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ABSTRACT

Storage fragmentation, the splitting of available computer memory space
into separate gaps by allocations and deallocations of various sized blocks
with consequent loss of utilisation due to reduced ability to satisfy
requests, has nroved difficult to analyse. Most previous studies rely on
simulation, and nearly all of the few published analyses that do not, simplify

the combinatorial complexity that arises by some averaging assumption.

After a survey of these results, an exact analytical approach to the
study of storage allocation and fragmentation is presented. A model of an
allocation scheme of a kind common in many computing systems is described.
Requests from a saturated first come first served queue for varying amounts of
contiguous storage are satisfied as soon as sufficient space becomes available
in a storage memory of fixed total size. A placement algorithm decides which
free locations to allocate if a choice is possible. After a variable time,
allocated requests are completed and their occupied storage is freed again.

In general, the available space becomes fragmented because allocated requests

are not relocated ¢r moved around in storage.

The model's behaviour and in particular the storage utilisation are
studied under conditions in which the model is a finite homogeneous Markov
chain. The algebraic structure of its sparse transition matrix is discovered
to have a strikisg recursive pattern, allowing the steady state equation to be
simplified considerably and unexpectedly to a simple and direct statement of
the effect of the choice of placement algorithm on the steady state. Possible
developments and uses of this simplified analysis are indicated, and some
investigated. The exact probabilistic behaviour of models of relatively small
memory sizes is computed, and different placement algorithms are compared with
each other and with the analytic results which are derived for the

Corresponding model in which relocation is allowed.
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Chapter 1 : Introduction

Storage fragmentation is the term used to describe the splitting of the
space available for allocating requests for computer storage, or memory, into
separate non-contiguous areas inbetween blocks already allocated to requests
which cannot be moved around in the storage once they have been allocated.
This thesis describes and analyses a model of a storage allocation scheme of a
kind which is common in many computing systems. A storage, or memory,
consists of a fixed integer amount N of contiguous "words", numbered from 1
to N say. A word canhot be split for the purpose of allocating storage. The
unit of allocation in a practical application might be a word, a page, or some
other fixed size unit of memory, and "word" is used here to include all these
terms. Requests from a saturated or never empty queue for varying
integer-sized blocks of contiguous words are satisfied as soon as sufficient
space becomes available. An allocation placement algorithm decides which
available, or free, locations to allocate i a choice is possible. Blocks
remain allocated for a variable time, after which the requests are completed
and their occupied storage is freed again. In general, the available space
becomes fragmented because allocated requests are not relocated or moved

around in storage.

1.1 The origin and purpose of this investigation, and its significance

The original purpose of this investigation was to provide if possible a
theoretical analysis of storage allocation and fragmentation, sufficient to
predict in advance such quantities as the likely storage utilisation (the
fraction of memory allocated td requests) and amount of fragmentation that can

be expected to occur, given such necessary parameters as the total storage
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size, the method of deciding where to choose to put new requests, some
information about the expected duration of allocated requests in storage and
the probability distribution of the size of a new request. A particular
stimulus to this investigation was given by Randell (1969), who observed some
unexpected frégmentation behaviour when performing simulations of a storage
allocation scheme. He noticed that the attempt to reduce fragmentation and
increase utilisation by rounding up each storage request size to the next
nearest multiple of a fixed quantum before allocating the request, was in
practice more than offsét by the consequent loss of utilisation caused by the
rounding up process. Increasing the quantum size appeared to make this net
loss stead?1y worse rather than better. Randell found thiS observed result to
be intuitively surprising, and called for analytical confirmation to discover

its cause and the region of its validity.

Storage fragmentation has proved to be quite difficult to analyse. The
available thecretical analysis c¥ such a general storage allocation system
has, at least until very recently, in Randell's words beer "sorely lacking”.
Most pfevious studies have relied on simulation, and most of the few that do
not, have simplified the combinatorial complexity that arises by at least one
approximating assumption about the average behaviour of a large humber of
possible cases, even after having already made such mathematically tractable

assumptions as a uniform or negative exponential distribution of request size.

The analysis presented in this thesis has similarly had to make some
initial simplifying assumptions for tractability, in particular that request
sizes are identically and constantly distributed independent of each other,
that the distributions of request size and duration (amount of time spent in
the memory) are independent and that the requested duration in memory is in

fact distributed such that at any moment any allocated block in storage is

t]



1 : Introduction 3

equally likely to be the next to be deallocated. The last requirement can be
met for instance by assuming a negative exponential distribution of request
duration. The plausibility of these assumptions is argued in chapter 3, where
they are in fact shown to be sufficient, with suitable aefinitions of state
and transition between states, for the model to be considered as a finite
discrete-time Markov chain. When this chain is ergodic, as in general it is,

its equation of steady state has a unique eigensolution which is the dominant

eigenvector of steady state probabilities.

Unlike most previous studies, the subsequent analysis is then exact as it
makes no further approximating or averaging assumptions and also it does allow
any general request size distribution to be assumed. The apparently
inevitable combinatorial explosion which results for increasing total memory
size is managed by noticing that certain aspebts of the model constantly recur
whatever the total size of memory may be, and by studying the properties of

the model which cause this to be so.

The storage utilisation in the steady state is usually of interest in any
practical storage allocation scheme in which space is either expensive or at a
premium. Properly defined, the expected amounts of storage utilisation and
fragmentation (wasted space due to rounding as well as space unused because it
ic scattered between the blocks) can be calculated directly as linear
functions of a steady state eigenvector of probabilities. Consequently it is
interesting to see how much information about this equilibrium eigenvector can
be discovered from the knowledge of the structure of the transition matrix,
which ir turn depends in part upon the allocation algorithm and request size
probability distribution. There is thus a direct 1ink between these last two
and quantities such as the expected utilisation and fragmentation, and it is

one achievement of the present work to discover that there is a short, simple

»
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and direct algebraic statement of this 1ink, the reduced steady state

equations.

The transition probability matrix of the Markov chain is in fact
discovered to have an algebraic expansion as sums and products of much simpler
matrices of probabilities, each of which represent a single momentary stage in
a complete transition. These simpler matrices have a striking recursive
structure which can partly be seen as visual patterns, when the states are
ordered in ways which are related to the properties of the model which are
responsible for this structure. These simple component matrices can still be
specified exactly in the general case of arbitrarily large memory size by
recurrence relations which express their form in terms of smaller versions of
themselves and each other. This algebraic expansion of the transition matrix
allows the equation of steady state to be rearranged.and substantially
simplified to a much simpler form in which the effect of the choice of
placement algorithm and request size distribution on the eigenvector}of steady

state probabilities is stated quite directly.

This reduced equation and the algebraic expansion of the transition
matrix, both expressed in terms of simple matrices with recursive structures,
can be used as starting points for discovering the model's behaviour. As an
example of the possible uses of the reduced steady state equations, the
constraints which must be satisfied regardless of the allocation algorithm are
~ obtained by the discovery that groups of states may be defined to ignore any
differentiation which the choice of allocation algorithm may introduce. When
this is done the steady state equations reduce further to a statement of the
constraints which the modified vector of gfouped steady state probabilities
must satisfy irrespective of the allocation algorithm actually used. Both the

expected utilisation and fragmentation are still expressible as 1linear
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functions of the grouped steady state probabilities. Another father'different
example of the use of the structure of the transition matrix occurs in an
implementation of the power method. This is used to gather whatever exact
numerical results may be possible for memory sizes up to as large as can be
managed, by using a knowledge of the structure to avoid storing the transition

matrix and thereby allowing larger models to be computed.

The rest of this chapter expands on the above outline by summarising the
work of each subsequent chapter according to the order in which each is

arranged.

1.2 Relation of the present analysis to existing work

Chapter 2 summarises the existing work that has been done on this kind of
storage allocation problem, and describes different features of the storage
allocation schemes that have been studied. It also surveys possible
connections with some other related areas of study such as random space
filling problems in which the fragmentation of the available space is of
interest. With the few exceptions that are noted, there is not much useful
mathematical analysis of this general kind of problem, which perhaps indicates
that solutions are hard to find. Most authors who have tried to produce
positive predictions about particular allocation systems have used simulation
to estimate model behaviour and performance. The mathematical analysis that
has been done is mainly either quite short and not in general very precise, or
else it is longer and more detailed, and the conclusions harder to reach.
Knuth's (1968) well known fifty per cent rule, for example, makes some
assumpt ions about averages and so produces a conclusion which is an
approximation in general. The more detailed analyses which make less

assumptions about averages, are longer and have more difficulty in carrying
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the mathematical complexities which arise to a useful conclusion. A good
example is Purdom and Stigler's (1970) analysis of the buddy system. By
assuming Poisson arrivals and exponential service times they were able to
estimate the average number of available blocks at the sma]]esé level of size,
and to estimate the approximate relationships between block lifetimes on
adjacent pairs of level sizes, but were unable to combine these relationships
for the model as a whole except by considering each pair of levels
independently. The analysis presented in this thesis is of this second type,
for if nothing else it is certainly more detailed, longer and more complicated
than the fifty per cent rule, for example. It provides a particular
mathematical foundation for analysing the problem, and part of its
contribution is that one aspect at least of the analysis unexpectedly

simplifies to a sufficient degree that it is not unreasonably optimistic to

expect useful results will be possible besides those presented here.

1.3 Analysis based on a Markov model of storage allocation

The model of storage allocation to be used as a vehicle for study in this
thesis is defined in chapter 3. Certain assumptions about the distributions
of request size and duration in storage are made, and definitioné of state and
transition between states are given, with which the model is proved to be a
finite ﬁomogeneous Markov chain. These assumptions are not unreasonable for a
. wide range of situations in whjph storage allocation and fragmentation are of
interest, and some arguments to support this are presented. Although unusual
circumstances are shown to be possible in which the Markov chain is not so
well behaved (it is not always irreducible), it is proved to be ergodic in
general. The transition probability matrix then has a unique eigenvector of

equilibrium or steady state probabilities to which the time-dependent vector
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of state probabilities always converges as time passes whatever its starting

value at some initial time origin.

1.4 Number of states, sparseness, and comparison with relocation

Chapter 4 contains a preliminary analysis of this particular storage
allocation model just defined, and introduces some more terms and notation
needed in the following chapters. The number of states in the Markov chain is
shown to increase exponentially with memory size and in fact it takes on
values which are every second term from the Fibonacci sequence. The matrix of
transition probabilities is seen to be sparse, as on average comparatively few

other states can be reached from any given state in one transition.

An easier to analyse variation of the model in which relocation is
allowed, and which is interesting because it provides an upper bound to the
storage utilisation in thz non-relocating model, is considered. Randell
(1969) also used this relocating variation to compare the performance obtained
with different allocation algorithms and request distributions. An example of
this relocating variation of the model is presented and closed form
expressions are obtained for the expected equilibrium values of the

utilisation and fragmentation.

1.5 Algebraic expansion, simplification and use of the steady state equation

The heart of the work in this thesis is in chapter 5. Because this
material is new and therefore more unfamiliar than that of the (necessarily
partly introductory) preceding two chapters, the exposition and proofs here
are a little longer in’'style than in chapters 3 and 4. This extra care may

seem in places, perhaps especially in the first section, to be longwinded or
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to be proving the obvious. It has been taken nevertheless because of the
importance of what is contained here to the rest of the work in the remaining
chapters. Section 5.1 reveals the recursive structure of the transition
probability matrix of the Markov chain. This structure is used in section 5.2
to transform the steady state transition equation to the reduced form already
mentioned above, which represents the choice of allocation algorithm in a very
simple and direct way. The properties of this simple form and the prospects
for its use are examined in section 5.3. The example of this use which is
given is to produce by a further reduction the allocation-independent
constraints already referred to. It was discovered that these could be
achieved by grouping the states, guided by the choices indicated by the
matrices which represent the action of the allocation algorithm. The rules
for constructing these new state groups and the matrix of the constraining
equations without prior reference to the transition matrix, are set out in

detail.

Tris reduced set of equations contains some degrees of freedom as there
are fewer constraints than grouped states, and so it is possible for example
to consider using linear programming techniques to discover how utilisation
and fragmentation may vary when the allocation algorithm is chdsen with
complete freedom. Interestingly, there are many fewer degrees of freedom in
these further reduced equations governing the grouped state probabilities than
there appear to be in the allocation algorithm specification, implying that
many of the choices possible when selecting an algorithm are redundant or

immaterial as far as utilisation and fragmentation are concerned.



1 : Introduction 9

1.6 Exact numerical results for small memories, and their usefulness

Chapter 6 presents the attempts based on the power method which have been
made to calculate exact numerical solutions for models of small memory sizes,
and the results which have been obtained. The means used to obtain results
for as large a memory size as possible are explained. The most successful of
these which allows the largest possible size so far achieved to be compufed
(12 words), uses the sparse structure of the transition probability matrix set
out in chaptervS to avoid storing the matrix anywhere at all. The results
from three allocation algorithms and two request distributions are compared
with each other and with the corresponding upper bound results for the
relocating model from chapter 4. Even such small memory sizes can produce
useful results, not least because the unit of allocation in a practical
Situation might be large, a page or a disc track for instance, so that the
number of "words" in such a memory might not be very great. As an example of
the possible usefulness of these results even for these small memory sizes,
Randell's observations (above) on the effect on storage utilisation of
increasing the quantum size when requests are being rounded up before

allocation, are successfully demonstrated and corroborated.

1.7 The beginnings of further development and use of the analysis so far

The development of an algebraic means of analysing storage allocation and
fragmentation to the state described in the preceding chapters has the happy
Consequence that there are now a number of different ways in which to apply
the analysis and to develop it further. Before the conclusions in chapter 8
these possibilities are examined in chapter 7, and most of them give

indications that more interesting results may well be obtained to add to those
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already described here. It is possible, although perhaps not very likely as
the first section in this chapter indicates, that a better method than the
straightforward iterative power method may be found to determine the steady
state probabj]ity eigenvector. Certainly it seems that more u;e might be made

of the exact converged values obtained for small memory sizes.

There is undoubtedly’more to be discovered in the way in which the
recursive structure of the transition matrix determines that of the steady
state equations, and further study should lead to greater insight into the
properties of these equations and their solution. Not the least interesting
possibility is of applying the presently developed analysis to other similar
models of storage allocation. There are a number of ways in which the
saturated queue model defined and studied in detail in the earlier chapters
can be modified to match the variety of allocation schemes which exist in
practice. Chapter 7 surveys some of these variations. The algebraic
structure of the transition matrix simplifies quite a 1ot when the queue of
reguests is specified as being unsaturated, as this chapter shows, and sinre
unsaturated storage allocation models have occurred more often in previously
published work it will be interesting to see how the analytical methods
presented here can be applied to this model and to compare any'results

obtained.

1.8 Previous work which has been assimilated into this thesis

The author has previously written a number of papers (1971, 1973, 1973a,
1974, 1974a, 1977) as the analysis of the storage allocation problem has been
developed. Almost all of their contents appear and have been extended in this

thesis in some form, although the converse is most certainly not true; there
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is much extra work reported here which has not previously been published
anywhere else. The (1971) report was concerned with the analysis of what
happens when relocation ié allowed, and its results are incorporated and
exteqded in section 4.4 of the present work. The (1975) report which was
subsequently published with a few additions (1974) was concerned with the
definition of the model, some of its properties as a Markov chain, and the
first implementation to obtain numerical results. It is covered by chapters 3
and 4, and parts of chapter 6. The (1973a) report began the algebraic
analysis of chapter 5, and this was subsequently extended (1977). The (1974a)
report documents the author's failure to achieve much progress with an
extension of the model definition to infinite memory sizes, summarised here in

chapter 7 section 7.3.
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Chapter 2 : A survey of previous work

Before attempting an analysis of storage fragmentation it :is of course
necessary to ‘study the work of others who have considered the same or a
similar problem. This is partly to avoid needless duplication of effort, but
mainly because it is wise to judge what progress has already been made, what
might possibly be done that would be useful, and how it could be achieved by
using existing results where possible and appropriate. The purpose of the
present chapter is to make such a survey of the previous efforts that have
been made to analyse the generally difficult probiems of storage

fragmentation.

Storage fragmentation occurs as one aspect of a much more general class
of problems which are concerned with how to allocate or divide up some kind of
fixed storage space'among a2 numder of requests for it, often with the aim of
doing this as well as possible with respect to some measure of efficiency.
Usually in this kind of problem there are some rules or constraints as to how
the allocation should or must be performed. The most common of these is
exclusiveness, that the space reserved for the use of one request can not be
used for another until the first has finished with it. Also very frequent is
the requirement that the space allocated to one request should not be
scattered but instead has to be compact or contiguous, occurring all together
~in one piece in some sense. When there is also variability of the size (and
possibly the shape) of the requested space and of the time for which it may be
required, and when the space that has been allocated to a request is not
easily moved around, these are the general éonditions in which the available
space will be split up or fragmented into separate pieces. Since in these

conditions the fragmented space is generally less able to satisfy requests
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than it would be if it could be all collected together, the question arises of

how best to allocate or give out the space to minimise this effect.

The allocation of requests for space for storing programs and data in
computer memories is an obvious example, and many aspects of computer memory
allocation have been studied since the earliest days of computing. Knuth
(1968), pages 456 - 461 gives a survey quoting many developments from 1946
onwards, and Randell and Kuehner (1968) also give a similar explanatory
survey. From both these sources it is clear that the term "storage
allocation" was sometimes used in the early days of computing to mean much
more than it usually does now. Indeed in a few places where it was used a
more appropriate present-day term would now be "operating system"; see the
description by Maher (1961) of storage allocation in the Burroughs B5000
computer, for example. (The storage allocation routine loads programs,
assigns memory, assigns I/0 buffers (with semi-automatic tanking?!), assigns
I/0 units, configures the system when the B5000 is switched on, protects

storage and relocates address constants.)

With such a general probiem it is not surprising to find that storage
fragmentation effects have been studied in a variety of other guises. Most
notably these include space-filling problems, the practical origin of which
include in their range of scope a desire to know the best shape for a Tump of
coke so as to get the most fuel into a given volume such as a railway wagon,
Renyi (1958) bélow, to a requirement (Page (1959), also see below) to estimate
the 1ikely amount of hydrogen deposited in molecular doublets as a thin film
on a rectangular lattice surface, and the amount subsequently adsorbed from it
by mercury. Because of the difficulty of the analysis both Renyi and Page
managed only to consider the one-dimensional case instead of the original

three- and two-dimensional problems. In such a general sense of course the



14 2 : A survey of previous work

problem is an everyday one, familiar for examplie to the housewife arranging
groceries on the pantry shelf or the building site foreman deciding where to
store steelwork temporarily on a building site. (An interesting example of
this last problem is given by Lovell (1968).) This thesis is concerned mainly
with expressing the problem in terms of the application to computer memory

management however, and this will be clear from the next and subsequent

sections of this chapter.

2.1 External and internal fragmentation, and Randell's observation

Randell (1969) published the results of some simulation experiments which
were intended to investigate the various factors which might affect storage
fragmentation, in a paper the importance of which can partly be judged by the
regularity with which it has been referenced by subsequent authors. He
distinguished and defined two kinds of fragmentation. In the present thesis,

the external fragmertation EF of a ~tcrage memor; at any particular inscant,

containing available or free storage possibly separated by allocated or
unavailable blocks, is here defined to be the fraction (expressed as a ratio
between 0 and 1) of the whole memory which is available at that instant. The

complementary quantity storage utilisation is defined as the fraction of the

whole memory which is allocated, so that always
external fragmentation EF = 1 - storage utilisation voess 2.1

This is the definition of external fragmentation, as a loss in storage
utilisation causad by the separation of the available space, whicih has been
used by nearly all authors most of whom have referred to it as being due to
Randell. In fact the definition he gave, which is harder to work with

directly, is slightly different. He defined external fragmentation as the
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difference in storage utilisation between two experiments, one using a
non-relocating placement algorithm and an otherwise identical experiment in
which allocated blocks were always moved (relocated) so as to collect together
the free space whenever necessary. This difference can be derived from the
definition given above if the storage utilisation in the relocating model is
known. Randell's definition is perhaps more correct as it recognises that
even when blocks can be moved as required, the last allocated block will not
in general be a perfect fit. In fact in most practical situations where block
sizes are generally small compared to the total size of memory, the difference
is slight since storage utilisation in a relocation scheme wf]] be close to
the maximum if the queue of requests is saturated. Randell concentrated in
his simulations on the effect of rounding up requests for storage to the
nearest multiple of a given allocation quantum, in order to assess the effect
of reducing the number of different sizes of blocks coexisting in starage.
This introduces a second kind of loss of storage utilisation, which he called

internal fragmentation, defined to be at any instant the fraction of total

memory within the allocated blocks wasted by the rounding process. Some
subsequent authors have defined this term to be the ratio of the space wasted
by rounding to the total allocated space, but Randell's original definition
will be adopted here as it is simpler to use. The alternative definition is
obviously given by the expression IF/(1-EF), where IF is the internal
fragmentation as defined by Randell and EF is defined in equation 2.1 above.
The difference in numerical value will not be slight if the unallocated space

fraction EF is significant.

Clearly in a storage allocation system in which both external and
internal fragmentation are occurring, the fraction of memory actually "in use"
at any moment by being allocated to the original requests before rounding, is

given by
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proper storage utilisation (with rounding) = (1 - EF) - IF ceen 2.2

so that the term "storage utilisation" defined above as the space allocated to
blocks, and therefore including the wasted space due to rounding, is
misleading when request sizes are being rounded up before allocation is being
performed. In fact internal fragmentation is only considered explicitly at
two specific places (sections 4.4 and 6.5.3) below, since most of this thesis
is concerned with the more difficult task of examining the behaviour which
produces external fragmentation, which logically has to be considered first
anyway. It is therefore convenient to keep the term "utilisation" as defined,
the fraction of memory allocated to blocks as though no rounding is taking
place, and to remember to subtract the term for internal fragmentation when

the amount of rounding up is subsequently brought in to the argument.

To illustrate what was discovered as the allocation quantum was
increased, one of the diagrams from Randell's paper is reproduced in chapter 6
as figure 6.8. As mentioned in the introduction to chapter 1, all of the
simulations which he reported showed the unexpected result that as the
~ allocation quantum increased the loss of utilisation due to increased internal
fragmentation distinctly outweighed the gain due to decreased external
fragmentation. The proper or combined loss went up rather than down as a
result, and Randell called for an analytical investigation to confirm this.
The present thesis, the contained results and any subsequent work exist
largely as a consequence of this appeal although the scope of the
investigation has widened considerably beyond an attempt to answer this direct

question alone.
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2.2 Some different possible allocation algorithms

Various methods have been used to decide where to allocate a new request
for storage in a given memory configuration when a choice is possible.
Perhaps the best known of these are first fit and best fit, described by Knuth
(1968), but certainly used long before then. Collins (1961) for example
reports playing experimental "games" to compare the first, best, worst and
random fit algorithms, but he gave no results other than to say that best fit
Tasted longer before overflow occurred than the others. It seems 1ikely that
the first and best fit algorithms were probably among the first placement
rules to be used in storage allocation schemes in which fragmentation could

occur.

2.2.1 First and best fit, and some variations

Consider the words of memory to be ordered from 1 to N where there are N
words in the memory, or "left to right" in a pictorial sense. Then first fit
searches from left to right, and allocates the request at the lTeft end of the
first gap encountered which is large enough to receive it. Obvious
modifications to this rule are to search from right to left, or to begin the
search at the point where it stopped last time (this last algorithm is known
as modified first fit). Best fit a]]ocateé the request into the smallest gap
which is sufficiently large enough to receive it, not necessarily the first
€ncountered. If there is mare than one such gap of this smallest size, then
one of them is chosen by some rule such as the leftmost or first encountered
in a Teft to right search. Figure 3.1 at the beginning of the next chapter
for instance illustrates an example of both of these algorithms in operation,

and shows a situation in which they will perform different actions to each
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other. Knuth performed a number of experiments to compare first fit and best
fit, and commented that in general first fit was better since best fit tended

to produce more smaller gaps than first fit.

However, Shore (1975) has also compared these two algorithms and has a
different explanation of the comparison, that first fit performs better than
best fit because small blocks and gaps tend to congregate at the beginning or
left hand end of memory, and larger blocks and gaps at the other end, so that
first fit is more 1ikely to be able to satisfy a large request. Shore fbund
that best fit was generally better than first fit for the uniform request size
distribution, and that although the comparison was reversed for the
exponential distribution, as the maximum request size was reduced in his
experiments the difference became less until best fit performed better than
first fit for the exponential distribution as well. Shore pointed out that
the relative performance depends strongly on the request distribution. He
reported that, as Randell (1969) had also discovered, the variation in
utilisation caused by changing the allocation algo-ithm did not often cause a
difference of more than one or two per cent, whereas the change in request
distribution for the same algorithm can produce differences of five or
sometimes ten per cent in ;he utilisation. Shore proposed a canbinéd
algorithm, "best then first" fit, in which memory is divided into two regions.
The algorithm tries best fit in the first or left hand region, and then only
if necessary, first fit in the right hand region. He argued that if the
boundary between the two regions could be correctly adjusted, this might

combine the advantages of both algorithms.

