PATH EXPRESSTONS:

A technique for specifying process synchronization

Roy H. Campbell

Ph.D. Thesis

University of Newcastle upon Tyne, August 1976

ABSTRACT

Path expressions ére a new method of describing
synchronization which provides a clear and structured approach
to the description of shared data and the co-ordination and
communication between concurrent processes. This method is
flexible in its ability to express synchronization, and may be
used in differing forms, some equivalent to P,V operations on

counting semaphores.

This method of synchronization is presented, and the
motivations and considerations from which it is derived are
explained. A method for formally characterizing path
expressions is given, together with several automatic means
of translating path expressions into implementations using

existing synchronization operations.

ii

ACKNOWLEDGEMENTS

This work was, in part, financed by a grant from the Science
Research Council. I gratefully acknowledge the assistance and advice
of Professor A,N. Habermann, Dr. H.C., Lauer, Dr. P.E. Lauer, and
Professor B. Randell, It was during a series of conversations with
Professor Habermann in 1973 that I first developed the idea of a path
expression (Campbell and Habermann, 1974). Later, Professor Habermann
invited me to Carnegie-Mellon where we finalised the contents of this
thesis. Dr. P.E. Lauer contributed to the proof of several of the
theorems involving Petri nets, and to the relation between the syntactic
classification of path expressions and their Petri net representation

(Lauer and Campbell, 1975). Dr. H.C. Lauer and Professor B. Randell

were consecutively my supervisors for the thesis, and it was
Professor Randell who first suggested the similarity between path

expressions and Petri nets, :

I would also like to thank Mr. P.M. Melliar-Smith and Dr. D. Lomet

for their helpful suggestions and Professor E.S. Page and the members

of the Computing Laboratory for their comments and encouragement.

iii

Chapter
1. INTRODUCTION, ., ., e e e e e e e e
1.1. AN EXAMPLE PATH NOTATION . e e e .« o e
1.2. STRUCTURING SYNCHRONIZATION WITH TYPES « . e
1.3. A COMPARISON BETWEEN A PATH NOTATION
AND P,V OPERATIONS ON COUNTING SEMAPHORES
1.4. IMPLEMENTATION e e e e . . e .« e
1.5. INTRODUCTION TO THE MATERIAL IN THE THhSIS .
2. BACKGROUND. . & v v v ¢ o ¢ o o o o o o o o o o o o o o
3. ELEMENTARY PATH NOTATION. e o .
3.1, MOTIVATION FOR AN "ELEMENTARY PATH" NOTATION
3.2. CHOICE OF REGULAR EXPRESSIONS AS A VEHICLE,
3.3. ELEMENTARY PATH DEFINITION,
3.4, E-PATH EXPRESSIONS AS FINITE STATE ACCEPTOR MECHANISMS
3.5. STATE MACHINE CONTROLLERS
AND P,V OPERATION IMPLEMENTATION.
3.6. DECLARATIVE POWER
3.7. REMARKS ON MODIFICATIONS TO THE NOTATION .
3.8. A SUMMARY OF E-PATH EXPRESSIONS
4, PROCESSES AND PATH EXPRESSIONS. s e s s e e s
4.1. PATH EXPRESSIONS AND SIMULATING NETS ‘
4.2, AN ABSTRACT MODEL OF A PROCESS. .
4,3. A MODEL FOR A PROGRAM CONSISTING OF PATHS
AND PROCESSES . . . & v ¢ ¢ ¢« ¢« o v o o o o o o o @
4.4. TYPES . .
4.5. CORRECTNESS OF IMPLEMENTATION OF E- PATH EXPRESSIONS
4.6. SCHEDULING POWER, e e e e s e e e e e s
4,7. A CLASSIFICATION OF PROCESSES C e e e s e e e e
4,8, EXAMPLES OF PATHS AND PROCESSES . ,« &
4.9, PROPERTIES OF E-PROCESSES+ + « « «
4,10. HIERARCHIES OF PROCEDURE CALLS
INVOLVING PATH EXPRESSIONS. e e e e s
4,11, SUMMARY OF PROCESSES AND PATH EXPRESSIONS o v e e e
5. REGULAR PATH EXPRESSIONS, . . . e e e e e e e s
5.1. REGULAR PATH EXPRESSION DEFINITION e e e e s e e
5.2. SIMULATING NETS OF R-PATHS, . . . e e e
5.3. A MODEL FOR A PROGRAM CONSISTING OF
PROCESSES AND R-PATHS ¢« ¢« ¢ ¢« ¢ ¢ « o &
5.4, CLASSIFICATION OF PROCESSES v ¢ o o s o o
5.5. IMPLEMENTATIONS OF R-PATHS. . . . e e e s e s w w
5.6. A COMPARISON OF R-PATHS AND E-PATHS v e e e s
5.7. FURTHER EXAMPLES OF R-PATHS
5.8, SUMMARY OF R-PATHS. « v v ¢« « o &

TABLE OF CONTENTS

iv

. 101

19

27
27
28
30
31

42
46
48
50

51
52
53

60
63
68
71
74
81
86

92
96

98
98

. 108
. 112
. 114

127

. 128
. 131

Chapter

6. GENERAL PATH EXPRESSIONS.

6.1.
6.2.
6.3.

(e)3 e N e N« W o)}
o~ Oy

7. ALTERN

T
7.1
7.2,
7.3.
7.4,
7.5.

GENERAL PATH NOTATION . .

PROPERTIES OF THE SIMULATING NETS OF G- PATHS
A MODEL FOR A PROGRAM CONSISTING OF PROCESSES
AND G-PATHS . . .

A G-PROCESS CLASSIFICATION OF PROCESSES -
IMPLEMENTATION, . . . N . .

A DESCRIPTION OF PETRI NETS BY G- PATHS
COMPARISONS BETWEEN PATH NOTATIONS. . .
SUMMARY OF GENERAL PATH EXPRESSIONS . ., . . .

ATIVE PATH NOTATIONS, . . . o v e e e e s
THE INCLUSIVE OR CONSTRUCTION . . « e
THE SIMULTANEOUS EXECUTION CONSTRUCTION o« .
THE PARALLEL CONSTRUCTION « « + « .+ .
OPEN PATH EXPRESSIONS , o .o e
POSSIBLE MODIFICATIONS TO THE SELECTION

AND REPETITION CONSTRUCTIONS.

7.6. SUMMARY OF ALTERNATE PATH NOTATIONS ., .
8., CONCLUSION. . . &« v & v v ¢ v o o v s o o o o o
REFERENCES.

Page

133
134

. 147

. 151

157

. 165

184

. 188
. 193

195

. 195

197

. 201

203

. 210
. 217

218

. 226

CHAPTER 1

INTRODUCTION.

The subject of this thesis is a notation and concept for expressing
the synchronization and co-ordination of asynchronous processes. The design
and construction of the co-operation of such processes is a difficult task,
particularly in large operating systems. Path expressions, first described by
Campbell and Habermann (Campbell and Habermann, 1974), provide a high descrip-
tive level of synchronization which aids in the prevention and detection of
design errors in complex systems and overcomes some of the hazards, like
certain forms of coding errors, that arise in the use of primitive methods
involving, for example, P and V (Dijkstra, 1968a) or Wait and Signal (Habermann,

1972).

We shall consider a process as operating, by a sequence of actions,
on a known set of objects. Synchronization and co-~ordination are required
in order to maintain the integrity of such objects shared among different
processes., Primitive synchronization methods spread the implementation of
such synchronization and co-ordination throughout the programs of various
concurrent processes. Monitors (Hoare, 1974), Secretaries (Dijkstra, 1973)
and message passing systems (Brinch Hansen, 1972) can be viewed as a step in
the direction of associating the specification of synchronization required
with the shared object. For example, monitors enforce mutual exclusion on
the set of operations or entry procedures which may access the shared data
they contain. However, co-ordination between processes using the monitor
is accomplished by programming, within the entry procedures, the interleaving
of executions of those processes using a sophisticated wait and signal

primitive (Hoare, 1974), (Brinch Hansen, 1972).

The psth notation allows the specification of the synchronization and
co-ordination of actions to be made independently of the descriptions of

1.

the processes. To synchronize two actions, each must be provided by a

separate procedure invocation. Synchronization and co-ordination are

specified directly by describing how the body of one procedure, as a unit,

is allowed to execute in relation to others, irrespective of when invoked

by processes. The notation for specifying this is called a path expression.

Path expressions may be used to incorporate synchronization rules
into the type definitions that are used to introduce each class of object
(Campbell and Habermann, 1974). The primary function of a type definition
in a program is to describe the implementation of the operations on objects
of this type in terms of earlier defined operations on the structural parts
of such objects. Together, the type definition and path expressions
describe which procedures (operations) may be invoked by a program to access
data objects and how these procedures are to be synchronized and co-ordinated
to allow the objects to be shared among separate processes. Shared data
objects created from such type definitions appear as atomic entities at the
places where used, the details of the implementation of the object being

irrelevant and underlying structure not accessible.

In this chapter, we shall introduce our proposal using an example
notation (Campbell and Habermann, 1974) described informally with the aid
of examples. Then, we shall outline our notion of type and discuss how it
complements the synchronization methéd. A brief description of an imple-
mentation for the notation will be given and we will show that i£ may express
any synchronization given by P,V operations on counting semaphores. Finally,

we shall introduce the topics of the later chapters.
1.1 AN EXAMPLE PATH NOTATION

The example notation, although somewhat arbitrary, is based on regular

expressions which provide a familiar framework and which allow path expressions

)

“e

to be represented by finite state machines. The notation has been restricted

to permit a description of a simple implementation of path expressions by

means of other, existing, synchronization primitives. In Chapter 3, ve

shall formally define a path notation which is similar to this example

notation, and we shall enumerate and justify the decisions taken in its

construction.

can be

The idea underlying the implementation of the example path expressions

envisaged as follows:-

A path expression names the procedures whose execution by
processes are to be synchronized. It includes a specification
which describes exactly the way in which the synchronization is

to be organized. Each path expression is implemented by a

controller. Given that an individual synchronized procedure

has been invoked by a process, the controller decides when the

’

procedure execution should be allowed to commence, and therefore

the process to continue.

The controller mechanism could operate as follows:

Each procedure commences with a prologue and finishes with
an epilogue. A process executing the prologue of a synchronized
procedure enquires of the controller whether it may proceed. The
controller, using the synchronization specification, may decide
to delay execution or to allow it to continue. Finally, when the
process executes the epilogue of the procedure, it notifies the

controller which may now be able to release other delayed processes.

The notation we introduce in this chapter is designed to simplify the con-

struction of these controllers; we show that they might, for example, take

3‘

the form of finite s tate machines constructed from P,V operations and
semaphores (Dijkstra, 1968a). In Chapters 5 and 6, we shall introduce
notations which require more complex controllers and discuss the merits
of the increased power of these notations and the complexity of their

implementation.

Synchronization Schemes

Each path notation will contain fundamental synchronization schemes
which may be combined by particular rules for the purposes of expressing
complex synchronization., The first two fundamental synchronization schemes
we shall identify for the example notation are the sequence of actions and
the selection from a set of actions. (By action, we mean the execution of
a procedure by a process) A sequence of actions permits each one to occur

in the order specified.

Suppose the executions of three procedures p,q and r are to be

sequentially synchronized. Then

Pigq;r
is an example of a path expressions which would, in our notation, express
that procedures p,q and r are to be executed one after the other in the
sequence given. The procedures may have been invoked by separate processes,
in a different order, and with possible intermediate delays. If an invocation
of q occurs first, the invoking process will be delayed until procedure p

has been executed.

A selection from a set of actions permits only one of those actions

to occur.

Suppose the executions of three procedures p,q and r are selectively

synchronized. Then

P,q,rT

is an example of a path expression which would specify that a selection

of one procedure is to be made from p,q or r. The process attempting

to execute the procedure selected is allowed to continue, while the
processes attempting to execute those procedures not selected are delayed
until a new selection is made from amongst p,q and r. The selection is
made from amongst those procedures which have been invoked by processes.

The selection is made using an unspecified scheduling algorithm which caters

for any possible simultaneity.

’

These two basic schemes may be combined to form more complex path

expressions., Thus the path expression :-

p; (@q,r) ;s

synchronizes the executions of procedures p,q,r and s. Kxecutions of q and r
are synchronized selectively. The executions of procedure p, the selected
procedure from q or r, and the procedure s are synchronized sequentially.

Thus, the path allows two possible series of events:-

Either the execution of p precedes that of q which precedes
that of s, or the execution of p precedes that of r which precedes

that of s.

For simplicity in the design of controllers for this notation, we allow
a procedure name to occur only once in any path expression., This restriction
is lifted in Chapter 5, where, however, this leads to a more complex imple~-

mentation.

There are two additional synchronization concepts which we find practical

to represent. These are repetition and simultaneous execution.

Repetition permits a path expression, once completed, to be repeated.
Many processes are cyclic in behaviour and this is reflected in the path
notation. In this chapter, we consider an implied loop applying to the
whole path expression. The path expression is, itself, contained between
the keywords path and end. Again, for simplicity in the design of controllers
for our notation, we make the restriction that repeated path expressions may
not be embedded within other path expressions. For a number of problems this
proves to be sufficient. However, in Chapter 3,we extend the notation to
include repetition which may be nested, but in a restricted manner. In

Chapter 5 we shall present a general repetition scheme.

Example: The path expression:-

path P end;
synchronizes the procedure P so that it may be executed by processes
repeatedly. If many processes invoke P, one of them at a time will be
allowed to execute P while the remainder are delayed until their turn
comes., The path expression:-—

path A, (B; (C, D)) end;
is an example of a complex synchronization scheme involving the procedures
A, B, C and D. At first, either procedure A or B may be selected to
execute. If A is selected then, when execution by the process of A is
complete, repetition will occur and a new selection made between procedures
A and B, If B is selected then, when execution of B by a process is
complete, a selection will be maae between the procedures C and D. In
this case, when the procedure C or D which is selected has been executed
by its invoking process, repetition will occur and a new selection made

between procedures A and B.

Simultaneous execution permits several processes to execute a given

procedure concurrently. In many synchronization problems it is often required
that a body of code can be simultaneously executed by several processes provided
that by doing so the processes do not infringe other synchronization restric-
tions. One example of a notation for specifying simultaneous execution with

a path expression was introduced by Campbell and Habermann (Campbell and
Habermann, 1974). This consists of a bracket { } placed around the path
expression. Nesting of these brackets is not allowed. With this synchroni-
zation scheme, as many instances of the enclosed expression as there are

requests for it are generated until all instances have been completed.

For example, the path expression:-

{a]
synchronizes the procedure A so that it may be executed by many processes
simultaneously. Once one process begins to execute A, other processes may
do the same without delay, provided that there are outstanding (uncompleted)
executions of A. As soon as the last of these is finished, the simultaneous
execution is considered to be completed, and further processes invoking A will
be delayed. The path expression:-

path A ;5 { B ; C } end;

synchronizes the procedures A, B and C using a combination of several basic
synchronization schemes. Procedure A may be executed first by a process. On
completion of procedure A by a process, the sequence B ; C can be executed by
many processes simultaneously. A process invoking procedure C will be delayed
until the execution of procedure B is completed by some other process.
Procedure B and C may be executed simultaneously by many processes. However,
the number of processes executing and which have executed procedure C can
never exceed the number of processes which have executed procedure B. If,

at some time, all requests by processes for the sequence B ; C have been

7.

completed (the number of executed procedures B equals the number of executed
procedures C and there are no more invocations of B), then repetition will

enable a new invocation of A by a process to execute.

This scheme of simultaneous execution has proved difficult to formalize.
Further discussion of this scheme and other more amenable and less restrictive

notations are discussed in Chapter 7.

Path Expression Examples

In our opinion, path expressions provide a clear and compact method
for describing synchronization problems. For example, the path expression:-
path read y write end;
specifies a series of executions by processes of the procedures read and write

in unpredictable order, none of which overlap in time.

The path expression:-—
Ppath {read} y write end;
specifies a series of executions by processes of the procedures read and
write in unpredictable order. Read executions may overlap other read
executions, but write executions may not overlap other read or write
executions, Reading, once started, will continue for as long as there are

processes invoking read and at least one process executing read.

The above path specifications can be used, for instance, for programming
file processing, and we shall now demonstrate how they may be adapted so that
a particular access priority can be implemented and localized in one place.

In the last example, once reading commences, all processes requesting reading
may proceed. It is therefore conceivable that one wants a policy in which,
once writing commences, all processes requesting writing will proceed, provided
they do so one at a time. This can be implemented by means of two path

8.

expressions:-
path {read} ’ {write} end ;
path write' end;

wvhere write is the procedure defined by:-

procedure write: begin write' end;

The procedure write' actually performs the writing action, The first path
ensures that if the read précedure begins to execute, all reading requests

are accepted, and similarly for write. The second path ensures that the
aEtions of writing are mutually exclusive. Thus, executions/s?,;;gzg‘are
synchronized with respect to the first path, and executions of its body
(write') are synchronized with respect to the second path. The synchroni-
zation specification given by each path can be understood separately since,

in the notation of this chapter, a particular procedure name can appear in
only one path expression. (In other words, there can be a separate controller
for each path.) In the paper which first described path expressions (Campbell
and Habermann, 1974) further examples of controlling the access to a file
using path expressions were given. In particular, it was shown that
strategies could be implemented, for example, letting processes requesting
writing have priority over processes requesting reading (see Courtois, Heymans
and Parnas, 1971). The use of synchronized procedures invoking further

synchronized procedures is discussed in greater depth in Chapter 4.

The examples above and in the papers by Campbell and Habermann and
Habermann (Habermann, 1975), serve to demonst;ate the synchronization
facilities that even a simple path notation may provide and illustrate
their power. We shall return to this point in the next section where we
show that the above notation can be used to program P and V operations on
semaphores. In later chapters we shall discuss more formally the equivalences

and differences between path notations and between path notations and primitive

9.

synchronization operations. While not actually proving the correctness of
the path expressions above, we have been able to make assertions about their
behaviour. Throughout the thgsis we shall relate our path notations to a
mathematical representation based upon Petri nets (Petri, 1962), This
allows, wherever permitted by Petri net theory, a formal evaluation of the
correctness of a set of path expressions with respect to the synchronization
and co-ordination which they are intended to express. In addition, we
develop a model to investigate the behaviour of programs in which the paths

are used.
1.2 STRUCTURING SYNCHRONIZATION WITH TYPES.

Types, under one name or other, have been used in programming languages
for many purposes. Notable instances of their use are in "type checking"
as in Pascal (Wirth, 1971), for providing mutual exclusion as in Concurrent
Pascal (Brinch Hansen, 1974), for describing building blocks as in extensible
languages (for example ECL (Wegbreit, 1972)) and for implementing new data
objects and operations as in the classes of Simula 67 (Dahl, 1970) or the

modes of Algol 68 (Algol 68, 1968),

We believe that type definitions should be used to accomplish on behalf
of the construction of data objects the analogue of what procedure declarations
do for operations. Thus, at the place where it is used, the details of the
implementation of an object should be irrelevant and underlying structure
should not be accessible at that moment., The reasons why this should be so
are obviously the same as those that underliea procedure mechanism:
separation of specification and implementation, and concentration of imple~

mentation issues so as to facilitate verification, debugging and modifications,

10.

As a natural consequence of this point of view, a type definition is
used to create new data objects which appear as atomic entities at the places
where used. Drawing the parallel between type definitions and procedure
declarations, accessing a structural part of a typed object is similar to

jumping into a procedure body.

The primary function of a type definition in a program is to describe
the implementation of the operations on objects of this type in terms of
earlier defined operations on the structural parts of such objects. Thus,
another part of a type definition ought to be a description of the detailed

structure that objects of this type will have.

These two functions of a type definition are reflected in a notation
which we have devised to help us in our ideas, The syntax is purely
suggestive and is not intended as a proposal for a new programming language or

any part of one.

For example we might have:-
type buffer;
" message frame;
procedure read (returns message m): m:=frame;
procedure write (accepts message m): frame:=m;
operations read,write
endtype

This example is a definition of a type called buffer, whose structure
consists of a variable frame of type message, and whose operations are the

procedures read and write. (The type message is assumed to have been

previously defined.) Instances of buffers can be declared or created in
the scope of the type definition, and each one will contain its own instance

of frame., The program using a buffer cannot, however, access frame directly

11.

but must use read and write. The procedure can be applied to them by means

of the Simula 67 dot notation.

For example:~
buffer Aj;
message T;
T:= A.read;

A.write (T);

The type definition has two important properties:-
1) Protection of its structure by the scope rules.
2) Only a fixed, identifiable set of procedures is defined, giving

carefully controlled access to the data of the objects of that type.

Objects created from type definitions can be common to the scope of
two or more processes. However, the type buffer defined above is not satis-
factory when various concurrent processes may simultaneously read and write

a shared buffer, and some form of synchronization is required.

In general, the sharing of objects of a type will be unsatisfactory if
the data contained in the object can be corrupted by several processes
executing procedures simultaneously or in invalid sequences. Monitors
(Hoare, 1974) are an attempt to prevent corruption by allowing only one
process at a time to access and alter the contents of an object. Prevention
of the occurrence of invalid sequences of actions on the object or its contents
must be programmed, however, through the use of a signal and wait primitive.

We will combine our path expressions with our notion of type to introduce

some orderly structure in the sharing of objects.

12.

The restrictions we must place on the operations read and write of

our buffer example in order to preserve the integrity of the contained

data are:-

1) Every read must be followed by a write.

2) Every write must be followed by a read.

3) A read and write must not occur simultaneously.

Provided the buffer obeys these rules we can assert that it will not lose

or destroy any information.

The following type ensures these three properties:-

type buffer;
message frame;
path write ; read end;
procedure read (returns message m): m:=frame;

procedure write (accepts message m): frame:=m;

operations read, write
endtype

The path is applied to the operations to produce the correct synchronization.
A different instance of the synchronization path is associated with each
instance of a buffer. Thus any declaration of a buffer will result in an
atomic object which can be written or read alternately. In Chapter4 we
shall make a more formal definition of the relationship between a type and

the paths it contains as part of its specification.

This type definition of a buffer may be used to build more complex
data structures, for example objects of type "ring buffer". Suppose that a
number of similar readers and writers wish toexchange information but are
constrained by the amount of space available for buffers. bne such device
is demonstrated below and is designed to permit as much concurrency as
possible. A ring of the above described buffers is declared. A send or

13.

receive request allocates a buffer to be read or written on a round-robin
basis. The integrity of the .individual buffers is assured by their type
definition. Allocation is achieved by advancing pointers around the ring of
buffers. Many requests to send or receive may occur simultaneously., However,
each pointer may only be advanced by one process at a time if the integrity
of the allocation mechanism is to be preserved. A type pointer is introduced
which includes the necessary synchronization. Thus we have:-
type ring-buffer;
array O to N-1 buffer R;
lype pointer;
integer P=0;
path next end;

procedure next (returns integer I):

begin P:=(P + 1) mod N; I:=P; end;
operations next
endtyype;
pointer write slot, read.slot;
procedure send (accepts message m):
begin integer j; ji:=write. slot.next;R(j).write(m); end;
procedure receive (returns message m):
begin integer j; j:=read_slot.next;m:=R(j).read; end;
operations send, receive

endtype;

The implementations of the buffers and the pointers are separated from
the ring-buffer mechanism. Similarly, the readers and writers can be programmed

independently of the implementation of the buffering system.

14,

1.3 A COMPARISON BETWEEN A PATH NOTATION AND P,V OPERATIONS
ON COUNTING SEMAPHORES

The examples we have described above encourage us in our belief that
the method is worth studying and is a potential contribution to better-

structured and safer synchronization methods.

We shall now show that the synchronization mechanism described above
may express any synchronization constructed with the more primitive
synchronization operations such as P and V operations on counting semaphores
or Signal and Wait (Dijkstra, 1968a), (Habermann, 1972). This provides an
illustration of the ability of a path notation to express synchronization.
For example the path:-

path {V ; P} end
provides the synchronization necessary to implement P and V operations,
The number of executed Ps can never be greater than the number of completely
executed Vs, This path may be embedded within a type description for a
semaphore. Thus:-
type semaphore;
path {V ; P} end;

procedure V: null;

procedure P: null;

operations P,V
endtype;

Variables of type semaphore may be declared and each instance will have its
own synchronization path. The 'value of the semaphore can only be changed by
executing either a P or a V. In the example above, semaphores are always
initialized to zero. An extension to the above notation would be to include
initialization in types and perhaps in paths. Thus a program restricted to
using our notation has lost none of the potential for expressing
synchronization that the use of P,V operations on counting semaphores would
have given, but has gained the structuring facilities that the use of types

and paths provide.

15.

1.4 IMPLIMENTATION.

One important aspect of our exumple notation is that it has a practical
implementation, Controllers for our notation can be implemented using existing
synchronization methods and these may be generated automatically from the path
expressions, for example by a compiler. We will show one particular implemen-
tation in which path expressions are transformed into appropriute P and V
operations on counting semaphores for use in prologues and epilogues of
the procedures the path expressions name. A complete description of the
algorithm to transform these path expressions is given in (Campbell and
Habermann, 1974). (incidently, this completes the equivalence between

the two synchronization methods.) The following example illustrates

the translation of a path expression into P and V operations.

The path expression:-
path A 3 (B, (C ; D)) ; E end;

would result in the following set of prologues and epilogues:-

semaphore s1,s2,s83,s4;

s1:=1; s2:=83:=s84:=0;

procedures

A : begin P(s1); (body of A); V(s2); end;

B : begin P(s2); (body of B); V(s3); end;

C : begin P(s2); (body of C); V(s4); end;

D : begin P(s4); (body of D); V(s3); end;

E : begin P(s3); (body of E); V(st); end;
Initially, any processes invoking a procedure B,C,D or E will be suspended
by the P operations in the prologue of thatl procedure. A process invoking an
A will, however, be able to decrement semaphore sl1, reducing it to zero, and
thus preventing further executions of an A. On completion of the A, the
process increments s2 in the epilogue of the procedure. This permits one
of procedures B and C to be executed by a process. The selection is implemented

16'

by the processes invoking B and C competing over performing a P operation on
s2. 1If procedure C succeeds, then the epilogue of C, when executed, will
increment s4. This permits a D to be executed. A process executing the
epilogue of D will increment s3. ' (Similarly, if the procedure B had been
executed instead of a C, then the process executing it would increment s3

in the epilogue of that procedure.) If s3 is incremented, this permits a
prdcess to execute procedure E, and will result in s1 being incremented in the
epilogue of that procedure. This gives the synchronization of the repetition

which allows another A to be executed.

The example described above serves to show that the path expression
provides a structured synchronization technique which emphusises what is
needed, not how it is to be achieved. The P,V implementation of the path
expression does not directly express the synchronization it is used to
create. See also (Brinch Hansen, 1972). Therefore, our mechanism can lead
to automatically generated, well structured uses of synchronization primitives
and the programmer is relieved of the problem of implementing his desired

synchronization.
1.5 INTRODUCTION TO THE MATERIAL IN THE THESIS,

We have introduced a new method of synchronization which provides a clear
and structured approach to the description of shared data and the co-ordination
and communication between concurrent processes. As an example of this method,
we have outlined a notation which we demonstrated had these properties and

was equivalent in its ability to express any given synchronization to P and

V operations on counting semaphores.

In the remainder of the thesis we shall expand and develop these ideas

and show that there are many possible Path notations. In Chapter 2 we shall

17.

introduee notation which will be used in the thesis. Chapter 3 describes
the E-path notation which is a development of the notation above. We
shall introduce two measurements of the power of synchronization of

a given synchronization notation which we shall use in later chapters
to compare different notations. Chapter 4 establishes a mathematical
meaning for the combination of path expressions with Petri net models
of processes. We shall show that the implementation of the E-path
expressions is correct with respect to this meaning. The formalism

of Chapter 4 enables us to give a simple criterion for a limited class
of Path expressions and processes to be deadlock free. In Chapter 5

we shall generalize the notation of Chapter 3 and describe the meaning
and an implementation for this more powerful descriptive method. 1In
Chapter 6 we shall introduce the possibility of describing the
synchronization of individual actions concurrently, by separate
synchronization specifications. Finally, in Chapter 7 we shall discuss
various .Path notations which differ from those presented in the body
of the thesis, and describe the problems and advantages of these

notations and how they reflect on the theme of the thesis.

18.

CHAPTER 2

BACKGROUND.

The following notation and definitions will be used in the
remainder of the thesis., This chapter contains a description of
Petri nets, some definitions and theorems from Petri net theory,
and definitions, theorems, and algorithms from the theory of finite
state machines.

Petri nets,

Petri nets may be thought of as bichromatic directed graphs
in which no two adjacent vertices have the same colour. Colour of
a vertex is indicated in our diagrams by its shape, either round or
square (we shall abbreviate a square by a line). Round vertices and
square vertices are called places and transitions, respectively, and
denote conditions and events. A net, being a set of vertices
interconnected with directed arcs, can be used to describe arbitrary
systems of events and their occurrences. This interpretation is
obtained by specifying that an event may occur if all its enabling
conditions hold in the system. This is indicated in the net by
draving a directed arc from fhe places denoting the enabling conditions
of the event to the transition denoting the event. The occurrence of
sn event may subsequently cause other enabling conditions to hold;
this is represented by drawing arcs from the transition representing
the event to the places denoting the conditions. The net can be used
to simulate system behaviour by putting tokens in places of the net
to indicate the holding of conditions., A transition is enabled to
fire when all its places are marked with such tokens. The firing of
8 transition subtracts a single token from each enabling place and

adds a single token to each place which is on a directed arc from the

19.

transition (the output place). Thus, the net specifies the set of all

possible sequences of concurrent events of the system,

If two transitions share an enabling place with one token on it,
they are said to be in conflict over that place; both are enabled but
only one will fire disabling the other. This implies that a marked
net represents the set of all sequences of occurrences of events (firings
of transitions) determined by the holding of the conditions corresponding

to the marked places.

