
Interactive Approaches to the Solution of a

Class of Combinatorial Problems

A Thesis

submitted to the

UNIVERSITY OF NEWCASTLE UPON TYNE

for the degree

of

DOCTOR OF PHILOSOPHY

L. WALLER
September 1971

Acknowledgements

I am indebted to the Science Research Council for awarding me
a Research Studentship to enable me to study at the University
of Newcastle upon Tyne from October 1966 to September 1968 and
also to the Computing Laboratory of the University in whose
employment the latter stages of the research was conducted.

MY thanks are due to my supervisor, Professor E.S. Page for
helpful remarks and ideas and to the staff of the laboratory
for assistance at all times.

Preface

This thesis considers the usefulness of interaction between a
human and a powerful computer in attempting to solve a class of
discrete optimization problems. Some typical problems are des-
cribed in chapters 1 and 2 and the effectiveness of their exact
solution by existing methods is assessed. Chapter 3 presents
some heuristic techniques which produce good approximate solu-
tions and the value of such methods is discussed.

An alternative approach, that of providing a mechanism for man-
machine interaction is proposed in chapter 4. A system for
providing easy access to a range of algorithmic and heuristic
techniques is described. The system, named IMPACT, was implemented
by the author and its many features include the interruption,
interrogation, adjustment and resumption of a process or algorithm.
Some novel interactive tree-manipulation techniques and their
usage are introduced in chapter 5. This chapter also describes
extensions to certain other heuristics in order to improve their
power when used interactively.

Throughout the thesis a job-shop scheduling problem serves as a
useful vehicle for illustrating ideas. This problem was investiga-
ted extensively and chapter 6 is devoted to the topic. The idea
of a critical path of jobs through machines is introduced together
with the slack time of a job upon a machine under a particular
schedule.

Branch-and-bound approaches to the problem have been proposed in

the past. The performance of such an approach has been
substantially improved, as is shown by new results. The
improvement stems from two sources both of which were discovered
interactively; i) a different branching procedure designed
to exploit features of the job-shop scheduling problem, and
ii) more realistic lower bounds than those originally proposed.

The final chapter discusses the generality of the approach and
illustrates the extendability of IMPACT. Other discrete
optimization problems are discussed briefly and a branch-and-
bound formulation to one of them, an assignment problem~ is
presented. An interactive approach by other authors to the
travelling salesman problem is reviewed and features similar
to those experienced in the job-shop scheduling investigation
are remarked upon. To conclude, the advantages to be gained
from an interactive approach are discussed.

Contents.

Chapter 1: Introduction.
1.1 The Job-Shop Scheduling Problem. 2

1.11 The calculation of the makespan (or cost) of
a permutation. 5

1.2 Terminology. 9

1.3 The Travelling Salesman Problem. 10
1.4 A problem of assigning facilities to locations. 13

2.0
2. 1

2.11
2. 111

2.112

2.2

Chapter 2: Approaches to the Problem.
Complete Enumeration. 16

17

17

19

20
22

Branch-and-Bound Methods.
Branching Methods.
Branching from the Lowest Bound.
Backtracking.
Lower Bounds for the job-shop scheduling problem.

2.3 An example of the differences in the branching
techniques.

2.4

2.41
2.42
2.421

26

The behaviour of the branch-and-bound algorithm
upon the job-shop scheduling problem. 29

29
35

36

Review of previous work.
Features of the algorithm requiring investigation.
Data generation.

2.422 The effect of the relative loadings and the reversion
technique. 37

2.423 The usefulness of the concept of dominated nodes. 37
2.424 A comparison between branching methods. 39
2.425 The Limitations of the Algorithm. 40
2.5 Integer Linear Programming. 42
2.6 Dynamic Programming. 42

3. 1

3.2
3.21

Chapter 3: Heuristic Techniques.
Local Rules. 44
Branch-and-Bound as a Heuristic. 45

45Branch-and-Bound without Backtracking.
3.22 Seeking a reasonable improvement upon a particular

value.
3.23
3.3
3.31
3.32
3.33
3.34
3.341
3.4
3.41

A Solution in a Bounded Period of Time.
46
47
47
48

49
50

50

51
53
54

Heuristics based upon Sorting Techniques.
Selection.
Exchanging.
Merging.
Characteristics of Sorting Methods.
The 'Goodness' of Solutions.
Monte Carlo Methods.
The Metric in the space of permutations.

Chapter 4: An Interactive Approach.
4.1 Necessary Computing Facilities. 58

4.2 Design Objectives of IMPACT. 59
4.3 Achievement of Design Objectives. 60
4.4 Requirements of IMPACT from the Operating System. 63
4.5 Usage of IMPACT: Command Mode. 64

4.51 Interrupt Mode and Local Comnands. 65
4.52 System Commands. 67

4.6 Aids to Ease of use of IMPACT. 69
4.61 Permutation Definition and the concept of the

Current Active Permutation (CAP). 70

4.62 Predefined Permutations. 71

4.63 Timing Considerations. 72

4.64 Hard Copy Permanent Record Facil ity. 73

5.1
5.2
5.3
5.4
5.41
5.42
5.43
5.44
5.45

6.1
6.11

6.2

Chapter 5: Interactive Techniques.
The Motivation for the Display of Lower Bounds.
User Controls over Backtracking.

74
76
76
79
79
82

84

86
89

Further Developments of Existing Heuristics.
Tree Interrogation and Adjustment.
Interruption of a Search.
Tree Drawing.
Masking of Parts of a Tree.
Alteration of the Targetva1ue.
Jumping up the Tree.

Chapter 6: Interaction and the Job-Shop
Scheduling Problem.

The Critical Path for a sequence of jobs.
The inverted problem and its association with the
slack of a job-machine element.

93

100

108Interactive Experiences.

6.21 Lower Bounds and their connection with the
inverted problem.

6.22
6.23
6.24
6.241
6.242

118

Additional facilities for the 'BOUNDS' command. 119

121
123
127
130

The normal or the 'reverse' problem.
Branching from both ends of the permutation.
A further strengthening of lower bounds.
An additional set of lower bounds.

6.3 Implementation of branching from both ends of
the permutation.

6.4
134
137Behaviour of the 'Branch from both ends' approach.

Chapter 7.
7.0 The Extendability of IMPACT. 147
7.1 The Application of IMPACT to other discrete

optimisation problems. 148
7.2 A branch-and-bound approach for the problem of

assigning facilities to locations. 150
7.21 Lower bounds for the problem of assigning

facilities to locations. 153
7.22 Performance of the Algorithm. 156
7.3 Other Man-Machine Approaches: The Travell ing

Salesman Problem. 159
7.4 Conclusions. 162
7.41 An Appraisal of IMPACT. 162
7.42 The value of interaction. 162

Appendix 1: User's Guide to IMPACT.
Command Descriptions. 165

Appendix 2:

Appendix 3:

Appendix 4:

References.

Experimental Results with the improved
algorithm. 190
The difficult problem of 14 jobs upon
3 machines. 205

206A 20-Job la-Machine Example.

The Cost Function for the Travelling
Salesman Problem. 208

Results for the Assignment Problem. 209

212

Index to figures in the text.

Table 1: A problem of scheduling 5 jobs upon
3 machines. 5

Figure 1: Events Sequence for 5 jobs upon 3
machines. 6

Figure 2: The Earliest Finishing Times of jobs
upon machines.

Table 2: The Distance between Cities.
8

11
Figure 3: The graph for a travelling salesman

problem.
Table 3: Data for an assignment problem.
Figure 4: The permutations of (1,2,3,4) arranged

as leaves of a tree.

12
14

18

Figure 5: Arrangement of a 'push-down' stack for
backtracking. 21

Figure 6: A Flowchart for backtracking. 23
Figure 7: An Illustration of lower bounds for the

job-shop scheduling problem. 25
Table 4: An array of job-machine times.
Figure 8: The tree examined under the method of

'Branching from the lowest bound'.

27

Figure 9: The tree examined under backtracking.
Table 5: The 'reversed problem' for table 4.
Figure 10: The Behaviour of backtracking upon 3-

machine problems.

28

30

31

Figure 11: Use of the 'BOUNDS' command.
Figure 12: Differences in the use of the EXCHANGE

command.

41
75

78

Table 6: The Stack representation of a tree 80
Figure 13: The tree corresponding to Table 6. 81
Figure 14: Tree drawn conventionally. 82
Figure 15: Tree drawn root last. 83
Figure 16: Tree after 'MASK'ing of nodes A and B. 85
Figure 17: The effect of altering the targetva1ue. 87
Figure 18: Original tree retrieved by resetting the

targetva1ue to its previous value.
Figure 19: The effect of 'JUMP'ing up the tree.

89
90

Figure 20: Retrieval of the tree previously
'JUMP'ed over. 91

Table 7: Information saved on 'JUMP'ing up the
tree. 92

Figure 21: A critical path. 94
Figure 22: The effect of decreasing d(S,3) by 7 units. 95
Figure 23: Algebraic display of earliest finishing

times. 95
98
98

Figure 24: An order for calculation of slack.
Table 8: The earliest finishing times of 1.11.
Table 9: The slack associated with the job-machine

times. 100
Figure 25: Events Sequence for 5 jobs upon 3 machines

with the critical path outlined.
Table 10: The inverted problem of table 1.
Figure 26: The Sequence of Events for the Reversed

Problem of 5 jobs upon 3 machines.
Figure 27: The Reversed Problem with the time scale

adjusted.

101
102

103

104
Table 11: The same sequence for both the normal

and the reversed problems. 105

The results produced for the 12 jobs 3
machines problems by the heuristic of
exchanging upon the solution produced
by merging. 140
The behaviour of branching from both ends
of the permutation on problems of
scheduling 12 jobs upon 3 machines.

Figure 28: An example of manual backtracking.
Figure 29: The permutations of (1,2,3,4) arranged

in a manner suitable for a 'branch-from-
both-ends 'search.

Figure 30: A scheduling tree examined under branching
from both ends of the permutation.

Figure 31: An illustration of the lower bound
g(k) when m = 4.

Figure 32: An illustration of the lower bounds
H(k) when m = 4.

Figure 33: The lower bounds H,(k) for m = 4.
Table 12: The behaviour of the backtracking

algorithm on problems of scheduling 12
jobs upon 3 machines.

Table 13:

Table 14:

Branching from both ends of the permuta-
tion with improved bounds upon 12 jobs/
3 machines problems.

Figure 34: The effect of exchanging when a different

Table 15:

interpretation is placed upon the output
permutation.

Table 16: Conversion from one assignment problem
to a different one.

122

125

126

131

135

136

139

141

142

148

151

Table 17: The results of Gavett and Plyter. 152
Figure 35: Tree for the assignment problem of 5

plants and locations. 156

Table 18: Results of backtracking upon the
assignment problem.

Figure 36: A typical tree on interruption of a
157

branch and bound search for the
problem of assigning facilities to
locations. 158

Interactive Approaches to the Solution of a

Class of Combinatorial Problems

Chapter 1: Introduction

Certain types of discrete optimization problems have the
characteristics that a solution may be represented by a vector
v which minimizes some cost function C {v}. In effect, the
cost function, C, is a 'black box' which takes as input a vec-
tor v and outputs a cost associated with the vector. The dif-
ficulties presented by such problems lie in the fact that in
general there are a great number of possible input vectors and
the determination of one which produces the minimum cost is not
trivial. The behaviour of a black box function might be quite
complex and an orthodox approach to the problem is to utilise
knowledge of the black box's behaviour to attempt to arrive at
an analytical solution to the problem. Some particular black
box functions are described and some results and limitations of
the conventional methods of attack are given.

In later chapters a different approach is described. This
approach is intended to utilise the powerful interactive
facilities offered by modern multi-programming computers.
Man-machine interaction, providing the ability to direct com-
putational effort into areas which one's judgement and/or
intuition suggest are worth exploring, would appear to be a
powerful tool with which to attack the problem. Such an
approach permits one to be ignorant of the mechanism of the

- 2 -

black box function. It is expected, however, that the
behaviour of the black box will be uniform in a respect
that 'similar' input vectors will exhibit similar cost
values. (This concept of similarity between vectors is dif-
ficult to formalise but it ;s thought that the user of
this approach may develop a 'feeling' for both the behaviour
of the black box and the measure of likeness between input
vectors). Later chapters describe the results of such an
interactive approach and in particular how such an approach
aided the development of a more powerful method of solution
for one particular cost function. The particular cost
functions described here may be classified as 'permutation
prob 1ems' in the sense that the vector input to the cost
function can be represented as a permutation of (1,2, ••• ,n).
Much of the research involved and software produced is thus
oriented towards permutation problems. However, other pro-
blems could be approached in a similar fashion and many of
the techniques developed adopted.

1.1 The Job-Shop Scheduling Problem.

The job-shop scheduling problem exists in many forms, some of
which possess exotic constraints and cost functions (see
Sissons (l), and Waller (2)). The problems described here,
whilst simple in its structure and cost function still
presents great computational difficulties.

The problem is to find the best (in a sense to be described)
order of processing of n jobs Jl, J2, ••• , Jn on m machines

- 3 -

Ml, M2, ... , Mm subject to
1) A job must pass through machine M. 1 before proceedingJ-

onto machine Mj•

2) A machine may process only one job at a time and the
processing of a job upon a machine may not be interrupted
once it has started.

In the problem there are n! different ways of putting the jobs
onto the first machine, n! different ways of putting them onto
the second machine, and so on. Thus the total number of pos-
sible sequences of placing jobs onto machines is (~!)m. Each
operation by a machine upon a job could be mapped bijectively
onto the integers 1,2, • ,nm. Any permutation of
(l, 2, ••• , nm) then represents a possible schedule of
jobs through machines, although not all permutations will be
feasible; (constraint 1, above, may be violated).

The processing time for job i upon machine j is represented
by d{i, j)and thus the problem may be specified by the array
o = f d(i, j) 1 A number of cost functions are available
for the problems and two of the more common ones are i)
minimise the total duration from the start of processing
of the first job upon the first machine until the finishing
of processing of the last job upon the last machine, ii)
minimise the mean of the completion times of the jobs. The
former cost function, often called minimising the makespan
or schedule length will be considered here.

- 4 -

The two-machine job scheduling problem of minimising makespan
has been solved analytically by Johnson (14) and an easily-
applied procedure for obtaining an optimum given; job i
precedes job j in an optimum solution if min ~d(i,1),d(j,2)~
< min ~ d(j,l), d(i,2)t. The approach carries over to
three - machines only in special cases. A much more complica-
ted rule was proposed by Dudek and Tenton (24) for the case
where m ~ 2 but a counterexample by Karush (25) shows that
an optimal solution is not guaranteed. Johnsonls rule implies
that the order of jobs through machines is the same for each
machine. Roy (3) has shown that no advantage is gained by
having different sequences of jobs for the first two
machines, or different sequences for the last two machines.
The total number of different sequences to be considered is
thus (n!)m - 2 In order to convert the problem to a form
in which all permutations considered are feasible, the following
Ina passing' restriction is added.

3) The order of jobs through machines is the same for each
machine.

Condition 3 means that for the case m > 3 an optimum under the
three conditions above will not necessarily mean that no
improvement could have been made with the no-passing
restriction removed. Occasionally in later chapters the
condition will be temporarily dispensed with but it will
be made clear when this occurs and the reason for the
conditionls relaxation will be to allow the use of certain
heuristic methods.

- 5 -

It can be seen that the jobs can be numbered (1, 2, ... ,n)
and that any permutation of (1,2, ••• n) represents a
feasible sequence of jobs through machines. The problem has
thus been transformed so that the input vector to the cost
function is a permutation. Furthermore the cost of any
permutation can be easily calculated.

1.11. The calculation of the makespan (or cost) of a
permutation.

Consider the following example of 5 jobs to be processed upon
3 machines where the cost matrix D is as shown.

Jobs

1

2
3

4
5

Machines
I II III

1 12 19
13 12 18 = D
3 31 20

27 24 12
51 12 18

Table 1: A problem of scheduling 5 jobs upon 3 machines.

Placing the jobs on the machines in the order 3, 2, 4, 5, 1
(inputting the permutation (3,2,4, 5, 1) to the cost
function)would result in a cost (duration) of 143 being
returned. Figure 1 depicts the sequence of events, the
first few of them occurring as follows:

At time zero job number 3 would begin processing upon
machine I and would leave this machine at time 3. Machine
II is unoccupied at this time and so job number 3 can pass

- 7 -

onto this machine and will leave it after a time 3 + 31 ~ 34.
It then proceeds onto machine III (which is as yet unoccupied)
and eventually leave this machine after a time 54. Meanwhile,
once the first job has vacated the first machine, this machine
is free to accept the next job, i.e. job number 2. This job
occupies machine I until time 3 + 13 ~ 16 and is then ready to
pass onto machine II. However, at this time machine II is
still occupied by job number 3 and so job 2 awaits the comple-
tion of job 3 upon machine 2.

From the above it js apparent that ik, the k th job in a
sequence, cannot begin processing upon a machine j until
machine j is ready to process it and until the job ik has
finished its processing upon machines 1, 2, ••• , j-l.
Denoting 'the earliest finishing time' of job ik on machine
j as f (ik, j) we have

f(ik,j) = max ff(ik, j-l), f(ik-l,j)t + d(ik,j)

¥ j>l and k>l

f(il,j) = IJ.. d(il,s)s;)
and

This gives an algorithm for the calculation of the cost
function for any complete permutation (il,i2,· •• in)
and the total cost (for n jobs upon m machines) of the
permutation is f(in,m).

- 8 -

In the previous discussion it was assumed that jobs were
placed upon machines as early as possible; i.e. jobs are
not deliberately held back as this could not in any way
decrease the cost function, but could serve to increase
it. This assumption holds throughout the discussion of the
job-shop problem.
The calculation of the earliest finishing times can be per-
formed simply with pencil and paper and the following
worked example is instructive. For the problem stated
earlier the earliest finishing times for the permutation
(3,2,4,5,1) are as in figure 2.

I I! II!
3 3 34 54 f{3,1) ~f{3,2) 4-f{ 3 ,3)
2 16 46 72 tf(2,l) ff(2,2) 1'f(2,3)
4 43 70 84 1'f(4,1) 1'f(4,2) 1'f(4,3)
s 94 106 124 'tf{S,l) ~f(S ,2) +-f(S,3)
1 95 118 143 tf(l,l) 1'f{l,2) tf{1,3)

Figure 2: The Earliest Finishing Times of jobs upon
Machines

The entries in the table correspond to the If-va1uesl or
learliest finishing times I on the right. The arrows
associated with an f-va1ue paint to the earliest finishing
time from which the f-va1ue was derived.

A point to be o~rved is that the cost of any schedule is
the sum of (n+m-l) job-machine times. In the example the
cost of 143 is the sum of 7 job-machine times, i.e.
3 + 13 + 27 + Sl + 12 + 18 + 19.

- 9 -

1.2. Terminology

In order to fit in with the terminology widely used in con-
nection with job-shop scheduling the terms 'part permutation',
'vertex' and 'node', used in later chapters are synonymous.
A 'part permutation', or more strictly a 'part permutation
of 1 to n' is an ordered sequence (i, i2, ••• ,ir) of
integers in the closed interva 1 [i, n], such that
1 1r :: nand is fit for s F t and 1 :: s ~ r, 1 .::t.:: r.
A part permutation can thus be a complete permutation of
1, ... , n.

An attempt will be made to refer to (i1, i2, ••• , ir)
as a part permutation whilst the terms 'node' or 'vertex'
will be applied to points in a graph or tree. (Such
points will be defined by the part permutation associated
wi th them).

The following terminology will be employed in connection
with graphs. A graph consists of a set of nodes and a set
of unilateral associations specified between parts of nodes.
If node i is associated with node j, the association is
called a branch from initial node i to terminal node j.
A path is a sequence of branches such that the terminal
node of each branch coincides with the initial node of the
succeeding branch. Node j is reachable from node i if there
is a path from node i to node j. The number of branches
in a path is the length of the path. A circuit is a path
in which the initial node coincides with the terminal node.

10 -

A tree is a graph which contains no circuits and has at most
one branch entering each node. A root of a tree ;s a node
which has no branches entering it, and a leaf is a node which
has no branches leaving it. A root is said to lie at level
zero of the tree, and a node which lies at the end of a path
of length j from a root is on the jth level. The set of
nodes which lie at the end of a path of length one from
node x comprises the filial set of node x, and x is the parent
node of that set. The set of nodes reachable from x is said
to be governed by x and comprises the nodes of the subtree
rooted at x.

1.3 The Travelling Salesman Problem

Another discrete optimisation problem of the category des-
cribed earlier is the travelling salesman problem. In its
simplest form the objective is to find an optimal 'tour'
through n locations or cities which starts at one location,
visits each of the remaining locations once and once only,
and returns to the starting location. An optimal tour is
a tour that minimises the total distance travelled.

The cost matrix D = f d{i ,j)~ specifies the distances
involved; d{i,j) represents the cost of travelling from
city i to city j. The n cities may be thus represented
as a graph in which a branch from node i to node j has
an associated distance d(i,j). If the distance d(i,j)
associated with a branch is ~ then there is no route
from city i to city j without passing through at least
one other city. It is thus possible for the problem to be

- 11

degenerate and have infinite cost if there exist two cities (or
nodes) i and j such that node i is not reachable from node j.

(Any problem considered later will be assumed to be non-
degenerate) .

Table 2 thus corresponds to the graph in figure 3.

City 1

00 5 8
1

Table 2. The Distances between
Cities

2
3
4

9
4
6

3 00

00

00 8 00

D = fd(i,j)~

Without loss of generality the cities in the problem may be num-
bered 1, 2, ., n and a solution to the problem is then a
permutation . ., n that
minimises the quantity d(il,i2) + d(i2,i3) + ..• + d(in_l,in)

0-1

= I=i-1 d(i.,i·1)J J+

(The example subroutine given in Appendix 3 calculates this cost
function).

The first item of an input permutation may be regarded as fixed
and thus the number of possible solutions to the problem is
(n - l)!

Variations of the problem exist. In the case of a symmetrical
cost matrix, d(i,j) = d(j,i) and consequently the number of
possible solutions if i(n-l)! Sometimes the return to the
starting location is not required and thus in the non-
symmetric case there are n! possible solutions whilst if
symmetry exists in! permutations must be considered.

- 12 -

00

t: \.~u.N~. 3 \hQ. ~~rh t-or 0.. tro..\,)e.\\.\.n~ ~Q.tes.mo.n

_?,,",ob\e.rn .

13 -

Certain scheduling problems may be expressed as travelling salesman
problems. As an example from production scheduling, suppose that
there is a production cycle of some time, during which an assembly
line must produce each of n different models. If the cost of
switching from model i to model j is dij and it is desired to
minimise total setup cost, then the problem is a travelling sales-
man problem. Normally dij would not be equal to dji and thus the
problem would not be symmetric.

1.4 A problem of assigning facilities to locations

Another discrete optimization problem that has to date eluded easy
optimal solution can be stated as follows. A number, n, of
facilities are to be assigned to n locations such that one and only
one facility is assigned to each location. Associated with each
pair of locations is a cost, or index of cost, of having to
transfer a unit of material between the location pair. This is thus
a 'distance' between the locations and whilst it might be a linear
distance it need not be necessarily so. Similarly with each pair
of facilities there is an index of the 'traffic intensity' between
the facilities. The traffic intensity is a measure of some depen-
dence between two facilities and could be the rate at which
materials are transferred between the two facilities. The cost of
assigning a pair of facilities to a pair of locations is the
product of the location distance and the facility traffic intensity.
The cost of a complete assignment will be the sum of all such pro-
ducts for each location-facility pairs in the assignment.

- 14 -

There are several practical examples of the problem. One such case
is the layout of a plant where a number of machines, pieces of
equipment, or departments must be assigned to a set of locations.
The locations will be at fixed distances from each other and there
will be a rate of flow of materials (possible people or parts)
between each pair of facilities. In the field of ergonomics the
layout of a control panel reduces to the above problem if the
frequency of access to each control and from each control to every
other is known or can be predicted.

The problem can be represented by a distance matrix 0 = (d..).
'J

where d,.,.= 0 and d .. = d .. for 1 < i, j ~ n, and a flow matrix
lJ J'

F = !f"J.lwhere f .. = 0 and f .. = f .. for 1 < i, j < n. The{J " 'J J' - -
cost of assigning facilities k and t to locations i and j is
then fk1 dij•

A permutation (£l' 12, ••• , 1n) can be interpreted as assigning
facility i to location ~i and thus the cost of the above permuta-
tion is

n
Ls=1

n
Lt=s+l

As an example with the distance and flow matrices in the table
below

5

2 1 0 2 1 2 2 5 0 3 0 2
3 1 2 0 1 2 3 2 3 0 0 0
4 2 1 1 0 1 4 4 0 0 0 5
5 3 2 2 1 0 5 1 2 0 5 0

Distance Matrix 0 Flow Matrix F

Table 3: Data for an assignment problem

- 15 -

The cost of the permutation (3,S,2,1,4) is thus

f12d3S + f13d32 + f14d31 + f15d34

+ f23dS2 + f24dS1 + f2SdS4

+ f34d21 + f3Sd24
+ f4Sd14

= S x 2 + 2 x 2 + 4 x 1 + 1 x 1 + 3 x 2 + 0 x 3 + 2 x 1
+ 0 x 1 + 0 x 1 + 5 x 2 = 37.

16 -

Chapter 2 Approaches to the Problem.

2.0 Complete Enumeration.

In the problem of determining which permutation of (l, 2, ••• ,n)
yields the minimum cost for some cost function the number of pos-
sible solution vectors, or permutations, is finite (= n!) and thus
it is theoretically possible to generate each permutation, deter-
mine its associated cost and choose the permutation with the
lowest cost. Such a method is, however, not practically feasible
for anything but small n owing to the behaviour of the factorial.
If n = 15 examination of the 15! possibilities at the rate of one
per second would take approximately 40,000 years! An important
feature of the problem is illustrated here1 the effort involved
in calculating the cost of a particular permutation is not pro-
hibitive - the number of different permutations possible is the
stumbling block.

A more efficient approach than explicit exhaustive enumeratidn
is to attempt to exclude large groups of permutations by some
criterion peculiar to the cost function, i.e. a 'sieve' is
required. If by use of such a sieve a part permutation
(i1, i2, •••) may be seen to be inherently suboptimal because
of ~ starting elements (il,i2) then (n - 2)! permutations may
be ruled out in one step, without having to examine each of them
individually. Thus a powerful sieve could significantly reduce the
number of permutations to be examined. This method of searching,
implicit exhaustive enumeration, compares favourably with the
explicit search providing that the sieves are easily computable

17 -

and stringent in the number of possibilities they eliminate.
Several of the advocates of the implicit search technique make a
comparison with explicit enumeration but the test to be applied
to implicit search techniques is not whether they perform better
than poor methods but whether they are computationally practical.

2.1 Branch-and-Bound Methods

Lomnicki (4) proposed attacking the job-shop scheduling problem
by using a 'branch-and-bound' technique. Branch-and-bound is a
form of implicit exhaustive enumeration and its essentials are a
systematic method of searching (the 'branching' procedure) so
that every possible solution vector is considered, and a criterion
for obtaining a lower bound for any partial vector. At any stage
in the search a sieve (a function of the bound calculated) is
applied to the next part permutation and if the part permutation
is deemed worthy of further investigation it is stored for later
examination, otherwise it (and consequently all permutations
beginning with this part permutation) is rejected. The process
is repeated by exploring one of the part permutations stored.
earlier and continues until no more part permutations remain for
examination. Variations of branch-and-bound methods can be
arrived at by employing different branching methods and by
altering the sieve (or function of the lower bounds).

2.11 Branching Methods.

The set of all permutations of n objects, numbered 1, 2, ••• , n
can be conveniently represented as the leaves of a tree. (Such
a tree for the case when n = 4 is shown in figure 4). The root
of the tree corresponds to the null part permutation and

18

Fi~"'''e. 4-: The. ?-e.r",u\::.o..·\::'Q~ crt t, ~'_,3\~) cH-ra.nsed

QS leave.s c~ 0.. tree.

- 19 -

branches emanating from the root lead to n nodes, each of which
corresponds to the placing of a different one of the elements
1,2, ••• , n in the first position of the permutation. The
filial set of any of these nodes consists of n-l nodes which
correspond to allocations for the first two positions in the
permutation. The node corresponding to the part permutation (il)
where il e: (1, 2, ••• , n) = In thus has a filial set consisting
of n-l different part permutations of the form (il,k) where k e:

iIn'" (il) ~. At a level below any of these n(n-l) nodes there are
another n-2 nodes and in general at a level j of the tree there
are to be found those nodes corresponding to part permutations
with the first j positions allocated. If Pj = (il,i2, ••• , ij)
is a part permutation the node corresponding to Pj will ha~e n - j
direct descendents of the form Pj + 1 = (il, i2, ••• , ij' k)
where k E tJn ~ Pj~' It follows that Tj + l' the total number
of nodes at level j + 1, = (n - j) x Tj for 1 < j < n. Since
Tl = n, T2 = n (n-l) it is clear that Tn = n! and that each of
these nodes corresponds to a different permutation of
(1, 2, • • ., n) .
2.111 Branching from the Lowest Bound

An attractive method for the systematic investigation of the tree
is that of examining at any stage the node that possesses the
lowest lower bound. This can be termed 'branching from the
lowest bound' and it is apparent that, in terms of the number
of nodes examined, no other branching method can better this,
since any node examined under this method must be examined at
some time to ensure that an optimum solution has been found.