To compare with the results of both thesé authors, it will be seen in
section 6.5.3 in chapter 6 below that when the queue of requests is saturated,

best fit always performs as well as or better than first fit for both these
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request size distributions, at least for the memory sizes which have been
computed using the model described in that chapter. Knuth used a model in
which the request queue was not saturated, that is, whenever a request arrived
it cogld be immediately satisfied, and not to have the épace available for it
(overflow) was considered as a failure. Storage utilisation in such a system
is certain to be lower, and less relevant anyway without saturation; his
comparison of methods was apparently based more upon how long each algorithm
would last before an overflow failure occurred. Shore's model did use a

saturated (essentially infinite) queue of requests.

2.2.2 Fenton and Payne's half fit algorithm

Fenton and Payne (1974) also compared first and best fit by performing a
number of simulation experiments, and found that best fit invariably performed
better for various request size distributions, including uniform and
exponential. Their results which they reported in a different way to
previous authors, also appear to show that the difference in utilisation
between these two algorithms is usually not more than two per cent. They also
reported results on the modified first fit algorithm, and the half fit
allocation algorithm (see below). Modified first fit consistently performed
worse than first fit, generally up to 5 per cent Tower utilisation,
supporting Shore's remarks on the separation of small and large gaps which is
not expected to occur in modified first fit. That modified first fit performs
worse than first fit is also supported by the simulations reported in a short
note by Bays (1977) who compared first fit, best fit and modified first fit

finding a result consistent with Shore, and Fenton and Payne.

Fenton and Payne's half fit algorithm allocates a request into a gap
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which is approximately twice its size, and falls back upon using best fit if
this is not possible. The idea is to deal more successfully with a
distribution dominated by one size of request. If the next request is likely
to be for the same size as the current one, then it might be a‘good idea to
find and use a gap of twice the needed size if possible rather than, say, one
which is too big by only half as much, (and to use best fit otherwise, to use
up the already created gaps of the right size). They found that this idea was
only moderately successful in practice, "half fit performed well in some cases
but the results were too erratic to draw any conclusion", and gave the same
figure as that for first fit for its average performance over a number of

simulations.

2.2.3 Campbell's optimal fit algorithm; the optimal stopping problem

Besides Shore's "best then first" fit, another algorithm which combines
first and best fit is the optimal fit method propcsed by Campbell (1971).
This is based on an analysis of the problem of optimal choice, or optimal
stopping problem, which has been analysed by Dynkin and Yushkevich (1969)
using Markov theory. Campbell quotes an explanation of the problem in terms
of a cyclist wishing to stop overnight at one of a known number G of hotels,
to determine the optimal strategy for finding the best hotel in the absence of
any other advance information if a strong following wind prevents him from
going back to any hotel once he has left it for the next. (Although it is
less practical, Dynkin and Yushkevich's charming alternative example of an
aspiring but astute bride-to-be wishing to make an unerring choice of the best
of all suitors proposing marriage to her is more amusing.) To allocate any
request, the optimal fit algorithm first computes an integer k(G) as a

function of the number G of free gaps currently in the memory. The gaps are
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then scanned from left to right. The best possible fit in the first k(G)-1 is
noted, but allocation is not performed. The algorithm then chooses the first
gap numbered from k(G) onwards which has a better fit than all the previous
gaps so far encountered. If there is no such gap, the Best fitting gap is
used (the one that the best fit algorithm would have chosen, and which must
therefore be in the first k(G)-1 gaps; the cyclist and the bride-to-be do not
have this option). For large G, a good approximation to k(G) is to choose the
rounded up value of G/e = G/2.718 approximately. Campbell implemented the
optimal and first fit algorithms in a particular application program and
compared their performance as measured by the number of garbage collections
required, finding that optimal fit was generally better, keeping the free

storage list of gaps in the memory noticeably more compact.

2.2.4 Random and worst fit

Two more possible ways of deciding how to choose wheie to p]a;: a new
request in storage which have received less attention in the literature than
best or worst fit, are the so-called random fit and worst fit allocation
algorithms. Given a requast to be allocated, random fit chooses at random
from all the available gaps sufficiently large to receive it. Reeves (1979,
1980) has used the random fit algorithm to successfully demonstrate how
storage allocation systems may be analysed algebraically by means of
generating functions, see section 2.6 below. Randell (1969) included it as
one of the algorithms he compared in his simulations, as he thought it 1ikely
to be near the opposite extreme in performance to best fit. In fact, it is
possibie to be quite a 1ot more perverse than this, for after all a random
choice will sometimes be made "correctly" as well as sometimes badly. With

this idea in mind, the present author has devised and used a "worst fit"
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algorithm for the computations of chapter 6 in an attempt to discover how much
the storage utilisation can be affected by "bad" allocation. One feature of
this particular algorithm does not seem to have been described elsewhere.
Given a request to be allocated in a particular configuration o} memory, the
worst fit algorithm allocates the request into the middle of the largest
available gap, leaving an amount of space on either side of the newly formed
block in two new gaps which are either equal in size or else different by only
one word. The predicted results of using this algorithm appear and are

discussed in section 6.5.

This version of the worst fit algorithm thus introduces an idea which,
while it is not new, has not been discussed or analysed in this context
elsewhere, that a request need not be allocated at the left or right hand end
of the chosen gap but somewhere in the middle of it. This does not guarantee
to do worse than putting the request at either end, although intuition again
suggests that it usually shouia. To see why worse performance is not
autometically graranteed, consider figure 2.1. This shows a 5-word memory in
whfch the first and last words are inifia]]y each allocated to blocks A and B
each of length 1 word, and words 2, 3, 4 are empty. The queue requests which
will arrive to be allocated are shown as C (1 word), D and E (each 2 words).
If request C of 1 word is allocated, and then blocks A and B are deallocated,
worst fit leaves the available space in two equal halves of 2 words each so
~ that blocks D and E can subsequently be fitted in, whereas best fit divides it
into 1 word and 3 words so that only D can be allocated. In this example,
best fit would of course do better if D was a request for 3 words and E for
1 word. It should be pointed out that this idea of leaving a space on either
side is inherent in an alternative meaning which can be attached to the word
“random" to that intended by either Reeves or Randell. This is that instead

of choosing equally one gap from each of the gaps sufficiently large for a
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Initial configuration: Queue C (1 word)

(2 words)

(2 words)

"Worst fit" "Best fit"
 C | . . |B]

@ .G . 5
. .. . <————-B]ocksanddea]]ocated-——————> . ..

[0 Jc)lE ] « [0 1, [E ] allocated by worst 'ﬁt/l b 7.

but best fit stuck with [E__].

Figure 2.1 An example to show how "worst fit" can be better than "best fit"

given requesl, the choice can be equally at randum from any of the possicie
positions in the memory in which the new block will not overlap any existing
blocks. This therefore allows requests to be allocated in the middle of gaps
as well as at their ends, and weights the choice towards the larger gaps. It
is 1ike trying to lay a new brick at random on a partially completed course of
bricks whilst blindfolded; attempts which hit already existing bricks are
discarded, and there is no guarantee that the successful try will place the
brick exactly end up against one that is already Taid. This is the idea of
randcmress which was used by Renyi (1958) in his consideration of space

filling problems, see section 2.7 below.
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2.2.5 Good and bad allocation; performance bounds, worst case behaviour

Whilst on the subject of inefficient as opposed to efficient performance,
it should be-hentioned that section 5.3 in chapter 5 below determines the
algebraic conditions which must be satisfied by any allocation algorithm,
good, bad or otherwise inbetween, in the model which is considered in this
thesis from chapters 3 to 6. These conditions form a set of constraints
within which the algorithms may cause the utilisation for example to be
varied, so that by studying the variation within these constraints it may be
possible to determine upper or lower bounds on performance. A different point
of view on bad performance is also provided by Robson {section 2.5 below), who
is concerned not with inefficient allocation algorithms but with worst
possible behaviour in terms of the request sizes and sequences of allocations

and deallocations which can occur.

2.2.6 Buddy systems

For no very clear reason these allocation algorithms have generated more
interest and had more papers written about them than any other kind of
algorithm, if not more than all the others put together. Their distinguishing
feature (apart from taking longer to explain than most other algorittsms, as
can be seen here) is to make explicit and direct use of a tree structure to
| organise the configurations of allocated blocks and intervening gaps in
memory. Consequently they tend to be quicker in operation than most other
algorithms, that is they take less time on average to allocate or deallocate a
block, but unless a particular request distr%bution is such that a particular
buddy system can be tailored to suit it this is paid for in a higher wastage

of space, especially internal fragmentation due to rounding. Most of the
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practical interest that has been shown is probably because of their speed of
operation, in systems where execution time is more critical than storage
space, but undoubtedly the opportunity to exercise a little ingenuity in
tinkering with the mechanism of the algorithm has also been an attraction to

some authors.

A description of the simplest scheme, the binary buddy system, was first
published by Knowlton (1965a) although Knuth (1968) says that H. Markowitz
independently invented and used it in 1963. Interestingly, Knowlton does not
use the word "buddy" in his description. Initially the memory which has size
a power of 2, N = ZM say, is empty. To allocate a request of size n, the
requested size is first rounded up to the nearest power of 2, so that
2m-1 <n¢ 2" . If m=M the request is allocated, otherwise the empty memory
of size ZM is considered to be split into twb equal halves, or buddies, of
2M'1 words each. One of these, it does not matter which, remains for
subsequent requests and the other is again split into two equal halves, size

M-2 and 2M'2; and so on, until the equal halves have cize 2™. One of them is

2
used to satisfy the request and the other remains for subsequent requests.

The action of an allocation is similar for subsequent requests when the memory
is initially not empty. If a free block (gap) of the correct sized power of 2
is avéi]able, it is used to allocate the (rounded up) request, but if not then
a larger free block of the smallest size for which there is a free block
available is recursively split, as before. The action on a deallocation
merely reverses this procedure. If the buddy of a freed block also happens to
be free, then the two are recombined into a single free block of twice the
size, and its buddy is 1ikewise examined in turn. Recombination stops either

when a buddy is reached which is not free or else the originally empty memory

of 2M words in one free block is reached.
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The speed of the algorithm lies in the complete absence of any list
searching and the relatively small number M = 1ogzN of possible block sizes.
Free blocks all of the same size are remembered by means of a last in first
out 1ist, or stack, usually implemented by address pointers kep£ in the free
blocks themselves. Thus theré is one stack for each possible size 2™, When a
free block of a given size is required, the first one on the list is taken
(and the list updated of course). When a block of the same size becomes free
it is simply put onto the front of the 1list. To find the buddy of a given
block, if this is not maintained also by a pointer then the very quick method
given by Knowlton can be used, "... simply to complement the m-th order bit of
the 2"-block's address. Thus if the address of the beginning of a 2-word
block ends in binary ...0110go, then the address of its mate ends in
...011010. Similarly if the address of a 4-word block ends in ...010100 then
the address of its mate ends in ...010000". One bit is required in each block

to mark it as allocated or free.

Knowlton (1965) also described an implementation of a 1-nguage compiler
using the binary buddy algorithm. The description of the binary buddy system
as a tree structure was made more explicit by Knuth (1968), and the word
"buddy" was introduced. Since then other variations on the number~and sizes
of the buddies into which a block can be split have been proposed, more
elaborate tricks for finding buddies of blocks and deciding whether or not
they are free have accompanied these, and (in keeping with other storage
allocation schemes) the results of a number of simulations and just a few
preliminary analyses have been published. One of the first of these
developments was @ technique by Isoda, Goto -and Kimura (1971) for reducing the
amount of information needing to be kept to describe whether a block is free
and what size it is, if this information is kept in a separate table rather

than in the first few bits of each block. These authors also avoid the name
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"buddy", not referencing Knuth. The first proper extension away from powers
of 2 to be published was by Hirschberg (1973), who did reference Knuth because
he developed an idea which Knuth proposed as an exercise, to have blocks of
sizes which are terms from the Fibonacci sequence and to split them according
to the fundamental definition of that sequence (equation 4.2 in chapter 4
below). A year later, Shen and Peterson (1974) suggested a scheme which they
called the weighted buddy system, providing blocks of sizes 2™ and 2™ upon
splitting a block of size 2m+2; blocks such as 3x2™ which are multiples of 3
are themselves split to form blocks of size 2m+1 and 2". The greater range of
block sizes which are therefore closer to each other in the Fibonacci and
weighted buddy systems tend to reduce the internal fragmentation since 1in

general, and on average, there is less far to go to reach the next rounded up

block size.

Cranston and Thomas (1975) removed a very awkward restriction of the
Fibonacci buddy scheme, that to avoid the possibly large amount of storage
required for pointers to find the buddy of any blocl, a time-consuming
calculation was required to discover whether a block had a buddy on the left
or the right instead of Knowlton's simp]e'bit-inverting technique which does
this automatically. Their neat solution requires only two extra bits per
block, which record the information not only about whether each block is left-
or right-handed but also the same information for the resulting recombined
block so that upon recombination of the buddies the same information is
available to be able to repeat the process. Hinds (1975) also noticed that
this could be achieved by keeping a count for each b]éck. For 1eft hand buddy
blocks this would be the number of splits that were required to reach the
block starting from an initially empty memory, and the count would be zero for
right hand buddies. Peterson and Norman (1977) have produced algorithms for

implementing buddy systems in which the block sizes can be chosen freely so
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long as they satisfy recurrence relations of a certain general form used to
perform the splitting. These relations allow the possibility of splitting
into more than two buddies, and of tailoring the block sizes in this general
buddy system to suit a known range of request sizes by an approbriate choice
of the recurrence relations. They give an example accommodating sizes 12, 80
and 132 which might be used for control blocks and card and printer record
buffers. Another example is that of Burton (1976) who also further developed
the generalised Fibonacci relations suggested by Hirschberg in a similar way
to Peterson and Norman, and applied it in an imp]emenfation of a disc storage

allocation scheme in which the sizes 50, 128, 150, 1024 and 10240 occurred.

Concerning the performance and behaviour of the various buddy systems,
apart from the descriptions of Knuth's experiences in trying out the binary
buddy system the first performance analyses were by Purdom and Stigler (1970),
and Purdom, Stigler and Cheam (1971). They were concerned with external
fragmentation and running speed, and their analysis concentrated on the
intercction betreen one‘]eve1 of block size and the next. They fouad that
compared with the first fit method, although the buddy system was much faster
at allocating and deallocating requests its total fragmentation was higher,
quoting about 15 per cent more for the distributions they used, and fhat of
this total the more important element was the internal space wasted due to
rounding. (It has already been mentioned in the introduction above that in
order to carry out their analysis at all, they assumed Poisson arrival times
and exponential service times.) Their comparison agrees with that obtained
subsequently by Nielsen (1977). Shen and Peterson found that the request size
distribution made guite a difference to the amount of wasted space when
comparing the weighted buddy and binary buddy systems, binary buddy being
better for a uniform distribution and weighted buddy better for an exponential

distribution. Hirschberg compared Fibonacci and binary buddy for a size
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distribution with an approximately exponential shape, and found that while the
Fibonacci buddy system caused more external fragmentation than binary buddy it

also had less internal fragmentation. He concluded that the Fibonacci buddy

system was better as running times were generally aboui the same. As for
estimating and predicting the amounts of external and internal fragmentation
in advance, Bromley (1977) has given a block-counting technique for estimating
practically useful upper and lower bounds on external fragmentation given the
request distribution and knowing the set of possible block sizes, while
Russell (1977) has shown how to investigate the expected.internal
fragmentation in a generalised buddy system when the largest possible request

size is not simply equal to a convenient blocksize of the system.

2.2.7 Summary: comparison of the wide range of possible allocation algorithms

The above 1ist of possibilities form a surprisingly large collection of
different rules that have actual]y been u-ed for deniding where to place a new
block in a possibly fragmented memory. In chapter 5 below it will be seen how
a complete family of placement rules or aliocation algorithms, including all
those above as well as many others, can be obtained by choosing different
values for those particular elements which may be varied in a set of
“allocation matrices" which are defined in that chapter, and which
characterise all the possible placement rules. Each resulting set of these
matrices obtained by a particular choice of values can be considered as a
representation of an allocation algorithm, and conversely each algorithm

determines a set of values to be used in the allocation matrices.

Mention should be made of the extensive simulation comparisons performed

by Nielsen (1977), and the simulations of Weinstock (1976). Both of these
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authors parameterised storage allocation schemes not only by the above choice
of placement rule, but also in terms of the choice of free list order, search
strategy, compaction strategy and rounding up rule used by each algorithm as
well as some other variables, and simulated some of the large number of
resulting dif%erent schemes. Both were concerned with execution speed at
least as much as the efficient use of storage space however, if not more so,
and_whi]e this is a worthwhile concern it is outside the scope of the problems
addressed by the present work. Nielsen characterised his input request
distributions mainly by duration and inter-arrival time, and measured the

max imum rather than the average space used by any scheme during a simulation
run. Weinstock also measured the probability of failure (overf]ow caused by
fragmentation) as a fraction of storage utilisation. Both were concerned with
storage allocation models in which the queue of requests is not saturated, and
indeed for which it is considered as a failure if it becomes so, that is, if a
request arrives which cannot be immediately serviced. Consequently of course,
their measures of the efficiency of storage space use cannot be applied to a
saturated queue model. They do not give figures for the average storage
utilisation, which should in any case be predictably lower than for

saturation.

2.3 Empirically observed distributions of request size and duration

It is a remarkable fact that there are apparently very few existing
published measurements concerning the distributions of request size and
duration which have actually been observed te occur for storage allocation
schemes in real computing systems. Consequently the analyses and simulations
of such schemes which have been made have either had to rely on the few

measurements that have appeared, or else more usually on some assumption about
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the shape of the distributions, which one may suspect are often chosen either
Just according to the author's intuition or for their tractability, or perhaps
both. The only other possibilities open to would-be modellers in this respect
are either to ignore the distribution altogether, as w{th the fifty per cent
rule (below, section 2.4) or else to study a wide range of possibilities
whether by simulation or analytically, perhaps by considering the general

case.

Batson, Ju and Wood (1970) measured the distribution of segment sizes
requested by Algol programs running on a Burroughs B5500 system in a
university environment. They found some variation between requests generated
by system activities such as the operating system and compilers which favoured
a fewer number of larger segments without much variation of different sizes,
and requests from user programs which were generally smaller and ranged widely
in size. The distributions they found were for large numbers of relatively
small segments, with a long tail of a few requests for much larger segments.
These matchcd an expo;ential:distribution only fairly roughly, although since
the mechanism for generating storage demands was hidden they could not propose
any other sensible model which would serve to parameterise the results.

Later, by a different method Batson and Brundage (1977) again measured the
segment sizes and lifetimes of working Algol programs in the same system.
They again (not surprisingly as it was presumably a later version of the same
system) found quite similar results, and that almost all of their empikical
data did not fit very well to the exponential or other distributions commonly

used in stochastic modelling.

Bryan (1967) reported measurements made over a long period on the JOSS
computing system of the Rand corporation. The limited amount of data which he

collected and reported on program sizes indicated that they could be



32 2 : A survey of previous work

approximated reasonably well by a negative exponential distribution. The data
presented on program duration are similar to that of Batson and his colleagues
(1970, 1977) with a long tail of a few requests for long storage duration or
residency timgs. Although the first part of the curve can be f%tted quite
reasonably, the upper part of the tail, although small at any point, is less

well approximated to by a negative exponantial distribution.

Totschek (1965) collected a variety of data on the use made of the SDC
time sharing system, including program sizes and computation and elapsed
times. The observed frequency distribution of program sizes for the jobs
which were run during the collection periods was W-shaped; programs tended to
be under 10000, or about 20000, or over 40000 words long. Nearly half of
these jobs involved utility functions such as compilation, interpretation,
editing and filing. He made a number of statistical analyses of the collected
data samples, and one of his findings was that program size, computation time
and elapsed time were not significantly correlated for the jobs being run in
the systcm. He also noticed that the observed distributions of the
computation, elapsed and inter-arrival time for each job all had a similar
shape. These times ranged over several orders of magnitude, there was a long
slowly decreasing tail, and the variance was larger than but proporfiona] to
the mean. Totschek reported that these distributions could be fitted

reasonably well by a 3-parameter lognormal curve.

Margolin, Parmelee and Schatzoff (1971) measured request size and
duration statistics for the IBM CP-67/CMS computing system, and used the data
to simulate and measure the performance of a}ternative allocation strategies
which were candidates to replace and improve upon the existing algorithm.
They were mainiy concerned to find ways of reducing time inefficiencies while

maintaining roughly the same space requirements as the original algorithm.
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Their paper appears to be the only reported work in the literature which both
presents such data for a real system and also the effects of using it to
improve performance. Although Fentpn and Payne's (1974) work was for the same
general purpose of guidance in designing an efficientlstorage allocation
scheme, they did not present any existing data on request distributions and so
they could not “tailor" the algorithm in the same way; they used a variety of
different distributions instead. Margolin, Parme]ee’and Schatzoff found that
in CP/CMS, requests were not independently distributed, request size and
duration were not 1ndependent; and the distribution did not have the simple
profile (such as uniform or negative exponentia]) which is often assumed for
tractability. This published data on request durations does not differ very
much in general shaps from negative exponential if the dependence of duration
on request size is ignored. The distribution of sizes is quite irregular
however, and they comment that the dependence between the two is a significant
complication which can easily produce strong effects on performance. After
quite extensive data collection and correlation and subsequent simulation,
they found that an algorithm which gave special treatment by keeping separate
lists of free gaps for the thirteen most frequently requested block sizes,
reduced the processing time spent in the allocation algorithm by a factor of
seven or eight to one. They also reported a slight gain in storage

utilisation, but this was much less significant than the time saving.

Another example of a practical investigation of the effects of storage
fragmentation on a real computing system is the work of Scherr (1956)
subsequently extended by Lehman and Rosenfeld (1968). The operating system
which they simulated and measured the performance of was IBM's 0S/MVT,
(Multiprogramming with a Variable number of Tasks), and the fragmentation that
was studied was of the allocation of storage to each step of a job. The

simulations modelled the behaviour of the real system closely and were
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therefore correspondingly complicated by a number of features of the way that
MVT controls the selection and progress of jobs to be executed. For example,
Jjobs in storage are not treated equally when sharing processing time, but
instead the job-step that has been in storage longest is given fhe highest
priority for execution, and thus runs as if it were alone. Run times for
other jobs have to be multiplied by expansion factors in the simulation to
allow for the fact that each job can run only when all jobs of longer
residency in storage are in the wait state. The input data to the simulation
was also an attempt at realism, a "standard" job stream containing Fortran,
Cobol and Sorting jobs. The memory requirement or requested size varied
according to the type of job-step, and was either chosen from a range of small
sizes or else one of three possible large sizes. A figure was given for the
average execution or run time but the distribution used was not specified.
The conclusions of this work included the observations that the throughput
rate of jobs was basically unaffected so long as the multiprogramming level
and storage space were sufficient, although fragmentation did affect the order
in which jobs were completed and hence the delay characteristics. Some jobs -
could be kept in the system for as much as 8 hours as a result of
fragmentation, while other classes of jobs with less storage requirement
suffered almost no delay. This suggested that modifying the first fit
algorithm used to allocate storage to job steps would be a good idea, to take
account of the jobs expected (by their job class) to stay a long time in the
memory, and not divide the memory in two by allocating them in the middle but

put them at one end or other of memory if at all possible.

These few results indicate that modelling real-life situations should be
performed with as much generality as possible in the allowed distributions of
request size and duration, although to choose the negative exponential

distribution for request duration times is less unrealistic in most cases than
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for the size distribution. Thus the choice in the present work (chapter 3,
section 3.2) of this exponentially decreasing distribution of request times,
which has been dictated by the requirement of simplicity at least to begin
with and the desirability (as will be seen) of being ab]e to use Markov
theory, is not necessarily an unfortunate one. In any case it has been found
possible to allow a general distribution of request size to be assumed so that
there can be no objection to this, although the two requested quantities size
and time are assumed to be chosen independently of each other for the same

request, and of other requests.

2.4 Fifty per cent, two-thirds and unused memory rules

The fifty per cent rule of Knuth (1968) has become so well known that no
survey of storage fragmentation would be complete without mentioning it.
Stated rather briefiy, this rule says that on the average there will be only
half, or fifty per cent, as many free gaps in memory as allocated blocks. In
the same style as this result and based directly upon it are the unused memory
rule of Denning (1970), and the two-thirds rule of Gelenbe (1971). A1l three
are concerned with the equilibrium behaviour of an unsaturated storage
allocation scheme and rely on intuitively simple arguments about average
quantities. That they are approximate indicators of average behaviour cannot
be denied, but their predictions should not be taken as exact except in
special cases, as the following closer examination of their statement and

derivation shows.

The quantity p is defined as the probability that an arbitrarily chosen
allocation of a block will be into a gap of larger size than the block,

leaving a smaller resulting gap which remains unallocated. Then if the



36 2 : A survey of previous work

average number of allocated blocks in equilibrium is N and the average number

of free gaps is M, the fifty per cent rule actually states that
M= 0.5pN , cese 2.3

Denning'sAunused memory rule is just a trivial corollary; if the average gap
size in equilibrium is no less than k times the average block size, then the
average fraction of the memory occupied by free blocks is no less than
k/(k+2). The two-thirds rule is also derived from the fifty per cent rule and
states that if the probability (1-p) that an arbitrary block allocation is
into a gap of exactly the right size is very small (this is intuitively likely
for large memories where the range of possible block sizes is large compared
with the average number of allocated blocks, especially if the best fit
algorithm is not being used) then the average memory utilisation U is near]y
equal to 2/3. If p=1, then U = 2/3 exactly according to this rule. The
two-thirds rule includes the urused memory rule, as during its derivation it
is "shown" that the average size in equilibrium of a gap is equal to the
average block size, so that both these rules say the same thing.
Interestingly, although Gelenbe references Denning, it is for Denning's
derivation of the fifty per cent rule, and he fails to even mention the unused

memory rule.

