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Abstract.

. The subject of this dissertation ié the modeling and
analysis of multiprogramming computing systeus.

Several cyclic queuing models are studied. The systems
which théy approximate have one central processor and one or
more peripheral processors; queues are served in oxrder of
arrival or according to priority disciplines. Except in the
simplest case of ‘'one central and one peripheral processor,
FIFO queuing and exponential service times at both proces-
sors', all models are analysed in the steady-state.

Expressions for the central processor utilisation fac-
tor, the rate of departures from the system, the average re-
sidenee time and, in the case mentioned above, the Iaplace

transforms of the interarrival interval and of the residence

time are obtained.
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CHAPTER 1.

Introduction.

A possible way of describing a computing system is to
say that it is a 'black box' which accepts programs, or
series of instructions, and executes them. A mathematical
model of the system, consistent with this point of view, ié
a single-server queulng process, where the server, the cus-
tomers and the queuing discipline represent the computer,
the programs and the program scheduling strategy respectively.
The general form of such a model (allowing for interruptions

of service before completion) is pietured in figure 1.1

4 . . ‘-.a
programs requiring additional service

rF=""=====
1 |
! one or |

O ! ; e

. more  ——p SETrvVer >
| t — H -
new programs | gqueues | departures

b o o e - 4

Figure 1.1



Time-sharing strategies (those which give each program
in turn a quantum of service and if that service is not suf-
ficient, return the program to an appropriate queue) in
particular, have been extensively studied by means of single-
server models. A survey of research in this field can be
found in McKinney YZO}. More recently, O'Donovan E19J de-~
veloped a general method for finding average waiting times
in time-sharing and priority systems.

While adequate in many cases, single-server models fail
to capture some important aspects of present-day computing
systems. Chief‘among these is the ability of different com-
ponents of the system to perform different functions in pa-
rallel. To account for this ability, we shal regard compu-
ting systems as collections of 'black boxes' , or proces-
sors; the collection, as a whole, accepts programs and exe-
cutes them but different processors execute different portions
of the programs.

One or more of the processors are designed to perform
'calculations' ; they are usually called ‘'central processors'
or ‘'Central Processing Units' (CPUs). Other processors are
used for transmission of information between main storage and
different types of secondary storage; these are sometimes
called ‘!'channels', or 'Data Transmission Units' (DTUs) ,
or Input/Output units (I/0 units); we shall call them
'peripheral processors?.

Most modern computing systems are operated in 'multi-
'programming' mode, executing a number of programs (or jobs,
as they are usually called) concurrently. In general, mul-

tiprogramming involves the formation of queues within the



system : for example, in a computing system consisting of

m processors and multiprogrammed at degree n (n>m) , at
most m Jobs can be in execution at any one time and at
least n-m jobs must be waiting in various queues, Further-
more, computer equipment being expensive, computing systems
are usually utilised to their full capacity. This, in'pracf
tical terms, means that there are always Jobs outside the
system, ready to take the place of any job which has comple-
ted its execution, i.e. the number of jobs in the system is
maintained at nearly constant level.

It seems reasonable, therefore, that mathematical models
of computing systems be based on many-server queuing networks
in which a constant number of customers circulate between
the servers. It is with the definition and analysis of such

models that this dissertation is concerned.

Survey of existing work.

Gaver [10] (1967) was perhaps the first to study a
many-server model of a multiprogramming system. His model
consists of one central processor and a number of identical
1hput/output units; a constant number of jobs are being mul-
tiprogrammed, each joining the central processor gueue and
the input/output queue alternately , until its demand is
satisfied. The central processor utilisation factor is cal-
'culated, for several different distributions of the central
processor service times (the input/output service times are
agsumed to be distributed exponentially).

Wallace and Mason L11] (1969) solved numerically a

model with one central processor and one input/output unit.



A special feature of the model is that each job execution
begins with a burst of demand for input/output. The results
of the analysis are displayed in a series of graphs showing
the central processor utilisation factor as a function of
the degree of multiprogramming, the service times averages
and the average number of input/output requests per job.

Several cyclic queuing models of multiprogramming sys-
tems with one central and one peripheral processor have been
studied by Chen and Shedler |12] (1969) , Shedler [13 ]
(1970) , Lewis and Shedler ]3] (1971) and Adiri, Hofri end
Yadin |14) (1971) :

[12] ang. [13] deal with paging systems; the basic as-
sumptions of the models are as in [10], except that here the
central processor is the one with generally distributed ser-
vice times;

{3] is concerned with the effect of supervisor overhead
on the central processor utilisation factor. The supervisor
functions are represented by additional processors in the
calculating-input/output cycle;

[14] deals with a case where the the number of jobs in
the system is not fixed, an infinite queve can form in front
of one or both processors. The service times of both proces-
sors are assumed to be distributed exponentially.

A model of a different kind was analysed recently by
Omahen and Schrage [15] (1972) . They assumed that the resour-
ces which a job needs in order to execute are allocated to it
simultaneously, rather than in sequence. Thus, in a system
consisting of three processors, a job which requires two pro-

cessors can be executed in parallel with a job which requires



one processor, but not with one which requires two or three
processors. Conditions for non-saturation are derived, for

different service disciplines.

The contents of subsequent chapters,

A cyclic queuing model of a. two-processor computing
system multiprogrammed at a fixed degree, with exponentialiy
distributed service times for both processors, is defined in
chapter 2 (this model is a special case of the one used by
Koenigsberg i16} to study coal mine operations). The transi-
ent distribution of the number of jobs in the central proces-
Sor queue is obtained.

The same model is analysed in the steady-state in chap-
ter 3 . The central processor utilisation factor, the rate
of departures from the system and the average residence-in-
themsystem time are found. Also, the distributions of queue
8izes at specific points of time are obtained and are used
to find the Laplace transforms of the interarrival interval
and of the residence~in-the-system time. The definition of
the model, part of the steady-state analysis and section 4.6
appeared in [17].

An attempt to validate the model, using a real-life
computing system for comparison, is made in chapter 4 . The
model is then analysed under the assumption that the peri-
Pheral processor service times have general distribution.
Finally, the effect of the degree of multiprogramming on job
turnaround is discussed.

Chapter 5 deals with a multiprogramming system consis-

ting of one central and many peripheral processors. The peri-



pheral processors are not assumed to be equivalent, as they
are in 10 ; a separate queue forms in front of each of them.
Part of this chapter appeared in [18].

Chapter 6 is conserned with a two-processor priority
multiprogramming system. The jobs in the system are assumed
to have different characteristics and to be assigned distinct
Priorities. Preemptive and non-preemptive queuwing disciplines

at the peripheral processor are considered.



CHAPTER 2.

2.0 Summary.

We shall introduce here a mathematical model of a fixed-
number-of-tasks multiprogramming system with one central and
one peripheral processor. The behaviour of the sgystem will
be represented by a continuous barameter stochasgtic process
which, under the assumptions of the model will have the Markov
'memoryless' property. ,

The rest of the chapter will be devoted to finding the
transient distribution of that Markov process. A system of
linear differential equations of first order for the distri-
bution functions will be solved by converting it first to a
system of linear algebraic equations for their Taplace
transforms. Finally, it will be shown that the queue under
consideration is equivalent to a M/M/1 gueue with limited

waiting room.

2.1 The model.

The system that we wish to analyse is pictured in fig.
(2.1). At any time there are exactly N (N >»1) customers
(jobs, from now on) in the system; N is usually referred to
as 'the degree of multiprogramming'. The central and the
Peripheral processors are represented by two servers which
we denote by So and S1 respectively. When more than one
Job requires a server, they are selected for service in order
of arrival. We shall denote by Qo(t) and Q1(t) the sizes
of the SO and the S
Qlt) + Q,;(t) = N ond we can therefore take Q,(t), for

4 Queues at time t. Obviously

example, to describe the state of the system at time t.
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(Unless specified otherwise, when we talk about a queue
it will be understood to include the job, if any, receiving
service. Similarly, when we talk about a ‘'wait at a server'
it will be understood to include the service.)

Upon entry into the system, jobs join at the end of the
So~queue. After being served by SO’ a job either leaves the
system, or joins at the end of the S1—queue; the former takes
place with probability g, (a,&(0,1)) and the latter with
probability qq = 1 - dq- After being served by S1, jobs join
again at the end of the So—queue. The above implies that K
- the number Of. So—services required by a job - is a geometri-

cally distributed random variable:

k_
P(K = k) = q,q, Vo ok=1,2,...

A sequence of 'waiting at SO - waiting at S1' will be
called a 'cycle'. Thus the residence time of a job (the time
between admission to and departure from the system) consists
of . K-1 cycles followed by a wait at S; (K=1,2,...).

To maintain the number of jobs in the system constant,
we assume that when a job leaves the system, a new one is
admitted and joins at the end of the So—queue, the replace-
ment being instantaneous.

Expressed in computing terms, the gqueuing discipline
described above reflects the fact that the execution of a job
consists of alternative CPU and Input/Output intervals. It
also reflects the fact that the system is working under heavy
demand conditions: there is a pool of jobs outside the system

at all times, waiting and ready to be admitted for execution.

-It remains to make specific assumptions concerning the
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distribution of SO and S1 service times. We shall assume
that consecutive So—service times are independent, identi-
cally distributed random variables with distribution function
Fo(x) and that consecutive S,-service times are independent,
identically distributed random .variables with distribution
function F1(x). For the present, both Fo(x) and F1(X)

will be assumed exponential distribution functions, with para—

meters mo and m1 respectively;

_mOX -
Fo(x) =1 - e : F1(x) =1 - e

1%
Most of the results of practical interest can be obtained

under a less restrictive assumption, namely that only one of
the distribution functions is exponentiel. This will be shown

in chapter 4.

2.2 Transient behaviour of the process.

The family of random variables Qo(t), with t running
through the set of the non-negative real numbers, is a
(continuous parameter) stochastic process which can be in
the finite set of states 0,1,...,N . Purthermore, the expo-
nential form of the service times distributions and the
geometrical distribution of the number of So—services re-
quired by a job, ensure that {Q,(t), 0gt< o} is a Markov
process,

We are interested in finding the probabilities
p;(t) = P(Qy(t) = 1) 5 i=0,1,...,N

These probabilities will be referred to as ‘the transient

distpibution of the process' or 'the time-dependent distri-
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bution of the process'. They satisfy a system of linear dif-

ferential equations of first order - the Kolmogorov's forward

equations:
Po'(t) = - m1po(t) + Q1mop1(t)
py ' (t) = - (qymgtm, )P, (t) + qymyp,(t) + mypy(t)
_______________ e e e e e e (2.1)
pN-1'(t) = - (Q1mo+m1)pN_1(t) + q"lmOpN(t) + 1711131\-[_2(13)
pN'(t) = - q‘1m0pN(t) + m»]PN_»](t)

Equations (2.1) +together with a set of initial condi-
tions - pN(O)=1 ; pi(O)zO : i=0,1,...,N-1 for example - yield
the transient distribution of the Qo(t) process.

(Note that since the initigl conditions represent a pro-
bability distribution, they must satisfy the normalising equa-
tion pO(O)+p1(O)+...+pN(O)=1 . It can then be seen, by adding
all equations in (2.1) , that the normalising equation is
satisfied for all t .)

There are standard methods for solving a system of linear
differential equations with constant coefficients; these
usually involve finding the eigenvalues, and then the eigen-
vectors of the coefficient matrix. We shall save a great deal
of the work by taking Laplace transforms of both sides of
the equations in {2.1)

The Laplace transform of a function f(x) 4is denoted

by f*(s) and is defined as

R

£%(s) = {e"sxﬂx)dx . 530

o

provided that the integral in the right-hand side converges.
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There is a simple relationship between the Laplace trans-
form of a function and the Laplace transform of the derivative

of the function:
f'*(s) = - £(0) + s.f*(s) (2.2)

whenever f£*(s) exists.

Using (2.2) we can transform (2.1) into a system of
linear algebraic equations for the Lapléce transforms pi*(s)
(pi*(s) exist for all positive values of s Dbecause

Ogp,(t)g 1) =

]

- po(0) + spy*(s) = - mypy*(s) + q myp, *(s)

- P1(O) + SP1*(S) - (Q1mo+m1)p1*(s).+

+ qqmap,*(s) + m,py*(s)

—————————————————————— (2.3)
= Py (0) + spy_y*(s) = - (qymy+ my)py 4*(s) +
+ aqmpy*(s) +mipy o*(s)
- PN(O) + SPN*(S) = - Q1mOpN*(s) + m1PN_1*(S)
Let us denote the vector (po*(s),p1*(s),...,pN*(s))

by pX(s) , the vector (py(0),p,(0),...,py(0)) by »(0) ,
and let A(s) Dbe the matrix (dimensions (N+1xN+1))

~é+m1 ~Q4My 0 v 0 0] ]
~m,  S+m,+q m, ~q4Mm, N 0 0

0 ~my S+my+Q My ... 0 0

0 0 0 T e s+q1mo+m1 =4 My
_FO 0] 0 .o ~T S+q My
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Now (2.3%) can be written in matrix form as

A(s)p*(s) = p(0) | (2.4)

The solution of (2.4) is given, according to Cramer's

rule, by
1¥(8) = —————— ; i=1,2,... N+ (2.5)
la(s)]

where A(l)(s) is the matrix formed from A(s) by substi-
tuting p(0) for its i-th column and |A| denotes the

determinant of matrix A .

2.3 Explicit solution for the ILaplace transforms.

It is not difficult to write an expression for \A(s)i .
Consider the sequence of matrices Ak ; k=1,2,... where

A, 1s given by

k - . . : : .
o0 O 0 o . a b
0 0 0 0 c a

. -
(dimensions (kxk)), with ass+qmytm, ; b=-q,my ; c=-m, .
By manipulating A(s) one can see that

[A(s)] = SIAN; | (2.6)

(Add the first row of A(s) +to the second; the resulting
Second row to the third, etc. Then subtract the second column

of the resulting matrix from the first; the third from the
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second, etc. This produces an (N+1xN+1) matrix, with the
main (NxN) minor equal to AN and the last row consisting
of N geros followed by an s .)

To find [Ak[ we note that expansion along its first

row yields, for k=2,3,...

L . Ve
_ ;Akl“ ala, - bCéAkngt (2.7)

where }A1§ = a and, by definition,}AO} = 1 (the verifica-
tion of (2.7) for k=2 is straightforward).

The characteristic equation of the simple recurrence

relation (2.7) is

x2 ~ax + be =0
and its two roots are given by
= %[a * (a? - 4bc)%} =

X =
1,2 (2.8)

1
= Jg[s+q1mo+m1 + ((s+q1m0+m1)2 - 4q1mom1)“J

The general solution of (2.7) is of the form

. (3a)%(c, + xC,)  when  x,=x,=3a
[ 8y | =
k k X
Cixq  + Cox, when x1# X,
where C1 and 02 are arbitrary constants. To satisfy our

initial conditions they must be equal to

(‘ 1 when x1= Xo
¢, =
1 X,
1“ when x1¢ X,
XH~X
2 ™M
02 ) {; 1 when X1: X
(a-x1)/(x2—x1) when x1# X,
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Substitution in (2.6) now yields

X, - a a - x
|A(s)] = s(x1N RS XZN —1 =
X, = X X, - X
2 1 2 1 (2.9)
S T
= 5 T (X1h+1 *X2N+1) . X1£ X2
(a” -~ 4q1mom1) ,
and
}A(s)}z (N+1)s(%a)N ; x1=x2=%a (2.9a)
Formulae for IA(i)(s)l - the numerators in (2.5) -

can be obtained by expanding IA(i)(sﬂ along its i-~th colunn;
and although the expansion is not difficult to perform in

the general case, the resulting expressions are very cumber-
some., We shall give the results for the case when p(0), the

right-hand side in (2.4), is defined as

P__(_O_l = (0,0,...,O,']) (2.10)

i.e. when at t=0, QO(O)=N . IA(i)(s)’ is now equal to the
determinant left after crossing the i-th column and the last
row out of |A(s)|, multiplied by (-1)N+i+1. It becomes the
product of two determinants - one triangular with (~q1mo)
on the main diagonal (columns i+1,i+2,...,N+1 of ;A(s)})
~ and one closely resembling 'Ai~1" the only difference

being that the element in the top left-hand corner is s+m1

instead of a = s + qQ4my +omy . By adding to and subtracting

from it q.m, we get

‘A(i)(s)l - (*1)N+i+1(“q1mo)N—i+1(1Ai_1i— q1mOiAi~2]) =

. (2.11)
~i+
(q1mo)

N i1 i
(a2 - 4q1m0m1)% (X1 *2 q1mo(x1 T X2 ))
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when x1# X, - If X = X =%a , then

2
A (o) = (g )11 (3a) 1l gy (1-1) (Ba)E72)  (2.11a)
170 170 .

(We point out that (2.11) is true for i=1,2,...,N+1 ,
although its derivation is only valid for 132 . The séme
observation applies to (2.11a) . Strictly speaking, (2.11a)
is irrelevant for the purpose of finding the ILaplace trans-
forms because, as it is easy to see, x1# X when s3>0 .

We have included it for completeness, and also because it will
be mentioned later.)

Substituting (2.9) and (2.11) into (2.5) yields,
for i=0,1,...,N
X~ Xy - q1‘“0<X1i~ Xzi)

o \
PO S R (2.12)
s{xy 2

p;*(s) = (qqmy)" %

thus determining the ILaplace transforms of the transient
distribution functions pi(t) ; 1=0,1,...,8 for the initial

conditions (2.10) .

