
Constructing
Fail-Controlled Nodes
for Distributed Systems:
A Software Approach

Francisco Vilar Brasileiro

NEWCASTLE UNIVERSITY LIBRARY
094 51557 9

Ph.D. Thesis

University of Newcastle upon Tyne
Computing Science Department

May/1995

Abstract
Designing and implementing distributed systems which continue to provide specified ser-

vices in the presence of processing site and communication failures is a difficult task. To facilitate

their development, distributed systems have been built assuming that their underlying hardware

components are Jail-controlled, i.e. present a well defined failure mode. However, if conven-

tional hardware cannot provide the assumed failure mode, there is a need to build processing sites

or nodes, and communication infra-structure that present the fail-controlled behaviour assumed.

Coupling a number of redundant processors within a replicated node is a well known way

of constructing fail-controlled nodes. Computation is replicated and executed simultaneously at

each processor, and by employing suitable validation techniques to the outputs generated by pro-

cessors (e.g. majority voting, comparison), outputs from faulty processors can be prevented from

appearing at the application level.

One way of constructing replicated nodes is by introducing hardwired mechanisms to

couple replicated processors with specialised validation hardware circuits. Processors are tightly

synchronised at the clock cycle level, and have their outputs validated by a reliable validation

hardware. Another approach is to use software mechanisms to perform synchronisation of pro-

cessors and validation of the outputs. The main advantage of hardware based nodes is the mini-

mum performance overhead incurred. However, the introduction of special circuits may increase

the complexity of the design tremendously. Further, every new microprocessor architecture re-

quires considerable redesign overhead. Software based nodes do not present these problems, on

the other hand, they introduce much bigger performance overheads to the system.

In this thesis we investigate alternative ways of constructing efficient fail-controlled, soft-

ware based replicated nodes. In particular, we present much more efficient order protocols, which

are necessary for the implementation of these nodes. Our protocols, unlike others published to

date, do not require processors' physical clocks to be explicitly synchronised. The main contribu-

tion of this thesis is the precise definition of the semantics of a software based Jail-silent node,

along with its efficient design, implementation and performance evaluation.

Acknowledgements
"Mais foi tanto dos vaquero
qui reno no meu sertiio,
qui cantano um dia intero
num menajo todos niio."

Excerpt from Historia de vaqueiros by Elomar.

There are many people who, in one way or another, have helped me during the time this

work has been developed, and to whom I shall be forever grateful.

First of all, I would like to thank my supervisor, Dr. Neil Speirs, for the many technical

discussions we have had over the past three and a half years and for his comments on earlier drafts

of this thesis. A special dept of gratitude is due to Dr. Paul Ezhilchelvan, who gave me invaluable

guidance for the work on order protocols. I am also grateful for Paul's careful reading of some

important parts of this thesis. Further, I would like to express my gratitude to Professor Santosh

Shrivastava for his constructive criticisms and continuous stimulus throughout the development

ofthis work. It is my pleasure to acknowledge that part of the work onfail-silent nodes was devel-

oped in collaboration with Dr. Speirs, Dr. Ezhilchelvan and Professor Shrivastava.

Further thanks go to Sha Tao, Steve Caughey and David Black - fellow members of the

Voltan project; and to the staff of the Computing Science Department of Newcastle University;

particularly to Shirley Craig, for the tremendous work she does as the Department's librarian.

I am indebted to my colleagues at the Systems and Computing Department of the Federal

University ofParafba (DSC/UFPb) for coping with the extra workload during my absence. I can

only hope that in the years to come we will all profit from my experience at Newcastle University.

I should not forget to thank the support and encouragement I have received from my family

and friends in Brazil, and from the many new friends I have made whilst in Newcastle. Thanks

very much folks!

Last, but not least, I am sincerely grateful to the Federal University of Parafba which has

provided me with institutional support, and to the Brazilian National Research Council (CNPq/

Brasil) for their financial support (grant number 201601191-5).

II

Table of Contents

Abstract 1

Acknowledgements ii
Table of Contents .. III

List of Figures vii
List of Tables ix

1. Introduction 1

1.1. Designing Dependable Computer Systems 2

1.2. Fault Tolerance in Distributed Systems .. 4

1.2.1. Constructing Fail-Controlled Nodes. .. 6

1.3. Thesis Structure 9

2. Dependable Computer Systems 12

2.1. Introduction 12

2.2. Designing Fault-Tolerant Computer Systems 13

2.2.1. Specific Purpose Systems 17

2.2.1.1. Highly-Available Systems. .. 18

2.2.1.2. Long-Life Systems 20

2.2.1.3. Safety-Critical Systems 21

2.2.2. General Purpose Systems 23

2.2.2.1. Mainframes 24

2.2.2.2. Parallel and Distributed Systems 2S

2.3. Concluding Remarks 29

iii

3. Fail-Controlled Replicated Nodes for Distributed Systems . 31

3.1. Introduction 31

3.2. Constructing Fail-Controlled Replicated Nodes 34

3.2.1. Hard Nodes 38

3.2.2. Soft Nodes 44

3.2.3. Hard Nodes versus Soft Nodes 47

3.3. Voltan Architecture 50

3.3.1. System Model and Assumptions 50

3.3.2. Node Architecture 54

3.4. Concluding Remarks 61

4. Soft Failure-Masking Nodes. .. 62

4.1. Introduction 62

4.2. Reference Design .. 63

4.2.1. Standard Voter Protocol 63

4.2.2. Order Protocol with Synchronised Clocks 64

4.3. Efficient Order Protocols 69

4.3.1. A Protocol without Explicit Clock Synchronisation 71

4.3.1.1. Protocol Description 71

4.3.1.2. Protocol Correctness 82

4.3.1.3. Protocol Performance 85

4.3.1.4. Finite Upper Bound on It 85

4.3.2. Reducing the Protocol Stability Delay for TMR nodes 86

4.3.2.1. Protocol Description 86

4.3.2.2. Protocol Correctness 90

4.3.2.3. Protocol Performance 91

iv

4.3.3. An Early-Order Protocol for Nodes withfiff) Internal Channels 92

4.3.3.1. Protocol Description 96

4.3.3.2. Protocol Correctness 99

4.3.3.3. Protocol Performance 100

4.4. Node Overhead Analysis .. 10I

4.4.1. Voting Overhead 106

4.4.2. Ordering Overhead 101

4.4.2.1. Stability Delay 102

4.4.2.2. Intra-Node Message Traffic. .. 104

4.5. Concluding Remarks 107

5. Soft Fail-Silent Nodes 109

5.1. Introduction 109

5.2. Reference Design. .. 113

5.2.1. Comparison Protocol. .. 113

5.2.2. Order Protocol with Synchronised Clocks 115

5.3. Efficient Order Protocols " 117

5.3.1. Improving the Synchronised Clock Protocol 118

5.3.2. Order Protocol with Logical Clocks 121

5.3.3. Asymmetric Order Protocol 124

5.4. Comparison Protocols 130

5.5. Node Overhead Analysis .. 135

5.6. Concluding Remarks 138

6. Implementation and Performance Evaluation of Soft
Replicated Nodes 139

6.1. Introduction 139

v

6.2. Implementation Details 140

6.2.1. System Services 141

6.2.2. Communication Layer 145

6.2.3. Replication Layer 146

6.3. Performance Evaluation 149

6.3.1. Nodes Description 149

6.3.2. Experiments Description and Evaluation 151

604. Concluding Remarks 163

7. Reconfigurable Replicated Nodes 166

7. 1. Introduction 166

7.2. Reconfigurable Fault-Tolerant Systems 167

7.3. Constructing Reconfigurable Replicated Nodes 178

7.3.1. Constructing Reconfigurable Nodes from Fail-Safe Components 181

7.3.2. Improving Node Performance via Reconfiguration 184

7A. Concluding Remarks 186

8. Conclusions. .. 187

8.1. Discussion 187

8.2. Directions for Further Research .. 192

8.3. Concluding Remarks 193

Appendix A: Correctness Proof of Order Protocols. 195

A.I. System Assumptions, Definitions and Notations. 195

A.2. Proof of Correctness of the Protocol of Section 4.3.1 197

A.3. Proof of Correctness of the Protocol of Section 4.3.2 202

AA. Proof of Correctness of the protocol of Section 4.3.3 205

211References .

VI

List of Figures

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

Figure 3-8:

Stratus fail-silent node .. 39

C. vmp configuration. 40

C.vmp voter multiplexing circuit 40

FTP input dissemination circuit 42

SIFT architecture 45

Unreplicated 'server' 51

Replicated 'server' 52

Voltan node .. 56

Figure 3-9: Receiver process 58

Figure 3-10: Sender process 59

Figure 3-11 : Transmitter process 59

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 4-6:

Figure 4-7:

Figure 4-8:

Figure 4-9:

Figure 4-10:

Figure 4-11 :

Figure 4-12:

Voter process 64

Order process structure. .. 67

Order process for reference design. .. 68

Send primitive 73

Compensating the difference between the drift of clocks in an NMR 75

Time diagram for timeliness check Cl. .. 77

Update process for an order protocol based on logical clocks 79

Order process for an order protocol based on logical clocks 80

Broadcast process for an order protocol based on logical clocks 81

Diffuse process for an order protocol based on logical clocks. 81

Deliver process for an order protocol based on logical clocks 82

Compensating the difference between the drift of clocks in a TMR 87

Figure 4-13: Update process for TMR nodes 88

Figure 4-14: Broadcast process for TMR nodes 89

Figure 4-15: Diffuse process for TMR nodes 89

Figure 4-16: Update process for early-order protocol 97

VII

Figure 4-17: Broadcast process for early-order protocol 97

Figure 4-18: Diffuse process for early-order protocol 98

Figure 4-19: Deliver process for early-order protocol 98

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

Figure 5-8:

Figure 5-9:

Figure 5-10:

Figure 5-11 :

Figure 5-12:

Figure 6-1:

Figure 6-2:

Figure 6-3:

Figure 6-4:

Figure 6-5:

Figure 6-6:

Figure 6-7:

Figure 6-8:

Figure 6-9:

State transitions in a fail-silent node 110

Comparator process 114

Order process for synchronised clock based order protocol 116

Stability intervals 119

Order process for synchronised clock based order protocol with fifo
channels 120

Order process for logical clock based order protocol 123

Asymmetric fail-silent node 126

Follower's Receiver process 127

Timing process .. 128

Leader's Receiver process 129

Extended Voltan fail-silent node 133

Message comparison for follower processors 134

Structuring replicated nodes on a six-transputer network 140

The Active_Object class. .. 141

Active object derived class (Producer) .. 142

Active object derived class (Consumer) 143

Connecting active objects. .. 143

Interface of Queue and List classes 144

Interface of Message_Block class 145

Sender process for a two-processor fail-silent node 147

Sender process for a TMR node .. 148

Figure 6-10: Unreplicated node model 15 I

Figure 6-11: RRPO versus server processing time .. ISS

Figure 6-12: Node delay versus message size. .. 159

Figure 6-13: Node delay versus number of clients .. 161

Figure 7-1: Operating system structure of the SIFT system .. 168

Figure 7-2: Reconfiguration phases 169

Figure 7-3: Software architecture of the QuadFTP architecture 173

Figure 7-4: Background tasks of the QuadFTP architecture. .. 176

Figure 7-5: Using a pair of fail-safe processors to construct a 2-FMS node. 182

Figure 7-6: Using fail-arbitrary processors to construct FMS nodes 183

VIII

List of Tables

Table 2-1: Common error detection mechanisms for a mainframe 24

Table 6-1: Performance overhead for a client-server application on fail-silent nodes . .. 153

Table 6-2: Performance overhead for a client-server application on TMR nodes. 156

Table 6-3: Response latency and RRPO for a client-server application 157

Table 6-4: Performance overhead for TMR nodes containing a crashed processor. 163

Table 7-1: Local fault diagnosis .. 171

ix

Chapter 1
Introduction

Since their invention, computer systems have been designed to tolerate faults that may

occur on their components. Nevertheless, the reasons that have made computer system designers

introduce mechanisms for fault tolerance into their designs have changed considerably through-

out the years. Changes in the objectives and amount offault tolerance mechanisms added to com-

puter systems have been driven mainly by two factors: i) the evolution of the technology of com-

ponents; and ii) the introduction of new applications with new specification requirements to be

met.

High failure rates of components such as relays and vacuum tubes, used to build the first

generation computers in the nineteen forties and early fifties, made fault tolerance an overwhelm-

ing concern to the designers of those systems. However, the rapid evolution of components tech-

nology (e.g. transistors/core), which marked the beginning of the second generation of com-

puters, was responsible for a change in the direction of the evolution of fault-tolerant computer

systems. The reliability of components was considered to be sufficiently high for the require-

ments of existing applications, hence the need for any built-in fault tolerance mechanisms was

not sensibly felt [Avizienis 78]. Throughout the nineteen sixties and seventies, the specification

requirements of applications began to influence the design of fault-tolerant computer systems.

Applications such as control of life-support hospital equipment, flight control on commercial

airlines, control systems of high-speed trains, safety processes monitoring in industrial installa-

tions, launch of vehicles for space exploration projects, electronic telephone switching control

and satellite support systems, on which computer failure could place human life in danger or

cause heavy economic penalties, demanded a degree of dependability! [Laprie 89] which could

not be met by existent computer systems. Thus, parallel to the development of general purpose

computers, highly dependable specific purpose computer systems started to be developed [Hop-

kins et al. 78, Ihara et al. 78, Katsuki et al. 78, Rennels 78, Siewiorek et al. 78a, Siewio-

rek et al. 78b, Toy 78, Wensley et al. 78]. In the past sixteen years, mainly due to the ever in-

creasing number of applications whose specifications incorporate dependability requirements,

an increasing number of dependable computer systems have been designed and implemented

[FrCS 71-94]. Recently, with the development of parallel and distributed computer systems, de-

pendability has become a major concern not only in the design of specific purpose computer sys-

tems, but also in the design of general purpose ones.

1.1. DesigningDependableComputerSystems

Fault avoidance and fault tolerance are two complementary approaches for improving the

dependability of a computer system. In the first approach, the aim is to avoid the presence of faults

in the system. Fault avoidance techniques are mainly concerned with the manufacturing process

of the system, and the environmental conditions to which the system is exposed. The utilisation

of conservative design methodologies and high quality components in the manufacturing process

can considerably reduce the probabilities that the system will fail. Further, when the system is

operative, a close control over environmental variables such as temperature, power supply fluctu-

ation and human interference, can reduce even more the probabilities of a fault. Unfortunately,

I. Dependability as defined in [Laprie 89] is "that property of a computing system which allows reliance

to be justifiably placed on the services it delivers." It can also be understood as a global concept that en-

closes a number of attributes such as reliability, availability, maintainability, safety, integrity and secur-

ity. Each of these can be seen as a different perception of the same concept. For instance, in the context

of the control system of a nuclear power plant, where a computer failure could cause devastating social

and economic losses, dependability is better associated with system reliability, whilst in the context of

an electronic telephone switching control system, where failures which cause the system to become un-

available for a long period oftime are unacceptable, dependability is better associated with system avail-

ability.

2

extensive use of high quality components can impact the cost of the system immensely. Also, for

some computer systems, it is not possible to successfully control or even anticipate the operating

environment of the system. These two constraints reduce the feasibility of using fault avoidance

techniques as the only means of providing dependability for a large number of systems.

For a more general class of systems, a more flexible approach is to forecast possible faults,

and to introduce redundancy into the system in such a way that anticipated faults can be tolerated.

The goal of fault tolerance techniques is therefore to guarantee that the system provides its ser-

vice, with the required dependability, despite the occurrence offaults. Faults are tolerated mainly

by the introduction of redundant components that can take over the functionality of faulty ones.

Redundancy can also be introduced in the time domain, where faults are tolerated via redundant

computation on non-redundant components (e.g. mechanisms for tolerating transient faults [Ko-

petz et al. 90]).

Design decisions on which fault avoidance techniques to use and which fault tolerance

mechanisms to introduce into a computer system, so that it delivers its service with the required

degree of dependability, are subject to cost considerations. It is necessary to weigh the cost of

using such techniques and mechanisms against the cost of system malfunction, where system

malfunction is normally translated as incorrect computation and/or system downtime. As will be

seen in Chapter 2, the purpose of a dependable computer system is an important factor when de-

ciding which techniques and mechanisms are appropriate. The more information that is available

about the applications, the more accurate is the choice of techniques and mechanisms to be uti-

lised. Thus, one can state that designing dependable, specific purpose systems, where the char-

acteristics of the applications are likely to be known in advance, allows the evaluation of the de-

pendability costlbenefit relation of the system in a much simpler and more precise fashion than

when evaluating the same relation for a general purpose architecture, where little is known about

the comportment of applications.

In this research we present ways of providing dependable distributed systems with a fault-

tolerant processing infra-structure on top of which they can be more easily implemented. Hence,

in the next chapter, when discussing the design of various dependable computer systems de-

scribed in the literature, and studying how fault avoidance techniques and fault tolerance mechan-

3

isms have been used to implement such systems, we pay special attention to the case of depend-

able general purpose distributed systems.

1.2. Fault Tolerancein Distributed Systems

There are many reasons for the success of distributed computer systems. With the current

development level of microprocessor and communication technologies, a distributed computer

system composed of a collection of processing sites interconnected by a high-speed network can

offer a much better price/performance relation than a traditional centralised mainframe. In some

cases, a distributed system can even out-perform a mainframe, and becomes the only feasible

solution for applications which require high degree of performance. Also, applications which in-

volve spatially separated machines possess inherent distributed characteristics which can be cap-

tured more easily when those applications are to be developed within the framework of a distrib-

uted system. Finally, a carefully designed distributed system can potentially be more dependable

than a centralised one. To achieve greater dependability, the failure of an isolated processing site,

or a network connection, should have small impact, if any, on the operation of the system as a

whole.

Of course, distributed systems have also got their drawbacks. The difficulty in designing

and programming those systems can be regarded as one of their main problems. Ideally, program-

ming a distributed system should be no more difficult than programming a traditional centralised

computer system. This notion is reflected in the following definition of a distributed system from

[Tanembaum 92]: "A distributed system is one that runs on a collection of machines that do not

have shared memory, yet looks to its users like a single computer."

Aiming to achieve this desirable level of transparency, new programming paradigms such

as remote procedure call [Birrell-Nelson 84], atomic transaction [Lampson 81] and group com-

munication [Birman et al. 91] have been proposed. Fault tolerance is one of the many issues that

must be faced when designing such programming concepts. Supported by these new program-

ming paradigms, a number of distributed systems, ranging from distributed operating systems

[Kopetz-Merker 85, Accetta et al. 86, Mullender et al. 90] to distributed programming toolkits

4

[Shrivastava 89. Birman et al. 91], have been developed. All these systems incorporate. to a

great or a lesser extent. the notion of fault tolerance.

Experiences in constructing distributed systems which continue to provide specified ser-

vices in the presence of processing site and communication failures. have shown that designing

and implementing such systems is a difficult task. In a perfect world, one would like to construct

a distributed system using hardware components which are guaranteed to be either failure-free

or to have well defined failure modes. However. all hardware components must fail eventually.

possibly in an unpredictable manner. A sensible approach. taken by the designers of a consider-

able number of dependable distributed systems reported in the literature (e.g. [Bartlett 81, Ko-

petz-Merker 85, Shrivastava 89, Powe1l92, Birman et al. 91]), is to build their systems assum-

ing that the underlying hardware components of a distributed system are fail-controlled

[Laprie 89], i.e. present a well defined failure mode, and then build processing sites or nodes and

communication infra-structure that do indeed present the fail-controlled behaviour assumed.

The complexity of the fault tolerance mechanisms implemented at an upper software level

of a dependable distributed system reflects the assumptions made upon the underlying hardware

where the software is going to be executed. Many dependable systems reported in the literature

have been built under the assumption that they execute on nodes that fail safely [Laprie 89], i.e. a

faulty node will halt, rather than perform an unspecified transition. Nodes with this failure seman-

tics are referred asfail-safe nodes. Fail-stop nodes [Schlichting-Schneider 83, Schneider 84]

and fail-silent nodes [Bernstein 88, Shrivastava et al. 91, Shrivastava et al. 92, Webber-

Beirne 91, Brasileiro et al. 92, Reisinger-Steininger 93] are two representatives of this class of

fail-controlled nodes. Other systems assume that nodes are failure-free, hence they must execute

on nodes that are able to guarantee proper functioning for the entire duration of the mission of the

applications in question. Failure-masking nodes [Hopkins et al. 78, Wensley et al. 78, Siewio-

rek et al. 78a, Smith 84, Lala 86, Theuretzbacher 86, Shrivastava et al. 91, Shrivasta-

va et al. 92, Powell 92, Speirs et al. 93] form another class of fail-controlled nodes, which are

able to mask failures and therefore deliver proper service with arbitrary high probability.

On the other hand, the assumption of which failure semantics to use for the underlying

hardware depends not only on the hardware characteristics itself. but also. among other para-

5

meters, on the dependability requirements and the mission lifetime of the applications to be ex-

ecuted. If conventional hardware cannot provide, with sufficiently high probability, the failure

semantics assumed (for the duration of the mission of the applications they are executing), there is

a need to construct nodes which guarantee the required failure semantics. It has been observed

that 'off-the-shelf' processors do fail in an arbitrary way [Lala 86, Harper et al. 88]. Further-

more, for an increasing number of applications, the probability with which conventional pro-

cessors fail in an arbitrary way is high enough to rule out their utilisation as fail-controlled un-

derlying nodes for dependable computer systems.

In this thesis we present ways of using 'off-the-shelf' processors to construct nodes with

different fail-controlled behaviour. We discuss the design of both failure-masking nodes

(Chapter 4) and fail-silent nodes (Chapters 5), together with their implementation and perform-

ance analysis (Chapter 6). Then, in Chapter 7, we discuss the design of reconfigurable fail-con-

trolled nodes which possess characteristics of both failure-masking and fail-silent nodes.

1.2.1. Constructing Fail-Controlled Nodes

Constructing a fail-controlled node from components that can fail in an arbitrary way in-

volves necessarily the introduction of redundant components. One way to do this is by adding

to the design self-checking logic such as error detection codes, watch-dog timers, power supply

monitors, temperature monitors, etc. A problem with this approach is that achieving high error

detection coverage is normally difficult. Furthermore, there is an interval of time between the

occurrence of a failure and its detection by a checking circuit, during which the node can poten-

tially present an undesirable behaviour.

Both the degree of error detection coverage and the length of the detection delay depend

on the amount of redundancy introduced in the form of checking circuits. A great amount of re-

dundant components reduces the detection delay, and increases error detection coverage, but at

the same time increases the complexity and the cost of the node. In [Reisinger-Steininger 93] a

fail-controlled node based on the introduction of self-checking logic is presented, whose error

detection coverage is estimated to be better than 99% [Kopetz et al. 90]. The choice of the amount

6

and the kind of self-checking mechanisms introduced in that node is simplified by taking advan-

tage of an a priori knowledge of specific characteristics of the system.

Another approach is to couple redundant processors within a replicated node. A fail-con-

trolled replicated node is composed of a number of processors which fail independently. Com-

putation is replicated and executed simultaneously at each processor. By employing a suitable

validation technique to the outputs generated by the replicated processors (e.g. majority voting,

comparison), outputs from faulty processors can be prevented from appearing at the application

level. Error detection coverage in a replicated node is extremely high, since it depends exclusive-

lyon the design of a simple validation mechanism. Further, if the communication mechanisms

of the system ensures that information is validated before being used at the upper application

level, then damage is confined to the lower node level even when there is a substantial delay in

the detection of errors.

Distributed applications are normally structured as a set of tasks executing in parallel,

which do not share memory, and communicate only via messages exchange. Thus, replicated

nodes can provide an attractive solution for the problem of constructing fail-controlled nodes for

dependable distributed systems. A number of ways of constructing replicated nodes have been

reported in the literature [Hopkins et al. 78, Toy 78, Smith 84, Lala 86, Bernstein 88, Webber-

Beirne 91]. Those nodes are based on hardwired mechanisms to couple replicated processors

with specialised validation hardware circuits (e.g. comparator, voter). Processors are tightly syn-

chronised at the clock cycle level, and have their outputs validated at appropriate times by a reli-

able validation hardware. Another strategy, pioneered by the designers of the SIFT system

[Wensley et al. 78], is to implement fail-controlled replicated nodes by using software mechan-

isms to perform both synchronisation of redundant processors and validation of the outputs of

the node. Later in this thesis we discuss in more detail how replicated nodes following each of

these approaches have been designed and implemented.

The main advantages of the hardware based nodes are the minimum performance overhead

incurred, and the small impact that the architecture imposes on the software design process. How-

ever, there are also some problems with this approach. Firstly, individual processors must be built

in such a way that they have a deterministic behaviour at each clock cycle. This can rule out the

7

utilisation of 'off-the-shelf' processors, whose reliability is normally higher than specially de-

signed processors [Siewiorek-Swarz 92]. Secondly, the introduction of special circuits such as

reliable comparator/voter and synchronisation mechanisms increases the complexity of the de-

sign, which at an extreme can result in a decrease in the overall node reliability. Finally, every

new microprocessor architecture requires a considerable redesign overhead.

The advantages of the software based nodes are very much the converse of the drawbacks

discussed above. The absence of tight synchronism allows the utilisation of 'off-the-shelf' pro-

cessors. Further, by employing different types of processors within a node, there is a possibility

that a measure of tolerance against design faults in processors can be obtained, without recourse

to any specialised hardware assistance. Another advantage is that software protocols are much

more flexible than their hardware counterparts. Also, the fact that the redundancy management

protocols are implemented in software, allows the design ofthe underlying hardware to be made

much simpler and possible to scale. Finally, technology upgrades appear to be easy, as the prin-

ciples behind the protocols do not change, and software protocols can be ported relatively easily

to any type of processor (including those expected to be available in the future).

Unfortunately, these advantages do not come for free. The synchronisation strategy of soft-

ware based nodes normally imposes rules in the way that applications must be programmed,

which might increase the complexity and/or introduce limitations on the development of applica-

tions. Furthermore, the extra overhead in performance imposed by the execution of the redun-

dancy management protocols can be substantial. The first problem is less critical within the

framework of some of the solutions presented in the literature [Schneider 84, Schneider 90, Shri-

vastava et al. 91, Shrivastava et al. 92]. There is however, a major concern over the performance

overhead incurred by the redundancy management protocols. In SIFT, for instance, the overhead

associated with redundancy management can consume as much as 80% of the processor through-

put [Palumbo-Butler 85].

Hybrid solutions, which incorporate both tight synchronisation and software synchronisa-

tion mechanisms, have been proposed to reduce this overhead. MAFT [Kieckhafer et al. 88],

FTP-AP [Lala-Alger 88] and Delta-4 [Powell 92] are hybrid architectures which share the same

general structure. These architectures are structured around a tight synchronised hard core, on

8

top of which conventional processors are replicated. The tight synchronised hard core is respon-

sible for executing management functions, whilst application processes are executed at the upper

level replicated processors. The extra computational power delivered by the replicated pro-

cessors increases the throughput of the system, and provides all the advantages of the software

synchronisation approach; however, the underlying hard core re-introduces the problems asso-

ciated with tight synchronisation.

The work in this thesis investigates alternative ways of constructing efficient fail-con-

trolled replicated nodes based solely on the utilisation of 'off-the-shelf' processors (which can

fail in an arbitrary way, although restricted by authentication capabilities [Strong et al. 90]) and

software protocols to control system redundancy, without recourse to any specialised hardware.

In particular, we present much more efficient order protocols, which are necessary for the imple-

mentation of both failure-masking and fail-silent nodes. The precise definition of the semantics

of a software based fail-silent node, along with its efficient design, implementation and perform-

ance evaluation, are the main contributions of this thesis. Other contributions are:

i) design and implementation of efficient protocols for the construction of

software based failure-masking nodes;

ii) performance evaluation of software based fail-controlled nodes, which

indicates the feasibility of the utilisation of such nodes in a wide range

of applications; and

iii) proof of the possibility of constructing software based failure-masking

before stopping nodes composed solely of conventional processors,

without recourse to specialised hardware. (This proves false a conjecture

in [Shrivastava et al. 91], which argued the impossibility of constructing

such nodes.)

1.3. Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2 we study several fault-

tolerant computer systems, emphasising the impact of the purpose of the system on the decision

9

of the amount and kind of fault tolerance mechanisms used to provide systems with their required

dependability. We show how the design of fault-tolerant distributed systems can be simplified,

by assuming that the underlying processing and communication hardware possesses a well de-

fined failure mode. Then, in Chapter 3, we discuss how replicated nodes can be used as a means

of providing fail--controlled behaviour for the underlying processing hardware of a distributed

computer system. We analyse how redundant processors are used, and how redundancy is con-

trolled, in order to build nodes with different fail--controlled behaviour. Then, we compare the

hardware and software based approaches to the control of redundancy when constructing fail-

controlled nodes, highlighting the advantages and drawbacks of each approach. Finally, a general

model for the construction of software based fail--controlled nodes is presented.

The model presented in Chapter 3 indicates that the key issues to be tackled when designing

a software based replicated node are the provision of efficient protocols for ordering the messages

to be input by the node, and for validating the messages to be output by the node. In Chapter 4,

the design of failure-masking nodes is presented. Order protocols are studied in detail. [Shrivas-

tava et al. 92] presents a software based failure-masking node, which incorporates an order pro-

tocol based on having the replicated clocks of the node synchronised within a known bound. We

present new order protocols that do not need physical clocks to be explicitly synchronised. We

also take into account the characteristics of the nodes we are constructing to present order proto-

cols which are more efficient than the ones reported in the literature. The protocols presented are

then applied to the important case of a Triple Modular Redundant (TMR) node, where the per-

formance of the order protocols can be further improved. The correctness proof of the protocols

is sketched, and their performance is analysed. An extended correctness proof of the protocols

presented can be found in Appendix A.

[Shrivastava et al. 92] also indicates how a software based fail-silent node can be derived

from the failure-masking node presented in that paper. In Chapter 5 we show that the reduced

redundancy of fail-silent nodes introduces additional complications, particularly in the vali-

dation protocol (a comparison protocol), which, if not treated with due care, can lead the node

to present an unpredictable behaviour. We then define the precise semantics of a software based

fail-silent node [Brasileiro et al. 92]. A two-processor fail-silent node is the cheapest fail-con-

10

trolled node that can be constructed using 'off-the-shelf' replicated processors, thus we concen-

trate on the design of a two-processor fail-silent node, and introduce two new order protocols

for this node. Based on the insights gained whilst developing order protocols, we have designed

a comparison protocol that guarantees, with efficiency, the correct semantics of a fail-silent node.

The chapter is concluded with a discussion of this comparison protocol.

Chapter 6 is devoted to the discussion of the implementations of three-processor failure-

masking nodes (TMR nodes) and two-processor fail-silent nodes. Several versions of the nodes

have been implemented using the different protocols presented in Chapter4 and Chapter 5. A set

of experimental distributed applications was executed using the fail-controlled nodes as plat-

form, and the performance figures obtained for each implementation were analysed. The results

indicate the feasibility of using the nodes implemented for a wide class of applications.

Fail-silent nodes take the conservative approach of stopping as soon as a failure is detected.

On the other hand, failure-masking nodes are designed to survive a bounded number of failures.

However, this masking property can also hide the fact that failures have occurred and have re-

duced the fault tolerance capabilities of the node. When the masking capabilities of the node have

been totally degraded, a further failure can lead to catastrophic results. Thus, it is desirable to

design a fail-controlled node which could incorporate the safety property of fail-silent nodes,

as well as the survivability property of failure-masking nodes. In [Shrivastava et al. 91] the no-

tion of afailure-masking before stopping node (FMS node) is presented. Such a node should be

able to mask a number of failures up to a point where a further failure would potentially have

catastrophic effects. At this point the node should fail safely, thus avoiding the potential cata-

strophic effects of a further failure. In [Shrivastava et al. 91] the authors conjecture that it is not

possible to build such nodes from 'off-the-shelf' processors, which can potentially fail in an ar-

bitrary way. In Chapter 7 we discuss reconfigurable replicated nodes. We study how dependable

systems reported in the literature have incorporated reconfiguration as a means to improve sys-

tem dependability. We then show that the conjecture in [Shrivastava et al. 91] is false, by present-

ing the design of an FMS node composed merely of 'off-the-shelf' processors, without recourse

to any specialised hardware. Finally, in Chapter 8, we present our conclusions and directions for

further research.

II

Chapter 2
Dependable
Computer Systems

2.1. Introduction

Fault avoidance and fault tolerance are the two complementary approaches that can be

taken in order to provide a computer system with the ability of dependably delivering its specified

service. Fault avoidance techniques try to minimise the probability with which faults manifest

themselves within the system. On the other hand, the goal of fault tolerance is to guarantee that

the system provides its service with the required dependability, despite the occurrence of faults.

Fault avoidance techniques are mainly concerned with the manufacturing process of the

system, and the environment conditions to which the system is exposed. During the manufactur-

ing process, the dependability of the system is increased by means of conservative design

methodologies and the utilisation of high quality components. When the system is operative,

close control must be exercised over environment variables such as temperature, power supply

fluctuation and human interference, so that failure rates can be kept extremely low.

The basic principle of fault tolerance is the introduction of redundancy into the system. Re-

dundancy can be introduced in either time or resources. For instance, a processor which tolerates

transient faults by simply computing the same operation several times in succession (e.g. [Ko-

petz et al. 90]) is an example of fault tolerance attained through time redundancy. On the other

hand, a system that tolerates faults occurring on a bus by having a duplicated bus configuration

(e.g. [Bartlett 81]) is an example of fault tolerance achieved by means of resource redundancy.

12

Extensive use of high quality components has an immense impact on system cost. Further-

more, since most of the time designers cannot control or even anticipate the operating environ-

ment of the system, fault avoidance alone is not suitable for attaining the dependability require-

ments of a large number of computer systems. Thus, in the discussion to follow, we concentrate

on fault tolerance mechanisms, rather than fault avoidance techniques, as the main means of

achieving dependability for a more general class of systems.

2.2. Designing Fault-Tolerant Computer Systems

A computer system is composed of a number of components which are bounded together,

and interact in a well defined way to provide a specified service. The behaviour of a component

can be specified as a function of its internal state, the state transitions that it should perform, and

possible outputs that it should produce in response to specified input stimuli. A component failure

occurs when the behaviour of the component first deviates from its specification. A failure, there-

fore, can be attributed to either an erroneous transition, or to a sequence of valid transitions in-

itiated from an erroneous state. In both cases the system has experienced the manifestation of a

fault [Laprie 89]. To summarise, there is a cause/effect relationship that is represented by the

chain fault-eerror-efailure, and can be interpreted in the following way: the manifestation of

a fault can give rise to errors in the internal state of a component, which can lead to the failure

of the component. The ultimate intent of fault tolerance is to prevent failures in internal compo-

nents causing the system to fail in delivering its service. A fault-tolerant computer system is de-

signed to tolerate a finite and bounded number of failures that its components may suffer. Hence,

fault-tolerant systems must provide mechanisms to deal with both faults and errors, so that a fi-

nite number of failures of the components of the system do not cause the system to deviate from

its specified behaviour.

In [Lee-Anderson 90] four constituent phases of fault tolerance are identified. The first

three phases - error detection, damage confinement and assessment, and error recovery - are re-

lated to error treatment mechanisms, whilst the last phase is related to fault treatment mechan-

isms, and encompasses fault diagnosis and location, system repair, and continued system service.

It is worth noting that there is no strict order on the execution of actions associated with each of

13

the phases listed above, furthermore, in many fault-tolerant systems it is not always possible to

match a particular mechanism with a particular phase. Nevertheless the discussion of each phase

in isolation is useful to indicate to the reader how fault-tolerant computer systems are structured.

i) Error detection: fault-tolerant systems must first learn of the manifesta-

tion of faults before attempting to tolerate any fault it is designed to toler-

ate. Hence, fault tolerance mechanisms are usually triggered by the

detection of errors in the internal state of the system. This implies that

error detection mechanisms are a crucial issue in the design of many

fault-tolerant system. Replication, timing checks, reversal checks and

coding, form the set of most popular techniques to implement error

detection mechanisms (see [Lee-Anderson 90] for more details on these

techniques).

ii) Damage confinement and assessment: error detection mechanisms try to

attain the maximum possible coverage of error detection. There is how-

ever a detection latency delay, which corresponds to the interval of time

since the manifestation of a fault until the detection of an error caused

by that fault, during which, damage can be spread throughout the system.

The longer the detection latency, the greater the possibility and the extent

of damage proliferation. Therefore, although error detection mechan-

isms are capable of identifying the manifestation of a fault, they cannot

guarantee that all of the unwanted consequences of a fault are detected.

It is necessary to adopt strategies for damage assessment, before any

error recovery can take place. Damage is normally spread via the flow

of information (data and control signals), therefore damage assessment

must be based on assumptions about the structure of the system. In order

to have damage proliferation minimised, the system must be structured

in such a way that the flow of information is well defined and controlled.

iii) Error recovery: mechanisms for error detection and damage confine-

ment do not change the system in any way. Thus, these mechanisms alone

14

do not allow systems to actually tolerate faults and their consequences.

Hence, there is a need to introduce active mechanisms which modify the

system after an error is detected, such that the system is still able to de-

liver its service despite the manifestation offaults. Mechanisms to imple-

ment error recovery are concerned with the elimination of errors in the

system state. The basic idea behind error recovery is to transform an er-

roneous state of the system into a valid one, from which the system can

continue to provide its service. There are two basic strategies to imple-

ment error recovery mechanisms, namely forward error recovery and

backward error recovery. Forward error recovery tries to undo the dam-

age introduced by a fault into the system state, so that after recovery the

system state is the same as it would have been had the manifestation of

a fault not happened. Contrarily, backward error recovery mechanisms

are based on the restoration of the state of the system to a previously

known valid state.

iv) Fault treatment and continued system service: error detection, damage

assessment and error recovery mechanisms have the objective of ensur-

ing that any error introduced to the system due to the manifestation of a

fault is removed. This prevents the immediate danger of a failure. How-

ever, this may not be enough to ensure dependability, since those mech-

anisms only deal with the symptoms produced by the manifestation of

a fault, rather than with the source of the fault. Therefore, although in

some situations error treatment mechanisms can cope successfully with

faults (e.g. when the recovery mechanisms are powerful enough to deal

with recurring faults; or the future operation of the system avoids the

fault; or the fault is transient), in many other situations the recurrence of

a fault can cause the system to fail. This happens either because the fault

becomes more and more serious, or because the recovery operations de-

mand so much work to be carried out, that the system is unable to deliver

15

its proper service. Fault treatment mechanisms try to eradicate faults

from the system so that its service can be sustained, despite the manifes-

tation of faults. Fault location, components repair and system reconfigu-

ration are the main procedures associated with fault treatment.

Design decisions on the amount and type of fault tolerance mechanisms to introduce into

a fault-tolerant system are subject to cost considerations. It is necessary to weigh the cost of these

mechanisms against the cost of system malfunction, where system malfunction is translated as

incorrect computation and/or system downtime. In conventional mainframe systems, where only

a small number of applications have dependability requirements, the introduction of fault toler-

ance mechanisms is seldom cost effective. These systems normally rely on simple fault avoidance

techniques and only a very limited amount of fault tolerance mechanisms to increase their de-

pendability. On the other hand, in many safety-critical systems for instance, incorrect computa-

tion can lead to immense social and/or economical penalties, therefore these systems normally

incorporate a great deal of fault tolerance mechanisms. Moreover, as will be shown later in this

chapter, the actual mechanisms used by different systems vary considerably, depending on the

requirements of the applications executing on each particular system.

In this way, the purpose of a fault-tolerant computer system dictates the amount and the

goals of fault tolerance that must be introduced, such that the system can provide application pro-

grams with the degree of dependability they require. Also, the more information that is available

about the applications, the more accurate is the choice of which fault tolerance mechanisms to

use. In other words, designing specific purpose fault-tolerant systems, where the characteristics

of the applications are likely to be known in advance, allows the evaluation of the costfbenefit

relation associated with fault tolerance to be carried out in a much simpler and more precise

fashion than when evaluating the same relation for a general purpose fault-tolerant architecture,

where little is known about the comportment of applications.

Next we discuss the design of various fault-tolerant computer systems described in the lit-

erature, and study how fault tolerance mechanisms have been used to implement both specific

and general purpose fault-tolerant systems.

16

2.2.1. Specific Purpose Systems

Specific purpose fault-tolerant computer systems have been designed to cope with a diver-

sity of applications such as spacecraft control [Rennels 78, Larman 83], commercial aircraft

flight control systems [Hopkins et al. 78, Wensley et al. 78], process monitoring in industrial in-

stallations [Siewiorek et al. 78a, Siewiorek et al. 78b, Smith 84, Kopetz-Merker 85, Lala 86],

telephone electronic switching systems [Toy 78, Toy-Gallaher 83], on-line transaction proces-

sing [Bartlett 81, Bernstein 88, Webber-Beirne 91] and many others. It is possible, however, to

divide these systems into three distinct categories, each one possessing well defined goals.

The first category is composed of those systems whose applications require system's down-

time to be kept to a minimum, although a certain degree of incorrect operation is acceptable. For

instance, a typical requirement for a telephone electronic switching control system is that sys-

tem's downtime do not exceed 2 hours during a period of 40 years of system's operation, though

the interruption of a small number of on-going calls can be accepted. Those systems are therefore

classified as highly-available systems.

On the other hand, long-life systems form another category of system, whose applications

can sustain longer periods of downtime, provided that the system eventually delivers its correct

service. A main requirement of long-life applications is that they must survive their mission life-

time without the need of system maintenance. Unmanned spacecrafts control and submarine

prospecting, are examples of long-life applications where maintenance is either impossible or

too expensive, and where the correctness of the service delivered is crucial, although intervals

of unavailableness (e.g. due to system reconfiguration) are acceptable.

Safety-critical systems comprise the last category of special purpose systems. Safety-criti-

cal applications require that the system deliver its correct service with high degree of reliability,

since the effect of a malfunction can be catastrophic. A great many safety-critical systems are

associated with real-time applications, therefore, for those systems, recovery must be achieved

with little, if any, degradation on system performance. Commercial aircraft flight control, rail-

way switching control and industrial processes monitoring are examples of applications whose

requirements can only be met by safety-critical fault-tolerant computer systems.

17

2.2.1.1. Highly-Available Systems

This class of systems is represented mainly by telephone electronic switching control sys-

tems and on-line transaction processing systems such as airlines reservations and bank account-

ing. Those systems are normally structured around a basic error detection mechanism at the pro-

cessing unit, which can be realised either by self--checking logic based mechanisms or

duplication and matching mechanisms. Following the detection of an error, indicated by an inter-

ruption for instance, the processing unit is disabled. Error recovery is attained by a variety of

mechanisms which differ considerably from system to system. On the other hand, continued ser-

vice is generally achieved via the use of standby spares. Since there are no strict requirements

on the timeliness with which the service is provided, a performance decrease whilst recovery and

reconfiguration are executed is acceptable; therefore, there is no need to keep spare modules in

close synchronism.

One of the first highly-available systems to be developed was the AT&T ESS family of

telephone electronic switching control systems [Toy 78]. These systems were first introduced in

1965, and since then, three generations have been built. The differences between each generation

is very much a function of the advances on the technology of components, and the variations on

system goal. The 3B20D architecture [Toy-Gallaher 83] for instance, was designed for a broad

range of AT&T applications, and marked the beginning of the third generation of ESS highly-

available systems.

The 3B20D is a duplex processor architecture with extensive use of self--checking hard-

ware to detect errors. The promptness of error detection guaranteed hy the massive utilisation of

self--checking logic minimises the possibility of damage proliferation. At each time, only one

processor is operational, however, special fault-tolerant memory update circuits are used to guar-

antee that write operations are executed simultaneously in both memories. If an error is detected,

a switch circuit is activated, which transfers control from the faulty processor to the spare, making

the latter operational. Since the processors are not executing in synchronism, an initiation se-

quence to load the on-hoard data of the processor (e.g. registers) with correct information is re-

quired, so that service is continued properly. Additional fault tolerance mechanisms include the

18

use of 4 parity bits for the 32-bit data paths, error correction codes for memory units, mirrored

disk units equipped with self-correcting cyclic redundant code and a timing check (sanity check)

for processing units, which cause automatic reset of operational processors in the event of time-

out expiration (correct operational processors are designed to reset the timing check at predefined

intervals of time).

A similar design is found on the Tandem family of NonStop highly-available systems

[Bartlett 81]. These systems are targeted to on-line transactions processing (OLTP) applications.

Fault confinement is achieved through the use of a loose synchronised multicomputer, where

individual computers are connected to a dual bus system through carefully designed bus inter-

faces. The interface to the bus incorporates self-checking logic, and is implemented in such a way

that a faulty computer cannot inject spurious signals into the bus through the interface. Processing

units also use self-checking logic to detect errors. Recovery is implemented via backward error

recovery mechanisms which restore valid states previously saved in well defined checkpoints.

Application processes are duplicated and executed at two different computers. One of the pro-

cesses in the pair is assigned to be active, whilst the spare process receives periodic checkpoints

from the active process. If the spare process detects the failure of its active copy, then service is

resumed from the last checkpoint saved.

Two other highly-available systems providing support for OLTP applications followed

Tandem's NonStop systems. The Stratus architecture [Webber-Beirne 91] is a loosely coupled

multicomputer system. Each Stratus system consists of up to 32 modules connected via a propri-

etary inter-module link. Each module is formed by a number of processing, memory and I/O

channel units, connected via a reliable bus. Each processing unit is composed of two conventional

processors which are driven by a common clocking source. The two processors execute in lock-

step and have their output compared by a reliable comparison circuit. This first level of dupJexing

provides error detection. Once a mismatch is detected by the comparison mechanism, the faulty

processing unit is disabled, resulting in no more signals being output to the bus. Two processing

units are then coupled together in tight synchronism to provide continued service despite the fail-

ure of one of the processing units.

19

The Sequoia system [Bernstein 88]. on the other hand, is a tightly coupled multiprocessor

system. Duplicated processing elements (PEs), duplicated VO elements (I0Es) and memory el-

ements (ME) are connected by a duplicated bus through master/slave bus interfaces. PEs and

IOEs execute in lock-step, accomplishing error detection in the usual duplication and matching

way, via a special comparator circuit at the bus interfaces. Once a mismatch is detected, the faulty

PE is isolated from the system (a similar mechanism is used for the IOEs). MEs incorporate a

powerful error correction mechanism based on an extended Hamming SEC-DEC code [Siewio-

rek-Swarz 92], which is also able to tolerate failures of the encode/decode circuit itself. Error

recovery is attained through software protocols based on process pairs and checkpoints, similar

to those used in the Tandem architecture. Mirrored disks are used to provide fault-tolerant I/O

operations to the file system.

2.2.1.2. Long-Life Systems

A typical long-life system is encountered in space exploration missions. In those applica-

tions it is common to have most of the useful collection of data being realised near the end of the

system's mission, thus it is imperative to have the system operative at that stage. Since component

repair is not easily accomplished remotely, the duration of the mission dictates the amount of

spare units with which the system must be equipped, so that it will survive the mission lifetime.

It is important to notice that the designers of such systems must take into account all aspects of

the system, and not only the computational part. In a spacecraft for instance, the craft structure,

weight, power supply sources and data communication channels are other aspects where reliabil-

ity constraints must also be imposed.

The Galileo spacecraft [Larman 83], for instance, has been designed to perform a two stage

mission to collect data from Jupiter. The spacecraft is composed of an orbiter vehicle and a probe

vehicle. The first part of the mission initiates when the spacecraft is around 150 days away from

Jupiter, and consists of the release of the probe vehicle into Jupiter's atmosphere. The orbiter ve-

hicle then starts acquiring data from the probe. In the second part of the mission, the orbiter ve-

hicle goes into orbit about Jupiter for a period of 20 months, during which it explores the sur-

20

rounding space environment and stores data for future analysis. (The same data is also transmitted

to the Earth base.)