The following definitions will be assumed:-

2,1) A marked net is live if each of its component transitions
is live (Hack, 1972).

2.2) A transition is live at a given marking if there exists a
sequence of firings which fires it for every marking reachable
from a given marking., (That is, an event is live,given the
holding of some set of conditions,if those conditions may
eventually allow it to occur,)

2,3) A marking is reachable from another marking if there exists a
sequence of firings which transforms it from the latter into the
former,

2.4) A marked net is n-safe (safe) if all its component places are

n-safe (safe), (Petri, 1962).

2.5) A place is n—safe (safe) at a given marking if every marking

reachable from the given marking has at most n (one) tokens on
that place. (I.e., a condition is safe if, given the holding
of some set of conditions, two or more instances of the holding
of that condition may never occur simultaneously,)

2.6) In the diagram below:-

¢ (=)

“SI’ 1‘!!’ t3 t4
g)

p! and p2 are shared input and output places, respectively, of

tl and t2.

t3 and t4 are shared initial and terminal trensitions, respectively,

of p3 and p4.

2.7) A State Machine Petri net has shared input and/or output places,

but no shared initial or terminal transitions,

2.,8) A State Machine Petri net is strongly connected if and only if

every vertex in the net is 'connected' to every other vertex by
some sequence of directed arcs and vertices (Holt and Commoner,
1970).

2.9) A Marked Graph Petri net has shared initial and/or terminal

transitions, but no shared input or output places,

2.10) A Simple Petri net is one in which every transition has at most

one shared input place (Hack, 1972).

The following properties of the State Machine and Marked Graph Petri
nets have been proved by Holt and Commoner (Holt and Commoner, 1970)
and will be used later in the thesis:-

2.11) A strongly connected State Machine Petri net is live and safe
for any marking which places only one token on the net,

2.12) A transition in a Marked Graph is live if and only if it is not
contained in an empty cyele. (A set of vertices and directed
arcs is said to be empty if no vertex contains a token, and is
a cycle if, by following the directed arcs,all the vertices

are visited once and the first vertex is reached again.)

21,

Matrix representations of Petri nets,

To simplify the description of nets and to represent them in a
suitable form for computation they may be presented as matrices
(Lautenbach and Schmid, 1974). Por a given net we have two matrices,

a forward incidence matrix (F) and a backward incidence matrix (B).

(Hack, 1975). Each column of the matrix corresponds to a transition,
each row to a place., When a place has a directed arc to a transition,
there will be a one written in the forward incidence matrix at the
intersection of the row corresponding to that place and the column
corresponding to that transition. Similarly, if a transition has a
directed arc from it to a plaece, the backward incidence matrix will

contain a one at the intersection between row and column,

A marking will be represented by a vector (M), each element
corresponding to a place containing a number representing the number

of markers on that place,

Example:-
F transitions B transitions M
A B C D A B C D places
1 1 1 1 0
2 1 ' 2 1 2
places places
3 1 1 3 1 1 1
4 1 4 1 0

corresponds to the net:-

22,

c
D 3e ;%

The matrix representation is used in later chapters to simplify
specifying Petri nets and as a computational tool in the controllers
of path expressions. Finally, these matrices have been used in
algorithms to investigate Petri net properties and behaviour

(Lautenbach and Schmid, 1974).

Finite State Machine Theory,

In Chapter 1 and later chapters we introduce path notations based
upon regular expression descriptions of the synchronization of the
execution of procedures by processes. We shall examine these regular
expression descriptions of synchronization by examining the state
machines to which they correspond., The following definitions will be
used: -

2.13) A finite state automaton over the alphabet E is a system

U = (8,M,So,F)

where S is a finite non-empty set, M is a function defined on the
cartesian product S X E of all pairs of states and symbols with
values in S, So is an element of S (the initial state of U)

and F is a subset of S (the designated final states of U).

(M is the table of transitions, and S is a set of the internal
states of U.,) (See Hopcroft and Ullman, 1969.)

2.14) A non-deterministic finite state automaton over the alphabet E

23.

is a system
v = (S,N,So,P)

where S is a finite non-empty set of states, N is a function
defined on the cartesian product S X E into subsets of S, So
is an element of S (the initial state of V), and F is a subset
of S (the designated final states of V),

2.15) A transition system over the alphabet E is defined to be a

quintuple
T = (S,M,A,F,P)

where S is the non-empty set of internal states, A is a subset

of S and is the set of initial states, F is & subset of S and is

the final set of states, M is a transition function which maps

S X E into ZS, the set of all subsets of S, and P is a binary

relation on S which holds between two states u and v in case

there is a spontaneous transition from u to v. P is called

the spontaneous transition relation. (Harrison, 1965),

2.16) The language of regular expressions, L, is defined inductively

as follows:-

(1) A is a regular expression.

(2) ¢ is a regular expression,

(3) Qi is a regular expression for i = 0,1,,..,k-1,

(4) If o and B are regular expressions, then o , B is a
regular expression,

(5) If o and B are regular expressions, then o ; B is a
regular expression.

(6) If o is a regular expression, then o* is a regular

expression,

24,

(7) There are no regular expressions other than those given by
steps (1) to (6).

2.17) The behaviour of a regular expression or the set denoted by
a regular expression is defined by the following procedure,
(The behaviour of « is denoted by |of.)

(1) |@#|l = @, where § is the empty set.

(2) |Al = [A).

(3) |0'i| = {0.}, for i = 0,1,... k-1,

(4) o8| = |elulB].

(5) losBl = ol [B] = { xy [x € |ol, y€ [6] }.
(6) la*! = (A} U |ol U lalle] U [allallafu . . .

|

2,18) There is an algorithm which applies to any given regular expression

o and yields a finite state machine whose behaviour is |a .
(Kleene, 1956)

The following results of finite state machine theory will be used

later in the thesis to state and prove properties of path expressions:-

2.19) The following algorithm applies to any regular expression a to

yield an equivalent finite state machine. The algorithm first

constructs a finite transition system whose behaviour is Ia .

Prom this one obtains the appropriate finite state machine

by the subset construction (Harrison, 1965).

1) If a=4¢, A, Tt Tqreee1% 1o then the problem is trivial,

2) If there is a transition system S having behaviour |a|, then
the transition graph below has behaviour |a*|. (Note that,
in the following figures, the single transition into (out of)

a transition system symbolizes one line to (from) each

initial (final) state.)

25.

3) If transition systems S and T have behaviours lal and |B|,
respectively, then the transition system having behaviour

| 2,8 is shown below:-

4) If S and T are transition systems having behaviours Ial
|B|, respectively, then the transition system having

behaviour |a; Bl is shown below:-

A A A
—ip S T ——

2.20) The minimum state machine with behaviour |a| is unique up to
isomorphism (Hopcroft and Ullman, 1969).

2.21) Strongly connected state machines are state machines such that
there is a sequence of transitions from any state to any other

state,

We shall now use the above definitions and theorems to introduce

and describe the Elementary Path Notation.

26.

CHAPTER 3

ELEMENTARY FATH NOTATION,

In the preliminary discussion in Chapter 1 we introduced the
concepts of action, path notation, controllers, and & notion of type.
In this chapter, we shall enlarge upon these concepts and give a
mathematical representation of expressions belonging to a particular
path notation., Various properties of the path notation are discussed,
for example, that tﬁis particular notation is inherently free from a
class of deadlocks. Finally, a detailed discussion of an implementation
of this notation is given, together with some comments about the notation
itself.

The Elementary Path {henceforth referred to as E-path) notation is
a modified form of the notation discussed in Chapter 1, It omits the
simultaneous execution scheme which is discussed later in Chapter 7,
where it is considered with respect to its inclusion in this and other
notations, However, it includes a limited repetition scheme

of synchronization,

3.1 MOTIVATION FOR AN "ELEMENTARY PATH" NOTATION.

The E-path notation permits the declaration of a set of specific
synchronizations between various actions, This declaration is a static
description of the synchronization, This is analogous to keeping the
array dimensions constant for the life of an array, to the creation of
variables in an Algol block, and to the attempts to eliminate the goto
from programming languages. The notation has been designed to be simple,
yet sufficiently powerful to be a programming tool, and be easily

implementable on most present day computers,

To ensure practicality, E-path expressions have been designed to

27.

be implemented by the mechanism described briefly in Chapter 1 using a

P operation on some binary semaphore (Shaw,l1974) in the prologue of a
synchronized procedure, and a V operation on a possibly different semaphore
in the epilogue of that procedure. This requirement imposes a restriction
on the form that E-paths may take, but nevertheless provides a powerful

synchronizing method.

In later chapters, we shall extend this notation and investigate the
relations between increasing the synchronization power of the notation
(compare Lipton,1973) and increasing the descriptive ability of the
notation.(This may be compared to a low level language and a high level
language; both have equivalent computational power, but the latter has
more descriptive ability than the former.) In particular, the relations
we shall investigate are the manner in which they may be increased, and
the effects on comprehensibility and the complexity of the controllers.,
To achieve these aims we require E-paths to be simple and not to contain

any features which may restrict this possibility of expansion,

The E-paths must be consistent with our thesis: that we want fo
describe synchronization between actions, and that path expressions may
be attached to data objects to describe the synchronization which allows
those objects to be shared by several concurrent processes. As we shall
show, both these requirements are satisfied by the notation, and in addition

it helps to prove the validity of our approach.

3,2 CHOICE OF REGULAR EXPRESSIONS AS A VEHICLE.
The form we have chosen to adopt for the E-path notation is based
upon regular expressions. The following reasons motivate this decision:-
1) Regular expressions provide a structured framework in which we
can write our synchronization descriptions.

2) They are well known,and when considered in the equivalent form

28.

of state machines recognizing strings of symbols, bear a

striking resemblance to the synchronization method we require.
In addition, the state machine suggests several implementation
mechanisms in which it is used as the central part of a
controller for synchronizing various actions.

3) They have been used theoretically by others to describe
Operating System behaviour, for example, as in Message Transfer
Expressions (Riddle, 1972). Petri used a similar notation for
his communication forms which described the behaviour of subnets
of a Petri net (Petri, 1962). Hence, they are suitably flexible
and descriptive. Pinelly, particular properties of state
machines, such as being strongly connected and having minimal
canonical forms, can be used in the study and application of

path expressions.

The decision to implement the E-path expressions using P and V
operations in the prologues and epilogues of procedures implies that the
E-path notation can correspond only to a subset of the class of all
regular expressions, This subset will be restricted to expressions
which can be represented as state machines in which no two transitions
share the same name. This enables the states of such state machines
to be represented by semaphores. The syntax of E-path expressions is
designed to include only regular expressions whose associated state
machines meet the requirement of this mechanism. The syntax, although
not permitting all the expressions.representing regular sets accepted
by sueh state machines, allows the syntactic checkingof expressions to be
accomplished and readily automated. A detailed explanation of the
relationship between the implementation, E-path notation and state

machines will follow,

29.

3.3 ELEMENTARY PATH DEFINITION.

The syntax for the E-path notation is defined by an extended BNF
notation in which the part in the square brackets of a production is
optional. To simplify the description we have assumed an arbitrary
precedence relationship between the separators, i.e. the symbols
() ; ,* representing the various synchronization schemes of the
notation., Terminal and non-terminal symbols are distinguished by

- context, i,e, terminals do not occur on the left hand side of any
production, The Kleene star will be used to denote repetition of a
subexpression zero or more times. The occurrence of a Kleene star in
an expression is restricted by the productions to ensure that the
expression has a state machine with the required property permitting

implementation.

The construction of an E-path expression is specified by the
following five productions and two restrictions on the use of names

within the path expression,

P1: E-path path (sequence)* end

P2: sequence unit [; sequence]

P3: unit

1= element ¥ ; element
selection
P4: selection ti= element [, selection]
P5; element $i= procedurename

l (selection [; sequence])

Restriction R1: No procedurename may occur more than once in a

given path expression.

Restriction R2: No procedurename may occur in more than one

path expression,

(Restriction R1 will be lifted in Chapter 5, and restriction R2 will

be lifted in Chapter 6.)

The productions form an unambiguous grammar and have been used in
a recognizer for E-path expressions. Production P1 introduces the path
end pair vhichdenotes the path expression, and only permits expressions
which are enclosed by repetition. This enforced repetition
of the synchronization expression is included for an important theoretical

implication which will be described later,

Examples of valid E-paths.

path (open ; (read ; write)* ; close)* end
path (openfile ; (openrecord ; write* ; closerecord)* ;
closefile)* end
path (openfile ; (
(openrecord_for write ; write* ; closerecord for_write) ,
(openrecord_for_read ; read* ; closerecord_fop_read')

)* ; closefile)* end

Examples of invalid E-path expressions.

path (A*)* end
path ((A* 5 B)* ; C)*¥ end
path (A* 5 (B* ; C))* end

path (A, (B* ; C) ; D)* end
3.4 E-PATH EXPRESSIONS AS FINITE STATE ACCEPTOR MECHANISMS.

In order to discuss the theoretical properties and describe an
implementation for E-path expressions we shall use a finite state

machine description of the synchronization they express. Since every

31.

E-path expression is a regular expression, and all regular expressions
have equivalent finite state machines (2.18), we may construct an
equivalent finite state machine for any E-path expression. We will

use a modified version of the construction given by Harrison (see 2.19).
The construction involves the generation of a finite transition system
(2.15) for a given regular expression. We directly reduce this transition
system to a finite state machine by simply eliminating the spontaneous

transitions.

Theorem 3.1: Let o be a regular expression such that path o end
is accepted by the productions of the E-path notation. The
equivalent non-deterministic state machine may be constructed
from the transition system for o, generated by 2.19, using the

followingi-

Let C1 and C2 be sets of states of the transition system:-

T = (S,M,A,F,P) such that

Ct= {s] U M(s,z) =¢ and s € 5}
z €E

c2= { s |(U Mt,z))N {s} =@ and s € s}.
z €E
t €S

Given s1 is a state of T and if there exists a unique s € 8

such that either:-

El: P(s1) = {s} and s1 € C1 (i.e. the only transitions from sl
are spontaneous and go to s), or
E2: P(s) = {51] and s1 € C2 (i.e. the only transitions to sl

are spontaneous and come from s)

then create a new transition system T' = (S' ,M',A',F',P') which

is identical to the original system except that s1 and s are

32.

replaced by {s U s1}, Any transitions to or from s1 or s will
become transitions to or from {s U s1} and if s or si belong to

A (the initial states) or F (the final states), then {s U s1} will
belong to A' or F',

(i.e. replace:-

€ €
{s1 U s}
€
and 8
B
Proof: Trivially, the replacement rules above will not alter the

behaviour of the transition system for a,

It remains to be shown that all spontaneous transitions will be
removed by these rules., path o end must be produced by the E-path
set of productions. We shall apply the transition system construction
rules of 2,19 to each production and show, by induction, that the
transition system for o has only spontaneous transitions of the fomm

E1 or E2,

The productions correspond to the following transition systems

(T1-T5¢).

T1: E-path 1= path (sequence)* end

sequence

33.

where st € C1 and C2.

T2a: sequence 1= unit ; sequence

unit “ sequence, [

where s2 € C1 and C2,

The initial states are those of 'unit',

the final states are those of 'sequence1'.

T2b: sequence : unit

The initial and final states are those of 'unit'.

T3a: unit

element* ; element

A element A

s3 s4 elementz‘—o

where s4 € C1 and C2,
The initial state is s3,

the final states are those of 'elementé'.

T3b: unit $i= selection
A A
—+] selection U

The initial and final states are those of 'selection'.

34.

T4a:

T4b:

TSa:

T5b:

T5c:

selection $iss element , selection1

element A

selection1 A
The initial state is s5 € C2,
‘the final state is s6 € C1,
selection ti= element
A A

——e{ element "

The initial and final states are those of 'element!',

element 1= procedurename
A ,;?\7 procedurename ,;g\ A
N\ NG g

Since 'procedurename' is a terminal, it is the name of a
transition, Hence, the initial and final states are s7 € C2,

and s8 € C1, respectively.

element 1= (selectionz)

A A
— selec‘bion2 .

The initial and final states are those of 'selectionz'.

element $i= (selection ; sequence)

A A - A A

selection sequence

where s9 € C1 and C2,

The initial states are those of 'selection',

the final states are those of 'sequence’',

35.

First, we shall show that the transition system for 'element'
has a single initial state belonging to C2, and a single final state

belonging to C1,

For the initial states of 'element' and 'selection' in the
transition systems T5 and T4 we have:-
~T5a: 'element' has a single initial state, say s7, and s7 € C2,
T4a: 'selection' has a single initial state, say s5, and s5 € C2,
Suppose, as induction hypothesis, that 'selection' has a single
initial state which belongs to C2., Then, we have:-
T5b and T5c: 'element' has the initial states of 'selectionmn',
and hence has a single initial state belonging to C2,
T4b: 'selection' has the initial states of 'element', and thus
has a single initial state belonging to C2,
Therefore, by induction, we conclude that 'selection' in the transition
system T4 has a single initial state belonging to C2, and also that
'element' in the transition system T5 has a single initial state

belonging to C2.

Consider the final states of 'sequence' in the transition
system T2. We have:-

T2b: 'sequence' has the final states of 'unit’,
Suppose, as induction hypothesis, that 'sequence' has the final
states of 'unit'. Then, we have:-

T2a: !'sequence' has the final states of 'sequencel'.
Therefore, by induction, 'sequence' has the final states of 'unit!',
For the final states of 'element' and 'selection' in the

transition systems T5 and T4 we have:-
T5a: 'element' has a single final state, say s8, and s8 € C1,

T4a: 'selection' has & single final state, say s6, and s6 € C1,

36.

3.

T4b: 'selection' has the final states of 'element!',

The transition system for 'unit' is such that:-
T3a: 'unit' has the final states of 'element!'.
T3b: 'unit' has the final states of 'selection’,
Thus, by T4a and T4b 'unit' has either a single final state which

belongs to C1, or the set of final states of 'element'.

Substituting the results of 2, in 1,, 'sequence' has either
a single final state which belongs to C1, or the set of final states

of 'element',

Suppose, as induction hypothesis, that 'element' has a single
final state belonging to C1., Then, we have:-
T4a and T4b: ‘'selection' has a single final state belonging
to C1.
3.: 'sequence' has a single final state belonging to C1.
T5b: 'element' has the final states of 'selection', and hence
has a single final state belonging to C1,
T5c: 'element' has the final states of 'sequence', and hence
has a single final state belonging to C1,
Therefore, by induction, we conclude that 'element' has a single
final state belonging to C1, and hence also that 'selection',
'sequence', and 'unit' each have one single final state belonging

to Ct1.,

The remainder of the proof uses the above results to show that

the spontaneous transitions of the system for o may be removed.

Consider T5c¢c, Let f be the final state of the transition system

for 'selection', and a" be the initial state of the transition system

37.

for 'sequence'., Then, in the transition system T for 'element':-
P(f) = s9, and £ € C1,
Hence, E1 applies, the spontaneous transition may be removed, and s9
combined with £ to give a new state {f ! s9)}. Again, we have:-
P({f U s9})= a" and {£ U s9} € C1,
Thus, we may combine {f \} s9} with a" to form {f W s9 ! a"} and
eliminate the spontaneous transitions between 'selection' and

'sequence’,

Consider T4a. Let a and f be the initial and final states of
'element' respectively. Let a" and f" be the initial and final
states of 'selection'. Then in the transition system T for
'selection' we have:-

P(s5) = a and a € C2. Thus, by E2 we may combine s5 and a.
P({s5 U a})= a" and {s5 ! a} € C2, Thus, by E2, we may
combine {s5 U a} and a" to give {s5!) a ! a"}. We note that the
initial state of 'selection' is still, after reduction, a meﬁber
of C2, In addition, we have:-
P(f) = s6 and £ € C1, Thus, by El, we may combine s6 and f.
P(£") = {s6 ! £} and £" € C1, Thus, by E1, we may combine
{s6 ! £} and £" to form {s6 U £ U £"}, Ve note that the final state
of 'selection' is still, after reduction, a member of C1, Thus, all

the spontaneous transitions introduced by T4 may be removed.

Consider T3a. Let a and f be the initial and final states of
'element1' and a" and f" be the initial and final statesof 'elementz’.
Then in the transition system T for 'unit' we have:-

P(s3) = a and a € C2, Thus, by E2, we may combine s3 and a.
P(f) = {s3 U a) and £ € C1. Hence, by El, we may combine

[83 ' al and f.

38.

P({s3 VU a VU £}) = s4 and s4 € C2. Hence, by E2, we may
combine {s3 U a U £} and s4.

P({s3U all £U s4)) = a" and a" € C1, Thus, by E1, we may
combine {s3U a U £ U s4} and a" to form {s3 U alU 2V s4 U a"}.
Note that there is only one initial state of 'unit' after reduction.

Thus, all the spontaneous transitions introduced by T3 may be removed.

Consider T2a. Let f be the final state of 'unit', and a" be the
initial state of 'sequence1'. Then for the transition system T for
'sequence’:-

P(f) = s2 and £ € C1, Hence, by E1, we may combine f and s2.
P({£ U s2}) = a" and {£ U s2} € C1, Hence, by El, we may
combine {f U s2} and a",

Thus, all the spontaneous transitions introduced by T2 may be removed.

Consider T1, Let a and £ be the initial and final states of
'sequence'. Then in the transition system T for 'E~path':-
P(s1) = £ and £ € C1, Hence, by El, we may combine sl and
f. The initial states of 'sequence' are those of 'unit', However,
even after reduction, 'unit' has a single initial state,
P(a) = {s1 U £} and {s1 U £} € C1, Hence, by El, ve may
combine {s1 U £} and a.

Thus, all the spontaneous transitions introduced by T1 may be removed.

'Procedurename' contains no spontaneous transitions. Suppose,
as induction hypothesis, that the regular expression B, contained in

@, has a transition system which contains only spontaneous transitions

vhich may be removed, We may apply one of the E-path productions
and its corresponding transition system construction rule to B to

obtain ¥ and a transition system for v. However, all the spontaneous

39.

transitions introduced in forming the new transition system from that
of B may be removed. Thus, all the spontanecus transitions in the
transition system for vy may be removed., Therefore, by induction, we
conclude that all the spontaneous transitions in the transition system
for o given by 2.19 may be removed.

Q.E,D,

As a corollary, the construction 2,19 can be simplified to produce
a finite state machine directly from the E-path expression without
producing an intermediate transition system. In addition, 3.1 implies

the following property:-

Theorem 3.2: Let o be a regular expression such that path o end is
an E-path expression. Then the non-deterministic finite state
machine constructed by 3.1 is strongly connected.

Proof: Application of 2) of 2.19 to o gives the transition system:-

where o is the regular expression (B)¥,.

This transition system is strongly connected (2.21),.

Each of 2), 3) and 4) preserves the strongly connected property
of the graph and introduces new vertices which are also strongly
connected by having directed arcs to and from other strongly

connected vertices,

Each of the rules E1 and E2 of 3.1 preserves the strongly
connected property of the graph since it only combines vertices.

Q.E.D,

This theorem implies that there must always be a sequence of
executions of the procedures in an E-path expression which will lead
to a given procedure being capable of being executed by some process,
Of course, this gives no assurance that the processes are themselves
deadlock free in the manner in which they invoke procedures of the paths,

or that the combination of several paths in a program will not give rise

to deadlock.

The following lemma will be used in a pProof that the E-path notation
can be implemented using P and V operations in the prologues and epilogues

of procedures.

Lemma 3.,3: Let o be a regular expression such that Path o end is an
E-path expression. Then the state machine (U) constructed for a
by 3.1 has no two transitions which share the same name, is
deterministic, and is minimal (2,18).

Proof: Each of the four construction rules of 2.19 generates transition
systems which have distinct parts corresponding to distinct
subexpressions of the original regular expression. Thus, if two
transitions have the same name (excluding spontaneous transitions),
then they must have been generated from two identical regular
expressions. However, if the original expression @ contained two

such expressions, then it would contravene restriction R1 and

path o end would not be a valid E-path expression., Hence, the

transition system for o cannot have two transitions which share the
same name, 3.1 removes transitions which are spontaneous but does
not add further transitions. Hence, the resulting state machine U

has no two transitions which share the same name,

Consider the state machine U, If e is & member of the alphabet

41,

of the state machine and s is one of its states, then the transition
function with arguments e and s can only be single valued since
no two transitions have the same name. Hence, by definition 2.13

and 2,14 the state machine is deterministic,

Finally, assume that the state machine U is not minimal. Then,
the minimal state machine is obtained by finding the equivalence
classes of U (Myhill, 1957). There must exist at least two states
u and v of the state machine U which belong to the same equivalence
class, However, suppose that a transition from u accepts the first
member e of the sequence z of letters belonging to the alphabet of
the state machine, (There must be at least one such transition from
u since the state machine is strongly connected (3.2).) Then e must
also be accepted by a transition from v. But this contradicts the
result that the state machine U has no two transitions which share
the same name . and hence that the state machine was constructed by
3.1. Thus, the state machine constructed by 3.1 is minimal.

Q0.E.D.

3.5 STATE MACHINE CONTROLLERS AND A P, V OPERATION IMPLEMENTATION.

One of the important properties that we require for the E-path
notation is that it should be readily implementable on the majority of
present day machines. In Chapter 1 we illustrated an implementation
in terms of counting semaphores for that form of path notation, In this

chapter we establish an implementation for E-paths in terms of binary

semaphores (Shaw,1974). 4 »

To implement an E-path expression, we associate with each state in
the equivalent state machine constructed by 3.1 a binary semaphore which

will have the value one whenever the machine is in that state and will have

42,

the value zero otherwise, For each synchronized action (represented by

a transition in the state machine), we provide the corresponding

procedure with a prologue containing a P operation on the semaphore
representing the state from which the transition takes place. The
procedure is also provided with an epilogue conteining a V operation on
the semaphore representing the state to which the transition occurs. Thus,

for exampie, we have for an action P:=-

procedure P: begin P(si) ; (body of procedure P) ; V(sj) end

vhere 84 and sj are semaphores whose values will be used to encode the
state of the state machine., Execution of the procedure by a process

corresponds to a change of state in terms of the state machine,
For example, the following E-path:-
path (A ; ((B, C) ; D)* ; E)* end

has the corresponding state machine:-

vhich is implemented as:-

semaphore s1 = 1; semaphore s2, s3 = 0;
procedure A: begin P(s1); (body of A); V(s2) end;

procedure B: begin P(s2); (body of B); V(s3) end;

procedure C: begin P(s2); (body of C); V(s3) end;

procedure D: Dbegin P(s3); (body of D); V(s2) end;

procedure E: begin P(s2); (body of E); V(sl1) end;

43.

(In Chapter 4 we shall give a meaning to the interaction of a path
expression with the procedure calls of a program using a Petri net
representation. This will permit us to represent mathematically the
interaction between processes and path expressions. In particular, we
shall show that the above implementation is correct with respect to this
representation, hence permitting the theoretical results obtained from the

representation to be applied in practice.)

The E-path expressions are based upon expressing synchronization
using a restricted regular expression. These restrictions are necessary
to allow E-path expressions to be implemented using the scheme above. For

example, the following path expression:-
path ((A;X;B), (C;X; D))* end
has no implementation of the form:-

procedure X; begin (mixture of only P, V operations) ;
(body of procedure X);
(mixture of only P, V operations)

end

The above path expression has the state machine representation (if

we allow the repetition of procedure names):-

A X

© (4)
initial ’
(1)

state

A process executing any of the procedures X, B, and D can only wait on one

44,

semaphore at a time. Associating semaphores with states, this implies
we must combine states 2 and 3 together, However, states 2 and 3 cannot
be combined without altering the behaviour of the state machine. Hence,
in order to implement this path, we require more than just a simple
association of states with semaphores. For example, we could introduce
variables and array indexing or conditional statements (see Chapter 5).
(This is similar to the well known problem of the cigarette smokers

(Patil, 1971), (Parnas, 1975), (Habermann,1972).)

Theorem 3.4: The restrictions imposed by the E-path notation on the
set of regular expressions of which an E-path expression can be
composed are sufficient to allow all such expressions to be

represented by an implementation of the form:-
procedure X: begin P(si); (body of procedure X); V(sj) end

Proof: As a corollary to 3.3, the finite state machine constructed for
an E-path expression by 3.1 has only one state in which a particular
procedure execution may be accepted. Hence this state can be
represented by a semaphore upon which processes requesting the
execution of that procedure may wait, Again, as a corollary,
given a particular procedure execution, there is only one state into
which the state machine may enter, This allows processes terminating
their execution of that procedure to execute a signal to the processes
waiting upon the semaphore which represents that state. Finally, the
state of the state machine is represented by the semaphore
corresponding to that state having the value one, all other semaphores
having the value zero. Hence, the restrictions are sufficient.

Q0.E.D,

45.

3.6 DECLARATIVE POWER,

There are two measurements we shall make for a given path notation Pl
which will be used to compare the ability of that notation to express
synchronization with the ability of another path notation, say P2. These
measurements are the declarative power and scheduling power of Pl, written
D(Pl) and SP(Pl) respectively. (SP(Pl) will be defined in 4.6.) The
comparison of D(Pl) with that of D(P2) will be used to determine if Pl
is better than P2 at meeting the goal of removing synchronization from

program text and expressing it as a static declaration.

Let S5i be the set.of (possibly infinite) sequences of actions
accepted by a path expression Ei. (We will define Si to be the set of
sequences generated by the simulating net of Ei, see simulating nets in

-4.1.) D(P1l) is defined to be the set of elements Si such that Ei 1is an

expression of Pl. D(Pl) is at least D(P2) if D(Pl) contains D(P2).

(That is, for every path expression E2 of P2 there is an E1 of P1 such that
S2 is accepted by El.) If the elements of D(Pl) are the same as those of
D(P2) then D(P1) equals D(P2). If D(Pl) contains D(P2) but there are

elements of D(P1l) not in D(P2) then D(P1l) is greater than D(P2).

