et>T) -let> II < II (G-<p T) y-llill<P II and (with Chebyshevn n ~ n nn
zeros) IIet>nll~ 8 + * In (n ) and is large if n is chosen

large. Clearly 0 will tend to zero very slowly and

moreover we get a very poor bound on II (G-T) -111. It is

for this reason that Theorem 7 is preferred in practice.

This conta.ins .the term II et>nTil but which is simply bounded

by lIct>nTIl~ IITII + II(I-et>n)TII.

3.6 Direct Approach to Bounding the Norm of the Inverse of
the Approxirna.te Opera tor

We showed in section 3.5 that the 'a posteriori'
-1Theorem7and .its corollary could be applied once II(G-et>nT) II

is bounded. Equation (2.7) relates this to II (G-et>nT)~lll and
n

we now consider in detail the problem of finding a reasonable

bound on II (G-et>nT)~lll when polynomial approximations are
n

sought.
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Firstly a direct approach is examined. The

abbreviations M .::(G-cp T)~l and Bn = II M~ 111are intro-n n n
duced. Thus in the usual notation Mn : Xn ~ Yn and as

described in section 2.2 we have the situation illustrated

below.

y

For simplicity the approximate solution by collocation of

a second order differential equation with the solution

being zero at the end points ± I is considered but higher

order problems could be examined in a similar way.

Thus X = {zeC(2)[ -1,1]: z (-1) = 01\ Z (+1) = O} and

we choose Xn as the space of functions of the form

2 n-l n-l
(t -1) L br~r(t) where {~r}r=o are a basis for Pn-lr=O

(the space of polynomials of up to degree n-l) and the

br(r = 0 ... n-l) are real numbers. Y = C[-l,l] and

Yn = Pn-l. Let CPn map each continuous yeC[-l,l] into
its interpolating polynomial at the collocation points

{ti}i~l·
The aim of this section is to try to bound Bn by

breaking up the operator Mn-
l into its different parts

and then bounding these separately.

We have sup
yeYn
lIyll=l
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or Bn = sup IIGM -lylly
y:llyll=l n

(3.18)

When the collocation method is applied we have a set of

linear equations

Aa = I (3 .19)

to solve for the coefficients of the approximation

x =n

n-l
(t2-1) I ar~r to x. Here ~,I eRn, the space of

r=O
real n dimensional vectors. Define the mappings r: Rn + Xn

and p e ~+ Yn as follows:

n-l
r(£) = (t2-1) I br~r (£€Rn) and p(~) is the polynomial

r=O

of degree n-l such that P~(ti) = 8i (i = 1 n). That is,

p constitutes polynomial interpolation and p-l evaluation.

Having solved the equations (3.19) for a = A-II = A-lp-l¢nY
the approximate solution xn is found by xn(t) = (r~) (t).

Thus Mn-
l is related to the inverse collocation matrix by

-1Mn
-1 -1rA p (3.20)

and this is illustrated below.
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We choose the norm in Rn by 11£11= m~x Ibil for
b = (b , bl ... b l)€Rn and we have from (3.20)- 0 n-

(3 .21)

At first sight it is more obvious how to tackle the bound
(3.21) than the form (3.18) although we shall see in
section 3.7 that (3.18) can be utilised. We consider
separately each factor of (3.21). Firstly,

II -111 sup II-1-11 sup max ,- ,
P = y:llyll=lP y = lIyll=ll~i~n yeti} ~ 1.

As a slight digression from our present task we
briefly mention some computational properties of the matrix
A-I h h i iw en C ebyshev zeros are used as collocat on po nts
and the ~r (r = 1, ••• n-l) are Chebyshev polynomials and

To
1Ji =o "2

It is found experimentally that for a given differ-
ential operator IIA-lilremains virtually constant as n
increases. (It is in fact the first row of A-I which
gives the maximum modulus row sum). Further if H is the
n x n diagonal matrix dia'g(hI,h2, ..• hn) with hI = 1

2 -1and hi = (i-I) (i=2, ••. n) then IIHA II is roughly
constant as n increases, i.e. as more collocation points
are chosen. This is shown in TABLE 4 for the sample
Gx - Tx ~X~ + (1 + t2)x.

Constancy Property of the Norms of Certain Matrices
n 5 10 15 20 15

IIA-III 1.807549 1.807561 -+ -+ -+

IlHA-ln 1.807549 1.807561 -+ -+ -+

TABLE 4
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In the above table the symbol ~ means that the entry is

the same as the one on its left.

If simple powers are used, instead of Chebyshev poly-

nomials, in the basis for Xn it is found that the above

matrix norms grow large as n increases and an example of

this property is given in section 3.8. In the above table

we notice "A-I" = "HA-I". This holds for the particular
operator chosen here and is not necessarily true in

general as will be seen later.

These properties are relevant for following analysis

and so are mentioned now but being away from the main

theme of this and the next sections are left until section

3.8 to be considered in more detail.

We now return to the problem of bounding Bn and

examine" I'll which occurs in (3.21).

ll I'] = sup
beRn
1f~"=1

2 n-l
sup {maxld 2(t2-1) I b ~ (t) I}

~:m~xlbil=l t dt r=O r r
1.

n-l
= SUI;> {maxi x" (t) I} where x (t) = (t2-1) I br~r (t) •

b:maxlbil=l t r=O
i

We now consider two different choices for the ~r(t). If

~r(t) is taken as tr(r = 0 .•• n-l) then we have

. x" (t)
n-l n-l n-l

= 2 L b tr+4t L rb tr-l+(t2_l) L r(r-l)b tr-2
r=O r r=l r r=2 r

(3 .22)

n-l n-l n-1
So!x"(t) I ~ 2 L 1+4 L r+ L r(r-1) and this expression is

3 r=O r=1 r=2 3
O(n) and so would give a bound of order n or "r". This
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is definitely unsuitable since in order to apply Theorem
7 we need on = II (G-<pn T)~11111(I-<Pn) Til < 1. II (G-<Pn T); I"

depends on B by (2.7) and clearly if IIA-lilis constantn

or increasing with nand IIrllis 0 (n3) we are very likely
unable to achieve on < 1. The remark of section 3.5
suggests that we should be able to construct bounds for
B which do not increase with n and this is the basicn

problem which we tackle.
If Chebyshev polynomials are used with x(t) of the

form (t2-1)
bo b T ] which we write[rTo+blTl+ ... + n-l n-l

(t2-1)
n-l

as x(t) = r , b T (t) then
r=O r r

n-l n-l n-l
x"(t) = 2 r , brTr(t)+4t r b T '(t)+(t2-1) r b T "(t).

r=O r=l r r r=2 r r

Now the Chebyshev polynomials satisfy the following
differential equation - see for example Davis (1963,
p.365): (1 - t2)Trlt - tTr' + r2Tr.= o. Thus
(t2 - 1)Tr" =. r2Tr (t) - t Tr' (t) giving

x"(tr
n-l n-l n-l

= 2 r 'b T (t)+ r r2b T (t)+4t r b Tr' (t)r=O r r r=2 r r r=l r

n-l- r tb T '(t) and rearranging we have
2 r rr=

x" It)..:
n-l n-l n-l

= .2 r 'b T (t)+ L r2b T (t)+3t r b T '(t)r=O r r r=2 r r r=l r r

(3.23)

Now by Markoff·'s theorem (Todd (1962, p.138)) ITr' (t)I ~ r2.

Thus Ix" (t) I
n-l

< .2 I '1+
r=O

n-l n-lL r2+ 3 L r2+l and this again is
r=2 r=l
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an expression of o(n3) giving bounds on IIrlland B
n

uunsuitable for practical purposes.
A variation of the above approach is now considered.

-1 -1 -1-1Instead of saying Bn = IIrA p II~ II rlillA 1111p IIas in
(3.21) we investigate the possibility of using
Bn ~ IIrA-llillp-l". rA-l is a mapping from Rn to Xn and
is independent of the basis used in Xn but when bounding
its norm the inequalities used still lead to different
results.

"rA-I" = sup "rA-1,£lIx =
ceRn

11(;11=1
sup "r_ellx

11£11=1

-1 rwhere b = A c. If we take t for ~r(t) (r=O .•. n-1)
-1we can use (3.22) where X = rb = rA c.
tNow define ~ = (al,S2' .••an) by ar = br-1

(r=l n) then with A-I = (vij) we have

(r=1 •.. n ) (3.24)

t• .• cn) . Thus

and using (3.24) we have

X" '(t). =
n n 1 n n r-2

2 l l v c tr- +4t l l (r-1)v kCktr=l k=l rk k r=2 k=l r

n n
l l (r-l) (r-2)Vrkt

r-3
r=3 k=l

Therefore IIxII X = IIxliII 00 '

n n n n
~ l {2 l IVrkl + 4 l (r-l) [v kl + l (r-l) (r-2) Ivrkl}k=l r=l r=2 r r=3
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if IIcll< 1 and

n n
IIrA-llix~ L L {21v kl+4(r-l)lv kl+(r-l) (r-2) [v kl}k=l r=l r r r

n n 2
L L (r +r) IVrkl

k=l r=l
(3.25)

If Chebyshev polynomials are tried in the same way
as before and using a similar definition of B then from
(3.23) we have

We next employ (3.24) and take moduli throughout, utilising
ITr_l' I < (r-l)2, to finally obtain

n n 2L L (4r -8r+6) IVrkl
k=l r=l

(3.26)

Earlier in this section we mentioned' certain com-
putational properties of the collocation matrices when
Chebyshev zeros are used as collocation points. Bearing
these in mind we should expect that the bound (3.25) would
increase wildly with n and this is shown by example in
TABLE 5 below. The inequality (3.26) can be rewritten

n
lirA-III< 4 L

r=l
n 2 n n

( L (r-l) Iv k I) + 2 L 1: Ivrk Ik=l r k=l r=l
In view of the results for IIHA-l" shown in TABLE 4 we

n
anticipate that I (r-I)2 vrk is roughly constant and

k=l
therefore that
n n

4 L (1: (r-l)2Iv kl) increases like O(4n). This is also
r=l k=l r

borne out by the computed results below.
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Behaviour of the Direct Approach to Bounding the Norm
of the Inverse of the Given Operator

Gx Tx - x" - x
n 5 10 15 20 25

.Bound on IIfA-III
(Powers) 22 1552 117373 9295153 7.4'8

-1Bound on IIfA II
(Chebyshev) 9.2 28.8 48.9 72.1 94.9

Gx Tx - .x" + (1+t2)x
n 10 15 20

Bound on lirA-III
(Chebyshev) 32.0 52.1 75.5 98.4

continuous derivative in order to satisfy the conditions of
the theorem and boundedness cannot be guaranteed if this
does not hold. We have not required this property of the

25

Gx Tx _ .x" + (8t2+2t-l)x'+(4.St2+1.5t-l)x
20 25n 10 15

Bound on IIfA-III
(Chebyshev) 74.0 96.830.2 51.0

TABLE 5

Thus we see that although we can achieve better
results by (3.26) the bound on Bn still increases with n
and so is rather unsatisfactory.

Remark The remark of section 3.5 suggested we should be
able by the 'a priori' consideration of Theorem 1 to bound
the Bn uniformly as n is chosen larger. However we noted
(remark in.section 3.2) that we required the coefficients
in the linear differential operator to have at least one
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coefficient functions in this section and so are unlikely

to achieve a uniform bound on the Bn.

In the next section an approach is considered which

does use the continuous differentiability and in which the

functions x"(t) are expressed in terms of the Lagrange

interpolation basis polynomials corresponding to the

collocation points.

3.7 Indirect Approach Using Second Derivative Values at
the Collocation Points
For this section second order differential equations

with their solutions being zero at the end points ±1 are

considered and the spaces and subspaces of section 3.6 are

chosen.

Suppose the differential equation is of the form

Gx-Tx - x"(t)·,:*-pXt)'x'(tt:+q(t)x(t) = y(t) (3.27)

with x(-l) = x(+l) = 0. Let yeC[-1,+11 but let

p,qec(l)[-l,l] and this additional continuity will be

used later. The analysis can be carried over to higher

order problems. Here we have Xn as the space of functions
n-1

of the form (t2-1) I b ~ (t) for some choice of nr=O r r
linearly independent polynomials ~r(t) (r

So far in trying to bound B = sup
n yeY

IIyll =y

= 0,1, ... n-1).

IIGMn-lyll 00 by

(3.18) we have

r(b) where b =
-1~ -1 -1·expressed Mn y in the form rA p y or

A-1p-1y (employing the notation of the

previous section). We have then used
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2
(GM -ly) (t) = d 2

n dt
That is, M -ly is

n

2 n-l
= £__ {(t2-1) I br~r(t)}.

dt2 r=O
formed in terms of the basis for Xn

{r (~) (t)}

and then differentiated twice.

We now consider an approach which expresses

GMn -lye Yn directly in terms of the Lagrange inter-

polating basis polynomials corresponding to the

collocation points. That is, if x = M -ly for yey
n n

n
we write x"(t) = I

j=l
x"(t.)l~(t) and to determine

J J

x"(t.) (j = 1 n) we. proceed as below.
J t
Define t(t) = (~1(t)'~2(t), ... ~n(t» by

Er+l(t) = {(t2-1)~r(t)}"(r = 0, •.. n-l) and thus

the second derivative of any function in Xn is of the

form tt(t)£. Let the choice of collocation points be

{tl,t2, ..• tn} and for any right hand side y(t) we

find by applying the collocation method an approximate
n-l

solution x(t) = (t2-l) L arWr(t) to an equation of
r=O

the type (3.27) by solving the algebraic equations
tA~ = Y where y = (Yl'Y2' ... Yn) and Yi = y(ti) (i=l ... n).

The approach we now use expresses x" in terms of
{ n n-lx" (t.)} . 1 instead of {a.}. 0 and we proceed as follows.J J= J J=

Consider firstly the equation x" = y(t) with

x(-l) = x(+l) = O. Let the matrix formed be Ao and the

solution be x (t) with coefficients a(o). Thereforeo -

X n(t) = Et.a(o) = Et(A -ly). Now in this case row j
o - - - 0 -

of Ao is exactly Et(t.) and so
- J

XO"(tJ.) = Et(t.)A -Iv = e.tv = y. where e. is the unit- J 0 ~ -J ~ J -J
vector with unity in the jth row and zeros elsewhere.

This of course is what we would expect.
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Now considering a differential equation of type (3.27)
we have an approximate solution x(t) with coefficient vector
~ corresponding to a right hand side y(t) and
x"(t}_ = tt(t)~ = tt(t)A-ly = tt(t)Ao-lAoA-ly. Thus

(3.28)

where W = (Wij) =
z. = x"(t.) (j =
J J

values of the second derivative of an approximate solution

AOA-l. If ~ = (zl,z2' ... Zn)t and
1 ••. n) then! = Wy determines the

at the nodes. W is independent of {$r(t)} since the
approximate solutions x(t) are. This is discussed more
fully later in this section.

Now from (3.18),
sup IIGM -lyll =

IISTII=l n
sup II x" (ST) II .

IISTII=l
n

= sup IIL
IIyll =1 j=l

< An sup {max I x" (t].)I} where A
IIyll =1 j n =

n
max L 11r: (t)I

-l<t<l j=l J

< An sup {m~xlrowj(w)YI} where
IISTII=l J

r =
row of W. Thus

It is found experimentally that IIWlloois virtually constant
with n and this is illustrated later in TABLE 6. However
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It < 8 +! Ln In ) (Natanson (1965, p.48» if for instancen - 7T

Chebyshev zeros were used as the nodes and consequently we
would expect this bound on B to increase with n. We aren

led to consider an approach which utilises the fact that
~ the coefficients in the differential equation have a con-

tinuous derivative and we now describe this.
If the collocation points are chosen as the zeros of

a polynomial tn(t) of degree n belonging to a set of ortho-
gonal polynomials {tn(t)} with weight function w(t) over
[-1,1] then this implies (Natanson (1965, p.51» that the

{ n nset 1. (t)}. 1 of basis polynomials are also orthogonal
J J='

with the same weigh.t w(t). For instance {tn(t)} could be
Chebyshev polynomials with weight function w(t) = (1-t2)-~
or Legendre polynomials with weight w (t) = 1. As before

n) and choosing the collocation
points in the above way we have
+1 # n
Iw(t)x" (t)l~(t~a.t=JWlt)L Zkl~(t)l~(t)dt = z .un].
-1 J -1 k=l J J

+1 +1
U~ = I'll(t)(1~ (t» 2dt• So fw (t) [ x" (t)]2dt =
] -1 J -1

where

n 2 nL z. U .•
j=l J J

Note that this result is precisely that of Gaussian quad-
2

rature since {x"(t)] is a polynomial of degree 2n-2 and
so quadrature with Gaussian nodes will be exact. The U~

J
are the weights at the nodes. This suggests a new norm
II IIX2 say, which we introduce for convenience, defined by

+1 2 ~
II z]X2 = { J wO::)[z II (t)] dt} for all ze X, the whole space.

-1

Note that this norm depends on the choice of collocation
points whereas before II IIX was independent of the nodes.
This norm is well defined since XCc(2)[ -1,1] and so Z" (t)
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is continuous and so integrable. Also the basic definitions
of a norm are satisfied.

It is now shown how to find 11M -111 = II(G-<PnT)~lllusingn n
the X2-norm in X and the infinity norm in Y.

-1 -1-liMn IIX2 = sup 11M yllX2- y nye
lIyll=£

= sup IIjdy)llX2 (where jC(y) = M -1-)
y: II yll=1 n y

+1
(x" (t» 2w (t)dt} ~

= sup { Jy: II yll=1 -1
n 2 n ~= sup { r Zj Uj }

y: IIyll=1 j=l

The U,n could be calculated individually but it is simpler
J

to say

-1 2 nliMn IIX2< sup {(maxzk) r
- y:llyll=l k j=l

By Natanson (1965, p. 52) .
n n +1r u." = r f wet) (1~(t»2dt

j=l J j=l -1 J

+1
= f w(t)dt = n, say.
-1

So we have

-1 n~ {max 2}~liMn IIX2 < sup Zk- y: IIyll=1 k

= n~ sup (max !zk! )•
y: II yll=1 k

Now from (3.28) zk = x"(tk) = ~~AoA-ly = ~~W.1 and since
we are using the infinity norm lIyll= 1 ~ !ri! 2. 1
(i=l ••• n).



-71-

n
Thus sup (max I zk I) .::. max ( L IWk .I) = IIwll 00

y:llyll= 1 k k j=l J

and we arrive at the bound

11M -111 < I"'I~IIwll. n X2 OG 00 (3.29)

+1 -J"
For Chebyshev nodes n = J (1-t2) 2dt = TI while for

-1
+1

Legrendre points n = J dt = 2.
-1

To illustrate the usefulness of this bound some examples

for different operators of IIwll = IIA A-III are shown in TABLEo

6 for varying numbers, n, of collocation points. For these

results Chebyshev zeros have been used and Chebyshev poly-

nomials taken as the {Wr(t)}. It is seen experimentally

that IIA A-lil is virtually constant as n varies and this
o

property is related to those discussed in section 3.6 and

will be considered again in the next section.