The basic mechanism for fault tolerance in the Galileo spacecraft is the use of duplicated

modules equipped with extensive self-checking logic. The main processing unit is actively re-

dundant, i.e. processing is carried out on both processors, executing in tight synchronism. Once

a failure is detected (via the self checking logic), the faulty module is isolated, whilst the function-

ing module can continue operation without disruption of the system service.

Characteristics of the application software are used to implement reasonableness checks.

Also, parity checks are heavily used, as well as periodic diagnostic checks. Due to the unknown,

and possibly hostile, characteristics of the environment, persistent checks based on retries are car-

ried out consistently. A component is only considered to have failed if a failure is observed

throughout a predefined interval of time, or alternatively, after a predefined number of unsuccess-

ful retries have been attempted. There is also the possibility of a remote intervention of the main-

tenance personal at the Earth base to deal with unanticipated conditions.

System operation is divided into critical and non-critical operations. If an error is detected

whilst the system is executing a non-critical operation then the operation in hand is aborted. The

system is then placed into a safe state with minimum power consumption and thermal stability.

(This includes internal temperature control, as well as the use of shades to protect external equip-

ment from sun rays.) Finally recovery is attempted. Most of the cases recovery consists of simply

retrying the erroneous operation, or skipping to the next operation. Detection of errors during the

execution of critical operations is performed in a different way. The active redundancy of the pro-

cessing unit guarantees the provision of services after the failure of one of the processors. Recov-

ery from a second failure is attained through rollback techniques followed by retry.

2.2.1.3. Safety-Critical Systems

The strict time requirements of most safety-critical applications demand that fault toler-

ance must be attained with no disruption of system service. Hence, safety-critical systems are

generally built with failure-masking mechanisms. A classical example of this kind of systems

is the C. vmp system [Siewiorek et al. 78a, Siewiorek et al. 78b]. It consists of a triplicated as-

21

sembling of conventional processors executing in lock-step, and a hardware voting mechanism

which controls access to a replicated bus. All information retrieved (stored) from (into) memory

is voted, and the reliable voting mechanism masks the failure of one processor and one memory

module. In fact, since the voting is performed in a bit-by-bit fashion, there are more combina-

tions of faulty components that can be tolerated. For instance, if memory is organised in such a

way that every bit of a particular word is stored in a different chip, the system can tolerate the

simultaneous failure of memory chips in the three computers, provided that failures in different

computers do not affect the same bit of a particular word.

Among the first safety-critical architectures to be implemented were FTMP, from the C.S.

Draper Laboratory [Hopkins et al. 78], and SIFT, developed by the SRI Laboratory

[Wensley et al. 78]. Their design goals are very similar - both were designed to be used by com-

mercial transport aircraft, nevertheless, their designers have followed two very distinct ap-

proaches. Both FTMP and SIFT are multiprocessors of arbitrary size. Processing modules are

organised in triads to perform tripled redundant functions and mask the failure of one processor.

The basic difference between the two systems is on the way the replicated computation performed

by each of the processors forming a triad is synchronised, and the way replicated outputs are

voted, so that failures can be masked.

In FTMP voting is achieved via a hardware circuit which implements a reliable voted ac-

cess to the bus. Processors forming a triad must therefore execute in lock-step. A fault-tolerant

clock synchronisation algorithm implemented by a hardware circuit provides a common time

frame for the processors forming a triad. On the other hand, in SIFT processors do not need to

maintain tight synchronism, further, voting is achieved via a software mechanism. Each pro-

cessor in a triad is able to read (but not write) the memory of the other processors and vote on

relevant information deposit in predefined locations. Processes need only maintain a loose syn-

chronism, which allows the executive software to guarantee that information upon which voting

is performed is available at the required time at each correct processor. SIFT voting mechanism

is highly dependent on the cyclic nature of SIFT's application programs. Loose synchronisation

is attained through a software fault-tolerant clock synchronization protocol based on message

exchange. The voting mechanism in both systems is able to detect a faulty processor. If a failure

22

is detected then reconfiguration is performed to restore the failure-masking property of the sys-

tem. (In FfMP there are 14 processors, which are arranged in 4 triads, leaving 2 processors as

spares.) The interval of time between error detection and system reconfiguration is short, reduc-

ing the probability of the manifestation of a subsequent non-maskable fault, whilst reconfigura-

tion is being performed.

Other examples of safety--critical systems are the 'fly-by-wire' system control of the air-

buses A320, A330 and A340 [Briere-Traverse 93]. These systems have very rigourous require-

ments in terms of both reliability and availability. Their design is based on special processing

nodes, which are composed of two separate processing channels. One of the processing channels

is responsible for executing the system functions, whilst the other is responsible for monitoring

the correct operation of the former. Each channel, including its design and software, is completely

independent from the other. These nodes are replicated in order to achieve the required availabil-

ity. Spare nodes are kept in close synchronism with the active nodes, so that reconfiguration is

realised with almost no delay. Flight control computers must be especially robust, thus, their de-

sign incorporate protection against over-voltages, under-voltages, electromagnetic aggressions

and indirect effects of lightning.

2.2.2. General Purpose Systems

The variety of applications that can be executed on general purpose computer systems rules

out the utilisation of application attributes in order to choose the appropriate fault tolerance mech-

anisms to be used. Therefore, designers must be much more careful when introducing fault toler-

ance mechanisms into general purpose computer systems. Ideally, applications should be able to

receive dependable services on an application-by-application basis, so that an application that

does not require any degree of dependability would not incur any extra penalty, either in perform-

ance or in system cost, whilst at the same time other applications with dependability requirements

would be able to co-exist, receiving dependable services, and with an overhead corresponding

to their dependability demands.

The difficulty in achieving this idealised scenario has lead to less ambitious, compromising

solutions. Traditional mainframes, for instance, possess only a restricted number of built-in fault

23

tolerance mechanisms, and indeed represent the minimal standard to which any fault-tolerant

system should aspire. On the other hand, the natural replication of resources found in parallel,

and distributed systems can be exploited to provide much better solutions to applications with

dependability requirements, raising only a limited overhead to the remaining applications not re-

quiring dependable services.

Next, we analyse fault tolerance mechanisms used by several general purpose fault-toler-

ant systems described in the literature.

2.2.2.1. Mainframes

Unlike the systems presented before, mainframes such as the VAX 8600 from DEC and the

3090 from IBM, primarily use fault avoidance techniques to attain better reliability levels. Fault

avoidance techniques, as discussed before, try to avoid system failure, hence they are mainly con-

cerned with the manufacturing process of the system, and the environmental conditions to which

the system is exposed. Thus, most mainframes are constructed with high quality, low intrinsic

failure components, and must operate in a friendly and well controlled environment, where

power fluctuations are avoided, and temperature is kept within specified limits. Apart from this,

only a small number of fault tolerance mechanisms are introduced.

A mainframe can be divided into three main sections: central processor unit, memory

(possibly divided into main memory and cache memory) and I/O channels. Since each section

has its own attributes, fault tolerance mechanisms added to the system vary in accordance with

the section where they are inserted. Table 2-1 below summarises the most common error detec-

tion mechanisms used in each section of a mainframe.

main memory double-error-detection code on data;
parity on addresses and control

cache memory parity on data, address and control
central processor parity on data paths and control store;

duplication and matching on control logic
I/O processors parity on data and control

Table 2-1: Common error detection mechanisms for a mainframe

24

The design goal is to tolerate transient faults, hence the extensive use of coding. The basic

recovery mechanisms is retry after the detection of an error. If an error has been caused by a transi-

ent fault, a small number of retries inter-spaced by a predefined delay is sufficient to bring the

system back to normal operation. Memory units are generally equipped with error correction

codes for data.

Usually there is no mechanism to allow continued service after the manifestation of perm a-

nent faults. System service is resumed only after maintenance is performed. The information col-

lected by error detection mechanisms is logged, and can be used to minimise the systems' mean

time to repair. Further, diagnostic programs can be automatically executed to anticipate system

breakdown. Also, remote access can be granted to maintenance personal to allow the remote ex-

ecution of diagnostic programs. Based on data gathered by the diagnostic programs, a field ser-

vice engineer can then be sent with appropriate information and spare equipment, to rapidly sub-

stitute the faulty component and allow the resumption of system's operation.

2.2.2.2. Parallel and Distributed Systems

In general purpose systems, replication of components for the purpose of fault tolerance

is not cost effective. As discussed before, fault tolerance mechanisms incorporated within general

purpose centralised systems can cope with transient faults, but have only a very limited impact

upon the manifestation of permanent faults, especially when those faults affect processors. On

the other hand, in parallel and distributed systems, multiple processing units are a natural part

of the architecture design. A number of fault-tolerant systems have been designed taking advan-

tage of this inherent property of parallel and distributed systems.

FTPP [Harper et al. 88], for instance, is a fault-tolerant parallel architecture developed at

the C.S. Draper Laboratory, which can provide high availability and high throughput, on an ap-

plication-by-application basis. The system is composed of a number of processors connected to

each other via communication paths. High throughput is achieved by structuring application pro-

grams as a set of co-operative processes which execute in parallel, and communicate via message

passing. Reliability is achieved through active replication of processes. Active replication con-

sists of having replicas of processes executing simultaneously at different processors, which fail

25

independently. Replicas of a particular process must be provided with identical input messages

upon which they perform identical computation, and produce identical output messages. Output

messages are subjected to a voting mechanism in order to mask failures. Once a failure is de-

tected, the process replicas executing at the faulty processor are re-allocated to another correct

processor, and brought back into synchronism with the remaining replicas. This operation allows

system reliability to be re-established. Faulty processors are isolated and subjected to fault diag-

nosis checks. Depending on the outcome of these checks, they are either re-integrated into the

system (e.g. when the fault was a transient), or reported as faulty, becoming non-operational until

repair is performed.

Fault-tolerant distributed systems are also organised in a very similar way. In most distrib-

uted system architectures, distributed applications are composed of a set of co-operative pro-

cesses normally executing at different hosts, and communicating via messages. An example of

fault-tolerant distributed system can be found in the Delta-4 project [Powell et al. 88, Po-

well 92], part of the European Strategic Programme for Research in Information Technology

(ESPRIT). The aim of this project is to define an open, fault-tolerant, distributed computer archi-

tecture, where existing proprietary heterogeneous computer systems can co-operate, and use de-

pendable services on an application-by-application basis. A Delta-4 system consists of a number

of, possibly heterogeneous, host computers interconnected by a dependable communication sys-

tem. Distributed applications are implemented by a collection of processes executing at possibly

distinct hosts, and which communicate exclusively through message passing. Again, fault toler-

ance is achieved through the replication of application processes in separated hosts, which fail

independently. In Delta-4, replication can be either active [Chereque et al. 92], semi-active

[Barrett et al. 90] or passive [Speirs-Barrett 89].

Replicas executing in active replication have their output subject to majority voting, thus

there is no need to make any assumption on the failure mode of hosts, i.e. they can fail arbitrary. At

least 21t+1replicas are required to mask up to 1t failures. All replicas receive the same input mess-

ages, process them, and produce output messages which are voted before being made available to

other applications. As discussed before, it is necessary to guarantee that replica processes receive

input messages in the same order, so that they can produce comparable output messages. In

26

Delta-4, processors communicate with each other through a dependable communication system.

Special hardware components called Network Attachment Controllers (NAC) are used to con-

nect individual hosts to the communication system. NACs have fail-silent semantics, i.e. in the

event of a failure they simply stop, rather than perform an arbitrary transition, thus providing fault

isolation. A multicast protocol is implemented on top of the NACs and the dependable communi-

cation system, which guarantees the ordering requirements for active replication.

When replicas are executing in either semi-active or passive replication, there is only one

replica producing output at each time. Therefore, replicas in both semi-active and passive repli-

cation are assumed to execute in fail-silent hosts, and at least n+ 1 hosts are required in order to

achieve resilience of up to 1t failures (i.e. replication is used only for the purpose of increasing the

availability of the service). Passive replication is based on the utilisation of checkpoints. One of

the replicas is designated to be the primary active copy, whilst the other replicas are passive sec-

ondary copies. The primary periodically sends checkpoint messages to the secondaries, so that in

the event of a failure of the primary, one of the secondary copies can be designated to assume the

primary role and start processing from the last checkpoint received. In semi-active replication

there is also the notion of primary and secondary replicas; the difference is that secondary replicas

also receive and process input messages (but do not produce output), thus keeping in synchronism

with the primary without the need of processing checkpoints.

The decentralised characteristics of a distributed system make designing these systems a

much more difficult task than that of designing centralised systems, especially when the distrib-

uted system must provide dependable services in the presence of processing sites and communi-

cation failures. Ideally, one would like to construct a distributed system using hardware compo-

nents which are guaranteed to be either failure-free or to have well defined failure modes. Indeed,

in order to facilitate their design, a large number of distributed systems reported in the literature

(e.g. [Bartlett 81, Kopetz-Merker 85, Shrivastava 89, Powell 92, Birman et al. 91]) assume that

the system's underlying hardware has a fail--controlled behaviour [Laprie 89]. Higher level sys-

tem software can then take advantage of these assumptions to implement simpler fault tolerance

mechanisms.

27

In the Delta--4 system discussed above, for instance, hosts executing applications in either

passive or semi-active replication, as well as the network interfaces (NACs), are assumed to have

fail-silent semantics. The MARS system [Kopetz-Merker 85], a distributed system for real-time

applications, is another example of fault-tolerant distributed system whose design has been sim-

plified by assuming that the underlying hardware is fail-controlled. In MARS processors are as-

sumed to have fail-silent semantics, whilst the communication medium is assumed to provide

a timely and reliable service.

The complexity ofthe fault tolerance mechanisms implemented at an upper software level

of a dependable distributed system reflects the assumptions made upon the underlying hardware

where the software is going to be executed. On the other hand, the assumption of which failure

semantics to use for the underlying hardware depends not only on the hardware characteristics

itself, but also, among other parameters, on the dependability requirements and the mission life-

time of the applications to be executed.

All hardware components must fail eventually, possibly in an unpredictable manner, there-

fore, if conventional hardware cannot provide, with sufficiently high probability, the failure sem-

antics assumed (for the duration of the mission of the applications they are executing), there is a

need to construct processing sites or nodes, and communication infra-structure, that do indeed

present the fail-controlled behaviour assumed.

Constructing a fail-controlled node from components that can fail in an arbitrary way in-

volves necessarily the introduction of redundant components. One way to do this is by adding

to the design self-checking logic such as error detection codes, watch-dog timers, power supply

monitors, temperature monitors, etc. A problem with this approach is that achieving high error

detection coverage is normally difficult. Furthermore, there is an interval of time between the

occurrence of a failure and its detection by a checking circuit, during which the node can poten-

tially present an undesirable behaviour. Both the error detection coverage and the length of the

detection delay depend on the amount of redundancy introduced in the form of checking circuits.

A great amount of redundant components reduces the detection delay and increases error detec-

tion coverage, but at the same time increases the complexity and the cost of the node. In [Reis-

inger-Steininger 93] a fail-controlled node based on the introduction of self-checking logic is

28

presented, whose coverage is estimated to be better than 99% [Kopetz et al. 90]. The choice of

the amount and the kind of self-checking mechanisms introduced in that node is simplified by

taking advantage of a priori knowledge of specific characteristics of the system.

Another approach is to couple redundant processors within a replicated node. A fail-con-

trolled replicated node is composed of a number of processors which fail independently. Com-

putation is replicated and executed simultaneously at each processor. By employing a suitable

validation technique to the outputs generated by the replicated processors (e.g. majority voting,

comparison), outputs from faulty processors can be prevented from appearing at the application

level. Error detection coverage in a replicated node is extremely high, since it depends exclusive-

lyon the design of a simple validation mechanism. Further, if the communication mechanisms

of the system ensures that information is validated before being used at the application level, then

damage is confined to the node level even when there is a substantial delay in the detection of

errors.

As discussed before, distributed applications are normally structured as a collection of pro-

cesses which communicate exclusively via message passing. Thus, replicated nodes (where

messages are validated before being output) can provide an attractive solution for the problem

of constructing fail-controlled nodes for dependable distributed systems. In the next chapter we

discuss in more details how to build fail-controlled replicated nodes.

2.3. Concluding Remarks

We have studied the main fault tolerance mechanisms used by some of the fault-tolerant

systems described in the literature. We have classified these systems by their purpose, and we

have analysed the relation between the system's purpose and the fault tolerance mechanisms used

to achieve different criteria of dependability. It was shown that the knowledge of the application

characteristics can be used to simplify the design of specific purpose systems. This is not the case

for general purpose systems, which normally cannot make assumptions on the characteristics of

the applications it will execute.

We have also discussed the design of dependable distributed systems. It was shown that the

design of these systems can be simplified by assuming that the underlying processing sites

29

(nodes) and communication services present a fail-controlled behaviour. Finally, we have pres-

ented a brief discussion on how to build fail-controlled nodes. In the next chapter we discuss how

replicated nodes can be used to implement a fail-controlled processing infra-structure for fault-

tolerant systems.

30

Chapter 3
Fail-Controlled
Replicated Nodes for
Distributed Systems

3.1. Introduction

A replicated node is a processing site composed of a number of redundant processors which

fail independently. A fail-controlled replicated node offers a service that can be characterised by

its operational semantics and its failure semantics (failure mode). The operational semantics

corresponds to the standard specification of the node's service, whilst the failure semantics de-

scribes the behaviour of the node when up to a bounded number of components failures, which

the node is able to tolerate, have occurred. Any behaviour that the node may present, which is

not specified by either its operational semantics or its failure semantics, is considered to be excep-

tional behaviour. Further, the node presents an exceptional behaviour only if the number of com-

ponents failures that the node experiences exceeds the number of components failures that the

node is designed to tolerate, i.e. the bound specified on its failure semantics.

An upper level system can then assess the suitability of using the services of a particular

underlying fail-controlled replicated node by analysing the operational and failure semantics of

the latter, and by estimating the likelihood of the occurrence of exceptional behaviour. Alterna-

tively, one can build a fail-controlled replicated node whose probability of presenting excep-

31

tional behaviour is sufficiently small, so that the node delivers, with the necessary probability,

its particular fail-controlled behaviour.

In this context, we highlight two groups of fail-controlled replicated nodes. The first group

is composed offailure-masking nodes. Failure-masking nodes possess failure semantics which

is equivalent to their operational semantics, that is, the node still delivers its standard service des-

pite the occurrence of a bounded number of components failures, which are masked. The second

group of fail-controlled replicated nodes is formed by nodes whose failure semantics is con-

sidered to be safe [Laprie 89], that is, after the detection of the failure of any node component, the

node neither delivers its standard service, nor unspecified ones, and simply halts. These nodes are

therefore referred asfail-safe nodes.

Failure-masking nodes can be built based on the concept of N-Modular Redundancy

(NMR) processing. The basic idea is to build a replicated node with N processors, and to execute

the intended task on each processor in parallel. Outputs generated by each task replica are ex-

changed among the N processors and subjected to a majority voting. The voted result is then out-

put. This technique is termed active replication, and the failure-masking node built in this way is

named an NMR node. So long as no more than a minority of the processors within an NMR node

fail, the majority voting mechanism is able to mask the potential failures of a minority of pro-

cessors forming the node. The design and implementation of this kind of failure-masking nodes

have been reported in [Hopkins et al. 78, Wensley et al. 78, Siewiorek et al. 78a, Smith 84,

Lala 86, Theuretzbacher 86, Shrivastava et al. 91, Shrivastava et al. 92, Powell 92,

Speirs et al. 93].

Afail-signal node [Shrivastava et al. 91] is another example of a failure-masking node.

The failure semantics of a fail-signal node is similar to the failure semantics of an NMR node,

except that in the case of a fail-signal node, as soon as a failure is detected (and masked), the node

is able to signal the detection of this failure through a failure exception. If processors cannot be

repaired whilst the node is operative, the signaling of a failure indicates a decrease on the nodes

actual reliability. Thus, in a conservative design, such a signal can be used for initiating preven-

tive procedures. (For instance, critical computations could be migrated to other nodes which are

believed to be more reliable at that particular moment.)

32

Fail-silent nodes [Bernstein 88, Shrivastava et al. 91, Shrivastava et al. 92, Webber-

Beirne 91, Brasileiro et al. 92], on the other hand, are representatives of the fail-safe group of

fail-controlled nodes. Fail-silent nodes must satisfy the property of halt on failure, which states

that whenever a failure is detected, the node will halt instead of performing an erroneous state

transformation that will be visible outside the node. This property guarantees their safe failure

semantics.

Active replication can also be used to implement fail-silent nodes. Again, the node is com-

posed of N processors where the intended task is executed in parallel, with the outputs generated

by each task replica being exchanged among the N processors. In this case, instead of voting the

results collected, a fail-silent node simply compares them. A disagreement on any of the outputs

forces the node to halt. A replicated node constructed in this way, has a fail-silent behaviour pro-

vided that no more than N-l processors fail.

Fail-stop nodes [Schlichting-Schneider 83, Schneider 84] form another class of repli-

cated nodes which also possess the halt on failure property, and therefore can also be categorised

as fail-safe nodes. Apart from the halt on failure property, a fail-stop node presents two extra

properties which differentiate them from fail-silent nodes. A distributed system composed of

fail-stop nodes must present failure status and stable storage properties. To satisfy the failure

status property, it must be possible for any functioning node in the system to detect the failure of

any fail-stop node that has halted. The storage of a fail-stop node is partitioned into stable storage

and volatile storage. To satisfy the stable storage property, it must be possible for a functioning

fail-stop node to access the data in the stable storage associated with any other node in the system,

including those that have halted.

Clearly, implementing a fail-stop node is more difficult than implementing fail-silent

nodes. In [Schneider 84] the design of a system of fail-stop nodes is presented. The system is

composed of two types of nodes, namely p-nodes and s-nodes. The p-nodes are fail-safe nodes

responsible for task execution, whilst the s-nodes are failure-masking nodes responsible for pro-

viding stable storage for the p-nodes. Each p-node has a special location in its stable storage

which records its current status. Thus, a p-node can detect the failure of another p-node in the

system by reading the latter status indicator stored in stable storage. However, since tasks execut-

33

ing on p-nodes communicate with each other via the stable storage kept by the s-nodes, fail-stop

nodes are not an attractive solution for implementing fault-tolerant distributed systems. Thus,

in this chapter we concentrate our discussion on the design of failure-masking and fail-silent re-

plicated nodes.

3.2. Constructing Fail-Controlled Replicated Nodes

As discussed before, the construction of replicated nodes is based on active replication.

Maintaining the synchronisation of the replicas of a task is the underlying principle of active re-

plication. Up to the point where outputs are going to be validated, non-faulty replicas (those ex-

ecuting on non-faulty processors) must have executed equivalent steps, so that the validation can

be carried out over consistent outputs. Provided that all correct replicas start execution from the

same initial state, an active replicated node must incorporate mechanisms to keep replicas syn-

chronised, avoiding replica divergence between two subsequent validation points. Inconsistent

input data, asynchronous events (e.g. interruptions, timeouts) and intrinsic non-deterministic be-

haviour are some of the potential causes of replica divergence.

When replicas of a task input data from a faulty input source, it is possible that each replica

may input a different data value. This problem is referred to in the literature as the input problem

[Krol-van Gils 85]. Inconsistent input data can lead to a situation where replicas, although ex-

ecuting correctly, output different results. The masking/detection mechanism of a replicated node

obviously has no way to differentiate this situation from one where a failure has occurred. Sol-

utions to this problem depend on the type of input source, and whether the input source is repli-

cated or not.

Let us take first the case where a single source is providing data for all the replicas. There

are two fault situations here. In the simpler case, a faulty input source can feed replicas with erron-

eous data, but the data input by the replicas is consistent amongst all non-faulty replicas. In this

case, since all replicas receive the same input data, they do not diverge. There is however another

fault scenario which requires more elaborated solutions. In this case, apart from producing erron-

eous data, a faulty source can also broadcast inconsistent data to different replicas. For instance,

take a replicated node where replicas independently receive input data from a common non-repli-

34

cated input device. If each replica samples the input device at different instants, it is possible that

replicas input different values. Even if the input device broadcast data simultaneously, it is poss-

ible that ambiguous values are broadcast by a failing bus driver. (Note that no two sampling in-

stants, nor two logic discrimination levels are exactly the same.)

To solve the input problem, replicas need to exchange information about the data they have

input, and achieve a consensus on which input value to use. A solution to the input problem must

guarantee that: i) each non-faulty replica agrees on the same data value to input; and ii) if the input

source is non-faulty, the data value input by all non-faulty replicas is the one produced by the

input source. This problem is an instance of the widely studied interactive consistency problem

[Pease et al. 80] (also known as the Byzantine Generals problem [Lamport et al. 82]). An algo-

rithm that solves the Byzantine Generals problem is said to have reached Byzantine agreement.

Hence, to solve the input problem, replicas must reach Byzantine agreement on the data value

to input.

Another problem that can potentially cause replica divergence is that of selecting input

messages for processing in a distributed system. In these systems, application programs are nor-

mally structured as a number of co-operative processes communicating via messages. In order

to avoid replicas from diverging, a replicated node must incorporate mechanisms to guarantee

that all correct replicas of a particular process input the same set of messages in the same order.

As will be studied later in this thesis, a solution for this problem can also be attained by using

protocols which implement Byzantine agreement.

A number of theoretical results, within a variety of system environment assumptions, have

been derived for algorithms which provide Byzantine agreement. In asynchronous environments,

for instance, it has been proved that, provided that at least one processor can fail, there is no deter-

ministic algorithm which achieves Byzantine agreement [Fischer et al. 85] I.On the other hand,

within synchronous environments, where there is a known bound on both the difference between

I.The result in [Fischer et at. 85] assumes that processors have a fail-stop failure semantics. Since our

assumptions on the processors' failure semantics are weaker than fail-stop, the result also applies to our

work.

35

the execution rate of processors and the communication delay within which information is ex-

changed between any two non-faulty processors, it is possible to have deterministic algorithms

that achieve Byzantine agreement. A considerable number of such algorithms have been reported

in the literature (see [Barborak-Malek 93] for a survey).

Any deterministic algorithm which achieves Byzantine agreement shall perform a number

of rounds of information exchange, after which agreement is achieved. The following theoretical

lower bounds have been deri ved, where N is the number of processor replicas, and 1t is the maxi-

mum number of processor failures that can be tolerated:

degree offault tolerance: a Byzantine agreement algorithm must involve more than

three times the number of potential faulty processors, i.e. N ~ 31t+ 1 [Pease et al. 80];

replicas connectivity: to achieve Byzantine agreement, replicas must be able to ex-

change information via at least 21t+ 1 disjoint paths [Dole v 82]; and

number of rounds: to achieve Byzantine agreement, there must be at least n+ 1

rounds of information exchange [Fischer-Lynch 82].

The considerably large values of the above bounds are mainly due to the ability of a faulty

processor to 'impersonate' a non-faulty one. These bounds can be reduced if this particular be-

haviour of faulty processors can be somehow constrained. A well known way to do this is by using

authentication techniques when exchanging information. With the help of appropriate tech-

niques, a non-faulty processor is able to generate a unique, unforgeable, information dependent

signature which is attached to the information it transmits to the other processors of the node.

Further, every non-faulty processor is able to verify the authenticity of the information trans-

mitted to them. Fail-arbitrary processors with such capabilities have an authentication-detect-

able fail-arbitrary failure semantics [Strong et al. 90]. That is to say, if authentication is used,

processors may fail in an arbitrary way, except that they are not able to forge (without being de-

tected) information that have been generated by a non-faulty processor, which they relay to other

processors. The use of digital signatures techniques [Rivest et al. 78, Okamoto 88] provide the

means to achieve such a failure mode from originally fail-arbitrary processors.

36

The utilisation of this stronger failure assumption allows much simpler and cheaper algo-

rithms to be implemented. For authentication-detectable fail-arbitrary processors, the bounds

on the degree of fault tolerance and replicas connectivity, are reduced to N ~ 1t+ I and 1t+ I, re-

spectively [Lamport et al. 82], whilst the bound on the number of rounds remains the same

[Dolev-Strong 83].

Another potential cause of replica divergence is related with the way asynchronous events

are handled by replicas. For instance, imagine a situation where a task must wait for some event

to happen, and then take some action. Further, if the event does not happen within some time,

then another action must be taken. In this situation, unless there is some sort of synchronisation

between the replicas executing at each processor, it is possible that replicas take different actions.

This is also the case when there is a possibility of non-deterministic behaviour within the execu-

tion of a task. Non-determinism can be introduced in several ways. It can appear at the applica-

tion layer, where the computation sequence of a particular application is decided at random when

the task is being executed; it can be introduced at the system layer, say through asynchronous

interactions with the system environment; or it can even happen at the physical layer, when the

hardware design allows non-deterministic transitions to be performed. For all cases above, it is

clear that if a task can be correctly executed in different ways, it is possible that task replicas pro-

duce different, although correct, results for the same computation. Again, this situation cannot

be differentiated from one where a failure has occurred.

To solve this problem, replicas need to be synchronised. Replicated nodes can be divided

into two types, according to the way replicas are synchronised. In the first type of nodes, replicas

are synchronised at the micro-instruction level, with hardware mechanisms being employed to

implement active replication. Hence, we term this type of nodes hard- nodes. In the other type

of nodes, termed soft nodes, replicas are synchronised at a higher level (e.g. at the task level), and

software mechanisms are used to implement active replication.

2. This terminology is in accordance with that used in [Shrivastava et al. 91] to classify fail-silent nodes.

37

3.2.1. Hard Nodes

The majority of the replicated nodes described in the literature follow a hardware based

approach. Synchronisation at the micro-instruction level is the most straightforward way to

achieve replica synchronism. In this approach processors are normally driven by a common clock

source which guarantees that they execute the same steps at each clock pulse. Outputs are vali-

dated by a (possibly replicated) hardware component at appropriate times (e.g. at each bus ac-

cess). Solutions to the input problem, when applicable, vary from architecture to architecture,

but normally involve implementation of Byzantine agreement through hardwired circuits. Inter-

ruptions and other asynchronous events must be distributed to the replicated processors through

special circuits which guarantee that all replicas perceive the event at the same point of their in-

struction stream. Since every correct replica executes the same instruction stream, process rep-

licas may incorporate non-deterministic behaviour. Note however that the individual processors

must follow a deterministic design, so that they execute the same transitions at each clock pulse

[Webber-Beirne 91]. Thus, processors must be carefully designed. In particular, 'don't care'

states where bits can apparently harmlessly assume either the value zero or one, are not allowed,

since this can trigger replica divergency. Next we discuss some systems which use hard nodes

within their design.

Stratus and Sequoia

Highly-available systems like Stratus [Webber-Beirne 91] and Sequoia [Bernstein 88]

employ a very simple and cheap design for implementing a hard fail-silent node. In both systems,

a fail-silent node is obtained by coupling two conventional processors, which execute in lock-

step synchronisation, and whose outputs are compared by a reliable comparator circuit before

being made available. To keep processors in tight synchronism, both processors are driven by a

common reliable clock. Figure 3-1 shows the block diagram of a Stratus fail-silent node (Se-

quoia uses a similar approach).

38

B
U

L-_-I S 1--~-=--:-1

B
U
S

A B

At every clock cycle, the output generated to the bus driver by each processor is compared,

and the bus driver is only enabled to transmit information to the duplicated buses when the result

Figure 3-1: Stratus fail-silent node

of the comparison operation is successful. When a mismatch occurs, the bus driver is disabled,

and no information is sent over the buses. At this point the operating system is informed about the

failure (possibly through an interruption), and takes the necessary measures in order to provide

system recovery.

C.vmp

The same approach taken to implement hard fail-silent nodes can be taken to implement

hard failure-masking nodes. Clearly, in this case, there must be at least three coupled processors,

to allow the masking of one faulty processor. The failure-masking mechanism of the C.vmp

multiprocessor [Siewiorek et al. 78a] is a triplicated version of the fail-silent node previously

described. A C. vmp module is composed of three identical computers executing in lock-step. A

single reliable voter circuit executes voting at the bus level. In C. vmp voting is a bidirectional

operation, performed both when processors write to the bus, as well as when processors read from

39

the bus. The former operation masks processors fail ures, whilst the latter masks memory failures.

The system configuration is depicted in Figure 3-2.

Figure 3-2: C.vmp configuration

Each of the three identical computers, composed of processor, memory, bus and l/O devices

can operate either independently or as a triad. In this way, the architecture can provide the applica-

tions with a choice between reliability and throughput. When operating at the voting mode, all

accesses to memory are directed through the voter circuit (l/O devices based on direct memory

access - DMA, must incorporate a similar voter circuit), whilst when operating at independent

mode, access to the bus by-passes the voter circuit. C. vmp uses a multiplexing circuit like the one

shown in Figure 3-3 to switch between one mode and the other.

Processor A
processor bus

External bus B

Figure 3-3: C.vrnp voter multiplexing circuit

40

The multiplexing circuit in Figure 3-3 allows C. vmp to operate in three different modes.

In the voting mode the data at each individual bus is routed into the voter. The voted result is then

routed out to the buses of each processor. In the independent mode the data at buses A and Care

routed around the voter. Data at bus B is routed through the voter which outputs the data with

a small delay in relation to the other processors. The final mode is a broadcast mode. In this mode

the data at bus B is sent through the voter and broadcast to the other processor buses. This mode

is used to broadcast input data from non-replicated devices. (Non-replicated devices must be

plugged in processor B.)

When switching from voting to independent mode, a simple change in the multiplexing

control signals cause the outputs not to be directed through the voter. By providing each processor

with a suitable state vector, the operating system can initiate three different processes in each

computer. When switching back to voting mode, it is not enough to change the signals in the

multiplexing units, so that access to the bus is directed through the voter. Special care must be

taken to bring the three processors back in synchronism. Basically, each processor restores the

vector state for voting operation, forces an interruption to be executed after some predefined

amount oftime (large enough to guarantee that the other processors are ready to synchronise), and

executes a wait operation. The wait operation halts the processor until an interruption is received.

After the interruption, the three processors are back in synchronism, and executing in voting

mode.

In the nodes discussed so far, the validation of the outputs produced by the processors of

the node is performed by an unreplicated validator - a comparator in both Stratus and Sequoia,

and a voter in c.vmp. The reliability of the unreplicated validator is crucial to the reliability of

the whole node, since a failure of the validator may lead the node to exhibit an exceptional behav-

iour. To avoid this problem a number of architectures incorporate hard nodes with replicated vali-

dators.

One of the design goals of FTP [Smith 84] was to make the fault tolerance mechanisms at

the physical layer largely transparent to the programs executing at the system and application

41

layers. Both the application programs and the majority of the system software should execute in

much the same way as they would do, if they were executing on a non-replicated architecture.

Thus, the utilisation of micro-instruction synchronisation was the obvious design choice. Fault

tolerance in FTP is also achieved through triplicating and voting.

FTP was designed for safety-critical applications, and incorporates special treatment to

tolerate failures on the data acquiring input devices characteristic of those applications (e.g. air-

craft sensors). FTP uses a hardwired circuit to solve the input problem. Figure 3-4 gives an sche-

matic illustration of the circuit used.

Sensor register Voter Memory

Each processor is divided in two fault containment regions. The extra fault containment

region in each processor is an inter-stage of trivial implementation and reduced complexity. Data

input is a two-phased process. First, the original data available at one of the l/O devices is repli-

cated and distributed to the three inter-stages; then the data available at each inter-stage is passed

to each processor, where a vote takes place; finally the result of the vote is used as the input value.

This mechanism can tolerate any single fault occurring at either a processor or at an inter-stage.

Note that a faulty l/O device, or an error in the transmission of the input value to the inter-stages

could generate an incorrect input value. As discussed before. this should be treated at a higher

level (e.g. use of replicated l/O devices). The purpose of the mechanism described is merely to

Inter- stage

Figure 3-4: FTP input dissemination circuit

42

guarantee that all correct processors receive the same (possibly incorrect) input values at the same

point of execution.

In a replicated architecture where computers execute in lock-step, each individual pro-

cessor must be interrupted at the same point in their instruction sequence execution. The FrP

architecture guarantees this behaviour through a dedicated hardware distribution circuit. When a

processor receives an interruption, this circuit distributes the interruption to all other computers

in the system. The circuit, which is also based on the utilisation of inter-stages and voting of con-

trol signals, assures that all correctly non-faulty processors are interrupted at the end of the same

micro-frame. Spurious interruptions from a single faulty source are masked by the two other

sources. Therefore, all correct computers handle the interruption in the same way, and therefore,

do not diverge.

FrP differs from C.vmp in many ways. Firstly, unlike c'vmp's unreplicated voting mech-

anism, the voting mechanism in FrP is also triplicated; secondly the common time base is pro-

vided by a fault-tolerant clocking system, as opposed to the single clock source in C. vmp; thirdly

rather than having several operating modes, the Fl'P's architecture is always in voting mode; and

finally, in FrP voting only takes place at particular times, explicitly chosen by the executive soft-

ware (typically embedded within l/O driver routines just before an output operation is executed),

whilst in C.vrnp voting is performed at each access to the bus (when the system is operating in

voting mode).

Other Architectures

Other architectures use more than three processors, in order to implement hard replicated

nodes, and provide even greater dependability at the physical layer. Another version of FrP, pres-

ented in [Lala 86], uses a quadruplicated architecture, which can also tolerate a single failure.

However, after the detection of a permanent failure in one of the computers, the system can be

reconfigured, having the faulty processor purged from the voting process, and the remaining

three operational computers can tolerate another failure of the surviving computers. Achieving

this property implies adding extra complexity to the voting circuit. Also, the complexity of the

inter-stage mechanisms used to distributed input values from L'O devices is proportional to the

43

number of processors used in the assembly. In [Lala 86], alternative approaches to reduce the

complexity of the inter-stage mechanism are presented.

Both versions of FTP present a throughput compatible with the throughput of their corre-

sponding simplex architecture. FTMP [Hopkins et al. 78], on the other hand, is a multiprocessor

architecture which can provide arbitrary high throughput. Reliability is achieved by coupling

processors to build internal replicated nodes. The multiprocessor architecture is arranged in such

a way that any three processors can be configured as a triad, and operate in lock-step with their

outputs subjected to a voting circuit. This flexibility is only achieved subjected to a considerable

increase in the complexity of the system design.

3.2.2. Soft Nodes

Attempting to avoid the complexity involved in designing the special circuits necessary for

the implementation of hard nodes, a number of architectures have been designed with the redun-

dancy being controlled via software mechanisms. The idea is to maintain replica synchronism at a

higher level, for instance at the process or task level, rather than at the micro-instruction level.

The resulting looser synchronisation allows the utilisation of much simpler hardware designs,

and more flexible software mechanisms for output validation and replica divergence avoidance.

The input problem is normally solved by the utilisation of software implementations of By-

zantine agreement algorithms. Software realisations of Byzantine agreement are generally

simpler, and more flexible than their hardwired equivalent. On the other hand, the absence of the

tight synchronisation characteristic of hard nodes implies that handling asynchronous events and

non-deterministic behaviour of the system is a more difficult task within soft nodes. In this sec-

tion we study how soft nodes have been incorporated into architectures described in the literature.

The SIFT project [Wensley et al. 78] was the pioneer on the utilisation of soft replicated

nodes. Like FTMP, SIFT is a fault-tolerant multiprocessor. However, since the control of redun-

dancy is achieved via software protocols, a great deal of flexibility can be incorporated to the

architecture without adding substantially to the complexity of the hardware design. Furthermore,

the flexibility provided by having voting realised by software protocols, makes it much simpler to

44

offer a dependable service in an application-by-application basis. The architecture of SIFT is

depicted in Figure 3-5.

The system consists of a number of processors and 110 channels, each with its own memory

unit, which are interconnected by a replicated bus. Each processor can read and write its own

memory, and can also read the memory of any other processor. The system software is responsible

for configuring the system in triads, where critical computation is performed. The system soft-

ware also provides primitives for voting critical information. The voting mechanisms is very

simple; the system software executing on each of the processors forming a triad reads the relevant

information on the memory ofthe other two processors, and performs a 2-out-of-3 vote with its

local data. The result of the majority vote is then saved in an appropriate location.

Bus Controller

Main Processing Modules

Processor

To/FromActuators/Sensors

Figure 3-5: SIFT architecture

45

•••

Applications in SIFT are structured as a set of co-operative cyclic tasks. At each iteration,

a task typically inputs some data, performs some computation and outputs the results. A task in-

puts data for a particular iteration by voting on the output produced by the previous iteration of

a number of tasks, which could well include the task itself. Since voting is only executed at the

beginning of an iteration, processors do not need to keep a tight synchronism. It is only necessary

to know when all non-faulty replicas have finished a particular iteration, and therefore have made

their results available. Furthermore, task scheduling must be consistent among the processors

forming a triad, so that task replicas do not diverge.

To achieve consistent task scheduling, SIFf maintains a loose synchronised global time

frame, and uses a static priority based scheduling policy, which schedule tasks at predefined time

frames. All processors of the node execute a common global executive software which is in

charge, among other things, of scheduling tasks. Each task is given a priority, corresponding to

a particular iteration rate. Iteration rates are chosen such that each iteration rate is a multiple of

the next lower one. Based on the tasks iteration rate, it is possible to determine the time frame

on which a particular task must be scheduled. Further, a Byzantine resilient clock synchronisation

protocol is executed by the processors of the node to implement a common time frame base, and

allow consistent scheduling. SIFf's clock synchronisation protocol guarantees that the clocks of

any two non-faulty processors is at most SOils apart.

The functioning of the SIFf system software is totally dependent on the cyclic characteris-

tic of its applications. Application tasks in SIFf cannot introduce non-deterministic behaviour,

although some non-determinism can be partially introduced by synchronising asynchronous ev-

ents to time frame boundaries. On the other hand, SIFT's loose synchronism provides a potential

higher resilience to common failures due to transients.

Voltan Nodes

Because of its application dependent design, the SIFT architecture can only be applied to

a very restricted range of applications. This is also the case in the VOTRICS system [Theuretz-

bacher 86] which follows the design principles of SIFT to provide fault tolerance to a different,

but still specific, class of applications (railway signalling systems). In [Shrivastava et al. 92], the

46

Voltan family of replicated nodes is presented. Their design also follows the approach pioneered

by SIFr, but are applicable to a wider range of applications. Using Voltan nodes, it is possible

to provide fault tolerance to general purpose applications and yet have the advantages of a task

synchronised system.

The design of Voltan nodes follows the state machine approach (where a state machine is

a process), for which the precise requirements to achieve active replication are known [Schneid-

er 90]. In this approach, applications are structured as a set of processes which do not share mem-

ory, and communicate only through message passing. Asynchronous events, such as timeouts and

interruptions are also mapped into messages. Furthermore, processes are assumed to be determin-

istic. Process replicas exchange the messages they output, and fault tolerance is achieved by vali-

dating these messages. To achieve replica synchronism it suffices to provide all correct replicas

with the same set of input messages, and in the same order.

Voltan nodes are composed of 'off-the-shelf' processors connected via communication

links. The replicated processors execute agreement and order protocols to guarantee that correct

replicas of application processes receive and process input messages in the same order. Process

replicas exchange output messages produced, which are then validated at each processor by either

a comparator software mechanism, in the case of fail-silent nodes, or a voter software mechan-

ism, in the case of failure-masking nodes.

3.2.3. Hard Nodes versus Soft Nodes

In the above sections we have mentioned several advantages and drawbacks associated

with both hard and soft nodes. The main advantages of hard nodes are:

i) minimum performance overhead: although the hardwired circuits in-

herent to the implementation of hard nodes may sometimes be relatively

complex, they are responsible for only a very small overhead on system

throughput (in an FrP prototype reported in [Smith 84] the burden in the

throughput due to replication is about 6%); and

ii) minimum impact on software design: provided that processors are de-

signed in such a way to avoid non-deterministic transitions, basically

47

any application or system software which can be executed by a non-re-

dundant machine, can also be executed by a hard node (even those which

incorporate non-deterministic behaviour).

However, there are some problems with the micro-instruction synchronisation approach

of hard nodes. First, individual processors must be built in such a way that they have a determin-

istic behaviour at each clock pulse, so that they produce comparable outputs. This can rule out

the utilisation of 'off-the-shelf' processors, whose reliability is normally higher than specially

designed processors [Siewiorek-Swarz 92]. Second, the introduction of special circuits such as

reliable comparator/voter, reliable clock, asynchronous event handlers and bus interfaces, in-

creases the complexity of the design, which at an extreme can result in a decrease on the overall

node reliability. Finally, every new microprocessor architecture requires a considerable redesign

overhead. In fact, even with the same components technology, substantial redesign is needed

when certain parameters of the architecture, for example the level of redundancy, are changed

(e.g. [Lala 86]).

The design of soft nodes aims to overcome the problems associated with hard nodes. Thus,

the advantages of soft nodes are very much the converse of the drawbacks of hard nodes discussed

above. They are:

i) design diversity: the absence of micro-instruction synchronism allows

the utilisation of 'off-the-shelf' processors; also, by employing different

types of processors within a node, there is a possibility that a measure of

tolerance against design faults in processors can be obtained, without re-

course to any specialised hardware assistance;

ii) simpler hardware design: all redundancy management protocols are im-

plemented in software. thus the underlying hardware design can be made

very simple; furthermore, software protocols are much more flexible

than their hardware counterparts;

iii) ease in upgrading: technology upgrades appear to be easy, since the prin-

ciples behind the protocols do not change; the software protocols can be

48

ported relatively easily to any type of processor (including the ones ex-

pected to be available in the future); and

iv) common failures robustness: since replicated computations do not ex-

ecute in lock-step, a node is likely to be more robust against transient

failures [Kopetz et al. 90] (this is because transients are less likely to af-

fect loosely synchronised computations on the processors in an identical

fashion).

Unfortunately, these advantages do not come for free. The two main drawbacks of soft

nodes are the necessity of programming applications in accordance with the requirements im-

posed by each particular synchronisation strategy, and the extra overhead in performance im-

posed by the redundancy management protocols. The first problem is less critical within soft

nodes based on the state machine approach, since it is fairly easy to program applications in ac-

cordance with that model. Distributed application programs in particular are often build as a set

of co-operative processes which communicate only via message passing. There is, however, a

major concern over the performance overhead incurred by the redundancy management proto-

cols.

In SIFT, for instance, the overhead associated with redundancy management can consume

as much as 80% of the processor throughput [Palumbo-Butler 85]. Hybrid solutions, which in-

corporate both micro-instruction synchronisation and task synchronisation mechanisms, have

been proposed to reduce this overhead. MAFT [Kieckhafer et al. 88], FTP-AP [Lala-Alger 88]

and Delta-4 [Powell 92] are hybrid architectures which share the same general structure. These

architectures are structured around a micro-instruction synchronised hard core, on top of which

conventional processors are replicated. The micro-instruction synchronised hard core is respon-

sible for executing management functions, whilst application processes are executed at the upper

level replicated processors. The extra computational power delivered by the replicated pro-

cessors increases the throughput of the system, and provides all the advantages of the task syn-

chronisation approach, however, the underlying hard core re-introduces the problems associated

with micro-instruction synchronisation.

49

Our approach to the construction of fail--controlled nodes is to follow the state machine

model adopted by the Voltan family of nodes, earlier described. We have sought means of opti-

mising the performance of those nodes by developing more efficient redundancy management

protocols. The work in this thesis extends that in [Shrivastava et al. 92] by introducing means of

implementing efficient, yet suitable for general purpose systems, soft replicated nodes. In par-

ticular we present new protocols to manage the redundancy of soft failure-masking replicated

nodes which are much more efficient than the ones previously known. We also present the precise

definition of the semantics of soft fail-silent nodes, exposing dissimilarities between these nodes

and failure-masking nodes, which have not been studied before. We then explore these dissimi-

larities to develop more efficient protocols for the construction of soft fail-silent nodes.