We may ottain an informal characterization of the declarative power
of E~-path expressions by identifying the properties of the finite state
machines to which they are equivalent. The state machine corresponding

to an E-path has the following properties:-

1) It is strongly connected (3.2).
2) It only has one state transition to represent any procedure
execution (an equivalent statement of 3.3).

3) It has no non-nested loops. That is, E-paths may generate loops of

the form:-

46.

where the loops are properly nested, but not of the form:-

4) It has no non-nested selections. That is, E-paths may generate

selections of the form:-

5) It allows no parallelism, (This follows directly from 1)
and amounts to an E-path corresponding to one state machine, not

several independent ones.)

The potential power of expression of synchronization belonging to
the implementation of the E-paths may be identified as equivalent to the
expressive power of state machines in which no two transitions share the
same name, This includes state machines with properties such as non-nested
loops and selections as in 3) and 4) above. Thus, to conclude the

discussion of the E-path notation we shall briefly consider other

47.

notations which would exploit further this implementation scheme to

improve upon the declarative power of E-path expressions.
3.7 REMARKS ON MODIFICATIONS TO THE NOTATION.

We will only consider modifications which would take advantage of
the implementation scheme described above to increase the declarative
pover of the notation. In addition, we shall require the modifications
to allow expressions of the notation to be checked syntactically to
determine that they may be implemented using the desired mechanism, Thus,
for example, we shall not consider permitting any regular expression to be
used within an E-path expression., Such expressions would require more
than a trivial syntactic analysis before a decision could be made that
they were implementable (for instance, by minimizing the state machine
given by 2,19 corresponding to the regular expression), We will
demonstrate that, having such & fixed implementation scheme, increasing
the power of declaration of the path notetion is closely linked with the
structure we wish to impose on synchronization specifications. We will
describe two modifications which are successively more powerful and which,

as a result, lose structure.

The first modification replaces the Kleene star by a loop and exit
mechanism. The loop does not terminate until an exit is taken, The
modified notation allows some non-nested loops and selections to be

expressed. For example, we may have:-
path loop (A ; loop (B; (C, Eexit) ;D) ; F) end

which corresponds to the state machine:-

48,

initial

state

or we may have:-
path loop (A ; loop ((B,(D ; (E exit , F))) ; C exit) ; G)end
which has the state machine representation:-

initial

state

However, the modified notation allows expressions to be written which

are not strongly connected. For example:-

path loop (A ; loop (B) ; C) end
which has the state machine representation:-

initial

state C

where C may never occur and A may occur once only,

The second modification attaches a label to any sequence, Each
procedure name in the path expression may be followed by a goto. This
notation allows the full potential of the implementation to be utilized,
The problem we have outlined above is one of language design, a trade-off

between the power of description, understandability, and possibility of

49.

error. W¥We shall not concern ourselves further with the solution to this

problem,
3.8 A SUMMARY OF E-PATH EXPRESSIONS.

We have defined a path notation by giving & set of productions
which generate a synchronization expression based on regular expressions,
Each patﬁ‘expression could be represented by a finite state machine. The
notation was constructed so that path expressions would have corresponding
state machines with properties which would allow them to be easily
implemented using P and V operations on binary semaphores. Finally, we
gave two possible ways in which the power of synchronization of a path

notation could be characterized,and discussed the E-path notation with

respect to one of thenm,

50.

CHAPTER 4

PROCESSES AND PATH EXPRESSIONS.

The elementary path notation is defined by a set of productions
and a meaning is attached to an expression of the notation by relating
it to a state machine or regular expression, Such a state machine or
regular expression accepts an alphabet composed of the procedure names
which are synchronized by the path expression. The path expression
permits the execution by processes of these procedures in the same
sequence as the corresponding state machine would accept the names of
the procedures. In this chapter we shall provide a more formal

description of the relationship between path expressions and processes.

The finite state machine corresponding to an elementary path
expression can be represented as a State Machine Petri net (2.9). 1In
addition, a general process can be represented by a Petri net of the
appropriate kind, see (Petri, 1962)., We shall introduce a Petri net
model for programs consisting of systems of processes and path expressions
to provide a framework for the study of the impact of process structuring
and path structuring on the synchronization properties of programs. Ve

can then demonstrate some of the more obvious results from our model:-

a) The correctness of the implementation of path expressions. (In
later chapters we shall demonstrate the correctness of
implementations of path expressions belonging to other path
notations using the same technique.)

b) A classification of processes based upon the model. For one
such class, together with a subclass of the E-path notation,
there exists a simple criterion which guarantees freedom from

deadlock.

51.

c) The structuring properties that a type definition imposes on
the representation of processes and paths, and the usefulness
of separating the specification of an object from its -
implementation.

d) Wherever possible, how a general study could be organized to
investigate the synchronization properties of programs described

using that model.

The model of a program is presented first, and this will be used to
describe the relationship between the E-path notation and processes.

We will then present some of the results from our model.

4.1 PATH EXPRESSIONS AND SIMULATING NETS.

Ve shall use Petri nets in our model of a program to represent E-paths
and to define their meaning. By the use of Petri nets we can provide a
machine independent definition of the semantic meaning of the E-paths.
The problems of scheduling which frequently arise to confuse the issue
of synchronization can be left entirely arbitrary. (The effects of
different scheduling algorithms on synchronization primitives have been a
source of much discussion, for example see (Lipton, 1973).) The Adeamcription
of E-path expressions will involve only synchronization, allowing a greater
freedom in the way these paths may be implemented. This is reflected in
the Petri net representation. (For example, the work of Patil (Patil, 1975)
and others has shown that such Petri nets can be realized with electronic
circuits, hence permitting hardware implementations of E-paths.) In
addition, Petri nets provide a mathematical tool (Lautenbach and Schmid,
1974) about which many theorems and classifications are known or being
developed. Hence they provide a convenient tool with which to analyze

path expressions and their interactions with processes.

52.

A Petri net whose transitions are labelled with the names of the

procedures in a path expression is the simulating net of that path

expression if and only if it generates the sequence of actions which are
accepted by the path expression.

(A sequence is generated by a labelled Petri net by repeatedly firing
an enabled transition and recording its label as the next member of the

sequence.) We shall call simulating nets of E-paths E-nets for short.

Translation of an E-path expression into a corresponding E-net is
accomplished trivially by using the state machine constructed by 3.1 to
specify the corresponding State Machine Petri net (2,7). The initial state
of the state machine is represented by marking the corresponding place of

the net with a token, The following lemma follows directly:-

Lemma 4.1: E-nets are live and safe.
Proof: From 3.2 the state machine net will be strongly connected (2.8),
and by construction it will have one marker, Hence, by 2.11 it is

live and safe,

In the present context, the properties of liveness and safeness add

nothing further to the understanding of E-path expressions. However, they
will become important later when we consider problems of deadlock and the

possibility of simultaneous execution of a given procedure.
4.2 AN ABSTRACT MODEL OF A PROCESS.

An abstract model of a process, for the purposes of this thesis,
consists of a characterization of a process by means of a marked Petri
net (called the simulating net of the process) which generates a set of
sequences of actions that model the execution of the code of the process,

The dynamic behaviour of the process is represented by the movement of

53.

tokens through the net as the transitions fire. In a similar fashion to
the simulating nets of E-paths, transitions will be used to represent
actions (that is, occurrences of events) and will be labelled by the piece
of code that they represent. Such models have been used by Patil (Patil,
1971), Schmid (Schmid, 1974), Lautenbach (Lautenbach,1974), and others.
This model concentrates on representing the 'control structure' of a

process and the notion of data and value are abstracted.

In general, each process of a system is represented by a separate
simulating net. However, if processes can communicate with each other,
this will be represented by connecting their corresponding nets with arcs
and intermediate places., Such an intermediate place will both be an
output place of a transition belonging to the process initiating the
communication, and an input place of a transition in the process receiving
that communication. For more complex forms of interprocess communication
we allow the use of shared procedures. The body of the procedure is
represented by a single subnet with one input place and one output place,
Each call of the procedure in each process is represented by a transition
representing the invocation and prologue of the procedure, a place to mark
vhere the call ocame from, and a transition representing the epilogue and
return of the procedure. For example, a procedure P which is invoked

from only one point in a process would be represented by:-

Invocation and A place representing Bpilogue and
prologue of P the condition that a return of P
(call_P). procedure call has (return_P).
occurred,
I 0 |
-/ e

g W wam e eme e e e

~ ~ subnet representing bod§~“\

~ o©of procedure P, e
\\ —

54.

Suppose that P can be called from two points in separate processes,

Then we would represent P by:-

Invocation and Places representing Epilogue and
prologue of P the conditions that return of P
(call_P). procedure calls (return_P).,

have occurred.

| o

Process A, S
- “ . TS
Subnet representing body N
. of shared procedure P. _
O -
Process B, -

(Note that if both processes invoke P at approximately the same moment

the input places to P will not be safe. However, we may be able to assert
that it is n-safe for some n greater than zero (2.4, 2.5). Hence, we may
use this characterization to investigate whether a given procedure may

be executed simultaneously by several processes by using the notion of

safeness and appropriate theorems from Petri net theory.)

In principle, our model ought to represent every atomic action
executable by each process, However, this would lead to extremely
cumbersome simulating nets and would obscure our real purpose. Therefore
we will introduce abbreviations which will allow us to collapse whole
subnets into single transitions when this does not affect our results.

To avoid the general problem of deciding whether or not a particular
abbreviation can be made (Laueg 1972), we shall restrict their use and
form, Abbreviations will be used to remove unwanted detail from the
discussions on synchronization, while the form of these abbreviations

will be restricted to ensure the retention of those properties of the

55.

program we wish to investigate. In general, we shall restrict
abbreviations to substituting single transitions for subnets which
correspond to subsequences of some of the sequences of actions generated

by a simulating net.

Hence, for example, suppose we have the simulating net:-

or A B G H D E

or A B J K D E

then subsequences of some of those sequences are:-—

or G H.

These may be abbreviated to & single transition X, the resulting net

being:-

or A B J K D E

56.

In particular, the form of the abbreviations will be as follows:-

a) For a subnet representing a sequence we can abbreviate the sequence

from the form:-

to:-

b) For a subnet of the form:-

we can substitute the abbreviation:-

A,B
O . -0

¢) For a subnet of the form:-

A B
I

n+1 <::>\\‘w\
I O/"
m

b

AW/
b

—O-

where 11_In are input places only of transition A,

or for a subnet of the form:-

57,

@\\
1@
6

(Oan

we can substitute the following abbreviation:-

for all values of m, p and q such that 0 S n < m and O < p < q.

d) For a subnet of the form of a procedure call:-

ol)
MY

Procedure body

J

we can abbreviate the body and calls of the procedure by a set
of single transitions, provided that we are not interested in
investigating whether that procedure may be executed simultaneously

by several processes:-

58.

@ PR

where n, m, p and q 2 1,

In the unabbreviated net, P may be enabled by the firing of A or C.
The abbreviation is to replace the single transition for the procedure
P by a set of transitions all representing P, A transition

labelled P can fire, in the abbreviation, whenever the single

transition labelled P in the original net can fire,

Lemma 4.,2: The abbreviations a), b), ¢) and d) leave the behaviour

of the surrounding simulating nets unchanged.

Proof: For a) and b) the proof is trivial. For c) we note that there is

no way in which the surrounding net can distinguish between the
firing of an A and the firing of a B, In the first subnet form of c),
the surrounding net having deposited tokens on each of I1—In cannot
remove them since these places are only input places to transition

A, Hence, it cannot detect an A occurring until a B has

occurred. In the second subnet form, the occurrence of an A implies
the occurrence of a B and hence is independent from the surrounding

net,

Finally, for d), if A fires in the original net, first P and
then B must eventually fire marking places at the ends of the arcs

b1-bm. The actual occurrences of A, P or B are indistinguishable

59.

4.3

from each other with respect to the surrounding net. Hence, making
the abbreviation does not alter the behaviour of the surrounding net.

Q.E.D,

A MODEL FOR A PROGRAM CONSISTING OF PATHS AND PROCESSES,

The model of a process may be combined with the Petri net

representation of E-paths given in Chapter 2 to provide a model for

programs. A program may include several processes and path expressions.

The individual Petri net representations of these paths and processes

may be combined by identifying individual actions in the paths and processes

and ensuring that they may only occur when both the set of processes

requests those actions, and the set of pathspermits those actions to

occur. The following intersection transformation gives the required

combination: -

TR4.3 Intersection transformation for processes and E-paths,

1) Abbreviate all calls upon shared procedures using 4.2 d).

2) A given action or procedure name will occur once only in a set

of E-path expressions as a result of the restriction on the repetition
of names within and between E-paths given in Chapter 3, Hence, for
each labelled transition in the simulating nets of the path
expressions there will be a set of transitions labelled with an
identical name in the simulating nets of the processes. Perform

the following transformation on such transitions:-

process...(:>_._.(:)... process...

process...(:>_.F.(:)... process...

The initial marking of the net is left unchanged by the transformation.

The firing of a transition in the simulating net of the process is now
made to be dependent on the appropriate condition holding in the simulating
net of the path, This construction places the synchronization around the
procedure call mechanism. (This may be seen by expanding the shared
procedure abbreviation for A in the above transformation.) Hence, we may
examine the safeness of the input and output places of a shared procedure
body to determine whether it is in a 'critical section' or may be executed

simultaneously by several processes.

Example of a program consisting of paths and processes.

Two processes are communicating with each other by sending messages
through a buffer, An E-path synchronizes the umse of the buffer so that
the action of sending a message must be followed by the action of receiving

a messages-—
path (send_message ; receive_message)* end

This has the following simulating net:- (In this and later examples,
to illustrate the component subnets of a Petri net, we will draw some of
the arcs with dotted rather than solid lines, Of course, the dotted lines
have no role in any theoretical or analytical study of the nets, We shall

use dotted arcs in the following to distinguish the subnet corresponding

61.

to the simulating net of the E-path.)

send:ifssage
\ /
- e—— -— o -
receive_message

The simulating net model of the two processes is:-
(: send _message
1
- —O
process A, send_message 1/0
o I o W al -
® k -O———+——0
o— —
process B, receive_message 1/0

where the shared procedures 'send message' and 'I/0' have been abbreviated.

Using the intersection transformation to combine the processes and paths

yields: -

send message

A oh

process A, q send_messag; 1/0
O oo .
] O -0
i 7/
O———F——""0——} -
process B, receive_message 1/0

Finally, to examine whether the buffer may be accessed simultaneously

by processes, we may expand the procedure call abbreviations and find

whether the net is safe:-

62.

process B,

receive_message

The input and output place to send message is one safe because of the
surrounding path expression net. The input and output places of I/O are not

one safe (for example, if send message occurs followed by receive_message)

We have introduced a mcdel of a program based on Petri nets. In the
following section we shall investigate the structure imposed upon
synchronization and co~ordination by type definitions, describing this

structure by means of the model of a program,
4,4 TYPES,

To complete the model of a program we shall discuss & representation
for types and objects created by instantiating types. This will serve

two purposes:-

1) It will permit a program to be factored into logical units which
may be represented independently.

2) It will allowan investigation into the structure resulting from
associating path expressions with type definitions to describe

shared objects.

63'

The representation for a type will be a Petri net which is used as
a definition for the construction of nets representing individual
instances of that type (i.e., objects). As such, the representation of
a type does not appear in a program, although instances of its
representation will occur. The type may contein calls upon procedures not
included in that type and hence a characterization of a particular type is
considered with the surrounding program or enviroament in which it is

defined.

An instance or object created from a type is a subnet of the program

vhich is isomorphic (Harary,1969) to the net representing the type. The
transition labels will be different; if the Simula dot notation is followed,

then a transition labelled V(name) in the type definition will appear as:-
(identifier of_ instance) . (name)
in the object.

(Note that we wish to use a Simula-like dot notation for its
convenience, without entering into & discussion about the use and

representation of reference variables. Hence we shall restrict the notation
we use to meet our requirements and represent that notation in the

simulating net in the simplest possible way.)

For the purposes of investigating program behaviour, the properties
of a given type definition will recur in each of the subnets of the objects
in the program. Hence, such investigations can be simplified to an
examination of the connections of the subnets of each object to the
surrounding program net and the way in which these connections affect the

internal properties of the object. The number and manner of connections

which cen be made from an instance of a type to its surrounding program
is restricted. In accordance with such programming languages as Pascal
and its monitors, the restriction we impose is that all the connections
made in this way must be done through a group of procedures called the

operations (Campbell and Habermann, 1974) of the type (these are termed
entry procedures in monitors). Hence, the connections will be made, in

terms of the Petri net representation, as procedure calls.

Example of the use of types in a program of path expressions and processes.

A compiler has been written to compile code using three passes
corresponding to lexical analysis, semantic analysis and code production.
Each pass of the compiler is implemented by a separate process, these
processes communicating through a buffering system to permit concurrent
operation, The lexicﬁl analysis produces output called 'tokens', the
semantic analysis produces output called 'I-code' and the code production
produces output called 'O-code'., Buffering is required for the temporary
storage of the 'tokens' and the 'I-code', and is provided by an instance
of type 'buffer'. Each instance of type 'buffer' has two 'frames' which
are used to store information, These instances of 'frame' are used
alternately, and one may be ‘'emptied' whilst the other is 'filled', The
type !'frame' has two operations, 'fill' and 'empty', and they are

synchronized by the following E-path expression:-
path (£ill ; empty)¥* end

The type 'frame' can be described by the following net (the E-net

corresponding to the E-path is shown with dotted arcs):-

65.

£ill
{

Operation fill, CJ

e
Operation empty. Q _I.o
(:}; .

e&%ty

—0

The type 'buffer' has two operations 'read' and 'write', The operation
'write' chooses between filling a 'frame' 'A' or a 'frame' 'B', The
choice is made alternately ahd is enforced by a subnet. The operation
'read' chooses between emptying a 'frame' 'A' or a 'frame' 'B', Again,
the choice is made alternately and is enforced by a subnet. The type
'buffer' is shown below, 'frame' 'A' is distinguished by dotted arcs,

and the alternating choice mechanism of 'frame' 'A' or 'B' by solid awres.

- —
o — .
% et
——

/ = -

Operation write ~

O~ ... rfu
Q O

A,empty

—~—
—

—

B.fill ;";at)

I'-‘

o
O .
Q O
_r,./
.jg;‘ .=J’B.e?ftx’ fifi%i:)

'-..
S - - Tt e,

e versarn e
—
-~

~
Operation read -
A

The processes use operations on two instances of a buffer called
'tokens' and 'I-code', In the following diagram, the individual instances
of buffer are distinguished by dotted and dashed arcs respectively. The

processes are distinguished by solid arcs.

input_source_text.

lexical analysi

tokens.B.fill

tokens.,A.fill

tokens.A.empty. tokens.B.empty,

\

prepare_for_ further_ tokens, e e ek

produce I-code. further

semantic_analysis,

I-code.A.fill. I-code.B.fill.

....................

I-code.A.empty I-code.B.empty.

output_code.

67.

code_production.

In this last example, the structure of the program into various objects
corresponding to type definitions is reflected in the final simulating net.
The connections from such objects to the surrounding net are uniform with
respect to their original type definition as & result of the restriction
that connections of such a subnet can only be made through operations to
its surrounding net., Hence, properties that can be shown about the
original type definition may be applied to instances of the type definition,

given that the operations are used in the correct manner.
4.5 CORRECTNESS OF IMPLEMENTATION OF E-PATH EXPRESSIONS.

We can now show that the implementation described in Chapter 3 using
semaphores and P, V operations is correct with respect to the presentation
that we have described for paths and processes in that they both generate
the same sequences of actions. We shall use the realization given by

Lautenbach and Schmid of a semaphore and the operations upon it.

Petri net representation of a semaphore (Lautenbach and Schmid,1974).

Lautenbach and Schmid describe a net representation for a
semaphore which corresponds to the informal definition given by Dijkstra
(D1ikatra,1968a), From their Petri net representation, they derive
the semaphore theorem of Habermann (Habermann,1972) which describes a
special invariant characterizing the way in which the primitives work.

The net they give is as follows:-

process 1, process 2,
| I
' place s containing '
signal, vait 1.
¢ tokens,
I wait 2,

68.

Lautenbach and Schmid write:-

'In this Petri net the semaphore is represented by the place s. The
standard signal (s) operation corresponds to the firing of the
transitions "signal" and possibly "wait2", and the wait(s) operation
to the firing of the transitions "wait1" and possibly "wait2",
whereby it is presumed that the transition "wait2" fires as often as

possible, !
They give the semaphore theorem as:-

Number of firings of wait2 = minimum(number of firings of waitl,
C + number of firingsof signal),

where C is a constant representing the initial value of the semaphore,

Petri net representation of the P, V implementation of a procedure

synchronized by a path expression,

Suppose we have a procedure q synchronized by an E-path expression.
The general form of that procedure, when implemented using the mechanism

described in Chapter 3, is as follows:-

procedure q: begin P(si); (body of procedure q); V(Sj) end;

where P(si) is in the prologue of q and V(sj) is in the epilogue. We

shall represent the P operation as occurring at the beginning of the
procedure prologue, before the procedure call mechanism. Similarly, the

Y operation will occur at the end of the procedure epilogue, after the
procedure return mechanism. Only one semaphore in the E-path implementatiopn
may have a value 1. Since q begins by executing a P operation, the V
operation cannot be performed on a semaphore with value l. Hence, the

binary semaphores behave as counting semaphores with values O and 1,
permitting q to be represented as a Petri net using the subnets for a

semaphore described above:-

69.

prologue epilogue

4 N r B
call of body return from body
of procedure of procedure

waitl weit2 q (q). q (q). signal

body of procedure q
|

(possibly shared with

other processes).

In general, the body of the procedure will be shared between many
processes and the semaphores will have other P and V (wait and signal)
operations performed on them by different procedure prologues and epilogues
(these are represented in the diagram by additional arcs to and from 8.
sj and the body of the procedure q). From abbreviation ¢) we may contract
‘wait2' and the call of procedure 9 (q) to a single transition,
Similarly, the return from procedure q (g) and 'signal' may be contracted

to a single transition:-

waitl q

)
A

body of procedure q.
.

Finally, we may apply the abbreviation c¢) to waitl and the new q to give
a transition q', and the abbreviation d) to q' and gq and the body of q

to give the transition q in a net:-

70.

By lemma 4.2, these abbreviations will not affect the behaviour of the

surrounding net, However, TR4,3 gives for the same procedure q the

following characterization:-

path'\\.tﬁ:...

process

—|

process

T O

q

The characterization we have obtained from abbreviating the Petri net
representation of the implementation scheme for procedure q is identical
to that given by TR4.3. In addition, our earlier analogy in Chapter 3
between semaphores and states (places in the E-net of an E-path) is clearly
shown by the correspondence of the places in the path above to the

semaphores s and sj.

4.6 SCHEDULING POWER.

Associated with a given synchronization specification is an implicit
mechanism which resolves conflicts between alternate sets of sequences of
actions which are permitted by that specification. A conflict is identifieq
in the simulating net of a path expression and process by transitions which
. are in conflict over places. (See Chapter 2 for a definition of conflict in
a Petri net). Lipton defines a scheduler for a generalized paréllel procesg
as a predicate on the timings of that process, where a timing is a finite oy
infinite sequence of actions of that process (Lipton,1973). The

implementation of a synchronization specification (whether the specification

71.

is given by a path expression or a P or V operation on a semaphore) must
permit exactly the sets of sequences of actions which are permitted by the
specification and must also include a scheduler which will resolve possible
conflicts in that specification. Such a scheduler will be called the
implicit scheduler of the synchronization specification. Suppose we have

twa synchronization notations N1 and N2. The scheduling power of N1, denoted

SP(N1) is at least that of SP(N2) if every expression E2 of N2 has an

implementation in which all the conflicts of E2 are expressed as conflicts

of specifications written in Nl. That is, if the conflicts of N2 can be
resolved by the implicit scheduler of Nl. In addition, we define:-
SP(N1) equals SP(N2) if SP(N1l) is at least SP(N2)
and SP(N2) is at least SP(N1l).
SP(N1) is greater than SP(N2) if SP(N1) is at least SP(N2)
but there exists at least one conflict in an expression of Nl

which cannot be expressed as conflicts in expressions of N2.

As an example of the scheduling power of the E-path notation, we shall
construct a semaphore notation which has equal scheduling power. The semaphore
has two states (corresponding to O and 1), but unlike a binary semaphore a V
operation may only be completed if the semaphore is in the state corresponding
to 0. This semaphore notation may be used to construct critical sections
and to signal between processes which are the basic requirements outlined by
Dijkstra for constructing synchronization and co-ordination between concurrent
processes (Dijkstra,l1968b). The semaphore is described by the type definition
(Chapter 1) as:-

type semaphore;
path (V ; P)* end;

procedure P: null;

procedure V: null;

operations P, V
endtype;

72,

Declarations of the above type:-

semaphore s;

introduce semaphores which have an initial 'value' zero. Semaphores with
initial 'value' one may be introduced by declaring a further type semaphore1
whose path expression has the positions of P and V reversed. Synchronization

expressions written in this notation will have the form:-
ces 8.V ... and .. S.P L., .

The scheduling power of the E-path notation is at least that of this

semaphore notation because the implementation expresses every conflict which

may arise in a P or V expression as a conflict in an E-path expression. Suppose,
however, we wished to implement E-path expressions in terms of this semaphore
notation. Trivially, we may substitute this semaphore notation for the binary
semaphore notation we used in 3.5 to implement E-paths. Thus, we conclude that
the scheduling power of this semaphore notation is at least that of the E-path

notation, and hence that the two notations have equal scheduling power.

Finally, we will show that this semaphore notation conforms to the
semaphore theorem of Habermann (Habermann,1972). The type semaphore above can

be represented by the following simulating net using the ideas of 4.4:-

Operation V Operation P

(To distinguish the simulating net of the E-path, its arcs are dashed.)

The input place to transition P is only an input place to tramsition P (a
process cannot request a P operation on more than one semaphore at a time)

and we may introduce an additional transition before P which may be removed by
application of abbreviation c) without affecting the synchronization

specification. This gives the net:-

73.

Operation V Operation P

P1

The Petri net of a semaphore given by Lautenbach (4.5) is identical to the
above net except for directed arcs from P to V and the additional marked
place. Lautenbach derives from such a net the semaphore theorem of
Habermann. The extra arcs and place in the above net impose the following

additional restriction on the firing of P and V:-
0 < number of Vs -~ number of Ps s 1,

This restriction corresponds to the difference between this semaphore notation ag

and a counting semaphore notation.

4,7 A CLASSIFICATION OF PROCESSES,

A study of general processes and their interactions with path
expressions would be a substantial task. However, several subclasses
of processes may be identified and are useful. These subclasses of
processes allow certain aspects to be studied. The classification of
processes will be restricted to ones that may be described by regular
expressions, The first classification we shall make is to describe
E-processes (these processes resemble E-paths) and show that a criterion
exists which will guarantee freedom from deadlock for a program
consisting of such processes and E-paths. In later chapters we shall

introduce other classes of processes which have differing properties,

E-processes.

We will characterize E-processes by means of a set of productions and

74.

restrictions using a similar technique to that used to describe E-paths.

E-process production rules.

pl: E-process si= process (p-sequence)* end
p2: p-sequence 13= p-unit [; p-sequence]
p3: p-unit ti= p-element * ; p-element
|- p-selection
p4: p-selection 13= p-element [, p-selection]

p5: p—-element procedurename
| (p-selection [; p-sequence])
Restriction R1: No procedurename may occur more than once in a process.

Restriction R2: No procedurename may occur in more than one process,

The two restrictions and the productions are almost identical to those
for E-paths and serve a similar purpose. Thus, no procedure name may be
executed under more than one sequencing condition. The corresponding
state machine to an E-process can be constructed by treating the
expression o« found in process o end as a regular expression and applying
the construction 2,19. Because of the similarity between E-path
expressions and E-processes we may use 3.1 to simplify the construction,
and the results obtained in Chapter 3 for E-paths and their corresponding
state machines also apply to E-processes and their corresponding state

machines. The simulating net for an E-process is trivially generated

by constructing the State Machine Petri net which is equivalent to the

state machine corresponding to that process.

Procedure declarations.

E-processes may execute procedures which have been given procedure

bodies, A procedure body is introduced by the following declaration:-

75.

pb6: E~procedure 1= procedure identifier : p-element

where p—-element is the body of the procedure with name 'identifier',
The productions for 'p-element' are those given in p5 above, The
following restriction applies to the use of procedures with E-paths and

E-processes:-

Restriction R3: No procedure named in a path expression may, during its
execution, invoke by a series of other procedure calls, another

procedure named in that path expression.

Restriction R3 is a necessary condition imposed to prevent
inappropriate procedure invocations leading to a deadlock. Further
discussion of this restriction and of hierarchiesof procedure calls
involving path expressions is postponed until later in this chapter.

The restrictions R1 and R2 for E-processes include the procedure bodies
that the processes may execute. Thus, no procedure may be executed under
more than one sequencing condition., Alternatively, E-processes are
constructed so that constituent actions need not be implemented as true
procedure calls using a mechenism to represent the 'control flow' as would
be necessary if identical aotionas could appear more than once in & given
process or in several processes. Instead, they may be implemented by a
simple 'macro expansion' and substitution. This allows us to reserve

the procedure call representation for more complex processes, and will
permit discussions of E-process behaviour to be simple. As a conclusion
to these remarks, & procedure body may be directly substituted for the

occurrence of the corresponding 'procedurename' in the appropriate process,

The procedure declaration introduces a regular expression 'p-element'

which has a corresponding state machine and simulating net representation.

T6.

The simulating net for a procedure body is the simulating net for

'p-element'! enclosed between an event representing the invocation of
the procedure, and an event representing the return from the execution

of that procedure, The procedure declaration;-
procedure identifier: p-—element

gives a procedure body:-

call _identifier simulating net return_identifier
for p-element

which may be directly substituted in an E-process for the transition

labelled with the procedure name 'identifier'. (That is,

identifier call_identifier return_identifier

becomes: -
simulating net
’... v .o
for p-element

The representation of a procedure invocation by an E-process is a

simplification of that given in 4,2; the place representing the condition

that a procedure call has been made is omitted.)