These rules take l1ittle or no account of the allocation algorithm or the
_distribution of request sizes; all are supposed to give the same average
utilisation in equilibrium. That this is not so, although for many cases it
may not be far wrong, is indicated by almost any of the simulation studies of
models with unsaturated request queues which have been carried out. Shore
(1977) has noted deviations from the fifty per cent rule and investigated
these by simulation. He advances an explanation that the systematic

allocation of blocks always to the same end of gaps will reduce the
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free-to-allocated ratio below 0.5 if the coefficient of variation

(standard deviation/average) of the distribution of request duration times is
less than about 0.8. He discusses this in terms of the relative ages of the
blocks in contiguously allocated groups. The groups tend to migrate along the
memory because of the systematic placement bias which will always join a new
block at the same end of an already existing group. The oldest block in such
a contiguous group is usually at or near the trailing end (unless the group
behind it catches up), which upsets the assumption of uniform randomness about

which category (see below) a deallocated block is Tikely to belong to.

The derivation given by Knuth of the fifty per cent rule is in fact as

follows. "Consider the following memory map, figure 2.2. . This shows the

Figure 2.2 Example of a fragmented (or "checkerboarded") memory

reserved blocks divided into three categories, A (surrounded by two gaps), B
(surrounded by one gap and another block), and C (surrounded by two other
blocks). Let N be the number of reserved blocks, and M be the number of
available gaps", [at this point some vagueness creeps in as N has by this time
already been defined as the average number of allocated blocks], "and let A,

B, C be the number of blocks of the above categories. Then
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=
il

A+B+C
cees 2.4

=
]

0.5(2A + B + e)

where e = 0, 1, or 2 depending on conditions at the boundaries." [In a
circular memory, e (for end) = 0; this variable is probably unimportant as far
as this rule is concerned, for large memories.] "To derive the fifty per cent

rule, set
Probability[M increases by one] = Probability[M decreases by one] .... 2.5
which leads to
C=A+ (1-p)N " cee. 2.6

Equation 2.5 is an imprecise statement, although Knuth does admit this and

qualify it, "...more precisely, the average change in M per unit time is set
to zero during equilibrium". If 2.6 is accepted, then the fifty per cent rule
2.3 certainly follows by the use of 2.4, when the end-effect variable e is

neglected.

The objection which may be raised to the above argument is as follows.
If M is an average, then it is a fixed quantity and it is nonsensevto discuss
"M increases or decreases by one". If on the other hand M is a random
variable, then it must be dependent on the particular configuration of blocks
and gaps in the memory, and no justification for the statement of 2.5 or its
derivation as 2.6 is given for any arbitrary configuration in general. The
same remarks apply to the quantity p, originally defined as an average, but
representing a {random variable) probability which is obviously dependent on
the particular configuration being censidered. It is a little surprising that

apparently no-one has bothered to point this out before.
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2.5 The allocator-defender games of Robson

Robson (1971, 1974, 1977) has studied those storage allocation schemes
which can be considered in terms of a game played between an attacker and a
defender. The game is played with a fixed maximum number M of tokens, each
representing one word, which can be formed into strings to represent blocks to
be allocated, on a board representing the memory. The length of a string (or
size of a block) may never exceed n words, and M and n are given parameters of
the game. The attacker chooses and removes strings of tokens (allocated
blocks of words) from the board (memory), and forms new strings which the
defender must then decide where to place on the board. The number N*(M,n) is
defined as the size of the smallest board on which the defender, with correct
play, can always manage to place the strings whatever the attacker may do.
Robson's work, and subsequently that of Krogdahl (1973) and Ting (1975), is
concerned with finding and improving upon bounds for this quantity N*(M,n).
Upper bounds are discovered by inventing and improving on successful
strategies for the defender if enough memory is provided, and lower bounds by
conversely discovering a strategy for the attacker (in a smaller memory of
course) which must lead to embarrassment for the defender by forcing a
situation in which he is presented with a string which will not fit on the
board. The strategies which have been described become cleverer and more
complicated as the bounds are improved. In most.real-life situations, storage
allocation is not played as a game in this way, and Robson's work is concerned
with the worst behaviour possible by the attacker and how to cope with it.
Although such "pathological” sequences of requests and releases are not
impossible, they are generally extremely unlikely in practice (unless of
course, this game is explicitly being played). There is quite a difference
between the amount of memory N*(M,n) required for the defender to be sure of

winning against all comers, and the smaller amount which is sufficient in more
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general situations to make the probability of overflow very small.

Typical results are the later ones published by Robsoi. In his 1974
paper, he showed that the optimal strategy for the defender requires between
0.5Mlogzn and about 0.84M1ogzn words asymptotically, as M and n increase and
where n is much less that M, although practical allocation strategies may
require more space than this. The 1977 paper shows that the first fit
algorithm is after all quite close to the optimal strategy and requires not
much more memory, about M]ogzn words altogether. On the other hand the best
fit algorithm needs about Mn words. Robson points out that "these results
should be contrasted with the simulations of Shore (1975) which suggest that
even when an allocation system is run on the brink of breakdown due to
fragmentation, storage utilisation averages about 70 to 95 per cent for a
fairly wide range of distributions of allocated block size. Clearly the sort
of catastrophic fragmentation which is possible occurs only very rarely".
Robson's work has stimulated three other authors, Knuth (1973), Krogdahl
(1973) and iing (1975) to publish further results. Knuth shuwed that in the
buddy system the defender requires 2Mlogzn words to always succeed. Krogdahl
considers extending the game by specifying the allowable set of string (block)
sizes as a set of integers_(bl,...,bn). If attention is restricted to the
cases where n divides M and is small compared with it, Robson showed (1974)
that the ratio N*(M,n)/M tends to a limit of 3/2 as M increases, if n=2.
Krogdahl showed that for block sizes b1 < b2 < vee K bn this 1imit becomes

1+ (1 - bl/bz) + oo + (1 - bn—l/bn) .
Ting removes the restriction that n should be much less than M, and shows that
in this case the optimal defence strategy needs no more than M]ogzn - M/2

words for all n=1,...,M.
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2.6 The generating function technique of Reeves

Recently Reeves (1979, 1980) has analysed a random fit storage allocation
model algebraically by a generating function technique, with encouraging
success. In his model, the memory is assumed to be circular to avoid end
effects, the queue of requests is not satdrated so that requests are allocated
the moment they appear (and so the probability distribution of the relative
frequencies of their sizes in the memory is thereforz known), and the random
fit allocation method is used. The choice of these three characteristics of
the model represents good judgement as each one has the effect of bypassing
difficulties which would otherwise occur in the analysis. The size
distribution in equilibrium of free gaps in the memory is represented by a

generating function
_ r
$(a) = §4>ra

where ¢? is the equilibrium probability that a randomly selected free gap has
lTength r. A similar generating function b is defined for the size
distribution of generated requests, and ¢ is shown to be related to b by
studying the actions occurring at block allocation and release. The analysis
contains an argument, based on an assumption that certain configuratiqns are
equiprobable, which relates the probability (pz) that a randomly selected
allocated block is surrounded by gaps on either side, to thé "block
utilisation" ratio k = B/F, the ratio of the number B of allocated blocks to
the number F of free gaps. The subsequent paper by Reeves (1980) continues
the analysis and concentrates on the numbers of allocated blocks occurring in
contig-ous sequences irrespective of their sizes, and definés 0} to be the
probability that a randomly selected such sequence contains r blocks. Then as

before a generating function
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¢(a) = Z%ﬁr
r

is defined for this distribution. By again considering the equilibrium
probabilities at block allocation and release, a condition on ¢4a) is foun{,
and is immediately used to obtain a revised expression for Py in terms of k
which is more satisfactory because it no longer depends on the former
assumption. The analysis treats in detail the case when all requests are for
Just one word, the relation between ¢>and b and the condition on ¢ simplifying
for this particular distribution. An interesting prediction is that for
stable solutions d>to exist the storage utilisation has to be above a certain
threshold found to be about 0.48, and this is confirmed by simulating the
model for a range of values of the storage utilisation. These simulations
also confirm the predictions of the model for higher values of storage
utilisation. Reeves also observed from this simulation that at low
Qti]isations the free memory tends to form into one large gap and a number of
| smaller gaps, so that 4>1s unstable because the model is not a suitable
descriotion of *hic situation. He developed a revised version of tne model
containing an infinitely large gap, and this makes predictions for low

utilisation which are in good agreement with the simulation results.

The future work with this model should extend the analysis to variable
request sizes, perhaps possibly as far as being able to investigate for
example the anomalies noted by Shore (1977) in the behaviour predicted by the
' fifty per cent rule. It is clear that continuing fo extend this use of
generating functions as developed so far by Reeves will be a most useful way

of coping with the combinatorial complexity of storage fragmentation problems.
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2.7 Space filling : the "car'parking“ and other problems. A note of caution

Loosely related to storage allocation and fragmentation are a number of
different problems which can be described under this heading. Although the
published work on space filling problems is not directly relevant it can be
helpful by suggesting various points of view which can be used for thinking
about the present problem as well as ideas for ways to try and tackle it.
Further, this work forms a useful background of knowledge of what may be
called the static properties of storage fragmentation as opposed to the
dynamic behaviour which starts when blocks are moved about by allocating and
deallocating them. This section concludes this chapter by presenting a brief

summary; it is by no means a complete survey.

Renyi (1958) considered the one-dimensional model which repeatedly
allocates unit sized non-intersecting intervals uniformly at random in the
initially empty real interval (0,x) until no further allocations are possible.
Allocating an interval "uniformly at random” in (0,x) means, for each
succeeding interval to be allocated, choosing its midpoint uniformly at random
from the interval (0.5,x-0.5); if this chosen interval would overlap one
already allocated, the choice is discarded and another is tried. Thus thera
is no commitment to placing each interval at one end of a gap, and indeed such
an occurrence has vanishingly small probability (compare the discussion of the
random allocation algorithm in section 2.2 above). He obtainad a closed form
expression for the expectea number M(x) of allocated intervals, and showed
that as x increases M(x)/x approaches a constant 1imit ¢ = 0.748
approximately. Mannion (1964), and Dvoretzky and Robbins (1964) studied the
distribution of M(x) as opposed to just its mean, and showsd it to be
asymptotically normal for increasing x. Palasti (1960) extended Renyi's work

by cbnsidering the equivalent problem in two and three dimensions,
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conjecturing that for the expected number.M(x,y) of non-intersecting unit
squares which can be placed at random in a rectangle of sides x and y,
M(x,y)/xy similarly approaches a 1imit which is.c2 = (0.748)2 as x and y
increase. Ney (1962) has considered the important genera]isatiﬁn of this
interval filling problem on a continuous 1ine in which the 1engths of the
allocated intervals are also allowed to vary randomly, and has studied the
mean and moments of the number N(b,x) of such intervals of length at least b
in the interval (0,x). He showed that the mean of N(b,x) approaches a linear
function of x as x increases, and for example determined this function to

be: C(b)x , when the positions of the intervals are uniformly distributed,
and where C(b) is a certain specified integral dependent on b and on the
length distribution of the allocated intervals. The origin of this work is in
the theory of "cascades" of colliding (atomic) particles and their energy
levels. As far as the present author can discover, Ney was the first to
describe this, in the literature anyway, as the "car parking" problem. In
this very convenient and descriptive analogy, a street is represented by the
interval (0,x) and the cars which are to be parked on it (without
overlapping!) by the allocated intervals. Solomon (1964) has surveyed some of
the above work on this problem, and repeated and extended the Monte Carlo

experiments performed by Palasti to support her conjecture.

A§ for the relevance to storage ai]ocation schemes, ¢ = 0.748 is the
value of the average storage utilisation which should be expected from the
corresponding random storage allocation model in which all the requests are
for the same unit size. In such a model, the queue would be saturated, the
request distribution would specify blocks 6f a single constant size much less
than the memory size, and the allocation'algorithm would be random in the same

(not left or right justified) sense that Renyi intended it.
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Stevens (1939), Robbins (1944), Votaw (1946) and Domb (1947) have
considered aspects of the related problem in which a finite number of
intervals are placed independently of éach other. This tack of dependence is
a fundamental difference since the intervals may then overlap. Stevens
obtained frequency distributions for the number of gaps when n intervals of
length x are placed in this way at random on the circumference of a circle of
unit length. For instance, he found that the probability f(k) of obtaining
the maximum of n gaps (no overlapping) where k is the greatest integer less

than 1/x, is
f(k) = (L‘)(l—kx)n'1 L (E) = binomial coefficient ]

The expressions for the other f's are similar but more lengthy. Robbins found
expressions as integrals for writing down the expected value and higher
moments of the amount covered by at least one interval without having to first
determine its probability distribution. These expressions generalise quite
naturally to the case where the overlapping intervals beéome overlapping sets
in Euclidean n-space, and the random placement is not uniform but specified by
a given probability distribution function. Votaw considered the latter
difficult problem of determining the frequency distribution of the amount
covered, for intervals in one dimension again, and succeeded when the
intervals are randomly placed either uniformly or distributed negative
exponentially. Domb considered all these problems and arrived at the same
results by different analytical arguments which lead naturally to the use of
continucus functions, making great use of Laplace transforms to solve the

integral equations which arise.

Page (1959) studied a similar discrete problem suggested by physical

experiments in which hydrogen atoms are first deposited in pairs as molecules
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on a rectangular lattice surface, and then subsequently removed again in
possibly different adjacent pafrs. He considered the analogue in one
dimension, allocating pairs of points at random on a line of N points until
only single vgcancies remain, and found the mean and higher moménts of the
distribution of the number of remaining vacancies, the mean for example

approaching approximately 13 per cent of N as N increases.

Although it is a digression, it may be worth bearing in mind that there
are other kinds of physical experiments which lead to similar problems
concerned for example with the number of regular solids, usually spheres or
regular polyhedra, which can be closely packed together either regularly or at
random into a given volume. This can be applied for example to some aspecfs
of the study of the growth of cells in undifferentiated living tissue, and the
physical properties of liquids. The pabers of Bernal and Mason (1959, 1960,
1960a), Scott (1960, 1962) and Coxeter (1958) introduce the latter as a new
and relevant aspect of this much oider problem. As with simulation for
computer stcirage fragmentation, they irelied heavily to begin with on actual
experiments.in wh{ch the volume of.1ead shot, ball bearings, marbles and even
plasticine pellets were measured inside such varied containers as steel
cylinders under compression and uninflated balloons immersed in water. Matzke
(1950) has surveyed the history of this problem in an amusing address in which
he warned of the dangers of relying too much on intuition by, for example,
assuming that regular patterns are formed. Experiment and observation (by him
and others on lead shot, 1iv1ng.ce1]s, bubbles in a foam and even by repeating
an apparently famous two-centuries old experiment of compressing peas, known
erroneously it seems as "Buffon's peas") show that this does not in fact
happen, whether for peas or for bubbles, although for many years even leading

authorities of the scientific community believed that it did. Perhaps
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Matzke's caufionary remarks are the most relevant contributions that this work
can make to storage fragmentation studies; Randell's surprise on observing the

effects of rounding on fragmentation and utilisation is a case in point.
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Chapter 3 : Definition of a model of storage allocation

One quantity of great interest in any storage allocation scheme is the
average or expected utilisation U = U(T), defined as the expected value of
the fraction of memory occupied at time T. In many present day systems this
is obviously important for main memory (which in, say, the Burroughs B5500 and
B6700 series of computers is allocated in a way which gives rise to
fragmentation, see Organick (1973) for just one example). Decreases in main
memory cost are unlikely to make utilisation of no importance whatsoever, and
in any case the allocation of secondary memory is 1ikely to be of considerable
importance for some time to come. The average utilisation is usually the most
important quantity whenever the queue of requests is saturated or nearly so,
since it determines the throughput or rate of servicing requests, which in
most cases is desired to be as high as possible. In the stochastic model of
storage allocation which is about to be defined, U may be calculated as a

scalar nroduct:
UuT) = =(T) . u' (scalar product) eeee 3.1
where u' is the transpose of a constant row vector u = (ui):

ui = fraction of memory occupied by allocated cess 3.2
requests when the model is in state i, i=1,...,8
and where the model has a certain number S' of states, and a(T) is a vector of
state probabilities at time T. Under certain general conditions, as T
increases =(T) vill converge to an equilibrium vector =, so that U(T) will

converge to the steady state utilisation U :

U=1x .u (scalar product) eeee 3.3
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The model provides the means of calculating and investigating U, principally
by studying or using properties of the matrix P of transition probabilities

between states. The steady state equation, 3.11 below:

3

m=xP

is the starting point for the algebraic analysis in chapter 5. Values of =(T)
and hence U(T) for increasing T may be calculated by the well known power

method, equation 3.13 below:
n(T+1) = a(T) P

by starting from some arbitrary initial distribﬁtion w(0) of state
probabilities at T = 0. The utilisation U can be obtained this way as U(T)
converges, and some work and results from this method are reported in

chapter 6. Unless the transient behaviour is of particular interest, only the
limit = = n(T==) is needed. Other quantities of interest besides U such as
the expected amount of internal fragmentation can also be calculated knowing
the request distribution and hence the average rounding up for each size of
block, and the expected number of allocated blocks of each size. These last
numbers can be obtained from = or =(T), the computation of the state
probability vectors giving a complete description of the probabilistic

behaviour of the model.

3.1 Definition of the storage allocation model to be investigated

Suppose that a computing system has a fixed size memory of N words and
its control program contains an allocation algorithm servicing a queue of
requests, each for a single block of contiguous words. Figure 3.1 is intended

to illustrate this. The unit of allocation in a practical application might
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be a word, a page, or some other fixed size unit of memory, and "word" is used
here to include all these terms. Each request specifies a random variable r
(the size of the request) which may have any integer value from 1 to N words.
The queue is infinite or saturated, i.e. it never becdmes empty, and requests
are serviced in a first-come-first-served order as soon as suffiéient.free
space becomes available for the request at the head of the queue. A request
of size r is allocated by choosing r contiguous free words from the memory,
and an allocation algorithm is used to make a choice if this is possible in
more than one way. Figure 3.1 illustrates the different actions of two
possible example allocation algorithms. When blocks are deallocated any
adjacent gaps of free words are merged together, but the blocks which remain
allocated are not moved. Queued requests are then serviced in order until one
is reached for which insufficient contiguous free storage is available. The
new configuration of memory and queue thus arrived at then remains unchanged
until the next deallocation occurs. Deallocations and allocations are
considered to be performed instantaneously, and the probability of two or moré

blocks being simultaneously deallocated is zero since the timescale is chosen

to be real.

3.2 Assumptions leading to Markovian nature

Despite the assumptions already made about the model's operation,
(saturated first come first served queue, requests serviced as soon as
possibie), it is still too general to be considered as a finite discrete-time
Markov chain and some more assumptions mainly concerned with the passage of
time are necessary before this is possible. Before stating them precisely,
some discussion and justification of their validity is in order. They are of

course not necessarily the only ones which achieve the requirements for the
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model to be a Markov chain.

Computing systems which share processor time in equal amounts in a
“round-robin" are common, and "processor sharing", the term given to the limit
of this behaviour as the quantum of allocation time tends to zero, has been
modelled quite extensively; see Kleinrock (1976) for example who lists some of
the work on processor sharing, or Coffman, Muntz and Trotter (1970), who
incidentally also make the assumption below on exponentiality. Thus it is
quite reasonable to assume that the time of some processor imagined for the
purpose is being shared equally among a]]lthe blocks present in storage at any
moment, each of them having an equal claim for attention. It is also not
particularly unreasonable to assume that each request requires a randomly
variable amount of this processor's unshared time or undivided attention which
is distributed negative exponentially, so that most requests are for short
time durations with a progressively smaller minority needing increasingly
longer times. This assumption has also been made in the past in the absence
cf cny bgtter conclusive information than the few studies discussid in
section 2.3 of the last chapter. Whilst this 1ittle evidence suggests that
negative exponential is not necessarily a very close fit to real life
distributions, nevertheless it indicates that it has the right general shape
and is a lot better than the uniform distribution, say. Of course, the
negative exponential distribution is attractive as it does lead to some
- convenient mathematics, and this also brings one to suspect that it is found
more often in the models of the literature than it occurs in real life.
However, for the purpose of the analysis presented here, these two assumptions
(processor sharing and negative exponentia1'request durations) are actually
only needed to justify the statement that at any moment each of the remaining
blocks allocated in storage is equally likely to be the next to be

deallocated, and if this latter is taken as a starting assumption then the
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first two are not required. In general, equal likelihood of deallocation is
sometimes the only reasonable assumption that can be made in the absence of
other information, and of course it has been used previously in analytical
studies of storage allocation models, by Reeves for example (1979,1980). In
particular, because it follows as a consequence from the preceding two
assumptions, and as it also may be true or nearly so to a greater or lesser
extent in other cases where they do not hold, it is not particularly
restrictive judged by the standards of previous work. In practice therefore,
this assumption or consequence df equally shared deallocation probability
among the remaining blocks in storage should be quite widely applicable to a

fair proportion of real life situations.

The corresponding necessary assumptions made about the distribution of
request sizes can hardly be considered restrictive as the distribution may in
general have any "shape", the only requirement being that it be unvarying, or
constant. This is i1ixkeiy to be the case in very many computing systems for
relatively long periods of time compared with the average lifetime of a block,
the more so where many independent but similar activities are going on. Two
more related assumptions are that successive requests are independent and that
each request asks for independently distributed storage size and duration
time. As pointed out in section 2.3 although Totschek (1965) found no
significant correlation in the SDC system, Margolin, Parmelee and Schatzotf's
(1971) observations of the CP-67 system do not confirm this. This is
unfortunate although berhaps not surprising, but to take account of such
dependencies would so greatly complicate matters that it is better to assume
independence in the analysis at least on a first attempt. At two places in
the present analysis, it has been necessary to assume that the request size
distribution is not quite general but that (in the ergodicity proof of section

3.3.3) the probability of a request for a block of unit size is non-zero,
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which is reasonable, and further on (in the definition of the inverse of the

basic allocation termination matrix in section 5.1.3), that the probability of

a request for a block equal to the size of the memory is non-zero, which is

much less reasonable. The probabilities can of course be very‘small. The

consequences of these restrictions are discussed as the need for them arises,

and there are good indications that both can be relaxed.

3.2.1 Some precise assumptions allowing Markov theory to be used

1)

2)

For each request, an independent random variable t called the "processing
time" is defined which may have any positive real value. t is the
amount of time spent "processing” for which the block allocated to the
request needs to remain in storage. The probability distribution of t is
assumed to be constant, negative exponential with mean 1/x for some

XA > 0. Successive new requests joining the quede have independently
distributed values of t, and also t and the request size r are
independent of each other.

(Processor sharing.) Ihagine the existence of a single "processor" which
works at a uniform constant rate in real time. If at any instant there
are n > 0 allocated blocks in memory, each of them receives 1/n of the
"attentidn" or time of tﬁis processor. That is, the time spent in
"processing” any given block accumulates at a rate which is 1/n that of
real time. When the accumu]atéd processing time for any given block

matches the amount requested, t, it is deallocated.

Section 3.2.3 below shows that (1) and (2) imply (not very surprisingly) the

following two statements:

3)

The distribution of real time te which elapses between successive
deallocations is known and constant (in this case, the same as the

distribution of t, deallocations occurring at a rate A).
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4) At any moment, each of the blocks present in memory has equal probability
of being the next to be deallocated, independent of its size and the time
it has been resident.

As mentioned above, these assumptions (3) and (4) may.be true in practice for

various reasons, but they follow automatically if assumptions (1) and (2) are

made.

5) Definition of request size probability distribution:

The probability distribution (rn) of the random variable r, the size of

requests joining the queue, is assumed to be constant (and known):
ry = Probability[r = n] , n=1,...,N. eees 3.4

The sizes of Successive new requests are taken independently from this
distribution, which at least to begin with is otherwise unrestricted,
N

zrn=1 ; r 20 Y n=1,0.-,N' e o0 3.5
n=1

3.2.2 States and transitions between states

For the model to be considered as a Markov chain the states of the chain,
and transitions between states, have to be defined. The dependence of
transitions only on the current state must of course also be shown, and this
is done in the next section. A state of the cﬁain is specified by giving the
sizes and locations of all the allocated blocks in memory. Configurations of
the memory and queue which differ in these respects, and these only, define
different states. In figure 3.1, for example, (a), (c) and (d) represent
different states, although it happens that (c) and (d) have the same total

utilisation and (a) and (d) the same maximum gap size. Assumption (4) above
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makes it unnecessary to include time information when specifying a state. The
number of different states obtained by this definition is obviously finite for
a given size of memory, N, although it is large; in chapter 4 it is shown that
the total number of states increases exponentially with N, so that for example
(see table 4;1, section 4.4.5) there aré 89 states in a five word memory, and
10946 if N = 10. A transition occurs whenever a deallocation takes place, and
it is defined to be a deallocation followed by (possibly zero) subsequent
allocations from the queue which continue until the request currently at the
head of the queue is too large to fit in even the largest free gap in the
memory. This instantaneous operation is considered to be indivisible for the
purpose of defining transitions between states, and a]thoﬁgh the intermediate
stages of memory encountered during the allocation process are (except for the
empty configuration) valid states of the model, and would be reached on
another occasion with a different set of requests in the queue, they are
discounted for the analysis in this chapter. The separation of comp]ete.
transitions into sequences of simpler transitions between the intermediate

stages is studied in chapter 5.