We have implemented several instances of soft replicated nodes using the different proto-

cols developed. The results obtained after executing a variety of experiments using the nodes im-

plemented indicated the feasibility of using such nodes for a large class of dependable applica-

tions. In the next two chapters we describe efficient protocols suitable for the implementation of

both failure-masking and fail-silent nodes. Then, in a later chapter, we discuss the implementa-

tion details of such nodes, and we analyse the performance of the nodes implemented. First we

study the general architecture of the Voltan family of nodes.

3.3. Voltan Architecture

The Voltan family offail--controlled soft replicated nodes have been reported in [Shrivasta-

va et al. 91, Shrivastava et al. 92]. It includes NMR, fail-signal and fail-silent nodes. The first

two nodes are failure-masking nodes, whilst the last is a fail-safe node. Since designing a fail-

signal node by extending the design of an NMR node is a trivial task, throughout this thesis we

only detail the design of NMR nodes. However, we use the more generic term failure-masking

nodes when referring to NMR nodes.

3.3.1. System Model and Assumptions

We assume that non-replicated distributed applications are composed of a number of pro-

cesses that do not share memory, and interact only via messages. As an example, the function of

50

a typical' server' process is to cycle by selecting an input message from anyone of its input ports,

process it and, if necessary, output one or more messages on its output ports. We also assume that

if a process with multiple input ports has input messages available at several of these ports, then

anyone of these messages is chosen non-deterministically for processing. Message selection is

however assumed to be fair, that is, the process eventually selects a message present on a port.

Figure 3-6 shows the basic structure of an unreplicated 'server".

process Server
var request, result:message
cycle

receive request from any input port
result := process request
send result to appropriate output port

end cycle
end process

Figure 3-6: Unreplicated 'server'

In the replicated version of a process, multiple input ports of the non-replicated process

are merged into a single port and the replica selects the message at the head of its port queue for

processing. Hence, provided the queues of all correct replicas can be guaranteed to contain ident-

ical messages in an identical order, and all the non-faulty replicas have identical initial states,

then identical output messages are produced by them. Validation protocols can then be applied

to the outputs generated by replica processes. Thus, replication of a process requires the following

two conditions to be met:

agreement: all non-faulty replicas of a process receive identical input messages; and

order: all non-faulty replicas process the messages in an identical order.

Note that output messages are identical only if the computation performed by a process on

a selected input message is deterministic. So, if processes present this deterministic behaviour,

active replication is achieved by providing suitable protocols for achieving agreement and order

51

of input messages, and for validating output messages (e.g compare, majority vote). The basic

structure for the replicated version of the 'server' in Figure 3-6 is shown in Figure 3-7.

Figure 3-7: Replicated 'server'

Practical distributed programs often require some additional features such as using time-

outs when waiting for messages. Time-outs and other asynchronous events, high priority mess-

ages, etc., are potential sources of non-determinism during inpu tmessage selection, making such

programs difficult to replicate. In [Tully-Shrivastava 90], Voltan nodes are enhanced with the

necessary functionality for dealing with such cases. In this thesis, we assume the simple state ma-

chine model discussed above, where processes are assumed to be deterministic.

We assume that mechanisms exist for generating and verifying digital signatures, which

provides an authentication facility with arbitrary high probability [Rivest et al. 78]. Each non-

faulty processor has a mechanism which generates a unique, message dependent, unforgeable

signature, which is attached to any message it sends to other processors of the node. Furthermore,

every non-faulty processor is also assumed to have an authentication function for verifying the

authenticity of a message signature contained in a received message. We assume that a faulty pro-

cessor (and therefore the processes running on that processor) can fail in an authentication-de-

tectable arbitrary way [Strong et al. 90], where the class of authenticated-detectable arbitrary

52

failures is defined as the class of arbitrary failures that do not corrupt the authentication mechan-

isms described above.

Each processor of a node is assumed to have network interfaces for inter-node communica-

tion over (possibly redundant) networks. However, we assume that there are means to prevent

a faulty processor from flooding the network by consistently broadcasting spurious messages and

therefore bring the whole system to a halt-'. Processors of a node are internally connected by com-

munication links for intra-node communication needed for the execution of the redundancy man-

agement protocols. No bound is assumed on network transmission delays between distinct nodes.

We assume that the maximum intra-node communication delay over a link is bounded by a

known constant 0, i.e. a message whose broadcast to a number of receivers within a node is in-

itiated by a non-faulty sender, experiences an actual transmission delay of oa units of real time",

oa < 0, until it is received by every non-faulty receiver. For simplicity, we assume that the lower

bound on the actual transmission delay is zero. Thus, 0 :::;oa < 8, and 8 also represents the maxi-

mum variation in message transmission delays within a node. Link failures are categorised as pro-

cessor failures, that is, a link failure that prevents a message sent from a processor to be received

by other processors of the node is considered as a failure of the sender processor.

Note that the transmission delay is composed of not only the time the messages spent in the

communication medium, but also of all the processing time associated with a broadcast, both at

the sender's and at the receivers' side. Thus, the transmission delay incorporates the differences in

the relative speed of two non-faulty processors.

A processor measures the passage of real time via its physical clock. We further assume that

the clock of a non-faulty processor can drift from real time by a bounded and known rate Pa,

3. This can be achieved either by using point-to-point connections to connect processors of two differ-

ent nodes, or by using specially designed bus guardian circuits. Since our approach is to use only 'off-

the-shelf' components, we will assume that inter-node processor are connected through point-to-point

connecti ons.
4. Real time is assumed to be the mathematical Newtonian time that cannot be directly observed.

53

In this thesis we adopt the style of writing real time values in Greek or italicised upper case

Roman letters, and clock time values in italicised lower case Roman letters; the term 'clock' nor-

mally refers to a processor's hardware clock. We summarise below the main assumptions made.

Assumption 1: In a failure-masking node, at least 1t+lout of N processors are non-

faulty and never fail, where N = 21t+ I; whilst in a fail-silent node, at least one out

of N processors is non-faulty and never fails, where N = 1t+1.Processors are assigned

a unique numbering which is known to all non-faulty processors.

Assumption 2: A non-faulty processor's signature for a given message is unique

and cannot be generated by any other processor. Furthermore, any attempt to alter

the contents of a non-faulty processor's signed message is detected by any other non-

faulty processor.

Assumption 3: Processors within a node are connected to processors of another node

through point-to-point connections.

Assumption 4: When a non-faulty processor sends a message to a subset of pro-

cessors of the node at real time SENT.every non-faulty destination receives the mess-

age at real time RECEIVED, SENT~ RECEIVED < (SENT+fl), where fl, fl > 0, is

known.

Assumption 5: A non-faulty processor's clock measures an interval of time x in a

real time interval x(I+Pa), where Ipal :::;P and P is a known positive constant.

Note that assumptions 4 and 5 make the environment synchronous, and are essential to

guarantee that the agreement necessary for ordering input messages is reached in finite time in the

presence of failures [Fischer et al. 85], and thus to ensure the liveliness of processing activities

within the replicated node.

3.3.2. Node Architecture

We consider failure-masking nodes and fail-silent nodes comprised of N processors,

PI, P2 •... PN. where N = 21t+1 in the case of failure-masking nodes. N = n+ 1 in the case of fail-

silent nodes, and 1t. 1t >0, is the upper bound on the number of processors of a node that may fail.

Each node in the system. each processor of a node. and each group of replicated application pro-

54

cesses possess unique identifiers (numbers). There is also a sequence number counter associated

with each group of replicated application processes. These identifiers and counters are used to

uniquely identify each message generated by any application process. Messages generated by an

application process are encapsulated with control information which contains the message's se-

quence number, process identifier, node identifier, and authentication information (processor

identifier and message signature). This information is used by the redundancy management pro-

tocols to match correlated messages, and to detect and remove duplicated and corrupted mess-

ages.

In addition to application processes tService, processes), each processor of a node executes

five system processes. Figure 3-8 shows the inter-relation between such processes. The function

of each system process is described below.

Sender process: this process takes the messages produced by the application pro-

cesses of that processor, signs them and sends them to the other processors of the node

for validation, Le. voting in failure-masking nodes, and comparison in fail-silent

nodes. (In fail-silent nodes, the Sender process needs also to perform some flow con-

trol over messages sent for comparison. In chapter 5 we discuss this issue in detail.)

Validator process: the function of this process depends on the type of the node. In

failure-masking nodes, the Validator processor is a Voter process. It compares auth-

entic messages which have been signed and sent by other processors with their

counterparts produced locally. If the comparison is not successful, the message is dis-

carded. Otherwise, the message is countersigned (by considering the existing signa-

tures in the message as part of the message), and if there are now 1t+ I signatures in

the message, the message, termed a valid message, is handed over to the local Trans-

mitter process for network delivery to destination nodes. If there are less than 1t+ I

signatures, then the message is sent to the other processors of the node that have not

signed the message yet. In fail-silent nodes the Validator process is a Comparator

process. It also compares authentic messages which have been signed and sent by

other processors with their counterparts produced locally. If the comparison is suc-

cessful, the message is countersigned, and if there are 1t+ I signatures in the message,

55

the valid message is handed over to the local Transmitter process. If there are less than

1t+1 signatures, then the message is sent to the other processors of the node that have

not signed the message yet. A comparison that detects a disagreement indicates a fail-

ure. Similarly, an absence of a 1t-signed message for comparison (after a node spe-

cific time-out interval) also indicates a failure. Once a failure is detected, the Com-

parator process terminates its activities, and so does the Sender process. Hence, no

new rt+l=signed messages are ever output by the node. It follows that, in both fail-

ure-masking and fail-silent nodes, all valid messages issuing from a node contain

1t+1 signatures.

From
links

Link

Orde r

To
links

Figure 3-8: Voltan node

56

To
links

Transmitter process: this process is responsible for sending the n+ I-signed messages

over the network to destination nodes. As each processor has a Transmitter process,

when all processors are non-faulty, failure-masking nodes and fail-silent nodes gen-

erate respectively 21t+ 1 and 1t+ I copies of its output messages.

Receiver process: this process authenticates messages received from the network or

from the internal links and discards any message which fails authentication or any

duplicated message received. Authenticated messages from the network (valid mess-

ages) are sent to the local Order process. Authenticated messages received from other

processors of the node, which carry less than 1t+ I signatures, are sent to the local Vali-

dator process.

Order process: this process executes an order protocol with its counterparts in the

other processors of the node. The function of the order protocol is to construct ident-

ical queues of valid messages received from the network for processing by the local

application processes of all non-faulty processors of the node.

Remark: since order protocols entail the Order process to relay valid messages to

its counterparts, it is sufficient for a message to be received from the network by any

one of the non-faulty processors of a node for it to be ordered at all the non-faulty

processors.

Communication between two processes executing at the same processor is realised through

message queues and message lists data structures. The basic difference between a queue and a

list is that a process is only allowed to access messages in the front of the queue, whilst processes

can access any message that has been deposited in a list. The following queues and lists are used:

Received Message Queue (RMQ): Contains valid messages intended for ordering,

that have been received from the network and authenticated by the Receiver process.

Delivered Message Queues (DMQj): Contains ordered messages to be consumed by

the application process Service].

57

Processed Message Queue (PMQ): Contains unsigned output messages produced by

local application processes. These messages must be validated by the Validator pro-

cess before transmission to the final destination.

External Candidate Message List (ECL): Contains authenticated signed messages

that have been received from other processors for validation.

Internal Candidate Message List (ICL): Contains unsigned messages, each waiting

for matching signed messages to arrive in ECL.

Validated Message Queue (VMQ): Contains n+ l=signed, valid messages ready to be

transmitted over the network.

From the system processes discussed above, the Receiver, Sender and Transmitter pro-

cesses are of tri vial implementation. Thus, we discuss the implementation of these processes in

this chapter, whilst we leave the discussion of the implementation of the Order and Validator pro-

cesses to the next chapters.

process Receiver
process Network

var m:message
cycle

receive m from the network
if m is not authentic then discard m else deposit m into RMQ end if

end cycle
end process
II
process Link

var m:message
cycle

receive mfrom an internal link
if m is not authentic then discard m else deposit m into ECL end if

end cycle
end process

end process

Figure 3-9: Receiver process

The Receiver process (see Figure 3-9 above) is composed of two cyclic processes that ex-

ecute in parallel. The Network process receives messages from the network, and performs an

authentication check on the messages, which detects any spurious message that has been sent by

58

the faulty processors of other replicated nodes. Authentic messages are deposit into the local

RMQ. The Link process on the other hand, receives messages from the internal links. These mess-

ages are also subjected to authentication, and if found to be authentic are deposit into the local

ECL. Authentication in this case must detect both internal errors, Le. any attempt of a faulty pro-

cessor of the node to corrupt a message sent through an internal link, as well as external errors

that have been propagated by a faulty processor that has failed to detect a corrupted message re-

ceived from the network.

The Sender process (see Figure 3-10) simply cycles removing messages from the local

PMQ, depositing them into the local ICL, signing and diffusing them to the other processors of

the node that have not received that message yet (i.e. those whose signature are not present in the

message).

process Sender
var m:message
cycle

remove mfrom PMQ
deposit m into [CL
sign and diffuse m

end cycle
end process

Figure 3-10: Sender process

Finally, the Transmitter process (see Figure 3-11) cycles removing messages from the local

VMQ and transmitting them to the appropriate destination nodes.

process Transmitter
var m:message
cycle

remove mfrom VMQ
transmit m to destination

end cycle
end process

Figure 3-11: Transmitter process

Remark: the failure-masking node described above has the semantics of an NMR

node. To attain the semantics of a fail-signal node from the above description, it is

59

necessary to introduce a minor modification on the Voter process (Validator process

for failure-masking nodes) previously described. The Voter process must be en-

hanced with a facility for generating failure signals, whenever a comparison detects

a mismatch. Also, it might be necessary to introduce a Handler process to monitor

the failure of other nodes in the system and initiate preventive procedures after re-

ceiving a failure signal. (See [Shrivastava et al. 91].)

The main difference between a distributed system composed of replicated nodes such the

ones presented above, and another composed of unreplicated nodes, is that in the former, nodes

are required to produce 1t+ I-signed messages and use authentication to distinguish between valid

and spurious messages. Further, under normal conditions, inter-node traffic is increased 21t+1

times when the distributed system is composed of failure-masking nodes, and n+ 1 times when

the nodes are fail-silent.

Provided that the number of faulty processors does not exceed 1t, the semantics of the fail-

ure-masking and fail-silent nodes presented above can be expressed in the following way:

failure-masking nodes: when all processors of a failure-masking node are non-

faulty, the node produces 21t+I copies of valid output messages, that can be verified

as such by any non-faulty processor of the destination nodes. When up to 1t pro-

cessors are faulty, a failure-masking node outputs at least 1t+ 1 copies of valid output

messages, and may also output spurious messages. Any spurious message output by

the faulty processors of a failure-masking node can be detected and rejected by all

non-faulty processors of any receiver node;

fail-silent nodes: when all processors of a fail-silent node are non-faulty, the node

produces 1t+ 1 copies of valid output messages, that can be verified as such by any

non-faulty processor of the destination nodes. When any number of processors, up

to 1t, are detected as faulty, the node ceases to produce new valid output messages,

in which case non-faulty processors of receiver nodes can detect any message it may

produce as unwanted.

60

In both nodes, spurious messages are detected by examining the signatures attached to the

messages received, whilst the sequencing information of messages is used to detect duplicates.

3.4. Concluding Remarks

The design of replicated nodes has been discussed. We have differentiated between two

types of nodes, namely hard nodes, where redundancy is controlled through hardware mechan-

isms, and soft nodes, where software protocols are used to manage node redundancy. We have

discussed the drawbacks and advantages of each type of nodes, and justified our choice for using

soft nodes as building blocks of fault-tolerant distributed systems.

We have finished by presenting the architecture of the failure-masking and fail-silent

nodes of the Voltan family of soft replicated nodes. In these nodes, apart from the application

processes, each non-faulty processor of the node executes five system processes, namely Re-

ceiver, Sender, Transmitter, Order and Validator processes. These processes are responsible for

controlling the node redundancy, so that the node presents its correct semantics. Among these

processes, the Receiver, Sender and Transmitter processes are of trivial implementation. There-

fore, the difficulty in implementing replicated nodes lies in the implementation of the Order and

Validator processes. In the next two chapters we discuss protocols for implementing such pro-

cesses for both failure-masking and fail-silent nodes.

61

Chapter 4
Soft Failure-Masking Nodes

4.1. Introduction

In the previous chapter, the general structure of the architecture of a soft failure-masking

node was described. There are five system processes that must be executed by each non-faulty

processor forming the node to provide the node's masking functionality. These processes are the

Sender, Receiver, Transmitter, Validator and Order processes. We have already described in Sec-

tion 3.3.2 how the first three processes listed can be implemented. The other two processes have

not been discussed in detail yet. The Validator process is responsible for validating the output

messages generated by the node, whilst the Order process is responsible for guaranteeing that

application process replicas executing at each processor input the same set of messages, in the

same order. In this chapter we discuss protocols which can be used to efficiently implement these

two processes.

The performance of a failure-masking node depends on how quickly messages can be vali-

dated and ordered. In a failure-masking node, the Validator process is a Voter process whose

functioning is relatively straightforward. The delay imposed by the voting protocol is mostly

made up by the time spent in the unavoidable exchange of output messages among the processors

prior to the execution of voting. On the other hand, ordering is not as straightforward as voting,

and can be achieved in several ways [Schneider 90]. Thus, we have sought ways to improve the

performance of a failure-masking node by designing more efficient order protocols.

We start the chapter by presenting a reference design of a failure-masking node. The refer-

ence design includes the description of simple Voter and Order processes. The Order process in-

62

corporates an order protocol which requires that the participant processors have synchronised

clocks, i.e. at any given instance of real time the readings of the clocks of any two non-faulty

processors are guaranteed to differ only within a known bound. We then derive more efficient

order protocols which do not require clocks to be explicitly synchronised. Different designs of

failure-masking nodes can be attained by associating the Voter process of the reference imple-

mentation with an Order process which incorporates any of the efficient order protocols pres-

ented. Thus, the only difference between the various node designs presented in this chapter is in

the way input messages are ordered. We finish the chapter with an analysis of the overhead im-

posed by the protocols presented.

4.2. ReferenceDesign

4.2.1. Standard Voter Protocol

The voter protocol is very simple. It collects output messages generated by the processors in

the node, and performs a majority voting upon the messages collected. The result of the majority

voting is then output. Figure 4-1 shows the pseudo-code for a Voter process.

The Voter process has access to two lists of messages (see Figure 3-8, page 56), namely the

Internal Candidate Message List (lCL), which contains messages produced locally by the ap-

plication processes, and the External Candidate Message List (ECL), which contains authenti-

cated signed messages with up to 1t signatures, which have been produced by the application pro-

cesses executing at the other processors of the node. Messages in ECL may have been subjected to

evaluation at other processors of the node; essentially, a message which contains s signatures has

been successfully compared against the locally produced messages of s-1 other processors. The

function of the Voter process is to scan ECL looking for signed counterparts of the local messages

present in ICL. When such a pair is found, the Voter process compares the contents of the mess-

ages, and if there is a mismatch, the message in ECL is discarded. Otherwise, the message in ECL

is countersigned and either enqueued in the Validated Message Queue (VMQ) for later trans-

mission to the destination by the Transmitter process, or sent to all other processors of the node

that have not signed the message yet. Messages signed by a majority of processors, i.e.

63

1t+ l=-signed messages, are valid messages, and thus are enqueued in VMQ. Messages with less

than 1t+ 1 signatures are sent through the internal links to the other processors of the node.

process Voter
var internal, external:message

found:Boolean
cycle

do
internal := a message from IeL
found := is there a counterpart of internal in EeL?

while not found
external := the counterpart of internal in EeL
if internal = external then

generate and append the signature for external
if number of signatures in external = (1t+ 1) then deposit external into VMQ
else

for all Pi, 1 s i sN do
if Pi has not signed external then transmit external to Pi end if

end for all
end if

else discard external
end if

end cycle
end process

Figure 4-1: Voter process

4.2.2. Order Protocol with Synchronised Clocks

The function of the Order process is to ensure that authentic valid messages received by the

non-faulty processors of the node, i.e. messages enqueued in RMQ (see Figure 3-8, page 56), are

enqueued in the same order in the appropriate DMQi of every non-faulty processor of the node.

Ordering can be achieved in several ways. The basic idea is to have an agreement protocol which

guarantees that all non-faulty replicas receive the same set of messages and then accomplish or-

dering by assigning monotonically increasing sequence numbers to messages. It is also necessary

to devise a method to establish when a message becomes stable, i.e. when it is guaranteed that no

authentic valid messages with sequence numbers less than a certain value, say sn, will ever be

received, so that all messages with sequence numbers less than sn can be processed in a consistent

order among all non-faulty replicas. Since the authentication mechanisms of non-faulty pro-

64

cessors can detect any message corrupted by a faulty processor, an order protocol has to imple-

ment a message diffusion mechanism. which guarantees that a message received by a non-faulty

processor is also received by all other non-faulty processors of the node, and timeliness checks

mechanisms to discard unwanted messages diffused by faulty processors at inappropriate times.

In a synchronous system, Byzantine resilient atomic broadcast protocols [Cristian et al. 85,

Gopal et al. 90] can be used to achieve ordering. An atomic broadcast protocol presents the fol-

lowing properties:

termination: it delivers every message broadcast by a non-faulty sender within

some known time bound Ll, as measured by the clock of any non-faulty processor;

atomicity: it ensures that every message whose broadcast is initiated by a sender is

either delivered to all non-faulty receivers, or to none of them; and

order: messages are delivered in the same order at all non-faulty receivers.

To achieve ordering of input messages in a soft failure-masking node, it suffices that every

message in the RMQ of a non-faulty processor is atomically broadcast to all other processors of

the node. The atomicity property of the atomic broadcast guarantees that non-faulty processors

will input the same set of messages, whilst the order property guarantees that messages are deliv-

ered in the same order by all non-faulty processors. Non-faulty processors then enqueue deliv-

ered messages in the delivered order at the appropriate DMQj. Since a particular input message

may appear in the RMQ of several non-faulty processors, processors may receive multiple copies

of the same input message. Thus, the Order process must make sure that duplicate messages are

discarded, rather than enqueued in the DMQjs.

The Order process of our reference design is based on the authenticated Byzantine resilient

atomic broadcast protocol reported in [Cristian et al. 85], which is resilient to any number 1t of

faulty processors, provided 1t < N. Since the voting mechanism of a failure-masking node re-

quires at least N = 21t+ 1, this atomic broadcast protocol is suitable for implementing the Order

process of a failure-masking node. The atomic broadcast protocol also requires that the clocks

of all non-faulty processors of the node are synchronised such that the measurable difference be-

tween readings of clocks at any instant is bounded by a known constant, say E.

65

The ordering of input messages using this atomic broadcast protocol works as follows. The

Order process of a processor time-stamps a message to be ordered with its local clock reading.

A copy of the time-stamped message is signed and sent over the link to the Order process of the

other processors of the node. If t is the time-stamp of a message received from or sent to the Order

process of the other processors, then this message becomes stable at local clock time HL\, where

d, the termination bound of the protocol is given by: d = (1t+ I)(d~+£). We define the clock time

interval ds- d~ = O/(I-p), to be the minimum interval that the clock of any non-faulty processor

must advance to measure the real time interval 0, i.e. the real time interval elapsed between two

readings t, and Hd~ of the clock of any non-faulty processor is at least O. Once a message with

time-stamp t becomes stable, no authentic valid messages with time-stamp t' < t can be received

by an Order process (if such messages are received they are found untimely, and are discarded).

Stable messages are enqueued in the appropriate DMQi in increasing time-stamp order, with the

action being taken to discard, rather than to enqueue a stable message, if its replica has already

been enqueued. (The identifier of the processor which has initiated the broadcast of a particular

message is used as a tie-breaker in the case when there are more than one stable messages with

the same time-stamp.)

The Order process is composed of three cyclic processes, namely Broadcast, Diffuse and

Deliver processes, which execute in parallel. This three processors communicate with each other

through a shared message list data structure called the Ordered Message List (OML). Figure 4-2

shows the structure of the Order process.

The Broadcast process picks up a message from the RMQ, time-stamps it with its current

clock reading, signs it with a unique, unforgeable signature and then sends it to the other pro-

cessors of the node. It also inserts a copy of the message into the OML.

66

Figure 4-2: Order process structure

The Diffuse process receives diffused messages from the other processors. After checking

the authenticity of a message received from another processor, the Diffuse process performs a

timeliness check that allows it to discard any message received too early (messages with time-

stamp greater than c+(s£), where c is the current reading of the processor's clock, and S is the

number of signatures contained in the message, i.e. the number of processors that have diffused

the message), or any message received too late, i.e. messages with time-stamp less than

c-S(d~+E). Authentic and timely messages are accepted and inserted into the OML. Corrupted

and untimely messages are discarded. The Diffuse process also checks if the message received

is a copy of a previously received message, in which case the message is also discarded. If the

message received has not been received before, the Diffuse process signs and diffuses it to the

other processors in the node which have not received that message yet.

The Deliver process takes stable messages (messages with time-stamp less than c-ll.) from

the OML, filters duplicate messages (i.e. removes all the duplicated copies of a particular mess-

age, but one), removes spurious messages (messages diffused by the same source, with the same

time-stamps, but with different contents) and enqueues the remaining messages in the appropri-

ate DMQjs in increasing order of time-stamps. Figure 4-3 shows the pseudo-code for this Order

67

process, where m.TS denotes the time-stamp of a message Ill, s is the number of signatures con-

tained in m and c is the reading of the processor's synchronised clock.

process Order
var OML:/ist of message
process Broadcast

var m:message
cycle

remove m from RMQ
m.TS:= c
sign m
diffuse m
deposit m into OML

end cycle
end process
II
process Diffuse

var m:message
cycle

receive m from an internal/ink
if m is authentic and c-s(dt,.+£) ~ m.TS ~ c+(s£) and have not received m yet then

sign m
diffuse m
deposit m into OML

else discard m
end if

end cycle
end process
II
process Deliver

var m:message
stable, delivered:list of message

cycle
for all m, m in OML and m.TS::; c-i\ do add m to stable end for all
remove spurious messages from stable
filter duplicate messages from delivered+stable
delivered := delivered+stable
order the messages in stable in increasing time-stamp order
for all m in stable do deposit m into the appropriate DMQi end for all

end cycle
end process

end process

Figure 4-3: Order process for reference design

68

The termination bound (d) of the atomic broadcast protocol gives the delay suffered by an

input message before it is made available to the application process of a particular processor, as

measured by the clock of that processor. However, the node can only output the results of the com-

putation of a particular input message when the number of processors that have ordered the input

message, and processed it, form at least a majority. Hence, in the context of a failure-masking

node, we define the actual stability delay (~a) of an order protocol for a particular message to

be the real time elapsed since a copy of the message is first received by a non-faulty processor

of the node until it is ordered and enqueued in the appropriate DMQiS of all non-faulty processors

of the node. We also define ~min and ~max to be respectively the lower and the upper bound of

the actual stability delay of an order protocol (~min ~ ~a ~ ~max). Therefore, for the above proto-

col we have:

~min = d(1-p); ~max = d(l+p)+E; and d(l-p) ~ ~a ~ d(1+p)+E.

The lower bound ~min is achieved when the actual difference between the readings of the

clocks of any two non-faulty processors at the time the message is being ordered is zero, and the

clocks of all non-faulty processors are running at the fastest possible rate, i.e. the interval d

measured by their clocks corresponds to an interval L\-L\p of real time. On the other hand, the

upper bound ~max is achieved when the clock of at least one non-faulty processor is running at the

slowest possible rate (i.e. p), and the difference between the reading of the clock of the first non-

faulty processor to receive a copy of the message, and the reading of the slowest non-faulty pro-

cessor at the time the message is being ordered is equal to E.

4.3. Efficient Order Protocols

We have shown how atomic broadcast protocols can be used to implement an order proto-

col. The functioning of an atomic broadcast protocol can be analysed in two parts. First it achieves

agreement, then it achieves order. The synchronous and deterministic agreement protocols pub-

lished in the literature require that non-faulty processors have access to synchronised clocks

whose readings at any given instance of real time are guaranteed to differ only within a known

bound. Since physical clocks of non-faulty processors drift from real time by different rates,

meeting this requirement will in turn require each processor to periodically compute the amount

69

of adjustment to be made to the reading of its local physical clock, and then to make the adjust-

ment so that the synchronous property of the system is maintained. However, if the agreement

protocol is executed frequently enough, adjustments can be computed with no message overhead

[Babaoglu-Drummond 87]. The need to adjust a read-only clock leads to constructing an ab-

straction of a synchronised clock whose reading is the sum of the physical clock reading and the

adjustment that is stored in a memory location (see [Dolev et al. 84] for example).

In a failure-masking node, a given input message can prompt more than one processor to

initiate an execution of the agreement protocol. (This is not the case in the transaction commit

where only one site - the co-ordinator - initiates one agreement per transaction.) By exploring

the execution of these agreement protocols, it is possible to attain some sort of synchronisation

among processors, without the need for executing an explicit clock synchronisation protocol.

This observation has motivated us to develop atomic broadcast protocols based on agreement

protocols that do not require the maintenance of the synchronised-clock abstraction, but relies

directly on physical clocks for knowing the current time and for scheduling operations at future

times. Many operating systems provide an efficient, low level scheduler that meets our require-

ment (which is typically in the form of "schedule an execution of process p when clock reads t").

In this section we first present an order protocol whose performance is comparable with

other protocols reported in the literature, but, unlike the latter, does not need to maintain explicit

synchronised clocks. Then we present an improved version of the protocol for the important case

of a Triple Modular Replicated (TMR) node, which performs better than any synchronised based

protocol. Finally, we present a derived protocol which assumes that inter-node communication is

realised throughfirst-in-first-out (fifo) channels, and takes advantage of some characteristics of

the nodes we are designing to order messages much faster, especially when the node is in a fail-

ure-free state. We note that like the order protocol discussed in the previous section, the order

protocols discussed in this section require only rt < N, thus, the node requirement that at least a

majority of the processors are non-faulty is needed only because of the majority voting mechan-

ism inherent of failure-masking nodes.

The presentation of each protocol is performed in three steps. First an informal description

of the protocol is given; then the correctness of the protocol is sketched; and finally the perform-

70

ance of the protocol is discussed. Later, in Section 4.4, we compare the performance of the proto-

cols presented with the performance of other protocols reported in the literature.

4.3.1. A Protocol without Explicit Clock Synchronisation

4.3.1.1. Protocol Description

Again, the development of the order protocol mainly involves implementing: i) message

diffusion to ensure that non-faulty processors exchange an identical set of messages between

them; and ii) timeliness checks to enable a non-faulty processor to assess whether a received

message is timely, and therefore should be accepted, or if the message is untimely, in which case it

should be discarded. We assume that authentication of input messages diffused by the other pro-

cessors of the node is performed before the message is made available to the order protocol, thus

for the order protocol, the faulty behaviour of a processor is restricted to omitting to send mess-

ages or sending them at incorrect times (which includes time-stamping a message with a spurious

value).

Messa~e Diffusion

Each processor Pi within a failure-masking node maintains a message counter, denoted by

MCi, whose value is an integer that never decreases and is initialised to I when the node is first

started. When Pi wants to initiate the broadcast of a message received from the network, it com-

poses an internal message m = <u, TS, 0, S>, where m.~ is the contents of m, i.e. the message

received from the network; m. TS is the time-stamp of m; m.O is the originator of m; and m.S is the

list of signatures contained in m. A newly formed and unsigned m has empty m.S, whilst for any

sent or received m, m.S contains a sequence of one or more processor signatures. We use the nota-

tion Im.SI to denote the number of signatures in m.S.

Before Pi sends the message m it formed, it performs the following actions on m: first, it

time-stamps m by setting the message field m.TS = MCj, and increments MCj by 1- thus ensuring

that any message it later forms gets a time-stamp larger than m.TS; then it sets the message origin-

ator field m.O to its identifier, i; and finally it generates a signature for m which is put in the field

m.S. Pi then sends m to all other processors of the node, and accepts the sent message by entering a

copy of it in a message list called acceptedi.

71

Whenever Pi recei ves a message m' from another processor of the node, it accepts m' only if

m' is timely, and Pi has not accepted m' previously. (We discuss shortly how a non-faulty pro-

cessor assesses the timeliness of a message.) If m' is accepted, then it is entered in the message list

accepted, and Mq is set to the maximum of {M Ci, m' .TS+ 1}. If the accepted m' has been signed

by less than 1t+ I processors, Pi generates a signature for m' and add the generated signature to the

list of signatures already in m' .S; m' is then sent to all processors that have not signed it yet. Thus,

any accepted message with less than 1t+ 1 signatures is diffused. As there can be at most 1t faulty

processors, this diffusion ensures that if m enters accepted; of any non-faulty Pi, then some m'

such that m'.11 = m.ll, m'.O = m.O and m' .TS = m.TS, is received by every other non-faulty Pk of

the node.

For any given message m, we define an equiv(m) as any m' such that m'·11 = m·ll,

m'.O = m.O and m' .TS = m.TS. That is, only the contents of m.S and [equiv(m)].S may differ.

Note that an equiv(m) can be m itself.

Lemma 1 (message diffusion): If a non-faulty Pi accepts m at real time T1MEi, then

every non-faulty Pk receives an equiv(m) at real time TIMEk such that

ITIMEi-TIMEkl < s.

Proof: Let Pj be the first non-faulty processor to accept m at real time TIMEj. It fol-

lows that Im.SI < 1t+ 1, and if Im.SI > 0, then any processor which has signed m must

be a faulty processor (since Pj is the first non-faulty processor to accept m). Pj then

diffuses m to every other processor which has not signed m. From assumption 4 (see

Section 3.3.1, page 54), every non-faulty Pk, Pk *- Pj, Pi inclusive, receives equiv(m)

at some real time TIMEk, with TIMEj ~ TIMEk < TIMEj+&, hence the lemma. 0

To present the protocol in this section, we assume the availability of the primitives, re-

ceive(m) and send(m). These two primitives together implement message diffusion. The re-

ceive(m) primitive returns a message m that has been received from an internal link and has been

authenticated. (This authentication procedure involves checking external signatures appended by

processors of the originator node, i.e. checking m.ll, as well as checking internal signatures ap-

pended by the processors of the node, i.e. checking m.S). Hence, any message m received by a

72

non-faulty processor by invoking the receive(m) primitive is authentic, and further development

of the protocol need only be concerned with the timeliness ofm. The send(m) primitive generates

the sending processor's signature for m if m is eligible for diffusion (i.e. Im.SI< 1t+1), and ap-

pends the generated signature to the signature sequence already in m.S. The resulting message is

then transmitted to every other processor in the node that has not signed it (see Figure 4-4).

send(m)
{

if Im.SI< (1t+ 1) then
generate and append the signature for m
for all Pj, 1 5:j 5: N do

if Pj has not signed m then transmit m to Pj end if
end for all

else discard m
end if

Figure 4-4: Send primitive

Timeliness checks

These checks enable a non-faulty processor to accept or discard a received message m such

that ifm enters accepted; of a non-faulty Pi then an equiv(m) enters accepteds of every non-faulty

Pk within finite time. The protocol employs two timeliness checks based upon time-outs. To il-

lustrate the principles behind the development of these checks, we assume that a processor takes

zero time to execute any instruction of the protocol and the receive(m) and send(m) primitives

earlier described. We assume the existence of a clock time interval d, which is of common knowl-

edge to all non-faulty processors, and which will be used to measure a real time interval of at least

o duration. Thus, d must be chosen in such a way that the clock of any non-faulty processor ad-

vances from a value (to a value t+d within a real time interval not smaller than O.Note that since

physical clocks drift from real time, the real time interval elapsed when the clock of different

non-faulty processors measure a clock time interval d might well be dissimilar.

Suppose that a non-faulty Pi forms and sends m, m.TS = ts, ts ~ 1, at its clock time ti. At this

time, Pi accepts m, and sets MCi = zs+I. We assume (as an induction hypothesis) that any non-

faulty Pk that receives m sent by Pi accepts it (unless, before receiving m, Pk has already received,

73

and accepted another equiv(m)). Thus, since Pk updates its MCk after accepting equiv(m), by

lemma 1, MCk of any Pk becomes larger than ts before a real time interval of & duration has

elapsed, i.e. before Pi'S clock time ti+d. This means that any m' sent by a non-faulty Pk to Pi, with

m' .TS ~ ts and 1m'.SI = 1, must have been sent before Pk had accepted equiv(m). Thus, Pi should

only accept any m", m' .TS ~ ts and 1m'.SI = 1 (i.e. a message whose broadcast has been initiated

by Pk), if it receives m' before a real time interval of 2&duration has elapsed since it had sent m,

i.e. before its clock time ti+2d; otherwise m' must be considered late and must be discarded.

Let a non-faulty Pk receive equiv(m) from Pi at its clock time tk and set MCk = m.TS+ 1

whilst accepting equiv(m). Accounting for the possibility of zero transmission time for the mess-

age equiv(m) received, Pk must assume that Mq of any non-faulty Pj,j *- i *- k, becomes at least

m.TS+ 1before Pk 's clock reads tk+d, since by that time every Pj will have received and accepted

equiv(m). So, Pk must observe the same rule as Pi: it should only accept any m' sent by another

processor, with m'.TS ~ ts and Im'.SI = 1, if it receives m' before its clock time tk+2d. Thus, the

timeliness check for a single-signed m' is: m' , m' .TS ~ ts and 1m'.SI = 1, is timely only if it is re-

ceived before local clock time t+2d, where t is the smallest local clock time when a message m,

m.TS ~ ts, was accepted.

We now extend to multiple signatures. Assuming that Pi has formed, and sent m as before,

let Pj be a faulty processor that sends m' only to Pk, with m' .TS ~ ts and 1m'.SI = 1, and let Pk

receive m' just before its clock is to read tk+2d, where tk was Pk'S clock time when Pk had received

and accepted equiv(m). Non-faulty Pk considers m' as timely, accepts and diffuses it after adding

its signature to the diffused m' .As non-faulty Pk has accepted rn' , non-faulty Pi must also accept

the diffused m". So, any timeliness check carried out by Pi must indicate that the diffused m' is

timely. The event of Pk'S clock reading tk happened when Pk accepted equiv(m), and therefore

happened at latest just before a real time interval of & duration had elapsed since Pi had sent m, i.e.

when Pk 's clock reads tk, Pi'S clock reads at most ti+d. If we neglect, for the time being, the small

difference between the drift from real time of Pi'S and Pk'S clocks when they measure a 2d clock

time interval, then when Pk'S clock reads tk+2d and m' is diffused to Pi, Pi'S clock reads at most

ti+3d. Thus, the double-signed m' diffused by Pk can be received by Pi at latest just before Pi'S

clock reads ti+4d, and the timeliness check for a double-signed m' received by Pi must be: m',

74

m' .TS ~ ts and Im.SI = 2, is timely only if it is received before clock time tj+4d, where tj is the

smallest clock time when a message m, m.TS ~ ts, was accepted.

Of course, the difference between the drift of clocks cannot be neglected. Take for instance,

the worst case scenario when Pi'S clock is running fast, whilst Pk'S clock is running slow. In this

situation, when Pk'S clock reads tk+2d, Pi'S clock may be reading a value greater than ti+3d, and

therefore, it is possible that m' is received by P, after its clock had already read tj+4d, which would

lead to m' being discarded by Pi.

The 4d time-out of the timeliness check executed by Pi can be divided into the following

three components: i) the transmission delay of m sent by Pi to the other processors; ii) the 2d time-

out during which a non-faulty Pk may receive timely m' , m', TS ~ ts and Im.SI = I, after having

accepted an equiv(m); and iii) the transmission delay of any timely m' received by a non-faulty Pk

and diffused to Pi (see Figure 4-5, where Ts and Td are respectively the real time when m was sent

by Pi and the real time when m' was diffused by Pk)·

's clock

Figure 4-5: Compensating the difference between the drift of clocks in an NMR

Note that the drift problem only applies to the clock time interval of the second component

of the time-out. Both the first, and third components of the time-out are due to actual trans-

mission delays of messages, and correspond to real time intervals. Since the maximum drift from

real time of any non-faulty clock is known (assumption 5, page 54), it is possible to quantify the

maximum difference between the drifts of the clocks of any two non-faulty processors when

measuring any particular clock time interval. Thus, by choosing a large enough value for d, it is

75

possible to compensate the drift difference when measuring the 2d clock time interval of the sec-

ond component of the time-out, with the difference between 8 and the actual real time interval

elapsed when Pi measures a clock time interval dfor the other two components of the time-out. In

Figure 4-5 this compensation is illustrated, where Pi and Pk are the drift rates from rea] time of the

clocks of processors Pi and Pk, respectively.

In Section 4.3.1.2, we show how to precisely calculate the value of d as a function of P, and

n, so that it is possible to attain the compensation described above. Assuming that d is appropri-

ately chosen, we generalise the timeliness check for messages with any number of signatures s,

I ~ s ~ n+ I, as follows:

check Cl: a received m, m.TS ~ ts and Im.SI = s, is timely only if it is received before

local clock time t+2sd, where t is the local clock time when MC first became larger

than ts (i.e. the smallest local clock time when a message m, m.TS ;:::ts was accepted).

The time diagram presented in Figure 4-6, summarises the reasoning of a non-faulty pro-

cessor Pi when using the timeliness check C I to define time intervals during which messages with

a particular number of signatures must be accepted, or discarded.

76

IPi'S point of view I point of view of a non-faulty Pk
I I I

actions and I timeliness I actions and I timeliness
reasoning I checks I reasoning I checks

I I I
At ti, Pi forms, and I I I I

ts ; ~_en~!!!_,m.TS =M9. __ _j ~ .L _j
I I By ti+d, a non-faulty r, I I

By ti+d, all non-faulty: I r~~eives .equiv(m) and: :
Pk receive equiv(m), and I I diffuses It to other pro- I I

tv+d. set MCk ~ m.TS = uc, I I cessors r, I I
I '- ~- - - - - - - - - -1- - - - - - - t- - - - - - - - - - -1- - - - --I

By ti+2d, any timely m', I I Because of above diffu- I I
m' .TS S;m.TS, 1m' .SI = I, I I sion, by ti+2d, all non- I I
must have already been I I faulty Pj receive equivim), I I

ti+2d_ !~c<:i._ved ~ _ :- knd ~~_g ~ !!!:TS -=- fl!_9._ ~ ~
IAfter ti+2d, Pi IBy ti+3d, any timely m', I I

By rj+Sdv all non-faulty Imust discard any :nz'.TS'5.m.Ts,lm'.sI= I, I I
Pk will discard any m', :m> 1m'.51= I, Imust have already been: :

ti+3d_ ~m'.!§ '5.m.TS,__!_m":":_SI=__! -_J~ !.S S;.!!!!_S__~ece~e~-------J_------_J
By ti+4d, any timely m'; I IAfter ti+3d, Pk I
m'.TS'5. m.TS, Im'.SI= 2, :: :must discard any:
must have already been I I Im', 1m'.SI = I, I

tj+4d received I I . Im' .TS '5.m.TS I--~~---------I-------t-----------I------I
IAfter ti+4d, Pi I I I
Imust discard any I I I
Im',lm'.SI'5.2, I I I

tj+5d . Im'.TSS;m.TS I I' I____________~-------L----------~------4
I I I I

, r I I I I
P' 1 k ti I I I Iis c oc nme I

Figure 4-6: Time diagram for timeliness check CI

The check presented above should be superimposed by a second check in some cases. Sup-

pose that non-faulty Pi receives and accepts a message m, m.TS = ts and m.O = j, at clock time [j.

In accordance with check Cl, Pi should discard any single-signed message m' , m', TS ::;ts, re-

ceived after clock time ti+2d. However, since a non-faulty Pj must have updated MCj to ts+ I

when sending m, any single-signed m", with m' .TS::; Is, and rn'.O = j, sent by Pj to Pi must have

been sent at a time before Pj had sent m. Thus, accounting for the possibility of m taking zero time

to be transmitted from Pj to Pi, Pi should consider any single-signed m'; m' .TS::; ts andrn'.O = j,

timely only if m' is received before clock time li+d. (Note that there is no assumption that mess-

ages sent from a non-faulty Pj to a non-faulty Pi are received by Pi in the order they have been

sent by Pj_)

77

Again, we extend the reasoning for the case of messages with multiple signatures. Suppose

that a non-faulty Pi receives and accepts m, m.TS = ts and m.O = j, at clock time ti. As discussed

before, Pi will discard any m'; m' .TS ~ (S, 1m' .SI = 1 and m'.O = i.received after clock time ts+d.

Message diffusion guarantees that any non-faulty Pk will receive an equiv(m) within a real time

interval of 0 duration. We assume (as an induction hypothesis) that any non-faulty Pk that re-

ceives equiv(m) accepts it, and thus Pk will also discard any m'; m'.TS~ ts, Im'.SI = I and

m'<O = j, received after clock time tk+d, where tk was its clock time when it had accepted

equiv(m).

Now suppose Pj is faulty, and sends m' . m' .TS ~ ts, and 1m' .SI = 1, only to Pk, and that Pk

receives m' just before its clock reads tk+d. Pk then accepts m", and diffuses m' to the other pro-

cessors. Since Pk has accepted m' , any timeliness check carried out by Pi must indicate that m' is

timely. When Pk'S clock reads tk, Pi'S clock reads at most ti+d. Again, we consider a compensa-

tion (similar to the one previously discussed) on the value chosen for d to account the difference

between the drifts of the clocks of Pi and Pk when measuring a clock interval d. Thus, when Pk'S

clock reads tk+d, Pi'S clock reads at most ti+2d; and adding a further transmission delay to allow

time for the diffusion to Pi of any timely m' received by Pk, any such timely m' will be received by

Pi at latest just before Pi'S clock reads tj+3d. So, the timeliness check for a double-signed m' re-

ceived by Pi must be: m", m' .TS ~ ts, 1m' .SI = 2 and m.O = j, is timely only ifit is received before

local clock time ti+d+2d, where tj is the local clock time when a message m, m.TS = ts and

m.O = j, was accepted.

Assuming an appropriate value for d, we can once again generalise the timeliness check for

messages with any number of signatures s, 1 ~ s ~ n+ 1, as follows:

check C2: a received m'; m' .TS ~ ts, 1m' .SI = s and m'.O = j, is timely only if it is re-

ceived before local clock time t+d+2(s-1)d. where (is the smallest local clock time

when a message m, m.TS 2:: ts and m.O = j, was accepted.

To implement timeliness checks C 1 and C2, each non-faulty Pi maintains timing counters,

denoted as TqU, s], for every Pj,j:t; i, and for every s, I ~ s ~ x+ 1. These timing counters have

integer values which are initialised to zero and never decrease. A timing counter TqU, s) is set to

78

ts, when any receivedm, m.TS:::; ts, Im.SI= sandm.O = j,can no longer be considered timely. The

two checks derived above indicate that setting TCiU, s1 and TqU, s+ I1 toagiven ts must be separ-

ated by a clock time interval 2d. A scheduler is used to execute a process, named Update, at ap-

propriate times (Figure 4-7 shows Pi'S Update process). An execution of the Update process sets

a specified timing counter to a specified value and schedules itself to be executed after 2d time, if

necessary.

process Update(j, s, ts)
var t:clock_time
if TCiU, s] < ts then TCiU, s] := ts end if
if s < (11:+1)then

t := the local physical clock time
schedule Update(j, s+ l, ts) at t+2d

end if
end process

Figure 4-7: Update process for an order protocol based on logical clocks

Define TCi.min to be the minimum of {TqU, 11:+I] I I :::;j :::;Nand j *- i}. Since for any s,

1< s :::;11:+1, and any j *- i, TqU, s] :::;TqU, s-I 1 (see Figure 4-7), any m, m. TS :::;ts, that is re-

ceived after Tq,min has become larger than or equal to ts, is considered late and does not enter

acceptedi, i.e. the message list accepted, becomes closed for such m after Tq,min ~ ts. So, every

m", m' .TS :::;ts, that is already in accepted, can be safely ordered after Tq,min ~ ts. Such messages

are removed from accepted; and put into another list, called stable; for ordering. An ordering

relation « for distinct m and m' is defined as follows: m « m", if «m.TS < m' .TS) or

(m.TS = m'.TS and m.O < m'.O)).