Illustration of the Constancy of the Norm of the Matrix AoA-:

Differential I

25~Operator n 5 10 15 20

" 1.2014 1.2362x -x 1.0234 1.1315 1.2594 1.2738 I

x" + (1+t2)x 1.9318 1.9306 1.9321 1.9318 1.9321 1.9320
" 2 , 2 2.0570 2.1727 2.1956 2.2038 2.2075 2.2096x +(t+3)x -(t+3)2x

" t2(t+1) 1.0148 1.0310 1.0388 1.0422 1.0441 1.0452x - x4

TABLE 6

-1Thus we have in (3.29) a bound on liMn "X2 which does not

increase significantly with n and this will be utilised later

in this section and also in the next chapter.
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Having given this analysis we turn again to the
problem of bounding Bn = II Mn-111 in our original norm.
It is found to be convenient to transform the equations
(G-T)x=y and (G-~nT)Xn = ~ny to integral equations as
in section 3.2.

From (3.27) the given equation is

x" (s)+p (s)x' (s)+q (s)x (s) = y (s) with x (-1) = x (+1) = 0,

+la +1
x" (s)+p (s) J *(sIt)x" (t)dt+q(s) J g (S,t) x" (t)dt = Y (s)

-1 -1
=>

2
h (t)' th G 'f t' f d z b' t twere g s, lS e reen s unc 10n or ---2 su Jec 0

dt
z(-l) = z(+l) = O. Thus writing u = x" we have

+1
u(s) - fk(s,t)u(t)dt = yes)

-1
(3. 30)

where k(s,t) = -P(S)t;(S,t) - q(s)g(s,t).
Since xexcC(2)l-1,1] ~ ueC[-l,l] = Y and u satisfies

(I-K) u = y (3.31)

where K is a bounded linear operator on Y, i.e. Ke[y].
Similarly if un = X ..n then u e Y and satisfiesn n

(3.32)

Now B = sup 11M-lyllx = sup IIx(y)IIxn IIyll=l n IIyll=l

~ B = sup IIu(y)IIoon Iiyli=l

where - - " and from (3.32) - satisfiesu = x u

(3.33)



-73-

(I-et> K)iln y. (3.34 )

Thus from (3.34) ii = y + <p Kil, giving IIull < IIyll + II et> Kull.n - n
(For the remainder of this section unless otherwise
specified infinity norms are used).

Therefore, using (3.33),we have
sup (IIyll+11et> Ku (y)II), giving

IIyll=1 n

sup IIet> Ku (y)II,
Ilyll=l n

(3.35)

and we shall employ the inequality

II<PKu(y)II<IIKu(y)II+II<PKu(Y)-Ku(Y)II.n - n
(3.36)

Consider firstly IIKilll.From (3.30) and (3.31)
+1

IIKilli= maxi! k(s,t)il(t)dtl and by Cauchy's inequality
s -1

+1 +1
II Killl< max {J (k (s , t) )2dt} ~ {J (il(t))2dt} ~ .

- s -1 -1
(3.37)

Now with kmax = max I k (s , t) I ,
s,t

+1
f(k(s,t»2dt < 2k2 (3.38)-1 max

and since k(s,t) = -P(S)~s(S,t)-q(S)g(S,t), k can be
o max

calculated. To utilise the second integral in (3.37) for
+1

bounding Bn we must find lI~iI~l{£l (il(t»2dt}~. If we now
choose the collocation points to be the roots of a poly-
nomial belonging to an orthonormal set with weight function

+1 +1
w (t) then { I (ii (t))2dt} ~ < { Iw (t) (u(t) )2dt} ~ if w (t) > 1.

-1 - -1
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+1 .tNow sup { fw(t) (U(t))2dt}~ = 11tt.,11 X2 giving
IIS'II=1 -1

+1 ~~IIA A-111sup { f(u(t))2dt}~ <
IIS'II=1 -1 0

(3.39)

+1
(where ~ = fw(t)dt).

-1
Thus by (3.38) and (3.39) we can bound in a reasonable
manner the term sup IIKu (y)llwhich comes from (3.35) and

IIS'II= 1
(3.36). We have then

sup IIKu (y)ll
IIS'II=1

(3.40)

We now have to consider the quantity

sup II<P Ku (y) -Ku (y)II
Ilyll=l n
= sup II<P Ku(y)-v+V-Ku(y)lI, for any veY = Pn-1lIyll=1 n n

< sup (1+11<p II)(II Ku (y)-vII)since <p V = v.- lIyll=l n n
(1)We now use the fact that p, q e C [-1,1]. This point has

been discussed in the remarks earlier in this chapter and
the usefulness of this requirement is now seen.

By Jackson's theorem if Ku(y)ec(l)[-l,l] then for
any S' there exists a v(y)eY (i.e. a polynomial of degreen
n-l) such that

KZ" = Tz (3.41)
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+1
since (Kz") (s) = Jk (s,t) z" (t)-dt,··

-1

=
+1 a- J {p (s)~ (s,t) +q (s)g (s,t) } z" (t)dt
-1 as

= - p (s)z' (s)-q (s)z (s) = (Tz) (s).

Thus Ku(y) = Tx(y) = - px'-qx and since we have assumed
p,qEc(l)[-l,l] =+ KUEC(l)[-l,l]. Furthermore
(Ku)' = - px" -p'x'-qx'-q'x. By using the Green's
function g(s,t) as above we can therefore achieve

II(Kii) 'II < kIllx "II• (3.42)

Thus using (3.42) we have

rrk
sup 11et>Ku(y)-Ku(y)1I < (l+llet>nll),'nlllx" (Y)II.

lIyll=l n '"
(3.43)

But sup 'lIx"(y)11 = 11M -llix = Bn by (3.33) and so from
lIyli=l n

(3.33), (3.35), (3.36), (3.40) and (3.43) we have
rrk

B < 1+ (2n) ~k IIA A-111+ (1+IIet>II)-2 1 Bn'n - max 0 n n
rrk

Therefore finally if E = (1+1Iet>11)2.1 < 1 we obtainn n n

l-E n
(3.44)

where cr = (2n)~kmax'
This is now a bound on Bn (for En < 1) which does

not increase significantly with n provided IIAoA-lll is
roughly constant.
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tIt was seen from (3.28) that if ~ = (zl,z2' ... zn)
is such that z. = x"(t.) (j = 1 ... n) then _z = A A-ly.] ] 0 _

Thus this means that AAo-
l is the matrix to be inverted

for ~ if we apply the collocation method to an equation

of type (3.31) and seek an approximate solution in the

form u(t)
n

= L z.l~(t). u will then satisfy the
j=l J J

(3.34). This could be confirmed algebraicallyequation

by forming the matrix C = (cij) with cij = [(I-K)l~] (ti)
(i,j = 1 ... n) and verifying that AA -1 does indeedo

equal C. Thus the matrix AoA-l is clearly independent

of the basis in Xn.

Note that any differential equation (G-T)Xn = y

could actually be solved approximately by finding an

approximation u to x" of the form u =
n
L . x"(t.)l~(t)

j=l J J
the correspondingby applying the collocation method to

integral equation of type (I-K)u = y. Then the approxim-

ation x to x is obtained by integrating twice (subject to

the end conditions) the polynomial u(t) = x"(t). However

although this is a convenient theoretical approach it is

practically. quite difficult since we have the problem of

finding (I-K)l~ (j = 1 ••• n) if this method is to be
J

applied directly.

Summary and Conclusions

The main aim of this section (and indeed most of the

latter part of this chapter) has been to show that if the

inverse collocation matrix exists then M -1 exists and
n

its norm can be bounded by (3.44). Thus we can use the

'a posteriori' theory and, in particular, apply Theorem 7

and its corollary.
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We have seen in section 3.5 that the most suitable
error bound from the theorem is

-1IIx-xnllX < II(G-T) 1111 (G-T)xn-yll and using the corollary
we have

l+B IIet>TilII(G-T) -111 < n n1-0n
for on = (l+Bnllet>nTII)(II(I-et>n)TII)< l.

In this expression Bn is bounded by (3.44) for n large
enough to give En < 1. lIet>nTIlis treated by
lIet>nTIl.:s. IITII+II(I-et>n)Til. Everything here is now calculable
and for a sufficiently large number of collocation points
we obtain computable error bounds by applying the above
results. Numerical examples of the size of n required
and of error bounds obtained by this technique are given
in Chapter S. This concludes the main theory of this
chapter.

The bounds derived here and also in the next chapter
ignore the effect of rounding error of which the condition
number is a measure. In the next and final section some
computational properties of matrices we have encountered
which were mentioned briefly before are more fully
analysed.

3.8 Computational Consideration of Matrices and Condition
Numbers
In this section we consider some computational aspects

of collocation methods by examining the structures and
properties of matrices occurring in the application of the
methods, the use of scaling and lastly the condition

.numbers.
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In section 3.6 it was stated that, using Chebyshev

zeros as collocation points, when powers were used in the

basis for X the inverse collocation matrix has an un-n

predictable form and it's norm grows wildly as the chosen

number of nodes increases. However when Chebyshev poly-

nomials are used in the representation of the approximate

solution it is found that the inverse matrix has a

structure with the elements in any column generally

decreasing in magnitude as the row number increases with

the largest elements in the first row. Furthermore the

infinity norm of the inverse matrix is more or less

constant with different numbers of collocation points.

This norm is in fact determined by the sum of the elements

in the first row since these turn out to be positive.

An illustration of these properties is given in

TABLES 7a-7d when the collocation method is applied using

the zeros of the Chebyshev polynomial of degree 10 as

the nodes to the sample operator x"+(1+t2)x. The tables

show the original and inverse matrices from using both

powers and Chebyshev polynomials in the representation

of the approximation. TABLE 7e shows for the same

example the values to 3 significant figures of the norms

of the two inverse matrices for varying numbers n of

collocation points. This demonstrates how the norm of

the inverse matrix from using powers increases with n.
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Norms of Inverse Matrices

n 5 10 15 20 25

Powers 0.932 6.93 210 8.14'3 3.84'5
Chebyshev
Polynomials 1.81 1.81 1.81 1.81 1.81

TABLE 7e

For brevity when powers are used to represent the

approximate solution we shall call the inverse of the

collocation matrix the "powers inverse matrix" and

similarly when Chebyshev polynomials are used in the

basis for Xn we shall call the corresponding matrix the

"Chebyshev inverse matrix".

The above mentioned properties of the Chebyshev

inverse matrix are not really surprising as the following

discussion suggests.

Consider the collocation method applied to the

problem Gx-Tx = f with the usual end conditions. We shall

later choose f in an appropriate manner. With n colloc-

ation points let the linear equations to be solved for

the coefficients of the approximation be Aa = f where
f = (fl,f2
{t.}.n1 as

~ ~=

A-I = (v..)
1.J

fn)t with fi = f(ti)

the collocation nodes.

(i = 1,2, ... n) and
Then a = A-If and if

=
n
l v 1J·fJ.j=l

(3.45)

If we take f(t) = 1 then ao =
of the first row of A-I. Now

n
l vi]" that is, the sum

j=l
we would not expect that
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ao would vary greatly as the number of collocation points

is increased and so we would anticipate that the sum of
-1the elements in the first row of A would be roughly

constant. If these elements are positive then this would

give that the sum of the moduli of the terms in the first
-1row of A was reasonably constant.

In particular we shall investigate the simple

second order equation of the form x" = f subject to

x(-l) = x(+l) = o. With f(t) = 1, x(t) = ~(t2-1), so
n-l

that if an approximation of the form (t2-1) r 'a.T. et)
j=O J J

is sought and the collocation equations are A~ = !then

clearly we must have ao = 1, aj = 0 (j = 1 ..• n-l). Thus

nr a1)·= 1
j=l

(3.46)

-1where Ao = (a .. ) and we see that for this problem the
1.J

sum of the elements in the first row of the inverse is

constant.

It is now shown that the elements in the first row
n n

of Ao-
l all have the same sign so that I.r a1J· I = .r la1jl.

J=l )=1
If x(t) satisfies X"(t) = f(t) with f(t) a poly-

nomial degree ~ n-l and x(t) = (t2-1)z(t) then z(t) must
n-l

be a polynomial of up to degree n-l, r 'a.T. (t) say, so
j=O J J

that
2 +1 Z(t)To(t)

a = - J dt (using the orthogonality)
0 11' -1 y'l-t2

+1 3
2 (1-t2)

-'2ao = - - J x(t)dt. (3.47)
11' -1

Now from (3.47) with the substitution t = sinT and using
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integration by parts and the end conditions on x(t) we

can obtain

+1
a = ~ J (l-t2) ~:x" (t)dt =o 7T_l (3.48)

For a particular value of n take f(t) as l~(t) which is

a polynomial of degree n-l, then in this case f is such

that fk = 1, fj = 0 (j ~k). Since the collocation
method for this problem will give the true solution and

this right hand side gives the special unit vector

described above we must have that the coefficient vector
[ao(k) ,al(k), .•. a (k)]t say, in this case is equaln-l
to the kth column of Ao-

l• In particular by (3.45)
a (k) =
o

n
Lj=l

f(t) = l~(t)

We thus have using (3.48) with

(since Gauss quadrature will

be exact),

(3.49)

Therefore as Itkl < 1, ao (k) is positive giving a1k
positive (k = 1, ••• n) and the modulus of the sum of

the first row of Ao-
l is equal to the sum of the moduli

of the elements.
n

Equation (3.46) then gives L laljl = 1 and if
j=l

we knew that for any column the elements of largest
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magni tude were. in the first row, this would give "A -111 = 1o
irrespective of the number of collocation points. Now

Ia. (k)I ~I
+1 z (t)Tj (t)

= J 2 dt ]J 'IT -1 vIR
+1 3

2 (l-t2)-2Tj (t)x(t)dtl= -I- f'IT -1

+1 3
2 (l-t2)-2Ix(t) Idt< - J- 'IT -1

+1
x(s) = Jg(s,t)l~(t)dt

-1
where g(s,t) is the Green's function of section 1.4 and

where aj (k) is the aj corresponding to the right hand
side l~(t) and aj (k) = aj+1,k(j = 1 •.. n-l) similarly
as for a (k). So if x(t) is of one sign theno
Iaj (k) I 2. lao(k) I. Now x" (t) = 1~ (t) ~

applying Gauss-Chebyshev quadrature we have

Thus in either case we can say that x(s) ~ x*(s) < 0,

confirming that la. (k) I will usually be less than
J

lao(k)l.
This then suggests that the largest elements of

-1any column of Ao .occur in the first row and together
with (3.46) and (3.49) leads us to expect that IIAo-lll
is constant (where in fact the constant is 1) with
varying n.



We are generally concerned however with operators of

the form G-T with T not the zero operator and for problems

of this type often the Chebyshev collocation and inverse

Chebyshev matrices are not of a substantially different

structure to the simple case discussed. With this

assumption the above analysis hints that again the norms

of the inverse Chebyshev matrices, that is IIA-III, might

be reasonably constant with varied numbers of collocation

points.

With powers in the basis for X we do not have then

orthogonality result which has been utilised above and

we are unable to come to similar possible conclusions.

Although we have been considering collocation with

Chebyshev nodes, Legendre zeros lead in practice to

similar results concerning the norm of the inverse

Chebyshev matrix as is shown in TABLE 8 below for the

sample operator x" + (1+t2)x.

Norms of Inverse Chebyshev Matrices using Legendre Zeros

n

1.761146 1.807759 1.807565 1.807561 1.807561

3 5 7 10 16

Norm of
Inverse
Chebyshev
Matrix

TABLE 8

These values can be compared to those given in TABLE

7e or in more detail to TABLE 4 when Chebyshev nodes are

used. The similarity of the norms of the inverse matrices

is probably due to the fact that for larger values of n

the corresponding zeros of the Chebyshev and Legendre
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polynomials of degree n are close.

Having discussed the form of the inverse collocation

matrices we turn to a topic which utilises the above

properties and consider the effect of column scaling.

If we have a matrix A then column scaling of A is equiv-

alent to postmultiplying A by a diagonal matrix D = diag

(dl,d2, ..• dn) say. That is, if B = AD then the elements

in the jth column of Bare d. times those in the corres-
J

ponding column of A for j = 1, ... n.

In the notation we have used throughout consider

the matrix A we obtain in the application of the colloc-

ation. method to the approximate solution of a second

order linear di£ferential equation Gx-Tx = y with the

usual end conditions by seeking an approximation xn of
n

the form .(t2-l) l ar'iir(t). The {lPr(t)} are taken to
r=l

be polynomials. Normally we have to solve the linear

equations, A~ = Y say, for the coefficients~. However

we can solve a different set of equations Bb = Y where

B = AD for D diagonal and represent xn by
2 n n(t -1) l brtr(t) where {tr}r=l are some set of poly-

r=l
nomials. Then since we must find the same approximate

solution xn this means tr(t) = drlPr(t) (r = 1 ... n)
since b =!_a and we see that column scaling of ther dr r
collocation matrix A is equivalent to a certain

transformation of the basis in Xn• That is, if

{(t2-1)tr(t)}r~1 were chosen to represent the approxi-

mate solution then the collocation matrix would be

B = AD.

For our purposes column scaling can be utilised in
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principally two ways. The former of these concerns the

mapping r introduced .in section 3.6 and used in (3.21)

to bound the norm of the inverse of the approximate

operator. Our latter application of scaling is to

improve the condition number of the linear collocation

equations and this is dealt with later.

Consider now
n
Ir=l

the mapping r:Rn ~ X such thatn

br1J!r(t) (~€ Rn) where2r(~) = (t -1)

gave the boundBn < III'll ll A-11111p -111. Column scaling

can now be used on the matrix A to determine a basis

for X such that IIrllis greatly reduced in comparisonn
with the original bases of section 3.6 and such that

IIA-III remains bounded as more collocation points are

chosen. This process is now described.

If we column scale with D = diag (dl,d2 ... dn)

then we saw above that this means we change the basis

in Xn from {(t2-l)1J!r(t)}to {(t2-l)~r(t)} =
{(t2-l)dr1J!r(t)}. Thus it is most likely that we shall

have to choose Idrl ~ 1 if we are to reduce IIrll= IIrt"
say, using the new basis since

sup II(t2-1)
beRn
lrbll=l

column scaled this means A-l is row scaled since (AD)-l

Now when A is

= D-IA-l• We have discussed earlier the structure of

the matrix A-I when an approximate solution is sought in
n-l

the form (t2-l) I la T (t) and Chebyshev zeros are used
r=O r r

as the nodes. Recall that the elements in any column
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generally decreased in magnitude with increasing row
number with the first row as the one with the largest

elements. Further it was mentioned in section 3.6

(TABLE 4) that II HA-111 was found to be reasonably

constant with varying n, where H was the matrix

diag (hl,h2, ... hn) with hl = 1, hi = (i-l)2

(i=2 ••. n). Thus we can take D = H-l so that d1 = 1,
d. = 1 (i=2 ... n) and with this choice we expect
1. (i-1)2

IIB-lil= II(AD)-lll = IIHA-lilto vary little as more

collocation points are used. Two further examples,
to support TABLE 4, of the variations of II A-lil and

IIB-lilare shown in TABLE 9 below.