2.4 Inversion of the ILaplace transforms.

Finding a function when its Laplace transform is given,
is in general a laborious and costly process - mainly due to
the complexity of the inversion formulae (one such formula,
for example, is given on page 230 in Feller {1b]).

In our case, however, the inversion can be performed
quite easily because we know already the general form of the
functions pi(t) . Going back to the system of linear diffe-
rential equations (2.1) we note that if the coefficient

matrix has eigenvalues which are different real numbers -~
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denote them by Vs Voo eee s Vg = then the solution of
the system is a linear combination of expcocnential functions,

i.e. it is of the form

N+1 v.t

p; (t) = %;; ag 5@’ 3 i50,1,...,0 (2.13)

If that is the case, then the Laplace transforms pi*(s)

for which we already have one expression, must be equal to

N
ix

i

\Y

W A
Lm
e
i N

p;*(s) = i i=0,1,...,N (2.14)

Lo}
it
—
w
!
<

and by comparing the right-hand sides of (2.14) and (2.12)
we cah find the unknown coefficients ai,j
- We shall now prove that vj s J=1,2,...,N41 are distinct
real numbers.
If v is subtracted from the main diagonal of the (2.1)
coefficient matrix, the result is precisely (-1)A(v), where
A(s) is the matrix in (2.4). v. ; j=1,2,...,N41 are, there-

J
fore, the roots of

ja(v) =0 (2.15)

Prom (2.9) we sece that one of the v, is -zero, and
N+1 N+1

the rest satisfy x, = X, ;3 Xy # X, (it is readily
seen that the value of v for which x, = X, # 0 , is not
a solution of (2.15) ). We can thus write VNeq = O and,

for j=1,2,...,N

x,(v.) ~ ~
i I R cos(j %ﬁ%) + i.8in(j %f?) (2.16)
XQ(Vj)

(the right-hand side of (2.16) is the trigonometrical repre-
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sentation of the j-th value of the N+1-st root of 1 . 1 1is
the imaginary unit and x1(vj) and XZ(Vj) are given by

(2.8) with s replaced by v ).

In order to determine from (2.16) the nature of vj H

j=1,2,...,8 we shall use a geometrical argument:

Let .
u, = %(vj + qqmg +’m1)
and

Y 2 <%
V5 = 2[(Vj + qmy + m1) - 4q1mom1} :

then x1(vj) =u, + y. and xz(vj) = w, - ¥y - Since, accor-

J J J
ding to (2.16) , x1(vj) and xz(vj) are equal in modulus,

then the vectors representing the complex numbers uj and yj
must be perpendicular (of all parallelograms only the rec-
tangle has its two diagonals of equal size). This means that

yj = i.c.uj for some real ¢ . We know from the gquadratic

equation for x, and X, that x1(vj)x2(vj) = qqmgm, , which

is a real number. On the other hand,
x, (v.)x, (v.) = (u, + y.)(u, - y.) = w.2 - y.2 =
1G22 J J J 3

J
2 2.2 2 2
=uy * ety " = uy (1 + ¢%)

This implies that either uj is real, and therefore yj is

imaginary, or aj is imesginary and yj is real. The second

alternative should be discarded because if U is imaginary,

J
would also be imaginary, which is impossible.

i.e. v. = i.d —(q1mo + m1) for some real 4 , then Y5

Since the above argument is valid for all j=1,2,...,N ,
it proves that all uj , and therefore all vj , are real

numbers.,

et xy(vy) = rjeXP(i.fj) and xz(vj) = rjexp(i.(~fj))

with o<:fj<:€t; rj = Qqmam, . (2.16) can be rewritten as
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V. 2i. T,
x(vy) 2 dy

XZ(Vj)
and by comparing this form of  (2.16) with the old one, we
(“,\:
find that £, = j ﬁET ; 3=1,2,...,8 . Since uj is the real

J
component of x1(vj) , we have

u, V. + g.,m, + m —~—
COS(fj) = il = el 1.9 I 1 = COS(j 'N\gf:':"-]‘)
r 2( q1mom1)
which gives, for j=1,2, , N
= 2( Y¥cos(3 o) = (aqmy + m.) (2.17)
Vg = e\dqmgy /7Co8v ) Jg/ -~ \4qfp + 1y i

Obviously Vj ; 3=1,2,...,N are distinct and also dis-

tinct from V41 = 0 . We have now proved that (2.13) and
(2.14) hold.

Turning our attention toe (2.12) we note that after re-
ducing it by the factor x,- x, , the fraction defining _i*(s)
becomes a rational function of s and the power of the
polynomial in the numerator is lower than the power of the
polynomial in the denominator. PFurthermore, the roots of the
denominator are precisely Vis Yoy eee vN+1 . Therefore
the reduced fraction can be represented as a linear combina-

tion of elementary‘fractions of the type (2.14) in a unique

way. Denoting for short

i

Nei,_ i41 _ i+1 i
G;(s) = (qqmg) ™ ~(xy77 = %77 = aymy(xy 7= x57))

N+1 N+1)

Hi(s) = s(x1 - X5 = H(s)

We can write

U}—VQGJS)

a = lim

1y] s«)-vj H(s)

(2.18)
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The undeterminacy in the right-hand side of (2.18) can be

resolved according to L'Hospital's rule:
a, . o= —a—dl s i=0,1,...,N 3 3=1,2,...,N+1 (2.19)

((2.19) does not hold when j=N+1 and qqmg=m, ; we’ shall
deal with that case later). |
Substitution of (2.19) into (2.53) now yields expli-
cit expressions for the transient probability distribution
functions of the stochastic process {Qo(t) , t;;O} , given

the initial conditions (2.10) :

o6, (v.) vt 6, (0)
pi(t) = S5 SH—doe d 4 ; i=0,1,...,N (2.20)
J=1 H'(VJ) H'(O)

where vy j=1,2,...,N are given by (2.17) .

2.5 Alternative initial conditions.

It is perhaps worth pointing out that while the eigenva-
lues Vs Vos eee s Vg do not depend on the initial condi-

tions, the coefficients a , in gemeral, do. In the gene-

i,]
ral case, the polynomials (x1 - x2)lA(i+1)(s)] should be
Substituted for Gi(s) in (2.19) , where ‘A(i+1)(s)§ are
the determinants in the numerator in (2.5). However, one im-
portant pfoperty of the process is that ai,N+1 ; i=0,1,...,%
do not depend on the vector of initial conditions p(0) (as
long as the sum of its elements is 1). We shall prove this,
and also find the values of 35 N4t because they play an
important role in the long-run distribution of the Qo(t) pro-
cess.,

Let us set 8=0 in )A(l)(s)g. We have



m,  =dqqmg 0 “es pO(O) . 0 0

—my Qumgty QMg .. p1(O) ... 0 0

0 ~-m, LRI I p2(0) e 0 0
|44 (0)] - : : . ; : .

0 0 0 o pN~1(O) e My, =Q My

0 0 0 pN(O) e ~m, a4m,

If all rows of ]A(i)(o)‘ are added to the last one, then all
elements of the last row will become zeros, except the 1i-th
element, which will be equal to pO(O)+p1(O)+...+pN(O) =1 .
Expansion of fA(i)(O)i by its last row will then eliminate
the i-th column and therefore the result will be independent
of the vector p(0) . (2.19) can thus be used to determine

a. whatever the initial conditions. It gives
i,N+1

i+1 i+ i o i
a B (q o )N~i X1 (O)“ XZ (O)_ Q1mo(x1 (O)— 12 (O))
i,N+1 7 170 - N+1 N+1
? X, (0) - X, (0)

for i=0,1,...,N . These can be simplified because
X1(O) = Q1mo H Xz(o) = m1

Now the expressions become
_ i i+1
N-i _%1M0™ 1

N+1 N+1
(a4my)™ " - my

- m

. _ ; 1=0,1,...,N 2.2
di,N+1 = (q1mo) y 1=U, 1, ’ ( 1)

The above derivation is valid only when x1(0) £ x2(0)
To find ai,l

V41
(2.18) and use (2.9a) and (2.11a) for Gi(s) and H(s)

when g my=m, We can either go back to

respectively, ox we can divide the numerator and the denomi-

nator in the right-hand side of (2.21) by (q1m0~m1) and
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let QqMy-—>M, . In both cases we arrive at

1

&5 et T WaT i=0,1,...,8 ; qm, = m, (2.21a)

2.6 Comparison with an M/M/1  queue.

This completes our analysis of the transient behaviour
of the QO(£) process. Before proceeding with the 1ong—ruﬁ
analysis, we would like to make the foilowing observation:

Consider a one-server queuing system with Poisson arri-
vals and exponentially distributed service times, where the

arrival rate is m, and the average service time is ] .

EERY
Add the restriction that there cannot be more than N

customers in the system at any one time. Now, if Q(t) is
the number of customers in this system at time +t and

pi(t) = P(Q(t)=1i) ; i=0,1,...,N , then the functions pi(t)
satisfy precisely the system of differential equations (2.1).
Therefore, the process {Q(t) , t 20}- is equivalent to the

process {Qo(t) R t?;O} which we are studying.
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CHAPTER 3,

3.0  Summary.

We shall study the steady-state behaviour of the model
defined in the last chapter and find quantities of practical
interest, such as average queue sizes, central processor
utilisation factor, rate of departures, average stay-in-the-
system time. The latter can be found in two ways, one of
which involves Little's theorem and the other -~ three embed-
ded Markov chains. We shall follow the second way and prove
three lemmas about the equilibrium distribution of the embed-
ded Markov chains. Lemma 1 will enable us to find the Lap-

lace transférms of the interarrival interval and of the resi-

dence time steady-state distributions.

3.1 Steady—sfate distribution and average of Qo(t).

By long-run, or steady-state behaviour of & stochastic
Process which depends on parameter t20 , we mean its limi-
ting behaviour as t-»co . In particular, the steady-state
distribution of the stochastic process {Quy(t) , t20} is
defined by the limits

p. = 1lim p.(t) ; i=0,1,...,N
17 4 e 4

where pi(t) are its transient distribution functions.
The obvious gquestion one asks in this connection, is

whether the limits p; exsist and if they do, whether they

depend on the initial conditions of the process, Using the

theory of stochastic processes (see, for example, Parzen [2]),

we could say that since Qu(%t) is a finite-state, irreduci-
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ble Markov process, the limits p; exist and are independent
of the initial state. Then, to find them, we would have to
solve the system of steady-state balance equations (obtained
from (2.1) by substituting zeros for the left-hand sides

and adding the equation PotPyte . 4Py = 1 ). However, we shall
arrive at the same conclusion and results by considering the
transient distribution pi(t) ; i=0,...,N , and letting t_QW.

Pirst, from (2.17) it follows that
V-<2(qmm)%—(qm +m,) <0 ; j=1,2 N
] 1Mo™M Mo * M) <05 0=1,2,00000

(because of the arithmetic - geometric mean inequality).
Now, writing again (2.20) in the form

N vjt
pi(t) = a; g4 * gzq'ai,je ; i=0,1,...,N

we see that pi(t)-—-‘wa,i,N+1 when t-—»o¢ ; i=0,1,...,N , there-
fore the steady-state distribution exists. Purthermore, the
coefficients ai,N+1 are independent of the initialkstate'of
the process, as we showed in the last chapter. The distribu-
tion p; ; i=0,1,...,N is thus given by (2.21) or (2.21a)
depending on whether or not q4Mg # m, . We shall introduce

the quantity r = m1/(q1mo) and rewrite the expressions as

1 -

(I‘ % T

1 -
p; = 1 ; i=0,1,...,N (3.1)
1@' P E

e

I
-

We notice that when N-o0, p.—>r (1-r) provided that

r<1 , otherwise pi-é-o ; 1=0,1,... . That this should be
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s0 is obvious, sincé vhen N-soc, Qo(t) approaches an M/M/1
queuing process wiﬁh traffic intensity r . It can also be

seen that if r<1, the expression (3.1) for P; coincides
with the steady-state conditional probability that the M/M/1

process is in state 1 , given that it is not in any of the

states N+1, N+2, ...

The steady-state expected value of QO is given by

s 1 - (N+1)rN + NrN+1 .
XN {1-r RN =5 por A
E(QO) = 2__4 lpi =
1=1 }_%N ;v o= 1

The steady-state expectation of Q1 is, of course, equal to

N - E(QO) . We have

>
g
H

lim E(Q ; 1lim E(Q1) =

S | ) ;
o) = {
N0 Loo 531 ‘Womoo \

This, again, is what one would expect.

3.2 Processor utilisation, rate of departures and ave-

rage residence time.

According to the interpretation we gave to our model,
Qo(t) is the number of jobs waiting at and/or being served
by the central processor at time t . We called N +the degree
of multiprogramming. Since Po is the steady-state probabi-

lity that the central processor is idle,
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is the steady-state probability of the central processor be-
ing busy, in other words, the steady-state utilisation factor
of the central processor (similarly, 1 - Py is the steady-
state utilisation factor of the peripheral processor).

In most computing instalations, the CPU (central proces-
sing unit) wutilisation factor is usually taken as a measure
of the systém effectiveness. This is mainly because, as we
shall see, thé throughput of jobs is difectly proportional to
it. Under the assumptions of our model, U is a monotone in-
creasing function of the degree of multiprogramming, for any
fixed value of r . If rL1 i.e. if, when both the central
and the peripheral processors are working, requests for input/
output occur at a higher rate than completions of input/output
operations, then U-~»r when N-»o0, Thus when the central
Processor is, in the above sense, faster than the peripheral
processor, its utilisation factor is limited by the speed of
‘the peripheral processor. If r31 , then U-»1 when N-»oo,

In real-life computing systems the CPU wutilisation fac-
tor is not always a monotone increasing function of the deg-
ree of multiprogramming. Usually, an increase of the degree
of multiprogramming is accompanied by an increase of super-
Visor overhead which tends, after a certain optimum is rea-
ched, to reduce the utilisation factor. This was demonstra-
ted by Lewis and Shedler [3} in their model of system over-
head. Also, in time-sharing systems for example, a high
degree of multiprogramming can lead to highly increased
demand for input/output due to paging and that, in turn, can
lower the CPU utilisation factor. The latter phenomenon is

sometimes called 'thrashing' ; we shall dwell briefly on it
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in the fifth chapter.
Let us find now the steady state rate of job departures

from the system (the throughput). We know that S, (the

0]
central processor) is busy for a proportion U of the time,
i.é. for a fraction U per unit time, in the steady-state.
While SO is busy, jobs are served by it at a rate of my
per unit time. Of these, a proportion Qq join the S1-queué
and a proportion q0=1—q1 leave the syétem. Thus, on the
average, qOmOU jobs leave the system per unit time. Since
arrivals occur exactly at moments of departures, the steady-

state rate of arrivals, L , is also given by

L = qgmyU (3.3)

Of course 1/ is the average length of the interarrival
(and interdeparture) intervals.

Qur next task is to find the average residence time of
a job (the time between its admission to, and departure from
the system) in the steady-state. This quantity can be obtained
in two different ways. The simpler‘one is by using Little's
theorem which states that in the steady-state, the number of
customers in a queuing system (or sub-system) is, on the ave-
‘rage, equal to the product of the rate of arrivals and the
average residence time of a customer (J.D.C.ZLittle, [4])
In our case, the number of jobs in the system is constant,
N , so that Little's theorem together with (3.2) and (3.3)

gives the following expression for the average residence time

W

[ T

W= =y M"Y 1 - (3.4)

§ (N+1)/qomO ;T = 1
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(The behaviour of W as a function of N and its connection
with job turnaround will be examined in chapter four.)

In order to use Little's theorem we have to show that
the conditions under which it was proved, namely that the
arrival process is metrically transitive (ergodic) and that
the expectations involved are finite, are satisfied in our
case. This can be done without a great deal of difficulty.
However, we shall arrive at the same result in a different,
although more complicated way. In doing so, we shall obtain
additional information about the steady-state distribution
of queue sizes at selected points of time. Some of this in-

formation will be used later.

3.3 Embedded Markov chains.

Until now, we have concentrated our attention on the con-
tinuous parameter stochastic process {Qo(t), t;;o} . We shall

introduce now three discrete parameter stochastic processes

M1 {Qo(t1k) , k=1,2,...}
{Qp(t2, ") , k=1,2,...}

{9o(t3, ") 4 k=1,2,...}

M2

M3

where t1k is the moment when the (N+k)-th job enters. the
system (and the (N+k-1)-st leaves it) ; t2, 1is the moment
when, for the k-th time, a job leaves the So—queue and joins
the S1—queue H t3k is the moment when, for the k-th time,
a job leaves the S1—queue and joins the So—queue. (In the
second and third instances, the points are of successive de-

bPartures, not of successive departures by a particular job.)
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Note that while Qo(t) is continuous at points t1, ,
it is a step function at points t2k and at points tBk H
that is why the limits from the right were used in the defi-
nitions of M2 and M3. The possible states of M1 and M3
are 1,2,...,N ; the possible states of M2 are 0,1,...,N-1.