3.2.3 Proof that the model is Markov with the above assumptions

This section presents a proof that assumptions (4) and (5) above are
sufficient for the model to be Markovian with the above definitions of state
and transition, and it is simi]gr to that given for the storage allocation
model described by Betteridge (1974). As a preliminary to this proof, the
next two paragraphs show that assumptions (3) and (4) are indeed consequences

of (1) and (2).

Consider the distribution of the real time interval t, which elapses
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between successive transitions. Suppose a transition has just occurred, and
that as a result there are n blocks in memory. Each of these has a certain
amount of processing time to complete before being deallocated, by assumptions
(1)'and (2). Because requests arriving in the memory}have independent
t-values distributed negative exponentially by assumption (1), and at this
instant these blocks are still present, then the remaining processing times of
each block also have this same distribution of t, regardiess of however much
processing time may have already elapsed for each or at whatever rates (Feller
(1968), section 17.6). Therefore, each of the blocks present in memory is
equally likely to be the first to be deallocated causing the next event to

occur, which is assumption (4).

Since by assumption (2) processing time for each block is elapsing at a
rate n times slower than real time, each block currently has a remaining real

time t in memory distributed negative exponentially with mean n/x , i.e.

real

_ 1 _ ~ax/n
real $ x]=1-¢e , x 20 ceee 3.6

Probabitity[t
Therefore the distribution of te is that of the minimum of n independent
random variables (ti) each with the distribution of trea]’ This is easily

shown to be the same as the distribution of t:

Probabi]ity[te > x] = Probabﬂity[t1 >x and t, > x and ... and tn > x]

2
= Prob[t1 > x] X Pr‘ob[t2 >xIX ..o X Prob[tn > x1, by independence,

so Probabilitylt, > x] = (e /MM o oM L prohabilitylt > x) . 3.7

Thus the distribution of te is known and constant, and events occur at a rate
determined only by A (from the distribution of t) independently of whatever

states the model may enter. This is assumption (3).

‘Using only assumptions (4) and (5) now, consider the factors which
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influence state transitions. Suppose the model is in a particular state at
some arbitrary time. Then the positions and sizes of b]ocks and gaps in the
memory are known. By assumption (5) and because the queue is first come first
served, the probability distributions of size r of all the requésts in the
queue which may take part in the transition to the next state are known, and
are independent and constant, except for the size distribution of the first
request in the queue. This has to be dependent at least on the given state,
for allocations are performed if at all possible, so the size of this request
must be larger than the maximum gap size in memory. In the next section 3.2.4
it is shown that this particular size distribution does in fact depend only on
the (given) maximum gap size as well as the distribution of r, and so is also
known. Knowing how any given particular allocation algorithm works,
everything that is needed to calculate the transitions and their probabilities
from the given state is available. These must therefore be independent of the
model's past history and of the time at which the model enters the given
state, and so with the states and transitions as defined the model is a finite

discrete-time Markov chain.-

3.2.4 Distribution of request size for the first request in the queue

Because the allocation process continues until the request which iS
currently first in the queue wi}] not fit in memory, the probability
distribution of the size of thevfirst request is different when viewed at
times inbetween transitions, because it is affected at least by the memory
configuration. The distribution of subseqdent requests which have not yet
reached the front of the queue is unaffected because the allocation algorithm
restricts its attention to this first request. In fact, in any state of the

Markov model (i.e. one which is waiting for a deallocation, not an
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intermediate stage of an allocation process) with configuration C having a
max imum gap size g < N, the probability distribution of q, the size of the

request at the head of the queue, is:

q. = Probability[g=n] =-0 ifng<g
n cees 3.8
= rn/cg+1 ifn>g
where by definition,
C = T + L) *oaee t 'y k =1,...,N cees 3.9

(The symbol "c" has been chosen, to stand for "cumulative".) The statement of
equation 3.8 may seem almost obvious, but in any case it can be justified with

a formal proof, to which the rest of this section is devoted.

Consider the last block movement which took place during the state
transition which resulited in the present state. It must have been either an

allocation or a deallocation.

If the Tast block movement was an allocation, then immediately before it
the request now at the head of the queue was second in the queue. Because of
the first come first served queue discipline, up to this point the probability
distribution of its size q was independent of the model's operation and so was
(rn), n=1,...,N (definition 3.4). Applying the theorem of conditional (or
total) probability:

Prob[ q=n]

=
]

Prob[q=n | n>g] X Prob{n>g]

+ Prob[g=n } n¢gl X Prob{n<q] , n=1,...,N
When the allocation occurs resulting in configuration C and q rises to the
head of the queue, it is given that the allocation process stops and therefore

that q > g, the size of the largest gap in C. It follows that in this case
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Prob[g=n | n¢gl = 0 ,
and so Prob[g=n | n>g] = r/Probln>g] = rn/cg+1
as required.

If the last block movement was a deallocation, then immediately before it
occurred the memory configuration was C', say, with maximum gap sjze g' <9,
and with m' words of memory allocated out of the total N. Suppose that there
are m words of allocated memory in C, thenm' > m. Consider the (descending)

inductive hypothesis, for x = N, N-1,...,1 :
H(x): in any state with w 2 x words allocated, equation 3.8 above holds.

H(N) is true from the argument above, since any block movement which results
in a state with all N words allocated must be an allocation. Assume H(x) is
true for all x > m. Then it is true for C', and so the request at the head of

the queue in state C' has size g' with probability distribution

q', = Probabilitylq'=n] = 0 ifn<g

L]

rn/cg.+1 ifnd>g

Again applying the theorem of conditional probability,

Prob[q'=n] = Prob[q'=n | n>g] X Prob[n>g] + Prob[q'=n | n<g] X Prob[n<g]

For n satisfyingn> g2 g' ,
Probability[q'=n] = "/ Cqie1

Ir/c

and ProbabilityLn>g . = C C .
robabilityln>g] g gt g+1/g'+1

When the deallocation occurs from C' to C, it is given that in this case the
request q' at the head of the queue remains there, and so q' = q> g .

Therefore, in this case,

Probla’=n | n¢g1 = 0
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and so, forn> g,

Prob[g=q'=n | n>g] = Prob[q'=n]/Prob[n>g]

9

/c 4y T r‘n/cg+1

- as required. Thus for any state C with m words allocated, if C was arrived at
by a deallocation, equation 3.8 holds inductively, and if C was arrived at by
an allocation, equation 3.8 has already been shown to be true. Hence H(m) is

true, and so by induction it is true for all m, m = N,N-1,...,1 .

3.3 Time measurement, ergodicity

The previous two sections of this chapter introduced a model of storage
allocation, and showed that it is a finite state discrete time Markov chain if
certain further defined conditions are made. This section examines how the
model behaves as time -zsses. The assumptions or conditions of the previous
section guarantee that events occur randomly at a constant rate independently
of the states entered. Event time T, the vector =(T) of state probabilities,
the i-th component of which is the probability of being in state i at time T,
and the transition probability matrix P are all introduced. Section 3.3.3
shows that under normal circumstances the Markov chain is ergodic. An
important consequence of this is that the steady state (or equi]ibrium, or
limiting) probabilities are uniquely determined by the steady state equation,
3.11 below, so that whatever gtate the model starts in this state probability
vector n(T) will always converge to a unique "steady state" or equilibrium
vector m. A counter example of unusual conditions in which the chain is not
irreducible is presented in section 3.3.5, to show that this possibility

exists and can exceptionally occur.
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3.3.1 Time measurement

The assumption that at any moment any of the remaining blocks in memory
is equally likely to be the next to be deallocated, (4) of section 3.2.1, and
the discrete time formulation which merely numbers successive events, avoid
the use of any explicit timing information in the model. This significant
saving in the total amount of information required to be kept, and the added
simplification of not needing to know about time to compute state transitions,
follow conveniently from this assumption. As a substitute for real time, the
integer variable T is used to count "event time", i.e. for any non-negative
integer T it is possible to determine the state probabilities after T
transitions have occurred from a given initial state at T = 0. It is worth
repeating assumption (3) of section 3.2.1 that the distribution of real time
te which elapses between transitions is assumed known, and events occur at a

constant rate A independently of whatever states the model may enter.

3.3.2 A brief summary of the basic theory of Markov chains; ergodicity

Discrete-time Markov chains are classified into various typeé according
to their properties; see for example Feller (1968), chapter 15, or Seneta
(1973), chapters 1 and 4. Basic Markov theory is well known and can be found
in many other reference texts besides these. A very brief summary is included

here merely to explain a few terms.

The property of being able to reach any state from any other after
sufficiently many transitions as are necesséry, is called irreducibility. The
states of an irreducible chain can not be separated into groups such that the
states in one group can not eventually be reached from those in another group.

Reducible Markov chains can be split into such groups however, and the groups
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can then be studied separately as chains distinct from each other.

Periodicity is the property of only being able to Eeach one state from another
after numbers of transitions which, apart from a constant of addition, are
multiples of an integer (called the period, or cycle index) greater than
unity; for example if state j can only ever possibly be reached from state i
after 1, 4, 7, 10, 13, 16,... transitions. If one state of an irreducible
chain is periodic, then so must all the others be, and with the same period.
Periodic Markov chains can also be split into groups by equal periodic
position, so that all the states in each group can only occur at the same
place in the period. Markov chains with a finite nunber of states which are
irreducible and non-periodic are called ergodic. (Ergodicity is usually
defined in terms of non-periodicity, irreducibility and persistence; finite
chains which are non-periodic and irreducible are automatically persistent.)
The basic Markov theory shows that ergodic chains are "well behaved" in the
sense that, irrespective of the starting state, the probabilities of being in
any of the states must eventually converge after sufficiently many transitions
to a set of uniquely determined values called the steady state (or

equilibrium) probabilities.

Thus it is enough to know in the present case that the Markbv chain
representing the storage allocation model is finite, non-periodic and
irreducible, to know that its behaviour as time passes must so converge. It
is interesting to know this because useful quantities such as the expected
storage utilisation and expected fragmentation must also then converge to

values which can be determined from the steady state probabilities.



64 3 : Definition of storage allocation model

3.3.3 Proof that the Markov chain storage allocation model is ergodic

A sufficient condition for this to be so is that the probability of a
request for a block of one word is non-zero, i.e. ry > 0, and the present
proof is based on this assumption. An example which the reader might 1ike to
see first and which may make the details clearer is given in the next section

after this proof (which does not depend on the example).

Consider the particular state in which the memory of N words is
completely filled by N 1-word blocks, and call it F (for full). By section
3.2.4, the size q of the request at the head of the queue in state F retains
the (rn) distribution, (equation 3.4), the same as all the other subsequent

queued requests.

1) F can be reached from any other state in a finite number of steps.
This is because in any state, the N requests after the first at the head of
the queue can all be for 1-word blocks with non-zero probability, and because
also with non-zero probability any 21%7ocated blocks of more thar one word in
any state can be successively deallocated in preference to any of the l-word
blocks which may be in memory. Since requests must always be satisfied as
Tong as at least one sufficiently large gap exists, any allocation algorithm
will in these circumstances have no choice but to continue allocating the N
1-word blocks once the first request has been allocated, while at various time
intervals any larger blocks initially present are removed, and this process
must eventually reach state F after no more than N+l blocks have been

aliocated.

2) Any "possible" state (configuration of memory) can be reached from F
in a finite number of steps, whatever allocation algorithm is used. A

"possible" state is any containing no allocated block of a size i with zero
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request probability ry = 0, (that is it only has blocks of sizes which can
occur in the queue), and containing no gap as large as the size, (max) say, of
the Targest possible request for which r(max) > 0 (this is so that there can
be a request, (for example for (max) words), waiting ét the head of the queue
for which no gap is sufficiently large). For any "possible" state, the
requests at the front of the queue in state F can be for just the number and
sizes of blocks which occur in it, in some order, followed by a request for a
block of size (max), the largest which can occur. Then in succession and with
non-zero probability, the 1-word blocks present in state F in the memory
positions where the first queue request is allocated in the given "possible"
state can be deallocated; when the last such l1-word block is removed, the
allocation algorithm has no choice but to allocate the first request at this
position. It is possible for this sequence to then be repeated for the
succeeding requests until all the blocks which are in memory in the given
state have been allocated. Finally, if there are any, it is possible for the
1-word blocks at the remaining memory locations where there are gaps in the
given state to be deallocated. All this can occur with non-zero probability.
The result when the last unwanted l-word block is removed will be the given
"possible" state. The request for (max) words will not be allocated
immediately when the last unwanted block is removed, since by the above
definition of "possible" there is no gap large enough for it. This choice of
queue sizes and sequence of deallocations and allocations starting from F has
a non-zero probability and is certain to take no more than 2N transitions
since each word of the memory is involved in at most one deallocation and one

allocetion.

3) If F is reachable from any state in k transitions, then since
subsequent requests can also be for 1 word, F is reachable in (k+1), (k+2),

transitions.
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It follows from the definition of a "possible" state that the set of
"possible" states is closed and absorbing, since they can only make
transitions to other "possible" states. It is not hard to prove that all
other states can only be transient, since they can only be not Lposgible“
because they contain blocks of sizes with zero request probabilities, all of

which must eventually be deallocated with certain probability.

(1) and (2) together prove that the set of "possible" states is
irreducible, so that there is just this one irreducible absorbing subchain,
and (3) proves that they are aperiodic. Since the subchain is finite, it must
therefore be ergodic; see for example Feller (1968), chapter 15, or Seneta

(1973), section 4.2.

3.3.4 An example to illustrate the foregoing proof of ergodicity

An example of the argument to show that F can be reached from any other
state is illustrated by figure 3.2. Part (a) of this figure represents one
such other state, and the succeeding parts (b) - (f) show how it is possible

to reach F after, in this case, five complete transitions.

In part (a), a memory of 20 words contains one 4-word block, two 3-word
blocks, a 2-word and a l1-word block. The largest gap is 4 words long, and the
request at the head of the queue is for 7 words. Subsequent requests in the

queue are for 1-word blocks.

In part {bj, the 4-word request has been deallocated (with probability
1/5). This action begins a transitinn. The largest gap is now 8 words long,
so the allocation algorithm can choose from two places to put the 7-word

request. It does not matter which it chooses.
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Figure 3.2 Illustration of ergodicity proof: From any state, to F

In part (c), the 7-word request has been allocated. The first request in
the queue is now for a l-word block, so the allocation process will continue

by allocating it.

In part (d), all the available gaps have been filled with 1-word blocks

and there are no remaining gaps. The first transition is complete.

In part (e), the 7-word block has been deallocated (with probability 1/9)
and the resulting gap immediately filled with l-word blocks from the queue,
compieting the second transition. This process of choosing successively to
deailocate the 2-word and two 3-word blocks then continues, causing three more

transitions to sccur.

In part (f), all the larger blocks have been deallocated and replaced by
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1-word blocks. State F has been reached. The first request in the queue can

be for any of the possible sizes.

STATE F 2
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Figure 3.3 Illustration of ergodicity proof: From F to any state

An example to show how any "possible" state can be reached from state F,

is shown in figure 3.3. The state to be reached is the original starting

state shown in figure 3.2(a).

In figure 3.3(a), the memory is filled with 1-word blocks, and the queue

contains successive requests for 4, 2, 3, 3, 7 words.

In part (b), three of the l1-word blocks have been dealTocated one
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transition at a time, with successive probabilities 1/20, 1/19, 1/18. The
resulting gap is still too small to allocate the first queue request for 4

words.

In part (c), a fourth l-word block has been deallocated. The four words
form a gap in exactly the position that a 4-word block occupies in the final

state.

In part (d), the allocation algorithm has had no choice but to put the
first request in this gap, and a 2-word request is now first in the queue.
This process of deallocating the l-word blocks one at a time from the
positions where the larger blocks are to be, is continued. At each stage, the

allocation algorithm is allowed no choice.

In part (e), all of the larger blocks are in place, and the first queue

request is for 7 words.

In part (f), seven of the remaining eight l-word blocks have been
deallocated in some order in seven successive transitions. No allocations

have taken place, and the final state has been reached.

3.3.5 A reducible example of the Markov storage allocation model

The Markov model is not always irreducible, if there are no requests for
1-word blocks and if the allocation algorithm is chosen rather unusually.
Perhaprs the simplest example is shown in figure 3.4, of a five word memory and
a queue of requests all of which are for 2-word blocks. That is, N =5 and
] T3 = =T = 0. It is not hard to see that between transitions
there must always be exactly two blocks in memory, in one of three possible

configurations. Since blocks are deallocated one at a time, the memory can
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Figure 3.4 Transitions in an example of a reducible model

never be empty after the start, not even instantaneously.

In this example,

the allocation algorithm is chosen so that it always allocates a new request

starting on a word of the same even-odd parity as the existing allocated

block.

algorithm, and the othecr two form clnsed groups of one state each.

Of the three possible configurations, one is transient with this

Once one

of these two states has been reached, as it must be at the latest after just

one transition, the allocation algorithm ensures that the Markov chain never

leaves it.

This example can easily be extended for any N-word memory, where N 2 5.

The request distribution is chosen to allow only even-sized blocks of sizes up

to but always less than (N+2)/3 words. The memory can consequently never be

completely emptied, and so there must always be at least one block present to

serve as an indicator of the even-odd parity of the previous configuration,

which the allocation algorithm is chosen to preserve.

The existence of this possibility of non-ergodicity is something of a

surprise, but it is surely most unlikely to occur by accident in practice.
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The style of this proof and the counter-example is reminiscent of the
perverseness of the attacker and cunning of the defender which Robson finds it
necessary to assume in his studies, referred to in chapter 2 section 2.5.
The;e roles are reversed here as now it is the a]loca%ion algorithm (defender)
which has to be forced into sufficiently reasonable or ergodic behaviour. The
author has the intuitive feeling that, even without requests for 1 word, the
existence of enough relatively prime request sizes should be sufficient
ammunition for the attacker. For example, all the integers greater than 1 can
be produced by adding 2 and 3 (2,3,2+2,2+3,3+3,2+2+3, etc.). However,
remembering Matzke's warning from the end of chapter 2, this intuition has yet

to be proved and it may be wrong.

3.4 Transition matrix P, state probabilities = .

This chapter has established the Markov nature of the storage allocation
model beinc studied, and ends by introducing the most important object which
is the key to the subsequent analysis. Let the transition probability
matrix P = (pij) of the Markov model be defined:

(conditional) [model will make model ]

Probabilityl a transition is in ], for1 £ i,j ¢ S' eee. 3.10
[ to state j state i]

]

vhere S' = S'(N) is the number of states (non-empty memory configurations) for
a given memory size N words. The quantity S'(N), and possible orderings of
the states, are discussed in more detail in chapter 4. Each pij is
independent of time (the Markov chain has stationary transition probabilities,
or is homogeneous) because of assumptions (4) and (5) of section 3.2.1. P is
finite, square, stochastic (row sums are all unity, all elements are real and

non-negative) and primitive (irreducible and aperiodic). The Perron-Frobenius
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theorem (see for example Seneta (1973), chapters 1 and 4, or Gantmacher (1959)
chapter 13) therefore applies to show that P has a real, non-repeated
eigenvalue 1 which is dominant, that is, all other eigenvalues A of P have
modulus |A|-< 1 . The left eigenvector n = (n.) of P correspénding to this
eigenvalue exists, has positive elements ¥ >0 ,i=1,...,5", and is unique
if it is normalised so that its elements sum to 1. = is the unique steady

state probability distribution of P, satisfying:
n=aP eees 3.11

If the normalised row vector =(T) = ("i(T)) of state probabilities is

“defined:

“i(T) Probability[model is in state i at time T] ,

fori=1,...,S' eves 3.12
then

a(T+1) = =(T) P eee. 3.13

1
El]

and by the ergodic theorem for primitive Markov chains,

Tim =(T) = = vees-3.14

T
Equation 3.13 is the basis of the well-known power method of von Mises, also
known as the method of iterated vectors. For an extended exposition of the
power method, see for example Bodewig (1956), page 231 onwards, and especially
pages 250-254 which are particularly critical, pointing out that convergence
using this methcd can on occasion be exceedingly slow, depending on the
eigenvalues of tne matrix. This topic will be returned to in chapter 6
sections 6.3 and 6.5 and in chapter 7 section 7.1, where happily it will
appear that this pessimism is unfounded for the present family of transition

matrices P being considered. The rate of convergence is geometrically rapid
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and depends on the largest absolute value magnitude |A| of the eigenvalues of
P not equal to 1, the above limit being approached as ]AlT-é 0. This
convergence to = is independent of the starting state or states, i.e. n(0) may

be any arbitrary (non-negative, normalised) probability row vector.
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Chapter 4 : Preliminary analysis of the storage allocation model

Before proceeding with the algebraic analysis of the Markov model of |
storage allocation defined in the last chapter, it is useful to make a
preliminary survey of the model and this is done in this chapter. The number
of states in the model depends on the'memory size N, and it is the number of
different possible ways that there are of arranging any number of blocks and
intervening gaps of arbitrary sizes greater than zero into an N-word memory.
This number turns out to be just the 2N-th term from the Fibonacci sequence,
which increases exponentially with N. Any straightforward attempt to
calculate the transition matrix and steady state eigenvector for general N is
therefore quickly limited, whether directly or iteratively by the power method
for instance. If the definition of the model is changed to eliminate external
fragmentation by allowing relocation (compaction) of the blocks in memory
whenever necessary, it has been Tound possible to obtain direct expressions
for the expected sterdy state ctorage utilisation with rclocation, and an
example is given. The performance of this model gives an upper bound for the

expected storage utilisation in the corresponding non-relocating model.

4.1 Size of problem, and empty state

A major difficulty facing any simple analysis, such as the implementation
of the power method described in chapter 6, is the rapidly increasing number
of states in the Markov chain as the memory size N increases. It is proved
quite easily below that the number S(N) of different configurations of an

N-word memory into allocated blocks with possible intervening gaps is given by

S(N) = foy » N =1,2,... ceee 41
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where f2N is the 2N-th Fibonacci number,
n=2’3,-oo . s s e 402

S(N) includes the empty configuration (no blocks in meﬁory). In section 3.3.3
it wés shown that in the general case where the request probability
distribution (rn) is strictly positive,-every non-empty configuration is a
possible state, so that the number of possible states S'(N) is just one less

than this:
S'(N) = S(N) - 1. cese 4.3

In chapter 5 the empty configuration will necessarily be included as it is a
possible intermediate stage during a transition. S(N) is an exponentially

increasing function of N:

S(N)

I

fon

i
[ep]
.
~J
N2
L ]
*
.
b
-
[RB]
L]
Ci
L]
L
L]
A

approximateiy, as N increases cees 4.4

Values of S(N) for increasing N are shown in table 4.1 below.

4.1.1 Proof that the number of memory configurations is f°N

This simple proof proceeds by induction on N. By inspection,

for a memory of one word is either empty or occupied by a single block.

Assume inductively that
S(n) = f2n s n=1,2,...,N

and consider n = N+1, a memory of N+l words. There are two contributions to
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the total, S(N+1):

1) The first word is unoccupied. There are then S(N) possible
configurations of words (2,3,...,N+1) considered as an N-word memory.
When the empty first word is added, N-memory configurations which start
with a block at word 2 of the (N+1)-memory are unchanged, while those
which start with a gap of length g produce (N+1)-memory configurations

which start with a gap of length (g+l) at word 1.

2) The first word is occupied, by a block of length b, b = 1,2,...,N+1. For
b < N+1 there are then S(N+1-b) possible configurations of the remaining
words, and for b = N+l the contribution to S(N+1) is a single

possibility.

Thus altogether,
S(N+1)

S(N) + S(N) + ... +S{2) + S(1) +1

ZfZN + f2N-2 +oe.. F f4 + f2 + f1

f2N+2 , as required.

4.2 11lustration of increasing transition matrix size

Figures 4.1 to 4.7 display examples of the transition probability
matrices for models of memory size up to N = 6 words. Figures 4.1 to 4.4 are
~ the transition matrices for models with N = 1, 2, 3, 4 words respectively.
The states are represented diagrammatically down the left hand side, ("from"
states) and along the top ("to" states) of each of the matrices. Thus the
first state shown in each case is that in which the memory is completely
filled with N one-word blocks, the state which was called F in section 3.3.3

in fact. A1l the possible configurations are present in the diagram, and for
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Figure 4.5 Transition matrix P for N=4 Uniform distribution, first fit

(A different state ordering to that in figure 4.4 has been used)
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Figure 4.6 Silhouette, or 1nc1dence matrix, of transition probability matrix P
(N=5, best fit)

completeness' sake the empty configuration has been included but of course
with zero row and column as it can only occur momentarily as an intermediate
stage 6f a transition. Except {or the empty state, the elements of any row of
these matrices are the probabilities that the state shown at the left of the
row will make a transition to the respective state shown above the columns.
Non-zero probabilities occur wherever a transition is possible, and blank

spaces indicate zero probabilities elsewhere.

From section 3.2.2 a transition from any state consists of a deallocation
of just one of the blocks in the state, followed by (possibly zero)
allocations from the queue. The request at the head of the queue cannot be
for a block of words which could have been allocated before the deallocation
occurred. In these examples, the probability distribution of request size is
the uniform distribution, for example in figure 4.4, N=4 :
rp=rp=r3=r,= 1/4 . The "first fit" allocation algorithm is used, which
allocates a request into the left hand end of the leftmost gap large enough to

take it. In such small memories there are very few cases where a choice is
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possible (“small" memories might in fact be large ones being allocated in
large quanta, of course, and section 6.5.4 presents just such an example of

this, showing the use to which this observation can be put).

