Structuring Fault-Tolerant Object-Oriented
Systems Using Inheritance and Delegation

Cecilia Mary Fischer Rubira

Ph.D. Thesis

Department of Computing Science

University of Newcastle upon Tyne

October 1994

NEWCASTLE UNIVERSITY LIBRARY

084 50720 3

“Thesis LS4

Abstract

Many entities in the real world that a software system has to interact with, e.g.,
for controlling or monitoring purposes, exhibit different behaviour phases in their
lifetime, in particular depending on whether or not they are functioning correctly.
That is, these entities exhibit not only a normal behaviour phase but also one or
more abnormal behaviour phases associated with the various faults which occur
in the environment. These faults are referred to as environmental faults. In the
object-oriented software, real-world entities are modeled as objects. In a class-
based object-oriented language, such as C++, all objects of a given class must
follow the same external behaviour, i.e., they have the same interface and associ-
ated implementation. However this requires that each object permanently belong
to a particular class, imposing constraints on the mutability of the behaviour for
an individual object. This thesis proposes solutions to the problem of finding
means whereby objects representing real-world entities which exhibit various be-
haviour phases can make corresponding changes in their own behaviour in a clear
and explicit way, rather than through status-checking code which is normally
embedded in the implementation of various methods.

Our proposed solution is (i) to define a hierarchy of different subclasses related to
an object which corresponds to an external entity, each subclass implementing a
different behaviour phase that the external entity can exhibit, and (ii) to arrange
that each object forward the execution of its operations to the currently appropri-
ate instance of this hierarchy of subclasses. We thus propose an object-oriented
approach for the provision of environmental fault tolerance, which encapsulates
the abnormal behaviour of “faulty” entities as objects (instances of the above
mentioned subclasses). These abnormal behaviour variants are defined statically,
and runtime access to them is implemented through a delegation mechanism which
depends on the current phase of behaviour. Thus specific reconfiguration changes
at the level of objects can be easily incorporated to a software system for toler-
ating environmental faults.

Key Words - Object-Oriented Programming, Delegation, Dependability, Fault
Tolerance, Exception Handling.

BLANK PAGE
IN
ORIGINAL

“To my
son

Pedro Gabriel”

BLANK PAGE
IN
ORIGINAL

Acknowledgements

I am deeply indebted to my supervisor Brian Randell for his consistent support,
advice and criticism, and many illuminating discussions and meetings over the
years. I also would like to thank my collegues Robert Stroud, Jie Xu, Laurent
Blair, Alexander Sascha Romanoviski, and Zhixue Wu for the inumerous discus-
sions about object-oriented programming and fault tolerance.

There are others also whose help has been absolutely invaluable. In special, I
would like to thank Shirley Craig for helping me so much with the references of
my work and for being so kind and patient. I am also grateful to Anke Jackson
and Christine Davies for being so supportive in many times that I have asked
for help. Trevor Kirby is also thanked for his efforts in the experiments with the
train set.

I am grateful to the Conselho Nacional de Desenvolvimento Cientifico e Tec-
nolégico - CNPq (Brazil - grant no. 200198/90.4), and also to the ESPRIT Basic
Research Action entitled “Predictable Dependable Computing Systems” - PDCS
(research project 6362) for financial support.

I am grateful, too, to all those wonderful friends who are part of my life. Maeve de
Mello, Gilson P. Manfio, Luiz E. Buzato, Rogério de Lemos, Roberta Araruna,
Teresa Gomes, and Rosemary Nicholson deserve special mention for constant
encouragement and support. Last, but most of all, my thanks to my family for
being the people they are; in special, to my mother and father.

BLANK PAGE
IN
ORIGINAL

Contents

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2

System Structure and a Fault Taxonomy
Thesis Overview« . v v o vt vt

2 Object-Oriented Concepts

2.1

2.2

Managing Complexity, ..
2.1.1 Abstraction e
2.1.2 Representation, ...
2.1.3 Evolution of Abstraction in Programming Languages
2.1.4 Program Structuring Concepts., ..
Object-Oriented Programming
2.2.1 Data Abstraction
2.2.1.1 Objects
22.1.2 Classes
2213 Typeso i
2.2.1.4 Abstract Data Types
2.2.1.5 Encapsulation.
2.2.2 Inheritance e e e
2.2.2.1 Implementation Hierarchies
2.2.2.2 Type Hierarchies
2.2.2.3 Multiple Inheritance
2.2.3 Dynamic Binding and Polymorphism

vii

vii

xi1

2.23.1 Dynamic Binding

2.2.3.2 Design by Contract

2.2.3.3 What Polymorphism Means

2234 Genericity

2.2.3.5 Abstract and Concrete Classes

2.2.3.6 Covariance vs Contravariance

224 Variations e
2241 Mixinso L

2242 Metaclasses o oo

2243 Delegation.

2244 Reflection 0L,

225 Summaryo e e e e e e e e

2.3 Object-Oriented Design Methodologies
2.3.1 Overview of The OMT Methodology
2.3.1.1 Object Model

2.3.1.2 DynamicModel, ..

2.3.1.3 Functional Model

2.3.2 Reusability and Extensibility

2.4 Exceptions in Object-Oriented Languages
2.4.1 A Taxonomy for Exception Handling Systems
2.4.2 Survey of Object-Oriented Exception Handling Systems . .
2.4.2.1 Dony’s Approach,

2.4.2.2 Exception Handling in Eiffel

2.4.2.3 Exception Handling in Modula-3

2.4.2.4 Exception Handlingin C++

2.4.2.5 Exception Handling in Guide

24.26 Cui’sApproach

243 Discussion o e e

2.5 Object-Oriented Fault Tolerance: A Preview
2.6 Conclusions i e

Object-Oriented Fault Tolerance
3.1 Fault Tolerance Concepts« .. v
3.1.1 Exception Handling and Fault Tolerance
3.1.2 Idealised Fault-Tolerant Component
3.1.3 Fault-Tolerant Software Techniques
3.1.4 Error Recovery
3.2 Object-Oriented Hardware Fault Tolerance
3.3 Object-Oriented Software Fault Tolerance
3.3.1 Forward Error Recovery
3.3.1.1 Motivating Example: Collection Class

Contents ix

3.3.1.2 SafeCollection Class 84
3.3.1.3 A Hierarchy of Idealised Fault-Tolerant Components 85

3.3.2 Software Fault Tolerance 85
3.3.2.1 Generic Recovery Block Function 87
3.3.2.2 Variant and Adjudicator Classes 88

3.3.2.3 Generalised Object-Oriented Fault-Tolerant Com-
ponents 88
3.3.3 DISCUSSION « « « « v v v o e e e e e e e e e e e e e e 90
3.4 Object-Oriented Environmental Fault Tolerance 92
3.4.1 Motivating Example 93
3.4.1.1 First Implementation. 93
3.4.1.2 Second Implementation 95
3.4.1.3 Transmutable Objects 97
3.4.2 Delegation 100
3.4.2.1 Delegation in Class-Based Languages 102
3.4.3 State Hierarchies 104
3.4.3.1 State Machines 104
3.4.3.2 Inheriting State Machines 106
344 RelatedWork 110
3.4.4.1 Discussion i i e e e 114
3.5 ConcluSionS . « « v v v v e e e e e e e e e e 115
4 Environmental Faults: A Detailed Case Study 119
4.1 Preliminary « « v o v v e e 121
4.1.1 Changes to the Traditional Lifecycle, 121
4.1.2 OMT Graphical Notation 122
4.2 The Train Set System 124
4.3 Problem Statement o 127
4.4 Analysis of the Basic Model 130
44.1 ObjectModel 130
4.4.1.1 Identifying Object Classes 131
4.4.1.2 Train Set Module, 132
4.4.1.3 Controller Module 133
4414 BoardModule 134
4415 TrainModule 140
' 44.2 DynamicModel oo L, 141
4.4.3 [Iterating the Analysis. 142
4.5 Design and Implementation of the Basic Model 144
4.6 Extending the BasicModel, 147
4.6.1 Failure Analysis for The Train Set 147

4.6.1.1 Fault and Failure Assumptions

4.6.2

4.6.3

4.6.4
4.6.5
4.6.6
4.6.7

Environmental Fault Tolerance
4.6.2.1 FError Treatment
4.6.2.2 Fault Treatment
Tolerating Environmental Faults
4.6.3.1 Tolerance of Switch Faults
4.6.3.2 Tolerance of Switch and Sensor Faults
Integration of the Low-Level Marklin Interface
Extending the Class Section
Distributed Boards
Final Prototype

4.7 Experience with the Development of the Controller Prototype
4.8 Conclusions e

5 Additional Examples
Multiple Classification

3.1

5.2

5.3
5.4
3.5

9.1.1
5.1.2

Attributes of Person o 0 oL
Multiple Perspectives

Dynamic Classification

3.2.1
5.2.2

Buffer e

Transmutable Geometric Shapes e e e e e e

Delegation, Aggregation and Encapsulation
A Design Framework with Transmutable Classes
Stateof the Art

6 Conclusions and Further Research
Discussion i e e e e e

6.1

References

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Structure of an Abstract Data Type. 23
An Example of Implementation Inheritance 27
An example of Type Hierarchy 29
An Example of Multiple Inheritance 30
Another Example of Multiple Inheritance 30
Cardelli and Wegner’s Taxonomy 35
Abstract Class and Abstract Operation 40
An Exampleof Mixins 43
Parallel Class and Metaclass Hierarchies 44
Rectangle and Squares Prototypes 46
Example of Delegation 50
Stack Types . . . v v v v e e e e e e e e e 89
Account Types 93
Expanded Hierarchy for Account Types 95
Parallel Class Hierarchies. 97
State Diagram for Current Account 105
Generalisation of States for Abnormal State 106
Expanded State Hierarchy for Current Account 106
Aggregation of States o o000, 107
Parallel State Hierarchies for Current Account 107
Example of Generalization of States 108
Example of Aggregation of States 109
Class« o o e 122
Association 122
Multiplicity of Associations 123
Aggregation L o 123
Generalization 124
The Train Set Layout, . . 125
Diagram of the Marklin System 126
Switch Settings L L 126

xii

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32

3.1
3.2
3.3
5.4
3.5
3.6
5.7
9.8
5.9
5.10
5.11

Train Set Module
Controller Module
Board Object Model with Associations
Exampleof a Section
Kinds of Connectors
Board Object Model with Inheritance
Example of Next Sections of a Section
Example of a Partitioned Section
Board Module with Associations, Inheritance, and Some Attributes
and Operations
Train Module,
Example of a Control Zone with Two Levels
Event Flow Diagram for the Train Set System
Portion of the Green Board
Train Class e e
Parallel Class Hierarchies for Switch
State Machine for Connector Hierarchy
State Hierarchies for Connector and Switch
Train Hierarchy Extended with Connector Faults
Train Module Extended with Connector and Sensor Faults
State Hierarchy for Section,
Section Hierarchy of the Basic Model
Alternative State Hierarchy for Section
State Hierarchy with Distributed Boards Using Inheritance .
State Hierarchy with Distributed Boards Using Delegation

Example of an Intersection Class
State Hierarchies for Person
Delegation with Aggregate Perspectives
Multiple Classification Using Inheritance and Delegation
Multiple Classification Using Intersection Classes
Hierarchies for IntBuffer
Hierarchies for CircularBuffer
Hierarchies for CircularBuffer with Multiple Inheritance
Standard Hierarchy of Shapes
Hierarchy of Shapes using Transmutable Objects
Aggregate Class for IntBuffer

List of Tables

2.1
2.2
2.3
2.4
2.5

4.1
4.2
4.3
4.4

Interface to Instantiating Clients 26
Interface to Inheriting Clients 27
Summary of Existing Abstractness Mechanisms 40
Summary Table of the Features of Class-based Languages 52
Summary of Exception Handling System Features 64
Implementation of Requirements Through Versioning Cycle 129
Examples of Sections 137
Basic Prototype of the Train Set System 144
Final Prototype of the Train Set System 167

X1l

Chapter 1

Introduction

“The fact, then, that many complex systems have a nearly decompos-
able, hierarchic structure is a major facilitating factor enabling us to
understand, to describe, and even to see such systems and their parts.

Or perhaps the proposition should be put the other way round. If
there are important systems in the world which are complex, they may
to a considerable extent escape our observation and our understand-
ing. Analysis of their behaviour would involve such detailed knowl-
edge and calculation of the interactions of the elementary parts that
it would be beyond our capacities of memory or computation.”[139]

Most real-world computer systems are extremely complicated, as is evidenced
by the intricacy of their hardware and software implementations, and they have
become even more complicated since the requirements of new applications have
become more demanding: high size and complexity, high reliability and high per-
formance. It is sometimes possible, even desirable, to ignore this complexity, but
doing so does not make it go away because it will certainly appear somewhere
else. Software applications that deal with complicated problems must cope with
this complexity somewhere. The complexity of most computing systems is prin-
cipally found in their software, since hardware systems essentially have to be
compara,tlvely simple, with limited and constrained interconnections, and sim-
ple interactions between components[gl] Hence many ongoing 1nvest1gat10ns are
concerned with mastering software complexity.

More than 25 years ago, the term software crisis was coined at the 1968 NATO
Software Engineering Conference[116] to indicate that software was already scarce,
expensive, of insufficient quality, hard to schedule, and nearly impossible to man-

1

2 Chapter 1: Introduction

age. The lack of new technologies that address new methods and tools which
guarantee good quality in software development is undeniable. The crucial aim
of software development is to build quickly, cheaply, flexibly and reliably.

Since the early 80s, the object-oriented paradigm has been considered as one of the
most significant developments in software programming, comparable only to the
ideas of structured programming in the early 70s. The object-oriented paradigm
is well suited for structuring a wide variety of complex systems, notably providing
a sound basis to develop applications that are easy to maintain and reuse. Object-
oriented design techniques focus on entities and abstractions that relate to the
problem domain and object-oriented languages can directly capture the structure
of these abstractions in a solution domain.

In many real-world situations entities of the problem domain may change their
behaviour! due to a variety of phenomena, e.g., equipment failure or malfunction,
personnel errors, sensor failures. Assuming that the problem domain could be
fully understood at the outset, one could identify many different ways in which
its entities could behave, and also categorise the different kinds of changes that
occur in the problem domain. Such changes can be classified in many different
ways, such as frequent vs. infrequent, desired vs. undesired, or predictable
vs. unpredictable. In this research, we are particularly interested in behaviour
changes caused by (relatively) infrequent, undesired and predictable changes of
the environment. We refer to such changes of the environment as environmental
faults. Thus, in a problem domain, various sources of complexity can be found,
but the primary focus of this work concentrates on environmental faults, and the
frequent need to cope with them as an unvoidable source of complexity, but one
which nevertheless has to be minimised. This thesis demonstrates how object-
oriented techniques can be used to implement software components that support
environmental fault tolerance.

In the object-oriented software, entities in the real world are modeled as ob-
jects[156]. An object has a time invariant identity that is unique with respect to
other objects. Objects sharing the same structural and operational characteris-
tics are classified into classes. A class is a way of describing the structure and the
behaviour? of a family of objects. Inheritance is a mechanism for deriving new

1 Here we mean behaviour in the sense defined by Booch[20], namely how an entity acts and
reacts, in terms of its state changes and message passing.

?In object-oriented languages, it can be assumed that all properties of an object will be
encapsulated within it, and, furthermore, this encapsulation will be protected behind an ab-
stract interface. In the context of abstract data type theory, the term behaviour is used with
the restricted meaning of denoting this abstract interface, which normally consists of a set of
applicable operations. An operation is some action that one object performs upon another to
elicit a reaction. Type is then denotable in terms of this behaviour, irrespective of the under-

Chapter 1: Introduction 3

classes from existing classes by a process of refinement. A derived class inherits
the data representation and operations of its parent class but may selectively
add new operations, extend the data representation or override the implementa-
tion of existing operations. Thus programming is achieved by class definitions
and hierarchy creation, in which properties are transmitted from superclasses to
subclasses by the concept of inheritance. Object-oriented software construction
integrates established software engineering principles like data abstraction[96],
encapsulation[141] and strong typing[99].

For purposes of this research, we restrict the inheritance relationship to the so-
called behavioural inheritance model[96] that is increasingly being accepted as
the model that supports a subtyping/conformance relationship. In this model,
a derived class is designed by including the specification of the parent class as a
subset of the specification of the derived class. However, the requirements of this
model go beyond the textual matching of operation names. It is important that
overriding of operations by a derived class be performed in a disciplined manner
so that the derived class still realises the same basic abstraction as the parent
class. Meyer has proposed a contract model for inheritance, known as design
by contract[108], in which the behaviour of a class is constrained by pre- and
post-conditions on its operations and an invariant over its internal state. Derived
classes are obliged to conform to the specification of their parent classes in the
sense that the invariant for the derived class must preserve the invariant for the
parent class, while each operation of the derived class that replaces an opera-
tion of the parent class must have a weaker pre-condition and a stronger post-
condition. These two requirements produce an inheritance hierarchy in which
the subclasses are subtype compatible with their parents and polymorphic sub-
stitution of instances of derived classes for instances of parent classes is possible
without affecting the correctness of the overall system. In what follows, we refer
to this model of inheritance as restricted inheritance which encompasses both
notions of behavioural inheritance and “design by contract” methodology.

Even when all possible behaviour changes of the entities related to the problem
domain have been envisaged at the outset, it can be desirable to represent such
changes explicitly in the solution domain, rather than simply encode them into the
object’s methods. Thus, if we have chosen to identify the behaviour of an entity
of a problem domain as involving several distinct behaviour phases, transitions
between which are caused by occurrence and disappearance of environmental
faults, so we would wish to répresent such behaviour phases and phase transitions
explicitly in the solution domain. The behaviour phase that an entity is in is

lying implementation or data structures which might be subject to change[26]. From now on
the term behaviour denotes this meaning. ’

4 Chapter 1: Introduction

known as its current behaviour phase.

According to the scope of this thesis, we classify the behaviour of an object in the
solution domain, corresponding to such problem domain entity, into: a normal
behaviour phase, when it is representing an external entity which is behaving
normally, and one or more kinds of abnormal behaviour phases, which we intend
to correspond to the various kinds of faulty behaviour by the external entity.

An object in the solution domain is referred to as faulty if its behaviour is altered
due to the occurrence of environmental faults in the entities of the problem do-
main. When the current behaviour phase of an object is changed, for instance,
from a normal to an abnormal behaviour phase, the object provides the adequate
fault treatment by changing the implementation of its abstract interface.

In this thesis, we suggest that transitions between these various behaviour phases
of an object be accomplished by changing the implementation of the object’s
abstract interface (i.e., of one or more of its operations), and that the behaviour
phases associated with the different behaviour phases be explicitly represented as
objects.

1.1 System Structure and a Fault Taxonomy

Complexity is one of the major causes of unreliable software. In a problem do-
main, various sources of complexity can be found, but the primary focus of this
thesis is to concentrate on faults (or major changes) in the environment, and the
frequent need to cope with them as an unvoidable cause, but one which never-
theless has to be minimised. In this thesis, we follow the terminology defined by
Lee and Anderson[91]. More specifically, we regard a system as any identifiable
mechanism which maintains a pattern of behaviour at an interface between the
mechanism and its environment. An interface is simply a place of interaction
between two systems. A system is said to interact with its environment, and re-
sponds to stimuli at the interface between the system and the environment. The
environment of a system is another system which provides input to and receives
output from the first system; thus the system can provide service in response to
request from the environment. In the scope of this thesis, we are mainly con-
sidering a software system as our solution domain which is surrounded by an
environment that contains the problem domain. By way of example, if we con-
sider a process control application, according to our terminology, the system can
refer to a computer-based controller while the environment would be the physical
process or plant which is maintained or monitored by the controller.

Section 1.2: Thesis Overview 5

The above definition is concerned with the external characteristics of the system.
However, it is also important to have an abstract model of its internal structure.
In this sense, we define a system as consisting of a set of interacting components
together with a design which prescribes and controls the pattern of interaction.
An erroneous value in the state of a component or in the design of a system is
referred to as a fault in the system. More specifically, a component fault is an
error in the internal state of a component whereas a design fault is an error in
the state of the design. More generally, faults may also occur in the environment
of a system, and we use the term environmental fault to refer to an error in the
state of the environment. Design faults are unpredictable, their manifestation
is unexpected and they produce unanticipated errors. In contrast, component
faults (particularly those in hardware components of the system) can often be
predicted, their manifestation is expected and they generate errors which can be
anticipated. In a similar way, environmental faults, specially those in physical
entities of the environment, are frequently predictable.

With such a view of a system structure and considering the distinct place of
fault occurrence, we classify faults into three categories: environmental, design
and hardware. As stated previously, this works concentrates mainly on dealing
with environmental faults as an unvoidable source of complexity in the process
of designing and implementing dependable software systems.

1.2 Thesis Overview

The major goal of this work is to apply object-oriented techniques for structuring
complex object-oriented applications, and relate them to the problems of improv-
ing quality and dependability of large computer applications. The object-oriented
approach was chosen because of the benefits derived from the following concepts,
such as, data abstraction, data encapsulation, inheritance, and polymorphism.

More specifically, the problem that we propose to solve concerns the real-world
entities that a software system has to interact with, which have not only a normal
behaviour phase but also one or more abnormal behaviour phases associated
with the occurrence of different environmental faults. However, when one starts
allowing for all the abnormal behaviour phases of such entities, the problem
domain can become extremely complex. As a consequence, the object-oriented
model becomes correspondingly larger and more complicated as more and more
abnormal cases are considered. Thus we need to find ways of structuring such
software systems so that this complexity can be kept under control.

6 - Chapter 1: Introduction

We could simply bury the different behaviour phases associated to an external
entity in the implementation of the operations of the corresponding object in the
solution domain. However, such an implementation can become quite compli-
cate and obscure depending on the number of abnormal behaviour phases that
the external entity exhibits. It should be ideal if such behaviour phases could
be represented by different implementations of theé object’s interface, each one
corresponding to a different behaviour phase.

In class-based systems, objects of a given class must follow the same behaviour,
i.e., they have a same interface and associated implementation. Moreover it is
required that each object permanently belongs to a particular class, which im-
poses constraints on the mutability of the behaviour for an individual object. In
this thesis, as mentioned above, we define the behaviour of an object as involving
several distinct behaviour phases, each behaviour phase representing a faulty be-
haviour of the external entity, the transitions between such phases being caused
by the occurrence and disappearance of environmental faults. So all objects
of a given class follow the same external behaviour; however, at any particular
moment, different instances of a class may be in different behaviour phases, de-
pending on the faulty behaviour exhibited by the external entity, i.e., each object
characterised by a current behaviour phase®.

In our approach, the abstract interface of an object will remain the same through-
out its lifetime; however the responses to the messages received by an object can
change depending on the object’s current behaviour phase. So an object may go
through different behaviour phases (e.g., normal and abnormal), but its abstract
interface will be the same, independent of the current behaviour phase that the
object is in.

Hence, it is desirable to find means by which objects representing such real-world
entities can make behaviour changes such that:

(1) all objects of a given type have the same abstract interface, but individual
objects may exhibit different behaviour phases depending on their current
phase of behaviour, and

(ii) the phase changes are represented very explicitly rather than implicitly in
the software, that is, instead of using status-checking code which is normally
embedded in the implementation of various operations of a class, we choose

3Note that the type of an object is fixed, that is, it does not change during its lifetime. How-
ever, an object can traverse different behaviour phases, exhibiting different kinds of behaviour
during its lifetime depending on its current phase, but its interface with the system will remain
the same.

Section 1.2: Thesis Overview 7

to represent the different behaviour phases explicitly in the design as a -
means of producing a better software structuring.

An overview of our proposed solution consists of defining a set of different sub-
classes related to a single real-world entity, each subclass implementing a different
behaviour phase that the external entity can possess. These different forms of
behaviour are defined statically for anticipated environmental faults, and runtime
access to the current behaviour phase is implemented using delegation. In other
- words, it is arranged that each object representing a real-world entity “forwards”
the execution of its operations to appropriate instances of these subclasses, de-
pending on the object’s current behaviour phase.

In this thesis we aimed, and indeed found it practicable, to avoid creating a new
object-oriented programming language to solve our problems. Instead we have
chosen, on grounds of practicality to base our experimental work on C++(150].
To demonstrate the feasibility of our proposed approach for dealing with envi-
ronmental faults, we have designed and implemented a software train controller
which is explained in detail in Chapter 4.

The remainder of this thesis is organised as follows. Chapter 2 provides back-
ground information and terminology related to object-oriented programming.
Chapter 3 describes the main contribution of this thesis, an object-oriented ap-
proach for dealing with environmental faults. It also includes a description of
some directly relevant work we have done, in collaboration with Robert Stroud,
an object-oriented approach to dealing with software design faults, plus a briefly
description of work by others related to hardware faults based on ob ject-oriented
techniques. Chapter 4 presents the design and implementation of a complex
control application for a large model railway using the approach described in
Chapter 3. Chapter 5 discusses some additional examples drawn from the ob ject-
oriented literature that are related to our approach, and finally, Chapter 6 draws
some conclusions about the work presented and suggests future directions.

BLANK PAGE
IN
ORIGINAL

Chapter 2

Object-Oriented Concepts

“... There is a great difference between knowing something and do-
ing it well. Writing object-oriented programs is no different. It is
not enough to know the basic constructs and to be able to assemble
them together into programs. The experienced programmer follows
principles to make readable programs that live beyond the immediate
need.”[131]

This chapter defines and discusses the fundamental concepts of object-oriented
programming used throughout this thesis. Terminology has yet to become stan-
dardised in the object-oriented community. To avoid confusion and ambiguity
within this thesis, it is therefore necessary to provide careful definitions of the
basic concepts of the object model, as well as of a number of much newer and
more controversial ideas.

The structure of this chapter.is organised as follows. Section 2.1 reviews the basic
ideas related to software modelling and design, highlighting the prime importance
of abstraction, conceptual modelling and aspects of representation in the process
of program design. Section 2.2 discusses the basic concepts of the ob ject-oriented
model. Section 2.3 introduces object-oriented methodologies for object-oriented
design. Section 2.4 presents a survey of exception handling in object-oriented
languages. Following this, an object-oriented approach for the structuring of
complex applications that deals with faults is briefly introduced; this approach is
explained in detail in Chapter 3. Finally, we make some concluding remarks.

9

10 Chapter 2: Object-Oriented Concepts
2.1 Managing Complexity

“All systems are infinitely complex. (The illusion of simplicity comes
from focusing attention on one or a few variables.).”[54]

Real-world computer systems are intrinsically complicated, and they have be-
come even more complicated since the requirements of the new applications have
become more demanding: high size and complexity, high reliability and high per-
formance. It is sometimes possible, even desirable, to ignore the complexity of
computer systems, but doing so does not make the complexity go away because
it will certainly appear somewhere else. Software applications that deal with
complicated problems must cope with this complexity somewhere.

As humans, we employ many mechanisms for managing complexity, such as,
abstraction, generalisation and aggregation. Abstraction is a means of avoiding
unwanted complexity, and it is the most powerful tool that we have for dealing
with our complex world.

2.1.1 Abstraction

One of the most important tasks in software development is the analysis of the
problem domain and the modelling of entities and phenomena relevant to the
application. This conceptual modelling involves two main aspects: abstraction,
related to our thoughts in observing the domain and defining the objects, prop-
erties and actions, and representation, which is related to the notation adopted
to express the concrete model (“the physical reality”). Therefore success in pro-
gramming depends on designing a representation and a set of operations that are
both correct and effective[159].

An abstraction describes the essential characteristics of an object that distinguish
it from all other kinds of objects, and thus provides defined conceptual boundaries,
relative to the perspective of the viewer. Abstraction, then, removes certain
distinctions so that we can see commonalities between objects.

Three different important concepts can be abstracted from an observation: a cate-
gory or class, an action and an attribute. Based on these notions, three basic oper-
ations can be identified which involve abstraction, each one with its corresponding
inverse operation: classification/instantiation, generalisation/specialisation and
aggregation/decomposition, which are discussed in turn now.

Section 2.1: Managing Complexity 11

Classification. It describes a number of objects that are considered in a category -
together because they have similar characteristics. For example, two people
John and Mary can be classified as instances of Person. Classification can
be described as an is-a association. For instance, John is-a Person.

Generalisation. Another operation comes out when we observe, for example,
two categories and abstract another category which is more general than
the others. Generalisation enable us to say that all instances of a specific
category are also instances of a more encompassing category, but not nec-
essarily the other way around. Generalisation can be described as a kind-of
association. For example, Graduate_Student and Postgraduate_Student can
be considered special cases of Student. On the other hand, Student is consid-
ered to be a generalisation of Graduate_Student and Postgraduate_Student.

Aggregation. It is an operation whereby we identify that instances of a category
are composed of instances of other categories (also referred to as compo-
sition). That is, aggregation is a mechanism for forming a whole from
component parts. An aggregation can configure assembled structures, for
example, a Car consists of its Bodywork, four instances of Seat, five instances
of Wheel and its Engine. It reduces complexity by treating many object as
one object. Aggregation can be described as a consists-of association.

The Importance of a Proper Classification

In object-oriented design, the recognition of the similarities among things allows
us to expose the commonality within key abstractions, and eventually leads us
to simpler designs. Unfortunately, there is no golden path to classification. The
identification of classes and objects is not straightforward in the design of a
system. When we classify, we try to group things that have a common structure
or exhibit common behaviour. A prime example of classification is provided by
the field of biology. Detailed classifications of a range of biological phenomena
have been worked out over a period of time. For example, the term carnivores
is commonly used to represent animals which share certain behaviour or possess
certain characteristics, i.e., animal which eat meat.

The problem of classification has been the concern of many philosophers, lin-
guistics, and mathematicians. Historically, there have only been three general
approaches to classification[20]:

o Classical Categorisation. In the classical approach to categorisation, all the
entities that have a given property or collection of properties in common

12 Chapter 2: Object-Oriented Concepts

form a category. For instance, married people form a category: one is either
married or not, and the value of this property is sufficient to decide to which
group a particular person belongs. Classical category was first studied by
Plato, and then by Aristotle and many other scientists.

o Conceptual Clustering. Conceptual clustering is a more modern variation
of the classical approach, and largely derives from attempts to explain how
knowledge is represented. In this approach, classes (clustering of entities)
are generated by first formulating conceptual descriptions of these classes
and then classifying the entities according to the descriptions.

e Prototype Theory. Prototype theory is the more recent approach to classi-
fication: a class of objects is represented by a prototypical object and an
object is considered to be member of this class if only if it resembles this
prototype in significant ways.

These three approaches to classification have direct application in the identifi-
cation of classes and objects, and provide the theoretical foundation of object-
oriented analysis and design. For instance, we could first identify classes and
objects according to the properties relevant to our problem domain. If it fails
to produce a satisfactory class structure, we can consider clustering objects by
concepts. If it also fails, we can consider classification by association, through
which classes of objects are defined according to how closely each resembles some
prototypical object.

Object-oriented systems generally exhibit one or more techniques to support clas-
sification of objects with like behaviour. The most significant ways are:

o Sets. They are the most general way of representing classifications in a
system in the sense that the result of any predicate is a set of objects
fulling that predicate. The advantage of using sets is that there is a well-
understood semantics from the field of mathematics. It is not common to
find sets in object-oriented languages, but in object-oriented databases they
are found with more frequency.

o Abstract Data Types. Types are essentially a form of classification. How-
ever, they are more specific than sets in the sense that they are purely
concerned with the external interface of the object.

o (Classes. It is a template which fully defines the behaviour of a group of
objects in terms of the operations, representations and algorithms.

Section 2.1: Managing Complexity 13

Abstraction Hierarchies

When a system has too many relevant details for a single abstraction to suffice,
1t can be decomposed into a hierarchy of abstractions. A hierarchy, then, can be
defined as a ranking or ordering of abstractions, which allows relevant details to
be introduced in a controlled manner. ,

There are two kinds of abstraction hierarchies that are fundamentally impor-
tant in modelling and design: aggregation hierarchies, which turn a relationship
between concepts into an aggregate hierarchy[18, 121]; and generalization hier-
archies, which turn a set of concepts into a generic hierarchy[120]. With gener-
alisation, we can build hierarchies of concepts, forming more and more general
concepts. Aggregation can define hierarchies of part-whole configurations since
parts can have their own components parts.

Generalization is one of the most important mechanisms we have for conceptual-
ising the real world. Interestingly, database research had been almost exclusively
concerned with aggregation (Codd’s normal forms), while the area of knowledge
representation in artificial intelligence had been principally concerned with gen-
eralization (semantic networks and frames). In programming languages, aggre-
gation is related to “record structure” and generalization is related to “record
variant structure”.

We can observe that aggregation and generalization are independent notions. In
other words, they are orthogonal concepts and when they are employed together
one can obtain a rich tool for modelling.

2.1.2 Representation

The commonest abstract representations in computing are programming lan-
guages. Many computing scientists recognise the close interaction between the
thought and the human language that expresses these thoughts. In fact, the
nature of the language actually shapes and models our thoughts, and vice-versa:
language and thought model mutually each other, there is no precedence between
them([72]. The relation between a design language and programs is described by
Wulf (as pointed out by Ghezzi and Jazayeri in [59]):

The nature of language actually shapes and models the way we think...
If, by providing appropriate language constructs we can improve the
programs written using these structures, the entire field will bene-
fit... A language design should at least provide facilities which allow

14 Chapter 2: Object-Oriented Concepts

comprehensible expression of algorithms; at best a language suggests
better forms of expression.

However, it is difficult to transform world abstractions into language abstractions
directly, without intermediate steps. In this case, intermediate graphic notations
are very useful to help the programmer in the representation of his/her abstrac-
tions. So we can define software development as a process by which we refine
successive transformations from a high level representation to a low level rep-
resentation executable in a computer. As a consequence, the whole process is
dependent on the nature of the abstraction facilities provided by the program-
ming language in use. If the language restricts the way that abstractions can be
defined, it will constrain application modelling.

2.1.3 Evolution of Abstraction in Programming Langua-
ges

At the beginning of programming language development, assembly languages
simply enabled designers to write programs based on machine instructions (oper-
ators) which manipulate the contents of memory locations (operands). Therefore,
the level of data and control abstractions were very low. A great step forward
occurred when the first major imperative programming languages - Fortran and
Cobol - appeared. Fortran was important because it introduced the notion of sub-
programs units: functions and subroutines while Cobol introduced the concept
of data description.

Subsequently, Algol-60 introduced the concept of block structure, procedure, etc.
It influenced numerous successor languages so strongly that they are collectively
called Algol-like languages. The design philosophy of Algol-68 was to choose an
adequate set of concepts and to combine them systematically. But it was Pascal
that turned out to be the most popular Algol-like language because it is simple,
systematic, and efficiently implementable. Both languages were among the first
with rich control structures, data types and type definitions, following the ideas
of structured programming created by Wirth, Dijkstra and Hoare[39].

Since the 1970s language design has focused more on supporting programming
in the large. This concerns the construction of large programs from modules. A
module is any named program unit that can be implemented as a (more or less) in-
dependent component. A well-designed module has a single purpose and presents
a narrow interface to other modules. Such a module is likely to be reusable, i.e.,
able to be usefully incorporated in many programs, and modifiable, i.e., able to

Section 2.1: Managing Complexity 15

be revised without forcing major changes to other modules. Parnas[124] around
1970 advocated the discipline of information hiding (also known as encapsula-
tion). The idea was to encapsulate each global variable in a module with a group
of operations that alone have direct access to the variable. Other modules can
access the variable only indirectly, by calling these operations.

Only the “what” is of concern to the user of the module. The “how” is of concern
only to the implementator of the module. A module is said to encapsulate its
components. To achieve a “narrow” interface to other modules, a module typ-
ically makes only a few components visible outside. Such components are said
to be exported by the module. There may be other components that remain
“hidden” inside the module. So encapsulation suggests that a data structure
must be resident within a module. An interface provides the access to that data
structure which is needed by other modules. Thus, communication among mod-
ules should be done through well-defined interfaces which prevent direct access
to data structures inside a module. Encapsulation minimises inter-dependencies
among separately written modules by defining strict interface.

There are at least two known language mechanisms that support the notion of
modularity: modules and abstract data types. Languages like Modula-2 and Ada
implement variants of these both mechanisms. Roughly, a module consists of two
related parts: module specification (called the spec) and module implementation
(called the body). The module spec is a set of declarations of data structures and
procedure signatures. The module body essentially contains the implementations
of the entities declared in the module spec. All entities found in the module
body are private, that is, not visible to clients to the module spec. Each element
declared in the module spec must have its implementation in the module body.
However, the module body may contain additional data structures and procedures
which are used to implement the visible entities declared in the module spec.

The notion of abstract data types is one of the most important ideas that emerged
from research in programming languages. The term abstract data type refers to a
concept in which data structures, and related operations which manipulate those
data structures, are encapsulated within a protected region. A language is said
to support abstract data types when it allows designers to define new abstract
data types consisting of declarations that bring together operations which ma-
nipulate private data structures. However, languages such as Modula-2 and Ada,
which have abstract data types with umform external interfaces still have some
limitations:

(i) a flat type system, i.e., a system developed as a collection of abstract data,
types has a flat, uni-dimensional structure: relationships between types

)

16 Chapter 2: Object-Oriented Concepts

are either lost or partially registered, such as generalisation/specialisation
hierarchies.

(ii) abstract data types “vanish” at runtime, that is, abstract data types do
not constitute an adequate abstraction at runtime. Although abstract data
types are very useful at the design and implementation phases, they disap-
pear at runtime. As a consequence, the system turns out to be again an
unstructured bunch of code lines grouped into modules.

(iii) abstract data types are limited in reducing the semantic gap between prob-
lem domain and the solution domain. For instance, if one considers a group
of active, autonomous entities composing a universe intrinsically concurrent,
abstract data types would not model this sort of situation well.

The next evolution step was the introduction of the object concept, first intro-
duced in the late’s 60 by Simula[38], and consolidated by Smalltalk[62] in the
late’s 70. Simula introduced the concept of objects, classes and inheritance. Es-
sentially, the traditional model of object-oriented programming employs classes
to describe objects. Classes contain the definition of objects’ behaviour, thus
providing typing capability. Existing classes provide default behaviour for new
classes. This inheritance of behaviour results in code sharing. Essentially, object-
oriented programming treats functions and data as indivisible aspects of objects
in the problem domain.

The object-oriented paradigm has been influenced by the notion of abstract data
types because an object can be viewed as an instance of an abstract data type,
which encapsulates a data type and provides a defined set of operations to manip-
ulate and access that data type. Actually, in most object-oriented languages, a
class definition describes a data type and the operations which can be performed
on that data type. Furthermore, the concept of an abstract data type assumes
an important role within an object-oriented approach because it may be seen as
a way of providing abstract and simplified representation for a software system.
In addition, abstract data types bring other benefits such as modularisation and
encapsulation that are also relevant to the object-oriented paradigm.

2.1.4 Program Structuring Concepts

Computer scientists have recognised some time ago that mastering complexity
was the key to successful software development. The concept of higher-level
languages and their compilers was a large step toward this goal because it allowed

Section 2.1: Managing Complexity 17

the programmer to work without being an expert on the details of the machine.
After that, people began to recognise the need for better methods and tools to
manage complexity; as a consequence, ideas such as structured programming and
program development libraries, appeared.

Although these contributions have been valuable, they still leave a lot to be
desired. In other words, there is much more to the subject of complexity than a
simply attempting to minimise the local complexity of each part of a program. A
much more important type of complexity is global or structural complexity: the
complexity of the overall structure of a program or system (that is, the degree of
association or interdependence among the major pieces of a program).

Complexity is one of the major causes of unreliable software, and it is both difficult
to define precisely and to quantify. However, we can say that the complexity of
an object is some measure of the mental effort required to understand it. In
general, the complexity of an object is a function of the relationships among the
components of the object.

The major visible difference between good and poor program structures seems
to be complexity. Some concepts can be adapted from general systems theory to
reduce complexity in software, such as{115]:

(1) partitioning the system into parts having identifiable and understandable
boundaries,

(ii) representing the system as a hierarchy, and

(iii) maximising the independence among the parts of the system.

The act of partitioning a program into individual components can reduce its
complexity to some degree. Although partitioning a program is helpful, a more
powerful justification for partitioning a program is that it creates a number of
well-defined interfaces within the program. These interfaces are invaluable for the
understanding of the program. The interface show us which items are relevant
and which are not, narrowing the focus of attention. In other words, the interface
hides “irrelevant” information behind it.

The concept of hierarchical structure is of vital importance in both understanding
and constructing systems. Because the average human mind has a rather smal]
upper limit on the number of facts with which it can deal simultaneously, we
find we can understand systems better if they are hierarchically defined[139].
Hierarchies allow the stratification of a system into various levels of detail. Each

\

18 Chapter 2: Object-Oriented Concepts

level represents a set of aggregate relationships among parts in the lower levels.
The concept of levels allows one to understand the system by hiding unnecessary
levels of detail.

Although partitioning and hierarchical structure are important concepts in sys-
tem structuring, there is a third related concept that is most important: inde-
pendence. This concept implies that, to minimise complexity, the independence
of each component in the system must be maximised. So the problem is not
simply partitioning a program into a hierarchy, but determining how to partition
a program into a hierarchical structure such that each module is as independent
from all other modules as possible. Thus, modularity can be defined as being the
property of a system that has been decomposed into a set of cohesive and loosely
coupled modules.

Another important concept related to system structuring is making connections
between components apparent as much as possible[114]. Usually in large systems
is common to find many side-effects which make the system difficult to under-
stand.

2.2 Object-Oriented Programming

Object-oriented programming is a model of programming based on concepts
such as object, type, implementation hiding, inheritance and parameterisation.
Object-oriented design is a way of using these concepts to structure and con-
struct systems. Object-oriented programming and object-oriented design are in-
trinsically language independent. Consequently, in this section, the fundamental
object-oriented concepts are defined independent of language concerns.

The essence of object-oriented programming is that. of solving problems by iden-
tifying the real-world objects in the problem domain and the processing required
by those objects, and, then, creating simulations of them. This idea of “programs
simulating real world” grew from Simula 67, which was designed for actual sim-
ulation applications. Because much of the real world is populated by objects, a
simulation of a such world should include simulated objects, which can send and
receive messages, and react to the messages they receive.

As a consequence, object-oriented programming implies that the programmer
views his/her program execution as involving objects which communicate us-
ing messages. Thus programming is achieved by class definitions and hierarchy
creation, in which common properties are transmitted from superclasses to sub-

Section 2.2: Object-Oriented Programming 19

classes by the concept of inheritance. This style of programming has the following
positive characteristics: modularity, support for generalization/specialization, a
balancing view between data and process (an object can be either data or pro-
cess), evolutionary and incremental activity, and reusability.

Much of the interest in object-oriented prograthming and object-oriented design
is due to the growing industrial perception that it is a better way of structuring
and building complex systems than other methodologies, since it promotes the
reuse of software which improves the quality and reduces the cost of software
development.