Under the assumptions of our‘model, M1 , M2 and M3
are Markov chains, Purthermore, they are finite, irreducible
and aperiodic and therefore possess unique equilibrium distri-
butions which are, at the same time, steady-state distribu-
tions. Denote by pi1=(p1,,p15s...,01y) , p2=(p24,p2,,...P2y_4)
and 22:(p31,p32,...,p3N) the steady-state distributions of
M1 , M2 and M3 respectively. We shall prove the following
three lemmas :

Lemma 1: The vector pl is given by

p1. = L - T 5 TE, 1=1,2,...,80 (3.5)

Lemma 2; The vector p2 1is given by

p2. = = 1 T r#1 , i=0,1,...,N-1 (3.6)
-

Lemma 3: The vectors p3 and pl are identical:
p3. = p1i ; i=1,2,oo"N (3’7)

When r=1 the elements of all three vectors are equal to

=

Assuming that lemmas 1, 2, 3 are true, we can proceed
in the following way:
Prom lemmas 1 and 3 it follows that, in the steady-

state, every time a job joins the SO—queue, there are on the
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average N1 jobs there (including itself) , where N1 is

given by

-~

N
N1 o= > ipl; = (3.8)
=1 £(N+1) ;o oro= 1

From lemma 2 it follows that, in the steady-state,
every time a job joins the S1—queue, there are on the ave-

rage N2 jobs there (including itself) , where N2 is

given by
N r
- r £ 1
N-1 1 -2 9.
N2 = > (N-i)p2, = (3.9)
1=0 H(N+1) ;o= 1 ‘

(The apparent discrepancy N1 + N2 # N is due to the fact

that the S.-queue and the S1—queue are observed at diffe-

0
rent points of time.)

Vhen we described our model we mentioned that the resi-
dence time of a job requiring k services at SO s k=1,2,... ,
consists of k-1 cycles followed by one wait at SO . The
average number of Somservices required by a job is 1/qo
(from the geometric distribution) ; therefore the average num-
ber of cycles it goes through is equal to (1/qo)—1 = q1/qO
The average duration of an Sy-service is 1/mo and of an
S1~service - 1/m1 ; hence the average length of a cycle is
N‘l/mO + N2/m1 and the average duration of a Sp-wait is N1/mo.
Thus we can write the following expression for the average

residence time

. , . | (3.10)
A 82y M v w2)

W=
dg Mg I, e qQoMyT
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Substituting (3.8) and (3.9) into (3.10) we now
obtain the same value for W as the one given by (3%.4)

Before going on to prove the lemmas, it is perhaps worth
pointing out that they are similar in nature to Khinchine's
result (Saaty [5]) , in the sense that they show the steady-
state distribution of queue sizes at selected moments of time
to be equal to the time-average steady-state distribution
(conditioned upon the appropriate queue not being empty) .
Khinchine's result cannot be applied directly to this model
because the Poisson input assumption is not satisfied here.

We shall now give the proofs of lemmas 2,3 and 1, in that
order. All three proofs are empirical and consist of verify-
ing that the probability distribution vectors defined by
(3.5), (3.6) and (3%.7) satisfy the steady—sfate balance
equations of the Markov chains M1, M2 and M3 respectively.
This method of proof can be applied because the Markov chains
have unique equilibrium distributions and therefore the bal-

ance equations have unique solutions.

Proof of lemma 2

Let V2 = (v2, ,)N"T_ denote the matrix of transition
i,371,§=0
. Probabilities of M2 :
L +y_ ..
v2y 5 = P[Qo(t2k+1 )=31Qp(t2, " )=1 5 1,J=0,1,...,N-1

where t2 are the moments when successive jobs join the

k
81-queue. We notice first that

‘f20,j = V21 320’1’oooN"‘1

) J

due to the fact that if Qy(t2, %) = 0 then, inevitably,
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& job will join the So—queue before t2k+1 , hence the dis-

tribution of Qo(t2k+1+) will be the same as it would be if
a + _
Qp(t2, ") =1

Furthermore, for i=2,3,...,N-1 we have

= v2i’i_3 = eee = VZi’O = 0

i,i"z
because, according to the definitionm of- t2k , Qo(t) cannot

+
k+1 °

1 there can be many departures from the

decrease by more than 1 between t2k+ and t2 (In the

interval (tgk’t2k+1

So-queue, provided that they are also departures from the
system, in which case Qo(t) does not decrease.)

We are going to need the fact that, if Qo(t2k+) £ 0
then the time between tzk and t2k+1 is distributed expo-
nentially with parameter QMg - This can be established as

x end t2,

is distributed geometrically, with probability generating

follows: the number of So—servioes between 12

-function

q
G6(z) = —1—
1

each S,-service is distributed exponentially, with ILaplace

0
transform

m
£,*(s) = —2—
s+m0

. + . . .
if Q (t2,7) # O then in the interval (t2k,t2k+1) there
is no S,-idle period, therefore the ILaplace transform of

0
the distribution of the interval is equal to

q,f*%(s) q,m
6(1,%(s))= 170 _ 1M
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which is the lLaplace transform of an exponential distribu-
tion with parameter q4My

If two activities , A1 and A2 , with durations distri-
buted exponentially with parameters e, and e, respective-
ly, are in progress at a given moment of time, then the pro-

bability that A will terminate before A2 , is equal to

1
e1/(e1+e2) . Taking A, to be the succession of Somservicés
terminating at t2k+1 and A2 to be an S1—service, we get,

fOI‘ i=1’2"oo,N°1

where g is defined by

44y 1
g = = (3.11)
QMg + My 1T 4+ 1

Por a transition from state i (i=1,2,...,N-2) +to sta-
te j (j=i,i+1,...,N-2) to occur, there must be exactly
J-i+1 S,-service completions in the interval (tzk,t2k+1) .
Eecause of the memoryless property of the exponential distri-
bution we can write, for i and jJ in the above mentioned

boundaries

i
2. . = g(i-g)d~tt
v2; g( | )

where g is given by (3.11)
For a transition from state i (i=1,2,...,N-1) +to sta-
te N-1 +to occur, all N-i jobs in the S1—queue must be

Served by S1 before t2k+1 . Thus

_ N-i
V2 yo1 = (1-8)
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A1l elements of V2 are now known and the matrix can be

written in full

Tg g(1-g) gli-2)? ... g(1-g)"2 (1)
g gli-g) e(1-)° ... g(1-g)¥2 (1-g)""
0 g g(1-g) ... g(1-g)"’ (1—g)N”2_
V2 = | . . . . : (3.12)
0 0 0 . g(1-g) (1-g)°
0 0 0 ... g (1-g)

It remains to show that the vector p2 = (p2y,...,p2; ,)

defined by (3.6) satisfies

p2.V2 = p2

where p2 is treated as a row-vector and the product is 'row
by column'. This is easily done by direct substitution. As an
examnple, let us calculate the scalar product of p2 and the

second column of V2 ; it should be equal to p21

- = [a(1-g) + g(1-g)r + gr°] =
1 -1
, - 1 +r + r(1-r = ———— = D
1o (1 o+ 1)? - 1 - N Py

The rest of the scalar products are equally easy to evaluate.
(When r = 1 +the calculations become trivial ; & is then

LN )

equal to % and all columns of V2 sum to 1 ,)

Proof of lemma 3%

This proof proceeds along the same lines as the one of

J
lemma 2 ., We denote by V3 = (V3i j)? j=1 the matrix of tran-
-9 $JT
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sition probabilities for the Markov chain M3 :
_ +y_ . . Vs aa .
V3 4= P[@O(t3k+1 )=3 ]2y (3, )=i] ; i,j=1,2,...,N

Now we have

VBN,j = v3N—1,j ’ j:1,2,...,N

and, for i=1,2,...N-2

V3 =V3 :VBiNzo

i,i+2 i, i+3 T o

for reasons analogous to those for the similar properties
of the matrix V2 . In short, an argument almost identical

to the one in the last proof shows V3 +to have the form

g (1-g) 0 ... 0 0
g2 g(1-g) (1-g) - 0 0
V3 = . : . . (3.13)

g1 g2 (1-g) g (1-g) ... gl1-g) (1-g)
g1 g 2(1og) &V (1-g) ... g(1-g) (1—gz

JR—

and it can be verified by direct substitution that the wvector

B3 = (p3,,p3,,...,p3y) defined by (3.7) satisfies

p3.V3 = p3
Proof of lemma 1
Again our aim is to find the matrix V1 = (w1, )V |
l’;] l,J:1
where
Vi, = Plag (1) 1)=3]Qp(t1)=1] 5 1,j=1,2,...,N

This time, however, the procedure is more complicated due to



the fact that both the Sowqueue and the S1~queue can go

through many possible transitions between 1 and %1

k k+1
(moments of successive arrivals into the system) . To get

around this difficulty, we divide the interval (t1k,t1k+1)

into So—steps, where an So—step is defined as the span bet-
ween two consecutive Sjy-services. Thus an S,-step consists

of either one So~service (if after the service is completed

QO £ 0 ), or one So~servioe and one So-idle period. Let

Cn denote the event 'there are n So~steps in the interwal

($13,61y,4)" 5 n=1,2,... . Obviously C_ is independent of
k¥ and of the value of QO at t1k . The distribution of

Cn is given by

-1

P(C ) = 9544 s n=1,2,...

If, for =n=1,2,... , we introduce the matrices
N
)

V= (v i,j=1

n , Where

n3i,j

ooty = B[Ol =3]ag(t1 )=, 5 1,3m,2, 000 (3.14)

we can express Vi as an infinite series

oo OO

Vo= 2 V_.B(C) = 2 agay" TV, (3.15)
n=1 n=1

Familiar considerations show that, for n = 1

n nh(1-h) ... n(i-n)Z (qop)F
0 n oo n(1-0)¥2 (1-n)V-2
R : : (3.16)
0 0 “o 'h (1-h)
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where h 1s the probability that the So—service will com-

plete before the S1—service, provided that both SO and
S1 are working ; h 1is given by
m 1 .
h = 0 = (3.17)
my + my 1 + QT

(V1 is triangular because it is known that at the end of the
Sonstep the departing job is replaced, therefore QO cannot
decrease. )

Suppose now that n>2 . Consider the moments

— . % -
1 bo < by <ovw KB < Kb = 6

where tm is the end of the m-th So—step (m=1,2,...,n) ,
and/or the beginning of the m+l-st Sy-step (m=0,1,..,n-1).
We note first that, for i,j=1,2,...,N-1 and m=1,2,...,n-1

the transition probabilities
+y . ) +y .
P [Qo(tm )"JIQO(tm~1 )‘l’cn]

are independent of m ; this is due to the exponential dis-
tribution of Sy~ and S,-service times. However, Qo(to+)

. Lk
can take the values 1,2,...,N , while Qo(b1 )""’Qo(tn—1+)
can only take the values 1,2,...,N-1 . The latter is due to
the fact that an So—service which terminates at one of the

moments t,, t «s» t,_4 cannot result in a departure from

2!
the system, which is the only way to have QO = N just after
an So—service completion. The case m = n 1is different again,
because Qo(tn+) can take the values 1,2,...,0 and also

the transition probabilities
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PLQO(tn+)=j QO(tn_1+)=i,Cn] 12,2, ... ,N-1 ; 3=1,2,...,N

differ from those mentioned above (it is known that at tn
the job departs from the system and is replaced).

We shall introduce the three matrices V = (v_.. .) ,
' a a3;l, )

vy = (vb;i,j) and V,_ = (Vc;i,j) of dimentions ‘(NxN—1) ,

(N-1xN-1) and (N-1xN) respectively, where

. + " + 9 ‘-Io 3 — . * ' T
Vaii,s = P[Qo(t1 )=3[Qy (g )=1,0, 5 4=1, LW e,

]

vb;i9j

<
]

] N Lo L
C;i,j P[Qo(tn ):JIQO(tn_1 )—l,Cn}, 1—1,..,,1\].-—-1,3__1,".’N

It is clear from these definitions and the remarks pre-
ceding them, that Va is the transition probability matrix

for the first Sy-step , V, 1is the transition probability

0
matrix for each of the next n-2 steps and Vc is the tran-

sition probability matrix for the n-th step. We can write now

v, = v v MOV, 5 n=2,3,... (3.18)

(Power of O 1is assumed to yield the identity matrix.)
The elements of Va R Vb and Vc can be easily expressed

in terms of the quantity defined by (3.17) . Va has the form

Fen(1-n) n(1-m? ... n(1-n)¥2 (4T
h h(1-h) ... n(1-w)7 (g2
0 n e n(-n) T (1p)N-3
I : : :
o 0 h '(1-]'1)‘
0 0 oo 0 1




(The two terms of the top left-hand corner element of Va
arise because the probability that Qo(t1+) = 1 given that
Q(to™) =1 and C, is equal to the probability that
either the So—service finishes before the S1~service (in
which case the S.-step will contain an So~idle period) ,

0]

or the So—service finishes after the current S1—service

but before the next one.)

Vb is equal to Va without its last row :

Hen(1-n) n(1-w)? ... n(1-m) 2 (gomy 1
h n(1-h) ... n(1-n)¥3 (1m)N-2
Vy = : | . | .
..... 0 0 oo h (1-h)

VC has the form

n n(1-h) ... h(1-n)V2 () ¥
0 h . n(1-n)¥3 (p)F-2
v, = | . .
0 0 ce h (1-h)

and it can be seen that V, 1is equal to V1 without its

last row.

Equation (3.18) will still hold if Va , Vb and VC
are enlarged to become square matrices of dimentions (NxN)
by appending

a) a column of zeros to Va ,

b) an arbitrary row and a column of zeros to Vb s

¢) an arbitrary row to v,

With this observation in mind we form the (¥xN) matrix
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i . OT
. ) . 0
ceeenoenes 0]

According to b) , VA can be used as an enlarged Vb
as well as an enlarged Va . According to e¢) , V1 can be

used as an enlarged VC . We can thus rewrite (3.18) as

Vo= v, 2y

n A 1 ; n=1,2,... : (3.?0)

Substituting (3.20) into (%.15) we obtain
- oo

S n-1 |
V1= ag] 2o (e (3.21)

It is clear that the infinite series in the right-hand side
of (3.21) converges, since all rows of V, sum to 1 and

q<1 . (3.21) is therefore equivalent to
V1= q (I - q,V,) ¥ (3.22)
= 9o RV T oo

where I 1is the identity matrix of order N and power of
(-1) denotes inversion (it is easy to see that (I - q1VA)
is non-singular).

Now, to finish the proof, we have only to verify that
the vector pil = (p11,p12,..f,p1N) defined by (3.5) sa-
tisfies the system of balance equations pi1.V1 = p1 or, in

view of (3.22) , that it satisfies
-1
pl.ag(T - q4V,)" 'V, = p1
which is equivalent to

agel = p1.V, 7T - q V) (3.23)
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After performing the necessary calculations we find that

1 —¢1-n) o ... o© o
0 1 -(1-n) ... © 0
v1“1 _ % . .
0 0 0 . 1. -(1-h)
0 0 0 0 h
and that
1-g.h -(1-h) 0 0 o
~q4h 1 -(1-n) . 0 0
0 ~q1h 1 0 0
FRCSTUVES S EESEE s z
0 0 0 1 -{1-n)
|0 0 0 ~q4h ho |

Now (%.23) can be verified directly. As an example,
let us take the scalar product of pl and the second column

of V1"1(I—q1VA) ; the result should be equal to qOP1

2
Vo e (4en) Lz 27 1 -T 2
- + &= - gqur | = ———= | —q,r + r(1+q,7) - q,T 7
PRI A S e Y 1 17
) N
= qgr(i-r)/(1-r") = qq4p1,

The above calculations are valid for N 3% . The case

N =1 is trivial. When XN = 2 we have

(1 0
V, =
.A. ”1 o ]

and (3.2%) is just as easy to verify.
This completes the proofs of lemmas 1 , 2 and 3 and

hence of relation (3.10)
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5.4 The Laplace transform of the interarrival interval.

The task of determining the distribution of.a random va-
riable is often more difficult than that of determining its
expectation. We have not been able to find explicitly the dis-
tribution function of either the interarrival or the residence
time. It is possible however, to derive expressions for fthe
Laplace transforms of these distributions. We shall do this
in detail for the interarrival interval and only outline the
derivation for the residence time.

Let us consider again»the embedded Markov chain M1 at
the momehts t1k ; k=1,2,... of successive arrivals into the
system. In addition to the matrix of transition probabilities

V1 , we shall associate with M1 the matrix of ZILaplace

N .
transforms Il = (l1i,j)i,j=1 where 11i,j is the ZLaplace
transform of the distribution of the interval (t1k,t1k+1) s
given that at t1k M1 was in state i and at t1k+1 it

will be in state j . (M1 is thus treated as a semi-Markov
process rather than a Markov chain.)

The Laplace transform of the interarrival time distri-

bution given that at t1k M1 was in state i - denoted
by 11i - is given by
- :
1, = & IR B .
11, % 1,534, 5 (3.24)

The unconditional steady-state ILaplace transform of the
interarrival time distribution - denoted by 11 - is ob-

tained from

N
11 = 227~P1i11i (3.25)
1=
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wnere (p11,p12,...,p1N) = pl "is the steady-state distribu-
tion of M1 , given by (3.5) .
If A and B are two (NxM) matrices with elements

a and b, . respectively, then their ‘'element by ele-

i,j 1,]

1 — ¢ 5 o \
ment product C (ci,j = ai,jbi,j s i=1,...,8 5 j=1,...,M)
will be denoted by C = (A*B) . Using this notation and the

(Nx1) matrix

we can combine (3.24) and (3.25) into
11 = El(V1%L1)E (3.26)

If a name is to be given to the matrix (V1xL1) , it
seems appropriate to call it the 'joint transition probabi-
lity-Laplace transform matrix' of M1 for the interarrival
interval. We shall use similar names for matrices of this
type in the future.