Figure 4.5 shows the same transition matrix as in figure 4.4, for N = 4
words, but with a different ordering of the states. The state ordering which
has been used in figures 4.1 to 4.4 and throughout most of the rest of this
thesis is described below. The example of figure 4.5 is merely to show that

other orderings are possible and may be no more or less arbitrary.

Figures 4.6 and 4.7 continue the sequence of figures 4.1 to 4.4 for N =5
and 6 respectively, but now the matrices are too large to be able to show the
individual non-zero elements, so their positions only have been marked. Al1l
models using the best fit algorithm and in which the request probabilities are

non-zero have this same shape, or incidence matrix.

Two features are very noticeable from these examples. Firstly, the
elements seem to fall into a markec¢ rcpetitive pattern, both in positicn and
(although it is less evident in the figures) in value, the pattern repeating
within the same matrix and also from one matrix to the next in the sequence.
This repetitive pattern is the key to the analysis in chapter 5. It is there
because the transition matrix is a combination of much simpler matrices whose
non-zero elements form some obvious and simple recursive patterns: Secondly,
_ the transition matrix is sparse, and this is because any individual state can
make a transition to relatively few of the other states, (although given
enough transition steps, eventually to them all by ergodicity). This sparsity
is used in the implementations of the model‘for small memory sizes described
in chapter 6, in the attempt to make "small" become as large as possible with

the computational resources available.
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4.3 State ordering

In principle, the order in which states are indexed is irrelevant as the
transition matrix is essentially unchanged whatever order its rows and columns
are permuted into. However it has been found desirable to use an order which
makes certain features of the component parts of the transition matrix easily
apparent, such as upper or lower triangularity and the existence of diagonal
submatrices. The ordering which so far has been found to do this as well as
any other is illustrated by figures 4.1 to 4.4, and as the analysis of chapter
5 is described in terms of this ordering, it is defined here so that it is not
in doubt. As pointed out in the last section, it is arbitrary in the sense
that any other ordering which allows the same or other properties of the

transition matrix to be studied would be equally as good.

It should be apparent from figur=s 4.1 to 4.4 that in the ordering which
has been used, shortsr zlscks take precedence over long ones, gaps having the
lowest precedence. Specifically, any configuration can be represented as a
sequence of (gap block) pairs, for example in figure 4.4, N = 4,
state 8 = (0 1)(0 3), state 17 = (0 2)(1 1), state 33 = (3 1). States with a
final gap of any length can also be described this way, for example
state 23 in figure 4.4 = (1 1)(0 1), state 31 = (2 1). The Tength of the
final gap can be found by subtracting from the memory size N. The pairs are

given the following order of precedence:

if 9 < 9, then (g1 bl) < (g2 bz)
if gl = 92 s bl < b2 then (gl bl) < (92 bz) eees 4.5
for all g , b : (g b) < no pair (final gap)

For N = 4, the order of precedence of the pairs is

(01),(02),(03),(04),(11),(12),(13),(21),(22),(31),(no pair)
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The ordering of states can now be defined. To decide the relative order
of two given states, their (gap block) pair representations afe compared pair
with pair from left to right until an inequality is reached, as it must be if
the memory configurations are different. The first such pair fnequa]ity is
used to decide the order of the states. For example, for N = 4,

(0 1)(0 1)(0 2) occurs before (0 1)(0 1)(1 1) because (0 2) < (1 1), and
(0 1)(0 1)(1 1) is before (0 1)(0 1) becausé (1 1) < (no pair).

This definition is trivialily a well-ordering. If states a, b, c are
related such that a < b and b < ¢ by this ordering, then let the first
non-equal pairs in the pair-representations of a and b be the i-th, and the
j-th pairs the first unequal between b and ¢. Then if k = minimum(i,j) the
k-th pairs must be the first unequal between a and c, and they define that
a < ¢c. The ordering is also strict, two states only comparing equal by this
order if their memory configurations are equal, that is, if they are the same

state.

Chapter 6, section 6.4 describes an algorithm for computing the

(gap block) representation of a state given its index, and vice versa.

4.4 Analysis of a model in which relocation is allowed

If the model as described in section 3.1 is modified so that allocated
blocks in memory are moved around to collect together the free space whenever
necessary, then the problem of calculating how much memory is used on average

becomes simpler, and closed form sclutions are possible in individual cases.

The reason for wanting to study the relocating model, besides the

practical fact that it is much easier than the fragmented non-relocating
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version, is for a comparison with the fragmented model. Randell (1969) used
this comparison in his definition of external fragmentation as the difference
in storage utilisation between two otherwise identical)models, one with
relocation and one without. It is obvious that the storage utilisation in the
relocating model is an upper bound for that in the fragmented case, for
anything that can be allocated in a fragmented memory must also fit if af] the
blocks can be pushed together as required to bring the free space into one
gap. The idea of an allocation algorithm becomes irrelevant in this model; it
makes no diffé;ence where a block is, and only its size matters. With a
saturated queue the only external fragmentation possible will be any remaining
words left over which are insufficient for the size of the request currently
at the head of the queue. Thus its simplicity and the provision of an upper

bound to any possible performance with fragmentation, make the relocating

model interesting and worthwhile to study.

As an addition to the external fragmentation, following the simulation
experiments of Randell, it is possible to include in the caiculatiun che
effect of rounding up requests to the nearest integral multiple of a fixed
quantum size, and the internal fragmentation so introduced can be calculated.
Two different distributions of request sizes, uniform and negative
exponential, will be presented as examples. Since this relocation model was
analysed in detail in Betteridge (1974) and the analysis is in fact very
straightforward consisting mainly of several easy but lengthy algebraic

reductions, the algebra will be slightly shortened and summarised here.
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4.4.]1 Steady state fragmentation in the relocating model

The first step to obtain information about the steady state behaviour
when relocation is allowed is to show that, whatever the request size
distribution-is, if the memory is allowed to fill up from empty then the
probability of any resulting configuration is the same as its probability of
occurrence in equilibrium, and this was proved rigorously as a theorem in
Betteridge (1974). With this established, the steady state behaviour becomes
much easier to discover as the problem reduces to the simpler one of deciding
what happens on the average when the memory is allowed to fill up from empty

until a request is reached which will not fit.

It is convenient to identify the "filling up" process as being the set of
possible transitions from one particular state E in which the memory is
completely filled by a block of N words. The first action to occur during any
transition from this state must result in a completely empty memory (hence the
choice of the symbol E) and the size of the request waiting at the head of the
queue retains the (rn) probability distribution. Two simple observations are
justified in the proof which is given in the 1974 paper. Firstly, filling the
memory up from empty by discarding the first request and starting from the
second request instead, must give all the same transition probabilities as
starting with the first request. Secondly, in getting to some state i in two
transitions, after the first transition from E the first allocated request in
any intermediate state j may as well be deallocated as any other, since the
probabj]ity&distribution of the sizes of the remaining blocks in memory after
the deallocation will be the same whichever of the blocks in state j is
deallocated. But these two observations show that the probability of getting
to any state, i say, from E in two transitions is the same as the probability

of reaching it in one transition and this is also proved in the theorem. Then
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for any i,

Prob[from E to i] = £ Prob[from E to j] X Prob[from j to i] cees 4.6
all j
But this shows that the probabilities Prob[E to i] satisfy the steady state
equation and so by uniqueness they are the steady state probabilities, since

the probabilities Prob[j to i] are just the elements of the transition

probability matrix of this relocating model.

4.4.2 Two example request distributions for the relocation analysis

The uniform request size distribution is easily defined:
roluniform) = I/N , n=1,...,N cene 4.7

That is, for any request arriving in the queue, all possible block sizes from

the smaiiest (1) to theixargest (N) are equally 1ikely. The mean Euniform ©F
this distribution, or avernge requested block size, is evidently:
Eunifom = (N+1)/2 - LI 4.8

The negative exponential request size distribution that has been used in the

following example calculation, is defined:
rn(exponent1a1) = (rN)n s, n=1,...,N eeee 4.9
The value N which depends on N, must of course be chosen so that
ir =1 and 0 ¢ " <1 , n= 1,...;N
and this implies thft N is the root of the equation

PN oy =0 veu. 2,10
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lying in the range 0.5 < ry < 1 (for N > 1). The average requested block size

Eexp of this distribution may be evaluated:

AL

eees 4.11
1-rN

N
- n_
Eexp —nfln(rN) = 2N -

Values of N and Eex are given in table 4.1 below; their respective limits as

p
N increases are 0.5 and 2.

It is possible to perform all of the following analysis for a more

general form of exponential request size distribution:

n-1

rn(general exponential) = ar , N = 1,...,N ceee 4.12
Here, a and r must be chosen to satisfy
N n-1
0<a,r<1 and rar =1 esee 4,13
n=1
which gives
arN - (a+r) + 1 = 0 es s o 4.14

The algebra which follows this is then more complicated, but closed form
expressions may still be obtained. By setting a = r, the simpler version
presented above is obtained. The reason for using this is that the one degree
of freedom allowed in the choice of a and r allows the mean of the
distribution to be varied while retaining the exponential characteristic. By
- making the starting value a approach 1/N from above, and r approach 1, the
distribution becomes close to uniform. Conversely if a approaches 1 and r
becomes very small, then most requests will be for 1 word and large requests
will become correspondingly unlikely. It did not seem worthwhile to use this
more general exponential distribution for the sizes of memory in the models

which can presently be computed, and the above simpler version 4.9, 4.10 of
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the exponential distribution is the one that has been used.

4.413 External fragmentation in the relocating model

This will be considered in terms of the average utilisation U, the .
average fraction of memory occupied by requests. Then by the definition 2.1
in chapter 2,

average external fragmentation = 1 - average utilisation=1 -U .

Whatever distribution of request sizes is used, the expected utilisation
U(reloc) in the relocating model satisfies:
1 N Lexactly i words | state E]
U(reloc) = Xz iX Probabilityl  allocated at T=0 ] eee. 4.15
i=1 L at T=1 1

where Probability[i words at T=1 | E at T=0]

Probability.i woras allocated to n blocks at T=1 | E at T=0] .... 4.16

™ e

n=1
.i . -
—nflProbab111tyL£lf£2+...frn=1] X Probabilitylr, ., > N-i] eeos 4.17
and where 1&, rps +-. are the random variables representing the sizes of

successive requests in the queue in state E.

For the uniform distribution, it is not hard to show by induction

(Betteridge (1974)) that

Y tul i = (d=1y,-n
PY‘Ob&b]]Tty[_£1+...+Ln—1_l - (n—l)N . LI WY 4.18

and of course

Probabi]ity[rn+1 > N-il = i/N : eees 4.19



90 4 : Preliminary analysis of the storage allocation model

so that the algebraic summation of 4.17 gives
1,i-1
(1)

and after the summation in equation 4.15

Average utilisation U(reloc,uniform) = (1+%l-)N+1 -2 -'% . eeee 4.20
Similarly, for the exponential distribution,
o . i,1-1 ca s
Probab111ty[1a+...f§n=1] = r! ;_1) . writing r for N eeee 4,21
. i
q s 4 N-itl r -1 .
and Probab1]1ty[rn+1 >N-il = r .(;:T—) ceee 4.22
so that the summations of 4.17 and 4.15 lead to
Average utilisation U(reloc,exp) = %{2N+1 -2 - ??lTT) . eess 4.23
N

4.4.4 Internal fragmentation in the relocating model

In order to discuss internal fragmentation, a rounding up process has to
be introduced whereby requests are allocated blocks which are equal to or
larger than the amount requested. This can be done in a number of different
ways, for example the (binary) buddy scheme rounds request sizes up to the
_ next higher power of two, but 1p the present calculation the rounding that
will be considered is to the next higher multiple of a fixed quantity, the
allocation quantum. Rather than introducing this as an integral number of
words, w say, so that allocated blocks are é]ways W, 2w, 3w, ... words long
which would require the external fragmentation analysis of the last section to
be (fairly trivially) modified, this will equivalently be done by supposing

that the unit of 1 word is the allocation quantum and that requests can’
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originally have been for some fraction of this, with a size probability
distribution before the rounding which results in the distributions 4.7, 4.9
of section 4.4.2 after the requests have been rounded. The difference between
rounding original requests in words to multiples of w Qords, and ‘rounding
requests in fractions of words to integral amounts, is only one of scale and

possibly of convenience in the calculation.

There are obviously many possible distributions of request size which
will result, after rounding up to the nearest integer number of words, in the
uniform and exponential distributions being considered here. For simplicity
it will be assumed in the following examples that the average loss or amount
of rounding up per request is half of one word. The same assumption will be
made in chapter 6 in order to compare the results of that chapter with the
analysis of these present examples. Having modified the request distribution
in this way so that the distribution of rounded up request sizes remains the
same, it is necessary to consider again the meaning of the quantity U,
introduced as the average utilisation. As explained in section 2.1, it is
convenient to keep the definition of U as the average fraction of the memory
occupied by the (possible rounded up) allocated blocks, so that the average
unused space between them is given by

E[EF] =1 -U .
The fraction of memory which is allocated at any moment to the original
request sizes before rounding up, or the fraction of memory which is actually
"being used" at any moment, the "proper utilisation" of chapter 2, is then
equai %o U minus the amount IF of rounding up or internal fragmentation which
has cccurred. This amount of rounding is considered now for the relocating

model and again below for the non-relocating case in chapter 6 section 6.5.3.

Whatever original distribution of request sizes is used, if the random
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variable IF is used to denote the fraction of memory unused because of

rounding up, then
ELIF] = (1/2N) X (average number of allocated requests) : eee. 4.24

But (average number of allocated requests)

N
= £ nX Probability[n requests allocated in N words] eees 4.25
n=1

and as before,
Probability[ n requests in N words]
N

iflProbabil1ty[rlf£2+...frn = i] X Prob[r ., > N-i] eee. 4.26

where also as before from section 4.4.1 it is understood that these are the
probabilities at T=1 given that the model is in state E at T=0. The component
quantities in this equation are the same as those occurring and already
evaluated in the above expressions for the external fragmentation, but now the

order of summation is different.

For the uniform distribution, using 4.18 and 4.19 of the last section

4.4.3, 4.24, 4.25 and 4.26 above can be summed to give

| Average internal fragﬁéntation ELIFJ(uniform) = %N{(l+%)N-1] eee. 4.27

Similarly for the exponential distribution, using 4.21 and 4.22 of the last
section the algebra can again be summed and eventually simplifies, if that is

the right word, to give

) (0P ) 20V arfear N2y

ELIF](exponential) =
r-1 8N(2r-1)2

.e.. 4.28

where r = has the value just above 0.5 determined by equation 4.10.

"N
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4.4.5 Summary of relocation analysis

Figure 4.8 plots the expressions for the expected utilisation U(reloc)
and internal fragmentation E[IF], for values of memory size Nup to N = 12,
for the uniform and negative exponential request size distributions. The

values shown in this figure appear in table 4.1.

Uniform distribution Exponential request size distribution
(equations 4.7, 4.8) (equations 4.9, 4.10, 4.11)
N S(N) u ELIF] Both rN Eexp U E[IF] Both
2 1.0 0.5 0.5 1.0 1.0 1.0 0.5 0.5

5 0.8750 0.3125 0.4375 0.6180 1.3820 0.8820 0.3455 0.4635
13 0.8272 0.2284 0.4012 0.5437 1.6170 0.8518 0.2963 0.4445
34 0.8018 0.1802 0.3784 0.5188 1.7657 0.8475 0.2744 0.4269
0.7860 0.1488 0.3628 0.5087 1.8590 0.8532 0.2633 0.4101
233 0.7752 0.1268 0.3516 0.5041 1.9165 0.8627 0.2573 0.3946

610 0.7674 0.1105 0.3431 0.5020 1.9514 0.8734 0.2541 0.3807

1597 0.7615 0.0979 0.3364 0.5010 1.9721 0.8840 0.2522 0.3682
4181 0.7569- 0.5878 0.3309 0.5005 1.9842 0.8938 0.2512 0.3574

10 10946 0.7531 0.0797 0.3266 0.5002 1.9912 0.9027 0.2507 0.3480
11 28657 0.7500 0.0729 0.3229 0.5001 1.9951 0.9106 0.2504 0.3398
12 75025 0.7475 0.0672 0.3197 0.5001 1.9973 0.9175 0.2502 0.3327

OLONOYOTPWN =
[0}
(Vo)

Table 4.1 Average utilisation and fragmentation in the relocating model

Notes: N = memory size.
S(N) = f,,, = total no. of configurations, including the empty state.
Average 6@1lisation U and average internal fragmentation E[IF] are
computed from equations 4.20, 4.23, 4.27 and 4.28 (see figure 4.8).
Both = average total fragmentation, external+internal = (1-U)+E[IF].

The exponential distribution, for increasing values of N gives almost
constant weights to small request sizes, approaching the limifs 1/2, 1/4,
1/8, ... as can be seen in table 4.1. The probability of a request for any
given fraction of the total memory, say half of it, épproaches zero as N

increases, and this is reflected in the utilisation and internal fragmentation
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Figure 4.8 Utilisation and internal fragmentation in the relocating model

Average utilisation U and average internal fragmentation E[IF] are computed

from equations 4.20, 4.23, 4.27 and 4.28.
U and E[IF] are shown for both the uniform and exponential distributions.
Compare this figure with tables 4.1 and 6.5, and figures 6.6 and 6.7.
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curves shown in figure 4.8. The utilisation approaches 1.0 as the expected
amount of wasted space left over at the end of memory (because the next
request is too large for it) becomes insignificant compared to N, but the
internal fragmentation approaches the 1imit 0.25 as tﬁe average number of

allocated blocks approaches N/2.

Conversely, for the uniform distribution the average number of allocated
blocks becomes insignificant compared with N, since the memory is just as
Tikely to be filled by the next request in the queue being for N words as that
it is for one word, and so the average 1nterna1 fragmentation approaches zero
as N increases. The average amount of space wasted at the end of memory
because it is insufficient for the next request remains significant compared

with N, and so the utilisation approaches a 1imit of 0.718 approximately.

A1l four of these curves provide upper limits for the corresponding
quantities when relccztion is not allowed, as will be seen in chapter 6, and
the curves in figure 4.8 are consequently reproduced in figures 6.6 and 6.7
below so that they can be compared with the values computed from the various

non-relocating models reported on in that chapter.

4.5 Storage fragmentation and the problem of sizé: ways to proceed

This chapter has §hown that any straightforward application of the Markov
theory established in chapter 3 to the present storage allocation model (and
indeed to other similar exact models, as will be indicated in chapter 7) is
likely to run into difficulties because of the very large number of states
which naturally occur for any reasonable memory size N. One traditional way
which is often used to overcome such a difficulty is to redefine the model and

start again, or in other words to leave the difficult problem on one side and
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solve an easier one instead. This has been done here; by allowing blocks to
be relocated the difficulties of fragmented space go away, the problem no
longer grows as rapidly with memory size, and in any case closed form
solutions for quantities of interest such as the expected utilisation and
wasted space.can be obtained in individual cases, although not always without
more than a little labour. Of course this does not solve the original problem
which still remains, but the relocating analysis is particularly useful anyway
as its space utilisation performance provides an upper bound to that of the

corresponding non-relocating model which does become fragmented.

The rest of this thesis is increasingly concerned either directly or
indirectly with trying to answer the question, what can be done with the
original problem in spite of the very large growth in the number of states
with memory size, without the side-stepping trick such as changing the problem
definition as was done to produce the relocation analysis. Chapter 5
concentrates with some succass on the constant underlying algebraic structure
which has already been noted at the beginning of this chapter as apparently
being present in the transition matrix whatever its size. The hope in doing
this is that useful properties can be deduced from the structure which in turn
will either allow the problem to be collapsed to a more manageable size, or
else permit the dependence of utilisation and fragmentation on parameters such
as the distribution of requests and the choice of allocation algorithm to be
| studied regardless of the size of the matrix. Chapter 6 presents the results
of directly computing the tranQ%tion matrix P and its dominant eigenvector =
from which the average utilisation and fragmentation cah be extracted. It
also explains the variety of ways that have been used to contain the
exponential growth of the number of states for as long as possible, for the
range of still comparatively small meméry sizes up to the largest (N=12) that

has been managed so far. Chapter 7 outlines the subsequenf ideas and
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alternative approaches (some of which are concerned with the size of the
problem) which have been generated as a result of this work, and suggests ways
in which they can be followed up. From these three chapters it will be clear
that_making exact predictions about storage a]]ocation‘mode1s would not always
be easy to do if the problems of size were not present, but it is certainly

much harder to do because of them.
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Chapter 5 : Algebraic analysis of the steady state equation

This chapter concentrates again on the non-relocating model of storage
allocation described in chapter 3 section 3.1, which was shown in section 3.2
to be Markovian if certain assumptions about its behaviour were made. The
transition matrix P = (pij) of this Mdrkov chain was defined in section 3.4 in
the natural way by equation 3.10, pij being the conditional probability of a
transition at the next event to state j given that the model is in state i.

In chapter 4 section 4.2, some examples of P were exhibited (figures 4.1 to
4.7), for models of memory size up to N = 6 words. These examples indicate
that the elements of P might be arranged in some sort of complicated repeating
pattern, suggesting that P might perhaps have a structure which could be

analysed.

In section 5.1 below it is shown by considering the intermediate stages
or steps of a complete transition that P does indeed have an algebraic
éxpansion as sums and products of much simpler matrices which represent these
individual steps. The elements of these simpler matrices are found to be
arranged in simple repeating patterns, the complexity of the transition
probability matrix P being produced almost entirely by the algebraic
combination of these matrices. Section 5.2 reduces this complexity and
justifies the usefulness of this expansion of P by using it to simplify the
steady state equation 3.11 to a form more suitable for analysis, which is

investigated in section 5.3.
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5.1 Algebraic expansion of the transition matrix P

Any single transition between two states consists in general of a
sequence of more basic transitions between intermediate memory configurations
which each move just one block, either out of the memory (basic deallocation
transition) or into memory from the top of the queue (basic allocation
transition). Since the request initially at the head of the queue would have
been allocated as part of the previous transition if it could have been, the
first movement in each transition must be a deallocation. All of the rest, if
any, are allocations because deallocations and allocations are performed
instantaneously and the probability of more than one simultaneous deallocation
is zero. If the request initially at the head of the queue before the
transition occurs will still not fit after the deallocation then there are no
subsequent allocations and the transition is completed, otherwise requests are
allocated from the queue until one is reached which cannot be fitted into
memory. If the memory contained just one allocated block, then after its
deallocaticn the memcry is momentarily empty ard so the empty configuration is

a possible intermediate state.

It follows that the transition probability pij from any state i to any
state j can be expanded in the usual way as products of the individual
probabilities of these more basic transitions summed over all the possible
ways of combining them to get from i to j. In figure 3.1 for example, the
~ probability of the occurrence of the illustrated transition using the best fit
algorithm given that the initial state of memory is as shown, is the
probability of the initial deallocation of the 2-word block multiplied by the
probability of a 4-word, a 2-word and a 3-word request being allocated in the
indicated positions, mQ]tip]ied by the probability that the next request in

the queue is for more than one word. The complete probability of getting from



100 5 : Algebraic analysis

this particular initial to this equally particular final state is therefore
the total of all such products of probabilities, summed for all the
deallocation - allocation sequences which are possible between these two
states. It therefore becomes necessary to know what are the probabilities of
deallocating or allocating exactly one block from or into any given memory
configuration, and what are all the ways in which these may be combined.

These are studied in detail in the following sections. The basic deallocation
transition probabilities are considered first because they occur first in any
transition and are simpler because there is just one deallocation in each

complete transition.

'5.1.1 Deal location matrix

This is the matrix D = (d.,) of basic deallocation transition

Y

probabilities dij’ i j=1,...,N, which are obtained by deallocating one

block:
[ state j will be reached model ]
di' = conditional [by deallocating at random | is in ] R |
J Probabilityl one of the allocated state 1]
{ blocks in state i ]

Whatever state i the model is in, the block to be deallocated is chosen with
equal probability from those present. The matrix has a nice simple recursive
structure, the reasons for wh#ch are not hard to see but which are somewhat

lengthy when set out rigorously below as a formal argument.

Informal explanation

As an example, consider the deallocation matrix of the N = 4 model,
figure 5.1. The 34 states can be split into five groups, those which begin

(i.e. at the left hand end) with a block of length k words, k = 1, 2, 3, 4,
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and those in which the first word is empty. The ordering used, defined in
section 4.3, naturally groups these states together in that order. First,
consider a group of states all of which begin with a block of length k, for
example, k = 2. In this group, for any state i having exactly a; allocated
blocks there are two possibilities for dealliocation. Either
1)  the first block (of Tength k) is deallocated with probability 1/ai .
These possibilities for all the states i in group k form a diagonal
submatrix (for k = 2 this is the submatrix labelled F(0,2) in figure
5.1). Thié is because the relative ordering of states beginning with a
k-word block is the same as those beginning with at least a k-word gap,
or 2) the first block stays put with probability 1 - 1/a1 and another is
deallocated, as if this was the (N-k) problem applied to the last (N-k)
words of memory but in which the row sums no longer add to 1. These‘
possibilities naturally 1ie within the square submatrix on the main
diagonal of D (for k = 2, lzbelled D(1,2) in figure 5.1) which includes
all possible deallocation transitions from group k states to other group

k states.