As mentioned at the outset of this chapter, terminology and even to a degree
concepts have yet to become standardised in the object-oriented community. For
this reason, the fundamental terms of the object-oriented model, which are used
throughout the thesis, are carefully defined below. The definitions given here
may differ wholly or partially from those used by other authors. However, efforts
were made to bring some consensus among the great deal of different definitions,
different jargons and different notations used by the object-oriented community.

Peter Wegner has proposed that we distinguish between object-based and object-
oriented languages[156]. A programming language is called object-based if it is
based on objects. A language is called object-oriented if it provides linguistic
support for objects and additionally requires that objects are instances of classes.
Furthermore, an inheritance mechanism must be supported. Thus:

[OO Programming = Objects 4 Classes + Inheritanc?l

According to this classification, languages, such as Ada and CLU, are object-
based while Smalltalk and C++ are object-oriented languages. A more encom-
passing classification is proposed by Blair et al. which also includes delegation-
based languages[16]. Many surveys of object-oriented languages can be found in
the literature[133, 24, 102].

The object model comprises a collection of principles which forms the founda-
tion of the object-oriented paradigm. The next subsections cover the concepts,
features and mechanisms which are basic to the object-oriented paradigm, and
set the terminology to be used in the reminder of this thesis. A key issue of
object-oriented programming is to obtain reusable software components. This is
achieved through the notions of object, class, inheritance, dynamic binding and
polymorphism. The concepts of inheritance and dynamic binding are specific to
object-oriented programming. In the following, we gradually introduce these con-
cepts, starting with object and class, and then extend with inheritance, dynamic

\

20 Chapter 2: Object-Oriented Concepts

binding and polymorphism. Finally, after the introduction of the basic concepts
and terminology, we will take a closer look at object-oriented systems and will
describe some variations that exists among the various implementations of the
object model.

2.2.1 Data Abstraction

The principle of data abstraction emerged in the 1970’s as a major technique in
mastering complexity. Data abstraction is concerned with providing and abstrac-
tion over data structures in terms of a well defined interface. The advantages of
data abstraction are well known, namely:

(i) the fact that the code and data structures concerned with a particular
abstraction is recorded in a single place leads to well structured, under-
standable code which can easily be modified, and

(ii) the information hiding aspect provides a level of protection against unex-
pected access to data structures maintaining the object data integrity.

These same advantages are also claimed for object-oriented languages; clearly
there are strong similarities between data abstraction and the concept of class.
Moreover, there has recently been great interest in the semantics of typing in an
object-oriented context, in particular, concerning the integration of static type
checking into object-oriented systems[64, 99]. In this section, the important con-
cepts of object, class and type are discussed. Abstract data types, which have
strongly influenced the object-oriented paradigm, are highlighted as a central
feature of statically typed object-oriented languages.

2.2.1.1 Objects

Objects are entities that encapsulate state information or data, and a set of
associated operations that manipulate the data. In general, each object’s state
is completely protected and hidden from other objects, and the only way of
examining it is by making an operation invocation on one of the object’s publicly
accessible operations. Objects have a unique identity. Identity is the property of
an object which distinguishes it from all other objects.

Section 2.2: Object-Oriented Programming 21

2.2.1.2 Classes

A class is a template description which specifies properties and behaviour for a
set of similar objects. Every object is an instance of only one class. Every class
has a name and a body that defines the set of attributes and operations possessed
by its instances. Note that the term object is sometimes used to refer to both
class and instance (especially with languages like Smalltalk where a class is itself
an object). However, it is important to distinguish between and object and its
class; here the term class is used to identify a group of objects and the term
object to mean an instance of a class.

In object-oriented programming, attributes and operations are usually part of the
definition of classes. Attributes are named properties of an object and hold ab-
stract states of each object. Operations characterise the behaviour of an ob ject,
and are the only means for accessing, manipulating and modifying the attributes
of an object. An object communicates with another through messages which iden-
tify operations to be performed on the second object. The object responds to a
message by possibly changing its attributes or by returning a result. The interface
comprises of the set of operations which can be requested by other objects; the
external view of an object is nothing more than its interface. In object-oriented
programming languages, operations that client may perform upon an object are
typically declared as methods, which are part of the declaration of the class of the
object. C++[94] uses the term member function to denote the same concept, and
here we will use the terms method and member function interchangeably. Also,
for our purposes, a message is simply an operation that an object performs upon
another, so the terms message and operation are interchangeable.

Some important software engineering principles such as data abstraction, encap-
sulation and modularity are achieved with the use of concepts involving classes
and objects as stated above. These characteristics are widely recognised as be-
ing good qualities of a software system, therefore the object model, in principle,
encourages high quality software development.

2.2.1.3 Types

Following Ghezzi and Jazayeri[60], the concept of type can be viewed as a speci-
fication of the set of values that can be associated with a variable, together with
the operations that can be legally used to create, access, and modify such values.
We refer to the set of operations as the public interface of the type. For exam-
ple, type boolean is bound to a certain class of values true and false and to the

22 Chapter 2: Object-Oriented Concepts

operations and, or and not. In an object-oriented context, one could give another
definition of type in terms of objects. Type can be defined as the collection of all
objects in a system that respond in the same way to the same set of messages. In
other words, a type is a collection of objects with the same public interface[11].

The concepts of type and class are distinct[17]. Type is essentially the description
of an interface. This interface specifies a behaviour that is common to all objects
of a given type. A class specifies a particular implementation of a type. A class
definition is common to all instances of the class which includes a description of
the internal state of the object and its methods. Every object is an instance of
some class. Thus the type of an object depends on its interface with the “outside
world” rather than the class from which it was instantiated.

Although the terms type and class as described here are not the same thing,
some authors use the terms interchangeably[20]; others state that the distinc-
tion between the two concepts is primordial[125]. More recently some object-
oriented languages, such as Arche[15], Fibonacci[3], POOL-I[7] and Guide[85],
cleanly separate these two concepts. These languages explicitly separate the def-
inition of type and its implementation. Some authors argue that this separation
is confusing[20], and they believe to be sufficient to say that a class implements
a type. In fact, none of the widely used object-oriented languages, such as C++
and Eiffel, currently provide this separation.

Types can be bound to variables either statically or dynamically!. Static typing
is when the type of a variable referring to an object is constrained before runtime.
At runtime, the object can in fact belong to a subtype of the declared type. The
validity of the operations is checked at compile time. Languages such as C++,
Eiffel and Simula are statically type-checked. A language is said to be strongly
typed if it allows all type checking to be done statically.

Dynamic typing is when the type of a variable referring to an object is known
and can dynamically be changed at runtime. As a consequence, the validity of
the operations can only be checked at runtime. Smalltalk and Objective-C are
examples of dynamically typed languages. There has recently been great interest
in the semantics of typing in the object-oriented context in order to check the
correctness of the source code, especially with regard to messages and accesses to
instance variables. In particular, many investigations concern the integration of
static type checking into object-oriented systems[64, 99].

1Following the Eiffe]l model, we also make a distinction between objects and variables which
refer to (are attached to) objects. Variables hold references to objects; they are not objects.

Section 2.2: Object-Oriented Programming 23

2.2.1.4 Abstract Data Types

The previous paragraphs highlighted the important distinction between class and
type, which is.a consequence of the separation of concerns between the specifica-
tion of behaviour and the implementation of behaviour. In providing statically
typed object-oriented languages, it is therefore almost inevitable that this sepa-
ration will be a feature of the language design.

Abstract data types extend the principle of data abstraction by separating the
specification of data abstraction from its implementation. This was an important
improvement because the abstraction gained from abstract data types is reflected
directly in the syntax and in the semantics of the language. Abstract data types
can be considered to consist of two parts (Figure 2.1): the specification part (ie.,
the interface) and the implementation part. Each part can be further subdivided
with the specification being denoted by the syntaz (signature) of the specifica-
tion together with the semantics, and the implementation part denoted by the
representation (data structures) and the associated algorithms.

Abstract Data Type

// \\
Specification Implementation
/1 \\ // \\

Syntax Semantics Representation Algorithms

Figure 2.1: Structure of an Abstract Data Type

The benefit derived separating specification from implementation is that of al-
lowing one to reason about and use a type without knowing anything about its
implementation. As a consequence, a type can have one or more implementations.
However, to demonstrate the correctness of the implementations, it is necessary
a description of the type’s behaviour that is implementation free.

The syntax of an abstract data type is normally referred to as the signature which
defines the interface. However, such a syntactical specification is not sufficient
to describe the behaviour of a data type. It is necessary to have some kind of
support for specifying also the semantics of the data type. One of the most
successful formal techniques for specifying the semantics of a data type is called
algebraic specification[47]. This technique requires the programmer to define a
set of equations related to the operations of the data type.

24 Chapter 2: ‘Object-Oriented Concepts

Another approach to help the programmers better express the behaviour of ab-
stract data types relies on the provision of pre- and post-conditions on methods.
Predicates (boolean expressions) can also be associated with the operations in
order to describe the desired state of the object. A precondition for an operation
is a predicate concerning the state of the object before the operation is invoked
against it. If the precondition is true, the operation can be safely executed. If it
is false, nothing can be said about the invocation. A postcondition is a predicate
associated with the state of the object after the operation being executed.

This is the approach taken by Eiffel[105]. For example, in Eiffel a programmer
can attach pre- and post-conditions to the Push and Pop operations to guarantee
the semantics of a stack. A precondition for Push is the requirement that the
stack instance must not be full. A precondition for Pop is the requirement that
the stack instance must not be empty. Similarly, a postcondition for Push is the
requirement the the stack instance is no longer empty, and for Pop is the total
number of elements is increased by one.

It should be stressed that most programming languages do not make use of seman-
tic specifications. On the contrary, many languages require only the specification
of the syntax. The object model is still lacking a profound theoretical under-
standing, but some investigations have been appearing in this area. For instance,
object-oriented specification[97, 98] is becoming an influential technique. Bar-
David[11] describes the behaviour of a type through a set of equations that relate
the public interface of the type in the context of C++.

2.2.1.5 Encapsulation

Following Snyder[141], encapsulation is defined as a technique for minimising
interdependencies among separately-written modules by defining strict external
interfaces. The external interface of a module serves as a contract between the
module and its clients. A module is encapsulated if clients are restricted by the
definition of the programming language to access the module only via its external
interface. Thus encapsulation assures designers that compatible changes can be
made safely, which facilitates program evolution and maintenance. These benefits
are especially important for large and long-lived systems.

In a typical object-oriented language, a class definition is a module whose exter-
nal interface consists of a set of operations; changes to the implementation of a
class that preserve the external interface do not affect code outside the class defi-
nition. The class mechanism allows the programmer to encapsulate syntactically
a description of the data structure together with the public interface.

Section 2.2: Object-Oriented Programming 25

However, inheritance introduces a new category of client for a class: its derived
classes. (Snyder[141] provides an excellent discussion of encapsulation in the
presence of inheritance.) So we should also consider what external interface is
provided by the class to its derived classes. This external interface is just as
important as the external interface provided to the users of the objects, as it
serves as a contract between the class and its derived classes, and thus limits the
degree to which the programmer can safely make changes to the class. In other
words, a class has two kinds of clients[82]:

Instantiating Clients. Those which just create instances of the class and ma-
nipulate those instances through methods associated with the class.

Inheriting Clients. Those which are subclasses and inherit methods and struc-
ture from the class.

Object-oriented languages have differed in the strategies for giving access and
visibility to these two kinds of clients. For example, Smalltalk allows unrestricted
access to instance variables by the inheriting clients, but completely restricts
instantiating clients. Numerous languages constructs have been proposed in order
to distinguish the “public” features from the “private” features. It seems that the
most general approach, which combines efficiency and flexibility, is to support the
notions of public, private and subclass visible, and leave it to the programmer to
specify the desired protection[82]. The three options are defined as follows:

Public. If an instance variable or a method is declared to be public, then any
client can directly access, manipulate, or invoke it.

Private. If an instance variable or a method is declared to be private, then no
client can directly access, manipulate, or invoke it.

Subclass Visible. If an instance variable or a method is declared to be subclass
visible, then it can be accessed, manipulated, or invoked directly only by

inheriting clients.

C++, for example, uses class declaration in conjunction with the access keywords
private, protected (subclass visible) and public to provide encapsulation of the
methods and instance variables.

Table 2.1 summarises how well some object-oriented languages support encapsu-
lation to instantiating clients. It is clear that the language should support a way

26 Chapter 2: Object-Oriented Concepts \

Visibility of Visibility of
Representation Operations
C++ data in public part only public visible
can be accessed directly
Trellis/Owl can only be accessed only public visible
through operations
CommonObjects | can only be accessed all visible, but can use
through operations Common Lisp packages
to export public ones
Simula can be accessed all visible
directly
Smalltalk can only be accessed can be marked private,
through operations but not enforced
by the language

Table 2.1: Interface to Instantiating Clients

of separating the public interface from the private implementation details. An
object should only be manipulated through a specific set of operations. Moreover,
a language that enforces such information hiding minimises the effect of changes
to a class on its clients.

Table 2.2 summarises the support for encapsulation to inheriting clients offered
by some object-oriented languages. It is clear that a language should enforce
that instance variables in ancestors should only be accessible through operations
defined in the ancestor. Moreover, it is important for a language to support a
way of making operations visible only to its inheriting clients, and not visible for
casual, non-descendent clients.

2.2.2 Inheritance

This section discusses inheritance and how it supports hierarchy. Firstly, we be-
gin to talk about inheritance, and then we discuss two major uses of inheritance,
implementation hierarchies and type hierarchies[96, 141]. Following that, we dis-
cuss the use of multiple inheritance when a new class needs to inherit properties
from two or more parent classes.

Inheritance (also called subclassing) is a mechanism for deriving new classes from
existing classes by a process of refinement. A derived class inherits the data rep-
resentation and operations of its parent class but may selectively add new opera-

Section 2.2: Object-Oriented Programming 27

Access of Visibility of
Instance Variables Methods
C++ by name allowed only public and
protected visible
Trellis/Owl by accessor function | only public and
only subtype-visible
CommonObjects { by accessor function | all visible
only
Simula by name allowed all visible
Smalltalk by name allowed all visible]

Table 2.2: Interface to Inheriting Clients

tions, extend the data representation or override the implementation of existing
operations[89]. According to Liskov[96], there are two major uses of inheritance,
implementation hierarchy and type hierarchy, which are now discussed in turn.

2.2.2.1 Implementation Hierarchies

The first way that inheritance is used is simply as a technique for implementing
abstract data types that are similar to other existing types. As an example of
implementation inheritance, suppose that we want to implement a Stack class,
and we have already implemented a List class (Figure 2.2). Then we can imple-
ment Stack as a subclass of List. Pushing an element on the top of the stack can
be achieved by adding an element to the end of the list and popping an element
from a stack corresponds to removing an element from the end of the list.

List Public Interface: add
I addEnd
| remove
| removeEnd
Stack Public Interface: pop
. push

Figure 2.2: An Example of Implementation Inheritance

In this case, the programmer uses inheritance as an implementation technique
With no intention of guaranteeing that the subclass has the same behaviour as

28 Chapter 2: Object-Oriented Concep‘ts

the superclass. It just happens that an existing class already implements some
behaviour that we want to provide in a newly-defined class, although in other
aspects the two classes are completely different. This use of inheritance can lead
to problems if other operations that are inherited provide unwanted behaviour.
So inheritance of implementation is not recommended because it can lead to
incorrect behaviour.

2.2.2.2 Type Hierarchies

A type hierarchy is composed of subtypes and supertypes. A type S is a subtype
of T if and only if S provides at least the behaviour of T[17]. An object of type S
can thus be used as if it is of type T because it is guaranteed to provide at least
the operations of T. That is, an object of type S is substitutable for an object of
the type T[96]. So the key is that derived classes behave like parent classes. This
is also referred to as conformance, i.e., type S conforms to (is subtype of) type T.

This use of inheritance relates together the behaviour of two types, and not
necessarily their implementations. A derived type may have additional properties
and operations that have nothing to do with its parent type. Behaviour sharing
via class inheritance is justifiable only when a true generalisation/specialisation
relationship occurs, that is, only when it can be said that the subclass is a form of
the superclass[96]. When a class B behaviourally inherits from A, we assume that
every instance of class B is an instance of class A because it behaves the same.
From now on, we refer to this model of inheritance as behavioural inheritance[11,

6).

We begin with some examples of types that are not subtypes of one another. First,
a stack is not a subtype of a list nor the reverse is true. If stack is implemented
as a subclass of list, we are also inheriting an unwanted list of operations that
add and remove elements from arbitrary positions in the list (not only add and
remove from the beginning). If these operations are used by mistake the stack
will not behave as expected. Another example of non-subtypes are stacks and
queues. Stacks are LIFO, i.e., when an element is removed from a stack, the last
item added is removed.

By contrast, queues are FIFQO, i.e., an element is added in the end of the queue
and an element is removed from the beginning of the queue. As an example of
a truly subtype hierarchy, consider an indexed collection which has an operation
to access elements by index, where all subtypes have this operation too, but, in
addition, each would provide extra operations. Examples of subtypes are arrays,
sequences, and indered sets. Figure 2.3 illustrates another example of a truly

Section 2.2: Object-Oriented Programming 29

Mammal

/ 1\

Human Deer Whale

Figure 2.3: An example of Type Hierarchy

subtype hierarchy. Behavioural inheritance is often called the isA relationship,
that is, it describes one kind of object that as an special case of another. For
example, we could say that array is a special kind of indexed collection.

Behavioural Inheritance

The contradictory uses of inheritance, implementation inheritance and behavioural
inheritance, have elicited suggestions to confine its use to the representation of
generalisation/specialisation relationship, that is, to the use of behavioural inhe-
ritance[96, 11, 103, 119]. As mentioned earlier in 2.2.1, some object-oriented
systems like POOL-I[7] and Guide[85] cleanly separate the concept of class (im-
plementation) from type (specification). However, none of the mainstream ob ject-
oriented languages, such as C++ and Eiffel, currently provide this separation.
For this reason, throughout this thesis, we adopt a design philosophy in which
inheritance is used exclusively to model the specialisation relationship, that is,
we adopt the behavioural inheritance model that is increasingly being accepted
as the model that supports a subtyping/conformance relationship.

2.2.2.3 Multiple Inheritance

So far our examples have used single inheritance, that is, each subclass had one
and only immediate superclass. The class inheritance hierarchy with single in-
heritance is a tree. In many situations, however, it is desirable to inherit from
more than one class. This mechanism is termed multiple inheritance. With mul-
tiple inheritance, we can combine several existing classes to produce combination
classes that utilise each of their multiple superclasses in a variety of function-
alities. Then the class inheritance hierarchy becomes a DAG (directed acyclic
graph), since a class can have more than one immediate predecessor. For ex-
ample, a BorderedTextWindow that allows editing of text in a bordered window
inherits from both TextWindow and BorderedWindow (Figure 2.4). Another ex-
ample of multiple inheritance is extracted from [48]. Assume that we have three
base classes Mammal, Bird and FlyingThing. They define the common behaviour
for mammals, birds and things that fly, respectively. We can now inherit from

30 Chapter 2: Object-Oriented Concepts

Bird and FlyingThing to define a flying bird, for example, a swallow. In the same
way, we can inherit from Mammal and FlyingThing to define a Bat (Figure 2.5).

TextWindow BorderedWindow
\ /
BorderedTextWindow

Figure 2.4: An Example of Multiple Inheritance

Mammal FlyingThing Bird
N/ \ /
Bat Swallow

Figure 2.5: Another Example of Multiple Inheritance

When a class inherits from more than one parent there is possibility of conflict:
methods or instance variables with the same name but different or unrelated
semantics that are inherit from different superclasses. Many solutions have been
reported in the literature to solve this problem. The following are some strategies
for resolving conflicts of unrelated methods:

Linearisation. It specifies a linear, overall order of classes, and then specify
that application of a class attribute (a method or instance variable) start
from the most specific class. This is the approach taken in Flavors[113] and
CommonLoops[19].

Renaming Strategy. It requires the renaming of conflicting instance variables
or methods. This is the approach taken in Eiffel[105] and Trellis/Owl[134].
This approach is to issue an error if totally unrelated class attributes are in-
herited through the multiple inheritance mechanism. In Eiffel, for example,
although such conflicts and ambiguities are forbidden, the language provides
considerable flexibility for defining how the conflict is to be resolved.

Qualified Class Attributes. It requires that whenever there is an ambiguity
in the access or usage of a class attribute, it must be resolved through
qualifying the class attribute with the appropriate class name. C++[150]
uses this strategy in supporting multiple inheritance.

Section 2.2: Object-Oriented Programming 31

Linearisation hides the conflict resolution problem from the user, but introduces a
superfluous ordering of class inheritance semantics. The renaming and qualifying
strategies provide more flexibility to the programmer to decide the applicability
of an inherited method or instance variable. In terms of flexibility, generality
and ease of understanding, these two approache/s seem to be the most promising
strategies.

A number of discussions of the viability of multiple inheritance have appeared
in the literature[28, 140]. Multiple inheritance is a controversial issue; there has
been a significant amount of discussion on the value of multiple inheritance over
single inheritance. The precise semantics of single inheritance is still subject of
many investigations, and multiple inheritance adds much more complexity to the
subject; although some researchers, such as Cardelli[25], have already reported
some studies on the definition of a clean semantics for multiple inheritance. Mul-
tiple inheritance can be useful in some situations for class specifications. The
disadvantage of its use is, to some extent, a loss of conceptual and implementa-
tion simplicity. However, in my opinion, multiple inheritance is useful if applied
with the appropriate assumptions. One should take care in defining a consis-
tent and correct semantics when conflicting methods and instance variables from
different classes are inherited by the same class.

2.2.3 Dynamic Binding and Polymorphism

This section examines in some detail the concept of dynamic binding and poly-
morphism, concentrating on the various styles of polymorphism in language and
system design. Polymorphism and dynamic binding emerge as important con-
cepts, especially in the context of object-oriented computing.

2.2.3.1 Dynamic Binding

In a general sense, binding is an association, possibly between an attribute and an
entity. Examples of program entities are variables, subprograms, and statements.
The attributes of a variable are its name, type, and storage area. The time at
which'a binding takes place is called binding time. Bindings and binding times are
very important concepts in the semantics of programming languages. A binding
is static if it occurs before runtime and remains unchanged throughout program
execution. If it occurs during runtime or changes in the course of program execuy-
tion, it is called dynamic or late. The major advantage of dynamic binding is that
bindings can change over time, providing a great deal of programming flexibility.

32 Chapter 2: Object-Oriented Concepts

Our main concern here is the binding of types to variables. Before a variable
can be referenced or assigned in a program, it must be bound to a type. The
two important aspects of this binding are how the type is specified and when
the binding takes place. Types can be specified statically through some form of
explicit or implicit declaration. Examples of typed object-oriented languages are
Eiffel, C++, and Simula. All of them combine static type checking and dynamic
binding. For example, assume that the variable John is of type Person, Mary
is an Employee and Jill is a SalesPerson. Moreover, if Employee is a subtype of
Person and SalesPerson is a subtype of Employee, the following assignments are
valid (using syntax similar to C++):

John := Mary;
John := Jill;
Mary := Jill;

Note that, for example, the assignment John := Mary is dynamically binding
John to an object of a different type (that is, different from its static type). In
principle, it would be a violation of strong typing to assign objects of a different
type to any of these variables. But, as long as Employee is a subtype of Person
and SalesPerson is a subtype of Employee these assignments are valid.

In terms of object-oriented programming, binding is normally concerned with
the mapping from method name to implementation, that is, it means that a
message send at runtime is dynamically bound to an implementation depending
on the class of the receiver. For example, assume that the method EvaluateBonus
is defined in the class Employee and is redefined or overridden with an entirely
different implementation in class SalesPerson. Then if EvaluateBonus is invoked
on Mary before and after the assignment Mary := Jill, as in the following piece
of program:

Mary.EvaluateBonus(...); // execution of Employee::EvaluateBonus
Mary := Jill;
Mary.EvaluateBonus(...); // execution of SalesPerson::EvaluateBonus

then the code defined in Employee is executed before the assignment, and the
code defined in SalesPerson is executed after the assignment. So the programmer
can have the flexibility of dynamic binding added to the advantages of strong
typing. For example, in C++, one must explicitly request dynamic binding for a
particular message by declaring it to be virtual in the parent class and redefining
it in the derived class. However, operations of the subclass which override the

Section 2.2: Object-Oriented Programming 33

corresponding operation of the superclass have a responsibility to provide the
same services provided by the superclass. This motivates our discussion of the
next topic.

2.2.3.2 Design by Contract

In the object model, a derived class inherits the state and operations of its par-
ent class, and may add new operations or modify the implementation of exist-
ing operations (overriding of operations as discussed above). Such modifications
should be realised in such a manner so as to guarantee that the derived class
still perform the same basic abstraction as the parent class. Meyer([107, 108] has
Proposed a contract model for inheritance, known as design by contract, in which
the behaviour of a class is constrainted by preconditions and postconditions on
its operations and a class invariant which must be satisfied by objects of the class.

This idea of “programming as contracting” is extended in the case of inheritance
by the notion of subcontracting. Derived classes are obliged to conform to the
specification of their parent classes in the sense that the invariant for the derived
class must be at least strong as the invariant for the parent class. Moreover, for
each operation of the derived class that overrides an operation of the parent class,
the following assertion overriding rule should hold:

(i) preconditions may only be weakened in the derived class, and

(i) postconditions may only be strengthened in the derived class, since the
postcondition of the overridden operation in the parent class must sti]]

hold.

These two requirements produce an inheritance hierarchy in which the subclasses
are subtype compatible with their parents and polymorphic substitution of jp-
stance of derived classes for instances of parent classes is possible without affect-
ing the correctness of the overall system. So without assertions and the notion of
contract, inheritance and overriding maybe misunderstood and misused.

The behavioural inheritance model earlier described should thus go beyond the
simple textual matching of method names. It is important that overriding of
operations by a derived class be performed in a disciplined manner so that the
derived class still realises the same basic abstraction as the parent class. In
other words, our concern is not only with syntax but also with semantics, more
specifically with the preservation of the subtyping relationship by derived classes.

34 Chapter 2: Object-Oriented Concepts

With such a view, in this thesis we adopt a model of inheritance that is termed
restricted inheritance, which encompasses both notions of behavioural inheritance
and “design by contract” methodology.

2.2.3.3 What Polymorphism Means

Typing systems in most programming languages are monomorphic in that values
are considered to have a single type. Type checking is then performed on the basic
of this typing information. However, in many cases, this can be too restrictive,
and many languages designers started employing polymorphism as a means of
providing more flexible typing disciplines. Polymorphism is defined to be the
ability for some values and variables to have more than one type. So these
values and variables can be used in different contexts demanding different type
values. Polymorphic functions are functions whose operands (actual parameters)
can have more than one type. Polymorphic types may be defined as types whose
operations are applicable to operands of more than one type.

Polymorphism should be applicable to all types in a well designed language. In
particular, given that functions are types, then a language should support poly-
morphic functions. A programming language has a polymorphic type discipline if
it permits us to define a function which works uniformly for arguments of different
types. For example, in a polymorphic language, we can define a single function
length of type:

length::[A] -> num, for all types A

which means that _

(i) length is a function whose arguments are lists,

(ii) its values are numbers, and

(iii) the type of the entries in the argument lists does not matter.

In contrast, a language with monomorphic type discipline forces the programmer
to define different functions to return the length of a list of integers, a list of
reals, and so on. Examples of languages with monomorphic types are Pascal and
Algol68.

The above example illustrates the inflexibility in monomorphic languages. Al-
though Algol60 presented a more flexible type discipline than Pascal in that it
required procedure parameters to be specified only as “procedure” (rather than
say “integer to real procedure), the flexibility was not uniform. A polymorphic

Section 2.2: Object-Oriented Programming 35

type discipline was first worked out for the language ML[110] around 1976, and
since then has been incorporated in a number of functional and imperative lan-
guages.

Polymorphism was first identified by Strachey[145], and the topic is examined in
detail in a paper by Cardelli and Wegner[26]. In‘this paper, Cardelli and Wegner
give a classification that divides polymorphism into two categories called ad hoc
and universal (Figure 2.6). Coercions and overloading are two forms of ad hoc
polymorphism which are supported for many languages such as APL, Algol68
and Ada:

(i) Coercions provide a simple way of going around the rigidity of monomor-
phic languages and provide a limited form of polymorphism. Languages
supporting coercion have built-in mappings (coercions) between types. If a
particular context demand one type and a different type is provided, then
the language checks if there is an appropriate coercion. For example, if add
is defined on two reals and an integer and a real are provided as parameters
then the integer will be coerced on to a real value.

(ii) Overloading allows a “function name” to be used more than once with differ-
ent types of parameters. For instance, the add function could be overloaded
to operate on both integers and reals as above. The typing information of
the parameters will then be used to select the appropriate function.

Polymorphism

// \\
Universal Ad Hoc
/1 \\ I\

Parametric Inclusion Overloading Coercion

Figure 2.6: Cardelli and Wegner’s Taxonomy

According to Strachey, in ad hoc polymorphism there is no single systematic way
in which to determine the type of the result of a function from the type of its
arguments. So ad hoc polymorphism works in a limited number of types in an
unprincipled manner while universal polymorphism will work for a potentially
infinite set of types in a principled manner.

Universal polymorphism has two forms: parametric and inclusion, In parametric
polymorphism, a single function (coded once) will work uniformly on a range of

36 Chapter 2:" Object-Oriented Concepts

types. A function has an explicit or implicit type parameter that determines the
type of the arguments for each application of that function. Parametric func-
tions are also called generic functions, that is, the function works generically on
a range of types. (This style of polymorphism is revisited in the Section 2.2.3.4).
In inclusion polymorphism, an object may be viewed as belonging to many dif-
ferent classes that need not be disjoint, that is, there may be inclusion of classes.
Parametric polymorphism describes the polymorphism found in ML and its deri-
vates, whereas inclusion polymorphism is the style of polymorphism found in
object-oriented languages such as Simula67 and C++.

According to Cardelli and Wegner[26], if typing is viewed as partially specifying
the behaviour (or intended use) of associated values, then monomorphic type
systems constrain objects to have just one behaviour, whereas polymorphic type
systems allow values to be associated with more than one behaviour. Strictly
monomorphic languages are too restrictive in their power of expression because
they do not allow values, or even variables that denote values, to exhibit different
behaviour in different contexts of usage. Languages like Pascal and Ada have
ways of relaxing strict monomorphism including:

(i) Overloading. Integer constants may have both type: integer and real. Op-
erators such as ‘+’ are applicable to both integer and real arguments.

(i1) Coercion. An integer value can be used where a real is expected, and vice
versa.

(iii) Subtyping. Elements of a subrange type also belong to superrange types.

As we discussed before, overloading and coercions are classified as ad hoc poly-
morphism. Subtyping is an instance of inclusion polymorphism. The idea of a
type being a subtype of another type is useful not only for subranges of ordered
types such as integers, but also for more complex structures. For example, a type
representing Fiat cars, which is a subtype of a more general types such as Vehicle.
Every object of a subtype can be used in a supertype context, in the sense that
every Fiat car is a vehicle and can be operated on by all operations that are
applicable to vehicles.

Parametric polymorphism describes the polymorphism found in ML and its deriva-
tes, whereas inclusion polymorphism is the style of polymorphism found in object-
oriented languages such as Simula67 and C++. For instance, Simula’s classes are
user-defined types organised in a simple inclusion (or inheritance) hierarchy in

Section 2.2: Object-Oriented Programming 37

which every class has a unique immediate superclass. Simula’s objects and pro-
cedures are polymorphic because an object of a subclass can appear wherever an
object of one of its superclasses is required.

It is also possible to introduce other forms of polymorphism in object-oriented
languages such as overloading and parametric polymorphism. It can actually
be shown that most inheritance systems support overloading in conjunction with
inclusion polymorphism([16]. In C++, for example, a function name or operator is
overloadable, that is, a function is called based on its signature. Also, using virtual
member functions in an inheritance hierarchy it allows a runtime selection of the
appropriate member function. Such a function can have different implementations
that are invoked by a runtime determination of the subtype.

Cardelli[26] has shown how polymorphism can be introduced into lambda caley.
lus using universal and existential quantification. This encourages a pure view of
polymorphism, and therefore, it is possible to study the semantics of polymor-
phism in isolation. For instance, universal quantification corresponds to paramet-
ric polymorphism and bounded universal quantification corresponds to subtyping
(for further details in this topic, refer to Cardelli and Wegner|[26)).

One advantage that a polymorphic language has over a monomorphic language
is that it can be rigidly typed checked while retaining a great deal of flexibility.
This feature is the key to understanding typed, object-oriented languages.

Polymorphic Type Checking and Binding

At first glance, it seems that there is a conflict between the flexibility of polymor-
phic language and the requirements for correctness through type checking. It is
however possible to support a flexible interpretation of a piece of code and still
guarantee absence of type errors.

For instance, consider the following piece of code:

procedure X (parameter: some_type)
Begin

End;
Begin
X(some_actual_type);

End.

38 Chapter 2: Object-Oriented Concepts

In monomorphic languages, the interpretation of the “X(some_actual_type)” pro-
cedure call is simple. The procedure X can only take one possible parameter type
as defined by the formal parameter. Type checking is therefore a case of checking
the actual parameter against the formal parameter. It also can be deduced that
there will be one to one mapping from “procedure name” to “code body”. Thus
binding is simply concerned with finding the corresponding code body.

However, in polymorphic languages, the relationship between type checking and
binding becomes more complex. The procedure X may support a range of pa-
rameter types with each type possibly requiring a different interpretation of the
procedure. It is this feature which introduces flexibility into polymorphic lan-
guages. Type checking guarantees that an interpretation exists for a given type.
In contrast, binding resolves the exact interpretation for that type.

For instance, in our previous example in Section 2.2.3.1, Mary is an Employee, but
it could denote objects of the type Employee and SalesPerson since SalesPerson is
a subtype of Employee. Then depending on the type of the object held by Mary
the implementation of the method EvaluateBonus is different.

Other Polymorphic Languages

There is whole range of polymorphic languages often based on parametric poly-
morphism such as ML[111],Miranda[153], Russel and Hope[21]. The big advan-
tage of these languages is that interpretation of polymorphic code is resolved at
runtime, that is, dynamic binding is used. This contrasts with Ada which also
supports parametric polymorphism but interpretations are fixed at compile time.
This approach corresponds to a macro expansion treatment of polymorphism, and
it has some limitations because does not capture the true semantics of polymor-
phism. For instance, a polymorphic function is mapped to several monomorphic
functions, one for each type. Then each monomorphic function is compiled and
executed as a separate entity. In contrast, in a language like ML, there is only
one code body for a function and the true interpretation of the code is resolved
dynamically.

Finally, we should say that the concepts of inheritance and polymorphism pro-
vide the great strengths of object-oriented languages, but they also introduce
difficulties in program analysis and understanding. Grogono and Bennett[63]
assert that “although polymorphism is a powerful abstraction tool, indiscrim-
inate use of polymorphism can quickly lead to unreadable code”. Wilde and
Huitt[158] analyse problems of dynamic binding, object dependencies, control
of polymorphism, high-level understanding and detailed code understanding in
object-oriented systems.

Section 2.2: Object-Oriented Programming 39

2.2.3.4 Genericity

Genericity or parametric polymorphism is the ability to parameterise a software
element with one or more types. A parameterised or generic class is a class that
serves as a template for other classes, in which the template may be parameterised
by other classes, objects, and/or operations. A generic class must be instanti-
ated (its parameters filled in) before objects can be created. The most classical
example is the generic class Stack(T), where T is a parameter type. In this way,
a generic stack program could be written independently of the type of the item
in the stack.

Ada is a non-object-oriented language which supports genericity. More recently it
has been implemented in several other languages such as C++[149] and Eiffel[105)].
Eiffel distinguishes between constrained and unconstrained genericity. In con-
strained genericity, some specific requirements are imposed on generic parameters
whereas unconstrained genericity has no such limitations. For example, assume
we have a generic function which computes the minimum of two values:

function minimum (x,y: T) return T
begin

if x <= y then return x

else return y;
end;

Such a function declaration is only meaningful if instantiated for types T on which
a comparison operator < is defined. So it is necessary a way for specifying that
type T must be equipped with the right operation. In Eiffel, the operator <
would be treated as a generic parameter of type T.

2.2.3.5 Abstract and Concrete Classes

Following Rumbaugh[131], an abstract class is a class that has no direct instances
but whose descendent classes have direct instances. A concrete class is a class
that i instantiable. An abstract class can define the protocol for an operation
without supplying a corresponding method. This is called an abstract operation.
An abstract operation defines the form-of an operation for which each concrete
subclass must provide its own implementation. For example, Figure 2.7 shows an
abstract operation. Ring is an abstract operation of class Telephone; its form but
not its implementation is defined. Each subclass must supply a method for the
abstract operation. ISDNPhone and POTSPhone are examples of concrete classes.

40 Chapter 2: Object-Oriented Concepts

Telephone Public Interface:
/ \ Ring {abstract}
/ \

ISDNPhone POTSPhone

Public Interface:
Ring {concrete}

Public Interface:
Ring {concrete}

Figure 2.7: Abstract Class and Abstract Operation

Syntactically, an abstract class is expressed in Smalltalk simply by not specifying
an implementation for at least one declared operation. In C++, an abstract class
is created by declaring at least one operation as pure wvirtual (i.e., creating an
abstract operation). In Eiffel, an abstract class is created by declaring the class
and at least one operation as deferred. A summary of the above abstractness
mechanisms is given in Table 2.3.

Terminology | Terminology | Syntaz Syntax
Class Operation Class Operation
C++ abstract pure virtual | - =0
Smalltalk | abstract abstract - -
Eiffel deferred deferred deferred with deferred
at least one
deferred operation
Key Words:

‘=’ means that the feature is not applicable.

Table 2.3: Summary of Existing Abstractness Mechanisms

According to Hiirsch[77], those definitions are problematic because there are two
concepts involved in abstractness: ability to create instances, and presence of
abstract operations. The fact that these two different concepts are merged into
one single concept prevents the programmer from using them separately. If a
class contains abstract operations then the class cannot be safely instantiated,
because if an instance were created, it would not be able to successfully respond
to all its messages. So the presence of an abstract operation implies the inability
to instantiate objects. However, the converse is not true: a class might not be
intended for instantiation and yet might have no abstract operations. So Hiirsch
proposes that the ability to instantiate objects should be the more important

Section 2.2: Object-Oriented Programming 41

behind abstractness, defining abstractness of a class as the inability to instantiate
objects. Note that this definition deliberately does not make reference to the
presence of abstract operations.

2.2.3.6 Covariance vs Contravariance -

If a subclass inherits a method from a class which takes an argument of type T, the
subclass can change the signature of the method to take any type that conforms to
T. Languages that allow this, such as Eiffel, are said to have covariant typing[69,
70]. For instance, suppose that a class Set has the operation add(object). A
subclass IntegerSet which inherits from Set can modify the signature of add(object)
creating a more restrictive operation add(integer). Clearly, a IntegerSet does not
want to invoke add on any kind of object, but only on the integer type. Thus, in
IntegerSet we redefine the method add by changing the type of the argument.

According to Rumbaugh[131], overriding is done for the following reasons:

Overriding for Extension. The operation is the same as the inherited opera-
tion, except it adds some behaviour, usually affecting new attributes of the
subclass. For instance, Window may have a draw operation that draws the
window boundary and contents. Window may have a subclass LabeledWin-
dow that overrides the draw operation. The draw operation in the subclass
LabeledWindow can be implemented by invoking the method draw from the
Window class and then adding code to draw the label.

Overriding for Restriction. The new operation restricts the protocol, such as
tightening the types of arguments. This is exactly the case of covariant
typing discussed above.

Overriding for Optimisation. An implementation can take advantage of the
constraints imposed by a restriction to improve the code for an operation.
For example, IntegerSet could have an operation to find the minimum in-
teger. This operation could be implemented using a sequential search al-
gorithm. A subclass SortedIntegerSet could provide a more efficient imple-
mentation of the operation since the contents of the set are already sorted.
This is a valid use of overriding.

Overriding for Convenience. This is the practice of developing new classes
using an implementation hierarchy, earlier discussed in Section 2.2.2.1. This
practice is not recommended since operations might be overridden to make
them to behave differently from inherited operations.

42 Chapter 2: Object-Oriented Concepts

However, covariant typing presents some dangers. In general, clients expect to
be able to call a method with any argument that conforms to the type T. If the
subclass redefines the method to take another type T’ (where T’ is a descendent of
T), and a client calls the operation with an argument that conforms to T but not
T’, the static type checking of the the system can be violated. Eiffel solves this
problem by using a global type analysis, referred to as system-validity checking
which is a more complex algorithm.

An alternative approach is to use contravariant typing. In this scheme, the original
argument must conform to the redefined version. Object-oriented languages that
only support contravariant typing, such as C++, eliminate the need for system
validity checking. On the other hand, it constraints the programmer’s ability
to reuse code through inheritance. For instance, in C++, the signature of the
operation add(object) cannot be changed in the subclass IntegerSet. This means
that every time that the add operation is invoked on IntegerSet it is necessary to
do a runtime check to ensure that the argument is really of the integer type, and
not some other type of object.

2.2.4 Variations

Here we examine some variations in design choices and decisions related to the
implementation of object-oriented systems. There are a number of different tech-
niques that have been developed to support data abstraction and behaviour shar-
ing. This section illustrates some of these variations by discussing concepts such
as mixins, metaclasses, delegation, reflection and frameworks.

2.2.4.1 Mixins

Multiple inheritance from several distinct classes allows the inheritance of desir-
able and also undesirable functionality from these classes. It is not simple to
selectively inherit only the desirable characteristics. The existence of multiple
inheritance gives rise to a style of class derived from Flavors[113] called mizin.
Mizins are packages of class operations that can be “mixed” in to other classes.
Mixins are abstract classes in the sense they do not have any instances; they exist
only to add functionality to existing classes. For example, suppose we have to
define a class hierarchy representing plants, and we build two subclasses Flower-
ingPlant and Fruit/VegPlant, both derived from the class Plant. However, we also
need to model a plant that produces both flowers and fruits.

Section 2.2: Object-Oriented Programming 43

One solution is to create a third class Flow/Fruit/VegPlant which is derived from
both FloweringPlant and Fruit/VegPlant. Suppose, by doing so, that the new class
would contain duplicated information. So a better way is to use mixins. First,
we create the classes Fruit/VegMixin and FlowMixin (Figure 2.8), which capture
the properties unique to flowering plants, and fruits and vegetables, respectively.
Neither of these classes can stand alone; rather; they are used to augment the
meaning of some other class. Now, we can define FloweringPlant inheriting from
Plant and FlowMixin. In a similar way, Fruit/VegPlant inherits from Plant and
Fruit/VegMixin. Now we can declare the Flow/Fruit/VegPlant class inheriting from
Plant, FlowMixin and Fruit/VegMixin.

Plan

Fryit/VegMixi FlowMixin

Fruit/VegPlant FloweringPlant

Flow/Fruit/VegPlant

Figure 2.8: An Example of Mixins

In other words, a mixin is a class which embodies a single, focused behaviour. It
is used to augment the behaviour of some other class via inheritance. Usually the
behaviour of a mixin is completely orthogonal to the behaviour of the classes with
which it is combined. The notion of mixin promotes reusability and separation
concerns, if correctly applied. However, one problem with this approach is that
if used unsystematically it can generate a large number of new classes for each
original class. Every change in the functionality demands the creation of a new

class before the instance can be created.