As with the order protocol of the reference design, spurious and duplicate messages must be

removed from stable, before message ordering. Message m in stable, is said to be spurious if and

only if there is a message m' in stable, such that m.O = m'.O, m.TS = m'.TS and m.fl *- m'.fl.

Spurious messages must have been formed by a faulty processor that failed by giving the same

time-stamp to distinct messages m and m'. On the other hand, a message m' is said to be a dupli-

cate of another message m if m.fl = m' .u, m.O *- m'.O and m « m':

79

The Order process to implement the protocol for processor Pi is presented in Figure 4-8.

Again, the Order process is composed of three cyclic processes, Broadcast, Diffuse and Deliver,

which execute in parallel, and share some data structures.

process Order
var Mq:message counter

Tq,min, Tq[N, It+l]:timing counter
acceptedclist of message

process Broadcast

end process
II
process Diffuse

end process
II
process Deliver

end process
II
process Update

end process
end process

Figure 4-8: Order process for an order protocol based on logical clocks

The Broadcast process (Figure 4-9) deals with input messages received from RMQ. Mess-

ages received from a link are treated by the Diffuse process (Figure 4-10), whilst message order-

ing is performed by the Deliver process (Figure 4-11). Note that since the Diffuse process does

not enter a received and timely m into accepted, if equivimi is already in the list, and spurious and

duplicate messages are removed by the Deliver process, the ordering relation « totally orders the

messages in stables, i.e. if m « m', m is ordered and delivered before m'.

80

process Broadcast
var M:message

m:internal_message
t:clock_time

cycle
remove Mfram RMQ
form m: m.Jl:= M; m.TS:= MCj; m.O:= i
MCj :=MCj+l
send m
insert m into accepted,
t := the local physical clock time
for all Pj, 1 '5.} '5.N and} ~ i do schedule Update(j, 1, m.TS) at t+2d end for all

end cycle
end process

Figure 4-9: Broadcast process for an order protocol based on logical clocks

process Diffuse
var m.message

t:clock_time
cycle

receive m
if m.TS ~ TCj[m.O, Im.SI] or an equiv(m) E accepted, then discard m
else

insert m into accepted;
M'C, := max{MCj, m.TS+l}
t := the local physical clock time
schedule Update(m.O, 1, m.TS) at t+d
for all Pj, 1~j ~Nand m.O ~ j ~ i do

schedule Update(j, 1, m.TS) at t+2d
end for all
sendm

end if
end cycle

end process

Figure 4-1 0: Diffuse process for an order protocol based on logical clocks

81

process Deliver
var m.message

stables, deliveredclist of message
cycle

when Tqrnjn < mint TqU, 1t+I] I 1<] ~ Nand}:t:. i} do
Tqrnjn :=min{TCiU, 1t+I] 11 ~}~Nand}:t:.i}
stable, := {m Im E accepted; and m.TS ~ Tqrnjn}
accepted, := accepted=stable,
remove spurious messages from stable,
filter duplicate messages from delivered+stable,
delivered, := delivered+stable,
order the messages in stable, according to « relation
for all m in stable, do deposit m into the appropriate DMQj end for all

end when
end cycle

end process

Figure 4-11: Deliver process for an order protocol based on logical clocks

4.3.1.2. Protocol Correctness

Notations

We assume the following notations to help in sketching the proof of the correctness of the

above protocol (an extended proof can be found in Appendix A). STARTiU, s, ~ts) denotes the

smallest real time instance when TCjU, s] becomes larger than or equal to ts. (That is, just before

real time STARTiU, s, ~ts), TCiU, s1 is less than ts.) statui], s, ~ts) denotes Pi'S clock time at real

time STARTiU, s, ~ts). Also, ENDi(~tS) denotes the largest real time instance when M'C, is less

than orequal to ts. (That is, just after real time ENDi(~ts), MCi is larger than ts and Piwill not form

and send any m, m.TS ~ ts.) Unless stated otherwise, the bounds on Is and s are: ts ~ 1 and

1 ~ s ~ n+ 1. For simplicity, we assume that a non-faulty processor executes the instructions of

the protocol in zero real/clock time. Realising this assumption requires an increase in the value of

d, which is possible as the proofs impose no upper bound on d.

Lemma 2.1: staruij, s+I, ~ts)-starti(j, s, ?ts) = 2d, for non-faulty Pi, any Pj,j:t:.;,

and any s, 1 ~ s ~ 1t.

Lemma 2.2: Istarti(j, s, ~ts)-starti(r. s, ~ts)1 ~ d. for non-faulty Pi. and any Pj and

Proj:t:.i:t:.r.

82

Lemma 2.3: ISTARTi(j, 1, '?ts)-STARTk(j, 1, '?ts) I< 8+2d(2p), for non-faulty Pi

and Pk, and any Pj, i ;f.j "* k.

Lemma 2.4: ISTARTi(j, s, '?ts)-STARTk(j, s, '?ts) I < 8+2d(2ps), for non-faulty Pi

and Pk, and any Pj' i"* i= k.

Remark: The above lemmas are true for any randomly chosen, non-negative value

of d. (Their proofs do not require any lower or upper bound on d.) The next lemma

establishes the relation between the value of d and 8, as a function of p and 1t.

Lemma 2.S: STARTk(j, s+ 1, '?ts)-STARTi(j, s, '?ts) > 8, for non-faulty Pi and Pk,

and any Pj, i;f. i= k, and any s, 1$ s $1t, provided d e o/(i-(21t+I)p).

This lemma ensures that if a non-faulty Pi receives and accepts m, Im.SI < 1t+1, then its dif-

fused message is found timely when being received by another non-faulty Pv, If Im.sl = 1t+I, then

one of the signers must be non-faulty, and the same guarantee applies. So, we state the following

corollary.

Corollary 2.1: For any two non-faulty Pi and Pk, and any m, i "* m.O "* k, ifm enters

accepted, at TlMEi, then an equiv(m) enters accepteds at TIMEk such that

ITlMEi-TIMEkl < 8, provided d'? o/(l-(21t+1)p).

Lemma 2.6: STARTi(k, 1, '?ts)-ENDk($ts) > 8, for non-faulty Pi and Pk, provided

d » o/(l-p).

This lemma ensures that if a non-faulty Pk forms and sends a message m, every non-faulty

Pi accepts m upon reception. So, the corollary 2.1 is strengthened as below.

Corollary 2.2: For any two non-faulty Pi and Pv; and any m, if m enters accepted;

at TIMEi, then an equiv(m) enters acceptedi at TIMEk such that ITIMEj-TIMEkl < 0,

provided d > 8/(l-(21t+l)p).

Lemma 2.7: A message m enters stable, of non-faulty Pi within at most 2d(1t+ 1)

time after having entered acceptedi, where time is measured according to Pi'S clock.

Lemma 2.8: Any two non-spurious m I and rn2 that enter accepted, of non-faulty Pi

are delivered according to the ordering relation «.

83

Theorem 2.1: The protocol guarantees agreement and order conditions within areal

time interval :Ea. z, s 2d(1t+ 1)(I+p)+a. if d ~ a/(1-(21t+ I)P).

Proof: From corollary 2.2. any m formed and sent by a non-faulty Pi enters accepted.,

and will enter accepted. of every non-faulty Pj within a time; also. for a given ts, and

for every m, m. TS = ts, that enters acceptedi, there is an equiv(m) that enters accepted,

of non-faulty Pj. Any m that enters accepted.. eventually enters stable, (Lemma 2.7)

together with all m' such that m '.TS = m.TS (see the algorithm of the Deliver process.

Figure 4-11. page 82). Therefore. Pi will find m spurious if and only if Pj finds

equiv(m) spurious. From lemma 2.8. non-spurious entries of the message list stable

are ordered according to « relation which is identical for both Pi and Pj since pro-

cessor ordering is unique and known (assumption I. page 54). This means that for

every given ts, non-faulty processors order an identical set of m, m.TS = ts, in an

identical manner and after ordering all m '. m '.TS < ts. Thus the protocol meets

atomicity and order requirements.

A message m formed and sent by a non-faulty processor cannot be found spurious in

any non-faulty processor (see assumption 2. page 54). From lemma 2.7. we can state

that any non-spurious m is ordered by a non-faulty processor within 2d(1t+ 1)(I+p)

real time after being accepted. Thus the protocol meets the termination requirement

with :Ea s 2d(1t+ 1)(I+p)+a. Hence the theorem. 0

Theorem 2.2: The protocol can guarantee ordering agreement in finite time only if

1t< (l-p)/(2p).

Proof: For La to be finite and positive. d. d ~ a/(1-(2'Tt+ l jp), must be finite and posi-

tive. Hence. 1-(2'Tt+l)p > O. i.e. 'Tt< (1-p)/(2p). 0

Remark: For crystal clocks. p is typically 10-6. hence 1t should be less than one half

of a million.

84

4.3.1.3. Protocol Performance

From theorem 2.1, the maximum ordering delay ~max of the order protocol described in

Section 4.3.1.1 is given by ~max = 2d(7t+ 1)(1+p)+0. Also, d must be greater or equal to

0/(1-(27t+ l jp), We choose d = o/(1-(27t+ l)p). The maximum stability delay is composed of two

parts: the first part - 2d(7t+ 1)(1+p) - is the maximum time interval during which a non-faulty

processor will wait for messages m' after having received a new message m, m' « m; the second

part-o- is the maximum time that the message m received by the first non-faulty processor takes

to be rec~ived by all other non-faulty processors, after the first processor had initiated m'« broad-

cast. Note that a message normally becomes stable sooner at the processor that has initiated its

broadcast rather than at the receivers of this broadcast. Thus, the minimum ordering delay is

achieved when the broadcast initiated by the first non-faulty processor to receive the input mess-

age takes zero time to be received by all other non-faulty processors. Further, non-faulty pro-

cessors are running at the fastest rate. In this situation we have :Emin = 2d(7t+ 1)(1-p). Thus, we

can express the actual stability delay of the protocol presented as follows:

2d(7t+l)(l-p) ~:Ea ~ 2d(7t+l)(1+p)+0.

4.3.1.4. Finite Upper Bound on 7t

Theorem 2.2 indicates that there is a finite upper bound on 7t, which need not be the case

with synchronised clock based protocols. This difference can be intuitively explained as follows:

the execution of any synchronous and deterministic agreement protocol (including ours) pro-

ceeds in (at most 7t+1) rounds of message exchange between processors. Any two non-faulty pro-

cessors should start and end a given round such that they simultaneously observe that round at

least for a real time interval 0, for exchanging messages of that round. The real time difference

with which any two non-faulty processors start the first round for agreement over a given mess-

age, is bounded by 0 in our case (thus we do have implicit clock synchronisation) and by e - the

clock synchronisation bound - in other synchronised based protocols. When clocks are synchro-

nised, the bound on the real time difference with which any two non-faulty processors start any

given round of the agreement protocol is constant and independent from the number of the round.

85

On the other hand, if clocks are not (re)synchronised, the magnitude of this difference can in-

crease with every subsequent round, and therefore is a function of 1t.

So, when clocks are not synchronised, the round length, say rl, must be large enough to

ensure that the difference between the real time when an early-starting fast processor completes

its (1t+ 1)th round and the real time when a late-starting slow processor begins its (1t+ 1)th round

must be at least as large as B. That is, rli; I-p)(1t+ 1)-(B+rl(I+p)(1t» ~ B. Thus, a finite and positive

value for rl is possible only if 1t < (l-p)/(2p).

This is an important observation in our work: when clocks are not explicitly synchronised

in a synchronous environment (where Band p are known), reaching agreement becomes an

asynchronous problem (where a finite value for d cannot be determined), if 1t exceeds a certain

value; when d has no finite value, deterministic agreement cannot be guaranteed even in the pres-

ence of one benign, let alone Byzantine, failure [Fischer et al. 85].

With current clock technology, this threshold is found to be approximately half a million,

which is large enough for protocols that do not rely on explicitly synchronised clocks to be useful

in practice.

4.3.2. Reducing the Protocol Stability Delay for TMR nodes

In practice, three-processor failure-masking nodes (TMR nodes) are the most commonly

selected replication strategy for masking nodes. In this section we discuss mechanisms to im-

prove the performance of the protocol presented in Section 4.3.1, when applying it to implement

TMR nodes. This protocol is essentially the same protocol of Section 4.3.1 for N = 3, to which a

third timeliness check is added. This extra timeliness check is derived by exploiting the fact that

each processor has only two other processors to reach agreement with.

4.3.2.1. Protocol Description

Let a TMR node be {Pi, Pj, Pk} and processor Pi be non-faulty. Suppose that Pi receives

and accepts a message m, m.O = k, at clock time ti. As 1t = I, any message received can either be

single-signed or double-signed, and in accordance with check C I, Pi should not accept any m' ,

m'.TS$.ts, m'.O=j and Im'.SI = I after clock time ti+2d, and m'; m'.TS$.ts. m'.O=j and

1m'.SI = 2 after clock time ti+4d. Similarly, in accordance with check C2, Pi should not accept any

86

m', m' .TS:::; ts, m'.O = k and 1m' .SI = 1 after clock time ti+d, and m", m' .TS:::; ts, rn'.O = k and

1m' .SI = 2 after clock time ti+3d. However, since Pk is supposed to setMCk equal to m.TS+ I when

initiating the broadcast of m, MCk of Pk must be larger than m.TS when Pi receives m, i.e. at clock

time ti. Hence, a non-faulty Pk (by check Cl) should not accept any single-signed rn',

m' .TS:::; m.TS, after ti+Zd. Ifwe ignore the difference between the drift from real time of Pi'S and

Pk'S clocks when they measure a 2d clock time interval, any double-signed m', m'.O = j and

m' .TS:::; m.TS, diffused by Pk must be received by Pi before ti+3d (instead of ti+4d, as per check

Cl).

Again, d has to be chosen in such a way that it compensates the difference between the drift

of two non-faulty processors when measuring a 2d clock time interval. Figure 4-12 shows a

worst case scenario where equiv(rn) takes zero time to be received by Pi, and Pi is running fast,

whilst Pk is running slow. (In Figure 4-12, Ts and Td are respectively the real time when m was

sent by Pk and the real time when m' was diffused by Pv; whilst Pi and Pk are the drift rates from

real time of the clocks of processors Pi and Pv, respectively.)

real time

p·'s clock

equiv(m)
received .

(clock drift: 2d(Pk-Pi)

m sent P 's clock

Figure 4-12: Compensating the difference between the drift of clocks in a TMR

In this situation, when Pk'S clock reads tk+2d, Pi'S clock reads a value greater than ti+2d,

thus a timely m' received by Pkjust before Pk'S clock reads tk+2d and then diffused to Pi may be

received by Pi after its clock reads tj+3d, being then discarded. Thus, d must be such that

3d(1+pj) ~ 2d(l+Pk)+O, that is d ~ O/(l+3Pi-2Pk). In the worst case, Pi = -P and Pk = P, which

87

leads to d ~ 8/(1-5p). (Note that for a TMR node, the protocol described in Section 4.3.1 required

d ~ 8/(l-3p), which is a smaller lower bound for d.)

Thus, assuming that d ~ 8/(1-5p), the third check becomes:

check C3: for any non-faulty Pi, a received m', m' .TS ~ ts and 1m'.SI = 2, is timely

only if it is received before t+3d, where t is the smallest local clock time when a mess-

age m, m.O:t:. m'.O:t:. i and m.TS ~ ts, was accepted.

As we have shown, the value of TCi[k, 2] becomes at least ts at Pi'S clock time ti+3d, if a

message m, m.O:t. k and m.TS = ts, was received and accepted at ti. In the previous protocol, this

was possible only at ti+4d. So, this optimisation speeds up the progress of Tq,min and reduces

Lmax by 8.

The structure of this optimised protocol is very similar to the one of the protocol presented

in Section 4.3.1. The changes that are to be made over the previous protocol to incorporate the

third timeliness check described above are as follows. First, the Update process must be changed.

This is because the property that TqU, s+ 1]must be updated 2d units of clock time after TqU, s]

had been updated does not hold any longer, thus the Update process cannot schedule itself to ex-

ecute after a 2d clock time interval has elapsed (see Figure 4-7). Figure 4-13 gives the pseudo-

code of a simplified Update process.

process Update(j, s, ts)
TqU, s] := max{ TCiU, s], ts}

end process

Figure 4-13: Update process for TMR nodes

Also, since the Update process no more schedules executions of itself, both the Broadcast

and the Diffuse processes must explicitly schedule executions of the Update process for all timing

counters TqU, s]. Figure 4-14 and Figure 4-15 indicates the changes that are to be made on the

Broadcast and Diffuse processes, respectively. On the other hand, the Deliver process of this pro-

tocol is the same process presented in the previous protocol, with N = 3 (see Figure 4-11).

88

process Broadcast
var Mimessage

m.intemai message
t:clock_time

cycle
remove M from RMQ
form m: m.J..L:=M; m.TS :=Mq; m.O := i
MCj :=Mq+1
sendm
insert m into accepted,
t := the local physical clock time
for all Pj, 1 ~j ~ 3 and j » i, do

schedule Update(j, 1, m.TS) at t+2d
schedule Update(j, 2, m.TS) at t+4d

end for all
end cycle

end process

Figure 4-14: Broadcast process for TMR nodes

process Diffuse
var m:message

t:clock_time
cycle

receive m
if m.TS ~ Tq[m.O, Im.SI] or an equiv(m) E accepted, then discard m
else

insert m into accepted,
Mq:= max{Mq, m.TS+I}
t := the local physical clock time
schedule Update(m.O, I,m.TS) at t+d
schedule Update(m.O, 2, m.TS) at t+3d
for all Pj, 1 ~j ~ 3 and m.O's: i= i do

schedule Update(j, 1, m.TS) at t+2d
schedule Updateij, 2, m.TS) at t+3d

end for all
sendm

end if
end cycle

end process

Figure 4-15: Diffuse process for TMR nodes

89

4.3.2.2. Protocol Correctness

We retain the notations STARTi(j, s, ~ts), startii], s, ~ts) and ENDi(~tS) of Section 4.3.1.2.

Note that for a TMR node s is either I or 2, and the changes made to derive the TMR protocol do

not modify the way the timing counters for s = I and the message counter (MC) are being up-

dated. Again, the bound on ts is: ts ~ 1.Again, we assume that a non-faulty processor executes the

instructions of the protocol in zero real/clock time.

Lemma 3.1: STARTk(j, 2, ~ts)-STARTi(j, 1,~ts) > 0, for non-faulty Pi and Pk, and

any Pj, i"# i= k, provided d ~ 0/(l-5p).

This lemma ensures that if a non-faulty Pi receives and accepts a single-signed m, then its

diffused double-signed message is found timely when being received by another non-faulty Pk.

If a non-faulty Pi receives and accepts a double-signed m, then any other non-faulty processor of

the node has already accepted an equiv(m). Lemma 2.6 guarantees that a message m accepted by a

non-faulty Pi when Pi formed and sent m is also accepted by all other non-faulty processors. So,

we state the following corollary.

Corollary 3.1: For any two non-faulty Pi and Pk, and any m, if m enters accepted,

at TlMEi, then an equiv(m) enters accepteds at TlMEk such that ITlMEi-TIMEkl < 0,

provided d ~ 0/(l-5p).

Lemma 3.2: A message m, m.O = i, enters stable, of non-faulty Pi within 4d time

after having entered acceptedi, whilst a message m', m'.O"# i, enters stable, of non-

faulty Pi within 3d time after having entered acceptedi, where time is measured ac-

cording to Pi'Sclock.

Theorem 3.1: The protocol for TMR nodes guarantees agreement and order condi-

tions within a real time interval ~a, ~a ~ 4d(1+p), if d ~ o/(1-5p).

Proof: From corollary 3.1, any m formed and sent by a non-faulty P, enters acceptedi,

and will enter acceptedj of every non-faulty Pj within 0 time; also, for a given ts, and

for every m, m.TS = ts, that enters acceptedi, there is an equiv(m) that enters accepted.

of non-faulty Pj. Since the Deliver process for this protocol is the equal to the Deliver

process of the previous protocol, any m that enters acceptedi, eventually enters stable,

90

(Lemma 3.2) together with all m' such that m '.TS = m.TS (see the algorithm of the

Deliver process, Figure 4-11, page 82). Therefore, Piwill find m spurious if and only

if Pj finds equiv(m) spurious. From lemma 2.8, non-spurious entries of the message

list stable are ordered according to « relation which is identical for both Pi and Pj

since processor ordering is unique and known (assumption I,page 54). This means

that for every given ts, non-faulty processors order an identical set of m, m.TS = ts, in

an identical manner and after ordering all m', m', TS < ts. Thus the protocol meets

atomicity and order requirements.

A message m formed and sent by a non-faulty processor cannot be found spurious in

any non-faulty processor (see assumption 2, page 54). From lemma 3.3, any non-

spurious m, m.O = i, in accepted, enters stable, within at most 4d(I+p) (real) time

after having entered acceptedi; also, any non-spurious m'; m'.O"* i, in accepted,

enters stable, within at most 3d(I+p) (real) time after having entered acceptedi, and

may take at most 8 time to be received by Pi. As d ~ 8/(1-5p), we have d(1+p) > 8,

and the protocol meets the termination requirement with La ~ 4d(I+p). Hence the

theorem. o

4.3.2.3. Protocol Performance

From theorem 3.1, the maximum ordering delay Lmax of the protocol described in Section

4.3.2.1 is given by Lmax = 4d(1+p), with d as small as 8/(1-5p). Note that unlike the case in the

previous protocol, in this protocol a message becomes stable later at the processor that have in-

itiated its broadcast rather than at the receivers of this broadcast. Thus, it is easy to see that the

actual stability delay of a message for a TMR node using the order protocol discussed in this sec-

tion varies according with the running rates of the clocks of the non-faulty processors of the node,

as indicated in the expression below:

4d(l-p) ~ La ~ 4d(I+p).

In other words, the minimum ordering delay is achieved when all non-faulty processors are run-

ning at the fastest rate (l-p), whilst the maximum stability delay corresponds to the case when

91

the first non-faulty processor to receive the message from the network is running at the slowest

rate (l+p).

However, within the architecture of our failure-masking nodes, it is possible to achieve a

smaller lower bound for the actual stability delay of a message for this protocol. It is possible that

every non-faulty processor of a failure-masking node receives a copy of a particular message

from the network. Therefore, copies of the message that have been relayed by other processors of

the node may become stable at all non-faulty processors prior to the time when the message they

have received from the network is due to stabilise. Ifwe assume that 8a is the actual time taken by

a message received from the network to be relayed to the other non-faulty processors of the node,

and that Aa, Aa ~ 0, is the actual message reception skew for a particular message, i.e. the differ-

ence between the real times when the first two copies of a particular message are received from

the network by any two non-faulty processors of the node, then a relayed message will become

stable at any non-faulty processor Pi within a time interval no longer than:

Aa+8a+3d(1 +Pi),

where Pi is rate with which Pi'S clock drift from real time.

Thus, whenever Aa+8a is smaller than d(I-p), the lower bound on the actual stability delay

of a message is given by Aa+8a+3d(1-p). Note that if only one non-faulty processor receives a

particular message from the network and the other non-faulty processors do not recei ve a copy of

the same message from the network, then Aa = 00, but the message is still ordered at all non-faulty

processors of the node.

4.3.3. An Early-Order Protocol for Nodes with fifo Internal Channels

The protocols discussed so far make a pessimistic assumption about the faulty behaviour of

the processors forming the node. In typical systems, processor failures are rare events, and com-

munication between two non-faulty processors normally takes much less than 8 units of time. It is

sensible, therefore, to design protocols that can perform better when the system is in a failure-free

state. In [Gopal et al. 90], atomic broadcast protocols are presented which can potentially deliver

messages earlier when the system is in a failure-free state. As discussed before, (normal) atomic

broadcast protocols which rely on synchronising clocks of processors, deliver messages after a

92

specified interval of time has elapsed; a message received by a processor at clock time t can be

delivered by any processor at clock time t+6, where 6 is the termination bound of the protocol

(latency in [Gopal et al. 90] terminology). An early-delivery atomic broadcast protocol, on the

other hand, permits some executions where messages are delivered in less time than the protocol's

latency [Gopal et al. 90].

Similar to the early-delivery atomic broadcast protocol of [Gopal et al. 90], we develop an

early-order protocol that guarantees that whenever the system is in a failure-free state, messages

are ordered in less than the maximum stability delay (Lmax) of previous protocols. Note that in the

protocols described before, although some messages can be ordered in less than the protocol's

maximum stability delay (Lmin ~ Lmax), those protocols are not early-order protocols because

they cannot guarantee that messages are ordered in less than Lmax, even when the system is in a

failure-free state (e.g. when some processors run at the slowest rate and messages take li time to

be transmitted, it is possible to have La = Lmax).

It is important to make a distinction between early-delivery/early-order protocols and

early stopping protocols [Dolev et al. 90]. Early stopping protocols are protocols whose per-

formance depends on the number of components that have actually failed, i.e. these protocols take

advantage from the fact that less than the maximum number of components, whose failures the

protocol can tolerate, have failed, and deliver a better performance in such cases. On the other

hand, both early-delivery atomic broadcast protocols and early-order protocols only achieve

better performance in the case where no components (processors) have failed. (Unlike early-

order protocols, early-delivery atomic broadcast protocols do not guarantee early-delivery, even

when there are no failures [Gopal et al. 90].)

Iffai lure-masking nodes are constructed in such a way that processors forming the node are

fully connected, it is easy to implement an intra-node communication service which guarantees

that messages sent over a link connecting a pair of processors within the node are received in the

order they are sent. Assuming that intra-node communication in a failure-masking node has this

Jirst-in-Jirst-out (fifo) property, we can modify the protocols previously presented, so that, in the

absence of failures, early-order can be achieved, substantially reducing the protocol's actual sta-

bility delay.

93

In the protocols presented earlier the number of processors that have relayed a particular

message (i.e. the number of signatures within the message) was a decisive factor on the determi-

nation of whether a received message was timely or not. However, in those protocols, receiver

processors were not concerned about the actual sequences of processors through which received

messages were relayed. To present the early-order protocol in this section we need to distinguish

between the various possible sequence of processors through which a received message may have

been relayed. We define a path p to be an ordered, non-empty sequence of at most 1t+ 1 distinct

processors. We also define the path through which a message m has been received, path(m), as the

sequence of processors PI:P2:"':Ps, I ::;s::; 1t+ I, where Pi, I ::;i ::;s, is the processor whose sig-

nature is the ;th signature contained in m.

In the previous protocols, a non-faulty Pi updates its message counter MC whenever it in-

itiates the broadcast of a new message, or when it accepts a message bearing a time-stamp greater

or equal to the current value ofMC. Therefore, if Pi receives a timely message m through a pathp,

and accepts m, then any non-faulty Pkwhich has signed m (and therefore is an element inp) must

have had MCk > m.TS at the time it had diffused m. Assume that non-faulty Pk is the last compo-

nent of p,p = q.Pv. Then the fifo property between any two non-faulty processors guarantees that

any timely m', m' .TS 5: m.TS, that Pk has received through the path q, and then diffused to Pi,

must be received by Pi before m. (This is also the case when p = Pk, and Pk has initiated the broad-

cast of both m and m'.) Thus, the fifo assumption has the following impact on checking the timeli-

ness of received messages:

check C4: when a non-faulty Pi receives a message m, through a path p, it can im-

mediately decide that any message m', received later through the same path p, with

m' .TS::; m.TS is untimely and must have been diffused by a faulty processor.

Before introducing the early-order protocol, we discuss how the use of the timeliness check

C4 described above by non-faulty processors executing the protocol described in Section 4.3.2

can reduce the actual stability delay of messages for that protocol. Let us assume a failure-free

scenario for a TMR node composed of processors {Pi, Pj, Pk}. For the sake of illustration, as-

sume that Pi, Pj and P« have each simultaneously recei ved, at real time T, a copy of the same input

message, and, as per the protocol of Section 4.3.2, have respectively initiated the broadcast of

94

messages mi, mj, and mk, with md.l. = mj.J.I. = mk.J.I.. At most by T+O, Pi, for instance, will have

received the single-signed messages mj, and mk from Pj and Pk respectively; will have applied the

timeliness check C4; and will not accept any single-signed messages mj' and mk',

m(TS 5. mj.TS, mk' .TS 5. mk.TS, diffused by r, and Pk. respectively. Similarly, if Pi receives

double-signed messages mk and mj diffused through paths Pk:Pj and PrPk, respectively, it will

not accept any double-signed messages mi", mk', mj'.TS5.mj.TS, mk'.TS5.mk.TS, diffused

through paths Pk:Pj and Pj:Pk, respectively. In the absence of failures, double-signed messages

mj, mk received by Pi will be received by at most T+20, thus by this time, if Pi has received these

double-signed messages, it is guaranteed that Pi will not accept any message m", either single-

signed or double-signed, such that m' .TS is less or equal to the minimum of

{mi· TS, mj. TS, mk. TS}. It is easy to see that the same analysis also follows for processors Pj and

Pk. Hence, one of the copies of the input message will become stable at all processors of the node

by at most T+20, yielding an actual stability delay of at most 20, which is much smaller than the

minimum stability delay (minimum of {Aa+Oa+3d(l-p), 4d(l-p)}) of the protocol of Section

4.3.2.

Note however, that a reduced stability delay was achieved only when all processors initiate

a broadcast (almost) at the same time. In fact, this is a necessary condition for early-order: early-

order of a message m broadcast by Pi can be guaranteed only if all processors other then Pi subse-

quently broadcast m', m' .TS ~ m.TS. Further, every timely equiv(m) received, must be diffused

so that processors receive a message through every possible path that originates from m.O. In the

example discussed above, if Pi receives the single-signed message mk from Pk after it has re-

ceived the double-signed message mk through the path Pk:Pj, then Pi must countersign the

single-signed mk received, and send the resulting double-signed mk to Pj even though a copy of

mk is already in acceptedi. Thus, the cost of early-order is twofold: i) every timely message re-

ceived (not just those that enter accepted) must be diffused; and ii) processors must frequently

initiate broadcasts.

In the next section we present the modifications necessary to make the protocol of Section

4.3.1 to produce an early-order protocol. It will become clear that the same modifications can

also be applied to the protocol presented in Section 4.3.2.

95

4.3.3.1. Protocol Description

To make the full use of the node's fifo property, a non-faulty Pi receives a timely message

m, uses it to update its counters and diffuses it if necessary (i.e Im.SI < It+ 1), whether or not m is

already in its accepted; We say that Pi has received the complete broadcast set of a particular

message m initiated by a processor Pj, when Pi has received some equiv(m) through every poss-

ible path p beginning from the originator of m (i.e. m.O = j). Note that when Pi receives the com-

plete broadcast set of a message m, no more timely messages associated with the broadcast of any

m' .m' .TS $ m.TS,andm'.O = m.O, maybe received by Pi.As discussed before, when Pi receives

a complete broadcast set from every other processor within the node, and Pi itself has also in-

itiated a broadcast, then it is guaranteed that at least one of these broadcasts is stable. Since the

time to receive a complete broadcast set depends on the actual transmission delays - ba, rather

than on the maximum transmission delay - b, ordering is achieved earlier when all processors

execute the protocol correctly. To guarantee that processors initiate broadcasts frequently

enough, we introduce the notion of a null-broadcast, which is initiated by a non-faulty processor

whenever a message m associated with a new (non-null) broadcast is received. Messages m asso-

ciated with a null-broadcast have m.1l = <» (we assume that no authentic message received from

the network is equal to <»).

In order to present the protocol, we define the following notations:

• path(m), which denotes the path through which m was received;

• Ipl, which denotes the length of the path p; and

• origin(p), which denotes the first processor in the path p.

We also define the following set of paths:

• paths, = {p I Pi not inp}.

In addition to maintaining timing counters TCiU, s], for every Pi, j -:t: i, and for every s,

I :s s ::;It+ 1, each non-faulty Pi also maintains path counters PCj(]}] for each path p, through

which Pi can receive a message. These path counters are integer values which only increase with

the passage of real time, and are initialised to zero when the node is started. Pi maintains the path

COunters PCjfp] by either scheduling a revised version of the Update process (see Figure 4-16) to

96

be executed at appropriated times, or by explicitly updating the value of PCi[P] whenever a timely

message is received through the path p (see the algorithm of the Diffuse process in Figure 4-18).

process Updateij. s, ts)
var t:clock_time
for all pip E path, and Ipl= sand origintpy =j do

if PCj[P] < ts then PCj[P] := ts end if
end for all
if TCiU, s] < ts then TCiU, s] := ts end if
if s < (1t+l) then

t := the local physical clock time
schedule Updateij, s+I, ts) at t+2d

end if
end process

Figure 4--16: Update process for early-order protocol

We define PCj,min to be the minimum of {PCj[P] I 'vip,pE pathsis, The pseudo--code for

the Broadcast, Diffuse and Deliver processes for this protocol is shown in Figure 4--17, Figure

4-18 and Figure 4-19, respectively.

process Broadcast
var Mimessage

m:intemal_message
t:clock_time

cycle
remove Mfrom RMQ
form m: m.Il:= M; m.TS:= MCj; m.O:= i
MCj :=MCj+l
sendm
insert m into accepted,
t := the local physical clock time
for all Pj' 1~j ~Nand) * ido schedule Updateij, 1,m.TS) at t+2d end for all

end cycle
end process

Figure 4-17: Broadcast process for early-order protocol

97

process Diffuse
var m:message

t:clock_time
cycle

receive m
if m.TS s PCi[path(m)] then discard m
else

PCj[path(m)] := m.TS
sendm
if an equiv(m) ~ accepted; and m.1l * <I> then

insert m into accepted,
Mq := max{Mq, m.TS+l}
t := the local physical clock time
schedule Update(m.O, 1, m.TS) at t+d
for all Pj, 1 ~j ~ Nand m.O * j * i do

schedule Updateij, 1,m.TS) at t+2d
end for all
form m: m.1l * <1>; m.TS := MCi; m.O := i
MCi :=MCi+l
sendm

end if
end if

end cycle
end process

Figure 4-18: Diffuse process for early-order protocol

process Deliver
var m:message

stables, deliveredi.list of message
cycle

when PCj_min < min {PCj[P] I \lp, pE paths.'; do
PCj_min:= min{pq[p] I \lp,p E paths.s
stable, := {m Im E accepted, and m. TS ::;Pq min}
accepted, := acceptedv-stable,
remove spurious messages from stable,
filter duplicate messages from deliveredi+stablei
delivered, := delivered+stable,
order the messages in stable, according to « relation
for all m in stable, do deposit m into the appropriate DMQi end for all

end when
end cycle

end process

Figure 4-19: Deliver process for early-order protocol

98

Note that despite updating the timing counters TCjU, .'I], the early-order protocol does not

use them either for checking the timeliness of received messages, nor for stabilising messages to

be delivered. In fact, as will be seen later in Appendix A, we keep the timing counters in the early-

order protocol for the sole purpose of simplifying the task of proving the correctness of the early-

order protocol.

4.3.3.2. Protocol Correctness

We maintain the notations START;,U, s, ?ts) and ENDi(5,.tS) as defined previously, and we

introduce the following notation: STARTi(P, ?ts), for a non-faulty Pi, all paths p E paths, and

ts e 1, denotes the smallest real time instance when PCj[P] becomes larger than or equal to ts.

(That is.just before real time STARTi(P, ?'ts), PCi[P] is less than ts.)

Lemma 4.1: STARTi(P, ?ts) 5,. STARTi(origin(p), Ipl, ?ts), for any non-faulty pro-

cessor Pi and any path p, pE paths; If STARTi(P, ?ts) < STARTi(origin(p), Ipl, ?ts),

then Pi must have received a timely message m at some real time TIMEi, with

m.TS ~ ts, path(m) = p and TIMEi < START;,(p, ?ts) < STARTi(origin(p), Ipl, ?ts).

Lemma 4.2: If m) and mz are two distinct messages sent by a non-faulty Pi, with

path(m)) = pathim-), then they were sent in the increasing order of their timestamps.

Corollary 4.1: If m) and mz are distinct messages sent by a non-faulty Pi and re-

ceived by another non-faulty Pk, then Pk will receive them in the increasing order

of their timestamps.

Lemma 4.3: Any message m whose broadcast is initiated by a non-faulty Pi will be

found timely by every non-faulty Pk, provided d » O/(l-p).

Lemma 4.4: Any message m received by a non-faulty Pi from a non-faulty Pk, will

be found timely, provided d ? O/(1-(21t+ ljp), and 1t< (I-p)l2p.

Lemma 4.5: If all processors of the node are non-faulty, then the protocol's actual

stability delay is given by 0 5,. I:a < (1t+2)O.

Lemma 4.6: A message m enters stable, of non-faulty Pi within at most 2d(1t+ I)

time after having entered acceptedi, where time is measured according to Pi'S clock.

99

Lemma 4.7: Any two non-spurious ml and m2 that enter accepted, of non-faulty Pi

is delivered according to the ordering relation «.

Theorem 4.1: The early-order protocol guarantees agreement and order conditions,

within a real time interval ~a, ~a ::; 2d(7t+ 1)(1+p)+0, so long as d e: 0/(1-(27t+ ljp),

and 1t < (l-p)/2p. In the absence of failures the protocol guarantees early-order of

messages in ~eo, 0 ::;~eo< (7t+2)0.

Proof: From lemmas 4.3 and 4.4, any msent by a non-faulty Pi to a non-faulty Pkwill

be found timely by Pk; therefore, for a given ts, every m, m.TS = ts, that enters ac-

ceptedi, there is an equiv(m) that enters acceptedj of non-faulty Pj. Any m that enters

acceptedi, eventually enters stable, (Lemma 4.6) together with all m' such that

m'.TS = m.TS (see the algorithm of the Deliver process, Figure 4-19, page 98).

Therefore, Pi will find m spurious if and only if Pj finds equiv(m) spurious. From

lemma 4.7, non-spurious entries of the message list stable are ordered according to «

relation which is identical for both Pi and Pj since processor ordering is unique and

known (assumption 1,page 54). This means that for every given ts, non-faulty pro-

cessors order an identical set of m, m.TS = Is, in an identical manner and after order-

ing all m " m '.TS < ts. Thus the protocol meets atomicity and order requirements.

A message m formed and sent by a non-faulty processor cannot be found spurious in

any non-faulty processor (see assumption 2, page 54). From lemma 4.6, we can state

that any non-spurious m is ordered by a non-faulty processor within 2d(7t+1)(I+p)

real time after being accepted. Thus the protocol meets the termination requirement

with ~a::; 2d(7t+I)(l+p)+0. Early order in ~eo, 0 ::;~eo < (7t+2)0, follows from

lemma 4.5. Hence the theorem.

4.3.3.3. Protocol Performance

o

Since the timeliness check C4 is superimposed on the timeliness checks Cl and C2 (and

also to check C3, in the case ofTMR nodes), the maximum stability delay of the early-order pro-

tocol presented in this section is the same of that for the protocol presented in Section 4.3.1 (and

the same as that for the protocol presented in Section 4.3.2 in the case of TMR nodes). On the

100

other hand, in the absence of failures, the actual stability delay of the protocol is given by L.eo,

o :s; ~eo < (1t+2)b. The minimum stability delay is achieved when all messages associated with

the broadcast of a particular message take zero time to be transmitted. Denoting the average time

to transmit messages during the broadcast of a particular message by bay, we have:

o:s; ~a:S; 2d(1t+l)(l+p)+b; and in the absence of failures ~a = (1t+2)bav.

For a TMR node we have:

o :s; L.a :s; 4d(I+p); and in the absence of failures L.a = 3bav.

4.4. Node Overhead Analysis

Running an application on a failure-masking node involves the execution of an order pro-

tocol for ordering input messages, and a voter protocol for validating output messages. These

operations are not present when the application runs on an unreplicated node, thus, the extra over-

heads incurred by a failure-masking node are mainly made up by the execution of voter and order

protocols. In this chapter we have discussed the design of failure-masking nodes incorporating a

standard voter protocol (Section 4.2.1), and different order protocols (Section 4.2.2 and Section

4.3). We now assess the overheads imposed by these protocols in terms of both the extra delay in

outputing the response for a request, and the extra intra-node message traffic that is generated

when attending a request. We start by concentrating on the overheads imposed by the various

order protocols developed. We compare the performance of the efficient order protocols de-

scribed in Section 4.3 against the performance of the traditional synchronised clock based order

protocols, assuming the best possible clock environment for the latter. We then analyse the over-

heads imposed by the voter protocol.

4.4.1. Ordering Overhead

Order protocols must perform message diffusion, to attain agreement, and must also incor-

porate mechanisms which guarantee that messages are delivered in the same order at all non-

faulty processors of the node. These mechanisms are responsible for the introduction of an stabil-

ity delay which represents the main time overhead of an order protocol. We first analyse the

101

stability delay overhead, and later we analyse the extra intra-node traffic generated by each dif-

ferent order protocol presented.

4.4.1.1. Stability Delay

For the sake of comparison, we use the upper bound on the protocols' actual stability delay.

From theorem 2.1, the maximum stability delay for the protocol of Section 4.3.1 is given by

Lmax = 2d(1t+ 1)(1+p)+b. We choose d = b/(1-(21t+ l)p), which, neglecting the higher order

terms of p (O(p2», gives a maximum stability delay of Lmax = (3+21t+p)0/(1-(21t+ Ijp).

Let us denote the maximum stability delay for a synchronised clock based protocol by

Lsync. [Dolev-Strong 82] reports that these protocols require at most 1t+1 rounds of message ex-

change between processors. Thus, if a non-faulty Pi initiates the broadcast of a message m at its

synchronised clock time ti, then every other non-faulty Pk orders m at its respective synchronised

clock time ti+(1t+ I)(d.1+£), where d.1 ~ b/(l-p), and e is the precision of the clock synchronisa-

tion protocol (see [Cristian et al. 85] for example). (We ignore protocols such as those in [Babao-

glu-Drummond 85] that assume redundant broadcast networks.) Hence, since the clocks of two

non-faulty processors can differ by at most e, in the worst case when Pi'S clock is E units of time

ahead of the clock of some non-faulty Pk, Lsync = (1t+ l)(d.1+£)(l +p ')+£, where 1+p' is the maxi-

mum running rate of a synchronised clock. As clocks are synchronised by periodically adjusting

the physical clock reading, p' > p and the readings of a synchronised clock are not continuous,

unless special arrangements are made. To make the comparison simpler, we assume the use of

amortization techniques [Schmuck-Cristian 90] to ensure continuity in the readings of synchro-

nised clocks without increasing p', and also a mechanism that makes p ' = p (see [Srikanth-

Toueg 85]).

The exact value of £ depends on the frequency of clock adjustment and on the algorithm

used to compute the adjustment. Adjustments can be computed either by referring to a reliable

clock that is external to the node, or by using authenticated clock synchronisation protocols, such

as [Halpern et al. 84, Lamport-MelliarSmith 85, Srikanth- Toueg 85], that are suitable for fail-

ure-masking nodes. We consider (for simplicity and in favour of synchronised clock based proto-

cols) e to be the maximum clock difference immediately after adjustments were made; i.e. we

102

ignore a component of E that accounts for clock drift until next adjustment. Thus, the value of E

considered for comparison is 0/(1+p), 0/(1+p), and (1+Sp)0/(1+p), when respectively, an exter-

nal clock, [Halpern et al. 84] and [Srikanth-Toueg 85] are used to compute the adjustment. (We

omit the authenticated protocol of [Lamport-MelliarSmith 85] as it is admitted to be less efficient

than [Halpern et al. 84].) Neglecting the higher order terms of p (O(p2»), and assuming

dtJ. = o/(l-p), we have Lsync = (3+21t+21tp+p)0 for E = o/(l+p), and Lsync = (3+21t+71tp+llp)0

for E = (1+5p)0/(1+p). When E = 0/(1+p). the difference between the maximum stability delay of

the protocols. Lmax-Lsync, is given by (41t2+61t+ 3)op/(l-(21t+ l)p) = 0(Op1t2). For small values

of 1t, the difference is small: approximately 31 op and 130p when 1tis 2 and 1, respectively. With

[Srikanth- Toueg 85], the difference between the maximum stability delay of the protocols,

LmacLsync, is (41t2+1t-7)op/(1-(21t+ l)p) :::::0(op1t2), which evaluates to approximately lOop

and -20p when 1t is 2 and 1, respectively.

For TMR nodes however, the optimised version presented in Section 4.3.2 can reach agree-

ment faster than any synchronised clock based protocol, and is better suited for building the more

practical TMR nodes. For 1t = 1, we have Lmax = 40(1 +p)/(l-5p), and for E = 0/(1 +p), and

E = O+Sp)o/(1+p), we have Lsync = (S+3p)0 and Lsync = (S+18p)0, respectively. Thus, the dif-

ference between the maximum stability delay of the protocols, LsyncLmax, is

(l-26p)0/(1-Sp)::= 0(0), when E = o/(1+p), and (1-11p)0/(l-Sp)::::: 0(0), when

E = (l+Sp)o/(l+p).

We now study the early-order protocol of Section 4.3.3. In the absence of failures, that pro-

tocol guarantees early-order in La = (1t+2)oav. where oav, 0 ~ oav < 0, is the average transmission

delay experienced by the internal messages associated with the early-order of a particular mess-

age. We compare the performance of the protocol of Section 4.3.3 with the performance of an

order protocol built upon the early-delivery atomic broadcast protocols presented in

[Gopal et al. 90], which assume a synchronised clock abstraction. It is worth noting that since

early-delivery is not guaranteed, an order protocol built upon earJy-delivery atomic broadcast

protocols, although able to order some messages in considerably less than Lmax, are not early-

order, as they cannot guarantee that messages are ordered sooner when the system is in a failure-

free state.

103

A family of early-delivery atomic broadcast protocols is presented in [Gopal et al. 90].

The first protocol presented is an a-protocol which early-delivers messages in 1t(d+E)+<>av, as

measured by the clock of the processor delivering the message. Thus, an ordering protocol based

on the a-protocol may order messages as soon as 1t(d+E)(I-p). The a-protocol is extended in two

directions leading to 6-protocols, and ~-protocols. The class of 6-protocols, in its best case 60,

early-delivers messages in ra = (21[+ I)<>av,whilst the !3-protocol early-delivers messages in

La = 20av. However, both the 6--protocols and the ~-protocol are presented within a framework

where physical clocks are assumed to be perfectly synchronised (i.e. E = 0).

4.4.1.2. Intra-Node Message Traffic

In [Cristian et al. 85], the overhead of the atomic broadcast protocol in terms of internal

message traffic required when broadcasting a message, is analysed taking in account the average

number of internal messages diffused per communication link per broadcast. This reflects the

rather general framework within which that work was developed. Within the framework of our

failure-masking nodes it is easy to quantify the total number of intra-node messages involved per

broadcast. We shall assume that the processors of a node are fully connected. Under this assump-

tion, the extra intra-node message traffic associated with the ordering of input messages, 110. for

the order protocol in our reference design, based upon the atomic broadcast protocol in [Cris-

tian et al. 85] is given by:

110 = (N- 1)2

According with the protocol presented in Section 4.3.1, in the absence of failures, when a

sender processor initiates the broadcast of a message m, it diffuses N-l single-signed copies ofm

to every other receiver processor of the node. In the worst case the N-l receivers receive the

single-signed message diffused by the sender as the first message associated with the broadcast of

rn, and therefore, diffuses it to the other N-2 processors which have not signed m yet. In the best

case theN-l receivers receive messages with increasing number of signatures as the first message

aSsociatedwith the broadcast ofm, and therefore diffuse decreasing number of messages. There-

104

fore, the number of intra-node messages diffused per broadcast in the order protocol of Section

4.3.1 is given by:

N-lL i $. flo $. (N - 1)2
1= 1

Remark: We note that the atomic broadcast protocol in [Cristian et al. 85] can be

easily improved to present an intra-node message traffic overhead comparable with

the one expressed above.