- 20 -

Whenever a node has been examined and appropriate lower bounds
to the associated part permutation calculated, the bounds must
be sorted and placed with any lower bounds already stored from
the investigation of other part permutations. The smallest from
the whole set is then investigated further. This method is
advocated by Igna11 and Schrage (5) for the job-shop scheduling
problem and has the drawback of potentially requiring a huge
amount of storage space for the part permutations upon which
investigation has been suspended. The worst possible case would
require the storage of n! part permutations upon which investiga-
tion has been suspended.

2.112 Backtracking.

A branching method requiring a much smaller amount of storage space
is that of backtracking, or in the terminology of Lawler and
Wood (6), 'Branching from the Newest Active Bounding problem'.
At any stage of the search if the node Pj, j < n, is being
investigated the next node to be examined will be one of the
filial set of Pj, i.e. some Pj + 1. The most logical choice of
P. 1 will be the one that has the smallest lower bound. If
J +

the lower bound is sufficiently low for Pj + 1 to warrant investi-
gation (i.e. if the bound is less than the lowest cost of all
permutations as yet examined) it will be examined further. When-
ever a node P. is deemed unworthy of further examination the next

J
node to be examined is found by climbing up the tree one level at
a time until a suitable node Pl (1 < j) is encountered. (This
mechanism produmes a lexicographical ordering amongst part
permutations in that Pj = (il, i2, ••• , ij) is said to be

21

nearer to P' (", ", "') th t P" (e u " ..j = '1" 2' . . ., , j an 0 j = '1' , 2· • II).,,j

if there exists some k with 1 < k ~ j and ik = ik, ik 1 ik
such that i = t ' = illfor all s < k).s s s

Whenever a complete permutation is encountered the actual cost of
the permutation is calculated and if the cost is less than that
associated with the previous best permutation a record is made of
it. The search terminates when no node exists that is worthy of
further investigation.

It can be seen that the tree will be investigated in a backtrack
fashion, and such a search lends itself to an easy implementation
by the use of a 'push-down' stack. At the first level of the
tree n nodes are generated and ordered according to their lower
bounds. The one with the lowest lower bound is retained and the
remainder placed upon the stack so that in the event of any of
them being required later the smallest will be retrieved first.
Similarly at the next level

\c.rse. uo.\ues

v~\ ..u 1 } \e.~e.l 1 ln- \~",et,.)
smQ.\t
\ o..,,"~e. ~..\."'u1 } \e.\)t\ l. l",-"l.. .."'~ r\es ')
S"""'~\ ~ .. \ \A."S

Figure 5: Arrangement of a 'push-down' stack for backtracking.

- 22 -

of the tree n-2 lower bounds will be placed upon the stack, again
ordered amongst themselves. Figure 5 depicts the arrangement of
the lower bounds on the stack. When a complete vector is reached
bounds are removed from the bottom of the stack and either rejected
(the lower bound is too high) or explored further. When a node ;s
explored further any new nodes generated can be added to the stack
as before. It can thus be seen that only as many nodes will be
added as have been removed and hence no more storage is required.
(In practice only still potentially fruitful nodes are added to the
stack and thus at least as many nodes are removed as are replaced).
The maximum number of storage locations required for the stack is
thus (n - 1) + (n - 2) + ••• + 2 = ~ - 1.

A flowchart illustrating the backtrack method is given in figure
6. The part of the flowchart marked by the dotted lines is not
essential to the search but illustrates certain controls which
are described in later chapters.

To summarize, the essential difference between the two branching
methods described is that the choice of which part penmutation
to next examine is made locally within the tree when backtracking,
whilst a global decision (from the whole tree) is made under~e
'branch from the lowest bound' strategy.

2.2 Lower Bounds for the job-shop scheduling problem.

The branch-and-bound approach is general in that in order to tackle
a different permutation type problem only a new bounding function
and cost function needs to be provided. The calculation of the
lower bounds utilises knowledge about the behaviour of the cost
function; usually the lower bound is derived by considering the

23

\.

~,
:1.s
(..
oJ
'1
o-

o
C
" o

C

'-

.:t-
o!
0-
f
ou
(
·0
;:; "I
d II)

~ -, Z.~ -
d u.
)(

W
o·c

o
C

\

I

I
I
I

I
I
I

\ J

o
C

\.

,I'

~u tv J of

'" ~ ~d J cS
..fj .A {;
d '"

1/1

f. £
1> u.
C- O

I .J.
l-
da.:.-

.,
r:n,

_.j.J
I..
d
-5
1o-u,

- 24 -

actual contribution to the cost of the permutation by the elements
of the part permutation, and the minimum contribution that could
occur by the placing of the remaining (unallocated) elements of
the permutation. A lower bound for a part permutation for the
job-shop scheduling problem is derived as follows.

Suppose that the n jobs which are to be processed upon the m
machines have job-machine times given by 0 = ~ d (i,k) ~, where
d(i,k) is the time taken for job i to be processed upon machine
k. For a schedule beginning with Pj = (il' i2, ••• , ij) m
lower bounds can be determined in the following manner:

m - 1 of the lower bounds are obtained by the time for the first
j jobs to finish upon the first k machines plus the time for the
remaining n - j jobs to finish upon the kth machine (assuming
no idle time), plus the time for the last job to be processed
upon the remaining m - k machines. As no decision has yet been
made as to which job will be processed last, that job, out of those
still unassigned, that occupies the last m - k machines for the
least time is chosen.

Thus g(k), the k th lower bound, is given by

fp. (i., k) + L
J J se:'J5".

J

m
k) + min ~ I: d(s,t))

'I'f t=k+1 ,
Se:!" •

J

where k = 1, 2, ••• t m - 1. Tf.={I 'UP)
J ~ n J}

and fp (i .,k) is the earliest finishing time of job iJ. upon
j J

machine k under the schedule defined by the part permutation
Pj• (This terminology agrees with 1.11 except that the schedule
Pj has been appended to f). The general bound g(k) is

- 25 -

T i=t
", -J:

, -%

~(

---+

- 26 -

illustrated in the Gantt chart in figure 7.

The mth lower bound is a special case of the above in that the
third term on the right hand side disappears.

g(m) = fp (i .,m) + L- d(\,m)
j J sE!

i.e. the mth lower bound is the time taken for the first j jobs
to be completed upon m machines plus the time for the remaining
jobs to be completed upon the last machine.

The lower bound for a permutation beginning with Pj is taken to
be the maximum of g(l), g(2), ••• , g(m).

2.3 An example of the differences in the branching techniques

The problem of processing 6 jobs through 3 machines with
job-machine times as in Table 4, illustrates the differences
in computational effort required for the two branching
t~chniques described earlier.

Under the 'branch from the lowest bound' approach the search
is depicted by figure 8 and is as follows. All jobs are
originally considered for the first position in the schedule
and after calculation of the lower bo~ds it appears that
the smallest cost, 1216, could only be achieved if job number
6 were placed first. The calculation of lower bounds for
permutations beginning with (6) reveals that the lowest cost
that could be achieved would be 1381, corresponding to the
placing of job number 1 in the second position of the
schedule. However, from reexamination of the remainder of

- 27 -

Machines
Jobs I II III1 153 141 6
2 242 69 1973 1~ 228 3134 308 211 1735 42 221 311
6 87 129 0
Totals 1000 999 1000

Table 4: An arra~ of job-machine times

the tree it is apparent that by starting the permutation with
(5) a cost of 1263 might be achieved. The calculation of
lower bounds for permutations beginning with (5,1), (5,2)
(5,3), (5,4) and (5,6) shows that the smallest of these is
1263, which is at least as small as any bound still active
in the tree. There is equality at this level and so an
arbitrary choice of node, say (5,2), is made. Calculation
of the appropriate lower bounds gives those associated with
nodes (5,2,1), (5,2,3), (5,2,4), (5,2,6) as marked on the
diagram. The next node to explore can be any of (5,1), (5,3),
(5,4), (5,6), (5,2,1), (5,2,3) and (5,2,6) and since it
appears to be good sense to make the choice from those part
permutations that have most elements; i.e. from (5,2,1),
(5,2,3) and (5,2,6),suppose node (5,2,3) is selected.
Continuing along these lines (5,2,3,4) is reached and its two
descendents (5,2,3,4,1,6) and (5,2,3,4,6,1) are complete
permutations and hencl~ their costs can be determined by the
algorithm in 1.11. The smallest of these two costs, 1263,
is (less than or) equal to the lowest lower bound associated
with any unexplored node in the tree. The search is thus
completed after 25 nodes have been examined and the maximum

28

29 -

number of nodes which had to be stored during the search was 18.

In the backtracking approach the tree in figure 9 is examined
and the essential difference is that the exploration of the
node (6,1) is not suspended. The nodes (6,1,2), (6,1,2,5),
(6,1,2,5,3,4) and (6,1,2,5,4,3) are examined and a cost of
1569 determined. Backtracking up the tree now takes place and
any node with a lower bound greater than the target value of
1569 is rejected. The nodes (6,1,2,3), (6,1,2,4), (6,1,5),
(6,1,3) and (6,1,4) are thus rejected (in that order) and
the sub-tree beginning (6,2) is explored. Nodes (6,2,5),
(6,2,5,3), (6,2,5,3,1,4) and (6,2,5,3,4,1) are investigated
and the new target value of 1422 discovered. (The choice of
the node (6,2,5,3) rather than either of (6,2,5,1) and
(6,2,5,4) occurs in this example only because of the ordering
imposed by a sorting routine used in the program from which
the example was taken}. Further backtracking results in the
rejection of (6,2,5,1), (6,2,5,4), (6,2,1), (6,2,3), (6,2,4),
(6,5), (6,3), (6,4) and finally the subtree beginning with
(5) is explored. The value of 1263 corresponding to the
optimum permutation is then reached and the search terminates
after 43 nodes have been examined. Only 9 stack locations
were required for storage during the search.

2.4 The behaviour of the branch-and-bound algorithm upon
the job-shop scheduling problem

2.41 Review of previous work
~he application of the branch-and-bound method to the job-
shop scheduling problem appears to have been first suggested

30

- 31

independently by Lomnicki, and Ignall and Schrage. Lomnicki
advocated a backtracking approach to the three machine
problem and claimed that Ian efficient algorithm can be given
for finding the exact solution to the job-shop scheduling
problem on three machines with comparatively little effort! •
Furthermore he asserted that 'for a higher number of jobs
there should be no difficulty in finding the exact solution
very quickly with the aid of an electronic computer!.
Lomnicki recognised that 'the efficiency of the process rests
very strongly on the devices used to split the subsets and
to find the bounds I and he felt that 'the three lower bounds
appear to be quite efficient but it is possible that some
better method might be found'• Lomnicki also introduces the
idea of the 'reversed job-shop scheduling' problem. It is
known that if Pn = il, i2, ••• , in) is a permutation of n
jobs upon m machines with cost C(Pn), that the Ireverse problem'
of scheduling n jobs upon m machines M" M2, ... , M~ where
the time taken for the jth job upon. the kth machine is
d'(j,k) = d(j, m+1 - k) will have a cost C(Pn) for the
permutation Qn = (11,12, ••• , 1n) if 1t= in+l-t for

t = 1,2, ••• n. The reverse problem for that given in table
4 is given in table 5 and the cost of the permutation
(6,1,4,3,2,5) is 1263.

Jobs
1
2
3
4
5
6
Totals

II
Machines

II' rn-
6

197
313
173
311

o

141 153
69 242

228 168
211 308
221 42
129 87

Table 5: The 'reversed
problem' for Table 4

1000 999 1000

- 32 -

An intuitive representation of the reverse problem is to
consider a film of the processing of jobs under a sequence
(i1' i2, ••• , in)' The running of the film backwards at
the same speed would correspond to the sequence (in' in-1,
••• , i2, i) being run through machines~, Mm-l, ••• , Ml

and would of course take the same time to run.
Lomnicki states that the relative loading of the machines can
appear to affect the performance of the backtracking algorithm
and that it appears that the following rule can reduce the
amount of computation required to solve a particular problem.
If the first machine is most heavily loaded then apply the
algorithm to the reverse problem, whilst if the third machine
is most heavily loaded the algorithm should be applied to
the normal problem. If the middle (the second) machine is
most heavily loaded then one would not expect much difference
in computation no matter which algorithm is applied.

The paper of Ignall and Schrage considered two objective
functions for the job-shop scheduling problem: i) the
minimization of makespan and ii) the minimization of the
mean of completion times. A branch from the lowest bound
approach is advocated and the authors also introduce a
concept of 'dominated nodes' which can reduce the amount
of computation required and also decrease the maximum list
size for nodes upon which investigation has been
temporarily suspended. If Pr = i1, i2, ., ir} and
P~ = (i1, i! •• '•• ,i~) are part permutations such that
{i1, i2, ••• , ir} is a permutation of {ii, i2, ••• , i~}

- 33 -

1) • If it transpires that fp (i ,k).::.fp.,k)
r r r

for k = 2,3, ., m

then we say that Pr dominates p~ and it is clear that any
schedule beginning with p~ can only be improved by replacing
the first r elements with Pr' Thus even if the lower bound
associated with P~ might indicate that P~ is worth examination
it can be discarded if such a node Pr has been previously
examined.

A paper by Brown and Lomnicki (7) comments upon the application
of the concept of dominated nodes and also about the usefulness
of the reversion rule of Lomnicki. Whilst both ideas are useful
it is recognised that 'with the generalisation to more machines
both refinements •••• become less and less useful with the
increasing number of machines'. The application of the
dominated nodes concept has been observed to reduce the number
of nodes to be examined by about 13 per cent on average. The
reversion technique it is claimed could lower the number of
nodes by about 33 per cent. The experiments from which these
results are obtained used problems in which the number of
jobs to be scheduled ranged from 4 to 10 whilst the number
of machines ranged from 3 to 7. The algorithms were coded in
various languages (e.g. FORTRAN, CLP (Cornell List Processor))

- 34 -

and the resulting programs run upon various computers
(ICT 1301, CDC 1604). The comparison of execution times
for the solution of the problems was therefore of little
value and more meaning can be obtained from the results
if the measure of computation is taken as the number of
nodes examined in finding a solution. Another difficulty
encountered is that of data generation; the method of
generating the job-machine times differed from author to
author and again made comparison difficult.

A paper by Waller reported an investigation into the
problem which used the backtracking approach suggested by
Lomnicki. The algorithm was programmed in Algol for the
English Electric KDF9 Computer and job-machine times were
generated randomly in the range 0 to 30 by using the multiplicative
congruential random number generator.

Xn+l = 5 x Xn (mod 235)
The expected total load (or processing time) for each
machine was thus the same. However, the actual loads for any
of the machines were very rarely the same because the method
of generation did not attempt to arrange this. The examples
were 'small' in that from 5 to 9 jobs were to be processed
upon 3 to 7 machines. It was seen that even for problems
of the same size (same number of jobs and same number of
machines) the amount of computation required varied greatly.
Some problems would be solved after a small number «100)
of vertices had been examined whilst others would require
in excess of 10'.000 vertices for their complete solution.

- 35 -

This agrees with the experiences of Brown and Lomnicki and it
appeared that the relative loadings of the machines might be
connected with the unpredictable behaviour of the algorithm;
again a conclusion arrived at by Brown and Lomnicki. It also
appeared that, on average, the number of vertices examined in
solving a problem was a linear function of ekn where k is a
constant approximately 2.3. The number of machines did not
appear to significantly affect the computational effort required.

A 'good' starting solution obtained by heuristic methods did little
to reduce the computation necessary for the backtracking
algorithm, and use of the branch and bound approach to produce all
optimal solutions seemed to be impractical since the effort to
produce just one solution could be great even for small numbers
of jobs.

2.42 Features of the algorithm reguiring investigation

The following points were considered and investigated.

(i) The relative loadings of the various machines appears to
affect the performance of the algorithm. can such loadings be
exploited?

(ii) How useful is the reversion technique proposed by
Lomnicki?

(iii) How useful and practical in terms of computer storage
is the dominated nodes attack advocated by Ignall and Schrage?

(iv) Would the method of branching from the lowest bound give
better performance than that of backtracking?

- 36 -

(v) Can the lower bounds proposed be strengthened?

(vi) What are the practical limitations of the algorithm?

2.421. Data Generation.

Initially the effect of the relative loading of the machines upon
the behaviour of the backtrack algorithm was investigated. It was
decided that one should be able to specify that a particular machine
was to have an excess load of W% and data was generated in the
following manner.
Job-machine times were generated. using the random number genera-
tor of 2.41, in the range 0 - 30. The smallest of such times was
then ascertained and subtracted from all the times, ensuring of
course that at least one time had the value zero. For each
machine k the total loading, Tk, was calculated and each time
upon the machine multiplied by 100/Tk so that the total load for
each machine was 100 units. (In the case of the machine specified
to have an excess load the multiplication factor was (100 + W)/Tk).
Table 4 shows data generated in this fashion; the times have been
sealed by a factor of 10 and rounded to integers for convenience.

An attempt at standardisation of data was made by making one of
the generated times zero. If a constant c is added to each job-
machine time the relative loadings of the machines will alter,
the cost of any schedule will increase by (n + m - l)c, but the
optimum permutation and the behaviour of the branch-and-bound
algorithm will remain unchanged. Hence, if the data is not
standardised,any results obtained could be meaningless. Some
approximate solutions to the problem have been assessed for merit
on the percentage that the approximate cost is within the

- 37 -

optimum cost. Such claims should be treated with suspicion since
by the addition of a suitable constant to each job-machine time
the appropriate percentage could be made as low as required. With
the standardisation process above any percentage quoted would be
the largest possible.

2~422 The effect of the relative loadings and the reversion
technique.

Using data generated for n = 7,8,9, 10 and m = 3 it was seen that
the relative loadings of the machines did appear to affect the
computational effort needed for a backtracking approach. In general
it appeared that the more heavily loaded the first machine the
more computational effort required - a result that agreed with
Brown and Lomnicki. The reversion technique could then pay
dividends but cases were observed where this technique was of no use.
In one example of 10 jobs upon 3 machines the loadings on all
machines were the same and yet the normal problem yielded to back-
tracking after a few hundred vertices had been examined whilst the
reverse problem required in excess of 20,000 vertices. The author
felt that the relative loading was more a symptom of the problem
than the cause and since the reversion technique would appear to
be less useful for larger m, the approach was carried no further
at this stage. It is however, resurrected in Chapter 5.

2.423 The usefulness of the concept of dominated nodes.

A slight modification to the original Algol program allowed its use
to ascertain the benefits to be obtained by the application of
dominance tests within a search. Additional storage space was
provided for'the earliest finishing times of nodes which had

38 -

been investigated. Since m - 1 times must be stored for each
n-2

combination and r= (~) is the total number of combinations for
J=2 J

which history may be needed the 'limited' core storage of the
~KDF9 (~ 10,000 48 - bit words) was claimed. Using the storage
in an unsophisticated fashion a feasibility study of the dominated
nodes approach was conducted. A program parameter specified the
maximum number of pieces of information to be kept for any combination
out of the integers 1, 2, ••• , n during the search. If this
maximum was achieved for any combination then additional information
for that combination was discarded and the fact noted. A pigeon-
hole method of table lookup was adopted for any combination of j
elements out of n, the key computed for a part permutation
(" ,) bei j- (i 1)'1' '2' ••• "j e1ng ~_= 12 k - • The method was thus

rough and ready and if anything would not show the results of
dominance tests to their full advantage.

Some large reductions in the number of vertices examined were
observed after the application of dominance tests. In one problem
of scheduling 9 jobs upon 3 machines the use of dominance tests
enabled the number of vertices examined to be cut from 10,000
(with no dominance tests) to 3,000 (with the tests). More com-
puting time is of course required per vertex investigated. In
an 8 jobs 3 machines problem it was found that the computing
time taken with dominance tests was the same as the time taken
to solve the problem without dominance checks although a saving
of 40% in the number of vertices examined was achieved. How-
ever, as was pointed out earlier the main difficulty with this
type of problem is not the amount of computation per permutation

39 -

examined but the number of permutations to be examined. As will be
seen later the penalty for not discarding a part permutation could
be the examination of a substantial part of the subtree emanating
from the node associated with the part permutation. Linear
increases in computational effort per vertex examined can thus be
to1era ted.

Dominance tests are thus particularly useful in curtailing compu-
tational effort for a problem. They do however present some
storage and organisational problems and their effect is likely
to be less pronounced for larger values of m.

2.424 A comparison between branching methods.

As stated earlier backtracking enjoys an advantage over branching
from the lowest bound in that storage required for a backtracking
problem is .predetermined and small whilst the latter method's needs
are unpredictable. A further advantage as far as the job-shop
scheduling problem is concerned is that knowledge of the earliest
finishing times for a part permutation (il, i2, ••• t ir) can be
exploited for the calculation of the times for a part permutation
(il, i2, ••• t ir+l). Backtracking does however in general
explore more vertices than are absolutely essential and a criticism
of the method is that the search could spend a vast amount of
time in a part of the tree from which the payoff could be small;
the time might be better utilised in another part of the tree
where a payoff could rule out the necessity for examination of the
former sub-tree. Careful examination of results obtained from
backtracking has enabled the author to answer this criticism to a
certain extent and also obviated the need for coding of the branch

- 40 -

from the lowest bound method. Figure 10 shows that for the back-
tracking algorithm the problems that gave most trouble (in terms
of the number of vertices searched) examined most of the vertices
in order to verify that an optimum had been found; i.e. the main
effort of the computation was involved in searching the remaining
parts of the tree for an improvement in what transpires to be the
optimum. Thus these nodes examined must have had lower bounds
less than the cost of the optimum and would require examination no
matter which branching method was a~opted.

This result is useful in two ways. Firstly it saved substantial
programming effort and investigation, and secondly ik pointed out
the most serious defect of the branch-and-bound algorithm when
applied to job-shop scheduling - the fact that once the optimum
has been discovered the bounds calculated were not stringent
enough to detect it. This also explains why in the earlier
investigation by Waller the existence of a good starting
(approximate) solution was of little help.

2.425 The Limitations of the Algorithm

The previous investigations have shown that the algorithm with
perhaps the use of a good starting value, the reversion technique
and the use of dominated nodes would be very unlikely to be
capable of tackling 'large' (n ~ 20) problems, within a reasonable
amount of computing time. Its use to provide all optimum solutions
would be even more restricted. It appears that the lower bounds
calculated are not stringent enough and unless they are made
stronger the branch-and-bound algorithm for the job-shop scheduling
problem could only be used as an approximate method for large
problems.

- 41

IJ· -_ -

- 42 -

2.5 Integer Linear Programming

It has been demonstrated (23) and (26) that many of the problems
under consideration can be formulated as linear programming
problems. Once in this form however the computational demands
of the problem have been seen to be excessive. Greenberg (8)
has proposed a branch-and-bound method for the general job-shop
scheduling problem (i.e. the no-passing restriction in 1.1 is
removed). At each stage in the search a linear programming pro-
blem is solved and Greenberg states that 'this technique would
appear to be computationally feasible for smaller problems only'
The constraints build up from n x m to mx (2n - 1) in number with
nm + 1 variables. The limitations of this approach are suggested
by Greenberg's statement 'based on the small amount of information.
it appears that an approximately linear relation exists between
computer time and the size of the problem where size of problem
is defined as n!ml

2.6 Dynamic Programming.

The travelling salesman problem has been attacked by Golzales
(9) using dynamic programming. For problems up to 10 cities
it was found that the time to solve a problem grew somewhat faster
than exponentially as the number of cities increased. On an IBM
162, computer a 5 - city problem took 10 seconds of computation,
a 10 - city problem took 8 minutes and the addition of one more
city multiplied the time by a factor, which by 10 cities, had
grown to 3. Storage requirements also expanded with similar
rapidity.

- 43 -

Equally gloomy results have been reported by Held and Karp (10)
using an IBM 7090 computer. Problems of up to 13 cities have
been solved and Little et al (11) state that la 13 city problem
took 17 seconds and calculation reveals that if their (Held and
Karp) computational demand grows at the same rate as that of
Gonzales, a 20 city problem would require about 10 hours and
storage space requirements may have become prohibitive by then!.

- 44 -

Chapter 3. Heuristic Techniques.

3.1 Local Rules

Many heuristic techniques that have been applied to discrete
optimization problems have been special purpose techniques
that have been developed for particular cost functions. As
an example, the first heuristic methods applied to job-shop
scheduling were loading rules which were local rules in that
the machine operator would use them to determine which of the
waiting jobs to process next. As this individual was unlikely
to possess computational aid the rules had to be simple so as to
be easily applied. Possible loading rules are:

1) Process the job that arrived first. (FIFO - first in, first
out).

2) Process the job that can be finished most quickly. This is
the SIO ('shortest imminent operation') rule.

3) Process the job that has the longest remaining time of
processing. (LRT rule).

4) Choose a job at random and process it.

The rules are described as though they lead to a unique set of
decisions and as this is not always the case some tie-breaking
mechanism must also be employed. Many of the rules have a
certain amount of logic behind their conception. FIFO is
intuitively fair in the sense that if customers are awaiting
the finished product, the completion order of the jobs is the
same as the starting order. The 510 rule adopts the philosophy

t r I

I ". f

- 45 -

of satisfying as many customers as possible within a fixed period
of time but does not allow for the possibility of larger jobs
waiting an unreasonable amount of time for processing. The draw-
backs in the application of loading rules occur because only the
characteristics of the load for a single machine are considered
and the local cost function applied need not reflect the overall
cost function. Thus the resulting schedule may be poor. A further
disadvantage is that, like many heuristic approaches, local rules
give no indication as to how good is the solution they produce.
There is thus no criterion for deciding whether or not to attempt
to improve the solution obtained with, perhaps, a different
heuristic.

3.2 Branch-and-Bound as a Heuristic

The branch-and-bound method, as described in Chapter 2, would
appear to be computationally impracticable for the exact
solution of the job-shop scheduling problem from the results of
the investigation performed. However, by slight modifications
to the method, heuristic approaches can be obtained. An advan-
tage of such approaches is that some measure of goodness of the
solution derived is also available.

3.21 Branch-and-Bound without Backtracking.

Ashour (12) suggests a method which he terms 'branch-and-bound
without backtracking'. In this branching from the newest active
bounding problem is performed and the search terminates when the
bottom of the permutation tree is reached. The cost function is
thus applied for two permutations only, and the one with the
lowest associated cost is adopted as an approximate solution.
A measure as to how good this solution is can be determined by

- 46 -

scanning the unexamined part of the tree and ascertaining the lowest
lower bound. Thus it is known what might have been achieved.

The quality of solutions given by this approach for the job-shop
scheduling problem is defined by Ashour as the quotient of the
optimal schedule time and the approximate solution. Figures given
for this 'efficiency' are provided in the paper but it should be
remembered that the experimental data for the problems concerned
was not standardized as described in 2.421. Furthermore, the
figures were obtained for small problems (6 ~ n ~ 12) and there
is no guarantee that the efficiency will be as high if larger
problems are considered. The approach does however have merit in
that an attempt is made at limiting the amount of computation
expended in obtaining a solution.

3.22 Seeking a reasonable improvement upon a particular value.

This method also attempts to limit the computation expended upon a
problem. Whenever a new target value is discovered a decision is
made to look for another solution which will have a cost a certain
amount lower than the current targetvalue. The improvement sough~
would normally be a function of the targetvalue and the lowest
unexamined lower bound in the tree. Parts of the tree that might
possibly give a small improvement in the lowest cost found so far
can thus be rejected with the result that the computational effort
might be curtailed. (There are of course cases where the search
time might be increased). By retaining the lowest lower bound
discarded the value of the optimum can be fixed within certain
limits and thus a measure of goodness of the approximate
solution can be obtained. This technique is discussed further in 5.44.

- 47 -

3.23 A Solution in a Bounded Period of Time.

Lawler and Wood suggest that the branch-and-bound method might be
used to find as good a solution as possible in a bounded period
of time, T, in the following manner. Initially a search is made
for an optimum solution in a time T/2. If no such solution vector
is found then a solution will be sought that differs from the
optimum by no more than, say, 5 per cent. A time of T/4 will be
allocated for this search and if a vector is found in this time,
any remaining time can be spent trying to improve upon the solu-
tion found. If no such solution vector is found in the time T/4 the
process of bisecting the remaining time and looking for a more
approximate solution can be repeated. At any stage the estimate
of the optimum will be the lowest lower bound still active in the
tree. Implementation of a scheme of this nature requires a 'branch
from the lowest bound' approach initially, whilst features of back-
tracking would be employed later.