With this choice of D we have determined a

diff€rent basis {(t2-l)rr(t)}r~1 in Xn where rl = To'
Tr-l (t)

r = 2 (r = 2 .•• n). So now
r (r-l)

t[where now b = (b ,bl ... b 1) ]. Substitution ino n-

(3.23) and rearranging gives

IIri" = sup {b T (t)+2
IIbll=l 0 0

n-l b
+ 3t I ~Tr I (t) + tb 1T1 I (t) } •

r=l r

On using IT I (t) I < r2 this simplifies to
r -

IIrr II < 1+2
n-l
Ir=l ~+4(n-l) ~ 4n-l.

r

Thus employing the scaling we have
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Lf) co 0'1 0
r- r- r- co

Lf) 0 I1'l ~ N
N Lf) C"') C"") ~

N C"') r-l ~
C"') r-l r- r-l

tt · r- ·r-l · r-l

Lf) r-- 0'\ N
r- I1'l r-- r-

0 0 r-- ~ 0'\
N Lf) 0"1 C"") C"')

N 0"1 r-l r-l
C"") 0 r- H
c- · r- ·· H · r-i

Lf) 1.0 0'\ Lf)
r-- I1'l r- r-i

Lf) 0 ~ ~ 0"1
r-l Lf) co C"") ~

N C"') r-i 1.0
C"') 0 r-- 0
r-- · r- ·· r-i · r-i

Lf) 0 N N
r- N ~ r-

0 0 0 N 0
r-l Lf) 1.0 ~ M

N ~ r-l r-i
C"") M r- r-
r-- '" r-- 0'\· · · ·
~ ~ CO CO
CO CO N 0'\
0 0 CO ~

Lf) Lf) I1'l 0'\ r-
N N Lf) ~
M M 0'\ N
r-- r-- r- 0"1· · · ·
- - -

r-l r-l r-i r-l
s::: I I I I

~ ~ ~ ~
- - - -_

~~-
- r-lr-l I
I 4J
4JLf)
N .
+r-l
N +
4JN

X III CO 4-l
~ I ~-Lf)
8_ 8+ .I _

~= ~
~ ~ -t!) ru (,!)X+



-92-

Bn 2. IIrr1111B11= O(4n) giving an improvement upon the earlier
results with the original basis. This, of course, is still

unsuitable for application in the formulae for error bounds

but illustrates the scope of column scaling.

The condition numbers of matrices occurring in the

application and theory of the collocation method are now

considered and it .is shown how for certain matrices column

scaling can be utilised to achieve improvements.

The condition number of a matrix A is defined by

cond (A) = IIAIlIIA-llland the magnitude of this number is a

guide to the effect of perturbations in the matrix upon

the solution of algebraic equations which require in-

version ofA. (For a fuller explanation see e.g. Wilkinson

(1965». Smaller values of cond(A) suggest less possible

perturbation. in the solution. Gaussian elimination with

row interchanges. is in fact invariant under column scaling

but the condition number is not and we are interested in

finding a scaling which will reduce the condition number.

This gives a more realistic indication of the effect of

rounding ..errors .

Now we have seen how, using Chebyshev polynomials

with Chebyshev zeros as collocation points, column scaling

of the collocation matrix A by D = diag (dl,d2 dn),

d1 = 1, d. = 1 2 (i = 2, n) gave values of
1 (i-l)

= II (AD)-lllwhich were reasonably constant with
where

varying n. Moreover bearing in mind the form of the

matrix A seen earlier .in.this section with, in any row,

the larger. elements occurring in the later columns we

should therefore expect IIBI!to be considerably less than

IIAll g.iving a much improved condition number. This is
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demonstrated in TABLE 10 below in which the following

three operators are used as test examples:
Ex. 1 X"_X

Ex. 2 x" +(1+t2)x

Ex . 3 x" + (8t2+2t-1 )x '+ (4 .5t2+1 .5t-1 )x.

The Use of Column Scaling to Improve Condition Numbers

n 5 10 15 20 25

cond(A) 68 591 2062 4973 9815
Ex. 1

cond(B) 12 31 52 73 93

cond(A) 165 1457 5088 12272 24220
Ex. 2

cond(B) 29 60 90 119 149

cond(A) 96 669 2241 5329 10450
Ex. 3

cond(B) 37 63 89 113 136

TABLE 10

The above table shows clearly the smaller values of

the condition number when this column scaling is employed

and suggests a more reasonable guide to the rounding

errors.

Throughout this section we have for simplicity

restricted our attention to the one particular choice of

sc~ling above but slightly different selections e.g.
1dr = r2 (r = 1.••• n) also lead to similar results.

Finally we consider the condition number of the

matrix AAo-
l of section 3.7 whose inverse AoA-l we saw

was involved with the theory of that section concerned

with bounding the inverse of the approximate operator.

Also it was .shown that AAo-
l is the matrix to be inverted
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if we are solving directly for the values at the

collocation points of the second derivative of the
approximate solution. Examples of the condition number

of this matrix are given in TABLE 11 below for which

the same three sample operators of TABLE 10 are again

employed to illustrate the results.

Condition Numbers of the Matrix -1AA
0--

n 5 10 15 20 25

Ex. 1 -1 1.54 1.68 1.80 1.85 1.89cond(AAo )

Ex. 2 cond (AA -1) 2.07 2.37 2.53 2.61 2.67
0

Ex. 3 cond (AA -1) 63.6 84.7 90.9 93.1 94.2
0

TABLE 11

We observe that cOnd(AAo-
l) does not grow sub-

stantially with n, unlike cond(A) and cond(B) above,

presumably due to the fact that the second derivative afprox-

imQ\ions satisfy a type of integral equation.

This completes the work of this section on the

consideration of the numerical properties of matrices

occurring in the application of collocation methods.

In particular we have seen how the structure of certain

matrices can be utilised by the application of column

scaling to reduce condition numbers.
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CH,r,.PTER4

APPLICATION OF COLLECTIVELY COMPACT OPERATOR
APPROXIMATION THEORY

4.1 Introduction
In this chapter we are primarily concerned with the

application of the theory of Anselone (1971) to the

approximate solution by collocation of linear ccdinary

differential equations but much of the theory will ~y

default hold for Fredholm integral equaraons s i.nr-e-'.-2

differential problem is regarded as an integral 0n~
The approximate solution by collocation of integ~al

equations or of boundary value problems seen in this

form, which was discussed in the earlier part of

Chapter 2 and in Chapter 3 does not fit directly into

the setting for Anselone's theory described in secrion

2.7. This is clearly seen from the fact that Anselonp's

approach requires from (2.11) that the approximati~g

equation have a right hand side y whereas the ~~eory

of Kantorovich and Akilo? has a projection of this t~lm

(c.f. (2.2), (2.2")).

It is demonstrated in section 4.2 how to extend the

collocation method to achieve equations of the appropri3te

form for the theory and in section 4.3 these 'extended'

equations are shown to satisfy the required conditions

of the theorems given in section 2.8. In section 4.4

convergence proofs for the usual polynomial collocation

method are derived f("om this alternative theory and it

is subsequently discussed how to relate the new concepts

to the familiar previously considered quantities of
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Chapter 3. In section 4.7 the applicability of Theorems

9, 10 and 7 is discussed and finally a generalisation

of the earlier theory is given.

4.2Adaptationof Collocation for Differential Equations
to the Theoretical Background

We have seen (sections 3.2, 3.7) how a linear

boundary value problem, e.g.

(G-T)x _ d2mx + (t)x(2m-l) (t)
dt2m P2m-l + •..

(4.1)

over [-1,1] with x(j) (±l) = 0 (j = 0,1 ... m-l) and

y(t), Pi (t) E C[-1,1] (i = 0,1 .•• 2m-l) can be trans-

formed to an integral equation of the form

+1
x(2m) (s) - I k(s,t)x(2m) (t)dt = yet) where

-1

~2m-l
k(s,t) = - {P2m-l(s) 2m_l(s,t) + •.. + po(s)g(s,t)}

as

and g(s,t) is the Green's function for the operator
d2m~ subject to the above homogeneous boundary con-
dt
ditions. If the solution x(t) to the above differen-

tial problem exists it must have a continuous (2m)th

derivative and u = x(2m) satisfies the operator

equation (I-K)u = y in C[-l,l], where

+1
(Kv) (s) = f k(s,t)v(t)dt (VEC[-1,1]). Here KE[ C]

-1

since k(s,t) has only a jump discontinuity at s = t

in the closed-interval [-1,1] and
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+1
IIKv1100.s. IIvlloo.max{ flk(s,t) [d t l , Now the space of

5 -1

continuous functions with the infinity norm is a Banach
space so that since we are attempting to fit our problem
to the setting of section 2.7 we take the space X of
that section as C[-l,l] and we have yeX and Ke[X]. The
given equation is (I-K)u ~ y, where we have u replacing
the x of (2.10). If xn is the usual approximation to
x yielded by the collocation method applied to the
dif£erential equation (4.1) then we have seen in section
2.2 that xn satisfies an equation of the form
GXn-~nTxn ~ ~ny (where ~n constituted polynomial inter-
polation at the collocation points {tj}j~l' i.e.

n n~ y = l 1. (t)y(t.) for yeC[-l,l]). Thusn j=l J J

un = xn (2m) = GXn satisfies

(4.2'

since T == KG.
To achieve the desired framework for Anselone's

theory we need ,somehow to modify our collocation
method to obtain approximating equations of the form
(I-Kn)zn = y with Kne [ xl and zne,X (replacing xn in
(2.11» an approximation to u. This process is now
described.

With u as the second derivative of then
approximate solution found by straightforward
application of our collocation method we make the
following definitions. For each n = 1,2 •.• define
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z e x byn

z = y + Kun n (4 • 3)

~ Z = ~ y + ~ Kun n n n n by (4.2). Let K :X ~ Xn

be such that, with veX

(4 • 4 )

Then (I-Kn)Zn = (I-K~n) (y + KUn)

=y - K~ny + KUn - K~nKun

= y + K (un - ~nKUn - ~nY).
Thus by (4.2)

(4.5)

With these definitions we shall call zn the 'extended'

collocation approximation and (4.5) the 'extended'

approximate equation.

This approach is similar to the Nystrom extension

of the quadrature method applied to Fredholm integral

equations which is considered by Anselone and this is

indicated_as follows. If a quadrature is applied to

an integral equation say

+1
u(s) - J k(s,t)u(t)dt = yes) for a general kernel

-1

k(s,t) then
n

l.et {v.} be obtained as approximate
J j=l

at the nodes. The Nystrom extension,values to u

v(s) say, gives approximate values between the nodes
{t. }..nl by

J J=
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v(s) = yes) +
n
2j=l

w.k(s,t.)v.
J J J

(4 .6)

where the {w.} are the appropriate weights. Equation (4.6)
J

is then analagous to (4.3) which may be rewritten as
+1 n

zn(s) = yes) + f k(s,t) 2
-1 j=l

l~(t)u (t.)dt (with
J n J

{tj} as the collocation points). Rearranging gives
n +1

zn(s) = yes) + 2 ( f k(s,t)l~(t)dt)u (t.), illustrating
j=l -1 J n J

the similarity.
A further demonstration of the meaning of the

extended approximation is to compare directly the
equations.satisfied by un and Z •n We have

(I-<I>nK)un= <l>nY'
(I-K<I>)Z = Yn n

and also Z - Kun n

Thus zn(s) = yes)
= y by (4.3).

+1
+ f k(s,t)un(t)dt
-1

= yes) + (TXn) (s)

= y (s) - {P2 1 (s)x (2m-l) (s) + •••m- n

+ po(s)xn(s)}

so that if cn(s) is such that c (2m) (s) = Z (s) and
n n

cn satisfies_the end conditions of (4.1) then
cn (2m) (s) + P2m"';'1(s)Xn (2m-l) (s)+ ••• + po(s)Xn (s) = y(s).
Notice that our extended approximation zn is no longer
a polynomial as was un and this has been necessary to
satisfy an equation of the form (4.5) with right hand
side y.
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We shall not subsequently actually solve for z butn

the theory of its solution, in particular the inversion
of I-K , can be used, as we shall see later in thisn
chapter, in the theorems of Chapter 2 to bound the norm
of (I-K)-l. We can then relate the bound on II (I-K)-lll
derived from II (I-Kn)-lll to II(G-T)-lll by the following
argument. Recall the relationship between
T and K, viz. T ~ KG. Thus I-K = I-TG-l =

-1 -1(I-K) = G(G-T) =+

the operators
-1(G-T)G and

II(I-K)-liloo= IIG(G-T)-liloo= II(G-T)-llix
where this last term is the usual norm of the inverse
operator which we encountered in the former sections of
Chapter 2 and in Chapter 3.

The error in the solution from the usual collocation
method is x-xn = (G-T)-l(y_(G-T)Xn)

(4.7)

(c.f. Theorem 7). Thus we see that if by the theory of
sections 2.7 and 2.8 we are able to bound II (I-K)-lll we
can then bound II (G-T)-llix and hence obtain error bounds
by (4.7).

Computational considerations and numerical results
of applyin.g this strategy are given in Chapter 5.

4.3 Satisfaction of the Criteria for the Application of
the Theorems
We show here that the operators K, Kn (n = 1,2 •••)

defined.in the previous section do indeed satisfy the
conditions required for the theory of sections 2.7 and
2.8 provided we use orthogonal polynomial zeros as
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collocation points, e.g. Chebyshev zeros, Legendre
zeros etc.

We therefore wish to prove Kn -+ K, K is compact and
{Kn} is collectively compact.

Lenuna 1 The sequence {Kn} is uniformly bounded.

Proof sup IIKnvll=
veX

IIvll=l
sup maxi (KnV) (s)l·

IIvll=l s

+1
= I f k(s,t)(~ v) (t)dtl

-1 n

+1 2 ~ +1 2 ~
{ f£ k (s,t)] dt} { H (~ v) (t)] dt} by Cauchy I s
-1 -1 n

Inequality. Ik(s,t) I has been discussed previously

<

and is bounded independently of n, of course. Now
(~nv) (t) is a polynomial of degree n-l and so Gaussian

2
quadratures for the integration of [ (~nv) (t)1 will be
exact. Thus if we choose Chebyshev zeros as the
collocation points {tj} then
+1 2 +1 -~ 2
f[ (CPnv) (t)] dt ~ f (1-t2) [(~n v) (t)] dt =
-1 -1

where {wi} are the weights of the quadrature formula.
Now we can say

(see e.g. Natanson (1965, p.104».
Thus IIKnllcan be bounded independently of nand {Kn}
is uniformly bounded.
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Lenuna 2 Kn -+-K.

Proof To verify the above statement we have to show
KnV -+-Kv (for all veX). Now

+1
IIKnV-KVIl= max I fk{s,t)[ (<Pnv)(t)-v(t)]dtl

s -1

+1 2 ~ +1 2 ~
2. max { f[k(s,t)] dt} { f[ (<Pnv)(t)-v(t)] dt.} •

s -1 -1

As before the first factor is independent of v and n.
Now veC[-l,l] and therefore we have

+1 -~ 2
1im f (1-t 2) l t <P v) (t) -v (t)] dt = 0n-+-oo-1 n
since this is the convergence result for the inter-
po1ation of continuous functions in the weighted ~
norm, (see e.g. Natanson (1965, p.55».

Lemma 3 K is compact and {Kn} is collectively compact.

Proof For K to be compact we need KU to be
relatively compact in X (where U is the unit ball
{veX:llvll< 1}). To prove {Kn} is collectively compact
we requir.e the set X,U = {Knv:neN, veul to be relatively
compact,.(N being.the.set of positive integers).

Thes.eresults are .obtained by means of the Arze1a-
Ascoli.theorem,given for example by Kantorovich and
Akilov (1964, p.22), by proving equicontinuity and
uniformboundedness of the appropriate sets. Thus for
veu, IIXvll< IIKIIgiving KU uniformly bounded. Now for



-103-

+1
= 1 J lk(sl~t)-k(s2,t)]v(t)dtl

-1

+1
< J Ik(sl,t)-k(s2,t) [d t ,

-1

In general k(s,t) will have a discontinuity at s=t and
in v-iew of this we split the above range of integration

+1
by f =

-1
For t in the intervals [-l,sl)

and .(s2,1] k (s,t) is a continuous function of s for
s > sI and s < s2 respectively, and the corresponding
integrals can be made.arbitrarily small by choosing
Is2-s11 suf£iciently small. Now
s2
f Ik(sl/t) -

sl
k (s2 It) Idt ~ 2 I s2-s1Imax Ik (sIt) I and so

S,t

this term can again be made arbitrarily small. Thus we
have proved equicontinuity and by the Arzela-Ascoli
theorem w.e have that K is compact.

In Lemma 1 we showed {Kn} was uniformly bounded and
thus it only remains to satisfy the equicontinuity
condition for ~U. As before with -1 ~ sl < s2 ~ 1 say
and veU

+1
I (Knv) (sl)-(KnV) (s2) I = 1_{[k(Sl/t)-k(S2/t)] (4)nv)(t)dtl

+1 2 ; +1 2;
< {-i [k(sl,t)-k(s2/t)] dt} {_{l (4)nv)(t)] dt ] .

We now deal with. this expression by treating the former
f.actor by splitting the range of integration as earlier
in this lemma and the latter by the technique of Lemma 1.
This proves equicontinui ty and hence that .:t U is
relatively compact in X, showing {Kn} is collectively
compact-
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We have now satisfied the required conditions on the
operators K, {K } for Theorems 8, 9 and 10 so that if wen

assume that the appropriate inverse operators exist then
these results can be applied to give convergence proofs
and error hounds for "u-zn". As was mentioned in section
4.2.we do not actually. solve for Z but in the nextn
section we see it can be used for convergence proofs
for II x-x II and in sections 5 and 6 we consider a moren
qualitative approach.

4.4 Convergence Proofs for the Usual Polynomial
Collocation Method
We here give alternative convergence proofs to those

of Kantorovich and Akilov type for the ordinary poly-
nomial approximation xn we have used in the earlier part
of Chapter 2 .and.in.Chapter 3. Recall that un = GXn is
also a polyn.omial.

Firstly we note that if we assume (I-K)-l exists
then Theorem ..8 .gives, in the infinity norm, lIu-znll .. o.
Now u-un u-.4>u+<p u-un n n

= u-~nu+~n(u-Zn) (since ~nzn = un)·
So in any norm "u-un" ~ lIu-4>null+ l14>n(u-zn)lI.However
if. u is mer.ely continuous then in the infinity norm
IIu-.4>null-It 0 in. gen.eral. This suggests the use of an
~ norm which we take as the one with the Chebyshev
weight function and we denote this norm by II .112•

Le. II vll2
+1 ~= { J w(t)v2(t)dt}
-1

= (1-t2)-~

(VE C[-1,1] )

with w (t) Then in this norm we have

lu-un"2 .::.lIu-4>nuII2+ l14>n(u-zn)1I2 and the term
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lIu-<Pn:u1l2+ o. (Natanson (1965, p.55»). Now

II<P (u-z )II 22 =n n

+1 2
f w (t) [<P (u-zn) (t)] dt
-1 n

n 2 n= 2 w.[u(t.)-z (t.)] where {w.}. 1 and {t.} .nl
j=l J J n J J J= J J=

are the weights and nodes respectively. Therefore
2

1I<P(u-zn)112
2 < 7T m~x [u(tj)-Zn(tj)] •

J
Now lIu-znlloo+ 0 from above and therefore lIu-unll2+ 0
as n + 00. Thus to emphasise this point we have un + U

in the ~ norm whereas zn + U in the infinity norm.
From the theory of Kantorovich and Akilov applied

in section 3.2 we had IIx-x II = lIu-u II + 0 as n + 00n X n 00

but this was only after we had required some extra
continuity of derivatives from the coefficients and
right hand side in the differential equation. This
result of convergence in the weighted ~ norm when no
extra continuity conditions are assumed agrees with
that of Vainikko (1965).

To obtain the convergence result IIx-xnlloo+ 0 as
n + 00 we proceed as follows.