To find (VixL1) , we shall divide the interarrival
interval into SO—steps as we did in the proof of lemma 1
Let Cn be the event of there being exactly n So—steps in
the interarrival interval ; let V1n be the matrix defined
by (3.14) ; let L1 be the matrix of the ILaplace trans-
forms for the interval, conditioned upon Cn as well as
upon the states of M1 at t1, and %1, . . (Vi%L1) can
now be expressed as

Do R

- — SN\ — S n_-1 B - ’
(VixIl) = 2 (V1 x11 )B(C ) = % Qe (V1 %11 ) (3.27)
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Phere is an obvious analogy between (3.27) and (3.19) ,
which extends into allowing the derivation of an expression
for (V1n*L1n) similar to (3.20) . We associate with vy
(defined by (%.19)) +the matrix of Laplace transforms
L, = (lA;i“_j)qu,j:1 , where lA;i,j is the ILaplace trans-
form of an So~step given that QO =i at the beginning and
QO = j at the end of the step and the step is not the last
one in the interarrival interval. The desired expression for

(V1n*L1n) is

(V1_%I1_) = (VD)™ (V1 x01,) 5 n=1,2,... (3.28)

Here (VA*LA) and (V15*L11) are used as (enlarged) joint
transition probability-Laplace transform matrices of QO for
‘the first n-1 So—steps and for the n-th So—step respec-
tively.

The derivation of (3.28) relies on the fact that the
Laplace transform of the convolution éf the distribution func-
tions of two independent random variables is equal to the pro-
duct of their respective Laplace transforms ; also on the
exponential distribution of the SO- and S1~service times.
The argument which leads to (3.28) is very similar to the
one used in obtaining (%.20) and we shall omit it.

If both SO and S1 are working, then the time until
the nearest event, be it an So—service completion or an 81—
service completion, is distributed exponentially with para-
meter my + my . We shall denote the Laplace transform of
that distribution by b(s) ; the ILaplace transform of an SOW
service time distribution by a(s) ; the ILaplace transform

of an §,-service time distribution by c(s)
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m m m
a(s) = —2— ; b(s) = O 1 ;i o(s) = —1—  (3.29)
s + my S + my o+ my s + my :

+ m

It is not difficult to see that L‘I1 is given by

B(s) b2(s) ... M) vV (s)als) ]
0 b(s) ... ®E(s) BE(s)als)
0 0 ... B'(s) v(s)als)
L1y = (3.30)
0 0 ce b(s) b(s)a(s)
L__O 0 “ e 0 a(s) |
and that LA is given by

‘1A;1,1 bs(s) - bN_1(s) bN"1(s)a(s) dﬂ
b(s) Db(s) ... B2(s) v %(s)als) O
0 b(s) ... BVO(s) B 2(s)als) O
Ly = : : : . | (3.31)
0 0 e b(s) b(s)a(s) 0
| 0 0 - 0 a(s) OJ

where

h.b(s)e(s) + n(1-h)b(s)

1 .
h + h(1-h)

A31,1 T (3.32)

(an So—step which results in a transition from state 1 to
state 1 can contain an So~id1e period).
All matrices in the right-hand side of (3.28) are now

known. Substitution of (3.28) into (3.27) yields

(V1%L1) = qy(T - q1(vA*LA))"1(V11*L11) (3.33)
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in the same way as (3.22) was derived from (3.20) and

(3.15) . Substituting (3.33) into (3.26) we obtain
_ : -1 , .
11 = qup1 [T = aq (VxL,)] 7 (V151 )E (5.%4)

thus determining the ZILaplace transform of the steady-state
interarrival time distribution.‘

(3.3%4) can be simplified a little by using the fact
that all rows of (V11*L11) sum to a(s) (one would expect
this to be so, since the last S -step of (t1,,%1, ,) con-
sists of exactly one Somservice). In matrix notation it

means that (V11*L11)E = a(s)E® and (3%.34) becomes
11 = a(s)qob1 [I -~ q,(V *Lk)]"1E (3.35)
- 1 ATAY

Expressions (3.31) and (3.32) are valid for N33

When N =1 11 can be found directly

égz n-1y n-1 192(5)
1= 2 dod lats)e(s)] " Ta(s) =
n= i

1 - gqa(s)c(s)

When N = 2
. (s)e(s)+(1-h)b(s)als) 61
a(s) QJ

and again, the calculations are not difficult.

In general, since the right-hand side of (3.35) 1is a
rational function of s in which the polynomial in the nume-
rator is of lower degree than the one in the denomiﬁator, it
appears that the probability density function of the steady-
state interarrival ltime is a linear combination of exponential

functions. To prove it, one would have to estsblish that the
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roots of the denominator are distinct negative real numbers.
This we have not been able to do, except for the simple cases

N=1 and N = 2 .

3.5 The ILaplace transform of the residence time.

The residence time of a job consists of geometrically
distributed number of cycles (the span between two consecu-
tive joinings of the §,-queue by the same job) , followed
by one wait in the Sy-queue. Let (VSO*LSO) be the joint
transition probability-Laplace transform matrix of QO for
a wait of a job in the So—queue and (VS1*LS1) be the
transition probabllity-Laplace transform matrix cf QO for

a wait of a job in the S1~queue. Then
(VoxLg) = (VgoxDgy) (Vg *Lgy) (3.36) .

is the joint transition probability-Laplace transform matrix

of QO for one cycle and

o0
I n-1 - yn-1 7
(VR*LR) = ﬂ;{ PP (VC*LC) (VSO*LSO ) (3.37)

is the joint transition probability-Laplace transform matrix
of QO for the residence time of a job. (3.%7) can aléo

be written as
. _ - ) -1
(Vgrg) = [T = aq(Txig)] ™1 (VovTg) (3.38)

The steady-state distribution of QO at moments when
jobs enter the system is given by the vector pl., defined
by (3.5) . Therefore the steady-state Laplace transform

1y oOf the distribution of the residence time is given by

RES
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= p1(Vp*Lg)E (3.39)

Qur task has now been reduced to finding the two matrices

(VSO*L and (VS1*L

SO) 81)

If, after joining the Sy-queue, a job finds (including

itself) i jobs there, then its wait in the So~queue con-

sists of 1 So—services. The first i-1 of them are equi-

valent from transition probabilities-Laplace transforms point

of view, but the i-th one is different because after its com-

pletion the destination of the job is known. Let (V,,

OA)

be the joint transition probability-ILaplace transform matrix
of QO

be the joint transition

for each of the first i-1 Sy-services and (v

OB OB)
probability-Laplace transform matrix

of QO for the i-th S

(VSO*LSO) has the

-service. It can be seen then, that

o
following form

1-st row of (VOB*LOB)
2-nd row of (VOA*LOA)(VOB*LOB)
(Vgo*Lgg) = : (3.40)
N-th row of (V,,*L )N 1(V )
- 0A% oA 0B*LoB’|
The elements Vli,j s i,j=1,2,...,N of (VOA OA) can
be expressed in terms of h , a(s) and b(s)
vl1’j =0 ; j=1,2,...,N 3
»VIi,j =0 ; jgi-2 ;
- .« D& 34 N=1 - =
v%ﬂLJ-qﬂwa), 2<i4 N1 ,V%LMJ Qﬁﬂﬂ (3.41)
_ j-i j=i+1¢p . . .
vl; 5 = h(1-n)7 7 b(s) [ag*ta, (1-n)b(s)] 5 2€igiLEN-2 ;
_ Ned—i, o yN-i el s oot hq
vl yq= (1-h) b(s) [q0h+q1(1 h)a(s)] 3 2<igN-1 ;
_ N-i, ,\N-1i L
VIi,N = q0(1~h) b(s) a(s) ; i=2,3,...,N
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(vl are defined as zeros for convenience, since they are

1,7
irrelevant for the purpose of computing (Vg *ILgy) .)

(VOB*LOB) is the matrix

(3.42)
1b(s) n(1-h)b2(s) ... h(1-n)"T"2 " 1(g) (1-n)TTuP¥T(s)a(s)]
0 nb(s) ... n(1-m)" N 2(s) (1-n)¥ %2 (s)a(s)
0 0 .. hb(s) (1-h)v(s)a(s)
0 0 e 0 - a(s)

L -

(We note that (VOB*LOB) and (V11*L11) are equal.)

| (VS1*LS1) can be obtained in a similar way

If, after joining the Sj»queue, a job leaves QO in
state . j (therefore finds N-j jobs, including itself, in
the S1—queue) then its waif in the S1—queue consists of

N-j S,-services. Of these, the last N-j-1 S,-services are

1 1
equivalent from transition probabilities-Laplace transforms
point of view, but the first is slightly different, because
QO can be equal to zero at its beginning.

Let (V1A%L1A) and (V1B*L1B) be the transition pro-
bability~Laplace transform matrices of QO for the first,

and for the remaining S,-services respectively. (VS1*LS1)

has the following form

- , S N-1 ]
1-st row of (V1A*L1A)(J1B*L1B)

N-2
2-nd row of (V1A*L1A)(V1B*L1B)
(Vgq%lgy) = . (3.43)
N-th row of (V1A*L1A)

e

(V1A*L is the matrix

1A)
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(%.44)
T e(s) o 0 .. o
gd(s)c(s) (1-g)d(s) 0 .. 0
(ga(s))%c(s)  g(1-g)a’(s) (1-g)a(s) .0

(2a(s) Te(s) g% (1-g)a" " (s) g7 (1-5)a" "% (s) ... (1-g)als)

where g 1is defined by (3.11) , c(s) is defined by (3.29)
and ‘

g.,m~ + m
a(s) = 10 1

s + qumy + my

is a Iaplace transform analogous to b(s) , but taking into
account the fact that jobs join the S1—queue at a rate 44My
wvhen SO is busy.

(V1B*L1B) is the matrix

(3.46)
[ gd(s)e(s) (1-g)a(s) 0 ... o *
(gd(s))?e(s)  g(1-g)d’(s) (1-z)a(s) .0

L] . . * L]
.
.

(ga(s)) " Te(s) g2 (1-g)a" 1 (s) V2 (1-2)a%%(s) ... (1-g)als)
0 0 0 . 0

(The elements of the last row of (V1B*L1B) are defined as
zeros for convenience, since they are irrelevant for the pur-
pose of computing (VS1*LS1) )

Everything needed to find 1RES , for N23% , has now
been expressed in terms of known quantities. VWhen N =1 ,
lRES is equal to the ILaplace transform of the steady-state

interarrival time distribution. One would suspect, in view

of relation (3.4) , that in the general case, Lppg Wwill
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be equal to the N-th power of the Laplace transform of the
steady-state interarrival time distribution. This, however,
is not true for N = 2 .

Before we leave this subject we would like to point out
that all rows of (Vy,*Ly,) and all rows of (Vyu*Lys) sum
to a(s) , therefore the first row of (VSO*LSO) sums to
a(s) , the éecond - to az(s) ; v.. 5 the NW-th - %o aN(s)
(this is also intuitively obvious) . (3;39) , after substitu-
tion of (3.3%8) , can thus be simplified by replacing

(Varn*Lian)B by the matrix
SO0 80

() "

a®(s)

=
—
Il
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CHAPPER 4.

4.0 Summary.

We shall deal here with the following three topics:

Relation between the model and real-life computing systems.
Theoretically obtained values of several quantities will be
compared with their observed values,

Relaxation of the exponential services assumption. The
model will be analysed in the steady-state, assuming that only
one of the two processors has exponentially distributed service
times.

 Purnaround. Steady-state turnaround will be introduced
as an alternative (to the CPU utilisation factor) measure of .
system efficiency and its dependence on the degree of multiprog-

ramming will be discussed.

4,1 Validity of the assumptions.

The assumptions under which we studied our model (they
were given in detail in chapter 2) were:

a., Heavy demand conditions (availability of replacement
for every departing job).

b. Single peripheral processor.

c. Non-priority (FIFO) service discipline at both pro-
cessors. |

d. Independent, identically exponentially distributed ser-
vice times at both processors.

e. Geometrical distribution of the number of CPU services
required by a job.

Hardly any multiprogramming computing systems conform to
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assumptions (b) and (c), which are therefore the most obvious
candidates Ifor modification; this will be the subject of sub-
sequent chapters., On the other‘hand, heavy demand conditions
exist in the majority of compufing'instalations - if not all
the time, then at least during peak periods. In this sense,
assumption (a) is a reasonable one and will be maintained
throughout this dissertation,

Very 1ittle is known about the disfribution of the number
of CPU (and input/output) intervals per job, although the
average of that number can usually be obtained from information
kept by accounting routines. In the absence of evidence against
it, and since it is essential for the analysis, assumption
(e) will also be maintained throughout this dissertation.

Let us consider now the nature of the central and the pe-
ripheral processors‘ service times. We shall not discuss the
question of whether consecutive service times are independent
or not; it is fairly obvious that they are, for a normal job
mix; also, none of the analysis would be possible if they
were not. The question of whether consecutive service times
of a given processor are identically distributed can be answ-
ered in the negative, generally. It is well known that some
jobs are ‘'CPU-bound' (long intervals of calculating, short
intervals of input/output) and some are 'I/O-bound’ (long
I/0 intervals, short CPU intervals); the average number of
cycles also varies. The problem of modeling a system with se-
veral different job classes is closely related to that of mo-
deling a system with priority servicing; a mddel_which incor-
porates both is considered in chapter 6.

It is less clear whether the service times of the central
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and peripheral processors are distributed exponentially or
not. In order to check this, and at the same time to see how
well, or badly, the model approximates a real system, some
statistics were collected during the normal operation of a
university computing installation,

The installation has an IBM %60/67 computer which is
used by a large and vafied user population (students, aca-
demic and administrative staff, some inaustrial users). At
the time of the experiment, the relevant cohfiguration con-
sisted of a central proccésor with half a million bytes of
main storage, a multiple disk unit, a drum unit, a card rea-
der/punch and a line printer. It was run under the NPT II
(Multiprogramming with Pixed number of Tasks, version two)
Operating System.

MFT IT effects multiprogramming by dividing the main
storage (that part of it which ié not occupied by the super-
visor) into partitions of fixed size; when a partition beco-
mes available, the queue of jobs waiting outside (on a disk)
is scanned for a job that will fit in it. A job in a higher
partition has preemptive priority at the CPU, and head-of-
the-line priority for I1/0, over a job in a lower partition.

The number of partitions, and thus the level of multi-
programming, was equal to six. The top partition was used by
the statistics-collecting program during the experiment, and
by a system program called 'HASP' otherwise; the next two par-
titions were used by the system's reader and writer programs.
There was sufficient demand to keep the three user partitions
busy for long periods of time.

Our program modified the supervisor a little, so that it
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received control every time a job initiated or terminated an
input/output operation and every time a job began or comple-
ted a central processor service. The program calculated the

lengths of all CPU and I/0 services and built histograms
of their distribution. The IBM timer unit was chosen as a

unit of time (1 timer unit = 26 microseconds).

In the case of the I/0 services, no distinction was
made between the four peripheral processors which gave them.
In the case of the CPU services, no distinction was made
between completions due to requests for input/output and comp-
letions due to preemptions by higher pricrity jobs.

The program also recorded the number of Jjobs in the cent-
ral processor queue ét moments selected at random oy the ope-
rator.

A typical histogram of CPU services is shown in figure
4.1 . The numbers in the top row are the upper end points of
the histogram steps; those in the bottom row are the observed
frequencies (e.g. 398 CPU services had lengths betwecen
0 and 20 timer units, 2642 services had lengths between
20 and 40 ‘timer units, etc.). Figure 4.2 shows a similar
histogram of input/output services. Both histograms were ob-
tained while running a mixed stream of short jobs (not more
than 5 minutes residence time), of the sort that are usual-
ly run during the sreater part of the day.

Although the coefficients of variation of the two samp-
les are not far from unity, a."XZ test comparing the observed
distributions with exponential distributions gave negative
results in both cases.

So, the real computing system did not conform to the as-
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sumptions of the model, except in the general sense of being
multiprogrammed, giving CPU and I/0 services in a cyclic fashion
and working under heavy demand conditions.

However, the model can still be used to approximate rea-
1lity with a reasonably high degree of accuracy, as we shall il-

Justrate by_an example.

4.2 Application of the theory.

We shall use the steady-state fdrmulae of chapter 3 to
obtain numerical values for the CPU utilisation factor, the
average residence time of a job and the average length of the
CPU gqueue. The values of the paraméters My 5 My and 44 will
be estimated using data from the real system.

We take the value of the average CFU service time from

figure 4.1 : . 70.5 timer units. To obtain an estimate

m

0
for m, , we divide the average length of an I/0 operation
(from figure 4.2) by four, since there are four input/output

units : %T = il%*ﬁ = 103.6 timer units.

The accounting routine of our instaﬁgtion records, among
other things, the number of input/output requests per job.
Using this information, the value of qq was estimated as
qq = 0.9994 .

The traffic intensity r has the value

M 70.5
T 7 qqmy T 0.9994x103.5

H

0.68

According to (3.2) , for N =6 , the CPU utilisation

factor should be equal to

0.68 - (0.68)7
1 - (0.68)"

U = = 0.65
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Independent measurements (see E.D.Barraclough [6] ) showed
that the actual value of this quantity, during periocds of
heavy demand, was U = 0.62

Formula (3.4) gives the>average residence time of a Job
as W = % , where the raﬁe of departureé I is given by (3.3)
- L = qOmOU . In our case, the jobs in three of the six par-
titions are systems programs which never depart. Assuming that
the CPU busy time is distributed equally between the parti-
tions, the real rate of departures is half of that quantity:
L = %qOmOU . In order to obtain the result in seconds, instead

of timer units, we multiply the right-hand side by 26A1O_6

W = 652\70-5>\26 _ ‘ -
i = 5T0006<0.65.1000000 = -0-4 seconds

In the real system, the average residence time of a short
job (jobs of this‘type were used in estimating m, and m, )
was W = 62.1 secs. This average was provided by the account-
ing routine and was taken over all short jobs run in a period
of six months.