Example of an E-process.

Suppose that we have the following process:-

process (read ; calculate ; write_summary)* end

This has the simulating net:-

4»(}4>

read calculate write_summary

77.

Procedure read may not be an atomic action and perhaps has a body

defined by the following procedure declaration:-
procedure read: (open_file ; read_file ; close_file)
which has the simulating net:-

call read open_file close_file return_read

<)

read_record

Substituting the procedure body of read for read in the process gives:-

calculate

close_file return_read

call read

open_file.

write_summary

read_record

Finally, for procedures whose bodies have been given by p6 and which

occur in an E-path, we make the following replacement in the body of the

—

procedurename call_procedurename return_procedurename
O ol)
I A\

Example of a simulating net for a set of E-paths, E-processes and

E-net: -

procedures.

The set of E-paths, E-processes and procedures:-

-eo

process (A)* end

-e

process (D)* end

-e

procedure A: (B ; C)
path (A ; D)* end;

78.

has the simulating net:-

vhere the subnet corresponding to the path has dashed arcs. Note that the
dashed arcs and place between call A and return_A can be removed without

affecting the synchronization of the net.

Type definitions,

Types (as in Chapter 1) may be used in a program to introduce paths,
processes and procedures to represent objects. Instances of types have
their locally defined operations, procedures and actions identified and
distinguished from other instances by the use of the Simula dot notation.

Types for use with E-paths and E-processes are as follows:-

Production rules for types.

P7: type 1= type identifier ;
(collections of types, paths,
procedures, processes and instances

separated by semicolons) ;

operations « list of procedures >

endtype

The simulating net for a type definition is the simulating net for the

constituent path expressions and processes. For example, the simulating

net of the type definition:-

79.

type virtual output_device;
path (store ; retrieve)* end;
process (retrieve ; format ; output)* end;
procedure put: (store) ;

operations put

endtype;
is:-

call_put store return_put
I ,() | O ,|
pr

retrieve format outbut <)

where the dashed lines represent the simulating net of the path expression.
Instances of a type are introduced as follows:-

p8: instance 1= >(namq_o£_type) (identifier list separated by

COIﬂHl&S)

The simulating net of an instance is & copy of the simulating net of
the corresponding type definition in which the labels on the transitions
of the net given by the type definition are replaced by the name of the

instance followed by a dot and the original label (see 4.4).
Finally, a program is given by the production:-

p9: program ::= begin-(collections of types, paths, processes
procedures and instances separated by
semicolons.)

end.

4,8 EXAMPLES OF PATHS AND PROCESSES.

The following set of examples illustrate programs, types, E-paths

and E-processes.

1. Synchronous processes (Bekkers, 1974).

The following example was given byBekkers and concerns the problem
of synchronizing two processes so thai, at one stage of their execution,
each process must wait for the other process and the processes can then
restart together, For this particular solution, the processes are aware
of their separate identities. (In Chapter 5 we will give a solution in
which this is not the case.) The synchronization is incorporated in a

type definition called synchro:-

type synchro;
path (arrivel ; depart2)¥* end;
path (arrive2 ; departl)* end;
procedure synkl: (arrivel ; departl);
procedure synk2: (arrive2 ; depart2);

operations synkl, synk2

endtype;

If process 1 invokes synkl, it will execute arrivel and then wait to
execute departl., It will only be able to proceed after the process 2
has executed arrive2. If process 2 executes synk2 before process 1 has

executed synkl, then it must wait to execute depart2.

2. Producer/Consumer processes.

The following examples describe several buffer systems in which
two processes, a producer and a consumer, communicate by placing messages

in two shared message slots.

81,

In the first example, the producer process creates a message by
executing either a procedure produce or produce', and places such
messages alternately in one slot and then the other., The consumer process
removes a message from each slot alternately, and consumes such messages
by executing either the procedure consume or consume'., Using the
requirements for a buffer which were given in 1,2 with respect to its

integrity, the following program may be constructed:-

begin
type slot;

path (write ; read)* end;
operations read, write

endtype;
slot A, B;

process (produce ; A.write ; produce' ; B.write)* end;
process (A,read ; consume ; B.read ; consume')* end;

end.

where read and write are procedures which perform reading and writing

on the buffer, the details of which, for brevity, we have omitted,

The type definition of slot has a simulating net:-

write read
Ly
C— O—

Two different instances of the type are created by the instantiation,

these nets being formed from the net description of the type by prefixing

the names with the identifier of the instance:-

A, vwrite A.read B.write B.read

82 .

Each individual process gives rise to a net as follows:-

produce A,write produce'’ B.write
Ao ol -
(E?'“"+“““’()’ | A\ '1 NS | :)
A.read consume B.read consune'’

Finally, we take the intersection of the process nets and path nets

giving:-

B.write)
ol

A.read consume B.read consume' ;::)

A.vrite

produce produce'

Considering each individual slot, since they are described by only one
path expression, Theorem 4.1 implies that the read and write operations
are live and safe:- that is they are mutually exclusive and it is

always possible to have a sequence of process invocations which will allow
any one of them to be executed. It is trivial also to verify that the
final program is live and safe. The slots will always preserve the

integrity of the data they contain and synchronize the procedures reading

and writing correctly.

Let us now consider the buffer as a whole. It consists of two slots
and is dependent on the selection of the correct slot by the program. For

example, the following program deadlocks:-

83.

type slot;
path (write ; read)* end;
operations write, read

endtxze;
slot A, B;

process (produce ; A.write)* end;
process (B.read 3 consume)* end;

end.

Another example of incorrect behaviour, but one which is less
noticeable, concerns the degree of parallelism permitted in a program.
For example, we have assumed in having two slots in the buffer that they
might be used in parallel. Suppose, however, that the buffer is used in

the following way:-

begin
type slot;

path (write ; read)* end;

operations write, read

endtype;
slot A, B;

process produce ; A.write ; produce' ; B.write end;
process B.read ; consume ; A.read ; consume' end;

end.

then reading and writing can only take place in mutual exclusion.

To demonstrate the correct behaviour of the buffer in the first example,

we need to know about the processes using it. To continue a theme of the

840

thesis we observe that if the selection of the slot is left to the buffer

to decide, then the buffer can be designed so as to be correct, irrespective
of the use that is made of it by the program in which it is declared.

Such a buffer will use the slots alternately for writing and reading.

The following type buffer will enforce the correct discipline on the
use of the slots by means of two paths. We shall assume that the type slot

has already been declared.

type buffer;
type ring;
slot A, B;
path (readl ; read2)* end;
path (writel ; write2)* end;
procedure readt: (A.read); procedure read2: (B.read);
procedure writel: (A.write)3 procedure write2: (B.write);
operations readl, read2, writel, write2
endtype;
ring R;
procedure write': (R.writel , R.write2);
procedure read': (R.readl , R.read2);
operations read', write'

endtype;

The type buffer has two operations read' and write' and these
permit the buffer to be used by processes as if it contained a single
slot. The net representing each slot is as before, and the net

representing the type buffer can easily be constructed. The

85.

type mechanism provides a structuring mechanism both for the program and
for the simulating net for that program and hence is useful in designing
and studying the behaviour of programs., This last example is similar to
the ringbuffer example of Chapter 1 for a ring with two slots. The
selection of a slot in procedures write' and read' and the path expression
synchronizing the use of the slots correspond +to the pointer mechanism of

the earlier example.

The examples we have presented are simple and are easy to analyze,
For more complex programs we could use the formal proof techniques of their
properties using the mathematics and research of, for example, Petri
(Petri 1962), Lautenbach (Lautenbach,1973), and Holt and Commoner
(Holt and Commoner, 1970). However, such detailed investigations would be

lengthy and divert attention from the main thene of this thesis.
4.9 PROPERTIES OF E-PROCESSES.

The class of E-processes has several properties which are useful in
investigating program behaviour. Because of the similarity between
transformation rules and restrictions of E-paths and E-processes we can

asgert thati~

Lemma 4.4: An E-process has a live, safe, strongly connected simulating
net,
Proof: The proof follows directly by comparing the transformations,

productions and restrictions for E-paths and E-processes,

Since the restrictions we have imposed on processes do not allow
procedure names to occur in more than one process, the only interactions

between processes in a program of E-processes and E-paths must happen as a

result of performing the intersection transformation. This transformation
combines paths and processes by means of combining their transitions.
Deadlock can only occur because two or more transitions have tokens on
their input places but are not enabled. (This follows because each
component subnet (from processes or path expression) is live, safe and

strongly connected.)

Example 1.

path (A ; B)¥* end;
path (B 5 A)¥ end;

This has the simuleting net :-

SE

vhich is dead (that is, not live). (The dashed arcs denote an empty

cycle, i.e. a cycle containing no marker (2.12), and characterize the

deadlock situation.)
Example 2.

path (A 3 B)* end;
path (C ; D)* end;
process (B ; C)* end;

process (D ; A)* end;

The corresponding simulating net to these paths and processes is:-

which is again dead. (The dashed arcs denote an empty cycle.)

87.

However, there is at least one class of programs consisting of E-paths
and E-processes for which we may guarantee liveness (that is, the absence
of deadlock). Let Eo—paths and Eo-processes be E-paths and E-processes which
contain no selections or repetitions (except for path (...)* end). The
simulating net of Eo-processes and Eo-paths may be classified as follows

after the application of the intersection transformation:-

Theorem 4.5: The simulating net of a program consisting of Eo~paths and
Eo-processes is a safe Marked Graph (See 2.9).

Proof: First we show that such a net is a Marked Graph. Since there are
no selections or repetitions allowed in Eo-paths and Eo-processes,
the simulating nets will have places with only one input arc and one
output arc (see 2.19 and 3.1). The intersection transformation
applies only to transitions, leaving the places unchanged. Procedures
are expanded by substitution and hence there are no shared procedures
and no requirement for the net representation of a procedure call,
Thus the procedure mechanism introduces places with only one input
arc and one output arc. Therefore, the simulating net of a program
of Eo-paths and Eo-processes will have only places with one input

and output arc and will be a Marked Graph (2.9).

The simulating nets of individual Eo-paths and Eo-processes are
safe (4.1 and 4.4). Since the sharing of procedures between processes
is excluded by R2, the procedure mechanism does not affect the
safeness of the simulating nets of the processes, Finally, safeness
is a property of places and since the intersection transformation
operates only on transitions it remains unaffected by 4.3.

Q.E.D,

The above classification allows us to choose a result concerning

88,

liveness from Petri net Theory (2.1,2.2) upon which a criterion can be
based for such programs to guarantee freedom from deadlock. We must
restrict such programs so that they are represented by Marked Graph
simulating nets which do not contain empty cycles. Consider the following

criterion:-

Criterion C4:

Given a set of Eo-paths and Eo-processes in a program,
then this set cannot contain paths and processes in

which there are procedures X1 to Xn forming sequences:-

o8 x1 LI y o s e X2 LI]
L] X2 LI]) LI X3 oo
LI Xn s e y LI x1 LK 4

Example. The following program does not meet the criterion:-

path (A ; B)* end;
process (B 3 C ; D ; E)* end;
path (C ; G ; H)* end;

process (H ; A)* end;

since it contains the sequences:-

A ; B
B H C
Y ; H
H H A

89.

Examples 1 and 2 above also de not satisfy the criterion.

Theorem 4.6. The criterion C4 . is a necessary and sufficient condition

for programs consisting of Eo-paths and Eo-processes to have a live

and safe Marked Graph simulating net.

Proof: The simulating net of a program which meets C4 is a safe Marked Graph

Petri net from Theorem 4.5. A necessary and sufficient condition

for a Marked Graph to be live is that it contains no empty cycle
(2.12). The individual simulating nets of the Eo-paths and
Eo;processes are live by 4.1 and 4.4. The intersection transformation
applies only to transitions, and leaves the places unchanged. Because
there are no shared procedures in E-processes, there is no

requirement for a net representation of a procedure call and no further
interconnections between processes. Hence, empty cycles can only be
generated by the intersection transformation. It is trivial to

verify that a program of Eo-paths and Fo-processes containing a
forbidden set of sequences under (¢4 will have a simulating net which

has an empty cycle:-

The set of paths and processes will have individual simulating

nets as follows:-

which become, under the intersection transformation:-

1 X2

o oo

X3

0 0

Xn-1

(The dotted lines between places indicate that the places belong

to the same component simulating net.)

Thus, the necessary condition is established,

Suppose an empty cycle exists in the simulating net of a
program of Eo-processes and Eo-paths. The circuit must have been
formed by the intersection transformation since all circuits in the
component nets have places which are live (4.1, 4.4). Suppose we

have an empty cycle:-

Then there must be a set of sequences from A to B, and a set of
sequences from B to A and we conclude that C4 is not met.
Thus, the sufficient condition is established.

Q.E.D.

In general, however, more complicated algorithms must be used to

detect deadlock in E-paths and E-processes. For example:-

path (C ; A ; B)* end;
process ((A, D) ; E ; B)* end;

process (C)* end;

deadlocks. The simulating net is as follows:-

91.

Here, although no empty cycle is initially present, one may
form if a process executes the procedure D, The empty cycle which then

results is indicated in the diagram above by dashed arcs.

The next example has a dead transition A which corresponds to

starvation (Dijkstra,1968a):~

path ((B ;5 C) , A)* end;

process (B3 (C, A))* end;

with simulating net:-

4,10 HIERARCHIES OF PROCEDURE CALLS INVOLVING PATH EXPRESSIONS.,

So far in this chapter, we have discussed interactions between paths
and processes without investigating the effects of procedures within path
expressions invoking other procedures also named within path expressions.
First, we shall show that restriction R3 (no procedure named in a path
expression may, during its execution, invoke by a series of other

procedure calls another procedure named in that path expression) is

92,

a necessary condition to prevent deadlock.

Theorem 4.7: Restriction R3 is a necessary condition to prevent
deadlock.

Proof: Let X and Y be procedures named in the same path
expression such that X, during its execution, invokes (perhaps by a
series of procedure invocations) the procedure Y. Suppose a process
has invoked X and is about to execute Y. We have the following

marking on the simulating net of the path and process:-

. body of x

The simulating net corresponding to the path expression is marked

with dashed lines, and that of the process is marked with solid

lines. Call_x has been enabled by both process and path and has fired.
Eventually, the process puts a marker in the input place of call_y.

The other input place of call_y must receive the token generated by
the firing of return x., However, return_x cannot fire until call_y
and return_y have fired. Hence, we conclude that call y cannot fire,
and the process is deadlocked.

Q.E.D.

Sometimes it will be impossible to write a set of synchronization and
co—ordination constraints in one path expression (see the Readers and
Writers problem in (Campbell and Habermann,1974)). Further, it may be of
advantage structurally and in design if synchronization constraints can

be written separately but applied to one particular set of operations.

93.

Example.

A file system has four operations:- read, write, open and
close. The file system requires that these operations are
synchronized for use in a parallel processing environment in the

following way:-
path (open ; (read , write) ; close)* end

For one particular use of the filing system as a buffer we require:-
path (write ; read)* end

However, an E-path expression of this kind would contravene R2,
the restriction on repeating a name in more than one path. In
this example, we may impose a hierarchy of procedure calls so
that both synchronization constraints must be obeyed by defining

two new operations read' and write' and a path expression:-
path (write' ; read')* end
where

procedure write': write;
procedure read': read;
The filing system,used as a buffer, now has operations open, read',
y ’ ' 4 P P

write', and close. However, the filing system may still be used

separately with read, write, open, and close.

In general, when a set of path expressions is used in this
way, care must be taken to avoid deadlock. In particular, we

make the following remark:-

94.

Let P1 synchronize executions of procedures pl and p2.
Let Q1 synchronize executions of procedures q1 and q2.

Purther, suppose pl and g1 have procedure bodies:-

procedure pi: (body invokes q2)

procedure q1: (body invokes p2)

Then, if pl and q1 are executed simultaneously by two separate
processes, a deadlock may occur.

Proof: Suppose, the process executing pl invokes q2. If a second process
is executing q1, then the path expression Q1 prevents the first
process from immediately executing q2. The first process is
suspended awaiting completion by the second process of the procedure
q1. Now suppose that the second process executing q1 invokes p2,
The path expression prevents this process from immediately
executing p2 and it is suspended awaiting completion by the first

process of the procedure pl. Hence, the processes are deadlocked.

The above remark is illustrated by the following example:-

path (p1 ; p2)* end;
path (q1 , g2)* end;
procedure pi: q2;
procedure ql1: p2;
process (pl1)* end;

process (q1)¥* end;

The simulating net of this set of paths and processes is shown below:-

95.

where the simulating nets of the processes have solid arcs, the net of the
path P1 has dotted arcs, and that of the path Q1 has dashed arcs.

If both call_pl and call_q1 fire, then deadlock ensues. Return pl and
return_ql may not fire since, although both will have one input place
which is marked, they will have one input place which is empty.

Similarly for p2 and q2. Since there are only four tokens in the net,
this results in a deadlock. However, the deadlock does not necessarily
happen since the execution of procedure pl may always precede that of

procedure qi.
4.11 SUMMARY OF PROCESSES AND PATH EXPRESSIONS.

In this chapter we have described a representation for processes
which allowed us to investigate the relation between paths and processes.
We were able to show that the E-path implementation of Chapter 3 is correct
with respect to this representation, A representation for types
was introduced, and this.illustrated the structuring properties thatthe type,
afford the description of objects, and in particular, when used with path

expressions, of shared objects.

An interesting class of processes was described which has useful

96.

properties with respect to investigating program behaviour. Indeed, for

a subset of the class of paths and processes considered, a criterion
exists which guarantees the absence of deadlock., Finally, we have outlined
a few of the problems that may occur within hierarchies of procedure

calls involving path expressions.

97.

CHAPTER 5

REGULAR PATH EXPRESSIONS.

The E-paths of Chapter 3 permitted the separation of synchronization
from the description of procedures and processes and could be used with

types to describe shared data objects.

The remainder of the thesis investigates possible alternatives and
improvements to the E-path notation. Even a simple modification to the
E-path notation may encounter difficulties as we shall show in Chapter 7
where we describe a parallel synchronization construction which can be added
to the notation., For example, adding the simultaneous construction of
Chapter 1 to a notation may result in the notation being more difficult

to understand, and more difficult to implement (see also Chapter 7).

An E-path uses a limited regular expression to specify synchronization.
The limitation consists of restricting the use of the Kleene star and
forbidding the repetition of a procedure name within a path. The
resulting set of expressions is less powerful in terms of declaring
synchronization than would be a path notation allowing the full generality
of regular expressions. In this Chapter, we shall investigate such a

Regular Path (R-path) notation.
5.1 REGULAR PATH EXPRESSION DEFINITION.

The R-path specifies the synchronization between the executions by
processes of a set of procedures using a regular expression embedded in a
path end bracket. R-paths are given by the following production and

restriction: -

98.

Production rule for R-paths,

ptl: R-path 1= path o end

where o is a regular expression of procedure names denoting the order in

which they may be executed by processes.

Restriction R1: A procedure name may not occur in more than one R-path,

Within an R-path, a given procedure name may be repeated several
-times. We shall assume that different procedures always have different
names, and that therefore a repeated name in a path expression means that
a given action (represented by the execution of the procedure by a process)
may occur in more than one circumstance, The simulating net for an R-path
will represent the multiple occurrences of a procedure name in the

appropriate manner,

Examples of R-paths.

In 3.6 we remarked that non-nested selections and non-nested
repetitions could not be represented using E-paths, These may now,

however, be represented as R-paths:-

For the non-nested repetition or loop given by the state machine:-

we may write the R-path:-

path (A ;B ; (C; D; B)*; E; F)¥ end.

For the non-nested selection given by the state machine:-

99.

we may write the R-path:-
path (A ; (B;C) ,(D; (F;C) ,E) ; G)* end.

In both examples, the non-nested construction is reflected in the

repetition of procedure names. Other examples of R-paths follow :-

A file: The following R-path describes the synchronization of the

operations of a file:-
path (open ; (read* , write) ; close)* end

Following execution of 'open' by a process, either zero or more reads

occur, or a single 'write'. Between opening and closing a file, a

mixture of reads and writes is not permitted.

A buffer: The following buffer allows precisely two 'reads' to

be performed for every 'write':-
path (write ; read ; read)* end

R-paths as finite state acceptor mechanisms.

Given an R-path expression, we may construct a finite (deterministic)
state machine for the regular expression which it contains using the

construction 2.19, In addition, we may minimize such state machines using

100,

the standard minimization algorithm involving the subset construction
of Myhill (Myhill, 1957). Thus, we may use a finite state machine which
corresponds to the regular expression of the R-path as an equivalent
definition of the synchronization described by the R-path. This will be
of use in the representation of R-paths as simulating nets and in the
establishing of a correct implementation for R-paths in terms of other

synchronization primitives.

5.2 SIMULATING NETS OF R-PATHS.

As in Chapter 4, we shall describe the relationship between R-paths
and processes in our model of a program by means of Petri nets, The

simulating net (R-net) of an R-path expression is trivially obtained by

constructing the State Machine Petri net (2.7) which is equivalent to

the deterministic finite state machine corresponding to the regular
expression of the R-path., However, repeated procedure names in the R-path
may appear as separate transitions bearing the same label in the simulating

net. These transitions will be regarded as abbreviations for a calling

mechanism to a single transition to represent that particular procedure.

The calling mechanism ensures the correct flow of control for the path
expression in much the same way as the procedure call mechanism does for

the processes in Chapter 4., The abbreviation is as follows:-

Suppose that procedure X occurs three times in an R-path, and hence

the R-net has three transitions labelled X:-

X X X

O+0 - 0+0 0+0-

These are abbreviations for the following subnet:-

101,

Thus, whenever X can occur in the abbreviated net, it occurs in the
unabbreviated net. Although the abbreviated simulating net is a State
Machine Petri net, the unabbreviated one will not be since in general
such a net will have transitions with more than one output or input

place (2.7). (These extra places will be introduced by the calling

mechanism,)

Lemma 5.1: R-nets are Simple Petri nets.

Proof: The calling mechanism which replaces a repeated transition name
introduces two transitions to manage the call, The first of these
two transitions shares one output place with all the other similar
transitions from other calling points in the R-net. Similarly, the
second of these two transitions shares one input place. No transition
is introduced which shares more than one place. Hence, by definition
2,10, an R-net is a Simple Petri net.

Q.E.D.

The simulating net for an R-path is constructed frem the deterministic
state machine corresponding to the R-path because R-paths are acceptor
mechanisms for strings of procedure executions, whereas their simulating
nets generate those strings of procedure executions., Consider the following

state machine which is non-deterministic:-

102.

A B _<:)
O

A c
The state machine decides whether an A should be followed by a B or

a C wvhen a B or a C is detected in the string of procedure executions

being accepted. However, the equivalent State Machine Petri net:-

generates either the sequence AB or AC, and this is determined when the
event A occurs. The simulating nets of R-paths will be used to determine
the behaviour of paths and processes, and also to prove the correctness
of an implementation for R-paths, If the Petri net corresponding to a
non-deterministic state machine representation of an R-path is used as
the simulating net for that R-path, then the net will make decisions
before the information needed for that decision is available. For example,
suppose the above net is a simulating net for an R-path and a process
invokes the procedure A. In general, it will not be possible to decide
vhether a process is going to invoke a B or a C next. Thus, the
appropriate simulating net for an R-path expression is based upon a
deterministic sbate mackine representation of that R-path. The simulating

net for the synchronization given in the example above would be:-

o—4 O

103.

Finally, we note that, in the interests of economy, the simulating
net for a given R-path should be constructed from a minimum deterministic
state machine. However, whether or not they are will not in general

affect the results which follow in this chapter.

Examples of simulating nets of R-paths.

The following R—-path:-

path (A ; B; (A, C))* end

has the minimum deterministic state machine:-

initial

state,

The corresponding simulating net contains abbreviations for the ¢alling

mechanism to the procedure A:-

Expanding the abbreviation for the calling mechanism of the procedure A

gives:-

This next example illustrates that the repetition construction may
result in an abbreviated simulating net conteaining abbreviations for the

calling mechanism.. The R-path:-
path (A ; (B, (C ; D)¥ ; E))* end;

has the abbreviated simulating net:-

(Note that the simulating net corresponds to a minimized state
machine and hence is unique up to isomorphism (2.20) with other
minimized state machines with the same behaviour. Thus there can be no
equivalent simulating net with the same behaviour which does not include
the use of the calling mechanism, This demonstrates that the E-path
notation must restrict the use of the Kleene star if the impleﬁentation

described in Chapter 3 is to be used for E-path expressions.)

A restriction on R-path expressions which has a useful property.

Consider the following modification to the production rule for

R-paths:-
pl! p1 1i= path (o)* end

where o is any regular expression, All R-paths which are written using
production pl1' will be restricted to describing synchronization by means

of a regular expression consisting of a Kleene star embedding a further

105.

regular expression. This has the following property:-

Suppose that an R-path has accepted a sequence of procedure
executions. Then there will be a sequence of procedure executions
permitted by the R-path which will allow a process to execute any

procedure in that R-path that it may invoke.
Thus, we have the following:-

Theorem 5.2: The transitions labelled with procedure names in the
unabbreviated simulating net (Simple Petri net) of the R-path given
by pl1' will be live.

Proof: The abbreviated simulating net (State Machine Petri net) of the
R-path is equivalent to the regular expression of the R-path with
respect to its behaviour. The firing of a given transition in the
abbreviated net implies, by construction, the eventual firing of the
transition with the same label in the unabbreviated net, If an
R-path has accepted a sequence of procedure executions, then there
will be a corresponding sequence of labelled transitions which will
have fired in the abbreviated net and in the unabbreviated net.
Since there will be & mequencve of proeedure executions permitted
by the R-path which will allow a process to execute any procedure
in that R-path that it may invoke, we deduce that there must be a
sequence of firings of transitions which will lead to the firing of
a transition labelled with that name in both the abbreviated and
the unabbreviated nets., However, there is only one transition
labelled with that name in the unabbreviated net, and hence it must
be this one that fires, Therefore, we conclude by definition 2,2
that the labelled transitions of the unabbreviated simulating net
must be live,

Q.E.D.

106.

The liveness property of the transitions labelled with procedure

names in the unabbreviated simulating net of an R-path is useful in proving
properties about systems of R-paths and processes. For example, if a
system involving only cyclic processes and R-paths has a simuleting net in
which some of these labelled transitions are not live, then we may assume
that the specification of the system is incorrect since certain events
cannot recur. If the R-paths used in this system are not of the form
given by pl1', then they will introduce labelled transitions which may not
be live under any combination of paths and processes, For example,

consider the following system composed of an R-path and an E-process:-

path (A ; B)* ; B end

process (A ; B)* end

The transition labelled A in the simulating net for the system may
fire and it will always be followed by the transition B firing, and vice
versa, However, the following R-path gives rise to simulating nets in
which the labelled transitions A and B will never be live, no matter

vhat other processes are included in the system:-

path A ; B end

Finally, we note that not all the transitions in a simulating net of

an R-path given by pl1' are live. For example, the following R-path:-
path (A ; B*)* end

has the abbreviated simulating net:-

107.

and the unabbreviated simulating net:-

vhich has two unlabelled transitions indicated by t which can fire only
once, Note, however, that the labelled transitions are always live, as

proved in Theorem 5.2.

Theorem 5.3: The simulating net of an R-path is safe,

Proof: The abbreviated simulating net of an R-path is safe by construction,
The unabbreviated net is identical to the abbreviated one except for
the calling mechanism. The calling mechanism increases the number of
tokens on the net to two, but these tokens are on different places.
The number of tokens is reduced back to one after the transition with

the appropriate procedure label has fired. Hence, the net is safe.

Q.E.D,

Thus, R-path expressions used in a restricted form share common
programming properties with E-path expressions, The liveness of an
R-net produced by pl' implies that it is impossible to write an R-path
in this form which inherently contains a deadlock. Similarly, for all
R-paths, the safeness indicates that it is impossible for a given
synchronized procedure to be executed simultaneously by two or more

separate processes,
5.3 A MODEL FOR A PROGRAM CONSISTING OF PROCESSES AND R~ PATHS,

We can use a similar characterizationfor the combination of R-paths

and processes to that used in Chapter 4 for E-paths and processes.,

108,

An intersection transformation can be used directly to give the simulating
net for programs of R-paths and processes. However, R-paths allow
procedure names to be repeated. Suppose that the R-net for some R-path
has, when abbreviated, n transitions which correspond to n occurrences of
the same procedure. Further, suppose that the process simulating nets may
be abbreviated using 4.2d) so that they have r transitions representing

r invocations of that procedure. Each of the r invocations of that
procedure may be associated with one of the n invocations of that procedure
name in the path. Hence, there will be n X r possibilities of the
procedure occurring, which will be represented using the abbreviation 4,2d)
as n X r transitions in the simulating net of the program. The

intersection transformation is as follows:-

TR5.1 Intersection transformation for the nets of processes and R-paths.

Abbreviate the simulating nets of the R-paths, A given action
or procedure name will occur in only one of the simulating nets of
the R-paths because of restriction R1., For each different name in
the R-nets of the R-paths do the following:-
1. Identify the set of transitions in the abbreviated R-nets labelled
with that name.
2, If, in the process nets, the name corresponds to the body of a
procedure embedded in the procedure calling mechanism, then abbreviate
the calls upon that procedure by replacing them by transitions
labelled with that name using abbreviation 4.2d). Identify the set
of transitions labslled with that name,
3. Apply the following transformation to the setsof transitions

identified.