For the early-order protocol presented in Section 4.3.3, in the absence of failures, the

broadcast of a message m generates as many intra-node messages as the number of different paths

starting from the sender processor, and with length less or equal to n+ 1. Also, since the N-l re-

ceivers start a null-broadcast to acknowledge the broadcast of m, the traffic of internal messages

is multiplied by N, and is given by:

n+ 1 i

flo = N L n(N - j)
;=1 j= 1

The protocols in [Gopal et al. 90] also carry a great penalty in message traffic in order to

early-deliver messages. In the 8-protocols, for instance, there must be several phases of internal

acknowledgement messages exchange, before messages received from the network can be early-

delivered. The 13-protocol, on the other hand, has an internal traffic comparable with our proto-

col, however, the former can incur an extra penalty after early-ordering of a message m, when-

ever a conflicting message m' is received after m has been ordered (see [Gopal et al. 90] for

details).

The acknowledgement mechanisms inherent to early-order protocols are responsible for

the sharp increase on the number of intra-node messages exchanged when ordering messages,

making these protocols less attractive, especially when N is large. However, since in the Voltan

architecture all processors of the node receive messages from the network, it is possible to reduce

the burden of the acknowledgement mechanism of the early-order protocol.

105

Within the framework of failure-masking nodes, our early-order protocol can be slightly

modified, in such a way that early-order of messages can be achieved with a much lower intra-

node message traffic overhead. The basic idea is to reduce the number of null-broadcasts necess-

ary for the early-order of messages. Since processors of a failure-masking node continuously

receive input messages from the network, it is possible to avoid the necessity of having N-l null-

broadcasts for every message ordered, by using (normal) broadcasts of messages received from

the network (instead of null ones) to acknowledge the reception of a new broadcast initiated by

another processor of the node (as in the TMR example discussed in the beginning of Section

4.3.1). Each processor keeps track of the time-stamp of the last message it has broadcast, and

upon receiving a new broadcast, it only initiates a null-broadcast to acknowledge the received

broadcast, if the time-stamp of the new broadcast is greater than the time-stamp of the last broad-

cast it has initiated. With this small modification, the intra-node traffic per message early-or-

dered can be reduced by a factor of N, and is given by:

.n+1 j .n+1 iI n (N - j) 5, flo 5, N I n (N - j)
;=1)=1 j=1)=1

4.4.2. Voting Overhead

In a failure-masking node, output messages generated by application processes must be

voted before being output by the node. Any voter protocol must perform rounds of message ex-

change between the processors, followed by the execution of a voting upon the messages re-

ceived. Thus, the main overhead associated with the voter protocol is the unavoidable time to

exchange the messages to be voted.

Messages should be exchanged until they have 1t+Isignatures appended to them, in which

case they become valid messages, and can be output. Therefore, there must be 1t rounds of mess-

ages exchange, until valid messages can be generated. The actual stability delay (~a) of an order

Protocol for a failure-masking node measures the delay since the first copy of a particular mess-

age is received by the node, until all non-faulty processors of the node have ordered the message

and made it available to the appropriate application process. Thus, if we assume that an applica-

tion process takes Tunits of real time to execute a particular request, then after ~a+ T units of real

106

time has elapsed since the request was first received, all application processes executing on non-

faulty processors will have their output messages available. Hence, the actual validation delay

(~) for the voter protocol of Section 4.2.1 is given by:

Also, the extra intra-node message traffic associated with the validation of output mess-

ages, llv, is given by:

If i

~\' = NLn(N - j)
i= Ij=l

4.5. Concluding Remarks

We have described the design of several failure-masking nodes. The nodes incorporate a

standard voter protocol, and differentiate from each other only in the way input messages are or-

dered. The order protocols described in Section 4.3 make an important contribution towards

building efficient failure-masking nodes, and achieve message ordering without requiring the

clocks of a node to be maintained in bounded synchronism. The protocol of Section 4.3.1 indi-

cates that when clocks are not explicitly synchronised, reaching agreement in a synchronous

environment can become an asynchronous problem, if the number of faults to be tolerated ex-

ceeds a certain value. This means that there are situations where deterministic agreement cannot

be guaranteed even in the presence of one benign, let alone Byzantine, failure, For the more

practical case of TMR nodes, the protocol derived in Section 4.3.2 is guaranteed to give better

performance than any synchronised clock based protocol.

The early-order protocol of Section 4.3.3 provides a very reduced stability delay, whenever

the system is in a failure-free state. The protocol assumes that the intra-node communication

presents anfifo property when delivering messages through a communication link between two

processors of the node, When N is small it is feasible to have a fully connected intra-node net-

work, over which anfifo communication service can be easily implemented. Hence, the protocol

of Section 4.3.3, incorporating the modifications discussed in Section 4.3.2 can be used to imple-

107

ment efficient TMR nodes. We have implemented such nodes, and we discuss their implementa-

tion and performance evaluation later in Chapter 6.

108

Chapter 5
Soft Fail-Silent Nodes

5.1. Introduction

Following the general structure of a soft fail-silent node presented in Chapter 3, construct-

ing a fail-silent node, requires the implementation of Validator and Order processes which ex-

ecute at each processor of the node. The Validator process for a fail-silent node is a Comparator

process. Its function is similar to the Voter process of the failure-masking nodes described in the

previous chapter, except that once a mismatch is detected in any message comparison, the Com-

parator process must bring the node to a halt. Upon the detection of a failure, a non-faulty pro-

cessor can halt the node by firstly stopping the activities of its Comparator process, so that no new

1t+l+signed messages are ever output by that processor, and secondly stopping the activities of

its Sender process, so that the other processors of the node do not output new TC+ I-signed mess-

ages too (see Figure 3-8, page 56). In [Shrivastava et al. 92] it is suggested how fail-silent nodes

can be derived through straightforward modifications of failure-masking nodes. However, in

order to achieve an efficient implementation, it is necessary to perform a more thorough inves-

tigation on the effects that the reduced redundancy of fail-silent nodes have on the design of such

nodes.

Since a fail-silent node must halt as soon as a fault is detected, the Comparator process

plays a very important role in the design of the node. Any failure that affects the correct execution

of either application or system processes of faulty processors is detected by the Comparator pro-

cess of non-faulty processors. Thus. unlike failure-masking nodes. in a fail-silent node all sys-

109

tern processes, except the Comparator, can be designed assuming that they execute in a failure-

free environment. Particularly, this property can be used to design a simpler and more efficient

Order process. On the other hand, because it is not assumed that a majority of processors are non-

faulty, special attention must be taken when designing the Comparator process.

Let an application process running on a correctly functioning unreplicated node take Tunits

of real time to compute the response to an input message. The corresponding correct output from

a fail-silent node takes at most T = T+Tdelay units of time, where Tdelay, Tdelay> 0, is the

bounded worst-case delay introduced by the redundancy management protocols. If the output

from the fail-silent node is produced later than T then the node is said to have suffered a perform-

ance failure [Cristian 91]. A soft fail-silent node can be in one of the following three states (see

Figure 5-1):

Figure 5-1: State transitions in a fail-silent node

i) normal state: in this state, a node produces valid outputs. Detection of

an internal failure (by the Comparator) causes the node to irreversibly

enter either the failing state or the silent state;

ii) failing state: this is an intermediate state in which the node can suffer at

most one performance failure. From this state the node eventually enters

the terminal silent state;

iii) silent state: when the node is in this state, no new valid messages are pro-

duced by the node. Any messages produced by the node can only be in-

110

valid or copies of previously produced valid messages; any functioning

destination node can detect these messages as unwanted.

The reason for the existence of the intermediate failing state is due to the detection latency

delay experienced by the processors of the node. Assume, for instance, a two-processor fail-si-

lent node composed of processors PI and P2 - valid messages output by such a node must be

double-signed. Suppose that there is a message m that should be output by the node by some real

time T,and that PI has sent a single-signed copy ofm toP2 before PI has received a single-signed

copy of m from P2. If P2 is faulty and does not send a single-signed copy of m to P Ibefore some

time-out has expired at PI (this time-out is chosen in such a way to ensure that any message sent

by P2 is output within the node worst-case delay, Tdelay, discussed before), or if P2 sends a mess-

age which fails the comparison at PI, then PI must assume that the node has failed, and must take

measures to halt the node. P2, however, can still output a valid m, since P2 possesses a copy of

m that has been signed by PI. If a valid m is not delayed by P2 before being output, i.e. if m is

output before T, then the node has not entered the failing state, but rather has entered the silent

state, as no new valid messages are output by the node. On the other hand, if P2 does not output

m by T, then the node may enter the failing state, as P2 can potentially output m after T,and suffer

a performance failure. After P2 has output m the node enters the silent state. The Sender and Com-

parator processes of each processor must therefore incorporate intra-node message synchronisa-

tion measures to ensure that each processor of a node at any time contains no more than one

It-signed message for comparison. In this way, the number of performance failures in the failing

state can be limited to at most one.

The fact that a fail-silent node can suffer a single performance failure in the intermediate

state is not a cause for concern. Consider a system of fail-safe nodes without an intermediate

state. A client application with timing constraints and expecting a response from such a node

would still be expected to contain timeliness checks for detecting an absent response. The same

checks will be adequate for the case offail-silent nodes for filtering out a late response. Ifapplica-

tion programs have no timing constraints, then a performance failure suffered by a fail-silent

node in the failing state will not cause any inconsistencies. Thus, a soft fail-silent node can be

regarded as capable of implementing the abstraction of fail-silence in the following sense:

III

fail-silent node's semantics: a fail-silent node produces either valid messages

which can be verified as such by destination nodes, or it ceases to produce new valid

messages, in which case destination nodes can detect any messages it may produce

as unwanted.

It is possible to design specialised fault-tolerant network interfaces that could prevent

further messages from being output by a node once one of the processors detects a failure. Mini-

mally, we need to provide a network interface with a single switch that can unilaterally and irrev-

ersibly be switched off by a control signal sent by any of the processors of the node. (In [Reis-

inger-Steininger 93] a fail-silent node is presented which incorporates a network interface with

a similar functionality.)

Any software solution to the design of a fail-silent node that has no intermediate failing

state requires additional redundancy. For example, one could delegate the responsibility of mess-

age comparison and output to a separate node that does not fail. A 21t+I-processor failure-mask-

ing node (capable of masking 1t processor failure within a node) could provide the services of

message comparison and output to a collection of 1t+ l=processor fail-silent nodes. Indeed the

failure-masking node can provide other services, such as recording the status of fail-silent nodes.

This design very much resembles that of a system of fail-stop nodes [Schneider 84] that can

switch from the functioning to the halted state, and can provide failure status indication.

The performance of a soft fail-silent node depends on how quickly messages can be or-

dered and compared. The delay imposed by the comparison protocol is mostly made up of the

time spent in message exchanges plus any delay introduced by the intra-node message synchro-

nisation measure necessary to ensure that at any time each processor of a node contains no more

than one 1t-signed message for comparison. Thus, we have sought ways to design more efficient

order protocols in order to reduce the overhead associated with ordering, and improve the node's

overall performance.

We took the following approach in our quest for a design that minimised both ordering and

comparison delays. First we performed a reference design based on a design that was relatively

easy to understand. For this reason, in the reference design we have used a well studied clock

112

synchronised based order protocol and a simple comparison protocol that did not incorporate any

synchronisation measure for limiting to just one the number of 1t-signed messages possessed by

any processor (potentially, such a node can suffer more than one performance failure in the failing

state). We then investigated a number of ways of reducing message ordering delays. After this

we investigated message comparison protocols with synchronisation measures. Our work on

order protocols proved highly significant in coming up with a clean and efficient solution for the

comparison protocol.

For the sake of simplicity, we assume a two-processor fail-silent node when presenting the

reference design of a fail-silent node in the next section and the order protocols of Section 5.3.

Note that since the Order process of a fail-silent node can be assumed to execute in a failure-free

environment, the order protocols presented for the two-processor node can be easily extended

for the more generic case of a 1t+i-processor fail-silent node. Then, in Section 5.4 we discuss

the design of comparison protocols for 1t+ I-processor fail-silent nodes, which incorporate syn-

chronisation measures to limit the number of performance failures to one, when the node is in

the failing state. Finally, in Section 5.5 we analyse the overheads in terms of both processing time

and extra message traffic incurred by the protocols presented.

5.2. Reference Design

5.2.1. ComparisonProtocol

The reference design uses a very a simple comparison protocol. Referring to Figure 3-8

(page 56), and assuming a two-processor node, the Sender process of a processor collects mess-

ages from the Processed Message Queue (PMQ), and deposits them in the Internal Candidate

Message List (ICL). It also signs a copy of these messages and transmits them to the other pro-

cessor of the node (its neighbour), where they get buffered in the neighbour's External Candidate

Message List (ECL). The Comparator process maintains, for each application process Service],

the sequence number of the next message to compare (recall that messages produced by applica-

tion processes are assign monotonically increasing sequence numbers). Using this criterion, the

Comparator matches messages with identical sequence numbers from ECL and ICL and com-

113

pares them. If the comparison succeeds, the message in ECL is countersigned, and the resulting

valid message is deposit in the VMQ for later transmission to its destination. A comparison that

detects a disagreement indicates a failure. Similarly, an absence of a message for comparison

(after a node specific time-out interval) also indicates a failure. Once a failure is detected, the

comparator process stops, and so does the Sender process (Figure 5-2 shows the pseudo-code

for this simple Comparator process).

process Comparator
var internal, external.message

found, time_out:Boolean
cycle

do
internal := a message from [CL
time_out := has the time-out of internal expired?
if not time_out then

found := is there a counterpart of internal in ECL?
if found then external := the counterpart of internal in ECL end if

end if
while not found and not time_out
if time_out or internal *- external then

kill Sender
exit

else
generate and append the signature for external
deposit external into VMQ
discard internal

end if
end cycle

end process

Figure 5-2: Comparator process

In this simple protocol, the ECL of a processor is permitted to contain more than one valid

message from the neighbour, thus potentially, a faulty processor can output more than one late

valid message. In Section 5.4 we describe the additional synchronisation measures necessary to

prevent this from happening.

114

5.2.2. Order Protocol with Synchronised Clocks

As with failure-masking nodes, the order protocol of our reference design for fail-silent

nodes makes use of the well known approach of using synchronised clocks for message ordering.

The clocks of both processors of the node are assumed to be synchronised such that the measur-

able difference between readings of clocks at any instant is bounded by a known constant, say

E. Because the non-faulty processor stops as soon as a failure is detected, the clock synchronisa-

tion protocol need not be fault-tolerant, and can be assumed to execute in a failure-free environ-

ment. The Order process of a processor time-stamps a message to be ordered with its local clock

reading, and diffuses a copy of the time-stamped message over the link to the Order process of

the neighbour processor. If t is the time-stamp of the message received from or diffused to the

Order process of the neighbour, then the message becomes stable at local clock time t+~, where

~ = d/).+E, and d/). = 'O/(I-p). Once a message with time-stamp t becomes stable, no timely mess-

ages with time-stamp t' < t can be received by an Order process. Stable messages are enqueued

in the appropriate Delivered Message Queues (DMQi) in increasing time-stamp order, with the

action being taken to discard, rather than to enqueue a stable message, if its replica has already

been enqueued. (The identifier of the processors is used as a tie-breaker in the case when two

different stable messages get the same time-stamp.)

As was the case in the failure-masking nodes discussed in the previous chapter, the Order

process is also composed of three cyclic processes: Broadcast, Diffuse and Deliver (see Figure

4-2, page 67). The Broadcast process picks up messages from the Received Message Queue

(RMQ), time-stamps them and sends them to the neighbour. (Note that since we can assume a

failure-free environment, there is no need to sign internal messages for ordering.) The Broadcast

process also inserts the message into the Ordered Message List (OML). The Diffuse process re-

ceives diffused messages from the link, and performs a timeliness check that rejects any message

received too early (messages with time-stamp greater than c+£, where c is the current reading

of the processor's clock) or received too late (messages with time-stamp less than e-A). Accepted

messages are inserted into the OML. The Deliver process takes stable messages (messages with

time-stamp less than c-~) from the OML, removes duplicates and enqueues the messages on the

115

appropriate DMQiS in increasing order of time-stamps. The pseudo-code for this Order process

is shown in Figure 5-3.

process Order
var OML:list of message

c:clock
process Broadcast

var m:message
cycle

remove mfrom RMQ
m.TS :=c
diffuse m to neighbour
deposit m into OML

end cycle
end process
II
process Diffuse

var m:message
cycle

receive m diffused by the neighbour
if m is authentic and c-d:$; m.TS:$; c+£ and has not received equiv(m) then

deposit m into OML
else discard m
end if

end cycle
end process
II
process Deliver

var m:message
stable, delivered:list of message

cycle
for all m, m in OML and m.TS < c-d do add m to stable end for all
remove spurious messages from stable
filter duplicate messages from delivered+stable
delivered := delivered+stable
order the messages in stable in increasing time-stamp order
for all m in stable do deposit m into the appropriate DMQi end for all

end cycle
end process

end process

Figure 5-3: Order process for synchronised clock based order protocol

In the context of two-processor fail-silent nodes, we define the protocol's actual stability

delay (La) for a particular message to be the real time elapsed since a copy of the message is first

116

received by one of the processors of the node until it is ordered and enqueued in the appropriate

DMQi of both processors of the node. We also define Lmin and Lmax to be respectively the lower,

and the upper bound of the actual stability delay of an order protocol (Lmin ~ La ~ Lmax). There-

fore, for the order protocol just presented, we have:

Lmin = ~(l-p); Lmax = ~(l+p)+£; and ~(l-p) ~ La ~ ~(l+p)+£.

The lower bound Lmin is achieved when the clocks of both processors are running at the

fastest possible rate, i.e. the clock time interval ~ measured by their clocks corresponds to a real

time interval ~-~p. Also, either the difference between the readings of their clocks at the time a

copy of the message is first received from the network is zero, or they both receive a copy of the

message from the network at the same real time. On the other hand, the upper bound Lmax is

achieved when the reading of the clock of the processor that first receives a copy of the message

from the network is e ahead of the reading of the clock of its neighbour, and the clock of the neigh-

bour processor is running at the slowest possible rate (i.e. p). Also, if the neighbour receives a

copy of the message from the network. this message is received at least after a real time interval of

£ has elapsed since the the first copy of the message had been received. The fixed stability delay of

at least ~(I-p), implicit in this order protocol, has motivated us to seek enhancements.

5.3. Efficient Order Protocols

For the order protocol of the reference implementation previously discussed, there are three

parameters that will affect the protocol's actual stability delay for a particular message: i) the

actual drift from real time of the clocks of each processor; ii) the actual clock synchronisation

error as perceived by the first processor to receive a copy of the message from the network. i.e.

the difference between its neighbour's current clock time and its clock time, at the time the mess-

age is received from the network; and iii) the message reception skew, i.e. the actual difference

between the real times when each processor receives its copy of the message from the network.

Let ea, -£ ~ ea ~ e, be the actual clock synchronisation error as defined above, and Aa, Aa ~ 0, be

the message reception skew for any particular message. (Note that if only one processor receives

the message from the network and its neighbour does not, then Aa = 00, but the message is still

ordered at both processors.)

117

Assume a two-processor fail-silent node comprised of processors PI, and P2, with PI, Cl,

and P2, C2 being respectively the drift from real time, and the reading of their clocks when the

first copy of a particular message is received by one of the processors. If we assume that PI is

the processor that recei ves the first copy of a message at real time T, then Ea= C2-C I,and the mess-

age will become stable at PI at real time T+~(1+PI). If Aa is finite, i.e. if P2 eventually receives

a copy of the message from the network, then the message diffused by P2 to P Iwill become stable

at PI at real time T+A.a(l+PI)I(l+P2)+(~+Ea)(l+PI) ""T+Aa+(~+Ea)(I+PI)· On the other hand,

the copy of the message that P2 has received from the network will become stable at P2 at real

time T+Aa+~(1+P2), whilst the message diffused by P I to P2 will become stable at P2 at real time

T+(~-£a)(I+P2). The local stability delay for a particular processor is given by the minimum

delay necessary to stabilise either the message received from the network (if any), or the message

diffused by the neighbour (if any), i.e. minimum of {~(1+PI)' Aa+(~+£a)(1+PI)} for PI, and

minimum of {(~-£a)(l +P2), Aa+~(l +P2)} for P2. The protocol's actual stability delay is then

given by the maximum delay between the local stability delays for PI, and P2.

Therefore, as observed previously, the actual stability delay for ordering any message with

the order protocol presented in Section 5.2.2 is at least ~(l-p). We begin our search for ways of

reducing the lower bound on the actual stability delay of order protocols for two-processor fail-

silent nodes by describing a method which reduces the lower bound of the clock synchronised

based protocol of Section 5.2.2. We then describe new protocols with similar lower bounds, but

which do not require the clocks of a node to be kept synchronised.

5.3.1. Improving the Synchronised Clock Protocol

The arrival of a diffused message can be used to reduce the constant stability delay ~(l-p)

imposed by the lower bound of the order protocol presented in Section 5.2.2. We shall assume

that messages sent over the internal communication link of the node are received in the sent order

(such communication service can be easily implemented within a two-processor node where pro-

cessors are connected to each other through an internal link). Given this fifo assumption, a pro-

cessor can use the time-stamp of a message diffused by its neighbour processor to define a new

lower bound on its local stability delay. Figure 5-4 is used to illustrate the idea.

118

ts

(a) , 1 ~f Local clock time

C-~ C

(b)

c-~ c
ts

(c) , , ~
Local clock time

C-~ C

c::J Stable time-stamps in accordance with synchronised clock protocol

_ Stable time-stamps assuming fifo channels

_ Non-stable time-stamps

Figure 5-4: Stability intervals

In case (a) of Figure 5-4, a diffused message with time-stamp ts is received when the local

clock reading, c, is greater than ts. As no more messages are received for ordering from the neigh-

bour bearing a time-stamp smaller than or equal to ts (fifo assumption), and any new local mess-

age for ordering gets a time-stamp greater than or equal to c (clock values increase monotoni-

cally), all messages for ordering (messages deposit into OML, Figure 4-2, page 67) with

time-stamps smaller than or equal to ts are stable.

Figure 5-4(b) shows the case where a message with time-stamp ts is received for ordering

from the neighbour when the local clock reading c is less than ts. In this case all messages for

ordering with time-stamp smaller than c are stable. Note that in this case it is guaranteed that the

neighbour's clock is ahead of the processor's clock, thus it is possible, without causing harm to

the clock synchronisation protocol properties, to advance the local clock to read ts+1.With this

update, a diffused message with time-stamp ts recei ved by aprocessor defines a new stabilisation

interval such that all the messages with time-stamp smaller than or equal to ts are stable (case

Cc)of Figure 5-4). The pseudo-code for this modified protocol is shown in Figure 5-5.

119

process Order
var OML:list of message

c:clock
last _rece ived: time-stamp

process Broadcast
var m:message
cycle

remove mfrom RMQ
m.TS:= c
diffuse m to neighbour
deposit m into OML

end cycle
end process
II
process Diffuse

var m:message
cycle

receive m diffused by the neighbour
if m is authentic and c-~:5 m.TS:5 c+E and has not received equiv(m) then

last_received := m.TS
if c < last received then c := last_received+ 1 end if
deposit m into OML

else discard m
end if

end cycle
end process
II
process Deliver

var m.message
stable. delivered.list of message
stability time.time-stamp

cycle
stability_time := maximum of {last_received. c-~}
for all m, m in OML and m.TS:5 stability_time do add m to stable end for all
remove spurious messages from stable
filter duplicate messages from delivered+stable
delivered := delivered+stable
order the messages in stable in increasing time-stamp order
for all m in stable do deposit m into the appropriate DMQi end for all

end cycle
end process

end process

Figure 5-5: Order process for synchronised clock based order protocol with/i/o channels

120

From the stability intervals of Figure 5-4(a) and Figure 5-4(c), it is easy to see that mess-

ages diffused from one processor to the other become stable at the receiver processor as soon as

they are received. If we take again a two-processor fail-silent node comprised of processors PI

and P2, with clocks drifting from real time by P Iand P2, respectively, and assume that PI receives

the first copy of a particular message from the network at real time T, then this message will be-

come stable at P I at T+~(l +P j), whilst the copy of this message received from P2 will become

stable at PI at T+A.a+~21' where ~21 is the actual transmission delay of the message diffused by

P2 to P I·On the other hand, at P2, the same message will become stable at T+A.a+~(I+P2) - for

the message received from the network, and at T+~12 - for the message received from PI, where

~12 is the actual transmission delay of the message diffused by PI to P2. Therefore, the actual

stability delay for a particular message ordered by this modified protocol is given by:

La = maximum of {minimum of {~(l+pJ), A.a+~21}, ~12}' Also,

Lmin = 0; Lmax = ~(1+p); and 0::;; La::;; ~(l+p).

5.3.2. Order Protocol with Logical Clocks

We can take the idea discussed before a step further and eliminate the requirement of having

the physical clocks of the processors forming a node to be kept synchronised, and instead use logi-

cal clocks for generating time-stamps [Lamport 78].

In this order protocol each processor of a node maintains two logical clocks (counters),

namely the local logical clock (LLC) and the remote logical clock (RLC), which are initialised

to I and 0, respectively. LLC is used to time-stamp messages diffused to the neighbour for order-

ing, whilst RLC is used to store an estimation of the neighbours LLC. These clocks are updated

in the following way: whenever a processor diffuses a message to its neighbour, it time-stamps

the message with the current value of LLC, and increments LLC by one; whenever a message with

time-stamp Is is received from the neighbour, RLC is set to Is and LLC is set to the maximum

of its current value and Is+ 1. These updates ensure the following properties:

i) messages are diffused to the neighbour bearing increasing time-stamps;

and

121

ii) the value of RLC of a processor is smaller than that of its LLC as well as

that of its neighbour's LLC.

Property (ii) guarantees that all messages for ordering with time-stamps smaller than or

equal toRLC are stable. So, as before, a diffused message becomes stable at the receiver processor

as soon as it is received.

The protocol as presented above has one shortcoming. Messages at a processor can become

stable only after the arrival of a diffused message from the neighbour (because RLC is updated

only when a message diffused from the neighbour is received). However, a processor can only

diffuse a message if it receives it from the network, so if only one of the processors receives a

message from the network (A.a = 00), this processor will be prevented from stabilising that mess-

age, since it will not receive a copy of the message from the neighbour.

To solve this problem we introduce a scheme based on time-outs that allows a processor

to update RLC even if its neighbour does not diffuse a message. When a processor (say PI) dif-

fuses a message (say ml) with time-stamp ts to its neighbour (say P2), it schedules an update of

RLC to value Is to occur at time t+2d, where t is the value read on its physical local clock when

m Iwas diffused, and d is the common clock time interval to measure a real time interval of at

least 0 duration, i.e. d is known to all non-faulty processors, and must be chosen such that

d ~ 0/(I-p). At time t+2d, RLC is updated to ts only if its value is less than ts. The 2d time-out

interval follows from the fact that after receiving ml with time-stamp ts, LLC of P2 has the value

of at least ts+ 1; therefore any message with time-stamp smaller than or equal to ts diffused from

P2 toPI (say m2) will have been diffused before P2 had received mi. In the worst case, this would

have been done just before the reception ofm I,with m Iand m: each taking at most 0 units of real

time to be transmitted. Thus PI must wait for at least 2d units of clock time before advancing its

RLC.

The Order process of this protocol is also composed of the three cyclic processes which

work in a fashion similar to those discussed in the previous protocols (see Figure 5-6).

122

process Order
var OML:list of message

LLC, RLC:logical-clock
process Broadcast

var m:message
t:clock-time

cycle
remove mfrom RMQ
moTS= LLC
diffuse m to neighbour
deposit m into OML
t := the local physical clock time
at t+2d set RLC to minimum of {RLC, LLC}
LLC:= LLC+l

end cycle
end process
II
process Diffuse

var m:message
cycle

receive m diffused by the neighbour
if m is authentic and moTS ~ RLC and has not received equiv(m) then

deposit m into OML
RLC:=moTS
if LLC < RLC then LLC := RLC+ 1 end if

else discard m
end if

end cycle
end process
II
process Deliver

var m:message
stable, delivered:list of message

cycle
for all m, m in OML and moTS < RLC do add m to stable end for all
remove spurious messages from stable
filter duplicate messages from delivered+stable
delivered := delivered+stable
order the messages in stable in increasing time-stamp order
for all m in stable do deposit m into the appropriate DMQi end for all

end cycle
end process

end process

Figure 5-6: Order process for logical clock based order protocol

123

The Broadcast process picks up a message on its RMQ, time-stamps it with the value ts

read on LLC, and places the message into its OML. Then. a copy of the time-stamped message

is sent over the link to the neighbour processor. Finally. the processor's LLC is incremented by

one, and an update of RLC to ts is scheduled to be executed in 2d units of time. The Diffuse pro-

cess receives a diffused message with time-stamp ts from the link, performs a timeliness check

on the message (a message is considered timely if its time-stamp is greater than the current value

of RLC). and if the message is considered to be timely, the Diffuse process places it in the OML.

LLC and RLC are then updated if necessary as discussed before. Messages in OML with time-

stamps less or equal to RLC are stable.

For a two-processor fail-silent node comprised of processors PI, and P2, and assuming that

PI is the first processor to receive a copy of a particular message from the network, we have the

actual stability delay for this protocol given by:

r.a = maximum of {minimum of {2d(1+p 1), A.a+021 }, 012} ;

where, ~hlis the actual transmission delay of the message diffused by P2 to PI, and 012 is the

actual transmission delay of the message diffused by PI to P2·

The minimum and maximum actual stability delay for a particular message are given by:

~min = 0; ~max = 2d(l+p); and 0 ~ ~a ~ 2d(l+p).

5.3.3. Asymmetric Order Protocol

The last two order protocols presented, have an actual stability delay that is affected by the

message reception skew A.a.When A.ais large, the actual stability delay of those protocols deterio-

rates to their worst case ~max (6(1+p) for the protocol of Section 5.3.1 and 2d(1+p) for the proto-

col of Section 5.3.2). Thus, for systems where the message reception skew is large, the two proto-

cols presented do not solve the problem of reducing the actual stability delay when ordering

messages. We now present an order protocol whose actual stability delay is not a function of Aa,

but rather a function of oa, i.e. the actual transmission delay of messages between the two pro-

cessors of the node. Thus, since our node model makes no assumptions on the upper bound of

Aa (see Section 3.3.1), this protocol is more suitable for implementing the Order process of the

nodes we are constructing.

124

In this asymmetric protocol we assign different roles to each of the two processors forming

a node. We term one processor the leader and its neighbour thefollower. Figure 5-7 is a modified

version of the node model pictured in Figure 3-8 (page 56), presenting the inter-communication

of processes at both leader and follower processors.

It is the responsibility of the leader to determine the order of messages received from the

network. Having selected a message for processing, the leader sends a copy of the message to the

follower, which then processes messages in the order dictate by the leader. (The inspiration for

this way of building a fail-silent node comes from the leader-follower replication protocol for

application level processes used in the Delta-4 system [Powell 92, Barrett et al. 90].) Due to the

simplicity of this ordering mechanism, there is no need for a special Order process within a pro-

cessor. Instead we have enhanced the functionality of the Receiver processes executing in the

leader and in the follower (see Figure 5-7).

The node works as follows. A valid double-signed message received by the Receiver of

the leader is deposited in the appropriate DMQi and a copy of the message is also sent to the fol-

lower across the link. Double-signed messages from the leader reach the follower where they also

get deposited in the appropriate DMQiS. Thefifo property of the communication channel guaran-

tees the ordering of messages. (Note that a simple message sequencing mechanism can be used

to implement a logicalfifo channel over any kind of physical communication channel available.)

125

(a)
From

L link
e
a
d
e
r

From network

Receiver

The asymmetry introduced by assigning different roles to the two processors of a node re-

quires us to introduce an extra mechanism in the follower for detecting late or non arrival of a

(b)

F From
link

0

I
I
0

w
e
r

Figure 5-7: Asymmetric fail-silent node

126

message for ordering from the leader. A Timing process (see Figure 5-7) is introduced in the fol-

lower. The follower's Receiver process deposits each valid double-signed input message re-

ceived from the network in the External Received Message List (ERL) with an associated time-

out t_reception, t_reception cO. Copies of authentic messages received from the leader via the

link and on their way to DMQi, are deposited in the Internal Received Message List (IRL). Figure

5-8, shows the pseudo--code for the follower's Receiver process.

process Receiver
process Network

var m:message
t:clock-time

cycle
receive mfrom the network
if m is not authentic then

discard m
else

t := the local physical clock time
deposit m into ERL
set a time-out associated with m tofire at t+t_reception

end if
end cycle

end process
II
process Link

var m:message
cycle

receive m from an internal link
if m is not authentic then

discard m
else

if m is single-signed then deposit m into EeL end if
if m is double-signed then

deposit m into IRL
deposit m into appropriate DMQi

end if
end if

end cycle
end process

end process

Figure 5-8: Follower's Receiver process

127

The Timing process picks up each messages in the ERL and tries to find its counterpart in

the IRL. If a counterpart is found, then it resets the time-out associated with the message in ERL

and discards both messages. If a time-out expires, the follower assumes that the leader has failed

to send a message for ordering. This can happen either because the leader has failed, or because

the leader has not received a copy of the message from the network. The follower processor can

try to prevent a premature shut down (when the leader has not failed) by feeding the leader with

the missing input message. This 'feedback' mechanism works as follows: after the time-out t_re-

ception has expired, the follower sends a copy of the missing input message to the leader in order

to have it properly ordered. A second time-out tfeedback, tfeedback ~ 2d, is associated with

the message. If this time-out also expires, then the follower may assume that the leader has failed,

and can bring the node to a halt by stopping its Comparator and Sender processes. The pseudo-

code for the Timing process, and for the implementation of the feedback mechanism by the

leader's Receiver process are shown in Figure 5-9 and Figure 5-10, respectively.

process Timing
var internal, external:message

t:clock-time
cycle

external := a message from ERL
t := the local physical clock time
if time-out t_reception has expiredfor external then

diffuse external to leader
set a time-out associated with external to fire at t+t feedback

end if
if time-out tfeedback has expired for external then

kill Sender
kill Comparator
exit

end if
if there is a counterpart of external in IRL

internal := counterpart of external in IRL
reset any time-out associated with external
discard internal
discard external

end if
end cycle

end process

Figure 5-9: Timing process

128

process Receiver
process Network

var m.message
cycle

receive m from the network
if m is not authentic then

discard m
else

diffuse m to follower
deposit m into appropriate DMQi

end if
end cycle

end process
II
process Link

var m:message
cycle

receive mfrom an internal link
if m is not authentic then

discard m
else

if m is single-signed then deposit m into EeL end if
if m is double-signed and has not diffused m yet then

diffuse m to follower
deposit m into appropriate DMQi

end if
end if

end cycle
end process

end process

Figure 5-10: Leader's Receiver process

The comparison protocol of this protocol is the same used in the reference design imple-

mentation. Thus, output messages from an application process, Service., follow the same path

as discussed before, and message buffers ECL, ICL, VMQ and the Comparator process have the

same role as before.

Unlike the previous protocols, in order to calculate the actual stability delay of the asym-

metric order protocol it is relevant to identify the processor that first recei ves a copy of a particular

input message. We define ALF as the message reception skew as perceived by the follower pro-

cesser, i.e. the difference between the real time that the leader receives a copy of a particular mess-

129

age from the network and the real time that the follower receives a copy of the same message.

The actual stability delay for this protocol is then given by:

{
O' if ALF < °

~L = minimum of {ALF, t_reception(I + Pfollower)+OFL}' otherwise;

where ~F is the local stability delay for the follower, ~L is the local stability delay for the leader,

OLFis the actual transmission delay of the message diffused from the leader to the follower,

Pfollower is the rate of the drift of the follower's clock and OFL is the actual transmission delay of

the message diffused from the follower to the leader.

A sensible strategy is for the follower to set t_reception = ° (thus, as soon as the follower

receives a message from the network it checks for the presence of the corresponding diffused

message from the leader). Hence, we have:

0FL} otherwise.

Thus, for this protocol, the minimum and maximum actual stability delay for a particular

message are given by:

~min = 0; ~max = 20; and °:::;~a :::;20.

5.4. ComparisonProtocols

The comparison protocol discussed in Section 5.2.1 permitted a node in the failing state

to commit more than one performance failure. The only fool-proof way of preventing this from

happening is to use a comparison protocol that guarantees that a processor sends the next message

for comparison to the other processors of the node only after the former has successfully com-

pared and output a 7t+ I-signed copy of the previous one.

A simple way to modify the comparison protocol presented in our reference design to

achieve this functionality. is to introduce a synchronisation mechanism between the Comparator

and the Sender processes of a non-faulty processor. such that the Sender process only sends a new

130

message across the links to the other processors of the node, after the Comparator process has

deposit a valid message into the Validated Message Queue (VMQ), thus enabling the Transmitter

process to output this valid message (see Figure 3-8, page 56).

In this modified comparison protocol, the Sender and Comparator processes of a non-

faulty processor work as follows. Whenever allowed by the Comparator process, the Sender pro-

cess removes a message from the Processed Message Queue (PMQ), deposits it into the Internal

Candidate List (lCL), countersigns a copy of this message and diffuses it through the internal

links to the other processors of the node. The Comparator process removes the message from the

ICL (the way the Comparator process grants access to ICL to the Sender process guarantees that

at any time there is no more than one message in the ICL of a non-faulty processor), and continu-

ously scans the External Candidate List (ECL) searching for matching messages that have been

sent by the other processors of the node for comparison. Matching messages are compared, and

successfully compared messages with less than 1t signatures are countersigned and diffused to the

other processors which have not signed these messages yet. A successfully compared re-signed

message is countersigned and the resulting valid message is deposit into the VMQ for later trans-

mission to its destination node. The Comparator process then signals the Sender process, allow-

ing the latter to remove a new message from the PMQ. If no successfully compared re-signed

message is found before a node specific time-out interval has expired, then the node is shut down.

Note that there is no problem if a faulty processor does not follow the synchronisation policy, and

send several messages for comparison. There is at least one processor that is non-faulty, and that

only countersigns messages that match the message present in its local ICL.

131

However, since there is no assumptions on how application processes are scheduled within

a non-faulty processor of the node, messages are deposit into the PMQ in an arbitrary order! . As

a result, if the Sender process of two non-faulty processors select different messages from their

PMQ for comparison, no 1t-signed messages matching the message in the ICL of any processor

of the node are ever generated, and the node is shut down, even tough all processors of the node

might be non-faulty.

In order to prevent this from happening, it is also necessary that the processors agree on

the next message to compare. In our architecture, a logical way of achieving this agreement would

be to insert an Order process between the Service, processes and the Sender process of each pro-

cessor. We need to add an extra queue, called Output Message Queue (OMQ), to allow the com-

munication between the new Order process inserted and the Sender process. Figure 5-11 is an

extract of the node model presented in Figure 3-8 (page 56), which shows the relevant processes

and queues after the introduction of the output Order process.

Note that this new Order protocol introduced can also be implemented under the assump-

tion that the node is in a failure-free situation. Any failure that leads to a wrong order of messages

in the OMQ will be detected by the time-out mechanism of the Comparator process. Thus, we

can use any of the order protocols discussed in Section 5.3 to implement the output Order process.

I. Two distinct output messages produced by the same application process of a non-faulty processor

are deposit in PMQ in the order they are generated, thus the Comparator process of a fail-silent node

must also provide means to guarantee that if these messages are ever output by the node, they will be

output in the same order that they have been generated, i.e. the Comparator process must be able to detect

the failure of the Sender process of a faulty processor which has failed by sending an 'out of sequence'

message for comparison. The Voter process of a failure-masking node is able to mask this sort offailure

without any additional mechanism, hence this is yet another difference between that process and the

Comparator process of a fail-silent node.

132

Service,
Synchonisation

: _b_o!ll}«!a_I1 ;

Figure 5-11: Extended Voltan fail-silent node

The asymmetric ordering approach discussed in Section 5.3.3 provides a very convenient

way of integrating ordering with comparison. Accordingly, we present a comparison protocol

based around the leader-follower technique. It is worth noting that this comparison protocol can

be used within a node that uses any of the order protocols previously described (synchronised

clock, logical clock or the asymmetric), since ordering for input messages is independent from

ordering for output messages. For the sake of simplicity, we describe this protocol in the context

of a two-processor fail-silent node. The description concentrates on the message synchronisation

aspects of the protocol, as the other aspects remain as they were presented in Section 5.2.1.

For the purpose of message comparison then, one processor is assigned the role of the

leader, and the other, is the follower. In the leader, messages in the PMQ follow the same path

as before (see Figure 3-8, page 56). However, the following synchronisation mechanism between

the Sender and the Comparator processes is introduced: the Sender process is allowed to send a

new message over the link for comparison only if permitted by the Comparator process, and this

133

permission is granted by the Comparator process after it has finished comparing the current mess-

age.

To network

To

Figure 5-12: Message comparison for follower processors

On the follower side, messages produced by application processes follow a slightly differ-

ent path, as shown in Figure 5-12. The Comparator process of the follower compares the message

in the ECL (sent by the leader) with the correspondent locally produced one in the ICL; if the

comparison succeeds, the message in ECL is countersigned, and the resulting valid message is

deposited in the VMQ for network delivery. The locally produced message (the message in ICL)

is also signed, and deposited into the PMQ for delivery over the link to the leader. This message

arrives in the ECL of the leader, gets compared and, if the comparison succeeds, the leader's

Comparator process then permits the next message from the leader to be transmitted by the

leader's Sender process for comparison by the follower's Comparator process. This mechanism

guarantees that the fail-silent node will suffer at most one performance failure if it enters the fail-

ing state before entering the silent state (see Figure 5-1).

134

5.5. Node Overhead Analysis

As with failure-masking nodes, we now analyse the overheads imposed by the order and

comparison protocols of the fail-silent nodes discussed in this chapter. Again, we calculate the

overhead of each protocol in terms of extra delay and extra intra-node message traffic. For the

sake of simplicity, we make the analysis assuming a two-processor fail-silent node.

5.5.1. Ordering Overhead

We start the analysis by comparing the upper bound ~max of the actual stability delay of

the order protocols. The clock synchronisation protocol which the clock synchronised based

order protocols of the reference design and of Section 5.3.1 require is very simple, since, as dis-

cussed before, it can be assumed to execute in a failure-free environment. In [Lundelius-

Lynch 84], it is shown that the lower bound at how closely the clocks of N processors can be syn-

chronised is given by 11(I-lIN), where 11is the uncertainty in message delivery. Thus, we can take

for a two-processor node e = 0/2.

For the clock synchronised based order protocol of our reference design, ~max = ~(I +p)+€,

where ~ = (dtJ.+E)and ds = o/(I-p) ::::o(I+p). After some algebra and neglecting the higher order

terms of p (O(p2», we have ~max given by: ~max = 20+50p/2; similarly, ~max for the clock syn-

chronised based order protocol of Section 5.3.1 is given by: I.max = ~(l +p) = 3bI2+5bp/2; for

the logical clock based order protocol of Section 5.3.2, we have: ~max = 2d(I+p), where

d = 0/(I-p) ::::O(I+p), leading to ~max = 20+4bp; finally, for the asymmetric order protocol of

Section 5.3.3, we have ~max = 20. Thus. the protocol of Section 5.3.1 presents the smallest value

for I:max, which is approximately 0/2 smaller than the value of the other protocols.

We note however. that since e is proportional to N. unlike the upper bound of both the logi-

cal clock based and the asymmetric order protocols. the upper bound ofthe order protocols based

on synchronised clocks increases with the number N of processors in the node.

It is also important to understand what are the conditions that force the actual stability delay

of a particular message to approach the upper bound value of a particular order protocol. Take

for instance the symmetric protocols of Section 5.3. The actual stability delay of those protocols

135

is given by their respective upper bound whenever the message reception skew (I"a) is greater than

30/2+50p/2-oa, for the protocol of Section 5.3.1, and greater than 20+40p-oa, for the protocol

of Section 5.3.2, where ()a is the actual transmission delay of messages diffused from one pro-

cessor to the other.

On the other hand, for the asymmetric order protocol of Section 5.3.3, the actual stability

delay of messages does not depend on Aa. For a particular message, the actual stability delay of

the asymmetric protocol approaches its upper bound only when oav approaches the worst case

transmission delay (). Also, the upper bound 2() is attained only in those cases when the first copy

of the message received from the network is received by the follower processor. When the leader

processor is the first processor to receive a copy of a particular message from the network, then

the actual stability delay is bounded by o. Thus, if we assume that both leader and follower pro-

cessors of a two-processor fail-silent node have the same probability of receiving the first copy

of a particular message from the network, then, in average the maximum actual stability delay

of the asymmetric protocol is at most 30/2, which is smaller than the maximum actual stability

delay of any other protocol presented.

In respect to the extra intra-node message traffic generated, all order protocols presented

in this chapter need only one extra message to be transmitted through the internal link connecting

the two processor in the node, for each input message received from the network.

5.5.2. Comparison Overhead

The actual validation delay (~) of a comparison protocol is mainly made up by the time

necessary to exchange the messages to be compared. However, the synchronisation mechanisms

used to prevent the occurrence of more than one performance failure (in case the node enters the

failing state - see Figure 5-1), may also incorporate a considerable overhead to the actual vali-

dation delay of a message. This makes the analysis of ~ for the comparison protocol not as

straightforward as it was the case for the ~ of the voter protocol in the previous chapter.

In the asymmetric comparison protocol presented in Section 5.4, the follower processor

always outputs messages before the leader processor; also, an output message deposit in the PMQ

of the leader processor is only sent for comparison at the follower after the leader has received

136

and successfully compared a copy of the previous output message sent to the follower. Thus, the

synchronisation delay encompasses the interval of time since an output message is deposit in the

PMQ of the leader until the previous output message is deposit in the VMQ of the leader; and

the synchronisation delay for the (n+ 1)th message output by the node, crn+ 1, is given by:

where crn is the synchronisation delay experienced by the nth message output by the node, n > I,

and crI = 0.

The reasoning for the maximum synchronisation delay of an output message presented

above is as follows. After having sent the nth output message from its PMQ to the follower, the

leader will have to wait at most 20 units of time until the correspondent message sent by the fol-

lower is received. It is only after receiving a copy of the nth output message from the follower,

that the leader can initiate the output of the (n+ 1)th message. Also, if at the time the (n+ 1)thoutput

message is deposit in the PMQ of the leader the nth output message is still there, then the synchro-

nisation delay of the (n+ 1)th output message will also incorporate some of the synchronisation

delay associated with the nth output message; in the worst case when output messages nand n+ 1

are deposit in PMQ almost at the same time, the whole of an must be incorporated in crn+ 1.

Thus, for any particular message, the actual validation delay for the comparison protocol

of Section 5.4 is given by:

where o, o ~ 0, is the synchronisation delay for the particular message.

The discussion above showed that the synchronisation delay is a function of both the actual

transmission delay of the (output) messages (Oa), and the rate with which messages are deposit

in the PMQ of the leader (output rate). Further, the output rate represents the rate with which

messages are generated by the application processes, which, among other things, depends on the

rate with which messages are received from the network. The smaller the output rate, the smaller

the synchronisation delay; in fact, if the output rate is greater than I message per each 28 time

interval, then it is guaranteed that the synchronisation delay is zero.