+1
Ix(s)-xn(s) 1= f g(s,t)[u(t)-u (t)]dt where g(s,t)

-1 n

where g(s,t) is the usual Green's function for G with
the given h.omo.geneousboundary conditions. We can now

+1 2 ~ +1 2 ~
get Ix(s)-xn(S) 1 ~ {_{[g(S,t)] dt} {_i[u'(t).-:Un'(t)]dt}

by Cauchy's inequality. The former integral is bounded
and-the.latter is less than
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+1 2 ~
{ fw(t)[u(t)-u(t)] dt}
-1 n

This proves II x-x II -+ 0 as n -+ 00.n 00

4.5 The RelationshipHbetween the Inverses of the
'Extended.' and. the ..'Usual' Approximate Operators

In section 4.2.we defined .the extended approxim-

ation zn and.this.was.shown to satisfy (I-Kn)Zn = y

or (I-K~n)Zn = y, whereas the usual polynomial

approximation u to u = Gx satisfies (I-~ K)u = ~ y.n n n n

In this section we establish the connection between

the inverses of the operators I-Kn and I-~nK"

Assume that (I-~nK) restricted to the polynomial
subspace of C[-l,l] has an inverse denoted by

(I-~nK)-l" Now take any yeX = C[-l,l] then

(4" 8)

satisfies (I-~ K)u = ~nY" For this y and un define. n n
Zn by (4.3) then

(I-Kn)Zn = y or (I-Kn) (y+KUn) = y

=+ (I-Kn) (Y+K(I-'nK)-l~nY) = y by (4.8)

=+ (I-Kn) (I+R(I-~nK)-l~n)Y = y

and I+K(I-~ K)-l~ is a right side inverse of I-Kn"n n
Now we also wish to show that this operator is

also a left side inverse and so is the unique inverse

of I-K Thus,n·
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[I+K(I-q, K)-lq, ][I-K ]Y = [I+K(I-q, K)-lq, ][I-Kq, ]Yn n n n n n
= Y+K(I-q,nK)-lq,nY - Kq,nY - K(I-¢nK)-l¢nKq,nY
= y+K[ (I-¢ K)-I_I] ¢ Y - K (I-q,K)-Iq, K¢ Yn n n n n
= Y+K(I-¢nK)-l[ I-(I-¢nK)]¢nY - K(I-¢nK)-l¢nK¢nY
= Y+K(I-¢nK)-l¢nK¢nY - K(I-¢nK)-lq,nK¢nY
= y

Therefore

(4.9)

-1This shows that whenever (I-¢nK) exists then
(I-Kn)-l exists also and is expressed by (4.9). Now
(1-¢ K)-l = G(G-q, T)y-l and in section 3.6 we gave then n n

-1 -1relationship (3.20) between M = (G-¢nT)y and then n
inverse of .the collocation matrix, A-I. Thus we can
employ the logical argument that if the collocation
matrix is non singular, i.e. A-I exists ~ (I-¢ K)-ln
exists =t (I-Kn)-l exists. This approach will be
used for the application of the 'a posteriori'
theorems 9, 10 to bound II(1-K)-11l for use in (4.7).
That is, the inverse matrix is known to exist and
hence (I-K )-1 exists also and so we have in con-n
junction with the results of section 4.3 the required
conditions for the theory.

To apply theorems 9 and 10 practically we have to
be able to bound II(1-Kn)-IIi. Equation (4.9) yields
II(1-Kn)-l11 2 l+IIKIIII(I-¢nK)-11lII¢nll, but.II~~1Iis O(ln(n»
for Chebyshev zeros for instance and this expression
will increase as more collocation points are chosen
making i_tdif£icul t to achieve /).n< 1 for Theorem 9
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or ~~ < 1 for Theorem 10.
The next section shows how to find a more satisfactory

bound.

4.6 A Bound on the Norm of the Inverse of the Extended
Approximate Operator
In the previous section the relationship between the

inverses of the extended and the usual approximate
operators was seen. We here give a more practical means
of bounding the norm of the inverse of our extended
operator.
II(I-K )-111 =

n sup II(I-Kn)-lyll = sup liz (y)IIwhere
IIyll=1 II yll= 1 n
-1zn(y) = (I-Kn)y. Using the definition (4.3) we can say

II(I-K )-III < sup {IIyll+11Ku (y)II} where un = (I-CPnK)-lCPnY•n lIyll=1 n
Thus
II(I-K )-111 < 1 +n - sup

lIyll=l
+1 2 ~

(max { ![k(s,t)] dt} •
s -1

+1 2 ~ +1 2 ~
{ ![Un(t)] dt} ) < 1 + 12 kmax sup { ![un(t)] dt}
-1 IIyll=l-1

where kmax = max Ik(s,t) I·
s,t

Now un(t) is a polynomial of degree n-l and if our
collocation points {ti}i~l are the zeros of an nth degree
polynomial belonging to an orthogonal set with weight
function wet) ~ 1 then we can say

+1 2 +1 2
f[ un (t)] dt < Jw (t)[un (t)] dt
-1 -1

n
= l

j=1
Z2. Un.' i duS1ng Gauss an qua rature.] ]

Here z. = u (t.) and the un].are the weightsat the nodes
J n J

(j = 1 ••• n). This is a similar situation to that
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discussed early in section 3.7 and used later to derive
the result (3.39). Ana1agous1y to (3.28) (the derivation
of which was shown for the example of second order
problems), we would have (using the previous notation),

t -1z. = e.A A yJ -J 0 - (j = 1 ... n)

with [Y1'Y2'
t Yi = yeti) (i = 1 n) .1.. = ... y] and ...n

n 2 n ~ n ~
Now sup { 1: z.U. } < sup (max I zk I ) ( 1: U~)

lIyll=l j=l J J lIyll=l k j=l J

and following the arguments of the early part of
section 3.7,

sup (maxiZkl) < IIAA-III
lIyll=l k - 0

since IIyll= 1 means hi I < 1 (i = 1 ... n). As before
n
1:j=l

nU. = n where n =
J

+1
f w(t)dt.
-1

Thus if for example we are using collocation with
Chebyshev zeros we then have

(4 • 10)

(where n = TI in this case).
Examples of IIAoA-lllwere given in TABLE 6 in section

3.7 and it was illustrated that this quantity was
virtually c.onstant as more collocation pOints were
chosen. Thus (4.10) provides a reasonable bound on
II(I";'Kn)-lliwhich can be used in Theorems 9 and 10 to
obtain bounds on II (I-K)-lll for application to inequal~
ities of the form (4.7). Chapter 5 contains some
numerical ..examp.les of this. process.
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4.7 Comparison of Different Approaches
We have mentioned that Theorems 9 and 10 will be used

in practice later and in this section a comparison of
the applicability of these results and those of Theorem 7
is given.

Theorems 9 and 10 gave bounds on II(I-K)-lll in terms
of II(I-Kn) -111 provided b,n = II(I-Kn) -111II(Kn-K) KII < 1 and
b,~ = II(I-Kn) -11111 (Kn-K) Kdll < 1 respectively. The advantage
of using the second result is now explained. (Note that
An An)
LI = Lll.

Recall that Kn = K~n by (4.4) so that
(K-K )Kd = K(I-~ )Kdn n

=+ II (K-Kn) Kdll < IIKIIII (I-~n) Kdll

= IIKII sup {1I(I-~n)Kdvll} (veC[-l,l)
IIvll=l

= IIKII sup {II(I-~n) KdV-V+vll }
IIvll=l

for v a polynomial of degree n-l. Thus

< IIKII(1+11~nll) sup IIKdV-vll•
IIvll=l

(4.11)

By Jackson's theorem (Cheney (1966, p.147» there
exists a polynomial vep 1 such thatn-

( 2!. ) d II(KdV) (d)II
< 2 n (n-l) ••• (n-d+l) (4.12)

provided.Kdvec(d)[-l,l) •
We now prove that Kdv does indeed have d continuous

derivatives so that (4.12) can be applied in (4.11).
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Lemma If veC[-l,l] then Kdvec(d)[-l,l], provided that
the coefficients in the differential equation are
sufficiently differentiable.

Proof We use mathematical induction. Firstly
Kdv = K(Kd-lv) = Kw where w = Kd-lv. Now

+1
(KdV) (s) = f k (s,t)w (t)dt

-1

= P2m-l (s)xw (2m-I) (s) + ••• + PI (s)xw (1) (s)

if the differential equation involved in the definition
of K was of type (4.1) and ~ = G-lw. Thus wEC(j)r-l,l]
~ x Ec(2m+j)[_1,1] and if we assume p. (s)Ec(d)[-l',l]w J
(j=O,1 •••2m-l) then WEc(d-l)[-l,l] ~ KWEc(d)[-l,l]. The
case for d = 1 is certainly true and therefore by induction
the lemma holds.

Thus provided that we have sufficient differentiability
of the coefficients (4012) can be utilised in (4.11) to

. d 1T d IIKII(l+II<I>nll) d (d)
gl.ve II(K-Kn) K II~ (2") n (n-l) .0. (n+d-l) sup II (K v) II •IIvll=l
The problem now is to bound (Kdv) (d) in the manner
II(KdV) (d)II ~ kdllvllfor some constant kd so that
sup II (Kdv) (d)II ~ kd• Note that we could have obtained

Ilvll=l
similar results for II(K-Kn)KII which would require
evaluation of sup II(Kv) (d)II. However it is not possible

IIvll=l
in general for d > 2 to express II(Kv) (d)1Iin the form of
a (constant) times IIvll. This could be seen by considering
an example of a second order equation and with d = 2 it
would be clear that bounds on first derivatives of v were
required. After sufficient algebraic manipulation however
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we are able to achieve II(KdV) (d)II.s. kdllvll. Roughly
speaking this is possible because we perform d
integrations of v and then d differentiations. In
section 5.3 it is shown how to evaluate the constants
kd for d = 2.

Thus we see the advantage in using Theorem 10
n lI<I>n" n

because ~d is O(n(n-l) ..• (n-d+l» whereas ~ is
II<I>nilO(--n--) and it is likely that the number of collocation

points needed for applicability will be much less in
the case of Theorem 10. Theorem 7 using the Kantorovich
and Akilov approach requires

-- ..on = Il(G-<I>nT>;lllllCI-·<I>n)Til < 1 with 1I'lIxas the norm in
n

-the :X .space of..the_..first part of Chapter 2 and of
Chapter). .Now

II(1-<1> )TII =n sup .. 11 (1-<1> ) TzlI
IIzIIX=l n

< (1+11 <l>nll) sup IITz-vll
IIzllx=l

for veP '1"n-

So that with v = Gz, IIzllX= IIGzllco= IIvllwe have
"(I-<I>n)TII= sup (l+II<I>nll)IIXv-vllsince T ::KG and

IIvll=l
this is the same situation encountered as for the
Anselone.results.of Theorem 9 and only yields on as

lI<I>nll
o (---n-) •

To summarise then the work of this section, we
expect that Theorem 10 will be applicable for much
smaller numbers of collocation points than either
Theorems 9 or 7 and so will be more suitable for
practical bounds.

In the next Chapter in TABLES 13 and 14 the
numerical results of some comparisons are given.
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4.8 Generalisation of the Extension

To conclude this chapter we suggest a generalisation
of the extended approximation discussed in section 4.2.

The Nystrom extension is implemented to improve upon the

quadrature method for integral equations. However the

extension we have introduced for collocation could be

applied to any projection method to hopefully achieve

results of a theoretical or practical nature.

We consider a general Banach space X instead of

merely the space of continuous functions with the

infinity norm. Let the given equation for ueX be

(I-K)u = y (4.13)

with I as the identity operator on X, yex and Ke[x].

Let ~n be any bounded linear projection of X into a

subspace.xn of X, then we can regard I-~nK as a

mapping.from Xn to itself. When the operator

(I-~nK)-l exists e[xn] we can make the following

definitions:

K~ v for veX.n Then the

above three .definitions imply (I-Kn)zn = y following the

sarneargument as in section 4.2.

Thi.s extension could be applied to any projection

method to define an 'extended projection' method and

·generalises the.previous work. For example, if K is

an integral operator of the form



+1
(Kv) (s) = Ik(s,t)v(t)dt (v integrable) for some kernel

-1

k(s,t), we could consider the application of Galerkin's

method. We choose a suitable function space X with

the set Pn-l of polynomials of degree n-l as the subspace

Xn. In th~s case we could define ~n by

(~nv) (s) =
n-l

Lj=O
+1
( fL.(t)v(t)dt)L.(s)
-1 J J

(v€ X)

where Lj(S) is the Legendre polynomial of degree j. If

un is found from the Galerkin method in the usual way as

an approximation to u satisfying (4.13) with K as above then

w'i,thzn = y+Kun we have
+1 n-l +1

zn(s) - fk(s,t){ L fL.(T)zn(T)dT} LJ.(t)dt = y(s).
-1 j=O -1 J

With suitable choices for the space X and its norm we

might then hope to be able to apply the theory of

sections 2.7 and 2.8 to deduce useful results concerning

the Galerkin method.

This then illustrates one possible application of

the generalisation.
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CHAPTER 5
DETAILED CONSIDERATION OF ERROR BOUNDS

AND NUMERICAL EXPERIMENTS

5.1 A Review of the Error Bounds and their Application
It was demonstrated in Chapter 3 and 4 that the

theories of Chapter 2 could be applied to give error bounds
for the approximate solution by collocation of linear
ordinary differential boundary value problems. We are
here concerned with the practical implementation of the 'a
posteriori' bounds given in Theorems 7, 9 and 10, and this
topic is considered in detail. We shall continue to employ
the same notation as has been used throughout.

For the purposes of earlier chapters problems of the
form (3.1) (or (4.1)) have been regarded as operator
equations Gx - Tx = y and it was seen (section 4.2) that
the differential equation for x could be transformed to an
integral equation for u = Gx of the form (I-K)u = y where
K = TG-l•

With xn as the polynomial approximation to x it was
shown in section 3.5 that the most suitable means of
bounding IIx- xnll was to use the inequality

(5.1)

To utilise this in pr.actice we have to find an 'a posteriori'
bound on II(G-T)-lll and it was seen that Theorem 7 and its
corollary. provided a suitable result. Moreover

-1Bn = II(G - cjlnT)yIIoccurring in the corollary was investigated
n

in section 3..7 and was bounded by the inequality (3.44).
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Other possible means of bounding II (G-T)-lll were discussed in
section 4.2 where it was shown that II (G-T)-111 which is
measured in the X-norm was equal to II (I-K)-lll in the infinity
norm. Utilising the inequality (4.10) Theorems 9 and 10 can
then be applied subject to certain conditions to produce
'a posteriori' bounds on II (I-K)-lll and hence on II (G-T)-lll
for use in (5.1).

All the results furnished by Theorems 7, 9 and 10
require the number of collocation points n to be sufficiently
large and some numerical examples of values of n required
are given in section 5.5. Examples of computed error bounds
along with estimates discussed in the next section are
presented in section 5.6 and the results of further experi-
ments are given in the Appendix.

Before the bounds are considered in detail in the
following two sections care must be taken over the norms
used for measuring the errors. Our bounds are derived
from (5.1) in which we use the X-norm of Chapter 2. This
has been necessary in order to be able to apply the theory
of that chapter to bound (G-T)-l in some norm. An alter-
native would be to use lIu-unli< II(I-K)-llill(I-K)u -yll in the- n
infinity norm where un = Gxn• However this is of course
equivalent to (5.1) since

Thus if we wish a bound on IIx-xnlloowe are faced with the
problem of bounding this from knowledge of IIx-xnllx' This
difficulty is treated by the following argument.

+1
X (s) - xn (s) = J g (S,t) (x(2m) (t) - X (2m) (t))dt

-1 n
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where g(s,t) is the usual Green's function for the
d2moperator ---2- subject to the homogeneous boundary con-dt m

ditions (3.1b). Thus

(5.2)

+1
where g* = m:x flg(s,t) Idt.

-1
The inequality (5.2) will generally be a rather coarse

bound on IIx- xnlloo but seems unavoidable and its effect
will be illustrated later in the results of section 5.6
where it will be seen that our 'a posteriori' error bounds
are in better agreement with actual computed bounds when
the .X-norm is used compared with the infinity norm.

5.2 Detailed Formulation of the Error Bounds and their
Estimates
The var.ious means of deriving bounds on II(G-T)-111 were

cited in the previous section and by combining the Theorems
7, 9 and 10 of Chapter 2 with the more practical results
of Chapters 3 and 4 the detailed description of (5.3), (5.4)
and (5.5) below can be given.

Chebyshev polynomials are used in the representation
of the approximate solution and Chebyshev zeros are chosen
as the collocati.on points. The bounds presented below are
in fact ind.ependent of the basis used for the polynomial
subspace but Chebyshev polynomials lead to more desirable
condition number properties than simple powers and so are
preferred.

With k(s,t) as the kernel when the differential
problem is transformed to an integral one as in sections
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3.2 and 4.2 and K C[-l,l] ~ C[-l,l] such that for
+1

v€C[-l,l] (Kv) (s) = f k(s,t)v(t)dt, we make the following
-1

definitions.
k max Ik(s,t)1=max -l'::_s,t'::_l
k = IIKII. (Also ko = IITil since for v€C[-1, 1] Kv = Tz
0

where -1z = G v).

kl is such that for V€C[ -1,1] , II(Kv) 'II ~ klllvil.

k2 is such that for v€C[-1,1] , II(K~) "U .~ k211vII•
We must of course have sufficient differentiability of
the coefficients in the differential equation for the
latter two definitions.

In section 5.3 the problem of finding the constants
kmax' ko' kl and k2 is considered but meantime three more
quantities are defined using the above specifications as
follows.
a = (21T) ~k , € = (1+11cl> II)max n n
€ (2) = (l+lIc1> II) (!}2 k2 •n n 2 n(n-l)

We have seen how there are three possible ways of
bounding" (G-T)-l" for use in (5.1), namely by Theorems

and

7, 9 and 10. For Theorem 10 the choice of d = 2 is most
suitable for practical purposes because otherwise with
d ~ 3 the algebraic manipulation involved in bounding
~~ can become lengthy.

Let the computable bounds on II (G-T)-lll furnished by
Theorems 7, 9 and 10 for a particular value of n be
denoted by Bl(n), B2(n) and B3(n) respectively. Then we
have

=
1 + (ko + € )Bn n

1 - ~n
(5.3)
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for 0 = [l+(k +e )B]e < 1 where Bn is bounded bynon n n
1 + erllAo-A-lll

l-e provided en < 1,
n

1 + k Co n= -:----:0--::--1 - k C eann
(5.4)

for ~n = k C € < 1 whereann

II (I - K ) -111 < C = 1 + erIIAaA-Ill
n - n

and

=
l-kCe(2)ann

(5.5)

for ~~ = k C e (2) < 1o n n as expressions suitable for
numerical evaluation.

An example of the manner in which these bounds are
applied in section 5.6 is now given. For instance, if n
is large enough to give Ll~ < 1 then

provides an 'a·posteriori' bound on IIx- xnllX' Further we
obtain

II X - x 1100 < g*B3 (n)II (G-T)x - ylln - n

by (5.2). In such error bounds II (G-T)x - yll is computedn
approximately by evaluation of the residual (G-T)Xn - y
at several points throughout the interval [1,-1] and
taking the maximum of these values. This is not a
rigorous bound but although it would be possible to
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determine such a bound it is not thought worthwhile since

this would involve a great deal of computing time and is
not the main point of our analysis.