Replace the subnet:-

109.

by: -

110,

n transitions
belonging to
Petri net model

of the processes.

r transitions
belonging to a
simulating net

of an R-path.

n X r transitions
belonging to

the resulting
Petri net model
of the program
consisting of

the R-path and

processes,

The places of the subnets involved (for clarity the places are
labelled in the diagrams above) are not affected by the transformation
although they may be given more output or input arcs to transitions
labelled X. Each process of the n processes is connected to each of
the r paths through arcs to and from the n X r transitions., The n X r
transitions are all labelled with the same name and their firing
corresponds to the execution of the procedure X. Thus, the transitions
we have introduced above are abbreviations (4.2 d)) for the calling

mechanism to a unique transition labelled X.

Example of the intersectiontransformation between an R-net and a Petri net

representing two processes.

The following R-path describes operations on a file, A validate
operation may be performed at any time in between reads and writes, but
must be done after a write. Many reads may occur without requiring a

validate operation on the file,
h (validate ; (read* , write))* end
The abbreviated simulating net of this R-path is as follows:-

validate read read

write validate

For the purpose of this example, we shall ignore processes which validate
and write. We shall assume that there are two processes which read from

the file and a model of these two processes is shown below:-—

read consume read consume

- <+-~O-- —I—-\ Q- +-~0O- b2

-
- -
N S mm e m-—- - ""-——--—"

111,

Combining the nets of the processes and the simulating net of the

R-path using the intersection transformation gives:-

validate

validate

5.4 CLASSIFICATION OF PROCESSES,

As in Chapter 4 where we introduced an E-process as a counterpart to
an E-path we now introduce an R-process as a counterpart to an R-path,

R-processes are characterized by the following production and restriction:-

R-process production rule.

P2 R-process = process o end

where o is a regular expression.

Restriction R2: No procedure name may occur in more than one process

(including the procedures that the process may invoke).

The state machine corresponding to the regular expression in the

R-path can be constructed using 2.19. The simulating net for an

R-process is trivially generated by constructing the State Machine Petri
net which is equivalent to the state machine describing that process.
This State Machine Petri net is the abbreviated net for that process,

and the abbreviations may be expanded using 4.2 d) to give the

112,

actual simulating net in a similar manner to that for R-paths.
(A description of R-processes first appeared in (Lauer and Campbell,1975)

where the generalized Kleene star was not used.)

Procedure declaration.

Like E-processes, R-processes may exeeute procedures which have been
given procedure bodies. A procedure body is introduced by a declaration

given by the following production:-

P3: procedure 1= procedure identifier: (o)
where o is a regular expression.
The following restriction applies to the use of procedures with R-paths

and R-processes:-

Restriction R3: No procedure named in a path expression may, during its

execution, invoke by a series of other procedure calls another

procedure named in that path expression.

* Restriction R3 is similar to that of R3 in Chapter 4, and is a
necessary condition imposed to prevent inappropriate procedure invocations

leading to deadlock (see 4,10),

To conclude the discussion of this classification of R-processes we

make the following remarks:-

R~-processes are the first model of processes we have considered which
involve a realistic model of procedures. The procedures of E-processes
allow abstraction,»operations on.types, and hierarchically structured
synchronization when used with paths. The procedure of an R-process may,
in addition, be used to shorten the source text and the ‘'object code'

(in the model, the simulating nets). For example:-

113,

process (compute ; f£ill ; compute ; fill)* end

procedure fill: (openfile ; write ; closefile);

would generate the following simulating net using the procedure

call mechanism of 4.1:-

compute call fill return fill compute call_fill return_fill

openfile write closefile

Finding a criterion which would ensure freedom from deadlock for
R-processes is more difficult than for E-processes. Let Ro-paths and
Ro-processes be R-paths and R-processes respectively, constructed from
a regular expression (o)* where o contains no selections or repetitions.
Then there is no criterion analogous to C4 of Chapter 4 which ensures
freedom from deadlock (4.6) unless repeated names within individual
paths and processes are forbidden. Combining the simulating nets of
Ro-paths and Ro-processes using the intersection transformation does
not in general lead to a Marked Graph simulating net. (The intersection
transformation introduces shared places when repeated names occur,)

Of course, Ro-paths and Ro-processes are Eo-paths and Eo-processes if
repeated nemes are forbidden. Hence, we must examine other Petri net
classes and theorems if we require & criterion for freedom from deadlock

for R-paths and R-processes.

5.5 IMPLEMENTATIONS OF R-PATHS.

R-paths cannot be implemented in the simple manner described
for E-paths using a P operation in the prologue of the synchronized
procedure and a V operation in the epilogue. In Chapter 3 we demonstrated

that restrictions were necessary on a regular expression synchronization

114,

notation in order to allow an implementation in this manner, and showed
that the restrictions imposed in the E-path notation were sufficient.
In this chapter, instead of restricting the notation, we shall consider

other implementation mechanisms.

The implementation mechanism for R-paths must incorporate the state
machine nature of the R-paths within it in a more complex form than that
for E~-paths. One such mechanism is to utilize the Petri net hardware
described by Patil (Patil, 1975) to implement the simulating net of the
R-path directly. The other alternatives we suggest are based upon using
the state machine representation of the R-path expression. The first of
these alternatives that we shall suggest introduces a primitive operation
in terms of which R-paths may be simply implemented. Another solution is to
incorporate the state machine representing the regular expression of the
path in a controller mechanism which is consulted on procedure entry and

exit,

Implementation of R—paths using P,V selector operations on semaphores.

This, the first of the two alternative implementations we suggest
for R-paths, is a method which introduces two primitive operations P' and
V! which have as arguments sets of semaphores. Informally, the
implementation scheme is based on representing the states of the state
machine corresponding to the R-path by semaphores, as in the implementation
for E-paths given in Chapter 3. However, a given procedure execution may
be accepted from one of several possible states of the state machine, and
it may leave the state machine in one of possibly many states. A process
requesting to execute a given procedure will execute in the prologue to
that procedure a P' operation on all the semaphores corresponding to the

states from which that procedure execution may be accepted. The P!

115,

operation delays the process until it may decrement any one of the set of
semaphores. Given the state from which a given procedure execution is
accepted, there is a state in which acceptance of the procedure execution
will leave the state machine. The semaphore which corresponds to this state
is incremented by the process executing a V' operation in the epilogue of
that procedure. The P' operation provides an indexﬁindicating the state
responsible for the executien of the frocedure, and hence P' can be
regarded as a function. The V' operation uses this index to select the
appropriate semaphore to increment from amongst the set of possible
semaphores associated with the destination states of the transitions
involving this procedure, Hence, the V' operation has an extra argument,

i.e. that of the value of this index.

The P' or P selector operation will be written:-

P'(s1,s2,...,58n)
and will have the wvalue vj.

The V' or V selector operation will be written:-

V'(vd,l1',92',....lm')

where the value of Vj indicates which semaphore from the set

s1',s2',.,..,sm' is to be incremented.
Synchronized procedures will be implemented in the following form:-

procedure procedurename:
begin (comment start of prologue)
index semaphore_to_be freed;
semaphore_to_be_freed := P(s1,s2,...,sn);

(comment end of prologue)

116,

. L] .

(body of procedure)

(comment start of epilogue)
V(semaphore_to_be freed,sl',s2',...sn');
(comment end of epilogue)

end of procedure;

(For simplicity, we have omitted any parameters that the procedure might
have.) sl-sn and sl'-sn' are semaphores, and semaphore_to_be_freed is
an index which records the value of the index of the semaphore
decremented by the P' operation. This index is then used to increment
the appropriate semaphore in the V' ovperation. For illustration purposes

we shall abbreviate the implementation to:-
P'(s1,s2,...,8n) procedurename V'(s1',s2',,..,sn')

The appropriate P' and V' operations and semaphores for an
implementation of an R-path expression can be generated from the

deterministic state machine corresponding to the regular expression of
the R-path (constructed by 2.19) using the'infonnal description we have
given. (Later, we shall give a precise definition of the P' and V'
operations using the simulating nets of the R-paths.,) An implementation

can be constructed by using the following algorithm:-

1) Declare and associate a semaphore with each state of the state
machine,

2) Give the semaphore corresponding to the initial state the initial
value one, and give all other semaphores the initial value zero.

3) A given procedure name may be used for the name of several

17.

transitions in a state machine. The P selector operation used

for that procedure includes, as arguments, all the semaphores
representing states from which these transitions may occur. To
each state which allows one of these transitions to occur, there
will be a state to which the state machine is taken as a result of
the transition occurring. The semaphores representing these
states are included in the V selector operation in an order

determined by the P selector arguments.

Example. Consider the following R-path:-

path (B ; A ; B; A; B)* end

This has the state machine given below, the states have been labelled

with the names of the semaphores that will represent them.

s1 B s2 A s3 B s4 A s5 B
o) o) o
NS S \J

The implementation of the procedures is as follows:-

semaphore sl1,s2,s3,s4,s5;
sl:=1; 82:=83:=84:=85:=0;
P'(s1,s3,85) B V' (s2,s4,s1)

P'(s2,s4) A V' (s3,s5)

A 'B' may be executed first, decrementing s1 and incrementing s2. This

permits an 'A' to occur, decrementing s2 and incrementing s3.

Definition of P and V selector operations.

We shall define the operations P' and V' by means of our model of
processes and R-path expressions. The operations will correspond to
subnets of a simulating net containing shared procedures synchronized by

R-path expressions. A general characterization of such a shared procedure

118,

is given below and is derived from the intersection transformation TR5.1
after the abbreviations for shared procedure calls (see abbreviation 4.2 d))
have been expanded. To simplify the following description of the

operations we shall label the places of Petri nets.

process+« process

=\ s1!

shared procedure X.

The primitive operations are subnets of this net,

The P selector operator (written P(s1,s2,...,sn) and with value vj)

is defined as:-

process ... Q
,,
o{ v2

®_.'\

vn

++s process

119,

The V selector operation (written V(vj,s1',32',...,sn'))

is defined to be:-

«+. process

process ...

Having defined these two operations, we shall now give a characterization of
them in terms of programming constructs. Later, we shall indicate how they

might be implemented.

The places si-sn and s1'-sn' and the transitions they are connected
to behave in a similar fashion to semaphores and P, V operations. (See the
Petri net representation of a semaphore given by Lautenbach (4.5).)
The P selector operation is a selection of a P operation (represented by
the transition with input place si) from amongst a set of such P operations
on semaphores, The selection is made arbitrarily between all those
trangitions with input places belonging to the set s1-sn and which are
enabled. The additional freedom that a process may execute a synchronized
procedure under one of possibly many conditions requires an additional
implementation mechanism, This mechanism will be in the form of a scheduler
as it is a predicate on the timings of.procéssea (Lipton,1973). In addition
to selecting a P operation on some semaphore, the P' operation records which
semaphore was decremented by marking a place vj. This corresponds to the

P selector operation returning the index of the semaphore decremented as a

120.

value to the process which invoked it.

The V selector operation is a selection of a V operation
represented by the transition with output place sj' from amongst a
set of such V operations on semaphores, The selection is predetermined
by the place vj containing a token. This corresponds to an index into

the set of semaphores which has the value vj.

Implementation of P,V selector operations.

A simple mechanization of P,V selector operations can be made
using a list structure, a critical section, P and V operations
(Dijkstra, 1968b), and a scheduling scheme. The list structure
associates with each P,V selector operation 'semaphore' a queue of
items representing requests for P' operations to be performed on that
'semaphore'. The suspended P selector operation on a set of 'semaphores’
is represented by a P' operation request in the queue of each of
these 'semaphores'.‘ Processes are actually suspended using their own
private semaphores und the locationsof these are also included in the
items on the queues for the 'semaphores'. The critical section is
used to synchronize mcdifications to the list structure. A scheduling
decision must be taken when a V' operation increments a 'semaphore'
upon which several processes are waiting and hence there is a choice
of which process to release from its waiting state.

An alternative mechanization of P,V selector operations could
be based upon a hardware implementation of these operations using

the Petri net representation of them,

Implementation of R-paths using P,V operations on counting semaphores

directly.

This scheme is suggested as an alternative to the one above,

and implements the controller mechanism for R-paths directly in

121,

terms of counting semaphores, P,V operations and a representation

of the automaton corresponding to the State Machine Petri simulating
net of the R-path. In the previous implementation, R-paths were
implemented by P,V selector operations which were in turn implemented
by P,V operations on the private semaphores of processes. The
controller implements the synchronization of processes by P,V
operations on semaphores corresponding to the procedures which the

processes wish to invoke,

A set of variables is associated with each R-path to represent
tlie automaton and record state information. These variables are
introduced by declarations which we give in the following Algol-

like programming language:-

integer array (1::n,1::j) table;

semaphore array (1::j)S;

integer state;

semaphore mutex;

The table is a variable containing the state table representation
of the automaton. The columns of the table correspond to the transitions
which may occur in the automaton, the rows to the states, The
automaton is presumed to have n states and j transitions. For
example, suppose we had the R-path:-

path(A; A; (B, D) ; B)*end
then we would have n=4 and j=3 and initialization code to write

the following matrix into the table.

122,

table(i,1) table(i,2) table(i,3)
transitions (A) (B) (mM
states
table(1,k) 2 0 4]
table(2,k) 3 0 0
table(3,k) 0 4 4
table(4,k) 0 1 0

For example, in state 3 the transitions with non-zero

entries in the row table(3,k) correspond to procedures

which may be allowed to be executed by processes.

Thus, a B or a D may be executed.

WVhen a transition

(procedure) occurs from state 3, the resulting new

state is given by the appropriate non-zero entry in

table(3,k).

The semaphore array includes a semaphore for each procedure

and provides the mechanism to allow processes requesting a

procedure to wait.

the automaton, held as an index from 1 to n.

State changes are implemented in the prologues and epilogues

The integer state contains the current state of

of procedures., During the execution of a procedure the state is

given the value zero.

follows:-

The prologue of a synchronized procedure is as

123.

prologue

begin integer next_state; integer constant action;

P(mutex) ;
next _state: = if state = O then O else table (state,action);
if next_state = 0 then
begin V(mutex) ;
P(s(action));
next_state:= table (state,action);
end;
state:=0;
V(mutex);
The value of action is the index into the table of the column
corresponding to that procedure. Next_state is a local variable of
the procedure and records between the prologue and epilogue the value
of the next state. The process is not allowed to continue until the

value of next_state is non-zero,.

The epilogue uses a scheduling procedure 'select' which returns
from the table, semaphore array and state, the index of a procedure
which may now be allowed to execute. 'Select' may use the identity
of the procedures invoked by processes in order to choose between
continuing the execution of one process as ageinst another, This
is different from the scheduling in the previous implementation
where the scheduling operation could only choose betweea processes
waiting for the same 'semaphore', and any given 'semaphore' might
control the synchronization of more than one procedure. If there
are no processes waiting to execute a procedure which may be

accepted in the given state, 'select' returns a zero,.

124.

epilogue

begin integer next_action;
P(mutex) ;
state:=next_state;
next_action:=select (table,S,state);
if next_action=0 then V(mutex)
else V(S(next action));
end;

end of procedure;

Next_action is an index into the columns of the table and is a

temporary variable used to hold the result of 'select'. If 'select!
finds that there is a process waiting to execute a procedure which
is permitted to execute by the new &alue of state, then that process
is released to execute the procedure by the appropriate V operation.
The released process is left executing in the critical section of a
prologue., If there is no process to be released by the epilogue,
then a V(mutex) is performed to allow other processes to enter the

critical section.

Example: Suppose in the earlier example that state

has the value 1. Suppose a process invokes B, The
process will enter the prologue of B and read the entry
table(1,2) with value O into next_state. Hence, the
process will suspend itself by executing P(S(2)).
Suppose a process invokes D. The process will enter
the prologue of D, set its next_state variable to the
value of table(1,3) which is O, and suspend itself by

executing P(S(3)).

Suppose a process invokes A, The process will

125.

enter the prologue of D, set its next state variable to table (1,3)

which has a value of 0, and suspend itself by executing P(S(3)).

Suppose a process invokes A. The process will enter the
prologue of A, set its next_state variable to table (1,1) which has
a value of 2, set state to zero, and proceed to execute the body

of A.

Suppose another process invokes A. The process will enter
the prologue of A, find the value of state is zero, and suspend itself

by executing P(S(1)).

Eventually, the process executing the body of A will enter
the epilogue and set state to the value of next_state, a 2. The
select procedure has only one procedure to choose from. This is the
procedure of A which has been invoked since S(1)=-1. Hence select
returns the value 1 and the process executing the epilogue now
executes a V(S(1)) releasing the process waiting to execute a second
A. The released process sets its next_state to table (2,1) which

has the value 3, sets state to zero, and executes the body of A,

Eventually, it will execute the epilogue of A, set state to
3, and call select. This time select may choose between returning

a 2 or a 3, depending upon its scheduling policy.

We have given several implementations with the intention of
illustrating that R-paths are sufficiently general in nature to
be implementable on many different computing systems. The P, V
selector operations described above allow the implementation of
the R-paths to be undertaken at the process level of description,
that is we activate or suspend individual processes by the
mechanism. An alternative is to implement the R-paths at the

machine level by including hardware to represent the simulating

nets of the paths., Finally, we have given an implementation

126,

at the level of procedure invocations. The first implementation
requires a global list structure and critical section in which to
manipulate it. The last implementation given could be integrated
very efficiently and effectively with a machine architecture which
supports procedure calls in a manner of the B6700 and could be the
topic of further research, A further implementation consideration
is the trade—off between making the compilation effic?ent, and
reducing space in the program compiled. We shall not consider
these aspects in depth, but shall merely point out that there exist
many techniques to reduce the size of a state machine and that

these techniques may be applied to R-paths, Thus, many implementations
of R-paths can be envisaged, and it is reasonable to expect that the
method adopted in any given practical implementation will be
tailored to suit the characteristics of the underlying computing

system,

5.6 A COMPARISON OF R-~-PATHS AND E-PATHS

As a direct measure of the declarative power of synchronizatiorn
of R-paths we may use the expressive power of regular expressions
and of state machines. Hence, we conclude that R-paths
have more declarative power than E-paths. The scheduling power of the
R-path notation is at least that of the E-path notation since any E-path
expression is equivalently an R-path expression. The scheduling power
of the E-path notation was shown to be that of a semaphore notation in
4,6, This semaphore notation could be used in the implementation of an
R-path (5.5) in place of the binary semaphore since no V operation is
performed on a semaphore with value 1. However, from Theorem 3.4,
although the E-path notation resolves conflicts between sets of sequences

of actions it imposes the restriction that the predicate upon which a

127,

procedure is permitted to be executed must depend upon only one synchroni-
zation condition. The R-path notation allows a procedure to be executed
by a process under one of several different synchronization constraints.
This results in an inability to express.conflicts in an R-path solely in
terms of conflicts in E-paths (or the semaphore notation of 4.6) and
additional programming in the form of a scheduler must be introduced to
resolve conflicts. We, therefore, conclude that R—pa;hs are more powerful

than E-paths with respect to scheduling power.

Finally, we shall make some remarks about the conversion of
R-paths to E-paths. A given R-path may not be in its simplest form,
and hence it may not be immediately obvious whether it is equivalent
to some E-path or not, However, the state machine corresponding to this
R-path may be minimized and by 2,20 the resulting minimized state
machine is unique up to isomorphism with other minimized state machines
with the same behavioﬁr. However, from Chapter 3 we have the Lemma 3.3
which states that the state m&chine.constructed for an E-path by 3.1
is a minimum state machine. Hence, proving equivalence between
an R-path and an E-path is a trivial matter, For the construction
of an E-path from a given R-path we may minimize the state machine
of the R-path and then construct an appropriate regular expression
which is equivalent to this state machine and which is acceptable
to the set of E-path productions, using construction rules based
upon 3.1 and 2.19 used in reverse. Of course, not all R-paths

have equivalent E-paths.

5.7 FURTHER EXAMPLES OF R~PATHS.

Synchronous Processes. (Bekkers, 1974).

In this example we have two processes, At one stage of
execution, each process must wait for the other process so that

the two processes can restart together. For this particular

128.

solution, we will assume that the processes are not aware of their
separate identities. In our illustration we shall declare a type

called synchro which will incorporate the correct synchronization.

type synchro;

path (arrive ; arrive ; depart ; depart)*end;
procedure depart: (body of depart);
procedure arrive: (body of arrive);
procedure synk: (arrive ; depart) end;
oEerayions synk
endtype

A process invoking synk will execute arrive and then wait to execute
depart. It will be able to proceed only after a second process

has executed arrive., The example illustrates the use to which the
unrestricted Regular Expression nature of an R-path may be put.A
similar type including only E-path expressions would require additional
variables or that the processes are aware of their separate identity
(see 4.8)., Each procedure arrive and depart may occur under two
different synchronization constraints (that is, as the first occurrence

of a request for that procedure or as the second).

File handler.

The next example concerns file handling. A process may request
the use of a file to either just read, or just write, or to both read
and write it, Once the request has been granted, the file cannot grant
access to another process until the first relinquishes its facility
to read or write., Requests are performed by opening the file; requests
are terminated by closing the file, Once opened, the file may be used

by many processes to read or to write. Mutual exclusion prevents

129,

synchronization errors in reading or writing, The file operates

in one of three modes depending on the access request:-

reading, a write, and reading and writing arbitrarily

intermixed.
type file;
path ((ropen : read*; rclose) , (wopen; write; wclose),

(rwopen ; (read , write)*; wclose)) *end
procedure read: (read routine);
procedure write: (write routine);

operations ropen, rclose, wopen, wclose, rwopen, rwclose,

bufferopen, bufferclose
endtype

We leave the open and close actions undefined for brevity; they

might, of course, have null bodies.

The type file allows reading and writing to occur in a number
of different synchronization constraints. The single R-path is
sufficient to allow all these synchronization constraints to be

expressed without recourse to anyadditional programming.

R-paths used to implement co-ordinated but parallel execution of

actions.

The R-path mechanism can be used to implement synchronization
and co-ordination between a group of parallel processes invoking
operations on data in which several of the operations may be

executed simultaneously, but in mutual exclusion to other operations,

For example, let us suppose that operaticn A,B and C are

to be synchronized so that execution of an A occurs concurrently

130.

with the execution of the procedure B, However, the operations

A and B are mutually exclusive with the execution of a C. The

following type definition provides this synchronization:-

type X;
path((start A ; start_B), (start_B; start A) ;

(finish A ; finish B) , (finish B ;
finish A) ; C)*end;
procedure A: (start A ; body _of A ; finish A);
procedure B: (start B ; body of B ; finish B);
procedure C: (body_of C)
operations A, B, C
endtype;

The type definition synchronizes only the beginnings and
endings of the procedures A and B,allowing concurrent execution
of their bodies. In general, this technique for specifying possible
concurrent execution of procedures subject to other synchronization
constraints results in large R-path expressions which are not
readily comprehensible, In the next chapter we shall consider

an extension to E-paths and R-paths which permits a clearer

statement of such forms of concurrency.
5.8 SUMMARY OF R-PATHS.

Ve have generalized the notion of a path notation based on
regular expressions given in Chapter 3 and found that the
generalization provides more flexibility and power to the
programmer, The resulting R-path expressions were shown to have
implementations using P and V operations on semaphores. The
implementations are, however, more complex than that for E-paths.

The extension of E-paths to R-paths required a definition of

131,

the meaning of the repetition of a procedure name within a path., We
also extended our classification of processes to include a more
realistic notion of a procedure and demonstrated that this new class
of processes, together with R-paths represented as simulating nets,
required a more sophisticated approach to its analysis than that

described in Chapter 4 for E-paths and processes.

Finally, we noted in the last example that path expressions
could be used in type definitions to synchronize the occurrence of
concurrent events., This provides the motivation for the extension

to path expressions considered in the next Chapter.

132,

CHAPTER 6.

GENERAL PATH EXPRESSIONS

To conclude the examination of path notations based upon
regular expressions, we shall examine a notation in which several
regular expressions may simultaneously describe the synchronization
and co-ordination of an action, In the previous chapters we imposed
the restriction that a given procedure name may occur in only one
path expression., In this chapter we shall examine the effect of
relaxing this restriction and of placing a particular interpretation
upon the repetition of an action in different paths, We shall show
that this notation is more flexible and has greater declarative power than
the previous notations and that it has a significant effect upon structuring
synchronization specifications of actions. We shall also investigate
the implementations of this notation and compare them with the

implementations for E-paths and R-paths,

Whereas E-paths and R-paths allow an action to be synchronized
with respect to a sequence of actions, the General Path (or G-path)
notation permits an action to be synchronized with respect to
several independent and concurrent sequences of actions. A General
Path expression will comprise of several E-paths or R-paths which
have procedure names in common, The occurrence of a given procedure
name in several path expressions will imply that the synchronization
conditions specified in each path for that procedure must hold
simultaneously for that procedure to become eligible for execution
by a process. Unlike E-paths and R-paths, a G-path may include
several procedures which, although synchronized with respect to
other procedures, may be executed concurrently with respect to each

other,

133.

As in the previous chapters, we shall describe the meaning
of G-paths with respect to processes using a Petri net
representation and describe various implementations. We shall
illustrate the structuring that G-paths permit for the description
of synchronization problems. A further sub-class of processes is
introduced which permits the examination of processes which share
procedures, and properties are examined of the combination of such
processes and G-paths. Finally, the advantages and disadvantages of

this notation over that of E-paths and R-paths are examined.

6.1 GENERAL PATH NOTATION.

A general path expression (G-path) is a collection of E-path

expressions and R-path expressions in which the names of actions

occur in more than one path, The R-paths and E-paths are defined

by the description in Chapter 5 and Chapter 3, respectively, ignoring
however the restriction which prevents the repetition of procedure
names between path expressions., A G-path permits a procedure
to be executed if all the path expressions in which that procedure

name occurs allow that procedure to be executed. For example:-
The G-path,

path (A ; B ; A)¥*end

path (A ; C)*end
synchronizes the procedure A so that it may only be executed
by processes if both path expressions allow it to be executed.
Hence, if two processes invoke A, after the first process
has executed A,the second process must wait until both the
procedures B and C have been executed by other processes

before it may execute A,

134,

The simulating net for the G-path is constructed from the
simulating nets of the constituent E-paths and R-paths by a
transformation given below., The trensformation ensures that all
the synchronization conditions in all the appropriate paths must

hold before a given action may occur:-

TR6.,1 Transformation to generate the abbreviated simulating net of

a G-path.

1) Generate the abbreviated simulating nets ofeny
component R-paths (5.2) and the simulating nets
of any component E-paths (4.1).

2) Select any simulating net of a path expression
in the G-path and call it the primary net,
Replace this primary net with a new primary net
by selecting one of the remaining simulating nets
of the component path expressions of the G-path
and performing the following construction:-

3) For each unique procedure name which occurs both
in the primary net and in the simulating net do
4.

4) Identify all the transitions in the primary net
which are labelled with that name (suppose there
are n such transitions).,

Identify all the transitions in the simulating
net which are labelled with that name (suppose
there are r such transitions).

Transform these transitions in the following

manner: -~

135.

Transitions with label X from

primary net.

s1?

136,

Transitions with label X from
simulating net.

st s2 « e . sr

o O

O O

st! s2! . e . sr!

p22'

pna’

sr!

where the box:-

is an abbreviation for:-

(1 < k < n),

137.

(The number of transitions generated for a given procedure name

at each application of the above transformation will be the product
of the number of times the transition occurred in the simulating

net, and the number of times it occurred in the primary net. Thus,
in the diagram above, the transformation has created n x r transitions
labelled X. Each of these transitions is an abbreviation for the
calling mechanism to a single transition labelled X which represents

the actual execution by a process of the procedure X (see 5.2).

The number of input and output arcs for each transition in the
original primary net is increased by one corresponding, in the new
primary net,to the extra constraint imposed by the addition of
another path. Thus, in the above diagram,X has 'a' input arcs
in the original primary net, and a+1 input arcs in the new primary

net.)

5) While there are simulating nets of component path
expressions of the G-path which have not been combined
with the primary net, replace the present primary net
with & new one constructed by applying 3) to one of
these simulating nets and the present primary net.

6) The final primary net is the abbreviated simulating
net of the G-path,

To obtain the simulating net for the G-path the

abbreviated simulating net is expanded (see 5.2),

Examples.

Consider the following G-path:-
path (A ; B ; A)* end
path (A ; C)* end
Let the simulating net of the first path be the primary net. This

net is as follows:-

138.

N\
| A
°
B
A
J/

The simulating net of the second path expression: (distinguished

—-'I—A +c
7’

o

Combining the two nets using the transformation yields:-

by dashed arcs) is:—

/

wvhere the boxes are abbreviations. If we expand the boxes we

obtain the simulating net for the G-path:-

139.

From the abbreviated simulating net of the G-path it may be seen
that the transitions B and C may both occur at the same time.
This corresponds to procedure B and C both being executed simultaneously

by separate processes,

The order in which the simulating nets are taken in the
construction does not affect the resulting simulating net, If,
instead of the first net, we choose the second net as the primary
net then, re-arranging the layout of the nets a little, the result

of combining the two nets is:-

oo}

/

\
\
|
]
<+
!
B N e

Expanding the box abbreviation and again re-arranging the layout

of the nets a little gives the simulating net shown above,

The transformation can be simplified if the G-path is

composed solely of E-paths. Let a GE-path be a G-path composed

140,

only of E-paths. By Lemma 3.3 the simulating net of an E-path will

have only one transition labelled with a given procedure name,.
Consider part 4) of the transformation. Whenever a primary net is
being combined with the simulating net for an E-path,r equals 1,
Assume that the initial primary net is chosen to be a simulating net
of an E-path, then n equals 1. Given any primary net such that it
has only one transition labelled with a given procedure name then
if it is combined with the simulating net of an E-path, the
transformation will result inn X r transitions with the same name,
i.e.,one transition. Hence, by induction the transformation
applied to the simulating nets of the component paths of a

GE-path will always generate a new primary net in which only one
transition is labelled with any given procedure name. Thus, 4)

of the transformation can be simplified to:-

Replace:-
Transition with label X from Transition with label X from
primary net, simulating net.
pi1 pit! s1
pld X plal
X
pla pla' s1!
by:-

Transition with label X in new primary net.
pt1 s1 plt1
p12 p12'
pla s1! ptla’

141,

The following comparison can be made between G-paths and GE-paths:-

A procedure synchronized by a GE-path may be executed by a
process if all of a set of conditions hold.