2.2.4.2 Metaclasses

In most object-oriented languages, classes are factories that create and initialise
instances (objects). They are not first-class objects because they are not them-
selves instances of classes. However, in some languages such as Smalltalk[62]
two types of generators are introduced: metaclasses, giving rise to classes, and,
classes, giving rise to terminal objects. Thus, all entities of the object mode] are

objects.

44 Chapter 2: Object-Oriented Concepts

More specifically, metaclass is a class whose instances are classes. There are at
least two benefits in representing classes as objects. The first one is that the in-
formation global to all objects of a class can be stored in class instances variables
(or simply class variables, following Smalltalk terminology). Methods associated
with the class (called class methods) can be used to retrieve and update the values
of class variables. The second advantage is its use in the creation/initialisation of
new instances of the class. Each class can have, for example, its own overloaded
new method for creating and initialising instances. Just as a class holds the de-
scription of its instances, so metaclasses hold the description of its single instance,
i.e., the description of the class. There is (in Smalltalk, for example) a distinct
metaclass for each class, and the metaclass hierarchy is parallel to the class in-
heritance hierarchy. Figure 2.9 illustrates this for the class hierarchy rooted at
Person.

Person
/\
Employee Student

/ \

SalesPerson Secretary

Metaclass of Person
/ \
Metaclass of Employee Metaclass of Student
/ \

Metaclass of SalesPerson Metaclass of Secretary

Figure 2.9: Parallel Class and Metaclass Hierarchies

Object-oriented languages such as C++, Eiffel and Simula do not support the
“classes as instances of metaclasses” paradigm. Although instances of classes are
also created through a new operator, the idea is to allocate dynamic memory
rather than the creation of an instance as in Smalltalk. Some authors argue that
the concept of metaclasses as implemented in Smalltalk is extremely complex(82],
promoting the most significant barrier to learnability of the language by both
students and teachers. However, in my opinion, the concept is useful although
its understanding is not straightforward.

At its most general, the object-oriented paradigm supports three kinds of abstrac-
tions: (i) data abstraction for object communication, (ii) super-abstraction (in-
heritance) for behaviour sharing and object management, and (iii) meta-abstrac-

Section 2.2: Object-Oriented Programming 45

tion (metaclass) as basis for self-description. The concept of metaobject is also
used to represent computational reflection in object-oriented systems. (Reflection
1s discussed further in 2.2.4.4.)

2.2.4.3 Delegation

The previous section discussed metaclasses. Object-oriented languages that sup-
port metaclasses have three categories of objects:

(i) Metaclass objects whose instances are classes.

(ii) Non-metaclass class objects whose instances are terminal objects.

(iii) Terminal objects that are not classes.

Inheritance applies only to classes. Now we discuss a mechanism like inheritance,
but operates between objects directly, rather than between their classes, called
delegation. In delegation-based programming languages, such as Self{154] and
Actor[2], objects are viewed as prototypes (or ezemplars) that delegate their be-
haviour to related objects, called delegatees. The delegates-to relationship can
be established dynamically, whereas the inheritance relationship of class-based
languages such as C++, is established and fixed when a class is created. So
class-based languages use static and per-group behaviour sharing, in contrast
to delegation-based languages which provide dynamic and per-object behaviour

sharing.

In prototype systems, the distinctions between instance ob jects and class objects
are removed. One first thinks of a particular prototypical object and then draws
similarities and/or distinctions for other objects. Any object can become a proto-
type. The idea is to start with individual cases and then subsequently specialise
or generalise them. In this sense, prototypes may be used in a manner close to
the way humans learn. For example, assume that one observes a rectangular
object, and then encounters a square. The square looks like the rectangle - it has
four edges and four corners at 90 degree angles. Furthermore, suppose that sub-
sequently one encounters another square of different size. Then one can deduce
that the analogy with the first square is even stronger than that between the
rectangle and the first square since the only difference between the two squares is
their sizes. In a prototype system, the first rectangle is a prototype for the first
square. Similarly the first square is a prototype for the second square.

46 Chapter 2: Object-Oriented Concepts

Let us call the rectangle object rec, the first square sql and the second square sq2
(see Figure 2.10). The rectangle object has operations reflecting its behaviour,
such as, move, rotate and resize, and also query operations?, such as center, perime-
ter and ratio, which return the value of the attributes center, perimeter and ratio
of the sides, respectively.

rec

center: (4,10)
perimeter: 18

ratio: 2

operations:
move (point)
rotate (angle)

delegates-to
sql

center: (10,3)
perimeter: 20

operations:
resize()

sq2

delegates-to center: (0,2)
perimeter: 16

Figure 2.10: Rectangle and Squares Prototypes

The square object sql is similar to the rectangle object; the only difference is
in the values of center, perimeter and ratio of the sides (which for squares is 1).
The sql object has a delegates-to relationship with the rec object. This means
state variables or operations that are not overridden in sql will be inherited
from rec. Thus sql delegates the execution of messages, such as rotate, to the
prototype object rec. In a similar way, sq2 delegates all its received messages,
except Perimeter and Center, to its prototype sq2. For example, if sq2 receives
the message Move, it will first be delegated to sql. Since the message can not
be handled by sql it is in turn delegated to rec. Needless to say when move is
executed it actually operates on sq2. In the next chapter we discuss more fully

?operations that read but not change attribute values.

Section 2.2: Object-Oriented Programming A7

the concept of delegation and its implementation in class-based object-oriented

languages.
Inheritance vs. Delegation

To illustrate the difference between inheritance and delegation, consider a turtle-
graphics example presented by Lieberman[93]. In this example, a turtle draws
solid lines of length z when forward method is invoked. Backward movement is
defined by the backward method, which invokes the forward method with a value
-z. In a class-based language, the class SolidTurtle could look like this (here we

use C++):

class SolidTurtle{

Protected:
changeDirection();

public:
SolidTurtle();

“SolidTurtle(); : s
virtual void forward(int x); // draw solid lines of length x

virtual void backward(int x);

}

void SolidTurtle::backward(int x)
{

forward(-x);

}

The problem is to create a dashed turtle to draw dashed lines instead of solid
ones. In a class-based language, a subclass DashedTurtle can inherit from Solid-
Turtle. The operation forward is then overridden in the DashedTurtle subclass,
and the new implementation breaks the interval ¢ into pieces, and invokes Solid-
Turtle:-forward for each piece, thus drawing a dashed line. However, if a backward
message is sent to a dashed turtle, the backward method of the Solid Turtle class
is invoked. As a consequence, the forward method of the solid turtle is invoked
instead of the specialised forward of the dashed turtle, thus incorrectly drawing a

solid line.

One solution is to override the backward method in the subclass DashedTurtle,
whose code would be exactly the same as Solid Turtle::backward. This solution is
quite limited since the implementation of DashedTurtle::backward is a repetition

of SolidTurtle::backward:

48 : Chapter 2: Object-Oriented Concepts

\

class DashedTurtle: public SolidTurtleq
public:
DashedTurtle();
“DashedTurtle();
void forward(int x); // break x into pieces and call Solid::forward
// for each piece
void backward(int x);

}
void DashedTurtle: :backward(int x)
{
forward(-x); // repeated code
}

Another solution is to change the implementation of the method backward in the
SolidTurtle class. When a method in a superclass sends a message to this (the
receiver of a message in C++ is called this), the method lookup starts in the class
of the receiver. So SolidTurtle might have a backward method such as:

void SolidTurtle: :backward(int x)

{
this->forward(-x);

)

Sending the backward message to a dashed turtle will call the method defined
in SolidTurtle. When SolidTurtle sends the forward message to itself, it calls the
forward method that is defined in class DashedTurtle. Thus, the correct imple-
mentation of the forward method is invoked.

Now suppose that we prohibit the use of inheritance and we give to each dashed
turtle an instance variable with a pointer to a SolidTurtle. Then a dashed turtle
could respond to the backward message by sending it to SolidTurtle. However,
the SolidTurtle would have to send the message forward back to the particular
DashedTurtle that sent the backward message in the first place.

class DashedTurtle
{
private:
SolidTurtle* solidTurtle;
public:
DashedTurtle();

Section 2.2: Object-Oriented Programming 49

“DashedTurtle() ;
void forward(int x); // break x into pieces and send the message
// ‘forward’ for each piece to the solidturtle object.

void backward(int x); // send the message ‘backward’
// to the solidTurtle object

} /

However, this version of DashedTurtle is also incorrect, because without inheri-
tance or late binding, it can only call the original forward method. The Solid Turtle
would have to send the message forward back to the particular Dashed Turtle that
sent the backward message in order to invoke the specialised forward method.
More generally, the SolidTurtle would have to send all messages overridden by
subclasses back to the original receiver of the messages, which in our example is

the DashedTurtle.

So delegation differs from just sending a message in that the delegator continues to
play the role of receiver even after it delegates the message. Thus, messages that
the delegatees sends to itself (that is, this) are received by the original delegator.
Similarly, when a method in a superclass sends a message to this in a class-based
system, the message lookup starts in the class of the original receiver. In this
case, inheritance resembles delegation, while sending a message is different.

We implement delegation by including the original receiver as an extra argument
to each delegated message. In our example, a pointer to a DashedTurtle is added
as a parameter in the backward signature of the Solid Turtle:

void SolidTurtle: :backward(DashedTurtle* dashedTurtle, int x)

{
dashedTurtle->forward(-x); // pass control back to delegator

}

The result of this interaction enables DashedTurtle to delegate the backward mes-
sage to SolidTurtle, which in turn returns ¢his invocations to Dashed Turtle, thys

achieving the effect of late binding.

In a delega,tion-based system, the dashed turtle is created by cloning the.solid
turtle and adding a specialised forward method that will break the interval g
into pieces and delegate each piece to the original solid turtle. If a backward
message is sent to the dashed turtle, it is delegated to the original turtle. Then
the solid turtle invokes the specialised forward method on the target turtle, thus
drawing a dashed line (Figure 2.11). Languages based upon delegation, such

50 Chapter 2: Object-Oriented Concepts

\

KEY:

backward -
Operations: . .
——= | forwar d<length> dashed turtle prototype — . incoming message

— — — — » delegated message
f

delegates !

backward |

¥

Operations: .
forward<length> | solid turtle prototype
backward <length >

Figure 2.11: Example of Delegation

as, Self[154], implement the extra argument (that is, the original receiver of the
message) automatically and invisibly. However, as we have shown above, it is
possible to implement delegation in a class-based language by following a set of
programming conventions.

2.2.4.4 Reflection

The notion of reflection originated in the field of formal logic, and concerns the
ability of reasoning about and acting upon the system itself(101]. In the con-
text of object-oriented programming languages, reflection can be defined as the
ability of an executing system of programmed objects to make general object at-
tributes, such as invocation, interface and inheritance, be themselves the subject
of their computation[100]. The steps involved in reflection consist of: reification®
of an abstract object-oriented concept, reflective computation using the reified at-
tribute as data, and reflective update that modifies the objects through reflective
computation.

More recently the prominence of reflection has been recognised and reflection has
influenced the construction of adaptive, extensible systems, such as Apertos[162].
In the context of object-oriented programming languages, reflection has been
combined with object-oriented techniques in the forin of a metaobject protocol[83,
52, 50]. The idea is to associate an object with a metaobject which holds infor-
mation about the object, such as the structure, behaviour, change history and
other evolution information related to the object, and to provide in the language

3The Oxford dictionary defines reification as “the mental conversion of an abstract concept
into a thing.”

Section 2.2: Object-Oriented Programming 51

means by which the definition of these metaobjects can be changed. Any access
to the object is intercepted by the metaobject, so that it can execute various tasks
for the object. The Common Lisp Object System (CLOS) provides an example
of such a metalevel facility[83]. As a result, by programming at the metalevel,
it is possible to intercept and modify all the mechanisms by which objects and
classes are defined. This is a very promising new fechnique, and investigations are
being carried out within the Computing Science Department at Newcastle Uni-
versity in order to explore the use of reflection for implementing dependability
and distribution transparency in software systems[148].

2.2.5 Summary

So far we have revisited the concepts of encapsulation, class, inheritance, etc., and
also introduced the concepts of delegation, metaclasses, and reflection. Table 2.4
shows a comparison among some object-oriented programming languages accord-
ing to the concepts discussed so far. Some object-oriented languages support the
object-oriented paradigm better than others, although it is still possible to think
in an object-oriented fashion without a direct support of the paradigm by the
language. However, languages such as C++, Eiffel or Trellis/Owl, which offer a
direct language support, facilitate and encourage the use of the object-oriented
paradigm.

Nowadays object-oriented programming is a subject that is still maturing. Tech-
niques such as delegation and reflection have significant potential, but much work
remains to be done for understanding and evaluating them completely. Further-
more, many current researchs aim to integrate more semantics to the object-

oriented paradigm, bridging the gap between formal methods and object-oriented
programming. According to Bar-David[11], the benefits of formal methods in

object-oriented programming can be summarised as follows:

e unambiguous description of system bahaviour.

e uncriticisable criterion for judging the correctness of a particular implemen-
tation. :

® there exist techniques for semiautomatically deriving correct implementa-

tion from formal specification.

There is a large and growing literature of formalism in programming, much of
which can be applicable to object-oriented programming, such as, the use of type

‘yes’ means that the feature is present;

‘no’

means that the feature is not present;

‘-’ means that the feature is not applicable.

52 Chapter 2: Object-Oriented Concepts

Ada C++ Eiffel CLOS Stmula | Smalltalk-80
Typing static | static static dynamic static dynamic
Dynamic no virtual yes implicit virtual | implicit
Binding msg sending msg sending
Generic yes yes yes no no no
Classes
Private yes yes yes yes yes yes
Data
Private yes yes yes yes yes no
Methods
Class yes yes no yes no yes
Variables
Name of - this current self this self
the Receiver
Access to - renaming | callnext_ this super
Supermethod method
Inheritance no single single single single single

& mult. & mult. & mult. & mult.
Inh. Conflict | - explicit explicit lineari- - conflicts
Solving path renaming | sation unauthorised
metaclass - no no standard no metaclass
class class
other - overloading assertions | generic active | any entity
features generic functions functions objects | is an object
Key Words:

Table 2.4: Summary Table of the Features of Class-based Languages

Section 2.3: Object-Oriented Design Methodologies 53

specifications[97, 98], and algebraic specification[11]. Moreover, many investiga-
tions in the object-oriented community are also concerning the development of
formalisms for object-oriented concurrent systems and metaobjects protocols.

As far as delegation is concerned, very few languages support both delegation
and inheritance in a class-based framework. For instance, a good example of
such a language is an object-oriented language called MUST([160] which is based
on Smalltalk but includes extensions on the areas of delegation, multiple inheri-
tance, and encapsulation. Moreover, some research has appeared concerning the
issue of type-safety in delegation-based languages, such as the work by Agesen
et al.[1], who have designed and implemented a type inference algorithm for the

Self language.

2.3 Object-Oriented Design Methodologies

Usually the software process. development includes the main following steps:

(i) stating a problem,
(ii) understanding its requirements,
(iii) planning a solution, and

(iv) implementing a prograﬁl in a particular programming language.

A design methodology consists of building a model of a problem domain and then
adding implementation details to it during the design of a system. The object-
oriented approach allows the same concepts and notation to be used throughout
the whole software life cycle, from analysis through design to implementation.

It is useful at this stage to define concepts such as method, technique and method-
ology. In the scope of this thesis, a method is defined as a set of systematic activi-
ties to carry out a task. A technique is the way to execute activities recommended
by the methods, and methodology is a set of methods and techniques with which
an objective can be reached[24]. There is some controversy on what characterises
a software design methodology, and therefore what can be expected of one. Some
researchers argue that many current design methodologies are merely notations
for the expression of design; however, a good design methodology should comprise
more than just a notation[24, 155]. Such methodology should provide guidelines

54 : Chapter 2: Object-Oriented Concepts

on the steps that should be followed at each stage‘during the development and
should cover the whole software development life cycle.

While a design methodology can emphasise principles and provide guidelines for
designers to follow, the act of designing a software is ultimately a creative process
which requires skills, experience and common sense to be performed well. One
important guideline that a design methodology provides is to hint at the way in
which large and complex systems can be decomposed into smaller components
which can be manipulated more easily. An object-oriented design methodology
differs from a conventional one in the particular manner in which the system is
decomposed into smaller parts and the nature of the relationships between them.

Although there is no standardisation across existing object-oriented analysis and
design methodologies, there is a common distinction made between object-oriented
analysis and object-oriented design. In general, analysis deals with the problem
domain, and design with the solution domain. More precisely, object-oriented
analysis models the problem domain by identifying and specifying a set of seman-
tic objects that interact and behave according to system requirements. Object-
oriented design models the solution domain which includes the semantic classes
(with possible additions), and also interface, application and base/utility classes
identified during the design process. Semantic classes define objects that have
meaning to the problem domain; interface classes refer to objects that are asso-
ciated with the user interface; application classes define objects that implement
the control mechanisms for the system; and, finally, base/utility classes define
objects that are application-independent. Object-oriented design is language in-
dependent, and precedes the physical design (implementation phase).

Many different object-oriented methodologies can be found in the literature. (An
excellent discussion evaluating and comparing the current object-oriented anal-
ysis and design research can be found in {24, 112, 30].) There are a number
of methodologies, methods and techniques, different notations and conflicting
rules. Again, there is no standard representation of the object-oriented concepts
amongst the different proposed notations. According to the evaluation presented
in [112], two methodologies are particularly well ranked: Booch’s methodology[20]
and Rumbaugh et al.’s[131] Object Modelling Technique (OMT). Booch’s work
has been taken considerably further in a handbook on object-oriented design pro-
duced by an American software company. Meyer’ book[105] also illustrates many
important principles of object-oriented design with examples written in the Eiffel
programming language. In particular the notion of “design by contract” is very
important to develop large, reliable programs, providing practical guidelines en-
forced by the use of preconditions, postconditions and automatic inheritance of
assertions in Eiffel. For the purposes of this research, we have chosen the OMT

Section 2.3: Object-Oriented Design Methodologies 55

methodology mainly because we felt that it encompasses (as many other method-
ologies) the main object-oriented concepts coherently and its notation was simple
to understand. Below we describe this methodology in more detail.

2.3.1 Overview of The OMT Methodology

Object Modelling Techniqgue (OMT)[131] is a language-independent graphical no-
tation that represents a set of object-oriented concepts. The OMT methodology
has three basic stages, which are referred to as analysis, system design and object

design. Each stage is now discussed in turn.

The Analysis Stage concerns with understanding and modelling the application
software and the domain within which it iterates. The goal of this stage is to
understand the application in terms of classes, using the object, dynamic and
functional models to represent the properties meaningful to the application. Each

model is now defined:

The Object Model describes the aspects of a software system in terms of
classes, in an object model diagram. The object model is represented by
graphs whose nodes are classes and arcs denote relationships of specialisa-
tion, aggregation, or any association between classes.

The Dynamic Model describes the aspects of a software system which may
change over time due to events, and is used to understand the control flow
of a software system. The dynamic model is represented by familiar state
transition diagrams whose nodes are states and arcs are transitions (caused

by events) between states.

The Functional Model describes the data transformations within a software
system and employs the well-known data flow diagrams to represent com-
putations of output values from input values.

The object, dynamic and functional models are orthogonal parts of the description
of the whole system. However, the object model is the most fundamental, because
it is necessary to describe what is changing before describing when and how it
changes. The output from analysis is the Analysis Document that consists of the
problem statement, object model, dynamic model and functional model. From
this document it is possible to identify: objects and their attributes, operations,
the visibility of each object in relation to the others, and the interface of each

object.

56 ' Chapter 2: Object-Oriented Concepts

N

The System Design Stage focuses on decisions about the high level structure of
a software system. In this stage, the software system is divided into subsystems,
without in fact employing any concepts related to the object-oriented paradigm.
Using the object model as a guide, the following steps are performed:

p—t

. organize the system into subsystems.
identify the concurrency inherent in the problem.
allocate the subsystems to processors and tasks.

choose the basic strategy for implementing data stores.

oo W N

identify the global resources and determine the mechanisms for controlling
access to them.

6. consider the boundary conditions.
7. establish the trade-off priorities.
The output from system design stage is the System Design Document that defines

the structure of the basic architecture for the system as well as the high-level
strategy decisions.

Finally, Object Design Stage is targeted at the data structures and algorithms
need to implement each class in the object model. During this stage, dynamic
and functional aspects are combined and refined, and more details about the
control flow of a software system are defined. The following steps are performed:
1. obtain operations for the object model from the other models.

. design algorithms to implement the operations.

. optimize access paths to data.

. adjust class structure to increase inheritance.

2

3

4

5. design implementation of associations.

6. determine the exact representation of object attributes.
7

. package classes and associations into modules.

The document resulting from the object design stage is called the Design Docu-
ment, and contains the detailed object model, the detailed dynamic model, and
the detailed functional model.

Section 2.3: Object-Oriented Design Methodologies 57

2.3.1.1 Object Model

The first step in analysing the application requirements is to construct ap object
model. The object model shows the static data structure of the real-world system.
The object model precedes the dynamic model and the functional model because
the static structure is usually better defined and easier for humans to understand.
The following steps are performed in building an object model:

1. identify object classes.-

2. prepare a data dictionary containing descriptions of classes, attributes, and
associations.

3. add associations between classes.
4. add attributes for objects and links.
9. organize and simplify object classes using inheritance.

6. test access paths using scenarios and iterate/refine the above steps as nec-
essary.

7. group classes into modules, based on close coupling and related function.

The object model can be summarized in the following expression:

,Object Model = Object Model Diagram + Data, Dictionarﬂ

2.3.1.2 Dynamic Model

The dynamic model shows the time-dependent behaviour of the system. It is
important for interactive systems. The aspects of a system that are concerned
with changes to the objects and their relationship over time are captured in the
dynamic model, in contrast with the static model (object modet).

The major dynamic modelling concepts are events, which represent external stim-
uli, and states, which represent values of objects. The state transition, diagram
is a graphical representation of state machines. The use of events and states are
emphasised to specify control. Moreover, states and events can be organised into
generalization hierarchies to share structure and behaviour. It uses the notation

58 ~ Chapter 2: Object-Oriented Concepts

of David Harel[65] for drawing structured state diagrams using nested diagrams -
to show structure.

In summary, the following steps are performed in constructing a dynamic model:

—

. prepare scenarios of typical interaction sequences.
identify events between objects and prepare an event trace for each scenario.

prepare an event flow diagram for the system (message change).

A

build a state diagram for each class that has an important dynamic be-
haviour.

5. check for consistency and completeness of events shared among the state
diagrams.

The dynamic model can be summarized as follows:

Dynamic Model = State Diagrams + Global Event Flow Diagram

2.3.1.3 Functional Model

The functional model shows how values are computed, without regard for sequenc-
ing decisions, or object structure. It shows which values depend on which other
values and the functions that relate them. The following steps are performed in
constructing a functional model:

p—

. identify input and output values.
build data flow diagrams showing functional dependencies.
describe what each function does.

identify constraints.

AT B

specify optimisation criteria.

The functional model can be summarized as follows:

lFunctional Model = Data Flow Diagrams + Constraints

Section 2.3: Object-Oriented Design Methodologies 59

2.3.2 Reusability and Extensibility

Some of the advantages of object-oriented programming languages are their sup-
port for encapsulation, reusability and extensibility. Encapsulation is the strict
enforcement of information hiding (see Section 2.2.1.5). Reusability is the ability
of a system to be reused, in whole or in parts, for the construction of new sys-
tems. Ertensibility is the facility with which a software system may be changed
to account for modifications of its requirements[109]. These three aspects are
particularly relevant to the development of large software systems.

Reusability is the practice of incorporating existing software components into
software systems for which they were not originally intended. It is likely to be
more cost effective spending some time searching for a reusable component rather
than defining, implementing and testing a new component. In the past, the idea
of reusability was associated with source code reuse or invoking subroutines from
a library[53]. Thus, software reuse was usually carried out at the implementation
phase. However, reuse of source code during the implementation phase is a very
limited kind of reusability. Greater benefits are obtained when reusability is
performed at higher levels.

Some investigations have been considering how to reuse parts of a software spec-
ification and design[34, 76]. Design reuse is fundamental to successful reusability
under the object model. At a higher level than implementation, reusability in-
volves a classification of software components which gives the information on
what each component does, and accessibility which allows a component to be
searched for, retrieved and hence reused.

Experiences so far have proved that design for reuse is not straightforward in
practice. Most of the obstacles have concentrated on the problems of classify-
ing the components, searchipg for potentially reusable components and access-
ing libraries of reusable components. Johnson and Foote[79] emphasise that the
object-oriented paradigm is not a panacea for reusability. They argue that soft-
ware reusability does not happen by chance and designers should plan to reuse,
and new classes should be designed for reusability. Tracz[152] provides some
insight on the interaction between reuse and object-oriented design, and states

that:

(i) Software reuse is both a technical and non-technical problem involving psy-
chological and economic barriers.

(ii) Domain analysis can play a role in solving the reuse problem.

60 Chapter 2: Object-Oriented Concepts

(iii) Designing software from reusable parts is not like designing hardware using
available integrated circuits.

(iv) Reusing software that was not planned for reuse is harder than reusing
software that was designed for reuse.

(v) Software reuse will not just happen.

Nowadays the significant cases of reuse involve frameworks rather single com-
ponents[23]. Objects and classes are building blocks that are just too small to
achieve high levels of reusability. On the other hand, frameworks are bigger build-
ing blocks which define collections of collaborating classes that capture both the
small-scale patterns and major mechanisms that, in turn, implement the common
requirements and the design in a specific application domain. A framework is thus
viewed as a codified architecture for a problem domain that can be adapted to
solve specific problems. A framework makes it possible to reuse an architecture
together with a partial concrete implementation. A class can use abstract opera-
tions to describe the framework of a reusable abstraction, and the functions can
be filled in by the class user in the context where the abstraction is to.be applied.

As asserted by Firesmith[51], today’s object-oriented development methods and
languages will remain insufficient until they support frameworks. The major cur-
rent object-oriented development methods focus on developing application (and
classes and objects) largely from scratch. In the context of object-oriented pro-
gramming, apart from Eiffel which supports the notion of clusters, no major
object-oriented languages support a building block.larger than a class. Besides,
it is also necessary the ability to document these higher-level abstractions and
responsibilities so that the semantics of these larger building blocks can be cap-
tured. Some investigations have been reported on the literature related to this
topic (see [22, 81)).

Another approach to software reuse is the concept of a design pattern[56, 57, 13].
Design patterns capture the intent behind a design by identifying objects, their
collaborations, and the distribution of responsibilities. They form a base of expe-
rience for building reusable software, and act as building blocks from which more
complex designs can be built. Gamma et al.[56] reports on how to express and
organise design patterns, introducing a catalog of them. An important distinc-
tion between frameworks and design patterns is that frameworks are implemented
using a programming language while patterns are ways of using a programming
language. In this sense, frameworks are more concrete than design patterns.

Design patterns are also related to idioms introduced by Coplien[34]. These id-
ioms are concrete design solutions (in fact in the context of C++). In contrast to

Section 2.3: Object-Oriented Design Methodologies 61

idioms, design patterns are more higher-level abstractions, trying to abstract de-
sign rather than programming techniques. Design patterns are largely inspired on
the influential work on “patterns” by Christopher Alexander[5]. Lea[90] discusses
the importance of patterns in object-oriented design. He states that patterns can
raise the expressiveness and level of description supported by object-oriented con-
structs, and conversely, object-oriented techniques can strengthen pattern-based
design notions through concepts such as inheritance, delegation and reflection.

Discussions of the benefits of object-oriented design often emphasise reuse rather
extensible, maintainable systems. Component reuse plays an important role in
the maintenance of the system, which is by far the most expensive part of the
life cycle of a system. Maintenance is a process of reusing components across
time, rather than across applications[12]. Enhancing the system results in making
modifications to the system components in unforeseen ways, just as during system
reused components need to be altered to fit the new applications.

Some authors, such as Haythorn[73], argue that all discussion about reuse is a
marketing mistake. Once we are really interested in building systems, main-
tainability should be a more fundamental aspect than reuse. In fact, the main-
tainability aim does not conflict with the reuse aim, and the first step towards
reuse is to design for maintainability. A maintainable object-oriented design is
constructed around a central set of classes which are characterised more by the
variation they hide rather than what they are. In this sense, many of the current
design methodologies cannot be expected to produce truly maintainable object-
oriented design. Essentially to building systems that are robust under changes,
it is necessary to anticipate and consider expected changes. Whatever method or
notation you use, two additional aspects should be added to analysis and design:
(i) the listing of expected changes, and (ii) the critical examination of the initial
design in terms of its robustness to these changes.

The role of maintenance in design is described by Winograd and Flores[159]:

“.. to anticipate the forms of breakdown and provide a space of

possibilities for action when they occur. It is impossible to completely
avoid breakdowns by means of design. What can be designed are aids
for those who live in a particular domain of breakdowns.”

We will return to this point later in Chapters 3 and 4, focusing on object-oriented
design for fault tolerance. ‘

62 Chapter 2: Ob jéct-Oriented Concepts
2.4 Exceptions in Object-Oriented Languages

Exception handling is an essential feature if strong typing is to be meaningfully
integrated into a useful object-oriented language. If we accept the view that any
object is essentially an entity that provides a service to client objects, and that an
object type is a description of the “contract” between client and server objects
with respect to these services, then without a mechanism of exception, as an
integral part of that contract, there is no way for an object to notify its clients
when the contract cannot be honored.

Experience with the integration of an exception mechanism with the object model
is still restricted. Such an integration should be coherent with the structuring
principles of the object model. The basic executing unit in the object model is an
object’s operation invocation. If we accept the view that any object is essentially
a component that provides services to client objects, an exception becomes an
abnormal response of an operation invocation when the service cannot fulfill its
requirements. This solution fits naturally with the object model.

We therefore now revisit some important design issues of the classical exception
mechanism[61, 136] in the context of object-oriented languages, such as:

e How to represent exceptions in an object-oriented system.

e How to declare an exception and what is its scope.

o How to relate exception raising to interface checking.

e How to declare default handlers.

e What is the impact of inheritance on all these points.
In the remainder of this section, first we propose a taxonomy which is used to
evaluate and compare designs of exception handling mechanisms implemented in
several prominent object-oriented programming languages. Second, we survey

exception handling mechanisms in several object-oriented systems. Finally, this
is followed by a discussion of exceptions in object-oriented systems.

2.4.1 A Taxonomy for Exception Handling Systems

For the purposes of this review, we classify the several approaches for implement-
ing exception mechanisms found in the literature in two dimensions: exception

Section 2.4: Exceptions in Object-Oriented Languages 63

representation and placement of handlers. Exception representation refers to how
an exception is specified, and placement of handlers indicates the different posi-
tions that a programmer can choose to bind an exception to a handler. The first
dimension is subdivided into the following categories:

o/

Exceptions as Full Objects. Exceptions are hierarchically organised classes.
To raise an exception is to create an instance of the related class, then to
call it with a raise method.

Exceptions as Data Objects. Exceptions are classes and an instance of one
of these classes is created every time an exception is raised. To raise an
exception is to pass an exception object as a parameter to a handler. The
signaller of an exception is allowed to pass any kind of parameter by declar-
ing them in the state of the exception object.

Exception as Strings. This is the classical approach adopted by most imper-
ative languages, such as CLU[95] and Ada. Exceptions are implemented as
string variables. Raising an exception sets this string variable and returns
the control to the caller, which is in charge of testing the variable.

The second dimension, which is related to the placement of handlers, is arranged
in the following groups:

Exception Handlers. Such handlers are associated with exceptions themselves
and are always invoked when no more specific handlers can be found. They
are the most general handlers and must be valid in any case. They are
independent from any execution context as well as from object state. For
instance, an exception handler could print an error message or make a
general correction action.

Class Handlers. These are attached to classes. In this way, they allow one to
define a common behaviour for a class in exceptional situations. Examples
where class handlers are useful could be applications such as debugging or
context restoration.

Statement Handlers. These are attached to blocks of instructions allowing
context-dependent responses to an exception.

Object Handlers. These are bound to variables in declarations; that is, each
data object declared has its own set of (exception,handler) binding pairs
specified in its declaration. :

64 Chapter 2: Object-Oriented Concepts

According to the taxonomy above discussed, a classification of the reviewed ap-
proaches is shown in Table 2.5. Each design is now discussed in some detail.

Frceptions | Ezceptions Exceptions

as Full as Data as

Objects Objects Strings

Dony C++ Modula-3 | Guide | Eiffel | Cui
Ezception yes no no no no no
Handlers
Class yes no no yes yes | yes
Handlers
Statement yes yes yes yes yes | yes
Handlers
Object no no no no no yes
Handlers

Key Words:

‘yes’ means that the feature is present;

‘no’ means that the feature is not present.

Table 2.5: Summary of Exception Handling System Features

2.4.2 Survey of Object-Oriented Exception Handling Sys-
tems

Now we present the most well-known object-oriented exception systems in order to
evaluate their main strengths and weaknesses. The coverage of these approaches
is deliberately concise and the references can be used to provide additional infor-
mation.

2.4.2.1 Dony’s Approach

A complete object-oriented representation of exceptions has been developed by
Dony[43, 44], and it has been implemented in Smalltalk-80 and also in an object-
oriented programming environment called SPOKE[14]. An important character-
istic of this approach is the object-oriented representation of exceptions. Excep-
tions are hierarchically organised classes. To raise an exception is to create an
instance of the related class, then to call it with a raise method.

Section 2.4: Exceptions in Object-Oriented Languages 65

In most imperative languages, exceptions are usually represented as strings of the
type “exception” that cannot be inspected. However, if exceptions are represented
as classes, some improvements can be achieved, such as:

z
e exception occurrences are class objects that can be inspected, ‘modified or
enhanced,

e new exceptions can be easily defined,

e exceptions can be organised in a hierarchy based on common behaviour,
which makes the system extensible and reusable,

e all predefined properties are reusable via inheritance and method overriding,

¢ handler definition is powerful, since handlers treat not just one kind of
exception but all exceptions that are subclasses of it, and

e handlers that are independent of any execution context can be defined as
methods on exception classes.

As stated before, in this approach exceptions are classes; an instance of an ex-
ception X is created each time X is raised. The definition of a new exception
corresponds to the definition of a new class. Handlers are methods or instances
of a specific class named protected-handler. They can be attached to statements,
to classes and to exception classes. Handlers attached to classes are called default
handlers.

Signal is a method defined in a root class called Fzception, and it is a redefinition
of the method new that first creates an instance of an exception and then searches
a handler for it. All handlers have a unique parameter automatically bound
at handling time to the instance of the current exception and through which
arguments provided by the signaller are conveyed.

Handling is only performed via message sending to the exception object and
all protocols for handling an exception are defined as methods in the Ezception
class and inherited. Four basic ways of handling an exception are provided:
resumption, termination, signalling a new exception or propagating a trapped
one. When handlers do not explicitly explicitly one of these options, the exception
EzceptionNotHandled is signalled. Termination means that the method activation
that raises the exception is exited. Resumption means that after the execution
of the handler, control returns to the statement following the signalling one.

66 Chapter 2: Object-Oriented Concepts
When an exception is raised, the handler search proceeds as follows:

(1) First handlers that are attached to commands that dynamically include the
signalling one are searched. The search stops as soon as a handler, whose
parameter type is a supertype of the signalled exception, is found.

(ii) If none is found, the system tries to find default handlers attached to the
class or upper classes of the signalling active object;

(iii) If none is found, the system looks for default handlers attached to the
signalled exception itself.

(iv) If none is found, the exception is then propagated to the operation caller,
and the sequence of steps is again repeated.

This approach is interesting because it tries to integrate exceptions into the stan-
dard invocation mechanism. Nevertheless, by doing so it complicates its seman-
tics. The behaviour of the termination, retry and resumption policies are all
defined as methods in a root Fzception class. As a consequence, a raise method
call can eventually resolve into a return (termination), a normal call (resumption)
or something more complicated (retry).

2.4.2.2 Exception Handling in Eiffel

The exception mechanism of Eiffel is integrated with the notion of design by
contract earlier presented in 2.2.3.2. The contract of a software component defines
the observable aspects of its behaviour, i.e., those which its clients expect. An
exception is the occurrence of an event which prevents a component from fulfilling
the current execution of its contract.

In Eiffel, contracts are expressed through assertions: preconditions, postcondi-
tions and class invariants. If an assertion attached to a method is found to be
violated, an exception is raised in the routine currently being executed. When an
exception occurs during the execution of a routine, its execution is stopped and
a handler, termed a rescue clause, will be executed instead. Rescue clauses must
restore the class invariant by either retrying the operation if the precondition still
holds (resumption) or reporting failure to the caller by reraising the exception
(organised panic).

A routine with no rescue clauses will be considered to have an empty rescue
clause, so that all exceptions will cause immediate failure of the routine. However,

Section 2.4: Exceptions in Object-Oriented Languages 67

a rescue clause may be included at the class level, and will then be used by any
routine of the class which does not have its own clause.

The organised panic policy should restore the class invariant, addressing the
problem of object consistency after the occurrence of an exception. The formal
version of this requirement is that any branch of a rescue clause not terminating
with a retry should produce a state satisfying the invariant, independently of the
state in which it is triggered.

The Eiffel model is based on the contracting metaphor: under no circumstances
should a routine pretend it has succeeded when in fact it has failed to achieve its
purpose. A routine may only succeed or fail, there is no intermediate ground. Eif-
fel’s exception mechanism is thus more restrictive than the exception mechanism
built into other existing languages. In contrast, the traditional exception mecha-
nism, such as in Ada or CLU, is based on the raise instruction, which signals an
exception explicitly, cancels the routine that executed it and returns control to
its caller. The caller may handle the exception or, if it has no such handler, will
itself return control to its caller, but there is no rule as to what a handler may
do.

2.4.2.3 Exception Handling in Modula-3

Modula-3’s exception handling mechanism{27] is based on a semantic model sim-
ilar to CLU and Ada. Exceptions are implemented as string variables and are
propagated upward through nested dynamic contexts, looking for a handler. Han-
dlers are attached to a block of instructions by means of what is termed a try
statement. |

If, during the execution of a try body, one of the listed exceptions is raised,
execution ceases, and control passes to the corresponding handler body. If the
exception raised does not match any listed, and an else clause is present, the else
handler body receives control. If no else clause is present, a handler is sought in
the statically enclosing context (a try statement may be nested in a try body).
If no handler is found there, the search continues in the context of the calling
procedhre. If no handler can be found, the computation is suspended and the
debugger receives control.

Before a handler is executed, all dynamic contexts between the raiser and the try
body (inclusive) are finalised: the stack is unwound, register values are restored,
and explicit finalisation actions are invoked (if what is termed a finally clause
is specified). When the handler has finished its execution, control passes to the

68 Chapter 2: Object-Oriented Concepts

statement following the {ry construct, exactly where it would have gone if the try
body had not encountered an exception.

2.4.2.4 Exception Handling in C++

The model proposed in C++[84] introduces an exception mechanism that is sen-
sitive to context. The context for raising an exception is termed a try block.
Handlers are declared at the end of a try block using the keyword catch. An
exception can be directly raised in a try block by using the throw expression. The
exception is handled by invoking an appropriate handler selected from a list of
handlers found immediately after the handler’s try block.

In general, exceptions are values, but they can be declared as classes and an
instance of one of these classes is created every time an exception is raised. To
raise an exception is to pass an exception object as a parameter to a handler. The
handler declares its parameter as being of a given class, but may catch exception
objects of any subclass. The signaller can pass any kind of parameter by declaring
them in the state of the exception object.

So it is possible to apply the mechanisms of inheritance and subtyping to build
a hierarchy of related exceptions and then opt to handle these exceptions indi-
vidually or as a group. Syntactically an exception specification may be part of a
function declaration (in C++ it is optional), giving information about the types
of exceptions that the function can throw.

If the exception mechanism fails at runtime for some reason, for example, no
handler is found for an exception, the system-provided handler terminate() is
called. By default the abort() function is called, but the programmer can use the
set_terminate function function to provide a handler.

2.4.2.5 Exception Handling in Guide

All the languages discussed so far have kept the association of a handler with
a block of instructions, syntactically as well as semantically. A handler (with a
termination policy) resumes the execution at the instruction following the block.
In Guide[87], a handler may be semantically associated only to a method call,
and not to a block of instructions. This model allows a clear separation of the
exception handling code from the main algorithm.

Thus, a handler is semantically associated to method invocations. The normal

N

Section 2.4: Exceptions in Object-Oriented Languages 69

continuation after the execution of a handler is from the point just after the
raising method invocation. It has nothing to do with the syntactic declaration
of the handler. In order to help the user precisely define the scope of his/her
handlers the system allow a handler to be associated not only to an exception
name but also to a type and method name, that is, handler declarations can be
syntactically factorized at the method or class level.

The nature of Guide exceptions are strings. An exception is attached to a method,
and more generally to the type where it is declared. Exceptions potentially raised
by a method appear in its interface, and they must be included in the interface
(it is not optional like in C++4).

Guide’s model is based on the termination policy. So the calling object does not
answer to the raising of an exception. Raising an exception exits the method in
the same way as a return statement does. The retry policy is provided through
the retry keyword that only a handler can use. The Guide system provides a
default handler which propagates the uncaught_exception system ensuring that
an exception will either be handled or will eventually terminate the task.

2.4.2.6 Cui’s Approach.

Cui’s approach, called data-oriented exception handling[37), is a design that asso-
ciates handlers with data objects in their declarations. Exceptions are associated
with type declarations in generic package specifications, and handlers are bound
to variables in declarations. Each data object declared has its own set of (excep-
tion, handler) binding pairs specified in its declaration. Three language features
are defined to implement this design: #ezception, #when, and #raise. Excep-
tions are declared by attaching an #exception clause to the type exported from
the specification part of a package. Handlers are associated with data object’s
declaration by attaching a #when clause to the declaration that specifies handler
procedures for the exceptions defined on the data object’s type. Exceptions are
signalled by #raise statements that transmit parameters, indicating the object
with failure. Default handlers for exceptions can be specified in a type declaration
and inherited by variables declared with that type.

This concept has been implemented with an Ada preprocessor and empirical
studies have shown that its use can produce programs that are smaller and better
structured when compared to the programs produced using Ada’s traditional
exception handling. In Ada’s exception handling mechanism, although handlers
appear after the main algorithm, introducing blocks in the middle of a statement
list to associate different handlers with different objects inserts exception handling

70 Chapter 2: Object-Oriented Concepts

code in the middle of the main algorithm preventing a clear separation between
them. The data-oriented exception handling removes exception handling code
from algorithmic code helping code writability and understanding.

2.4.3 Discussion

Language features for exception handling continue to evolve. Most of the existing
object-oriented languages have adopted the classical exception handling design.
Their main contributions consist of a strict control of the exceptions a method
may raise or propagate, and an innovative representation of exceptions as objects.
Moreover, the ability of factorising handlers at method and class levels promotes
a better code writability and program structuring.