On examination it can be seen, as in section 4.7,
that the bound from Theorem 10, namely B3(n), will
generally be applicable for smaller numbers of collocation
points than either of the others. nThat is, for any n ~2
is likely to be less than ~n or 0 and so the result (5.5)n
is able to be utilised for smaller values of n than either
(5.3) or (5.4). Results comparing the values of n
required are given in section 5.5 where it will be seen
that they can be fairly large. This means that the number
of collocation points used in practice to solve a problem
might not be large enough to satisfy the conditions for
the theory. In this case we would then have to increase n
and invert a larger matrix (to compute IIAoA-llI)in order
to obtain a bound on II(G-T)-lli. This bound could then be used
~for.'the' original value of n, evaluating the residual
appropJ:iately. However having inverted the larger matrix
we ha:ve essenti.ally solved for a higher order approximation
and could then obtain an error bound for this. This
process would be rather unsatisfactory except perhaps for
the situation where it was required to solve problems with
the same di££erential operator but with a number of
different ri.ght hand sides when it would be necessary only
once to invert a large matrix, the residuals being
recalcul.ated each time.

To avoid such possible difficulties we now develop
estimates of the bounds given in (5.3), (5.4) and (5.5)
whi.ch do not require any· stipulation about the size of n
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and which are applicable for all numbers of collocation
points.

It was seen in section 3.7 (for the second order
-1examples chosen for TABLE 6) that IIAoA IIwas virtually

constant with varying numbers of collocation points.
This property can be utilised to derive estimates of
the bounds given in (5.3), (5.4) and (5.5). For example,

l+k C(onB2 n) = l-k C eo n n

l+kO(l+crIlAOA-llI)
= l-k (l+crilAA-rll)eo 0 n

and in this

-1expression as n increases en decreases whereas IIAoA II
remains reasonably constant. Thus with n taken large
the denominator will be close to unity and the
numerator will be much the same as for smaller values
ft and we should expect that a good estimate of the
bound B2(n) would be
132 (ft)= l+ko (l+a.llAoA -111) In=ft = l+koCft. Here ft is the
smaller value of n actually being used in any calculation.
That is, for the error bound the same value ftof n would
be employed for evaluation of both 132(ft) and the residual.

Similar estimates of bounds, 131(ft)and 133(fi)can be
derived from Bl(n) and B3(n) respectively. For Bl(n) we
have to implement the estimating scheme twice to achieve
Bn ~ l+crIlAoA-lli= Cn ~ Cft and then Bl(n) ~ 13l(ft)= l+koCfi
(since 0 ~ 0 for n large). Thus for any number n ofn

collocation points we should hope that

131 (n) = l+koCn
B2(n) = l+koCn (5.6)

and B3(n) = l+k +k 2Co 0 n
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would provide good estimates of the bounds on II (G-T)-lli.
(We notice that Bl(n) and B2(n) both reduce to the same
estimate) .

The numerical experiments performed later indicate
that the valye$ ~l(n) and ~3(n) are indeed good estimates
of their respective more rigorous bounds and are in fact

-1likely to be closer to the actual norm of (G-T) •
It is next shown how to calculate the remaining items

needed for the various bounds.

5.3 .Further. Quantities Needed for the Numerical Evaluation
of the Bounds
In this. section it is demonstrated how to compute for a

given differential equation the quantities k , ko' kl andmax
k2 defined at the.beginning of the previous section.

For Simplicity we shall again consider second order
equations of..the form

(Gx-Tx) (s).= .x" (sj+p Isj x (s)+q(s)x(s) = y(s) (5.7)

with xC-I) = x(+l) = 0 and we shall require at times
certain differentiability properties of the coefficients
p (s) and q (s).. For these problems
k(s,t) = -p(s) ~(S,t) - q(s)g(s,t) with g(s,t) the simple
Green's function of section 1.4. The results of that
section concerned with g(s,t) will be used frequently and
are restated here for convenience.

=
:( ~ (s+l) (t-l) s s tg(s,t)

~ (s-l) (t+l) s > t
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+1
flg(s,t) Idt = ~(1-s2)
-1

from (1.11)

+1
fl~(s,t) [d t = ~(1+S2)

-1 as
from (1.12)

Further max ,I 9 (s~t) I = ~
-1~s,t~1

and max It;(s,t) I = 1.
-l~s,t~l

To simplify the notation we define

p . (s) = Ip (j) (s) I and
J

q.(s) = Iq(j)(s)1
J

provided p,qec(j)[ -1,1] (j = 0,1,2) (where c(o) :;C).
We now show how to determine with a minimum of

manipulations the constants kmax' ko' kl and k2 for a
given differential operator.

kmax = max.lk (s , t) I
s,t

= maxlp(s)~(S,t)+q(S)g(S,t) I
s,t

(5.8)

sup IIKvll
ve cl -1,1]
IIvll=1

+1= sup maxi f k(s,t)v(t)dtl
IIvII=1 s -1

+1
< max flk(s,t) Idt

s -1

(5.9)

kl was such that for ve C[ -1,1], II(Kv)'II~ kIllvII•
Now (Kv)I -1= (Tz)' where z = G v =+ z" = v. Thus
- (Kv)' (s) = p '(s)z '(s)+p (s)z" (s)+q '(s)z (s)+q (s)z' (s)
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~ - (Kv) ,(s)
+1

= p (5) Z 'I' (5 ) + f {[ p' (5) +q (5) ] ~ (5 , t )
-1 05

+ q' (S)g(S,t) }Z" (t)dt (5.10)

and we can take

max
s

[Po (s)+ ~ (1+s2) lp' (s)+q (s) I+~ (1-s2)q1 (s)]
(5.11)

We recall that k2 was such that for vee[-l,l]
II(K2V)" II.::.k211vlland moreover K2v = K(Kv) = KW"

-1where w(s) = (G Kv) (s) = +1
f g (s,t) (Kv) (t)dt .
-1

Thus

-(K2V)" = -(Tw)" = p"w'+2p'w" +pw''' +q"w

+2q'w'+qw" • (5.12)

+1
~(1-s2)IIKVIl andNow Iw (s) I < IIKvll flg(s,t) Idt <- -1 -

+1
~(1+s2)IIKvll.lw' (s) I < IIKvll f I~(s,t) Idt <- --1

Using IIKvll< k !lvII,where ko is given by (5.9), we can
- 0

then bound every term in (5 •12 ) ex c.ept pw "' •
Now .W"'(S) = ~s (Kv) (s) = ~s (Tz) (s) and we can apply
(5.10) and (5.11) to obtain

kl being given by (5.11).
Thus applying.these bounds throughout (5.12) we have

2 .I(K v)" (s) 1 . ~. k211vII where
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(5.13)

Convenient means of determining the constants k ,max
ko' kl and k2are therefore provided by (5.8), (5.9),
(5.11) and (5.13) respectively, and to illustrate the
application of these.we consider the sample operator
:x" (S)+<l(1+s2)x(s).with a parameter a>O, say. In this
case

p (s) - 0,
q (s.)= a(1+s2)~ s ' (s)=2as~ q" (s) = 2a,

and qo(s) 2 ql (s) 2alsl, q2(s) = 2a.= a (1+s ), =
Applying the formulae we have

a 2}kmax ~ max. {'2(l+s ) = a,
s

ko < max {~(1+s2) (1-s2)} = max{~(1-S4)} = ~,
s s

kl = max {~(1+s2) (1+s2)+~(1-s2)2alsl}
s

a .24 2~I max {1+2s +s +2-2s } ~ 2a
s

max
s

2= max {~ [1-s2+2+2s2+1+s2]}
s

a2 2 2= ~ max (2s +4) = 3a
s

In the calculations above we have been able at
various points to make use of cancellation to obtain a
lower bound than with straightforward minimisation of
the individual terms. The next section contains a
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specification of test problems to which the error bounding
techniques discussed e.arlier are applied. For these or
indeed any other problems when the formulae given here
for finding the cdnstants are used there will generally
be possible a certain amount of cancellation. Further
the bounds for. the constants computed by a coarse
implementation.of these schemes may possibly be slightly
refined if.more. sophisticated techniques are employed
for determining.themaximum value of functions over a
given interval.

5.4 Specification.of. Test Problems
In.this aect.fon. tes.texamples are described to

which the strategies previously discussed for finding
-.error. bounds ..are later applied. The numerical results
.relating to this process are examined in sections 5.5

and.5..6 with further tables given in the Appendix.
We now present the .six basic sample problems

with .aparameter a so that the equations are of the
form_Gx-a.Tx= y.

Problem 1

: x"+a (1+t2 )x= 1, x(-l) = x(+l) = 0
This example with a = 1 is.considered by Collatz (1960,
p.l.43) and we take _this. particular problem and variations
of._it·asanes t.o.: be discussed in detail in section 5.6
ta illustrate the fea.tures o£ the different techniques
for.:err.or bounds.
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Problem 2
:x"-~x = cosh(1), x(-1)=x(+1)=0

When ~ = 1 this equation has the solution cosh(x)-cosh(l)
and is transformed from the example, x"-4x = 4cosh(1)
over [0,1] with x(O) = x(l) = 0, considered by Ciarlet,
Schultz and Varga (1967, p.426).

Problem 3

.x"- 2a.-'="';;';~x =
(t+5)2

1 x(-l)=x(+l)=O2 (t+5),
This problem with a. = 1 is a transformation to the
interval [-1,1] of the equation

- 1subject to x(2) = x(3) = 0 with thes

exact solution x(s) = 1-(19s - 5s2 - ~) and is taken38 s
from Collatz (1960, p.178).

Problem 4

.X"+N[ 2x' _ 2x] = _ 1

. "" (t+3) (t+3)2 (t+3)'
The linear equation above is derived for a. = 1 after a

x(-l)=x(+l)=O

certain amount of manipulation as a linearised version
of the nonlinear problem
2 2

d z + 1[l+(dz) ] = 0 over [0,1] with z(O) = 1, z(l) = 2ds2 z ds

from Milne (1953, p.l04). To achieve this we have used
several adaptations. The nonlinear equation over [0,1]
is transformed to one over the interval [-1,1] which is
subsequently linearised in accordance with the process
described in section 1.1. Into this equation, in the
dependent·variable z(t) say, the function zo(t) = t;3
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is substituted as an initial approximation satisfying
the boundary conditions and after the further substitution
x (t) = z (t) -.~ (t+3) we obtain after some manipulation
that x satisfies Problem 4 with the above homogeneous
boundary conditions.

Problem 5

.x"- 30.h2(t)x = h3(t) - fth2(t),8 8
where h (t) (t2 + t + 1= 2) •2

x(-l)=x(+l)=O,

Again with a. = 1 this is a linearisation of a nonlinear
problem which in this case is the following equation
considered.by Ciarlet, Schultz and Varga (1967, p.42S).

d2z 1 3-- = .2(z+s+1) subject to z(O) = z(l) = O. As for
ds2

Problem 4 we change the variable from se[O,l] to te[-l,l]
and linearise the nonlinear equation. The problem already
has horno.geneousboundary conditions and the substitution
of zo(t) = t2-l into the linearised equation yields our
test example.

Problem 6

x(-l)=x(+l)=O.

This problem is again the result of linearising a non-
linear equation, namely
2 '.'

d z· 2~ = o.sz.,z (0) = z (1) = 1, a form of which is considered
ds
by Collatz (1960, p.20l). As before several trans-
formations have been performed to derive the equation of
Problem 6. In the linearised equation zo(t) is chosen
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as t2 and finally the substitution x(t) = z(t) - 1
gives x(t) satisfying the desired equation.

This completes the description of the six basic
examples chosen to demonstrate the results on
application of the error bounding techniques.

For further illustrations we shall consider
equations constructed using the same operators as
Problems 1-6 but with, in turn, one of three additional
fixed right hand sides. The extra right hand sides are
as follows:

5 sin (3t) • • • • •• A,

1
• • • • •• B,

and [ t
3

+ 2 + sin (t)

(2-t) et

-1 < t < 0

· . . . .. c.
o < t < 1

Each of these possesses a different property. The
right hand side A is oscillatory in [-1,1], B has a
'near singularity' at t = 0 and C has a discontinuous
third derivative. We shall employ the notation that
the problem formed by the operatorJ(J = 1,2 ..• 6)
and right hand side X.(X = A,B or C) be denoted by
Problem JX. (When X is absent this represents the
original Problem J as before).

Before the numerical results are presented the
values of the constants kmax' ko' kl and k2 for each
of the six .operators are given. It would be tedious
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to include all the elementary manipulation involved and
the numerical values are simply stated for brevity in
TABLE 12. These have been calculated according to the
strategies of section 5.3 as for Problem 1 which was
used to demonstrate the process and as was mentioned
there cancell.ation has. been utilised where possible.
Also these numbers_ are-upper bounds and may possibly
be refined by the application of more powerful
techniques. However the estimates of bounds discussed
in section S.2__employ only the quantities kmax and ko
and in computing these simpler terms there is less
scope for possible variation.

Values of the Constants kmax~~l and k2
for the Test Problems

k k kl k2Operator max 0-- - -
Cl
2Cl Cl Cl

Problem 1 1 1 2 32"
Problem 2 1 1 1 1

'2 '2 '2
Problem 3 1 1 5 0.01816 16 32
Problem 4 5 5 9 6.264" 4" 4"
Problem 5 3 3 27 9.754" 4" '8
Problem 6 1 4 9 16

4" 27 '8 27
TABLE 12

5.5 Applicability of the Practical Bounds
We have seen that the practical bounds on the norm

of the invers.eof the operator G-T derivable from
Theorems 7, 9 and 10 only hold for a sufficiently large
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number of collocation points. Three bounds Bl(n), B2(n)
and B3(n) were formulated in section 5.2 and were given
by (5.3), (5.4) and (5.5) respectively. In this section
we are concerned with finding and comparing the actual
values of n for which these formulae become applicable.

Firstly we introduce some notation. Each of the
three bounds required some quantity say delta(n) less
than unity in magnitude and for any of these let the
value of n needed to give the corresponding delta < r
be nr. Thus for any of the 'a posteriori' bounds
given by (5.3), (5.4) or (5.5) the appropriate value
of n required for applicability is denoted by nl,
delta (I:l1):being less than 1 in magnitude.

TABLE 13 below contains values of nl for the
bounds Bl(n) and B2(n) applied to the operators of
Problems 1-6. To illustrate the dependence of the
results upon the magnitude of the coefficients in the
linear differ.ential equations two values of the para-
meter a have been chosen. The values presented in
TABLE 13 are not in fact exact but are not more than
5 greater than the precise n1 and are intended more
as a.guide to illustrate the order of the sizes of n
required.
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Values of nl for Bl(n) and B2(n) AEElied
to the Test °Eerators

c Problem 1 2 3 4 5 6

0.5 75 30 5 130 >100 30
Bl (n)

1 >100 90 5 >130 >100 65

0.5 15 5 5 60 30 5
B2(n) 1 >100 30 5 >100 >100 5

TABLE 13
It is seen from these examples that the values of

n needed to apply the bound B2(n) are often significantly
less than those for Bl(n). From (5.3) and (5.4) B1(n)
requires

= [ 1+ (k +e ) B ] e < 1o n n n (for en < 1)

whereas for B2(n) we must have

!::.n=

The better results for the bound from Theorem 9 are
CnBn ~ l-e ' and

n
explained by the fact that for en<·l,
hence the bound on on is

(k +e ) C
o n n]e > k C el-e n - 0 n nn

[1 + =

It is clear from TABLE 13 that even for the better result
large numbers of collocation points may still be involved.
The applicability of the bound B3(n) from Theorem 10 is
now considered and as was predicted in sections 4.7 and
5.2 this leads to improvements.

Now before these results are presented we consider
the situation where B3(n) is to be used in practice in
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the inequality (5.1). In this case it would not be
satisfactory merely to choose the computed bound
resulting from-n equal to nI' that is to take
II (G-T)-lll < B3(nl) because clearly the corresponding
value of Ll~is"close to unity and consequently B3 (nl)
will be large. Ins.tead .we shall seek the numbers of
collocation points required to give Ll~ < 0.2, namely
nO•2' and with this value of,n a much more reasonable
bound would be expected.

Values of nl and nO.2 along with B3(nl) and
B3(nO•2) are given in TABLE 14 below. To explain
the format of the table a typical block under the
heading of a problem operator with a particular value
of the parameter a contains 4 entries which are the
appropriate results for the 4 quantities mentioned
in the previous sentence and are presented in the
layout

Applicability of the Bound B3(n)

1.

problem L, 2 3 4 5 6
5 4.43 2 3.46 2 1.03 11 44.6 8 23.5 2 1.31

5
10 1.69 4 1.52 2 1.03 25 3.65 18 2.04 2 1.31
18 28.5 5 9.32 2 1.08 48 645 28 301 3 3.06

0
39 3.70 10 2.62 2 1.08 >100 (19.3) 65 4.38 5 1.47
>100 17 487 2 1.34 >100 >100 8 9.29

0
41 8.19 2 1.34 17 1.85

O.

2.

TABLE 14
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(Note that for Problem 4 with Cl = 1, nO.2 is greater than

100 but however when n = 100 the value of B3(100) is 19.3).

On comparison of the results of TABLE14 with those

. of TABLE13the clear· improvement can be seen. The values

B3(nO.2)are used where possible in the next section to

provide error bounds. Nevertheless some of the numbers

of collocation points required are still large and it is

for this· reas.on that the estimates discussed in section

5.2 were introduced.

Finally.th.e values of nl from TABLE14 for Problem 2

can be compared to the 'a priori' results of TABLE1,

for the. sarne samp.le..operator, which yielded numbers of

rough~y similar ..magnitude •

..5 .e, 6 Err.or.Bounds .andEstimates of Bounds

In this. section ..we present .and discuss the numerical

r.esul.ts .when the error. bounds and estimates we have

derived.are. ..applied in practice. These are all based on

the ·inequal.i:ty ..(5 .l)and .utilise different means of
. .-1beund tnq..JUG-T). II.

As.was.mentioned.briefly in section 5.2 although it
,

.w.ould.be.possililewith.a fair amount of work to find a

.. str.ictb.a.und ..on. the .residual it would be a deviation

from.the.mainaiJtl.of our analysis and the infinity

norm.of.~(G-T) Xn-y is. estimated accurately by evaluation

of this residual at several points and by taking the

maximum.ofthese. 20 points equally spaced throughout

the in.terval [-1.,1] are chosen for this purpose and for

any value of n. the resulting computed maximumis denoted

by RES(n) .
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It was seen in the previous section that large numbers
of collocation points were needed to apply the bounds Bl(n)
and B2(n) and for this reason they are not considered for
practical purposes. The r~gorous bound B3(nO•2) on
II (G-T)-lll is.utilised however where possible along with

- -the estimates Bl(n) and B3(n). The following notation
is used.

E3(n) = B3 (no.2) x RES (n)
Bl(n) = Bl(n) x RES(n)
E3(n) = B3(n) x RES(n)

E(n) is to represent the X-norm of the actual error,
namely IIx -xli or'"x"-x" II 00 and is computed in the samen X n
way as·the residual by evaluation at 20 equally spaced
points in the interval [-1,1], the exact solution x
having been found by solving the problem with a large
number of collocation points.

The above ..error bounds are all measured in the
X-norm. However if we wish to predict results in the
infinity norm we have to employ the rather coarse
strategy, discussed in section 5.1, which produced the
inequality (5.2). The quantity

+1
g* = max Jlg(s,t) Idt in that result is found from

s -1

section 1.4as. max!(1-s2) = ~. Thus the error bounds
s

.we obtain .Ln .the infinity norm are merely half those
in the X-norm.

We.shall ..employ the notation

El(n)
2 and F3(n) =

E3(n)
2
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Thus F3(n), Fl (n) and F3(n) are computed 'a posteriori'
results for bounding the error in the infinity norm. We
shall represent the actual computed error in the functions
xn by F (n).