A procedure synchronized by a G-path may be executed by

a process if all of a set of conditions hold in one of the

elements of a set of sets of conditions.

Examples of G-path Expressions.

The G-path expressions allow synchronization specifications
which are too complex to be written simply as an R-path or an
E-path expression. The following examples illustrate the

synchronization which may be expressed.

The Cigarette Smokers Problem of Patil.

Patil (Patil, 1971) introduced the following synchronization
problem:~

"Three smokers are sitting at a table. One of them
has tobacco, another has cigarette papers, and the third
has matches; each one has a different ingredient required
to make and smoke a cigarette but he may not give an
ingredient to another. On the table in front of them,
two of the three ingredients will be placed, and the smoker
who has the necessary third ingredient should pick the
ingredients from the table, make a cigarette and smoke
it.” Further ingredients are not put on the table until
the 0ld ones have been consumed, Other smokers must not
interfere with the smoker who hLas the ingredients on
the table before him. Hence co-ordination is required

between the smokers.

The cigarette smokers problem can be restated (Lauer and

142.

Campbell, 1975) in the following way:-—

1) Decide which of the ingredients should be put on the table.

2) Produce each ingredient and place it on the table.

3) Choose the correct consumer to consume the available
ingredient.

4) Go back to 1).

Where 1) is anarbitrary choice from producing:-
1.1) tobacco and a match.("supplytm")
1.2) a match and paper. ("supplymp")

1.3) paper and tobacco. ("supplypt")

Where 2) is determined from the decision made in 1) in the

following way:-

2,1) given "supplytm" or "supplypt" produce tobacco.
2.2) given "supplymp" or "supplytm" produce a match.

2.3) given "supplypt" or "supplymp" produce paper.

Where the choice 3) is determined upon 2) such that:-

3.1) tobacco is consumed by either "matches-smoker" or
"paper-smoker",

3.2) paper is consumed by either "tobacco-smoker" or
"matches-smoker",

3.3) a match is consumed by either "paper-smoker" or

"tobacco-smoker",

The ingredients tobacco, match and paper are manipulated by
several processes and are shared objects, The decision to supply
a given ingredient, to produce and to place it on the table, and
to consume it are all operations on that ingredient. For each
ingredient we may write a path expression which co-ordinates the

execution by processes of these operations. For example, for the

143,

ingredient tobacco we may write:-
path ((supplytm,supplypt) ; tobacco ; (matches_smoker,
paper_smoker)) *end
The following GE-path describes the synchronization and co-ordination
of the Cigarette Smoker's problem; each separate component path
expression of the GE-path describes how the operations on a

particular ingredient may occur:-

path ((supplytm, supplypt) ; tobacco ; (matches_smoker,
paper_smoker)) *end

path ((supplytm,supplymp) ; match ; (tobacco_smoker,
paper_smoker))* end

path ((supplypt,supplymp) ; paper ; (tobacco_smoker,

matches_smoker))*end

Although the GE-path is structured into sequential components
(the E-paths), it states the synchronization required for a problem
in which concurrency occurs. Each E-path component describes the
synchronization with respect to a particular shared object, the
GE-path describes the combined synchronization properties of those

objects treated as a composite shared objeet, The simulating net

for the GE-path is as follows:-

144,

tobacco paper_smoker

1

- X

match match:;moker

| T\ -
paper tobacco_smoker

(Note that this net is almost identical to the Petri net definition

of the problem given by Patil (Patil, 1971).)

An Example based on the Five Dining Philosophers of Dijkstra

The manner in which GE-paths allow separate components of a
synchronization specification to be combined avoids some of the
problems described in Chapter 4 on hierarchies of procedure calls
involving path expressions. Thé following GE-path (which is similar
to the Five Dining Philosophers problem of Dijkstra (Dijkstra,'1973))
synchronizes five procedures Pd—P4 so that only two of them may be
executed concurrently at any one time, The GE-path permits a
procedure to be executed if its neighbouring procedures are not
being executed, That is, it will permit the execution of procedure
Pi if neither procedure P(i+1 modulo 5) nor P(i-1 modulo 5) are
being executed by processes. Thus, for example, Pl may be executed
if PO and P2 are not being executed, and P1 and 23 may be executed
concurrently by processes provided no process is executing any of

the procedures PO,P2 and P4.

145,

path (FO,P1)* end
path (P1,P2)* end
path (P2,P3)* end
path (P3,P4)* end

path (P4,P0)* end

(Each component E-path expression of the GE path corresponds to the
synchronization specification required to allow a fork in the Five
Dining Philosophers problem to be used by only one Philosopher at
a time.)

This synchronization may be written as a set of disjoint
E-paths which are hierarchically structured by procedure calls.
However, this synchronization specification may lead to deadlock,
as in the following example. A process first inwekes a procedure Pii
which then invokes Pi, If five processes simultaneously invoke and
execute the five procedures POO-P44, deadlock will arise as they
proceed to invoke PO-P4 (see the last remark of 4.10).

path (POO , P1)* end
path (P11 , P2)* end
path (P22 , P2)* end
path (P33 , P4)* end

path (P44 , PO)* end

Similarly, non-deadlocking hierarchical structures of this
kind lead to giving a priority to processes executing one

procedure over those executing others. For example:-

path (PO , P1)* end
path (P11 , P22)* end

path (P2 , P33)* end

146.

path (P3 , P44)* end
path (P4 , POO)* end

where Pii invokes Pi.

If all the Pii procedures are invoked simultaneously by separate
processes , then P33,P44,P00, and one of P11 or P22 may be executed
concurrently, However, the process executing P33 cannot execute
P3 because another process is executing P44, Similarly the process
executing P44 cannot execute P4 because another process is executing
POO, If the process invoking P11 is allowed to execute P11, then
the process invoking P22 will be delayed. The process executing
P11 will invoke P1. However, the process executing POO will invoke
PO and executions of PO and P1 are mutually exclusive. Thus, in
this case, only one process is permitted to execute a procedure
from the procedures PO-P4, whereas the original specification allowed
two., Similar problems arise with other configurations of procedures

and paths (see Dijkstra, 1973).

Thus, from the examples above, we conclude that GE-paths
allow a given synchronization problem to be structured into
sequentinl qomponenta (aa 1A the firat two sxmmples) whioh ave
combined automatically and correctly, as opposed to the difficulties
that arise (which was illustrated in the last two examples) when
sequential components are combined by means of hierarchically
structured procedure calls, Finally, we believe that the GE-path notation
allows complex problems of synchronization to be expressed clearly

and simply.

6.2 PROPERTIES OF THE SIMULATING NETS OF G-PATHS

As in earlier chapters for R-paths and E-paths, we shall

examine the properties of G-paths by investigating their

147.

simulating nets (G-nets). R-paths generate simulating nets which,
in their unabbreviated form, belong to the Simple Petri net class
(Lemma 5.1). G-paths, however, do not belong to this classification
because transformation TR6.1 permits a transition to have more than
one shared input or output place, contrary to the definition of a
Simple net (2.10). Por example, suppose the procedures A, B and

C are in component paths of a GE-path and are in simulating nets:-

A

path , . .m. . . path

B
and B

path . . m . . path

C

The G-net formed by TR6.,1 from these nets will have a subnet:-

L.

Path L] L] L] L] L] L] pa‘t h

e

o
c

path . . . + + o path

Simple Petri nets are the largest sub-class of nets contained within
General Petri nets described by Holt and Commoner (Holt and Commoner,

1970) , and hence we must alassify the simulatirg nets of Gepaths as

belonging to General Petri nets if we use their classification
scheme. The transformation TR6.1 generates G-nets from the nets of
R-paths or E-paths, and hence an abbreviated G-net is decomposable
into safe State Machine Petri nets. Thus, although G-nets belong
to a classification of nets which is more general than Simple Petri

nets, they belong to a sub-class of General Petri nets.

Theorem 6.1: G-nets are safe.

Proof: In general, a G-path will be constructed from a set of

148,

component R-paths (the set of regular expressions which may be
written within an E-path expression is a subset of the regular
expressions which may be written within an R-path). From
Theorem 5.3, the unabbreviated simulating net of an R-path

is safe and is a Simple Petri net(lemma 5.1). Hence the first
primary net generated by the transformation (TR6.1) is safe in its
unabbreviated form. We will prove the theorem by induction
on the number of primary nets that are generated during the
transformation.

Suppose, as induction hypothesis, that the qth primary net
generated is safe in its unabbreviated form. Suppose that

ve have a simulating net of an R-path which has not yet been
combined with a primary net (if there is no such net the
transformation terminates).

Let Xi be the ith unique procedure name which labels r.
transitions in the abbreviated simulating net of this R-path,
Before applying part 3 of TR6.1, the unabbreviated simulating

net of this R-path will contain a subnet:~

1 | M | 0
0 o,

IriC g -0 O %,
The places are labelled for convenience, the dashes represent

connections to the rest of the simulating net, Since the net

is safe only one ‘token can mark any of I1 - Ir at any one
i i
moment, No further token can mark 11--Ir°’ once marked, until
i i

theterminaltransitionsfromo1 - 0r have removed a token
i i
from one of 0, -0 (note this applies even if a
i i
place Oj is also labelled I). After applying 3, the subnet
i i '

149,

will be as follows (the dots represent connections to the rest of

the q+1th primary net).

.’

Wi

7\
A

)
Y

2
.’
d

'd

(We suppose that the procedure name Xi occurs in the qth primary

net as well as in the simulating net otherwise the second net would
be identical to the first and there is nothing to prove. The number
of subnets representing the calling mechanism (5.2) to Xi will be
increased, but they are not all shown. If the qthprimary net had

n, such callingmechanisms for the transition labelled Xi’ then the

new one will have n, x T, (see TR6.1),)

Every initial transition of the input place of transition Xi

above has an input place belonging to the set I1 - Ir . Marking
i i
an input place Ik will result in the eventual marking of place
i
Ok , as in the original subnets. If Ik is marked then no other token

i i
can mark one of I1 - Ir until 0k has one of its terminal
i i i th
transitions fire. Hence the q + 1 unabbreviated primary net

is safe. Hence, by induction, on application of part 3 of
TR6.1, the net constructed by TR6.1 is safe in its unabbreviated

form. Q.E.D.

The safeness of G-nets indicates that, although in the earlier
examples we demonstrated that G-paths may describe actions occurring

concurrently, an individual procedure described by a

150,

RN TR e ST TR TR

G-path cannot be executed simultaneously by several processes.

G-path expressions do, however, allow synchronization
expressions to be written which are deadlocked or may result in

deadlock. Consider the following GE-path:-

path A ; B end
path B ; A end
The component E-paths have simulating nets which are
individually live., However, when TR6.1 is applied to these
nets, the resulting simulating net for the GE-path has no

transitions which are live:-

under

TR6.1:-

‘ | I I becomes

The deadlock can also be recognized by a theorem of Petri net
theory. The simulating net for the GE-path is a Marked Graph
(2.9) and includes an empty cycle . Therefore, we conclude

(from 2.12) that not all the transitions of the net will be live.
In Chapter 4 we gave a criterion C4 which ensured that a set of
Eo-paths and Eo-processes were deadlock free. We may write a
similar restriction to ensure that a sub-classof the GE-path

notation cannot include a deadlock, (see criterion C5, and

Theorem 6.6 on page 164,)

6.3 A MODEL FOR A PROGRAM CONSISTING OF PROCESSES AND

The model we shall give for a program consisting of

G-paths and processes is based upon our earlier models in 4.3

151,

and 5.3, The following intersection transformation gives the
abbreviated simulating net for a program consisting of G-paths

and processes,

TR6.2 Intersection transformation for the nets of processes and

G-paths.

Abbreviate the simulating nets of the G-paths (5.2).
A given action or procedure name may label several
transitions in a G-net. (Unlike TR5.1, these transitions
may have several input and output places.) For each unique
name do the following:-

1) Identify the set of transitions in the abbreviated
G-net with that name.

2) If, in the process nets, the name corresponds to
the body of a procedure embedded in the procedure
calling mechanism, then abbreviate the calls upon
that procedure by replacing them by transitions
labelled with that name using abbreviation 4.2 d),
Identify the set of transitions with that name,.

3) Apply the fallawing trannfosmationa t0 the set of
transitions identified.

Replace the subnet:-

152-

<<

56

-

g1 Oh._\ _L0 et

8120'------::_":: o= gl2!

g1a<:)"" ‘~<:) gla'
g1 < _ 2O &

~ -
\\\\ '_—’

—
g22(Or-—-. _.__ S~ L-- -~ g22!

- - . —
. X .
. - ~ e .

" -~

. - ~a .

i ___...O grl!’
gr2 Q- =--—------ R et O N 5

. X)

3 - -~ L]

. - -~ .

grc O” \‘O gre'

n transitions
belonging to
the Petri net
model of the

processes.

r transitions
belonging to
the simulating

net of the

G-path,

(Subnets belonging to the G-net are distinguished by dashed arcs.)

153,

by the subnet:-

154.

n X r trangitions
belonging to the
resulting Petri
net model of the
program
consisting of
G-paths and

processes.

The places of the subnets involved (for clarity the
places are labelled in the diagrams above) are not affected by
the transformation although they may be given more input of
output arcs to transitions labelled X, Each process of the
n processes is connected to the G-path through arcs to and
from the n x r transitions., The n x r transitions are all
labelled with the same name and their firing corresponds to
the execution of the procedure X. Thus, the transitions we
have introduced are abbreviations (4.2 d) for the calling

mechanism to a unique transition labelled X.

Example of the intersection transformation between a G-net

and a Petri-net model of a program,

The following G-path
path (A ; (A, B))* end
path (B ; D)* end

has the simulating net (abbreviated):-

Suppose we have a set of processes (distinguished by deashed arcs):-

A
process @- ------- '.+ _.Q
|
|
l
I
|
|
|
I
7/

process (:)— ——————— - 2!
o S S

Then combining the processes with the G-path using TR6.2 gives:-—

process

where the dashed arcs correspond to the subnet representing the
processes., The final net contains four transitions labelled A

and these represent abbreviations for the calling mechanism of

(4.2 d) to a single transition labelled A, The net permits the

A and B to be executed in sequence followed by possibly simultaneous

execution of D and A,

For a model of GE-paths and processes, TR6,2 becomes much
simpler. In this case, the number (r) of transitions labelled with
an identical procedure name in the abbreviated GE-net will be at
most one (see TR6.1, the simplified transformation to generate the
simulating net for a GE-path). Suppose part 3 of 6.2 is applied to
the procedure name X and there are n transitions in the process net
representing abbreviations to the procedure calling mechanism of X.
The result of the transformation specified in 3 will be a subnet
containing n x r transitions (i.e n transitions since r=1) representing
abbreviations for the calling mechanism., Thus,the number of

transitions representing procedure calls to X in the process model

156.

will remain unchanged in the model for the program consisting of

those processes and GE-paths,
6.4 A G-PROCESS CLASSIFICATION OF PROCESSES.

As in 5.4 and 4.6 we may introduce a G-process as a counterpart
to a G-path., A G-process consists of a set of R-processes or
E-processes in which procedure names are allowed to appear in more
than one path. The occurrence of a gi§en procedure in several
processes is treated as if that procedure is shared between the
processes and may be executed, perhaps concurrently, by the processes
in which it occurs, The abbreviated simulating net for a G-process
congists of the abbreviated simulating nets of the component
processes. The simulating net for the G-process is obtained by
removing the abbreviations using 4.2d). A G-process consisting only

of E-processes will be called a GE-process.
Example. Consider the following G-process:-

process (A ; B)* end
C; A end

process A

The processes have simulating nets which are respectively:-

. 1 e i)
) |

and: -~

A C
O—F—--O——"F—-0O

157.

Removing the abbreviations gives:-

~O

)
/.

Q™

The processes may both execute A simultaneously and, in the

net above, the input place of the transition labelled A is two safe
(that is, it may have two tokens marking it). G-processes introduce
procedures into our classification scheme which may be executed
concurrently, and hence may be used to model problems of

indeterminacy and data corruption.

Theorem 6.21 A G-process in which the maximum number of times any
procedure is repeated between R-processes is N has a simulating

net which is N safe (see 2.4 and 2.5).

Proof: Suppose a procedure name occurs in K different R-processes,
There will be at least K procedure calls from those processes to the

procedure body corresponding to that name:-

o () ol
process F\\\\\\ ~_/ l///;q
process | "/ -
| K calls
. 1
. shared procedure body of
process 1 ‘*{::>f -1 procedure

158,

Each of the K processes may make a procedure call to the
procedure body simultaneousl& resulting in the input place to the
procedure body containing K tokens. Thus, the safeness of the whole
simulating net of a G-process corresponds to the safeness of the
input place of the procedure which is shared by the largest number
of processes.

Q.E.D.

The property of safeness can be used to investigate concurrency

within a given program of G-processes and G-paths,

Example of an asynchronous ring buffer system.

The following example is an extension of an example in 4.7 and
is an equivalent expression of the synchronization required for an
asynchronous ring buffer to that described in 1.2, The ring buffer
system has three 'frames' which are used for the buffering and are
allocated for use in a round robin fashion. There are two consumers
and two producers, The program describing this system and its

simulating net are shown in the following pages.

159,

Ringbuffer example program.

begin
type frame;

path (write ; read)* end

operations read,write
endtype;
1type allocator;
path (first ; second ; third)* end;
operations first, second,third
endtxpé;
type ringbuffer;
frame one,two,three;
allocator h, t ;
procedure deposit: ((h.first ; one,write),
(h.second ; two.write),
(h.third ; three.write))
procedure remove: ((t. first ; one. read),
(t.second ; two. read),
(t.third ; three. read));
operations remove, deposit

endtype;

ringbuffer R;

consume 1)* end;

-e

process (R.remove

process (R.remove ; consume 2)* end;

R. deposit)* end;

-e

process (create 1

process (create 2 ; R, deposit)* end;

end,

160,

-e

The type ringbuffer corresponds to the following simulating net:-

Figure 6.1 call deposit return_deposit call remove return remove

-l t.'second two.read

—~(r

h;second two.write

The operations deposit and remove are distinguished in the
figure by solid arcs in their corresponding simulating nets. The
operations deposit and remove may be requested concurrently, and
their input and output places, labelled respectively d,d' and r,r',
may not be safe, Thus the type must be examined to find its
behaviour under such circumstances. The subnets representing
instances of type 'frame' are distinguished in the figure by dashed
arcs. These subnets ensure that the operations read and write on
an instance of 'frame' can only occur in mutual exclusion., Further,
the subnets also ensure that a write must occur before a read,

The subnets representing instances of the type 'allocator' are
distinguished in the figure by dotted arcs, These subnets

ensure that the operations first, second and third on an instance
of 'allocator' can only occur in mutual exclusion. In addition,

these subnets also ensure that the instances of 'frame' will be

161,

used in a round robin manner., The first process executing deposit
must proceed by executing 'h. first' and then 'one.write'. The next
two processes executing deposit will execute 'h.second' followed by
'two.write', and 'h.third' followed by 'three.write' respectively,
Up to three processes may execute their respective 'writes'
simultaneously. Similarly, up to three processes may be executing
‘one.read', 'two.read',...., 'two.write', 'three.write'. Only

one process may execute one of 'h,first', 'h.,second' and 'h,third’.
Similarly only one process may execute one of 't.first', 't.second’,
and 't.third'. Thus there may be up to five processes actually
executing actions within the operations 'deposit' and 'remove'
simultaneously. However, many more processes may concurrently be

executing these two operations,

Finally, 'remove' and 'deposit' occur twice in different
processes and hence the shared procedures 'deposit' and 'remove'
will be two safe, that is there may be two simultaneous executions
of 'deposit' or two simultaneous executions of 'remove', The
simulating net of the processes is shown below where the bodies
of 'R, deposit' and 'R, remove' are specified by the simulating

net of the type definition of ringbuffergiven in figure 6.1,

162,

O

I\ | O\ |

createl call R.deposit return R.deposit

D

|
I -/ -/

" body of deposit

e

... (see Figure 6.1)

“body of remove

*-...(see Figure 6.1) .-

() ()—

pro

The example illustrates that our model of G-processes and G-paths
may be used to describe complex problems. In Chapter 1 we described
a ringbuffer which involved the use of a pointer, addition, an array
and indexing of an array. However, in the example above, we have
described a ringbuffer directly in terms of the actions which may
ceour: We beliwve the model we have given for procemren and paths
is a practical tool, and could provide the basis for future research

and the study of the behaviour of operating systems.

Criterion for freedom from deadlock for a set of G-processes and

G-paths.

The following example illustrates a deadlock occurring in a

path expression and two processes:-
path (A ; B)* end;
path (B ; C)* end;
process (C ; A)* end;

process (B)* end;
163,

\/ | A4 |
call R.remove return_R.remove consume?2

. O— -~ ~
create2 call R.deposit returq_R.deposi;j::>
call_R.remove return_R.remove consumel ::::)

. | Y Y

A ./ I

None of the transitions in the following simulating net for

these paths and processes are live:-—

The simulating net above is a Marked Graph (2.9) and includes an
empty cycle indicated by the dashed arcs. Hence the net is not
live by 2.12. In Chapter 4 we gave a oriterion (C4) on Eo-paths
and Eo processes which guaranteed freedom from deadlock. We may
give a similar criterion for G-paths consisting of Eo-paths and
G-processes consisting of disjoint Eo-processes (that is, the

processes contain no shared procedures).

Criterion C5: Given a set of G-paths and G-processes such that

each G-path consists of Eo-paths, and each G-process consists of
disjoint Eo-processes, then this set cannot contain paths and

processes in vhich there are procedures X1 to Xn forming sequences:-

eu e X1 s o ; s e e x2 PRPEY
L) X2 s 0. ; L) x3 LY
cee Xn oo H cee X1 o
Theorem 6.6: The criterion C5 is a necessary and e sufficient

condition for programs consisting of G-paths and G-processes to

have a live and safe Marked Graph simulating net,

164,

Proof: The proof of this theorem follows identical arguments
to those given in Theorem 4.,6. Inspection of TR6.1 and TR6.2
reveals that when they are applied to G-paths and G-processes
which meet the criterion C5, these transformations are identical
to those of TR4,3.

Q.E.D.

Thus we have a criterion for detecting deadlocks in G-paths
and G-processes, although this criterion can only be applied in

very limited circumstances,

6.5 IMPLEMENTATION.

The implementation of G-paths is much more complex than
that of E-paths and R-paths. As with R-paths, given suitable
hardware, the simulating nets of G-paths could be implemented
directly. However, we shall describe three alternative

implementations, two briefly and a third in more detail,

Implementation of G-paths using R-paths.

An implementation of G-paths can be given in terms of
R-paths in the following manner, A procedure synchronized by a
G-path will be implemented hy replacing it with a procedure in

the following form:-

procedure procedurename:
begin
(comment start of prologue)
start_procedurename;
(comment end of procedurename)

(procedure body)

165.

(comment

start of epilogue)

finish procedurename;

(comment

end;

end of epilogue)

The procedure is rewritten with a prologue and an epilogue.

The prologue includes an invocation cf a procedure called

start_procedurename, and the epilogue includes an invocation of a

procedure called finish procedurename,

These two procedures are

used to give the synchronization required for the original procedure.

Executions of these two procedures are synchronized by an R-path.

The R-path is constructed to pemmit processes to execute these

procedures whenever the G-path synchronization specification would

have allowed a process to execute the original procedure.

For example, consider the G-path:-

path (A ;

path (A ;

The procedures A,B,

B)* end;

C)* end;

and C will be implemented in the form:-

procedure A: begin stert_A ; (body of A) ; finish A end;

procedure B: begin start B j (body of B) ; finish B end;

procedure C: begin start_C ; (body of C) ; finish C end;

path (start_A

; finish A
(start_B ; (finish B ; start_C ;
(start_C ; (finish B
(finish C
(start_C ; (finish C ; start B ;
(start_B; (finish C

(finish_B

166,

finish C),

finish C),
finish B))),
finish B),

; finish B),

; finish C)))

)*end;

together with declarations for the procedures start A,

start B, ... , finish C which will have null bodies.

The R-path which synchronizes the procedures in the
implementation is constructed from the G-path in the following

way: -

1) Replace each occurrence of a 'procedurename' in the
G-path by the regular expression:-
(start_procedurename ; finish procedurename)
Thus, for the G-path used in the example above we

obtain:

path ((start_A ; finish A) ; (start_B ; finish B))*end

path ((start_A ; finish A) ; (start_C ; finish C))*end

The new G-path and the procedures in their implementation
form specify the same synchronization for the procedure

bodies as that specified by the original G-path.

2) Generate the state machines corresponding to each component

path expression of the G-path.

Bach satate machine aervespolding te a eompenent path

expression is extended to accept transitions corresponding
to actions which are named in the other component path
expressions of the new G-path, but which are not named

in this component. Such transitions may occur in any
state, and they return the state machine to the state

from which they were accepted. The example G-path would

generate two state machines as follows:-

167.

First component of the G-path.

transitions
state start_A finish A start B finish B start C finish C
1 2 1 1
2 3 2 2
3 4 3 3
4 1 4 4

(The state machine is extended to accept start_C ard finish C.)

Second component of the G-path

transitions
state stai1t_A finish A start_C finish_ Cstart_B finish B
1 2 1 1
2 3 2 2
3 4 3 3
4 1 4 4

(The state machine is extended to accept start_B and finish B.)

3) Ve shall construct a new state machine which accepts a
a sequence of actions if that sequence is also acceptable
to all the state machines constructed by 2). This state
machine and the procedures in their implementation form
specify the same synchronizaticn for the procedure bodies
as that specified by the original G-path. However,
the procedures which are invoked in the prologues and
epilogues of the implemented form of the procedures are
constrained by this nev state machine specification of
the synchronization so that they are executed by

processes in mutual exclusion,

168,

The new state machine is constructed, using a
standard result from state machine theory, by taking
the cross-product of all the state machines (Harrison,

1965) created in 2) above.

Thus, for the example G-path we would construct the

following state machine:-

transitions

state | start A finish A start B finish B start C finish C
1 22

13 14

14) . 11
22 33

31 41

33 43 34

34 44 31
41 11

43 13 44

44 14 41

The unreachable states are not shoﬁn.

4) Construct a regular expression which has the same behaviour
as the state machine given in 3). (An algorithm for one
such constructionis given by Harrison (Harrison, 1965).)
The R-path which synchronizes the procedures in the
implementation of the G-path is then given by embedding
the regular expression between a path end bracket.

Applying 4) to the state machine obtained for the example

G-path gives the R-path given earlier,

169.

This implementation may be used directly, as described above,
or it may be adapted to give an implementation of G-paths using one
of the R-path implementation techniques discussed in Chapter 5. This
method of implementation has the advantage that, in a programming
environment where there is a mixture of R-paths and G-paths, they
may all be implemented using the same technique without incurring
any overheads for R-paths by virtue of having the G-path facility.
However, a G-path which permits parallel execution of the procedures
that it synchronizeswill generate, in general, a very large state
machine cross-product and corresponding R-path. As yet the question
of whether the size of such R-paths would be prohibitive arid whether
reduction techniques might be applied to reduce them to a more
manageable size has not been investigated and could provide a topic
for further research. Finally, we remark that procedures which
cannot be executed by any process because of the synchronization

specification in the G-paths
(for example, the GE-path:-
path (A ; B)* end
Bath (B 3 A)* gnd
vhich has a simulating net which is not live) cennot be

synchronized correctly using the above R-path implementation.

Thus, such incorrect specifications must be detected prior to or

during the application of the constructions.

170,

Implementation of G-paths using the incidence matrices of the

abbreviated simulating nets and P, V operations on counting

semaphores.

This scheme is suggested as an alternative to the one above and
has the advantage of being compact. In a similar manner to the
implementation for R-paths using P, V operations on counting
semaphores in Chapter 5, we shall introdﬁce a controller which
co-ordinates the executions of procedures in a G-path. The
controller mechanism uses P, V operations on counting semaphores and
a representation of the forwards and backwards incidence matrices of

the abbreviated simulating net of the G-path.

A set of variables is associated with the controller of
each G-path recording the current marking of the simulating net and
the two incidence matrices. The controller contains the following
declarations:-

bit array (1::no_places, 1::no_transitions) forwards, backwards;

semaphore array (1::no_procedures_in G-path) S;

bit array (1::no_places) mark;
ASWARNOLE mutex;

The semaphore mutex is used in the controller to provide a
critical section in which the variables may be accessed and altered.
Mutex is initialized to one, The semaphores used to synchronize
the procedures of the G-paths are declared as an array S whose dimension
corresponds to the number of procedures, The semaphores are initialized
to zero, The forwards and backwards incidence matrices of the
abbreviated simulating net of the G-path are held in two arrays of
bits. These two arrays are initialized with the values of the

corresponding matrices. Since several transitions in the abbreviated

171,

simulating net may have the same name, the matrices may have several

columns representing the synchronization of the same procedure.

For example, the G-path:-

E’E((A,B);(A,C))*&d

path (B ; (D,E) ; C)* end

has the following abbreviated simulating net:-

(The places are labelled with numbers so that they may be

jidentified with the rows of the incidence matrices below.)

The incidence matrices corresponding to this net are:-

forwards matrix backwards matrix initial
place
transitions transitions marking
A BCODE AABCTODE (mark)
1 0 1 0 0 O o 1 01 0 0 1
2 1 01 0O 1 01 0 0 O 0
3 0 1 0 0O O 0O 0 01 0 O 1
4 0 0 0 1 1 O 01 0 0 O 0
5 0 01 0O 0 0 0 0 1 1 0

The incidence matrices have two columns corresponding to

172,

the procedure A, The array of bits called mark is initialized
with the initial marking and will be used to hold the current

marking of the simulating net.