Now consider the last group of states all of which have an unallocated
first word. Their deallocations can be considered exactly as if this was an
(N-1)-word memory ignoring the first word, and so they also form a square
submatrix on the main diagonal of D (labelled D(0,3) in figure 5.1), this time

-with row sums which are all equal to 1 (except of course for the empty state).

Formal argument

The recursion of submatrices of D should now be apparent. At any stage,
a subset of states is chosen by dividing memory into a left and right region,

see figure 5.2. The left region contains a single fixed configuration, L say,
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have Zero length, in which case the other will have all N words.

The juxtaposition of the left configuration with all f2n right
configurations gives a set of states: Sub(L,m,n) which will be grouped
together by the state ordering defined in section 4.3. Figure 5.3(a) shows an
example of such a subset Sub(L,m,n). In this example, N=5, i.e. it is a
.5-word memory, and m=2, n=2; the 1eff region of N-n = 5-2 = 3 words contains a
configuration L with m=2 allocated blocks, which happen to be 1l-word blocks in
the first and second words in this example, and the right region of n=2 words
can contain any of on = f4 = 5 possible configurations, so that there are
five states in this subset. Figure 5.3(b) shows another sibset Sub(L',m,n) in
which again N=5, m=n=2, the oﬁ]y difference being that the left region
contains a different fixed configuration L' say, still having m=2 allocated

blocks in this example.

Strictly, the notation Sub{iL,m,n) is redundant as L determines both m and
n, but it is convenient to make them explicit. Two gaps may be adjacent at
the boundary between left and right, as in the last two states of the example
in figure 5.3(a); they will combine to form a single gap when the regions are
viewed together as an N-word memory. Cases in which blocks are allowed to

straddle the boundary will not have to be considered.

The notation D(m,n) is defined to be the submatrix of the whole
_deallocation matrix D = (dij) cqptaining all the entries dij for which both i
and j represent states in Sub{(L,m,n), so that D(m,n) contains all the possible
one-block basic deallocation transitions from states in Sub(L,m,n) for which
the resulting states are also in Sub(L,m,n). Because the chosen state
ordering groups all the states of Sub(L,m,n) together, D(m,n) is a square
block on the diagonal of D. Dropping L from the definition of D(m,n)

nevertheless leaves it well defined, as any other left-hand configuration L'
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having the same values for m and n will give rise to the same deallocation
submatrix, except of course that it will be in a different place on the main

diagonal of D.
" The recursive composition of D begins with
D = D(O,N) = whole deallocation matrix. ve.. 5.2

Following the example in the above informal explanation, any square submatrix
D(m,n) lying on the main diagonal of D can be recursively split by grouping
the f2n states of Sub(L,m,n) into (n+l) groups, those in which the right
region begins with a block of length k, k = 1,...,n , and those in which the
first word of the right region is empty, see figure 5.4. Consider each group
in turn. Call the group in which the right region begiﬁs with a block éf k
words Sub(L,m,n):(k). Then by concatenating this k-block to the left-hand

fixed region L Teaving (n-k) words on the right,
Sub(L,m,n):(k) = Sub(L(k),m+1,n-k), eeee 5.3

where L(k) is the new left-hand region formed by this concatenation. As in
the informal example, there are two possible sets of deallocations in D(m,n)
for this subset, the submatrix D{m+l,n-k) in which L and the k-block are
preserved and a block in the (n-k) rightmost words is deallocated, and the
diagonal submatrix F(m,n-k) (F for first) in which the block of length k is
deallocated. The Tast subset of Sub(L,m,n) in which the first word of the
right-hand region is empty can similarly be called Sub(L,m,n):(-1), where the
notation :(-k) is meant to indicate all those states in which the right hand

region begins with at least k contiguous empty words. Then
Sub(L,m,n):(-1) = Sub(L(-1),m,n-1) eeee 5.4

where the notation L(-k} indicates the new left hand region formed by
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concatenating L with k contiguous empty words. Hence this last subset of
states of Sub(L,m,n) gives the submatrix D(m,n-1).
Summarising so far,
n-1 n-1
D(m,n) = ¥ D(m*1,i) + I F(m,i) + D(m,n-1) eees 5.5
i=0 i=0
where, in the use of "+" or addition, the position of each of these variously

sjzed submatrices is understood.

It remains to see how to determine the values in the diagonal F matrices.
A recursive formula can be found for these a]so{ and figures 5.5 and 5.6 méy
help to illustrate the following slightly complicated argument, which
identifies other smaller F matrices and shows that these contain the same

values as any given F matrix.

From equation 5.5, each F(m,n) arises from the decomposition of a larger
D matrix, D(m,k+n) Tor some positive k. Replacing n by k+n, equation 5.5 can

be rewritten:

D(m,k+n) = D(m+l,k+n-1) + + D(m+l,n) + ... + D(m+1,0)
+ F(m, ktn-1) + ... + F(m, n) + ... + F( m, 0)
+ D( m, k+n-1) eees 5.6

F(m,n) represents the transitions made by deallocating the block of length k
beginning in the first word of the right-hand half of length (k+n) for all
those states '

Sub(L,m,k+n):(k) = Sub(L(k),m+1,n)
of Sub(L,m,k+n) with such a block at the beginning of the (k+n)-word right
half. That is, the states which give rise to F(m,n) have a left half L of
(N-k-n) words with m blocks allocated, and then at the beginning of the right
half of (k+n) words a block of length k, the deallocation of which gives

F(m,n). Except for the very last of these states, the only one in which the
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rightmost n words are empty, each of them (there are f2n altogether) has
alternative deallocations in D(m,k+n) to the k-word block, i.e. D(m+l,n) from
equation 5.6, and each alternative will have the same probability as thev

" corresponding element of F(m,n) which is being sought, because in any state
each allocated block is equally 1ikely to be deallocated. In particular for
“the first f2n-1 states in Sub(L(k),m+1,n) in which the first word of the
n-word right half is allocated to a block, there are the alternatives
F(m¥l,n-1), ..., F(m1,0) which will arise in the decompbsition of D{m+l,n),
the alternative to F(m,n). Thus, the values of F(m,n) will be the same as
those of F(m+l,n-1), ..., F(m1,0) for these first f2n-1 states. For the

remaining f states, those in which the first word of the n-word right half

2n-2
is empty, there is a matching subset of states Sub(L(-k),m,n):(1) elsewhere in
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Figure 5.6 Recursive composition of F(m,n)

The argument matches the component submatrices of F(m,n) with others

representing equally probable alternatives inside its parent D(m,k+n)
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Sub(L ,m,k+n), where the match is obtained by removing the k-block to leave a
gap of length k and adding instead a block of length 1 in the (empty) first
word of the n-word right half. Each of the states in Sub(L(-k),m,n):(1) will
have dea11oca§ion transition alternatives with the same probabifities (but to
different destination states of course) as the corresponding states in the
remainder of Sub(L(k),m+1,n), including the last one, because the number of
allocated blocks is pairwise state for state the same. Pick out one
alternative for each state in Sub(L(-k),m,n):(1) by choosing to deallocate the
1-word block. These are exactly the values which will appear in a diagonal
submatrix F(m,n-1) in the decomposition of D(m,n) for the set Sub(L(-k),m,n)

of which the states Sub(L(-k),m,n):(1) are a subset.

Summary of section 5.1.1 (Deallocation matrix)

For integerm 2 0, n > 0,

D(m,n) = D(m+l,n-1) + ... + 2(m+1,0)
+F(m,n-1)+ ... +F{ m, 0) (positionai placing ceee 5.5
+D( m, n-1) understood)
F(m,n) = F(m*l,n-1) + ... + F(m+1,0) eeee 5.7
+ F( m, n-1)
By inspection,
D = whole deallocation matrix = D(O,N) eess 5.2
D(m,0) = 0 )
1 X 1 matrices eses 5.8

F(m,0) = 1/(m1) )

5.1.2 Basic allocation transitions

The allocation part of the decomposition of the transition probability

matrix P is more complicated than the deallocation matrix because
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a) this is where the choice of allocation placement algorithm enters,
b) the size q of the first request waiting at the head of the queue varies
not according to the unconditional distribution (rn) (equation 3.4,

. section 3.2.1), but to the related conditional distribution (qn)
(equation 3.8, section 3.2.4), whereas the sizes of subsequent requests
in the queue follow the unconditional distribution,

¢) a variable number of requests will be allocated depending on how far the

allocation process gets before a request is reached which will not fit.

Suppose the allocation process is proceeding and has reached a point at
which the allocation of the request now at the héad of the queue is about to
be attempted, and that the size n of this request is known. The allocation
placement algorithm which is being used, e.g. first fit, best fit, is also
supposed known. Then given the configuration of allocated blocks in memory,
everything is available to determine if the request will fit and if it does,
where it will be allocated, or if there is a random element in the placement
algorithm, the probability of its being allocated at any possible location.
Allocation algorithms which require more information than this, for instance
those which 1ook down the queue to see what is coming next before deciding
where to put the present request, will not be considered here. Taking all the
memory configurations together, all the entries can be determined in a
matrix An’ the basic allocation probability matrix for request size n, of

probabilities which represent these basic allocation transitions.

To understand the matrices An’ n=1,...,N, it is helpful to consider a
matrix which has as its non-zero entries the size of request that would cause
the corresponding basic allocation transition to occur. This is referred to

as the generalised allocation incidence matrix. Figure 5.7 is the generalised

allocation incidence matrix for N = 4. It indicates where the non-zero
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Figure 5.7 Generalised allocation incidence matrix for N=4
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entries can occur in such a basic allocation probability matrix An’ for all
possible request sizes n =1, 2, 3, 4 in an N = 4-word memory. Not all of the
entries that can be non-zero need necessarily be so in}any particular An’
depending on the allocation algorithm. For example, if n = 2 and the first
fit allocation algorithm is used, then the basic allocation probability matrix
A2 for N=4 is as shown in figure 5.8. It has zero probabilities everywhére
except for 1's which can only occur at those places where a 2 appears in
figure 5.7. Of course, the choice of allocation algorithm is almost

irrelevant for a memory size as small as N = 4.

Figures 5.9 to 5.12 show the four general basic allocation probability
matrices Al’ AZ’ A3, A4 for N=4. They have been displayed at length because
they are referred to again in section 5.3. In these general matrices all the
possible allocation choices have been retainéd by using variables in place of
constants to mark the entries where a choice is possible. For example, in a
four word memory there is just one state (the empty state) for which there is
a choice of where to place a block of three words, and so in A3 foir N = 4,
shown in figure 5.11, only the Tast row which describes the possible
transitions from the empty state contains more than one non-zero element. The
entry h 1is the probability that the three word block will be allocated in
the first three words of the memory, and h' is the complementary probability
of the only possible alternative that it will be allocated in the last three
words. Of course, h, h' 20 and h + h' =1 ; and similarly for the choices in
A1 and A2’ figures 5.9, 5.10. The choice may be between several states, in A

2
there occurs i + 1" + i" =1 , and in Al’
wtw tw'=s+s'+s"=p+rp +pt=m+rm +m" =1

and 1 + 1' + 1" + 1" =1 . States which contain exactly one gap just
sufficiently large enough to allocate the requested block have corresponding

rows containing precisely one non-zero transition probability, value 1. For
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example, there are two such states in A3, figufe 5.11, those which already
contain one 1-word block at one end of memory. States which contain no gap
sufficiently large to allocate the request give rise to completely zero rows.
For general N, the basic allocation probability matrices Al""’AN encompass
all the possible allocation algorithms which are being considered here, the
variables taking on particular values for any given algorithm. For examﬁ]e,

the first fit algorithm determines that h =1 , h' = 0 in A3, figure 5.11.

Figure 5.7 has a simple recursive structure which is set out in figure
5.13. Allocation transitions from states beginning with a k-word block
obviously map onto the same subset of states, hence the square regions on the
upper part of the main diagonal of figure 5.13 marked 3, 2, 1, O (for N = 4).
For such a group of states the allocation transitions occur entirely within
the Tast (N-k) words so that each block is a smaller complete allocation
transition matrix contained recursively within the original matrix.
Transitions from states with an unallocated first word may or may not cause
the first word to be allocated. Those Lhat do not, again form a square
submatrix on the diagonal which recursively has the same pattern as an
(N-1)-word memory allocation matrix. Transitions which do allocate the first
word to a block of 1, 2, ... words form the submatrices below the main
diagonal marked 1, 2, ... . The state ordering ensures that these submatrices

are diagonal.

It should be clear from figure 5.13 how the rigorous argument justifying
this recursive structure is constructed. The argument will not be explained
in such detail as the corresponding argument for the deallocation matrix was
in section 5.1.1, partly to shorten the description but mainly because it is
in fact the same as for the deallocation case, but in reverse. Comparison of

figures 5.1, 5.4 with 5.7, 5.13 reveals that as far as their pattern is
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concerned one is the transpose of the other. Of course this must be so, as
the former include all possible deallocations of one block for all possible
states, while the latter include all possible allocations of one block into
all states. Just as the dea11dcation matrix D is uppér triangular, each

matrix An is strictly lower triangular with the given state ordering.

5.1.3 Basic allocation termination matrix

Corresponding to each basic allocation probability matrix An’ define a
diagonal matrix Tn as follows. For a given request size n, n=1,...,N, Tn
contains the value 1 on the diagonal for all rows for which the corresponding
configuration of memory contains no gap large enough to allocate the request,
that is, all gaps in the configuration have size < n . Al1 other entries of
Tn are zero. Tn represents the unsuccessful allocation attempts, T.for
terminal, those in which the request is tried but does not fit in memory. The
state of memory is unchanged, hence the 1 on the main diagonal, and no more
allocations will be attempted. An represents all the successful allocations,
subsequent to which more allocations will be attempted. For a given request
size n, the sum (Tn+An) describes completely all the possible transitions the

model may make when allocation of the request is attempted, including the

identity transitions for all the cases in which it is not possible.

By applying definition 3.4 of the request distribution (rn) and the
thecrem of conditional probability, the transition probability matrix for a
single aitlocation step which is not the first, and so for which the size of

the request is drawn from the (rn) distribution, is
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rl(T1+A1) + r2(T2+A2) + ... + rN(TN+AN)

T+A, where
cees 5.9

—
1

= rlTl + r2T2 + ...+ rNTN

>
i

rlAl + r2A2 + ...+ rNAN

T, the allocation termination matrix, is diagonal and A, the allocation
probability matrix, is strictly lower triangular. As an example with N =4
figure 5.14 shows T, and A for the first fit allocation algorithm. The matrix
A depends in general on the choice of allocation algorithm. T is independent
of this choice, since for each n, Tn has non-zero elements only where a

request of size n will not fit.

5.1.4 Eventual termination of the allocation process

This section shows that, corresponding to attempting after a deallocation
in the model to continue to allocate requests until it is no longer possible,
forming repeated products of allocation probability matrices eventually leads
to transition probability matrices which are all zero. As a result, it is
possible to write down completely the probabilities of all the multiple
transitions which can occur in terms of finite products of the allocation

probability matrix A with the allocation termination matrix T.

From the definition in section 5.1.2 of the An matrices, any matrix
product ending with An s, n=1,...,N, and consequently A by equation 5.9, can
have non-zero e'aments only in columns corresponding to states with at least
one block allocated. See figure 5.15 which illustrates the N=4 case.

Products ending with two A's, i.e. "'AiAj’ any 1 £ i,J ¢ N, can have
non-zero elements only in columns corresponding to states with at least two

blocks allocated, and so on. Products of more than N A-matrices must be
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i

This figure contains two separate but complementary matrices, for convenience.
Both contain probabilities.

T=r,T. +r, 7, + .. + 1T A=rA +r A, + ... + 1 A

11 22 N'N 11 22 NN
'n = Probability[ new request joining the queue is for n words]
R . + ...+ ry > SO that ¢, = 1, CN =y always
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Figure 5.15 Powers of allocation matrices (silhouettes), N=4

This matrix does not contain probabilities. A 1-digit appears in the i,j-th
position if state j can be reached from state i by allocating just one block,
of any size. A 2-digit appears at i,j if it is possible to get to j from i by
allocating two blocks of any size, etc. All possibilities are shown, for N=4.
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identically zero, in particular:

N+2

ML _ N2 g cee. 5.10

A

since no state can have more than N blocks allocated. In other words, it is
impossible to make more than N successive allocations, and the only way to
make as many as N is to start from the empty state and allocate N one-word

blocks.

Another way of considering this 1imit on the non-zero powers of A is
illustrated by figures 5.15, 5.16, which concentrate on the positions of the
non-zero elements of any of the An (or A) matrices, their actual values being
unimportant. As pointed out in section 5.1.2 any allocation matrix for an
N-word memory has non-zero elements taken from a recursive pattern, see figure
5.13 for example. Let the ordinary incidence matrix of the generalised

allocation incidence matrix defined in that section be denoted Al,,, for an

N’
N-word memory. That is, AIN contains a 1 entry in all positions (i,j) where
some allocation probability matrix A could nhave a non-zero transition
probability from i to j, and zeroes everywhere else. Then AIN includes as

part of itself the pattern ALy, for an (N-1)-word memory, and Al and so

N-2
on, as well as identity (diagonal) submatrices below the main diagonal,
arranged as shown in figure 5.16. Raising any such matrix to successively
higher powers results in matrices with incidence patterns as shown,
coefficients having been left out as they affect only the values and not the
positions of the non-zero elements. By inspection of the multiplication in
the general case, as shown in the figure, the recursive block structure is
retained and the non-zeroes do not spread into the other areas of the matrix.
Consequently it is easy to see by induction that if powers of AIN_1 greater

than N-1 are identically zero, then powers of AIN greater than N must also be,

and that this is trivially true for N = 1,2,3 say.
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5.1.5 Allocation of first queued request

As implied in section 5.1.3, the one-step allocation matrix
N .
(T+A) =n§1rn(Tn+An) : eee. 5.9
does not apply to the first allocation after the deallocation. This is
because the probability distribution of the size of the request at the head of

the queue, g, is not in general the same as (rn), as explained in section

3.2.4. To overcome this difficulty the diagonal matrices

=@y, n = 1,0 | cees 511

are introduced, where for each state i = 1,...,5(N) down the main diagonal
qéi) = Probabilitylq = n in state iJ .

By section 3.2.4 these diagonal matrices are known and depend only on the

request distribution (rn) :

o1 =0 ifn< g,
. *® o0 3.8
= rn/cgi+1 ifn> 9,
where g; = maximum gap in state i,
> o8 3.9

and T k =1,...,N

N 3

As an example, the four Qn diagonals for N = 4 are shown diagrammatically in

figure 5.17.

5.1.6 Algebraic expansion of the transition matrix P

With the results of the previous sections established, this expansion can

now be written down. It follows the general plan:
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Figure 5.17 First queued request matrices QP——QZ’ Q,, Q, for N=4

Each Qn matrix 1s diagonal and square. To save space, the diagonals are here
shown as columns.

r, = ProbabilitylLnew request joining queue is for n words] Cp = rn+...+r'N
Each entry qé” is a probability, dependent on i as well as (rn):

qr$1) =Probl first queue request in state i is for n words]. Blanks are all zero
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Pick a starting state (down the left hand side of the deallocation matrix
D).

Calculate the transition (deallocation) probabilities from this state

(corresponding row of D).

Post-multiply this by some allocation matrix to obtain the corresponding
row of matrix P, i.e.

D X allocation matrix = P .

The transition probability matrix P can now be specified exactly, in

several steps:

1)

2)

3)

Pick a starting state i (configuration of memory).

Fix on the size q of the first queued request. Consider the N
possibilities, g = n, n =1,...,N in turn, with probabilities from the

(qéi) ) distribution. Some of these probabilities will be zero.

For each of these possibilities q = n, calculate the deallocation
transition probabilities from the starting staté i. This gives thr i-th
(i)

row of the deallocation matrix D, multiplied by q, - Taking all the

states i together gives N probability matrices QnD forn=1,2,...,N.

For each of the q = n possibilities, calculate the transition
probabilities up to the end of the first allocation step, by
post-multiplying by the basic transition probability matrix for a single
allocation step (Tn+An) corresponding to the value n of q. Here the
benefit of knowing q is obtained at the previous expense of splitting
inzo N distinct possibilities. Resulting from this are‘the N distinct
probability matrices

QD(T +A ), N =1,...N

At this point the N possibilities can be recombined (added) as subsequent



130 5 : Algebraic analysis

allocations depend on requests in the original queue after the first,
which are independent of q due to the first come first served queue
discipline and independence of successive queued requests. The result of
this addition is a single matrix:

N N N

£ QD(T+A) = £ QDT+ &
n=1 " n-n n=1 nn n=1

QnDAn
6) The cumulative probabilities ):QnDAn so far calculated, i.e. those which
represent successful first-step allocations, are further multiplied by
the one-step allocation matrix (T+A) to accumulate the transition
probabilities up to the second allocation step:
N N
T QDT + (3 QDA (T+A)

Corresponding to continuing to attempt to a]]ocafe requests as long as
they continue to fit, this process of multiplying the part of the allocation
matrix which represents successful allocations so far by the one-step
allocction matrix (T+A) is repeated, in principle indefinitely. In fact, the

process can be stopped after N allocations. Physically, no more can be

possible. Algebraically, further multiplications by (T+A) factors has the

identity effect, since by section 5.1.4

N-1 N-1

ifn>1, AR =0 =ARTT

. _ N-1 _ . N
ifn=1, AlA = A1

and so post-multiplication by T again has the identity effect;

_a N
= A1 T.
Eventually therefore, P is reached,
N N
P=2 QnDTn + (z QnDAn)(T+A(T+A(...(T+A)...))) vees 5.12
n=1 n=1

where there are N-1 factors T+A .



5.1 : Algebraic expansion of the transition matrix P 131

Equation 5.13 for P follows immediately:

p = 2 DT+ ( : QDA ) (1+A+AZ+ .. 4N
0Ty _,non e

n=1 n=1

)T eee. 5.13

N N 2 N-1. N
=3 QnDTn + (z QnDAn)(I+A+A toootA THATHLL)T

n=1 n=1

5.1.7 Summary of section 5.1 : transition matrix expansion

Refer again to figures 4.1 to 4.7 for examples of the transition
probability matrix P, especially figure 4.4 for N=4 which follows from figures
5.1, 6.7, 5.8, 5.14, 5.17. As mentioned in the introduction to this chapter,
the elements of the simpler matrices Qn’ D, Tn’ An’ A, T which appear in the
expansions 5.12, 5.13 of P are arranged in simple recursive patterns the
general form of which can be extended for any memory size N. These simple
matrices are either diagonal (Qn’,Tn’ T) or else very sparse indeed for
increasing N, generziiy much less than N entries per row in a square matrix of
order S(N) = fZN’ = 0.72 %:(2.6)N approximately. The apparent complicatedness
of P arises therefore mainly from what complexity there is in equations 5.12,
5.13. Reducing this complexity and making use of these equations, is the

subject of the next section 5.2.
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5.2 Algebraic simplification of the steady state equation

The expression for P so far derived (5.12 or 5.13) as sums and products
of simp]é matrices, is complicated enough that it is unlikely that any useful
properties could be derived from it as it stands. However, by good fortune,

the eigenvector equation:
x=aP eeee 3211

does simplify considerably and somewhat unexpectedly. Two preliminary steps

are necessary.

5.2.1 The allocation inverse matrix

Any allocation transition probability matrix An’ and so in particular A
itself from equation 5.9, is strictly lower triangular because of the choice

of ordering of the states. Hence the matrix I-A is non-singular and has an

N+1

inverse, (I—A)-l. In any case since A = 0 from equation 5.10,

2 4 o v AY (1ea) = 1

s0 (1-A)71 = (1 +A+A2+ ... +aY .. 5.14

(I +A+A

5.2.2 The pseudo-inverse of the allocation termination matrix

T is a diagonal matrix, but not all the elements on the main diagonal are

)

non-zero. From section 5.1.3, each Tn, n=.1,...,N, has elements té’ on

the diagonal:
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—
il

diag(téi) ) (i=1,...,5; T, is square of order S X S)

£ 2 g ifn < g,

1 .if n > gi e o0 5.15

and 95 maximum gap in state i

let T = zrnTn = diag(ti) have elements ti on its diagonal, i = 1,...,5S . Then

from equations 5.9, 5.15,

= + L N +
ti rgi+1 r

C91+1 s

N
from definition 3.9.

T is thus a diagonal matrix whose main diagonal elements C91+1 have values
from the (descending) cumulative probability distribution (ck), k=1,...,N.
T is shown for N=4 in figures 5.14 and 5.18. In particular, the last (or
S-th, i.e. bottom right) element is identically zero since it is impossible
not to be able to allocate a block into the empty state (algebraically,

9g = N), and others may be zero depending on the request distribution. For

example, if rN-1 >0, N 0; then cy = 0 although c, > 0 for k < N . For the

k
time being, assume that all the Ci» i=1,...,N are non-zero (or, which is the
same thing, that LY > 0) and do not worry about the bottom right corner, the
empty state. Define T' to be a diagonal matrix with main diagonal elements

which are the reciprocals of the corresponding elements of T:
T‘ = (1/t_i) » 1 = 1,-.‘,S'=S"1 e e 5-16

except for the last (1i=S) which will turn out to be immaterial, and so may as

well be zero. Then
T =7T7T=1",

where I' is the identity matrix except for a zero in the bottom right corner.
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Figure 5.18 Upper triangle: anDTn (compare figures 5.17, 5.1, 5.14) for N=4.
Diagonal: T, repeated for convenience, see figure 5.14.