Undoubtedly, the use of inheritance and polymorphism to implement an exception
mechanism has a number of advantages when compared to the classical approach,
such as:

e the choice of designing exceptions as classes enables them to be organised
into a hierarchy which makes the system extendible and reusable,

e handler definition is powerful, since handlers do not only handle one kind
of exception but all exceptions that are subclasses of it,

e handlers that are independent of any execution context can be attached
to exception classes, and handlers attached to classes can be inherited by
subclasses.

Dony’s approach is very interesting, although it seems not to have a simple se-
mantical model since the behaviour of the termination, retry and resumption
policies are all defined as methods in a root Ezception class. As a consequence, a
raise method call can eventually resolve into a return (termination), a normal call
(resumption) or retry. Meyer, for instance, advocates that a good exception han-
dling mechanism should be simple and modest. In this sense, Dony’s approach is
complicated, and, in my opinion, it needs to be restricted to be a useful tool for
programming.

Exceptions in Eiffel are handled in a very peculiar way. The only authorised poli-
cies are either retry the execution of the whole body or to propagate the exception.
Although the tool is not sophisticated it fulfills its goal of providing consistency

Section 2.4: Exceptions in Object-Oriented Languages 71

of objects. The rescue clauses ensure the correctness of the postconditions of the
method, which includes the invariant of the object.

The mechanism offered in Modula-3 is similar to the classical approach imple-
mented by languages such as Ada and CLU. Ifs main contribution is a strict
control of the exceptions a method may raise or propagate; that is, operations
specify exceptions as part of their signatures. C++’s approach has, compared
to this, a major improvement of representing exception as objects. The model is
simple and flexible, however nothing is done to ensure consistency of objects as
in Guide.

In Guide, the restore keyword allows one to define a restoration block which
is executed whenever the method exits abnormally (raises an exception). The
restoration block is not executed if the method returns normally. Moreover,
Guide’s proposal helps the user to define more precisely the scope a handler
(a handler is semantically associated to method invocations and a handler can
be associated to a type). The main limitation of Guide’s approach is that it
represents exceptions as simple strings associated to a type. A solution discussed
in [87] is to organise the exceptions in a hierarchy respecting the subtype hierarchy
of the corresponding types. .

The data-oriented exception handling proposed by Cui, in which a handler can
be attached to data objects, naturally fits in an object-oriented approach and it
should be explored (if a handler can be attached at method, class and exception
class level, why not can it be attached at object level?) Although this model
is implemented in an object-based language (Ada), it can be implemented in an
object-oriented language.

As mentioned earlier, the integration of an exception handling with the object-
oriented paradigm is still evolving. In particular, concurrent object-oriented sys-
tems is an important area within object-oriented programming, and many intrigu-
ing possibilities exist in moving objects into a concurrent world - allowing several
objects to execute concurrently and/or allowing each object to execute several
of its methods concurrently. Some researchers have been investigating means to
integrate exception handling with parallel object-oriented programming, such as
Issarny[78] with the implementation of the strongly-typed parallel object-oriented
language called Arche. This language supports a mechanism based on a parallel
exception-handling model whose features enforce the construction of correct and
robust programs.

72 - Chapter 2: Object-Oriented Concepts

2.5 Object-Oriented Fault Tolerance: A Pre-
view

The primary goal of this thesis is to provide fault tolerance to software systems
- in particular with regard to environmental faults - exploiting object-oriented
concepts. Object-oriented programming techniques provide the required frame-
work for the construction of useful abstractions for building up fault-tolerant
program structures. They incorporate subclassing, delegation, and compositional
constructs, and further out, metalevel reasoning constructs, that although by no
means so completely established and accepted, allow the creation of useful systems
based on transparency, reconfigurability and flexibility. As far as fault tolerance
is concerned, exception mechanisms within an object-oriented framework are very
important, not least since software is prone to design faults. In the next chapter,
we discuss an approach for the provision of object-oriented environmental fault
tolerance. The scope of discussion also encompasses a brief discussion of object-
oriented hardware fault tolerance and software fault tolerance for completeness.

2.6 Conclusions

This chapter has investigated the main trends in the object-oriented arena and in-
troduced a dictionary of the object-oriented terminology employed in this thesis.
This has been necessary because there have been no generally accepted terminol-
ogy and definitions of what these various terms mean. The object-oriented field is
so divided in terminology, as well as in definitions of concepts, that many surveys
of relevant object-oriented concepts are really confusing, obscure and inadequate.
As pointed out by Nelson[117], one might even say that we have created some-
thing of an object-oriented “Tower of Babel”. In fact, in my opinion, most of the
existing analyses and surveys found in the literature had caused much more con-
fusion than clarification. Moreover, the concepts of object-oriented programming
were presented in language-independent manner, encompassing the essence of the
object-oriented programming and making it simple for understanding what it is
all about.

By no means, the explanations given here are meant to be definitive - as we had
already mentioned, there are still substantial disagreements within the object-
oriented community with respect to terminology and also definitions of concepts.
In spite of that, we hope to have chosen a clear and consistent set of definitions
for use in our research. It has been hard work to examine the object-oriented

Section 2.6: Conclusions 73

literature and try to make a compromise between the many different trends and
suggestions, especially concerning the use of conflicting notations and definitions.
In spite of that, we hope to have contributed towards the clarification of the most
important object-oriented concepts.

/

BLANK PAGE
IN
ORIGINAL

Chapter 3

Object-Oriented Fault Tolerance

“The larger the system, the greater the probability of unexpected
failure.”

“Complex systems usually can fail in an infinite number of ways.”

“Complex systems have complex behaviors.”[54]

Various sources of complexity can be identified in a system, but this thesis con-
centrates on faults (especially environmental faults), and the frequent need to
cope with them as an unvoidable source of complexity, but one which neverthe-
less has to be minimised so as to keep under control the system complexity. In
other words, this chapter discussed the impact of faults on system complexity and
structuring, emphasing the treatment of faults/major changes in the behaviour
of the environment entities. However, a more thorough and encompassing ap-
proach would not only consider the treatment of environmental faults but also
the treatment of design and hardware faults so as to cope with all different kinds

of faults in the overall system.

In what follows we will address each of these faults separately in an object-oriented
framework. First, we discuss briefly some investigations which have considered
object-oriented techniques for the construction of hardware fault tolerant systems.
Second, we present an object-oriented approach for the provision of software fault
tolerance. As far as software fault tolerance is concerned, very few research has
been reported on the application of object-oriented techniques for the provision
of software fault tolerance. Finally, we show an object-oriented approach for the
provision of environmental fault tolerance[129]. As stated before, the main topic
of the thesis is to deal with environmental faults and their impact on system

75

76 Chapter 3: Object-Oriented Fault Tolerance

complexity, and the mention of design and hardware faults is just for addressing
the issue of completeness.

3.1 Fault Tolerance Concepts

Many applications often demand high reliability and availability requirements
from computer systems, and, therefore, the inclusion of fault tolerant techniques
in such applications is justifiable since faults are likely to occur and users expect
that they can be tolerated without the detriment of system functionality and
reliability. In general, fault tolerance is based on the provision of redundancy,
both for error detection and error recovery. Fault tolerant techniques attempt to
prevent faults from causing system failures. Usually the steps performed to design
and implement a fault tolerant systems are: error detection, damage assessment,
error recovery, and fault treatment[91].

Hardware redundancy is routinely used to enhance reliability /availability. How-
ever, software is a major component in computer systems, and thus tends to
become the reliability bottleneck. The incorporation of software fault tolerance
in systems requires a structured and disciplined approach. Design diversity as
a means of achieving fault tolerance in software has been suggested by several
authors.

Following the terminology used by Lee and Anderson[91], a system consists of a
set of components which interact under the control of a design which is itself a
component of the system[91]. The system model is recursive in the sense that
each component can itself be considered as a system in its own right. Components
receive requests for service and produce responses. If a component cannot satisfy
a request for service, it will return an exception. At each level of the system,
a component (called an idealised fault-tolerant component) will either deal with
exceptional responses raised by components at a lower level or else propagate the
exception at a higher level of the system.

Type of Faults

At this point, we remind the reader that in the scope of this research we consider
three categories of faults: hardware, design and environmental (see Section 1.1).
Many studies have been reported by others on the construction of hardware fault-
tolerant systems based on object-oriented techniques, and we briefly mention
some of them in Section 3.2. However, few researches have explored the con-
struction of software fault-tolerant systems based on object-oriented concepts,

Section 3.1: Fault Tolerance Concepts 77

and in Section 3.3 we discuss some ideas developed by our group here in New-
castle. In Section 3.4, we discuss the main contribution of this thesis, that is,
an object-oriented approach for providing environmental fault tolerance. In the
reminder of this Section, we briefly review some important concepts related to
fault tolerance, such as, exception handling, idealised fault-tolerant component,
recovery block, etc.

3.1.1 Exception Handling and Fault Tolerance

Exceptions and exception handling mechanisms are needed, in general, as means
of connecting actions of system components that belong to different levels of
abstraction. As mentioned above, if a component cannot satisfy a request, an
exception is returned. So the responses from a component can be classified into
two categories: normal and abnormal. In software systems, the abnormal re-
sponses are usually referred to as exceptional responses or simply exceptions.
The activity of a component can be divided into two parts: a normal part and an
exception handling part. The normal part implements the component’s normal
service while the exception handling part implements the measures for tolerating
faults that cause such exceptions.

Signalling an exception results in the interruption of the normal processing, fol-
lowed by the search and invocation of a handler to deal with the exception.
Exceptions can be categorised into two groups: interface exceptions which are
signalled in response to a request which did not conform to the component’s in-
terface, and failure ezceptions which are signalled if a component determines that
for some reason it cannot provide its specified service.

When the exception handler terminates normally, the exception is said to be
handled. The system then can return to normal operation; however, there is an
issue whether the internal activity of the component can be resumed after the
exception has been handled by the system. In the termination model, execution
will continue from the point at which the exception was handled, not the point
at which it was raised[95], i.e., the execution continues from the first statement
followihg the point of call that signalled the exception. In the resumption model,
the handler has the capability to resume the internal activity of the component
after the point at which the signal was raised. Most of the work in exception
handling is for imperative languages such as, Ada, CLU, and Mesa. However,
as discussed in Chapter 2, exception handling is also a feature of object-oriented
languages. For example, exception handling in C++ is based on a termination
model. A formal treatment of exceptions and exception handling is given by

78 Chapter 3: Object-Oriented Fault Tolerance

Cristian[36]. ' .

3.1.2 Idealised Fault-Tolerant Component

An idealised fault-tolerant component is a well-defined component whose interface
exceptions are signalled in the normal part of the component, while failure and
interface exceptions from sub-components invoke the exception handling part of
the component. If these exceptions are handled successfully, the component can
return to providing normal service. However, if the component does not succeed
in dealing with such exceptions, it should signal a failure exception to a higher
level of the system.

In software fault tolerance, exception handling is mainly used to implement ide-
alised fault-tolerant components which are software objects able to return well-
defined and foreseen answers, whatever may happen while they are active, even
when an exceptional situation occurs.

3.1.3 Fault-Tolerant Software Techniques

Fault-tolerant software techniques include N-version programming[10] and recov-
ery blocks[126]. The former uses voting on the results of various versions for error
detection, and the latter uses an acceptance test and rollback recovery. N-version
programming uses extra software components of diverse design called variants so
that software errors are masked from the environment of that system.

A recovery block consists of a primary module, one or more alternates, and an
acceptance test. The primary and the alternate modules are based on different
algorithms for the same problem and may be implemented by different program-
mers. On a given input data set, the primary is executed first and the results
are checked using the acceptance test. If the acceptance test does not accept
the results, a rollback recovery is attempted and this process is repeated for each
alternate module in succession until either the rollback recovery fails or a module
is found to produce results that are accepted by the acceptance test or until all
modules have failed to satisfy the acceptance test. In the latter case, the recovery
block is said to have failed on this input data set.

The N-version programming scheme can be considered as an immediate extension
of NMR structures used in hardware[91]. N versions of a program which have
been independently developed to satisfy a common specification are executed and

Section 3.2: Object-Oriented Hardware Fault Tolerance 79

their results compared by some form of replication check. Based on a majority
vote, this check can eliminate erroneous results and pass on the (presumed to be
correct) results generated by the majority to the rest of the system.

/

3.1.4 Error Recovery

A fault in a system component may cause an error in the internal state of the
system which eventually can lead to the failure of the system. Two approaches
are available for eliminating the errors from the system state, known as forward
and backward error recovery. Forward error recovery attempts to correct an erro-
neous state by making selective corrections to remove errors, while backward error
recovery restore a previous state of the system, which is (at least temporarily)
presumed to be free from errors.

Exception and exception handling constitute a common mechanism applied to
providing forward error recovery. In contrast, the recovery block scheme provides
a system structure which supports backward error recovery. Thus, exception
handling and recovery block are usually known as complementary approaches for
achieving error recovery of a system.

3.2 Object-Oriented Hardware Fault Tolerance

The use of the object-oriented model to system design can reduce system com-
plexity by allowing a software to be decomposed into a set of cleanly separated
components. Furthermore, if these components are chosen carefully, they may
be used in the construction of several related applications, that is, they can be
reused. In the literature many researches have demonstrated that it is possible
to build reusable components using object-oriented techniques that address hard-
ware fault tolerance, such as network and computer failure, especially concerning
distributed applications, and here we do not aim to provide a survey of this topic.

The realisation of hardware fault tolerance can be done in many different ways.
One approach, used by systems like Avalon/C++[41] and Arjuna[138], consists
of using properties of ob ject-oriented languages, such as inheritance, to make ob-
jects recoverable. In particular, the Arjuna distributed programming system{138]
permits the creation of fault-tolerant, distributed applications, and consists of
a number of tools, such as a reliable RPC mechanism, an RPC stub generator,
and C++ classes providing recovery, concurrency control, persistency and atomic

80 Chapter 3: Object-Oriented Fault Tolerance

actions. For example in Arjuna objects can inherit persistency or atomicity char-
acteristics, and no changes were made to the C++ compiler or runtime system.

However, these researches have also highlighted a number of inadequacies in the
support provided by many conventional object-oriented programming languages
for building components that address hardware fault tolerance. In particular,
this often requires an extension to the language (by means of a pre-processor or
a changed compiler) and/or the adherence by the programmer to a set of pro-
gramming conventions that obscures the functionality of the application. Ideally
the provision of such reusable components should be transparent rather than
intrusive to the programmer.

So an alternative solution for the implementation of hardware fault tolerance in
a reusable fashion is to use reflection transparently at the metalevel. Usually
dependability mechanisms and measures are more concerned with the virtual
machine that executes the application rather than the application itself. In this
sense, reflection can be applied to extend the semantics of the programming sys-
tem in a transparent and clear form to the application programmer, promoting a
clean separation of concerns between the functional and non-functional require-
ments.

It seems that reflection is a technique with potential; however, more work is re-
quired to investigate how these ideas can be arranged in a coherent framework
applied to the provision of dependability[148]. Some studies have already ap-
peared, such as the work by Fabre et al.[49], which shows how reflection and
object-oriented programming can be used to ease the implementation of clas-
sical fault tolerance mechanisms in distributed applications. The authors have
claimed that the use of reflection can help to improve the transparency of fault
tolerant mechanisms to the programmer, and presented the implementation of
some classical replication techniques using the reflective object-oriented language

Open-C++[31].

3.3 Object-Oriented Software Fault Tolerance

The preceding section has discussed some object-oriented approaches to the toler-
ance of hardware faults, and the subsequent one will deal with the construction of
fault-tolerant components for dealing with environmental faults, using a scheme
of parallel hierarchies of components linked together via a delegation mechanism.
This section discusses an object-oriented approach for the provision of software
fault tolerance. As we pointed out before, this topic has been addressed by very

Section 3.3: Object-Oriented Software Fault Tolerance 81

few studies. This was the main motivation for developing the work described in
this Section, which was carried out in collaboration with the colleagues Robert
Stroud, Jie Xu and Brian Randell. A more detailed presentation of this discus-
sion, on which this material is largely based, can be found in [130], [127], [128]
and [163]. /

The objective of this research is the exploitation of object-oriented techniques in
program structuring for the provision of design fault tolerance, guaranteeing that
redundancy is incorporated in a disciplined manner so that the impact on system
complexity can be kept under control. We show how object-oriented techniques
can be used to build reusable components that support design fault tolerance.
More specifically, we describe the implementation of reusable components that
support the use of forward error recovery and software fault-tolerant techniques

in a C++-like notation.

We adopt the terminology of Lee and Anderson[91], which has already been
introduced in Section 3.1. Generally speaking, a system is viewed recursively
as consisting of a set of components structured according to a design. A fault
in a component may cause an error in the internal state of the system which
eventually leads to the failure of the system. Forward error recovery techniques
attempt to correct an erroneous state, while backward error recovery techniques
restore a previous state which is presumed to be free from errors.

Idealised fault-tolerant components provide a coherent means by which the pro-
visions for fault tolerance could be implemented in a system, in a way which
minimises the impact of system complexity. These components receive requests
for service and produce responses. If a component cannot satisfy a request for
service, then it will return an exception. At each level of the system, an idealised
fault-tolerant component will either deal with exceptional responses raised by
components at a lower level or else propagate the exception to a higher level of

the system.

In practice, we provide a collection of helpful abstractions for constructing soft-
ware fault-tolerant components. It is required that such abstractions provide
a clean separation between application functionality and software fault-tolerant
mechanisms. Therefore, it is necessary to have powerful software composition
mechanisms to build up these fault tolerant components. We believe that object-
oriented techniques support such compesitional approach via mechanisms such
as behaviour sharing (including inheritance and delegation), generic functions,
polymorphism and reflection.

The structure of the remainder of this discussion is as follows. First, we demon-

82 Chapter 3: Object-Oriented Fault Tolerance

strate how inheritance can be combined with exception handling to implement
a series of alternates implementing forward error recovery. Then we show how
software fault tolerance may be implemented to mask possible failures of the
components by means of three different object-oriented solutions. The first of
these approaches concerns the implementation of a generic recovery block func-
tion while the second and third approaches explore a more generalised structure
for implementing fault-tolerant components based on abstract base classes and
polymorphism. Finally, the different solutions are evaluated and some problems
and limitations are discussed. '

3.3.1 Forward Error Recovery

In order to illustrate our approach for implementing forward error recovery, we
take as an example a class implementing a collection of integers. First, we demon-
strate how inheritance can be used to derive a more efficient implementation of
the basic class collection. Secondly, we show how forward error recovery can be
used to tolerate faults. Thirdly, we discuss how this approach can be generalised
to build a hierarchy of idealised fault-tolerant components.

3.3.1.1 Motivating Example: Collection Class

Consider a class SimpleCollection representing a collection of integers with opera-
tions find, min and sort testing for the presence of a particular integer, returning
the smallest integer in the collection, and sorting the collection of integers, re-
spectively. Here is the base class definition:

class SimpleCollection

{

public:
virtual boolean find(int); // linear search
virtual int min(); // linear search
virtual void sort();

private:

int size;
int *contents; // array

+;

If no assumptions are made about the ordering of the elements in the collection,
then the simplest implementation of find and min could use a linear search. How-

Section 3.3: Object-Oriented Software Fault Tolerance 83

ever, if the array is always guaranteed to be in sorted order, a more efficient
implementation can be derived from SimpleCollection using inheritance. The op-
erations find and min are declared to be virtual functions so that they can then
be redefined in a subclass of SimpleCollection.

/

Using the sort function, it is possible to implement a faster version of the original
SimpleCollection class by trying to keep the contents of the collection sorted. For
example, we could use a binary search for implementing find and return the zeroth
element of the array for the min operation, if the collection is known to be sorted.

However, rather than keeping the collection sorted at all times, we choose to
sort it when needed and allow it to become unsorted as a result of adding new
elements. Thus, the fast implementations of find and min must first ensure that
the array is sorted before they can exploit this property.

To implement this new class version, called FastCollection, we need to add an
isSorted flag to the class. Every time the collection is updated by adding a new
element, the flag is set to false to indicate that the collection is no longer sorted.
However, if find or min is called, the array is sorted and remains sorted until
the contents of the collection are modified again. An additional private member
function ensureSorted is used to check the flag and sort the array if necessary:

class FastCollection : public SimpleCollection {
public:

virtual boolean find(int);

virtual int min();
private:

void ensureSorted();

boolean isSorted;

¥
The implementation of ensureSorted and min for FastCollection is as follows:

void FastCollection: :ensureSorted()

{ 1
if (! isSorted)
{
Sort (contents) ;
isSorted = TRUE;
}

return;

84 Chapter 3: Object-Oriented Fault Tolerance

} N
int FastCollection::min()
{
ensureSorted();
return contents[0];
}

Similarly, the implementation of find for FastCollection also calls ensureSorted be-
fore using a binary search algorithm to determine whether the collection contains
a particular integer. FastCollection implements a more eflicient version of Sim-
pleCollection but the correctness of FastCollection depends on the correctness of
the sort function. In the next section, we show how to tolerate faults in the sort
operation using forward error recovery techniques.

3.3.1.2 SafeCollection Class

If we make the assumption that the sort operation is unreliable, the implementa-
tion of the operations find and min provided by FastCollection will fail. However,
provided the contents of the array have not been corrupted by the faulty sort
operation, the implementations of find and min provided by SimpleCollection are
still available and may be used to recover from the failure. Thus, the strategy
for forward error recovery in this situation depends on being able to detect the
failure of the sort operation in FastCollection and use the less efficient operations
inherited from SimpleCollection to recover.

Assuming that the version of the sort operation used by FastCollection raises
an exception in the event of a failure, a new class derived from FastCollection,
called SafeCollection, is created. A SafeCollection is able to tolerate faults in the
sort operation used to implement FastCollection by using the operations inherited
from SimpleCollection as fallback positions. The class definition of SafeCollection
is:

class SafeCollection : public FastCollection
{
public:

virtual boolean find(int);

virtual int min();

};

Section 3.3: Object-Oriented Software Fault Tolerance 85

A safe implementation of the min function looks like this:

int SafeCollection::min()

{
try '
{
return FastCollection::min();
}
catch (...)
{
return SimpleCollection::min();
}
}

3.3.1.3 A Hierarchy of Idealised Fault-Tolerant Components

This structure can be generalised and used to implement a hierarchy of idealised
fault-tolerant components within a class hierarchy. The implementation of each
operation is separated into two distinct parts: a normal part and an ezception
handling part. The exception handling part either throws an exception or in-
vokes a fallback implementation of the operation from a higher level in the class
hierarchy. At each level of the class hierarchy, it would be possible to inherit or
redefine both the normal and exception handling parts for each basic operation.

To summarise, inheritance is used to provide a series of fallback positions so as
to implement a hierarchy of generalised fault-tolerant components, where each
component redefines or inherits the normal and exceptional handling parts for
each operation. In the next section we discuss the implementation of schemes
for the inclusion of redundancy in a software system based on backward error

recovery.

3.3.2 Software Fault Tolerance

The discussion of forward error recovery and idealised fault-tolerant components
in the previous section illustrated one way of building reliable software. However,
we assume that a complex software system will inevitably contain residual faults
despite all of the fault prevention techniques which may have been used. So
design fault tolerance is required if it is necessary to tolerate such faults, and
its provision can only be achieved if design diversity has been anticipatedly built

86 Chapter 3: Object-Oriented Fault Tolerance

into the system. Two main methods have been proposed for tolerating faults in
software: recovery block and N-version programmlng A simple generalisation of
these two schemes is the following[8]:

(1) several variants are implemented for each software component,

(ii) each variant is designed independently, but should conform to the same
interface specification,

(iii) a control framework (recovery block or N-version) executes the variants,
and

(iv) the results are evaluated by an adjudicator.

Since the consequence of design faults are intrinsically unpredictable, backward
error recovery is the most suitable error recovery technique for software fault
tolerance. Backward error recovery techniques are general purpose because they
make no specific assumptions about the errors in the system state. So in order to
permit sequential execution of the variants, the recovery block scheme normally
assumes the availability of backward error recovery, which involves the ability to
preserve and restore object states.

Considering an object-oriented fashion for implementing such generalised compo-
nents with diverse design, one could choose different levels for including software
redundancy within the object model. We identify at least four categories accord-
ing to the place where redundancy may be included, which we will refer to as
operation diversity, object diversity, class diversity and metaclass diversity[163].
We address each of these categories below.

Operation Diversity. In this case, variants are operations/functions (not ob-
jects) declared in the class, which are independently developed from the
same operation specification. The class designer may encapsulate the fault-
tolerant operations within the class declaring them as private operations.
An alternative choice is to declare the fault-tolerant operations explicitly in
the public interface of the class. We consider this strategy to be an object-
based solution for the inclusion of redundancy, and not an object-oriented
approach.

Object Diversity. Redundancy is achieved by providing diversity in the data
spaces of the classes. Fault tolerance would be achieved by instantiate a
group of objects from the same parent class with diversity in their internal
data, and then invoking the same operation on the group.

Section 3.3: Object-Oriented Software Fault Tolerance 87

Class Diversity. Variants are objects and, therefore, both the state representa-
tion and the set of operations can be independently designed from the same
specification of a type. Later we discuss two approaches for achieving such
an abstraction in 3.3.2.2 and 3.3.2.3.

Metaclass Diversity. Redundancy could also be included at the metalevel de-
pending on the application requirements. At the metalevel, it would be also
possible to describe an implementation of redundant classes that could be
used to build fault-tolerant objects at the application level.

In what follows, first we discuss the implementation of a generic recovery block
function whose diversity is limited to the operation level. Then we show two
approaches to introducing redundancy at the class level. Finally, we discuss some
problems and limitations of the schemes presented.

3.3.2.1 Generic Recovery Block Function

A recovery block structure could be easily implemented as a generic function
in C++. The template definition would be parameterised by a type T and the
recovery block function itself would take four arguments: an object of type T,
an array of alternates, the number of alternates, and an acceptance test. The
alternates and the acceptance test would be pointers to functions taking an object
of type T as parameter. For instance, the implementation of a fault tolerant sort
operation could use a recovery block scheme to tolerate design faults in order to

ensure the array order:

ensure array[i+1] >= array[i] for i = 1,..,N // acceptance test
by sort array using quicksort // quicksort variant
else by sort array using heapsort // heapsort variant

else error

Thus, given such a generic function for implementing recovery blocks, a robust
sort operation could be implemented using quicksort and heapsort variants and a
sorted adjudicator. The robust sort function catches any failure signalled by the
generic recovery block function and throws a SortException instead.

Dealing with State Restoration

Backward error recovery techniques depend on restoring a previous error-free
state by some mechanism. A very simple technique for implementing state based

88 Chapter 3: Object-Oriented Fault Tolerance

recoverability would be to make a copy of the original object before updating it.
One such approach is discussed in [42], where all “recoverable” objects are de-
rived from a special class called LockManager which has two pure virtual function
save_state and restore state that each of its subclasses is required to define.

3.3.2.2 Variant and Adjudicator Classes

In this approach, which is discussed more fully in [163], variants are objects
and a set of variants can be organised into different subclasses of the Variant
abstract base class. All protocols for executing a variant are defined as pure
virtual functions in the Variant class and inherited by its subclasses. The Variant
class may provide a set of standard exception handlers which deal with some
local errors detected during the execution of the user-defined variants. A basic
set of adjudication algorithms would be provided by the system by means of an
Adjudicator base class. The various standard control algorithms would be provided
by the system through a class called SftComponent.

The construction of different variants to achieve design diversity can be very ex-
pensive. One advantage of using the approach here discussed for structuring an
object-oriented system is that it allows the construction of variants by reusing
existing components[128]. The inheritance mechanism allows a selective replace-
ment or redefinement of a component’s implementation parts. From this point of
view, a subclass may be viewed as a variant of its parent class, and, therefore, it
inherits code from the parent class. However, one must take care to ensure that
such code reuse does not compromise design diversity by introducing too much
commonality.

3.3.2.3 Generalised Object-Oriented Fault-Tolerant Components

In this approach service specifications are represented by abstract base classes
and variants are instances of different subclasses that conform to the service
specification of the abstract base class. Control frameworks and adjudicators
are generic functions parameterised by the abstract data type representing the
service.

More specifically, a control framework is a function that takes as parameters a
set of variants, the name of the operation to be applied to each variant, and an
adjudication function to evaluate the results generated by the variants. A library
of control frameworks which implements different software fault-tolerant schemes

Section 3.3: Object-Oriented Software Fault Tolerance 89

should be provided by the system.

To illustrate the approach let us take as an example the implementation of a
robust stack. Figure 3.1 shows the Stack hierarchy which is now discussed. The
Stack abstract base class defines the service specification by declaring the pure
virtual operations pop and push. The C4+ class definition for such a class would
look like this:

class Stack

{
public:
virtual int pop() = 0; // pure virtual function
virtual void push(int item) = 0; // pure virtual function
3

Stack

/ I \
RobustStack ArrayStack ListStack

Figure 3.1: Stack Types

ArrayStack and ListStack are concrete classes derived from the Stack abstract
class, which implement the variants for the service specification defined in Stack.
A pure virtual function has no implementation in the base class and it must be
overridden in each derived class. So a stack can concretely be instantiated in two
different ways: in one case, to use an array representation (ArrayStack variant),
and in another, to use a list representation (ListStack variant).

RobustStack is also derived from Stack and defines the visible part of the ab-
straction which will be used by the clients of Stack. The names of the variants
are meant to be not visible to the clients, and access to objects of these classes
is through references using virtual functions made by an RobustStack object. A
RobustStack object is said to forward requests made of it to the variant objects
encapsulated inside it. The set of classes together form an aggregate/composite
object. Although there are multiple obJects the appearance to the user is that
there is a single object - a RobustStack object - which manages the entire oper-
ation of the composite object. When a RobustStack object is instantiated, the
variants objects anArrayStack and alistStack are also internally created. The
implementation of the RobustStack class could be as follows:

90 Chapter 3: Object-Oriented Fault Tolerance

class RobustStack: public Stack{
private:

Stack *anArrayStack;

Stack *alListStack;

public:
RobustStack(){
anArrayStack = new ArrayStack;
alistStack = new ListStack;}
“RobustStack(){

delete anArrayStack; delete alistStack;}

int pop();
void push(int item);
void voter();

¥

A partial implementation of pop is schematically as follows:

int RobustStack: :pop()
{

NVersion({anArrayStack,alListStack},Stack: :pop,voter);
return item;

¥

The implementation of push is similar. This abstraction of “outer and variants
classes” can be interpreted from two different perspectives. On the one hand,
the outer class can be viewed as delegating its functionality to collaborating
variant objects. On the other hand, the variant objects can be thought of as
being logically encapsulated inside the outer class, which enforces the notion of
encapsulation. This approach can provide more polymorphism and runtime type
support than inheritance using virtual functions alone.

3.3.3 Discussion

Reusable software components usually address functional requirements for a par-
ticular problem domain; however, here we have shown how object-oriented tech-

Section 3.3: Object-Oriented Software Fault Tolerance 91

niques can be applied to implement reusable components which address non-
functional requirements, in particular software fault tolerance, in the object-
oriented class-based programming language. Since these components are built
in an application-independent fashion, they can be reused across a wide range of
possible problem domains. /

We have shown how to use generic functions, inheritance and exception handling
to implement forward error recovery and software fault tolerance in the form of
reusable components that can be exploited by application programmers. Specif-
ically, we discussed how inheritance can be used to provide a series of fall-back
positions which in turn can be used to implement a hierarchy of idealised fault-
tolerant components, each one redefining or inheriting the normal and abnormal
case behaviour. We also presented a generic function that is used to implement
the basic recovery block algorithm, and object-oriented approaches for the pro-
vision of software fault tolerance. Although the strategy of representing variants
as objects (i.e. “class diversity”) for the development of software fault-tolerant
components seems to be the best choice, some problems arise, especially con-
cerning with state saving and restoration. N-version programming requires an
independent state for each variant, so it makes sense to represent a variant as
an object. But the recovery block scheme uses a sequential composition, and the
alternates are executed just when it is necessary so it does make much sense to
keep information between calls. Some solutions for this problem are discussed in

[163].

The implementations presented here have been based on basic object-oriented
features, such as inheritance, dynamic binding and generic functions, likely to be
found in many object-oriented programming languages, not only in C4++. On
the other hand, the Eiffel programming language does not provide support for
generic functions. As a consequence, a possible Eiffel implementation of backward
error recovery could be the creation of functions that behave like objects, that is,
they have the role of a function but can be created, passed as parameters, and
manipulated like objects.

Object-oriented techniques make it easy to represent the notion of abstract service
interfaces supporting different implementations: just use an abstract base class to
describe the interface and define a derived class for each kind of implementation.
Moreover, the whole notion of an abstract data type supporting several different
implementations associated with the notion of an outer object managing these
different implementations is a fundamental way of keeping under control the
complexity of real-world computer systems.

92 Chapter 3: Object-Oriented Fault Tolerance

3.4 Object-Oriented Environmental Fault Tol-
erance

This section starts by motivating the need for a runtime association between an
object and the properties usually associated with its class. The examination of
the dynamical aspects of entities in the problem domain leads us to study the
behaviour of an object over time. When we consider the behaviour of entities in
the real world, we observe that these entities generally have a lifetime[137].

Since all instances of a class must follow the same rules of behaviour, when we
abstract a group of similar entities (in the problem domain) into corresponding
objects (in the solution domain) to build a class, we also abstract their common
behaviour. Sometimes entities in the real world exhibit different phases of be-
haviour during their lifetime. For example, a butterfly begins life as a caterpillar,
then changes into a chrysalis and, finally, transforms into an adult butterfly.

The term logical state is applied to each observable behaviour phase of the butter-
fly, that is, caterpillar, chrysalis, and adult butterfly. At any particular moment,
different instances of a class may be in different logical state. The logical state
that an instance is in is known as its current logical state. However, the behaviour
implementation is different in these three distinct logical states. For example, an
operation like move needs to be implemented in two different ways: one for creep-
ing like a caterpillar and another for flying and walking like an adult butterfly.

In general logical states are information obtained at the design phase, and almost
all current object-oriented language enforce that this information be buried in
the implementation of the methods of an object. It is desirable to find means
by which these logical states be represented very explicitly rather than implicitly
through flag-checking code so as to obtain a better program structure.

The structure of the rest of this section is as follows. Section 3.4.1 introduces an
example which is used to illustrate our ideas, and describes the concept of trans-
mutable objects and their implementations using concepts such as delegation,
abstract base classes and state hierarchies. Section 3.4.2 gives a more formal
presentation of the delegation concept and Section 3.4.3 presents a technique
for incrementally building the state hierarchy for a derived class from the sate
hierarchy of its parent class based on the concepts of state machines and the
restricted inheritance model. Following this, Section 3.4.4 discusses some related
work. Although the example in this paper is written in C++[150], the ideas
presented can also be applied with other object-oriénted programming language,
such as Eiffel[105]. Furthermore, the example is simple but was chosen merely to

Section 3.4: Object-Oriented Environmental Fault Tolerance 93

facilitate the illustration of the ideas.

3.4.1 Motivating Example
Now we consider how these objects that have different behaviour phases could
be implemented in C++[150]. To illustrate our ideas, we take as an example a
simple checking account system, described in the following paragraph:

A bank has two types of accounts: saving and current. Suppose
that the bank is very strict regarding its current accounts. A normal
current account must always maintain a positive balance, but, in re-
turn, the monthly charge is diminished. If it fails to do so, i.e., its
balance drops to a negative number, the normal account is transferred
into an abnormal account, and the monthly charge is augmented. If
an abnormal account has a positive balance then it is automatically
reverted to being a normal account.

3.4.1.1 First Implementation

The relationship between the account types of the bank is shown in the Fig-
ure 3.2. A possible solution to the problem is to embed the logical states of an
CurrentAccount object within the attributes of the CurrentAccount class. Changes
in the value of these attributes are detected by “if” statements buried within the

methods of the object’s class.

Account
/. \

SavingAccount CurrentAccount

Figure 3.2: Account Types

a

The implementation of the CurrentAccount class could be as follows:

class CurrentAccount: public Account{

private:
unsigned accountNumber;
int currentBalance;

94 Chapter 3: Object-Oriented Fault Tolerance

int abnormalAccountFlag; // 1=abnormal O=normal .
public:

CurrentAccount (accountNum, initialBalance);

“CurrentAccount();

int balance();
int debit(int amount); // process a check
void credit(int amount); // process a deposit
void dailyBalanceUpdate(); // update the account’s balance at midnight
void monthlyCharge(); // apply monthly charge
}

int CurrentAccount::balance() { return currentBalance;}

int CurrentAccount::debit(int amount) {
if (currentBalance < 0)
return 0;
currentBalance -= amount;
return 1;}

void CurrentAccount::credit(int amount) {
currentBalance += amount;}

void CurrentAccount::dailyBalanceUpdate() {
if (abnormalAccountFlag == 0) // normal account
{ if (currentBalance < 0)
{ abnormalAccountFlag = 1;}
}
else { // abnormal account
if (currentBalance >= 0)
{ abnormalAccountFlag = 0;}
}
}

void CurrentAccount::monthlyCharge() {
if (abnormalAccountFlag == 0)
{ currentBalance -= MONTHLYCHARGE/2;}
else { currentBalance -= MONTHLYCHARGE;}

The abnormalAccountFlag attribute indicates that the account is currently ab-
normal if its value is 1; otherwise, if its value is 0, it means that the account is
normal.

Section 3.4: Object-Oriented Environmental Fault Tolerance 95

An examination of this solution reveals that it has the same problems when com-
pared to a typical non-object-oriented solution: the rules concerning logical state
transitions of banking accounts are represented implicitly within the methods
of CurrentAccount. The methods dailyBalanceUpdate() and monthlyCharge() that
should only contain code from processing the monthly charge or changing the
date at midnight should now also contain code to check and update the value of

abnormalAccountFlag.

3.4.1.2 Second Implementation

The “if” statements buried in the methods dailyBalanceUpdate() and monthly-
Charge() used in the first implementation could be eliminated. Since C++ is
a language with runtime type resolution, the creation of “class types” like Nor-
malAccount and AbnormalAccount would exempt the programmer to determine
the type addressed by the abnormalAccountFlag. Thus, another solution is to ex-
pand the class hierarchy to include the description of the different types of current

accounts (Figure 3.3).

Account
/ \
SavingAccount CurrentAccount

/ \

NormalAccount AbnormalAccount

Figure 3.3: Expanded Hierarchy for Account Types

We might expand the CurrentAccount class as follows:

class CurrentAccount: public Account{
private:
unsigned accountNumber;
int | currentBalance;
public: :
CurrentAccount(accountNum, initialBalance);

~CurrentAccount();

int balance(); // same implementation as before

int debit(int amount); // same implementation as before
void credit(int amount); // same implementation as before

virtual void dailyBalanceUpdate();

96 Chapter 3: Object-Oriented Fault Tolerance

virtual void monthlyCharge();
}

class NormalAccount: public CurrentAccount{
public:
void dailyBalanceUpdate(){
if (currentBalance < 0)
// account transition to AbnormalAccount
// deleting a NormalAccount object and creating an
// AbnormalAccount object}

void monthlyCharge() {
currentBalance -= MONTHLYCHARGE/2;}

class AbnormalAccount: public CurrentAccount{
public:
void dailyBalanceUpdate(){
if (currentBalance >= 0)
// account transition to NormalAccount
// deleting a AbnormalAccount object and creating an
// NormalAccount object}

void monthlyCharge() {
currentBalance -= MONTHLYCHARGE;}

In this solution, the methods of CurrentAccount defined in the first implementation
still exist for accessing information about an account. However, the methods dai-
lyBalanceUpdate() and monthlyCharge() are now virtual and are overloaded in the
NormalAccount and AbnormalAccount subclasses. For example, now the imple-
mentations of NormalAccount::monthlyCharge() and AbnormalAccount::monthly-
Charge() take no extra action because the check for the value of a abnormal
account flag is no longer necessary.

This solution now captures the relationship between the different types of current
accounts. However, it has at least two limitations. First, class-based languages
like C++4, do not allow a program to change the class of its objects. When a cur-
rent account changes state, for example, from NormalAccount to AbnormalAccount,
a new AbnormalAccount object must be created and the old NormalAccount object
deleted. However, this operation of deleting and creating objects could cause a
large overhead for applications of reasonable size. Furthermore, it is not possible
to the programmer to guarantee that the identity of the new object is identical

Section 3.4: Object-Oriented Environmental Fault Tolerance 97

to the old deleted object. This is a crucial problem if other objects of the system
contain references to the old object. A number of solutions have been suggested
to solve such a limitation[40]. One solution is create a table containing point-
ers to all changeable objects. Another solution could be to keep a dependency
list of all objects that have references to a changeable object. Thus, when the
object changes its identity, it is possible to know all the objects that would re-
quire changing. Both solutions, however, add storage and performance overhead.
What is needed is a mechanism that does not require objects to be deleted and
recreated on every logical state change.

A second limitation is that NormalAccount and AbnormalAccount classes are not
really subtypes/specialisations of an abstract current account, but they are sep-
arate conceptual states of the same abstraction. In fact, the logical states of a
current account can be classified as normal and abnormal, and not the current
account itself. All this discussion leads us to a third implementation that tries to
solve the problems above mentioned.

3.4.1.3 Transmutable Objects

As discussed previously, it seems that two different issues have been confused
in the second implementation: the class of an CurrentAccount object, and its
current logical state. These two issues are represented by the same class hier-
archy (Figure 3.3). However, one could choose to build two separate hierarchies
(Figure 3.4), each representing a different issue:

e Account Hierarchy that represents the subtyping relationship between
the different types of accounts, and

e CurrentAccountState Hierarchy that represents the subtyping relation-
ship between the different logical states that an CurrentAccount object could
progress through during its lifetime.

Account) CurrentAccountState
. / \ / \
SavingAccount CurrentAccount NormalState AbnormalState

Figure 3.4: Parallel Class Hierarchies

98 Chapter 3: Object-Oriented Fault Tolerance

A software design solution always has some underlying form or organisation,
and to minimise complexity we need techniques for discovering this inherent
form so that the design can be decomposed into a series of highly independent
components{139]. So our proposed solution is to define a hierarchy of different
subclasses related to an object, each subclass corresponding to a different im-
plementation of its behaviour, and, then, to arrange that each object designates
the responsibility for providing its operations to appropriate instances of these
subclasses representing the different logical states that the external entity can
exhibit. By this means it avoids having information about logical states hidden
in the operations of the object.