137

Regarding extra intra-node message traffic, the comparison protocol requires the exchange

of only two messages per message output. It is worth noting that the output message sent by the

follower for comparison at the leader is used also to implement the necessary synchronisation

at the leader side which guarantees that a fail-silent node at the failing state will suffer no more

than one performance failure.

5.6. ConcludingRemarks

In this chapter we have described how efficient fail-silent nodes can be design. We have

first performed a reference design that made use of a simple comparison and order protocols. We

have then investigated how the performance of the order protocol can be improved. This led to

a much simpler protocol based purely on logical clocks, obviating any need for keeping intra-

node clocks explicitly synchronised. We have also discussed the design of an asymmetric order

protocol. Further, we have described how the asymmetric ordering approach can be exploited for

the construction of an efficient message comparison protocol.

Extensive experiments have been performed to evaluate the performance of two-processor

fail-silent nodes under the order protocols presented in this chapter. The implementation and the

performance results obtained are discussed in the next chapter.

138

Chapter 6
Implementation and
Performance Evaluation
of Soft Replicated Nodes

6.1. Introduction

In this chapter we discuss the implementation of both failure-masking and fail-silent

nodes. We then analyse the performance figures obtained after running a variety of experiments

in different implementations of such nodes. Our main objective has been to assess the degradation

in performance suffered by a replicated node as it is called upon to execute the redundancy man-

agement software not present in an ordinary processor (unreplicated node).

Efficient implementations of the protocols described in the two previous chapters require

that the processors forming a node be capable of exchanging messages quickly. Transputers are

processing units with interfaces to fast point-to-point communication links, providing just the

kind of functionality we require. For this reason, we have chosen to implement TMR failure-

masking and two-processor fail-silent nodes using a network of T800 Inmos transputers

[INMOS 88]. Each transputer has four internal links which connects it with four other trans-

puters, providing a fast communication link. Figure 6-1 shows how six transputers can be

coupled together to implement a network of replicated nodes. Figure 6-1 (a) shows the inter-con-

nection of TMR nodes. whilst Figure 6-1 (b) shows the inter-connection of two-processor fail-

silent nodes.

139

(a)

I I I

(b)

1

Intra - node communication
Inter - node communication

Figure 6--1: Structuring replicated nodes on a six-transputer network

6.2. Implementation Details

We have chosen to implement the protocols in an object oriented language, C++ [Strous-

trup 92], and have used the facilities of the Helios operating system [Perihelion 91], a Unix-like

operating system which runs on transputers and supports the client-server model for structuring

programs. These choices are not central to our design and implementation, and have been taken

mainly because we have extensive Unix/Cj+ based system programming experience. Some fam-

iliarity with C++ is assumed in this section.

Our implementation makes extensive use of classes, inheritance and virtual operations to

implement the software architectures shown in Figure 3-8 (page 56), Figure 5-7 (page 126) and

Figure 5-12 (page 134). Base classes exist for implementing processes, messages, queues and

lists. The functionality of the system is then implemented in classes derived from these base

classes.

Our implementation has been performed in a layered fashion. The lowest layer uses Helios

services for providing basic system services for constructing programs composed of active ob-

jects communicating via message queues and message lists. These services are then used by the

next layer, the communication layer, which provides intra-node communication facilities. Then

comes the replication layer that implements the capability for replicated processing.

140

6.2.1. System Services

In our system, low and high priority processes are spawned by a call to the ForkO and

HighForkO functions, respectively. In our implementation we encapsulate process spawning into

a common Active_Object base class from which individual process classes may then be derived.

In this way, the base class provides the thread of activity, whilst the derived class provides the

algorithm by specifying the behaviour of the virtual operation maint). Further, process priority

is defined in the way that derived classes are instantiated (see Figure 6-2).

class Active_Object
{

Semaphore started;
pubhc:

Active_Object(priority object priority, word stack_size);
-Active Ubjectty;

void StartMainO;
virtual void mainty;

};

void inter _main(Active_Object *object_pointer)
{

Wait(object_pointer->started);
object _pointe r- »mainty;

Active_Object::Active_Object(priority object_priority = Law, word stacksize = 2000)
{

InitSemaphore(&started, 0);
if object_priority == LOW then

Fork(stack_size, (VoidFnPtr) inter_main, sizeof(Active_Object *), this);
else

HighFork(stack_size, (VoidFnPtr) inter jmain; sizeof(Active_Object *), this);

Active_Object: :-Active_Object() { };

void Active_Object::StartMainO
{

Signal(&started);

Figure 6-2: The Active_Object class

141

In a class hierarchy, C++ constructors are executed in a bottom-up fashion, i.e. the Ac-

tive_Object constructor is executed before that of the derived class. It is conceivable therefore

that maim) will be called before the derived class has had time to initiate the data structures used

by maim). A semaphore is used to prevent this situation from occurring. Thus the derived class

controls when maim) becomes active by calling the function StartMainO at the appropriate time.

The code for the Active_Object class is shown in Figure 6-2. A parameter supplied to the derived

class constructor determines the priority of the thread. The two priorities available, high and low,

correspond to the priorities handled by the transputer scheduler.

class Producer: public Active_Object
{

Queue *output_queue;
public:

Producer(Queue *queue);
-Producerty;

void maintv;
} ;

Producer::Producer(Queue *queue) :
Active_ObjectO,output_queue(queue)

Starttvlainty;

Producer::-ProducerO {};

void Producer::mainO
{

String "message;
while(true)
{

message = new String("Hello Worldvz");
output_queue->enqueue(message);

Figure 6-3: Active object derived class (Producer)

Two active objects can communicate with each other by accessing a common passive object

via a pointer parameter passed to both constructors. The passive object can be an instance of a

Queue class. For example, an active object Producer (Figure 6-3) may communicate with an ac-

142

tive object Consumer (Figure 6-4) if the pointer parameter passed to both constructors refers to

the same queue, as shown in Figure 6-5.

class Consumer: public Active_Object
{

Queue *input_queue;
public:

Consumer(Queue *queue);
=Consumerty;

void mainty;
};

Consumer::Consumer(Queue *queue) :
Active _Objecttv, input_queue(queue)

StartMainO;

Consumer: =-Consumertv { };

void Consumer: :mainO
{

String *message;
while(true)
{

input queue-c-dequeuetivoui **) &message);
cout » message->stringO » "vi";
delete(message);

Figure 6-4: Active object derived class (Consumer)

mainO
{

Queue *queue;
Consumer consumer(&queue);
Producer producer(&queue);
while(true);

Figure 6-5: Connecting active objects

143

Note that any implementation of a passive object class must consider issues of concurrency

control. The Queue class allows concurrent active objects to enqueuei) and dequeueO without

interference. We also provide a List class which can be used to allow the communication of two

active processes, and which provides the more elaboratedfindO and insertt) functions to access

data. The interface to the Queue and List classes are shown in Figure 6-6.

class Queue
{

void data_pointer;
Semaphore access;
Semaphore new_item;
public:

Queuety;
-Queuei);

bool enqueue(void *item};
bool dequeue(void **item);

};

class List

void
Semaphore
Semaphore
virtual bool
public:

data_pointer;
access;
new_item;
match(void *information, void *item);

Listi);
-uac;

void *find(void *information);
void *insert(void *information, void *item);

} ;

Figure 6-6: Interface of Queue and List classes

The processes implementing the replicated nodes communicate with each other via mess-

ages. A replicated node message is implemented as a passive Message Block object and is de-

fined as a class which represents the structure of a message accepted by queues and lists, and

transmitted across transputer links. A Message_Block object stores message data in the form of

a sequence of bytes. Message_Block objects also contain a control component which handles all

the system information relating to a message (for example. signatures, sequences numbers, time-

stamps, etc.). The interface for the class Message_Block is shown in Figure 6-7.

144

void
bool

Message Blocks):
Message_Block(Message_Block& message_block);
=Message Blocki);
signt);
authenticatet);

class Message Block
{

Message
Control Block
public:

data;
control;

};

Figure 6-7: Interface of MessageBlock class

Hence the structure of our implementation consists of several processes (active objects)

communicating asynchronously with each other via queues and lists (passive objects) using

messages (passive objects) to transfer information.

The Queue and List class objects presented earlier, manage a collection of void pointers

which may refer to arbitrary data structure elements, so all users of a queue must implicitly know

the type of the elements. In order to implement additional type checking it has been found desir-

able to derive classes Message_Block_Queue (MBQ) and Message BlockList (MBL) from the

Queue and List classes, respectively. The construction ofMBL, for instance, is simplified by con-

taining list complexity and concurrency control entirely within the List base class. The derived

class is also the mechanism through which particular list operations may be performed. The List

class provides two functionsfindO and inserti), and a virtual function matchi). The derived class

calls findr) and inserti) and provides a real function matcht). All the message lists and queues

required by our replicated nodes are declared as instances of the MBL and the MBQ classes,

which are derived from the base classes List and Queue. respectively.

6.2.2. Communication Layer

Helios provides two different communication mechanisms: primitives for client-server

processes and direct point-to-point communication over 'raw' links. Intra-node communication

in our replicated nodes uses this raw link-level service. whereas inter-node communication at

present uses the client-server facilities provided by Helios. Our basic approach is to distinguish

145

between intra-node and inter-node communication. Intra-node communication is used for

agreement, order and validation of messages. so for efficiency reasons. it takes place over the fast

directly connected links between the processors of a node.

Using the link level primitives, together with the system services described in the previous

subsection, we have built a point-to-point communication service for communicating messages

between any two processors of a node. Each processor contains active objects Tx and Rx for re-

spectively transmitting and receiving intra-node messages. Tx dequeues messages from a queue

specified in its constructor and sends them over a given link also specified in the constructor. The

Rx object awaits messages on a link specified in its constructor. It receives messages and decides

on which queue the messages should be placed, depending on the number of signatures present

in the message. The possible destination queues are specified by passing the Rx constructor a

pointer to an array of possible destination queues.

Each processor runs as many Tx and Rx objects as necessary to allow communication with

all other processors in the node. Thus, in the case of the TMR nodes, there are two instances of

Tx and Rx objects allowing communication with the other two processors in the node. whilst in

the case of a two-processor fail-silent node there is only one instance of each object. Hence, to

send a message to any other processor in the node, a process simply specifies the destination

queue in the message control field and enqueues it on the queue associated with the appropriate

Tx object. (On our two-processor fail-silent nodes this queue is named the Neighbour Message

Queue - NMQ, whilst on TMR nodes, the queues are named Lower Neighbour Message Queue

-LMQ, and Higher Neighbour Message Queue-HMQ.) The intra-node communication service

will then ensure delivery of the message to the correct queue in the destination processor. Both

Tx and Rx run at high priority so as to minimize communication delays within a node.

6.2.3. Replication Layer

The replication layer implements the functionality of the objects pictured in Figure 3-8

(page 56), Figure 5-7 (page 126) and Figure 5-12 (page 134). Inter-node communication is pro-

vided by a Receiver and a Transmitter active objects. using the client-server facilities provided

by Helios. The remaining active objects in the replication layer are responsible for the ordering

146

of input messages and the validation of output messages. Our object-oriented approach has

shown to be very flexible and allowed rapid implementation of replicated nodes with different

protocols. As all nodes have the same basic structure irrespective of the protocols they incorpor-

ate, it is possible to change the internal functioning of a particular node by simply making the

necessary changes on the parameters and the code of the mairu) function of the active objects

which should be changed to attain the required functionality of the new replicated node.

class Sender: public Active_Object
{

MBQ
MBL
int
public:

*PMQ, *NMQ;
*ICL;
processor _id;

Sender(MBQ *pmq, MBL *icl, MBQ *nmq, int p_id);
-Senderty;

void mainiy;

Sender::Sender(MBQ *pmq, MBQ *vmq, MBQ *nmq, int p_id) :
Active Ubjectcj, PMQ(pmq), lCL(icl), NMQ(nmq), processor _id(p_id)

StartMainO;

Sender::-SenderO { };

void Sender: :mainO
{

Message_Block "intemaljnessage, *external_message;
while(true)
{

PMQ->dequeue(&inte mal_message);
external_message = new Message_Block(*intemal_message);
external_message->sign(processor _id);
lCL->insert(intemal_message);
NMQ->enqueue(external_message);

Figure 6-8: Sender process for a two-processor fail-silent node

Given the infra-structure services described above, system processes are relatively simple

to implement. To illustrate this, we show the implementation of the Sender process for both fail-

147

silent (Figure 6-8) and TMR nodes (Figure 6-9).

class Sender: public Active_Object
{

MBQ
MBL
int
public:

*PMQ, *LMQ, *HMQ;
*ICL;
processor_id;

Sender(MBQ *pmq, MBL *icl, MBQ *lmq, MBQ *hmq, int p_id);
-Senderty:

void maintv;
};

Sender::Sender(MBQ *pmq, MBL *icl, MBQ *lmq, MBQ *hmq, int p_id) :
Active_ObjectO, PMQ(pmq),ICL(icl), LMQ(lmq), HMQ(hmq), processor _id(p_id)

StartMainO;

Sender::-SenderO {};

void Sender::mainO
{

Message_Block *internal_message, *lower _message, *higher _message;
while(true)
{

PMQ->dequeue(&internal_message);
lower message = new Message_Block(*internal_message);
lower _message->sign(processor _id);
higher_message = new Message_Block(*internal_message);
higher _message->sign(processor _id);
ICL->insert(internal_message);
LMQ->enqueue(lower _message);
HMQ->enqueue(higher _message);

Figure 6-9: Sender process for a TMR node

The Sender process works as follows: messages are dequeued from the PMQ, then copies

of the messages are made so that it can be diffused to the neighbour(s). These messages are signed

with the processor's unique identifier, and enqueued in the appropriate queues to be transmitted

by a Tx process. (Single-signed messages transmitted by a Tx process are received at the other

end by an Rx process which will insert them in the local EeL.) A copy of the messages is also

148

inserted in the ICL, where the Validator process will access them in order to validate them against

the messages inserted in the ECL by the Rx process. Note that, as we have pointed out before,

it is very simple to modify the Sender process of a fail-silent node in order to incorporate it to

a TMR node. Likewise, NMR nodes with N > 3 should also be simple to implement by modifying

the active objects used to implement TMR nodes.

Remark: for the nodes whose order protocols require clocks to be synchronised, the clock syn-

chronization algorithm implemented is that proposed by Halpern et al.[Halpern et al. 84]. Its im-

plementation consists of two active objects, which respectively monitor the time (Time_Monitor

process) and await incoming clock synchronization messages (Message_Manager process), to-

gether with a passive object (Clock) which maintains the time, and implements the abstraction

of a synchronised clock. Consistency, with respect to concurrent accesses to the clock, is main-

tained by a semaphore. Clock synchronization objects communicate via the internal links and run

at high priority so that the synchronization will be as tight as possible and will be relatively inde-

pendent of the load on each processor.

6.3. Performance Evaluation

We have implemented several versions of failure-masking and fail-silent nodes, each of

them incorporating a different order protocol. A set of experiments have been executed on the

various nodes implemented, and the performance of each node has been measured. In this section

we describe the versions of failure-masking and fail-silent nodes implemented, and the experi-

ments that have been realised. We then analyse the performance of these nodes and confront the

figures obtained for the time overhead incurred by the nodes against the expected values dis-

cussed in the previous chapters.

6.3.1. NodesDescription

We have implemented three different versions of three-processor failure-masking nodes

(TMR nodes). All TMR nodes implemented incorporate the voter protocol of the reference de-

sign presented in Section 4.2, and they are differentiated from each other only in the way input

149

messages are ordered. We have used the following order protocols to implement each of the three

versions of TMR nodes:

i) synchronised clocks: this implementation corresponds to the reference

design discussed in Section 4.2, and incorporates an order protocol based

on having the physical clocks of the processors forming the node ex-

plicitly synchronised;

ii) logical clocks: this version incorporates the order protocol presented in

Section 4.3.2, which is an improvement for TMR nodes on the order pro-

tocol presented in Section 4.3.1; and

iii) early-order: in this node, the early-order protocol of Section 4.3.3 is

used to order input messages. (Communication between processors

forming the node is assumed to have anfifo property, which is very easy

to achieve within the transputer based architecture used.)

We have also implemented three versions of two-processor fail-silent nodes. All nodes in-

corporate the asymmetric comparison protocol discussed in Section 5.4, and again are differen-

tiated from each other only in the way input messages are ordered. We have evaluated their per-

formance for the following three order protocols:

i) synchronised clocks: the order protocol of the reference implementation

presented in Section 5.2.2, which needs the implementation of a clock

synchronisation algorithm;

ii) logical clocks: the protocol based on logical clocks, discussed in Section

5.3.2; and

iii) asymmetric: the leader-follower asymmetric protocol studied in Section

4.3.3. (For this node, the processor acting as the leader for ordering is

also the leader for comparison.)

We have also implemented an unreplicated node model which executes on single trans-

puters. Apart from the application processes, the unreplicated node incorporates Receiver and

Transmitter system processes. (The Receiver process for the unreplicated node is slightly simpler

150

than the one for replicated nodes, since input messages do not need to be authenticated.) Figure

6-10 shows the unreplicated node structure in terms ofthe processes and queues of the replicated

model presented in Section 3.3.2 (see Figure 3-8, page 56).

From network

Receiver»

Figure 6--10: Unreplicated node model

6.3.2. Experiments Description and Evaluation

We have executed a number of experiments using both TMR and fail-silent nodes, with

the objective of assessing the overhead incurred by the redundancy management protocols of

these nodes. The general structure of the experiments is that of a client application process execut-

ing on an unreplicated node, and which makes requests to a server application process executing

on a replicated node. We are particularly interested in the overheads associated with ordering of

input messages and validation of output messages. Thus, we have measured the following time

intervals for the replicated nodes:

Input delay (ID): for the fail-silent nodes, the input delay measures the time interval

between a message entering the node (the earliest time that a particular message is

received by the Receiver process of any processor of the node) and the message being

removed from the DMQi of both processors of the node; for the TMR nodes, the input

delay measures the time interval between a message entering the node and the mess-

age being removed from the DMQi of a majority of the processors of the node (see

Figure 3-8, page 56). Thus, the input delay is made up of the actual stability delay

151

for a message (L.a) plus the time taken up by authentication and queue manipulation

within the node; it reflects the overhead involved in ordering messages at a node.

Output delay (OD): for the fail-silent nodes, the output delay measures the time in-

terval between a message becoming ready for comparison at both processors of the

node (the latest time that the Service, process of any processor of the node outputs

its message) and the message being output by the node (the earliest time that a mess-

age is output by the Transmitter processor of any processor of the node); for the TMR

nodes, the output delay measures the time interval between a message becoming

ready for voting at a majority of processors, and the message being output by the node

(see Figure 3-8, page 56). The output delay reflects the time taken for a message to

be validated and output.

Node delay (ND): the node delay is simply the sum of the input and output delays

(ID+OD). It reflects the earliest response from a node to a given input message, i.e.

the overhead associated with replication.

For the unreplicated node we have measured the following time interval:

Response latency (RL): the response latency is the time that the client will have to

wait for the response for a particular request to arrive. It is made up by the small pro-

cessing overhead associated with the output of a request and the reception of the

correspondent response at the unreplicated node, the inter-node transmission delay

for both the request and the response messages, and the processing overhead at the

replicated node where the server executes.

Overhead for a simple client-server application

In the first experiment a single client application process executing on an unreplicated node

requests a simple service from the server application process which executes on a replicated node.

The client process issues a request to the server process by broadcasting the request to the server

process replicas executing on each of the processors forming the replicated node. It then waits

for a response from any of the server replicas. Each server process replica executing on the repli-

cated node receives a request from the client, services it (the actual computation performed is

152

minimal) and sends the response back to the client (this simulates the communication involved

in a simple RPC operation [Birrell-Nelson 84]). The client issues a new request upon reception

of the first response message received from the server.

We have collected data for ten runs of the experiment, each run involving the client node

sending 100 request messages of 64 bytes, and receiving response messages of the same size. For

each run we have measured the input, output and node delays for the replicated node, as well as

the response latency for the unreplicated node. For each one of these time intervals we have aver-

aged the values measured for each of the requests processed. We have also measured the average

message reception skew (A-av) and the average link transmission delay of internal messages, mak-

ing a distinction between the transmission delay of internal messages associated with the ordering

of input messages (Oinput) and the the transmission delay of internal messages associated with the

validation of output messages (Ooutput).

We have also executed the experiment for a server process executing on a single processor,

i.e. on an unreplicated node. As we would anticipate, for the case of ordinary processors, the over-

heads are small. They exist because it is still necessary to enqueue and dequeue messages in the

system. The measured node delay for the unreplicated node amounted to about 1.49 ms, of which

about 0.75 ms was due to input overheads, whilst about 0.74 ms was due to output overheads.

The average response latency measured was 5.74 ms.

We first concentrate the analysis on the overheads for the replicated nodes, starting with

the overheads for the fail-silent node implementations. Table 6-1 summarises the average delays

obtained for each fail-silent node implementation exercised.

fail-silent synchronised clocks

8.45 6.67 15.12
21.59

fail-silent logical clocks

3.32 8.11

2.77 1.40
fail-silent asymmetric 1.30

0.40
4.79 3.92 0.48

Table 6-1: Performance overhead for a client-server application on fail-silent nodes

For the case of the fail-silent node with synchronised clock based order protocol, experi-

ments under worst case circumstances determined the smallest safe value for 8 to be 12 ms. This

153

reference implementation of a node uses a simplified version of the clock synchronisation algo-

rithm presented in [Halpern et al. 84]. As discussed in the previous chapter, we can assume a fail-

ure-free environment for the execution of the clock synchronisation protocol, thus allowing £

to be set to 0/2. Hence we have fixed e = 6 ms which gives the stability delay, ~, of 18ms (since

~ = 0+£). Measurements indicated that throughout the relatively small duration of the experi-

ment, the actual synchronisation error (£a) was very small. Thus, on average, the stability delay

(l:a) is almost the same as ~, and the values shown in Table 6-1 for ID indicate that for this imple-

mentation the overheads due to message authentication and queue manipulation take up to

3.59 ms.

From the discussion in Section 5.3.2, on average, the stability delay of the fail-silent node

using the logical clock based order protocol would be equal to the minimum value between 20,

and Oinput+Aav, plus any extra overheads. In our experiment Oinput+Aav is smaller than 20, thus,

from the figures given in Table 6-1 the overheads due to message authentication and queue ma-

nipulation for this implementation take up to 5.28 ms. The increased overhead of this imple-

mentation suggests that in terms of execution time, the maintenance of logical clocks is more

costly than the maintenance of synchronised physical clocks.

For the fail-silent node using the asymmetric order protocol, it is necessary to examine sep-

arately the performance of leader and follower processors since they are executing different pro-

tocols. From the analysis presented in the Section 5.3.3, ID corresponds to the follower's stability

delay (l:a = l:F = l:L +Oinput), plus any overheads due to message authentication and queue ma-

nipulation. In our experiment, the leader processor nearly always is the first processor of the node

to receive a copy of a particular input message. Thus, most of the time we will have ALF < 0, and

consequently l:a = Oinput. The values shown in Table 6-1 indicate that the input overheads

(0.87 ms) for the asymmetric implementation of a fail-silent node are close to those experienced

by the unreplicated node. This is because the functions of the order protocol are incorporated into

the Receiver process, consequently reducing the overheads associated with context switching and

queue manipulation. The overheads are slightly larger because, in the replicated node, messages

must be authenticated. (Currently, simple checksums are being used as signatures to provide the

authentication facility that our node model assumes, and so, have a relatively small impact upon

154

system performance. The performance overhead of more complex signature mechanisms has not

yet been assessed.)

Indeed, for small messages, most of the extra input overheads incurred by the different im-

plementations of fail-silent nodes are due to context switching of processes and queue manipula-

tion. This also contributes to the smaller overheads of the synchronised clock based implementa-

tion when compared to those for the logical clock based implementation. In the former, the tighter

synchronisation guaranteed by the time triggered characteristics of the synchronised clock based

order protocol allows more efficient scheduling of the actions taken at each processor forming

the node. We believe that a better control of the scheduling policy of the processors forming a

fail-silent node can lead to a certain degree of improvement on the implementations of such

nodes, particularly for the case of the logical clock based implementation.

The positive effects of a more efficient scheduling strategy can also be noticed at the vali-

dation of output messages. Despite the fact that all fail-silent nodes implemented make use of

the same comparison protocol, figures in Table 6-1 show that a node implemented with the asym-

metric order protocol for input messages suffers less output delay than a node with a symmetric

one. The reason for this is that the asymmetry introduced for input ordering and for comparison

helps the follower at comparison time: by the time a message becomes available in the follower's

ICL (see Figure 5-7, page 126), the leader's message will usually be already available in the fol-

lowers EeL. From the figures presented in Table 6-1 we can deduce that the overheads for vali-

dation (OD-Ooutput) of the two first implementations take up respectively 4.85 ms, and 5.27 ms,

whilst the overheads for the asymmetric implementation take up only 2.02 ms.

We now analyse the overheads for the TMR nodes. Table 6-2 gives the average delays ob-

tained when we executed the experiments on the different TMR node implementations.

Again, we have exposed the implementations to a worst case situation, and have measured

the smallest safe value for 0, which turned out to be 0 = 50 ms. This much larger value for 0 when

compared with the value we have chosen for the fail-silent implementations reflects the fact that

there is a considerable increase in the number of internal messages exchanged by the processors

155

forming a TMR node in comparison with the number of internal messages exchanged by the pro-

cessors forming a fail-silent node.

TMR synchronised clocks 202.78 10.76 213.54 5.60 4.25 1.25
TMR logical clocks 163.50 11.09 174.59 8.77 4.41 0.96
TMR early-order 35.55 10.71 46.26 9.60 4.32 1.40

Table 6-2: Performance overhead for a client-server application on TMR nodes

For the synchronised clock based implementation we have used the fault-tolerant clock

synchronisation algorithm presented in [Halpern et al. 84], for which we can choose the maxi-

mum error on the reading of the clocks of any two non-faulty processors to be

£ = 0/(1+p) :::::50 ms, which leads to ~ :::::200 ms. Following the same reasoning that we have used

when discussing the fail-silent implementations, we can deduce from the value of ID presented

in Table 6-2 that the input overheads of the synchronised clock based TMR node take up approxi-

mately 2.78 ms.

As studied in Section 4.3.2, on average, the stability delay of a TMR node which uses a

logical clock based order protocol is given by the minimum between 40 and Aav+Oinput+30. Since

for our experiment Aav+Oinput is much smaller than 0, from the figures shown in Table 6-2 we

can assess the extra input overheads of this node to be 3.77 ms.

For the case of the early-order implementation, the average value expected for its stability

delay is given by 30input. Thus, from the value ofID presented in Table 6-2 we can conclude that

the input overheads for this implementation take up to 6.75 ms. Among the reasons for the much

larger overhead of this implementation are: i) the overheads associated with the maintenance of

several logical clocks; ii) the overheads associated with the management of null acknowledge-

ment broadcasts; and iii) the event triggered nature of the early-order protocol which is respon-

sible for extra overheads in the scheduling of processes.

The overheads associated with the validation phase are pretty much the same for all TMR

implementations (6.51 ms, 6.68 ms, and 6.39 ms for the synchronised clock based, logical clock

based and early-order implementations, respectively). Furthermore, the validation overheads are

156

only slightly larger than those presented by the symmetric implementations of fail-silent nodes

(see Table 6-1), reflecting the increased complexity of the voting function of TMR nodes, when

compared with the complexity of the comparator function of fail-silent nodes.

Now we analyse how the overheads at the node where the server process is executed are

perceived by the client process executing on the unreplicated node. We have measured the aver-

age response latency (RL) experienced by the client process executing on the unreplicated node

when the client issues requests to server processes executing on the different replicated nodes im-

plemented. We have also measured the response latency for the case where the server process ex-

ecutes on an unreplicated node (RLunreplicated). We define the Relative Replication Performance

Overhead (RRPO) of a node as: RRPO = l-RLunreplicatedlRL. Table 6-3 below gives the values

obtained for RL and RRPO.

unreplicated node

fail-silent synchronised clocks 83.91

fail-silent logical clocks 22.38 74.35

fail-silent asymmetric 14.46 60.30

TMR synchronised clocks 221.73 97.41

TMR logical clocks 182.49 96.85

TMR early-order 54.65 89.50

Table 6-3: Response latency and RRPO for a client-server application

In our experiment there is no processing at the server apart from that associated with queue

manipulation. Thus, we can consider the figures presented in Table 6-3 as worst case perform-

ances for a lightly loaded node. It should be appreciated that the price in performance becomes

significant in only these distributed applications where processes interact frequently. If on the

other hand, application processes are involved in computations requiring less frequent interac-

tions then the performance impact of replication protocols can be quite small. The next experi-

ment illustrates this point.

Relative replication performance overhead for increasing server processing time

In this experiment we have extended the experiment previously described one step further.

We have modified the server process in such a way that we can control its processing time. We

157

then executed the experiment for different server processing times. Figure 6-11 shows the figures

obtained for RRPO when the server processing time was increased from (almost) zero up to 100

ms.

100

90

80

70

60
~
0 50c..
ex::
ex::

40

30

20

J~'?:":~':C:f::____ f~I:~=~~~~~§~
:*, ·········d. .~.~.~.~~:·~"".-".)i(d"......................Ttv1'3early~o~~(;lr~,._:~

~.~.~.....~-'- ..~ .-. . _- _ -.:~::..::-.- -..

---.-._. -._._---------_.
\
\ :
\ .\!

v :

······1K
: '''',

"''''''''
....... - ...~~....... : "'''' ...

... ! -, ...

......~,:-" - >_ ..-." ~ -'!
. "'''' "''''... :

.'... -,J.-.>__,<._.__. ._~._...

~ -v , --.-. --------~----

10•...... d __ ••••••••• __ ••••• __ , ••

'.

-
-.-.

---------------- ----------
'{3. - -- •_. _" •• _ ... __

o L--L ~ ~ ~

o 5 ~ ~ 100
Server processing time (milliseconds)

Figure 6-11: RRPO versus server processing time

As expected, when the server processing time increases there is a reduction on the relative

replication performance overhead of replicated nodes. The values shown in Figure 6-11 indicate

that for our particular environment, if application processes do not communicate during intervals

of time of at least 100 ms duration, then the burden associated with replication in the fail-silent

nodes can be decreased from more than 80% to less than 25%. Also, for server processing times

as little as 25 ms, the asymmetric fail-silent node can reach about 75% of the performance of an

unreplicated node.

For the synchronised clock based and logical clock based TMR nodes, and server proces-

sing times of up to 100 ms, the decrease of the relative replication performance overhead is not

as distinctive as was the case for the fail-silent nodes. However, the relative replication perform-

158

-'-.

ance overhead of the early-order TMR node is reduced from more than 80% to nearly 30%.

Given their more robust semantics, TMR nodes should naturally be expected to be more expens-

ive to build.

Node delay versus message size

The next experiment was performed to evaluate the impact of the size of messages on the

performance of a replicated node. On our system, the end-to-end message transmission delay

between two transputers varied from 1.45 ms (messages of size 256 bytes) to 2.16 ms (messages

of size 1536 bytes). Thus, the size of messages will affect intra-node message transmission times,

consequently affecting both input and output delays.

250 r-----------~----------,_----------._----------_r----------~

200

.................. ~ .
........•................. ~ .

........~ ' ~ .
......... ., - .

.-"" - -.- - - - - -.- - - .q._.-.- _.-

. .
~ i

fail-silent synchronised clocks ~;
150iail:silentllogicaJ..clocksctc:L

fail-silent asymmetric -0":
TMR synchtonised clocks ..)(.....j

TMH logical clocks -.!>-.- j

T~R early-order -... ;
§.

10-
Q)
c
Q)
'0o
Z

100

.~.-_,_-

............ - ~.- .- __ ;.. -

*------
: - .":'.::::.: __ ;.

._. '." _.-·li·_.
,lI!- ,-"

_.'
..... -

1536

Using the original client-server application previously described (i.e. with minimal pro-

cessing at the server), we have measured the node delay for the various fail-silent and TMR nodes

implemented, as the message size was increased from 256 to 1536 bytes. Figure 6-12 presents

lIf"_ -.-.-._ .

50 .. , - .

. :: CC.:::t.::::C.:: oc.-.::: :.-.::: ,,::::.c: :c:c.cc ::c.::::~:".:::: :.-."".:::::+:::" :::.-.:::::::::.,

o ~ ~ ~ -L ~ --~

256 512 768 1024
Message Size (bytes)

1280

Figure 6-12: Node delay versus message size

159

the average node delays obtained when the experiment was executed on the different replicated

nodes implemented.

The impact of the increase of message size on the performance of the various replicated

nodes implemented is not uniform. For instance, the performance of the fail-silent nodes suffers

only a relatively small decrease when compared with the reduction of performance experienced

by the TMR nodes. The fail-silent node implementations require only a small number of intra-

node messages to be exchanged between the processors forming the node. For these nodes, most

of the increase on the node delay will be due to the extra time needed to authenticate, sign, and

copy messages within the node, rather than the increased transmission delay. This is confirmed

by the values shown in Figure 6-12 which indicate an average increase of the node delay for the

fail-silent node implementations of 19.41 us/byte for the synchronised clock based implementa-

tion, 19.77 us/byte for the logical clock based implementation and 23.09 us/byte for the asym-

metric implementation.

For the TMR implementations, increasing the size of the messages impacts the perform-

ance of the nodes in a much more diverse fashion. The much larger internal message traffic of

TMR nodes, particularly in the input phase, is responsible for a sharp increase of the node delay

of the early-order implementation (52.69 us/byte on average). On the other hand, the synchro-

nised clock based implementation suffers only a relatively small increase of 21.21 us/byte on av-

erage. This is because the increased transmission delay will have no impact on the performance

of the order protocol based on synchronised clocks, since its stability delay is based on the worst

case transmission delay. Finally, the node delay of the logical clock based implementation suffers

an intermediary increase of 28.40 us/byte on average. Like the synchronised clock based imple-

mentation, part of the stability delay of this implementation is based on the worst case trans-

mission delay, which reduces the rate with which the size of messages increases the node delay

of this implementation.

Response latency versus number of clients

In the experiments so far the server process executing on the replicated nodes attends a

single request at a time. Thus. the figures obtained correspond to the case where the server process

160

is subjected to a light load. We now analyse the behaviour of our system when the processing load

is increased. We increase the load by increasing the number of clients that simultaneously issue

requests to the server. The experiment is structured in such a way that a client process only issues

another request to the server when all client processes have received the response of their previous

request. Also, there is no processing at the server. Figure 6-13 shows the average response latency

attained when the number of clients was increased from 2 up to 20.

600 r------r------------~------------r_----------_.------------~

500

fail-silent synchronised clocks -+-
.fail-silent logical clocks -+-_.
! fail-silent asymmetric -8--

TMR synchronised clocks ··x···-
...................~.......IMBJQg.icalcIQc~ ..-:4:::::

TMR early-ord~r -.--

20

100

OL-----~ ~ ~ ~~ ~
2 4 12

Number of Clients
16

For the TMR implementations, the early-order node is the one that presents the largest in-

crease in the response latency (24.03 ms/client on average). Both the synchronised clock based

and the logical clock based TMR implementations present a much lower increase on their re-

sponse latency as the number of clients increases (17.38 and 20.82 ms/client on average, respect-

ively). The response latency for these two implementations is less affected because the processing

time that would be normally wasted whilst the processor is idle waiting for an input message to

become stable can now be used to attend requests from other clients. This behaviour can also be

8

Figure 6-13: Node delay versus number of clients

161

observed for the fail-silent implementations, although in this case the impact is not as noticeable

as it was the case for the TMR implementations. The increase in the response latency of the syn-

chronised clock based implementation is on average 7.35 ms/client, whilst the logical clock based

implementation has its response latency increased by 7.70 ms/client on average. The asymmetric

fail-silent implementation still out-performs the other two implementations by a considerable

margin, and has an increase on its response latency of 4.57 ms/client on average.

Under heavy load the nodes have their performance close to their respective worst case.

Therefore, when the number of clients increases, for both the fail-silent and the TMR cases, the

response latency of the logical clock based nodes gets closer to the response latency of the syn-

chronised clock based nodes. Indeed, for the TMR node implementations, when the number of

clients is greater than 4, the response latency of the logical clock based implementation is greater

than that of the synchronised based clock implementation, reflecting the higher cost in maintain-

ing logical clocks.

Overhead when one processor in the node is faulty

As we have discussed in Chapter 4, the performance of the order protocols for TMR nodes

(particularly the early-order protocol discussed in Section 4.3.3) are affected by the occurrence

of faults (which are masked) in the processors forming the node. In our last experiment we have

assessed how the failure of one of the processors of a TMR node affects the overhead incurred

by such node. We have chosen one of the processors of the node and we have deliberately injected

faults in this processor'. We have then executed our original RPC-like experiment and have

measured the various node delays.

Table 6-4 summarises the figures obtained when we simulate a crash failure of one of the

processors forming the node. The crash scenario is achieved by injecting omission faults on both

internal links of the processor (see [Tao et al. 94] for more details on this fault injection tech-

nique).

I.We have used the fault injection techniques developed in [Tao et at. 94].

162

8.73 172.61
TMR synchronised clocks 202.75
TMR logical clocks 163.88

8.28 211.03

TMR early-order 162.57 8.01 170.58

Table 6-4: Performance overhead for TMR nodes containing a crashed processor

As expected, the performance of the early-order node implementation is the most affected

by the failure of one of the processors of the TMR node. The sharp increase of the node delay

of the early-order implementation is due to the fact that its order protocol only achieves optimum

performance when the node is in a failure-free state. As indicated by the values shown in Table

6-4, when there is a faulty processor within the node the early-order protocol has its performance

comparable to the performance of the logical clock based order protocol.

On the other hand, for the other two implementations, the failure of one processor does not

cause an increase on their respective node delays. In fact, for crash failures such as the one we

have simulated, the node delay of the synchronised clock based and logical clock based imple-

mentations are slightly reduced. This is due to the fact that since one processor has crashed, the

internal traffic of messages is reduced, which in turn decreases the internal message transmission

delays. Comparing the values shown in Table 6-4 with those presented in Table 6-2, we can see

that the output delay (OD) of all three implementations (including the early-order) is reduced

by about 2.60 ms when there is a faulty processor within the node.

We note that since fail-silent nodes are expected to halt after the detection of a failure, it

was pointless to perform this fault injection experiment for fail-silent nodes. Nevertheless, in a

parallel research this fault injection technique has been used to validate the design and the imple-

mentation of replicated nodes (see [Tao et al. 94]).

6.4. Concluding Remarks

We have implemented both three-processor failure-masking (TMR) and two-processor

fail-silent nodes on a network of T800 Inmos transputers. Extensive experiments were per-

formed to evaluate the performance of the nodes under the various order protocols presented in

Chapter 4 (failure-masking nodes) and Chapter 5 (fail-silent nodes).

163

Most of the performance overheads of the TMR node implementations are associated with

the ordering of input messages. In a lightly loaded, error-free system, the early-order imple-

mentation presents a much reduced performance overhead when compared with the performance

of both the synchronised clock and the logical clock based TMR implementations. For our par-

ticular system, the early-order implementation out-performs the synchronised clock based im-

plementation by a factor of 4.6, and the logical clock based implementation by a factor of 3.8.

On the other hand, when there is a faulty processor within the node the performance of the early-

order implementation is comparable to that of the logical clock based implementation, still out-

performing the synchronised clock based implementation. As will be seen in the next chapter,

reconfiguration mechanisms can be introduced to replicated nodes, so that they are expect to be

in an error-free state for most of their lifetime. Thus, taking this in account, we believe that a

TMR node comprising the early-order protocol can be a feasible solution for a number of applica-

tions.

Concerning the implementation of fail-silent nodes, the results obtained indicate that

adopting the asymmetric mechanism for ordering of input messages within a fail-silent node

represents the best design choice. Our performance figures have been obtained after quite a care-

ful engineering of the message passing software. It is unlikely therefore that significantly better

performance can be produced from soft fail-silent nodes. So the asymmetric node described here

probably indicates the limits of what can be achieved using standard 'off-the-shelf' processors.

In our particular implementation, the performance impact of using fail-silent nodes is to

produce a delay in response of about 8 ms per message in a lightly loaded system. Further, when

processes possess a communication intensive characteristic, a fail-silent node can achieve about

40% of the performance of its unreplicated counterpart. On the other hand, in those cases where

application processes are involved in computations requiring less frequent interaction. then the

performance impact of adding software-implemented fail-silence can be quite small. For our

particular environment, the burden in the performance of an asymmetric fail-silent node can be

reduced to less than 10% when the interval between two intra-process communication is larger

than 100 ms.

164

Thus, bearing in mind the discussion on the advantages of soft replicated nodes over hard

replicated nodes given in Section 3.2.3, we can anticipate a range of applications for which our

software implemented replicated nodes offer an attractive alternative to their hardware implem-

ented counterparts.

165

Chapter 7
Reconfigurable
Replicated Nodes

7.1. Introduction

Regarding the four constituent phases of fault tolerance (see Section 2.2, pages 13-16), the

replicated nodes we have discussed in the past three chapters only incorporate fault tolerance

mechanisms which are associated with the first two error treatment phases, namely error detec-

tion, and damage confinement. (Error recovery is not necessary, since failure-masking nodes in-

corporate enough redundancy to mask failures without the need of recovering from errors, and

fail-silent nodes are expected to halt soon after a failure is detected.) In both failure-masking and

fail-silent nodes, error detection is attained by comparing the output messages generated by rep-

lica processes executing at distinct processors which fail independently. A message authentica-

tion mechanism based on digital signatures is used to confine damage within the node, and allow

non-faulty receivers to recognise, and therefore ignore, spurious messages transmitted by faulty

transmitters.

Hence, although the failure-masking and fail-silent nodes previously presented are able

to treat errors and avoid the undesirable effects of a failure to be seen by the software executing

at an upper level, they do not incorporate mechanisms to treat faults and thereby renew the fault

tolerance capabilities of the node, once failures have occurred. Fault treatment involves the detec-

tion and diagnosis of faulty components. followed by either the isolation of such components or

166

the replacement of faulty components by non-faulty ones. We term a replicated node capable of

treating faults, a reconfigurable replicated node.

In this chapter we discuss how reconfiguration mechanisms have been used to provide fault

tolerance renewal to fault-tolerant systems described in the literature. We then discuss the possi-

bilities of incorporating similar mechanisms to the failure-masking replicated nodes we have de-

signed, so to construct replicated nodes that are able not only to treat errors, but to treat faults as

well.

7.2. Reconfigurable Fault-Tolerant Systems

Many of the systems we have discussed in Chapter 2 use some sort of reconfiguration pro-

cedure after failures are detected, in order to maintain the continuity of the service they provide.

Systems based on error detection mechanisms normally rely on spare nodes that can take over

the computation being executed on the nodes that have failed. Other systems cannot afford the

potential unavailability of the system during the interval of time on which reconfiguration is

being carried out. Thus, these systems are normally based on some kind of failure-masking me-

chanism.

Safety-critical multiprocessor systems like SIFf and FfMP use triple modular redun-

dancy to mask the failure of one of the processors in a triad. However, the extremely high reliabil-

ity requirements of these systems cannot be sustained over their mission lifetime (normally a ten

hours flight) by using simply triple modular redundancy, without some sort of reconfiguration

procedure being performed to re-establish system's reliability once a failure has been detected.

In these systems it is necessary not only to mask failures, but also detect faults, identify faulty

components and replace them by non-faulty ones.

Reconfi~uration in SIFf

The basic element of computation in SIFT is a task. Tasks can be either unreplicated or re-

plicated. Each unreplicated task has an instance executing at every processor of the system, and

each instance of a particular unreplicated task behaves as an independent entity. On the other

hand, replicated tasks behave as a single entity which is replicated in different processors (nor-

167

mally three) for the purpose of fault tolerance. Replicated tasks can be either applications or sys-

tem tasks, whilst unreplicated tasks are always system tasks.

• ••

•••
•••

o Upper Layer: Application and System replicated tasks

o Middle Layer: Local-Global communication unreplicated tasks

Bottom Layer: Local Executive kernel

• Hardware Layer

Figure 7-1: Operating system structure of the SIFT system

SIFT's operating system is divided into three layers (see Figure 7-1). At the bottom layer,

interfacing with SIFf's hardware, there is a small kernel called the Local Executive which is pres-

ent in all processors in the system. The Local Executive maintains local buffers and tables, and

offers system calls to perform error handling, task scheduling, inter-task communication and vot-

ing of critical data. In the middle layer, on top of the Local Executive, there are two unreplicated

Local-Global Communication tasks. The Error Reporting task is responsible for analysing the

contents of a local error table and determining the local processor's view on which processors

and buses in the system are faulty. The Local Reconfiguration task is responsible for deciding

the role of the local processor in the current configuration of the system. The replicated tasks ex-

ecute at the upper layer. Apart from the replicated application tasks, there are two replicated sys-

168

tern tasks. They are the Global Executive, which diagnosis faults and provides information for

updating the scheduling tables; and the Clock Synchronisation task, which is responsible for im-

plementing a fault-tolerant clock synchronisation protocol.

The reconfiguration procedure is entirely performed by the operating system software.

Whenever a replicated task inputs critical data, a voting system call is performed. Any disagree-

ment on the voted data is recorded as an error at the appropriate entry of the local error table.

Then, the Error Reporting task executing at each processor analyses its local error table and re-

ports faulty processors and buses to the Global Executive. Faulty processors/buses are those

which have accumulated a number of errors superior to a certain, system specific, threshold. The

Global Executive in possession of the error reports received from all processors in the system

diagnosis the faulty processorslbuses in the system. The system's new configuration is obtained

by purging the faulty components from the actual configuration.

Figure 7-2: Reconfiguration phases

169

Tasks are scheduled following a predefined scheduling policy. There is a policy for every

possible system configuration. Therefore, after diagnosing faulty processors, the Global Execu-

tive reports these processors to the Local Reconfiguration tasks executing at each processor

which can choose the appropriate scheduling policy for the surviving system. Faulty buses are

also reported, so that they are no longer used for accessing input data for voting. Figure 7-2 gives

a schematic view of the several phases associated with the reconfiguration procedure.

The local error table is a p by b matrix ET, where p is the number of processors and b is

the number of buses in the system. Since the system is assumed to start operation from a failure-

free situation, initially, Em, i) = 0, for every pair U, i) formed by a processor Pj and a bus Bi.

As errors are detected by the voting of input data, the values in the error table ET are updated.

Voting is performed at each processor by reading the memory of the three processors that com-

prises a particular triad, via three different buses. Thus, whenever an error is detected for the data

read at processor's Pj memory via bus Bi, Em, i) is incremented by one. For a particular pair of

processor and bus U, i), there are five distinct kinds of faults that can cause the entry ETkU, i) of

the error table of a processor Pk to change:

I. the connection from bus B, to processor Pj is faulty;

II. the connection from bus B, to processor Pk is faulty

III. bus B, is faulty;

IV. processor Pj is faulty; or

V. processor Pk is faulty.

The Error Reporting task analyses the local error table to determine if any of the above

faulty situations hold, and report faulty processors and buses to the Global Executive. For in-

stance, the Error Reporting task executing at processor Pk detects the faulty situation I when all

the following conditions hold: i) ETkU, i] > t: ii) :lB) I ETkU, I] $ t: and iii) :lP) IETk[l, i] $ t;

where t is the maximum number of errors that are allowed before a component is considered to

be faulty. That is, the number of errors associated with Pj and B, have exceeded the threshold t

(ETkU, i) > t), but since Pv. can access the memory of Pj via a bus B) (:lB) I EhU, I] s t), and u,
can be used by Pk to access the memory of a processor Pi (:lP) I ETk[l, i] $ t), then the only poss-

ible faulty situation is the one where the connection from B, to Pj is faulty. After detecting this

)70

faulty situation, the Error Reporting task takes the action of stopping using bus B, to read pro-

cessor's Pj memory. Table 7-1 gives a summary of the conditions to detect each of the above

faulty situations, together with the actions to be taken by the Error Reporting task in each case.