3.3. Heuristics based upon Sorting methods

The job-shop scheduling problem is that of optimizing a given
function of several arguments. When the no-passing restriction is
removed there are many restrictions.

The job-shop scheduling problem with the no-passing restriction of
1.1 removed is that of optimizing a given function of several
arguments C(v) where there are many restrictions, so that no job
is attempted on a machine before the operations it requires on
all earlier machines have been completed. Page (16) has pointed
out that with this formulation sorting is a much simpler special

- 48 -

case of the scheduling problem. IIf xi is the key of the i th item,
then the sorting problem can be regarded as equivalent to minimizing
a function f(x., x., .•• , x) which is zero if x. < x. < •

1 J P 1 J-
~ xp and takes positive values if any of the inequalities is
reversedl• Sorting is a process frequently performed by hand and
by machine and consequently many methods exist all of which avoid
the generation of all possible permutations of the orders of the
xi - a feature of the black box problems. Page proposes the use of
sorting methods for attacking black box problems on the principle
that lif no fairly simple and short method of finding the best
order can be given we would like first, a method which will usually,
if not always, produce a fairly good order for a first trial, and
second, a method for deriving a better order from the one we havel•
Of the three sorting methods, selection, merging and exchanging
which follow the first two attempt to produce a good initial
solution whilst the latter tries to improve upon an existing
approximate solution.

3.31 Selection

For permutation problems the selection method of sorting can be
applied to build up an approximate solution permutation in the
following manner. Each element of 1,2, ••• , n is tried as
the initial element of a permutation of one element and sub-
mitted to the cost function. The element, i1, which gives the
lowest cost is then chosen as the first element of the approxi-
mate solution being formed. The cost function is thus applied
n times at this stage. Those elements not yet allocated (n - 1
in number) are now considered for the next (i.e. second) position

- 49 -

of the permutation by applying the cost function to permutations of
two elements. Each of these permutations will be of the form (il ,j)

where j E In ~fi1t and the permutation possessing lowest cost is
retained. The next and subsequent positions in the permutation
are filled in a similar fashion; at each stage the cost function
will be applied one time fewer to permutations having one more
element and finally a complete permutation will be reached and
adopted as an approximate solution. The selection method is in
fact an application of local rules of the type in 3.1 and possesses
similar characteristics. The following sorting methods of exchanging
and merging are not local rules and their application usually gives
better results.

3.32 Exchanging

This method attempts to improve upon an existing approximate solution
Pn = (i1, i2, ; •• , in). The cost of the permutation is compared
with the cost associated with the permutation with the n th and
(n - 1) th elements interchanged. If the penmutation with the
interchange is deemed better (i.e. has lower cost) than that
without the interchange then the elements in and in-l are left
interchanged, otherwise they are placed in the positions they
occupied before the switch. The process is repeated with positions
(n - 1) and (n - 2) as candidates for the interchange and continued
until finally positions 2 and 1 of the permutation have been
considered. A series of possible interchanges has then been
attempted upon the permutation and if any improvement upon the
original cost has been achieved, the series is repeated. The process
terminates when one complete pass through the permutation fails to
give an improvement in the cost of the approximate solution.

,
, .

- 50 -

3.33 Merging

Merging builds up an approximate solution by forming ordered pairs
of elements (kl' k2), (k3, k4), then ordered quartets, ordered
octets and continues until a single complete permutation is reached.
The ordered pair (kl, k2) is adopted if the cost of the part
permutation (kl' k2) is less than the cost associated with (k2, kl).
(In the event of a tie an arbitrary choice is made). Ordered
quartets are formed from pairs of ordered pairs. If (kl, k2) and
(k3' k4) are ordered pairs then kl is chosen as the first element
of the ordered quartet if the cost of (kl, k3) is less than the
cost of the part permutation (k3, kl). Suppose that k3 is chosen.
The second position of the quartet will be taken to be either kl
or k4 and is chosen by considering the costs of the two part per-
mutations (k3, kl, k4) and (k3, k4' k,). If the cost of
(k3, kl, k4) is less than that associated with (k3, k4' kl) then
kl is chosen, otherwise k4 fills the second position. Supposing
kl to be selected the costs of (k3, kl, k2' k4) and (k3, kl, k4' k2)
are determined and the part permutation with the lowest cost taken
as the ordered quartet. A similar procedure leads to the formation
of the ordered octets and so on.

3.34 Characteristics of Sorting Methods

The selection method of sorting applied to discrete optimization
problems readily illustrates a feature of many heuristic approaches.
When the black box under investigation does not yield easily to
analysis another black box is substituted for it. The second
black box is generally simpler and hopefully more cooperative.
I~ characteristics should however approximate to those of the

- 51

original. The selection method replaces the black box which
accepts a permutation of (1, 2, ••• , n) by one which will
accept a subpermutation of (1, 2, ••• , n). Ashour's method
in 3.21 for the job-shop scheduling problem substitutes a black
box which accepts subpermutations and produces lower bounds
based upon them. It would be expected that this method would
be superior to selection since some consideration is given to
elements that have not been assigned whereas selection does not
utilise any such knowledge.

3.341 The 'Goodness' of Solutions

All the sorting methods described possess the disadvantage that, in
general, there is no guarantee as to the merit of the particular
resulting approximate solution and its associated cost. However,
for certain classes of cost functions the merging method can be
guaranteed to produce an optimum solution. Smith (13) has shown
that if Vn = (11,12, ••
are permutations of 1,2,

and Pn = (il' i2 ' • • ., in)
nand C is a cost function over. . .,

the set of all permutations of 1, 2, • • ., n , a sufficient
condition that C(Vn) ~ C{Pn) for all Pn is that:
(A) there is a real-valued function g of ordered pairs of
elements such that if Pn is any permutation and p~ the permutation
obtained from Pn by the interchange of the j - th and (j+1) - th
elements, then C(Pn) ~ C{P~) if g{ij, ij+l) ~ g(ij+l, ij} and
(B) Vn is such that the i-th element precedes the j-th if g{i,j}
< g{j,i).

If the function 9 is known then an optimum permutation may be
achieved by ordering the elements of the permutation according
to the corresponding function values. Johnson's complete solution

52 -

for the scheduling of jobs upon two machines specifies g by
g(i,j) = min ~d(i,l), d(j,2)t. Thus job i precedes job j in
an optimum solution if min 1 d(i,l), d(j,2)t< min1d(j,1),
d(i,2)~. There is no extension of this rule to more than two
machines except in special cases. Smith has determined approp-
riate functions for particular cost functions and Rau (15) shows
how to determine the 9 function when C(il, i2, ••• , in) has
the form:

n
C(i"i2, ••• ,in) = G,h(ik) gk (il, ••• , ik)

where h is a positive function of one integer variable, and each
gk is a function of k integer variables.

The determination of the appropriate function g is however, in
general, not trivial; indeed such a function may not exist!
Page has shot-m that the mergi ng method does have the advantage
that if such a function exists, merging will produce an optimum
solution without the necessity of the function g being discovered.
Clearly it will do so for the case n = 2, and (for larger n) as
the algorithm proceeds the elements of the permutation will fall
into the optimum order for the subsets of the permutation that
are considered. Merging could be used in a different fashion;
if one suspects that a function C possesses a function g (as
specified above) experimental runs of the merging algorithm
compared with complete enumeration results (upon small problems)
would (if the results differ) prevent effort being expended
searching for a non-existent function g.

The sorting techniques can be applied to cost functions which do
not possess an appropriate g function. They do not then guarantee

- 53 -

an optimum solution but quite often 'good' results are achieved.
Page reports that for the job-shop scheduling problem the computing
times for the methods increase slowly with the number of machines
and merging and exchanging computing times increase by about a
factor of 3 for each doubling of the number of jobs. He stated
that 'the sorting type methods are quite general' and 'all that
is required is an unambiguous specification of the method of cal-
culating of the cost function'. The use of exchanging upon the
resulting permutation of the merging procedure is also of help in
the cases where the approximate solution produced by the latter
method is not particularly 'good'. The main advantage of the
exchanging method is that the greater part of computation expended
is used in achieving a decrease in the cost of the permutation
being explored. Only one 'fruitless' cycle of calls of the cost
function is made. (This was of course one of the major drawbacks
of the backtracking algorithm). The storage requirements of the
algorithm are modest but exchanging should really be used only
upon a permutation in the 'neighbourhood' of the optimum as it
appears that improvements gained are in general small ones.

3.4 Monte Carlo Methods.

A simple approach to finding the permutation of 1, 2, ••• , n
which minimizes some particular cost function would be to sample
randomly from the n! possibilities. At each stage the cost
associated with the permutation generated could be determined
and the permutation which gave the lowest cost taken as an
approximate solution. One of the disadvantages of this random

- 54 -

sampling is that no use is made of previous observations in sub-
sequent sampling and thus information that might have proved
useful is disregarded. Page (17) suggests that some measure of
likeness between permutations could be formulated so that like
permutations would exhibit similar characteristics, in this case
have similar costs. If this were the case the sampling of
permutations could be adjusted so that once a 'good' permutation
has been discovered the sampling should be conducted among
permutations that are near to this permutation, or in effect in
a neighbourhood of the 'good' permutation. The concept of a
metric in the space of permutations is suggested by this approach.

3.41 The Metric in the space of permutations

If pn is the set of all permutations of (1, 2, • • ., n) then the
function s : pn x pn + R is a metric on the set pn if it satisfied
the axioms

1. s(x,y) ~ 0 nfor all x, YEP.
2. s(x,y) = 0 if and only if x = y.
3. s(x,y) = s(y,x) nfor all X,y E P •
4. s(x,z) < s(x,y) + s(y,z) for all x,y,z £ pn.

For x £ pn and r ~ 0 the subset 8{x,r} = f y : s{x,y)< rt

of pn is defined as the open ball , centre x and radius r. A
subset A of pn is said to be a neighbourhood of x E pn if A
contains some non-empty open ball of centre x. A neighbourhood
of a permutation is thus ,defined.

nIf x = (xl' x2' ••• , xn) and y = (Yl' Y2' • • ., Yn) £ p
then several metrics can be defined. The euclidean metric

- 55 -

and the metric

Sl(X,y) = max Ix. - y. I
1 < i<n 1 1

are both possibilities which may be used to define likeness between
permutations. However, for cost functions like than of the job-shop
scheduling problem it is reasonable to suppose that orders (or per-
mutations) containing the same subsequences of jobs will tend to
have cost functions near to one another. The euclidean metric
gives a distance of ~ ~ 12.3 between the permutations (1,2,3,4,
5,6,7,8) and (6,7,8,4,5,1,2,3) whilst the distance between
(1,2,3,4,5,6,7,8) and (5,4,8,7,6,1,2,3) is ~ ~ 11.4; the
first two permutations do however appear to be more like each
other as far as subsequences are concerned! The maximum difference
metric also fails to exhibit the subsequence property as can be
seen from

91«1,2,3,4,5,6,7,8), (8,1,2,3,4,5,6,7» = 7
whilst 91«1,2,3,4,5,6,7,8), (1,2,3,4,8,7,6,5» = 3.

A measure that does give consideration to subsequences of elements
has been proposed by Page. The distance between two permutations
is taken as the number of elements in the first permutation that
are not followed by the same element as they are in the second.
Thus the number of breaks in the order of the permutations is
counted. In the examples above

S«1,2,3,4,5,6,7,8), (6,7,8,4,5,1,2,3» = 2
S({1,2,3,4,5,6,7,8), (5,4,8,7,6,1,2,3» = 5
S:{(1,2,3,4,5,6,7,8}, (8,1,2,3,4,5,6,7» = 1

- 56 -

5((1,2,3,4,5,6,7,8),(1,2,3,4,8,7,6,5)) = 4

This measure of likeness satisfies the four axioms of a metric
space and the distance, s, between any two permutations of the
elements (1,2, ••• , n) is thus integer valued and less than n.
All permutations of (1,2, ••• n) thus lie on the perimeters of
the closed balls B'(x,r) = ~ y : ~(x,y) ~ r~ for any x E pn

and 0 < r < n - 1.

Rephrasing all permutations of (1,2, ••• , n) belong to the family
of open balls B(x, r + 8) = f y : s(x,y)< r + et for x E pn,8 > 0

and 0 < r < n - 1.

The open balls B(x, r + e) thus form a neighbourhood of the permu-
tation x. This allows a Monte Carlo approach to be adopted in
which initially permutations are generated in a neighbourhood of
a known good permutation. The neighbourhood is first chosen
as the open ball of radius q + 6, for some integer q and 6 >0.
The cost of each permutation is calculated and if it is lower
than that of the known good permutation it replaces the known
good permutation. If N samples are taken without improving upon
the base permutation the value of q is halved and the process
repeated. Termination occurs when permutations at a maximum
distance of 2 from the base are to be sampled. It can be seen
that when it appears that a particularly good solution has been
reached the search concentrates amongst those permutations near
to it.

Page has shown that the measure of distance as defined readily
lends itself to a search of this nature. No great difficulty is

57 -

found in generating permutations within a distance of another
permutation and it has been shown that solutions produced by
Chain Monte Carlo are normally better than those produced by
crude sampling. He recommends that neither crude nor Chain
Monte Carlo be used for problems for which satisfactory
deterministic methods are available. They might however be
used as a last resort, or to give a good quick solution and
techniques such as the Chain Method should be used for
increasing the power.

- 58 -

Chapter 4.

An Interactive Approach

As has been illustrated, there exist cost functions which do not
yield to analytical solution, or for which the amount of computa-
tion required for the determination of an optimum solution is
excessive. One must then accept the results of heuristic methods
which give a 'good' solution and attemt to back up the value
obtained with an assessment as to how good the solution is. The
heuristic method suggested here is an interactive approach which
utilises the marriage of human intuition with the facilities
provided by a modern multiprogramming computer to improve upon
the 'good' solutions supplied by approximate methods of the
type described in chapter 3. The idea is for the human to employ
his judgement and/or intuition to determine those areas in the
solution space which might prove worthwhile and to unleash the
computational effort of the computer upon them. Experience of
the success obtained (or lack of success) in a particular area
would provide a feedback and might then suggest other possibilities.

4.1 Necessary Computing Facilities

Basic computing facilities required for such an approach were
provided by the IBM 360/67 computer at Newcastle and economics
determined that a multiprogramming operating system be used since
interaction requires comparatively large periods of 'think'
time by the user. Terminal facilities were also necessary and
the early stages of the research were conducted using an IBM
2741 terminal typewriter whilst in later stages IBM 2260 character

- 59 -

displays were available. In order to provide reasonable response
whenever the user required service it was also essential for the
controlling operating system to time-slice the many programs it
was running. This necessity was satisfied by the TSS (Time
Sharing System) of IBM under which the early development of the
interactive approach took place, and also by MTS (the Michigan
Terminal System) which succeeded TSS.

The hardware and system software facilities were thus available
in Newcastle for an interactive approach and a system entitled
IMPACT (IAn Interactive System for the Manipulation of Permutations
for an Attack upon a class of Combinatorial Problemsl) was
designed and implemented.

4.2 Design Objectives of IMPACT

Several objectives were formulated in the design of IMPACT.
An ability for IMPACT to be applicable to a wide range of
discrete optimization problems was immediately obvious. A set
of powerful ~euristics was desirable and interactive access
was essential in order to permit decision taking and provide
immediate feedback from the system to the decision taker.

The access to the system was to be easy to use so that the user
could easily concentrate his intellectual effort into the
problem-solving and not be encumbered with troublesome system
details. Furthermore whilst the system was to be easy to use
it should also be difficult to abuse in the sense that any typing
or logical errors by the user should not result in a catastrophe.
Such events should be detected as minor errors and be catered for
by IMPACT so that the user could be pro~pted to remedy his mistake.

- 60 -

Initially all the facilities that were eventually incorporated
into IMPACT were not anticipated. Extendability was thus a
necessity as was flexibility in the sense that IMPACT ought to
easily lend itself to tailoring for different operating systems.
(This situation actually occurred as IMPACT was being constructed;
the early stages were conducted under IBM's TSS and the later
stages under the Michigan Terminal System (MTS)).

4.3 Achievement of Design Objectives

To allow flexibility and to attempt to achieve machine-independence
it was decided that IMPACT ought to be written in a high level
language. Under the version of IBM's TSS available at Newcastle
at that time the only high level language provided was FORTRAN
and this language was thus adopted. One disadvantage of this
language is its lack of dynamic storage allocation. This was
not catastrophic however, and the ability to compile subroutines
separately and link them at load time (a facility not easily
invoked with certain other languages) proved particularly useful.
A change from TSS to MTS at Newcastle has subsequently meant
that several other languages (e.g. Algol, APL, PLI) are now
available. It is not unlikely that certain features of these
languages (e.g. APL's vector operations) would have been useful.
Recourse to ASSEMBLER language has been permitted only where
absolutely necessary, namely to access certain system functions.
The current version of IMPACT uses only three such routines; one
provides information as to whether an IMPACT session is inter-
active or not, another gains access to computing time used by
IMPACT, whilst the third allows the use of the ATTENTION

- 61

(or response request) button on the terminal being used.

Extendability is provided for by modularity in the programming
of IMPACT. Each facility provided occupies its own module and
has access to a common data base (large areas of COMMON blocks).
A skeleton of a main program provides a switching network bet-
ween these modules and hence additional features may be easily
incorporated by the writing of an appropriate module and a
slight modification to the main program.

Modularity also made possible the objective of being able to
attack a wide class of combinatorial problems. In order to
use IMPACT upon a different problem of the class defined in
Chapter 1, a user must write a suitable module to calculate
the cost of a particular input to his particular black box
function. This and a suitable routine to place any data in
the common data base within IMPACT allows use of many of the
powerful heuristics that exist in the system.

Use of corrective programming within IMPACT allows the system
to protect the user from himself. Checking is performed to
ensure that errors by the user are trapped. Typically,if the
user enters what he considers to be a permutation of 1 to
n (where n is some positive integer) a suitable subroutine
TESTPE performs a test to see that this is so. Errors result
in a meaningful diagnostic message being printed out and if
the problem solving effort is conversational a chance to re-
enter is provided for the user. Nonconversational errors
result in the termination of the session.

Corrective programming also helps to make IMPACT easy to use

- 62 -

as does the use of a single command-parameter analyser. This
means that, with very few exceptions, the format of the users
input is uniform throughout IMPACT. Positional parameters (i.e.
of the form al, a2, a3 where al is the value of the first para-
meter for the command, a2 is the value of the second etc.)
are used. Keyword parameters (i.e. of the form para 1 = al,
para 3 = a3, para 2 = a2 in which the order of the parameters
is unimportant) are specifically excluded. The implementation
of IMPACT was simplified hy such a restriction but the modular
nature of IMPACT would allow the future introduction of keyword
parameters, since only the parameter string processor would
require reconstruction. Ease of use also stems from a ready
feedback from IMPACT to the user and from the provision of
facilities which permit the user to interrupt IMPACT at will.
Interrogation by the user is then available as is modification
of certain major variables. Finally the user may instruct
IMPACT to continue the interrupted process or to abandon this
process and initiate another (possibly different) one.

IMPACT possesses a powerful set of heuristics, some of which
have been described in Chapter 3 whilst others grew as inter-
active problem solving with the system suggested them. Currently
facilities that exist are biased towards discrete optimisation
problems where the input vector to the cost function is to be
a permutation. The extendability of IMPACT easily lends itself
to the provision of other ~euristics. Some of the more
important heuristics are discussed later but a complete list of
them is given in Appendix 1, together with brief explanations
and examples of their usage.

- 63 -

4.4 Requirements of IMPACT from the Operating System

IMPACT appears to the operating system as one large program and
an interactive session is invoked by instructing the operating
system that the program is to be executed and is to have access
to certain files. In MTS this is achieved by means of the
MTS command.
$run impact = datafile 2 = recordfile 4 = savefile

5 = hash
which instructs that the object program in the file named
'impact' is to be loaded and executed; data is to be taken
from the file 'datafile' and a set of command words is to be
taken from the file 'hash'; I recordfile' is a file onto which
a permanent record of the problem-solving session is to be
kept; 'savefile' is a file onto which items of information
may be stored.

When IMPACT is running only a small portion of the compiled
program will be actually kept in main storage since in essence
IMPACT consists of a set of subroutines which share a common
data base and are ltnkedby a main program which performs the
function of allowing the user to switch from one subroutine
to another. Any subroutine called which does not reside in
main storage is 'paged' into main storage from secondary
drum storage by the operating system. The virtual storage
requirement for IMPACT is currently about 85 pages (1 page =
4096 bytes) and only a small proportion of this (10 - 20
pages) is required in core at anyone time. In a particularly
interactive session the large amounts of 'think' time would

- 64 -

mean that almost all of IMPACT would reside on secondary
storage should the main storage be required by other users'
programs in MTS. The core storage requirements for IMPACT
are thus not excessive.

Central processor usage time for IMPACT is dependent upon
which facilities the user requires and how heavily he uses
them. Most facilities provided require computing times of
the order of a few milliseconds, whilst some involving
powerful search techniques c~ demand computing times of a
few minutes or more. Controls are however provided for
interrupting or policing such time - consuming processes.
As mentioned ear11er the operating system must supply 'hooks'
from which IMPACT can pick up three pieces of information
concerned with 1) computing time Ised, 2) whether or not
the session is conversational and 3) an attention handling
facility.

4.5 Usage of IMPACT: Command Mode

Once the user has initiated the execution of IMPACT and has
provided basic data to specify the particular problem he
is attacking he can invoke any of a set of ~.euristics by
simply specifying a particular command word whenever
IMPACT places him in command mode. Command mode is
recognised by IMPACT outputting the line.

to the 2741 terminal and unlocking the keyboard. Commands
consist of the name of a particular operation to be carried.

65 -

out and may require certain parameters.

In command mode the user may enter a command name and be
prompted for parameters, or he may enter the name and the
parameters together. In the latter case the command name
must be separated from the parameters by a comma; the para-
meters must be separated amongst themselves by commas and
terminated by a semi-colon. A command name consists of
from one to eight alphanumeric characters, the first of which
must be alphabetic. An effort has been made to make command
names meaningful, e.g. 'CMC' is used to invoke a Chain Monte
Carlo technique. Any parameters entered are positional
parameters and a single parameter may be an integer number
or a permutation (part permutation) name. A permutation name
must be up to four alphanumeric characters the first of which
must be alphabetic. The lack of keyword parameters means
that occasionally one must be prompted for certain parameters.
A few commands (e.g. the MERGE command) will accept other
special characters. (A description of any such peculiarities
may be found in 'Command Descriptions' in Appendix 1.)

4.51 Interrupt Mode and Local Commands

The ability to interrupt execution of a command provides a
powerful facility in IMPACT.

Various points in IMPACT have been tapped with tests to deter-
mine whether or not the attention button has been depressed.
(The reason for implementation of this nature is to ensure
that any command may only be interrupted at certain fixed

66 -

points so that adverse or unusual effects may not be introduced).
A short time after the pressing of the attention button, IMPACT
will inform the user that his attention request is being
serviced. (From the user's point of view it appears that his
request is being serviced here, whereas the request was actually
serviced earlier by IMPACT). A second press of the attention
button before the apparent servicing of the first press will
return the user to the operating system (MTS) environment; in
which case the MTS command I$restartl will cause IMPACT to
resume. Certain commands are specified as being interruptable
and the depression of the attention button places the user
in interrupt mode. In such a mode a meaningful message will
be displayed and will be followed by a single line
?

and the unlocking of the keyboard. The user may then enter
local (or sub-)commands which allow the display and modification
of major variables. As an example, the state of a search may
be ascertained, modified (or perturbed) and resumed. (Examples
of such techniques are given in Chapter 5).

When in interrupt mode information about local commands may
be ascertained by inputting the local command 'HELP'. The
local commands are handled in a more simple manner than the
main commands and more information about them is available
in 'Command Descriptions' in Appendix 1.

A single attention interrupt during the processing of any
of the commands specified to be non-interruptable will
initially appear to be ignored by IMPACT. A message

'YOU RANG, SIR?'

- 67 -

will however be printed before the user is next put into
command mode and serves to remind the user that his attempted
interruption was not allowed.

4.52 System Commands.

There are four classes of commands within IMPACT

1) Storage allocation commands which allow permutations or
part permutations to be defined, deleted or Qisplayed.

2) Commands fOf invoking heuristic methods which require•that the user supply routines for calculating the cost of
a permutation and for calculating a lower bound for a part
permutation.

3) Sub-commands which are available whenever the attention
interrupt facility is invoked.

4) Commands which are peculiar to the particular cost function
being investigated. These have been incorporated in order to
provide additional facilities in IMPACT. Typically, such
facilities have been used by the author for measuring the
value of a solution found by a ~euristic technique, for
looking inside a cost function, and for testing out ideas.
Although one of the basic concepts of IMPACT was to provide
a set of ~euristics into which a user could simply insert
his own cost function and thus arrive at some 'solution'
without any exploitation of the cost function, the ,author
was not averse to using any such knowledge. The extendability
of IMPACT permitted the introduction of these special commands.
They can also be made interruptable without undue difficulty.

- 68 -

The storage allocation commands allow IMPACT to be interrogated
by the user in order to ascertain various features of the inter-
active session. Typically, the best solution found so far may
be viewed (the RECAP command allows this); the permutation
which the interaction is currently considering may be viewed and
manipulated (BASE, POPCAP commands)~ permutations may be
defined and displayed (GIAN, CATALOG commands); the CPU time
used over an interval can also be determined (TIME command).

A variety of facilities are provided by the permutation
manipulation commands. A single permutation specified by the
user may be submitted to the cost function and the resulting
cost diplayed (HUNCH command). Elements in a particular
permutation may be interchanged (INTCH) as may blocks of
elements (MOVE). (The blocks need not be of the same size).
Parts of permutations may be reversed (REV) or cycled (CYCLE)
and specific elements in the permutations may be tried in
other positions (WEAVE, TONFRO). In each of the above after
the manipulation has been performed the resulting permutation
is subjected to the cost function, and the user is informed
as to the cost of the new permutation. At any stage in an inter-
active session the user will be informed if there has been any
improvement in the best value found so far. Random permutations may
be generated (SHUFFLE), as may permutations that are part random in
the sense that certain elements of a base permutation are not to
be disturbed from their original position (RANFIX). Various
heuristic techniques based upon methods described in Chapter 3 are
also provided. Some of these are based upon sorting techniques
(SELECT, EXCHANGE, MERGE) whilst others adopt a Monte Carlo

- 69 -

approach (CMC, DISPER). Methods which permit complete
enumeration are also included. One (PERLEX) allows the
generation in a lexicographic manner of all permutations
of 1 to n, or restricts this generation to part of an
original permutation. Others allow the use of branch-and-
bound approaches with different methods of performing the
branching. One method of branching utilises a straightfor-
ward backtracking method of the kind described in Chapter
2 and its command word is TRAKBAK. The other permits an
approach developed interactively and is described more
fully in Chapter 6. The branch-and-bound techniques
require, of course, that the user provide suitable routines
for calculating lower bounds. Highly developed interactive
facilities are also provided in these approaches and such
facilities are described in 'Interactive Techniques' in
Chapter 5.

4.6 Aids to Ease of use of IMPACT

IMPACT provides powerful facilities which allow users to
manipulate permutations in order to resubmit them to
beuristic algorithms. It is thus essential for techniques
to have a result that is accessible to the whole system.
It is also unreasonable, slow and very difficult for a
user to enter complete permutations of 1 to n (for n any-
thing other than small). Both of these problems are over-
come by the provision of a facility for giving permutations
names, in effect by defining a permutation.

- 70 -

4.61 Permutation Definition and the concept of the
Current Active Permutation (CAP).

Permutations or part permutations may be defined either explicitly
or implicitly. Explicit definition is achieved by the use of
the command GIAN ('Qive It ~ ~ame') and at any later stage a
named permutation may be retrieved for use as input parameters
to a command. Certain names are predefined and may be referred
to by the user but may not be destroyed (See 'Predefined
Permutations') •

To define permutations implicitly the concept of a current
active permutation is used. This is essent iatjva storage
mechanism for permutations which the user may use and retrieve
without the necessity of having to define them explicitly. As
an illustration, the user may not know whether or not a permu-
tation will be worth storing until after it has been submitted
to the cost function. If he should then decide to retain the
permutation it might be tedious to reconstruct it. A certain
number (an IMPACT parameter at generation time, and currently
three) of permutations are stored in a push-down stack manner
and may be referred to by CAP 1, CAP 2, •.• etc. (CAP 1
being the most recently implicitly defined permutation,
CAP 2 the one before that, and so on). Whenever a new
implicitly defined permutation enters the stack the permutation
which was CAP 1 becomes CAP 2, the old CAP 2 becoming CAP 3
and so on. (The permutation at the lowest level is discarded
if necessary). Also manipulated with this stack of permuta-
tions is a stack with their associated cost. These costs
may be referred to as CCl, CC2 ••• etc., in the same

- 71

manner as above.