Adopting such an approach, the C++ definition for the CurrentAccount class
would like something like this:

class CurrentAccount: public Account{
friend class CurrentAccountState;

private:
unsigned accountNumber;
int currentBalance;
CurrentAccountState *currentState; // the current state object
NormalState *normalState;
AbnormalState *abnormalState;
public:

CurrentAccount (accountNum, initialBalance);

“CurrentAccount();

int balance(); // same implementation

int debit(int amount); // same implementation

void credit(int amount); // same implementation

void dailyBalanceUpdate(){ currentState->dailyBalanceUpdate(this);}
void monthlyCharge(){ currentState->monthlyCharge(this);}

void putNormalState() { currentState = normalState;}

void putAbnormalState() { currentState = abnormalState;}

¥

CurrentAccount: :CurrentAccount(unsigned accountNum, int initialBalance)

{

normalState = new NormalState;
abnormalState = new AbnormalState;
currentState = normalState;

Section 3.4: Ob ject-Oriented Environmental Fault Tolerance 99

A CurrentAccount object intercepts and forwards messages to currentState object,
an “inner” state object, which represents the current logical state. The current
state object gets dynamically rebound to the different logical state ob jects normal-
State and abnormalState as the CurrentAccount object changes its current logical
state. In the example, the operations monthlyCharge() and dailyBalanceU pdate()
are forwarded to currentState object for processing. The currentState object is
updated through the state-changing method dailyBalanceUpdate.

The CurrentAccountState hierarchy is implemented as follows:

class CurrentAccountStated{
public:
CurrentAccountState();
“CurrentAccountState();
virtual void dailyBalanceUpdate(CurrentAccount# ca)=0;//pure virtual
virtual void monthlyCharge(CurrentAccount* ca)=0; //pure virtual

}

class NormalState: public CurrentAccountStateq{
public: .
void dailyBalanceUpdate(CurrentAccount* ca){
if (ca->currentBalance >= 0)
ca->putNormalState();}

void monthlyCharge(CurrentAccount* ca){
ca->currentBalance -= MONTHLYCHARGE/2;}

}

class AbnormalState: public CurrentAccountStateq{
public:
void dailyBalanceUpdate(CurrentAccount* ca){
if (ca->currentBalance < 0)
ca->putAbnormalState();}

void monthlyCharge(CurrentAccount* ca){
ca->currentBalance -= MONTHLYCHARGE;}

In this implementation, the logical state of a CurrentAccount object can be changed
without the need to delete and recreate the object. In addition, the programmer
can add or modify logical states, and methods that control the transitions be-
tween them, without needing to change the methods related to the CurrentAccount

100 Chapter 3: Object-Oriented Fault Tolerance

class. The classes that compose the CurrentAccountState hierarchy are réferred to
as state classes[45], and a CurrentAccount object, we term a transmutable object.
So a state hierarchy represents sets of properties, each set describing a different
logical state which implements basically the same interface specification. When
messages are sent to a transmutable object, the interface implementation to be
executed will be selected at runtime. The relationship between a transmutable ob-
ject and its variant state objects can be thought of forming a composite object[156].
Although there are multiple objects, the appearance to the user is that there is a
single object - the transmutable object - which orchestrates the entire operation
of the composite object. When a transmutable object is instantiated, the state
objects are also internally created.

The interface specification of the state hierarchy is defined by the abstract base
class CurrentAccountState which declares the pure virtual operations dailyBalance-
Update and monthlyCharge. AbnormalState and NormalState are concrete classes
derived from CurrentAccountState which conform to the interface specification of
the abstract base class. A pure virtual operation has no implementation in the
base class and it must be overridden in each derived class. In other words, a group
of related behaviour variants, that is, NormalState and AbnormalState, is defined
as heirs of an abstract base class which defines a common interface specification,
and as long as the transmutable object only access the behaviour variants via the
abstract base class they are not affected when the current variant is replaced by
a new one still conforming to the specification given by the abstract base class.
Thus, specific reconfiguration changes can be easily incorporated to a software
system for tolerating environmental faults.

Usually the state changes of an object over time, that is, its dynamic behaviour,
is represented in a diagrammatic form known as a state diagram[131]. Such a
diagram can be a basis for the construction of well-structured state hierarchies.
Up to now, we have informally introduced the concept of delegation, that is,
when an object forwards a requested message to some other designated object for
processing. In the next section we define more precisely the concept of delegation,
giving special attention to how delegation is implemented in a class-based object-
oriented language like C++. Following that, we explore the construction of state
hierarchies using state machines and the restricted inheritance model.

3.4.2 Delegation

There are many variations amongst existing object-oriented systems, especially
concerning behaviour sharing and evolution. Behaviour sharing can be obtained

Section 3.4: Object-Oriented Environmental Fault Tolerance 101

in two distinct ways: class-based sharing and instance-based sharing. All objects
in a class have a common structure and share common behaviour. As a conse-
quence, changes made to methods and structure in a class can automatically be
passed on to all instances of that class. This implicit mechanism allows systems
to be updated on a “per group” basis. In this sense, a class provides a tem-
plate for all similar objects. Examples of class-based languages are C++[150],
Eiffel[105, 106] and Simula[38].

On the other hand, the so-called delegation-based programming languages, such
as Actor[2] and Self[154], adopt an alternative approach based on delegation[143],
in which objects are viewed as prototypes (or ezemplars) that delegate their be-
haviour to related objects, called delegatees. In this case, the system uses instance-
based behaviour sharing instead of class-based behaviour sharing. Delegation-
based systems can share both state and behaviour of objects. The delegates-to
relationship can be established dynamically, while the inheritance relationship
of class-based languages is established and fixed when a class is created. This
is usually part of a system design that eliminates classes, focusing instead on
concrete objects.

Three dimensions for behaviour sharing can be characterised in order to contrast
class-based systems and delegation-based systems [55, 144]:

(i) static vs. dynamic - is sharing determined when an object is created or can
it be determined dynamically?

i1) implicit vs. explicit - are there explicit operations to indicate the sharing?
g’

(iii) per group vs. per object - is sharing defined for whole groups of objects
(classes) or could sharing be supported for individual objects?

Class-based languages use static, implicit and per-group strategies. By contrast,
delegation-based programming languages use dynamic, explicit and per-object
sharing strategies. :

Evolution is concerned with how and when the links between nodes in a class
hierar¢hy are allowed to change. In class-based systems, a method is invoked
on an object as a result of sending that object a message. Usually the message
includes: the name of the receiver and a selector. The selector carries the method
name and appropriate arguments. The binding of the method code to the method
call on the object is thus made at runtime. However, the pattern of sharing is
static in that the runtime search for the method code will always traverse the
superclasses in the same order.

102 Chapter 3: Object-Oriented Fault Tolerance

In contrast, delegation-based systems have no classes, and methods can'be stored
in each object. An object can delegate messages to other objects, thus if the
method lookup does not find the method name in the receiver, the search con-
tinues in the objects that the receiver delegates to, in the objects they delegate
to, and so on. In this sense, an object “inherits” the methods of the objects to
which it delegates messages.

Instance-based sharing can allow greater opportunity for implementing dynamic
changes than class-based sharing. However, each scheme has advantages and
drawbacks depending on the application domain. The security of compile-time
class creation versus the flexibility of creating new objects “on the fly” is a cen-
tral issue in the design of object-oriented systems. The security of compile-time
class creation is a highly desirable characteristic in a language that is used for
large static systems in which type security is needed. In this kind of system, to
change the behaviour implementation of an object, the class is edited and the
code passed again through the interpreter or compiler to recreate a new object
that has the new specification. However, in class-based systems the requirement
that each object belongs permanently to a particular class imposes constraints on
the mutability of the behaviour implementation of an object. Sometimes some
flexibility is desirable because many applications, such as process control systems
or telecommunication switching systems, cannot be stopped to modify and extend
their software[142]. It must be possible to replace some software components on
the fly by new versions while the program is still running. The ability to modify
and extend a system while it is running is known as dynamic configuration[86].

Evolution mechanisms in an object-oriented model are closely related to the bind-
ing between the method call and the method code. Essentially an evolution
mechanism for a class-based system needs a runtime association between an ob-
ject and the properties usually associated with its class to carry out its behaviour
modification. However, class-based systems require that an object permanently
belong to a class, and this can make the change of the behaviour implementation
difficult. Therefore, a natural approach is to develop an evolution mechanism
based on the delegation concept which allows the incorporation of changes over
time, providing a great deal of programming flexibility.

3.4.2.1 Delegation in Class-Based Languages

Although inheritance and delegation are usually defined as alternatives in the
design of an object-oriented system, delegation can be used in a class-based lan-
guage as a way to implement behaviour sharing when an object needs, for example

Section 3.4: Object-Oriented Environmental Fault Tolerance 103

because of an environmental fault, to be able to change its responses to messages
at runtime. The main advantage that delegation has over inheritance is that
delegation makes it easier for objects to change their behaviour implementation.
Since it is dangerous to change the class of an object, most class-based languages
do not allow it, but it is easy to change the delegatee of an object. Moreover, a
language with static type checking can ensure that a delegatee will understand
all the messages delegated to it. Thus, delegation is quite compatible with static
type checking presuming that the delegatees of an object can be known at com-
pile time. As a consequence, parent changing is limited to objects guaranteed to
possess all the properties required by the descendants - there is no danger that
behaviourally incompatible objects become parents as well. So delegation can be
viewed as a design technique that can be used with any object-oriented language
including those that are statically typed.

Delegation differs from simply sending a message in that the delegator continues
to play the role of the receiver even after it delegates the message (as discussed
in Section 2.2.4.3). In C++, delegation can be implemented by including the
original receiver as an extra argument to each delegated message. An original
message sets this argument to the receiver of the message, but delegated message
sends do not change this argument.

Delegation-based languages implement this extra level of indirection automati-
cally and invisibly. Hence one can easily implement behaviour changes of real-
world entities by delegating operations to different objects representing the dif-
ferent kinds of behaviour that the entity can possess. But the fact that these
different objects are intended to represent the same external entity at different
logical states throughout its life time is not clearly captured by this implementa-
tion. It is also not possible to guarantee that all different objects representing the
logical states of an entity conform to the same specification. Usually delegation-
based languages emphasise flexibility, i.e., support for changes during runtime,
relying on runtime type checking rather than static type checking so there is no
guarantee that an object implements all the operations delegated to it.

We therefore explore a means of implementing delegation in a class-based lan-
guage in order to improve the structuring of the program. We argue that the
implementation of transmutable objects can be achieved in a more controlled
and reliable way in a class-based language. We do not give up the fundamental
principle that a language must be securé. However, sometimes it is necessary to
have some support for changes over time when one embarks upon a real applica-

tion.

The implementation of delegation in a class-based language requires more work

104 Chapter 3: Object-Oriented Fault Tolerance

on the part of the programmer that it does in a delegation-based language. Extra
work is required in defining the delegator and the delegatees. In Self, a method of
a delegatee is automatically available to the delegator. In C++, this is not true.
Thus, because delegation is being implemented “by hand”, a method definition
needs to be written in the delegator for each delegated operation. The function
definitions are trivial, but this is an overhead for the programmer not present in a
delegation-based language. However, a tool can be built to automatically generate
code for the delegated operations. The operation in a delegatee class must have
an extra argument to refer to the delegator. Instead of performing operations
on this, the delegatee must perform operations on the delegator. There are two
possible limitations with this ad-hoc way of implementing delegation. First, any
class designed to be reused by inheritance must be modified before it can be
reused by delegation. Second, classes reused by delegation are specialised only
for that purpose. .

3.4.3 State Hierarchies

The notion of state classes permit the specification of properties common to a
group of states using a generalisation hierarchy, just as generalisation of states in
Statecharts[65] allows the specification of common.transitions. Statecharts also
introduces the notion of aggregation of states. These two constructs provide ad-
ditional power for modelling object-oriented systems. In this section, we provide
some background about the use of state machines and their diagrams for repre-
senting classes, and show a technique for incrementally building the state diagram
for a class from the state diagram of its parent class. State hierarchies can be
represented as state diagrams. As a consequence, the same technique for incre-
mentally building state diagrams can also be used for building state hierarchies,
as we show in the next sections. '

3.4.3.1 State Machines

A number of object-oriented design methodologies utilise a finite state machine
to model the dynamic behaviour of objects, including the technique proposed by
Rumbaugh et al.[131] and that of Shlaer and Mellor[137]. Rumbaugh’s approach
includes a dynamic model for a class that captures the changes in state undergone
by instances in response to messages. Several styles of state diagrams have been
reported on the literature[33, 58, 65]. Here we follow the notation introduced by
Harel[65] for drawing (structured) state diagrams. The state hierarchy for the
CurrentAccount class presented in Section 3.4.1.3 (Figure 3.4) can be represented

Section 3.4: Object-Oriented Environmental Fault Tolerance 105

as a state diagram. Figure 3.5 illustrates the state diagram for the a current
account. When accountBalance value is less than zero, the current account is
ranked as abnormal. Similarly, when accountBalance has a positive value, the
current account is considered to be normal.

/

currentAccount_is_abnormal[accountBalance < 0]
/currentState=abnormalState

Abnormal

currentAccount_is_normalfaccountBalance 2> 0]
/currentState=normalState

Figure 3.5: State Diagram for Current Account

Statecharts, originated by Harel[65], introduced the concept of hierarchy and
aggregation into state representation. The ways of structuring state machines
are similar to the ways of structuring objects: generalisation/specialization and
aggregation/decomposition. Generalisation allows states and events to be ar-
ranged into generalisation hierarchies with inheritance of common structure and
behaviour, similar to inheritance of attributes and operations in classes. More
specifically, a nested state diagram is a form of generalisation on states, also known
as the “or-relationship”. An object in a state in the high-level diagram must be in
exactly one state in the nested diagram. The states in the nested diagram are all
refinements of the state in the high-level diagram. That is, one state may be di-
vided into several independent subdivisions, only one of which describes the state
of the system at runtime. For example, in Figure 3.6, AbnormalState is refined
in two states: OverdraftLimitExceeded and OverdraftLimitNotExceeded. This com-
bination of states is an exclusive-OR: to be in state AbnormalState, one must be
either OverdraftLimitExceeded or OverdraftLimitNotExceeded, but not both. The
state hierarchy derived from.the description of this “or-relationship” is shown in

Figure 3.7.

Aggregation allows a state to be broken into orthogonal components, with limited
interaction among them, similar to an object aggregation hierarchy. Aggregation
is equivalent to concurrency of states, also known as the “and-relationship”. A
state diagram for an aggregate is a collection of state diagrams, one for each com-
ponent. For example, in Figure 3.8, CurrentAccount consists of AND components,
CurrentAccountState and CufrentAccountDebitRate. Being in CurrentAccount im-
plies being an aggregation of CurrentAccountState (either NormalState or Abnor-
malState) and CurrentAccountDebitRate (either Student Overdraft or Unauthorised

106 Chapter 3: Object-Oriented Fault Tolerance

NormalState

Figure 3.6: Generalisation of States for Abnormal State

AbnormalState

Overdraft
Limit Not
Exceeded

Overdraft

L
Ext:%g ed

CurrentAccountState
/ \
NormalState AbnormalState
/ \
OverdraftLimitExceeded OverdraftLimitNotExceeded

Figure 3.7: Expanded State Hierarchy for Current Account

Overdraft). In this example, there two kinds of debit rates which can be applied
to a current account: student overdraft which corresponds to a rate of 0.52% and
unauthorised overdraft which corresponds to a rate of 2.00%. CurrentAccount-
DebitRate is a state orthogonal to CurrentAccountState so it is represented as an
“and-relationship”. The dashed line indicates two aggregate sets of states. The
state hierarchy derived from the description of this “and-relationship” is shown
in Figure 3.9.

3.4.3.2 Inheriting State Machines

The dynamic model of a class is inherited by its subclasses. The subclasses inherit
both the states of the ancestor and the transitions, and they can have their own
state diagrams. The assumption of the use of the restricted inheritance model
allows us to deduce some implications about the state machine for a new derived
class formed from a parent class[131][104]:

(i) A derived class cannot delete a state of its parent class. Given the assump-
tion of the use of behavioural inheritance, the parent diagram must be a
projection of the child diagram. It is possible to modify a state since the

CurrentAccount

Section 3.4: Object-Oriented Environmental Fault Tolerance 107
NormalState Abnormal
State
CurrentAccountState

CurrentAccountDebitRate
Student .
Ungutboriee

Figure 3.8: Aggregation of States

CurrentAccountState | CurrentAccountDebitRate
/ \ | / \
NormalState AbnormalState | StudentOverdraft UnauthorisedOverdraft

Figure 3.9: Parallel State Hierarchies for Current Account

method invariant still holds for every method in the class stated in the class
invariant.

(ii) Any new state introduced in a derived class is wholly contained in an exist-
ing state of its parent class. The state diagram of a subclass may contain
substates of an original state in the parent class (the “or-relationship”).
Another possibility is the state diagram of a derived class be an aggre-
gate/concurrent addition to the state diagram inherited from the parent
class, defined on a different set of attributes, usually the ones added in the
subclass (the “and-relationship”). A third scenario where the state diagram
of the subclass would involve some of the same attributes as the state di-
agram of the superclasses generating a situation of conflict, is not possible
under the assumption of the use of behavioural inheritance.

[y

In order to exemplify the above statements, consider again the CurrentAccount
class presented in Section 3.4.1.3 (Figure 3.4). The first example shows CurrentAc-
count class that has two states: NormalState and AbnormalState(Figure 3.10(a)).
The subclass PrivilegedCurrentAccount is a special current account which offers a
visa card feature. If the privileged current account is normal, the visa card fea-
ture is always available. However, if the privileged current account is abnormal,

108 Chapter 3: Object-Oriented Fault Tolerance

the visa card can be automatically cancelled depending on whether or not the
account’s owner agrees to pay a fee of £5 per month. Thus the states VisaC-
ardCancelled and VisaCardNotCancelled are not independent from the states of
the CurrentAccount class. These new states are only meaningful if the current
account is abnormal. Figure 3.10(b) shows this relationship where the states
VisaCardCancelled and VisaCardNotCancelled are represented as substates of
the Abnormal state (“or-relationship”).

CurrentAccount Abnormal
NormalState

(a)

Pr1v1l
Current ccount

NormalState

AbnormalState

i VisaCard
VisaCard
Cancelled NotCancelled

(b)

Figure 3.10: Example of Generalization of States

The second example is also based on the CurrentAccount class (Figure 3.11(a)).
Suppose that SimpleCurrentAccount class, which is derived from CurrentAccount
class, represents a current account in which service charges are applied. There
are two kinds of services: student service which is free of transaction charges,
and graduate service which is not. So one could create two states, for instance,
StudentService and GraduateService, for representing this abstraction. The states
StudentService and GraduateService are independent from the states of the cur-
rent account (“and-relationship”). This results in the state diagram illustrated

in Figure 3.11(b).

To summarise, this construction technique is mainly based on the concepts of
hierarchy and aggregation in state diagrams. The first concept allows a state

Section 3.4: Object-Oriented Environmental Fault Tolerance 109

CurrentAccount NormalState Abnormal
State

()

Simple , b 1
CurrentAccount NormalState norma.
State

StudentService
Service

(b)

Figure 3.11: Example of Aggregation of States

from a parent class to be decomposed into two or more substates in the derived
class. The second concept allows one to add a new set of states that are parallel
to those that existed in the parent class. These two concepts together with the
restricted inheritance mechanism provide sufficient power to incrementally modify
the state machines from ancestor classes to form the machine that describes the

derived class.

The series of implications derived from these assumptions (above described in (i)
and (ii)) form a set of rules to be followed when designing such state machines.
So the technique supports the reuse of state machine information along with the
hierarchical structure constructed by the inheritance relationships among classes.
States hierarchies can be represented as state machines. So the techniques for
incrementally building state machines can also be applied to incrementally con-
structlng state hierarchies for derived classes, based on the state hierarchy of their

parent class.

Moreover, Harel’s Statecharts are part of a larger development methodology that
has been implemented as a commercial product called STATEMATE67], which is
a tool for the specification and analysis of complex reactive systems. One impor-
tant feature of STATEMATE is the emphasis regarded the dynamic verification

110 Chapter 3: Object-Oriented Fault Tolerance

of the behaviour specification: the tool provides facilities to program the model
execution, in interactive or batch mode, and also to instrument the models to
collect statistics during execution.

Statecharts is a graphical language which combines the visual appeal of graphics
with rigorous mathematical semantics[66]. The semantics of Statecharts defines
the sequence of system configurations taken into response to an external stimulus:
starting from a stable configuration (i.e., no possible evolution unless an external
event is generated), the system goes through a succession of unstable configura-
tions until a stable configuration is reached. This -chain of reaction is achieved
by a broadcast mechanism: any internal modification can be sensed from all ac-
tive orthogonal components, so that further transitions may be triggered. The
broadcasted informations include the states exited or entered, the actions per-
formed when the transition is taken (generation of events, modification of data
items, etc.), the status modification of a controlled function (started, suspended,
resumed, stopped), etc.

So the use of Statecharts for representing the behaviour of an object in terms
of logical states, helps us not only with the construction of the state hierarchy
but also with the formal verification of the transitions between the logical states.
Moreover, this tool can also assist in the generation of automatic code for the
implementation of transmutable objects.

3.4.4 Related Work

There are a number of different approaches to the provision of the sort of trans-
mutable objects that are of relevance to our goal of providing a structured ap-
proach to environmental fault tolerance.

Dynamic Inheritance in Self

Self[154] is a prototype-base language with a simple and uniform object model.
One consequence of Self’s uniformity is that an object’s parent slot, like other
data slots, may be assigned new values at runtime. An assignment to a parent slot
effectively changes an object’s inheritance at runtime. Consequently, the object
can inherit different methods and exhibit different behaviour implementations.
This “dynamic inheritance” has been used is Self to implement objects with
distinct behaviour modes. However, in general, parent changing is not limited
only to objects guaranteed to possess all properties required by the descendents
- behaviourally incompatible objects can also become parents.

Section 3.4: Object-Oriented Environmental Fault Tolerance 111

Another related mechanism is the become operation found in Actor[2] and Self[154],
which allows an object to change its interface, but it seems that this mechanism
can destroy most of the benefits of type checking.

Modes 5

Mode[151] is an explicit language construct which extends the concept of ordinary
class inheritance. In this approach, classes can have multiple sets of properties,
each of which describes a separate conceptual state called mode. Each mode
implements basically the same interface specification, and when an instance of
a class is requested to perform some operation at runtime, the selection of the
operation will be based on the set of operations in the mode in which the object
is currently. In the case of defining a derived class from a parent class, because
there are separate implementations of the same operations, the redefinition of
methods in the subclass must be performed individually for each mode. Special
transition functions can be defined to control the mode changing, so state change
information is kept separate from operation implementations (each class can have
only one transition function).

This approach has at least two limitations. Firstly, it does not allow the modes
of a class to be organised as a state hierarchy. Secondly, when a new mode is
added in a subclass is not sufficient to define only those operations for the new
mode that have been incrementally defined in the subclass; rather, the new mode
should be able to respond to all inherited operations as well (this requires a lot of
work). Furthermore, the author states that it is not conceptually very clear how
transition functions should be combined with inheritance in the case of adding
new modes. This approach addresses many of the same issues as our approach
although from a linguistic viewpoint. It should be mentioned that our solution
tried not to create any new linguistic construction as a result.

Roles in Fibonacci

Réle is a concept from the Fibonacci database programming language[4]. This
language has a notion of state and a concept of object identity; it also allows
existing objects to be extended. For example, suppose that John is an object
representing a person, when John enrols as a student the object might be extended
to support a new behaviour, such as, a method Number that returns his student
number. Let us call this extended object JohnAsStudent.

In Fibonacci, John and JohnAsStudent are considered to be the same object by
the object identity test. Nevertheless, John and JohnAsStudent have different
behaviours: the first does not understand the Number method while the second
does. It is also possible, for instance, for John to take a part time job, requiring

112 Chapter 3: Object-Oriented Fault Tolerance

that the object that represents him be extended in another directié)n, creating
JohnAsEmployee. Moreover, JohnAsEmployee might also understand a Number
method, which returns John’s employee number. Fibonacci implements these
abstractions by treating an object as a DAG of roles; messages are sent to a
receiving role, which first tries to “delegating” to subroles, and then inheriting
from superrdles. Thus the meaning of John. Number depends on the réle type of

John.

The roéle model emphasises the ability of an object to receive and send different
messages at different stages of evolution, by means of changing dynamically the
type of an object. Our approach restricts all the variants of an object to having the
same basic interface whereas, in the role model, the interface of objects may well
contain a completely distinct set of operations. Static type checking with state-
dependent interface might require some interesting analysis similar to typestate
checking in the Hermes language discussed below in this section.

Predicates Classes

Predicate class[29] is a linguistic approach which extends the standard object-
oriented paradigm by reifying behaviour modes of objects. A predicate class has
all the properties of a normal class, including a name, a set of superclasses, a set
of methods, and a set of instance variables, and additionally, it has an associated
predicate expression. A predicate class represents the subset of the instances
of its superclass(es) that also satisfy the predicate. Whenever an object is an
instance of the superclasses of the predicate class, and the predicate expression
evaluates to true when invoked on the object, the object will automatically be
considered to inherit from the predicate class as well. While the object inherits
from a predicate class, it inherits all the methods and instances variables of the
predicate class. If the object’s state later changes and the predicate expression
no longer evaluates true, the inheritance of the object will be revised to exclude
the predicate class. Predicate class thus support a form of automatic, dynamic
classification of objects, based on their runtime value, state, or other user-defined
properties.

Although this approach is powerful and structured, it does not seem to provide
a clean separation between the predicate classes and the normal classes; both
kinds of classes are represented by the same hierarchy. The classes representing
the predicates become easily confused with those representing subtyping. That
is, the approach overloads the already rather overloaded inheritance mechanism.
Again, this approach also addresses many of the same issues as transmutable
objects, though from a linguistic viewpoint.

Section 3.4: Object-Oriented Environmental Fault Tolerance 113

Hermes Typestate and Variants

The static type checking provided by the predicate class proposal earlier dis-
cussed in this section, ensures that a uniform interface is provided by an object,
independent of its state at runtime. A less restrictive approach to type check-
ing would allow different states of an object to have different interfaces similar
to the réle approach. For example, a stack object might have empty_stack and
non_empty_stack state objects, but only the non_em pty_stack object would support
a pop operation. This approach would require a type state checking similar to the
typestate checking in the Hermes language[146, 147]. Typestate is a refinement
of the concept of type. Whereas the type of a data object determines the set
of operations ever permitted on the object, typestate determines the subset of
these operations which is permitted in a particular context. In this proposal, a
type is not only characterised by the set of operations it provides but also by an
automaton. The automaton associated to a type is defined as follows: states in-
dicate the subset of the operations that may actually be applied, and transitions
correspond to applications of the operations.

Hermes also supports the notion of variant type to weaken the constraint that
the type of every value should be known at compile-time. A variant is just like a
record, but whereas an initialised record may have several components, only one
component of a variant can exist at any one time. Which component it is depends
upon the case of the variant.. For example, a Lisp object is either an atom, a pair,
or nothing (nil). So the LispObject is a type whose case is an enumeration value,
either atom, pair or nil. Each component is associated with one of the cases of

the variant.

These notions have been introduced in the strongly-typed, concurrent object-
oriented language called Arche[15], although the main concern was to characterise
states under which a given method call may be selected. In this proposal, a type
is extended by sets of peculiar type-states called synchronisation-states. Within
a type, a synchronisation-state defines the method that may be executed by the
objects of the type when they are to select an incoming message. :

Other Related Work

Several other systems have constructs similar to aspects of transmutable objects.
Ezemplars|88] addresses the issue of forming automatic combination or union sub-
classes to avoid combinatorial explosion of classes and better organise methods.
Many specification systems restrict the applicability of operations using precon-
ditions and many concurrent systems allow operations to be conditional on guard
expressions. Exception handling mechanisms share our goal of factoring cases, al-

114 Chapter 3: Object-Oriented Fault Tolerance

b

though the main concern is to identify exceptional states. In this sense, one could
represent exceptions as behaviour modes and use transitions functions as active
preconditions: they can be programmed to capture errors at runtime and transfer
objects to appropriate modes[151]. (This provides support for implementing an
approach for forward error recovery.)

Johnson et al.’s approach[80] shares some of the characteristics of our approach,
in particular with regard to the adoption of delegation as a mechanism for con-
necting the two separate hierarchies: one representing subtyping and the other
representing the states of the object. The main focus of this work is delegation,
and other issues, such as, the construction of state hierarchies in the presence of
inheritance is neglected.

Another similar proposal is the metaclass approach[40]. According to the author,
the two separate hierarchies indeed form a set of metaclasses that describes the
states of an object. In our opinion, the two approaches are exactly the same,
except for the terminology adopted.

3.4.4.1 Discussion

In my opinion, the most promising approaches described above for solving the
problem proposed in this thesis are: predicate classes, roles, and the Hermes
language. Predicate classes provides the linguistic support for implementing the
state hierarchies directly in the language. Moreover, the language offers support
for controlling in which predicate class a given object is currently in. However,
there are some drawbacks in this approach. The thing that I find most trou-
blesome is that the same base class serves the root for the ‘normal’ classes and
the predicates classes. That is, the class structure is not disjoint, generating a
structure similar to the one discussed in Section 3.4.1.2, which contains not truly
subtyping relationships.

The idea of roles is also interesting, and we could represent state hierarchies using
roles. This approach is more general that predicate classes since an object can
also change its interface. However, in such a case, it is not clear to me how the
static typing checking is guaranteed. Finally, the concept of typestate seems to
be well known, and it could be used to implement transmutable objects since
the typestate determines the subset of operations applied in a particular context.
However, Hermes does not offer support for representing the logical states in a
hierarchical form. The notion of variant type is similar to ‘variant record’ in
Pascal, but one cannot associate a set of operations to each component of the
variant type. The advantage of using an object-oriented language is that support

Section 3.5: Conclusions 115

for building hierarchies is automatically given.

Our approach has the advantage of implementability in any object-oriented lan-
guage, however, the programmer has to follow a set of programming conventions.
In response we could argue that it is possible to generate automatic code for
transmutable objects with the use of a proper tool based on the object and dy-
namic models of a class. In our approach we decompose hierarchically the set of
logical states associated with an object along with a controller which manages the
transitions between the logical phases. The controlling object should not literally
become one of the logical states, but it would intercept and/or delegate messages
handled via an “inner” logical state that gets automatically rebound to different
logical states as the changes are required. In this sense, the use of delegation is
important because it provides an extra point of indirection. Also the use of poly-
morphism (more specifically inclusion polymorphism, refer to Section 2.2.3.3) is
crucial in our approach; the inner state object is rebound to instances of the sub-
classes in the parallel hierarchy which are subtyping compatible with the inner
state object (see Section 3.4.1.3).

Other polymorphic languages could be used to implement our approach such
as POLY[68]. However, the advantages of using an object-oriented language
become clear when we consider how a system might be extended. For example,
if we already have ‘+’ defined for integers and vectors, and we want to make it
operate on recently added complex numbers, then in POLY we would have to
modify the single routine which does adding, to make its body recognise the new
‘value representation. In Smialltalk, for instance, we need only to define ‘+’ in
the set of operations of the number complex class; the uses of ‘+’ for objects of
other classes would remain as they are. As stated by Meyer[105], parametric and
inclusion polymorphism are orthogonal, and ideally a language should support
both. Languages such as POLY and ML, usually emphasise the use of parametric
polymorphism only (refer to Section 2.2.3.3).

3.5 Conclusions

¥The ultimate object of design is form.” [5]

The shift from an object-oriented conceptual model to an object-oriented imple-
mentation model is not always simple. Usually higher-level abstractions do not
have a direct representation in an object-oriented programming language. One
important consideration is where to place the complexity of these advanced ab-
stractions. Some authors assert that an object-oriented programming language

116 Chapter 3: Object-Oriented Fault Tolerance

should provide support for these notions directly[119], that is, their provision
should be transparent for the object-oriented designer. The advantage of this so-
lution is that putting the complexity in the language simplifies the development
for the designer. However, overloading the language with too much things leads
to a serious dilemma: the language itself must grow to express all alternatives.

An alternative approach is not extend the language, and provide building blocks
(for example, classes and virtual functions) so that programmers could implement
their own model of computation[34]. This approach leads to the creation of idioms
using language features to express functionality outside the language, while giving
the illusion of being part of it. It is asserted by Coplien[34] that experience
has shown that these idioms can be effectively used without specific language
support, giving the structure of programs more expressiveness, efficiency and
aesthetic value. The abstractions discussed in this work are important examples
of idioms that can be built using object-oriented building blocks. Concepts,
such as delegation and runtime association between objects and classes, can be
simulated in a strongly typed object-oriented language by means of extra levels
of indirections and idiomatic constructions. The most important contribution of
our work was to find an object-oriented approach for providing environmental
fault tolerance without creating another new linguistic construction.

An approach for structuring behaviour phases - in particular faulty behaviour
phases, in object-oriented systems has been proposed. Classes are very useful in
structuring large systems. For real large applications, static typing checking is
crucial. However, sometimes it is essential to have some support for performing
changes during runtime. We presented an approach that benefits from the best
of these two worlds: the security of compile-time class creation and the dynamic
implementation of an object’s behaviour via the delegation mechanism. The so-
called transmutable objects can change the way that they respond to messages
at runtime. This evolution mechanism is closely related to the binding between
method call and method code. So when a transmutable object receives a message,
the method look-up is done as in a class-based language. Once the method
definition is found, the operation is delegated to the current state object, and
then the method code is executed, depending on the logical state that the object
is in.

The approach here described was applied to improve the structuring of a software
controller with a complex and error-prone environment: a large model railway
with 92 switches and 150 sensors, which is going to. be explained in detail in the
next chapter. The main goal of this application is to ensure that correct system
operation is maintained despite the presence of environmental faults such as mal-
functions of switches and sensors. Different behaviour phases (including normal

Section 3.5: Conclusions 117

and abnormal ones) for switches and sensors are identified and a class hierarchy
that captures these behaviour phases is developed in parallel with the application
class hierarchy. The two hierarchies are linked together by a delegation mech-
anism - at any particular time, an application object will exhibit a particular
behaviour implementation. /

Moreover, in real-world application, not only environmental faults should be con-
sider, but also hardware and fault tolerance should be provided (as we have
already mentioned). We believe that approach described in Section 3.4 fits well
with object-oriented structuring methods for supporting both hardware and soft-
ware fault tolerance; however, this yet has to be demonstrated.

BLANK PAGE
IN
ORIGINAL

Chapter 4

Environmental Faults: A
Detailed Case Study

“Good design is possible to achieve, but it has to be one of the goals
from the beginning.”[118]

“Bad design can rarely be overcome by more design, whether good or
bad.”[54]

The best way to understand the object-oriented techniques described in Chapters
2 and 3 is to use them in a realistic software system. So this chapter illustrates
the use of the object-oriented techniques on a meaningful, complex application
program. Many application experiences are being successful in applying object-
oriented technology to an increasing number of different domains. It is very
important to disseminate such information so that those interested in adopt-
ing the object-oriented approach can appreciate its applicability and build on
previous success. However, many application projects fail to report on their
experiences. Usually the projects concentrate too much on the system and its
characteristics and lack any real technical substance on object-oriented technol-
ogy. In fact, application experiences should be rich in technical details so that
you gain a deeper understanding of the wide-ranging issues involved in develop-
ment and its complexity, but, of course, the object-oriented issues should not get
lost in this great deal of details. With-such a view, this chapter aims to show
the experiences of a project and then, based on these practices, generalise a set
of useful insights/advices to provide an understanding of numerous issues, such
as, reusability, design, structuring and maintainability.

119

120 Chapter 4: Environmental Faults: A Detailed Case Study

\

This chapter focuses on the interest in object-oriented techniques in a particu-
lar community, namely, that working on fault tolerant systems. The approach
described here is applied to improve the structuring of a software controller for
a complex and error-prone environment: a large model railway with 92 switches
and 150 sensors. Model railways are rarely very like real railways. For instance,
the latter can be operated more dependably than the former, e.g., with the use of
hardware redundancy in sensoring devices and actuators, such as, switches and
signals. Moreover, in real railways, one can check whether commands sent to
trains and actuators have been received or not; however in model railways this is
not typical. Furthermore, in real railways drivers and signals play an important
role whereas in model railways they do not exist. Human drivers are a potential
source of failures; however, they might react better than a computer controlled
system in critical situations.

Since the available model railway used to carry out our experiment is an un-
representative model of a modern real railway, there is no intent to relate it to
the art of railway control, rather the model railway is just being used as a sys-
tem that has to be monitored and controlled. In our experiment with a model
railway, the main goal is to ensure that correct system operation is maintained
despite the presence of environmental faults such as malfunctions of switches and
sensors. Different behaviour phases (including normal and abnormal ones) for
switches and sensors are identified and a class hierarchy that captures these dif-
ferent phases is developed in parallel with the application class hierarchy. The
two hierarchies are linked together by a delegation mechanism - at any particular
time, an application object will exhibit a particular behaviour implementation.
More generally, our approach allows separate class hierarchies to be linked to-
gether using delegation, with each hierarchy providing a different view of the
same abstraction. By such means it is possible to specify different views of a
system’s behaviour, and the intended constraints on such behaviour.

The aim of this chapter is twofold. First, we will describe the methodology
used for the design and implementation of the train controller, and show how
the main concepts of object-oriented programming, such as inheritance, gener-
icity and polymorphism, may be applied in practice. Second, we show how the
software controller tolerates environmental faults which occur in the external pro-
cess (i.e., the physical model railway) using a delegation mechanism. The rest
of this chapter is organized as follows. Section 4.1 introduces the notation of
the methodology adopted throughout this Chapter. Section 4.2 describes the
Departmental Real Time System Environmental, that is, the model railway or
stmply the train set. Section 4.3 presents the problem statement for the train
set system. Section 4.4 shows the analysis of the basic model for the applica-
tion and Section 4.5 discusses its design and implementation. Following that,

Section 4.1: Preliminary 121

Section 4.6 demonstrates how the basic model can be extended using delegation.
Section 4.7 discusses some experiences in developing the train set system, and
finally, Section 4.8 makes some concluding remarks.

3

4.1 Preliminary

4.1.1 Changes to the Traditional Lifecycle

The application of object-oriented concepts to software development brings new
solutions to many issues, but also demands new methods and, in fact, a whole
new approach. In a classical project, the phases of design, implementation and
testing are generally viewed as separate global steps, to be executed in sequence
on the whole system. In object-oriented programming, the approach is not the
same. The sequence of design, implementation and testing applies to the lifecycle
of individual classes but not necessarily to the lifecycle of the project as a whole.
In other words, the design is not a distinct, monolithic phase; rather, it is just a
step along the way in the iterative, incremental development of the system, whose
steps may feed back each other.

In general, well-structured programs do more than simply satisfy their functional
requirements. Programs that follow proper design guidelines are more likely to
be correct, reusable, extensible, and quickly debugged. Most design guidelines
that are intended for conventional programs (such as, partitioning, hierarchy
maximising module strength, etc.) also apply to object-oriented programs. In,
addition, features, such as inheritance and delegation, are peculiar to object-
oriented programming and require new guidelines.

The methodology adopted for building the object-oriented model of the train set
system is referred to as Object Modelling Technique (OMT)[131], which was sum-
marised in Section 2.3.1. The next sections describe the object-oriented analysis
for the train set application, following the main steps defined by this methodol-
ogy, that is, problem statement, object model and dynamic model. Here we follow
the nopation introduced by Rumbaugh([131] for drawing object model diagrams
which is summarised below. ’

122 Chapter 4: Environmental Faults: ‘A Detailed Case Study

Al

4.1.2 OMT Graphical Notation

Class

Figure 4.1 summarises the object modelling notation for classes. A class is repre-
sented by a box which may have up to three regions. The regions contain, from
top to bottom: class name, list of attributes, and list of operations. Each at-
tribute name may be followed by optional details such as type and default values.
Each operation may be followed by an argument list and result type.

CLASS-NAME

attribute-name-1 : data-type-1 = default-value-1
attribute-name-2 : data-type-2 = default-value-2

operation-name-1 (argument-list-1) : result-type-1
operation-name-2 (argument-list-2) : result-type-2

Figure 4.1: Class

Association

A link is a physical or conceptual connection between object instances. An asso-
ctation describes a group of links with common structure and common semantics.
All links in an association connect objects from the same classes. An association
describes a set of potential links in the same way that a class describes a set of
potential objects. The notation used to represent an association is shown in the
Figure 4.2.

CLASS-1 CLASS-2

Figure 4.2: Association

Associations are inherently bidirectional. The multiplicity specifies how many
instances of one class may relate to a single instance of an associated class. It
constrains the number of related objects. Figure 4.3 summarises the multiplicity
of associations.

Section 4.1: Preliminary 123

CLASS Exactly one
—-—E Many (zero or more)
4
CLASS Optional (zero or one)

1 H
CLASS

One or more

12 4] cLass Numerically specified

Figure 4.3: Multiplicity of Associations

Aggregation

Aggregation is the “part-whole” or “a-part-of” relationship in which objects rep-
resenting the components of something are associated with an object represent-
ing the entire assembly. Aggregation is drawn like association, except a small
diamond indicates the assembly end of the relationship. Figure 4.4 shows the

notation for aggregation.

|Assembly Class

Y

|

Part-1-Class

Part-2-Class

Figure 4.4: Aggregation

" . .
Generalization and Inheritance

Generalization is the relationship between a class and one or more refined versions
of it. The class being refined is called the superclass and each refined version is
called a subclass. Attributes and operations common to a group of subclasses are
attached to the superclass and shared by each subclass. Each subclass is said to
inherit the features of its superclass. .

124 Chapter 4: Environmental Faults: A Detailed Case Study

]

The notation for generalization is a triangle connecting a superclass to its sub-
classes. The superclass is connected by a line to the apex of the triangle. The
subclasses are connected by lines to a horizontal bar attached to the base of the
triangle, as shown in the Figure 4.5.

Superclass

A

Subclass-1 Subclass-2

Figure 4.5: Generalization

4.2 The Train Set System

The train set is a digitally-controlled model railway, which is divided into three
parts: electronic digital units, railway layout and trains. The railway layout is
mounted on three separable boards which can be independently controlled by
separate computers. These boards have red, green and blue labelled sensors,
respectively. Each board can thus be viewed as being composed of connectors
(e.g., switches), sensors and railway tracks (which link connectors and sensors)
(see Figure 4.6).

Sensors are sensing devices for train detection and they are the only source of
information about the state of the system. Experiments have shown that sensors
are unreliable devices since they are sometimes erroneously triggered. In addition,
switches are liable to suffer electro-mechanical faults, and consequently, trains can
divert from a predefined route.