We mentioned that the statistics-~collecting program recor-
ded the number of jobs in the CPU queue at random moments of
time. After 20 such recordings, the arithmetic mean of the
numbers in the queue was Q = 2.1 . It should be pointed out
that in every instance, the program itself was one of the jobs
in the gueue; we are dealing with a sequence of moments when
the statistics-collecting program joins the CPU queue (since
it has top priority, it goes straight into service instead of
at the end of the queue). Therefore, the corresponding theore-

tical quantity is §1 , given by (3.8)
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1 6x(0.68)°
1 - 0.68 1 ~ (0.68)

N1 = z = 2.47

These results show an agreement between theory and prac-
tice which seems close enough to Jjustify the use of the model

in approximating real systems.

4.3 Generalisation of the model.

We shall study a model identical to the one described in
chapter 2 , except for assumption (d) which now has the form:

d'. Consecutive So—service times are independent, iden-
tically distributed random variables with distribution function
Fo(x) =1 - exp(—mox) ; consecutive S1—service times are inde-
pendent, identically distributed, positive valued random vari-
ables with a general distribution function F(x) and a finite
expectation.

We shall obtain the steady—stéte central processor utili-
sation factor, and thus the rate of departures from the system
and the average residence time of a job, by the method of the
embedded Markov chain and semi-Markov process. This method was
used by Lewis and Shedler [3] in their study of supervisor
overhead.

Let us consider the discrete parameter stochastic process

M = {Qo(tk+); k=1,2,-..} , Where t1 ,t2, ... are the moments

of successive departures from the S1~queue ; the possible sta-

tes of M are 1,2,...,N . Since the intervals between suc-

cessive arrivals at the S1—queue are distributed exponentially

(with parameter q1mo) when S, 1is not idle (see chapter 3,

proof of lemma 2) , M 1is a Markov chain. Denote by
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)N

i,3=1 the transition probability matrix of I .
, j=

Vo= (v. .
(vi,3

The elements of V are defined as

Vig T P[ag by D=i|apl e D=1] s (4.1)

to find them we need the probabilities of events of the type

texactly 1 Jjobs arrive at the S1—queue during one S1~Ser—

vice! (the intervals (tk’tk+1) consist of either an §,-
service or an S1—idle period followed by an 81*service).
Suppose that there are at least i (i=1,2,...) jobs at

the SO—queue at time t and let ’t+Ti be the moment of the
i-th, since t ., arrival at the S1—queue. Because of the ex-
ponential distribution of the interarrival intervals, the
random variable T, has Erlangian distribution, with proba-
bility density function

. 4 —QamaX
q1m0(q1mo)l 18 1 0
fi(x) = s i=1,2,... (4.2)
(i-1)!

We shall need the quantities

b = z{"gz fi(t)dt]dF(x) ;o i=1,2,... (4.3)

—

bi is the probability that at least 1 Jjobs arrive at the
S1~queue during one S1—service, given that there were at
least 1 jobs at the Sy-queue at the beginning of the Sy
‘service. If there were exactly i jobs at the So—queue at
the beginning of the 81—service, then bi is the probabi-
lity that exactly i Jobs arrive at the S1—queue during the

81—service.
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The probability that exactly 1 jobs arrive at the 81—
queue during one S1—service, given that there were at least
i+1 jobs in the So~queue at the beginning of the service,

is equal to

a. = b, - b.

N i ig1 i:1,2,...‘ (4.4)

The probability that no jobs arrive at the Sj—queue dur-
ing one S1~service, given that there was at least one job at

the So~queue at the beginning of the service, is equal to

2= | L r@) e eoax = 1 -, (4.5)

ie can now write the transition probability matrix V in

full:
b1 aq 0 ee. O 0
b2 a1 aO seo O 0
V= : : : : (4.6)
bPy_1 Byoo aN.z e By 8y
| PN-1 %oz By.3 ece B 2g]

It can be seen from (4.%) and (4.5) +that, except in

S-O ; x<0

the trivial case F(x) =z , which can be ignored, we

153 x>0
have b, > 0 (i=1,2,...) and ap> 0 . This means that for all
sufficiently large values of n , all elements of v are
strictly positive and therefore the Markov chain W is irre-
ducible and aperiodic. Since it is also finite, N has a uni-

que steady-state distribution p = (p1,p2,...,pN) . The vector

p can be found by solving the system of linear equations
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2V =D 5 pytDyte .. tpy = ] (4.7)

(one of the first N equations is redundant).

4.4 Expressions for U , L and W.

Note that the probability p, (i=1,2,...,N) cannot be
interpreted as the proportion of time during which there are
i jobs in the So—queue; only as the proportion of arrivals

from the S,-queue which find i Jjobs in the Sonqueue. In

1
order to obtain guantities like the SO utilisation factor,

for instance, we must consider the tTimes involved in the tran-
sitions of the Markov chain M , i.e. regard M as a semi-
Markov process.

Denote by TF, j(x) (i,3=1,2,...,N) the distribution
’

function of the interval (tk’tk+1) y 8iven that K was in

4

state i at t,' and will be in state j at + Then

k+1

BN
Fi(x) = ZLJ v
J=1

(X) ’

R
1,3 1,

where v are given by (4.6) , is the distribution func-

i,3
tion of the interval (tk’tk+1) given that M was in state

i at tk+ . To find Fi(x) we do not have to determine

P, .(x) %because if i<N , then (tk’tk+1) consists of exact-

1,3
ly one B5,-service and if i=N , then (tk’tk+1) consists of
a (geometrically distributed) number of So—services followed

by one S1—service. Hence

Fi(x) = F(X> H i=1’2’°--’N”1 3 FN(X) = G(X)*F(X). (4'8)

“Q  MAX
e 10

where G(x) =1 - and * denotes convolution.
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If 1- is the expected length of the interval (fy,b,,.)
i .

given that M was in state i at %' (i=1,2,...,N) , and
% is the expected length of an S1—service, it follows from
(4.8) that

1 1 1 1 1

—_— = = 3 i=1,2,,..,0-1 § - = + = (4.9)

my m 'eo My 45 m

We can find now the average length ty o (i=1,2,...,N)

-2

of the interval between two consecutive moments when I ent-
ers state i (this interval is called ffirst passage time of
M from state i +to state i'). The following expression for
ti,i in terms bf the averagés %Z and the steady-state dist-
ribution p = (p1,p2;...,pw) is a basic result in the theory

of semi-Markov processes (see, for instance, Barlow and Pros-

chan [7], p. 133) :

N p.
;=2 > =l gas=1,2,.000 (4.10)
S A B
We are interested in t1 ’ in particular ; (4.9) and

(4.10) yield

1 -9 - P
tu1=t[_TJ PMﬁG*%ﬂ"éﬁ& a%) (4.11)
Note that the first passage time of the process W from
state 1 to state 1 4is the time between the beginnings of
two consecutive So—busy periods; it consists of exactly one
So~busy period and one So—idle period. Denoting by b the
average length of an So~busy period, we can express the stea-
dy-state probability that SO is busy (the SO utilisation

factor) as the ratio
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U - (4.12)

Yy 9

Busy periods do not depend on the order in which custo-

~ mers are served. We can imagine therefore, that jobs entering
the system from outside go straight into service, instead of
at the end of the So~queue. Thege jobs can be regarded as ex-
tentions of the ones they replace and, to that extent, ignorcd.
We can think that jobs arrive at the Sb—queue from the S1~
gueue only, their 'extended' service times being distributed
exponentially with parameter Q40 - Thus an So—busy period
consists of the extended services of all jobs which arrive at
the ‘So—queue ffom the 81—queue during a first passage time
of M from state 1 to state 1 .

We shall call the moments of arrival at the So~queue
't,-moments' ; a t,-moment such that Qo(tk+)=1 will be called
a '1-moment' . Now, the steady-state proportion of 1-moments
among the tk—mqments is equal to Py - Therefore, the steady-
state average number of tk—moments between two consecutive 1--

moments is equal to %_ . Hence
1

-1 "
b = (q1mop1) (4.13)
Substituting (4.11) and (4.13) into (4.12) we obtain

g,m - _ .
U = (~—I1;;~9 + Dy = (-15 + D) 1 (4.14)

m
440y .
Knowing U , we can find, in the same way as in chapter

again denoting the traffic intensity by r .

3, the steady-state rate of departures from the system (L =

qOmOU) , and the steady-state average residence time of a job
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=y,
qomou
Accepting as obvious the fact that if r 1 then U-—»1
as HN-oo , and if r <1 then pN—*>O as N—>ov, we derive
from (4.14) +the following |
Corollary : Irrespective of the distribution function
P(x) ,

. 1 N
tm py =T -g 5 Tyl

N2

lim U= ;3 r<1
N—> 0

(this corollary could be used, if better ways were not avail-
able, to prove that in M/G/1 and G/H/1 queuing systems with
traffic intensity r<<1v, the probability that the scrver is
idle is equal to 1 - r).

Remark. The method described here can be used to analyse
a model in which the S1~Service times are distributed exoo-
nentially and the So—service times have a general distribution,
One should then consider the larkov chain embedded at moments
of arrival at the S1~queue, the corresponding semi-liarkov pro-

cess and its first passage times from state 0 +to state O

4.5 Special cases.

a). When the S1—Service times are distributed exponen-

TMX - expression (4.14) should

tially, i.e. when F(x) =1 - e
give the same value for U as (3.2) . Takinz the integrals
in the right-hand side of (4.3) we find that, in this casec,
the matrix V is equivalent to the matrix V3 given by
(3.13) and therefore the solution of (4.7) is ‘the vector
p3 given by (3.7) .

Substitution of p3y into (4.14) gzives
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N

1 - r(1 - ")

A T 2 I R L
U=lG+—m" ) T

which is the same as (3.2) .
b). The extreme case when the length of the 81—service
times is constant, is also of some interest and is not diffi-

cult to solve. Now we have

P(x)

{O s x4 1/m
1 5 x%»1/m

and (4.%) wreduces to

1/m {/ 11
b, = g £,(6)dt = 1 - e /7 STy e,
) =0

which, together with (4.4) and (4.5) vyields

-1/r
e L.