Most of the commands available have as result a permutation and
cost which become CAP 1 and CC 1 respectively, thus causing
stack manipulation. (Detailed descriptions, about these commands,
are given in 'Command Descriptions').

If after the use of a command which created a new member of the
CAP family, the user wishes to revert to the situation (as far
as CAP 1 is concerned) immediately preceding the issuing of the
command he may do so by use of the command POPCAP. There is,
of course, no means of restoring permutations which had to be
discarded (because of the push-down nature of the stack) so the
situation retrieved may be different in this respect.

4.62 Predefined Permutations

Certain names have been preassigned within IMPACT so that the
user may easily form and manipulate permutations. (They may
not be overridden). These names are BEST, BC, NATU, NT01, PADD and
the generic names CAP k and CC! (where! represents a digit in
the range 1 to 9.)

The generic names have previously been explained. By referring
to BEST in a string of parameters to a command the user will
obtain the permutation corresponding to the lowest cost found so
far; BC refers to the cost of this solution. NATU will result in
the natural permutation (1,2, ••• , n) being supplied and NTOl
will supply the reverse of NATU, i.e. (n, n-1, ••• ,2,1).
PADD is used to indicate that the parameters supplied to date are to
be padded out with those elements of 1 to n which have not yet

- 72 -

been entered. The ordering of the elements which provide the
padding is the natural order. As an example, if n = 8 the para-
meters 6,4,8,PADD; are equivalent to 6,4,8,1,2,3,5,7;. The
parameters PADD; are equivalent to NATU;

4.63 Timing Considerations

IMPACT was designed to perform under a multi-programmed time-
sharing operating system and experiments described later were
carried out under MTS. It was found that the CPU time recorded
by the system for various operations varied widely according to
the loading of the system, (amount of drum-to-core transfers
('paging') and the number of disk accesses.)However, within
MTS the use of an appropriate supervisor call in an Assembler
Language subroutine provided access to two CPU times for a job
within the system. These were the time spent in supervisor
state (taking care of interrupts and general housekeeping) and the
time spent in problem state (a more useful measure of time spent
doing useful work for the program). The time spent in supervisor
state was not surprisingly found to reflect the loading of the
system (and fluctuate widely) whilst the time spent in problem
state was reasonably consistent for the same operations (within
± 5%). When IMPACT was run overnight on the 360/67 the loading
upon the system was low because of the low level of multi-
programming which was taking place at that time and it was
found that the time spent in supervisor state by IMPACT was
negligible. Accordingly the problem state time was recorded for
timing measurements. and figures quoting times are measurements
of problem state time only. (The problem state time to load
IMPACT is approximately six seconds).

73 -

4.64. Hard Copy Permanent Record Facility.

At the end of a problem-solving session a user may have no permanent
record of the progress he made upon a particular problem. (He may,
for example, have been using IMPACT from a character display).
If he used a typewriter terminal his terminal sheet will provide
a record of some form but is likely to contain typing errors and
possibly terminal hardware errors. A more permanent machine-
readable record of the session is kept by IMPACT and recorded onto
a disk file. This record may be used for a variety of purposes.
One suggestion put forward by Morton (18) is that scrutiny of it
might prove insight into the problem-solving approaches used by
humans and thus suggest more powerful beuristic techniques. The
COMMENT command which allows the user to explain his decision
making process also proves useful in this respect. Judicious use
of the attention button also allows one to ask for information
which might be too voluminous for terminal output but which will
be recorded onto the disk file and hence be available for a more
suitable output device, e.g. a line printer, character display,
or graph plotter.

- 74 -

Chapter 5.

Interactive Techniques

The two previous chapters have described certain permutation
manipulation techniques and heuristics. In order to allow
convenient interaction in tackling permutation problems it
was recognised that the somewhat simple techniques described
required further extension to provide the user with more
power. This chapter describes some of the extensions provided
and their implementation where appropriate. The division of
this chapter from chapter 3 is not clearly defined since the
provision of some primitive facilities was suggested by the
requirements of the author as he investigated some permutation
problems. (Additional information about certain of the
commands may be gleaned from 'User's Guide to IMPACT', Appendix
1) •

5.1 The Motivation for the Display of Lower Bounds

The preliminary investigation into the behaviour of the branch-
and-bound algorithm when applied to job - shop scheduling made
the author apprehensive about using backtracking upon large
(n > 12) problems. Initial attempts upon such problems there-
fore used the more primitive techniques provided by the heuris-
tic approaches and some good results were obtained for some
problems. However, the author was not able to assess whether
such results were obtained by good fortune or by some particular
decision mechanism invoked by intuition. A weakness also
existed in the inability to specify exactly how good were the

- 75 -

particular solutions obtained. Furthermore, the heuristics
employed provided local optima {in some sense} and there was
no indication as to whether a search ought to be made in the
neigh~hood of a permutation which differed greatly from that
of the permutation produced by the heuristics. It was
realised that access to the lower bounds associated with a
part permutation was desirable and accordingly an appropriate
command 'BOUNDS' was implemented. Upon entering 'BOUNDS' and
providing a part permutation Pj = {il, i2, • 0 0' ij} to
IMPACT the lower bounds associated with the part permutations
{il' i2, 0 0 ., ij' k}, where lc.e~In'"pjt are displayed. In
order to allow the user to easily assimilate the information
provided, the bounds are sorted and printed in ascending order.
If the user decides that he has seen enough of such information
the remainder may be suppressed by the depression of the
ATTENTION button. Figure 11 illustrates the use of the command.

1+=1+1+bounds, 7, 3;
~ ~
{ 5
{ 6
(4
(8

142)
142)
145)
147)
149)
151)

.Lower bounds for partpermutations beginning
with (7, 3)

i+##bounds
ENTER A SUBPERMUTATION

7,3;
(2 - 142) Same lower bounds but attention button
(1 - 142) pressed here
(5 - 145)~

REST OF THE BOUNDS SUPPRESSED BY ATTN

Figure 11: Use of the 'BOUNDS' Command

- 76 -

5.2 User Controls over Backtracking

A measure of goodness of an approximate solution can be obtained
from data available from a backtracking approach. An indication
of the potentially fruitful regions for the search is also
provided. The backtracking approach in IMPACT has been modified
for the above reasons. The command 'TRAKBAK' allows the user
to specify a part permutation upon which backtracking is to be
performed, thus allowing the user to restrict the amouDt of com-
putation expended and also providing a facility for following
up ideas Or 'hunches'• The maximum number of vertices to be
examined in such a search must also be spetified by the user;
this provides some control over the tendency for backtracking
to require large amounts of computing time. Storage space has
had to be allocated for backtracking information and currently
trees or subtrees of up to 35 levels may be searched. (The
lack of dynamic storage allocation in the FORTRAN language is
shown as a disadvantage here). Further controls are discussed
in 'Tree Interrogation and Adjustment I from which it is obvious
that those interactive facilities that were most used by the
author are the most highly developed.

5.3 Further Developments of Existing Heuristics

Certain heuristics have been developed further than their des-
cription in earlier chapters. As an example, in the use of the
exchanging technique the original specification meant that the
complete permutation had to be subjected to pairwise interchanges.
Frequently in investigations using this technique one wished to
have Pn =(i1, i2, ••• , in-1, in) as a starting permutation and
additional knowledge would show that in order to better the best

- 77 -

cost so far found the elements i 1 and i should not ben- n
disturbed in the original permutation. However, the
exchanging mechanism might at times recognise the cost
of the permutation (il, i2, ••• , in-1, in) to be
greater than that of the permutation (il, i2, ••• ,
in' in-l) and would consequently interchange in and in_le
To allow the user to instruct IMPACT not to do this
additional parameters to the exchange command are provided
and when these are utilised exchanging is only performed
upon part of the permutation specified. (The costs are
of course calculated upon the complete permutation).
Figure 12 illustrates the difference between exchanging
upon a full permutation and part of a permutation.

- 78 -

###time
~9158 121119

Initialising call of 'TIME'
340277 o

#1+#exchange,8,7,6,5,4,3,2,1;1
NEW TARGET FOUND) 'exchanging' from (8,7,6,5,4,3,2,1).
EXCHANGING GIVES COST 128

PERMUTATION
8 7 654 2 3 1

Number of calls of the cost function
1+1+=1+ ""time ~

93 ~ 84 177 10
Cpu time in problem state in milliseconds

##H=news tate
TARGET VALUE RESET TO 99999

Resetting target value

=1+#=1+time
55 53 108 o

-exchange,8,7,6,5,4,3,2,1,7,3;
NEW TARGET FOUND
EXCHANGING GIVES COST 131

PERMUTATION
8 7 5 6 342

Specifying that exchanging is only to be performed between the
positions of elements 7 and 3

1+1+#time
93 96 189 ~8

Only 8 calls of the cost function this time.

Figure 12: Differences in the use of the EXCHANGE command

- 79 -

Some of the heuristics employed may also be modified by the user
interpreting a permutation in a slightly different manner. This
point is discussed further in 7.0.

5.4 Tree Interrogation and Adjustment

5.41 Interruption of a Search

During the course of backtracking through the tree of permutationss
situations may arise where the computational effort of the search
is directed in a part of the tree which might give a small decrease
in the lowest cost found so far. The potential payoff from a
successful search (which might involve a considerable amount of
computation) in this region may be small and the computational
effort might be better employed in a different part of the tree.
Facilities have therefore been provided for allowing one to
interrupt the backtracking procedure and examine those still
potentially fruitful parts of the tree. The tree can be adjusted
if desired and the search resumed as before or even abandoned.

Whenever the backtracking is interrupted by a depression of the
attention button the number of vertices (of the tree) that have
been examined is displayed, providing an indication of the pro-
gress of the search to date. Also displayed is the number of
complete permutations that have been examined, giving an indica-
tion of whether the computational effort has been expended in a
low (near to the leaves) or a high (near the root) part of the
tree. Local commands provide the ability to display the tree
remaining for investigation. 'HOWF' informs the users about
the depth of this tree (the number of allocated elements in the
permutation) and also about this part permutation.

- 80 -

As an example, IMPACT might respond to an attention with

YOU'VE INTERRUPTED THE BACKTRACKING AFTER
4 COMPLETE PERMUTATIONS

39 VERTICES AND

?
entering 'HOWF' might then result in
howf
THE DEPTH OF THE SEARCH IS 5
AND THE PERMUTATION BEING EXPLORED IS
WITH LOWER BOUND = 117

5 286 7
?
The stack representation of the tree can be displayed by inputting
'STAC'; only those vertices that are still active, i.e. have
lower bounds less than the current targetvalue, are displayed

?
stac

ID BACK BOUND LEVEL
24 3 119 5
22 1 116 4
21 7 117 4
20 3 118 4
18 6 119 3
13 1 114 2
12 4 114 2
11 6 114 2
10 8 115 2
9 7 117 2
7 7 117 1

?

Table 6: The Stack re~resentation of a tree.
The above information is interpreted in the following manner: the
permutation beginning with (5,2,8,6,3) is in position number 24
in the stack and has a lower bound of 119, whilst that beginning
with (5,4) is in position number 12 and has a lower bound of 114.
The state of the search is thus depicted by figure 13. Parts
of the tree that are still active are represented by nodes and
their lower bounds are attached to them.

- 81

A

/

/
\

(
-le.\le\

\18 4-
t 1- ~ ~ I
I <, I - Y'iOde 1)

node. e,
I

- \e.~~\ S
/\

\. /
,

-~
...-'-- -

V'\ode E.

Figure 13: The tree corresponding to Table 6.

le \ole..l

1..

- 82 -

5.42 Tree Drawing.

The same information that is printed by the commands HOWF and
STAC may be displayed more graphically by use of the local
command DRAW. This command will Idrawl the tree associated
with the information. Figure 14 shows the tree with the root
printed first, agreeing with the orientation as was introduced
in chapter 2.
?
draw down

117
1(5)---(7)

• 114 114 114 115 117
2(2)---(1)---(4)---(6)---(8)---(7)

• 1193(8)---(6)

• 116 117 1184(6)---(1)---(7)---(3)

• 119
5(7)---(3)

•117 ~ Lower bound of part permutation being investigated
t
level

Figure 14: Tree drawn conventionally.

- 83 -

A more convenient manner of printing, from an interactive problem
solving viewpoint, is illustrated by figure 15.
?
draw

117 ~~--- Lower bound of part permutation being investigated

• 119
5(7)--- (3)

•
• 116 117 1184(6)---(1)---(7)---(3)

• 1'193(8)---(6)

• 114 114 114 115 1172(2)---(1)---(4)---(6)---(8)---(7)

• 117
1(5)---(7)
t
level

Figure 15: Tree drawn root last

Nodes lower down the tree are displayed first, and thus the part
of the tree that will be examined soonest is seen first by the
user. A parameter to the DRAW command gives the user the choice
as to which way the tree is to be displayed. Use of the
ATTENTION button during printing of the tree will terminate
the printing although a drawing of the tree will be stored away
automatically onto the recording file and will not be suppressed.
Thus if one wishes only to store a drawing for later viewing
the DRAW command can be issued and followed immediately by a press
of the ATTENTION button.

- 84 -

5.43 Masking of Parts of a Tree

Parts of the tree may be discarded or pruned in various fashions.
A simple method is to use the IMASKI command in order to specify
particular nodes to be rejected. Implementation is performed
by altering the lower bound associated with the node to be
masked to a value higher than the best cost found so far.
Thus to discard the nodes labelled A and B in figure 13 one
should specify that positions 12 and 21 in the stack are to
be masked. The tree would then be as in figure 16. IMPACT
makes no record of parts of the tree which have been discarded
in this manner and thus it is the user1s responsibility to
remember should he require later examination of any nodes which
have been masked.

- 85 -

?
mask
ENTER IDS OF VERTICES TO MASK OUT OF THE SEARCH
12,21;
MASK DONE

?
draw

117 ~ - Lower bound of part permutation being investi gated
·
• 1195(7)---(3)---(
• Node B has disappeared
• 116/1184(6)---(1)---(3)---(

• 1193(8)---(6)---{
Node A has disappeared

• 114 Ii 114 115 1172{ 2)---{ 1)---{ 6)---{ 8)---(7)---(

• 117
1{ 5)---{ 7)---{

Figure 16: Tree after 'MASK'ing of nodes A and B

- 86 -

5.44 Alteration of the Targetvalue

A more powerful method of reducing the amount of computation in a
search is to use the local command 'TARG'• This allows the target-
value (the value with which the lower bounds are compared) to be
altered to a value chosen by the user. If at some stage the cost
of the best solution found so far is Cb then altering the target-
value to Ct = Cb - 0 will cause only those nodes with a lower
bound less than Ct to be examined. 0 would normally be positive
(but need not be so) and thus fewer nodes of the tree would be
examined. It does not follow that no permutations giving a cost
between Ct and Cb will be found since a part permutation of n-2
elements may have a lower bound less than Ct and thus warrant
investigation. The costs of the two resulting permutations may
be such that the smaller of them lies between Ct and Cb and it
would be foolish to ignore it.

In the example if the best cost discovered so far is 120 then
using TARG to search for values better than 118 would result in
nodes C, 0 and E in figure 13 being thrown away, leaving figure
17. Implementation is performed by adjusting the value with
which the lower bounds are compared rather than by altering values
in the stack. Thus after a time if the manoeuvre appears to be
fruitless in the sense that no improvement in Cb is made the
attention button may be used and TARG reset. A certain amount
of the information can thus be retrieved.

- 87 -

?

targ
ENTER NEW TARGET VALUE}

118; } User Command and IMPACT's confirmation
TARGETVALUE ALTERED FROM 120 to 118

?
draw

117

·• Node E has disappeared
5(7)---(~

• Node D has disappeared
• 116 117 ~4(6)---(1)---(7)---(

·3(8)---(c::----- Node C has disappeared

• 114 114 114 115 1172(2)---(1)---(4)---{ 6)---(8)---{ 7)---{
•

• 1171(5)---(7)---(

Figure 17. The effect of altering the targetva1ue

In practice the author found the TARG facility useful for making
large jumps up the tree to levels where the potential payoff (with
reference to the lower bounds) could be greater. The possibility
of switching to another part of the tree where the payoff could
also be small can thus be avoided.

The TARG command is also useful for limiting the amount of informa-
tion displayed by the STAC or DRAW command. The stack of lower
bounds is of the order of n2 elements and the display of all of

88 -

these may be time-consuming or not required by the person supplying
the interaction. One method of curtailing the display of such
information is to suppress it by the use of the attention button.
A more selective method is to use TARG and thus only display
those nodes which have lower bounds less than the value specified.
The targetvalue may of course be reset to its previous value should
it be desired. Thus the user may see which parts of the tree he
will be pruning before committing himself to such a course, and
hence the possibility of being too severe may be avoided. Figure
18 is the original tree retrieved by resetting the targetvalue to
its previous value.

- 89 -

?
targ }ENTER NEW TARGET VALUE ~
120; User Command

TARGET VALUE ALTERED FROM 118 TO 120
?
draw

117

• 1195(7)---(3)---(

• 116 117 1184(6)---(1)---(7)---(3)---(

• 1193(8)---(6)---{

• 114 114 114 115 117
2(2)---(1)---(4)---(6)---(8)---(7)---{

• 117
1(5)---{ 7)---(

5.45 Jumping up the Tree

The two previous methods of tree pruning have the disadvantage
that any nodes which are rejected because they are unlikely to
yield a sufficiently high payoff cannot be retrieved easily
within IMPACT. An alternative means of curtailing a search is
available in the 'JUMP' command and does not have the above
drawback. Use of the command allows the search to jdmp to a
higher level of the tree, disregarding (either temporarily

- 90 -

or permanently) the subtree jumped over. On invoking the command
one is prompted whether information jumped over is to be saved or
not. if it is to be saved then it must be named by the user and
stored on a disk file. It then may be later retrieved by its name.
In the example, if the search is to jump to level 3 then the part
of the tree encircled in figure 13 would be jumped over and the
next subtree examined would be based upon the part permutation
(5,2,i) where i is the next element in the filial set of (5,2), i.e.
6.

Figure 19 illustrates such an effect. The subtree jumped over has
been saved and named 'FRED'; it can be retrieved later by the
I RESUME I command (see appendix 1) and when retrieved will be as
in figure 20.

?
jump 1ENTER LEVEL TO JUMP TO
3; User - IMPACT dialogue
SHALL WE SAVE THE INFORMATION JUMPED OVER?

yes
ENTER A NAME TO DEFINE IT

fred
INFORMATION STORED AND NAMED FRED

?

draw

Lower bound of part permutation now being investigated
~ i.e. (5,2,6)

119

·3(6)---(

• 114 114 114 115 117
2(2)---(1)---(4)---(6)---(8)---(7)---(

•
•
• 1171(5)---{ 7)---{

Figure 19:: .The effect of 'JUMPring up the tree.
Note: Only three levels now.

- 91 -

HHHresume
ENTER NAME OF THE TREE TO RETRIEVE

fred
RETRIEVED TREE NAMED 'FRED'

SEARCH RESTARTS WITH 1000 VERTICES AS INITIAL MAXIMUM
YOU'VE INTERRUPTED THE BACKTRACKING AFTER 0 VERTICES AND

? 0 COMPLETE PERMUTATIONS
howf
THE DEPTH OF THE SEARCH IS 5
AND THE PERMUTATION BEING EXPLORED IS 5 2 8 6 7
WITH LOWER BOUND= 119

?
draw

119

• 1195(7)---(3)---(

• 116 117 1184(6)---(1)---(7)---(3)---(

·3(8)---(

·2(2)---(

·l(5)---(

Figure 20: Retrieval of the tree previously 'JUMP'~ed over

The JUMP command is implemented by adjusting the pointers for the
level of the search and for the information stack. Information
temporarily discarded can be saved in a compact form. The jump
from level 5 to level 3 means that the part of the tree discarded
can be specified by (5,2,8,6,7), the part permutation that was
being examined, and the branches of the original tree that lay
between the two levels converned, i.e. (level 4, node 1 with

- 92 -

bound 116, node 7 with bound 117, node 3 with bound 118) and (level
5, node 3 with bound 119). Table 7 shows the information stored
on the disk file

~
>
>
>
>

Depth of the tree
-q ~ Name of tree1 .L, FILE FOR SAVING DUMPED TREES
3 SAV FRED
4 5 0 Last element (explained in 6.21)
5 5 2 8 6 7 Part permutation
6 3 118 4 17 7 117 4 Stack of information
8 1 116 4
9 3 119 5

H $1ist
>
>
>

=1+ END OF FILE

Table 7: Information saved on 'JUMP'ing up the tree

The ability to jump and save the part of the tree jumped over
allows the user to make the search more like branching from the
lowest bound without losing all of the attractions of back-
tracking.

- 93 -

Chapter 6.

Interaction and the Job-Shop Scheduling Problem

Although IMPACT was designed to permit interaction to achieve good
results without intimate knowledge of the particular cost function
being investigated, simple interactive sessions showed that any
extra knowledge could greatly improve the quality of the results
obtained and consequently in the investigation of the job-shop
scheduling problem existing knowledge of the problem was utilised.
This knowledge proved extremely useful and severe weaknesses in
existing enumerative approaches were highlighted and to a certain
extent removed.

Early in the interactive investigation of the job-shop scheduling
problem it was realised that the inputting of a permutation to the
cost function and the display of the resulting cost did not provide
great insight into what was happening inside the cost function.
However, the display of earliest finishing times mentioned in
Chapter 1 would reveal more of the behaviour of the cost function.
Upon modifying IMPACT to provide this facility, use of the facility
revealed that what was proving useful to the user was a display of
the bottlenecks in the processing of the jobs through the machines.
In effect, the critical path in the processing was required.

6.1 The Critical Path for a sequence of jobs

Given a job-shop problem with n jobs and m machines, any permutation
of the n jobs gives a duration or cost which can be calculated
according to the rule given earlier. In the evaluation of this
duration n + m - 1 job-machine times are summed. Thus there are

- 94 -

at least n + m - 1 job-machine pairs which form a critical path
in the sense that an increase of k units (k ~ 0) in anyone of
these times would mean an increase in the duration of the schedule
of k units. (The figure n + m - 1 is arrived at from the fact
that any duration is the sum of n entries from the m columns and
m entries from the n rows less one since one entry is common to
both (see fig. 2)).

As an example, in the 5/3 problem in the table 1 the table of
earliest finishing times in figure 2 is

Machine
Job I II III
3 i 34 54
2 46 72
4

~
~

5
1 95 118
Figure 21. A critical path

The times circled are the ones for the job-machine pairs which form
the critical path. (They may be found by simply tracing back the
arrows in figure 2).

It does not follow that a decrease of k units in any of the times
which are critical will mean a decrease of k units in the duration
since other elements in the matrix may then become critical. e.g.
if d(5,3) were decreased by 7 units to 11 units the above table
would change to

- 95 -

Machine
I II III

3 I 34 54
Job 2 46 72 figure 22: the effect

4

~

84 or aecreasing a~5,3l 6~
5

~

7 units
1 95

and thus the duration and critical path have changed. Decreasing
an element on the critical path by k units can decrease the
duration of the schedule by a maximum of k units.

This leads to the concept of slack. For a particular permutation
we define the slack associated with an element (a job-machine
pair) as being the maximum amount by which the value of the
element may be increased without increasing the duration
associated with the permutation. (The slack may also be thought
of as the maximum amount by which the processing of the job on
the machine may be delayed without affecting the completion
time of the whole process). Thus any element on the critical
path has zero slack. Conversely any element with zero slack must
lie on the critical path.

f(i-l, j)~f(i-l, j+l)
f(i,j-l)"_f(i ~j)~f(i 1j+l)
f(i+l~ j-l}+- f(i+l! j}

Figure 23: Algebraic display of earliest finishing times

Consider the earliest finishing times depicted in the above figure.
Suppose that the element (i, j+l) lies upon the critical path.

Since f(i, j+l) = max [f(i,j},f(i-l,j+l}] + D(i,j+l)

- 96 -

if the value of D(i,j) is increased by an amount a then the value
of f(i,j) will be increased by an amount a and the value of
f(i, j+l) will not be increased providing that

f(i-l, j+l) ~ f(i,j) + a
i.e. providing that the critical path still passes through
(i-l, j+l).

It follows therefore that if the critical path passes through the
job-machine pair (i, j+1) the maximum amount that element D(i ,j)
can be increased is

f(i - 1, j+l) - f(i, j) if this value is positive, otherwise
o.
i.e. if we denote the slack associated with element (i, j) as
S (i, j) then

S(i,j) ~ max [f(i-l, j+l), f(i,j)] - f(i,j)

However increasing the value of D(i,j) may affect the critical

-- (l)

path in another way. If the critical path passed through element
(i+1, j) then a similar argument to the above gives

S(i,j) 2. rnax (f(i,j), f(i+1, j-1):j - f (i ,j) -- (2)

In the first case above, if the job-machine pair (i, j+l) does
not lie on the critical path then

S(i, j+1) = b where b > 0

By increasing the values of f(i,j) and f(i-1, j+1) by b the
value f(i, j+l) will be increased by b and hence will be
brought onto the critical path.

Thus (1) can be rewritten as
S(i,j) ~ max r(i,j), f(i-1, j+1) J- f(i,j) + S(i, j+1) -- (3)

- 97 -

and similar considerations for the element (i+l,j) give
S (i ,j) 2. rnax [f(i , j), f(i +', j - ') J - f (i , j) + S (i +', J) - - (4)

Combining (3) and (4) gives the result that

d) S(i .J) = min f max ~(i,j), f(i+l, j-l)] + S(i+l, j),

max [f(i .J) , f(i-l, j+1)] + S(i, j+l)t - f(i,j)

This gives an algorithm for calculating the slack associated with a
particular job-machine pair under a particular permutation since
the above holds for 1 < i < n.

Special cases are:

a) i = 1, j = 1 and i = n , j = m. S (1,1) = O.

and S(n,m) = 0 since the first event and the last event lie upon the
critical path,

b) j = m, 1 < i < n. In this case d above breaks down to
5(i,m) = max [f(i,m), f(;+1, m-l)] - f(i,m) + 5(i+1, m)

c) l_2j<m,i=n
5(n, j) = max [f{n,j), f{n-l, j+18 - f{n,j) + 5{n, j+l)

e) j=l,l<i<n
5(i,l) = min1max [f(i, 1), f(i-l, 2)] - f(i,l) + 5{i,2),

5(i+1,1)r

f) i = 1, j = m

5(1, m) = max [f(l ,m), f{2,m-l)] - f(l,m) + 5(2,m)

- 98 -

g) i=l, <j<m
S(l,j) = minf max [f(l,j). f(2,j-1)] - f(1.j) + S(2.j),

S(l, j+l)r

Thus the slack can be calculated and a suitable order of computation
is a,b,c,d,e,f,g which is depicted below.

j :.\

0.. .3 f

e d b

c C\.

Figure 24:
An order for calculation
of s1ack

Example: In the problem given in the 1.11 the earliest finishing
times for the permutation (3,2,4,5,1), were as in the table below.

j = 1 2 3
p. ;,
3 1 3 34 54 table 8: The earliest2 2 16 46 72 r;n1sn;n times or rrn4 3 43 70 845 4 94 106 124 F =1 5 95 118 143

In the above table element f(i,j) denotes the earliest finishing time
of element p.,
on Pn = lPl' P2' ••• , Pn~ upon machine j.

Now S(l,l) = 0 and S(5,3) = O.

- 99 -

From c ,
S(5,2) = max [f(5,2), f(4,3)] - f(5,2) + S(5,3)

= max (118, 124) - 118 + 0 = 6

S(5, 1) = max [f (5, 1), f (4,2)] - f (5, 1) + S(5,2)

= max (95, 106) - 95 + 6 = 17.