Each synchronized procedure has a prologue and an epilogue
which corresponds to the controller. The prologues and epilogues

are shown below.

Each procedure has a local constant 'semaphore_of_procedure'
which is the index into the array of semaphores S of the
semaphore which will be used to delay processes executing that
procedure until the synchronization specification permits the
procedure to be executed. The array of constants called 'column'
are indices to the columns in the—forwards and backwards arrays
which correspond to that procedure, Where an array is indexed
by* this is meant to imply that a whole column from a two
dimensional array is to be used. The operations complement,

and, xor and or are logical operations on vectors of bits.
The prologue of a procedure is as follows:-

begin (comment start of prologue)

constant index semaphore of procedure = k;

constant index array (1 :: number of columns for_this procedure)
column = (v1, v2, ..., vr);

index j;

index n;

logical found;

start:found:=false; n:=1;

(comment for each element in column)

173.

while = found and n < r do

if complement(mark and forwards(*,column(n))) =0

then found:=true else n:=n + 1;

if found then begin (comment change mark)
mark:=mark xor forwards(*,column(n));

end

else

begin (comment wait until procedure may be executed)
V(mutex);
P(S(semaphore of procedure));
(comment on awakening, calculate new mark)

go to start;

end;

j:= schedule_from(mark,forwards,S);
if j = O then
begin (comment no further processes to awaken)

V(mutex)

end
else

begin (comment awaken process and leave it in a critical
section)
v(s(i));
end;
(comment rest of prologue and procedure body; n still
has the value of the index of the element of column

which was used to alter mark)

174,

The procedure 'schedule_from' chooses a value i which is an index into

the semaphore array S such that:-

S(i) <« 0 (that is, there are processes waiting to complete
P operations on that semaphore)
and
(complement(mark) and forwards(* , m)) =0
where m is the index in the forwards mat;ix of a column corresponding

to the procedure which is associated with semaphore S(i).

Thus,the value i chosen corresponds to a procedure for which a
process is waiting and which the present marking of the simulating net
permits to be executed. There may be several values of i possible, and
the one chosen will be dictated by a scheduling policy. If no i can

be found to satisfy the relationship, a value of O is returned.
The epilogue of a synchronized procedure is as follows:-

(comment epilogue of procedure)
P(mutex);
mark:= mark or backwards(*,column(n));
ji= schedule_from (mark,forwards,S);
Af §=0 then
begin (comment no process to be awakened after the
completion of this procedure)
V(mutex)
end
else
begin (comment aweken process and leave it in a
critical section)
v(s(3));
end

(comment rest of epilogue)

end of procedure;
175.

The epilogue updates mark from the backwards matrix and invokes
%chedule_from'. The process which is awakened by the V operation will
test, at the end of the prologue that it is executing, whether further
processes are allowed to continue as a result of the new value of mark.
This feature of the controller is required in order to permit the

parallelism which G-paths allow (see the example below).

Example of the implementation.

The G-path given earlier will be used to illustrate the
implementation mechanism. The following set of procedure executions

may occur:-

Initially, mark has the value:- (1 o0 1 0 0).
Suppose that the prologue of procedure B is executed by a process.
The value of the complement of mark is:- (0O 1 0 1 1).
The value of forwards(*,column(n)) for that
procedure vhen n=1 is:- (t+ o1 0 0).
Thus, (0 1 0 1 1) and (1 0 1 0O 0) =0, and found will
be set to true. Since found is true, mark will be altered to the
value:-

(Y 0 1+ o o) 2a(3 © 1 9 0)
which is:- (0 o0 o 0 0).
The invocation of 'schedule_from' will return a value zero and

the process will leave the prologue, executing a V(mutex).

Suppose a process now executes the prologue of procedure A,
t he complement of mark is: 111 o1),
The value of forwards(*,column(n)) for n=1 is:-

(1 o 0 0 0).

and for n=2:- (0o 1 0 0 0).

176.

e R TR

Thus, both (1 1 1 1 1)and (1 0 0 0 0)

and (1 1 11 1)and (0 1 0 O 0O) are non-
zero and found will be false. Hence the process will execute
V(mutex) and suspend itself by

P(S(semaphore_index of_procedure A)).

Suppose another process executes the prologue of procedure D.
Then, (1 1 1t 1 1) and (0 0 0 1 0) is non-zero and the

process will suspend itself on P(S(semaphorq_index_ot_procedure_p)).

Finally, suppose the process executing procedure B begins to execute
the epilogue. The value of backwards(*,column(n)) for n=1 is:-

(o v 0 1 0),
and hence mark is given the value:-

(000 00)or(O0 1 0 1 0)

-

which is:- (o1 0 1 0).

The procedure 'schedule_from' may choose one of the two procedures

A and D to execute next. Suppose that it selects procedure A,

Then the epilogue will execute a V(S(semaphore_index_of_procedure_A))

and the process will finish executing the epilogue of procedure B.

The process which suspended itself in the prologue of A will
commence executing the prologue again., The complement of mark
is:- (1 o 1 0 1),
and the value of forwards(*,column(n)) for n=1 is;-

(1 0 0 0 0).
Thus, (1 0 1 O 1) and (1 O O O O) is non-zero. However,
forwards(*,column(n)), for n=2has the value:- (0 1 0 0 O0)
and (1 0 1 0 1)and (O 1 O O O0) is zero. Thus,
found will be set to true and mark will be updated to:-

(001 01 0)xr(0 100 0)

177.

which is:- (0 0 0 1t 0).
The process executing the prologue of A will now invoke the
procedure 'schedule from'. This will select the procedure D and
return the value of the index of the semaphore corresponding to
the procedure D. The process wi}l execute a

V(S(semaphore_index_of_procedure D)) and will continue

executing the procedure A,

The process which suspended itself in the prologue of D will
commence executing the prologue again. The complement of mark
is:- (1 1 1 0 1),
and the value of forwards(*,column(n)) for n=1 is:-

(0 0 0 1 0).
Thus, the value of (1 1 1 0 1) and (O O O 1 O0) is
zero and the process will update mark tobe:- (O 0 0 0 0).
This time 'schedule from' will return the value zero, the
process will execute a V(mutex) and will begin to execute the
body of the procedure D, perhaps simultaneously with the other

process executing the body of the procedure A,

Implementation of GE-paths using P, V multiple operations.

The implementation of G-paths can be simplified if the G-paths
are GE-paths; that is, composed of E-paths only. One particular
implementation for GE-paths uses the synchronization primitives

described by Patil (Patil, 1971).

Let a GE-path and a set of processes contain the procedure X,
Applying TR6.2 to the path and the processes will give the following

abbreviated subnet containing the transitions labelled X:-

178,

path * M s1!
s2

path / s2!
: : \\ //)

path sn ‘ . . sn'
process . ‘

process . .

In the above diagrams, places in the paths have been labelled
81,s2,,..,8n,81',82',...,sn'. Each transition X has one input place

from a process and n input places from the GE-path.

We shall define the P multiple operation which is written:-

Pm(st1,s2,...,50)

as the subnet:-

X
sl ‘ } —nd
s2
sn

process

When the P multiple operation occurs it removes a token from each of

the places labelled s1,s2,...,sn,

Each place in the GE-path corresponds to a 'semaphore', and the

179.

operation 'decrements' each of the 'semaphores' sl1,s2,...,sn
simultaneously. If any of s1,s2,...,sn are zero (that is, they have

no tokens on them in the diagram above), then the Pmoperation does not
occur immediately but waits until it may proceed. In the diagram above,
other transitions may remove tokens from sl1,s2,..., sn while the Pm
operation is waiting to occur. Hence, the P multiple operation does not
prevent other P multiple operations occurring and decrementing any

' semaphore' upon which it is waiting.

The V multiple operation written: -

Vm(s1',52',...,sn')’

is defined as the subnet:-

sn'

process

When the V multiple operation occurs, it places tokens on each of the
places sl1',s2',...,sn', In terms of 'semaphores', the V multiple
operation increments each of the 'semaphores' st',s2',...,sn'

simultaneously.

The implementation of the GE-paths uses a P multiple operation in
the prologue and a V multiple operation in the epilogue of the procedures
being synchronized. For example, the implementation could be written for

a procedure as:-

180,

procedure X:
begin
Pm(s1,s2,...,sn);

(comment, rest of prologue)
(comment, body of procedure X)

(comment, start of epilogue)
Vm(s1',s2',...,sn');

end;

The 'semaphores' and operations may be generated from the State Machine
simulating nets of the individual E-paths composing the GE-path in the

following way:-

1) Represent each place in the simulating nets by a wunique
'semaphore' initialized to zero if the place is empty, or

initialized to one if the place contains a token.

2) Por each given procedure appearing in the GE-path generate:-—
(i) a P multiple operation with, as arguments, the 'semaphores'
representing all the input places to the transitions labelled
by the name of that procedure,

(ii) a V multiple operation with, as arguments, the 'semaphores’
representing all the output places to the transitions labelled

by the name of that procedure.

For example, the individual state machine simulating nets of the GE-path
expression given for the cigarette smokers problem earlier in this

chapter are:-

181,

tobacco matches-smoker

paper-smoker

supplypt

supplytm match tobacco-smoker
N
.|
supplymp paper-smoker
supplypt paper tobacco-smoker
|
1

matches-smoker

supplymp

The places above have been labelled with the names of unique ‘'semaphores'.
From the net representation we would generate the following

implementation:-

semaphore sl1,s2,s3,s4,s5,s6,s7,s8,39;

sl:=84:=87:=1; 82:=83:=85:=86:=88:=89:=0;

procedures

supplytm: begin Pm(s1,s4); (body of supplytm); Vm(s2,s5) end,
supplypts begin Pm(a1,a7); (body of supplypt)s Vm(s2,s8) end,
supplypm: begin Pm(s4,s7); (body of supplymp); Vm(s5,s8) end,
match: begin Pm(s5); (body of match); Vm(s6) end,
tobacco: begin Pm(s2); (body of tobacco); Vm(s3) end,
paper: begin Pm(s8); (body of paper) ; Vm(s9) end,

matches-smoker:begin Pm(s3,89); (body of m-smoker); Vm(s?,s7) end,
paper-smoker: begin Pm(s3,s6); (body of p-smoker); Vm(sl,s4) end,

tobacco-smoker:begin Pm(s6,89); (body of t-smoker); Vm(s4,s7) end.

182,

Implementation of P and V Multiple Operations.

A simple mechanization of P,V multiple operations can be
made using a list structure, a critical section, P and V operations,
and a scheduling scheme, The list structure associates with each
P,V multiple operation 'semaphore' a queue of items representing
requests for Pm operations to be performed on that 'semaphore'.
The suspended Pm operation on a set of 'semaphores' is represented
by a Pm operation request in the queue of each of these 'semaphores’.
Processes are actually suspended using their own private semaphore
and the location of these are also included in the items on the
queues for the 'semaphores'. The critical section is used to
synchronize modifications to the list structure. A scheduling
decision must be taken when a Vm operation increments a 'semaphore'

upon which processes are waiting.

We shall not describe further the details of this
implementation because we have already shown that an implementation

exists for G-paths.

183,

6.6 A DESCRIPTION OF PETRI NETS BY G-PATHS.

GE-paths, although only a subset of the G-path notation,
are nevertheless a very convenient and powerful method of
describing synchronization, To illustrate this, we will show
that GE-paths can be used to describe a class of General Petri
nets., We will use the following definition to help us describe

this class:-

A Petri net is well-connected if and only if:-

1) Every transition has at least one input and one output place (2.6).
2) Every place is an output, but not an input, place of at

least one transition.
3) Every place is an input, but not ar output, place of at

least one transition.

For example, the following Petri net is not well-connected:-

L D>

In the above net, the marked place is an output place of one

transition, that which is labelled X. However, it is also an
input place of X, and hence the net is not well-connected.
Similarly, the unmarked place is an input place solely of the
transition Z, but it is also an output place of that transition,
However, a very similar net does exist which is well-connected:-

Y

Remarks: The first net could be regarded as an
abbreviation of the second well-connected net (see the
abbreviation 3a)., Thus, although the subclass of well-connected

nets may seem restrictive, & proportion of the excluded

184,

General Petri nets may be manipulated into the required form.

Theorem 6.3: A safe, well-connected Petri net can be
described by a GE-path whose simulating net will
generate exactly the set of actions generated by

that Petri net.

Proof: For the proof we shall describe a transformation
which will generate a GE-path from any given safe,well-
connected Petri net., We will then show that the
simulating net for such a GE-path generates exactly the

set of actions generated by the safe,well-connected net.
The transformation is as follows:-

Label each transition of the Petri net with a unique name,
For each unmarked place in the net:-

i1 r 01

i2 02

in Om
include the following E-path as a component of the GE-path:-

path ((i1,i2,...,in) ; (r1,r2,...,rk)* ; (01,02,...,0m))*end
For each marked place in the net:-

i1 ri 01

in Om

include the path:-

185,

path ((r1,r2,.,.,rk)* ; (01,02,..,0m) ; (i1,i,,,,,in))*end

(Note that once the place is marked, then the initial
transitions (2.6) of that place cannot fire and put another marker
on that place without the terminal transitions having fired in
this path expression description of the net. Hence, the
transformation only represents safe nets. In addition, the
transformation assumes that the net is well-connected. We shall
ignore the case of transitions which do not have an input place
or an output place. Consider the earlier example of a net which
is not well-connected:-

If we apply the transformation to it we obtain:-

path ((X,Y) ; X)*end

path ((1,2) ; Z)*end
However, this GE-path does not model the net above since the first
path permits further 'X's to occur after the occurrence of a 'Y’',

and the second path allows 'Z's to occur before a 'Y' occurs.)

We shall next show that the component E-paths of the

GE-path yield an equivalent net to the original net when translated

into a simulating net, The path:-
path ((i1,i2,...,in) ; (r1,r2,...,rk)* ; (01,02,...,0m)end

has the simulating net:-

The unmarked place and transitions are all identical to those of
the original net. However, we have introduced a new marked place
and additional arcs (the additional arcs are deshed in the diagram
above). The place and dashed arcs ensure that the unmarked place is
safe (the original net was safe) but do not affect in any way the
order in which the transitions il,i2,...,in or 01,02,...0m, or

rl,r2,...,rk may occur,
The path:-

path ((r1,r2,..,rk)* ; (01,02,...,0m) ; (i1,i2,...,in))* end

has the simulating net:-

This time an unmarked place is introduced. The extra arcs
are again distinguished by dashes., Using the same arguments as
before, we conclude that this net allows the same transitions to

occur in a similar order to the original net.

In generating the GE-paths from the original net we only

use the places and the initial and terminal transitions to those places,

187.

A given transition may have arcs to several places and this is
accounted for by the occurrence of the name of that transition in
as many E-path expressions within the GE-path expression., The
intersection transformation TR6.1 guarantees that on generating a
simulating net for a GE-path, the names of the transitions will be
inspected, and those which are iQentical used to recreate the
original transition.

Q.E.D.

Example: The safe, well-connected net:-

gives a GE-path:-
path ((B,A);D)* end (for the place labelled 1)
path (B ; D)* end . (for the place labelled 2)

path ((B,A);D)* end (for the place labelled 3).

The net is not live (2.4) because the firing of transition A

will prevent any other transition from firing. This is reflected
in the GE-path expression where one can see that the second path
expression only permits the procedure execution of B and D to
alternate, and the first path expression permits a D to be

followed by an A and then a further D (excluding B).
6,7 COMPARISONS BETWEEN PATH NOTATIONS.

To complete the discussion of General Path expressions we

shall compare them with the previous path notations.

188.

GE-paths and R-paths.

We may express the R-path:-

path (A ; B; A ; C)* end
as the following GE-path:-

path (A ; (B, C))* end
path (B ; C)* end.
However, there are R-paths for which a direct translation

into an equivalent GE-path is not possible. For example:-
path (A ; A ; B)*end
We will show that this corresponds to a difference in

declarative power between R-paths and GE-paths rather than any

difference in scheduling power (4.6).

From Theorem 6.3, any safe, well-connected Petri net can be
expressed as a GE-path. Thus, the synchronization of any R-path
which has a simulating net which is well-connected (all R-paths
have simulating nets which are safe by Theorem 5.3) may be

expressed by a GE-path.

Lemma 6.4: Any simulating net of an R-path may be transformed into

an equivalent well-connected simulating net.

23223; By construction, every transition of the simulating net
will have at least one input and one output place. Examine
each place in turn. If every place satisfies the conditions
2) and 3) for a place in a well-connected Petri net, then the
net is well-connected. However, if the net contains places
which do not satisfy conditions 2) and 3), then we can transform
them into the appropriate form by adding arcs, places and

transitions which are not live,

189,

Thus, suppose we have a place:-

We make the following transformation:-

The place resulting from the transformation is of the
required form, being an output (but not an input) place of one

transition and an input (but not an output) place of another,

Since these transitions are not live, they will not alter
the behaviour of the net., Hence, the simulating net of an
R-path may be transformed into a well-connected simulating

net,

Q.E.D.

Theorem 6.5: A GE-path may be written to express the synchronization

of any R-path,

Proof:. From Lemma 6.4, the simulating net of an R-path may be
transformed into an equivalent well-connected simulating net.
However, by Theorem 5.3 the simulating net of an R-path is
safe, Hence, hy Theorem 6.3, we may construct a GE-path
wvhich expresses the synchronization given by the safe,
vell-connected simulating net of the R-~path.

QoEoDo

190;

Example: The R-path:-

which may be transformed into the equivalent well-connected

simulating net:-

and may be written as the GE-path:-

path (t, ; t,)* end path (t, ; t,)* end

path ((t,,8;) 5 &)% end path (A (t,,%,)) * end

path (b, ; B)* end path ((B,t,) ; ¢,)* end

path ((b,,8,) 5 6,)* end path (%, ; t,)* end

path (t, ; b5)* end path (b5 ; ¢)* end

The GE-path written to express the synchronization of an R-path
.does not include any additional scheduling policy, and hence we conclude
that the scheduling power of synchronization of GE-paths is at least that

of R-paths, However, in the above example we have to include, in

191,

the GE-path, additional procedure names and these would require further
processes to invoke them. Hence, the declarative power of GE-paths is
insufficient to describe the synchronizetion given in an R-path. To
prove equivalence between the scheduling power of GE-paths and K-paths
it is sufficient to remark that in 6.5 we gave an implementation for

G-paths (which includes GE-paths as a subset) in terms of R-paths and
that the implementation did not involve any additional scheduling and all

conflicts of G-paths were expressed as conflicts of R-paths. That particular
implementation introduced additional procedures in order to express the
synchronization. In general, the declarative power of R-paths is
insufficient to describe the synchronization given in a GE-path. For
example, R-paths cannot express the possible simultaneous execution of

two different procedures by processes as in the GE-path below without the

use of some additional programming constructions:-

B)* end

path (A ;
path (A ; C)* end.

(Procedure B and C may be executed simultaneously by two different

processes.)

G-paths and R-paths.

Since R-paths are contained in the G-path notation we conclude

that the scheduling and declarative power of GR-paths 1s at least that

of R-paths. From 6,5, G-paths may be implemented using R-paths and

hence we conclude that G-paths and R-paths are equivalent in terms

of scheduling power. However, R-paths have insufficient

declarative power to describe GE-paths and hence we conclude that

G-paths have greater declarative power tian R-patis.

192,

GE-paths, G-paths and E-paths,

R-paths have greater scheduling power than E-paths (see Chapter
5) and we have seen that R-paths are equivalent to GE-paths and G-paths
with respect to scheduling power. Therefore we conclude that the
scheduling power of GE-paths and G-paths is greater than that of E-paths.
R-paths have greater declarative power than E-paths, but R-paths have
insufficient declarative power to describe GE-paths or G-paths. Since
E-paths are contained in both the GE-path and G-path notation, we
conclude that GE-paths and G-paths have greater declarative power than

E-paths.

GE-paths and G-paths,

Since both GE-paths and G-paths are equivalent in scheduling
power to R-paths, we conclude that G-paths are equivalent in scheduling
power to GE-paths. GE-paths are contained in the G-path notation,
and GE-paths have insufficient declarative power to describe R-paths
which are also contained in the G-path notation. Hence we conclude

that G-paths have greater declarative power than GE-paths.

6.8 SUMMARY OF GENERAL PATH EXPRESSIONS,

General path expressions allow the synchronization and
co-ordination of a given action to be specified simultaneously by
separate synchronization expressions. In particular, they permit
descriptions of synchronization which involve the possible
simultaneous or concurrent execution of different procedures by
processes and have a greater declarative power than R-paths and
E-paths, We have given several implementations of G-paths including

one using R-paths.

The synchronization specified by a class of safe General

193.

Petri nets can be described by means of a set of GE-paths which are
G-paths composed of Elementary paths. This would suggest that the
General path notation has sufficient scheduling power

to describe many synchronization problems. The equivalence between
R-paths and G-paths in terms of scheduling power implies that this

result also applies to R-paths.

194,

CHAPTER 7

ALTERNATIVE PATH NOTATIONS.

The path notations that were discussed in earlier chapters
were constructed using a regular expression or set of regular
expressions as a basis for specifying the synchronization., The
notations include sequence, selection and repetition and have the
characteristic that each action described in any individual expression
can only be executed by mutually exclusive processes, The remarks
which follow investigate other approaches to the specification of
synchronization by path expressions, for example, the use of
variables within a path expression and a different interpretation
of sequence, selection, and repetition which permits parallel
executions by processes of actions within an individual path,
Wherever possible, we shall outline the problems and benefits of

these alternatives and compare them with the earlier notations,
7.1 THE INCLUSIVE OR CONSTRUCTION.

The first construction we shall consider is the inclusive
or, represented by @. Informally, we define A & B to mean that
either the procedure A or the procedure B may be executed by a process
or both may be concurrently executed by different processes. The
inclusive or could be used in either E-path or R-path expressions
to increase their declarative power of synchronization. However,
such E-paths or R-paths cannot be directly represented as a state
machine because of the possibility of the simul taneous execution
of procedures by processes, The generation of a simulating net

for the construction is difficult and is complicated by special

195,

cases, For example, the path:-
path (A ; (B @ C) ; D)* end

could be represented by the simulating net:-

(Note the abbreviation for procedure calls to D in the above net.)

If the inclusive or is used within a selection, the simulating net
becomes very complex to construct. For example, a simulating net of

the path:-
path (A ; (BOC) , (DOEGF) ; G)* end

involves ten transitions representing the calling mechanism for G
if the simulating net is constructed in the same manner as the one
above., Further research is required to find a convenient mechanism

with which to define the inclusive or construction.

Implementation of inclusive or involves similar problems to
those described above for its definition. Using a similar scheme
to the one proposed in Chapter 6 to implement G-paths in terms of
R-paths, it is possible to describe an implementation for the @
construction. As an illustration of this implementation, we give
the R-path and corresponding procedures which would be required to

implement the example above:-

196.

path (A ; ((start B ;
((finish B ;
((start_C ; finish C ; D) , D))
(start_C ;
((finish B ; finish C),
(finish C ; finish B)) ; b))),
(start_C ;
((finish_C ;
((start_B ; finish B ; D) , D)),

(start_B ;

((finish_C ; finish B) ,

(finish B ; finish C)); D)))))* end;

procedure A : begin (body of A) end;

procedure B

begin start _B ; (body of B) ; finish B end;

procedure C : begin start C ; (body of C) ; finish C end;

~ procedure D : begin (body of D) end;

vhere start B, start A, finish A, finish A are declared as procedures

with null bodies.

However, such implementations of path expressions using the
inclusive or may generate very large R-paths if they involve the
possible simultaneous execution of many procedures by processes,
Finally, since paths involving the construction may be implemented

using R-paths, we conclude that such paths have the same scheduling

power as R-paths, and hence, by the results of Chapter

6, as G-paths,
7.2 THE SIMULTANEOUS EXECUTION CONSTRUCTION.

The simultaneous execution construction was introduced in the

197,

original path notation of Chapter 1 and by Campbell and Habermann
(Campbell and Habermann, 1974) as a useful programming tool. It provides
the following facilities (see examples in Campbell and Habermann):-
1) A means for specifying simultaneous execution of a given
procedure by several processes.
2) A counting facility which can be used in the synchronization
expression,

3) A limited ability to program priority within Path expressions.

Simultaneous execution is denoted by a bracket pair { 1
around an expression and allows as many instances of that expression
to become available to be executed as there are requests for it up
until the moment when all the instances which have been requested

have been completed (See chapter 1).

Simulating nets may be generated for E-paths
involving the simultaneous execution construction. For example,

the path expression:-
path (A; {B}; C)* end

has the simulating net:-

The transitions labelled t1,t2...tn and t1',t2',...,tn' represent the
flow of synchronization control for invocations of the expression

within the simultaneous execution., They are similar to the control

198,

mechanism of the R-paths for repeated procedure names and also

keep count of the number of concurrent executions of the procedure B.

We assume that sufficient of these transitions (that is,n) are

provided to meet the requirements of the program in which the

path is used. The occurrence of one of the transitions t1",t2"...,tn"
represents the condition occurring that all the instances of the
executions of B which have been requested have now been completed.

Lauer (Lauer, 1974) has also given a simulating net for the construction,
but both his net and the one given above are unavoidably clumsy

because of the necessity of describiﬁg a counting mechanism in

terms of a Petri net.

The implementation for simultaneous execution given by
Campbell and Habermann (Campbell and Habermann, 1974) may be easily
adapted to permit the implementation of E-paths and simultaneous
execution using counting semaphores and counters, Implementation
of simultaneous execution in GE-paths is more difficult, however
there are no major problems to such extensions. For example, the
controller described in Chapter 6 for GE-paths may be extended to
implement simultaneous execution by including counters and further
state information. However, the implementation given using P,V multiple
operations cannot be extended in this way. Implementation of
simultaneous execution in R-paths introduces problems of

representing non-determinancy. Consider the following R-path:-

path ({ A ; B; A} ;D)* end
If the procedures A and B have been executed by processes and another
process executes an A, then we require some mechanism to permit
either a B or a D to be executed, Implementations for simultaneous

executions used within R-paths require further research.

The use of the simultaneous execution with GE-paths allows

199.

certain well-connected General Petri nets which are not safe to

be described. For example:-

The General Petri net:-

can be described by the GE-path:-

path (B ; A)*end;
M ({ (B,C); D])*Ell‘_i;

path ({D ; C})*end;

The declarative power of the E-path notation when supplemented with
simultaneous execution is greatly increased because we can write
synchronization expressions which inveolve parallelism between
executions of the same action, and which involve primitive counting

facilities as, for example, when used to describe P,V operations on

counting semaphores:-

A type declaration for a counting semaphore:

lype semaphore;

path {V ; P} end;
operations P,V
endtype;

The type semaphore above may be used to declare instances of
semaphores initialized to zero. For semaphores initialized to

other values we should require additional notation to state the

200,

initial status of the path expression. The bodies of the P,V

operations are empty.

7.3 THE PARALLEL CONSTRUCTION.

Synchronization specifications permitting simultaneous
execution of procedures by different processes can be programmed
using General Path Expressions using the inclusive or construction,
or using the simultaneous execution construction. Another, more
direct, mechanism to specify the possible parallel execution of
actions is to use a parallel construction which is analogous to
the parbegin, parend construction found in Algol68 (Algol 68, 1968).

We shall denote the parallel construction by '||',

The expression:-
All B
specifies that the procedures A and B may both be executed, possibly
simultaneously, by one process.
The expression:-

(a4 |l B

..
(@]

specifies that a preeedure C eannet be executed by a precess until

the procedures A and B have been executed by processes. The path
expression:-

path (A ; (B || C) ; D)* end
specifies the same synchronization as the G-path:-

path (A ; B ; D)* end

path (A ; C; D)* end

and could be represented by the simulating net:-

B

201,

Further research is required to provide a formal definition for the
parallel construction when it is used within E-paths, R-paths and

G-paths.

E-paths and a limited Parallel Construction.

Because E-path expressions have less declarative power but are
simpler to implement tham G-paths and R-paths, there is an advantage
in considering extensions to this notation which will increase its
power without making the implementation more complex. One such
possible extension is to include within the E-path notation a
Parallel construction which is limited by the definition of the
notation to appear in E-path expressions only where a simple
implementation is possible, (A similar limitation was imposed upon
the repetition construction in Chapter 3.) For example, the path
expression:~

path (A ; (B || C) ; D)* end
has a simple implementation in the form of:-
semaphore s1,s2,s83,s4,s5; sl:=1; s2:=83:=s4:=85:=0;
procedures
Av begin P(n1)) (body of A)y V(sd); V(sd)end)
B: begin P(s2); (body of B); V(s4) end;
C: begin P(s3); (body of C); V(s5) end;
D: begin P(s5); P(s4) ; (body of D) ; V(s1)end;
The parallel construction must be limited in its use in an E-path
expression because cerlain expressions cannot be easily implemented.
Consider for example:-—
path (((A || B) ,C) ; D)* end.
The implementation will use different semaphores in the P operations

of the respective prologues of the procedures A and B, However,

202,

the prologue of procedure C must contain a P operation on both of these
semaphores, but it cannot decrement them simultaneously, Hence, we
have the possibility that a process executing procedure C may decrement
one of these semaphores, and that one of the procedures A and B may

be executed by a different process which decrements the other
semaphore., The result is that only one of the procedures A and B

may be executed and none of the procedures in the path expression

may be executed by further processes.

A suitable set of productions can easily be devised for the

E-path notation and parallel construction which define only those

expressions which may be implemented in the manner outlined above,

7.4 OPEN PATH EXPRESSIONS.

The purpose of this section is to give an example of a notation
which is different from those we have discussed earlier and is not
based on the regular expression. We will demonstrate that this
path notation has more declarative power than the E-path notation

and has an implementation,

The notation is called an open path notation because, unlike
the previous notationm, it will have no encloaing oritioal weotion.
Sequence and selection will differ slightly in meaning from their
earlier definition and the notation may specify the absence of
synchronization. In Chapter 1 we referred to associating path
expressions with type definitians, The open path expression would
permit language designers to enforce, as a necessary part of the type
definition in some language, a complete description of how every
operation on that type is to be synchronized, eliminating the risk

of a programmer overlooking some synchronization constraint.