a; = "1 3 1=0,1,...
ilr

The system of linear equations (4.7), written in the form

aoPy-q = (1-2p)py

agPy_p = (1-84)py_4 = aqpy
agPy_3 = (1-29)Py_p = aPy_y
~~~~~~~~~~~~~ - - (4.15)

agpy = (1-84)Dp = 8gP5 = ... = ay Py 4 = ay oDy

can be easily solved by elimination.
Performing the above calculations for N = 6., r = 0.68

(see the example in 4.2) we obtain
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p = (0.57, 0.249, 0.109, 0.047, 0.019, 0.005)

(4.14) now gives U = 0.677 . (We had U = 0.65 in the case
of exponentially distributed 81—service times and U = 0.62
in the real system. This result seems to indicate that an as-
sumption of constant S1~service times is further removed from
reality than that of exponentially distributed S1~service
times. )

The average number of Jjobs found in the Somqueue by an

arrival from the 5,-queue is equal to

6 .
2 dlep; =111
i=1 ‘
this number was equal to N1 = 2.47 in the case of exponen-

tial P(x) (see 4.2) . It appears, somewhat surprisingly,
that an increase in the coefficient of variation of the P(x)

distribution leads to an increase in the average -queue

50
size (as observed by arrivals from the S1~queue) and, at
the same time, to a decrease in the So—utilisation factor.
This phenomenon will be, perhaps, better illustrated by the
following épecial case, wnere one can also give an intuitive
explanation of ift.

c). Going to the other extreme, we shall choose for

the §S,-service times a distribution function with practical-

1
1y infinite coefficient of variation. Define

j’o ;. x<0
3 . 1
Fo(x) =< 1 -0 0<x< =5

1
l T 5 5¢X

where @ is a small positive number. This distribution has
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1 = @

=,
)

1 PR . .
a mean of o and a coefficient of variance equal to

|
j¢

-
tee

Substituting F@(X) into (4.3) we find, for i=1,2,...

b, = @[1 = e 10O8) ST (kK 1]
k=0

By choosing a sufficiently small @ we can make 2
arbitrary close to 1 and ‘ai (i=1,2,...) arbitrary close
to O . The solution of the system of equations (4.15) then

becomes, approximately,

by ~ O  i=1,2,...,N~-1 Py ~ 1

In this caée, the So—utilisation factor approaches its
lowest possible value, T%? (for a given r) , while the ave-
rage So~queue size (as observed by arrivals from the Sq~
queue) approaohes its highest possible value, N

It is easy to see why this is so. The above distribution
of S1~service times implies that the great majority of the
S1~services are of zero length, but the rare exeptions are ve-
ry, very long. This means that almost all arrivals at the SO"
gqueve find N jobs in it, but when a long S1~servioe occurs,
then SO is idle for a large period Qf time. Another way of
- obtaining the wvalue of the So—utilisation factor would be as

follows: Since there are, on the average, % short S1—servi~

ces between two long ones, the average length of an Sonbusy

period is, approximately, The average length of an

1
Aqme@
So—idle period is, approximately,equal to that of a long 81—
service, i.e. %@ . Therefore, the steady-state probability

that SO is busy is equal to

(q1mo@)_1/[kq1m0@)~1 + (m@)"1J = TE?
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4.5 Job turnaround.

Apart from assuming heavy demand, we have hitherto ig~
nored the flow of jobs outside the sYstem. In real computing
systems, there is usually a queue of jobs awaiting execution
— sometimes in the form of card décks, sometimes on disk,
drum or tape; we shall call it the 'outside queue', Many prog-
rams, especially when in the stage of development, rejoin the
outside queue soon after being executed. In these conditions,
the turnaround .time T (the time between joining the outside
gqueve and leaving the system) becomes important.

Computing managers usually measure the efficiency of
their systems by the number of jobs executed per unit time,
i.e. the rate of departures from the system. This, we saw, is
proportional to the central processor utilisation factor and
is an increasing function of the degree of multiprogramming.
Users, on the other hand, measure the effioiency of the systen
by the time it takes to get their programs executed, i.e. the
turnaround time.

The problem of determining the average turnaround time
given the parameters of the system and of the input stream of
demands is a difficult one and we shall not deal with it here.
Instead, we shall assume that the steady-state average size
of the outside queue is known; denote it by X (in a real-
life situation this quantity can be obtained empirically).

We shall also assume that the value of K 1is relatively large
and that the probability of the outside queue vanishing is neg-
ligible. Since, in the steady-state, the rate at which jobs

join the outside gqueue is cqual to the rate of departure from
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the system, the last assumption means that jobs join the
outside queve at a rate approximately equal to I = qOmOU
Little's theorem now leads to the following approxima-
tion for the steady-state expeétation of T
E(1)~ B8 (4.15)
In general, X is a function of N , as well as of the
other paramcters. If, for example, K + N = const then E(T)
is inversely proportional to the CPU wutilisation factor and
the objects of the computer manager and the user coincide.
In some cases K 1is independend of H (e.g. when the size
of the outside queue 1is artificially controlled or when the
demand rate rises in proportion with IL). We can find then an
optimal value for N which minimises the expected turnaround

time.

(4.16) can be written as

.
" +1

E(7) ~ (K + N) T, (4.17)

qomo(r - T

Pigure 4.3 shows the values of N minimising (4.17)

plotted against r , for four different values of X .
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CHAPTER 5.

5.0 Summary.

We shall define and'analyse in the steady-state & model
of a multiprogramming system with one central and several
peripheral processors - an extension of the model defined in
chapter 2. Two cases will be considered:

1. The service times of all processors are distributed
exponentially. In this case, explicit formulae will be obtai-
ned for the joint distribution of queue sizes, the central
processor utilisation factor, the rate of departures from the
system and the average residence time of a job.

2. The central processor service times have general dis-
tributioh; all others are distributed exponentially. Now an
embedded Markov chain and a semi-larkov process can be used
to find the above quantities. VWe shall give an outline of

the derivation.

5.1 The model,

The system that we are going to study is pictured in
figure 5.1 . It consists of 141 servers SO, 81, ceey SM
(M>1) working in parallel; SO represents the central pro-
cessor and S1, 82, ceny SM represent the M peripheral
processors. There are exactly N (N2>1) customers (jobs)
in the system at any one time; this means that when a job de-
parts from the system it is replaced instantaneously by a
new job from 'outside’.

Each server serves a separate queue of jobs; denote the



14

/ . N N

P e U,

A

The flow of jobs’in the system
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size of the S,-queue at time t Dby Qi(t) (i=0,1,...,M)
(as before, jobs receiving service are included in their res-
pective queues). Since Qo(t)+Q1(t)+...+QM(t) = I , we can
take the vector Q(t) = [Q1(t);Q2(t),...,QM(tXI for instance,
to represent the state of the system at‘time t

Thus a state of the system is an integer valued vector
with M elements n = (n1,n2,...,nM) . The set s of possi-
ble states is defined as |

W

PRI W}

V.

s ={n|n;»0 ;5 i=1,2,...,0

t=eh

Tt can be shown by induction on I that there are

state-vectors in s
- A1l queues are served in order of arrival and indepen-

dently of each other. When a job enters the system, it joins
at the end of the So—queue. After receiving an So~service,
jobs either leave the system or join at the end of the Siﬂ
queue (i=1,2,...,M) ; the former occurs with probability
dq (0< gy< 1) and the latter - with probability q; (i=1,2,
ceeoM 5 0K <t 5 At Qe b gy = 1 - qo). Jobs departing
from the §;-queue (i=1,2,...,lI) join at the end of the
So—queue.

The above cyclic queuing discipline implies, in terms of
job structure, that

a) jobs consist of alternative central processor and in-
put/output intervals, there beins I types of input/output

intervals ;
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b) if K, is the number of I/0 intervals of type i
(i=1,2,...,M) reguired by a job and g(k1,k2,..t,k”) =

= P(K1=k1,K2:k2,...,KM=kM) then

(k,+kod...+k )! k. k <,
: _ 172 il 1 2 e
g(1€1,k2,-~-ykm) = 4y . ! o 44 9 g ’
1- \.2. . » L'\"‘l‘[i
: (5.1)

ki=0,1,... ; 1=1,2,...1

i.e. the joint distribution of the numbér of input/output re-
quests of type 1,2,...,l per job is 'M-dimensional geonmet-
ric'.

(If a die with M+1 facets numbered O0,1,...,l is
thrown repé%edly and if, at the n-th throw, the probability
of the i-th facet coming up is q; (i=0,1,...,11) then
(5.1) gives the probability thet facets 1,2,...,11 will
come up k1,k2,...,kﬂ times respectively, before the first
coming up of facet 0.)

The total number of input/output requests, and thus the
number of cycles a job goes through, is distributed geometri-~

cally with parameter 4o

P(K,+Eyte . 4Ky = k) = qp(1-q5)F 5 %=0,1,...

This can be seen either directly or by summing (5.1) over

all k kz,...,k such that k1+k2+"‘+km = %

1 1

Conscecutive service times of the processor Si are as-
sumed to be independent, identically distributed random vari-

ables with distribution function Fi(x) s i=0,1,...,1 .

5.2 Exponentially distributed service times.

We shall assume first that the service times of all pro-
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cessors are distributed exponentially : Fi(x) -1 -e *
i=0,1,...,M . Now the stochastic process {Q(t) , t20} is
a finite, irreducible HMarkov chain and therefore its steady-
state distribution exists and is independent of the initial
distribution Q(0) .

(The exponential services assumption makes our model a
special case of the model studied by Gordon and Newell 18]
they considered a queuing system in which a fixed number of
customers are served in stages, with several servers in each
stage and constant probabilities of going to stage j after
~leaving stage 1 . The analysis is-easier in our case. The
system of equations for the joint steady-state distribution
of queue sizes is simpler than the similar system in Gordon
and Newell's paper; this will allow us to solve it directly
and to obtain the solution in closed form.)

We are interested in the stecady-state distribution

p(n) = lim P[Q(t) = n] ; nes (5.2)

~-3~O\)

where 1 = (ng,mo,.e.omy) o Q) = [Q,(£),Q <t>,...,QI.ﬂ<t>}
and s is the set of possible states for the process. The
probabilities (5.2) satisfy the following linear system

of balance equations :

i -

%}T[qimog(no) + S(ni)mi1p(n1,n2,...,nm) =
>>1S(no)m p(ng,..esny 1 eeyny) + (5.%)
i

'\’
\R

ZZ: (n )p(n1,...,ni~1,...,nm) ; nes



N-~1

N=-2

18

m, p (o, N)

TLIL '\V\J(‘P_f‘S‘Q.QT{'.IO'V\ o’¥ row 8
coeww\‘n L repre,s&n*s uw

(&1%:’ ) Q?.:S)

q; Mo P, ”'I)

Wy P{0;§ar)

—_ 0 " -
g B 5
~ N <
= 2 ;
H < ¥
v Mop('v’)
()
RIOPET ()
- ' Ci — }?
~ t‘g ey .,g = 3
o o 5 pd = b
= 2 5 |F % 2
K] ’(-; o Q E <
£l fo O~ : :
‘Iz Mo P(O,c) 41 M, ("(‘Io)
- (6T (67d "W tp)d ‘W
0 1 2 .e- N-2 N-{

S‘{.Qki‘af s'}o.{e_. go.eomu, c(if.zra_m or M=2

Fi%wre 5.2

ool
ofede

qs Mo P(N-1,0) :
o'pyd’w

N



79

. yO if n =0

where n, = N - (ng+n,+...4n.) and &{n) =
0 1 id il P )
1 if n>» 0.

Bguations (5.3) can be obtained either by letting
t-spoo  in the time-dependent differential equations of the
process 0(t) or by considering its steady-state balance
diagram (shown, for M = 2 , in figorc 5.2). Balance diag-
rams have the property that, if a region of the diagram is
encloscd by an imaginary line (or surface) , then the sum
of the transition intensities going out of the region is cgu-
al Lo the swa of the transition intensities cominzg into the
rezion. Bnclosing the points in the diagrem one at a time we

obtain equations (5.3) .

the system (5.3) together with the normalising equation

> oln) =1 (5.4)

nes

determines the unknown probabilities uniquely. Cne can guess
the Torm of the seolution by applying an intuitive argument:

‘Tet T.,Cs5y...5T be the traffic intensitie
1 2 Y3 .

&2}

941

I.i = T ; i:1’2’t01,1'"£
m.,
X

Imagine N independent IM/M/1 queuing systems with traffic
intensities T4, Thy ose3 T Trespectively. The joint sleady-
1 2 M . N4

state distribution of the number of customers in then is

given by
i n.
P =N Q'?~ PREPRRRR ) N ,,\ ::,f -— 1
(Q"I 19%9 712, -’Q}\I nm/ _7;":}(1 J_L)T'l . (5.5)

provided that rj< 1 3 4=1,2, 004,80 o

How, if we add the restriction that the total sumber of



customers in the M systems must not exceed N , then the
balance equations which describe the resultant 'restricted'
system will be precisely equations (5.3) (this remark is
an extension of the similar one at the end of chapter 2) .
Since the adding of the restriction does not affect the equa-
tions in (5.3) for which ny>0 , we know that at least
those equations are satisfied by the probabilities (5.5)
Divect substitution shows that the othefs are satisfied too.

Thus the general solution of (5.3) is given (since
it is a homogeneous system) by

il n.

[1r; * 5 nes (5.6)

p(n) = A
- i=1

where A is an arbitrary constént. Substitution of (5.6)

into (5.4) yields

i

A = p(0,0,...,0) = [.‘Z_‘ (ﬂriniﬂ” (5.7)
nes i=1 -

(Note that (5.6) and (5.7) are valid for all positive
values of Tys Tos +ees Ty the steady-state of the restric-
ted system always ex. ists. When the steady-state of the unres-
tricted system exists, i.e. when ri<:1 ; i=1,2,...,M , then

(5.6) and (5.7) imply that

Pres(g = n) = Pu.nres(gx = E\EGS) ; NES

where the subscripts 'res' and 'unres' mean 'in the restricted
system' and 'in the unrestricted system!'.)
It remeins to evaluate the expression in the right-hand

side of (5.7) . We shall write (5.7) in the form
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A= oyl - (5.8)

where &y(x;) is the function

i H 5 M-(i+3+...) K
GN(I’«I)rZ’"',rM) Zr'\'[ ‘Jé.__.J M 1 .‘.EWEO’_—‘“““;T)I (5-9)

The number of elements in the vector is indicated explicitly

by a subscript in order to enable it to be a variable. The

notation

X = (X1""’Xk—1’xk+1""’Xn) i k=2,...,n-1 3

i

(xopevenxy) 5 X0 =% 4= (x,0.0,%, )

will also be used.

Let T(gn) , X(En) and Z(gn) be the functions

n i-1
T(x,) = g:;,g:}(xi = x5) 5 nR2 5 Y(xy) =
n (5.10)
P(x,) = g;m - %) 5 5(x) = T(x )¥(x,)

We shall prove the following formula

M

Gy lzy) = T(éyjlj ‘T};j Zfﬂ( i, S {} (5.11)

(The right-hand side of (5.11) is defined only when ri£1 ;
r.fr. 3 i,j=1,2,...,8 , i#j . Cases when this is not so should
be treated individually, either by applying L'lHospital's rule
or by direct summation. For example, if ri=1 ; i=1,2,...,M

_ L
then GN(QM) = G, = =

il
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Proof of (5.11)

Expression (5.9) which defines GN(QM) can be rewrit-

ten as
N
Gy lzy) = & Tt Gy (Zyyq) (5.12)

thus providing a recursive relationship very suitable for in-

duction on M .

When M = 1 we have

() = 2or,t = ]
Gyulr,) = 2_ 1,7 = —=(1

N+1
- r, )

which agrees with (5.11) Dbecause Y(£1) =1 by definition.

Suppose that (5.11) is true for M = n . Substituting

it into (5.12) we obtain, for WM = n+1 ,

1 3 .
G ( n+1) ZEj’rn+1 {TT@;7[1 _(~_75;,( ~1)MHp JN l+nZ(j£nﬂ}-

T N-+1 ( /V. )N-!1
1 n+1 n+3 an n+1
— 1 L,‘
T(‘f-n)[ Tt (~n)JZ“( : (Za) 7=tz 1/r ]
1-r n , . 1-(r /r.)N+1
_ 1 N+1 " n+l n+1+j  N+n+1, n+l1/ "3
TZ£n+15[}“rn+1 Y(r ) ;g;( -1) Ts °(j£n) Tt - F3 }

(common denominator)

1 N+1 n+1+3, Nentd [ T4 T+
e {1'rn+1 "(“_"—7ji”( -1) o Z(j£n+1) - (ﬁ ) ]}

=n-1 Ln+1

N+1 S n+1+3j  iT+n+1

”“‘;7{1 '“(-I?7[—n+1 R(z,,q) + j;f(—1) 3 4 j£n+1)J(
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where

R( n|1) v(z n+1) + j?“( 1)n+3 Z( rnr1) (5.13)

To complete the proof we have to show that

Ny

Rlzpe1) = Ty 80005000)

Note first, that if ry = 1 j=1,2,...,n , then

Y(r

n+1- ~J- — o NS
“n+1) = ( 1) 5( rn+1) Z(k£n+1) = 0 3 K%J (5-14)

Also, if r, =r7r. ; i<] ; i=1,2,.0.,0-1 5 j=2,3,...,n ,

1 J
then Y(zr, ) = 0 and
 (_qyd-i-1 . ol - P .
Z(j£n+1) = ( 1) Z(i£n+1) ’ Z(k£n+1) = 0 ; k#l,J (5.15)

(5.14) and (5.15) are direct consequences of the defini-
tions (5.10)

Tt follows from (5.14) and (5.15) that R(rn+1)

for rj =1 (j=1,2,...,n) and for r, = rj (i=1,2,...,n-1 ;

j=2,3,...,n ; i<Jj) . This means that R(zr, ,) is divisible

by  Z( ) , i.e.

n+1£n+1

R(z, 1) = a( R

n+1£n+1 1

Since R(£n+4) is a polynomial of degree n in all its

arguments and since T,,T5,...,¥  ~appear in z( ) in

n n+1£n+1

power n , R1 is a polynomial (of degree not areater than n)

only in T .4 - Substitution into (5.13%) shows that
- n - B 1 o " \ Y ™
&1 = T at the n+1 pvoints 1,r1,L2,...,rn , hence 2y

n Y
is identically equal to LR Q.B.D
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5.% Quantities of interest,

o

The steady-state central processor utilisation factor

is given by

= P(QO> O) :P ;p(_l_’_l_)

n1+n2+...+nmsgﬂ—1

which, according to (5.6) , (5.8) and (5.9) can be writ-

ten as

Gyr_q (3y)
v = =l (5.15)
v Gyl

In order to examine the behaviour of U  with the inc-

rease of N we shall use (5.11) and rewrite (5.16) as

I\{I
T YR IR N4
Y(..I:M) _ ;_____\,.("'1 )Iu. JI’_;I\ 1+¢:J.Z( '__".[f)
v o :1 o J 1L
U = d

T P (5.17)
T(zy) - giT(—1)“+3r.‘+“Z(.r

J j=H
Let T = max(r1,r2,...,rm) . It will be scecen that if
rk<f1 then U—~—>1 when N—>o ., This case is perhaps not
very interesting in the context of computing systems because
it means that, for all 1 , the rate of input/output requests
for Si is lower than Si's rate of service, i.e. that no
peripheral processor can be a bottlenecl.

Suppose then, that rk2;1 . Divide the numerator and the

H41-1
k
and let N—rwo . Now U~f>1/rk . This agrees with the intui-

denominator in the right-hand side of (5.17) bdy r

tively obvious fact that the efficiency of a computing sys-
tem is limited by the peripheral processor which is slowest

in relation to the rate of I/0O requests for it,.
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When the central processor is not idle, jobs depart fron
the system at a rate qgity - In the steady-state, the central
processor is busy for a proportion U of the time, therefore
the unconditional steady-state rate of departures from the

system is given by
L = qgngU (5.18)

To find the average residence time of a job we use Tit-
tle's theorem. Since Jobs enter the system at exactly the mo-
ments when others leave it, (5.18) gives also the steady-
state rate of arrivals into the system. The number of jobs
in the system is equal to N at all times. Provided that its

assunptions are satisfied, Little's theorem yields

N
W =TT U (5.19)