This figure contains two separate matrices.
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T' is known as a pseudo-inverse of T.

5.2.3 Reduction of w = «P_to a simple form in terms of the allocation matrices

Substituting expansion 5.13 for P in the steady state equation 3.11,

n = n(2Q DT ) + =(2Q DA (I + A + AZ s 0T

= x(2Q DT ) + x(3Q DA )(I-A)"T ceen 517

On the left hand side of this vector equation, the last element of n is zero
since it represents the steady state probability of being in the empty state,
which can never be possible between transitions. On the right hand side, the
last column of every Tn and every An is identically zero, and so on
multiplying throughout by T', its arbitrary last element is eliminated and the

product I' = TT' can be replaced by the identity matrix:

LA

x(2Q,DT )T + x(3q DA ) (1-A)""

and hence

xT'(I-A)

(2Q DT )T' (I-A) + x(3Q DA )

Rearranging and collecting the A's together,

al[(2Q,DT,)-11T"A - (2Q,DA )] = x[ (3q DT )-1]T*

Define

K = [(ZQnDTn)—I]T' eee. 5.18

~Kis a (square, SX S) matrix which is constant with respect to the A's. See
figures 5.18, 5.19 which show K and its components. Then

n(KA - EQnDAn) = 1K
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Figure 5.19 K = ((ZQnQIﬁ)—I)T' for N=4

See figure 5.18 and equation 5.18; also see figure 5.20 and equation 5.21.
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Figure 5.20 T'(D-1) for N=4

See equation 5.21 and section 5.2.4, which compares this matrix with that in
the last.figure 5.19 for K=((2QnDT )-1)T'; they are identical except in the

n last column (the empty state).
See figure 5.1 for D (deallocation) and 5.14, 5.18 for T (termination matrix)
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Define

Kn = rnK - QnD . n=1,...,N vees 5.19

(see figures 5.21 to 5.24), then since A = zrnAn from definition 5.9, the
steady state equation becomes
N
_'l_r_(ni.lKnAn) = 1K «eee 5.20
This last equation looks somewhat simpler than equation 5.17. As examples,

1 for ne4,

figures 5.25 to 5.27 show the matrices ZK A (anAn)—K, and K~
first fit allocation a]gorithm. Other matrices (anAn)-K can be constructed
for different allocation algorithms, using the general An matrices shown in

figures 5.9 to 5.12. Of course, some of the complexity of equation 5.17 has
disappeared into the definitions of the K and Kn matrices. However there is

an unexpected further simplification. It turns out that
K=T'(D-I) , except in the last column eeee 5.21

Figure 5.20 shows the matrix T'(D-I) and figure 5.19 shows K, for N=4. Each
Kn is also much simpler than expected, terms in rnK and QnD cancelling each

other, see figures 5.21 to 5.24.

5.2.4 Unexpectedly simple structure of the constant coefficient matrix K

Before discussing the implications of the simplification of the steady
state equation to equation 5.20, it is necessary to show that the equality in
equation 5.21 ani the cancellation in equation 5.19 do indeed occur. The
present section %.2.4 shows the former and so reveals how the matrix K is much
simpler than might be expected from its definition, and the next section 5.2.5

similarly explains why the subsequently derived Kn matrices are also simpler
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Figure 5.21 K1 = rlK-Q D, for N=4

See equation 5.19. Also see figures 5.19 for K, 5.17 for Ql’ and 5.1 for D.

Notice the cancellation between r‘lK and QlD.
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Figure 5.22 K2 = rzK-QzD,

for N=4

See equation 5.19. Also see figures 5.19 for K, 5.17 fok QZ’ and 5.1 for D.
Notice the cancellation between roK and QZD’
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Figure 5.23 K3 = r3K—Q3D,

for N=4

See equation 5.19. Also see figures 5.19 for K, 5.17 for Q3, and 5.1 for D.

Even more cancellation between r3K and Q3D.
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Figure 5.24 K4 = r4K-04D,

for N=4

Also see figures 5.19, 5.17, 5.1 for K, Q
Cancellation is complete except for the last column and the d

and D.
Qagonal.
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than their definition might lead one to believe.

Concerning K and equation 5.21, it is required to show that
(ZQnDTn)T' = T'D except for the last column. Both sides of this equation
(5.21, with K replaced by its definition from 5.18) are square matrices of
size S = S(N). See equation 4.4 and Table 4.1 for the definition and some
early values of the total number of states S, and refer to figures 5.1, 5.17
to 5.20 throughout this section. Choose any'states with indices 1,j such that

1$1i,J < S(N) . Then the i,j-th element of (ZQnDTn)T' is

N s . d.. N . .
- qt1) (3)y1 . ij (1) + (3)
(nilqn d1'jtn ) tj tj hzlqn th

since Qn = (qii) )» Tn = (téi) ) and T' = (1/ti) are diagonal by equations

5.11, 5.15 and 5.16.

Ifi2j, then dij = 0 since D is strictly upper triangular from section
5.1.1, and clearly the equality with T'D holds. Consider the remaining
triangle 1 ¢ i< j<S . For dij = 0 in this triangle there is again equality
with T'D, so restrict attention to dij >0 . Let 9;» gj be the sizes of the
largest gaps in states i, j respectively. Since i, j < S then 9i» gs <N.
From fhe definition by equation 5.1 of D, if dij > 0 then g; < gj , for a .

deallocaticn can not cause the maximum gap size to decrease.

From the definition by equations 5.11, 3.8 of qéi)

ol -0 ifn¢og,
.e.. 3.8
= / i
rn/cgﬁl ifnd 9;
and the definition by equation 5.15 of téi)
t{3) g ifn g,
n J veer 5.15

=1 ] .
ifn> gJ
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For such dij > 0 with 9; < gj it follows that

G o @ L4
t.

Lq
tj n=1 " n J n>gj Cg].+1
N L) .
But tj =z rntn (from the definition by equation 5.9)
n=1
= ¢ .41 (by equations 3.9 and 5.15)
J

and so the i,j-th element with dij > 0 becomes

. d.. d..
c n ¢ .
gj+1 : gi+1 n>gj gi+1 i

C

which is the i,j-th element of the matrix T'D, which completes the proof.

The last column of (ZQnDTn) is zero as every Tn has a zero last column.

But T'D has a non-zero last column, so there is a definite inequality here.

5.2.5 The simplification of the derived constant coefficient matrices Kq

Refer again to figures 5.1, 5.17, 5.19 to 5.24 for examples of the
matrices in this section. By the definition in equation 5.18,

K = [(2QDT )-117"

1]

T'(D-1) except for a zero last column, by section 5.2.4.

Therefore, continuing the notation of this last section, the i,j-th element of

r
N . . .
= f;'dij if i< j<s

|

= - if i=3¢<S

o+

=0 otherwise.
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Similarly, the i,j-th element of QnD

r
= ¥ﬂ di' if i < j (D is upper triangular), and (1)

i N - if n> g, (definition 3.8 of q.'’ )
=0 otherwise.

Combining these, the i,j-th element of Kn rnK—QnD (definition 5.19) is as

follows:
'n "n |
i=7j<sS, diagonal : - T.° " C (rnK only)
i g.+1
i
i<j<Sand n> g; * 0 (cancellation occurs)
rn rn )
i<j<Sandn¢g.: —d.. = d.. (r K only
1 ti 1] Cgi+1 1] n
"n "n (
i<j=s$ : - —d., = - d.. if n > g. (Q.D only)
ti 1] Cgi+1 13 1 n
i=j=S, bottom : O (both zero)

corner
The bigger n is, the more often n > 9; and the more that cancellation occurs.

So K1 has relatively quite a 1ot of elements, while KN-l’ KN have very few.

5.2.6 Summary of section 5.2: Algebraic simplification

In this section the algebraic expansion (equations 5.12, 5.13) developed
in section 5.1 c¢f the transition probability matrix P was applied to the
equation of steady state 3.11: n = =P , to show that the eigenvector of steady
state probabilities must also satisfy equation 5.20: EsznAn) = gK . This
result holds for any non-zero request distribution (rn > 0 all n=1,...,N) and

for any allocation algorithm of the class described in section 5.1.2. For
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reasons of continuity as well as intuition one may expect that it will
continue to hold when some of the (rn) are allowed to take zero values,
although the treatment of the pseudo inverse matrix T' of T will need careful

consideration.
~
As explained in section 5.1.2, any allocation algorithm is realised

algebraically as a set of basic allocation transition matrices An’ and
conversely these matrices determine the algorithm. Equation 5.20 can
therefore be seen as a very promising development, espécial]y for questions
such as studying the effect of the choice of allocation algorithm on the
steady state behaviour. From being buried inside the transition matrix P,
expressed either implicitly as in 3_¥ nP or explicitly but apparently
intractably in the expansion of that equation as the An matrices in equations
5.9 (definition of A = zrnAn), 5.12, 5.13, the allocation algorithm now
appears in equation 5.20 in a most simple way.

1) Each matrix An’ n=1,...,N, appears exactly once.

2) The Kn and K matrices, each of which also appear just once, turn out
unexpectedly to be quite simple, certainly much simpler than their original
definitions would indicate.

3) The Kn and K matrices are variable only in depending on the request
distribution (rn), and so may be considered constant as far as varying the
allocation algorithm is concerned.

4) The An matrices have no dependence on the request distribution.

5) There is therefore a complete separation of the influence of allocation
algorithm and request distribution into the An’ and Kn and K,bmatrices in
equation 5.20. |

6) The whole are combined as a simple linear combination.

It is not easy to imagine how the influence of the allocation algorithm
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on the steady state could have turned out to have been algebraically expressed
any more simply than the actual reduction which has been found in equation

5.20.
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5.3 Making use of the algebra : first steps

A first possibility in studying the effect on the model of choosing
different basic allocation transition probability matrices An would be to
determine the 1imits within which the effects may vary. It surprisingly turns
out that the equations governing or constraining the model's stochastic
behaviour, independently of whatever allocation algorithm may be being used,
can be derived very satisfactorily from the simplified steady state equations
5.20 by combining the various choices available in the An matrices so as to
ignore these choices, and most of this section is devoted to explaining how
and why this can be done. -The result is a smaller set of lumped states and
corresponding equations 5.23 with an interesting pattern, or structure. The
behaviour which they determine is common to all allocation algorithms, which

cannot therefore be compared by means of these equations alone. -

By contrast, a second idea which if it is successful will allow the
performance of different allocation algorithms to be compared, is to treat the
model as a Markov decision process and apply the dynamic programming
techniques of Bellman (1957) and Howard (1960). This might perhaps even lead
to a way of determining the allocation algorithm that has the best possible
performance in a given model, or it might allow the dependence of a given

algorithm's performance on the request distribution to be studied.

To see how this might be done, consider again the basic allocation

matrices A,, A,, A

10 Pos Ags A4 shown in figures 5.9 to 5.12 for N=4. Most of the
elemernts of these matrices are fixed and must be zero (all the blank spaces in
fact). Many of the comparatively few remaining elements must take the

value 1, indicating that there is no possible choice of how to allocate a

given sized block into a particular configuration of memory. However as

pointed out in section 5.1.2, where choices are possible they can be
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represented as variables, for example h and h' in figure 5.11. Since

h+ h' =1, there is just one degree of freedom for this pair, although more
are possible in the cases for which there is a choice between three or more
positions where a block in memory could be placed. In terms of fhe dynamic
programming approach as developed by Howard, the choice of a particular
allocation algorithm is equivalent to a choice of policy which then determines
the transition matrix (the request size distribution being regarded as given),
and each variable element of an allocation matrix such as h becomes a policy
variable. The policy space is then the rather large set of all possibie
allocation algorithms, or choices of values for all the variables such as h in
the allocation matrices. The payoff or expected return for a given policy can
be measured as usual by the expected equilibrium utilisation (since this is a
linear function of the steady state probabilities) obtained with the
allocation algorithm which is represented by the policy. Howard's technique
for finding the optimal policy consists of iterating round an alternating
sequence of "value determination" (finding the expected return for a given
policy) and "policy improvement" operations (using the values obtained with
this policy to find a better one) until the choice of policy converges, which
it will do if the expected return is a linear function of the state and

transition probabilities, and the Markov chain is ergodic.

In principle the sheer size of the policy space, the number of different
possible allocation algorithms (represented by all the possible different sets
of values that the variable elements in the allocation matrices might take)
appears to make this idea impractical before it even gets started, and so of
course it would bz in general. However the hope behind the idea of using this
technique is that it might be possible to take advantage of the strong
recursive structure which has been displayed in the components of the

transition matrix, to see how the (value determination - policy improvement)
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iteration will work in the 1ight of the knowledge of this structure. The hope
is an optimistic one perhaps but a closer study, which has not been pursued
further in the present work, may enable some kind of cpmparison between
algorithms to be made. For example, it should indicate that in the given
model with N=4 the values of h and h' in‘figure 5.11 are immaterial since they
represent the choice of where to place a 3-word block in the empty 4-word
memory. For k,k' and j,j' in figure 5.10 however, it seems clear that it is
better to place the 2-word block at one end rather than in the middie of the
memory, so that the prediction should be k' = j =1, k = j' = 0. It will be
interesting to see if these kinds of statements, and mora, can be predicted by

using dynamic programming techniques.

The rest of this section now returns to explaining the first possible
development mentioned above. This is the natural grouping of the states which
has been discovered from the simplified steady state equations 5.20, and the

effect of this grouping on these equations.

5.3.1 Grouping states by columns and by rows

In constructing a set of allocation matrices An, there are generally many
(increasingly many with N) states or memory configurations for which there is
a choice of where a new request of a given size n should be placed, that is,
there is an increasing choice of places in which non-zero probabilities may
occur, and therefore of what their values should be; see figures 5.7,

5.9 - 5.,12. These choices indicate that two separate grouping operations can
be pertormed, first on the columns of equatidns 5.20, and then on the rows.
These oparations lead as a result to equations in which new steady state
probability variables appear. They hold true regardliess of the choice of

allocation algorithm.
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Column grouping. The individual (column) equations of 5.20, are grouped

together if their corresponding "to" states contain the same number and sizes
of allocated blocks, without regard to their allocated positions. Figure 5.28
shows how the matriX‘(anAn)-K of these equations is grouped for the example

case N=4.

This guarantees that if any two "to" states are possible alternatives in
the allocation of a request into any of the "from" states, that is, if any row
of the An matrices could contain positive probabilities in the columns
corresponding to these "to" states, then these columns of equations 5.20 will
be grouped together. In terms of figures 5.9 - 5.12 this Qrouping brings
together again all the terms containing factors which are allocation
alternatives, such as terms containing z and z' ; w, w' and w" ; etc. All the
column equations in each group are added together and a new column equation
results. This grouping replaces the uncertainty of not knowing which of a
group of possible “to" states any allocation transition may lead to, by the
certaincy that it must go to one of them in the group. Again in terms of the
diagrams, when the addition is performed the variables z and z' are replaced
by their constant sum, z+z' = 1, and similarly w+w'+w“ = 1, etc. The groups
of "to" states, which appear along the top of figures 5.28, 5.29, 5.30 for the
N=4 case, can be used to label the new column equations which result from this

addition.

Row grouping. Following the column grouping, the "from" states, each of

which corresponde to a steady state probability variable T, Or row shown on

the left hand side of figure 5.28, also fall naturally into groups, see figure
5.29. States, or rows of equations 5.20, are grouped together if they contain
the same numbers and sizes of allocated blocks and also if they have the same

maximum gap size, without any other regard to the allocated blocks' positions.



5.3 : Using the algebra : Allocation independent equations 155

i
o
1
n
N

_
0oog [t e .y SO R
coa | ra 2 g g I
aocy |, i b - e, . 3e S R

- © - i .

| ! ]
ag 0 =, A . L SN R
0. iz = H | ks S PN N
00 1 . et e A B
o3 % L = o 1 P | Tl | Tha
ac_1] ! P =2 e TR
0O oo |4 5 3 ST IR RN R |
O O |4 |, = BRI S0 IR TR
-t . - -— M4 3
O 3 | |3, N 2 e | Tiael [The
o . 0O= LR G . ::‘3 .:‘:/9'.3.-1.. -:.._..:.!’fd.il_-__._..’_._
O k] . e - ¥ w74 ?
ooy L1 O O B~ R BN Wt 53 R TN
Qg K : e e TN ke T i 7%
S — AERL yixs - g im e e eyt | TR
o O . g S N 2 R e 2 o TR
(] v A E . T e IR Y T s =
C__10 { " e T gl .
17T B o s iy REREI A Aran S D
. I

_ﬁ{a
1
o}
11

NS N STV BRI PRV PRI MO RTRIPRSE SIS L o i Ny
ST 4T O I R0 S AR DR ete-E VIR N MR NI B
R ' e, ' ; . "le, ;
i - AR Rl Ml pey o Rt o
o | 4 s PO ey T g™
O ol e, R B
St - 2 .- .."_,_4.7.-; - - '.,21....- —epa e g o
o Is . . Pz RS L2s
im0 O -~ I I RO M -PSON I B N e~V e P
|t e P T TS
9 i RRRE=%
 a— NN " SUPRUNON |- IS NP RN ho'icc= S
) g G -y %23 e “rey 1T
.0 Al e '.:&3. s T Y2s, B N R
o 4 “rel ' L
- ED B RN i B 7 i

=
s

|

Figure 5.2% Grouping columns of matrix (quAr)-K of column equations 5.20, N=4

The labels z,y,x,...,h attached to the columns and rows have been taken from
figures 5.9 to 5.12 to indicate how and where the alternative choices
available to any possible allocation algorithm have been recombined to form
the columns shown here.
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Figure 5.29 Row grouping of equations 5.20 following the column grouping, N=4

This figure is just a rearrangement of the rows of figure 5.28.
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A1l the states i in such a row group k are then found to have exactly the same
coefficients in the modified set of column equations resulting from the column
grouping. By replacing the individual steady state probability variables (ni)

in each group k by their sum nﬁ , T.e.

Tx = IR ‘ eese 5.22
K s in | »
group k

these coefficients can therefore be retained, one for each group, and

equations 5.20 are condensed:

N * * * .
a* I Kn An = o* K esse 5.23
n=1

The number of "unknown" variables ("i) is significantly reduced to the number

of groups (ut ).

Equations 5.20 are thus reduced to a grouped set of equations in fewer
grouped unknowns, as shown in figure 5.30. The two groupings are similar but
not quite the same, in fact one is a subsct of the cther. The matrix of
equations 5.20 is square so that there are an equal number S'(N) of equations
as there are unknowns, the steady state probabilities (wi), but the columns or
"to" states combine into fewer but larger groups than the "from" states or
rows, so that the result is less new equations than new unknowns. Their
solution therefore contains some degrees of freedom which must be wholly or
partly the variation which is dependent on the choice of allocation algorithm.
This introduces the possibility of treating the optimisation of the expected
storagz atilisation U for example as a linear programming problem in.the
variabis=s (HE ). These variables have to satisfy the constraints 5.23 and the

two additional requirements that they remain probabilities, that is:

znﬁ =1 and ng 20, all k
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but they can otherwise be varied. As they do so, any quantity such as the
average fraction U of memory allocated to blocks which is a linear combination
of the n; will also vary and can be optimised by the standard techniques of

linear programming. From equation 3.3 :
U=mu' =a*ux"

where u*' is the transpose of u* = (uﬁ ). Each u{ is defined as in chapter 3
equation 3.2 in the natural way as that fraction of the memory which has been

allocated to blocks in any of the states i in group k.

5.3.2 Explanation and Justification of the state grouping

Combining groups of columns of equations 5.20 by adding them together is
trivially legitimate since n is a row vector premultiplying the K and A
matrices. It merely corresponds to replacing linear equations by their sum.
To be able to reduce the number of rows, it has to be shown that in each
resulting condensed equation the coefficients of all the states i in a row
group k are the same, as was claimed in the last section, so that the
replacements indicated by equations 5.22 can be made. This is the purpose of
the present section, which proceeds by examining the individual basic matrix

components which contribute to equations 5.20.

The n-th component of the LHS of equations 5.20 can be expanded:

<~
>
it

oA (rnK—QnD)An

PaT*(D'-1)-Q,D)A,

i

rnT D An - rnT An - QnDAn

D except for the last column which is zero, by section 5.2.4.

where D'
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Using the expansion for K :
K = T'(D'-1) = T'D'-T' eees 5.21
established in that section, equations 5.20 can be rewritten
IﬂzrnT'D'An - zrnT'An - IQDA, - TD'+T')=20 , cees 5.24

Each of these components makes a contribution to the matrix of the uncondensed
equations 5.20, depending on the values of the maximum gap size 9; and the
number of allocated blocks m, in each of the "from" states i = 1,...,S , as

follows.
1) rnT'D‘An. For "from" states i with one block, m1=1, the contribution to
EjzrnT'D'An) is zero as D' has a zero right hand column. For states i

with more than one block, mi > 1, the cases with n > 95 cancel with

corresponding cases from —QnDAn , 3) below, leaving contributions with
values

r .
n_ L1y (allocaticn probability)
c m,
g1+1 i

from all the cases n = 1""’91 . The basic transitions represented are
formed by deallocating one block from each "from" state i with more than
one block, in all possible ways, and then allocating a new block of size
nup ta 9; words, with corresponding probabilities.

2) -rnT'An. The contribution is for all states i with 9 > 0 and consists
of all possible ways of allocating a new block of size n not greater than
the maximum gap size, that is, n = 1,...,91 . The value of each
contribution is
| "n

- ——X (allocation probability) .
o
gi+1

There can be no contribution from states i for values of n > 95 by‘the
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definition of the Ay matrices, which have zero rows whenever the block to
be allocated exceeds the maximum size gap for the configuration of memory
corresponding to the row. ‘

-QnDAn. For all states i with exactly one allocated block, my = 1, the
contributions have values

r
n

X (allocation probability)
c
91+1 '

and for each state i they represent all possible ways of allocating a new
block of any size n greater than the original maximum gap size, n > 9>
into the empty state. The contribution in the cases m; = 1, n¢ 9; is
zero by definition of Qn, as it is for m >1, n¢ 9. In the remaining
cases m{ >1, n> 95> it happens that Qn = rnT' and D = D' in the i-th
row, so that as promised the contribution from —QnDAn is cancelled by
the corresponding cases from rnT'D'An, 1) above.
-T'D'. Since D' has a zero right hand column, the non-zero contribution
here is for all states i with more than one allocated block, m, >1l. For
each such state i, all possible dea]]ocations of one block are included,
with contribution values

‘1

g1 M

i
m

T' has a contribution to all states i, with values

1
Cgi+1

cn the main diagonal in the matrix diagram.

From this Tist of contributions it can be seen that, as claimed above,

for any state 1 of any given row group k the sum of the contributions

occurring within a given column group is constant. Any variation in the

allocation matrices An can only redistribute the contribution within the
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columns of a column group and can not cause variation between column groups,
as the resulting total number and sizes of blocks must stay the same. If an
allocation is possible into a column group for one state i of a row group k,
then it must bg equally possible for all the other states of k. )In cases 1)
and 3) above it does not matter that the resulting maximum gap size may
possibly increase from g; as a result of a deallocation, and moreover possibly
increase differently for different i in a row group k, because of the very
fortunate cancellation of the allocation contributions from rnT'D'An and
—QnDAn in the cases n > 9. The contributions from the other components D',
T', Qn depend 1in value only on 9 and m. and are equally confined to column

groups.

For example, consider the contributions to equations 5.20 from the first
component, rnT'D'An, which occur for those states i with more than one block,

m; > 1, and (for a given n) with maximum gap size g; 2 n. Consider the

factors of this component in turn. ™ is a constant irrespective of choice
of state. T' is diagrnal with elements l/cg

i
a given row group, since 9; is constant for all states i in the group.

+1 which wil! remain constant for
The non-zero values in D' depend only on m. in fact they are 1/m1, and so
will be constant for a row group, further, it is easy to see that if one state
in a row group has a deallocation transition (non-zero element of B') to just
one (two, three, ...) state(s) in a group of columns, then all the other
states in the same row group must also have just one (two, three, ...) such
transitions to some state (not necessarily the same one of course) in the séme
group of columns. Finally, a block of size n can be allocated into any of the
resulting states since n ¢ 95 and the maximum gap size can not decrease on a
deallocation. HWhatever allocation choice is made (including possibly mixtures
of choices with varying probabilities) for any of the states in the row group,

the addition of all the column equations in a group reduces the choice to the
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certainty of knowing the resulting set of sizes of allocated blocks in memory,
that is, the allocation must take place and the result is confined to the

states labelling the columns of the group.

The following rules for writing down the coalesced set of equations 5.23,
or filling in the condensed matrix (figure 5.30 for N=4), are derived by |
collecting together the contributions from 1) - 5) above.