The Marklin Hardware

The powered units, for instance, engines and switches, are controlled using dig-
itally encoded signals that travel through the track (via modulation of the elec-
trical power supply of the trains). All messages go through the “central unit”,
which is connected to the signal path that runs along the middle of the track
(Figure 4.7). The system allows up to a total of 256 switches to be controlied
through digital signals. Figure 4.8 shows two different switches found in the train
set. Each switch works on a double solenoid which enable the track to be set

Section 4.2: The Train Set System

125
é/.’f
£
8 y
=
3
3
2l
E
&
=CJ
=}]
¢
s}
]
[
Bl
&
e
[us]
N e »
%\: = i~ a/%

Figure 4.6: The Train Set Layout

126 Chapter 4: Environmental Faults: A Detailed Case Study

l Light []
l ¢80 Decoder

/ ; Sensor Emitte O O

by -—-pb—A-=-F34-=-F--=-~=¢+

P B S B I e e Y e

Switch

s88 Decoder .<___._

k83 Decodey Computer

Central Interface
Unit

Figure 4.7: Diagram of the Marklin System

straight or curved. The solenoids are controlled through a Marklin k83 decoder.
Each k83 decoder can operate up to 8 solenoids, i.e., 4 switches. Each decoder
has a panel of 8 dip switches which is used to set up the addresses of the switches
controlled by the decoder.

straight >~—7
curved
curved : ><
curved
TN

(a) Point Switch (b) Crossover Switch

Figure 4.8: Switch Settings

The engines have a bi-directional motor that is capable of running at 14 different
speeds. Each engine has a ¢80 decoder, which has a bank of 8 dip switches via
which the address of each engine is set between 1 and 80. All engines have a light
function which shows the direction of travel. In addition, each engine is fitted with
2 infra-red light emitters, placed on the forward and backward ends of the engine.
Track detection modules, represented by s88 decoders, work in conjunction with
infra-red sensors to determine the engine’s position on the layout. The infra-

Section 4.3: Problem Statement 127

emitters are mapped onto the light function so that only one of the emitters is
activated, namely the one which shows the engine’s direction of travel.

Infra-red sensors are fitted on various positions on the layout; all sensors are con-
nected to s88 decoders. Each time an engine passes over a sensor, the sensor is
triggered and this event is recorded in the s88 decoders. Each sensor is repre-
sented by one bit of information, and each s88 decoder can store up to 16 bits
of information. The decoders are connected to the computer interface unit. On
receiving a signal from the computer via the interface unit, the s88 decoder will
dump the status of the 16 bits to the computer. The Marklin system can be
operated from either manufacturer-supplied control units or from a computer via
the interface unit. In our work, we are interested in the latter.

4.3 Problem Statement

We take for our application domain the train set and its object-oriented control
program as our solution domain. Trains aim to move randomly between stations
(that is, sensors, since they are the only source of information about the state
of the system). Despite the presence of faulty switches and sensors, the trains
should move around the railway without crashing, but if necessary stopping and
reversing. Since the railway layout is divided up in three boards, the design should
take into account both the layout distribution and the train crossings between

neighbour boards.

The relevant restrictions to be taken into account when designing the train set
application can be summarised in the following points:

e the aim is to guarantee no train collisions, i.e., safety.

e derailment of trains is not considered.

e switches can suffer environmental faults.

L]
e sensors can also suffer environmental faults, but considering two consecutive
sensors it is assumed that just one sensor can fail.

e routing and deadlock detection of trains is ignored.

e we assume that a train can stop within one section of the layout, that is, a
train should travel slowly enough so as to hold this premise.

128 Chapter 4: Environmental Faults: A Detailed Case Study

¥

e we also assume that the length of a train is smaller than the smallest section
in the entire layout, that is, a train can be completely contained within a
section.

Functional Requirements

A variety of different projects can be envisaged that would make use of the train
set, following on some projects that have so far been based on it[35, 9]. However
it 1s desirable to avoid having each such project start unnecessarily from scratch
- rather it would be better to have a standard interface to the train set which was
as high as possible above the crude low-level interface provided by the Marklin
hardware, but which was sufficiently low and well-chosen as to be appropriate
for use in all, or at least the great majority of, future projects involving the
trainset. (In practice there is likely to be a need for one or perhaps two interface
levels below the “standard” interface to be made accessible - most particularly
for (electronic and mechanical) hardware maintenance.)

The standard interface should in effect encapsulate three things: (i) the Marklin
interface to the train set, (ii) the detailed representation of the train layout, and
ideally (iii) a mimic diagram which accurately represents the train layout, and
any relevant state information, e.g., about sensors, switch settings, etc. It should
be capable of fronting either the entire three-board layout, or any of the separate
boards. The detailed specification of this interface has been determined after
examining the design of past train control projects and after discussions with
prospective users of the train set. It was suggested that the principal objects
made visible by the controller should be trains, sections and events. The controller
should accept commands to move trains onto a specified next section, and should
report back when it believes a train has actually done this, i.e., when the expected
sensor has been triggered. (Sections are in effect directed links of railway tracks
between adjacent sensors; an event is caused by a sensor being triggered.) The
controller should also be capable of answering queries about what sections a given
section leads directly to.

By such means the controller is intended to insulate the designers of director
programs from needing to have detailed information about the physical layout
of the train set, or of what track switches exist where - one consequence is that
responsibility for deciding which of several possible different sets of track switch
settings that would achieve the same link will remain with the controller. In
other regards, the intent is that the controller be “policy-free”, it being up to
the operator how trains should first be located, where they should go, what
precautions should be taken against collisions, what allowances made for possible
hardware faults (in trains, sensors or switches), etc.

Section 4.3: Problem Statement 129

The controller should try to maintain an awareness of what train is on which link
and hence is expected to trigger which sensor next (information that is needed for
a mimic diagram), and to identify the train believed to be involved in any event
when it reports this event to the operator. Equally it should inform the operator
if an unexpected sensor is triggered - something-that might occur spontaneously,
or because an expected sensor triggering did not occur. The controller have
responsibility for avoiding collisions. In addition, it also has responsibility for
stopping trains running into buffers, that is, end points. (A end point is simply
represented by the fact that a section has no next section.)

Ideally the controller should include a mimic diagram. The operator should be
able to indicate whether it is using the entire three-board layout, or a individual
board, and to switch the train set and/or the mimic diagram on (and off). Should
just the mimic diagram be on, a simulated sequence of appropriate sensor events

should be provided.

The software controller above described has been developed incrementally ac-
cording to the requirements specified in Table 4.1. The main reason for adopting
such an approach was to investigate how easily the model can be incrementally
extended to cope with the new requirements. The basic prototype of the system
(i.e., version 1) assumes that switches and sensors are reliable devices whereas
the subsequent versions add gradually the new requirements. The aim was to
introduce minimal changes to the basic model for the design of the following
versions, so that the basic prototype would be completely reused. In the next
section we carefully describe the object-oriented analysis for the basic model of
our application. Following that, we will show the design and implementation of
the basic prototype. After that, we extend the basic model to cope with the new

requirements.
Requirements Version 1| Version 2| Version 8| Version 4
Switch Fault Tolerance | no yes yes yes
Sensor Fault Tolerance | no no yes yes
Distributed Boards no no no yes

Table 4.1: Implementation of Reqﬁirements Through Versioning Cycle

130 Chapter 4: Environmental Faults: A Detailed Case Study

4.4 Analysis of the Basic Model

Analysis is the first step towards solving the problem statement. The analysis ad-
dresses the three aspects of objects: static structure (Object Model), sequencing
of interactions (Dynamic Model) and data transformations (Functional Model).
All three models should be verified, iterated and refined. The methodology is
not linear. Most analysis models require more than one pass to be completed.
However, the three models are not equally important in every problem. Gen-
erally all problems have useful object models derived from real-world entities.
Certainly the object model is the most important of the three models, since it
describes the objects of the system, relationships between objects, and attributes
and operations that characterize each class of objects.

In particular for the train set, the functional model is not essential since the ap-
plication does not contain significant computation as compared, for example, to
engineering calculations, which have a functional model with significant impor-
tance. Instead the dynamic model is more important than the functional model
since the application concerns interactions and process control. So this section
concentrates mainly on building the object model and the global event flow dia-
gram (message exchange) for the train set application. The model described here
provides the basis for the first version of the controller prototype. This model is
further extended to accommodate new application requirements (mainly tolerance
of environmental faults) in the subsequent versions of the prototype (described in
Section 4.6). The remainder of this section is organised as follows. Section 4.4.1
describes the object model for the controller and Section 4.4.2 presents the mes-
sage exchange diagram between classes.

4.4.1 Object Model

The first step in analysing the requirements of an application is to construct
an object model. The object model shows the static structure of the real-world
system and organises it into workable pieces. The object model describes real-
world object classes and their relationship to each other. To construct an object
model, first (i) we identify classes and their associations since they affect the
overall structure of the system. Next, (ii) we add attributes to further describe
the relationship of classes and their associations. Then (iii) we combine and
organise classes using inheritance. Finally, (iv) we add operations to classes later
on, based on the dynamic and functional models.

In the chosen methodology, the following steps should be followed for building an

Section 4.4: Analysis of the Basic Model 131
object model:

1. identify object classes.

. .. L.
2. prepare a data dictionary containing descriptions of classes, attributes, and
assoclations.

3. add associations between classes.
4. add attributes for objects and links.
5. organize and simplify object classes using inheritance.

6. test access paths using scenarios and iterate/refine the above steps as nec-
essary.

7. group classes into modules, based on close coupling and related function.

4.4.1.1 Identifying Object Classes

Now, following the steps listed above, we extract objects from the requirements.
Starting with the tangible entities' described in the requirements, we list candi-
date object classes:

Train set system ‘Crossover Switch
Board Crossing Operator interface
Sensor Mimic diagram Marklin interface
Train Controller Section

Once we have defined the boundary of each object class, we should identify the
topmost classes. Next, we make design decisions regarding the semantics of each
of these abstractions, as well as, their relationships. From the highest level of
abstraction, there is exactly one object which is the train set system itself. If we
think about the ways in which we can manipulate this object from the outside
we could perform two meaningful operations, namely: powerDown and powerUp?
These two operations thus form the essential protocol of the interface for the class
TrainSetSystem.

1Tangible Objects are abstractions of the actual existence of some thing in the physical
world. i

132 Chapter 4: Environmental Faults: A Detailed Case Study

There is a structural hierarchy within this top-level class: an object of the class
TrainSetSystem is composed of a cooperating collection of other objects. In this
kind of structural hierarchy, lower-level objects are hidden in the implementation
of the enclosing object. It would be a bad design decision to make directly
visible instances of all the object classes that we listed earlier. Such decision
would increase complexity, since many of these objects are at different levels
of abstractions. A better design decision is to review the list of object classes
and select only those which correspond to the elements at the highest level of
abstractions. As a consequence, we have decomposed the object model for the
train set system into four modules: train set, controller, board and train, which
are described in detail in the following sections.

4.4.1.2 Train Set Module

Figure 4.9 illustrates the top-level object model diagram. The class TrainSetSys-
tem has a single instance that has an operator interface and a controller. Thus,
we show that the class TrainSetSystem is composed of the classes Operatorlnterface
and Controller. Figure 4.9 also shows the cardinality of the associations: there is
exactly one operator interface and controller. Similarly, each operator interface
and controller belongs to the same train set system.

TrainSet
System

Q

Operator
Interface

Controller

Figure 4.9: Train Set Module

The class Controller should pass messages to the class Operatorinterface, and the
class Operatorlnterface should pass messages to the Controller instance. Figure 4.9
captures this design decision clearly; it shows that the pair of these classes is
associated with each other. For instance, the operator create trains, specify how
trains should be first located, where they should go, what precautions should be
taken against collisions, what allowances made for possible environmental faults
(e.g., sensors and connectors) and when to start and stop the system. On the

Section 4.4: Analysis of the Basic Model 133

other hand, the controller should report to the operator the current train position,
and also inform the operator if something exceptional occur, e.g., if an unexpected
sensor is triggered or if an expected sensor triggering did not occur.

o

4.4.1.3 Controller Module

Figure 4.10 shows the controller module. The class Controller has a single instance
which encapsulates the Marklin interface, the physical layout of the train set (i.e.,
the board), the mimic diagram and trains. In other words, the controller is the
central part of the system, which is broken down into many control objects, such
as, train controllers (one for each train) and board controller. Thus, we show that
the class Controller is associated with the classes Marklininterface, Board, Mimic
and Train. The class MarklinInterface represents the low-level interface provided
by the Marklin hardware. The class Mimic shows the train layout and any relevant
state information, e.g., about sensors and switch settings. The class Board defines
the detailed representation of the train layout. The class Train represents trains
moving around the board.

Controller
1+
L.) 1+ Marklin
Mimic Train Interface Board

Figure 4.10: Controller Module

More specifically, the controller has exactly one Marklin interface, board and
mimic diagram, and a number of train controllers. Similarly, each Marklin inter-
face, train, board and mimic diagram belong to the same controller. The class
Controller should pass messages to objects of the classes MarklinInterface, Board,
Mimic and Train, and objects of the classes Marklininterface, Board, Mimic and
Train should also pass messages to the Controller instance. Therefore the class
Controller should be mutually visible to the classes MarklinInterface, Board Mimic
and Train. In a similar fashion, each pair of classes Mimic and Train, Train and
MarklinInterface, Board and Marklininterface are mutually visible to each other.

134 Chapter 4: Environmental Faults: A Detailed Case Study

For example, the implementation of the class Train should see the interface of the
classes Controller, MarklinInterface and Mimic. A train passes messages such as
lockSection and releaseSection, which are defined in the class Controller. A train
also passes messages such as updateTrainPosition, which is defined in the class
Mimic. A train also send messages such as setSpeed to change its speed, which
is defined in the class Marklinlnterface. In a similar way, the class Board passes
messages such as setDirection, which is defined in the class Marklininterface, in
order to change the direction of a switch.

4.4.1.4 Board Module

Figure 4.11 shows the board object model diagram with associations. The class
Board is an aggregation of its sections, which are in turn aggregations of their
stations (that is, sensors) and connectors (e.g., switches). As mentioned earlier,
a section is a directed link of railway tracks between two adjacent stations. Each
section, delimited by two adjacent stations, can contain a sequence of zero or
more connectors (Figure 4.12). Connectors and stations are linked to each other
through pieces of railway tracks which are called edges. The direction of a section
s is defined as being from its tail station ¢ to its head station A. For instance, in
Figure 4.12 the section defined by the two adjacents stations A and B is different
from the section that links B to A. Thus, a section is associated with its opposite
section. The one-to-one association oppositeSection in Figure 4.11 shows this
relationship.

An important notion related to connectors is their guiding points. A guiding point
is an imaginary point near a connector tip. There are three types of connectors:
crossing, endpoint and switch. (Figure 4.13). A crossing is a static kind of
connector which cannot be controlled. An end point is a terminal connector of in
the board. A switch is a connector that has two controllable directions: straight
and curved. There are two kinds of switches: point and crossover. A point switch
has three guiding points, while a crossover switch has four guiding points. A
crossing has also four guiding points whereas an end point has just one. Each
guiding point of a connector is connected to an edge. This is represented by the
association between the class Connector and Edge in Figure 4.11; each connector
is associated with one to four edges, conversely, each edge can be associated with
zero to two connectors.

Station is an infra-red sensor used for train location. In the actual board there
are some sensors which are located at the middle of connectors. However, such
sensors are not eligible to be stations since they cannot determine which path

Section 4.4: Analysis of the Basic Model 135

Board

? I oppositeSection

Section

<
2 [.

Station Connector

0-2 0-2

Edge
2. § 1-4

Figure 4.11: Board Object Model with Associations

section BA
< ——————————————————————
. edge edge edge .
statio: \/ </ station
A L ZAY AN ® =
connector connector
—————————————————————— o
section AB

Figure 4.12: Example of a Section

136 Chapter 4: Environmental Faults: A Detailed Case Study

v

gpl ~—r gp3
straight gp2 curved

: d
cu:ed\ curve

gp3 go2 4~ 8
(a) Point (b) Crossover

o ep2 gpd
(c) End Point (d) Crossing

gpl

Figure 4.13: Kinds of Connectors

was taken by the train. The blue board contains 48 sensors, the green board
contains 64 sensors and the red board has 48 sensors. All these sensors can be
identified by labels in the layout. The signal of a sensor should be represented by
“0” when a train has passed over it; otherwise it should be represented by “1”.
Experiments have shown that a sensor may be erroneously triggered, so a read-in
“0” signal does not always represent a real detection signal. Fach sensor is always
associated with two edges. This is represented by the association between the
class Station and Edge in Figure 4.11; conversely, each edge can be associated
with zero to two stations.

Figure 4.14 shows the board object model diagram that represents the board
abstraction. Connectors are classified into several different subclasses: EndPoint,
Crossing and Switch. The subclass Switch, in turn, can be classified into differ-
ent subclasses: Point and Crossover. We group the classes Connector and Station
under the abstract superclass Vertex. More generally, a edge connects two adja-
ccent vertices, which can be either a station or a connector. We also group the
classes Edge, Vertex and Section under the abstract superclass BoardThing, which
represents all the elements that compose a board.

As mentioned earlier, the controller is responsible for answering queries about
what sections a given section leads directly to. The next sections of a section
is an important notion concerning the train set structure. Given a section s
with a tail station ¢ and a head station A, the next sections of s are defined
as the sections whose tail station is h. For instance, Figure 4.15 illustrates a

Section 4.4: Analysis of the Basic Model 137

BoardThing
B |]
o
Edge Vertex Section
Solid it
Connector Station S?e étion Pa-sl‘;::‘zicgll_led
EndPoint Crossing Switch
Point Crossover

Figure 4.14: Board Object Model with Inheritance

portion of the physical layout topology, which contains four stations stationA,
stationB, stationC and stationD, one switch crossover called crossover!, and two
switch points labelled point2 and point3). We can identify the sections described
in Table 4.2. For instance, the next sections of the section currently occupied
by the train (whose head station is stationA) are sectionl, section3 and sections.
The opposite sections of sectionl, section3 and section’ are, respectively, section?,
section and sectionb.

Section | tailStation | headStation paih
sectionl | stationA stationB crossoverl (straight), point3 (straight)
section2 | stationB | stationA point3 (straight), crossoverl (straight)
section3 | stationA | stationD crossoverl (curved), point2 (curved)
sectiond | stationD stationA point2 (curved), crossoverl (curved)
sectionb | stationA | stationC crossoverl (curved), point2 (straight)
section6 | stationC | stationA point2 (straight), crossoverl (curved)

Table 4.2: Examples of Sections

After this explanation, we can identify two different kinds of sections in the board,
namely, solid and partitioned sections. A solid section has next sections while a
partitioned section does not have a next section. Figure 4.16 shows an example

138 Chapter 4: Environmental Faults: A Detailed Case Study

N

direction
> | hY
I Y
| \
‘: stationB
stationA crossoverl point3
t
]
\pointZ
\
N
N .

| stationD

. C ! \‘\

station ‘ N

i

Figure 4.15: Example of Next Sections of a Section

of a typical partitioned section found in the train set layout. As a consequence,
when the train occupies a partitioned section, the controller is responsible for
stopping and reversing the train before hitting the end point. Thus, sections are
also classified into two different subclasses: SolidSection and PartitionedSection,
as shown in Figure 4.14.

end point .
station
l ! edge @ ---%dse .

< ——————————————————————
section x

Figure 4.16: Example of a Partitioned Section

Figure 4.17 describes the final object diagram model for the board module with
associations, inheritance, attributes and operations, which is a union of the figures
4.14 and 4.11. The class Section defines the attribute access that shows if a section
is free, locked or occupied, a pair of adjacent stations defined by the attributes
headStation and tailStation, the set of connectors settings that defines the section
represented by the attribute path, and, finally, a pointer to a section object which
defines its opposite section (oppositeSection). The class Section also defines the
operations to lock (lock), release (release) and occupy (occupy), which change the
access value of a section object.

Section 4.4: Analysis of the Basic Model 139

BoardThing Board
'id
Edge
vertexl Vertex
vertex2
1-4 2
1 0-2
Station
edgel
edge2
0- 2
access .
he,Tdstatlon
tailstation
path
oppositeSection 0pposite
{-% é(ase Section
QCCUDY,
Switch Solid Partitioned
; i i ol artitione
EndPoint Crossing direction Section sutlone
setDirection
Point Crossover

Figure 4.17: Board Module with Associations, Inheritance, and Some Attributes

and Operations

140 Chapter 4: Environmental Faults: A Detailed Case Study

N

The class Connector defines the attribute access which indicates if a connector is
free or locked, as well as operations lock and release to change the access value. A
connector also contains guiding points defined by the attributes gp1, gp2, gp3 and
gp4, which represent the edges. Depending on the kind of connector, the number
of guiding points can be 1, 3 or 4 (see Figure 4.13). The class Switch is a kind of
Connector, which has a direction straight or curved, as specified by the attribute
direction, as well as an operation setDirection to change the direction value.

The class Station defines two edges edgel and edge? which a station object is
connected to. In a similar way, the class Edge defines two vertices vertexl and
vertex2 which a edge is connected to. All the entities of the board have an
identification, as specified by the attribute id defined by the class BoardThing.

4.4.1.5 Train Module

Figure 4.18 illustrates the train module. The class Train has many instances,
each one representing a train moving around in the board. The class SensorPoller
has a single instance, which is visible for all train objects, as specified by the
one-to-many association between SensorPoller and Train. The class SensorPoller
reports to a given train the event caused by an expected sensor being triggered.
There is also a one-to-one association between SensorPoller and Marklininterface.
The class SensorPoller should pass messages to the MarklinInterface instance, such
as readSensor and readAllSensors, which are defined in the class Marklinlnterface.

1+ Sensor Marklin

Train
Poller Interface

Figure 4.18: Train Module

As far as the safety of the train set system is concerned, the notion of control
zone of a train is very important for avoiding train collisions. The control zone
of a train is defined as being the front region acquired by a train, i.e., all sections
locked ahead of the train. Each train has a control zone, and it is responsible
for setting its route within its control zone. So a train knows what it is the next
station to be triggered. When an unexpected sensor is triggered, the train will
signal an exception.

We associate with control zone the notion of levels (see Figure 4.19). The first
level holds information of the next sections of a given section. The second level

Section 4.4: Analysis of the Basic Model 141

first second

level level
<> e — >

/
_-‘ stationB

stationD

stationE

stationF

stationG

stationH

Figure 4.19: Example of a Control Zone with Two Levels

holds information of the next sections of each section of the first level, and so
on. If we assume that sensors and switches are reliable devices, as it is the case
of the basic model, it suffices to build a one-level control zone. Moreover, it is
not necessary to acquire all the next sections of the current section of a train; it
suffices to lock just one front section, chosen randomly by the train. Since switch
and sensor faults are supposéd not to occur, the control zone does not need to be
enlarged to encompass all possible deviations of the route.

So each train before it starts moving should build a proper control zone, according
to the assumptions made. This notion of control zone plays an important role
in the detection and recovery of environmental faults by the train, and we will
return to it again in Section 4.6.

4.4.2 Dynamic Model

The dynamic model specifies allowable sequences of changes to objects from the
object model. The dynamic model represents control information: the sequences
of evéhts, states, and operations that occur within a system. A state diagram
describes all or part of the behaviour of one object of a given classes. Usually
events can be represented as operations on the object model. In summary, we
perform the following steps in constructing an dynamic model:

1. prepare scenarios of typical interaction sequences.

142 Chapter 4: Environmental Faults: A Detailed Case Study

N

2. identify events between objects and prepare an event trace for each scenario.
3. prepare an event flow diagram for the system (message change).

4. build a state diagram for each class that has an important dynamic behav-
ior.

5. check for consistency and completeness of events shared among the state
diagrams.

We begin by looking for events which are externally-visible stimuli and responses.
If necessary, then we summarise permissible event sequences for each object with
a state diagram. In our case, we concentrate on producing events flow diagrams
between the various classes of the object model, since the classes have a relatively
straightforward dynamic behaviour. Figure 4.20 summarises the main events
between classes, without regard for sequence.

Operator
Mimic Interface
UpdateTrainPosition r?m°"f%"a.m reportSwitchStatus
tnsert lrain reportSensorStatus
startSystem
stopSystem
. occupy
occupySection
releaseSection lock lock
lockSection elease release
Train Controller Section Connector
start
sto
notify mo{r)e startSystem
event reverse stopSystem
- Marklin
setSpeed Interface
setLight
read AllSensors
readSensor
SensorPoller

Figure 4.20: Event Flow Diagram for the Train Set System

4.4.3 Iterating the Analysis

The goal of the analysis is to fully specify the problem and problem domain with-
out introducing any detail of a specific implementation. In practice, however, it

Section 4.4: Analysis of the Basic Model 143

is sometimes difficult to avoid all details of implementation. Usually the analysis
model requires more than one pass to complete, and this was the case for the
train set. The train set analysis presented above was iterative and the model was
refined many times as our understanding of the problem increased.

Along the route of the analysis, many inconsistencies and imbalances were found
in the models. However, the iterations of the different stages have produced a
cleaner, more coherent design. Moreover, some alternate designs were tried and
evaluated. For instance, our initial idea was to define lockable blocks of tracks
instead of sections. However, this idea turned out to be inefficient. For example,
considering the portion of the green board illustrated in Figure 4.21, if a train
acquires the whole block in the first place but its route uses just one of the straight
lines, then we have allocated too much resources.

Crossover
crossover

station
Crossover

station

crossover

Figure 4.21: Portion of the Green Board

Furthermore, during the process of analysis, we have not identified all the ab-
stractions described in this Section at the same time, that is, the abstractions
were identified gradually according to our necessity and better understanding
of the problem. For instance, during earlier stages of the analysis we have just
worked with the section abstraction, ignoring its different kinds (that is, solid
and partitioned section). Only later on, in the final iterations of the analysis, we
have incorporated the notion of two different kinds of section.

144 Chapter 4: Environmental Faults: A Detailed Case Study

N

4.5 Design and Implementation of the Basic
Model

During object design, the analysis model is refined and it is provided a detailed
basis for implementation. We extend the object models that we have produced
during analysis to include associations and attributes that objects require for
internal processing. However, most of the design is simple and a direct imple-
mentation of the analysis model.

A first prototype of the train set system has been implemented using the C++
programming language[150]. The language was chosen mainly because it is a
widespread language which supports the essential principles of object orientation,
such as, single and multiple inheritance, generic functions and classes, etc. In
addition, the language also supports exception handling, although this feature is
still not generally available in the market for UNIX platforms.

Table 4.3 shows some measurements of the C++ classes developed during the
implementation of the basic prototype. Application-specific classes are, for in-
stance, Controller and Train, whereas examples of basic classes are List, String
and Exception. The implementation of the mimic diagram was developed in an
independent project by Leroux[92], and then, later on, integrated to the train set
system. The mimic was implemented using Tcl/Tk package, which consists of
an independent basis interpreted language, called Tcl, with a powerful XWindow
library (Tk) attached to it.

Levels Number of Classes | Number of Lines (appr.)
Application-specific classes | 11 2300
Basic classes 4 1000
Mimic Diagram 1 2800
Total 16 6100

Table 4.3: Basic Prototype of the Train Set System

Now we exemplify the implementation of the train set system by presenting two
interface classes of the system: the controller and the train.

Section 4.5: Design and Implementation of the Basic Model 145

Controller Implementation

The controller is the most important class of the train set system, and its main
function is to control trains and switches settings of the board. However, be-
cause we have carefully separated the state space of the system and distributed
behaviour into independent objects, the implementation of the controller was
relatively simple.

In other regards, the controller was broken down into many control objects, and
it manages information regarding the railway layout, the mimic diagram and
the Marklin interface. In addition, the controller interacts with a number of
train controllers (one for each train), instructing them to start their journeys and
providing assistance when necessary (e.g., stop trains before running into buffers).
There are also a number of section objects (one for each section of the board),
which handle reservations, as and when requested by the train controllers. So
the controller instance holds a list of all trains, a list of all objects in the layout
(mainly stations, connectors and sections), and also, information about what
sections a given section leads directly to.

The interface for the class Controller is based upon the design decisions that we
have already made, and it is partially presented in the following class declaration

in C++:

class Controller {

private:
List<TrainEntry> trainList; // list of trains
List<ThingEntry> stalist; // list of stations
List<ThingEntry> conList; // list of connectors
List<ThingEntry> secList; // list of sections

List<NextSectionEntry> nexList; // list of the next sections a section

void parse();

Vertex* createVertex(Edge *e);

Vertex* createStation(Edge *edge, int 1b);

Vertex* createConnector(Edge *edge, int 1lb, char kindCon);

void createSection(Section *sc, int 1b);

void oppositeSections();

void insertControlZone(int sId,int hId,List<ControlZoneEntry>*& lcz);

void isSectionFree(int tr, int& b, int sectionld);

void getSectionObde(int sectionId, Section*& sc);

void getNextSections(int key, List<NSectionEntry>*& lns);
public:

Controller ();

146 Chapter 4: Environmental Faults: A Detailed Case Study

N

“Controller ();
void insertTrain (.
void removeTrain (.
void startSystem (..);
void stopSystem (..);
void lockNextSections (..);
void lockSection (..);
void releaseSection (..);
void occupySection (..);
void getSectionId (..);

};

DF
D

2

Train Implementation

Based upon the design decisions expressed in the event flow diagram in Fig-
ure 4.20, we can complete the interface of the class Train, which is summarised in
Figure 4.22. Each engine in the layout has a corresponding control object in the
application software. Each train controller has an identification and speed. They
also have a backSection and frontSection, corresponding to the links of tracks
locked behind and ahead, as a security measure to avoid train crashes. Thus,
in the basic model, the control zone of a train is composed by the front section.
The attribute currSection represents the section currently occupied by the train.
The basic movement of a train is to travel between stations, locking a new front
section and releasing its old back section.

Train

identification
speed

currSection
frontSection

backSection
start

stop

move
reverse

Figure 4.22: Train Class

If, for any reason, a train cannot begin or continue its journey, a default failure
exception is signalled to the controller. One possible problem is that a train may
be unable to reserve a section because some train is already using it. In this case,
the train will stop and wait until the section is free.

Section 4.6: Extending the Basic Model 147

4.6 Extending the Basic Model

According to Booch[20], the evolution of a system in the object-oriented soft-
ware development life cycle unifies the tradition/al aspects of coding, testing and
integration. The object-oriented development process results in the incremental
production of a series of prototypes, which eventually evolves into the final im-
plementation. Examples of evolutionary changes made during the evolution of
a system may include: addition of a new class, change of implementation of a
class and reorganization of the class structure. The maintenance of a system,
on the other hand, involves activities a little bit different from those executed
during the evolution. Maintenance concerns the addition of new functionality or
modification of some existing behaviour. If the original object-oriented design is
well structured, adding new functionality or modifying some existing behaviour
should come naturally. So one indication of a well-structured complex system is
that it is resilient to changes.

We have come to the end of our design for the basic prototype of the train set
system (see Table 4.1). Now in this section, we consider some improvements to
the functionality of the system and discuss how our design withstands the changes
of requirements. Our main concern is to build a system which supports tolerance
of environmental faults. Up to now, we have discussed the normal behaviour
phases of objects. From now on, we discuss their abnormal behaviour phases
related to environmental faults. The rest of this section is structured as follows.
Section 4.6.1 describes the failure analysis for the train set. Section 4.6.2 discusses
the mechanisms utilised in the train set system to provide fault tolerance.

Section 4.6.3 deals with the addition of new requirements concerning the tolerance
of switch and sensor faults. Following that, we add more new requirements to
our design. In Section 4.6.4 we move our design to the Marklin system with
real sensors and switches. Section 4.6.5 reviews the implementation of the class
Section. Section 4.6.6 considers a fundamental change in the requirements, that
is, distributed boards, and finally, Section 4.6.7 shows the final prototype.

4.6.1 Failure Analysis for The Train Set

We have considered so far the normal or desired behaviour phases of objects.
Now we discuss the abnormal behaviour phases that includes the notions of en-
vironmental faults, failures, and errors. The investigation of abnormal behaviour
phases is termed failure analysis[137], and it is highly problem-dependent. The
train set is an example of a process control application. In this kind of applica-

148 Chapter 4: Environmental Faults: A Detailed Case Study

tion, the main goal is usually to maintain or recover control of a physical process
or plant. Abnormal behaviour phases are formalised in state diagrams in the
same way as is the normal behaviour phases. In general, abnormal behaviour
phases can be very complex, and the models become correspondingly larger and
more complicated as more and more abnormal cases are considered. A key point
to keep such complexity under control is to have a well-structured and extensible
design. In this thesis, we argue that a clear and nice way of achieving this is to
use delegation.

A key issue in extending the state diagrams to cover the abnormal behaviour
phases is to identify the sources of failures. Two approaches are proposed: one
based on examining the external process, and one based on a systematic walk
through of the analysis. In the former, some of the aspects to be considered in
looking for sources of failures in the external process are:

e equipment failure or malfunction,
e personnel error,
e sensor failures, and
e actuator failures.
In the latter, we can frequently identify sources of failure by examining the “nor-

mal behaviour phases” of the dynamic model in a systematic fashion. In the case
of the train set, switches and sensors are the unreliable elements of the layout.

4.6.1.1 Fault and Failure Assumptions

The definition of the sensor and switch faults is crucial because it is the basis for
the provision of fault tolerance. Although switches and sensors do not exhibit a
complex behaviour, it is not straightforward to define their fault types.

A sensor is normal if it outputs correct detection signals, that is, the bit in the
decoder corresponding to a given sensor is set to “1” if a train passes on this
sensor, and this bit is reset to “0” when it is read in; otherwise the sensor is said
to be faulty. We choose to identify three types of sensor faults:

(1) stuck-at_0 when a sensor always outputs the “0” signal.

(ii) stuck_at_1 when a sensor always outputs the “1” signal.

Section 4.6: Extending the Basic Model 149

(iii) uncertain fault which represents any other faulty state of a sensor which
has not been previously identified.

In this fault taxonomy, all faults are simply classified as uncertain, with the
exception of the stuck-at faults. :

As far as switch faults are concerned, we again choose to identify three types:

(i) stuck-at.straight when a switch has a fixed guidance at the straight position.
(i) stuck_at_curved when a switch has a fixed guidance at the curved position.

(iii) unfized_guidance which represents any other faulty state of a switch which
has not been previously identified.

The basic assumptions of the failure analysis that we have made for the train set
can be summarised as:

e Switch faults: fixed and unfixed guidance faults.
e Sensors faults: stuck-at-0, stuck_at_I and uncertain faults.

e All elements or devices of the train set are reliable, except sensors and
switches.

e The status of any sensor or switch is unknown before the trains start run-
ning.

e We assume that two successive faulty sensors along a train’s route do not
occur.

4.6.2 Environmental Fault Tolerance

Generally speaking, fault tolerance is essential for applications that require ex-
tremely high levels of availability or re.lia,bility. The achievement of fault toler-
ance is impossible without redundancy. All fault tolerance techniques depend on
redundancy being added to the system. Following Lee and Anderson[91], redun-
dancy involves the use of extra elements in the system which are redundant in
the sense that they would not be required if the system could be guaranteed to

be free from faults.

150 Chapter 4: Environmental Faults: A Detailed Case Study

Y

In the case of the train set, achieving tolerance of environmental faults involves
two issues:

e How should we manage the interactions between trains and sections so that
the former are unaware that some of the sections may be faulty?

e How can we reconfigure the system properly to sustain this illusion despite
the occurrence of further environmental faults?

The first issue is related to error detection and recovery while the second one
is related to fault treatment. In some situations, it may be sufficient to deal
with errors; however, a more comprehensive approach to fault tolerance will also
provide fault treatment in order to eliminate the sources of errors. Fault treatment
involves fault diagnosis and system configuration. Fault diagnosis locates the
fault and then decides which kind of fault has occurred. After fault diagnosis, we
perform the system configuration/repair by switching an appropriate behaviour
variant for the faulty object.

4.6.2.1 Error Treatment

The starting point for all dynamic fault tolerance strategies is the detection of
an erroneous state. In the case of the train set, a train is capable of detecting
an error in its current position based on an exception handling mechanism. As
mentioned earlier, each train has a control zone associated to it and each train is
responsible for setting its route within the control zone. So a train knows what is
the next station to be triggered. When an unexpected sensor is triggered outside
its control zone, the train will signal an exception to the controller.

After an error has been detected it is then necessary to remove the errors from the
system state by means of error recovery techniques. For the train set application,
we have applied forward error recovery; when a train detects that its route has
been deviated, it tries to set a new route within its control zone in order to recover
from the error. We will return to this point later on in this Section, explaining
with more detail the error treatment performed by the train.

4.6.2.2 Fault Treatment

Errors are the symptoms produced by a fault, so although error treatment can
remove the immediate danger of a system failure, such as, train crashes, it is still

Section 4.6: Extending the Basic Model 151

necessary to treat the fault to prevent it from continuing to damage the system
state. Only if the fault is transient, or if the system can cope with recurrent fault
manifestations, will error treatment suffice.

Some assessment must be made of the fault’s lpcation before a system can deal
with a fault. In our application, a train signals an exception to the Controller,
which in turn, signals an exception to the train set operator reporting the error.
A diagnostic check of connectors and sensors belonging to the train’s control zone
should be performed to identify the faulty component(s). In fact our diagnostic
check of the control zone relies on manual intervention. (An automatic fault
diagnosis program for the train set has been implemented some time ago by
Zhou[164], but not in an object-oriented fashion; no attempts have been made to
incorporate this program into our system.)

The fault location phase results in the identification that one or more components
are faulty. Then system repair consists of performing some configuration. For this
to be possible the interconnections between should be dynamically switchable.
Our reconfiguration strategy consists of encapsulating the abnormal behaviour
phases of “faulty” entities as objects, and developing stand-by variants of this
abnormal behaviour phases to replace the behaviour implementation of “faulty”
components. The abnormal behaviour variants are statically defined, and runtime
access to them is implemented through the delegation concept. Thus specific
reconfiguration of components can be easily incorporated to a software system
for the tolerance of environmental faults.

In the train set system as soon as a moving train detects a deviation of its
route, the train signals an exception to the Controller. One possible strategy for
implementing the fault location phase is first to isolate the portion of the layout
used by the train. (This means that this portion of the layout is temporaly not
in use, and the trains continue to move in the restant of the layout.) Then the
components within this portion are manually checked to discover which are the
faulty one(s). Once the faulty components are identified, the operator initiates
the system reconfiguration, and as soon as it is finished, the isolated portion of
the layout is back in use.

Our approach has the ability to reconfigure the system on-line, so precautions
should be taken to ensure that the switching mechanisms are not activated acci-
dentally. Once the faulty components are identified, the train set operator should
start the process of reconfiguration by reporting to the controller the list of faulty
components. The controller then performs the adequate reconfiguration. In the
following sections we introduce some fundamental changes in the requirements of
the system, and show how our design is resilient to them.

152 Chapter 4: Environmental Faults: A Detailed Case Study

N

4.6.3 Tolerating Environmental Faults

The adoption of a structured approach to the design of systems is widely recog-
nised as being fundamental if the system complexity is to be controlled and min-
imised. In designing fault tolerant systems, the issue of controlling complexity
is critical; an unstructured approach would decrease the system’s reliability by
introducing more faults than those treated by tolerance, so that the original aim
of providing fault tolerance would be defeated.

The idealised fault tolerant component[91] provides an approach for incorporating
fault tolerance into a system in a clean and modular manner, minimising the
impact on system complexity. Three kinds of exceptional situation are identified:

Interface Exceptions which are signalled when the interface checks determine
that an invalid service request has being made to a component.

Local Exceptions which are signalled when a component believes that it has
detected an error which is own tolerance provisions can deal with.

Failure Exceptions which are signalled when a component notifies the system
that, despite the use of its own fault tolerance capabilities, it has failed on
providing the service requested, but the component reports its failure.

The train set system has been built based on this concept of the idealised fault
tolerant component. In our approach, a real-world entity may be modelled by
several objects, each one representing a variant of its behaviour, i.e., a differ-
ent behaviour implementation. The set of variants is determined by the state
hierarchy associated with the entity’s class hierarchy. Each transmutable class
implements an idealised fault tolerant component.

4.6.3.1 Tolerance of Switch Faults

The occurrence of an electro-mechanical fault in a switch of the physical layout
changes its behaviour phase. As a consequence, its corresponding switch object
in the solution domain should also modify its behaviour phase. As soon as the
faulty entity is repaired the object is supposed to return to its normal logical
state. Transmutable objects can also be applied to model this phenomenon as
in the example shown in Chapter 3. State classes allow the description of state-
specific properties, and also permit the programmer specify properties common
to a group of states using generalisation. Figure 4.23 shows the class Switch and

Section 4.6: Extending the Basic Model 153

Switch SwitchState
/ \ / \
Point Crossover SwitchNormal SwitchAbnormal
/ I \

SwitchAbnormalStr SwitchAbnormalCur SwitchAbnormalUnf

Figure 4.23: Parallel Class Hierarchies for Switch

its corresponding parallel fault hierarchy. A switch can be either in a normal or
faulty state. A faulty switch can suffer three types of faults: stuck_at_straight,
stuck_at_curved and unfized_guidance.

To implement such a change of requirement, only the implementation of the class
Switch needs to be altered, but its interface remains unchanged. First, we have to
create the new SwitchState hierarchy to model the different behaviour phases of a
switch. Then we have to delegate the execution of the method setDirection() to an
appropriate variant. Thus, the same abstractions and mechanisms still apply in
our design; we have only added the abnormal behaviour phases in an incremental

way.

From Analysis to Design. Figure 4.24 shows a partial state diagram for the
Connector hierarchy. The class Switch inherits the state diagram of its parent class
Connector. A switch can be in SwitchNormal or SwitchAbnormal. To be in Switch-
Abnormal, a switch must be in either SwitchAbnormalStr, SwitchAbnormalCur, or
SwitchAbnormalUnf.

Consider the object model for the switch hierarchy as shown in Figure 4.25. The
refinement of the object model with state classes for the explicit representation
of the switch states is shown in Figure 4.25. Refining the object model with
state classes would provide a clearer picture of the faulty states of a switch.
Method code now very clearly follows the state and the stateclass descriptions.
The traditional object-oriented approach would bury the state diagram within
the coding of the methods of the Switch class instead of representing such states
explicitly in the object model.

From Design to Implementation. A direct implementation of the class Switch
described in Figure 4.25 is shown below. The methods are defined in a per-state
base, rather than using large case statements at the level of the Switch class.
The access to currentState is performed through the operations getMode() and
putMode(). The implementation of the operation setDlrectlon() in the class Switch
is delegated to the currentState object.