for the steady-state average residence time of a job, W . The
assumptions we have to verify are a) the arrival process is
metrically transitive (ergodic) and b) the residence time
has a Tinite expectation. a) follows from theorem 1.2 on
page 460 in Doob [9] because the intervals between successive
arrivals into the system are independent and, in the steady-
state, identically distributed random variables. D) follows
from the fact that the residence time of a job consists of, on
the average, (1 - qo)/qo full cycles followed hy one wait

at S and the cycles have finitely bounded expactations —

0]

'they do not excced N/mo + N/min(m»l ,mzy oo ﬂnm)

It would be interesting to substitute parameters from a
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real-life computing system into our formulae and to compare
the observed performance of fhe system with that predicted by
the nmodel.

When we tested the one-peripheral-processor model on a
computing system with four peripheral processors (see 4.2)
we did not distinguish between the four different types of
I/0 reques%s in estimating the values gf m, and q, , i.e.
we assumed that the four different peripherals were eguivalent
and combined them into one. If we now take

05 3 =X o1 o1 4444 ana

mO m1 m2_ m3 1114

i

]

Q1 =4y = QB = q4
i.e T, =Ty, =Tz =1, = 1.47 , then (5.16) yields U = 0.43%

0.9994/4 = 0.2498 (the data from 4.2} ,

which is a worse approximation of the observed value of U
(0.62) than that given by the simpler model.

The explanation’of this result probably lies in the fact
+hat this model is more sensitive to errors in the estimates
of the parameters than the previous one. Unfortunately, we
have no reliable information from which to obtain more accu-

rate estimates and thus cannot put the model to a more rigo-

rous test.

5.4 General CPU service times.

Suppose now, that the centrai processor service times
have a general distribution Fo(x) with finite mean 1/mO ;
while the service times of all peripheral processors are dis-
tributed exponentially , Fi(x) =1 - exp(—mix) po1=1,2,..0 00

The method of analysis which was used in 4.3 and 4.4

is applicable, with slight modifications, to the present mo-
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del. Since the stochastic process Q(t) no longer possesses
the lMarkov 'memoryless' property, we shall consider an embed~
ded Markov chain.

Let t,4, t2, ... be the moments when successive jobs
leave the Spy-queue to join one of the other queves. When they
do not begin with an Sy-idle period, the intervals (tk,tk+1)
consist of several (possibly none) So~services resulting
in departures from the syStem, followed‘by one Somservioe
resulting in a request for input/output. The distribution

function of (tk’tk+1) is then given by
~ _ ‘\:. \ j_._ ) l
Fo(X) = f.—?fqo : (1"(10):50 (X) (5.20)

where Fo<l)(x) denotes i-fold convolution of Fo(x) . The
i i f ’F’ . .S < 1
expectation o O(X) is equal %o '(':r_—a‘gﬁﬁ-o- .

The stochastic process {Q(tk+) , k=1,2,...} is a finite,
irreducible and aperiodic Markov chain which has a unique
steady-state distribution. The set of possible states of this
Markov chain is equal to s minus the state (0,0,...,0) .

N+l
I\:H\i -

We shall denote that set again by s ; it now has C
elements.

Phe steady-state distribution of {Q(tk+) , c:1,2,,,'?
will be denoted by p(n) ; nes , to dis;Z;;;;sh it from tﬁe
time-average steady-state distribution of {Qiﬁl , tg:o} )

7o find TP(n) ; né&s , we need the transition probabilities

v(n'n't) = P[Q(’Gk+1+)=§"lQ(tk+)=_1:g'] ; (5.21)

for all n',n''¢s . (It is more convenient to denote the

states of the Markov chain by vectors. They could also be
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N+ y

" ; then the probabilities (5.

numbered from 1 to

S0 4.0
21) would form a (C;‘i'“l - 'l)'><(CI\“M -1) matrix,)

i i

The derivation of v(n',n'') will be brief because it

is similar to that of vy 3 in 4.3 . Denote
H

g WX
mi(mix)J e
£, o.(x) = S oi=1,2, .00 M s 3=1,2, ...
td (-
then
00« < :
bi,j = gOIgofi’j(t)dt]dFo(x) g oi=1,2,..,M 5 3=1,2,...

is the probability that at least j Jjobs arrive at the SO"

queue from the Si—queue during the interval (tk,tk+1) ,
provided that at tk+ there were at least ' J Jjobs in the
Si—queue and SO was not idle. If there were exactly J jobs

in the S;-queue and S, was not idle at tk+ , then D

i,]
is the probability that exactly j jobs join the So—queue

before tk+1

a. .=Db». . -0

1,] i,] i, 3+ ; i=1,2,...,M 5 j=1,2,...

is the probability that exactly j jobs arrive at the SO*
queue from the Si~queue during (tk,tk+1) given that at tk+
there were at least j+1 Jjobs in the Si~queue and Sq Wwas

not idle.

=1 ~ b, ; 1=1,2,...,M

2;,0 i,1

is the probability that no jobs arrive at the So—queue from
the S,-queue during (tk’tk+1) given that at 'tv+ there

. was abt least one job at the Si—queue and SO was not idle.
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The probabilities (5.21) can now be expressed in terms
of 3 3 and bi j - We shall divide the set of possible sta-
-8 N ) .
teg s into the two disjoint subsets

= - - = .‘ ::)’ 1
_.{Q\n1+n2+...+nM N} P sy = qn|n gt my K

<

50
and deal separately with each

— 1 t 1 !

a) n' = (n1,n2,n3,...,nm)<£s1

The transition probabilities have non~zero values for
the following n'' vectors

1. If ni' =n} + 1 for some i (i=1,2,...,l1) and
nt' = n! for all k # i , then

k k

v(n',n'') = P(next I/0 request is for Si)xP(no I/0 ope-

rations are completed before then) =

q; M ) 1 5if n>0
- b 1[0y gr1-8)] 5 S0 =
0 k=1 ’ ' O if n =20

(The probability of no service completions at Sk is either

a or 1 , depending on whether n # 0 or ny =0 )

k,O
o, If n!' =n!+ 1 for some i (i=1,2,...,M) and

ntt = nﬁ - jk (jk=0,1,...,n£) s k=1,..,i-1,1i+1,..,i , then

v(n',n'') = P(next I/0 request is for Si)xP(no service
completions at Si)xP(jk service completions at Sk , for

K=1,..,i~1,1+1,..,H)

1_%[5@ )a, +‘l-—3(ni):]x

L{“(n, -3 )ab 5 +%(n;)[1~g(nﬂ ~jp21bh .+ 1~S(n{)}
: Joo e TR gy *
k#l
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(The probability of J, service completions at §, 1is ei-

Ther ak’jk or bk’jk or 1, depending on whether n. S j,
ny = Jy #0 or n =y = 0 ‘)

5078 mit=nl - gy (370,1,..nl) for i=1,2,...,0
then

CL

v(n',n'') = P(next I/0 wrequest is for one of those S; s
where there are at least j.-+1 jobs)xP(ji+1 service comple-
tions at that Si)xP(jk service completions at S, , for

1{21’00,1"1,:1.“"1,..,I‘l&') =

Y . . “) ™ N '
R e W 1 R tos P N —
= {"(ni Ui 1>3i,ji+1+b o(ny=J; ”Jbi,ji-*&x
I‘J Q’ Q’ Y A [ \ %
1.5 - - N f_3 - N
xcz.{f(nk Jk)ak,jk+°(nk)11 °(nk Jki}bk,jp+ 1““(nﬁi}

For all other n'' , v(n',n'') =0 .

b) .]_,_1..' = (n*i’né"":nl\:l)eso .

Now, since SO was idle at t, , an arrival from one

Iz

of the other queues must occur before tk+1+ . The probabili-

ty of that arrival being from the S.-queue 1s equal to

S(n!?
,(ni)mi

t < t &
3(n1)m1+o(n2)m2+...+u(nﬁ)mM

Therefore, for all n''e s ,

]
~a

I‘III N )
vﬂy’ﬂgl):=:z%%h§)miviﬁq,..ﬂqf1,“,n})ﬂy:J/jf%(néhy
1=

Wllere (n;'[,..,nj'_-‘1,-.,nﬁ)(‘f': 81

Knowing the transition probabilities v(n',n'') we can
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find the steady-state distribution P(n) ; nes from the

system of balance equations

P(n) =2 _Bn')v(n',n) ;nes ; P(n) = (5.22)
n'es nes

5.5 Bxpressions for U , L and VW .

(The derivation which follows is very similar to that
in 4.4 and some of the explanations will be omitted).
Let Fn(x) be the distribution function of the interval

(t , given that at its beginning Q =n (nes) . If

k’tk+1) .
neEsy i.e. if S, was not idle at tk+ , we have

3Q(x) = Fo(x) (5.23)
with Fo(x) given by (5.20) . If ne€s, , then
Fﬂ(x) = qg(x)*Fo(x) (5.24)

where Gn(x) is the distribution function of an S, -idle pe-
riod at the beginning of which Q = n and % denotes convo-

lution. Gn(x) is given by

G_T}.(X) =1 - eng [i‘ (n; )m} Z (5.25)

Denote by 1/m_ the average length of (ty,ty+1) , gi-

n
ven that Q(t1{+) =n . It follows from (5.2%) , (5.24) and
(5.25) , that
M ~1-1
1 1 L _j~$r‘g ] 1
— ———-)"—- nes — =
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We can find now the average first passage times ¢

-

from state n +to state n , for all neés

% §§ Lp(r*‘)/m ]} i NES (5.27)
- ’ n'es

(expression (5.27) is a translation of (4.10) in terms of
the present semi-Markov process).

Substitution of (5.26) into (5.27) yields

1 1 S— 1 s (5
't—‘ n = :p’(g){ﬁ qO)m +£ [P(n )/S é(n Ym, ]} ?:Go (5.28)

§
&3

[l

Let us say that an oowidle period is of ‘'type n ', for
neEsy if at its beginning the Harkov chain was in state n
Thus there are as many types of So—idle periods as there are
vectors in 84 and each So—idle period belongs to one of these

types. The average length of an Somidle period of type n is
equal to
M
=t

Since each first passage time from state n to state n ,

for neEsy contains exactly one SO—idle period of type n
(it begins with it) , the steady-state proportion of time
that SO is idle 'of type n ' is equal to
M
Il. = [1/;‘*?(11 )m]/tﬂ»ﬁ ; DEsg (5.29)

The steady-state proportion of time that SO is idle is equ-
al to

- . “*-—-.-—--—\ ’ ’7‘

l - > ‘. II}. (5~/O)
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and the steady-state proportion of time that SO ig busy

the central processor utilisation factor -- is equal to

which, after substitution of (5.30) , (5.29) and (5.28)

becones
' M

= {1+ Qmagdmy 2 [B)/2 28 )n ]?” (55

_7:1_6 sO l—_

(There is a similarity in form between (5.31) and (4.14)
also, they both give the same value for U when M =1 and
Py(x) and F,(x) are exponential distributions.)

7o find the steady-state rate of depariures from the sys-
tem (L) and the éteady—state average residence time of a job
(W) , we substitute (5.31) into (5.18) and (5.19) res-
pectively (these two exprescions are independent of the ser-

vice times distributions).

5.6 A remaerk on time-sharing systems.

When a large number of Jjobs are multiprogrammed with
time-sharing, their total memory requirements usually exceed
the main storage capacity of the computer. This means that
either entire jobs, or parts of them, have to be moved fre-
quently in and out of main storage by the system. Orie or more
peripheral processors are reserved for such ‘'system' input/
output operations and the traffic intensities at these pro-
cessors depend on the number and size of jobs competing for
main storage.

The modcl described in this chapter could possibly be

used for studying time-charing systems by assuming that T
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varies and that one or more of the traffic intensities Ty

Toy eees T depend on N . Turning our attention to fornula

i

(5.17) we can see, for instance, that if some r, increases

significantly with N , there will be a drop in the central
processor utilisation factor for large values of K . This
phenomenon is sometimes called ‘'thrashing' (excessive leve

of multiprogramming).

[~
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CHAPTER 6.

6.0 Summary.

In this chapter we shall study a priority multiprogram-
ming system with one central and one peripheral processor, A
cyclic queuing model of the syétem will be defined and analysed
in the steady-state.

Two versions of the model wili be considered:

In the first version, both the central processor gueue
and the input/output queue are served according to the ‘'pre-
emptive resume' priority discipline. The service times of
all bult the lowest priority job are assumed to be distributed
exponentially.

In the second version, the input/output queue is served
according to the 'head-of-the-line' priority discipline; in
the central processor queue the priorities remain preemptive.
Exponentially distributed central processor service times and
general input/output service times are assumed for all jobs.

Procedures for finding the steady-stale average residence-
in-the-system time of a job and the}steadyustate central pro-~
cessor utilisation factor will be derived. In both versions
of the model,these procedures will be based on determining the
steady-state average cycle time for é job of given priority.
The results obtained in some specilal cases will be used to
compare the performance of the two types of systems (inter-
ruptable and non-interruptable input/output operations) , and
to draw attention to the problem of efficient~alloéation of
priorities to job classes with markedly different central pro-

cessor and input/output -requirements.
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6.1 The model.

Consider a cyclic queuing system congisting of two ser-
vers, SO and S1 (they represent the central and the peri-
pheral processors) , in tandem. The system serves a constant
number N (N>1) of customers (jobs) , each of whom is
assighed a distinct priority. Jébs can leave the system: when-
ever one does so, it is replaced instantaneously by a new job
of the same priority from ‘outside' . In other words, the
supply of jobs of all prioritics is imexhaustible (heavy de-
mand conditions).

Because of the one-to-one coffespondence between jobs in
the system and priorities, both can be indexed by the intepgers
1,2,...,N (one can thus talk about 'job i' meaning 'the
job which has priority i' ; i=1,2,...,N). We shall number the
priorities in reverse order, i.e. priority 1 will be the high-
est, priority 2 the second highest, etc.

The structure of the model is pictﬁred in figure 6.1
Johs require alternativg SO— and S1~services (alternative
central processor and input/output intervals). After recei-
ving an So-service, job i joins the S1*queue with proba-
bility q; (O<:qié.1 ; i=1,2,...,N) , and leaves the system
with probability 1-gq, (in the latter case a new job i re~
places it in the So~queue). After receiving an S1—service,
jobs join again the Sy-queue ('queue' includes the job,
if any, being served).

The period of time between two consecutive joinings of

the S~—queue by the same job will be called a 'cycle' .

0

Thus, L1f Ki (Ki=1,2,...) is the number of So~services

required by a job i , its residence in the system consists

i ATV TR s LIPS S LR S I T T e s

B e gy e P S Ry T AR S T it
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N

6.1

Pigure
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of Ki—1 cycles followed by a final stay in the So~queue'.
The random variable Ki can be seen to be distributed geome-

trically with parameter q; ¢
P(K, = k) = q. 5 T (1=q.) ; %k=1,2 s i=1,2 W
i 1 qi ’ 9lyree 3 LTV 44,000y,

The orderyin which the So~queue and the S1«queue are
sérved depends on the priorities of the jobs presentkthere.
In the SO~queue, job i (i=1,2,...,N~1)‘ has preemptive pri-
ority over jobs i+1, i+2, ...,N , i.e. if onne of those jobs
is being served when Jjob i joins the queue, its service is
interrupted and that of job i is started. An interrupted ser-
vice is resumed from the point of interruption when there are
no more higher priority jobs in the queue.'This means, for
instance, that when & job i leaves the system, the new job i
which joins the So~queue goes straight into service (since
the departing job i was able to complete its Sonsorvice, all
other jobs, if any, in the So~queue must be of lower prio-
rity). |

Regarding the S1~queue, we shall consider two cases:

1. The S1fqueue i5 served under the same preempltive pri-
ority discipline as the Sofqueue.

2. The priorities in the 'S1—queue are of the head-of-
the-line type, i.e. no interruption of an S1~service is al-
lowed; when S1 is ready to begin a new service, it selects
the job with the highest priority among those present in the
'S1—queue.

Real-life multiprogramming computing systems (except

tinc-sharing systems) usually operate under preemptive prio-

b
s
/
g
E
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rity discipline for the central processor queué and head-of--
the-line priority discipline for the input/output queues .
The reason for our considering a model with preemptive prio-
rities for inﬁut/output is that it is interésting to comparc
the performance of the two models. Under certain circumstan-
ses it may be desirable to implement a system with interrupt--

t

able input/output operations.

6.2 Preempbive priority disciplines for both queues.

Because of the ability of higher priority jobs to inter-
rupt the Som- and S1wservices of~iower priority Jjobs, our
model has now the following property:

The excceution of job i (i=1,2,...,N-1) is not affected
in any way by the exigstence of jobs i+t, i+2,...., N .

This property allows us to assume that N = i if we are
interested in a quantity which is connected only with Jobs
1, 2, v.ouy, 1 .

Before procéﬁing with the ahalysis, specific assumptions
have to be made regarding the S.- and S1wservice times of

0
the jobs in the system. We shall assume that consecutive

S
0
service times and consecutive S1—service times are indepen-

dent random variables. Furthermore, for i=1,2,...,N-1 , the

distribution function of the So~service times of Jjob 1 is
given by
— . X
Py o(x) =1 - e L,O™ . 11,2, .., N1

and the distribuvtion function of the S1~service times of

job i is given by
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; 1=1,2,...,N-1

4

Fi’1(x) =1 ~ e

The So~service times of job N have é general distribution
function ‘FN’O(X) with finite mean 1/mN,O and the S,-ser-
- vice times of job N have a general distribution function
FN’1(X) with finite mean 1/va,1 .

Ouvr aim is to find the steady-state average residence-
in-the-system time of job i (i=1,2,...,N) and the steady-
state Sy-utilisation factor,

Consider the group of jbbs 1,2, (1< ng N). Denote
by pn(O) the steady-state probability that none of these jobs
is in the Sjy-queue ; denote by pn(i,j,...,k) , where i< i<
<...<kgn , the steady—state probhability that jobs 1i,],
...y k are in the .So—queué. (job i Dbeing served and jobs
Jyeoo,k waiting) .and the rest of the n jobs are in the
_S1—queue. In this notation, the steady-state S -utilisation

, 0
factor is given by

U=1- pN(O) - (6.1)
and the steady-state S,-utilisation factor — by '

1 "plq-(1,2,o-.,N)

The Sl~queue (1=0,1) gbes through alternative periods
of containing and not containing jobs from tlie group 1,2,
'...,n . These periods will he called ‘Sl—busy periods of
type n' and 'Sy-idle periods of type n' (1=0,1) respec-
tively. | |

We saw that when one job i leaves the system, the job i
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which replaces it immediately begins its So—servioe. As far
as the occupancy of SO is concerned, the SO—servioe of the
new job i can be considered as an extention of the 5,-ser-
vice of the old one. Bearing this in mind, we shall modify |
the model by assuming‘that jobs do not leave the system and
that the distribution functions of their Sp-service times
are equal té

-g.m., X
93 i,0

Gi(x) 1 - e

H

; i:1’2,oo‘,N"‘1 ;
(6.2)
[~ .