In this section we give detailed results for Problem
1 and discuss certain general points, results for the
other test examples being contained in the Appendix.

Finally before presentation of the tables two points
concerning the. notation should be clarified. From
TABLE 14 it. can be seen that for certain problems, with
theparameter.~ equal to 2, nl can be greater than 100

(and consequently is not thought worthy of calculation).
In this case we take the bound B3(n) to be inapplicable
and hence.we are. unable to form the error bound E3(n).
Should this situation arise the corresponding entry
consists of. the. symbol ****.

The second.point, perhaps an obvious one, is that
the.capital.letter N nowrepresents·the number of
collocation ..poi.ntsand that the integer subscripts
are now r.epl.acedbynormal size numeric characters.
Thus.f.or.exampT.e, El (n) is replaced by El. (N)•

The .sampl.e tables illustra.ting the results on
appl.icati.on.of.the.different .techniques for bounding
the error are now.presented. TABLES 15-17 demonstrate
the resul.ts..fox.Problem 1 with a = 0.5, 1.0 and 2.0
wher.eas TABLES .. l8~20 .are .concerned with Problems lA,
lB. and.le respectively when a has been chosen as unity.
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AI>PlICATION OF THE: LlUWR BOUNOS Mill [!)TIMI\TLS

PRonLr:~' 1 ALPHA= u.S

N 6 8 10 12

-BUN) 1.60 1.61 1.61 1• (J I

-B3 (N) 1.itZ 1.42 1.42 1.4i

RE s UH 5.06'-04 4~06'-U5 3. ~33'-07 1 • j Cl' + '. U

F3 (In 8.55'-04 6.8S'-05 5.63'-07 2.3'.' -u8

-
El( N) 8.42'-04 6.75'-05 5.55'-07 ;.: • :3 1 ' - 'IB

-E3HU 7.16'-04 5.74'-(15 4.12'-01 1.~6'-i'O

EHU 5.01'-04 4.09'-US 3.34'-07 1 • j~) , - (.B

F3(N) 4.27'-04 3.43'-('5 2.82' -:\1 1. to" - )0
-Fl( N) It. 21' -04 3.3B'-05 2.1'1'-07 l.l~"-'.Ia
-
F30J) :,.58'-04 2.81'-05 2.36'-J1 9. R1 ' -I: 'J

FHO 1.42'-05 7.25'-01 3.02'-09 1•,,; , -1 ':J

TA13LE15
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APPLICATION OF THE ERRO~ BOUNDS ANU ~STIMATLS

PROBLEM 1 ALPHA= 1.0

6 8 la 12

-Ol(N) 3.91 3.92 3.92 3.92
-U3(tU '2.96 2.96 2.9b 2.91':>

P. f S (tu 2.87'-03 2.21'-u4 3.79'-06 1.4£1'-[17

F3(N) 1.06'-02 8.17'-04 1.40'-05 5.47'-07
-l: 1 OH 1.12'-02 8.65 '-04 1.49'-05 5.AO'-Ul
-[30H 8.49'-03 6.54'-04 1.12'-05 4.30'-07
r HI) 2.89'-03 2.25'-04 3.8Z'-Ob 1.49'-07

F3(N) 5.31'-03 4.09'-04 1.02'-06 2.74'-CJ7
-FUN) 5.62''';'03 4.33'-04 7.43'-06 2.9t,l-u7
-F3( II) tt.2S'-rn 3.27'-04 5.61'-06 2.19'-(,7
Fon 9.13'-05 4.08'-06 3.S5'-08 1.11'-09

e'

TABLE 16
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APPLICATION UF THE EHKOM BOUNDS ~ND ~STIM~T~S

PROP. LU1 1 ALPHA= 2.0

6 6 10 12

-Bl(N) b9.U 69.4 69.5 61~. h

-B3(N) 70.0 70.4 70.5 ti,«

RESUIl 7.56'-02 5.27'-03 2. (I l'-;'.4 6."'?·-u~

E:3nn **** **** **** *,;,**
-1.:1(tH 5.22'+00 3.66'-01 1.40'-fJ2 4.67' -(itt

-[3 (tl) 5.29'+00 3.71'-01 1.42'-07. 4.74 '-(tit
E(I~) fi.69'-02 ' 5.54'-03 2.04'-04 ().6'.'-(f6

F3(fU **** ***. **** ****
-r i :N) 2.61'+00 1.83'-(11 6.98'-03 2.3" ' -, it

-F3HU 2.65'+00 1.06'-01 7.00'-03 2.37'-i"J4

F(N) 7.25'''03 1.34' -(14 2.75'-06 6.27'-08

TABLE 17
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API'lICATION Or: 'THE ERROR BOUNDS ANO [:STIMI\TES

PROClEM lA ALPHA: 1.0

8 10 17.

-Bl( N) 3.91 3.92 3.92 3.9~
-03(N) 2.96 2.£)6 2.96 1..9b

RES (lU 2~58'-O2 4.39'-04 7.20'-06 1.62'-;t7

[3(N) 9.54'-02 1.63'-03 2.6~'-O5 6.(>U'-:'7-El (N) 1.0 I' -0 1 1.72'-03 2.85'-05 b.3S'-1l7
-E 3 ( to 1.6l'-U2 1.3(' '-(t3 2.16'-05 4.8:1'-07

E(I~) 2.60'-02 4.40'-04 7.33'-06 1.b3'-()7

':)(N) it. 17'-02 8.13'-04 1.3~ '-CIS 3• t)' I , -l' .,

- 8.t>l'-04fl(N) ~.O!l'-O2 1.tt-3'-Cl!) 3.1S'-l!7
-F3(N) 3.81'-02 6.50'-04 1.OA'-OS 2.4~1'-O7
F(N) 6.67'-04 4.20'-06 4.01'-08 -f.ll'-10

TAULE 18
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~pr'LICI\TION OF THE: flUWR ROUNL>S AND l:STJMI\TLS

PROBLEM 10 ALPHA= 1.n

15 20 30

-f~1(t!) 3.92 3.92 3.9? 3.9L

-U3(N) 2.96 2.96 2.9L 2.I.Ih

r.FS OH 9.29·-02 3.96'-02 4.06'-03 1.7b'-03

l3(N) 3.44'-01 1.47'-(11 1.5lJ'-:>2 £...5JI-rI3

-[leN) J.64'-()1 1.55'-01 1.59'-02 6.92'-03

CHN) 2.75i-Ol 1.17'-U1 1.20'-02 ~.22'-O3

F. ( r~) 9.20 '-02 3.98'-02 4.07'-03 1.76'-03

FJ(N) 1.72'-01 7.33'-02 7.51'-03 3.1. 6' -'.I')

-r 1 (N) 1.82'-01 7.77'-02 7.96'-03 3 ./tb'-U 3

-F3(N) 1.37' -rn 5.87'-02 6.01'-03 2.61'-03

F (iH 1.9·" -03 1.90'-04 0.53'-06 2.~9'-J6

TA~LE 19
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APPL ICAl ION OF THE [RROR BOUNDS AND CST J ~~i\Tf S

PROI3LLM lC ALPHA= 1.0

5 8 12

-Bl( N) 3.92 3.92 3.42 J.91.
-A3HH 2.96 . 2.96 2.96 2. ~1t)

RESCN) 3.29'-02 2.33'-03 7.66'-04 1.64'-"'t

E3 CN ) 1.2Z'-()1 1'3.62'-03 Z.63'-C)3 6 • () U ' - \' It

-l:lCN) 1.29'-01 9.13'-lI3 3.00'-03 6.44 '-L"t

-E3CN) 9.75'-02 6.89'''03 2.27'-03 4. Ob' -nit

l:(N) 3.26'-02 2.51'-03 7.81 '-~14 ] .74' -(lit

F)(N) h.09'-02 4.31'-03 1.42'-03 3.04'-14
-Fl UH 6.45'-02 4.56'-03 1.50'-03 3.22 ' -f"1-F3UU 4.87'-02 3.451-ll3 1.13'-03 2.43 •-l'/,
FeN) 2.80'-03 1.95'-04 3.45'-')5 1.44'-(15

lABU: 20
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Several points concerning these results are now

discussed.

As was suggested in section 5.1 it can be seen that

.error predictions in the X-normare closer than those

measured in the infini.ty norm. For example, the ratios

E3(n):E(n) given inTABLE..lS are less than 2:1 and

from TABLE. ..~6.are rou.ghly3 !.L.. .The. corresponding

values G>fF3(n) :F (n) however are greater and also

increase with ..the number.of coll.ocation points.

The resul_ts .for .Problem 1 with a = 2 are not so

consis.tentas with the other choices of the parameter

and. th1.s si.tuation is a special case .which we shall

now consider.. '.. Exami nj ng. TABLE.17 where a = 2 we notice

that ther.e aze. quite .lar.ge discrepancies between the

predicted and.the actua.l.errors. The reason for this

..behaviour .would.appeartobe that the problem

xl' +A(1+t2)x = 0 with x(-l) = x(+l) = 0 has an eigen-

value Awith A close to' 2. The quantities 51(n) and

53(n) can be seen to be large, roughly 70 in magnitude

and this .Ls. not surprising as these involve the norm

The var.1.at1.on

-1AaA... whi.ch increases when a is near 2.

of IIAoA-lliwith a is shown in TABLE21

of the. matrix

below where i.t can also be seen that the approximate

.constancy..with n of these matrix norms still holds, two

.diff.eren.t.numbers ..of collocation points having been

chos.en.toillustrate this.
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Variation of IIAOA-lil in the Neighbourhood
of an Eigenvalue

n a. 1 2 2.1 2.15 2.19 2.2 2.5 3 4
10 1.931 13.47 31.09 88.62 187.2 105.4 7.59 3.92 3.16
20 1.932 13.49 31.15 88.82 187.6 105.6 7.88 4.36 3.32

TABLE 21

Thus these results explain why Bl(n) and B3(n) are large
and since both approximate operators (n = 10 and n = 20)
have an eigenvalue A with A close to 2.19 this suggests
that the· original differential problem also has this
eigenvalue. However this has not explained why there is
such a large discrepancy between the estimated and the
actual bounds, the latter being little affected by this
eigenvalue.

Let us now consider the relative merits of the
different resultsE3(n), ~l(n) and i3(n). All of these
employ the reliable estimate RES(n) of the norm of the
residual. E3(n) utilises the rigorous bound B3(nO.2)
on II (G~T)-lll which is slightly larger than the estimate
B3(n) and the errors from the approximate result can
be seen .to be closer to the actual computed errors.
These tables demonstrate that the norm of the residual
can.be. in fact close to the X-norm of the actual error,
that is, the error in the second derivative and so
RES(n) could be taken as an approximation to IIx"-x~lI.
This process ..h.owever is rather unsatisfactory and
yields an.unjustified estimate of the X-norm of the
error..asdistinct from the more rigorous estimates of
bounds on the-corresponding error. Clearly for a
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practical estimate we should choose the smaller of Bl(n)
and B3(n). For our examples B3(n) usually yields slightly
better results but the deciding factor is essentially
the magnitude.of the constant ko defined in section 5.2.
Recall that

Bl(n) = l+k C whereas B3(n) = l+k +k2Cono 0 n
and certainly for ko > 1 we should have Bl(n) < B3(n).

The errors in the infinity norm are of course
related simi.larly to those discussed above.

A further interesting observation concerns the
application of the schemes to problems with the right
hand.sides. Bor C. It can be seen from TABLE 19 and

. from TABLES 24, 28, 32, 36, 40 in the Appendix or
from TABLE. 20 with. TABLES 25, 29, 33, 37, 41 in the
Appendix.that for large numbers of collocation pOints
the .residuals._ar.e very close irrespective of the
d±f£erentia~operator.. The. actual errors in the second
derivative.s.,.E(n.),ar.e also fairly close for these
values of n but the values of F(n) do not agree to the
same extent. This behaviour appears due to the fact
that when n is taken large the right hand sides B or
C tend to dominate the collocation method which is
essentially interpolating the particular right hand
side independently of the operator T in the differen-
tial problem. That is, in applying collocation we are
interpolating the right hand sides y by functions
(G-T)xn", with xn polynomials and for large values of
n with the right hand sides B or C the terms GXn which
are polynomials seem to dominate the process so that
the residual is approximately Gxn-y. The right hand
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terms in the basic examples and the function A are
smoother and-do not influence matters to the same degree.
It should be pointed-out however that the results of our
bounding-techniques-do vary for all these problems.

Finally, a brief comparison of these 'a posteriori'
bounds with 'a_priori' values can be furnished by
relating_TABLE 22 in the Appendix to TABLES 2 and 3 of
Chapter 3. The big improvement on using the 'a posteriori'
approach is clearly seen.

This completes our discussion of the error bounds
applied in practice and as has been mentioned previously
the results of the additional numerical experiments for
Problems 2",:,6are given in the Appendix.
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CHAPTER 6

EXTENSIONS AND CONCLUSIONS

•6.1 Introduction
In this chapter several possible areas of extension

for the application of the theory are discussed. In this
thesis we have been primarily concerned with the approx-
imate solution of collocation of two point linear boundary
value problems and have considered the example (3.1) (or
(4.1» with G defined as the operator differentiating 2m

times. Furthermore we have mainly been working with the
infinity norm. The theory of Kantorovich and Aki10v
outlined in Chapter 2 can in fact be applied to a more
general c1asso£ problems by suitable definitions of G

and choices of. norms in the spaces X and Y.
For example the numerical solution by collocation

of a system of linear initial value problems adjusted to
have homogeneous initial conditions can be placed in the
setting of the.theory. Let the r equations be

dx
ds - AM (s).!(s) = ~ (s) (6.1)

with .!(o) = 6. Here x =
is an r xr. matrix wi:th elements which are continuous
functions of s.and 1:. ::r [Yl (s), Y2 (s), ••• Yr (s)]t with
Yj(S) continuous (j = 1 ••• r). e represents the zero

I

vector and Ais a scalar.
Take Xas the space of r x 1 vectors whose components

are cont1nuous.ly ..differentiable and are zero at s = O. Let
Y bet.he: space of vectors whose elements are continuous
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then with G : X ~ Y as the operator differentiating com-
ponentwise we can write (6.1) as

Gx - ATx = (6.2)

where (T~) (s) = M(S)~(S) • Equation (6.2) is now in the
form for the theory. An approximate solution can be sought
in the form

x = C,"-n .:t.

where]! = [s~l(s), s~2(s), ... S~n(S)]t with {~j}j=l n
independent polynomials forming a basis for the polynomial
subspace of degree n-l (for some n) and where C is the
n x n matrix of unknown coefficients. If

= eY let the norm in Y be such that

= maxl<i<r IIYi(s)lIoo

and for x =

II xII = l~~~r liz! (s)lIoo

Clearly we could choose suitable collocation points and
define appropriate subspaces Xn and Yn and projection
~n : Y ~ Yn in a related manner to section 2.2. The
appropriate results of Chapter 2 could then be applied
from a practical as well as a theoretical pOint of view.

However collocation as a means of numerically solving
irtitialvalue problems is unlikely to compare favourably
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with the well developed and well known specialised methods
and for this reason is not considered as a suitable topic
for further investigation but nevertheless the above
description illustrates the wide scope of the theory.

We have considered first order equations above but
there are however extensions which can be applied in
principle to second order boundary value problems of the
type previously considered. These could possibly be
furnished by choosing G as an operator different from
d2~. However for any choice of G we must be sure that
ds
the operator G-l exists. For example we could in principle
choose G such that for xeX

(Gx) (s) =
2

d x ).Ix(s)
ds2 -

with ).Ia constant so that an equation

x"(s) + p(s)x' (s) + q(s)x(s) = y(s)

could be regarded in the form Gx - Tx = y where
Tx = -px' - (q + u j x , Having chosen the space X and the
subspace X we would have to ensure that Y and Y weren n
such that G . X ...Y had a linear inverse, that is that.
).Iwas not an eigenvalue, and that G was a bijection
between Xn ,and Yn since these conditions are necessary
for the application of the theory. Moreover in any
application of the theory, for some choice of G, T and
the norms, we would need to be able to approximate Tx
for xex and y by elements of Yn• Thus these requirements
could clearly cause problems. Since the norms in the
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spaces X and Ywill be co-ordinated by IIxIIX = IIGxllythe

above appr.oximation might be achieved by relating, for

example, IITx- ylly for yeYn to the norm IIG-ITX- G-lyll

in X and approximating in the X space.

An example of a more general definition of G is

cons.idered by Kantor.ovich and Akilov (1964, pp.590-595)

where they discuss the equation

~t [p~~]. - A{~t[qX] + rx} = y (6.3)

over [0,1] wi.th x(o)

·t·· d ( d)opera or dt p dt •

= x(l) = ° and define G as the

Such a choice of Gmight be useful in

dealing with equations which contain a singularity but as

wa.s.mentioned.previously we must.ensure that G has an inverse.

Weshall. no.tgive a detailed investigation of this example

b.ut shall. present in the next section the main points of the

argument.

In section. 6.•3 we.consider work on the use of splines

for two point boundary value problems and examine the

possibili_ty ..of .employing Ia posteriori I error analysis .

. Aspectsof the application of the theory to nonlinear

ordinary. and.~.inear partial differential equations are

.disc.ussed :briefly in. sections 6.4 and 6. 5 respectively and

lastlY.a r.evi.ew.of the work of this thesis with appropriate

conclusions is given in the final section •

.6.•2 An..I~l.ustration of a More General Application

Wehere examine. the important steps in the application

o.f. 'the theory ..given in sections 2.2 - 2.4 to an equation of

the form (:6 .• 3). which is considered by Kantorovich and Akilov.
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It is assumed that p, q are continuously different-
iable with pet) > 0 and that r,y eC[O,l]. Galerkin's
method is applied to.determine an approximate solution
in the form

=
n
Lj=l

a.w.(t)
J J

(6.4)

where w. (e) e C (1)[0,1]
J

= 1
p (t) {

and wj(o)

1 ds ~
f pes)}
o

= w.(l) = 0 (j = 1 ... n ) .
J

With w' (t)o
it is assumed that the

system {Wk} (k = 0,1, ••.) is complete and orthonormal with
respect to the weight pet).

1
i.e. f P(t)wj(t)Wk(t)dt

o
= (j,k = 0,1, ••.) (6.5)

Now if X is the space of functions z(t) say in c(2)[0,1]
with z(o) = z(l) = 0 and Y is C[O,l] then if G ::~t(P ~t)
equation (6.3) may be written as

Gx - ATx = y, with Tx = ddt[qx] + rx.

The reason for requiring the condition (6.5) becomes clearer
when an inner product (., .) is introduced on X such that
for zl,z2',ex,

1
(zl' z2) = f .p(t,)z1}~l~2.(t,)d,~~

o

the norm being defined by IIzll= (z,z)~. Corresponding
inner products and norms are introduced in Y relating them
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-1to those in X by G . That is,

=

and lIylly =

(Note that for yeY, G-ly is the element zeX such that
d dzdt (p dt) = y). The subspace Xn ofz(o) = z(l) = 0 and

X is chosen as the set of elements of the form (6.4) with
n

Yn as the set of functions of the form 2 a.Gw ..
j=l J J

To complete the specification of the spaces and
mappings for the theory Kantorovich and Akilov take ~n
as the orthogonal projection of Y onto Yn which means

"~n" = 1.
With the .above definitions, for yeY

n
~ny = 2 (y,GWk)y GWkk=l

n -1= r (G y,Wk)X GWkk=l
n 1

pet) (G-1Y)'Wk= 2 { J dt}Gwkk=l 0

and. emp·1oying...inte.gration by .parts ..i.t is shown that

1
J -1"P (.G .. y) w

k
dt

o
= - J YWk dt.

o
(6.6)

Thus sinc.e Galerkin' s method requires

1
!(Gxri ~ ATXn - y)wk(t)dt = 0 (k = 1 ••• n)
o
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this means from (606) that the method is equivalent to
~n[Gxn - ATXn - y] = 0, or

Gx - A~ Tx = ~ Yon n n n (607)

Equation (6.7) is now in the form we have frequently
encountered (apart from the constant A which can be included
in T) and we now have the. framework for the theory and are
in a positi.on to. examine the conditions required for its
application.