From b,
S(4,3) = max [f(4,3), f(5,2)] - f(4,3) + S(5,3)

= max (124, 118) - 124 + 0 = 0

S(3,3) = max [f(3,3), f(4,2)] - f(3,3) + S(4,3)

= max (84, 106) - 84 + 0 = 22

S(2,3) = max [f(2,3), f(3,2)] - f(2,3) + S(3,3)

= max (72, 70) - 72 + 22 = 22

S(1,3) = max [f(l ,3), f(2,2)] - f(1,3) + S(2,3)

= max (54, 46) - 54 + 22 = 22

From d,
$(4,2) = m;n~max [f(4,2) ,f(S, 1)] + 5(5,2),

max [f(4,2),f(3,3)] + S(4,3)f - f(4,2)

= min~max (106,95) + 6, max (106,84) + o~ - 106 = 0

S(3 , 2) = m;n imax [f (3 , 2) , f(4 , 1~ + s (4 ,2) ,

max [f(3,2),f(2,3~ + S(3,3)t - f(3,2)

= m;nfmax (70,94) + 0, max (70,72) + 22t - 70 = 24

S(2,2) = min fmax [f(2,2), f(3,1 U + 5{3,2),

max [f(2,2) ,f{l ,3~ + S{2,3)t - f(2,2)

= minfmax (46,43) + 24, (46,54) + 22t - 46 = 24

From e,
5(4,1) = minfmax [f(4,1),f(3,2)] - f{4,l) + S{4,2),$(5,l)r

= min imax (94,70) - 94 + 0, 17i = 0

- 100 -

S(3,1) = minfmax [f(3,1),f(2,2)] - f(3,1) + S(3,2),S(4,1)~

= min imaX(43,46) - 43 + 24, O~ = 0

S(2,1) = mi n1max [f (2,1), f(1,2~ - f(2,1) + S (2,2), S (3,1) f

= min fmax (16,34) - 16 + 24,0~ = 0

From g
S(1,2) = minfmax [f(1'2),f(2,1~ - f(1,2) + S(2,2),S(1,3)t

= min t max (34,16) - 34 + 24, 22t = 22

Thus the matrix S is
j

Pi i 1 2 33 1
2 2 0 24 224 3 0 24 22
5 4 0 0 0
1 5 17 6 0

Table 9: The slack associated with the job-machine times

and the critical path can be easily observed. This table in
conjunction with table 1 is equivalent to figure 25. Figure 25
is almost identical to figure 1 except that the critical job-
machine elements have been marked by dark lines and the slack
associated with each job-machine element is shown.

6.11 The inverted problem and its association with the slack
of a job-machine element

The consideration of the inverted problem for the scheduling of
n jobs upon m machines provides further insight into the concept
of slack. The example given in Chapter 1 when converted to
the inverted problem requires that 5 jobs are to be sequenced

101
-I-

~- ff

- 102 -

upon 3 machines 11
, 21,31 where the times taken by each job upon

the machines are as in the table below.

Job Machine

1 19 12 1
2 18 12 13
3 20 31 34 12 24 27
5 18 12 51
Table 10: The inverted ~roblem of table 1

As explained in 2.41 the sequence (3,2,4,5,1) for the normal problem
corresponds to the sequence (1,5,4,2,3) for the reverse problem.
It is also apparent that machines 1, 2, 3 in the normal problem
correspond to the machines 3',2', l' in the reverse problem.

The Gantt chart for the sequence (1,5,4,2,3) with the above times
is given in figure 26. Not unexpectedly the duration of the
sequence is 143, the same as before and also the critical path
(indicated by dark lines) is also the same; {when one considers
that job 1 upon machine 11 in the reverse problem corresponds to
job 1 upon machine 3 in the normal problem}.

Figure 26 can, by a slight adjustment be made to resemble figure
1. The adjustment consists of replacing 1',2' and 3' by 3,2 and
1 respectively and rearranging so that these machines appear in
the corresponding places as in figure 1. The time scale has
also been altered so as to 'run in reverse'; the finish of job
3 upon machine 3' (or 1) has been made to correspond to time
o whilst the start of job 1 upon machine l' (or 3) corresponds
to time 143, the length of the duration. The adjustments are
shown in ftgure 27.

103

i t+rt+r

104

:r
VI

Z
~

105 -

It should be noted that in the adjusted figure the critical path
remains unaltered whereas the starting times of processing of
jobs not upon the critical path do not remain unaltered. In
effect these times are the latest that the jobs could commence
without affecting the total duration of the sequence. Figure
25 gives the earliest starting times of such jobs and hence an
alternative means of calculation of the slack can be seen.
Suppose f{i,j) is the earliest finishing time of job i upon
machine j under some sequence in the normal problem and that
f'{i,j') is the earliest finishing time of job i on machine
jl under the reversed sequence in the inverted problem. If
the duration of the total sequence is T then the slack associated
with the job-machine pair (i,j) is

abst(f(i,j) - d(i,j)) - (T - f'(i, m+l-j))~.

The term f(i,j) - d{i,j) represents the earliest starting time
of job i upon machine j under the sequence, whilst T - f'(i,m+l-j)
is the latest starting time of job i on machine m + 1 - j
under the reversed sequence.
As an example the earliest finishing times for our problem earlier
under the sequence (3,2,4,5,1)

Normal f(i,j) Reversed f'(i,j')
1 2 3

3 12 16 46 72 5 37 49 100
4 43 70 84 4 49 73 127
5 94 106 124 2 67 85 140
1 95 118 143 3 8i 118 143

Table 11: The same sequence for both the normal and the
reversed problems

- 106 -

and the earliest finishing times for the reverse problem under
the sequence (1,5,4,2,3) are in table 11. The duration of both
sequences is of course 143 units.

In our earlier notation for slack,

5(3,1) = absff(3,1) - d(3,1) - (143 - f'(3,3)t

= absf3 - 3 - (143 - 143)f = 0

5(3,2) = abstf(3,2) - d(3,2) - (143 - f'(3,2'))t
= absf34 - 31 - (143 - 118)f

= abs(3 - lS) = abs(-22) = 22

5(3,3) = absfs4 - 20 - (143 - 87)t = 22

5(2,1) = absf16 - 13 - (143 - 140)~ = 0

5(2,2) = absf46 - 12 - (143 - 85)~ = 24

5(2,3) = absf72 - 18 - (143 - 67)~ = 22

5(4,1) = abs ~43 - 27 - (143 - 127)~ = 0

5(4,2) = absf70 - 24 - (143 - 73)~ = 24

5(4,3) = abS~84 - 12 - (143 - 49)~ = 22

S{5,1) = absf94 - 51 - (143 - 100)~ = 0

S(S,2) = absf106 - 12 - (143 - 49)t = 0

S(S,3) = absf124 - 18 - (143 - 37)t = 0

- 107 -

5(1,1) = absf95 - 1 - (143 - 32)t = 17

5(1,2) = absfl18 - 12 - (143 - 31)t = 6

5(1,3) = absf143 - 19 - (143 - 19)t = 0

The above calculations result in an identical table to table 9.
Consideration of the reversed problem thus helps to provide
insight into the scheduling cost function.

The display of earliest finishing times and the associated slack
thus provides a reasonably compact convenient method of allowing
the IMPACT user to peep inside this particular cost function
should he so desire. The PATH command was implemented for this
purpose and the slack so displayed is calculated in the first
method described. (By providing similar facilities for other
cost functions, a user could utilise the framework of IMPACT
for other problems. This capability is discussed further in
7.3).

It should be noted that the slack for an element is dependent
upon the permutation. Also the amounts of slack for two
elements may not be independent. In the example quoted, the
start of processing of job 1 on machine 1 and the start of
processing of job 2 upon machine 3 can both be delayed by
their respective amounts of slack; whereas the same does
not hold for the start of processing of job 2 on machine 3
and of job 4 on machine 3. In the latter case the total
increase in the two slack values must be less than 22 units,
the slack of each element.

- 108 -

6.2 Interactive Experiences

Initially several job-shop scheduling problems were generated in
the manner described earlier with each machine being equally
heavily loaded. Problems generated ranged from 12 to 30 jobs
upon 3 to 10 machines and were tackled interactively. As
experience suggested further facilities for IMPACT they were
implemented and their effectiveness assessed.

The experiences that follow are illustrated and explained by
sample interactive sessions with IMPACT. The use of the ICOMMENT I

command allows what would have been interactive sessions to be
described in a convenient fashion. User supplied input is in
lower case and the system's replies are in upper case letters.

1f $run impact* 1=data12/3 2=-junk 4=-q 5=hash
1t£XECUTION BEGINS

ENTER START VALUE FOR R.N.G.
12345.9

ff1+*data
MACHINES

1 2 31 63 69 3
2 99 34 97
3 69 111 153
4 126 103 85
5 17 107 152
6 36 63 0
7 92 94 79
8 117 113 40
9 7 73 166

10 135 69 10
11 111 39 58
12]28]25]5ZTOTALS 1000 1000 1000

HH=HcOllll1ent

- 109 -

The first problem attempted was one of scheduling 12 jobs upon
3 machines; the author was not too adventurous at this stage!
$

bounds t;
(9 - 1080)
(6 1099)
(5 1124)
(1 1132)
(2 1133)
(11 1150)
(3 1180)
(7 1186)
(10 1204)
(4 1229)
(8 1230)
(12 1253)

H=H=HcommentA spin-off from the programming of the backtrack procedure had been
the command 'BOUNDS', which allowed one access to the lower bound
for any part permutation. The use of this facility in this case
revealed that the lowest lower bound was 1080 and that this
corresponded to placing job number 9 first.
$
H=HH=select
WANT TO ENTER ANY PARAMETERS?

no
SELECTION CALLED WITH NO PARAMETERS

*SELECTION GIVES COST 1595 PERMUTATION
6 1 11 10 2 7 8 4 9

NEW TARGET FOUND
5 3 12

###exchange,cap1;
NEW TARGET FOUND
EXCHANGING GIVES COST 1407

PERMUTATION
6 1 11 10 2 9 7 5 8 4 3 12

H=i+H=comment
Use of the selection technique gave a permutation with cost

- 110 -

1595 which was improved upon by exchanging to give a value
of 1407.
$

ffH1=I=merge
ENTER STRINGS TO BE MERGED

+
*MERGING GIVES COST 1097 PERMUTATION
9 5 3 2 4 1 7 8 12
NEW TARGET FOUND

6 10 11

ffffffexchange,capl;
NEW TARGET FOUND
EXCHANGING GIVES COST 1080

PERMUTATION
9 5 324 1 7 8 12 6 11 10

1=1=##cOl1l11ent
Merging proved very encouraging and gave a permutation with cost
1097. When this was subjected to exchanging a permutation with
the cost of 1080 was found. The example served to illustrate
the relative merits of the heuristic techniques but proved
disappointing to the author since the optimum was achieved without
any intuition or flashes of brilliance upon his part.
$

1=1=1=1=1=1=hunch,best;
GIVES COST 1080

#=1+#path,9,10;
THE PATH BETWEEN ELEMENTS 1 AND 12

JOB
9
5
3
2
4
1
7
8

12
6

11
10

- 111 -

BUILD UP OF TIMES
7 80 246

24 187 398
93 298 551

192 332 648
318 435 733
381 504 736
473 598 815
590 711 855
718 843 1012
754 906 1012
865 945 1070

1000 1069 1080

SLACK TIMES
I 0 0 0

1 19 0
1 19 0
1 19 0
1 19 0
1 19 0
1 19 0
1 19 0
1 12 0
1 56 0
1 56 0
1 1 0

"criti cal
path

1+=1+#conment
The 'PATH' command illustrates the critical path for the optimum
sequence found.
$halt

181 CALLS OF THE COST FUNCTION WERE MADE

THAT'S ALL FOLKS
frEXECUTION TERMINATED
It was hoped that the next problem to be tackled would be more
difficult as it consisted of scheduling 15 jobs upon 3 machines.

If $run impact* 1=data15/3 2=-junk 4=-q 5=hash
f+EXECUTION BEGINS

ENTER START VALUE FOR R.N.G.
12345.9

#=1+#data

- 112 -

MACHINES
1 2 3

1 62 68 432 107 102 613 138 124 1004 18 2 735 30 70 996 115 105 857 57 36 40
8 35 50 90
9 23 101 10010 13 85 10811 113 17 712 64 49 7813 18 111 614 79 70 11015 125]] Q

TOTALS 997 1001 1000

1+1+1+bounds,;
(4 - 1020)
(8 - 1085)
~

7 - 1093)
10 - 1098~

(5 - 1100
(12 - 1113)
(9 - 1124)
(13 - 1129)
(1 - 1130)
(11 - 1130)
(15 - 1136)
(14 - 1149)
(2 - 1209)
(6 - 1220)
(3 - 1262)

1+1+1+merge
ENTER STRINGS TO BE MERGED

+
*MERGING GIVES COST 1052 PERMUTATION

4 8 5 10 3 9 6 12 2 7 1 11 14 13 15NEW TARGET FOUND

#H#exchange,cap1;
NEW TARGET FOUND
EXCHANGING GIVES COST 1047

PERMUTATION
4 5 8 10 3 9 6 12 2 7 1 11 14 13 15

- 113 -

HHHcomment
In this problem the lowest lower bound was calculated as being
1020 and this would require job number 4 to be placed first.
The second lowest bound was 1085, a value that was beaten by
the use of the merging technique. This means that effectively
the problem has been reduced to one of scheduling 14 jobs
since the value of 1052 could only be bettered if job number 4
was placed first.

Use of exchanging improved upon the merging permutation to give
a permutation with a cost of 1047. At this stage a lack of
power was felt by the author since heuristics were needed which
would allow one to specify particular elements of the permutation
to be constructed; (In this case the first element was to be
specified as being 4). In the absence of any such heuristics,
lower bounds for permutations beginning with 4 were requested.
$

HH#bounds,4;
(10 - 1043)
(5 - 1047)
(8 - 1052)REST OF BOUNDS SUPPRESSED BY ATTN

HHHcomment
Continuing further along these lines a value of 1043 was reached
fairly quickly.
$

- 114 -

bounds,4,10;
(5 - 1043)
(7 - 1043)
(14 - 1043)
(12 - 1043)
(1 - 1043)
(8 - 1043)
(9 - 1043)
(13 - 1046)
(11 - 1058)
REST OF THE BOUNDS SUPPRESSED BY ATTN

1+1+1+base
*CC IS 1047
4 5 8 10
1 11 14 13

*CAP IS
396
15

12 2 7

1+1+'1+intch,5,10;
NEW TARGET FOUND
COST 1046 PERMUTATION
4 10 8 5 3 9 6 12 2 7 1 11 14 13 15

=!=I==!=I=1+exchange, capl;
NEW TARGET FOUND
EXCHANGING GIVES COST 1043

PERMUTATION
4 10 8 5 3 9 6 12 2 7 1 14 11 13 15

'H''H'i+comment
Further problems were tackled and fortunately provided greater
difficulty than the two already mentioned. One such problem
consisted of scheduling 25 jobs upon 3 machines.
$

- 115 -

###
merge

ENTER STRINGS TO BE MERGED
+*MERGING GIVES COST

19 9 13 23
10 15 16 14

NEW TARGET FOUND

1074 PERMUTATION
24 6 1 2 4
22 17 18 20

3
25

7 8 5 11 12

###ezchange,cap1;
NEW TARGET FOUND
EXCHANGING GIVES COST 1041;

PERMUTATION
19 9 23 13 24 6 1 2 4 3 7 8 5 11 12
10 15 16 14 17 22 18 20 25

#HH=bounds,;
(19 - 1028)
(9 - 1036)
(23 - 1041)
(24 - 1042)
REST OF THE BOUNDS SUPPRESSED BY ATTN

#1+=1+cOl1111ent
Investigation of the lower bounds revealed that to better the cost
of the permutation obtained from the application of exchanging upon
the result of the merging solution, only permutations beginning
with (19) or (9) need be considered.
$

H==!Tffswitch

#1+1+bounds,;
(25 - 1028)
(19 - 1037)
(14 - 1042)

REST OF THE BOUNDS SUPPRESSED BY ATTN

- 116 -

rt==f1=Hcomment
At this time it was felt that one ought to be able to consider
either the normal job-shop problem, or the inverted problem. An
appropriate command 'SWITCH' was therefore incorporated into
IMPACT. This command alters the data so that the inverted
problem is considered. A second use of the command returns
one to the original problem.

The use of this command in this instance allowed the author to
ascertain (by the 'BOUNDS' command) that the choices for the
first position of the inverted problem (which is of course the
last position of the normal problem) could be similarly
restricted. Following up this investigation a permutation with
a cost of 1028 was found and was seen to be optimal. The com-
bination of the ability to ask for lower bounds and to tackle
the inverted problem was thus seen to be useful.
$

=1+1+#merge
ENTER STRINGS TO BE MERGED

+*MERGING GIVES COST
25 14 3 12 16
13 15 11 17 21

1060 PERMUTATION
58421

19 24 23
7 20 18 22 6 10

=1+1+#exchange, capl;
EXCHANGING GIVES COST 1041

PERMUTATION
25 14 16 3 12 5 8 4 2
13 15 11 17 21 19 24 23

7 20 18 22 6 10

"1+1+11=intch,19,23;
NEW TARGET FOUND
COST 1029 PERMUTATION
25 14 16 3 12 5 8 4 2 1 7 20 18 22 6 10
13 15 11 17 21 23 24 19

- 117 -

#1+1+exchange,capl;
NEW TARGET FOUND

EXCHANGING GIVES COST 1028
PERMUTATION

25 14 16 3 12 5 8 4 2 1 7 20 18 22 6 to
13 15 11 17 21 23 24 19

#1+1+halt
447 CALLS OF THE COST FUNCTION WERE MADE

THAT'S ALL FOLKS
1i£XECUTION TERMINATED

A 30 jobs 3 machines problem was similarly treated and solved
without undue difficulty. The success proved encouraging and
stimulated the provision of further interactive facilities for
the scheduling problem.

The above pointed to the ease with which extensions could be
made to IMPACT.

118 -

6.21 Lower bounds and their connection with the inverted problem

It had been pointed in Chapter 2 that the use of the branch-and-
bound technique upon the inverted problem could greatly reduce
the amount of tree-searching necessary. The combination of the
ability to ask for lower bounds for a part permutation (the
BOUNDS command) and the ability to consider the inverted problem
(the SWITCH command) allowed the author to recognise a severe
weakness in the procedure for the calculation of the lower bounds
as described in 2.2. This weakness lies in the statement

'As the last job to be processed has not yet been decided the
job, out of those not yet assigned, that occupies the last m-k
machines for the least time is chosen.'

This means that in the calculation of the lower bounds for a
part permutation a different job might be chosen as last in the
calculation of the lower bound g(k) than that chosen as last in
the calculation for the lower bound g(k+l). Thus the calculated
lower bound could be lower than that that could be obtained with
just a little more computation. Furthermore this weakness might
not be recognised until a large number of the currently unassigned
elements had been allocated. Removing this drawback would thus
improve the performance of the branch-and-bound method as far as
the total number of vertices searched is concerned, although of
course slightly more effort would be expended per vertex examined.
To strengthen the bounds even further, the observation of good
starting elements (with respect to lower bounds) for the inverted
problem revealed that the choice of the last element for the
normal problem could often be more restricted than all those
elements of 1 to n which are not specified to be in the starting

119 -

part permutation. The first elements for the inverted problem
are of course the last elements for the normal problem and thus
if a permutation is known which has a cost C, and the use of
lower bounds for the inverted problem indicate that only elements
1~1'~2' ••• , ~jt placed first can possibly result in a
permutation with a cost less than C, then only the set of
elements f~l' £2' ••• , £jt need be considered for the last
position of the normal problem. Similarly of course the choice
for starting elements of the normal problem can be restricted.
It is also possible that the set of elements 1£1' £2' .
£jlt for the starting position may not be distinct from

1£1' R,2' ••• , £j~.

. .,

6.22 Additional facilities for the 'BOUNDS' command

It was realised at this stage that the BOUNDS command ought to
allow the user to specify not only a starting part permutation
but also (optionally) the element with which to finish the
permutation. (The possibility of being able to specify a part
permutation with which to finish the permutation was considered
at this time. Further analysis of the job-shop scheduling pro-
blem was however called for in this respect and it was convenient
to perform this analysis in parallel with the interaction. The
results of such analysis are discussed later in 6.241).

Implementation of this facility was easily achieved because of
the modular nature of IMPACT. The routine for calculating lower
bounds was modified so that if one requested lower bounds for a
part permutation beginning with (il, i2, ••• , ij) and ending

- 120 -

with (k), a very high value was returned for the invalid part
permutation (i1, i2, ••• , ij, k). This is by no means the
most efficient method but its implementation required little
re-programming and consequently did not disrupt the pursuance
of the investigation.

Some more problems were generated at this stage and examined
interactively, and some of the existing problems were re-
examined. The size of the problems ranged from 20 to 30 jobs
upon 3 to 10 machines and the new facility allowed one to
determine more exactly where the computational effort ought
to be directed. The facilities for instructing IMPACT to
examine these regions were rather weak however, and a con-
sequence of the above implementation meant that the backtracking
procedure could be instructed to search that part of the tree
beginning with (i1, i2, ••• , ij) and finishing with (k). The
fact that the bound for the part permutation (il, i2, ••• t

ij' k) is given a high value means that this part of the tree
will not be examined, which is as-desired. (A trivial modifi-
cation to the 'accounting' procedure for counting the number
of vertices examined had of course to be made). The avoidance
of reprogramming was particularly useful since the interactive
facilities of search interruption, tree interrogation and
pruning were still available. Upon using the new facility,
good (sometimes optimum) results were obtained with a
comparatively small amount of computing time. Tree pruning
was used to direct the search into the promising areas. The
results were good in the sense that they were near to the
optimum (within a few percent).

- 121

The important result of the interaction was that frequently
optimum solutions were being determined and being recognised
as such fairly quickly. The verification stage mentioned in
2.424 as being the reason why backtracking was as effective
(or ineffective) as branching from the lowest bound had thus
been curtailed in enough of the examples to offer encouragement.

6.23 The normal or the Ireversel problem?

When backtracking, as described above, was performed a decision
had to be made whether to attack the normal problem or the
inverted one. To allow a choice to be made during an inter-
active session an appropriate command 'SWITCH' would be used
to switch from the normal problem to the reverse problem, or
vice-versa. When interaction was taking place if it appeared
that no success was being achieved by backtracking through a
normal job-shop problem, the author would interrupt the search
and begin backtracking upon the inverted problem. Often this
would result in success. Initially this backtracking was per-
formed in 'manual' fashion as illustrated by figure 28.

Frequently the number of still potentially fruitful descendents
of a part permutation would become large and the manual
organisation became tedious. Use of the SWITCH command and
manual backtracking upon the inverted problem could prove
fruitful since the author could take advantage of his
experiences before the switch was made. As an example, a
situation might occur in which a part permutation beginning
with, say, (7,1,23,14) would have descendents worthy of investi-
gation in 8,19 and 27; i.e. the part permutations (7,1,23,14,8),

- 122 -

=f=I=HHbounds,;
(7 - 114)
(4 - 117)
(2 - 119)
(1 - 121)
(6 - 127)
(3 - 127)
(5 - 132)
(8 - 136)

#HHswitch

#=I=I=Hfixbound,;
ENTER ELEME~T TO OCCUPY LAST POSITION

7;
(5 - 114)
(4 - 121)
(1 - 126)
(6 - 127)
(8 - 128)
(2 - 133)
(3 - 138)
(7 - 999999)

1+H1+fixbound,5;
ENTER ELEMENT TO OCCUpy LAST POSITION

7;
(
(
(
(
(

~

6 - 114)
1 - 114)
4 - 114)
8 - 115)
3 - 120)
2 - 120)
7 - 999999)

=1=1=11+1+switch

'1+1+1+fixbound,7;
ENTER ELEMENT TO OCCUpy LAST POSITION

5;
(
(
(
(
(
(
(

2 - 114)
1 - 115)
4 - 119)
3 - 121)
8 - 127)
6 - 132)
5 - 999999)

Figure 28: An example of manual backtracking. (This example uses
n=8 only to illustrate the principle involved. Inpractice n was larQer).

123 -

(7,1,23,14,19) and (7,1,23,14,27). However, consideration of the
inverted problem with the last element fixed as 7, (the first
element in the normal problem) could reveal that the elements 8,
19 and 27 would have to be placed very early in the permutation
to be able to better the lowest cost found so far. Thus any per-
mutation beginning with these elements could not end with (14,23,
1,7). In other words, use could be made of preclusion if back-
tracking was to be performed from both ends of the permutation
in some manner. In this way some knowledge of not only the last
element of the permutation but the last j elements could be
exploited.

The reduction in necessary tree searching when this approach was
taken manually suggested that an automatic method would be worth
testing and the following algorithm was devised for use within
IMPACT.

6.24 Branching from both ends of the permutation.

This method has advantages that the lower bounds calculated can
be stringent and preclusion is exploited. The method is termed
'branching from both ends of the permutation' and in essence a
permutation is built up as followse-

The first element of the permutation is filled by calculating
the lower bounds for each candidate for this position and the
element with the lowest lower bound is chosen. The n th position
of the permutation is similarly filled by calculating the
lower bounds(for position n) for each as yet unassigned elements,
and by choosing that element with the lowest lower bound. (In
the calculation of the lower bounds advantage can of course

124 -

be taken of the knowledge of the first element of the permuta-
tion). The next step is to allocate the second position in the
permutation in a similar manner, again utilising any knowledge
of the positions fixed so far. The (n-l) th position is then
filled and then positions 3, n-2, 4, etc. When a complete per-
mutation has been built up its cost may be calculated and if
this is lower than the best cost so far found then a record is
made of it. The formation of the initial permutation is thus
simply a selection procedure. Backtracking may be performed
by considering the complete permutation as two permutations
each having n/2 elements and systematically removing the end
elements from each of these alternately until a position is
reached which is deemed worthy of further investigation. The
search then proceeds as before and terminates when all possibilities
have been investigated.

The complete scheduling tree for n = 4 to be searched under this
method may be represented as in figure 29. The box

represents those permutations that begin

with element 1 and finish with element 3, whilst

represents those permutations beginning

with 1,4 (in that order) and ending with element 3.

As an example of the method, the figure 30 depicts the parts of
the tree examined for the problem of scheduling 6 jobs upon 3
machines, where the times taken for each job upon each machine
are as in Table 4. Of interest in the search is the fact that
it is possible that the lower bound calculated for a permutation
beginning with element i and ending with element j might be

125

o~ l\,').,~\4-) o.rrClY"\sed.
-'M\\....

~' bf'Q.("\cn - Cf"'oYY'l- ..4t~dS.' ~e.Qs·<:h.,,,

126 -

<lH.\..)
r

11.\\0 I~blo 15\4-1 1384- 153.1. \2..b3

f 31 I 51 f blI I I f 1.1 I 4-1
\ -,
131\ 13""" IS' ICf 11.10'3. 1].110

f4- , 1 Is I J f6 I 112. I j 13 IJ
/

/
12.10.3 Il.q~ 1Zolo:!. 11..103

ls 2.d Is 31 I fs 4-d 15 10 1 I

\
\1.Cc3 1l.b3 \'1.""3 '1.110 13q4- 1'1-:1"1- 1385

fSb 1. 11 lb 1.\ J 110 3. 1 I 16 4-1 I [6 sdls 3, 2., I 154- 1., 1
\ /

.111.I.:I.:\.1j. ,,,-10:11 II.'loq.t.,l 113q2.
<....,534-102..1) (S3Co,+1.0 CS\oa~'_i) (5\04-:\1.1)

/"

\ '" '63 \10010 \ 4-31".1- \'J,q'a I,+f63 14-3.=J.

Ib1.. ~, I Ib~ 4-11 [loSllo3 2..1 J Ibl4- 1-, 1 r loS 2., 1 4.1
/I J ,,,,-,.:1-: ~\..

I ,'1'\= to, 1 ,\4.J.T I '$1'1
(_o '1.~S "" IJ (Io1..Sa't- D(1..53'4-11) (\oS 4-'3.'1.1)

/
13'\ S \10010 ''t-3=f. \l.qg \'to'i3 ,,,"Ob

lCo 1. 3, \ I 11o~ ~,l r loS :;, 1 Ib 1- 5 \ I 1103 sd fb4 511
II

1 lloq" 1 \4-3;-c.", ,,"510 (Io1.S~i) j_ '5S'~ 1Jltolo
(bl.:1~SD (b1.It-3SD

F\.~~f"e 30: Po sc'ned..v..\.:\."'~ tre.e Q.:x:.o..l'V'\\.ne.d..I..l~d..e(\

'b""CL~ch:\.n~ ~<,oY'Y'\'boTh e~c:1s. 0+ the p.e("'rY\u,tCLb.ot"\.

127 -

lower than the bound calculated for a permutation ending with
element j. This anomaly arises because of the method of the calcu-
lation of the lower bounds but could be easily cleared up by modify-
ing the bounds routine so that the bound for a permutation beginning
with (il, i2, ••• , ir) and ending with (tq, tq_l, ••• , tl) is
at least as high as its 'predecessor', the permutation (in the
inverted problem) beginning wifu (tl, £2' ••• , tq) and finishing
wi th (i l' i 2'···' i1)•r- r-
No implementation difficulties will be caused by such a modifi-
cation since the lower bound of the predecessor is available
just before the calculation of the lower bound for a part
permutation. The difficulty can be avoided in a more convenient
manner by strengthening the lower bound still further.