2 ket (k)

GN(X) = E?]QN(I"‘QN) PN’O (X)

where F (k)(x)' denotes the k--fold convolution of F (x).
N,O , - . N,0
The steady-state probabilities p (0) and pn(i,j,...,k)
have the same values in the original model and in the modi-
fied model but in the latter, jobs repeat their ‘So~queue —
S1~queue' cycles unceasingly.
Suppose that the steady-state average cycle length for

job n (in the modified model) has been found. Denote it by

¢, (n=1,2,...,N) . The argument can then proceed as follows:

In the steady state, job n makes an average of ’I/cn
cycles per unit time, therefeore it visits the So-queue, on

the average, 1/c times per unit time. Since job n recei-

n

ves exactly one Souservice per residence in the So—queue
and since, according to (6.2) , the average length of the
S,~services of job n is equal to 1/(q.m_ .) , the steady-
0 nn,O

state proportion of time that job n is being served by SO

is equal to 1/(qnm ) . This is also the steady-state pro-

c
n,0™n

bability that job n 1is in the So~queue but no higher prio-

rity jobs are :
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; n=1,2,...,N (6.%)

Similarly, the steady~-state probability that job n 1is

in the S1—queue but no higher priority Jobs are, is equal to

P 1 ‘
1 z,o-a n"‘1 = _— ; =2 7,.0- N ;
pn( 3 H ) mn’1on b n ’-) )
p,(0) =
1 my 1%

Reverting to the original model, we note that while SO
is giving service to jobs n , they leave the system at rate
(1~q,)m ., . Therefore, the steady-state rate of departure

. L

(arrival) of jobs n from (into) +the system is equal to

Iy = (-ay)m, opp(n) = ; n=1,2,...,80 (6.5)

b4
9 %n

The time that one job n spends in the system is equal
to the interval between its and its successor's arrivals in-
to the system. This means that the steady-state average resi-
dence-in-the-system time for job n is equal to

g.c
R B i ns1,2,.. ) (6.6)
n

=

If the averages ¢, , and hence the probabilities pi(i)
and pi(1,2,...,i~1) were known for all i=1,2,...,n , then

the probability pn(O) could be found from
n,
. i= :

(the ‘So—queue is free from jobs belonging to the grouvp 1,2,
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ee.yn iff meither job 1 , mor job 2., ... , nor jobn is
being served by SO). Similarly, the steady-state probabili-

ty pn(1,2,...,n) can be found from

n ' .
o (1,2,...,1-1) 5 i=1,2,...,8 (6.8)

p, (1,2,...,0) =1 - &y

Derivation of expressions for ¢, -

Our problem has been reduced to that of finding ﬁhe
steady-state average cycle length for jecb n (n=1,2,...,N),
in the modified model. Iet s, (n=1,2,...,N ; 1=0,1) be

the steady-state average time that job n spends in the Sl_

queuve., Obviocusly,

+ 8 s n=1,2,...,0 (6.9)

For n =1 we have

4 1 1 1
PO, SO Y L — O = +
T ey o gy

(6.10)

becauvse job 1 never waits.

Iet 2<n¢ ¥ . In the modified model, a job joining a
queuve must have jusi completed a service at the other server,
i.e. must have been the highest priority job in the other
queue prior to the joining. This implies that whenever job n
joins the S,-queuve (1=O,1). it finds jobe 1,2,...,n-1 in
the Sl—queue.

The residence time of job n in a gueue consists of an
tinitial wait' -~ the fime between joining the queue and be-
ginning serwvice — followed by the service, interspersed with
preemptions. A little reflection convinces us that, because

the service times of jobs 1,2,...,n-1 are distributed exponen-
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tially, the steady-state average initial wait of job n in
the Sl—queue is equal to the Stéady~state average residence
time of job n-1 in the §,-queue, Sp-1,1 (1=0,1) . |

Consider the interval between the beginning and the ter-
minating of an So~service of job n . This interval consists
of the actual service and of all wait periods initiated by
preemptions.,

Af any time when job n 1is bheing served by SO , jobs 1,
2,.;.,nm1 are in the S1—queue, job 1 being served by S1
Thus, if the So~service of job n is in progress at time %,
a preemption will occur in the interval (t,t+dt) with pro-

bability m, ,dt . It follows that the S -service of job n

1,1 20
is preempted, on the average, m1’1/(qnmn’o) times.

Each wait period caused by a preemption begins with the
arrival in the So~queue of job 1 and ends with the departure
from the SO~queue of the last of jobs 1,2,...,n~1 . In other
words, éach such period is an So~busy period of type =n-1 .

The steady-state average length of an S,-idle period of

0]

type 1 1is equal to 1/m1 4 for all i . Denoting the stea-
b

dy-state average length of an So—busy'period of type 1 Dy

b. , we can write
i,0

p{(O) = = T
L bi,O + 1/, ’ i,0™,1

whnich yields

b 1 - pi(o)
1,0 7 my 4, (0)

Adding together the steady-state average lengths of the
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injitial wait, the total wait due to preemptions and the SO

—

gservice time, we obtain

my 4 1 - p, 4(0) 1

S . +
qnmn,O m1,1pn~1(0) qnmn,o

-

n,0 = °n-1,0

which is equivalent to

1

s = 8 +
qnmn,Opn—1(O)

n,0 - “n-1,0

(6.11)

A similar argument, applied to lthe residence of job n

in the S1~queue, leads to

.S

= 1
n,t = Sn-1,1 F mn,1pn~1(1’2""’n"1) (6.12)

Substitution of (6.11) and (6.12) into (6.9) yields

1 1
c. =2c + -+ 6.
n n-1 qnmn,opn_1(0) mn,1pnn1(1,2,...,n~1) (6.13)

Finally, (6.7) , (6.8) , (6.3) and (6.4) can be used
to express pn*1(0) and pn_1(1,2,...,n—1) in terms of cy,

e . This give
Cos »Cpy 1 is &lVGS

S A -
c, = ¢ 4, + Jq.m [1 - QD _———um-—_}} +
n n-1 {'n"n,0 =793, 0%3

-~ -1
* {mn,1[3 B %;# ﬁ‘l“‘*]}

g Co
i,171

(6.14)

All c (n=2,%,...,N) can be determined by repecated
applications of (6.14) , with c, given by (6.10) .

Remark: As can be seen from the derivation, the quanti-
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ties in which we are interested (e.g. the central processor
utilisation factor) do not depend on the form of the distri-

butions P, ~(x) and P, ,(x) , only on their averages.
N,0' N,1\*/ |

Special cases.

a) To reduce the number of parameters a little, suppose

PE — T — - - Weaw + o1yl OCe8—~
that m1,1 = m2,1 = .. = mN,1 = m, Now the central proces
sor utilisation factor is a function of the traffic intensi-

ties r = m1/(qnmn,o) : n=1,2,...,8 , When N = 3 , for ins-

tance, we have

r1(1+r2)(1+r1+r1r3)

U =
T+, 4 r1(1+r2) + r12(1+r2)(1+r3)

The steady-state average residence-in-the-system times

for jobs 1,2,3 are cqual to

qq(1+1y)

) q2(1+r1)(1+r1+r1r2%
ey e T (14,07, ;

. , ,
. q3(1+r1+r1r2)[},+ ry + r1(1+12) + T, (1+r2)(1+r31]
g '5 -

m1(1~q3)r12(1+r2)

Note that if Ty is close to zero, i.e. if top priori-
ty is given to jobs whose central processor requirements are
negligible compared to their input/output requirements, .U
is also close to zero, while W2 and WB are close to infi-
nity. The fhroughput (the total rate of departures from the
system) is approximately equal to m1(1~q1)/q5 . If, on the
other hand, T, (Qr r3) is c¢lose to zero, it is ecasy to

find a combination of values for the remaining parameters
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which will produce a greater central processor utilisation
factor and a greater throughput. This example demonstrates
that the cbmmonly accepted practice of giving highest prio-
rity to Jjobs thch are most 'input/output -—— bound! is not
necessarily the most efficient.

We shall sece that the situation is similar when the
priorities for ihput/output are of the.head*ofwthe-line type.
The problem of optimal allocation of priorities is interest-
- ing and not trivial, especially vhen Qharges and revenue are
to be taken into account.

"b)  When Qq = dp = v =gy =q and My o 7 My g T e
= mﬁ’o = my, as well as My g =My g T .. = mgogo= Wy all
quantities of interest can be found explicitly. The steady-

state Sy-utilisation factor is equal to

r(1 - rN)
U ="'”-~""-—7"_*~°
| - rNr1

where T = m1/(qm0) . The steady-state average residence-in-
the~system time of job n is given by
(1 + v+ ... + rn"1)(1 I

" (1-0)myr™ Pl ol
0

Direct summation shows that the throughput is equal to

r(1 + 17 + ... + rN"1)

L= (1-¢g)m i = (1~q)mOU

0 1 4+2»+ ... + 1

Ve see that the expressions for U and I are the same

as in the case when the So~queuc and the S1~queue are served
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in order of :arrival (chapter 3) . This is not surprising :
when all jobs have the same characteristics, the cenmtral pro-
cessor utilisation factor and the throughput are independent

of the queuing disciplines.

6.3 Non-preemptive priorities for input/oubput.

In this version of the model, the. S1~qu¢ue is served
according to the head-of-the-line priority discipline and
the SO-queue — according to the preemptive-rcsume priority
discipline. We shall make the following assumplions recgarding
the SO* and the S1—servi¢e‘timés :

Consecutive Sy-service times and consecutive 81—ser“
vice tines are independent random variables. The Souservice
times of job i arec distributed exponentially with mean
1/mi,’O , for all i =1,2,...,N . The §,-scrvice tines of
job i have a general distribution Fi,1(x) , With finite
mean 1/mi’1 ,vfor all 1= 1,2,...,N .

We observe again that, if the model is modified by assu-
ming that jobs do not leave the system and the distribution
functions of the Sowservice'times are given by

- .M,
93 1,0X

Gi(X) = 1 - e i:1’2’000,I\T

-e

the steady-state probabilities of the various queue configu-
rations will not change.

Denote by c; (i=1,2,...,N) the steady-state average
cycle length for job i , in the modified model. Since the ar-

cuments used in deriving (6.3) and - (6.6) were independent

of the S1—queuing discipline, we can write, for the steady-
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state average residence-in~the-system time of jJjob i

W, x—mj;—%-—» s i=1,2,...,0 (6.6a)

Similarly, the steady-state central processor utilisation

factor is given by

N . |
ve>) b (6.7a)

et L. C.
151 94 1,071

(see (6.7) and its derivation). The throughput is equal %o

S g
L= (6.5a)
=1 93%

(sce (6.5) and its derivation).

The problem of finding Wi , U and L has thus been
reduced, once more, to that of finding the avcrages Cy (i=
1,2,...,N). However, because low-priority jobs can delay the
S1—services of high-priority jobs, the inductive approach
described in the last section is no longer applicable. To
find the .ci's, we shall use the method of the embedded Har-
kov chain and semi-Markov process.

Let t1, t2, cees tn, ... be the consecutive moments of
S1—service completions. The state of the syétem at time tn+,
i.e, juét after the n-th S1~service completion, is complete-
ly determined by the set of jobs, Q(tn+) , wnich are in the
Sy-queue then. (For example, if Q(tn+) = {1,3,4} , then we

know that job 1 -is being served by S job 2 has just bhe-

O b
gun an S1»service, jobs % and 4 are waiting in the So~queue

and jobs 5,6,...,N are waiting in the S1—queue.)
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] . + . . .
There are 2% - 1 (since Q(tn ) is never empty) pos-
sible states in which the system can be at tn+ . These states

can be conveniently indexed by the integers 1325040.,2 =
in the following way

Working from right to left, write a 1 or a 0 in po-
sition i , depending on whether job i is in Q(tn+) or not,
for i=1,2,...;N ; treat the resulting set of N Dbinary di-
gits as a binary representation'of an integer ; denote that
integer by S(t +) and use it to represent the state Q(tn+}.
(For example, if Q(t,") = 11,3,4} , then s(tn+) -
= 00...01101 = 13 .)

Because of the exponential distributions of the So~ser~.

vice times, the stochastic process
+
= {s(x,") , n=1,2,...}

is a (finite-state) Markov chain. It is, furthermorec, irre-
ducible and aperiodic and therefore possesses a steady-state

distribution p = (p1,p2,...,p N ) , defined by

27 -1
pe = Lim P[S(t,") =] 5 k=1,2,...,2%1 (6.15)
1 -—> co
2N .
et V = (v j Y)J k~1 be the transition probability mat-
] A

rix of M ; the elements ¢f V are defined by
@ -+ l' . . N v
Vix < P[ (t g )= kl (1, )= ] s 3,k=1,2,...,2° =1 (6.16)

The expressions for Vj are given in the apoendix of
P .

this chapter.
Let V1 be the matlrix obtained from V by subtracting

1 from the elements on its main diagonal and then rcplacing
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its last column with a column of 1's . The steady-state dis-

tribution p is given by
2= I'V1 ' (6.17)

where I is the vector (of oM elements)
I = (0,0,...,0,1)

Note. TFinding the inverse of V1' is a difficult ope-
ration for large vaives of H . When doing it numerically,
one should make use of the fact that V.,l is a very sparse
matrix.

Consider.now the times involved in the transitions of
the Markov chain M , i.e. regard M as a semi-liarkov process.

More precisely, let m (k:1,2,.‘.,2N~1) be the average
1 .

C
length of the interval between two successive Markov epochs,

(t,,6.,4) » given that S(t, ") = k . Wnen k = 2"-1 we nave

1 1 : (6.18)

because, if all jobs are in the So-queue at tn+ , then
(tn’tn+1) consists of the remaining Sy-service of job 1
plus its S1~service.'When 1§.k<:2N~1 , the S1—queue is not
+ . . RN 4. —anpud
empty at t = and (tn’tn+1) consists of the S,-service

of the highest prioriﬁy job in the Si—queue. Hence

. = x=1,2,..., 200 (6.19)

M1,
where 1 is the position (counted from the right) of the
rightmost zero in the N-digit binary representation of k .

Knowing the averages m, and the steady-state probabi-

lities py (k=1,2,...,2N—1) , we can find tk,k , the stea-
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dy-state average first passage times of M from state k tTo
state X . The well~-known formmula in the theory of semi-lar-

kov processes (see Barlow and Proschan Y7]) yvields

N .
t = 1%%§n1m ; k=1,2 N1 (6.20)
“k,k T Pk“.ij;‘«f JPJ S T
The reciprocal of tk X ?
H
= e k=1,2,...,20 (6.21)
k,k '

represents the steady-state average number of times that M
is in state k per unit time (the average nwnber,per unit

time, of Markov epochs +t such that S(tn+) = X).

{k

representation of Xk is in position i , counted from the

right} . S

1
Denote by s, (i=2,3,...,0 ) the set of integers

1$IK<Q2N~2 and the rightmost zero in the N-digit binary

has the property that if S(tn+) = k for some

e

chsi , then job i 1is the highest priority job in the 81—

+ . . . . .
queue at tn y i.e. job 1 has just begun an S1~serv1ce.

Denote by 8 the set {2,4:6,...,2N

—2,2N~1}‘. 84 has tue
property that if S(tn+) =k , for some ké&s, , then job 1
has either just begun an S1-service or will do so when its
SO~ service is completed,

We can find now

n(i) = Lo By y 1i=1,2,...,N (6.22)
]c&si ‘
n(i) is the steady-state averaze number of times, per unit
time, that job i begins an S1~aervice. The reciprocal of
this number is the stcady-state average length of the inter-
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val between two consecubive moments of admission into S1~
service for job i (i=1,2,...,N) . This last guantity can be
seen to be precisely the steady-state average cycle length

for job i . Thus
c. = 1 ; i=1,2 -
i 1"(1.5 s A 1&g ey

which, after substitution of (6.22) ,(6.21) and (56.20)

hecomes
’
=
TP .
S JT
oy = s i 41,2, N (6.27)
i ./__;_-q .pl
ke s <
- i

Special cases

a) Vhen and

My o=Mp v =Ty o 9 My g0y 4=e. =My
q4=q5=...=qy , the numerator in the right-hand side of (6.23)

is equal to

L
——(1 + T.D 4 )
i1 2"
where T = m, 1/(q1m1 O) is the traffic intensity. Substi-
? . ]

tution into (6.7a) now yields

U= (gt PN 1)"1‘

‘MThis formvla agrces with the one obtained in the case of
PIFO queuing disciplines at both queues (chapter 4) , pro-
vided that the distributions, as well as the means, of the

S1~oorvice times are identical,
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Whe M, .=m =,, .= and when the S,-service
b) When iy g=m, N, 1 1

times are distributed exponentiall the probabilities ¥
/2 k

and the So—utilisation factor can be expressed in terms of

the traffic intensities r, = m1,1/(o.m. (i=1,2,...,4) .

1 1,0)
In the case of N = 2 , for instance,

i} (142) (ry4rpir,0,)

U 5
1+(1+r1) (1+r

5)

We note that if one job class has a very low:traffic in-
tensity, a greater So~uﬁilisation factor may be achieved by
assigning a lbwervpriority to that class,

Pinally, compare (6.24) with the expression for U

in the 'preemptive priorities at 81‘ model :

T (1+r2)

U = s
1+r1+11 5

ot araaren

Stating the results of the comparison in gencral terms, we
can say that the central processor utilisation factor is
higher in systems with interruptable input/output operations
when the low«priority jobs are very input/output - oriented
(r2~10) ; it is higher in systens with non-interruptable
input/output operations when the top-priority jobs are ver
input/output -oriented (r1A/O) . There is little difference
hetween the two types of systems when ry~Ts , OT r1A400,

~o
or I‘2
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- APPENDIX

Bxpressions for the transition probabilities (6.16) .

We note first that if 7§ = 2"-1 then

T
; 1{:1,2,...,21\"‘1

4

because, if all Jobs are in the So—qu@ue at tn , job 1

must complete its, So~uervice before anything else can hap-

pen; from that moment the system behaves as if it started in

state ZN-Z .

_ ‘ o
Suppose now that '1:5jé:2h~2 . Let j1’o<j2 O{:..w<

b
<:js 0 be the positions (counted from the right) of the
H
ones, and j1 be the position (covnted from the right) of
the rightmost zero, in the N-digit binary representation of

j + In other words, let jobs j1 0? be the
i

32’0’ sy jS,O
jobs in the So—queue and Jjob j1 be the highest pricrity job

+

in the 51—queue at tn

.t ot .7 job §, will be in the
So~queue and some, or none, or all, of jobs 31,0, j2,0’ ceey

Js o will be in the 81—queue. The possible transitions,
’ .

therefore, are :

. CJa1 v
to state ko = J + 2 L , if the S1~uervice of job j1 is
completed before the SO—Service of job j1 o}
dim1 3,071
to state k1 =3+ 2 -2 , if the S.-service of

0
job j1 0 but not that of job j2 0 is completed before the
H : ’

S1~uervice of job j1 ;

P e T e I I e T T R e o T o

to state k_ = j + 2 -2 - . = 2 , if the

So~services of jobs j1,0’ jZ,O’ A o are completed be-

[



116

fore the 8,-service of job j, (ks is, of course, equal to
231—1) _

Denote by F(i1,12,...,in;x) the distribution function
of the sum of n independent random variables distributed

exponentially with parameters qi1mi1,0 ’ qizmiz’o s e s

aspectlive <i i< i N "he -
qinmin’o respectively (1\¢1,‘<12<...<1nsj) . The proba

bility that the So~serv1ces of jobs j1’0, 32,0’ o v ey Jn’o

(1< ngs) are completed before the S -service of job j,

is equal to

o

B(3y gedp, 000 rdn,03dy) = gOF(j1,o’32,o’~"3n,o5x)dFj1,1(X)

We can write now

=1 ”b(j1’o;j1) H

. wm et e e me Ae e e e e e e e e e me  eem e e s ewn e

Vi = PUq 00d 000 dg,033q)

For all other valucs of Xk ,

Vik = O
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