Stop using bus B, to access processor's Pj memoryETkU, i] > t; and
:lBi IEhU, i] s t; and
:lBi IETkU, i] s t

The Error Reporter cannot be depended upon

II or III Stop using bus B, to access processor's Pj memory, and
report bus B, as faulty

IV

v

Table 7-1: Local fault diagnosis

Report processor Pj as faulty

The Global Executive receives error reports from all processors in the system and makes

the final decision about which components are faulty. From the information in Table 7-1 we note

that the Error Reporting task cannot distinguish between faulty situations II and III, since either

faulty situations can hold when \:jPj, ETkU, i] > t.Thus, these two cases can only be distinguished

by the Global Executive, with the help of the error reports from all processors. Faulty situation

III holds if all processors in the system report bus B, as faulty, otherwise faulty situation II holds.

In case faulty situation III holds, the Global Executive reports the faulty bus to every processor

in the system. Further, any processor that have been reported as faulty by at least two other pro-

cessors in the system, are considered to be faulty. Obviously, the error report of a processor that

detects itself as being faulty is not considered in the analysis, since although that processor must

be indeed faulty, for this very reason, its error report cannot be trusted.

Reconfiguration in FTMP

FTMP uses a similar approach to achieve fault tolerance renewal. However, in FTMP most

of the reconfiguration procedure is confined to the hardwired bus interfaces and voters circuits.

InFTMP, any three modules (e.g. processors, memories) can be combined to form a triad. Access

to modules is achieved via a triad of redundant buses. Every module is able to receive data from

all incident buses, and contains a voting component to mask an erroneous data received via one

of the buses forming the active triad. At any time there is only one triad of active buses for acces-

171

sing a particular module. Each module possesses a bus guardian which is responsible, among

other things, for selecting which triad of buses should be used to access the module. The hard-

wired voters provide FfMP with its failure-masking capability. The voters are also responsible

for detecting errors. They are equipped with latches that are set in case of a disagreement on the

data being voted, indicating which bus was in disagreement. A replicated fault detection program

executes periodically reading the error latches. The error latches are cleared after a read oper-

ation, and each error indication present in an error latch is credit as a demerit to the correspondent

component. If a component accumulates a number of demerits superior to a system dependent

threshold, then the component is considered to be faulty. Reconfiguration is executed by issuing

the necessary commands to the appropriate bus guardians.

The main goal of a multiprocessor system is to achieve high throughput by executing paral-

lel computations on the replicated processors of the system. Fault-tolerant multiprocessor sys-

tems like SIFf and FfMP, take advantage of the inherent redundancy of components to achieve

dependability as well. In both SIFf and FfMP, tolerance renewal is achieved by diagnosing

faulty processors, and distributing their load among the remaining non-faulty processors, with

a consequent trade-off between performance and dependability. Another approach is the one

taken in the construction of the quadrupled version of FTP (QuadFTpl) reported in [Lala 86].

In that system both system throughput and system dependability are maintained, irrespective of

the occurrence of faults, by the use of spare components that can take over faulty ones, with little

system disruption.

Reconfiguration in QuadFfP

The QuadFfP architecture is an extension of the triple modular redundant FfP reported

in [Smith 84]. It was designed to attain very high safety requirements, which ruled out the utilisa-

tion of the limited failure-masking capabilities of the original FfP architecture. QuadFfP oper-

ates in a I fail-operationaV2fail-operationaUfail-safe failure semantics [Sornani-Sarnaik 89],

i.e. the system uses a reconfiguration mechanism which enables it to mask up to two failures,

I. This terminology is ours.

172

maintaining the system operational after the first and second failures are detected, and then failing

safely after the detection of a third failure.

The system is composed of four processors executing in lock-step, and having their outputs

validated by hardwired voter circuits. Information is exchanged among the processors using

inter-stage circuits which provide a communication service resilient to Byzantine faults. The cir-

cuit formed by the voters, the inter-stages and the associated error latches is referred as a commu-

nicator (see Figure 3-4, page 42). Apart from masking failures, the voters also detect errors, and

set their error latches to indicate the processors which have provided erroneous data. Reconfigu-

ration is performed by a system program which periodically reads the voters' error latches and

diagnosis faulty processors. Faulty processors are turned off by using a processor inter-lock

mechanism which allows a majority of processors to turn off a failed processor and its output.

QuadFTP's real time operating system is timer interrupt driven. It schedules foreground

tasks that cannot be interrupted and that run every 100 milliseconds. Further, it schedules back-

ground tasks (which can be interrupted) to execute in any remaining time left of a particular 100

milliseconds cycle. The software architecture of the system is depicted in Figure 7-3.

Init
e

timer
interruption

Background Tasks

Figure 7-3: Software architecture of the QuadFTP architecture

173

The In it task is executed following system start up synchronisation, after the system is pow-

ered on. The Init task sets up data structures and hardware devices, and then switches control to

the Dispatcher task. Since the Init task is executed only once, the timer interrupt handler is re-

sponsible for switching the control to the Dispatcher task after attending a timer interruption

every 100 milliseconds. At each cycle, the Dispatcher task schedules the foreground tasks to ex-

ecute in a predefined order, starting from the Time task which is responsible for maintaining the

system time, continuing with the Fast Fault Detection, Isolation and Reconfiguration task (Fast

FDIR) which performs the reconfiguration procedure, and finishing with the Sequential Prob-

ability Ratio Test task (SPRT), which is the main application task. The background tasks are then

scheduled to execute in any remaining time available.

The Fast FDIR task is responsible for carrying out the reconfiguration of the system. At

each cycle the Fast FDIR task is activated to try to identify the most common cases of faulty com-

ponents. It performs a set of tests which are able to detect processors that are out of synchronism,

clock faults and permanent inter-stage failures. It then. invokes the reconfiguration procedure

to take any faulty component off line. Taking a processor off line means that it will be voted out

in any data exchange through the communicator, and that the processor inter-lock monitor will

disable any output from that processor. An inter-stage is present in each processor, therefore tak-

ing a faulty inter-stage off line means to take its associated processor off line. A faulty clock, on

the other hand, is taken off line by disabling its vote in the fault-tolerant clock synchronisation

circuit.

If the error latches of the communicator are set, but the fault is not a permanent inter-stage

failure, the error latches values are transmitted to one of the background tasks called the Slow

FDIR task, which performs a finer analysis in order to diagnose faulty components. After diag-

nosing faulty components, the Slow FDIR task reports them to the Fast FDIR task which carries

out reconfiguration. The Slow FDIR task detects the subtle hardware faults which are difficult

to diagnose. It performs analysis that is far more exhaustive than the one performed by the Fast

FDIR task. This analysis is based on matching known patterns of failures with the error latches

values received. Another function of the Slow FDIR task is that of bringing processors that are

believed to have suffered a transient fault back into operation. The Slow FDIR task maintains a

174

'health' indication for each processor (similar to the demerit assignment in FTMP), which is used

to decide whether the processor should rejoin the system or whether it has failed permanently.

Latent faults and and other reconfiguration problems

In the simplistic view we have taken when presenting the reconfigurable systems above,

the reconfiguration procedure works either by substituting a faulty component for a non-faulty

one, or by purging faulty components from the system, the first time the component is detected

as being faulty. This view has the shortcoming of not taking into account the latency of faults,

i.e. the first fault may not be detected until a later time where a second fault has occurred, which

may well preclude recovery. To reduce this possibility, it is imperative to expose latent faults by

systematic exercising the error detection mechanisms of the system. For the systems discussed,

this means that each voter or communicator must be tested routinely to ensure that its error correc-

tion/detection capability is undiminished. This can be achieved by having a system program that

tests the voting mechanisms outputs with appropriate input data to generate all possible kinds of

errors, and determining if the expected behaviour is attained.

In multiprocessor systems, it is possible to have a test task executing periodically and flex-

ing the system, whilst other triads carryon normal functions. FTMP, for instance, uses this ap-

proach to detect latent faults. On the other hand, in a system like QuadFTP, where redundancy

is present only for the purpose of fault tolerance, the introduction of periodical test tasks is more

problematic. The solution adopted by QuadFTP is to use background tasks (see Figure 7-3),

which are executed only when the system would otherwise be idle. We have already discussed

the functioning of the Slow FDIR background task, when describing the reconfiguration pro-

cedure. Figure 7-4 shows a list with all the background tasks executing on a QuadFTP system,

and the order on which they are executed.

The other background tasks shown in Figure 7-4 are the Alarm Display task which pro-

duces a system status display and outputs information on logged errors; the Pick-up Test task,

and the Lost Soul Synchronisation task, which are also part of the reconfiguration procedure

(these tasks are responsible for bringing processors that have experienced transient faults back

175

into the system); and the Self Test task, which is responsible for the periodical flexing of the sys-

tem and the detection of latent fault .

timer interruption

Dispatcher

Background Tasks

Figure 7-4: Background ta k of the QuadFfP architecture

The SelfTe t task periodically te ts all hardware components of the system. Voters are sub-

jected to puriou data to check if their rna king and error detection capabilities have been re-

duced. Check urns are u ed to te t non-volatile memory, whilst volatile memory of redundant

proce sor are compared on a word by word basi for a quick detection of bit failures. Also, pat-

tern sen itive failure in volatile m mary are te ted by suitable pattern writing tests.

Background task are executed in the remaining time available of every 100 milliseconds

cycle. When the last foreground task (the SPRT task) returns the control to the Dispatcher task,

the latter switches the control to the first background task (the Slow FDIR task). After comple-

tion, the Slow FDIR task witches control to the next background task (the Alarm Display task),

and so on. When a timer interruption occurs, signaling the end of the cycle, the state of the back-

ground task which is currently executing is saved, thus allowing that task to continue from that

point the next time it gets control of the processor. The Dispatcher task regains control of the pro-

cessor and schedule the first foreground task, initiating a new scheduling cycle (see Figure 7-3).

Note that since a background task in the head of the list executes more often than one in the tail,

the order on which the background tasks are executed defines a priority hierarchy among these

176

tasks. Thus, by choosing an appropriate cycle duration, and priority relation among background

tasks, the designers of QuadFfP could find the correct balance in the trade-off between the

amount of time available to execute the application tasks, and the time dedicated to exhaustive

analysis of latent faults.

Latent faults are not the only source of problems for a reconfiguration mechanism. In some

cases it is not possible to guarantee that the reconfiguration procedure will be successful. We dis-

cuss below, some of the reasons that can prevent a system from successfully reconfiguring itself.

i) Exhaustion of spares: since the amount of components used to build a

system is finite, it is not possible to guarantee that a fault-tolerant system

will not run out of spares. However, based on the dependability require-

ments of applications, their mission life-time, maintenance procedures

and the reliability of components used to build the system, it is possible

to calculate the number of spares necessary to guarantee the desired level

of dependability. In QuadFfP, for instance, it was sufficient to have just

a single spare processor to provide an acceptable degree of dependability

for the particular applications executing on that system.

ii) Use of defective spares: to avoid the use of defective spares, it is necess-

ary to test spare components for latent faults, so that defective spares will

not be introduced into the system. FfMP reduces the probability of using

defective spares by continuously reconfiguring the system, in such a

way, that all modules, including those part of the spare contingent, are

constantly used and therefore tested.

iii) Malfunction of the reconfiguration system: clearly, the reconfiguration

procedure of a fault-tolerant system must also be fault-tolerant. In the

systems we have discussed, reconfiguration is performed by replicated

software executing in processor triads. Furthermore, it is assumed that

faults occur sequentially, i.e. failure detection, fault diagnosis and sys-

tem reconfiguration are executed fast enough, so that the possibility of

177

another fault occurring during this procedure is negligible [Somani 90),

Hence, it is highly improbable that the reconfiguration procedure will

fail, even when the triad where it is executing is injured. Note that in the

systems we have discussed, the reduction of the failure detection latency

by periodically flexing the system is an important factor to reduce the

probability of a second fault occurring on an injured triad before it has

been successfully reconfigured.

iv) Failure to detect the need for reconfiguration: in a system where pro-

cessors can act maliciously, it is always possible that a faulty processor

behave in such a way that only part of the processors in the system will

detected it as faulty. This in turn can prevent fault diagnosis, and conse-

quently, system reconfiguration. In FTMP this possibility is reduced by

frequently reconfiguring and flexing the system. On the other hand, both

SIFT and QuadFTP use the knowledge about their particular hardware

organisation and the characteristics of the applications they execute, in

order to design accurate testing procedures which can detect faults with

very high probability. In QuadFTP, for instance, this is performed by the

Slow FDIR background task. This task matches known failure patterns

against the error latches it receives from all processors in the system. The

known patterns used were determined by an analysis of failure modes of

the communicator hardware and examining the patterns they would pro-

duce for different faulty scenarios.

7.3. Constructing ReconfigurabJe Replicated Nodes

So far, we have studied replicated nodes with two kinds of failure semantics, namely fail-

ure-masking and fail-safe nodes. The fail-silent nodes discussed in Chapter 5 present a safe fail-

ure semantics. They follow the conservative approach of halting as soon as a failure within the

node is detected. As seen in the previous chapter, these nodes can be very cheap and simple to

implement (a two-processor fail-silent node is the cheapest replicated node that can be con-

178

structed). Further, for a great number of applications, the overhead incurred by the replication

protocols necessary to implement fail-silent nodes generate only a relatively small burden on the

throughput of the node.

The failure-masking nodes discussed in Chapter 4 are more expensive to implement, and

impose a heavier overhead on the node's throughput. On the other hand, they are able to mask

a bounded number of internal failures, which make their survivability greater than than that of

fail-safe nodes. Masking however, has two distinct sides that must be pondered. On one side, it

can cope successfully with failures and yet sustain the node's dependability, whilst on the other

side it may obscure the fact that a fault has occurred, and thereby has reduced the node's tolerance

to future faults. Thus, even though masking mechanisms can cope with the immediate danger of

a failure, they can also hide the fact that the masking capability of the node has degraded, up to

a point where a further failure will defeat the fault tolerance mechanisms of the node, with poten-

tially catastrophic results.

An obvious strategy to provide fault tolerance renewal to failure-masking replicated nodes

is the introduction of spare processors. Using this strategy, a failure-masking node can be built

by coupling N active processors, N = 21t+ I, which execute the replicated applications, together

with S spare processors, which can take over the computation of active processors that have

failed. A fault diagnosis procedure is periodically executed to identify processors that have failed.

Faulty processors are reconfigured out of the node and substituted by processors from the spare

pool. Such node is able to tolerate the failure of up to 1t+S processors, provided that no more than

1t processors fail between two executions of the reconfiguration mechanism.

This solution however does not avoid the possibility of a catastrophic behaviour, since the

introduction of spares only reduces the probability of the node having its masking capabilities

entirely degraded. The possibility of exceptional behaviour after S+1t faults have occurred is still

present. Thus, what is needed is a replicated node which could simultaneously incorporate the

survivability property of failure-masking nodes, together with the safety property of fail-safe

nodes.

179

In [Shrivastava et al. 91] the notion of afailure-masking before stopping node (FMS node)

is defined. A 1t-FMS node is a replicated node composed of N processors, N = 21t+1, which is

able to mask up to 1t failures. However, unlike the failure-masking nodes previously discussed,

once the failure of rr processors have been detected, the node must fail safely, rather than continue

processing. This failure semantics avoids the unpredictable behaviour of the node in case another

fault occur after the masking capabilities of the node had been entirely degraded. A 1t-FMS node

periodically executes a fault diagnosis procedure to identify processors that have failed within

the period between two executions of the fault diagnosis procedure. Whenever the total number

of faulty processors diagnosed reaches 1t, then the node must halt. Fault diagnosis, is therefore

a crucial part on the design of a 1t-FMS node. Assuming that a 1t-FMS node initially contains

only non-faulty processors, every execution of the fault diagnosis procedure must guarantee the

following two conditions, in the presence of up to 1t failures:

agreement: all non-faulty processors must reach agreement on the processors that

should be diagnosed faulty; and

completeness: all faulty processors, whose failure have been detected by non-faulty

processors, and only these, are diagnosed faulty.

The failure of a faulty processor can only be detected through the messages it sends or fails

to send. Thus, there is always a possibility that a faulty processor behave in a two-facing manner

on which it sends timely messages with correct contents to some processors in the node, whilst

at the same time it sends messages either untimely, or with incorrect contents to other processors

in the node. A faulty processor behaving in this way is detected as faulty by some processors,

whilst some others are not able to detect it as being faulty. It is easy to see that there are cases

where it is not possible to reach a consensus on which processors are faulty. For instance, in a

three-processor node formed by processors PI, P2 and P3, where P2 is faulty, and is detected

faulty by PI, but not by P3, it is possible that P3 receives a report from PI stating that P2 is faulty,

and also a report from the faulty P2 stating that PI is faulty. P3 cannot trust any of the reports,

and is not able to identify which processor is faulty. This means that the completeness property

is not achieved, and therefore, the method described above cannot be used to construct an FMS

180

node from its equivalent failure-masking node. To the best of our knowledge, there is no fault

diagnosis protocol which can guarantee the completeness condition above, even when N > 21t+ 1.

Based on the previous discussion, the authors of [Shrivastava et al. 91] conjecture that it

is not possible to build FMS nodes from processors which can fail in an arbitrary way (even if

they have access to a message authentication service). In the next section we prove the [Shrivasta-

va et al. 91] conjecture to be false, by presenting an FMS node constructed by the replication of

authentication-detectable fail-arbitrary processors.

7.3.1. Constructing Reconfigurable Nodes from Fail-Safe Components

As discussed before, if processors can fail arbitrary, it is possible to have faulty processors

behaving in a two-faced way such that the remaining non-faulty processors are not able to

achieve consensus on which processors are faulty. Since fault diagnosis is a crucial feature of an

FMS node, an alternative approach for the construction of such nodes is the utilisation of pro-

cessors with more restrictive failure modes, which do not allow the two-facing behaviour which

defeats diagnosis. Thus, we start our discussion by considering the construction of 1t-FMS nodes

composed of fail-safe processors.

A 1t-FMS node has a Ifail-operational/ .. ./1t--1fail-operational/fail-safe failure semantics

when 1t> I, and a fail-safe semantics when 1t= 1. In other words, when 1t> I the node is able

to mask up to 1tfailures, maintaining the node operational after 1t-I failures are detected, and then

failing safely after the detection of the 1tst failure; whilst when 1t= 1 the node fails safely as soon

as a failure is detected.

Hence, the design of a 1t-FMS node composed of 1tfail-safe processors is very simple. In

such a node, application processors are replicated and executed in each fail-safe processor. In

order to guarantee that replicas executing at different fail-safe processors do not diverge, input

messages are subjected to an order protocol which provides each replica with an identical input

message stream. Note that since applications execute in fail-safe hardware, their outputs need

not be subject to a voting mechanism. Also. the order protocol can be made very simple and effi-

cient. Figure 7-5 shows how two fail-safe processors can be coupled together to construct a

2-FMS node.

181

to the network

Figure 7-5: Using a pair of fail-safe processors to construct a 2-FMS node

With this structure, the failure of up to 1t-1 fail-safe processors is automatically masked,

and after the failure of the 1tstprocessor the node fails safely. The safe failure semantics of the

processors which comprise the node guarantees that they do not interfere with the node output

once they have failed, thus there is no need for the non-faulty processors of the node to engage

themselves in fault diagnosis procedures to assess the number of processors that have failed.

From the structure of a 1t-FMS node presented above, it is easy to see that when 1t= 1, and

hence applications are not replicated, there is no need for ordering input messages. In fact, a closer

investigation shows that the failure semantics of a I-FMS node is the same as that of a fail-safe

processor, i.e. both must stop after an internal failure is detected. This observation has motivated

us to contest the conjecture that it is not possible to build FMS nodes from processors that can

fail arbitrary.

In Chapter 5 we have shown how fail-silent nodes, a kind of fail-safe node, can be built

from authentication-detectable fail-arbitrary processors. Thus, since a fail-safe processing site

can be built from authentication-detectable fail-arbitrary processors, it is also possibJe to build

2-FMS node
from the network

182

a I-FMS node composed of authentication-detectable fail-arbitrary processors. This is because

in a fail-silent node, there is no need for reaching a consensus on which processors are faulty.

The detection of a disagreement among the output messages by any processor forming the node

is enough to halt the node, and therefore, a malicious two-facing behaviour like the one previous-

ly described does not prevent the node from attaining its specified semantics. Unfortunately, this

characteristic of fail-silent nodes does not help in the case of constructing a 1t-FMS node with

1t> 1,since when 1t> 1, a 1t-FMS node must continue operational after the first 1t-I failures have

been detected. This failure mode cannot be achieved by a fail-silent node, irrespective of the

number of processors that are used to build it.

Nevertheless, as discussed before, it is possible to build a 1t-FMS node composed of 1tfail-

silent nodes, which in turn can be built by using authentication-detectable fail-arbitrary pro-

cessors. Thus, we conclude that the conjecture in [Shrivastava et al. 91] does not hold, as a

IT-FMSnode, IT> 1,can be built by coupling 1tfail-silent nodes, each of them composed of n+ 1

authentication-detectable fail-arbitrary processors. Figure 7-6 shows the structure of a 2-FMS

node constructed from authentication-detectable fail-arbitrary processors.

to the network

2-FMS node
from the network

Figure 7-6: Using fail-arbitrary processors to construct FMS nodes

183

A 1t-FMS node, 1t> 1, constructed in this way has a 'fail-operational/i.v'r+fail-oper-

ational/fail-safe failure semantics, provided that at each fail-silent node no more than 1t pro-

cessors are faulty. Note that since up to 1t faults can occur simultaneously, each fail-silent node

must be able to tolerate up to 1t failures, and therefore must be composed of at least 1t+1 authenti-

cation-detectable fail-arbitrary processors. Thus, the number of authentication-detectable fail-

arbitrary processors necessary to build a 1t-FMS node following this approach is given by 1t(1t+ 1),

which, for 1t> 2, is much larger than the 21t+ 1processors necessary to implement a failure-mask-

ing node with equivalent survivability. However, if faults are assumed to occur sequentially, then,

more economical two-processor fail-silent nodes can be used, and the total number of processors

needed to build a 1t-FMS node is reduced to only 21t.

Achieving re-resilience in this way, is of course a well known technique and has been used

to implement highly available services at the application level on a variety of distributed systems.

(See the Delta-4 XPA architecture [Barrett et al. 90] and the protocols in [Ezhilchelvan-Shrivas-

tava 91].) These systems assume that the underlying nodes are fail-safe, and develop protocols

to allow the communication of replicated applications. They are normally based around group

membership and group communication protocols [Birman et al. 91] which provide the necessary

synchronisation among the replicas of a particular process. The application level approach has

the advantage of being more flexible in the way the actual resilience of the system is managed.

The group membership protocol provides a simple way for purging faulty replicas out of the

group and joining repaired replicas into the group. However, we believe that by integrating the

order protocol executing on top of the fail-silent nodes (see Figure 7-5) with the internal order

protocol of a fail-silent node (the ones discussed in Chapter 5), the node approach of providing

1t-resilient services (1t-FMS nodes) can produce more efficient solutions for some specific ap-

plications (e.g. the sort of applications executed by the QuadFTP system).

7.3.2. Improving Node Performance via Reconfiguration

In the previous section we have discussed the properties of a fault diagnosis protocol, for

diagnosing faulty processors within a replicated node composed of processors which can fail ar-

bitrary. Such fault diagnosis protocols must guarantee agreement and completeness properties.

184

If processors are assumed to fail arbitrary, there is no known protocol which can guarantee the

completeness property. However, a partial fault diagnosis protocol which only presents the

agreement property can be implemented with the assumption that processors fail arbitrary [Shin-

Ramanathan 87]. In this section we discuss how a partial fault diagnosis protocol can be used to

improve the performance of replicated nodes.

In Section 4.3.3 we have presented an early-order protocol for replicated nodes composed

of authentication-detectable fail-arbitrary processors possessingfifo internal channels for intra-

node communication. A node using that protocol can order messages within a very short time

provided that the node is in a failure-free state. However, when at least one processor is faulty,

the performance of the protocol can be dramatically reduced (see the fourth experiment described

in Section 6.3.2). However, as will be shown shortly, by purging faulty processors from the node,

and having the node reconfigured to a failure-free state, it is possible to restore the performance

of the ordering protocol to its optimum value.

In the early-order protocol of Section 4.3.3, a non-faulty processor needs to receive mess-

ages that have been broadcast by every other processor in the node before it can order a message.

Since faulty processors may fail to broadcast a message, or may broadcast a message too late,

a non-faulty processor must also use time-out mechanisms to detect the absence, or the untimeli-

ness of such broadcasts. These time-outs are based on the communication maximum delay to

transmit a message within the node, which is normally much larger than the actual communica-

tion delay. Thus, a faulty processor can slow down the ordering of messages by delaying or failing

to broadcast a message.

The performance of a failure-masking node which uses the early-order protocol of Section

4.3.3 can be improved by introducting into the node design a partial fault diagnosis protocol. If

all non-faulty processors agree that a particular processor is faulty, then they can simultaneously

stop considering messages that such a faulty processor may broadcast, resulting in not having to

wait for broadcasts that are never received, or that are delayed. Note that provided non-faulty

processors agree on which processors have failed, failure in diagnosing all the processors that

have failed may only prevent the reduction on the delay imposed by the order protocol, but does

not compromise the correct functioning of the order protocol. Also, it is noteworthy that crashed

185

processors, i.e. processors that have failed by stopping to send messages out, are detected as faulty

by all non-faulty processors of the node, and therefore are always successfully diagnosed as

faulty. Since crash is the most common fault behaviour experienced by 'off-the-shelf' pro-

cessors, it is reasonable to consider that in most cases a failure-masking node which incorporates

the mechanism described in this section is able to reconfigure itself. Thus, most of the time the

node will be in a failure-free state, which allows early ordering of input messages.

7.4. ConcludingRemarks

We have studied the reconfiguration strategy of a number of fault-tolerant distributed sys-

tems reported in the literature. Reconfiguration aims to increase the survivability of systems by

purging faulty components and replacing them by non-faulty ones. We have shown that in some

situations a faulty processor can behave in such a malicious way, that it can prevent reconfigura-

tion. We have studied the mechanisms that different systems use to reduce the probability of re-

configuration failure. We then tried to apply similar mechanisms in order to build a reconfigur-

able replicated node.

We have presented the design of a 1t-FMS node constructed from 'off-the-shelf' pro-

cessors, which can fail-arbitrary. This contradicts a conjecture in [Shrivastava et al. 91] which

argued the impossibility of constructing such nodes. n-FMS nodes built in the way described in

this chapter are very expensive, since the number of processors needed is a function of n2. For

values of n greater than 2, it is possible to build cheaper failure-masking nodes with better surviv-

ability (however subjected to a potential uncontrolled behaviour if the number of faulty pro-

cessors exceed the upper bound of maskable faults). Nevertheless, if faults are assumed to occur

sequentially, a much cheaper solution requiring only 21t processors can be attained.

Finally, we have also discussed how a partial fault diagnosis protocol can be introduced into

the design of a failure-masking node to implement a node reconfiguration mechanism. This

mechanism can then be used to purge faulty processors out of the node, allowing the node to re-

main failure-free most of the time. As discussed in Section 4.3.3, input messages can be ordered

extremely fast when there are no faulty processors within the node.

186

Chapter 8
Conclusions

8.1. Discussion

In this thesis we have presented our research on the design and implementation of fault-

tolerant fail-controlled nodes which can be used as a processing platform for the development

of dependable distributed computer systems. Designing and implementing dependable distrib-

uted systems is a difficult task, especially when the design must cope with processors and com-

munication failures. In Chapter 2 of this thesis we have shown different fault tolerance mechan-

isms that have been used to develop some of the dependable computer system reported in the

literature. We have put emphasis in differentiating the design of centralised specific purpose sys-

tems from the design of general purpose distributed systems. We have shown that a common ap-

proach, which attempts to simplify the design of dependable distributed systems, is to assume

that the underlying processing hardware and communication system present a well defined fail-

ure mode (fail-controlled semantics) [Bartlett 81, Kopetz-Merker 85, Shrivastava 89, Po-

well 92, Birman et al. 91]. However, since all hardware components will eventually fail, poss-

ibly in an unpredictable way, for applications with high dependability requirements,

conventional hardware cannot be assumed to have a fail-controlled semantics. Thus, in order to

have their dependability requirements guaranteed, such applications must execute on specially

designed hardware which can provide, with sufficiently high probability, the fail-controlled be-

haviour assumed by the upper level software protocols.

Replicated processing on distinct processors which fail independently is a practical means

of constructing fault-tolerant fail-controlled nodes. In these nodes, redundant outputs produced

187

by the processors forming the node are subjected to a validation mechanism (e.g. comparator,

voter), which prevents the outputs of faulty processors from appearing at the application level.

A number of dependable computer systems reported in the literature have incorporated fail-con-

trolled replicated nodes following this design; some of them have been discussed in Chapter 3.

The design of fail-controlled replicated nodes may follow either a hardware based ap-

proach (hard nodes) or a software based approach (soft nodes). In hard replicated nodes, redun-

dant processors are coupled together in tight synchronism and execute identical software in lock-

step. Thus, if all processors are functioning, their output are the same at each clock cycle, and

by applying an appropriate hardware validation circuit to the outputs of processors, it is possible

to attain different fail-controlled behaviours. FTMP [Hopkins et al. 78] and FTP [Smith 84], for

instance, are two systems whose fault tolerance mechanisms rely on their underlying hard fail-

ure-masking nodes. MARS [Reisinger-Steininger 93], Sequoia [Bernstein 88] and Stratus

[Webber-Beirne 91], on the other hand, are examples of systems which have the implementation

of their fault tolerance mechanisms simplified by the use of underlying hard fail-silent nodes.

Opposing the tight micro-instruction level synchronisation strategy of hard replicated

nodes, soft replicated nodes have a much looser synchronisation strategy, which synchronises

replicas at the task level. In systems using soft replicated nodes, application programs are im-

plemented as a collection of processes or tasks, which communicate with each other through well

defined primitives. Replicas are normally assumed to have a deterministic behaviour, thus pro-

vided that all functioning replicas receive identical input, they will produce identical outputs,

which can be validated by a software validation mechanism. Soft failure-masking replicated

nodes have been used in the implementation of the SIFT [Wensley et al. 78] and VOTRICS

[Theuretzbacher 86] systems.

The performance overhead incurred by hard replicated nodes is normally very small, and

indeed is the main advantage of this approach. Also, the tight synchronism, characteristic of the

hardware approach, allows software that have been developed to be executed on unreplicated

platforms to be ported and executed on replicated platforms with virtually no modifications.

However, as discussed in previous chapters of this thesis, there are also some problems associated

with this approach, the most grave of them being the inflexibility of their design. This in turn is

188

a direct consequence of having the synchronisation and validation mechanisms intimately asso-

ciated with the design of the hardware components of the system. Hard nodes are normally ad

hoc solutions tailored to attend the requirements of a particular system. Therefore, node upgrades

due to technology advances or even changes in the degree of replication of the node [Lala 86]

cannot be attained, unless substantial redesign is performed, which in turn may increase costs dra-

matically.

Soft replicated nodes are much more flexible than their hardware counterpart. The prin-

ciples behind the redundant management protocols of soft replicated nodes are not linked to the

hardware design of the node, therefore, technology upgrades involve only porting the software

protocols from one platform to another. Also, since the synchronisation and validation mechan-

isms are not hardwired, the hardware design can be made much simpler and more prone to scale.

Further, by employing different types of processors within a node, and diverse implementation

of both applications and system software [Randell 75, Avizienis 85], there is a possibility that a

measure of tolerance against design faults in both hardware and software can be obtained, without

recourse to any specialised hardware assistance.

The main drawbacks of soft replicated nodes are the substantial performance overhead in-

curred by their redundancy management protocols, and the necessity of structuring application

programs in accordance with guide-lines dictated by the replica synchronisation strategy. In

SIFT, for instance, application programs must be structured as a collection of cyclic tasks which

execute at an a priori known iteration rate. Further, the overhead associated with redundancy

management in that system can consume as much as 80% of the processor throughput [Palumbo-

Butler 85].

Soft replicated nodes based on the state machine approach [Schneider 90, Shrivasta-

va et al. 91, Shrivastava et al. 92] require application programs to be structured as a collection

of processes that communicate with each other exclusively via messages. Since most distributed

applications follow this structuring paradigm, this requirement is not a real limitation when these

nodes are used as the underlying processing hardware of dependable distributed systems. Further,

application processes can be allowed to incorporate some degree of non-determinism [Tully-

189

Shrivastava 90]. Nevertheless, the performance overhead incurred by the redundancy manage-

ment protocols is still a concern.

The Voltan family of replicated nodes [Shrivastava et al. 91, Shrivastava et al. 92] follows

the state machine approach, to present the design of a general node structure which can be used

to implement a variety of fail-controlled nodes, ranging from failure-masking to fail-silent

nodes. The general structure of a Vo1tan replicated node have been studied in detail in Section

3.3 of this thesis. Apart from the processes corresponding to the application programs, each pro-

cessor of a Voltan node executes five system processes that are responsible for the management

ofthe node's redundancy, and which will ultimately provide the node with a particular fail-con-

trolled semantics (see Figure 3-8, page 56). The five system processes are: Transmitter and Re-

ceiver processes, which are responsible for inter-node communication; Order process, which

guarantees that replica processes receive identical input messages, in identical order; Sender pro-

cess which is responsible for diffusing information to the other processors of the node for vali-

dation; and Validator process, which implements the validation mechanism of the node.

An earlier implementation of failure-masking Voltan nodes has been reported III

[Speirs et al. 93]. Apart from the trivial Transmitter, Receiver, and Sender processes, this imple-

mentation incorporates an Order process implemented by a clock synchronised based order pro-

tocol, and a Validator process, which in the case of a failure-masking node is a Voter process,

implemented by a simple voter protocol (see the reference design of a failure-masking node re-

ported in Section 4.2). In [Speirs et al. 93] it is also suggested that the implementation of a fail-si-

lent node can be easily derived from the implementation of a failure-masking node by simply

substituting the Voter process by a Comparator process. Further, the Comparator process can be

implemented by a comparison protocol adapted from the voter protocol which implements the

Voter process of the failure-masking node (see the reference design of a fail-silent node reported

in Section 5.2).

In our research we have thoroughly investigated the design of soft fail-silent nodes. Our

research revealed some fundamental differences between the design of soft fail-silent nodes and

that of soft failure-masking nodes. The results of this investigation were twofold: firstly, we have

found that a simple Comparator process adapted from the Voter process of a failure-masking

190

node cannot provide the fail-controlled semantics of a fail-silent node; secondly, since a fail-si-

lent node is expected to halt after a failure is detected, all systems processes, except the Compara-

tor process, can be designed under the assumption that they will execute on a failure-free environ-

ment. Based on these facts, we have developed new order protocols which are much more

efficient than the traditional clock synchronised based order protocol adapted from earlier imple-

mentations offailure-masking nodes. We have also developed an efficient comparison protocol

which, different from the previously known protocols, can guarantee the correct functioning of

soft fail-silent nodes (Chapter 5). This has allowed us to produce what is, to the best of our knowl-

edge, the first implementation of a soft fail-silent node [Brasileiro et al. 92] (Chapter 6). Further,

we have developed efficient order protocols to implement the Order process of failure-masking

Voltan nodes, which substantially reduced the performance overhead of such nodes (Chapter 4).

Fail-silent nodes are very cheap and simple to implement (a two-processor soft fail-silent

node is the cheapest replicated node that can be constructed). Further for a great number of ap-

plications, the overhead incurred by the replication protocols necessary to implement fail-silent

nodes generate only a relatively small burden on the performance of the node. In our particular

implementation, the performance impact of using fail-silent nodes is to produce a delay in re-

sponse of about 8 ms per message in a lightly loaded system. Further, in a worst case scenario

where application processes are frequently exchanging messages, a fail-silent node can achieve

about 40% of the performance of its unreplicated counterpart. It should be appreciated that this

price in performance becomes significant in only those distributed applications which are com-

munication intensive. As discussed in Section 6.3.2, in client-server applications where the

server processing time is at least 100 ms, then the performance impact of adding software-im-

plemented fail-silence can be reduced to less than 10%.

Failure-masking nodes, on the other hand, are more expensive to implement, and impose

a heavier overhead on the node's performance. Nevertheless, they are able to mask a bounded

number of internal failures, which make their survivability greater than that of fail-silent nodes.

However, masking also has the undesirable property of obscuring the fact that a fault has oc-

curred, and thereby has reduced the node's tolerance to future faults. Thus, even though masking

mechanisms can cope with the immediate danger of a failure, they can also hide the fact that the

191

masking capability of the node has degraded, up to a point where a further failure will defeat the

fault tolerance mechanisms of the node, with potentially catastrophic results.

A 1t-FMS node [Shrivastava et al. 91] is a replicated node which attempts to encompass

the desirable properties of both fail-silent and failure-masking nodes. A 1t-FMS node is able to

mask up to 1t failures, and will fail silently after the detection of the 1tthfailure, thus combining

the safety property of fail-silent nodes and the survivability property of failure-masking nodes.

In [Shrivastava et al. 91] the authors show that deriving the implementation of a 1t-FMS node

from the implementation of a failure-masking node composed of N authentication-detectable

fail-arbitrary processors, N = 21t+ 1, involves the introduction of a fault diagnosis protocol into

the node, which is executed periodically, and must be able to diagnosis all processors that have

failed since the last execution of the fault diagnosis protocol. However, since there is no known

faulty diagnosis protocol that can guarantee the diagnosis of all faulty processors in the node

(even when N > 21t+ 1), the authors conjectured that it is impossible to build 1t-FMS nodes from

authentication-detectable fail-arbitrary processors.

In contradiction with this conjecture, in Chapter 7 of this thesis we have presented the de-

sign of a 1t-FMS node constructed from authentication-detectable fail-arbitrary processors. The

design of such node can be divided into two logical levels, namely a lower, fail-arbitrary level;

and an upper fail-silent level. The node is composed of 1t(1t+ 1) authentication-detectable fail-ar-

bitrary processors that are logically seen as 1t fail-silent nodes, each of these composed of 1t+1

authentication-detectable fail-arbitrary processors. Each fail-silent node must execute an extra

system process which is responsible for ordering input messages at the fail-silent level, and there-

fore prevent fail-silent replicas from diverge. 1t-FMS nodes implemented in this way are very

expensive, since the number of processors required is a function of 1t2. However, for small values

of 1t (1t :::;2), or when failures can be assumed to occur sequentially, implementations of 1t-FMS

nodes can be obtained with a cost comparable with that of a corresponding failure-masking node.

8.2. Directions for Further Research

As presented in Chapter 6, our current implementation of failure-masking and fail-silent

nodes was developed on a network of T800 Inmos transputers [INMOS 88], using the facilities

192

provided by the Helios operating system [Perihelion 91]. Recently, the protocols have been

ported, with relative ease, to another platform consisting of Hew lett-Packard work-stations, and

using the facilities provided by their real-time operating system [Morgan 93]. Nevertheless, in

both implementations, the redundancy management protocols of the replicated nodes execute as

normal application processes. We believe that an interesting exercise would be to assess the over-

heads associated with the redundancy management protocols when they are incorporated at dif-

ferent levels of a distributed system. Apart from the application level which was attempted by

our implementation, the redundancy management protocols of a soft replicated node could be

introduced at the micro-kernel level of a true distributed operating systems like Amoeba [Mul-

lender et al. 90] or Mach [Accetta et al. 86], where the possibility of a better control on the policy

of scheduling system processes could lead to a reduction of the overheads associated with the

management of the node redundancy. It should also be of interest to investigate the use of the

software replication concept to provide high dependability to centralised multiprocessor time-

sharing systems.

Finally, we believe that the implementation of a practical system using soft replicated nodes

as their underlying processing hardware is a very interesting exercise, which can give a full under-

standing of the use of soft replicated nodes as the underlying processing platform of distributed

systems. For instance, applications developed using the Arjuna system [Shrivastava 89] make the

assumption that the underlying nodes are fail-silent. Currently, most of the known applications

developed using Arjuna execute on conventional processors that might not provide the fail-silent

semantics required. A challenging exercise is therefore to develop Arjuna applications which ex-

ecute on top of soft fail-silent nodes, like the ones we have implemented.

8.3. Concluding Remarks

We have investigated alternative ways of constructing efficient fail--controlled replicated

nodes suitable for the development of a reliable processing platform on top of which dependable

distributed systems can be more easily implemented. The fail--controlled nodes presented in this

thesis are based solely on the utilisation of 'off-the-shelf' processors (which can fail in an arbit-

rary way), and software protocols to control system redundancy, without recourse to any specia-

193

lised hardware. The experiments carried out with implementations of the fail-controlled nodes

presented, showed that the overheads associated with the execution of the new redundancy man-

agement protocols presented in this thesis are much smaller than the overheads of any previously

known protocols. Thus, bearing in mind the discussion on the advantages of software-implem-

ented fail-controlled nodes over hardware-implemented nodes, we can anticipate a range of ap-

plications for which these nodes offer an attractive alternative to their hardware implemented

counterparts. We summarise the main contributions of this thesis as follows:

• the presentation of a precise definition of the semantics of a soft fail-si-

lent node (Chapter 5);

• the design of efficient protocols for the construction of both soft failure-

masking (Chapter 4) and soft fail-silent nodes (Chapter 5);

• the implementation and performance evaluation of software based repli-

cated fail-controlled nodes, which indicates the feasibility ofthe utilisa-

tion of such nodes in a wide range of applications (Chapter 6); and

• the design of soft 1t-FMS nodes (Chapter 7).

194

AppendixA
Correctness Proof of
Order Protocols

A.I. System Assumptions, Definitions and Notations

In this appendix we prove the correctness of the order protocols presented in Chapter 4. We

adopt the style of writing real time values in Greek or italicised upper case Roman letters, and

clock time values in italicised lower case Roman letters; the term 'clock' is used to refer to a pro-

cessor's physical clock.

We start by summarising the main assumptions we have made.

Assumption 1: In a failure-masking node, at least 7t+ lout of N processors are non-

faulty and never fail, where N = 21t+ 1. Processors are assigned a unique numbering

which is known to all non-faulty processors.

Assumption 2: A non-faulty processor's signature for a given message is unique

and cannot be generated by any other processor. Furthermore, any attempt to alter

the contents of a non-faulty processor's signed message is detected by any other non-

faulty processor.

Assumption 3: Processors within a node are connected to processors of another node

through point-to-point connections.

Assumption 4: When a non-faulty processor sends a message to a subset of pro-

cessors of the node at real time SENT, every non-faulty destination receives the mess-

195

age at real time RECEIVED, SENT $ RECEIVED < (SENT +0), where D, D> 0, is

known.

Assumption 5: A non-faulty processor's clock measures an interval of time x in a

real time interval x(1+Pa), where Ipal $ P and p is a known positive constant.

Each processor Piwithin a failure-masking node maintains a message counter, denoted by

Mq, whose value is an integer that never decreases and is initialised to 1 when the node is first

started. When Pi wants to initiate the broadcast of a message received from the network, it com-

poses an internal message m = <Il, TS, 0, S>, where m.1l is the contents of m, i.e. the message

received from the network; m. TS is the time-stamp of m; m.O is the originator of m; and m.S is the

list of signatures contained in m. A newly formed and unsigned m has empty m.S, whilst for any

sent or received m, m.S contains a sequence of one or more processor signatures. We use the nota-

tion Im.SI to denote the number of signatures in m.S.

The development of the order protocols involves the implementation of: i) message diffu-

sion to ensure that non-faulty processors exchange an identical set of messages between them;

and ii) timeliness checks to enable a non-faulty processor to assess whether a received message is

timely, and therefore should be accepted, or if the message is untimely, in which case it should be

discarded.

Pi accepts a message by entering a copy of it in a message list, called accepted; For any

given message m, we define an equiv(m) as any m' such that m'.1l = m.ll, m'.O = m.O and

m' .TS = m.TS. That is, only the contents of m.S and [equiv(m)].S may differ. Note that an

equiv(m) can be m itself. In all order protocols presented in Section 4.3, an accepted message m is

always diffused to the other processors that have not signed m. Thus, the following lemma is valid

for all order protocols of Section 4.3.

Lemma 1 (message diffusion): If a non-faulty Pi accepts m at real time TIMEi, then

every non-faulty Pk receives an equiv(m) at real time TIMEk such that

ITIMEj-TIMEkl < D.

Proof: Let Pj be the first non-faulty processor to accept m at real time TIMEj. It fol-

lows that Im.SI < 1t+ 1, and if Im.SI > 0, then any processor which has signed m must

196

be a faulty processor (since Pj is the first non-faulty processor to accept m). Pj then

diffuses m to every other processor which has not signed m. From assumption 4,

every non-faulty Pk (including Pi), Pk =t; Pj, receives equiv(m) at some real time

T1MEk, with TIMEj s TIMEk < TIMEj+O, hence the lemma. (J

To implement timeliness checks, each Pi maintains timing counters, denoted as TqU, v],

for every Pi.] =t; i, and for every s, I ~ s ~ 1t+ 1. These timing counters have integer values which

are initialised to zero and never decrease.

We assume the following notations: STARTi(j, s, 2=ts) denotes the smallest real time in-

stance when TCiU, s] becomes larger than or equal to ts. (That is, just before real time

STARTi(j, s, 2=ts), TqU, s] is less than ts.) starts], s, 2=ts) denotes Pi'S clock time at real time

STARTi(j, s, 2=ts).Also, ENDi(~tS) denotes the largest real time instance when MCi is less than or

equal to ts. (That is, just after real time ENDi(~tS), M'C, is larger than ts and Pi will not form and

send any m, m. TS ~ ts.) We also assume the notation Pi to denote the rate with which the clock of a

processor Pi drifts from real time.

Unless stated otherwise, the bounds on ts and s are: ts 2= 1 and I ~ s ~ 1t+ 1. For simplicity,

we assume that a non-faulty processor executes the instructions of the protocols in zero real/clock

time. Realising this assumption requires an increase in the value of d, which is possible as the

proofs impose no upper bound on d.

A.2. Proof of Correctness of the Protocol of Section 4.3.1

Lemma 2.1: startiij, s+l, 2=ts)-starti(j, s, 2=ts)= 2d, for non-faulty Pi, any Pj,j:f. i,

and any s, I $ s ~ 1t.

Proof: Follows directly from the algorithm of the Update process (Figure 4-7, page

79). 0

Lemma 2.2: Istarti(j, s, 2=ts)-starti(r, s, ~ts)1 $ d, for non-faulty Pi, and any Pj and

Pr,j =t; i:f. r.

Proof: Let us first consider s = 1, and abbreviate startiij, 1, 2=ts)and startiir, 1, 2=ts)as

start(j) and starter), respectively. Let the executions of the Update process at clock

197

times start(j) and starter) be scheduled due to Pi accepting messages mj and mr, re-

spectively. Note that mj.TS;::: ts and mr.TS;::: ts.

Suppose that Pi accepts mj at clock time timej. Accepting mj would lead to the Update

process being scheduled to update the timing counter TCj[k = mi.O, 1] at timej+d and

each timing counter TCj[k i:: mj.O, 1] at timei+Zd. Note that scheduling a timing

counter update to a value ts will not be effective only if that timing counter has been

updated to or above ts, prior to the scheduled time. So, starter) ~ timej+2d. As the

acceptance of mj did set TCjU, 1] ;:::ts, either start(j) = time+d or start(j) = timej+2d

depending on whether j = mj-O or not. This means that starter) ::;startiji+d. Similar

arguments can be made with m.: if timer is the clock time when Pi accepted m-, then

start(j) ~ timer+2d and starter) is either time+d or time-+Zd; so, start(j) ~ starttri+d.