154

Chapter 4: Environmental Faults: A Detailed Case Study

N

Connector
Connector Connecto
lock —
release .
Switch Connector
direction Normal
setDirection

ConnectorAbnormal

Switch Switch
AbnromalStr AbnormalUnf

Switch
AbnormalCur

Figure 4.24: State Machine for Connector Hierarchy

Section 4.6: Extending the Basic Model 155

Connector
Connector Faes
delegate-to Tock
lock release
release /\
Connector Connector
Normal Abnormal
lock lock
release release
Switch . SwitchState
direction delegate-to
setDirection setDirection
Switch, Switch
Normal Abnormal
setDirection setDirection
Switch Switch Switch

AbnromalStr || AbnormalCur || AbnormalUnf

Figure 4.25: State Hierarchies for Connector and Switch

156 Chapter 4: Environmental Faults: A Detailed Case Study

N

enum SwitchSt {SW_NORMAL, SW_ABNORMAL, SW_ABNORMAL, SW_ABNORMAL_CUR,
SW_ABNORMAL_STR, SW_ABNORMAL_UNF};
enum DirectionType {STRAIGHT, CURVED, NNUULL};

class Switch: public Connector

{
friend class SwitchState;
friend class SwitchNormal;
friend class SwitchAbnormal;
friend class SwitchAbnormalStr;
friend class SwitchAbnormalCur;
friend class SwitchAbnormalUnf;

private:
SwitchState *currState;
SwitchNormal *normal;
SwitchAbnormal *abnormal;

SwitchAbnormalStr *str;
SwitchAbnormalCur *cur;
SwitchAbnormalUnf *unf;
DirectionType direction;

OpHistory* putDirection(DirectionType dir); -
void putMode(SwitchSt m);
public:
Switch(); // creation of all interface objects
“Switch(); // deletion of all interface objects

OpHistory* setDirection(DirectionType dir){
OpHistory* oph = new OpHistory;
*oph += currState->setSwitch(this,dir);
return oph;

)

void getMode(SwitchSt& m){
currState->getMode(this,m);

¥

OpHistory* lock(DirectionType dir);
s

The implementation of the SwitchState hierarchy is as follows:

class SwitchState {

Section 4.6: Extending the Basic Model 157

public:
SwitchState();
“SwitchState();
virtual OpHistory* setDirection(Switchx sw, DirectionType dir)=0;
virtual void getMode(Switch* sw, SwitchSt& m)=0;

};

class SwitchNormal: public SwitchState {
public:
OpHistory* setDirection(Switch *sw, DirType dir){
sw->putDirection(dir);
MarklinInterface->setDirection(dir);}

void getMode(Switch* sw, SwitchSt& m) {
m = SW_NORMAL;
}
};

class SwitchAbnormal: public SwitchState {

public:
virtual void setDirection(Switch *sw, DirType dir){
signal FAULTY_SWITCH();}

void getMode(Switch* sw, SwitchSt& m) {
m = SW_ABNORMAL;
¥
Y

The substateclass SwitchNormal implements the normal service of the operation
setDirection(), while SwitchAbnormal implements the abnormal one. The state.
classes derived from SwitchAbnormal which are able to accept an operation must
reimplement this function, as shown below:

class SwitchAbnormalStr: public SwitchAbnormal {
public:
virtual OpHistory* setSwitch (Switch* sw, DirType dir){
OpHistory* oph = new OpHistory;
if (dir == STRAIGHT)

{
*oph += sw->putDirection(STRAIGHT);

return oph;

};

158 Chapter 4: Environmental Faults: A Detailed Case Study

~

xoph += SwitchAbnormal::setSwitch(sw,dir);
return oph;

}

void getMode(Switch* sw, SwitchSt& m) {
m = SW_ABNORMAL_STR;
}
¥

class SwitchAbnormalCur: public SwitchAbnormal {
public:
virtual OpHistory* setSwitch(Switch* sw, DirType dir){
OpHistory* oph = new OpHistory;
if (dir == CURVED)
{
*oph += sw->putDirection(CURVED);
return oph;
};
*oph += SwitchAbnormal::setSwitch(sw,dir);
return oph;

3

void getMode(Switch* sw, SwitchSt& m) {
m = SW_ABNORMAL_CUR;
}
1

class SwitchAbnormalUnf: public SwitchAbnormal {
public:
void SwitchAbnormalUnf::getMode(Switch* sw, SwitchSt& m) {
m = SW_ABNORMAL_UNF;
X
Y

Extending the Class Train

The discussion so far concerns modifications to perform the treatment of environ-
mental faults. Now we discuss the modifications required to implement the error
treatment performed by the train, which includes error detection and error recov-
ery. First, we create a new class, FTConTrain, to model a train which can detect
and recover from switch faults (Figure 4.26). The class FTConTrain inherits from
Train, and redefines the move() method. The class Train remains unchanged.

Section 4.6: Extending the Basic Model 159

Train

A

FtConTrain

Figure 4.26: Train Hierarchy Extended with Connector Faults

The Train::move() method implements a simple movement of the train around
the layout since we assume that all switches and sensors are reliable elements. In
this case, it suffices to acquire just one front section to guarantee that a crash
would not occur since the layout devices are reliable. However, if we assume
that switches may be faulty, a train should acquire all the next sections of its
current section in order to maintain its control. If a switch fault occur the train
might be deviated from its original path. As a consequence, it is necessary to
lock all alternative sections that the train might use. So the notion of control
zone plays a fundamental role in the recovery algorithm of the train. The class
FTConTrain supports an appropriate set of data structures and operations for
the representation of the control zone. Basically, the control zone is a linked list
containing references to section objects and holding the necessary information
about the next sections.

If we assume that sensors are reliable devices, it suffices to create a two-level
control zone to tolerate switch faults. Each train has an assigned route within its
control zone. If a train deviates from its original route, that is, an unexpected
sensor belonging to its control zone is triggered, the train recovers its current
location according to the new location indicated by the triggered sensor. So each
train handles its journey by reserving and releasing portions of its control zone as
it proceeds. If a train is unable to build its control zone because some other train
is already using it, a failure exception will be signalled to the layout controller
and the train will stop. Similarly, if a train cannot begin its journey because
its control zone is incomplete, a failure exception will be signalled to the layout

contreller.

4.6.3.2 Tolerance of Switch and Sensor Faults

We assume now that switch and sensor are both unreliable devices of the lay-
out. Our experiment consists of modifying our design which tolerates just switch

160 Chapter 4: Environmental Faults: A Detailed Case Study

N

faults to create a design which tolerates both switch and sensor faults. The main
modification in this case concerns the error treatment algorithm performed by
the train. Again, we create a new class, RobustTrain, to model a train which
travels around the board detecting and recovering from switch and sensor faults
(Figure 4.27). The class RobustTrain inherits from FTConTrain, which in turn
inherits from Train. The class FTConTrain remains unchanged.

Train

A

FtConTrain

A

RobustTrain

Figure 4.27: Train Module Extended with Connector and Sensor Faults

The class RobustTrain redefines the move method from FTConTrain to implement
a control zone with three levels instead of two. If we assume that switch and
sensor faults can occur, we need a control zone bigger than when just switches
were considered to be unreliable devices. At this point the reader should be
reminded we assume that two consecutive faulty sensors along a train’s route do
not occur. So a robust train needs to build up a control zone with one more
level than a switch-fault-tolerant train to ensure that in the case of loosing its
way, an error recovery is still possible. If we relax our assumption, for instance,
allowing two consecutive sensors to be faulty, the control zone should be enlarge
to encompass the new deviations of the train. Consequently, the algorithm for
managing the control zone becomes more complex.

In the train set, sensor signals are the only source of information about the trains’
locations, so malfunctions of sensors may be a serious obstacles to ensuring that
correct system operation is maintained.

4.6.4 Integration of the Low-Level Marklin Interface

The basic prototype of the train set system represents a completed train set
simulation, which consists of sixteen domain-specific classes (see Table 4.3). Since

Section 4.6: Extending the Basic Model 161

our design already reflects our model of reality, moving to the Marklin system with
real sensors and switches involves altering only the implementation of parts of our
design. None of the class interfaces of the basic prototype need to be changed.
In fact, it is necessary only to modify the implementation of certain classes that
lie at the bottom level of the system since we have carefully encapsulated all
representation design decisions. '

For instance, to modify the class Switch to manipulate a physical switch, we need
to modify the implementation of the method setDirection() so that it sends the
appropriate signal to the physical device. We would not have to alter the interface
of the class Switch. A similar approach applies to the class SensorPoller. Our
underlying hardware does not interrupt handling, then we have to devise a process
that polled the current value of the sensors and then passed the readSensor()
method. Again, neither the interface nor the semantics of this class change, and
therefore no other part of the design need to be altered.

4.6.5 Extending the Class Section

Now let us consider some changes in the requirements of a section. First, suppose
that we want to have a controller that is capable of reporting back to a train
the availability of a given section as soon as possible. This change is simple
to implement. Logically, we just need to alter the implementation of the class
Section. First, we must create a new state hierarchy, SectionState, to model
explicitly the states normal and abnormal of a section (Figure 4.28). Now every
time that a switch is detected to be faulty, all sections that have this section in
their path should become abnormal.

Since sections are higher abstractions than switches and sensors, if modifications
performed in lower-level abstractions are reported to higher abstractions, the
efficiency of the system is improved. On the other hand, the implementation of
the class Controller should also be altered to implement such modification. One
solution is create a dependency list of all sections, thus when a switch changes
its state, it is possible to know all sections that would require changing.

As we had mentioned earlier, a requirement of the controller is to stop trains run-
ning into buffers, i.e., end points. An egd point simply means that a section has
no next section. Figure 4.29 shows the implementation of the Section hierarchy in
our basic model. We had created two subclasses, SolidSection and PartitionedSec-
tion, both inheriting from Section. Essentially, a solid section has next sections,
and a partitioned section does not have a next section. As a consequence, when
the train enters a partitioned section, the controller should stop-and reverse it be-

162 Chapter 4: Environmental Faults: A Detailed Case Study

N

fore hitting the end point. The class PartitionedSection reimplements the method
occupy in order to ask to the controller to stop and reverse the train.

Section .
delegate-to SectionState
lock
1 lock {a stract}
release
release {abstract
occupy
SectionNormal SectionAbnormal
lock lock
release
release
Figure 4.28: State Hierarchy for Section
Section delegate-to SectionState
lock lock {a stract}
release release abstract}
occupy /\
SectionNormal SectionAbnormal
lock lock
release release
Solid Partitioned
Section Section
occupy

Figure 4.29: Section Hierarchy of the Basic Model

Now let us consider another change in the requirements. Suppose that one wants
to have a system which handles interruptions in sections, such as, a tree or a cow
in the middle of the section blocking the passage of trains. This change is easy to

Section 4.6: Extending the Basic Model 163

Section delegate-to SectionState

lock . lock { stract }

release release abstract

occupy
SectionNormal SectionAbnormal
lock lock
release release

delegate-to SectionKind
occupy {abstract }
Solid Partitioned
Section Section

occupy occupy

Figure 4.30: Alternative State Hierarchy for Section

implement using the notion of delegation and transmutable objects. The Section
hierarchy might be altered as shown in Figure 4.30.

This modification is implemented in a similar fashion as the previous implemen-
tations discussed so far, we just moved the classes SolidSection and PartitionedSec-
tion to a new hierarchy, SectionKind. The implementation of the method occupy
in the class Section is replaced by a new implementation that simply delegates the
operation to the current kind of section. We moved the original implementation
of the, method occupy to the class SolidSection, changing every instance variable
access to use the original object (which has been passed as an argument to the
message). The implementation of the method occupy in the class PartitionedSec-
tion is the same, except by the changes in the instance variable access to use the

original object.

164 Chapter 4: Environmental Faults: A Detailed Case Study

N

This simple change makes our design much more flexible. Now if a section is
blocked for some reason, the situation can be handled by switching a solid section
to a partitioned section. As with all the other changes we have made, no class
interfaces need change, which leaves us with a stable design.

4.6.6 Distributed Boards

Now let us consider a fundamental change in the requirements. Suppose that we
want to control the three boards individually, each one having its own central unit
and its own software controller. So additionally the controllers should manage the
layout distribution and also the train crossing between different boards. It should
be stressed at this point that each controller operates only on one board and it
is unaware of any activity going on in the other boards. However, the controllers
can communicate between each other, and the system supports an adequate data
structure for the representation of the section connections in the boundaries of
the layout.

At first, it seems difficult to conceive how this new requirement would fit in
our design without corrupting it. However further examination shows that this
change can be performed in an incremental way. First, we define a new kind of
section, the interconnected section, to model a section which is located at the
boundary. Then we extend the SectionKind hierarchy in Figure 4.30 by creating
a new class, InterconnectedSection, derived from class SectionKind.

In fact, one can view a section as being refined in two distinct dimensions. This
is shown with two separate hierarchies, SectionKind and SectionState. In this
particular case, the reconciliation of the dimensions can be a simple and/or com-
bination: each section is either a solid, a partitioned or an interconnected, and
either normal or abnormal. However, the addition of InterconnectedSection class
creates a dependency with SectionKind class; an interconnected section needs to
redefine the methods lock and release defined in the SectionState hierarchy to deal
with the distributed boards.

There are at least two ways of restructuring this model. One solution is to factor
in one dimension first (for example, normal and abnormal), then the other (for in-
stance, solid, partitioned and interconnected) using inheritance (see Figure 4.31).
Another solution is to factor on one dimension first, then the other using delega-
tion instead of inheritance (see Figure 4.32). The former defines just one level of
indirection while the latter defines two level of indirection which can be applied
in a recursive fashion. One possible limitation of these solutions is that, in gen-
eral, duplication of declarations and code can exist. In response we would argue

Section 4.6: Extending the Basic Model 165

Section delegate-to SectionState
lock lock {abstract }
release 1 b
occupy release {abstract

occupy {abstract

A\

SectionNormal .
SectionAbnormal
lock
release lock
occupy release
occupy

JAN AN

Normal Normal TIm
Normal Normal dommal %2?30 al Abnormal Abnormal
gCti!(én Partitioned ' Interconnected Solid n Section Section
oli ol Partitioned Interconnected
lofkse
occupy ey

Figure 4.31: State Hierarchy with Distributed Boards Using Inheritance

that our work focuses mainly on the distinction between normal and abnormal
behaviour phases, and usually their implementation are rather different. This
issue of multiple dimensions or perspectives will be discussed more extensively in
the next Chapter.

More specifically, in Figure 4.31 the class NormallnterconnectedSection redefines
the methods lock, release and occupy to perform correctly these operations in the
presence of distributed boards. The method lock is performed in two steps: first
the lock of the section is performed normally, then the lock of its complemen-
tary section located in the neighbour board is requested. If this lock request is
attended then the lock of the section is completed with success, otherwise not.
The method release is implemented in a similar fashion. The method occupy
is redefined to implement the train crossing between boards. In particular, the
implementation of this method would reuse the operations already defined in
the class Operatorinterface, such as, insertTrain and removeTrain. In other words
a train crossing can be viewed as its remotion from one board followed by its,
insertion in the neighbour board.

166 Chapter 4: Environmental Faults: A Detailed Case Study
Section delegate-to SectionState
lock lock{a stract}_
release release abstract
occupy occupy{ abstract
SectionNormal SectionAbnormal
lock
rgﬁaase lole
occupy relosee
delegate-to delegate-to
SectionKind SectionKind
Normal Abnormal
lock
release / \
occupy
Solid Partitioned Interconnected
Eﬁctlon al Section Section
Solid Partitioned Interconnected norm Abnormal Abnormal
Section Section Section
Normal Normal Normal
occupy F9%Kse
occupy

Figure 4.32: State Hierarchy with Distributed Boards Using Delegation

Section 4.6: Extending the Basic Model 167

The implementation of the methods lock, release and occupy above described is
also applies for the hierarchies of Figure 4.32. As mentioned earlier, the differ-
ence between these two solutions is mainly structural; one approach is based in
inheritance while the other in delegation, the code of the methods is the same.

/

4.6.7 Final Prototype

The train set controller fully satisfied its requirements. The final prototype imple-
mentation currently incorporates environmental fault tolerance of switches and
sensors (see Table 4.4). At the time of writing the integration with the Marklin
interface has been partially carried out because the computer interface has some
problems in reading the sensors properly. As a consequence, we have chosen to
concentrate just on the blue board to carry out the final integration with the
low-level Marklin interface, so as to be able to to get a correct reading of the
sensors by limiting the numbers of the sensors which should be read.

Levels Number of Classes | Number of Lines (appr.)
Basic Prototype 16 6100

Switch and Sensor Faults 15 1650

Low-level Marklin Interface | 2 500

Total 33 8250

Table 4.4: Final Prototype of the Train Set System

It can be concluded that the use of delegation as a structuring technique in
the second phase of our experiment was essential for “glueing” together class
hierarchies and promoting an easy extension of our design.

The implementation of this final prototype can still be improved, especially con-
cerning the implementation of algorithms for building the control zones of trains
that have to cope with sensors and switches faults (that is, classes FTConTrain
and RobustTrain). We should find proper algorithms in the literature, possibly in
the area of graph theory, for considering all different forms of control zone. The
train set layout is very complex with many interconnections which gives rise to
many different forms of control zone; in a simpler layout this sort of preoccupation

would not exist.

As far as object-oriented methodology is concerning, we were satisfied with our
choice of Rumbaugh’s OMT methodology for developing our system. This method-

168 Chapter 4: Environmental Faults: A Detailed Case Study

N

ology proved to be simple and effective with a notation which is easy to under-
stand. I am also particularly fond of Booch’s methodology[20], and my impression
is that these two methododlogies are going to catch on.

4.7 Experience with the Development of the
Controller Prototype

In concluding the implementation of the final prototype of the train set system,
we draw the following conclusions from our concrete experience:

e the object-oriented approach can be used very effectively to partition a
complex system into manageable pieces.

e the changes and additions were performed in an incremental way without
breaking the system, specially due to the use of delegation.

e in general, the use of delegation supports a neat and clear way of extending
systems.

e good guidelines to be followed at the design phase are to focus on creating
stable interfaces and encapsulate design decisions that are likely to change.

e it is necessary to consider deeply the consequences of the addition of new
requirements, and to plan for likely new requirements, knowing that such
planning can never be complete.

4.8 Conclusions

“A complex system that works is invariably found to have evolved
from a simple system that worked... A complex system designed from
scratch never works and cannot be patched up to make it work. You
have to start over, beginning with a working simple system.”[54]

We argue that the use of delegation has facilitated not only the provision of
environmental fault tolerance but also the addition of new requirements in gen-
eral. We have demonstrated that by showing how our approach manifested in
a real-world application. The experiment have consisted of two main phases:

Section 4.8: Conclusions 169

first, we have developed a basic prototype of the system focusing on the basic
requirements, and then extended this model to cope with the new requirements
of toleranting environmental faults. We found that adopting such an approach,
complexity can be gradually introduced and in a controlled manner.

Many works address the need for excellent interfaces and the benefits of separating
interface from implementation so that the implementation can vary. But few
investigations consider seriously about the quality of code itself. On the contrary,
usually the code is put into in a category of things best not discussed; something
to be hidden from view so that it can be changed in privacy. In this Chapter,
we have addressed the issue of software structuring and discussed extensively not
only interface but also the actual code.

As we have mentioned, an ultimate mark of a well-designed, object-oriented sys-
tem is that it is resilient to modifications. In this Chapter, we have discussed
a number of changes in the requirements and shown how such changes affected
our design. In Chapter 6, we will consider further extensions to our design that
might be required by future users of the train set structure, and discuss how well
we expect our design to be able to cope with them.

BLANK PAGE
IN
ORIGINAL

Chapter 5

Additional Examples

“Some models capture-certain aspects of the system better than oth-
ers, yet no single model is either right or the best.” [46]

In the previous chapter, an object-oriented approach for tolerating environmental
faults was presented. This approach was used to structure a complex application,
the train set. In this chapter, it will be shown that our approach can have a
general applicability. This will be demonstrated by giving a number of additional
examples which illustrate the usefulness of transmutable objects and state classes.

The examples consist of some “benchmark” problems found in the object-oriented
literature, such as, representing multiple attributes and behaviour of people and
representing hierarchies of mutable geometric shapes. Each example will be intro-
duced by a brief description, and then an outline of the solution will be presented.
At this point, it should be emphasised that the examples shown in this chapter are
intended to illustrate the flexibility of the delegation technique, covering points
not addressed by the previous examples.

This chapter focuses on issues which are more oriented towards methodological
aspects of dynamic and multiple classification (refer to Section 2.1.1 for the defi-
nition of classification). The rest of this chapter is organised as follows. The next
section examines the concept of multiple classification more closely, after which
we consider the concept of dynamic classification. Following that, we discuss the
relationship between delegation and aggregation, paying particular attention to
the concern of encapsulation. Finally, we describe a design framework to realise
the concept of transmutable object in a class-based system.

171

172 Chapter 5: Additional Examples

~

5.1 Multiple Classification

Multiple classification refers to the ability of an object to be an instance of more
than one class. For example, an object called Joe can be instance of both Employee
and Father classes. Since the two classes are independent, being an Employee does
not automatically imply being a Father - and vice versa.

Multiple classification can be implemented using the multiple inheritance mech-
anism. In a traditional class-based system, the class associated to an object
determines the operations and attributes that it can have. Consequently, it may
not be possible for an object to inherit from an arbitrary set of classes. For
instance, in the diagram of Fig. 5.1, Employee and Father are classes whose com-
bination defines the subclass EmployeeFather. There is no way to have an object
inheriting from the classes Employee and Father unless the class EmployeeFather,
whose parents are the above classes, be created. The class EmployeeFather is an
example of an intersection class.

Person
I
Employee Father
\ /
EmployeeFather

Figure 5.1: Example of an Intersection Class

There are at least two disadvantages with this approach. First, a class is needed
for every combination that occur in the system. This can lead to a combinatorial
explosion of classes. This problem was a motivation for the creation of “mixins”
by the LISP community (see Section 2.2.4.1). Second, not all object-oriented
languages support multiple inheritance. Transmutable objects provide a more
elegant solution to this problem, as we can see in the example of the following
section.

5.1.1 Attributes of Person

A person object might have several independent attributes such as gender and
age, and some of the methods on person might depend on the values of these
attributes. Figure 5.2 illustrates one possible solution using transmutable objects

Section 5.1: Multiple Classification ‘ 173

Person PersonGender PersoniAge
/ \ / I \
Male Female Child Teenager Adult

Figure 5.2: State Hierarchiés for Person

and state classes. The C++ implementation for Person class might be something
like this:

class Person {
friend class PersonGender;

friend class Personige;

private:
int sex;
int age;

PersonGender *personGender;
PersonGender *male;
PersonGender *female;

Personige *personige;

Personige *child;

PersonAge *teenager;

PersonAge *adult;
public:

Person();

“Person() ;

int bedTime(){ return personAge->bedTime(this);}
boolean longLived(){ if (age > personGender->expectedLifeTime(this))
{ TRUE;} else { FALSE;} }

void haveBirthday(){ age += 1;}

In this particular example, the bed time of a person varies according to his/her
age. A child’s bed time could be 8pm, a teenager’s bed time might be 10pm, and
an adult’s bed time can be 11pm. The expected life time of a person varies with
his/her gender. The expected life time of a male is 70 while the female is 74.

Transmutable objects provide a clean way of associating behaviour with particular
values of object’s attributes. There are at least two other different ways of solving

the same problem:

174 Chapter 5: Additional Examples

1. We could create Male and Female subclasses of the Person class. Then, for
example, the attribute ser is properly instantiated for each subclass. How-
ever, if there are many independent attributes, this solution can lead to a
combinatorial explosion of combining subclasses using multiple inheritance,
as we have mentioned earlier.

2. Another way is to represent the attributes as instance variables. The meth-
ods dependent on the attributes should include conditional constructs, such
as if or case statements, to check their values so as to decide which par-
ticular branch of the operation is to be performed. This solution would be
quite inelegant.

Note that the application of state classes for multiple classification corresponds
to the use of aggregation in Harel’s statecharts[65], also known as the “and-
relationship” (as earlier discussed in Section 3.4.3). Aggregation allows a state
to be broken into orthogonal components, with limited interaction among them,
similar to an object aggregation hierarchy. A state diagram for an aggregate is a
collection of state diagrams, one for each component. In the example of Figure 5.2,
the state of an object Person consists of AND components, PersonGender and
PersonAge. Being a person implies being an aggregation of PersonGender (either
Male or Female) and PersonAge (either Child, Teenager or Adult). Concurrency
within the state of a single object occurs when the object can be partitioned into
subsets of attributes or links, each of which has its own subdiagram. So the state
of the object comprises one state of each subdiagram.

5.1.2 Multiple Perspectives

More generally transmutable objects can have multiple perspectives. In our ap-
proach, one can link together separate class hierarchies using delegation, with
each hierarchy providing a different perspective of the same real-world entity. By
such means, it is possible to specify different views of a system’s behaviour, and
the intended constraints on such behaviour. Traditional class-based inheritance
mechanisms are less general in this sense because they force each entity to have
a single perspective.

The set of class hierarchies can be regarded simply as co-existing abstractions.
One perspective does not have intrinsically more detail or importance than an-
other. So different perspectives may all describe the same aspects of the system
from different points of view, at equivalent levels of abstraction. Figure 5.2 shows

Section 5.2: Dynamic Classification 175

an example with two perspectives. The first perspective denotes the entity’s sex
information whereas the second one denotes the entity’s age information.

To summarise, three alternative structuring techniques can be identified along
the route of this discussion:)

e Delegation with Aggregate Perspectives. As shown in Figure 5.2, the best
approach using traditional class-based systems is to model Person as an
aggregate where each component represents a different perspective. This
approach is shown in Figure 5.3. Inheritance of operations across the ag-
gregation is implemented using delegation. In this approach, the various
intersection classes need not be created explicitly.

o Inheritance and Delegation. In Figure 5.4, Male and Female are subclasses of
PersonGender. Each subclass is treated as an aggregation of the PersonAge
hierarchy and the operations are delegated as in the previous approach. This
alternative is interesting when one perspective clearly is more important
than the others.

o Intersection Classes. This approach considers all the possible combina-
tions, as shown in Figure 5.5. If the number of combinations is small, this
approach is feasible. However, as pointed out before, this approach has
limitations since it promotes duplication of code.

<> Person O

Person
Gendor PersonAge
Male Female Child Teenager Adult

Figure 5.3: Delegation with Aggregate Perspectives

5.2 Dynamic Classification

Dynamic classification refers to the ability to change the class of an object. For

176 Chapter 5: Additional Examples

~

PersonAge

JAN

Person

>

I

|

Male

Female

Child

Teenager

Adult

Figure 5.4: Multiple Classification Using Inheritance and Delegation

Person

N

Male

/\

]

Female

JAN

Male

Teenager

Gentleman

Girl

Female
Teenager

Lady

Figure 5.5: Multiple Classification Using Intersection Classes

Section 5.2: Dynamic Classification 177

instance, an object called Joe changes from being an instance of Employee to being
a UnemployedPerson. One solution is that whenever an object changes classes a
new object is created. Another solution is to define a status flag that indicates
the classification. The next two sections discuss two examples where we examine
some issues related to dynamic classification. -

5.2.1 Buffer

Figure 5.6 illustrates the class hierarchies which implement the class IntBuffer
using transmutable objects. (This example is similar to the checking account
system presented in Section 3.4.1.) The specification of the class IntBuffer is as

follows:

class IntBuffer {
friend class IntBufferState;

private:

IntBufferState *currentState;

IntBufferState *empty; // delegatee

IntBufferState *full; // delegatee

IntBufferState *partiallyFull; // delegatee
protected:

int contents[10]; // array of 10 integer elements
public:

IntBuffer();

“IntBuffer();

virtual int get(){ return currentState->get(this);}

virtual void put(int x){ currentState->put(this,x);}

void updateState(); // state-changing method

IntBuffer IntBufferState

/ I \
Empty PartiallyFull Full

Figure 5.6: Hierarchies for IntBuffer

A IntBuffer object is composed of multiple IntBufferState objects, each one repre-
senting a possible perceived state of a buffer: empty, partiallyFull and full. The
operations get() and put() are delegated to currentState object for processing. The

178 Chapter 5: Additional Examples

~

object’s behaviour is implemented by the delegatees to which the object delegates
requested messages.

The IntBufferState hierarchy is implemented as follows:

class IntBufferStateq{
public:
IntBufferState();
“IntBufferState();
virtual int get(IntBuffer* b)=0; // pure virtual
virtual void put(IntBuffer* b, int x)=0; // pure virtual

}

class Empty: public IntBufferState{

public:
virtual int get(IntBuffer* b); // raise error an exception
virtual void put(IntBuffer* b, int x); // add to back

}

class PartiallyFull: public IntBufferState{
public:
virtual int get(IntBuffer* b); // remove from front
virtual void put(IntBuffer* b, int x); // add to back
}

class Full: public IntBufferStateq{

public:
virtual int get(IntBuffer* b); // remove from back
virtual void put(IntBuffer* b, int x); // raise an exception

}

Now suppose that we create a subclass called CircularIntBuffer which inherits
from IntBuffer (see Figure 5.7). This new class implements a circular buffer with
insertPosition and removePosition which cycle around the array contents. So the
methods get() and put() should be redefined.

The CircularintBuffer class could be implemented as follows:

class CircularIntBuffer: public IntBuffer {
friend class CircularBufferState;

private:

e

Section 5.2: Dynamic Classification

IntBuffer IntBufferState
| / [\
| Empty PartiallyFull Full
[
CircularBuffer CirculangfferState
/ | \

EmptyCirc PartiallyFullCirc FullCirc

Figure 5.7: Hierarchies for CircularBuffer

int insertPosition; // an index to the array contents
int removePosition; // another integer index

void store(int elem, int position);
int retrieve(int position);

CircularBufferState *currentState;
CircularBufferState *emptyCirc; // delegatee
CircularBufferState *fullCirc; // delegates
CircularBufferState *partiallyFullCirc; // delegatee

public:
CircularBuffer();
“CircularBuffer();
virtual int get(){ return currentState->get(this);}
virtual void put(int x){ currentState->put(this,x);}
void updateCircState(); // state-changing method

The CircularBufferState hierarchy is implemented as follows:

class CircularBufferStated{

public:
CircularBufferState();
”C?rcularBufferState();

virtual int get (CircularBuffer* cb)=0; // pure virtual
virtual void put(CircularBuffer* cb, int x)=0; // pure virtual

}

class EmptyCirc: public CircularBufferStateq{
public:

virtual int get(CircularBuffer* cb); // raise error an exception

179

180 Chapter 5: Additional Examples

virtual void put(CircularBuffer* cb, int x); // store element and
// update insertPosition

¥

class PartiallyFullCirc: public CircularBufferStateq
public:
virtual int get(CircularBuffer* cb); // retrieve element and update
// removePosition
virtual void put(CircularBuffer* cb, int x); // store element and
// update insertPosition

class FullCir: public CircularBufferState{
public:
virtual int get(CircularBuffer* cb); // retrieve element and update
// removePosition
virtual void put(CircularBuffer* cb, int x); // raise an exception

}

The implementation of the CircularBufferState hierarchy can be improved in two
ways. First, the non-blocking versions of the methods get() and put() can be
factorised into the class CircularBufferState. As a consequence, the methods are
no longer declared as pure virtual in the class CircularBufferState since they have
a concrete implementation.

The second improvement concerns the blocking versions of the methods get()
and put() which raise an exception. These implementations are exactly the same
implementations found in the IntBufferState hierarchy. It would be interesting to
find a way of reusing the code already implemented in the IntBufferState hierarchy.
Figure 5.8 shows a possible solution. In this diagram the classes EmptyCirc and
FullCirc also inherit from Empty and Full, respectively. So one could implement
EmptyCirc::get() in the following way:

int EmptyCirc::get(CircularBuffer* cb)
{
Buffer* b = (Bufferx) cb; // explicit conversion of CircularBuffer
// to Bufferx
Empty::get(cb);
}

Note that the isA relationship is used to describe when a state class implies
another. If one state class explicitly inherits from another, then the child state

Section 5.2: Dynamic Classification 181

IntBuffer IntBufferState
I / I \
| ' Empty PartiallyFull Full
[| I
CircularBuffer | CircularBufferState |
I / I \

EmptyCirc PartiallyFullCirc FullCirc

Figure 5.8: Hierarchies for CircularBuffer with Multiple Inheritance

class is assumed to imply the parent state class. Any methods in the child override
those in the parent, just like normal classes.

Also note that it is necessary an explicit conversion of object types. The C++
compiler does not keep the information that a CircularBuffer object isA IntBuffer.
In other words, C++ does not support covariant redefinition of function param-
eters (discussed in Section 2.2.3). C+4++ overloads the name “get” and allows
both definitions, Empty::get(intBuffer* b) and EmptyCirc::get(CircularBuffer* cb),
to exist simultaneously. Even though we read both methods as get(), the com-
piler treats them as two separate methods. In this way, C++ guarantees that
subclasses satisfy the interface of the parent.

To summarise, state classes has increased expressiveness of this example in two
ways. First, important states of buffers, such as, empty and full states, are ex-
plicitly identified in the program and named. Moreover, the creation of state
classes remind the programmer of the exceptional situations that the code should
handle. This is particularly important useful during maintenance and evolution
phases of the design when the code is later extended with new functionality.

Second, attaching methods directly to state classes supports better factoring of
code and eliminates if and case statements. In the absence of transmutable ob-
jects, a method whose behaviour depénds on the state of the object would in-
clude an if or case statement to identify and branch to the appropriate case;
transmutable objects clearly. separate the code for each case. By factoring code,
separating out the code associated with particular state, we hope to improve the
structuring, readability and maintainability of the software.

182 Chapter 5: Additional Examples

5.2.2 Transmutable Geometric Shapes

In Figure 5.9, class Polygon is a subclass of Shape, class Rectangle is a subclass of
Polygon, and, finally, Square is a subclass of Rectangle. According to mathematical
definitions, all squares are rectangles, and all rectangles are polygons, so we obtain
the hierarchy described in Figure 5.9. However, if the addVertex is applied to a
rectangle object, this object is no longer a rectangle. In a similar fashion, if the
method widen is applied to a square object, this object is not anymore a square.
So, in this particular example, the multiple values of attributes can trigger a
reclassification of shape objects.

Shape
I

Polygon numberOfSides vertices draw() addVertex()

|
Rectangle draw() widen()

Square draw()

Figure 5.9: Standard Hierarchy of Shapes

The Eiffel community has tried to improve things with the notion of undefine
operations. The solution is to undefine the addVertex operation in the Rectangle
class and also to undefine the widen operation in the Square class. However, this
approach leads to a complicated, two-phase typing algorithm for guaranteeing
static typing checking[106].

This example can be reimplemented using transmutable objects according to
Figure 5.10. A polygon object can be either a general polygon, a rectangle or a
square. If a vertex is added to a rectangle object, it is reclassified as a general
polygon. In a similar way, a square object can be reclassified as a general polygon.
If the length of square object is altered, the object becomes a rectangle. In a
similar way, if the length of a rectangle object is altered so that its length is equal
to its width, this object becomes a square.

5.3 Delegation, Aggregation and Encapsulation

In inheritance, the object structure is built upon the generalisation/specialisation
relationship. Specialisation hierarchies typically are treated as type-level con-
structs. The structure of an inheritance system is static, that is, it is fixed at

Section 5.3: Delegation, Aggregation and Encapsulation 183

Shape GeneralPolygon
| | draw() addVertex() widen(){length#*x}
Polygon I
Rectangle draw() addVertex() widen()
I

Square draw() widen(s

Figure 5.10: Hierarchy of Shapes using Transmutable Objects

the time classes become instantiated. In this thesis, we have also considered
specialisation at the level of objects, instead of only classes, using a delegation
mechanism. In contrast to inheritance, relationships in delegation are dynamic.
In a delegation-based system, primitives are provided for the creation and modi-
fication of relationships during runtime.

An important advantage that delegation has over inheritance is that the delega-
tion structure supports part-whole links, that is, aggregation. With the exception
of some object-oriented knowledge representation languages, such as LOOPS,
YAFOOL and OBJLOG[102], and object-oriented database specification lan-
guages, such as TROLL[71], object aggregation is a subject neglected by most
conventional object-oriented programming languages. However, object aggrega-
tion is not only important used for knowledge representation and database, but
also for data modelling in general[132, 32]. So it would be useful if major object-
oriented languages would provide facilities for it.

We can think of two views of aggregation: a structural and behavioural one. A
structural view defines an aggregate object that is structurally composed of its
component objects. A behavioural view shows that the behaviour of an aggregate
is compose of the behaviour of its components’ objects. Property sharing in
object composition often has inheritance-like semantics and is occasionally called
horizontal inheritance, as opposed to inheritance between a class and its subclass
which could be called vertical inheritance[102].

Figure 5.11 shows the aggregate class IntBuffer with the component classes Empty,
PartiallyFull and Full, that is, the state classes. The enclosing rectangle stands for
the aggregate class which contains in it rectangles standing for the component
classes. Note that the aggregate supports the notion of being a recursive module.
The external interface of the aggregate is determined by the enclosing rectangle
(This diagram is related to Figure 5.6.) The structural properties are expressed
by the attributes empty, partiallyFull and full.

Thus, in our approach, we have an aggregate of objects unrelated by inheritance

184 Chapter 5: Additional Examples

IntBuffer
empty: Empty
partlallyFull PartlallyFull
full: Full _
Empty PartiallyFull Full

Figure 5.11: Aggregate Class for IntBuffer

(which are in fact related by delegation) which cooperate to perform task. In
such a case, the encapsulation mechanism applied is not at the class level since
an object in an aggregate may wish to allow others in the aggregate privileged
access, whilst maintaining privacy from objects outside the aggregate. Delegation
takes place when one object wishes to have another cooperate to complete a task.
To accomplish this, the delegatee may need privileged access - just as in real life
a subordinate can have a hot line to his superior. The friend construct in C++
and the selective export list in Eiffel are attempts to address this problem placing
the access between classes. (Note that in all C++ implementations presented in
this thesis we have used the friend construct.)

Note that in Figure 5.11, our “module” is a collection of objects and classes,
that is, transmutable objects and state classes. It would be interesting to have
language support for modularity and encapsulation when the unit is not limited
to a single class. However, no major object-oriented languages, with the exception
of Eiffel which has the notion of cluster, give support for a building block bigger
than a class.

5.4 A Design Framework with Transmutable
Classes

Our approach is based on “delegation along the aggregation hierarchy of state
classes”. Our scheme of delegation is more restrictive: the delegator specifies the
executors (i.e., its delegatees) of the delegated task and this information is fixed
and checked at compile time. A language with static typing checking, such as
C++ and Eiffel, can ensure that a delegatee will understand all the messages
delegated to it. What happens is that the delegator chooses one of its delegatees

Section 5.4: A Design Framework with Transmutable Classes 185

appropriately to execute a message at run time. But the list of delegatees is
already fixed at compile time.

It should be emphasised that our design framework is heavily based on classes and
inheritance. First, we use inheritance for the dgscription of the static aspects of
the system. Then, delegation is used for the specification of its dynamic aspects
related to state-dependent behaviour. A key point is that inheritance of state-
dependent behaviour can be decided individually by each transmutable object as
with prototype-based systems. The purpose of this thesis was to investigate this
combination and to show how it achieves more flexibility without abandoning the
advantage of class-based systems.

The following steps were taken in transforming a normal class into a transmutable
class in the examples discussed so far (using a class-based language such as C++):

1. identify the observable states.

9. create a state class for each state and organize them in a state class hier-
archy. The root class of the hierarchy contains all the delegated methods
defined as abstract operations.

3. declare an instance variable in the transmutable class which holds reference
to its current state.

4. if a method is state dependent in the transmutable class, move it to the
state class hierarchy and substitute it with a new implementation which
delegates its execution to the current state. On delegating a message to
the current state, add an extra argument in the message which holds a
reference to the the delegator. In such a way, the state classes can access
the transmutable class.

5. copy all state-dependent methods to every state class, deleting all parts
of the code that are for other states and changing every access to use the
delegator when appropriate.

After this transformation, one can add a new state by adding a new state class
and the methods of the transmutable class will be spread among the Severai
state classes. Using delegation, an object can change its behaviour since an
object’s behaviour is implemented bu the objects to which it delegates the request
messages. Thus, delegation is useful in building extensible and open systems.

186 Chapter 5: Additional Examples

5.5 State of the Art

Some recent investigations have considered the problem of dynamic and multiple
classification specially in object-oriented database specification languages{4| and
programming languages[29, 151]. Wieringa[157] adopts the terms class migration
and role playing meaning dynamic classification and multiple classification, re-
spectively. He argues that object-oriented models should support three distinct
conceptual notions static subclass, dynamic subclass (class migration) and role
class (role playing). The basic difference between dynamic subclasses and role
classes is that the former have strict identity which is appropriate for inheritance
while the latter have their own identifier which is appropriate for delegation.
Predicate objects in Cecil[29] also offer support for multiple classification, but
there is no explicit distinction between roles and dynamic subclasses. However,
the main disadvantage of predicate objects is that they are one more new pro-
gramming language feature while the main advantage of transmutable objects is
that they can be implemented in any class-based object-oriented programming
language.

Sciore[135] defines the notion of roles in a system mainly based on delegation
but also supporting some features of class-based systems. He argues that a more
general approach should support the access of an entity with respect to a given
role and to allow the entity to dynamically change the roles that it plays. As a
consequence, all the objects related to a single real-world entity are arranged into
an explicit object hierarchy. That is, an object hierarchy corresponds to a real-
world entity, and each object in the hierarchy denotes a role played by the entity.
Our approach is heavily based on class-based languages with a restricted support
of delegation. Conversely, Sciore’s approach is heavily based on delegation sys-
tems with a restricted support of classes. Also the work by Otten[122] considers
a combination of inheritance and delegation in object-oriented database systems,
and according to the author’s opinion delegation better suits the requirements of
design support. ‘

Chapter 6

Conclusions and Further
Research

“If your problem seems unsolvable, consider that you may have a
meta-problem.”[54]

This thesis has concentrated on the provision of environmental fault tolerance
for software systems exploiting object-oriented techniques. The purpose of this
concluding chapter is twofold: discussion of the investigation undertaken high-
lighting its main contributions, and suggestion of possible directions for future
research concerning object-oriented fault tolerance.

6.1 Discussion

What underlies the whole discussion of this thesis is that real-world software
systems are enormously complex. We have presented an approach based on dele-
gation for constructing components that are able to tolerate environmental faults.
Our proposal is a fundamental way of dealing with the complexity of building up
such components in a disciplined and modular form.

To some extent, the presented approach allows dynamic reconfiguration of soft-
ware components with respect to environmental faults at the level of individ-
ual objects. We argue that the adoption of such an approach produces well-
structured, object-oriented software systems, and we have demonstrated how our
ideas are manifested in a real-world application, a train set controller, which fully

187

188 Chapter 6: Conclusions and Further Research

N

satisfied its requirements. More specifically, our experiment has consisted of two
distinct phases: the first phase has coped with the normal aspects of the appli-
cation whereas the second phase has extended the model generated by the first
phase by incorporating tolerance of environmental faults.

As we have discussed in Chapter 2, the object-oriented literature offers many
different interpretations and points of view, so it has been difficult to give a
precise definition for object-oriented concepts. As a consequence, this research
has started by giving a characterisation of an object-oriented based on we felt
to be the most coherent, comprehensive definitions and concepts found in the
literature.

This thesis has focused on the use of object-orientation from an implementation
point of view for the construction of dependable systems. To reiterate, the major
contributions which have been achieved by this research are:

o Our approach has proved to be an effective way of structuring a complex
control system (i.e., the train set) that have to cope with a variety of envi-
ronmental faults.

e More generally our approach facilitates evolution and modification of soft-
ware systems, not only the implementation of environmental fault tolerance.

e We believe that this approach fits well with object-oriented structuring
methods for supporting hardware and software fault tolerance, but this yet
has to be demonstrated.

e Delegation is a key mechanism for extending systems, and it is worth in-
vestigating the support of such delegation in class-based languages.

e We have presented a coherent set of definitions and concepts of object-
oriented programming, which has been the basis for the development of
this thesis, and we hope that it can also be the basis for projects developed
by other researchers in the object-oriented field.