6.241 A further strengthening of lower bounds

The manner of calculation of the set of lower bounds g(l),
•••, g(m) described earlier utilises knowledge of r +

elements or assigned jobs, namely jobs il, i2, ••• , ir and
£1. In effect no use is made of the knowledge that jobs
tq, tq_l, ••• , £2 immediately precede job £1 in the permu-
tation and this is a weakness of the bounds described. If
g(s), 1 ~ s ~ m, is one of the lower bounds calculated then
the method of calculation assumes
i) there will be no more idle time upon machine s, and
ii) the last job will progress without any idle time from
machine s through to machine m. Since the last q jobs
(£q' ••• , £2' £1) to be processed are known, consideration
of the reverse problem allows one to calculate the finishing
times of job £q upon each machine under the sequence

128 -

(£1' £2' ••• , £q-1' £q)' and hence the idle time upon each of
these machines (whilst processing these jobs) can be determined.
Furthermore machine s in the normal problem corresponds to
machine (m + 1 - s) in the reverse problem, and thus any idle
time upon machine s can be determined and added to the lower
bound g(s). Similarly any idle time during the progress of job
£q through machines s to m can also be determined and added to
g(s) to produce a more realistic lower bound.

In calculating the amount of idle time to add onto a lower bound
g(s) it is convenient to consider the total idle time on the
path determined by the start of processing of job £q upon
machine s, the subsequent processing of jobs (£q-l' ••• ,
£2,21) upon this machine and finally the processing of job
£1 upon machines 5+1,5+2, ••• , m. By consideration of
the reverse problem the idle time on machine Si is

fp (lq,sl) - r= D(2t,SI) - L= ID(~l,t)q t=2,q t=s ,m
In effect the idle time on this path is the finishing time
under the reverse problem of job £q upon machine 51 under
the sequence Pq, less the processing times of jobs iq_l,
••• , i2 upon machine Si, and less the processing time
of job i1 upon machines Si, sl+l, ••• , mi. Machine Si
in the reverse problem corresponds to machine m + 1 - Si
in the normal problem and thus the idle time upon machine
s in the normal problem during processing of jobs iq' ••• ,
il, is

- 129 -

This correction when added to the formula for lower bounds can
substantially strengthen the lower bounds.

The strengthened lower bounds as described above have been
implemented and tested in IMPACT. The implementation was per-
formed in a manner convenient from an experimental viewpoint.
In effect an existing routine was modified fairly easily. It
is not pretended that such a modification is as efficient as it
could possibly be from the amount of computation necessary to
calculate a lower bound. Its merit lay in the fact that
substantial reprogramming was avoided and hence the problem
solving effort was not disrupted. The strengthened bounds can
however be more efficiently calculated and easily illustrated
as follows

k' = m+l-k

and f~ (£q' k') represents the earliest finishing time of job £q
q

upon machine k' under the part permutation Pq, for the reverse
probl em.

130 -

This formula is seen to be symmetric no matter whether the
reverse or the normal problem is considered. Formulae following
for calculating lower bounds when dominating jobs are considered
do not at first sight appear to have symmetry in this respect.

The term f=d(~t,m) in H(u) however is equivalent to
t=l

fpl (~ ,1I) since no idle time occurs upon the first machineq q
until all n jobs have been processed upon that machine. The
lower bounds can thus be seen to be symmetric with respect
to either the reverse or the normal problem.

The strengthened lower bounds are depicted in figure 31.

6.242 An additional set of Lower Bounds

Lomnicki reports that whilst testing the backtracking branch-
and-bound approach to the job-shop scheduling problem it was
observed that some of the problems which required an excessive
number of vertices to be searched had a common feature. This
was that one of the jobs in the problems was such that its
processing times were dominating the times taken by the other
jobs. By the use of some appropriately designed bounds
Lomnicki found that these particular problems could be solved
fairly quickly.

In the case of three machines, the following lower bounds were
designed for a permutation beginning with

Pr = (i" i2, ••• , ir):

h(l) = fp (ir, 1) + d(kl' 1) + d(kl, 2) + d(k" 3)
r

2.
'-, ///

~
V I /

~ -,
v / /
~~

~
/7

4-' ~
, ,'2-

~ (.I)

I

131

jobs

~~ll\, \+-') co.\c.u\t).'ced a.nd..