To utilise the theorems it is required to find lJl and
~2 for the conditions I and II of section 2.4. It is not
thought necessary to present in detail the work of
Kantorovi.ch and Akilov on this topic and we simply give an
outline of their analysis.

For condition I we need to find a ~l such that for all
zeX there exists a ye Yn and IITz - y II~ ~lllzll. The strategy
mentioned in the previous section is employed when G-ITZ
is approximated' by an element se of X , sincen
IITz - Ylly = IIG-lTZ - xliX where le = G-ly. With v = G-lTZ
it is. shown that there is a kernel K(s,t) such that

v' (s) =
1I K(s,t)z' (t) dt.
o

The.approximation le to v is found from

se I (s) =
1I Kn(S,t)zl(t) dt
o

where Kn(s,t) is a partial sum of the Fourier expansion of
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K(s,t) in {w~(s)} (j = 1,2, ••• ). That is,
J

Kn(s,t) =
n
L c J' (t) wJ~ (s)
j=l

where c. (t)
J =

1
J p(S)K(s,t)w~ (s)ds and furthermoreo J

lim
n-"CO

1 2J P (s) [K(s , t) - Kn(s , t)] ds = 0
o

(O<t<l).

After further analysis it is demonstrated that a suitable

~1 can indeed by obtained and that ~1 -..0 as n -.. co.

To find the ~2 for condition II a similar approach

is followed, approrllUa·ting G-1y by an element of Xn•

Kanto.rovich and Aki.lov consider the example where

tri.gnomet.ri.c functi'ons are used .'as the' {wk} . In particular

for

(k = 1.,2, ••• )

it ls found. that J..Il. and J..I2 are' both 0 (n-'> so that with x

as the true- solution to (6.'3)' and xrtas theselution from

the Gal.erkin .me.thod".:Theorem'2.yields

as a measure of convergenceinth:ls, special norm. (Note

that l14>nJl=l).

This then. is.a brie.f account of a possible general-

isation inve'stigated by Kantorovich and Akilov which is

ess.entially an ,la .priori' .:examinat'ion •
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However we could attempt an 'a posteriori' error analysis
of this problem and an approach similar to that of section 3.6
would probably be the most suitable means of bounding the norm
of the inverse of the approximate. operator. This would need
careful definitions. of the appropriate mappings and norm for
the space Rn .of vectors and there is clearly scope for further
investigation into this topic.

6 .• 3_ .The.Use of..Splines
There 'has. been recentlyseroe'vexY'-!nteresting work on

two point linear: and :non:i·ine:ar:.houndary'va1ue'cproblems
concerned with t.he useo£' splin.es 'in the representation of
the .approJC.ima.tion•

.In. par.Uc.u1.ar .foran m.th .ordeJ!.p.r.obiem:..over..[a,b] say
and given'.a par.t·ition 1Tn a '= so·< sI < ••• < sn = b of
[a,b] r- Russel~ and :Shampine ,(1972) ..seek-·.apprmcimate spline
selutions which for, integer d are polynomials of degree
m + d in each s.ubinterwtl: ef '1T: .. :andhave:m continuousn
deriv.atives .thr.ougho.utthe whole ,i:nteFVal. .These splines
are ·fur.ther r.equiz:edto satisfy the. m given boundary
condi.tions •...TO...obtain·tbe ,approprl.ate·number of. equations
for ..determininq the.:coefficients.·in~±he:':represeRta tion
.suitable ..eel.loca.tionpoints -are.cn:ee·a.ed.These·are. furnished
bysub.d±vidin..g each.:,sllhin:te2'val·[.81,81+1] I' (0 ~ i ~ n+L) by
a further (d-l) similarly placed internal points so that
there is a total of nd+1 points throughout [a,b].

Russell andShamplneprove in particular for linear
problems the,uni.form.boundednessof the inverse of their
approximate operator~concerne[Lw1th the roth derivative of
.the .approx'ilna.te.solutianand.also achieve convergence.
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These results are. analagous ..to. t.h.ose-af our ...Theorems 1

and 2.

Further advances ..in the .field of' nonlinear problems

have been. achieved ..by deBoor. and Swartz'_(1973) where

they obtain improved rates ,of convergence-over those

given' by Russ.ell.~an.d-Shampine-·.(1972-).by·choosing the

{Sj}j~O as a :strict partition of' (a jib}, and wit'"
GC1US5 ?Qlt'lt~ tl"\ et\ eh ~ubil1t eY' V a.I.

As with the case when poly.nomialsare used'as the

approximatinq .subapace. t'he theo:ryemp-loying splines is

...mainlyof an .' a.-priori.' for.m·wi.t:h:::er:·r.orbounds depending

upon.knGwledge·.:ef..the' ·true solut"ioll.'· "For linear

prob:l.ems.,at,least.':it seems that the.roles e£ .the given

and. appr.oximat.e.op.era.tars:: in...the'. theore:tdcal results. might

be ab-let.e. be.·.intez:ehanged~t.o.ded\Ie:e.:.'a "post;e:l;iori f

.cbounds:::·f.or..the. ..eErax.o£ ..a:s:imi.l.ar.natur.e:t.o those of

.Theorem 7.

For such results splines would have, in theory, a

definite advantage over polynomials since it is known (see

Russell and Shampine (1972» that the norms of the pro-

jections equivalent to our <I> are uniformly bounded. Forn
instance, if appropriately scaled Chebyshev zeros are used

as the points over each subinterva'l then the norm of the

projec·tion is the Lebesgue const'ant 8 + !In (d +, I) and

this is independent of n as the part'ition 'lrn is refined.

This would mean that the applicability of the. bounds

given by results of similar. £orrn-to_Theorem .7' would

probably. be impro:vedove:r. the: pOiynom-a'l c'ases-ince the

corresponding Onwould not involve a proj'ection <l>nwith

U<Pn'Uas. O.(:ln(n» • However in practice this is not likely
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to make a great difference because of the very gradual

increase with n of the function In(n).

Another advantage in using splines might be the

computational properties of the band matrices if B-splines

(Which have compact support) are employed as the basis

functions for the approximation.

In section 4.8 it was seen that for a projection

method we could define an 'extended-projection' method and

it may be that this process could beapp-l±ed to the usual

polynomial'spline solution to yield useful results.

Thus we see that. there are areas where·thework on

the use of·poLyn.omials.inthis thesis might be"able to

be. applied to splines and. further: re·s.earch could be 'under-

taken.

6.•'4:: ·:Non:lineCK_·. Pxohlems

The .appr:ox±mate.:..s.olut±.on.hy..polynomial. collocation

of. nonlinear~.equations .h:asb.een.:ccms:idered-.:·by Vainikko

(1965, 1966, 19.69). AS ..wa,s.·men'1:dened:'!n·the' previous

section .spf.Lne:appr.cximations,~ for: 'such:preb:lems have been

inve'S.t1ga·ted.by· ..Russe'1:land::Sh:ampine:;·:(~l972-) and deBoor

and Swartz .(-l973). .Resul,tsfxcmr·.t.he· above' WOT~ are

essential.ly ·.of.- an. '.a pri.oxi.'. na'tur.e ,-:-,CfS,suming'knowledge

of the tr.ue.sal.ut·ion and.:deriving: order of' convergence

proofs.

We'have not how.e.ver.e·xami:n:eEt.·t:he·.pos-sibility of an

'a pos.teriori:'error.:an1llys±s and.' the-re<are"certain

problems .:which 'would .b.e~...en.countered"b:atit:·.·W'Ould seem

.tha.t wi.th f.urther .. inv:e:st·i.gati.on: ..advances might be

achieved.
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6.5 Elliptic Partial Differential. Equations
Kantorovich and Akilovconsider two linear elliptic

problems and show with appropriate choices of spaces,
mappings and-norms that their theory can be applied to
the Galerkin method; The two" exampt.ea. discussed are

V~ + Aa(x,y)u a2u 2
(:i ) + .L!! + Aa (x,y)" = v(x,y)- ax2 ay2
and
(ii) 2 au + c(x,y) au} v(x,y)Vu + A{a(x,y)u + b(x,y) ax =ay

with a, band c continuously differentiable functions
and in each case the equations hold over a domain D
bounded by a circle r with the boundary condition that
u vanishes on f.

We shall not discuss these in any' depth and the
reader is referred to Kantorovich and Akilov (1964,
pp.'S9S-60l) for a full description. We shall simply
mention that for both problems G is taken to be the
operator V2, but for example (i) if u is twice contin-
uously differentiable

'll ull 22;{ IJ IVul dxdy}
D

whereas for example (ii) the'norm is such that

lIull
22;

= . {II [ (au) + (au) ] dxdy} •D ax ay

To derive their results Kantorovich and Akilov seek
an approximate ,solution which involves not '.onlya poly-
nomial in x andy but also another, special function
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required to satisfy certain conditions.

If, in some setting, an 'a posteriori' approach is

to be examined it· would appear that the main problem

would be to find a suitable approximating subspace.

That is, one for which there were results available

concerning its approximating-properties in the chosen

norm. Also the Green' s·functionf.or the' differential

operator'Gwould have' to' be known'explicitly. If these

cri.teriawere satis£ied it woul-dseem"feasible that

pro.gress. might be.made.

Karptiovskaja .. (:197D).hasexamined the: collocation

method with:the:-.possibi:lityof. approxi-matimrby trigno-

metric . .po·lynomialsand' utilises their: properties to

derive cE>nver.g.en.c.e.~resu'l.ts"via the:'·qene-l!B..Lthe0rems of

Kant.orovichand' Akilov.

An 'a priori' application of the t.heory due to

Anselone has been considered for the numerical solution

of elliptic partial differential equat.ions by Gilbert

and Colton (1971).

6.6 Conclusions

The principal work of this thesis has been in

.developing algorithms for comput.in·g·error- bounds for the

.. numerical solution by polynomiaL collocation of linear

differenti.al equations. . This' has been achieved by

adapting the main theoretical results for 'a posteriori'

b.oundsgiv.en·in' Chapter 2' to: produce more' readily prac.tica1

formulae' and.has- entailed.-reiatinq· the. inverses of the

approxilna.t1nq:.operators.' to· the" inverses. of the'matrices

.. involved' ·indeterm.1ning" the- approximate' solution.
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The most, suitable form..of.:.err.or. bound was seen to be

IIx - xII < BND.• (n-.ormof ther.e.s':tdual)n

where BNDis .a computed 'a posterior.i.' bound.on the norm

of the inverse of. the given'. differential' operator. Three

ri.gorous expressionsfc;>r. BNDwere, given by Bl (n) , B2(n)

andB3(n) in equations (5.3, (5.4) and (5.5) respectively.

Estimates. of these. bounds were shown to be Bl(n) = B2(n)

and B3(n) of. (5.6).

All the different: results. for B.ND'involve the norm

of the matrix AoA-l which' we saw was independent of the

basis. .us.ed'£Ox. .the polynomial, subspace and moreover varied

li.ttle. .withthe.number.of: c:ollocationpatnts'. The approxi-

matesol.ution .x . is' o£. connse invariant with 'the basis andn
.thus. so als.o .are. the, error. ..boundsfurn±sheii· by our approaches

if, r.o.unding:'er.r.or.s:',are i.gnored'~- .-HGwever:rounding'errors

occur in practice and;we.have.seenc.E>llocating on Chebyshev

zeros thatthe~:;inverse ;matrixwith Cheby.snev'pelynomials

as a. basis ..po.ssessed.an irrter:esttng structure' with the

proper:tythat· its norm did' .not. ehange:··g:reatdy.·as 'larger

"values. of. n were,'taken~Th:.is- leads te smaLler condition

numbers ·than' w.hen:'s±mp:le.pGwers.are.' emple.yed.,thus mini-

misin.gthe· e£fect··.o£ ronndoff~-- -AI.so.impro:vements in the

COhd1-t:ion number could be made by the use of column scaling

and although this scaling does not: affect· the Gaussian

eliminationpr.ocess, .which' may.be"employed in any application,

it does lead.-.to-better-bounds-on'the-condition numbers and

for' .the.se.reasons Chebyshev polynomials are recommendedas a

suitabl.e. choice of- basis.' functions.. (It is quite likely
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that Legendre polynomials would also be a convenient

selection) .

Wenowconsider the question of which is the most

suitable of the various expressions for BNDto apply in

practice. The 'rigorous formulae for this quantity only

hold for a suf.ficiently large number of collocation points

and, as a ccmpar-Laon ,.:val ues of n required for these

results. w.ere.giveJLin TABLES13 and 14. It is concluded

from these fi.gures, that the' rigorous. bounde Bl (n) and B2(n)

are not r.eally_ a pr.actical. proposition' whereas that B3(n)

would be. applicable in certain-cases but not in others. To

avoid this, dif£.i.culty· ,the'estimates of- these"bounds were

dev.e.loped~.Thes.e.hold.for- any number.of ccf.Locatd.on points

and .thecar.respOlldmg.-e..z::ror.s:we:e'seefI from"the tables to

provide reliable resul.ts."being closer to the' actual norm

than the more.'ri.gerous. hounds.

Clear.ly in. any application the:· sma'l~er of the two

values Bi(n) and .B3(n:) sho.u·ldbe eheaenv 'l'his is principally

determined by the ma.gnitude o'f the' constant ko for the

operator under consideration. The.size of ko is in turn

dependent. upon the. coefficients in the-I.inear differential

equation... C.oefficients; whi.ch:·.ar.e.fairly small would give ko

small. and henceB3.(n) as the lesser: of the' two. Conversely

for. ~arger. func.tions. in' the. opera·tor:we·should expect Bl (n)

to give the be.tter- 'resul t.

We.discus.sed ·the...point· that ·the·error bounds directly

from :the .theorywere_·measured in' the. X-nonnwhich for second

order: prob~.em:s·wa·s.the infinity. nezm ef·.the second derivative

of the. errer .•, _.veryg.ood preclicted -resul ts were achieved in

this normb.ut when.·we related ·these· to values in the infinity
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norm our bounds were not in such good agreement with the
corresponding actual computed error due to coarse in-
equalities in the transformation.

We now mention two points concerning the implement-
ation on the machine of our bounds.

We have said that the norm of the residual is
calculated by evaluation at several points and by selection
of the maximum in ma.gnitude of these values. This is
oonsiderably less work than computing a strict bound but
even this process does involve a certain amount of computing
time and it would be convenient if reasonable bounds could
be found which avoided this but it does not seem that this
would be possible.

Secondly, we have seen that in obtaining values for
our constants k , k , kl and k2 from the formulae ofmax 0

section 5.3 cancellation within the algebraic expressions
is often possible, yielding quite .small results. However
these formulae could be mor.e.automated, consequently
requiring less work from the user but giving larger answers.
The estimates of. the hounds ho.wever involving only kmax and
ko' for which .the expressions. are..simpler,may be more suited
to automation.since .cancellationis less likely.

Finally we. have examined briefly .areas in which possible
extensions or generalisations of. our analysis might be applied.
We suggest that the development of 'a posteriori' bounds when
splines are chosen as the approximating functions would be the
topic most likely .to yield useful resul ts, but there would
seem .co be several fields wher.e f.urther investigation could
usefully be undertaken.
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APPENDIX

Additional Numerical Examples of the
Application of the Error Bounds and Estimates
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APPLICATIUN OF THE ERROR BOUNDS AND ESTIMATES

PROf'Ll:M 2 ALPHA= 1.0

I~ 6 10 12

-
ci (H) 2.16 2.18 2.21 2.23
-B3(N) 2.08 2.~)9 2.11) 2.U

I~[$ (to 4.56'-05 '1.01'-07 5.53'-10 1.1)4'-12

~.) (1-1) 1.20'-04 5.26'-Q7 1.45'-09 2.74'-12
-ri (l-U 9.85'-05 4.38'-07 1.22'-09 2.33'-12
-
F:J(I~) ').48'-05 4.20'-0·' 1.16'-09 2.21'-12
t: ( In 4.45'-05 1.98'-07 5.48'-10 1.04'-12

r J (tj) 5.98'-05 2.63'-07 7.25'-10 1.37'-12
-r 1< N) 4.92'-u5 2.19' -01 6.11'-10 1.16'-12
-F3(N) It.74'-05 2.10'-07 5.82'-10 1.W'-12

FPH 1.2S'-06 3.38'-09 5.58'-12 7.2?'-15

.TABLE 22
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"
(

APPLICATIUN OF THE tRKO~ BOUNUS AND ESTIMATtS

PROEL(M 2A ALPHA= 1.0

6 8 Lt 12

-In (lj) 2.16 2.18 2.21 2.i.}

-1\3 (11) 2.00 2.09 2.10 2.11

fU:S <rH 3.72'-02 1.22'-03 2.58'-D5 3.:H' -07

[3(/1) 9.76'-02 3.19'-03 6.75'-05 a, H4 '-07
-El( N) B.CJ4'-02 2.65'-03 ~).69' -05 1.52'-(17
-F~{( N) 7.74'-02 2.54'-0:~ 5.42'-05 7.D'-,,17
F(ln 3.71'-02 1.22'-03 2.57'-05 3.36'-07

F3 (rH 4.H6'-(12 1.59'-03 3.3S'-()5 4.42'-\',,7
-F l( N) 4.02'-02 1.33'-03 2.05'-:)5 3.16'-('17
-
F.HN) 3.87'-02 1.27'-03 2.71'-05 3.57'-07
ron U.6l'-04 1.13'-05 1.39'-07 1.4~'-oq

TABLE 23
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APPLICATIUN OF THE ERRUR HOUNDS AND ~STIMATES

PRUHLt:M 20 ALPHA= 1.()

II 15 25 30

-Bl ((H 2.25 2.27 2.29 2. J I

-B3(N) 2.13 2.14 2.14 2. 1 :1

F~l:S(N) 9.28'-02 3.96'-02 4.')6'-03 1.-'6'-03

FJnl) 2.43'-01 1.04'-01 1.06'-02 It. 62' -OJ

[inn ~.O9'-Ol 9.01'-02 9.29'-03 4. Ob' -Lt 3

-LHN) 1.97'-01 8.41'-02 8.70'-03 3.79'-03
[( j.J) 9.28'-02 3.q~'-02 4.05'-03 1. -'6' -(.'3

FJ(N) 1.22'-01 5.19'-02 1).32'-1)3 2.31l-c')3

-F 1 (N,) 1.(lS'-ul 4.51'-02 4.65' -C:'3 2.·3'-03
-F3HI) 9.07'-02 4.24'-Cl 4.35'-'13 1.9UI-03

F(N) 1.U7'-03 1.49' -1..'4 6.93' -~16 2.Z(' -u6

TABLe 24
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API'L leAT IUI~ OF THE ERKOR BOUNDS AND EST l MATE S

PRfJl'.L[M zc ALPHI\= 1.0

I~ 8 12 15

-la (N) 2.14 2.18 2.23 2.2:;

-
lU(N) 2.U7 2.09 2.11 2.13
P-ES(N) 6.2ZI-()3 2.021-03 7.65'-')4 1.61,+1-1)4

l-:J(N) 1.63'-02 7.39' -'J3 2.UO'-{J3 4.30 I -O't
-ri (N) 1.331-02 6.15'-03 1.-f1'-03 3.70·'-~'4
-fJ(fj) 1.29'-02 5.81~'-O3 1.67.'-03 3.4'J'-04
L ( I~) ".l81-O3 2.69'-03 7.28'-04 1•6/t'-I '4

r 3HI) 1:1.15'-03 3.69'-0.3 1.1)0' -(13 2. 1~j , -(lIt
-F1 (f~ ) 6.66'-03 3.(.)7'-(,3 8.53'-04 1.1351-[1/1
-f3(N) 6.44'-03 2.95'-03 U.09'-04 1.7'3'-04
r(N) 6~O3'-O4 1.07'-04 1.76'-05 6.61'-U6

TABLE 25
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I\prLICATIOI'~ OF THE EI~ROR ~OUN[)~ Mm ESTIMJ\Tt:S

PROBLEH 3 ALPHA= 1.0

6 8 12

-Ht( N) 1.07 1.07 1.07 l.;_)7
-B:HN) l.07 1.U7 1.07 1. "1

KES(N) , 2.20'-06 3.69~-()8 5.61'-10 1.67'-12

EJ(N) 2.30'-06 3.99'-08, b.06'-lO B.2B'-l2
-Fl( N) 2.36'-06 3.96'-08 6.01'-10 8.23'-12
-LHIH 2.35'-06 3.94'-(18 S.98'-lO O.lH'-12
F(!U 2~20'''O6 3.69'-08 5.60'-10 7.67'-12

FJ (In 1.19'-06 2.00'-08 ~i';03'-lO 4. 1t• '-12
-r l( N) 1.18'-06 1.90'-08 3.01'-10 It. 11 '-12
-F3(1'l) 1.18'-06 1.97'-08 2.99'-10 4.09'-12
F(N) 5.70'-08 5.34'-10 4.83'-12 4.72'-1'.