Hence the lemma is true for s = 1. From lemma 2.1, this lemma is true for any .'I,

1 < s s 1t+1. 0

Lemma 2.3: ISTARTi(j, 1, ;:::ts)-STARh(j, 1, ;:::ts)1< O+2d(2p), for non-faulty Pi

and Pk, and any Pj, i i:: j i:: k.

Proof: Let us abbreviate STARTi(j, 1, ;:::ts) and STARTk(j, 1, ;:::ts) as STARTi and

STARTk respectively. Without loss of generality, we assume that STARTj < STARTk

and prove that STARh-STARTi < O+2d(2p). We prove it by showing that

STARTk-STARTj ;:::O+2d(2p) cannot be true.

Let mj be the message whose acceptance by P, at real time, say TIMEj, caused Pi to set

TCjU, 1] ~ Is at STARTj. From lemma 1, Pk receives an equivim.; before TIMEj+O.

Let mk denote the first equivtmi) that Pk receives. Note that mk is accepted by Pk, only

if it is timely, i.e. only if TIMEj+O::; STARTk(mk.O, Imk.SI, ~k.TS). We will prove

the lemma by showing that if STARTk ;:::STARTj+O+2d(2p) then Pk must find mk

timely; however, if Pk finds mk timely then, as we will show, STARTk is guaranteed to

be less than STARTj+O+2d(2p), which is a contradiction.

198

From the algorithms of the Broadcast and Diffuse processes (Figure 4-9, page 81;

and Figure 4-10, page 81, respectively). the execution of the Update process at

STARTj is scheduled to be executed at least d units of clock time after P, has received

mj, thus, STARTj ~ TIMEj+d(1+pj). By Lemma 2.2,

STARTk(mk.O, 1, ~k.TS)+d(l+Pk) ~ STARh. If STARTk ~ STARTj+o+2d(2p),

then STARh(lnk.O, 1, ~k.TS)+d(l+Pk) ~ STARTj+0+2d(2p). So, we have

STARTk(mk.O, 1, ~k.TS)+d(l+Pk);:: TIMEj+d(1+pj)+0+2d(2p) and, after some

simple algebra, STARTk(mk.O, 1, ~k.TS);:: TIMEj+o+d(4p+Pi-Pk). Since lp.l, and

IPkl are bounded by P (assumption 5), (4p+pj-Pk) is non-negative and

STARh(mk.O, 1, ~k.TS) ~ T1MEi+O. Note that since Imk.SI~ 1,

Thus, if

STARTk ~ STARTj+o+2d(2p), Pk cannot find Ink untimely and must accept Ink.

If Pk accepts Ink then from the algorithm of the Diffuse process (Figure 4--10, page

81), STARh < TIMEi+O+xd(l+Pk). withx= 1 ifmk.O = j or x = 2 iflnk.O"* j. Also,

STARTj = T1MEj+xd(l +Pj), with x = 1 if nu.O = j or x = 2 if mj.O"# j. As

mk·O = m..O, the value of x will be identical in the expressions for both STARTk and

STARTj. So, STARh < STARTj-xd(1+Pj)+o+xd(1+Pk), which leads to

STARTk < STARTj+O+2d(2p). Hence the lemma. o
Lemma 2.4: ISTARTjU, s, ~ts)-STARTkU, s, ~ts)1 < o+2d(2ps), for non-faulty P,

and Pk, and any Pj, i "# j "# k.

Proof: Follows from lemmas 2.3 and 2.1, and from assumption 5. o
Remark: The above lemmas are true for any randomly chosen, non-negative value

of d. (Their proofs do not require any lower or upper bound on d.) The next lemma

establishes the relation between the value ofd and O. as a function of p and TC.

Lemma 2.5: STARTjU. oH 1. ~ts)-STARhU. s, ~ts) > O. for non-faulty P, and Pk,

and any Pj, i "# j "# k, and any s, 1 ::;s ::;TC, provided d;:: 0/(1-(2TC+ l)p).

Proof: Let us abbreviate STARTiU. s+ 1. ~ts). STARTjV, s, ;::ts)and STARTkV. s, ~ts)

as STARTi(S+ 1), STARTi(S) and STARTk(S). respectively. From lemma 2.1, we have

199

STARTi(S) = STARTj(s+ 1)-2d(1+Pi). From lemma 2.4, we have

STARTi(S) > STARh(s)-(0+2d(s)(2p)). Combining the two expressions we have

STARTi(S+I) > STARh(s)-(0+2d(s)(2p))+2d(1+Pi)' The lemma will be true, if

2d(1+Pi)-(0+2d(s)(2p» 2:: 0, i.e. d 2:: 0/(1+Pi-2sp). As IPil :5: P (assumption 5), and

letting s = 1t, this implies d 2:: o/(1-(21t+ l)p), hence the lemma. o
This lemma ensures that if a non-faulty Pi receives and accepts m, Im.SI< 1t+1, then its dif-

fused message is found timely when being received by another non-faulty Pk. Iflm.sl = 1t+I,then

one of the signers must be non-faulty, and the same guarantee applies. So, we state the following

corollary.

Corollary 2.1: For any two non-faulty Pi and Pk, and any m, i :t m.O :t k, if m enters

accepted, at T1MEi, then an equiv(m) enters accepteds at T1MEk such that

ITIMEi-TIMEk I< 0, provided d 2:: 0/(l-(21t+I)p).

Lemma 2.6: STARTi(k, I, 2::ts)-ENDk(:5:tS) > 0, for non-faulty Pi and Pk, provided

d » O/(1-p).

Proof: Let the execution of the Update process at STARTj(k, 1, 2::ts)be due to Pi ac-

cepting mi, mi.TS 2:: ts, at real time T1MEi. Regarding mi.O we consider two cases:

(i) m..O = k; from the algorithm of the Broadcast process (Figure 4-9, page 81), just

before sending mi, nli.TS 2:: ts, Pk sets MCk to mi.TS+l. Therefore,

ENDk(:5:ts) < T1MEi. Also, STARTi(k, 1, 2::ts)= TIMEi+d(l+pj). Thus,

STARTi(k, 1, 2::ts)> ENDk(:5:ts)+d(1+Pi); since d > ()/(1-p) implies d(1+Pi) > (),we

have STARTj(k, 1, 2::ts)-ENDk(:5:tS) > O.

(ii) mi.O 'i:- k; from lemma 1, Pk receives an equiv(mj), say mk, at real time

TIMEk < T1MEi+(). If T1MEk 2:: STARTk(mk.O, Imk.SI, 2::mk.TS) then from the algo-

rithms of the Broadcast and Diffuse processes (Figure 4-9, page 81; and Figure 4-10,

page 81, respectively), it is easy to see that TIMEk > ENDk(:5:tS); if, on the other hand,

T1MEk < STARTk(mk.O, Imk.SI, 2::ts) then either mk is accepted at T1MEk or another

equiv(mi) has been accepted before T1MEk. Thus, T1MEk 2:: ENDk(:5:tS). In both cases

200

we have ENDk('5:tS) < TlMEi+(). When nu.O *- k, from the algorithm Diffuse process

(Figure 4-10, page 81) we have STARTi(k, I, ~ts) = TlMEi+2d(l+Pi). Therefore,

STARTi(k, I, ~ts) > ENDk('5:tS)-()+2d(l +Pi), and Since d > ()/(l-p) implies

2d(I+Pi) > 20, STARTi(k, I, ~ts)-ENDk('5:tS) > ().Hence the lemma. o
This lemma ensures that if a non-faulty Pk forms and sends a message m, every non-faulty

Pi accepts m upon reception. So, the corollary 2.1 is strengthened as below.

Corollary 2.2: For any two non-faulty Pi and Pk, and any m, if m enters accepted,

at T1MEi, then an equiv(m) enters accepteds at TIMEk such that ITIMEi-TlMEkl < (),

provided d ~ ()/(1-(27t+ l)p).

Lemma 2.7: A message m enters stable, of non-faulty Pi within at most 2d(7t+ I)

time after having entered accepted; where time is measured according to Pi'S clock.

Proof: At any given instance of real time, TCj,min '5: TqU, s] for any j,j *- i, and any s,

1 '5: s '5: 7t+I. Therefore, no m can enter accepted, after m. TS has become larger than or

equal to TCi,min. From the algorithms ofthe Broadcast and Diffuse processes (Figure

4-9, page 81; and Figure 4-10, page 81, respectively), it can be seen that all timing

counters of Pi become larger than or equal to m. TS, within 2d(7t+1) time after m is

accepted, where time is measured according to Pi'S clock. Hence the lemma follows

from the algorithm of the Deliver process (Figure 4-11, page 82) which removes

every m from accepted, into stable, immediately after m. TS has become larger than or

equal to Tq,min. o
Lemma 2.8: Any two non-spurious m (and m: that enter accepted, of non-faulty Pi

are delivered according to the ordering relation «.

Proof: Say m (« mz. thus m rTS '5: m2.TS. Note that Tq,min never decreases with the

passage of real time, and also that no message m enters stable, after Tq,min becomes

larger than or equal to m.TS (see the algorithm of the Deliver process, Figure 4-11,

page 82). Therefore, it is impossible for m(to enter stable, after m2 has entered.

Hence the Lemma. o

201

Theorem 2.1: The protocol guarantees agreement and order conditions within a real

time interval La, La :S: 2d(1t+ 1)(1+p)+0, if d ~ 0/(1-(21t+ l)p).

Proof: From corollary 2.2, any m formed and sent by a non-faulty Pi enters accepted.,

and will enter accepted. of every non-faulty Pj within 0 time; also, for a given ts, and

for every m, m.TS = ts, that enters acceptedi. there is an equiv(m) that enters accepted.

of non-faulty Pi, Any m that enters acceptedi, eventually enters stable, (Lemma 2.7)

together with all m' such that m '.TS = m.TS (see the algorithm of the Deliver process,

Figure 4-11, page 82). Therefore, Pi will find m spurious if and only if Pj finds

equiv(m) spurious. From lemma 2.8, non-spurious entries of the message list stable

are ordered according to « relation which is identical for both Pi and Pj since pro-

cessor ordering is unique and known (assumption 1). This means that for every given

ts, non-faulty processors order an identical set of m, m.TS = ts, in an identical manner

and after ordering all m'; m', TS < ts. Thus the protocol meets atomicity and order re-

quirements.

A message m formed and sent by a non-faulty processor cannot be found spurious in

any non-faulty processor (see assumption 2). From lemma 2.7, we can state that any

non-spurious m is ordered by a non-faulty processor within 2d(1t+ 1)(1+p) real time

after being accepted. Thus the protocol meets the termination requirement with

La :S: 2d(1t+ 1)(1+p)+0. Hence the theorem. 0

Theorem 2.2: The protocol can guarantee ordering agreement in finite time only if

1t< (l-p)/(2p).

Proof: For La to be finite and positive, d,d ~ 8/(1-(21t+ l)p), must be finite and posi-

tive. Hence, 1-(21t+ l)p > 0, i.e. 1t < (l-p)/(2p). 0

A.3. Proof of Correctness of the Protocol of Section 4.3.2

Note that for a TMR node s is either I or 2. and the changes made to derive the TMR proto-

col do not modify the way the timing counters for s = I and the message counter (MC) are being

202

updated. Thus, lemma 2.6-2.8 also hold for this protocol. (Note that the proofs of lemma 2.6-2.8

do not require lemmas 2.1-2.S.)

Lemma 3.1: STARTkU, 2, ?'ts)-STARTiU, 1, ?ts) > S, for non-faulty Pi and Pk, and

any Pj, i '* j '* k, provided d e S/(I-Sp).

Proof: Let us abbreviate STARTkU, 2, ?ts), and STARTiU, I, ?ts) as STARh(2), and

STARTi(I), respectively. Let m be the message whose acceptance by Pk scheduled the

execution of the Update process at STARTk(2). Regarding m.O, we consider each of

the three processors in the TMR node:

(i) m.O = k; From the algorithm of the Broadcast process (Figure 4-14, page 89) Pk

must have formed and sent m just before real time STARTk(2)-4d(1+Pk). From

lemma 1, Pi must have received equiv(m) before STARTk(2)-4d(1+Pk)+S. From

lemma 2.6, Pi accepts equiv(m), and from the algorithm of the Diffuse process (Fig-

ure 4-IS, page 89) we have STARTi(1) < STARh(2)-4d(1+Pk)+S+2d(I+Pi), leading

to STARh(2)-STARTi(1) > Swhenever d e S/(1+2Pk-Pi), which is always true since

d e S/(1-5p) > S/(1+2Pk-Pi).

(ii) m.O = i; Let Pi form and send m at real time T1MEi. From lemma 2.6, and the

algorithm of the Diffuse process (Figure 4-15, page 89), Pk receives and accepts

equiv(m) at some real time T1MEk, TlMEi:5 TlMEk < STARTk(2)-3d(1+Pk)· For Pi,

STARTi(l):5 TIMEi+2d(I+Pi), thus STARTk(2)-3d(l+Pk) > START/1)-2d(1+Pi),

and STARh(2)-STARTi(1) > b whenever d e b/(1+3Pk-2Pi), which is always true

since d e b/(l-5p)? S/(l+3Pk-2Pi).

(iii) m.O = j, k '* j '* i; as per the algorithm of the Diffuse process (Figure 4-1S, page

89), Pk must have received m just before real time STARTk(2)-3d(1+Pk). Let Pi re-

ceive equiv(m) at real time TlMEi; from lemma I, TlMEi < STARTk(2)-3d(l+Pk)+b.

If TIMEi? STARTi(1), then for any non-negative value of d we have

STARTk(2)-STARTi(l) > S. Now consider TlMEi < STARTi(1), thus equiv(m) is ac-

cepted by Pi. From the algorithm of the Diffuse process (Figure 4-15, page 89),

STARTi(l):5 TIMEi+d(l+Pi). Thus, STARh(2)-STARTi(l) > 3d(l+Pk)-W(l+Pi),

203

and STARTk(2)-STARTi(1) ~ 0whenever d ~ 0/(1+3Pk/2-p/2), which is always true

since d ~ 0/(l-5p) > 0/(1+3Pk/2-p/2). Hence the lemma. 0

This lemma ensures that if a non-faulty Pi receives and accepts a single-signed m, then its

diffused double-signed message is found timely when being received by another non-faulty Pk.

If a non-faulty Pi receives and accepts a double-signed m, then any other non-faulty processor of

the node has already accepted an equiv(m). Lemma 2.6 guarantees that a message m accepted by a

non-faulty Pi when Pi formed and sent m is also accepted by all other non-faulty processors. So,

we state the following corollary.

Corollary 3.1: For any two non-faulty P, and Pk, and any m, if m enters accepted;

at T1MEi, then an equiv(m) enters acceptedi at TIMEk such that ITIMEj-TIMEkl < 0,

provided d ~ 0/(l-5p).

Lemma 3.2: A message m, m.O = i, enters stable, of non-faulty Pi within 4d time

after having entered accepted., whilst a message m", m'.O -:t i, enters stable, of non-

faulty Pi within 3d time after having entered acceptedi, where time is measured ac-

cording to Pi'S clock.

Proof: At any given instance of real time, TCi,min~ TqU, s] for any j,j -:t i, and any

s, 1$ s $ 2. Therefore, no m can enter accepted; after m.TS has become larger than

or equal to Tq,min' For m, m.O = i, from the algorithm of the Broadcast process (Fig-

ure 4-14, page 89), it can be seen that all timing counters of Pi become larger than

or equal to m. TS within 4d time after m is accepted, where time is measured according

to Pi's clock. Similarly, for 111, m.O = i, from the algorithm of the Diffuse process

(Figure 4-15, page 89), it can be seen that all timing counters of Pi become larger

than or equal to m.TS within 3d time after m is accepted. Hence the lemma follows

form the algorithm of the Deliver process (Figure 4-11, page 82) which removes

every m from accepted, into stable, immediately after m. TS has become larger than

or equal to Tq,min. o

204

Theorem 3.1: The protocol for TMR nodes guarantees agreement and order condi-

tions within a real time interval L.a, L.a ~ 4d(1+p), if d ~ 0/(1-5p).

Proof: From corollary 3.1, any m formed and sent by a non-faulty Pi enters acceptedi,

and will enter accepted, of every non-faulty Pj within 0 time; also, for a given ts, and

for every m, m. TS = ts, that enters acceptedi, there is an equiv(m) that enters accepted.

of non-faulty Pj. Since the Deliver process for this protocol is the equal to the Deliver

process of the previous protocol, any m that enters acceptedi, eventually enters stable,

(Lemma 3.2) together with all m' such that m', TS = m.TS (see the algorithm of the

Deliver process, Figure 4-11, page 82). Therefore, Pi will find m spurious if and only

if Pj finds equiv(m) spurious. From lemma 2.8, non-spurious entries of the message

list stable are ordered according to « relation which is identical for both Pi and Pj

since processor ordering is unique and known (assumption I). This means that for

every given ts, non-faulty processors order an identical set of m, m.TS = ts, in an

identical manner and after ordering all m', m '.TS < ts. Thus the protocol meets

atomicity and order requirements.

A message m formed and sent by a non-faulty processor cannot be found spurious in

any non-faulty processor (see assumption 2). From lemma 3.3, any non-spurious m,

m.O = i, in accepted, enters stable, within at most 4d(I+p) (real) time after having

entered acceptedi; also, any non-spurious m", m'.O * i, in accepted, enters stable,

within at most 3d(I+p) (real) time after having entered acceptedi, and may take at

most 0 time to be recei ved by Pi. As d ~ 0/(1-5p), we have d(1+p) > 8, and the proto-

col meets the termination requirement with L.a ~ 4d(1+p). Hence the theorem. 0

A.4. Proof of Correctness of the protocol of Section 4.3.3

We define a path p to be an ordered, non-empty sequence of at most 1t+ 1 distinct pro-

cessors. We also define the following notations:

• path(m), which denotes the path through which a message m was received;

• Ipl, which denotes the length of the path p (i.e. the number of processors in p); and

205

• origin(p), which denotes the first processor in the path p.

Further, we define the following set of paths:

• paths, = {p IPi not in p}.

In addition to maintaining timing counters Tq[j, s), for every Pj, i= i, and for every .'I,

I $ s $ 7t+I, each non-faulty P, also maintains path counters PCj[p) for each path p through

which a message can be received (i.e. "v'p I P E paths.i. These path counters are integer values

which only increase with the passage of real time, and are initialised to zero when the node is

started.

Comparing the algorithms of the Broadcast and Diffuse processes of the protocol of Section

4.3.1 (Figure 4-9, page 81; and Figure 4-10, page 81, respectively) and the algorithms of the

Broadcast and Diffuse processes of the early-order protocol (Figure 4-17, page 97; and Figure

4-18, page 98, respectively) it is easy to see that for each execution of Update(j, 1, m.TS) at clock

time t in the protocol of Section 4.3.1, there is a corresponding execution of Update(j, 1, m.TS) at

clock time t in the early-order protocol. From the algorithms of the Update process of the protocol

ofSection4.3.1 (Figure 4-7, page 79) and the Update process of the early-orderprotocol (Figure

4-16, page 97), both versions of Update will schedule executions of Update(j, .'1+1, m.TS) 2d

units of clock time after having executed Update(j, s, m.TS), 1$ s $ n. Thus, the timing counters

Tq[j, s], for every Pj,j::f:. i, and for every s, 1~ s ~ 7t+1, will be update intheearly-orderprotoco!

in the same way as they are updated in the protocol of Section 4.3.1. Further, the message counter

MCj is also updated in an equivalent way in both protocols. Hence lemmas 2.1-2.6 also hold for

the early-order protocol.

We maintain the notations STARTj(j, .'I, ~ts) and ENDj($ts) as defined previously, and we

introduce the following notation: STARTj(p, ~IS), for a non-faulty Pi, and all paths p E pathsi,

and Is ~ I, denotes the smallest real time instance when PCj [P] becomes larger than or equal to ts.

(That is, just before real time STARTj(p, ~ts). PCj[P] is less than IS.)

Lemma 4.1: STARTj(p. ~ts) $ STARTj(ori8in(p). Ipl. ~ts). for any non-faulty pro-

cessor P, and any path p, P E pathsi. If STARTj(p. ~ts) < STARTj(origin(p), Ipl, ~ts),

206

then Pi must have received a timely message m at some real time T1MEi, with

m.TS ~ ts, path(m) = p and T1MEi < STARTi(P, ~ts) < STARTi(origin(p), Ipl, ~ts).

Proof: STARTi(P, ~ts) ::; STARTi(origin(p). Ipl, ~ts) follows directly from the algo-

rithm of the early-order Update process (Figure 4-16, page 97).

If STARTi(p, ~ts) < STARTi(origin(p), Ipl, ~ts), then the path counter qrp] must have

been explicitly updated to a value greater or equal to ts by the Diffuse process. From

the algorithm of the early-order Diffuse process (Figure 4-18, page 98) Pi must re-

ceive m at TlMEi, with m.TS ~ ts, path(m) = p and TlMEi < STARTi(P, ~ts). Hence

the lemma. o
Lemma 4.2: If 111) and 1112 are two distinct messages sent by a non-faulty Pi, with

path(m» = path(m2), then they were sent in the increasing order of their timestamps.

Proof: Assume that Ipath(m)1 = Ipath(m2)1 = 1. A non-faulty processor forms and

sends messages in the increased order of timestamps. Hence the lemma is true when

Ipath(m)1 = Ipath(m2)1 = 1.

Say Ipath(11I)1 = Ipath(11I2)1> 1. Let 111)' and 1112' denote the messages which Pi

signed and sent as 111) and 1112. respectively. So, pathimi '):Pi = path(m» and

path(m2'):Pi = pathim-). We will assume that 111) was sent before 1112 and prove that

m).TS < m2.TS.

Since Pi signed and sent 111) , • it must have found m) , timely. So, upon receiving m) , ,

it will set PCjrpath(m) ')] '? 111)' .TS. If 1112' .TS::; m)' .TS, Pi will not find m2' timely

and will not send m2. In other words. if 1112 was sent. then m2. TS > m). TS. 0

Corollary 4.1: If m) and 1112 are distinct messages sent by a non-faulty Pi and re-

ceived by another non-faulty Pk, then Pk will receive them in the increasing order

of their timestamps.

Proof: Follows from Lemma 4.1 and the fifo assumption. o

207

Lemma 4.3: Any message m whose broadcast is initiated by a non-faulty Pi will be

found timely by every non-faulty Pk, provided d » ()/(I-p).

Proof: If STARh(Pi, an.TS) = STARh(i, 1, ~m.TS), then the lemma follows from

lemma 2.6.

IfSTARTk(Pj, an.TS) < STARTk(i, 1, an. TS), then from lemma4.1 Pk must have re-

ceived a timely message m' at some time T1MEk', with m' .TS ~ m.TS,path(m') = Pi

and T1MEk' < STARTk(Pi, ~m.TS). From corollary 4.1, m must have been received

at some time T1MEk, TlMEk ~ T1MEk' < STARTk(Pi, ~m.TS). Thus, Pk finds m time-

ly, hence the lemma. o
Lemma 4.4: Any message m received by a non-faulty Pi from a non-faulty Pk, will

be found timely, provided d ~ ()/(l-(21t+ l)p), and 1t< (l-p)l2p.

Proof: If STARh(path(m), an.TS) = STARTk(m.O, Im.SI, ~m.TS), then the lemma

follows from lemma 2.5.

If STARTk(Path(m), ~.TS) < STARh(m.O, Im.sl, ~m.TS), then from lemma 4.1 Pk

must have received a timely message m' at some time T1MEk', with m'.TS ~ m.TS,

path(m') = path(m) and TIMEk' < STARh(path(m), an.TS). From corollary 4.1, m

must have been received at some time T1MEk, TIMEk $ T1MEk" Since

TIMEk < STARTk(path(m), an.TS), Pk finds m timely. Hence the lemma. 0

Lemma 4.5: If all processors of the node are non-faulty, then the protocol's actual

stability delay is given by 0 ~ La < (1t+2)().

Proof: Suppose Pi initiates the broadcast of a message m at real time T. Since all pro-

cessors are non-faulty, every other Pj receives a copy of m at latest by real time T+0,

and initiates a null-broadcast mj. At latest by real time T+()+(1t+1)0 all messages as-

sociated with the broadcast of m initiated by Pi, and with the broadcast of each null-

broadcast mj initiated by every other Pj will have been received by every processor

within the node. Thus, at latest by this time Pi will have updated PCi,min to m.TS, and

every other Pj will also have updated PCj,min to m. TS. Therefore, at latest by

208

La < (1t+2)0, all processors will have ordered m. The lower bound is attained when

messages are exchanged in zero time, hence the lemma. o
Lemma 4.6: A message m enters stable, of non-faulty Pi within at most 2d(1t+I)

time after having entered acceptedi, where time is measured according to Pi'S clock.

Proof: At any given instance of real time, PCi,min $; PCi[P] for any p, pE paths;

Therefore, no m can enter accepted, after m.TS has become larger than or equal to

Pq,min. From the algorithms of the Broadcast and Diffuse processes (Figure 4-17,

page 97, and Figure 4-18, page 98, respectively), it can be seen that all path counters

of Pi become larger than or equal to m.TS, within 2d(1t+ I) time after m is accepted,

where time is measured according to Pi'S clock. Hence the lemma follows from the

algorithm of the Deliver process (Figure 4-19, page 98) which removes every m from

accepted. into stable, immediately after m,TS has become larger than or equal to

PCi,min. o
Lemma 4.7: Any two non-spurious m 1and m2 that enter accepted; of non-faulty Pi

is delivered according to the ordering relation «.

Proof: Say m 1 « mz. thus m I. TS $; m» TS. Note that PCi,min never decreases with the

passage of real time, and also that no message m enters stable, after Pq,min becomes

larger than or equal to m.TS (see the algorithm of the Deliver process, Figure 4-19,

page 98). Therefore, it is impossible for ml to enter stable, after m2 has entered.

Hence the Lemma. o
Theorem 4.1: The early-order protocol guarantees agreement and order conditions,

within a real time interval La, La $; 2d(1t+l)(l+p)+0, so long as d e 0/(l-(21t+l)p),

and 1t < (l-p)/2p. In the absence of failures the protocol guarantees early-order of

messages in Leo, 0 s I:eo < (1t+2)0.

Proof: From lemmas 4.3 and 4.4, any m sent by a non-faulty Pi to a non-faulty Pk will

be found timely by Pk; therefore, for a given ts, every m, m.TS = ts, that enters ac-

cepted.; there is an equiv(m) that enters accepted. of non-faulty Pj. Any m that enters

209

acceptedi, eventually enters stable, (Lemma 4.6) together with all m' such that

m'.TS = m.TS (see the algorithm of the Deliver process, Figure 4-19, page 98).

Therefore, Pi will find m spurious if and only if Pj finds equiv(m) spurious. From

lemma 4.7, non-spurious entries of the message list stable are ordered according to «

relation which is identical for both Pi and Pj since processor ordering is unique and

known (assumption I). This means that for every given ts, non-faulty processors

order an identical set of m, m. TS = ts, in an identical manner and after ordering all m .,

m', TS < ts. Thus the protocol meets atomicity and order requirements.

A message m formed and sent by a non-faulty processor cannot be found spurious in

any non-faulty processor (see assumption 2). From lemma 4.6, we can state that any

non-spurious m is ordered by a non-faulty processor within 2d(1t+ 1)(1+p) real time

after being accepted. Thus the protocol meets the termination requirement with

La ~ 2d(1t+ 1)(I+p)+B. Early order in Leo, 0 ~ Leo < (1t+2)B, follows from lemma

4.5. Hence the theorem. o

210

References

[Accetta et al. 86]

[Avizienis 78]

[Avizienis85]

[Babaoglu-Drummond 85]

[Babaoglu-Drummond 87]

[Barborak-Malek 93]

M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M.

Young, "Mach: A New Kernel Foundation for UNIX Develop-

ment," Proceedings of the Summer 1986 USENIX Conference,

Atlanta, USA, pp. 93-112, July 1986.

A. Avizienis, "Fault-Tolerance: The Survival Attribute of

Digital Systems," Proceedings of the IEEE, Vol. 66, No. 10,

pp. 1109-1125, October 1978.

A. Avizienis, "The N-Version Approach to Fault-Tolerant Soft-

ware," IEEE Transactions on Software Engineering, Vol.SE-II,

No. 12, pp. 1491-1501, December 1985.

O. BabaogJu, and R. Drummond, "Streets of Byzantium: Net-

work Architectures for Fast Reliable Broadcasts," IEEE Trans-

actions on Software Engineering, Vol. II, No.6, pp. 546-554,

June 1985.

o. Babaoglu, and R. Drummond, "(Almost) No cost Clock Syn-

chronisation," Digest of Papers, FrCS-17, Pittsburgh, USA,

pp.42-47, July 1987.

M. Barborak, and M. Malek, "The Consensus Problem in Fault-

Tolerant Computing," ACM Computing Surveys, Vol. IS, No.2,

pp. 171-220, June 1993.

211

[Barrett et al. 90]

[Bartlett 81]

[Bernstein 88]

[Birman et al. 91]

[Birrell-Nelson 84]

[Brasileiro et al. 92]

[Briere-Traverse 93]

[Chereque et al. 92]

P.A Barrett, AM. Hilborne, P. Verfssimo, L. Rodrigues,

P.G. Bond, D.T. Seaton, and N.A Speirs, "The Delta-4 Extra

Performance Architecture (XPA)," Digest of Papers, FrCS-20,

Newcastle upon Tyne, UK, pp. 481-488, June 1990.

J.F. Bartlett, "A NonStop Kernel," ACM 8th Symposium on Op-

erating Systems Principles, Pacific Grove, USA, Vol. IS, No.5,

pp. 22-29, December 1981.

P.A Bernstein, "Sequoia: A Fault-Tolerant Tightly Coupled

Multiprocessor for Transaction Processing," IEEE Computer,

Vol. 21, No.2, pp. 37-45, February 1988.

K.P. Birman, A Shiper, and P. Stephenson, "Lightweight Causal

and Atomic Group Multicast," ACM Transactions on Computer

Systems, Vol. 9, No.3, pp. 272-314, August 1991.

AD. Birrell, and B.J. Nelson, "Implementing Remote Procedure

Calls," ACM Transactions on Computer Systems, Vol. 2,

pp. 39-59, February 1984.

F.Y. Brasileiro, P.O. Ezhilchelvan, S.K. Shrivastava, N.A

Speirs, and S. Tao, "Efficient Protocols for Fail-Silent Nodes in

Distributed Systems," Technical Report No. 413, Computing

Laboratory, University of Newcastle upon Tyne, Newcastle upon

Tyne, UK, December 1992.

D. Briere, and P. Traverse, "AIRBUS A320/A330/A340 Electri-

cal Flight Controls - A Family of Fault-Tolerant Systems,"

Digest of Papers, FTCS-23, Toulouse, France, pp. 616-623,

June 1993.

M. Chereque, D. Powell. P. Reynier, J-L. Richier, and J. Voiron,

"Active Replication in Delta-4," Digest of Papers, FrCS-22,

Boston. USA, pp. 28-37. June 1992.

212

[Cristian et a1. 85] F. Cristian, H. Aghili, R. Strong, and D. Dolev, "Atomic Broad-

cast: from Simple Message Diffusion to Byzantine Agreement,"

Digest of Papers, FrCS-I5, Ann Arbor, USA, pp. 200-206,

June 1985.

[Cristian 91] F. Cristian, "Understanding Fault-Tolerant Distributed Sys-

tems," Communications of the ACM, Vol. 34, No.2, pp. 57-78,

February 1991.

[Dolev 82] D. Dolev, "The Byzantine Generals Strike Again," Journal of Al-

gorithms, Vol. 3, No.1, pp. 14-30, January 1982.

[Dolev-Strong 82] D. Dolev, and H.R. Strong, "Requirements for Agreement in a

Distributed System," Proceedings of the 2nd Symposium on Dis-

tributed Databases, West Berlin, Germany, pp. 115-129, Sep-

tember 1982.

[Dolev-Strong 83] D. Dolev, and H.R. Strong, "Authenticated Algorithms for By-

zantine Agreement," SIAM Journal of Computing, Vol. 12,

No.4, pp. 656-666, November 1983.

[Dolev et a1. 84] D. Dolev, J. Halpern, and H.R. Strong, "On the Possibility and

Impossibility of Achieving Clock Synchronization," Proceed-

ings of the 16th ACM STOC, Washington, D.C., USA,

pp. 504-511, May 1984.

[Dolev et al. 90] D. Dolev, R. Reischuk, and H.R. Strong, "Early Stopping in By-

zantine Agreement," Journal of the ACM, Vol. 37, No.4,

pp. 720-741, October 1990.

[Ezhilchelvan-Shrivastava 91] P.O. Ezhilchelvan, and S.K. Shrivastava, "A Distributed Sys-

terns Architecture Supporting High Availability and Reliability,"

Proceedings of the 2nd IFIP Conference on Dependable Comput-

ing for Critical Applications, Arizona, USA, pp. 36-48, Febru-

ary 1991.

213

[Fischer-Lynch 82] M.1. Fischer, and N.A. Lynch, "A Lower Bound for the Time to

Assure Interactive Consistency," Information Processing

Letters, Vol. 14, No.4, pp. 183-186, June 1982.

[Fischer et al. 85] M.J. Fischer, N.A. Lynch, and M.S. Paterson, "Impossibility of

Distributed Consensus with one faulty Process," Journal of the

ACM, Vol. 32, No.2, pp. 374-382, April 1985.

[FTCS 71-94] Digest of the Annual International Symposium on Fault- Toler-

ant Computing, FTCS 1-24, 1971-1994, IEEE Computer So-

ciety.

[Gopal et al. 90] A. Gopal, R Strong, S. Toueg, and F. Cristian, "Early-Delivery

Atomic Broadcast," Proceedings of the 9th ACM SIGACT-SI-

GOPS Symposium on Principles of Distributed Computing,

Quebec City, Canada, pp. 297-309, August 1990.

[Hopkins et al. 78]

J.Y. Halpern, B. Simons, H.R Strong, and D. Dolev, "Fault

Tolerant Clock Synchronization," Proceedings of the 3rd ACM

Symposium on Principles of Distributed Computing, Vancouver,

Canada, pp. 89-102, August 1984.

RE. Harper, J.H. Lala, and J.1. Deyst, "Fault Tolerant Processor

Architecture Overview," Digest of Papers, FTCS-18, Tokyo,

Japan, pp. 252-257, June 1988.

A.L. Hopkins, T.B. Smith, and J.H. Lala, "FTMP - A Highly

Reliable Fault-Tolerant Multiprocessor for Aircraft," Proceed-

ings of the IEEE, Vol. 66, No. 10, pp. 1221-1239, October 1978.

[Halpern et al. 84]

[Harper et al. 88]

[lhara et al. 78] K. Ihara et al., "Fault-Tolerant Computer System with Three

Symmetric Computers." Proceedings of the IEEE, Vol. 66.

No. lO,pp. 1160-1177,October 1978.

INMOS Limited, Transputer Instruction Set, Prentice Hall

International (UK) Ltd, 1988, ISBN 0-13-929100-8.

[INMOS 88]

214

[Katsuki et al. 78]

[Kieckhafer et al. 88]

[Kopetz-Merker 85]

[Kopetz et al. 90]

[Krol-van Gils 85]

[Lala 86]

[Lala-Alger 88]

[Lamport 78]

[Lamport et al. 82]

D. Katsuki et al., "Pluribus - An Operational Fault-Tolerant

Multiprocessor," Proceedings of the IEEE, Vol. 66, No. 10,

pp. 1146-1159, October 1978.

R.M. Kieckhafer, c.i. Walter, A.M. Finn, and P.M.Thambidurai,

"The MAFT Architecture for Distributed Fault Tolerance,"

IEEE Transactions on Computers, Vol. 37, No.4, pp. 398-405,

April 1988.

H. Kopetz, and W. Merker., "The Architecture of MARS,"

Digest of Papers, FTCS-15, Ann Arbor, USA, pp. 274-279,

June 1985.

H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and J. Reis-

inger, "Tolerating Transient Faults in MARS," Digest of Papers,

FTCS-20, Newcastle upon Tyne, UK, pp. 466-473, June 1990.

Th. Krol, and W.J. van Gils, "The Input/Output Architecture of

the (4,2) Concept Fault-Tolerant Computer", Digest of Papers,

FTCS-15, Ann Arbor, USA, pp. 254-259, June 1985.

J.H. Lala, "A Byzantine Resilient Fault Tolerant Computer for

Nuclear Power Plant Applications," Digest of papers, FTCS-16,

Vienna, Austria, pp. 338-343, July 1986.

J.H. Lala, and L.S. Alger, "Hardware and Software Fault Toler-

ance: A Unified Architectural Approach," Digest of Papers,

FTCS-18, Tokyo, Japan, pp. 240-245, June 1988.

L. Lamport, "Time, Clocks, and the Ordering of Events in a Dis-

tributed System," Communications of the ACM, Vol. 21, No.7,

pp. 558-565, July 1978.

L. Lamport, R. Shostak, and M. Pease, "The Byzantine General

Problem," ACM Transactions on Programming Languages and

Systems, Vol. 4, No.3, pp. 382-40 I,July 1982.

215

[Lamport-MelliarSmith 85] L. Lamport, and P.M. Melliar-Srnith, "Synchronising Clocks in

the Presence of Faults," Journal of the ACM, Vol. 32, No. I,

pp. 52-78, January 1985.

[Lampson 81] B.W. Lampson, "Atomic Transactions," Chapter 11 in Distrib-

uted Systems - Architecture and Implementation, B.W. Lamp-

son, M. Paul, and H.J. Siegert (Eds.), Spring-Verlag,

pp. 246-264,1981, ISBN 3-540-10571-9.

[Laprie 89] J -CO Laprie, "Dependability: a Unifying Concept for Reli-

able Computing and Fault Tolerance," in Dependability of

Resilient Computers, Anderson, T. (Ed.), BSP Professional

Books, 1989, ISBN 0-632-02054-7.

[Larman 83] B.T. Larman, "The Project Galileo Fault Protection System,"

Digest of Papers, FTCS-13, Milan, Italy, pp. 460-466, June

1983.

[Lee-Anderson 90] P.A. Lee, and T. Anderson, Fault-Tolerance Principles and Prac-

tice, Spring-Verlag, 1990, ISBN 3-211-82077-9.

[Lunde uus-Lynch 84] 1. Lundelius, and N. Lynch, "An Upper and Lower Bound for

Clock Synchronization," Information and Control, Vol. 62,

No. 2/3, pp. 190-204, August/September 1984.

[Morgan 93] K.D. Morgan, "The HP-RT Real-Time Operating System,"

Hewlett-Packard Journal, Vol. 44, No.4, pp. 23-30, August

1993.

[Mullender et al. 90] S.J. Mullender, G. van Rossum, A.S. Tanembaum, R. van Re-

nesse, and H. van Staveren, "Amoeba: A Distributed Operating

System for the 1990's," IEEE Computer, Vol. 23, No.5, pp.

44-53, May 1990.

216

[Okamoto 88]

[Palumbo-Butler 85]

[Pease et al. 80]

[Perihelion 91]

[Powe1192]

[Powell et al. 88]

[Randell 75]

[Reisinger-Steininger 93]

[Rennels 78]

T. Okamoto, "A Digital Multisignature Scheme Using Bijective

Public-Key Cryptosystems," ACM Transactions on Computer

Systems, Vol. 6, No.8, pp. 432--441, November 1988.

D.L. Palumbo, and R.W.Butler, "Measurements ofSIFf Operat-

ing System Overhead," NASA Tech. Memo. 86322, 1985.

M. Pease, R. Shostak, and L. Lamport, "Reaching Agreement in

the Presence of Faults," Journal of the ACM, Vol. 27, No.2,

pp. 228-234, April 1980.

Perihelion Software Limited, The helios Parallel Operating Sys-

tem, Prentice Hall, 1991, ISBN 0-13-381237-5.

D. Powell (Ed.), Delta--4 - A Generic Architecture for Depend-

able Distributed Computing, Spring-Verlag, 1992, ISBN

3-540-54985--4.

D. Powell, P. Verissimo, G. Bonn, F. Waeselynck, D. Seaton,

"The Delta--4 Approach to Dependability in Open Distributed

Computing Systems," Digest of Papers, FrCS-18, Tokyo,

Japan, pp. 246-251, June 1988.

B. Randell, "System Structure for Software Fault Tolerance,"

IEEE Transactions on Software Engineering, Vol. SE-I, No.2,

pp. 220-232, June 1975.

J. Reisinger, and A. Steininger, "The Design of a Fail-Silent Pro-

cessing Node for the Predictable Hard Real-Time System

MARS," lEE Distributed System Engineering, Vol. 1, No.2,

pp. 104-111, December 1993.

D.A. Rennels, "Architectures for Fault-Tolerant Spacecraft

Computers," Proceedings of the IEEE, Vol. 66, No. 10,

pp. 1255-1268, October 1978.

217

[Rivest et al. 78] R. Rivest, A. Shamir and L. Adleman, "A Method of Obtaining

Digital Signatures and Public-key Cryptosystems," Communi-

cations of the ACM, Vol. 21, No.2, pp.120-126, February 1978.

[Schlichting-Schneider 83] R.D. Schlichting, and F.B. Schneider, "Fail-Stop Processors: An

[Schmuck-Cristian 90]

[Schneider 84]

[Schneider 90]

[Shin-Ramanathan 87]

[Shrivastava 89]

Approach to Designing Fault-Tolerant Computing Systems,"

ACM Transactions on Computer Systems, Vol. 1, No.3,

pp. 222-238, August 1984.

F. Schmuck, and F. Cristian, "Continuous Clock Amortization

Need Not Affect the Precision of a Clock Synchronisation Algo-

rithm," Proceedings of the 9th ACM symposium on Principles of

Distributed Computing, Quebec City, Canada, pp. 133-141, Au-

gust 1990.

F.B. Schneider, "Byzantine Generals in Action: Implementing

Fail-Stop Processors," ACM Transactions on Computer Sys-

tems, Vol. 2, No.2, pp. 145-154, May 1984.

F.B. Schneider, "Implementing Fault Tolerant Services Using

the State Machine Approach: a Tutorial," ACM Computing Sur-

veys, Vol. 22, No.4, pp. 299-319, December 1990.

K.G. Shin, and P. Ramanathan, "Diagnosis of Processors with

Byzantine Faults in a Distributed Computing System," Digest of

Papers, FrCS-17, Pittsburgh, USA, pp. 55-60, June 1987.

S.K. Shrivastava, "The Design and Implementation of ARJU-

NA," Technical Report No. 205, Computing Laboratory, Univer-

sity of Newcastle upon Tyne, Newcastle upon Tyne, UK, March

1989.

218

[Shrivastava et al. 91]

[Shrivastava et al. 92]

[Siewiorek et al. 78a]

[Siewiorek et al. 78b]

[Siewiorek-Swarz 92]

[Smith 84]

[Somani 90]

S.K. Shrivastava, P.D. Ezhilchelvan, N.A. Speirs, and D.T. Sea-

ton, "Fail-Controlled Computer Architectures for Distributed

Systems," Technical Report No. 333, Computing Laboratory,

University of Newcastle upon Tyne, Newcastle upon Tyne. UK,

July 1991.

S.K. Shrivastava, P.O. Ezhilchelvan, N.A. Speirs, S. Tao, and

A. Tully, ..Principal Features of the VOLTAN Family of Reli-

able Node Architectures for Distributed Systems," IEEE

Transactions on Computers, Vol. 41, No.5, pp. 452-549,

May 1992.

D. Siewiorek et al., "A Case Study ofC.mmp, Cm*, and C.vmp:

Part I - Experiences with Fault Tolerance in Multiprocessor Sys-

tems." Proceedings of the IEEE, Vol. 66, No. 10, pp. 1178-1199,

October 1978.

D. Siewiorek et al., "A Case Study ofC.mmp, Cm*, and c.vmp:

Part II - Predicting and Calibrating Reliability of Multiprocessor

Systems," Proceedings of the IEEE, Vol. 66, No. 10,

pp. 1200-1220, October 1978.

D.P. Siewiorek. and R.S. Swarz, Reliable Computer Systems:

Design and Evaluation (second edition), Digital Press, USA,

1992. ISBN 0-13-772021-l.

T.B. Smith, "Fault Tolerant Processor Concepts and Operation,"

Digest of Papers, FfCS-14, Kissimmee, USA, pp. 158-163,

June 1984.

A.K. Somani, "Sequential Fault Occurrence and Reconfigura-

tion in System Level Diagnosis," IEEE Transactions on Com-

puters. Vol. 39, No. 12, pp. 1472-1475, December 1990.

219

[Somani-Sarnaik 89]

[Speirs-Barrett 89]

[Speirs et al. 93]

[Srikanth- Toueg 85]

[Strong et al. 90]

[Stroustrup 92]

[Tanembaum 92]

[Tao et al. 94]

A.K. Somani. and T.R. Sarnaik, "Reliability Analysis and Com-

parison of Two Fail-op/Fail-op/Fail-safe Architectures."

Digest of Papers. FTCS-19. Chicago. USA, pp. 566-573. June

1989.

N.A. Speirs, and P.A. Barrett, "Using Passive Replicates in

Delta-4 to Provide Dependable Distributed Computing." Digest

of Papers, FTCS-19. Chicago, USA. pp. 184-190, June 1989.

N.A. Speirs, S. Tao, EV. Brasileiro, P.O. Ezhi1chelvan and S.K.

Shrivastava, "The Design and Implementation of VOLTAN

Fault-Tolerant Nodes for Distributed Systems," Transputer

Communications, Vol. 1,No.2, pp. 93-109, November 1993.

T.K. Srikanth, and S. Toueg, "Optimal Clock Synchronisation,"

Proceedings of the 4th ACM symposium on Principles ofDistrib-

uted Computing. Minaki, Canada, pp. 71-86, August 1985.

R. Strong. D. Dolev, and F. Cristian, "New Latency Bounds for

Atomic Broadcast (Extended Abstract)." Proceedings of the 11th

Real Time System Symposium, Lake Buena Vista, USA,

pp. 156-165, December 1990.

B. Stroustrup, The C++ Programming Language (2nd edition),

Addison-Wesley Publishing Company. 1992, ISBN

0-201-53992-6.

A.S Tanernbaum, Modern Operating Systems, Prentice-Hall,

Inc., 1992. ISBN 0-13-595752-4.

S. Tao. P.O. Ezhilchelvan. S.K. Shrivastava, and N.A. Speirs,

"Using Focused Fault Injection Testing for Validating Software

Implemented Fault Tolerance Mechanisms," Technical Report.

University of Newcastle upon Tyne, 1994.

220

[Theuretzbac her 86]

[Toy 78]

[Toy-Gallaher 83]

[TullY-Shrivastava 90]

[Webber-Beirne 91]

[Wensley et al. 78]

~. Theuretzbacher. '''VOTRICS': Voting Triple Modular Com-

puting System:' Digest of Papers, FrCS-16, Vienna, Austria,

pp. 1-W-150. July 1986.

w.~. Toy. "Fault-Tolerant Design of Local ESS Processors,"

Proceedings of the IEEE, Vol. 66, No. 10, pp. 1126-1145, Oc-

tober 1978.

w.~. Toy. and L.E. Gallaher. "Overview and Architecture of

3B20D Processor," Bell Systems Technical Journal, Vol. 62,

No. I (pt. 2). pp. 181-190, January 1983.

A. Tully. and S.K. Shrivastava, "Preventing State Divergence in

Replicated Distributed Programs," Proceedings of the 9th IEEE

Symposium on Reliable Distributed Systems, Huntsville, USA,

pp. 104-113. October 1990.

S. Webber. and J. Beirne, "The Stratus Architecture," Digest of

Papers. FrCS-21. Montreal, Canada, pp. 79-85, June 1991.

J .H. Wensley et al., "SIFf: Design and Analysis of a Fault- Toler-

ant Computer for Aircraft Control," Proceedings of the IEEE,

Vol. 66, No. 10. pp. 1240-1255, October 1978.

221