Ve shall give a brief description of the notation, giving the

semantics and implementation together in the form of a transformation

203,

from the notation to P, V operations in the prologues and epilogues of
procedures., Procedure names are restricted (as in E-paths) to

occurring only once in any open path expression.

Example syntax of Open path notation.

P1: path ::= path 1list end
P2; list ::= sequence [, list]
p3: sequence ::=item [; sequence]
p4: item ::= (list)
| n:(1ist)

| {1ist}

| procedure name. For simplicity we shall not allow

nesting of simultaneous execution (again denoted {1).

Implementation of Open path expressions.

An open path expression can be implemented using P and V
operations on counting semaphores in the prologues and epilogues of
the procedures which are named by that path expression. The following
recursive algorithm will translate open paths into this implementation,
At esach stage of the algorithm the path expreasion yet to be
translated is labelled by the syntactic entity that it represents in
the production rules above. In general, the path expression to be
translated will be surrounded by two generated synchronization
operations O and OR which are on its left and right respectively.
may be null, a P or a PP operation. (To simplify

L
the algorithm two operations PP and VV are introduced which take

The operation O
three parameters, a counter and two semaphores. These operations

will be explained later in terms of P and V.) The operation 0R

may be null, a V or a VV operation.

204,

Stage 1) Replace path list end by null list null

(The first production does not introduce any synchronization.).

Stage 2) Apply the following set of transformation rules in the
order given by a parse of the path expression using the

production rules above,

a) Replace:- 0L sequence , list OR by: -

0L sequence 0R

and

OL list 0R

(The comma differs slightly from its use in E-paths in that it is
used as a distributive mechanism for the synchronization in which

it is embedded.)

b) Replace:- 0O item ; sequence Op by:-

0;, item V(s1)

P(s1) sequence 0R

and declare a counting semaphore s1 with initial value 0.

(The semicolon is used to introduce a sequence in almost the same
manner as for E-paths. The semaphore is a counting semaphore, and
the operations corresponding to OL and 0R may be null or PP, VV

operations as well as P,V operations.)

c¢) Replace:- 0L n: (list) 0R by: -

P(s2) 0L list OR V(s2)

and declare a semaphore s2 initialized to n,

(This construction permits up to n simultaneous executions by
processes of procedures in list, subject to the restrictions

imposed by the synchronization in which it is embedded.)

205.

d) Replace:- 0, { list} 0p by: -

PP(c,s,OL)F list VV(c,s,OR)
and declare a semaphore s initialized to one and a

counter initialized to zero, {(The simultaneous execution

construction is exactly that described in 7.2.)

e) Replace:- 0L procedurename OR by: -

procedure procedurename: begin

(body of procedure);

Op,

end;

The operation PP and VV implement the simultaneous execution
synchronization, Both operations share a counter C1 and a
semaphore s. The semaphore s is used to exclude more than one
process from changing the counter at a time (Campbell and Habermann,
1974). The PP operation increments the counter, the VV operation
decrements it., If the counter is increased from zero the
synchronization operation synch is invoked (see below), If the
counter is decreased to zero the synchronization operation

synch, is invoked.

procedure PP (counter c ; semaphore s; procedure synch):

begin P(s);

c: = c+l;
if c=1 then synch;

V(s);

206,

procedure VV (counter c ; semaphore s , procedure synch):

begin P(s);

c: = c-1;
if c=0 then synchl;

V(s);

The following example illustrates the translation of an
open path expression into its implementation. The translation
is represented as a tree. Each step of the algorithm corresponds
to a node in that tree and the synchronization operations which
have been generated up to a given step are written on either side

of the corresponding node,
The open path expression:- path 1.({ A ; B }) 3 C end
translates as follows:-

Eath end

null ; null

//\

null 1:() V(st) P(s1) C null

P(n2) {) V(ul) i V(n2)

PF(c,s3,P(s2)) ; VV(c,s3,V(s1);V(s2))
PP(c,s3,P(s2)) A V(s4) P(s4) B VV(e,s3,V(s1);V(s2))

The resulting set of procedure prologues and epilogues which
are created by part e) of the algorithm are written below in

program form:-

semaphore s1,s2,s3,s4; counter c;

sl:=s4:=U; s2:=83:=1; c:=0;

207,

procedure A: begin PP(c,s3,P(s2)); (body of A); V(s4) end

procedure B: begin P(s4); (body of B); VV(e,s3,(V(s1);V(s2))) end

procedure C: begin P(s1); (body of C); end

Execution by a process of procedure A will set semaphore s2 to
zero, semaphore s4 to one and the counter to one. Thus, further
processes may execute A and one process can execute B. When there
are an equal number of executed A and é procedures and no further
processes executing A the counter will have been reduced to zero
and semaphores s! and s2 set to one. C may now be executed by a
process. As many executions of C are permitted as have been groups

of simultaneous executions of procedures A and B.

Examples:
We shall illustrate the open path notation by examples.

The open path:- path 1: (write ; read) end
is equivalent to the E-path:- path (write ; read)*end

The open path notation is equivalent in power to P and V
operations, For example, we can include the following open path

in a counting semaphore type definition:-

path V ; P end
For a binary semaphore we would use:-

path 1:(V ; P) end

Some of the open paths which may be written contain redundancies.
For example, the open path:-

path 8:(A ;12:(B) ; C) end
is equivalent to:~ path 8:(A ; B ; C) end

The counting facilities inherent in the notation can be utilised

208,

in much the same way as the counting facilities of counting
semaphores. For example, we pose the following resource allocation

problem: -

Let 10 buffers be shared amongst 3 sets of processes

A,B and C. To ensure progress in the 3 sets of processes

we ensure that each set of processes has a minimum number of
buffers it can always claim from the pool. However, to
accommodate heavy demand, further buffers may be allocated

to a set of processes which need them, providing that this
does not interfere with the basic requirements of the other
two sets of processes. The minimum requirements for A,B and C
are 2,3 and 1 buffers respectively. One method, which ensures
that these minimum requirements are guaranteed, places an
upper bound on the use of buffers by each set of processes
such that the sum of the upper bounds for any two sets leaves
the minimum number of buffers available to the third set.

Such a set of maximum bounds for A,B,C are 4,5 and 3,respectively.

The path expressions must synchronize the use of the buffers so that

neither are the upper bounds exceeded, nor are there more buffer

requests than buffers available. Such a path is:-

path 10:(4:(getbufferA;releasebufferd) ,
5: (getbufferB;releasebufferB) ,

3: (getbufferC;releasebufferC))end

where getbufferA is a procedure which allocates a buffer to the set
of processes A and releasebufferA returns the buffer to the pool.

The implementation of such a path for theactions getbufferA

209.

and releasebufferA is:-

procedures
getbufferA: begin P(s2);P(s1);(body of getbuffer); V(s3); end,

releasebufferA: begin P(s3);(body of releasebuffer);V(s1);V(s2) end

where s1,s2,s3, are semaphores initialized to 10,4,0 respectively.

Summary of Open paths.

Open paths give an alternative to the path notation we gave
earlier and show that such alternatives exist. The notation is
as powerful as that of Chapter 1, and can describe counting semaphores
in a simple and economical way. In addition the counting facilities
may be used as a programming tool as was shown in the last example.
The notation illustrates the more general nature of the sequencing
and selection constructions and forms a more natural basis in which
to embed the simultaneous execution construction since in this notation
the "simultaneous execution of expressions" is the general case

and critical sections become special cases,

7.5 POSSIBLE MODIFICATIONS TO THE SELECTION AND REPETITION

CONSTRUCTIONS.

Within the framework of the path notations of Chapters 3, 5
and 6 we can modify selection and repetition to produce additional
ability to describe synchronization. The first such modification
is to allow the execution of one procedure, by a process, to be
given precedence over the execution of another procedure,by a
different process,in a selection. We develop this scheme by
introducing into the selection a choice mechanism based on the

values of variables. Finally, we apply the same scheme to

repetition,

The motivation for this section is the idea of developing

210,

a path notation which has the control constructions which are
commonly found in conventional programming languages like Algol,
This would pemit a great flexibility in the programming of
synchronization, and we will show that, provided certain restrictions

are made, such notations may be practical.

A Precedence Construction.

The precedence construction, denoted by >, may be used in
a path expression wherever the comma, used to denote selection,
may be used, A > B is a path expression which denotes that there
is a selection to be made between the execution of A or B by
processes such that if both procedures have been invoked, then
the execution of procedure A will have precedence over that of
B. Implementations for path expressions containing the precedence

construction can be devised.

For example, if the precedence construction is used with
E-paths and the E-paths are implemented using the scheme

given in 3.5, then the following implementation may be used:-
Consider the path expression:-
peth (A> B)* end
This may be implemented as:-

procedure A: begin P(s); (vody of A); V(s) end

procedure B: begin P(s1); P(s);(body of B); V(s); V(s1) end

where s and s1 are semaphores initialized to 1., Only one
process invoking procedure B may compete to execute P(s)
against any number of processes requesting A. Assuming
that the scheduling mechanism for the processes waiting on

semaphore s is a first in, first out queue, precedence will be

211,

granted to processes invoking the procedure A. This
implementation for the precedence construction may be extended
to cover situations where precedence is expressed between

three or more procedures, as in:-
path (A > B > C)*end

vhich has for its implementation:-

procedure A: begin P(s);(body of A);V(s) end;

procedure B: begin P(s');P(s);(body of B);V(s);V(s'); end;

procedure C: begin P(s");P(s');P(s);(body of C);V(s);V(s');V(s") end;

Further research is required to obtain a formalism of the notion
of precedence which is applicable to path expressions. This would
then allow implementations to be assessed with respect to whether they
implement precedence correctly, and permit the measures of absolute
and declarative power of synchronization of path expressions to be

applied to path notations containing precedence constructions.

Selections with a Boolean control mechanism.

To increase the versatility of the path expression and to make
it more analogous to the traditional programming language we could
allow the selection construction to include a control mechanism
analogous to the if, then statement of Algol (Algol 68, 1968).

The construction described below has similarities to Dijkstra's
Guarded Commands (Dijkstra, 1975). Each element of a selection may

be prefixed by a 'guard' consisting of an expression which may be
evaluated, without side effects, to a boolean value. A selection

is made by choosing one of the components of the selection whose guard
is true and which has been invoked. A component of the selection with

no guard is regarded as having a guard which is true. A possible

212,

production to define this construction is as follows:-
selection ::= boolean expression | element [, selection]

Example: path (a> 0 | read, a < 10 | write)* end
describes the synchronization for a buffer which may
store 10 messages. The value of a gives the number

of messages which have been written but not yet read.
We shall impose the following constraints upon the guards:-

1). The guards of a selection are evaluated by the epilogue
of the procedure whose execution leads to the selection
taking place. This prevents the continuous evaluation of
the guards.

2). The procedures of a Guarded path may only be executed
by mutually exclusive processes. Problems would arise if
variables in the guards could change during the evaluation
of the guards in an epilogue,

3). The variables composing a guard may only be changed
within a procedure belonging to the path expression in
which they are used as a guard, This ensures that 2) is

effective,

Example A:

Consider the problem of allocating buffers to the three sets

of processes described in 7.4. The problem may be programmed as:-

1lype allocator;

integer countA,countB,countC; integer available;

countA:=countB:=countC:=0; available:=10;

path (available > o'l (countA <=4 | getbufferA ,
countB «=5 | getbufferB ,

countC <=3 | getbufferC)y

213,

countA > O | releasebufferA ,

countB > O | releasebufferB ,

countC > 0 | releasebufferC)* end;
procedure getbufferA: begin countA:=countA + 1;

available:=available -1;

end;

Erocedure releasebufferA: Dbegin
countA:=countA -1;

available:= available + 1;

. end;

operations getbufferA,getbufferB,...,releasebufferC

endtype;

This example illustrates guards which are nested. A getbuffer
operation can only be performed by a process if the set of
processes to which it belongs has not exceeded the maximum

number of buffers the set is allowed, and if there are buffers

available.

The guards for a given selection must always permit one of the
possible choices to execute otherwise the path may result in

permanently blocking processes. Implementation could be accomplished

by a similar use of tables of incidence matrices or State machines
as described in the implementation of R-~paths and GE-paths and
GR-paths. To be executed, a procedure must be a possible action
that can occur at that moment according to the tables, it must have

been invoked, and must have the relevant guards controlling its

214,

execution set to true.

Repetition with a Boolean control mechanism.

In a similar manner to the modification made to selection

we can place a guard to control repetition. Whilst the
guard is true, repetition is permitted to occur. A syntax for the

repetition could be:-
while (boolean expression) do element

where element is a subexpression of the path expression, and the

boolean expression has the same properties as the guard of selections.

Example:

A writer may deposit k messages into a buffer. Each of these
messages must be read by reader processes which accept only one
message at a time, K may be of any size. The following type

implements the synchronization:-

type distributor;
integer size; size:=0;

path(deposit ; while size > O do remove)* end;

procedure deposit (accepts integer value k,. . .):
size:=k; (deposit messages);
end;

procedure remove:
size:=size-1; (removes message);

end;

—?

215,

operations deposit, remove
endtvpe;

A process may execute deposit, passing the procedure a
parameter k which is the number of messages it is depositing,
Further deposits cannot be uniade until these messages are
removed by remove and size has retgrned to zero, allowing the

repetition to terminate.

Implementation of this repetition construction can be done using
the same mechanism as that for selection. The element to be
repeated is represented as having the boolean expression as a
guard; the following sequence after the repetition has a guard

which ig the negation of the boolean expressione

Summary of modifications to selection and repetition constructions.

The modifications we have suggested are simple compared with the
numerous possibilities that may be tried. With such constructions
care must be taken to prevent deadlocks arising from erroneous
values of the guards. The constructions provide a greater declarative
pover to the programmer using path expressions and p;ovide a greater
flexibility. The use of variables to control the flow of execution
through a path expression allows much information to be recorded
in the variables instead of incorporating it in some possibly
large regular expression description of that information embedded
in the path, Further research is required to establish the impact

of such path notations on programming, and in particular whether

such programs are readily comprehensible.

216,

7.6 SUMMARY OF ALTERNATIVE PATH NOTATIONS.

The purpose of this cﬁapter has been to illustrate that the
path notation we have described is not unique and that there are
many possible variations. Sohe of the variations are based upon
adding additional constructions to the path notation described earlier,
Amongst these, the parallel construction and the simultaneous
execution have implementations when used with E-paths. Open paths
demonstrate that there are other appropriate forms for expressing
synchronizationbesides the regular expression based ones we have
described in earlier chapters. Modifications were suggested to
the selection and repetition construction and it was shown that
path notations could be devised in which variables play an important
role in the control of the synchronization of processes. This
would allow greater freedom of expression than earlier path
notations, but would involve greater complexity, additional error
situations and a more complex implementation. In all the
modifications and suggestions made in this chapter, the result has
been to alter the declarative power of the individual path
notations. Little attempt has been made to measure the scheduling
or declarative power of these suggestions and this is a subject
for future research. Finally, the Petri net model of a path
expression is difficult to extend to other path notations vhich
involve concepts of counting. In our view this difficulty is
caused mainly by the lack of an abstraction mechanism for Petri

nets which eliminates unnecessary detail.

217,

CHAPTER 8

CONCLUSION.

Path notations are a new method of describing synchronization
which provides a clear and structured approach to the description
of shared data and the co-ordination of communication between
concurrent processes. This method is flexible in itg ability to
express synchronization and may, for example, be used in a form

equivalent in synchronizing capability to P and V operations (see

Chapter 1).

The path expression describes synchronization between
executions of procedures by processes. It is a statement of all
permissible sequences of executions of the various procedures
named within it. When combined with our type definition, path
expressions provide a powerful tool with which to design shared
data objects. The type contributes the protection necessary to
avoid carefully designed synchronization schemes being upset
by processes directly accessing the data. The type also collects
together in one place all the implementation details of a shared
object, and provides operations by which a user can manipulate
the shared object. The path expression specifies the synchronization
constraints needed to ensure the successful sharing of an object
through the use of these operations. These constraints are
expressed directly as permissible sequences of the operations and
procedures which implement the type. This form of expression, in
terms of whole operations or procedures, should be more readily

comprehensible than prior methods for the specification of

218,

synchronization constraints. It removes the necessity of describing
synchronization indirectly by embedding, within the text of the
procedures, operations on a primitive object with known synchronization
properties (for example, semaphores and P,V operations or conditions

and signals and waits).

Just as there are many programming languages for describing
processes, there are many possible path notations, and a choice of
any one of them will be dictated by the use to which it is going to
be put. A path notation based on regular expressions specifies
the possible sequences of actions which may be allowed to occur.
This form of expression has the advantage that, not only is it well
known and theory exists about its use, but it has a structure which
is easily learnt and used. Further, it is readily extendable by
the addition of other synchronization constructions and by
generalizations. The following results were obtained for path

notations based upon regular expressions.

E-paths: A path notation which has a simple implementation is
.described by a set of production rules. The state machine

cofresponding to the regular expression generated from the

productions is used to give a meaning to these expressions.
It is shown that such state machines may be specified by an
algorithm such that they are deterministic, strongly
connected and minimal, and that they have no two transitions
which share the same name. The restrictions imposed by the
E-path notation on the set of regular expressions of which
E-paths can be composed are sufficient to allow the

synchronization for a procedure described in such an

219,

expression to be implemented by means of a P operation in

the prologue and a V operation in the epilogue of that
procedure. Ve have given a model for the interaction
between E-paths and processes and shown that the implementation
of E-paths is correct with respect to this model. In addition
the model was used to help establish an equivalence relation
between the scheduling power of a semaphore notation and E-vaths,
Finally, we gave a syntactic criterion which, fér a class of
paths and processes, was shown to be a necessary and

sufficient condition to detect deadlock. This class is very
restrictive, but does suggest that it might be possible to
detect certain deadlocks using such syntactic criteria

during the design and compilation of programs.

R-paths: R-paths are path expressions based upon an unrestricted
regular expression specification of synchronization. We gave
a model for the interaction between R-paths and processes,
and R-paths were shown to have simulating nets which are safe
and belong to the class of Simple Petri nets. This model was
then used to introduce a new synchronization primitive in
terms of which R-paths could be implemented simply. Another
implementation was given in greater detail which describes
a mechanism involving P,V operations, state tables and
scheduling. It was shown that R-paths have greater scheduling

and declarative power than E-paths.

G-paths: The G-path notation allows simultaneous description

of the synchronization of an action by several path expressions,

each constructed from a regular expression. This permitted

220,

a synchronization specification to be factored into
sequential components. Parallel execution by processes

of different procedures named by this synchronization
specification is possible if mutual exclusion is not implied
by the synchronization constraints taken as a whole. G-path
expressions are, however, more conceptually complex. For
example, a G-path composed of R-paths may have dynamic
properties. A procedure execution may be constrained by a
particular synchronization specification of one of the
constituent regular expressions of a G-path. It may also be
controlled by one out of several alternative synchronization
constraints in another regular expression of the G-path. A
model for the interaction between G-paths and processes was
given, and G-paths were shown to have simulating nets which
;re safe and belong to the class of General Petri nets. A
syntactic criterion for detecting deadlock in a class of
G-paths and processes was given, although again it is very
restriciive. We gave an implementation for G-paths in

terms of R-paths and it was thus shown that R-paths are
equivalent to G-paths with respect to scheduling power. The
second implementationwas given in more detail and uses
incidence matrices of the abbreviated simulating net of the
G-path, scheduling and P, V operations. Impiementations

of G-paths can be simplified if these G-paths consist only
of constituent E-paths. We gave an implementation of
GE-paths based upon the model of G-paths.and processes

using a synchronization primitive first described by Patil.

Path expressions may be based on more complex forms of expression than

regular expressions:

221,

Open path iotation:

Open path expressions specify the synchronization constraints
for a set of procedure executions, some of which may be concurrent.
A set of processes may not only execute different procedures in an
open path concurrently, but, unlike procedures synchronized by G-paths,
they may execute the same procedure concurrently. The
programming of synchronization with this mechanism is different in
approach to that used for path notations based upon regular
expressions. The occurrence of a procedure name in an oﬁen path
does not necessarily impose any synchronization upon executions of
that procedure by processes. Synchronization constraints are
imposed upon the executions of procedures by embedding them within
one of the synchronization constructions of the notation. Thus,
the approach to specifying synchronization by means of open path
expressions is based upon restricting the executions of procedures
to an appropriate form. However, the approach to specifying
synchronization by means of regular expression path notations is
based upon describing the possible sequence of procedure executions
wﬁich may be allowed to occur, and hence implicitly excluding those

which are not required.

Repetition and Selection with a Boolean expression control mechanism:

The guarded path notation is again very different from the
previous notations. The synchronization specification depends upon
the values of variables which may change dynamically with the
execution of procedures named within the path expression. In
previous notations we have attempted to isolate, as far as is
possible, the synchronization specification from the specification
of the processes. The use of these variables in the guarded paths
implies a stronger dependency between the specification of the

bodies of procedures and synchronization. The dependancy is,

222,

however, introduced in a strictly controlled manner and may be of
practical interest. Further research is required to investigate
such notations. In particular, the ideas proposed above and the
ideas proposed by Dijkstra would suggest that study of a unified
approach to the specification of processes and synchronization
(that is, the use of a similar notation for both) might yield

significant results.

We have introduced two measurements of the power of
synchronization of a path notation. The declarative power is a
quantitative measure and the scheduling power is a qualitative measure
of the synchronization which may be expressed by a path notation.

It is to be expected that a program or specification of a system
written using a path notation with a low measure of declarative
povwer will make frequent use of procedures whose sole purpose is

to allow further synchronization specifications to be imposed.
Similarly, programs and specifications of systems using a path
notation with a low measure of scheduling power may be expected to
contain scheduling (that is, predicates on the timings of processes).
Thus, the expected cost of using a path notation with poor declarative
power is an increase in the number of procedures which need to be
written, although this cost will be reduced if, for example, good
macro facilities arevavailable. The expected cost of using a path
notation with poor scheduling power will be the number of scheduling
algorithms which need to be written. However, this cost may be
irrelevant in, for example, programs written to interface software
with a machine and which will explicitly specify scheduling. In

addition, these costs may be offset by the expense of implementing

223,

path notations which are more powerful. We can summarize the
results of our analysis of path expressions with respect to power

by the following diagram. Bi-directional arcs represent equivalences,
and directed arcs represent a decrease in power following the
direction of the arrow. Results which have been demonstrated in,

or follow directly from, the thesis have been given solid arcs

and dashed arcs represent conjectures which have not yet been

established.

Declarative Power of synchronization.

GE-paths

GEo-paths

G-paths Eo-paths

“on SREREREE

Guarded paths

224,

Any scheme of co-operation and co~ordination amongst a set of
concurrent processes can be used provided that these processes
have the computational capability of a Turing Machine and there
exists some simple mechanism which will arbitrate between these
processes over the order in which they communicate with the mechanism.
The design of these schemes is not eas& and hence a variety of
standard systems have arisen for specifying synchronization.
Whether these systems have any practical value depends entirely upon
how readily people may use and understand these systems. At present
there is no reason to believe that P, V operations, monitors, or any
other systems yet devised represent the best solution, and it would
be presumptuous if we ceased research into other possible methods.
I have shown that path expressions are an alternative method, in

many ways more advantageous than preceding systems.

o Xe Y ~d

REFERENCES,

(Algol 68, 1968) Final Draft Report on the Algorithmic Language

(Bekkers, 1974)

(Brinch Hansen,

(Brinch Hansen,

(Brinch Hansen,

Algol 68.

Y. Bekkers, A comparison of two high level
synchronizing concepts. Report, Queen's

University Belfast, Computer Science Department, 1974,

1970) P. Brinch Hansen, Nucleus of a Multi-
programming System. CACM 13, 4, pp. 238-241,
April 1970.

1972) P. Brinch Hansen, Structured Multi-

programming. CACM 15, 7, pp. 574-578, July 1972,

1974) P. Brinch Hansen, Concurrent Pascal; A
Programming Language for Operating System
Design, Information Science Technical Report No. 10,

California Institute of Technology, April 1974,

(Campbell and Habermann, 1974) R.H. Campbell and A.N, Hatermann,

The Specification of Process Synchronization by
Path Expressions. Lecture Notes in Computer
Science (Editor G. Goos and J. Hartmanis),

pp. 89-102, V16, Springer Verlag, 1974,

(Courtois, Heymans and Parnas, 1971) P.J. Courtois, P. Heymans,

D.L. Parnas, Concurrent Control with "Readers"
and "Writers". CACM 14, 10, pp. 667-668,

October 1971,

226,

(Dahl, 1970) 0-J. Dahl, B. Myrhhaug and K. Nygaard, The Simula 67
Common Base Language. Norwegian Computing Center,

1970.

(Dijkstra, 1968a) E.W. Dijkstra, Co-operating Sequential Processes.
In Programming Languages, F. Genuys (ed.),

Academic Press, New York, pp. 174-186, 1968,

(Dijkstra, 1968b) E.W. Dijkstra, The "THE" Multiprogramming System.

CACM 11, 5, pp. 341-348, May 1968,

(Dijkstra, 1973) E.W, Dijkstra, Hierarchical ordering of sequential
processes. In Operating System Techniques,

ed, C,A.R. Hoare and R.H. Perrott, Academic Press,

1973.

(Dijkstra, 1975) E.W. Dijkstra, Guarded Commands, non-determinacy
and formal derivations of programs. CACM 18, 8,

PP. 453-457, August 1975,

(Habermann, 1972) A.N. Habermann, Synchronization of Communicating

Processes. CACM 15, 3, pp. 171-176, March 1972.

(Habermann, 1974) A,N. Habermann, On a solution and a generalization
of the cigarette smoker's problem., Tech. Report,

Carnegie-Mellon University, August 1974,

(Habermann, 1975) Path Expressions. Carnegie-Mellon Technical

Report, 1975,
(Hack, 1972) M.H.T. Hack, Analysis of Production Schemata by

Petri nets., Masters Thesis, MIT, February 1972.

227;

(Harary, 1969)

(Harrison, 1965)

(Hauck and Dent,

(Hoare, 1974)

F. Harary, Graph Theory. Addison-Wesley, Reading, 1969.

Introduction to switching and automata theory,

Mc Graw-Hill, New York, 1965,

1968) E.A. Hauck and B.A. Dent, Burroughs' B6500/B7500

Stack Mechanism. AFIPS, SJCC, Vol.32, pp.245-251, 1968.

C.A.R. Hoare, Monitors: An operating system structuring

concept. CACM 17, 10, pp. 549-557, October 1974.

(Holt and Commoner, 1970) A.W. Holt and F. Commoner, Events and

Conditions, Applied Data Research, New York, 1970.

(Hopcroft and Ullman, 1969) J.E, Hopcroft and J.D. Ullman,

(Lauer, 1972)

(Lauer, 1974)

Formal Languages and their relation to Automata.

Addison-Wesley, Reading, 1969,

H.C. Lauer, Correctness in Operating Systems,

Ph.D. Thesis, Carnegie-Mellon, 1972,

P,.E. Lauer, Petri nets with fewer tears ,

Unpubtlished manuscript, 1974.

(Lauer and Campbell, 1975) P.E. Lauer and R.H. Campbell,

Formal Semantics of a Class of High-Level
Primitives for Co-ordinating Concurrent Processes,

Acta Informatica, 5, pp. 297-332, 1975.

(Lautenbach, 1973) K. Lautenbach, Exacte Bedingungen der

Lebendigkeit fur eine Klass von Petri-Netzen.
Gesellschaft fur Mathematik und Datenverarbeitung,

Bonn, BMFT-GMD-82,1973.

228.

(Lautenbach, 1974) K. Lautenbach, Dual Aspects of Process
Co-ordination , Gesellschaft fur Mathematik

und Datenverarbeitung, Bonn, 1974.

(Lautenbach and Schmid, 1974) K. Lautenbach and H.A. Schmid,
Use of Petri nets for Proving Correctness
df Concurrent Process Systems. Proceedings
of the IFIP Congress 74, North Holland
Publishing Company, Amsterdam, pp. 187-19]

1974.

(Lipton, 1973) R.J. Lipton, On Synchronization Primitive
Systems. Ph.D. Thesis, Carnegie-Mellon,

June 1973.

(Myhill, 1957) J. Myhill, Finite Automata and the
Representation of Events, WADC Tech. Rept.,

pp. 57-624, November 1957,

(Parnas, 1975) D.L. Parnas, On a solution to the Cigarette
Smokers Problem (without conditional

statements). CACM 18, 3, March 1975.

(Patil, 1971) S.S. Patil, Limitations and Capabilities
of Dijkstra's Semaphore Primitives for
Co-ordination amongst Processes. Project
MAC, Computational Structures Group Memo

57, February 1971.

(Patil, 1975) S.S. Patil, An Asynchronous Logic Array, Project
MAC Technical Memorandum 62, M.I.T.,

May 1975.

229,

(Petri, 1962)

(Riddle, 1972)

(Shaw, 1974)

(Wegbreit, 1972)

(Wirth, 1971)

Kommunikation mit Automaten. Shriften des

IIM, Nr. 2, Bonn, 1962,

W. Riddle, The Modelling and.Analysis of

Supervisory Systems., Ph.D. Thesis, Stanford
University, March 1972.

A. C. Shaw, The Logical Design of Operating Systems,
Prentice-Hall 1974.

W. Wegbreit, B. Brosgol, G. Holloway,

C. Prenner, and J. Spitzen, E.C.L. Programmers
Manual. Center for Research in Computing

Technology, Harvard University, Cambridge,

Massachusetts, 1972,

N. Wirth, The Programming Language PASCAL,

Acta Informatica, 1, pp. 35-63, May 1971,