'"~,o'oo..b\.~ i..n\)()\.\,)\'n~ SO'f"(\e \.cl\~ i:i.. rt"\e. ,

'-,

~~~ ~ __ ~~~~l,
4-' ~' J.!

3 (3,) "

Jobs

l. 3

3' 2.' "
sC.~)

C.on-tr-\b\6"t\or. ~ro\"t'\ u.na..\.\.oc.~\:.ed. j~,

<..n C> '\'d..\.e t.\.1'V'\e. c...s..s\),.Y'('\ed. ') .

L-___J....----.L..f---..J.J:-'7-'~ l,
~ 3' 2..'

~t~)

£pJ.::.c. ')~) cQ.\cu t~t:eel o..nd p,1"obo.b\~
r



- 132 -

+ I= min1d(v,l), d(V,3)~
vFil,···,ir,kl

where kl is the job, v, which is not one of il, ••• , ir and
which maximises

d(v,l) + d(v,2) + d(v,3).

h(2) = fp (ir,2) + d(k2,2) + d(k2,3)r

+ r= min fd(V,2), d(V,3)~
v ~ il' . . .,ir' k2

where k2 is the job, v, which is not one of il, ••• ir and
which maximises

d(v,2) + d(v,3).

These bounds can be interpreted in the following manner. h(l)
is the time taken for job ir to finish upon the first machine
and bearing in mind that the job kl dominates the other
entries the contribution from this job is d(kl,l) + d(kl,2)
+ d(kl,3). The remaining contributions are from the as yet
unallocated jobs. As we do not know whether these jobs will
precede or follow job k, we place them where their contribution
will be smallest, thus choosing the minimum of d(v,l),
d(v,m). (If d(v,l) < d(v,m) we are effectively placing job v
before job kl).

Similarly h(2) is the time for job ir to be finished upon the
second machine plus the contribution from the job which
dominates the other jobs upon the second and third machines,
namely d(k2,2) + d(k2,3). The contributions from the remaining



133 -

unallocated jobs are made on the assumption that as we do not
know whether or not these jobs precede k2 we place them in the
position where their contributions are smallest, i.e. we
choose for each of them the minimum of (d(v,2),d(v,3) ).

The above bounds can be generalised for the case of m machines
giving m - 1 lower bounds where h(u), the u-th lower bound is
calculated as

m
h(u) = f (i ,u) + L d(ku,t)Pr r t=u

where ku is the job, v, not one of il, ., ir
m

which maximises I= d(v,t), and u = 1, ... m-l.
t=u

(The reason why there are only m-l lower bounds and not m is that
h(m) would coincide with g(m)).

A paper by McMahon and Burton (19) suggests almost identical
bounds which take into account job-dominance. They however
prefer to calculate h(u) as

This lower bound requires more effort in computation but one would
expect it to be superior. It has not however been adopted in this
report.



134 -

The modification to the bounds to fit for a permutation beginning
with (i" ••• , ir) and ending with (£q' £q-l' ••• , £2'£1) is
to calculate the bounds as

H(u) = f p (i , u) + C d (ku' t)
r r t=u

+ I= min fd(V,U), d(v,m)f
v ~ i1, ••• ,ir,ku'£l' • • • £q

+ r= d(£t' m)t=l
where ku is the job, v, which is not one of il, ••• , ir, £1'

., £q which maximises
m
r.= d(v,t). It can be seen that the lower bound simply allows
t=u
for the positioning of the last q jobs after the dominating job
ku·
Figures 32 and 33 illustrate the formulae for the lower bounds.
Figure 33 illustrates lower bounds H,(k) for k = 2, ••• , m-l
where dominating jobs upon the reverse problem are considered.
(The case k = 1 is not allowed since HI(1) would be identical
to H(l)).

6.3 Implementation of branching from both ends of the permutation

As was the case for the simple backtracking algorithm this
branching method lends itself to push-down stack implementation.
In this case two stacks are utilised and the size of each ;s
approximately half the size of the one required for simple
backtracking and consequently the storage requirements of the
two methods are comparable. In implementing branching from both



2.
V/ /

~
/ /-r-:

/ // / / //

0
//

~
//

~ 3' I

"
'l..

Hc I')

I

.... ,

jobs

I //

~
~ '"" V\ Q..$S'

V// -I'''~V// /LL

,~
l"//L

~ L,LL

135

M o..c..~'~nes

\., "'//

'L
~
/LL

0
v/./ /// / / /

T r-, "-."
_j_ LLL

/ \
1/ LL.i.

I ~ I

"
'+ '2..

H (,2-)

•

jobs

L\.

3

~' , I

(,H <.;s)



4.., V/ /

~
//

,""'-'
V/ / // //

\ ,,""-,
\ //

\ ~
~
/_L_

t+
~ . "

~' ('l..)

136 -

~rL" l"
l, l,

~ 3,' ~
"

I (3 )H



- 137 -

ends of the permutation two choices were immediately available;
the above method of utilising two stacks, or a method which
interpreted a part permutation (il, i2, ••• , ij) in a
different fashion. This requires that the part permutation be
considered as a permutation beginning with (il, i3, ••• ,
ij_l) and ending with (ij' ij_2, ••• , i4, i2) (for j even).
It can be seen that the corresponding routines for calculating
lower bounds associated with a part permutation, and for
calculating the cost associated with a complete permutation
would require alteration. This approach may have been easier
to implement for the author but was not adopted since it might
have clouded the author's thinking about the lower bounds for
the job-shop scheduling problem. Such an interpretation of an
input permutation would however widen the range of existing
heuristics and this facet is discussed later in 7.0.

Tree pruning methods similar to those for simple backtracking
have also been implemented and further information about these
techniques is given under the command 'BOTHENDS' in Appendix 1.

6.4 Behaviour of the 'Branch from both ends' approach

A number of 'small', hopefully difficult problems were generated
in order to assess the performance of the new algorithm. Ten
12 job - 3 machine problems were generated with the loadings the
same upon each machine. A comparison of the simple backtracking
algorithm and the branch from both ends approach was made. In
the case of the latter method the approach was tested using the
strongest bounds availaae as described in 6.25 and 6.26, and also
using the bounds of 6.21 strengthened only to allow the lower



138 -

bound for a part permutation to be at least as high as its
predecessor (see 6.24).

The measure of computation required for each method was taken
to be the number of vertices searched. Because the new approach
calculates potentially more powerful bounds the amount of
computation per vertex would be higher. In fact for the new
method with the simpler bounds it was higher by about 13%
whilst an increase of about 38% was observed with the strengthened
lower bounds. The aim of the investigation was to determine
what improvement was gained from the new method and the strengthened
lower bounds. Simple backtracking being the only available
similar approach was used as a crude yardstick in assessing the
difficulty of a particular problem.

For all three approaches both the normal and the inverted problem
were considered, although it was suspected that the new branching
approach with the strengthened lower bounds would behave
uniformly for a particular problem no matter whether the inverted
or the normal problem was considered. The heuristic approach of
applying the exchanging technique to the resulting permutation
from merging was also used in these examples in an attempt to
determine what might be achieved by tree pruning. The heuristics
were applied to both the normal and the reverse problems and
the best results chosen.

The results of the investigation are given in tables 12, 13, 14
and 15. It can be seen that in some of the simple backtrack
attempts the search was terminated after 50,000 vertices had
been examined; an '*' marks those examples in which this
occurred. The column 'found after' indicates how many



- 139 -

Backtracking upon the Backtracking upon the
nonnal eroblem inverted eroblem

Problem Value Found Total Value Found Total
number Found After Examined Found After Examined

1 1074 462 696 1074 9619 50,000*
2 1123 137 50,000* 1123 1060 1,227
3 1068 87 87 1068 1869 1,869
4 1172 18,500 50,000* 1169 1043 40,429
5 1107 18,138 30,216 1107 3041 3,041
6 1105 43,830 50,000* 1105 564 564
7 1090 81 50,000* 1090 88 120
8 1075 13,192 17,181 1075 478 959
9 1099 1,061 1,061 1099 577T 11,225

10 1072 1 ,076 1,076 1072 79 79

Mean 9,656 20,532* 2361 10,951*

Average number of vertices searched per sec 'V 460.

The * indicates that the maximum number of vertices to be
examined, was reached.

Table 12: The behaviour of the backtracking algorithm
on problems of scheduling 12 jobs upon 3
machines.



- 140 -

Problem Number Value found by the heuristic
1
2
3
4
5
6
7
8
9

10

1083
1135
1071
1170
1121
1135
1090
1120
1099
1072

Table 13: The results produced for the 12 jobs 3 machines
problems by the heuristic of exchanging upon
the solution produced by merging



- 141 -

Searching uEon the searChina uEon the
nonna1 Eroo1em inverte Eroo1em

Problem Value Found Total Value Found Total
Number Found After Examined Found After Examined

1 1074 527 2,806 1074 ',620 5,903
2 1123 1,380 2,915 1123 1,581 2,150
3 1068 564 564 1068 494 494
4 1169 2,528 15,431 1169 17,961 30,754
5 1107 336 1,717 1107 2,676 2,828
6 1105 10,280 10,309 1105 10,615 10,615
7 1090 84 179 1090 411 421
8 1075 3,818 3,979 1075 2,957 3,472
9 1099 619 628 1099 1,652 1,652

10 1072 125 125 1072 1,853 1,853

Mean 2,026 3,865 4,182 6,014

Average number of vertices searched per sec ~ 405.

Table 14:



- 142 -

Examination of the Examination of the
nonna' proD' em inverted proD'em

Problem Value Found Vertices Value Found Vertices
Number Found After Examined Found After Examined

1 1074 231 1074 1074 564 2410
2 1123 146 1361 1123 221 761
3 1068 67 67 1068 134 134
4 1169 1326 8693 1169 1085 3700
5 1107 615 767 1107 374 481
6 1105 138 167 1105 138 167
7 1090 65 160 1090 361 371
8 1075 698 884 1075 842 1344
9 1099 500 509 1099 459 459

10 1072 65 65 1072 65 65

Mean 385 1375 424 989

Rate of examination of vertices ~ 333 per sec

Table 15: Branching from both ends of the permutation
with improved bounds upon 12 jobs/3 machines
problems



- 143 -

vertices were examined before the best value finally found was
discovered. The difference between this entry and the total
number of vertices searched indicates what verification was
necessary, and thus what computation could not be avoided by
tree cutting should the optimum be required. The sessions were
run in an Iinteracti ve I mode, i.e. from a termi na1. They were,
however, not truly interactive since no feedback was provided
by the author. The interactive facilities were used solely to
inspect the state of the search from time to time by means of
the attention button and local commands. The author was thus
able to determine where computational effort was being expended.
The average rate of investigation of vertices was calculated
but all of the rates could be increased since at times compu-
tational efficiency was sacrificed (slightly) for ease of
experimentation and implementation.

Example number 4 was a difficult one for the simple backtracking
algorithm since no matter whether the normal or the reverse
problem was considered an enormous amount of computation would
have to be expended. In the case of the reverse problem some
40,000 vertices had to be examined in order to verify that
the optimum had been found, whilst in the normal problem
50,000 vertices were examined without even finding the
optimum! In this particular problem the heuristic method gave
a value better than that found under backtracking from the
normal problem. Branching from both ends of the permutation
with the original bounds showed that the problem could be
solved more quickly, but of real interest was the fact that
under this method the verification stage required some 13,000



144 -

vertices no matter whether the reverse or the normal problem was
considered. The reduction in verification was thus due to
either preclusion facilitated by the new method of branching, or
the better performance of the lower bounds because of the new
method of branching, or both. The branching from both ends method
with the strengthened lower bounds achieved even more spectacular
success upon this problem; resulting in a maximum of about
8,500 vertices being searched. Similarly example number 6
yielded to the new method. This example illustrates the difference$
that can occur depending upon whether the normal or the reverse
problem is considered. The simple backtracking approach solved
the inverted problem in a small number of nodes (564) whereas
the normal problem had not been terminated after 50,000 vertices
had been examined. Branching from both ends with the simpler
bounds achieved a compromise in this problem. No matter whether
the normal or the reverse problem was considered some 10,000
vertices were required for the solution of the problem. Branching
from both ends with the strengthened bounds however solved either
problem in just 167 vertices. It can be seen that the average
number of vertices necessary for solution of the problems had
been drastically reduced by the new branching method and the
strengthened bounds.

The algorithm was tested further upon some problems of scheduling
5,6,7,8,9,10,11,12,13 and 14 jobs upon 3,5 and 7 machines. The
data was generated as before with no excess loading upon any
machine, and the results are given in Appendix 2. For the case
of three machines it appeared initially that the addition of an



145 -

extra job was not greatly increasing the necessary computation.
The number of vertices examined increased by about a factor of 2 or 3
for each additional job. There were of course great variations
in the number of vertices necessary for the solution of problems
of the same size. The examples of 12 jobs upon 3 machines in
this investigation appeared to be very well behaved compared with
the results of table 15. This peculiarity was attributed to the
particular examples themselves. The values in table 15 included
three problems which were not well-behaved. It also appeared
that about twice as much computational effort was being expended
in the verification stage for a problem as opposed to finding
an optimum. This suggests that branching from the lowest bound
would not behave substantially better than backtracking. It
might also mean that further improvement could be achieved in
the calculation of the lower bounds.

Example number 4 for the scheduling of 14 jobs upon 3 machines
was interesting in that a phenomenal amount of effort was neces-
sary in verifying that an optimum had been found. The data and
an optimum solution for this problem are given in Appendix 2.
Upon further interactive investigation of this problem it was
seen that the majority of the verificational effort was expended
in attempting to find a solution with a cost of 1094 or 1095,
when the optimum solution was 1096. To achieve the figures of
1094 the third machine would require no idle time once job
number 13 was accepted by it. Apparently this cannot be achieved
but it appears that there is no quick way of establishing this.



146 -

In the case of three machine problems it thus appeared that most
problems would succumb without excessive computation but occasionally
one might present difficulties.

For the 5 - machine and 7 - machine problems it seemed that more
effort was required for a particular problem but that the number
of vertices necessary for solution again increased by a factor of
2 to 3 for the addition of a job. The verification stage to
search stage ratio again appeared to be about 2:1. As more
computational effort was required for 5 - machine problems than
for 3 - machine problems, and more again as far as 7 - machine
problems was concerned, only up to 11 jobs were considered for
the 5 - machine problems and up to 10 jobs for the 7 - machine

problems Again an occasional difficult problem was encountered
(examples 1 and 4 for the 11/5 problems, and examples 5, 9 and
10 for the 10/7 problems). The number of vertices examined per
second appears to be constant within problems involving the same
number of machines once consideration is taken of set-up costs
for placing the data in a convenient fashion. The number of
vertices examined per second is approximately 280, 220 and 175
for 3, 5 and 7 machines respectively.

The initial investigation into the method of branching from both
ends of the permutation indicated a substantial improvement in
the use of branch and bound for job-shop scheduling problems.
Tree-pruning facilities similar to those of chapter 5 have
therefore been implemented and are described further in Appendix
1. Larger (n=30, m=5) problems have also been tackled interactively
and optimum solutions obtained within a short elapsed time (~ 40
minutes) and using a small amount of computing time (1 - 2 minutes).



147 -

Chapter 7

7.0 The Extendability of IMPACT

As was suggested in 6.5 the interfacing of a suitable routine
between the searching procedure and the cost function could greatly
alter the branching process followed. Such a routine would
effectively take an output permutation from the search and trans-
form it (by the application of a fixed permutation) into another
permutation to be used as input to the cost function. If the
original permutation is Pn = (il,i2, 0 •• , in) and Tn is the
permutation Tn = (tl, t2, ••• , tn), then another permutation
In = jl' j2' •• 0' jn may be defined so that js = its·

As an example, if n = 10 and PlO = (1, 2, . . ., 9, 10) defining

for k odd

n+1 - k/2 for k even

gives T = (1,10,2,9,3,8,4,7,5,6) and

= (1, 10, 2,9,3,8,4,7,5,6)

This transformation would thus allow the normal backtracking procedure
to be used to branch from both ends of the permutation. (The
appropriate procedure for calculating lower bounds would of course
require modification). In a similar fashion merging would be
transformed into merging from both ends of the permutation.
Exchanging behaves in a different fashion however. Figure 34 shows
that exchanging would be performed upon pairs of elements whose
positional distance apart in the input permutations are 1,2,3, • . .,
n-2, n-l (in that order). The order of attempted interGhanges is



- 148 -

shown by the numbers above the arrows.

Output permutation and interchanges tried

9

3

~
'7 '9 'lO'a

~

4

6
8

Input permutation and the actual interchanges tried

Fig. 34: The effect of exchanging when a different interpretation
is placed upon the output permutation

The existing heuristics may thus be easily extended by the introduction
of a suitable transformation permutation.

7.1 The Application of IMPACT to other discrete optimisation
problems

IMPACT may be used for attempting permutation problems where all
input permutations are not feasible. The job-shop scheduling
problem where the restriction of no-passing is relaxed may be



- 149 -

taken as an example. In such problems the cost function provided
should return an arbitrarily high value should the input permuta-
tion be infeasible. Care must however be taken since certain
routines will have the undesirable feature of producing a large
number of infeasible permutations. In the case of the extended
job-shop scheduling problem the number of feasible solutions that
need to be considered for n jobs upon m machines is (n!)m-2;
converting to a permutation problem would mean the permutation
was of length (nm) and thus the price of using the heuristic of
generating random permutations is high; the chance of generating
a feasible permutation that we wish to examine is

Cn!) 'm-2
(nm) !

1
<

Some of the other routines are however usable. The exchanging
algorithm would not misbehave if the initial input permutation
is feasible since the nature of this heuristic would mean that
infeasibilities would not be introduced.

A use of IMPACT not mentioned previously in this report is for
attacking discrete problems in which the cost function is not
well-defined. Data could be liable to error or the optimal
solution might be required to some cost function subject to
certain constraints upon the solution. These constraints might
be difficult to state since they may rely on the subjective
judgement of a works manager who 'doesn't like that machine
placed there'. An approach that could be adopted would be to
use IMPACT to produce a number of good solutions in the hope
that one of them will satisfy the manager's aesthetics.



150 -

7.2 A branch-and-bound approach for the problem of assigning
facilities to locations

Gavett and Plyter (20) have attempted to solve this assignment problem
by adopting a branch-and-bound approach. Their method is based on
that of Little et al for the travelling salesman problem and only the
main paints of the method will be described here. The problem of
assigning n facilities to n locations is converted to one of solving
an assignment problem of minimising

such that N
L x .. 1 .lJ.jlJ =i=1

N x ..I- lJ = 1 .lJ. i
j;'J

where the xij take integer values
o x .. 1,.::. ' J .::.

the a .. are matrix entries and N = in (n-l). A further restrictionlJ
is imposed in that the solution to the assignment problem must be a
feasible solution to the original problem. As an example the
problem of assigning 4 plants to 4 locations is transformed to the
assignment problem of selecting 6 elements from the associated
table 16 so that no two elements are chosen from the same row or
column.



- 151 -

A B
A 1B 6 0 5 6 2 28 0 15 4C 7 5 0 1 3 25 15 0 23D 2 6 1 0 4 13 4 23 0
Distance Matrix D Flow Matrix F

A-B
A-C 196 175 91 105 28 161A-D 56 50 26 30 8 468-C 140 125 65 75 20 1158-0 168 1~ 78 90 24 1~c-o 28 25 13 15 4 23
The associated assignment problem

Table 16: Conversion from one assignment problem to a different one

In the example the locations are labelled A, B, C, 0 for clarity and
the entries in the expanded table are simply the products of entries
in the two matrices. The labelling of the rows and columns illustrates
how the entry was determined. The entry 75 = 5 x 15,for instance,
corresponds to placing the facilities 2 and 3 at locations Band C
(not necessarily in that order).

The method proposed by Gavett and Plyter differs from that used in
the travelling salesman problem in two respects. The cost matrix
is manipulated in order to maximise an initial lower bound and
during the tree construction certain elements in the cost matrix
are eli'minatedbecause certain rows and columns are inadmissible.

The results of this investigation are given in Table 17. The
times quoted are for the running of a FORTRAN II program upon an



152 -

IBM 7074 computer and it is claimed that the largest value of n
that could be conveniently handled was n = 8. It is not clear
whether the restriction was due to storage limitations or to
the computational effort required; although the table suggests
the latter.

Time
sec

5 15 sec
6 45 sec
7 14 min
8 42 min

Table 17: The results of Gavett and P1yter

The authors give no data for the individual problems, nor any
indication as to how dependent upon data the process is. They
claim that their preliminary program requires a good deal of
refinement and speculate that with both major and minor changes
in the program the computing time may be reduced by a signifi-
cant factor. Some difficulty was also encountered in keeping
track of the proper permutation of the facility pair at each
node of the tree. A method which has no such problems, appears
to be eastsr to understand and which 'plugs' easily into IMPACT
is now described.

The problem has been shown to be easily expressed as a permutation
problem in 1.4 and lower bounds upon the cost of any permutation
beginning with (i1, i2, ~ •• t ir) can be calculated without
undue difficulty.



- 153 -

7.21 Lower Bounds for the Problem of assigning Facilities to
Locations

If no elements in the problem have been assigned then a lower
bound to the cost of any assignment can be determined by forming
the sum of the cross products of the elements of the flow matrix
F and the elements of the distance matrix D. There are ~n(n-l)
cross products to be formed and each element is to be used once
and once only so that the sum of the products is minimised. It
can be easily seen that such a sum will be minimised if the
elements of F are sorted into ascending order, those of 0 sorted
into descending order and then corresponding elements multiplied.
In the example given in table 3 the F values sorted ascending1y
are

000 1 2 2 3 4 5 5
and the D values are (in descending order)

3222211 111
and thus a lower bound is
o x 3 + 0 x 2 + 0 x 2 + 1 x 2 + 2 x 2 + 2 x 1 + 3 x 1 +
4 x 1 + 5 x 1 + 5 x 1
.

• 0 A lower bound ;s 25

Now consider a part permutation (il, 0 0 ot ir)t the cost function is
n nr= r= fds=l t=s+l st tstt
where ts denotes the destination of facility s

The cost function can be rewritten as
r
Ls=l

n
Ls=r+1



154 -

r r r
= I= I= f tdR- R- + I-

s=l t=s+ 1 Sst s;'J
n n

+ L:= I= fstdR-sR-ts=r+1 t=s+ 1
r r r

= L:= I= f td .. r:=s=l t=s+l s 's't + s=l

(since the first r elements are known)

The first term of the above can be calculated precisely. A
minimum value for the second term can be determined in r stages,
each stage corresponding to a different value for s (= 1, 2, ••• ,
r). Consider s = k, say, the term gives

which corresponds to the cross product of the unallocated
elements of row k of the flow matrix F and the unallocated elements
of row ik of the distance matrix D. These unallocated elements
are known and their minimum contribution will, as before, occur
if the largest-smallest products are formed. Such a procedure
causes no computational difficulties.

The third term of the cost function corresponds to the sum of the
cross-products of the unallocated elements of the matrix and the
minimum contribution is again easily determined as before.

Example. For the table 3 in 1.4, the lower bounds for a part
permutation beginning with 3,5 are calculated by writing the
cost of the permutation (3,5,i3'!4,iS) as



155 -

5 x 2 2 x 4 x 1 x
f12 d35 + f13 d3t3 + f14 d3t4 + f1Sd3l5

o x 0 x
+ f34 dt i + f35 dt t

3 4 3 5

The contribution of the first term is 10.

The free elements of row 3 of the distance matrix have values
1,2 and 1 and their minimum contribution gives 2 x 1 + 4 x 1

+ 1 x 2 = 8.

The free elements in row 5 of the distance matrix have values
3, 2 and 1 and the minimum contribution is 3 x 1 + 0 x 3 +
2 x 2 = 7.

The remaining unassigned elements of the flow matrix have
values 0, 0 and 5 and those of the distance matrix are 1,2 and
1. The minimum contribution is thus 0 x 2 + 0 x 1 + 5 x 1

= 5.

The lower bound for a permutation beginning with (3,5) is thus
10 + 8 + 7 + 5 = 30.

The complete tree for the above problem is given in figure 35.



- 156 -

Figure 35: Tree for the assignment problem of 5 plants and
Locations

7.22 Performance of the Algorithm

The algorithm was tested upon several sets of examples supplied
in the paper of Nugent et al (21). The data for the examples
are given in Appendix 4, together with the solutions found by
backtracking. It can be seen that the layout of the plants
for the cases when n = 6 and n = 8 would allow advantage to be
taken of symmetry but the general nature of the backtracking
approach implemented in IMPACT does not utilise such information.
The amount of computation expended is thus intended to illustrate
the quality of the lower bounds. Table 18 gives the results of
the investigation.



- 157 -

Table 18: Results of backtracking upon the assignment problem
Vertices Examined Total Vertices

Problem Size to find 0 timum Searched
5 15 15 O. 1
6 85 129 0.5
7 112 339 1.7
8 36 3116 18.9

Even on these small examples it appears that the computation
necessary rises steeply with the size of the problem. The total
number of vertices to be searched in verifying that an optimum
had been found in the 8 plants problem was 3116 - 36 = 3080. This
indicates that the lower bounds are not stringent enough. This
feeling was supported by the behaviour of the al~orithm when used
interactively upon Nugent's larger problems. In these problems
12, 15 and 30 plants were to be assigned to locations and interrup-
tion of the search revealed that the state of the tree being
examined would be as in figure 36. It can be seen that at high
levels of the tree the lower bounds are small but increase in
general with every level of the tree. The lower bounds are thus
feeble in that very little (if any) of the tree is eliminated
early in the search. It thus appears that with the present lower
bounds the algorithm is limited to small problems (n ~ 10)
and furthermore the display of a tree does not prove to be of
great help in suggesting wnre a particular solution might be
improved.

Values given by Nugent for the larger problems (n = 12. 15. 20 and
30) were much superior to those produced by various heuristics
available in IMPACT although the author did not exert a lot of
effort in attempting to better Nugent's results. In this
respect the set of heuristics available in IMPACT could be used as
a yardstick to assess the performance of special purpose heuristics.



- 158 -

TREE BEING EXAMINED AFTER 2312 VERTICES
TARGETVALUE IS 290 AND LAST ELEMENT IS TO BE 0

281

• 284 286
7( 6)---(10)---( 9)---(

• 271 277 281 282
6( 7)---(12)---( 9)---( 6)---( 8)---(

• 261 2645(11)---( 8)---(12)---(

• 251 254 255 259 259 261 264
4( 5)---( 6)---( 9)---(11)---( 1)---( 7)---(12)---( 8)---(

• 249 249 251 251 251 252 253 253 254
3( 4)---( 8)---( 1)---( 5)---(12)---(11)---( 9)---( 7)---(10)---( 6)---(

•

• 246 250 250 251 251 253 254 256 257 258
2( 3)---( 1)---(10)---( 4)---( 6)---( 5)---( 9)---( 8)---(11)---( 7)---(12)---(

• 244 244 244 244 244 244 244 244 244 249
1( 2)---(12)---( 4)---( 5)---( 3)---( 1)---( 8)---( 9)---(10)---(11)---( 7)249---( 6)---(

Figure 36: A typical tree on interruption of a branch and bound
search for the problem of assigning facilities to
locations



159 -

7.3 Other Man-Machine Approaches: the Travelling Salesman Problem

A recent paper by Krolak, Felts and Marble (22) has dealt with a man-
machine approach to the travelling salesman problem and some good
results are claimed by the authors. The results are good in the sense
that in the particular problems tackled (100 - 200 cities) lower
costs were obtained interactively in a shorter amount of cpu time than
certain heuristic methods, that had previously been advocated. A
first attempt was made in the interaction to organise the data to
suggest a tour. The philosphy was that if a salesman must visit a

,

number of cities which are far apart, and in each city there are two
or more customers who are fairly close together, in general, the time
spent planning the tour yields the greatest savings in mileage reduction
if a correct decision is made in the order to visit the cities, rather
than in deciding which order to visit the customers in each city. An
attempt was thus made to find the regions around which a high density
of customers are located. This idea is similar to that in 3.41 where
consideration was given to groups of sequences of jobs, but in this
case the order within a group is disregarded for the moment.

~.

The method of finding clusters o~ cities utilised a solution to the
assignment problem associated with the travelling salesman problem
in which the expression
n n
L I- d ..x .. is minimised subject
i;-'J j;-l 'J , J

to 0 < x .. < 1
- 'J- ¥ i and j

n

L x"J' = 1j=l
¥ ;

n
and I- x .. = 1 ¥ j

i;-'J 1J



- 160 -

The optimal assignment is not necessarily a feasible solution to
the travelling salesman problem but does tend to indicate local
order and each set of cities connected by the assignment was
taken as a cluster by Krolak et al. The clusters were then
replaced by geometric centres and the assignment prob~emsolved
with a reduced number of 'cities', in this case 'county seats'.
The problem solver was able to ask for repeated application of
this process and thus could be provided with a plot of the
initial solution. This compares with the idea used in the job-
shop scheduling where it was realised that the cost of a permuta-
tion was insufficient for the problem solver, and that the
results ought to be displayed in some meaningful fashion. For the
job-shop problem the earliest finishing times and the critical
path were displayed; the travelling salesman probaem does of
course lend itself to a more graphical display. Also supplied
to the problem solver initially in the interactive approach to
the travelling salesman problem was information suggesting how
to piece clusters of towns together. It is claimed that if the
assignment problem solved in the first stage is modified by
assigning large values to those entries selected by the first
solution the solution to the modified problem often gives links
which connect the subtours. Thus the computer is delegated the
role of suggesting alternatives to the user. In the job-shop
problem the alternatives were made more precise by the display
of appropriate lower bounds, or parts of a tree.

Krolak et al claim that the problem solver uses his advantage
over the computer in that he can 'see' the whole problem. That
is he can envision a solution that accounts for interactions



161

between all of the regions that must be connected. He can also
consider a few good solutions provided by the heuristic algorithms
available and try to use good features of each in order to correct
errors made in incorrectly connecting regions to each other. The
intuition provided here by the problem solver appears to be more
than was needed in the job-shop problem. The reason for this is
that the job-shop problem yielded more to analysis and thus any
intuition was directed in this direction. It then ceased to be
intuition and became fact.

Krolak's final stage in the interaction is to use simple tour
improvement routines in the hope of mopping up any oversights
by the problem solver. An attempt is also made to define some
stopping criterion by the detenmination of a lower bound to see
what possible maximum reduction in tour length could be achieved.
No claim is made that any indication of how to obtain a reduction
is provided by the bound.

Infonmation was displayed by Krolak et al by the use of the graph
plotter and they claim that the problem would be a perfect
application for a computer graphics system. This is one of the
main reasons why the travelling salesman problem was not investi-
gated extensively in this report. •



162 -

7.4 Conclusions

7.41 An Appraisal of IMPACT

The interactive features of IMPACT proved particularly useful to the
author; the ability to interrupt and interrogate a search was per-
haps the most valuable. There are some features which would have
been useful but which were not implemented since their construction
would have retarded the progress of the experimental solution of
the discrete optimisation problems. Keyword parameters would have
made the man-machine interface less artificial but would have
necessitated major reconstruction of the command analyser in IMPACT.
Conditional interruptions to some of the processes appear inviting;
e.g. lexamine 2,000 vertices of the scheduling tree unless an
improvement is made, in which case •••••• 1

The development of IMPACT took place when the only available terminal
was an IBM 2741 (typewriter) terminal. Consequently, IMPACT is
oriented towards the physical characteristics of this mechanical
device. In later stages of the work described 2260 character display
terminals were available and it was possible to display information
noiselessly and more quickly. The full power of such devices has
not however been exploited by IMPACT, but only interface routines
would require modification in order to do so. The availability of
more powerful terminals (graphical displays with a light pen) would
again greatly increase the facilities for a problem solver using
IMPACT.

7.42 The value of interaction

The main result of the investigation showed that interactive sessions
could provide insight into the behaviour of certain black box



163 -

functions. In the case of the job-shop scheduling problem such
insight enabled what was thought to be an impractical algorithmic
approach (the branch-and-bound method) to be tuned up so that it
is now useful for larger (of the order of 30 jobs) problems. By
useful it is meant that the optimum may be found, or a good
solution (within a few per cent of the optimum) may be determined,
within a reasonable amount of computing time. In the case of a
good solution an indication of its goodness can also be provided,
as can a description of how this value might be improved upon.
The tuning up of the branch-and-bound approach was achieved by
making the bounds calculated more stringent (or realistic) and by
adopting a slightly different branching procedure. The limitations
of the approach suggested are not apparent and there seems to be
no reason why the method should not give good results for larger
problems.

It is felt that the insight gained into the cost function could not
have been achieved as easily without the use of a terminal system
which provided interactiono The easy access to the powerful
facilities provided allowed one to assimilate information much
more quickly and more easily than would have occurred in con-
ventional batch usage. Ideas were readily tested out and the
ability to 'single-shot' through some of the search procedures
was particularly useful. A lesson that became apparent as the
investigation into the job-shop scheduling problem progressed
was that extra effort in strengthening lower bounds could be
well worthwhile in terms of the amount of searching that could
be avoided because of the more powerful bounds. This perhaps



- 164 -

explains why weaknesses existed in the bounds as described by
Lomnicki. He tested his ideas out on small problems (n ~ 10)
and used hand computation. Consequently he would have been
restricted to a small number of small problems since the con-
centration required and infallibility necessary in his arithmetic
would be prohibitive. He would thus be unlikely to encounter
many difficult problems and would be even less likely to be able
to ascertain why they were difficult.



- 165 -

Appendix 1. User's Guide to IMPACT

Command Descriptions
Informative and Definitive Commands
HELP In an attempt to cater for absent-minded users (of whom
the author is one), the HELP command asks IMPACT to display the
names of all available commands (but no subcommands). The routine
is not interruptable and has no effect upon CAP.
Example Usage
help

COMMANDS AVAILABLE IN IMPACT ARE
HELP RECAP COMMENT PAUSE TIME
RECONOFF RESET HALT GIAN CATALOG
DELETE RENAME BASE NEWSTATE POPCAP
HUNCH INTCH MOVE REV CYCLE
WEAVE TONFRO SHUFFLE DISPER CMC
RANFIX PERLEX SELECT MERGE EXCHANGE
BOUNDS TRAKBAK BOTHENDS FIXBOUND SIO
OLDBILL PATH MODIFY DATA SWITCH
RESUME

RECAP
This command allows the user to display the best solution found so
far. The permutation BEST (see Predefined Permutations in 4.62)
and its associated cost are displayed. The routine is not
interruptable, requires no parameters and has no effect on CAP.

COMMENT
Comments may be entered from the terminal by the user. The lines
entered after the command line are recorded onto the permanent



- 166 -

record file provided the recording facility is being used at that time.
A dollar sign 1$1, in the first position of a line (column number 1)

turns off the comment facility. The facility was implemented so that
the user could record any ideas as he progressed through a problem.
He might thus be able to explain why a particular method was adopted.

The routine is not interruptable and has no effect on CAP.

PAUSE
This command provides an exit from IMPACT to the operating system under
which IMPACT is running (in this case MTS). The command is available
only for a conversational run of IMPACT and places the user in the
MTS environment in a state that may be resumed later by the use of
the MTS command I$restartl• The command was used by the author
mainly as an aid to debugging but could be of use for other reasons
(e.g. manipulating or saving an MTS file, or communicating with the
system operator). There are no parameters to the command, it is not
interruptable and does not affect CAP.

TIME
This command allows one to gauge how much time has been spent in
computation since the last time the command was used. The number of
calls of the cost function which have occurred in this period is
also displayed. The cpu time is displayed in two parts, the time
spent in the problem state and the time spent in the supervisor
state1 the units being milliseconds.
The routine is not interruptable, requires no parameters, and has



- 167 -

no effect on CAP. For further information see 'Timing Considerations'
in Chapter 4.

RECONOFF
This command is useful in connection with the permanent record that is
being kept. It allows the user to switch the record keeping on or
off at will. The command has no parameters since the user will be
prompted. It is not interruptable and does not affect CAP.

RESET
Provides the facility for redefining CAP and CC without invoking the
cost function. Parameters are a permutation and a cost. The CAP
is replaced by the new permutation (other levels of CAP being left
unaltered) and similarly CC is replaced by the new cost. The
routine is not interruptable.

example usage: (n = 6 )
RESET,4,5,2,1,6,3,1507;

The above would reset CAPl to (4,5,2,1,6,3) and CCl to 1507.

HALT
The HALT command is used to terminate the problem-solving session.
Certain statistical information may be provided after prompting by
IMPACT and a return to the operating system (MTS) is then made.
All temporary information (named permutations, CAP etc.) is lost.



168 -

The routine is not interruptable.

GIAN (Qive It ~~ame).
This allows a permutation (or part permutation) to be defined by
attaching a name to it. The elements of the permutation can then
be retrieved by specifying the name that was attached. Parameters
are the permutation name and the permutation (in that order).
Certain names (see Predefined Permutations in 4.62) may not be used
and an attempt to use them will result in i) termination of the job
in batch, or ii) corrective prompting for terminal usage.
The routine is not interruptable, and has no effect on CAP.

example usage: (n = 6)
GIAN, FRED, 2,1,5,4,3,6;

The above would cause the permutation (2,1,5,4,3,6) to be stored