However, it is clear that more experiments are still required (particularly in de-
veloping very large software application using object-oriented techniques) before
the object-oriented paradigm can claim to be a consolidated topic. These claims
can only be fully demonstrated when applied to developing substantial software
systems. In particular, this thesis has also aimed to contribute to the consoli-
dation of the object-oriented paradigm through the development of a complex
control system.

Section 6.2: Directions for Future Research 189

The Assessment of the Train Set Structure

As we have mentioned earlier, a variety of different projects can be envisaged that
would make use of the train set structure described in Chapter 4. However, it re-
mains to be demonstrated what future, unplanned extensions /modifications/appli-
cations might be performed based on our structuring of the train set control sys-
tem, and whether it will prove to be as convenient as our expectations. In spite of
this, we believe that most extensions can be implemented in a relative straight-
forward manner because our proposal consists of a simple structure with wide
applicability; however, one should consider *very carefully* how such changes
would be incorporated in the proposed design. Possible future changes of the
requirements might include:

Air Traffic Control: The use of the train set for simulating air traffic control.
In such situation, trains would not be allowed to stop or reverse since they
are representing aircrafts, so they should be kept running continuously. A
possible solution for the incorporation of such a change in our design is to
extend the notion of control zone. Each “aircraft” would have associated
to it a control zone containing at least one loop, which would be used by
the “aircraft” until its next movement is considered to be safe.

Long Trains: During the design and implementation of the train set, we have
assumed that the length of a train is smaller than the smallest section in
the board; however, in a real situation a locomotive can pull many waggons
and the train’s length can not be ignored. In such a case, the algorithm f01,‘
locking and releasing sections should be modified to take into account the
train’s length.

Automatic Fault Diagnosis: Another possible extension that might be imple-
mented is an automatic fault diagnosis program, as described in the work
of Bang[164]. In this case, it is likely that the proposed structure would
be re-used, and probably some abstractions, such as sections, might be
expanded.

6.2 Directions for Future Research

This section presents potential areas of future work related to object-oriented
fault tolerance. Some important topics particularly related to the scope of this
thesis, which we believe to be worthy investigating include: changes on-the-fly

190 Chapter 6: Conclusions and Further Research

N

for non-stopping systems, class evolution, reflection, support for delegation in
class-based languages, and formal methods.

On-the-fly changes are required in long-lived, non-stopping systems for support-
ing, for instance, functionality upgrading and dynamic configuration. Our ap-
proach supports to some extent dynamic reconfiguration of the system at the
level of instances, with the different “forms” of normal and abnormal behaviour
established at compile-time. An appropriate environment containing a dynamic
linker might therefore be incorporated to add new forms of behaviour (either
normal or abnormal) to the application during runtime.

Another area of future work related to changes on-the-fly which might be ex-
amined is evolution of classes. As we pointed out before, our approach provides
object evolution as a means of behaviour modification at level of instances. When
one has a behaviour modification that occurs in all instances of a class, one should
consider the aspects involved in class evolution and not only object evolution. So
the following issues need to be clarified:

how an object decides that it is time to evolve,

how evolution is performed,
e how its fellow objects incorporate the new behaviour, and

how to promote evolution of the class that the object is derived from so
that future instances of the class are created with the new behaviour.

Furthermore, the problem of transmitting such evolution transmission from an
evolved class to its subclasses should also be investigated in class evolution mech-
anisms. Implicit inheritance between superclass and subclass might be too free
and it could be necessary to define a mechanism to transmit selectively properties
to the subclasses probably based also on delegation. Of course, it is necessary
to bear in mind that all these modifications should be performed in a disciplined
manner so as to guarantee the correctness of the overall system.

I think that the reflection concept might play a very important role on the subjects
discussed above, that is, changes on-the-fly and class evolution. Research on
object orientation and artificial intelligence has led to reification and metalevel
reasoning constructs that, although not completely understood, allow the creation
of useful systems. Those systems should rely on both adaptive development
methods and adaptive software mechanisms to enable the reconfiguration required

Section 6.3: In Conclusion 191

to obtain flexibility. In this context, reflection might be the appropriate path to
be followed for constructing adaptive and flexible systems.

Another area of future work which might be worth examining is support for
delegation in class-based languages. Some research has already appeared in this
area, for instance, the work of Wolczko[160] on the MUST language, which is
based on Smalltalk, and combines the features of inheritance and delegation.
The issues related to encapsulation in the presence of inheritance and delegation
are discussed with some detail in [161].

An interesting area for further research is that of providing a more formal treat-
ment for object-oriented programming. Formal methods could provide a solid
basis for the semantics of the system as a whole and enforce a coherent use of
a language across the design phase. As we have mentioned earlier in Chapter 2,
there is a large and growing literature of formal methods and specification in pro-
gramming, much of which can be applicable to object-oriented programming. For
instance, the work of Bar-David[11] uses formal specification, more precisely al-
gebraic specification, applied to object-oriented programming in a very balanced
way.

6.3 In Conclusion

We have demonstrated that our approach has many benefits, the two most signif-
icant probably being that the resultant program is easier to change in the future
and easier to maintain. Other possible advantages are increased reliability, lower
developments costs and an increase in the probability of being able to re-use
pieces of the program in future programs. Moreover, the use of delegation as a
structuring technique was a central idea in our work. Its usage can facilitate the
extension of a system in order to incorporate not only tolerance of environmental
faults but also other changes in the requirements.

We can also conclude that the combination of class abstraction and delegation is
very powerful, and represents a significant potential; however, more experimen-
tation is required before this idea can claim to be a mature topic. Finally, in my
opinion, object-oriented design is by no means the final word in design method-
ology; however, it does represent a fusien of some of the best present ideas about

building complex systems.

BLANK PAGE
IN
ORIGINAL

References

1]

[2]

(3]

[4]

[5]

O. Agesen, J. Palsberg & M.I. Schwartzbach. Type Inference of Self: Analy-
sis of Objects with Dynamic and Multiple Inheritance. In Proceedings of the
7th European Conference on Object-Oriented Programming, ECOOP’93,
Kaiserslautern, Germany, Lecture Notes in Computer Science, 707: 247-
267, Oscar M. Nierstrasz (Ed.), July 1993, Springer-Verlag.

G. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge, Massachusetts, 1986.

A. Albano, R. Bergamini, G. Ghelli & R. Orsini. An Introduction to
the Database Programming Language Fibonacci. Technical Report, no.
FIDE/93/94, FIDE2: Fully Integrated Data Environment, ESPRIT BRA
PROJECT 6309, 1993.

A. Albano, R. Bergamini, G. Ghelli & R. Orsini. An Object Data Model
with Roles. Technical Report, no. FIDE/93/65, FIDE2: Fully Integrated
Data Environment, ESPRIT BRA PROJECT 6309, 1993.

C. Alexander. Notes on the Synthesis of Form. Harvard University Press,
1964.

P. America. Inheritance and Subtyping in a Paralle] Object-Oriented Lan-
guage. In Proceedings of the 1st European Conference on Object-Oriented
Programming, ECOOP’87, Paris, France, Lecture Notes in Computer Sci-
ence, J. Bézivin, J.-M. Hullot, P. Cointe & H. Lieberman (Eds.), 276: 234-
242, June 1987, Springer-Verlag.

P. America. A Parallel Object-Oriented Language with Inheritance
and Subtyping. In Joint Proceedings of the 5th Annual Conference on
Object-Oriented Programming: Systems, Languages and Application and
the 4th European Conference on Object-Oriented Programming, OOP-
SLA/ECOOP’90, Ottawa, Canada, Special Issue of ACM Sigplan Notices,
25(10): 161-168, N. Meyrowitz (Ed.), October 1990.

193

194

References

N

[8] T. Anderson. Fault Tolerant Computing. In Resilient Computing Systems,

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Anderson (Ed.), Chapter 1, Collins Professional and Technical Books,
1985.

H. Appoyer. Control of a Train Set Model by the MARS System. Internal
Report, Institut fiir Technische Informatik, Technical University of Vienna,
Austria, September 1994.

A. Avizienis. The N-Version Approach to Fault-Tolerant Software. IEEFF
Transactions on Software Engineering, SE-11(12): 1491-1501, December
1985.

T. Bar-David. Object-Oriented Design for C’+ +.P T R Prentice-Hall, 1993.

P.G. Basset. Frame-Based Software Engineering. IEEE Software, 4(4): 9-
16, July 1987.

K. Beck and R. Johnson. Patterns Generate Architecture. In Proceed-
ings of the 8th FEuropean Conference on Object-Oriented Programming,
ECOOP’94, Bologna, Italy, Lecture Notes in Computer Science, 821: 139-
149, M. Tokoro & R. Pareschi (Eds.), July 1994, Springer-Verlag.

C. Benoit, M. Benoit, L. Henninger & R. Velly. SPOKE: an Object-
Oriented Programming Environment. Journal of Object-Oriented Program-
ming, 3(6): 30-38, February 1991.

M. Benveniste & V. Issarny. Concurrent Programming Notations in
the QObject-Oriented Language Arche. Technical Report, no. 1822,
IRISA /INRIA-Rennes, France, 1992.

G.S. Blair, J.J. Gallagher & J. Malik. Genericity vs Inheritance vs Del-
egation vs Conformance vs ... Journal of Object-Oriented Programming,
2(3): 11-17, September/October 1989.

G.S. Blair. Basic Concepts III (Types, Abstract Data Types and Poly-
morphism). In Object-Oriented Languages, Systems and Applications, G.S.
Blair, J. Gallagher, D. Hutchison & D. Shepherd (Eds.), Chapter 4, Pit-
man, 1991. »

M. Blaha. Aggregation of Parts of Parts of Parts. Journal of Object-
Oriented Programming, 6(5): 14-20, September 1993.

D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik & F. Zdy-
bel. CommonLoops: Merging LISP and Object-Oriented Programming.
In Proceedings of the 1st Annual Conference on Object-Oriented Pro-
gramming: Systems, Languages and Application, OOPSLA’86, Portland,
Oregon, September/October, Special Issue of ACM SIGPLAN Notices,
21(11): 17-29, N. Meyrowitz (Ed.), November 1986.

References 195

[20] G. Booch. Object-Oriented Design with Applications. Benjamin/Cummings
Publishing Company, Inc., 1991.

[21] R.M. Burstall, D.B. McQueen & D.T. Sannella. HOPE: An Ezperimental
Applicative Language. Technical Report CSR-62-80, Department of Com-
puter Science, University of Edinburgh; May 1980.

[22] R.H. Campbell & N. Islam. A Technique for Documenting the Framework
of an Object-Oriented System. In Proceedings of the Second International
Workshop on Object Orientation for Operating Systems, September 1992.

[23] R.H. Campbell, N. Islam & P. Madany. Choices, Frameworks and Refine-
ment Revisited. Technical Report, no. UITUCDCS-R-92-1769, Department
of Computer Science, University of Illinois at Urbana-Champaign, Decem-
ber 1992.

[24] L.F. Capretz. Object-Oriented Design Methodologies for Software Systems.
Ph.D. Thesis, Department of Computer Science, University of Newcastle
upon Tyne, November 1991.

[25] L. Cardelli. A Semantics of Multiple Inheritance. In Proceedings of the
International Symposium on Semantics of Data Types, Sophia-Antipolis,
France, Lecture Notes in Computer Science, 173: 51-67, G. Kahn, D.B.
MacQueen & G. Plotkin (Eds.), June 1984, Spring-Verlag.

[26] L. Cardelli & P. Wegner. On Understanding Types, Data Abstraction and
Polymorphism. Computing Surveys, 17(4): 471-522, December 1985.

[27] L. Cardelli. Modula-3 Report (revised), Systems Research Center, Digital,
number 52, November, 1989.

[28] B. Carre & J.-M. Geib. The Point of View Notion for Multiple Inheritance.
In Joint Proceedings of the 5th Annual Conference on Object-Oriented Pro-
gramming: Systems, Languages and Application, and of the 4th European
Conference on Object-Oriented Programming, OOPSLA/ECOOP’90, Ot-
tawa, Canada, Special Issue of ACM Sigplan Notices, 25(10): 312-321, N.
Meyrowitz (Ed.), October 1990.

. [29] C. Chambers. Predicate Classes. In Proceedings of the 7th European Con-
ference on Object-Oriented Programming, ECOOP’93, Kaiserslautern, Ger-
many, Lecture Notes in Computer Science, 707: 268-296, Oscar M. Nier-
strasz (Ed.), July 1993, Springer-Verlag.

[30] D. de Champeaux & P. Faure. A comparative Study of Object-Oriented
Analysis Methods. Journal of Object-Oriented Progmmmzng, 5(1): 21-33,
March/April 1992.

196

References

N

[31] S. Chiba & T. Masuda. Designing an Extensible Distributed Language with
a Meta-Level Architecture. In Proceedings of the 7th European Conference
on Object-Oriented Programming, ECOOP’93, Kaiserslautern, Germany,
Lecture Notes in Computer Science, 707: 482-501, Oscar M. Nierstrasz
(Ed.), July 1993, Springer-Verlag.

[32] F. Civello. Roles for Composite Objects in Object-Oriented Analysis and
Design. In Proceedings of the 8th Annual Conference on Object-Oriented
Programming: Systems, Languages and Application, OOPSLA’93, Wash-
ington, DC, USA, Special Issue of ACM SIGPLAN Notices, 28(10): 376-
393, A. Paepcke (Ed.), October 1993.

[33] D. Coleman, F. Hayes & S. Bear. Introducing Objectcharts or How to Use
Statecharts in Object-Oriented Design. IEEE Transactions on Software
Engineering, 18(1): 9-18, January 1992.

[34] J.0. Coplien. Advanced C++: Programming Styles and Idioms. Addison
Wesley, 1992,

[35] K.N.R. Corner, C.D. Elliott, D.C. Halliday, J.M. Kelly, P.M.N. Lam &
K.C. Kim. A Train Control System for the Newcastle University Comput-
ing Laboratory Model Railway. MSc. Dissertation in Computing Software
and Systems Design, Computing Laboratory, University of Newcastle upon
Tyne, April 1990.

[36] F. Cristian. Exception Handling. In Dependability of Resilient Computers,
T. Anderson (Ed.), pp. 68-97, BSP Professional Books, Oxford, 1989.

[37] Q. Cui & J. Gannon. Data-Oriented Exception Handling. IEEE Transac-
tions on Software Engineering, 18(5): 393-401, May, 1992.

[38] O.-J. Dahl, B. Myhrhaug & K. Nygaard. Simula 67 Common Base Lan-
guage. Publication no. S5-22 (revised), Norwegian Computing Center, Oslo,
October 1970.

[39] O.-J. Dahl, E.W. Dijkstra & C.A.R. Hoare. Structured Programming. Aca-
demic Press, 1972.

[40] S.R. Davis. C++ Objects that Change Their Types. Journal of Object-
Oriented Programming, 5(4): 27-32, July/August 1992.

[41] D. Detlefs, M.P. Herlihy & J.M. Wing. Inheritance of Synchronisation and
Recovery Properties in Avalon/C++. IEEE Computer, 21(12):57-69, De-
cember 1988.

[42] G.N. Dixon & S.K. Shrivastava. Exploiting Type Inheritance Facilities to
Implement Recoverability in Object Based Systems. In Proceedings of the
6th Symposium on Reliability in Distributed Software and Database Sys-
tems, Williamsburg, VA, pp. 107-114, March 1987.

References

[43]

[44]

[45]
[46]
[47]
[48]

49]

[50]

[51]

[52]

[53]

197

C. Dony. An Object-Oriented Exception Handling System for an Object-
Oriented Language. In Proceedings of the 2nd European Conference on
Object-Oriented Programming, ECOOP’88, Oslo, Norway, Lecture Notes
in Computer Science, 322: 146-161, S. Gjessing and K. Nyggard (Eds.),
August 1988, Springer-Verlag.

o/

C. Dony. Exception Handling and Object-Oriented Programming: To-
wards a Synthesis. In Joint Proceedings of the 5th Annual Conference
on Object-Oriented Programming: Systems, Languages and Application
and the {th European Conference on Object-Oriented Programming, OOP-
SLA/ECOOP’90, Ottawa, Canada, Special Issue of ACM Sigplan Notices,
25(10): 322-330, N. Meyrowitz (Ed.), October 1990.

D. D’Souza. Navigating Those Learning Curves. Journal of Object-Oriented
Programming, 5(6): 21-25, October 1992.

D. D’Souza. From Analysis to Design: Chasm, Gully, or Step?. Journal of
Object-Oriented Programming, 5(7): 16-19, November /December 1992.

H. Ehrig & B. Mahr. Fundamentals of Algebraic Specification. Springer
Verlag, 1985.

M. Eriksson. A Correct Example of Multiple Inheritance. ACM SIGPLAN
Notices, 25(7): 7-10, July 1990.

J.-C. Fabre, V. Nicomette, T. Pérennou & Z. Wu. Implementing Fault
Tolerant Applications Using Reflective Object-Oriented Programming.
PDCS?2 Second Year Report, Predictably Dependable Computing Systems,
Newcastle upon Tyne, England, September 1994.

J. Ferber. Computational Reflection in Class-Based Object-Oriented Lan-
guages. In Proceedings of the 4th Annual Conference on Object-Oriented
Programming: Systems, Languages and Application, OOPSLA’89, New Or-
leans, Louisiana, Special Issue of ACM SIGPLAN Notices, 24(10): 317-326,
N. Meyrowitz (Ed.), October 1989.

D.G. Firesmith. Frameworks: The Golden Path to Object Nirvana. Journal
of Object-Oriented Programming, 6(6): 6-8, October 1993.

B. Foote & R.E. Johnson. Reflective Facilities in Smalltalk-80. In Proceed-
ings of the 4th Annual Conference on Object-Oriented Programming: Sys-
tems, Languages and Application, OOPSLA’89, New Orleans, Louisiana,
Special Issue of ACM SIGPLAN Notices, 24(10): 327-335, N. Meyrowitz
(Ed.), October 1989.

P. Freeman. Reusable Software Engineering: Concepts & Research Di-
rections. In Tutorial on Software Design Techniques, P. Freeman & A. I.
Wasserman (Eds.), Fourth Edition, IEEE, Silver Spring, 1984.

198

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

References

N

J. Gall. Systemantics: The Underground Text of Systems Lore: How Sys-
tems Really Work and How They Fail. Second Edition, General Systeman-
tics Press, Ann Arbor, MI, 1986.

J. Gallagher. Basic Concepts Il (Variations on a Theme). In Object-
Oriented Languages, Systems and Applications, G.S. Blair, J. Gallagher,
D. Hutchison & D. Shepherd (Eds.), Chapter 3, Pitman, 1991.

E. Gamma, R. Helm, R.E. Johnson & J. Vlissides. Design Patterns: Ab-
straction and Reuse of Object-Oriented Design. In Proceedings of the
Tth European Conference on Object-Oriented Programming, ECOOP’93,
Kaiserslautern, Germany, Lecture Notes in Computer Science, 707: 406-
431, Oscar M. Nierstrasz (Ed.), July 1993, Springer-Verlag.

E. Gamma, R. Helm, R.E. Johnson & J. Vlissides. Design Patterns: Micro-
Architectures for Reusable Object-Oriented. Addison-Wesley, 1994. (to ap-

pear)

D. Gangopadhyay & S. Mitra. ObjChart: Tangible Specification of Reac-
tive Object Behavior. In Proceedings of the 7th European Conference on
Object-Oriented Programming, ECOOP’93, Kaiserslautern, Germany, Lec-
ture Notes in Computer Science, 707: 432-457, Oscar M. Nierstrasz (Ed.),
July 1993, Springer-Verlag.

C. Ghezzi & M. Jazayeri. Preview: Evolution of Concepts in Programming
Languages. In Programming Language Concepts, Chapter 2, pp. 13, John
Wiley, 1982.

C. Ghezzi & M. Jazayeri. An Introductory Semantic View of Program-
ming Languages. In Programming Language Concepts, Chapter 3, pp. 33-
41, John Wiley, 1982.

C. Ghezzi & M. Jazayeri. Control Structures. In Programming Language
Concepts, Chapter 5, pp. 151-159, John Wiley, 1982,

A. Goldberg & D. Robson. Smalltalk-80: The Language and its Implemen-
tation. Addison-Wesley, 1983.

P. Grogono & A. Bennet. Polymorphism and Type Checking in Object-
Oriented Languages. ACM SIGPLAN Notices, 24(11): 109-115, Month
1990.

D. Halbert & P. O’Brien. Using Types and Inheritance in Object-Oriented
Languages. In Proceedings of the 1st European Conference on Object-
Oriented Programming, ECOOP’87, Paris, France, Lecture Notes in Com-
puter Science, J. Bézivin, J.-M. Hullot, P. Cointe & H. Lieberman (Eds.),
276: 20-32, June 1987, Springer-Verlag.

References 199

[65] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8: 231-274, North-Holland, 1987.

[66] D. Harel et al. On the Formal Semantics of Statecharts. In Proceedings of
the 2nd IEEFE Symposium on Logic in C’omputer Science, IEEE Press, NY,
USA, pp. 54-64, 1987.

[67] D. Harel et al. STATEMATE: A Working Environment for the Develop-
ment of Complex Reactive Systems. IEEE Transactions on Software En-
gineering, SE-16(4): 403-414, 1990.

[68] D.M. Harland. Polymorphic Programming Languages: Design and Imple-
mentation. Ellis Horwood, 1984.

[69] W. Harris. Contravariance for the Rest of Us. Journal of Object-Oriented
Programming, 4(7): 10-18, November/December 1991.

[70] F. Hart & A. Hillegass. Bending the Rules. Journal of Object-Oriented
Programming, 6(8): 68-71, January 1994.

[71] T. Hartmann, R. Jungclaus & G. Saake. Aggregation in a Behavior Ori-
ented Object Model. In Proceedings of the 6th European Conference on
Object-Oriented Programming, ECOOP’92, Utrecht, Netherlands, Lecture
Notes in Computer Science, 615: 57-77, O. Lehrmann Madsen (Ed.),
June/July 1992, Springer-Verlag.

[72] S.I. Hayakawa. Languages in Thought and Action. 5th edition, Harcourt
Brace Javanovich, 1990.

[73] W. Haythorn. What is Object-Oriented Design?. Journal of Object-
Oriented Programming, 7(1): 67-78, March/April, 1994.

[74] R. Helm, LM. Holland & D. Gangopadhyay. Contracts: Specifying Behav-
ioral Compositions in Object-Oriented Systems. In Proceedings of the 5th
Annual Conference on Object-Oriented Programming: Systems, Languages
and Applications and the 4th European Conference on Object-Oriented Pro-
gramming, OOPSLA/ECOQP’90, Ottawa, Canada, Special Issue of ACM
SIGPLAN Notices, 25(10): 169-180, N. Meyrowitz (Ed.), October 1990.

[75] LM. Holland. Specifying Reusable Components Using Contracts. In Pro-
ceedings of the 6th European Conference on Object-Oriented Programming,
ECOOP’92, Utrecht, Netherlands, Lecture Notes in Computer Science,
615: 287-308, O. Lehrmann. Madsen (Ed.), June/July 1992, Springer-
Verlag,. :

[76] E. Horowitz & J.B. Munson. An Expansive View of Reusable Software.
IEEE Transactions on Software Engineering, SE-10(5) 477-487, May

1984.

200

References

N

[77] W.L. Hiirsch. Should Superclasses Be Abstract?. In Proceedings of the

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

8th European Conference on Object-Oriented Programming, ECOOP’94,
Bologna, Italy, Lecture Notes in Computer Science, 821: 12-31, M. Tokoro
& R. Pareschi (Eds.), July 1994, Springer-Verlag,.

V. Issarny. An Exception Handling Mechanism for Parallel Object-Oriented
Programming: Toward Reusable, Robust Distributed Software. Journal of
Object-Oriented Programming, 6(6): 29-40, October 1993.

R.E. Johnson & B. Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming, 1(2): 22-35, June/July 1988.

R.E. Johnson & J.M. Zweig. Delegation in C++. Journal of Object-
Oriented Programming, 4(7): 31-34, November/December 1991.

R.E. Johnson. Documenting Frameworks Using Patterns. In Proceedings
of the Tth Annual Conference on Object-Oriented Programming: Systems,
Languages and Application, OOPSLA’92, Vancouver, British Columbia,
Canada, Special Issue of ACM SIGPLAN Notices, 27(10): 63-76, A.
Paepcke (Ed.), October 1992. ‘

S. Khoshafian & R. Abnous. Inheritance. In Object Orientation: Concepts,
Languages, Databases, User Interfaces, Chapter 3, pp. 79-142, Wiley, 1990.

G. Kiczales, J. des Rivieris & D.G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

A. Koenig & B. Stroustrup. Exception Handling for C++4. Journal of
Object-Oriented Programming, 3(2): 16-33, July/August 1990.

S. Krakowiak, M. Meysembourg, H. Nguyen Van, M. Riveill, C. Roisin &
X. Rousset de Pina. Design and Implementation of an Object-Oriented,
Strongly Typed Language for Distributed Applications. Journal of Object-
Oriented Programming, 3(3): 11-22, September/October 1990.

J. Kramer, J. Magee & A. Young. Towards Unifying Fault and Change
Management. In Proceedings of the Second IEEE Workshop on Future
Trends of Distributed Computer Systems, Cairo, September 1990.

S. Lacourte. Exceptions in Guide, an Object-Oriented Language for Dis-
tributed Applications. In Proceedings of the 5th Furopean Conference on
Object-Oriented Programming, ECOOP’91, Geneva, Switzerland, Lecture
Notes in Computer Science, 512: 268-287, Pierre America (Ed.), July 1991,
Spring-Verlag.

W.R. LaLonde, D.A. Thomas & J.R. Pugh. An Exemplar Based Smalltalk.
In Proceedings of the 1st Annual Conference on Object-Oriented Pro-
gramming: Systems, Languages and Application, OOPSLA’86, Portland,

References _ 201

Oregon, September/October, Special Issue of ACM SIGPLAN Notices,
21(11): 322-330, N. Meyrowitz (Ed.), November 1986.

[89] W. Lalonde & J. Pugh. Subclassing, Subtyping and Is-a. Journal of Object-
Oriented Programming, 3(5): 57-62, January 1991.

[90] D. Lea. Christopher Alexander: an Introduction for Object-Oriented De-
signers. ACM SIGSOFT Software Engineering Notes, 19(1): 39-46, Octo-
ber 1993.

[91] P.A. Lee & T. Anderson. Fault Tolerance: Principles and Practice. Second,
Revised Edition, Springer-Verlag, 1990.

[92] C. Leroux. Interface for the Train Sei. Internal Report, Department of
Computing Science, University of Newcastle upon Tyne, April 1994.

[93] H. Lieberman. Using Prototypical Objects to Implement Shared Behaviour
in Object-Oriented Systems. In Proceedings of the 1st" Annual Conference
on Object-Oriented Programming: Systems, Languages and Application,
OOPSLA’86, Portland, Oregon, September/October, Special Issue of ACM
SIGPLAN Notices, 21(11): 214-223, N. Meyrowitz (Ed.), November 1986.

[94] S.B. Lippman. C++ Primer. Addison-Wesley, 1989,

[95] B.H. Liskov & A. Snyder. Exception Handling in CLU. IEEE Transactions
on Software Engineering, SE-5(6): 546-558, November 1979.

[96] B.H. Liskov & A. Snyder. Data Abstraction and Hierarchy. Addendum to
the Proceedings, OOPSLA’87, Special Issue of ACM SIGPLAN Notices,
23(5):17 -34, May 1988.

[97] B. Liskov & J.M. Wing. A New Definition of Subtyping. In Proceed-
ings of the 7th European Conference on Object-Oriented Programming,
ECOOP’93, Kaiserslautern, Germany, Lecture Notes in Computer Science,
707: 118-141, Oscar M. Nierstrasz (Ed.), July 1993, Springer-Verlag.

[98] B. Liskov & J.M. Wing. Specifications and Their Use in Defining Types.
In Proceedings of the 8th Annual Conference on Object-Oriented Program-
ming: Systems, Languages and Application, OOPSLA’93, Washington,
DC, USA, Special Issue of ACM SIGPLAN Notices, 28(10): 16-28, A.
Paepcke (Ed.), October 1993.

[99] O. Madsen & B. Magnusson. Strong Typing of Object-Oriented Languages
Revisited. ACM SIGPLAN Notices, 25(10): 140-150, October 1990.

[100] P. Madany, N. Islam, P. Kougiouris & R.H. Campbell. Reification and
Reflection in C++: An Operating Systems Perspective, Technical Report,
no. UTUCDCs-R-92-1736 , Department of Computer Science, University of
Illinois at Urbana-Champaign, March 1992.

202

References

N\

[101] P. Maes. Concepts and Experiments in Computational Reflection. In Pro-
ceedings of the 2nd Annual Conference on Object-Oriented Programming:
Systems, Languages and Application, OOPSLA’87, Orlando, Florida, Spe-
cial Issue of ACM SIGPLAN Notices, 22(12) 147-155, N. Meyrowitz (Ed.),
October 1987.

[102] G.Masini, A. Napoli, D. Colnet, D. Leonard & K. Tombre. Object-Oriented
Languages. Academic Press, 1991.

[103] J.D. McGregor & T. Korso. Supporting Dimensions of Classification
in Object-Oriented Design. Journal of Object-Oriented Programming,
5(9): 25-30, February 1993.

[104] J.D. McGregor & D.M. Dyer. A Note on Inheritance and State Machines.
ACM SIGSOFT Software Engineering Notes, 18(4): 61-69, October 1993.

[105] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.
(106] B. Meyer. Eiffel: The Language, Prentice Hall, 1991.

[107] B. Meyer. Design by Contract. In Advances in Object-Oriented Software
FEngineering, D. Mandrioli & B. Meyer (Eds), Chapter 1, pp. 1-50, Prentice
Hall, 1992.

[108] B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10): 40-51,
October 1992.

[109] J. Micallef. Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages. Journal of Object-Oriented Program-
ming, 1(1): 12-35, April/May, 1988.

[110] R. Milner. A Theory of Type Polymorphism in Programming. Internal Re-
port CSR-9-77, Department of Computer Science, University of Edinburgh,
Scotland, September 1977.

[111] R. Milner. A Proposal for Standard ML. Internal Report CSR-157-83, De-
partment of Computer Science, University of Edinburgh, Scotland, 1983.

[112] D.E. Monarchi & G.I. Puhr. A Research Typology for Object-Oriented
Analysis and Design. Communications of the ACM, 35(9): 35-47, Septem-
ber 1992. '

[113] D.A. Moon. Object-Oriented with Flavors. In Proceedings of the 1st Annual
Conference on Object-Oriented Programming: Systems, Languages and Ap-
plication, OOPSLA’86, Portland, Oregon, September/October, Special Is-
sue of ACM SIGPLAN Notices, 21(11): 1-8, N. Meyrowitz (Ed.), November
1986.

[114] G.J. Myers. Software Reliability. John Wiley & Sons, 1976.

References : 203

[115] G.J. Myers. C’omﬁosite/Structured Design. van Nostrand Reinhold Com-
pany, 1978.

[116] P. Nauer & B. Randell (Eds.). Proceedings of the NATO Software Engi-
neering Conference. 1968.

[117) M.L. Nelson. An Object-Oriented Tower of Babel. OOPS' Messenger,
2(3): 3-11, July 1991.

[118] D.A. Norman. The Design of Everyday Things. Doubleday /Currency, 1988.

[119] J.J. Odell. Dynamic and Multiple Classification. Journal of Object-
Oriented Programming, 4(8): 45-48, January 1992.

[120] J.J. Odell. Managing Object Complexity, part II: Composition. Journal of
Object-Oriented Programming, 4(8): 45-48, January 1992.

[121] J.J. Odell. Six Different Kinds of Composition. Journal of Object-Oriented
Programming, 6(8): 10-15, January 1994.

[122] D.B.M. Otten & P.J.W. ten Hagen. On the Role of Delegation and Inheri-
tance in Object-Oriented Database Systems. Technical Report, CS-R9032,
Centre for Mathematics and Computer Science (CWI), Amsterdam, July
1990.

[123] D.L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15: 1053-1058, 1972.

[124] H.H. Porter. Separating the Subtype Hierarchy from the Inheritance of
Implementation. Journal of Object-Oriented Programming, 4(9): 20-29,
February 1992.

[125] B. Randell. System Structure for Software Fault Tolerance. IEEE Trans-
actions on Software Engineering, SE-1(2): 220-232, June 1975.

[126] B. Randell. Approaches to Software Fault Tolerance. In Conference Pro-
ceedings 25th Anniversary LAAS, pp. 33-42, Toulouse, France, May 1993.

[127] B. Randell & J. Xu. Object-Oriented Software Fault Tolerance: Frame-
work, Reuse and Design Diversity. PDCS2 First Year Report, Predictably
Dependable Computing Systems, 1: 165-184, Toulouse, France, September
1993.

[128] C.M.F. Rubira-Calsavara & B. Randell. Object-Oriented Environmental
Fault Tolerance. PDCS2 Second Year Report, Predictably Dependable
Computing Systems, Newcastle upon Tyne, England, September 1994.

[129] C.M.F. Rubira-Calsavara & R.J. Stroud. Forward and Backward Error Re-
covery in C++. Journal of Object-Oriented Systems, 1(1): 61-85, October
1994. i

204

References

N

[130] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy & W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

[131] H. Sakai. A Method for Contract Design and Delegation in Object Behavior
Modeling. IEICE Transactions on Information & Systems, ET6-D(6): 646-
655, June 1993.

[132] J.H. Saunders. A Survey of Object-Oriented Programming Languages.
Journal of Object-Oriented Programming, 1(6): 5-11, March/April 1989.

[133] C. Schaffert, T. Cooper, B. Bullis, M. Killian & C. Wilpolt. An In-
troduction to Trellis/Owl. In Proceedings of the Ist Annual Conference
on Object-Oriented Programming: Systems, Languages and Application,
OOPSLA’86, Portland, Oregon, September/October, Special Issue of ACM
SIGPLAN Notices, 21(11): 9-16, N. Meyrowitz (Ed.), November 1986.

[134] E. Sciore. Object Specialization. ACM Transactions on Information Sys-
tems, 7(2): 101-122, April 1989.

[135] R.W. Sebesta. Exception Handling. In Concepts of Programming Lan-
guages, Chapter 12, pp. 380-399, Benjamin/Cummings, 1989.

[136] S. Shlaer & S.J. Mellor. Object Lifecycles: Modeling the World in States.
Yourdon Press, 1992.

[137] S.K. Shrivastava, G.N. Dixon & G. D. Parrington. An Overview of the Ar-
juna Distributed Programming System. IEEE Software, 8(1): 66-73, Jan-
uary 1991.

[138] H.A. Simon. The Architecture of Complexity. In The Sciences of the Arti-
ficial, Second Edition, MIT Press, 1981.

(139] G.B. Singh. Single Versus Multiple Inheritance in Object-Oriented Pro-
gramming. OOPS Messenger, 5(1): 34-43, January 1994.

[140] A. Snyder. Encapsulation and Inheritance in Object-Oriented Program-
ming Languages. In Proceedings of the 1st Annual Conference on Object-
Oriented Programming: Systems, Languages and Application, OOP-
SLA’86, Portland, Oregon, September/October, Special Issue of ACM SIG-
PLAN Notices, 21(11): 38-45, N. Meyrowitz (Ed.), November 1986.

[141] M. Stadel. Object-Oriented Programming Techniques to Replace Software
Components on the Fly in a Running Program. ACM SIGPLAN Notices,
26(1): 99-108, January 1991.

[142] L.A. Stein. Delegation is Inheritance. Proceedings of the 2nd Annual Con-
ference on Object-Oriented Programming: Systems, Languages and Appli-
cation, OOPSLA’87, Orlando, Florida, Special Issue of ACM SIGPLAN
Notices, 22(12): 138-146, N. Meyrowitz (Ed.), October 1987.

References

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155)

[156]

205

L.A. Stein, H. Lieberman & D. Ungar. A Shared View of Sharing: The
Orlando Treaty. In Object-Oriented Concepts, Databases and Applications,
W. Kim & F.H. Lochovsky (Eds.), pp. 31-48, ACM Press/Addison-Wesley
Publishing Co., 1989.

C. Strachey. Fundamentals Concepts in Programming Languages. Oxford
University Press, Oxford, U.K., 1967.

R.E. Strom & S.Yemini. Typestate: A Programming Language Concept
for Enhancing Software Reliability. IEEE Transactions on Software Engi-
neering, SE-12(1): 157-171, January 1986.

R.E. Strom, D.F. Bacon, A.P. Goldberg, A. Lowry, D.M. Yellin & S.A.
Yemini. Hermes: A Language for Distributed Computing. Prentice Hall,
1991.

R.J. Stroud. Transparency and Reflection in Distributed Systems. ACM
Operating Systems Review, 22(2): 99-103, April 1993.

B. Stroustrup. Parametrized Types in C++. Journal of Object-Oriented
Programming, 1(5): 5-16, January/February 1989.

B. Stroustrup. The C++ Programming Language. Second Edition,
Addison-Wesley, 1992.

A. Taivalsaari. Object-Oriented Programming with Modes. Journal of
Object-Oriented Programming, 6(3): 25-32, June 1993.

W. Tracz. Software Reuse Myths. ACM SIGSOFT Software Engineering
Notes, 13(1): 18-22, January 1988.

D.A. Turner. Miranda System Manual. Research Software, Ltd., Canter-
bury, England, 1987.

D. Ungar & R.B. Smith. Self: The Power of the Simplicity. In Proceedings
of the 2nd Annual Conference on Object-Oriented Programming: Systems,
Languages and Application, OOPSLA’87, Orlando, Florida, Special Issue
of ACM SIGPLAN Notices, 22(12): 227-241, N. Meyrowitz (Ed.), October
1987.

1.J. Walker. Requirements of an Object-Oriented Design Method. Software
Engineering Journal, 7(2): 102-113, March 1992.

P. Wegner. Concepts and Paradigms of Object-Oriented Programming.
OOPS Messenger, 1(1): 7-87, August 1990.

R. Wieringa, W. de Jonge & P. Spruit. Roles and Dynamic Subclasses: a
Modal Logic Approach. In Proceedings of the 8th European Conference on

206

[157]

[158]

[159]

[160]

[161]

[162]

[163]

References

)

Object-Oriented Programming, ECOOP’94, Bologna, Italy, Lecture Notes
in Computer Science, 821: 32-59, M. Tokoro & R. Pareschi (Eds.), July
1994, Springer-Verlag.

N. Wilde & R. Huitt. Maintenance Support for Object-Oriented Programs.
IEEE Transactions on Software Engineering, 18(12): 1038-1044, December
1992.

T. Winograd & F. Flores. Understanding Computers and Cognition: A
New Foundation for Design. Addison-Wesley, 1986.

M. Wolczko. Introducing MUST - The Mushroom Programming Language.
Technical Report of the Mushroom Project, Department of Computer Sci-
ence, University of Manchester, 1988.

M. Wolczko. Encapsulation, Delegation and Inheritance in Object-Oriented
Languages. Software Engineering Journal, T(2): 95-101, March 1992.

Y. Yokote. The Apertos Reflective Operating System: The Concept
and Its Implementation. In Proceedings of the 7th Annual Conference
on Object-Oriented Programming: Systems, Languages and Application,
OOPSLA’92, Vancouver, British Columbia, Canada, Special Issue of ACM
SIGPLAN Notices, 27(10): 414-434, A. Paepcke (Ed.), October 1992.

J. Xu, B. Randell, C.M.F. Rubira-Calsavara & R.J. Stroud. Towards an
Object-Oriented Approach to Software Fault Tolerance. In Fault-Tolerant
Parallel and Distributed Systems, IEEE Computer Society Press, October
1994.

Z.B. Zhou & B. Randell. An Automatic Fault Diagnosis Program for a
Computer-Controlled Model Railway: AFDP. Internal Report, Computing
Laboratory, University of Newcastle upon Tyne, February 1991.

	238749_001
	238749_002
	238749_003
	238749_004
	238749_005
	238749_006
	238749_007
	238749_008
	238749_009
	238749_010
	238749_011
	238749_012
	238749_013
	238749_014
	238749_015
	238749_016
	238749_017
	238749_018
	238749_019
	238749_020
	238749_021
	238749_022
	238749_023
	238749_024
	238749_025
	238749_026
	238749_027
	238749_028
	238749_029
	238749_030
	238749_031
	238749_032
	238749_033
	238749_034
	238749_035
	238749_036
	238749_037
	238749_038
	238749_039
	238749_040
	238749_041
	238749_042
	238749_043
	238749_044
	238749_045
	238749_046
	238749_047
	238749_048
	238749_049
	238749_050
	238749_051
	238749_052
	238749_053
	238749_054
	238749_055
	238749_056
	238749_057
	238749_058
	238749_059
	238749_060
	238749_061
	238749_062
	238749_063
	238749_064
	238749_065
	238749_066
	238749_067
	238749_068
	238749_069
	238749_070
	238749_071
	238749_072
	238749_073
	238749_074
	238749_075
	238749_076
	238749_077
	238749_078
	238749_079
	238749_080
	238749_081
	238749_082
	238749_083
	238749_084
	238749_085
	238749_086
	238749_087
	238749_088
	238749_089
	238749_090
	238749_091
	238749_092
	238749_093
	238749_094
	238749_095
	238749_096
	238749_097
	238749_098
	238749_099
	238749_100
	238749_101
	238749_102
	238749_103
	238749_104
	238749_105
	238749_106
	238749_107
	238749_108
	238749_109
	238749_110
	238749_111
	238749_112
	238749_113
	238749_114
	238749_115
	238749_116
	238749_117
	238749_118
	238749_119
	238749_120
	238749_121
	238749_122
	238749_123
	238749_124
	238749_125
	238749_126
	238749_127
	238749_128
	238749_129
	238749_130
	238749_131
	238749_132
	238749_133
	238749_134
	238749_135
	238749_136
	238749_137
	238749_138
	238749_139
	238749_140
	238749_141
	238749_142
	238749_143
	238749_144
	238749_145
	238749_146
	238749_147
	238749_148
	238749_149
	238749_150
	238749_151
	238749_152
	238749_153
	238749_154
	238749_155
	238749_156
	238749_157
	238749_158
	238749_159
	238749_160
	238749_161
	238749_162
	238749_163
	238749_164
	238749_165
	238749_166
	238749_167
	238749_168
	238749_169
	238749_170
	238749_171
	238749_172
	238749_173
	238749_174
	238749_175
	238749_176
	238749_177
	238749_178
	238749_179
	238749_180
	238749_181
	238749_182
	238749_183
	238749_184
	238749_185
	238749_186
	238749_187
	238749_188
	238749_189
	238749_190
	238749_191
	238749_192
	238749_193
	238749_194
	238749_195
	238749_196
	238749_197
	238749_198
	238749_199
	238749_200
	238749_201
	238749_202
	238749_203
	238749_204
	238749_205
	238749_206
	238749_207
	238749_208
	238749_209
	238749_210
	238749_211
	238749_212
	238749_213
	238749_214
	238749_215
	238749_216
	238749_217
	238749_218
	238749_219
	238749_220