TABLE 26
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I\Pl'LICATIUN OF THE [RIHlH DOUNDS Mm fSTI~ATFS

PROBLEM 3A ALPHA= 1.')

6 8 10 12

-
II1 ( II) 1.0·' 1.07 1.07 1•'.\t-l'3(IO 1.07 1.07 1.L'1 1. \)7

P.[5(N) 4.16'-02 1.3-"":03 2.93'-05 3. H6' -('7

f)(ll) 4.49'-02 1.48'-03 3.11'-05 4.1/'-07
-r i :N) It.46 '-02 1.47'-03 3.14'-05 't. It· , -07
-[J(N) it .44'-02 1.46'-03 3.13'-05 4.12'-07

f. (to 4.16'-02 1.37'-03 2.93'-05 3.86'-07

r s ern 7.24'-02 7.41'-04 1.58'-05 l.09·-tl"l

-r=1(II) ?23'-O2 7.36'-(J4 1.51'-()!) 2.07'-07
-r)(N) , 2.22'-02 7.32'-04 1.56'-05 2.06'-(.'"(
r(N) 1.02'-03 1.29'-05 1.59'-01 1.60'-(19

TAOLE 27
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API'LICflTIUN Uf THE ERROR OOUNllS MID ESTIMATtS

PROilLU1 3ti ALPHA= 1.0

15 20 25

-HU N) l.d7 l.e? 1.07 1. '(

-B:HN) 1. ,17 1.01 1.0"! 1. '7

RES (lH t).29'-02 3.96'-()2 4.06'-03 1.Tb'-l.d

f3(tH 1.001-01 4.28'-02 't.38'-03 1.9]'-1'3

-EUN) 9.96'-02 4.25'-02, 4.35'-03 '1. WJ 1-(I)

-f3(N) 9.91'-02 4.23'-(JZ 4.33'-03 1.BO'-,lj

E(N) 'h29'-02 3.96'-02 4.061-03 1.U. 1-i)3

F3(fH 5.02'-02 2.14'-02 2.19'-03 9.5j'-I: !t

- 2.1A,'-C)3FUN) Itt.98'-02 2.13'-02 9. 't£' , -' J It

-F3(N) 4.96'-(12 2.11'-02 2.17'-03 I) • 42 ' -l) 't
F(N) 1.29'-')3 1.59'-04 1.30'-06 Z.2l'-Do

TABLE 28
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APPLICATION OF THE LRKUR tlUUN~S AND ~STIMATES

PROf.~LEr1 JC ALPHA= 1.0

c:.' 8 12

-131HI) 1.,~17 1.07 1. rH 1... I I

-e3 (tU 1.17 1. f)7 1.U1 1.' 7

RIiS(N) U.01'-03 2.83'-03 1.66'-1)4 1. O't ' -U4

F3(N) 0.65'-03 3.(;6'-03 8.27'-U4 1.T('-ll/,

- 8.59'-03.c1no 3.04'-03 8.21'-04 1.76' -,,14

-eJ(N) O.5S'-CJ3 3.02'-03 8.17'-04 1.15 '-(14

( ( I~) H.02'-03 2.80'-03 1.45'-04 1.61 '-('4

F3 (lj) ,4.33'-03 1.53'-03 4.13'-L>4 8.81'-il:;

-r i :N) 't.29'-03 1.52'-03 4'. II '-04 fl.~ll'-(15

-LHN) '.. 271-03 1.51' -0 3 4.091~IJ4 C. tt :-(.~

F (lU 9.111-04 1.30'-04 2.16'-:15 o ./t 3' -lI6

TABLE 29
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APPLICATION OF THE ERROR DOUNDS ANn [STIMhTES

PROBLEM 4 ALPHA= 1.0

8 10 12

-lH (N) lO.~ 10.1 lO.B 1(~1.8

-lU(lH 14.1 14.3 14.4. 14. ~;

Rt:S(N) 1.16'-03 6.45'-05 3.38·-Ob 1 • ~iO' -07

E3(tJ) 2.24'-02 1.25'-03 6.52'-05 2. sq' -')6
-
El( N) 1.21'-()2 6.60'-1)4 3.64'-05 1.6;>'-06
-~3(N) 1.63'-02 '~.25·-O4 4.88'-05 2.11'-1)6
EUO 1.11'-03 6.31'-05 3.32'-06 1.48'-n1

r3 (rO 1.12'-02 6.23'-04 3.26'-05 1.'i!'>'-c)6

-FUN) 6.01'-03 3.44'-04 1.82'-05 H. 1t, , -117

-FJ(N) A.17'-03 4.62'-04 2.44'-05 1.09'-1.16

F HI) 2.64'-05 8.32'-07 2.62'-08 8.22'-10
"

"
T ,,&1,.F. 30
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APPlIct\rION OF THE E~ROH BOUNDS MID ESTIMATES

PROI\L(M 4A ALPHA: 1.0

N 6 8 Lu 12

-BUN) 10.5 10.7 lO.8 ll.:.tJ

-
UJ(tH 14.1 l/t.3 14.4 l4.~

I{ES(N) '-4.95'-02 1.60'-03 3.59'-05 4 • 15 ' -t, '7

F.3 (tu 9.5~'-Ol 3.08'-02 6.92'-04 8.02'-(16
-El (N) . ~.19'-Ol 1.10'-02 3.86'-04 4.49'-06
-[3(N) 6.,98' -01 2.29'-02 5.18'-04 6.33'-06

[HI) 4.90'-liZ 1.63'-03 3.61'-05 4.1-"-07

F3(N) 1~.18'-O1 1.541-02 3.46· ...04 4.01 ,-~:6

-F l( N) 2.60'-01 8.:)1'-03 1.93'-04 .2.2!jt-0('
-F3(N) 3.'.,9'-01 1.14'-02 2.5«J'-04 3.""1'-1)6

F(N) 1.34' -()3 1.58'-05 2.11'-07 l.S-f'-1)9

TAUL E 31
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~PPLICATION OF THE ERROR ROUNDS ANn ESTI~ATES

PROB LEM 'tl:3 I\LPH,\= 1.0

15 20 25

-B10H 10.8 10.9 10.9 1U • lJ

-O:H N) 14.6 14.6 14.0 1'+. '"

nus (fH 4.50'-02 3.96'-02 4.12'-03 1.76'-U3

F.3(N) 1.83'+00 7.64'-01 7.94'-02 3.4U'-(.'2

-E1(1H 1.03'+)0 4.31'-01 't.48'-02 1.92'-(12

-LHN) 1.38'+\)0 5.18'-01 6.0Z'-()2 ~.~O'-O2
E(N) Q.60'-02 3.95'-02 4.13'-03 1.7b'-C3

F3(N) 9.16'-01 3.02'-01 3.97'-02 1.70'-02
-rl(N) ~;.15' -01 2.15'-01 2.24'-02 ':1.61'-1.'3

-F:~00 6.91'-01 7.89'-01 3.01' -02 1.21.1' -l)l

F (!~) 1.24'-03 1.57'-04 1.23'-06 2.22.'-i)6

TAULE 32
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APPLICAT ION or HIE UUWR BOUNDS MW ESTIMATt:S

PROHLEM 4C ALPHA: 1. (1

5 .8 12 15

-r.i (10 10.~i 10.7 10.8 IU.8

-O;:\(N) 13.9 14.3 14.5 14.6
r~[s(N) 1.13'-02 2.76'-03 7.64'-04 1.td'-U4

t:3(N) z .18' -.)1 5.33'-(.'2 1.48'-02 3.11'-'.'.1
-L:l<N) 1.17'-01 2.95'-02 B.26'-03 1.t» '-'J 3
-E3(N) 1.57'-01 3.96'-02 1.11'-::>2 2.34'-1j3

E (1.0 1.01'-02 2.6U'-03 7.35'.-04 1. ()5' -04

FJ(N) 1.09'-01 2.67'-02 7.30'-03 1.5!l'-l')
-flOH 5.83'-02 1.47'-02 4.13'-03 8.73' -0'.
-FJ(N) 7.86'-02 1.98'-02 5.55'-03 1.17'-')3

F(N) 1.06'-03 1.24'-04 2.08'-05 8.AI'-1)6

TAULE 33
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APPL(CATION UF THE ERROR BOUNDS AND ESTIMATES

PROPlEM 5 AlPHA= 1.0

II 6 8 10 12

-8U N) 3.~:4 3.2t! 3'.29 J. J.'

-03(N) .3.43 3.1-+0 3.4-' 3.4B

RcS(N) 2.91'-03 6.41'-04 3.06'-05 '.~:)'-t'

E3(N) 1,~"'-O2 2.03'-03 1.34'-04 J.17'-06
-L:l(r~) 9.41'-03 2.12'-03 1.01'-04 ('..4l '-," I'>

-[3(N) 9.97'-03 2.24'-03 1.06'-04 2.Se '-(.'6
( li'H 2.90'-03 6.46'-04 3.05'-05 , • 23 ,-::. 7

F3(N) 6.36'-03 1.'..2'-03 6.71'-05 1.~q'-l'6-FUN) 4.71 '-CI3 1.U6'-ij3 5.04'-05 l.2 • -(16

-f3(N) 4.98'~('I3 1.12'-03 5.31'-05 1."("-')6

F(N) 6.42'-05 6.~7·-n6 2.30'-0-' ?I. ze '-(.II)

TAUl!; 34
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APPLICATIUN OF TH~ ERROR BOUNDS AND ~STIMATES

PROBLt:M SA ALPHA= l.t!

·t'
"

r~ 8 11.) 12

-('.1(N) 3.;!4 3.28 3.29 3.3.-

-03(N) 3. 't3 3.46 3.41 3. ItS

RES(N) '••55'-02 1.93'-U3 1.90'-04 1.02' -'J6

E3(N) 1.Q9'-Ul 8.45'-03 6.32'-04 3. O~'-.):;
-Elon 1.47'-01 6.32'-03 6.24'-04 2.32'-05
.-CJ(N) 1.56'-01 (,.67'-(13 6.58'-:14 2 •4'+'-I. ,!,

E(N) 4.54'-02 1.93'-03 1.89'-04 1.01'-fl6

F3(N) 9.95'-1)2 4.23'-03 4.16'-04 1.~',/f '-(\~I

-Flun 7.36'-02 3.16'-03 3.12'-04 1.16'-[.,~j

-F3(N) 7.80'-02 3.34'-03 3.29'-04 1.22'-(15

rHn 1.08'-03 3.17'-05 t.66'-06 3.53'-un

••TABLE 35 ~~..'
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APPLICATION or THE ERROR BOUNDS ANO ESTIMATLS

PROt~L E~1 5 U ALPHA:: 1. 'J

1,-.> 20

-bUN) 3.32 ).33 3.3/, 3.3~
-lU (N) 3.49 3.5() 3.IjU 3.~1

Rf:SCtU 9.29'-02 3.96'-02 4.06'-03 1.Tt-I-O)

E3(N) 4.07'-01 1.74'-01 1.70'-02 ., • .,3 ' -0:3

-EIUU 3.c'a' -01 1.32'-01 1.36'-02 ;.')11_[1]

-F3nH 3.24'-01 1.3Q'-01 1.421.-02 6.2("'>'-03

E(rH 9.30'-02 3.96'-02 4.06'-03 1.76'-U3

F3(N) 2.04'-01 8.68'-02 8.89'-03 3. ~r '-I., J-Fl(N) 1,54'-01 6.61'-02 6.1t3'-03 2.95'-03-F3(NJ. 1.62'-01 6.9/t'-02 7.1l'-O3 j. III '-;13

Fun 1.21'-03 1.5~)1-04 1.28'-06 2.22 • -'.16

T AUL E 36

"
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APl'LICAT IUN OF THE ERI{OH uuunus AND ESTH~/\TES

PROBLCM 5C ALPHA= 1.0

5 8 12 I?

-Jl(N) 3.22 3.28 3.30 3.JL
-P3HU 3.'1·1 3. 't6 3.48 3.49

RCS(N) 5.07'-02 2.88'-03 1.64'-04 1 • (-,4 ' - i .j It

F:30n 2.22'-01 1.26'-02 3.35'-03 1.20'-("14
-t i :N) 1.63'-rH 9.45'-03 2.53'-03 5. 4 ~ '_(I',
-EJ(N) 1.73'-01 9.Q7'-03 2 •.66' -()3 5.73'-(·/t

[HO 5.04'-02 2.85'-03 7.4:.p-04 1.61'-(14

r:HIH 1.l1'-01 6.32'-03 1.67'-03 3.60'-04
-F l( N) 8.l6'-02 4.13'-Q3 1.26'-03 2.13'-04
-F3(JU 0.66'-02 4.99'-U3 1.33'-03 2.~1'-1~4

F (N,. ·2.55'-03 1.2Q'-04 2.12·-OS o. 2h' - "6

lABL E 37
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J\PI'lIC/\TION OF THE EI~ROR BOUNDS MW ESTHMTI.:S

PROI'LEM (, AlPHh= l.~~

b 10 17.

B l( N) 1.2Lt 1.24 1.24 1. 2 (+

-U3(N) 1.10 1.18 1.113 1. 1d

~[S(N) 3.13'-1)4 1.14'-05 1.32'-06 B. rJi>' -'19

!:3(tJ) It. 601 -04 1.68'-05· 1.Y51-e6 1• 3ll ' -l' 1.l

-EIOH J.OQ'-J4 1.421-05 1.65'-06 1• .1.:,1 , - ....'1)

-E3(N) :-\.11'-04 1.36'-lI5 1.51'-06 1. r ':> ' -,) {}

E ( I-! ) 3.13'-04 1.14'-05 1.32'-06 H.8h'-t;9

F3(N) 2.30'-04 8.41'-06, 9.13'-01 t, • ~;1 ' - i) '}

-r i (IH 1.95'-04 7.12'-06 f3.23'-07 5.51'-t.'9
-F3(N) 1.B5'-04 6.7A'-1)6 -'.64'-01 5 • 2~;, -\~'}

f(N) 9.02'-06 1.41'-07 1.30'-08 6.5(,'-11

TABLE 38
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APPLICATIUN Of THE ERROR UOUNUS hND ESTI~ATES

PROL LEt1 6A ALPHA= 1.1.1

10 l~

-F\ l( N) 1.2.11 1.24 1.24 1. 2'i

-(13 (rH 1.18 1.18 1.18 1. 1t~

RLS(N) 4.99'-02 2.67'-03 1.19'-04 :\• 6~i , - 'J (,

[J(r~) t, 33'-u2 :3 .93'-03 1.15'-04 5.37'-'}6

-El( N) 6.20'-02 3.32'-03 1.40 ....01• 4.55'-06
-t;3(N) !).91'-()2 3.17'-03 1.41'-04 Lt • 3:~' -06

t:(N) ,4.99'-02 2.67'-03 1.19'-04 3.6!)'-G6

f3(N) :'>.07'-02 1.')6' -03 8.73'-05 2.69'-01'.

-F 1 (t~) 3.10'-02 1.60'-03 7.39·-O!:l 2 • 2 0' ' -', \U
-fJ(N) 2.95'-02 1.58'-03 7.03'-05 2.16'-(.16

FeN) 1.27'-03 3.15'-05 1.03t-(l6 2.5f)·-LB

TAULf. 39
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APPLICATI()IJ Of THE ERROR BOUNDS AriD ESTIMf\T[S

PROBLEM oB ALPHA= 1.0

i'J 15 20 25 30

-111(N) 1.24 1.24 1.25 1.z ~I

-~:HIH l.18 1.18 1.18 1.IH
Kt.:S(N) 9.29'-02 3.96'-02 4.06'-03 1.'76'-1)3

[J(N) 1.37' -I) 1 5.03'-02 5.97'-03 i.!.59'-c.S
-[1 (rH 1.16'-01 It. q4 '-'J2 5.06'-03 l.2u'-,13
-E3(N) 1.10'-01 4.70'-1)2 4.81'-03 2 .{Iq' -()3
[(lU 9.29'-02 3.96'-02 4.06'-03 1.·'fI' -i_lj

F3HU 6.83'-02 2.911-U2 2.Q81-03 1.30 •-'.13
-Fl( N) 5.78'-02 2.47'-02 2.53'-u3 l.ll't-U.\-F3HU ~.50'-O2 2.35'-02 2.40' -()J 1.')5'-C3

f (l~) 1.30'-03 1.60'-04 7.34'-06 2.23' -(16

TI\BL E 40
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I\Pi'L ICI\ r ION Uf THE ERROR BUUNOS "1m ES T IM!\Tf.S

PRUPL[M.6C ALPHA= l.O

N 8 12 15

-
Ol( N) i.24 1.24 1.24 1.2 t+

-03(N) bIB 1.10 1.18 1. Hi

RES UH 2.30'-02 2.132'-.)3 -1.66'-04 1.64'-1.",

(J (to 3.:~8'-I) 2 4.14'-v3 1• 13' -ll3 2..42'_(I,
-fl(N) 2.80'-02 3.50'-03 t}.53'-O' ... ~.05' - ..' It

-E3(N) 2.72'-02 3.34'-03 <).07'-')4 1. '~5'-u4

F(lU 2.30'-02 2.80'-03 7.47'-04 1.61'-,·4

F300 1.69'-02 2.07'-03 5.63'-04 1.2i. '-U't
-FlHU 1.43'-1,12 1.75'-03 4.77'-04 1.UZ'-ll/f
-F3CN) 1.36'-02 1.67'-03 4.54'-04 Q.13'-05
F(N' 1.59'-03 1.32'-04 2.20'-[i5 B.~9'-U6