and it could later be referred to as 'FRED'.
GIAN, ABCD, CAP1; causes the permutation which is the current
active permutation to be stored and given the name ABCD. If no
current active permutation exists then the error is recognised and
appropriate action taken.
CAVEAT USER: No check is made that the parameters submitted as
a permutation or part permutation are valid in the sense that they
do not have repeated, missing or out-of-range elements.

IMPLEMENTATION NOTE If the user's storage for named permutations
is incapable of holding the permutation named then this is recognised
as a user error and the corresponding action is taken.



- 169 -

CATALOG
Allows the user to examine the contents of named permutations. The
command CATALOG without parameters will display the names and contents
of all permutations which the user has defined. Use of the command
followed by a permutation name will result in the contents of the
named permutation being displayed. If no such name exists corrective
action will be taken in conversational mode, whilst execution will
cease in batch.
The routine is not interruptable and does not affect CAP.

example usage: In the situation formed by the GIAN examples
earlier, the command

CATALOG, FRED;
would result in IMPACT displaying
FRED 2 1 5 4 3 6
whilst the command
CATALOG

(with no parameters) would cause IMPACT to display
FRED 2 1 5 4 3 S
ABCD ~l ~2 ~3 ~4 ~5 ~6

where tl, ~2'~3't4, ~5'ts was the current active permutation
at the time ABCD was defined.

DELETE
Allows one to 'forget' a permutation named earlier, thus deleting it from
storage and freeing the space. The user must supply as a parameter
the name of the permutation to be deleted. A non-existant name is



- 170 -

treated as an error and corrective action taken if possible. The
routine is not interruptable and has no effect on CAP.

example usage:
DELETE, ABCD; causes IMPACT to forget the permutation earlier

named ABCD.

RENAME
The name of a permutation defined earlier by the use of the GIAN
command may be altered by use of the RENAME command. One must
supply as parameters the old name and the new one. Upon successful
completion of the command the old name will be forgotten and the
permutation may henceforth be referred to by its new name.

The routine is not interruptable and does not affect CAP.

example usage:
RENAME, FRED, BILL;

This would cause the permutation (2,1,5,4,3,6) named FRED earlier,
to be renamed BILL.
Note: An error is detected if the old name did not exist or if the
new name already exists, and appropriate action is taken. It is
not possible to rename a permutation by its old name in a single
use of this command, i.e. RENAME, BILL, BILL; is an error.

BASE
Causes IMPACT to display CAP1, the current active permutation, if
it exists. Otherwise a message to that effect is issued. The routine
is not interruptable, requires no parameters. and has no effect on
CAP.



- 171

NEWSTATE
Resets BC (the best cost obtained, or the targetvalue) to an
arbitrarily high value and forgets that any improvement was ever
made in the targetvalue. BEST, the permutation associated with
the targetvalue is left unaltered. The routine has no parameters,
is not interruptable and does not affect CAP.

POPCAP
This command discards the latest version of CAP, replacing it with
the version which existed immediately before. In effect the CAP
stack is pushed up. The routine is not interruptable and has no
parameters.



172 -

Permutation Manipulation Commands.

HUNCH
The user is allowed to enter what he considers to be a permutation
of 1 to n which he desires to be submitted to the cost function. The
resulting cost is then displayed. The permutation submitted (pro-
vided it is indeed a valid permutation) becomes the new CAP. The
routine is not interruptable and parameters required are the elements
of a permutation.
In terminal usage the submission of elements which do not form a
permutation of 1 to n will result in a descriptive error message and
a request for the permutation to be reinput. In batch usage an
error of this nature will cause termination of the run.

example usage: (n = 6)
The input

HUNCH,2,6,3,4,1,
will result in the message

ELEMENT 5 APPEARS WRONG NUMBER OF TIMES. RE-ENTER.
whilst
HUNCH,2,6,3,4,1,5.

would respond with
COST 1427
PERMUTATION 2 6 3 4 1 5
(if 1427 was indeed the cost of this permutation).
Note: in this, and all other commands unless specifically stated
to the contrary, the parameter string may contain named of
permutations or part permutations.



- 173 -

INTCH
This command allows the user to interchange two elements in CAP,
thus forming a new permutation which is submitted to the cost
function and the resulting cost displayed. The new permutation
becomes CAP (the other being pushed down).
The routine is not interruptable and the parameters are the two
elements (not their positions) which are to be interchanged.

example usage: (n = 6)
if CAP2 is 1 2 4 3 6 5 and CC2 is 1824
and CAPl is 3 4 2 1 5 6 with CC1 as 1627
then the input line
INTCH,4,1;
might result in
COST 1653
PERMUTATION 3 1 2 4 5 6 being displ ayed and the CAP
stack would then be of the form
CAP2 3 4 2 1 5 6
CAP1 3 1 2 4 5 6

CC2
CCl

1627
1653

MOVE
This command allows the user to interchange two blocks of elements in
CAP. The resulting permutation becomes CAP and its associated cost
is displayed. The blocks need not be of the same size and are
specified by end elements. The parameters are thus of the form
b1, el' b2, e2; (in that order) where bi is the beginning of the
i th block and ei is its end. A block may consist of a single



- 174 -

element in which case b. = e. for some i, but the specification of
1 1

a bi, ei pair in which the position ei in CAP is before that of
bi is treated as an error, as is the case if any of the blocks
overlap (i.e. have common elements). The routine is not interrup-
table.
example usage: (n = 8)
if CAP1 is 4 3 2 8 5 1 6 7 then
MOVE, 3,8,6,7;
results in the permutation 4 6 7 5 1 3 2 8 being submitted to the
cost function.
initial permutation

[i 1 Im t

resulting permutation
Ii jlqrlm t

REV
This command permits the user to reverse a block in the current
active permutation and have the cost associated with the new
permutation displayed. The new permutation also becomes CAP. If
CAP consists of (i1, i2, ••• , in) then the permutation obtained
by specifying the reversal of the block defined by elements ij
and ik (j ~ K) will be (i" i2, ••• , ij_1, ik, ik-1, • • .,
ij+l' ij' ik+l' ••• in). The user must specify as parameters the
beginning and end of the block to be reversed. (The elements



175 -

themselves (not their positions) specify the endpoints of the block).
The routine is not interruptable.
example usage: (n = 6)
if CAPl is 4 3 5 2 6 1 then
REV,3,6;
results in the permutation 4 6 2 5 3 1 being submitted to the
cost function.

CYCLE
The user may specify a block of elements in CAP which is to be cycled
(to the right) a number of positions. This displacement, which is
at the choice of the user, is applied to the block a number of times
(again specified by the user). After each cycle, the resulting
permutation is submitted to the cost function and a record of the best
permutation and its cost is kept. Finally the best permutation
obtained in this manner and its cost are displayed. This permutation
also becomes CAPl and its cost CC1.
The parameters to the command are the start and end of the block, the
number of positions to cycle, and (optionally) the number of times to
cycle. Omission of the last parameter relults in a default value of
one being taken. The number of positions specified may be greater
than ~, the number of elements in the block, but modulo ~ is applied
to the parameter.

" I II--C_tf.__ '_' _--JI



- 176 -

each element moves r positions to the right within the block, if necessary
wrapping around.
CYCLE, bl ,el,r [,kJ;

example usage: (n = 6)
Suppose CAPl is 4 5 2 3 6 1
CYCLE,5,6,2;

results in the permutation 4 3 6 5 2 1 being submitted to the cost
function and also becoming CAP.
The routine is interruptable and after an interruption the following
local commands are available

1) HELP - Gives the names of the other local commands.
2) QUIT - Abandons the cycl ing.
3) REST - Restarts the cycling from the position in which it was

interrupted.
4) HOWF - Asks how far the cycling process had gone.
5) BASE - Displays the last permutation that was submitted to the

cost function.
6) SOFA - Displays the lowest cost and the associated permutation

found under this particular use of this command.

WEAVE
This command allows the user to enter a permutation of 1 to n and by



177 -

reference to the cost function determine the best position for the
element last specified in the permutation holding fixed the relative
positions of the remaining n - 1 elements. (In effect the n th element
is weaved in and out of the others).
The user is informed of the best position and the corresponding permuta-
tion becomes CAP. The parameter string must yield a permutation of 1

to n and the routine is not interruptable.

TONFRO
This routine utilises the same coding as that of WEAVE and behaves in a
similar fashion. The user specifies an element in CAP and the routine
determines the best position in CAP for this element (in the manner
d~scribed above). One parameter is required - the element that is
to be weaved in and out of the remaining elements of CAP. The resulting
permutation becomes CAP and the user is informed about its cost. The
routine is not interruptable.

SHUFFLE
The user is allowed to generate a number of random permutations each
of which is to be submitted to the cost function. The permutation
giving the lowe.t cost becomes CAP and its cost is displayed. A
single parameter is required - the number of random permutations
required. (A description of the method of generation is given in
(27) ).

The routine is interruptable and has the following local commands:



178 -

1) HELP - asks about local command names.
2) QUIT - terminates the generation of permutations.
3) REST - restarts the processing.
4) HOWF - inquires about how many random permutations have so

far been generated under this command call.
5) BASE - displays the last random permutation.
6) SOFA - displays the lowest cost and the associated permutation

found so far under this use of the command.

DISPER
This command allows permutations to be generated within a distance
(specified by the user) of CAP. The measure of distance used is
that proposed by Page in (17). The user specifies that a number
of permutations are to be generated within a certain distance of
CAP. Each permutation generated is submitted to the cost function
and the one with the lowest cost becomes CAP and it is displayed.
The user may interrupt the routine and use the following local
commands.

1) HELP - to ascertain the names of other commands.
2) QUIT - to abort the command.
3) REST - to restart processing.
4) HOWF - to determine how many permutations have so far been

generated.
5) BASE - to display the last permutation that was generated.
6) COST - to display the cost of the last permutation generated.



179 -

CMC (CHAIN MONTE CARLO)
A Chain Monte Carlo approach is adopted for the generation of
permutations which are to be submitted to the cost function.
The approach is described more fully in 3.4. The initial per-
mutation is the current active permutation and permutations are
generated within a distance of CAP. The user must supply two
parameters, a starting distance and the number of permutations
to be generated at each stage of the approach. The best permu-
tation obtained becomes CAP and its cost is displayed. The
routine is not interruptable.
Note: The push-down mechanism of CAP is only invoked once (at
the finish) during the execution of this command.

RANFIX
The user is allowed to nominate elements of CAP to be held fixed
and the remaining elements are randomly permuted. Each complete
permutation is submitted to the cost function and the one with
the lowest cost becomes CAP. Its cost is also displayed.
The user must supply as parameters the number of permutations
to be generated and the elements which are to be held fixed.
(These elements may be designated by the use of a predefined
permutation). The routine is not interruptable.

PERLEX

The user may specify a block within the base permutation CAP and



- 180 -

this routine will exhaustively enumerate all permutations with those
elements not in the block held fi.ed. Lexicographic generation pro-
posed by Mok Kong Shan (28) is used. Each permutation is submitted
to the cost function and the one with the least cost is displayed
and becomes CAP. The block must be specified by its end elements.

The routine is interruptable and has the following local commands.

1) HELP - for the absent-minded.
2) QUIT - for abandoning the command.
3) REST - to resume processing.
4) HOWF - to determine the progress made to date.
5) BASE - to determine the last permutation used by the cost

function.
6) COST - to display the last cost calculated (in fact the cost

of that permutation displayed by BASE).
7) SOFA - displays the lowest cost and associated permutation so

far determined within the use of this command.

Note: The combinatorial nature of the PERLEX command requires care
from the user; or, in other words the generation of 12! permutations
should not be attempted.

SELECT

The selection technique of 3.31 is utilised for obtaining a 'good'
solution. The solution obtained becomes CAP and is displayed with
its cost. Provision is made for the user to enter certain
elements for beginning and/or ending the permutation. (The same
element must not be specified for both). The routine is not
interruptable.



181

MERGE

Facilitates the use of the merging technique described in 3.33. The
user must enter ordered strings, the union of which forms a permuta-
tion of 1 to n. Each string consists of a list of parameters (which
may be permutation names) separated by commas and terminated by a
semi-colon. The final string should consist of a solitary dollar
sign, $, signifying that there are no more strings to follow.

The permutation resulting from the merging technique becomes CAP
and its cost is displayed. The routine is not interruptable.

Note: to facilitate a slightly more convenient usage of this
command any string which consists of a single plus sign, 1+1,

will cause the strings already input to be augmented by strings
consisting of single elements. These elements are those elements
of 1 to n that have not been specified in earlier strings. These
single strings are taken in numerical order.

example usage: (n = 10)
The input lines

MERGE
4,7,3
9,1,10,2;
8,6,5
$

would result in the strings (4,7,3) and (9,1,10,2) being combined
as in chapter 3 and then the resulting strings being combined
with (8,6,5) to form a permutation of 1 to 10 whose cost would be
displayed.



- 182 -

The utilisation of the '+' facility as follows
MERGE
5,6;
10,1 ;

+

is equivalent to (but more convenient than)
MERGE
5,6;
10,1 ;

2;
3;
4;
7;
8;
9;
$;

EXCHANGE
The exchanging method described in 3.32 is invoked by this command.
The user must supply an initial permutation from which exchanging
is to take place. The permutation corresponding to the lowest cost
obtained becomes CAP. The routine is not interruptable.

An additional facility provided with this command allows the user
to specify that exchanging is only to be performed within a block
of the permutation. To utilise this the user must specify two more
parameters, the beginning and end of the block. The default



- 183 -

(entering only n elements - a permutation of 1 to n) results in
exchanging being applied to the complete permutation.

BOUNDS

This command is applicable provided the cost function is such that
given a part permutation (il, i2, ••• , ij) of 1 to n a rule is
available for determining a lower bound for any permutation
beginning with this part permutation. (The user must have supplied
a routine to perform this function).

The user supplies as parameters to this routine a part permutation
of 1 to n. All unassigned elements of 1 to n (i.e. those not
belonging to the part permutation) are tried in the next vacant
position in the part permutation and the lower bounds together
with the corresponding elements of 1 to n are displayed, in
ascending order of the lower bounds.

In the case of the job-shop scheduling problem the lower bounds
are calculated in the manner described in chapter 2.
The command does not affect CAP but is interruptable; the
pressing of the attention button will suppress any remaining
output.

TRAKBAK

This command facilitates the use of the backtracking algorithm,
described in chapter 2, to perform a branch-and-bound search
upon the permutation tree. The user must supply a part



- 184 -

permutation (which may be nUll) which is to provide the starting
elements for the implicit complete enumeration of the tree.' The
tendency for the approach to require an excessive amount of com-
putation means that the user must provide a stopping mechanism;
i.e. the maximum number of vertices to be examined must be
specified. The user is informed whenever an improvement in the
targetvalue is achieved and if a non-null part permutation was
specified for the start then the best permutation found becomes
CAP.

The routine is interruptable and has the following local commands.

1) HELP - The ubiquitous plea for aid.
2) QUIT - to abort the search.
3) REST - to restart searching.
4) HOWF - to find out how many vertices have been examined.
5) STAC - displays those elements in the stack that are still

worth of examination, i.e. those with a lower bound
less than the targetvalue.

6) TIME - displays the cpu time used since the last call of
TIME.

7) MASK - allows the user to erase parts of the tree from the
stack. The user thus, by judicious use of the
attention button and this command, may curtail the
search by deciding which parts of the tree are
worth searching, i.e. he may override the backtrack
mechanism. There are two forms of this command
MASK and
MASK NODE
In the first form the user will be prompted for the



- 185 -

position(s) in the lower bounds stack of the element(s)
he wishes to mask. The first form must therefore be
used in conjunction with the STAC command. In the
second form he will be prompted for the levels and
the element numbers of the nodes he wishes to mask.
The second form can thus be used in conjunction with
either the STAC command or the DRAW command.

8) TARG - allows the user to give a new value to the targetvalue.
9) JUMP - allows the user to jump to a higher level of the

tree. The user will be prompted for the level to
jump to. He will also have the opportunity to save
the part of the tree jumped over. This part may be
retrieved later for re-examination.

10) DRAW - will produce two copies of a drawing of the part of
the tree still to be examined. One copy is placed upon
the recording file whilst the other will be displayed
on the terminal. The second copy may be terminated by
the depression of the attention button.
The user has the choice of having the tree displayed
either with the root at the top of the display or with
the root at the bottom. To display the tree with the
root at the top the user must enter DRAW DOWN. the
omission of 'DOWN' results in a default being taken.

Note: Implementation parameters may restrict the use of the backtrack
command since the amount of storage space required is of the order
of n2 locations.



- 186 -

BOTHENDS

This command allows backtracking from both ends of the permutation
and the method is described in chapter 6. The user may specify
starting and finishing elements if he so desires. The starting
part permutation must either have the same number or exactly one
less than the number of elements in the finishing part permutation.
The maximum number of vertices to be searched must also be supplied.
The routine is interruptable and has the following local commands
all of whi ch are similar to those available for the command TRAKBAK.

1) HELP
2) QUIT
3) REST
4) HOWF
5) STAC
6) TIME
7) MASK - In order to specify the level of the node to be masked

the first character must be either IFI for forward level,
or IBI for backward level.

8) TARG
9) JUMP - As with the mask command either IFI or IBI must be

specified in order to indicate the level to be jumped to.
la) DRAW

RESUME - Allows one to retrieve a suspended backtracking attempt
and to continue searching from the point where suspension
took place. The data which defines the suspended search



187 -

should have been stored (on a disk file) earlier. It may
have been put there when the JUMP command was used in
either a TRAKBAK or a BOTHENDS command, or may have been
saved when a search was terminated on a 'vertices exceeded'
condition. In either case the user will have attached
a name to it and he will be prompted for such a name. The
full facilities of the searching commands are available
Initially a maximum of 1000 vertices will be set. The
named information defining the tree will not be erased
from the disk file.



- 188 -

Commands applicable to job-shop scheduling

SIO
This command applies the 'shortest imminent operation' rule to the
problem and displays the cost and the associated permutation. The
permutation displayed is one of 1 to nm since in order to apply the
shortest imminent operation discipline the problem has had to be
expanded by releasing the 'no-passing' restriction of Chapter 1.

The command was implemented in order to attempt to assess the relative
merits of heuristic approaches. It requires no parameters and is not
interruptable.

OLDBILL
By using this command the user may simulate 'OLDBILL', the person
who would take a decision whenever a choice of different decisions
occurred during a production schedule. The mechanism of this
routine is almost identical to that for the command SIO except
that the user is informed of the progress of the various jobs
and asked to make a decision whenever a choice arises. Parameters
thus cannot be specified in advance and the command should only
be used conversationally. The routine is not interruptable.

PATH
Allows the user to display the critical path for any permutation of
1 to n. The permutation should have been previously submitted to
the cost function (the use of HUNCH will facilitate this) and



l~ -

the user may specify two elements in the permutation between which
he requires the path to be displayed. The slack of each job-machine
pair (under the schedule specified) is also displayed. The routine
is not interruptable.

MODIFY
Allows the user to adjust the job-machine times. The routine was
incorporated solely for the purpose of experimentation but could
prove useful for an investigation of the effects of perturbation
upon the job-machine times. It is not interruptable and the user
must specify the job number and machine number of the element to
be altered as well as the value to which it is to be altered.

DATA
A command for displaying the data associated with the problem.
The job-machine times are printed onto the terminal. The routine
is not interruptable.

SWITCH
Use of this command allows one to consider the problem with the
inverted order of machines as described in 6.23.



- 190 -

Appendix 2.

Experimental Results with the Improved Algorithm

5 jobs 3 machines

Example Optimum Found Total Time
Number Value after searched (secs)

1 1360 21 21 0.2
2 1363 9 9 0.2 Average 803 1247 9 9 0.2
4 1374 9 13 0.2 vertices
5 1281 11 11 0.2 searched
6 1493 21 49 0.2 per second
7 1304 9 9 0.2
8 1385 9 9 0.2
9 1501 9 17 0.2

10 1306 9 9 0.2

Average 1361 12 16 0.2

6 jobs 3 machines

Example Optimum Found Total Time
Number Value After searched {secsl

1 1175 14 14 0.2
2 1416 21 42 0.3 Average 1503 1326 24 79 0.3
4 1356 14 24 0.2 vertices

searched5 1406 21 80 0.3 per second6 1264 28 28 0.2
7 1412 26 83 0.3
8 1348 68 68 0.3
9 1204 14 14 0.2

10 1147 14 14 0.2

Average 1305 24 45 0.3



- 191 -

7 jobs 3 machines

Example Optimum Found Total Time
Number Value After searched (secs)

1 1222 46 73 0.4
2 1274 25 81 0.4
3 1251 31 126 0.4 Average 190.0
4 1266 34 113 0.4 vertices
5 1260 64 82 0.4 searched per
6 1218 29 29 0.3 second.
7 1283 48 66 0.3
8 1269 85 115 0.5
9 1215 44 57 0.3

10 1180 20 20 0.2

Average 1244 43 76 0.4

8 jobs 3 machines
Example Optimum Found Total Time
Number Value After searched (secs)

1 1205 29 311 0.9
2 1118 27 27 0.3
3 1202 29 192 0.6 Average 336.7
4 1212 47 54 0.3 vertices
5 1236 60 271 0.9 searched per
6 1230 435 668 1.7 second.
7 1129 29 29 0.3
8 1315 176 948 2.5
9 1224 77 226 0.8

10 1215 126 304 0.9

Average 1209 104 303 0.9



- 192 -

9 jobs 3 machines

Example Optimum Found Total Time
Number value after searched {secs}

1 1097 55 61 0.4
2 1166 35 35 0.3
3 1062 35 35 0.3 Average 295.0
4 1196 561 561 1.7 vertices
5 1194 66 197 0.8 searched per
6 1173 225 248 0.9 second.
7 1155 117 117 0.5
8 1215 35 649 1.9
9 1158 266 414 1.3

10 1125 312 637 1.8

Average 1154 171 295 1.0

10 jobs 3 machines

Example Optimum Found rotal Time
Number value after searched {secs}

1 1137 174 174 0.7
2 1142 467 805 2.4
3 1190 644 644 2.0 Average 296.4
4 1137 127 247 0.9 vertices
5 1152 451 451 1.5 searched per
6 1179 44 151 0.7 second.
7 1118 44 366 1.2
8 1141 270 475 1.5
9 1164 465 619 1.9

10 1095 198 216 0.8

Average 1146 288 415 1.4



- 193 -

11 jobs 3 machines

Example Optimum Found Total Time
Number value after searched (secs)

1 1112 56 383 1.4
2 1119 94 181 0.8
3 1072 117 141 0.7 Average 326.3
4 1061 154 154 0.7 vertices
5 1071 54 86 0.5 searched per
6 1189 1535 2795 8.5 second
7 1126 475 736 2.4
8 1096 609 1015 3.2
9 1166 3243 4252 11.9

10 1129 281 1675 5.1
Average 1114 662 1142 3.5

12 jobs 3 machines

Example Optimum Found Total Time
Number value after searched !secs)

1 1070 65 65 0.5
2 1079 130 130 0.8
3 1057 229 239 1•1 Average 225.5
4 1102 218 218 0.9 vertices
5 1095 483 543 2.0 searched per
6 1112 65 254 1.1 second
7 1087 351 368 1.4
8 1042 109 109 0.7
9 1107 157 176 0.9

10 1109 377 377 1.5
Average 1086 218 248 1.1



- 194 -

13 jobs 3 machines

Example Optimum Found Total Time
Number value after searched (secs)

1 1070 154 154 0.9
2 1065 160 160 0.9
3 1117 3351 6609 21.4 Average 287.1
4 1028 77 77 0.5 vertices
5 1131 1480 3476 11.6 searched per
6 1095 232 232 1.1 second
7 1054 77 77 0.6
8 1096 77 77 0.6
9 1104 817 829 2.9

10 1059 77 77 0.6

Average 1082 650 1177 4.1

14 jobs 3 machines

Example Optimum Found Total Time
Number value after searched {secs)

1 1042 209 255 1.2
2 1066 189 249 1.3
3 1080 97 168 1.0 Average 298.5
4 1096 8284 58466 190.7 vertices
5 1048 197 197 1.1 searched
6 1059 156 156 0.9 per second
7 1135 471 1637 6.4
8 1072 200 358 1.6
9 1060 468 622 2.6

10 1123 3012 4160 15.0

Average 1078 1328 6627 22.2



195 -

,~ II ~.



- 196 -

5 jobs 5 machines

Example Optimum Found Total Time
Number value after searched {secs}

1 1685 9 9 0.2
2 1789 11 19 0.3
3 1885 14 18 0.3 Average 85.7
4 2191 9 21 0.3 vertices
5 2014 25 41 0.3 searched per
6 2087 21 34 0.3 second
7 2087 37 45 0.3
8 2175 9 30 0.3
9 1722 9 9 0.2

10 1798 9 18 0.3
Average 1943 15 24 0.3

6 jobs 5 machines

Example Optimum Found Total Time
Number value after searched {secsl

1 1772 16 62 0.5
2 1463 25 25 0.3
3 1861 21 88 0.5 Average 160.0
4 1835 81 189 0.8 vertices
5 1830 14 34 0.4 searched per
6 1640 57 57 0.4 second
7 1718 14 68 0.5
8 1869 116 121 0.6
9 1716 107 107 0.6

10 1776 14 53 0.5
Average 1748 47 80 0.5



- 197 -

7 jobs 5 machines

Example Optimum Found Total Time
Number value after searched (secs}

1 1862 60 527 2.0
2 1521 54 54 0.5
3 1650 78 117 0.7 Average 217.0
4 1589 239 239 1.1 vertices
5 1447 45 45 0.4 searched per
6 1696 149 272 1.2 second
7 1662 22 190 0.9
8 1715 88 202 1.0
9 1655 303 339 1.4

10 1591 127 182 0.9
Average 1639 117 217 1.0

8 jobs 5 machines.

Example Optimum Found Total Time
Number value after searched (secs)

1 1561 49 636 2.7
2 1532 27 360 1.6
3 1404 54 54 0.6 Average 225.9
4 1530 66 229 1.2 vertices
5 1543 182 427 2.0 searcheQ per
6 1623 229 356 1.7 second
7 1503 177 390 1.8
8 1520 280 352 1.6
9 1619 1392 1555 5.8

10 1597 154 614 2.6
Average 1543 261 497 2.2



- 198 -

9 jobs 5 machines

Example Optimum Found Total Time
Number value after searched {secsl

1 1583 70 110 0.8
2 1496 1331 1488 6.1
3 1386 206 228 1.3 Average 238.0
4 1536 1726 3335 12.4 vertices
5 1505 284 1265 5.3 searched per
6 1416 805 857 3.7 second
7 1428 308 1007 4.2
8 1490 378 751 3.3
9 1393 621 694 3.1

10 1422 116 738 3.3
Average 1466 585 1047 4.4

10 jobs 5 machines

Example Optimum Found Total Time
Number value after searched {secsl

1 1455 1399 2017 9.2
2 1413 2731 3080 13.1
3 1389 1614 2111 9.5 Average 224.5
4 1343 128 1153 5.3 vertices
5 1335 51 680 3.4 searched
6 1374 1451 1452 6.6 per second
7 1427 2271 2273 10.0
8 1461 1871 3302 13.7
9 1405 812 1282 5.7

10 1333 280 606 3.0
Average 1394 1261 1796 B.O



- 199 -

11 jobs 5 machines

Example Optimum Found Total Time
Number value after searched (secs}

1 1428 8063 15484 68.4
2 1333 353 934 4.7
3 1341 200 3099 13.2 Average 221.6
4 1353 5216 6337 28.3 vertices
5 1325 454 1269 6.4 searched per
6 1356 1898 1902 9.0 second
7 1335 341 550 2.9
8 1369 2223 5693 25.8
9 1327 1267 2859 12.9

10 1375 701 4644 21.4
Average 1354 2072 4277 19.3



200 -

\ V'i I
.-

I

-

It\- II! \~ I
-

___,



- 201 -

5 jobs 7 machines

Example Optimum Found Total Time
Number value after searched (secs)

1 2415 60 67 0.5
2 2406 28 52 0.5
3 2450 9 21 0.4 Average 112.5
4 2659 93 96 0.6 vertices
5 2279 9 9 0.3 searched per
6 2453 9 28 0.4 second
7 2478 61 63 0.5
8 2195 30 30 0.4
9 2569 9 27 0.4

10 2552 9 33 0.4
Average 2446 32 43 0.4

6 jobs 7 machines

Example Optimum Found Total Time
Number found after searched {secs}

1 2033 147 152 1.0
2 2269 152 195 1.2
3 2245 14 146 1.0 Average 159.0
4 2330 69 103 0.8 vertices
5 2300 70 157 1.0 searched per
6 2121 131 158 1.0 second
7 2354 16 136 0.9
8 2343 91 310 1.6
9 2195 149 151 0.9

10 2097 42 85 0.7
Average 2229 88 159 1.0



- 202 -

7 jobs 7 machines

Example Optimum Found Total Time
Number value after searched (secs}

1 1740 31 43 0.6
2 2067 175 211 1.4
3 2109 106 456 2.4 Average 174.2
4 2160 336 662 3.4 vertices
5 2178 41 472 2.5 searched per
6 2071 91 263 1.5 second
7 2017 217 312 1.8
8 2099 69 333 2.0
9 1942 20 239 1.4

10 2013 310 320 1.9
Average 2040 140 331 1.9

8 jobs 7 machines

Example Optimum Found Total Time
Number value after searched (secs}

1 1694 36 99 1.1
2 1891 41 580 3.3
3 1902 639 751 4.2 Average 183.8
4 1975 2461 2596 13.2 vertices
5 1938 1758 2179 11.2 searched per
6 1814 279 527 3.2 second
7 1927 578 914 5.0
8 1834 27 634 3.59 1879 805 912 5.010 1908 527 533 3.2

Average 1876 715 973 5.3



- 203 -

9 jobs 7 machines

Example Optimum Found Total Time
Number value after searched (secs)

1 1641 66 174 1.6
2 1729 677 903 5.4
3 1877 1713 2620 14.4 Average 175.0
4 1846 1614 3520 19.4 vertices
5 1793 129 1296 7.8 searched per
6 1803 2135 2948 16.7 second
7 1711 245 1545 8.7
8 1756 584 1313 7.9
9 1784 480 1270 7.6

10 1788 548 1292 7.5
Average 1773 819 1688 9.7

10 jobs 7 machines

Example Optimum Found Total Time
Number value after searched (secs}

1 1587 818 1001 6.6
2 1681 814 2281 14.3
3 1622 1717 2654 15.9 Average 174.4
4 1662 2201 3817 23.2 vertices
5 1857 9820 20970 116.3 searched per
6 1722 4494 7573 43.7 second
7 1602 343 1035 6.6
8 1589 287 1052 7.0
9 1703 6252 9959 55.6

10 1813 145 9992 56.7
Average 1684 2689 6033 34.6



204

H--i++++++-I



- 205 -

The difficult problem of 14 jobs upon 3 machines

Machine
Job I II III

1 77 107 91
2 81 0 13
3 52 30 107
4 30 29 38
5 98 4 29
6 96 29 1
7 83 150 101
8 60 128 92
9 21 153 112

10 85 21 43
11 126 103 90
12 49 46 86
13 21 71 103
14 120 129 96

Totals 999 1000 1002

Earliest Finishing Times Slack Times
Radline ~acfline

Job I II III I II III
13 21 92 195 0 0 2
3 73 122 302 0 0 2

12 122 168 388 0 0 2
9 143 321 500 25 0 2

10 228 342 542 35 0 2
8 288 470 635 35 0 2
7 371 620 736 35 0 2
5 469 624 765 35 0 2

14 589 753 861 35 0 2
1 666 860 952 67 0 2
4 696 889 990 67 0 2

11 822 992 1082 67 0 0
6 918 1021 1083 84 61 0
2 999 1021 1096 84 62 0

Optimal solution (13,3,12,9,10,8,7,5,14,1,4,11,6,2).



- 206 -

A 20-JOB la-MACHINE EXAMPLE

DATA MACHINES
JOBS 1 2 3 4 5 6 7 8 9 10

1 60 20 10 5 15 30 45 55 40 252 1 51 52 19 54 73 34 44 77 73 53 66 50 51 74 38 95 7 72 784 67 29 22 75 37 22 39 76 8 435 52 99 76 49 35 20 6 33 96 96 18 77 53 21 50 5 45 71 79 867 78 23 36 94 20 49 75 80 10 128 68 54 98 2 48 74 48 11 33 979 71 53 55 17 73 8 70 Z1 61 510 85 52 24 72 21 19 81 47 32 65
11 17 93 36 25 4 47 12 40 43 7012 57 35 71 54 26 82 23 62 46 8013 34 70 65 56 69 27 18 24 98 2214 79 37 13 97 57 16 46 99 25 4515 69 80 20 9 83 55 1 3 44 2616 38 50 3 81 96 2 28 17 23 9117 92 33 67 84 3 58 63 29 27 3118 84 68 85 68 23 82 15 56 16 1319 69 86 67 4 64 95 43 59 30 1520 10 91 39 66 42 24 83 45 30 57

This example was given in a paper by Heller (29)and his
approximate solution had a cost of 1,598. The optimum cost
discovered interactively using branch-and-bound is 1484 and
an optimal solution is given overleaf.



- 207 -

MACHINES

Jobs 2 3 4 5 6 7 8 9 10
2 52 104 123 177 250 284 328 405 412
3 120 170 221 295 333 428 435 507 585

12 111 155 241 295 321 415 451 513 559 665
20 121 246 285 361 403 439 534 579 609 722
8 189 300 39 400 451 525 582 593 642 819

14 269 337 411 508 565 581 628 727 752 864
13 303 407 476 564 634 661 679 703 850 886
18 387 475 561 632 657 743 758 814 866 899
6 405 552 614 653 748 803 885 945 1031
7 483 575 650 747 816 891 971 981 1043

19 552 661 728 751 926 969 1030 1060 1075
16 590 711 731 832 930 997 1083 1174
17 682 744 811 916 931 989 1060 1089 1116 1205
5 734 843 919 968 1003 1023 1066 22 1218 122

10 819 895 943 1040 1061 1080 1161 1208 1315
11 836 988 1024 1065 1069 1127 1173 1248 1293 1385
1 896 1008 1034 1070 1085 1157 1218 1303 1343 1410
9 961 1061 1116 1133 1206 1214 1288 1324 1404 1415
4 1028 1090 1138 1213 1250 1272 1327 1403 1412 1458

15 1097 1177 1197 1222 1333 1388 1389 1406 1456 1484

~ -:
Optimal Solution. The Critical Path.



- 208 -

Appendix 3. The Cost Function for the Travelling Salesman Problem

SUBROUTINE COST(ICOST,LPERM,N)
DIMENSION LPERM (1)

COMMON/REALS/IDIST (42,42)

C THIS IS A ROUTINE FOR CALCULATING THE COST IN THE TRAVELLING
C SALESMAN PROBLEM. LPERM(I), I = 1, N CONSISTS OF A PART
C PERMUTATION, BEING THE ORDER IN WHICH THE SALESMAN MUST VISIT
C THE TOWNS. THE RESULTING COST OF THIS TRIP IS PLACED IN
C ICOST.
C

JC = 0
L = LPERM(N)
DO 1 1=1, N
K = LPERM(I)
JC = JC+IDIST (L,K)

1 L = K
leaST = JC
RETURN
END



- 209 -

Appendix 4. The Assignment Problem

Nugent's Problems. The upper-half of the matrices represent the
distances whilst the lower represents the flows.

Five Department Plants

The Plant Layout
5

2 3 4 5
1 1 1 2 3
2 5 2 1 2 Distance and flow values
3 2 3 1 2
4 4 0 0 1
5 1 2 0 5

Backtracking gives optimum (2,4,5,1,3) with cost 25 after examining
15 vertices. The optimum was found after 15 vertices had been
examined and 0.1 seconds of cpu time was used in the search. The
permutation (2,4,5,1,3) means that facility 1 is placed at location
2, facility 2 is placed at location 4, etc.

Six Department Plant

1 2 3

4 5 6
The Plant Layout



- 210 -

1 2 3 4 5 6
1 1 2 1 2 3
2 5 1 2 1 2
3 2 3 3 2 1 Distance and flow values.
4 4 0 0 1 2
5 1 2 0 5 1
6 0 2 0 2 la
Backtracking gave the optimum value of 43 corresponding to
permutation (3,2,1,6,5,4) after 85 vertices were examined. A
total of 129 vertices was examined and 0.5 seconds of cpu
time used.

Seven Department Plant

1

2 3 4

5 6 7

Plant Layout

1 2 3 4 5 6 7
1 1 2 3 2 3 4
2 5 1 2 1 2 3
3 2 3 1 2 1 2
4 4 0 1 3 2 1
5 1 2 0 5 1 2
6 0 2 2 2 10 1
7 0 2 5 2 0 5

Backtracking found the optimum value of 74, permutation (4,3,1,7,6,5,2),
after examining 112 vertices. 339 vertices were examined in all and
1.7 seconds of cpu time used.



- 211 -

Eight Department Plant

1 2 3 4

5 6 7 8

Plant Layout

1 2 3 4 5 6 7 8
1 1 2 3 1 2 3 42 5 1 2 2 1 2 3
3 2 3 1 3 2 1 2
4 4 0 0 4 3 2 1
5 1 2 0 5 1 2 36 0 2 0 2 10 1 2
7 0 2 0 2 0 5 1
8 6 0 5 10 0 1 10

Backtracking gave an optimum of 107, permutation.(6,5,1,7,8,4,3,2)
after 36 vertices. To complete the search a total of 3,116
vertices required examination taking a time of 18.9 seconds.



- 212 -

References

1. R.l. Sisson, 'Sequencing in job shops - A review', Opns.
Res. 2., 10 - 29, (1959).

2. l. Waller, 'An investigation into the scheduling of jobs
on machines', M. Sc. Dissertation, Univ. of Newcastle upon
Tyne, (1966).

3. B. Roy, 'Cheminement et connexite dans 1es graphes -
Applications aux prob1emes d,ordonnancement', METRA, Serie
Speciale No.1, Societe d'economie et de mathematiques
app1iquees, Paris (1962).

~. Z.A. Lomnicki, 'A "Branch-and-Bound" Algorithm for the exact
solution of the three-machine scheduling problem', Opns.
Res. Quart. ]!, 89 - 100, (1965).

5. E. 19nall and L. Schrage, 'Application of the Branch-and-
Bound Technique to some Flow-Shop Scheduling Problems',
Opns. Res. ]1, 400 - 412, (1965).

6. E.l. lawler and D.E. Wood, 'Branch-and-Bound Methods: A
Survey', Opns. Res. 14, P 699, (1966).

7. A.P.G. Brown and Z.A. Lomnicki, 'Some Applications of the
"Branch-and-Bound" Algorithm to the Machine Scheduling
Problem', Opns. Res. Quart. lI, No.2, June 1966.

8. H.H. Greenberg, 'A Branch-Bound solution to the General
Scheduling Problem', Opns. Res • .:!! 353 - 361, (1968).

9. R.H. Gonzales, 'Solution of the Traveling Salesman Problem
by Dynamic Programming on the Hypercube', Interim Technical
Report No. 18, OR Center, M.I.Te, (1962).



- 213 -

10. M. Held and R.M. Karp, lA Dynamic Programming Approach to
Sequencing Problems', J. Soc. Indust. and Appl. Math •
.!Q_, 196 - 210, (1962).

11. J.D.C. Little, K.G. Murty, D.W. Sweeney, C. Karel, IAn
Algorithm for the Traveling-Salesman Problem', Opns. Res.
.Il- 972 - 989, (1963).

12. S. Ashour, IAn Experimental Investigation and Comparative
Evaluation of Flow-shop Scheduling Techniques', Opns. Res.
~ No.3 P 541 - 549 (1970).

13. W.E. Smith, 'Various Optimizers for Single-Stage Production',
Nav. Res. Log. Quart. 1, 59-66, (1956).

14. S. Johnson, 'Optimal Two- and Three- Stage Production
Schedules with Setup Times Included', Nav. Res. Log. Quart •
I- 61-68, (1954).

15. J.G. Rau, 'Minimising a Function of Permutations of n
Integers I, Opns. Res. 12, P 237 (1971).

16. E.S. Page, IAn Approach to the Scheduling of Jobs upon
Machines', J. Roy. Stat. Soc. B 23, 484-492, (1961).

17. E.S. Page, 'On Monte Carlo Methods in Congestion Problems:
1. Searching for an Optimum in Discrete Situations',
Opns. Res. ll' P 291-299 (1965).

18. M.S.S. Morton and J.A. Stephens, 'The Impact of Interactive
Visual Display Systems on the Management Planning Process',
Proc. IFIPS Congress (198) Edinburgh 1968.



- 214 -

19. G.o. MCMahon and P.G. Burton, 'Flow-Shop Scheduling with
the Branch-and-Bound Method', Opns. Res. ~, P 473 - 481,
(1966)•

20. J.W. Gavett and N.V. Plyter, 'The Optimal Assignment of
Facilities to Locations by Branch and Bound', Opns. Res .
.!i, P 210 - 232, (1966).

21. C.E. Nugent, T.E. Vollman, J. Ruml, IAn Experimental
Comparison of Techniques for the Assignment of Facilities
to Locations I, Opns. Res. 16, 150 - 173, (1968).

22. P. Krolak, W. Felts, G. Marble, lA Man-Machine Approach
toward solving the Traveling Salesman Problem', C.A.C.M.
Vol. 14. No.5, P 327 - 334, (1971).

23. E.H. Bowman, 'The Schedule-Sequencing Problem', Opr. Res.
Vol. 7, P 621 (1959).

24. R.A. Dudek and O.Fo Teuton, Jr., 'Development of M-Stage
Decision Rule for Scheduling n Jobs Through M- Machines',
Opns. Res. ]£, 471 - 497 (1964).

25. W. Karush, lA Counterexample to a Proposed Algorithm for
Optimal Sequencing of Jobs', Opns. Res. 11,323 - 325
(1965).

26. H.M. Wagner, IAn Integer Programming Model for Machine
Scheduling', Naval Res. Log. Quart.6, 131 - 140 (1959).

27. E.S. Page, 'A note on generating random permutations I,
Appl. Statist., 1i 273 - 274 (1959).

28. Mok Kong Shan, ACM Algorithm 202, CACM Vol. 6 (1963).



- 215 -

29. J. Heller, 'Combinatorial, Probabilistic and Statistical
Aspects of an M x J Scheduling Problem,' AEC Research and
Development Report NYO-2540 (1959).

30. C.H. Jones, J.l. Hughes, K.T. Engvo1d, 'A Comparative Study
of Computer-Aided Decision Making from Display and Typewriter
Terminals', IBM Technical Report, TR 00.1891 June 12,1969.

31. S.W. Golomb, l.O. Baumert, 'Backtrack Programming', J. Assoc.
for Compo Mach. ~ 516 - 524 (1965).

32. M. Bellmore, G.l. Nemhauser, 'The Travelling Salesman
Problem: A Survey', Ops. Res. 1&, P 538 (1968).

33. R.J. Giglio, H.M. Wagner, 'Approximate Solutions to the
Three-Machine Scheduling Problem', Opns. Res. 12,
P 305 - 324 (1964).

34. J.F. Muth, G.l. Thompson, 'Industrial Scheduling', Prentice-
Hall, Englewood Cliffs, New Jersey, 1963.

35. J.D. Wiest, 'Some Properties of Schedules for large Projects
with limited Resources', Opns. Res. ~, P 395 - 418 (1964).

36. P.l. C1oot, C.N. Sutton-Smith, 'Management Use of Displays
in Critical Path Analysis', Proc. IFIPS Congress (F27)
Edinburgh (1968).

37. H.M. Teager, 'The Marriage of On-line Human Decision with
Computer Programs', Naval Res. log. Quart P 379
Vol. 7, No.4 (1960).

38. T.A.J. Nicholson, 'Finding the shortest route between two
points in a network', Compo J. ~, No.3 (1966).



216 -

39. T.A.J. Nicholson, R.D. Pullen, lA permutation procedure
for job-shop scheduling', Camp. J. 11, P 48 (1968).

40. P. Mellor, 'Job shop scheduling - a review', Opr. Res.
Quart. lZ (1966).

41. T.C. Raymond, 'Heuristic Algorithm for the Traveling-
Salesman Prob1em', IBM J. Res. Develop. 11, P 400
(1969) •

42. G.B. Dantzig, D.R. Fulkerson, S.M. Johnson, 'So1ution
of a Large Scale Traveling Salesman Prob1em', Opns.
Res. ~, 393 - 410 (1954).

43. L. Schrage, 'So1ving Resource-Constrained Network
Problems by Implicit Enumeration - Nonpreemptive
Casei, Ops. Res. ~ No.2, P 263 (1970).