1) Row groups k with more than one allocated block.

a) -T'D' : deallocate one block all possible ways,

N.B. 1

coefficient = -(deallocation fraction) X —
c
b) rnT'D'An : deallocate one block all possible ways, then allocate one
block for all possible sizes n up to and including the original
maximum gap Size 9y

r

coefficient = -(deallocation fraction) X c

g, +1
2) Row groups k with exactly one allocated block.
-QnDAn : allocate one block for all possible sizes n greater than

the maximum gap size 95 into the empty state.

v r
coefficient = - c L
g, +1
3) A1l row groups.
a) -rnT'An : allocate one block for all possible sizes n up to and

N.B. The term “deallocation fraction" means, for each column group, that
proporiicon of the total ways of deallocating one block which leads to that
group. Ffor example, if a row group contains three 2-word blocks, and two
1-word blocks, then there are two possibilities, either deallocate a 2-word

block (three ways), deallocation fraction = 3/5 , or deallocate a 1-word block
(two ways), deallocation fraction = 2/5 .
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including the maximum gap size 9

r
n

coefficient = - c

gk+1

b) T' : enter a value on the "diagonal", i.e. in the column group entry
which matches (contains) the row group.

coefficient = 1

g, +1

Each coefficient contains a factor 1/cg +1° which is constant along a

k
given row group k. As they stand, equations 5.23 are homogeneous 1inear

equations in the unknowns nﬁ , with the added constraint that an =1. It is
therefore possible, if convenient and desired, to absorb this constant factor
by redefining the "variables” so that the equations 5.23 govern the "unknowns"

4.

nf /cg +1° and the matrix is simpler, as appears in figure 5.31 for N
k

The new unknowns no longer add to 1, but the previous constraint Znﬁ

1 is

unchanged of course.

5.3.3 Summary of section 5.3: Allocation independent equations

Following the reduction of the steady state equation to equation 5.20, a
study with the aid of figures 5.9 to 5.12, the basic allocation matrices for
the general allocation algorithm in the N=4 case, revealed that there is a
natural way of grouping together the states corresponding to the individual
column equations of 5.20. This is by reference to the choices possible when
constructing the allocation transition matrices An’ that is, the choice of
allocation algorithm. States which are possible alternatives as the result of
any particular aliocation in any configuration, are put into the same group.
This grouping nullified the allocation choice in the sense that in any

individual case, whatever alternative resulting state is actually chosen, the
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Figure 5.31 Simplified matrix of condensed equations 5.23, N=4

The simplification from figure 5.30 is by absorbing the factors 1/c

constant along each row, into the definition of the "variables"

Kk
*
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resulting group must be the same.

Having performed this column grouping, perhaps to some surprise it was
then found that the rows of the resulting modified form of equations 5.20 can
also be similarly grouped as a consequence. This is because in all the
modified equations the coefficients of the states in each row group turn out
to be the same, so that the group probability variables (n{ ) defined by
equation 5.22 can be introduced. The rows can be formed into the same groups
as the columns but Tess completely as an extra property ignored by the column

grouping, maximum gap size, is preserved.

The details of both sets of groupings are confirmed in section 5.3.2, the
reasons for the unexpected row grouping displayed and examined, and the rules
for writing down the condensed equations 5.23 directly without reference to

equations 5.20 are derived.

These condensed allocation independent equations 5.23 were discovered
initially from curiosity aroused by constructing alternative matrices
(anAn)-K to that of the first fit allocation algorithm shown in figure 5.26
for N=4. These reduced equations represent an advance on equations 5.20,
which they really are in a composite form. The original number S(N) of states
and equations is reduced to the number of grouped state probability variables
n; » with a further reduced number of equations. The difference between
these, the maximum number of degrees of freedom allowed to the allocation
algorithm in equations 5.23, int}oduces the possibility of doing linear
programming on these equations,.for example to find the best or worst possible
utilisation since this is a linear function of the variables ¥ . The
condensed equations have so far resisted attempts at solving them directly or
reducing them further by appealing to the apparently fairly compl icated

structure of their matrix (figures 5.29 - 5.31).
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A related possibility instead of removing the possible allocation choices
by grouping the states together is to try using dynamic programming techniques
to see if it is possible to compare these choices in ;erms of some linear
performance function, such as the storage utilisation. This was discusscd at
the beginning of this section although the investigation has not yet been

carried very far, and has not been examined further in this thesis.
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Chapter 6 : Computing the exact probability behaviour of small memories

One way of investigating the model of storage allocation developed so far
is actually to construct the transition probability matrix P and use the power
method of equation 3.13 to calculate the convergent sequence of successive
vectors =(T) for T = 1,2,... from a given initial vector of state
probabilities =(0). Although, as will become clear below, the memory sizes
for which such an investigation can be attempted are very small, it can
provide an indication of performance behaviour in models with larger memories.
The choice of allocation algorithm is almost irrelevant for the 4-word memory
which appears in most of the example figures (these have been constrained by
the practical difficulty of displaying larger matrices in detail, such as the
89 X 89 matrix needed for N=5, on one page), but there are increasingly many
memory configurations where an allocation choice is possible as N increases.
It is possible that any differences in utilisation or fragmentation which may
be observed, for N=10 for example, will be enongh to indicate what may bz the
differences between alternative allocation algorithms when N is large. This
applies equally when comparing the effects of different request distributions,
in an effort to find out how the relative performance of different allocation

algorithms depends on the choice of distribution.

Such differences would not be apparent at N=4. However, there may
equally be effects that are invisible at N=10, say. It must be pointed out
that the influences of both the end effects and the lack of choices available
in memories as small as this will be very strong when compared with memory
sizeé which are cne or more orders of magnitude greater,’and so any inferences
about the behaviour in a larger memory must be made with caution. Because of

this and of the unlikely possibility of being able to extend these
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computations very much further with the present implementation, only a
representative set of computations have been made to try to find out what

comparisons this implementation of the model is able to make.

- One significant advantage of the power method is that it gives an
indication of how quickly or slowly the successive state probability vectors
w(T) converge to the steady state equilibrium vector =. The convergence of
this method depends on the relative magnitude of the dominant eigenvalue
(which has value 1) of the transition métrix P to the next largest. If this
next largest magnitude eigenvalue is close to 1, then convergence will be slow
and it is at least possible that better numerical methods such as simultaneous
iteration will speed it up. See Jennings and Stewart (1975), or Stewart
(1977, 1978) for a deécription and comparison of simultaneous iteration and
some other methods. However, unlike these other possibly more direct
techniques which may proceed more quickly to the solution, the power method
reflects the actual behaviour of the model so that if convergence is siow with
‘the power method ther the transient behaviour from a given starting state in
the model will take a correspondingly long time to die away. In practice the
rate of convergence has been found to vary mainly with the request
distribution, but never to be so slow that no progress is apparent at each
iteration of the computation. In case the rate of convergence did turn out to
be unreasonably slow, a simple and cheap numerical technique which ought to be
appropriate for the power method, the épsi]on algorithm, has been used as the
computation proceeds to provide an estimate of the final converged value of
the ecguilibrium storage utilisation U. There is no dependence of the power

method computation on the epsilon algorithm.

The practical computation of the transition probability matrix P is

worthwhile if it leads to insights and understanding both of its structure and
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of other aspects of the working of the model. This was in fact the case when
an early implementation of the calculations described here led to a careful
examination of the method which was used to construct the transition matrix,
and so to the realisation of the algebraic structure of P as described in
chapter 5. In principle P can be constructed if the memory size N and
allocation algorithm are given, for it is then determined. For any starting
state (or row of P) all the possible transitions that can be made to other
states can be calculated with their respective probabilities, and so each row
of P can be filled in accordingly. Alternatively, the basic matrices (Qn), D,
(Tn), (An), A, T defined in chapter 5 can first be calculated, so that
expression 5.12 or 5.13 can then be used to calculate P in terms of these
simpler matrices. This will have exactly the same result as working P out row
by row, for as chapter 5 showed, the two procedures are essentially the same.
In practice of course the rapidly increasing number S = S(N) of states as the
memory size N increases is bound to mean that any such computation is
eventually limited either by storage space or by computation time, and by both
sooner rather than later. With the computing resources available to the
author at the University of Newcastle, the IBM 360/67 and subsequently the
370/168 computers running under the MTS operating system, it has been found
possible to compute models of memory size up to N=12 words. At this point the
time required to. compute models of Targer memory sizes was increasing by a
factor of over three times as much for each extra word of memory. A model
with N = 13 words would have required over 24 hours of computing time, and

this was judged to be not worthwhile with the present implementation.
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6.1 A straightforward implementation of the power method

This was programmed in Fortran on the IBM 360/67, before the 370/168
computer was available. After‘reading in the parameters: memory size N and
distribution of request size (rn), the transition matrix P was first
constructed and then used to compute successive vectors 3(T), T=1,2,...
starting with an initial probability vector =(T=0). As each vector =(T) was
found, the scalar product U(T) = =(T) . u' was formed to obtain the expected

utilisation U(T).

This method will not be described in detail since a subsequent diffefent
implementation described below proved to be more efficiént. It is worth
mentioning that the representation and accessing of P, n(T), n(T+l) and u
presented a problem since in general each was too large to be stored in main
memory to allow random access. To get round this, the row vectors and the
matrix were partitioned into equal width subvectors and submatrices
respectively, and all were stored sequentially on secondary memory (disc
storage). Each submatrix of P was calculated and stored row by row, and only
the non-zero values kept so as to take advantage of the sparseness of P. A
gap of n intervening zeroes was represented and easily distinguished by
storing (-n) in place of a probability. The operation of equation 3.13 was
performed once with a single scan of P, »(T+l) and u, and several sequential

scans of w(T). Equation 3.13 takes the partitioned form:
m (T+1) = =(T).P, , ko =1,2,... cess 6.1

where the suffix k is used to index the subvectors and submatrices. The
largest memory size computed with this method was N=8, which required over an

hour of computing time on the 360/67 computer.
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6.2 Using the algebraic form of P to try to improve the power method

It turned out that roughly one third or more of the processing time to
perform one complete computation for a given size of memory and cchoice of
allocation aldorithm and request distribution in this first implementation,
was taken up with computing and storing the transition probability matrix P,
before it could be used to produce the =n(T) vectors in successive iterations.
Moreover, although P is very sparse it does contain a fairly approximate
average of 2N non-zero elements per row, all of which had to be stored along
with roughly N or more indicators of gaps in each row; compare figures

4.6, 4.7 for example. In contrast to this, in the algebraic expansion 5.12 of

P:
P = 2Q DT+ (2Q DA, ) (T+A(T+A(...(T+A)...))) cees 5,12

the basic matrices in this expansioﬁ have an average of one non-zero element
per row so that they are very sparse, and moreover these are arranged in
diagonal patterns accerding to the rocursive structires described in

chapter 5. It seemed a possibility therefore that instead of multiplying the
row vector =n(T) by a pre-computed and stored P, the vector could be muitiplied
one step at a time by each of the basic matrices according to the expansion
5.12. The advantage of this would be that none of these basic matrices would
need to be kept anywhere in storage, with a consequent saving in both space
for storage and time for accessing the array, although some of this saved
processing time wculd have to be used to continually recompute the elements of

the matrix.

The space acvantage gained by not storing the matrix has indeed allowed
larger models to be computed, and it has been accompanied by a drop by a

factor of more than two in the processing time needed compared with the simple
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implementation. This is possible because the second implementation can and
does recognise and avoid those parts of the computation which are‘either all
zero or are subsequently unused. Although this justifies the structured
approach as being more successful with regard to bothAspace and time, its
increased efficiency has not been found sufficient to progress as far as would
have been 1iked along the exponential curve of increasing computation time
with increasing memory size. In both implementations of the model, the
processing time has been found to increase by over three times for each extra
word of memory size so that there is approximately thirty-seven times as much
computation in the N=11 model as there is for N=8 with the same |
implementation. N=12 is the largest model that has been computed with the
structured model, 120 times as much computation or over two orders of
magnitude larger than the N=8 model. Although the difference between 8 and 12
is not great, each iteration of the N=8,9,10,11,12 models took respectively
23, 78, 262, 850 and 2762 seconds of computation time on the 370/168 computer
to complete. For the uniform request distribution, the N=8 model required

10 iterations to achieve convergence to four decimal places of accuracy and
was complete in 218 seconds (the first two iterations are shorter due to the
efficiency checks detecting and bypassing whole blocks of initially zero
probabilities). "This compares favourably with the 70 minutes needed for N=8
by the former more simple implementation on the 360/67, ever though that
computer is about five times slower. However, the N=12 mode1 required

11 iterations and 28160 seconds (7 hours, 49 minutes, 20 seconds) of

computation time to complete with the second implementation on the 370/168.
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6.2.1 Explanation of the idea by which no matrices need be stored

The idea is that the position of the diagonals in any given basic matrix
should dictate which segments of = (T+1) will be contributed to by which
segments of =n(T), and the values of the elements in the diagonals of each
basic matrix are sufficiently simple to be easily calculated on the spot by
knowing the position of the diagonal and of the element within it. This
scheme has been implemented using recursive procedures in Algol W on the

370/168.

As an example to explain how this is intended to work, more or less in
the pictorial way that the idea originally occurred, consider the operation
displayed in figure 6.1. An arbitrary (row) vector x is to be post-multiplied

by a basic matrix (D, say) to produce a row vector y:
_X_ . D =l *® 00 6.2

In this conceptual example x would start off at the beginning of the (T+1)-th
iteration as = (T), at the end of the iteration some vector y would contain
n(T+1), and during the iteration the matrix would be any of those in equation
5.12. In figure 6.1, the deallocation matrix D has been chosen as the eXamp]e
(compare figure 5.1). The vector x is shown turned on its side (transposed)
down the left hand side of the diagram, and the vector y appears along the

top. The multiplication xD produces the elements (yj) of y:

N
_yj =1i:1x,'d,ij . J = 1,00-,5 ssee 6.3

This can be vieweu pictorially as producing the elements yj one at a time, by
"marching" the co:umn vector x across the matrix D one column at a time; for
each column j of D thus marched over, yj at the top is formed by taking the

scalar product of x with the j-th column of D. Since D is sparse, this can be
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Figure 6.1 Operation of equation 6.2 : x . D =y

Contributions to the output vector y and from the input vector x occur in
contiguous segments because the elements of D occur in contiguous diagonals.
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viewed as accumulating contributions to the appropriate elements of y whenever
a non-zero element of x "hits" a non-zero element of D; the product of each
such "collision" gets sent up to be added in to the element of y sitting at

the top of the column in which the collision occurred.

The point of Tabouring this piece of elementary matrix algebra now
appears. The matrix D consists of a collection of non-zero diagonals (some of
which may be only one element long). As x "marches" across any particular
diagonal of D, successive elements (xi) of x make contributions to successive
elements (yj) of y, for as long as the diagonal lasts. The diagonal has the
effect of choosing a segment of x to be contributed to y. The length of the
segment is the length of the diagonal. Its position depends only on the
position of the diagonal; if the diagonal is near the top of the matrix then
the segment of x comes from near the beginning of x, and if the diagonal is
near to the right of the matrix, then the segment contribution to y is near to
the right hand end of y. The vaiues of the contributions to each element of y
dapend on the correspending values of the elements o7 x and of the diagonal of

the matrix.

Hence if the matrix D (or any other of the basic matrices in the
expansion of P) is viewed without the aid of figure 6.1 just as a collection
or list of diagonals, then the multiplication operation can be viewed as a set
of selections of segments of the input vector to be contributed to the output
‘vector, the actual positions and values of the segment contributions being
determined by the actual diagonals. In terms of a computer implementation,
this becomes a set of sequentiaj operations on an input vector and an output
vectdr, the actual values used in each sequential operation (the values of the
elements of the diagonal of the matrix) being computed each time they are

required instead of being stored.
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These sequential operations, resulting directly from the sparse, simple
diagonal nature of each of the basic matrices, are the key to the
implementation, as they allow the length S(N) of the input and output vectors
to greatly exceed the amount that can be stored and rahdom]y accessed in
random access memory. The vectors are kept on secondary (disc) storage and
the sequential access with relatively few jumps needed, one.for the beginning
of each new diagonal, makes it possible to use this storage medium reasonably

efficiently.

6.2.2 Partitioning the computation by using the recursive algebraic structure

The earlier implementation of the power method described in section 6.1
which started by computing and storing the transition matrix P, took no
account of its structure other than its sparseness, either to compute or to
store it. The partitioning of the computation into equal sized segments
limited in size so that they fitted into main memory was chosen without regard
to any other properties of the matrix. In the revised implementation, the
recursive structure of the transition matrix P has been used to choose the
sizes and positions of the segments, and in fact to some extent this is

necessary for the dynamic computation of the elements of the basic matrices.

In this section, the notation S(N) is written as SN for convenience. The
states 1,...,5(N) are partitioned into segments of two different sizes, f2M
and fZM-l as follows; see figure 6.2. The maximum number of such segments
ever required to be in main memory at once in order to be able to carry out
the power method computation turns out (below) to be two. A positive integer

M, the "memory size index", is chosen for which it is assumed to be possible

that two segments or vectors of length fZM can be accommodated in memory at
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once. Here as before, fn defined in equation 4.2 is the n-th Fibonacci
number. The set of states indexed from 1,...,S(N)=f2N is split into N-M+2

subsets:

w
1]
—h
]

= fonez ¥ fonca oo Tyt fog F Tono

=S + ...+ S, +f Sy cees 6.4

N-1 T SN2 M 2M-1

that is, from 1 to Sy _;, from (S, ,+1) to (S, _;+S\ ,) and so on. As can be

seen in figure 6.2, the first SN_1 states are all those which begin with a

1-word block, and so on until the group of size SM which are all those
beginning with an M-word block. The term foy-p which follows is the number of

states which begin with a block of M+l words or more, and the final SN_1

states are all those for which the first word of memory is empty.

After this initial partitioning, all the segments larger than S,,, those

M’

of sizes S No2? **° SM+1’ are themselves partitioned in the same way, and

N-1> O
this process is repeated until all the resulting segments are either SM=f2M or
f2M~1 in size. There will be fZ(N-M) of size S, and fZ(N-M)-l of size Ty 4.
The resulting set of segments forms the partitioning of the SN states with

which the computation is carried out.

6.2.3 Multiplying a partitioned vector in stages by the transition matrix

At the start of each jteration in this implementation of the power
metnod, there are three partitioned vectors in secondary storage. The first
cailed Ty is to be multiplied by P and the result placed in the second,
calied r

1+ A third work vector w is initialised to contain all zeroes. The

computation proceeds in several stages.

For n = 1,2,...,N the following is carried out: (10 XIQnD) is placed
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temporarily in_gl, and then (E_1 x:An) is accumulated in w. After n=1, w
contains gleDA1 ; after n=2 w contains EO(QIDAl + QZDAZ) ; and eventually

after n=N, w contains EO(ZQHDAn).

Next, (wX (I-A)—lT) is placed in Ty which then contains

-1
7o (2Q DA ) (1-A) T,

Next, (30 X T'D'T) is accumulated in Lig D' is the same as the
deallocation matrix D except that it has a final zero column, and T' is the
pseudo-inverse of T defined by equation 5.16 in section 5.2.2. From section
5.2.4,

N

T'D'T =nflanTn eoes 6.5
After this operation therefore, the vector called T contains the final
product. A simple linear scan is made to collect the utilisation and, in
order to be able to compute the =xpected internal fragmentation E[IF] in
equation 6.10 below, the subtotal sums of the individual probability elements
of LS separated into subgroups according to the number of allocated blocks in
each state. As a check, the sun of all the elements of’gl should be unity,
and so this sum is also collected for inspection after each iteration. After
a test for convergence, the pointers to T and T, are interchanged and then

the next iteration is started if convergence to sufficient accuracy has not

been reached.

The details of each of these stages are complicated. Although simple in

principle, the program was not easy to write and extensive and careful

checking was necessary to eliminate mistakes.

The order in which the procedure written to calculate (30 x:QnD) performs

its operations is illustrated in figure 6.3(a), and it follows equation 5.5
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for the recursive composition of the deallocation matrix D. The procedure is
written to perform any part of this computation for whatever submatrix of D is
passed as a parameter, and it is initially called with parameters to indicate
the whole of D. It breaks up whatever submatrix of D}it is passed according
to equation 5.5, and calls itself recursively passing as parameters the
successively diminishing submatrices on the main diagonal, then again
recursively calls itself passing the successively diminishing diagonals on the
right hand side and finally calls itself for the submatrix in the lower right
corner. No computation takes place until a call of this procedure is passed a
parameter to indicate a submatrix of D equal to one or other of the segment
sizes fZM or f2M-1' When this happens the appropriate segment of T is read
into main storage and is first multiplied by the corresponding segment of Qn‘
Since Qn is diagonal this requires only a linear scan of the segment of g
This vector is then used to compute the output segment to be written to Tps by
multiplying it by the specified submatrix of D. The arrangement of this
multiplication is also performed recursively in exactly the same way that D is
recursively split into fZM and fZM_l-sized segments. This is possible because
the recursive structure of D expressed in equation 5.5 does not of course stop
juét because the arbitrary segment size M is reached, but continues to be
valid for smaller submatrices. The order in which each segment-sized
submatrix of D is dealt with as a result of this recursive splitting is
illustrated in figure 6.3(b). L) is initialised to zero before this
multiplication is started, and each segment of the matrix requires one read of
the corresponding segment of U from secondary storage, a read of the segment
of P (since a previous submatrix in the same column but a different row
position of D may have already accumulated some probabilities in this segment

of'gl), and a write of the updated T segment back again to secondary storage.

The other stages of the computation for one iteration, (311X An),
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Figure 6.3 Multiplication by Q“D : the order in which segments are computed

The top figure (a) shows how a submatrix of D is split by equation 5.5 into
smaller submatrices, and the order in which these are processed.

The bottom figure (b) shows the resulting split into submatrices of size fZM’
f2M-1 and the order of processing these. Compare figures 5.1, 6.2.
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(wX (I-A)"lT), (_110 X T'D'T) are similar in the manner by which the
computation for the whole matrix is recursively split up until segments of a
size for which vectors can be brought into the program's main storage are
achieved. Each computation contains only one basic mairix (An; (I—A)'l;

or D') which is non-diagonal, the multiplication by the diagonal T' and T
matrices being accomplished as it is for Qn by a single sequential scan of the

input or output vector, either just after being read in or before being

written out to secondary storage.

The multiplication by T'D'T is very similar to that by QnD. A check is
necessary to make sure that the elements in the final column of D' are set to
zero. T has elements Cgi+1’ and T' has reciprocals of these, where as before
95 is the size of the largest gap in state i and cgi+1 is the probability that
a request will be for a block larger than this size. The calculation of the
elements of T and T' is therefore straightforward and, as in the case of Qn

which has elements rn/cg 4 OF 0, depends only on the maximum gap size 95 in
i

each state ?, which kas to be calculated each time it is required.

The multiplication by An’ and by (I—A)'l, is arranged in a way which
allows any possible allocation algorithm to be as easily implemented, and in
just the same way, as it would be in any actual storage allocation system.
The arrangement of the splitting of either of these two computations into
segments is the same in both and is illustrated in figures 6.4(a),(b); it
mivrors that of the deallocation matrix. Figure 6.4(a) shows how any
submairix which is still too large is split first into successively smaller
blecks down the main diagonal, then into correspondingly sized blocks along
the bottom, and one final block in the bottom right hand corner. Figure
6.4(b) shows the order in which the submatrices of size f2M and fZM-l into

which the matrix is eventually split, are processed as a result of arranging
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(a) Top figure: how each submatrix is recursively split, and the order
(b) Bottom figure: the order in which segments are processed as a result
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the recursion in this order. When such a submatrix is reached, the input
segment of either w or T is read into main storage as before but the
computation within the submatrix is not recursively sp]it as it can be for the
deallocation matrix, owing td the more complicated possible variation of the
elements in either of these allocation matrices,.An or (I-A)"l. Instead, each
row or input state of the submatrix is considered in turn and the
configuration of memory which it represents is calculated as a sequence of
gaps and blocks. For multiplication by An’ the allocation algorithm is
invoked with this configuration and request size n, to find the resulting
possible configuration, or configurations, and their probabilities if more
than one is possible with a non-deterministic algorithm. If any of these
configurations nhave state indices within the columns of the submatrix, then
the probabilities which are‘the elements of the submatrix are used to perform
the resulting mu]tjp]ication by contributing their product with the input
vector element to the correct place in the output vector. Resulting allocated
configurations with indices outside the column range of the submatrix are |
discarded (they will cause contributions when another submatrix is
considered), and also so are the cases for which no allocation is possible.
This method has the disadvantage that it can compute many of the allocation
transitions from each state for all the submatrices lying along the row
corresponding to the state, in order to find and use only those which lie
within a given submatrix, and so has to "throw away" a fair amount of
computation. On the other hand, because it disregards any (possibly very
compl icated) structure possessed by the allocation a]gorithm; which would
require a different traversal of the structure to be re-programmed in each
case, this method is able to cope with any possible allocation algorithm. The
algorithm itself is programmed in the same way that it would be in a real

situation, by placing a block of a given size into a specified configuration
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of the memory, and not by reference to any structure that may be imposed on

the allocation matrix.

For the more complicated multiplication by (I—A)—l, this is of course
equal to the sum (I+A+A2+.,.) and this is the way in which the multiplication
is effected. The procedure is the same as for the multiplication by An' A
check is made for each segment-sized submatrix, to see if it is lying on the
main diagonal, and if it is then the entire input vector segment is
contributed to the output segment to give the multiplication by the identity
matrix. Allocations are then computed row by row as for An. In this case
there is a recursion, but a different one from the structure derived method of
partitioning which obtains the segment sized submatrices. The allocation of
all possible sizes of request from 1 to N is attempted into the currently
reached configuration at each stage. Each allocation that is made is not only
checked to see if it lies between the column boundaries of the particular
segment-sized submatrix being considered to give the contributions for the
m.1tiplication by A, but is also used as the starting point for fu.ther
allocations to give the multiplications by elements of AZ, A3,... and so on.
The accumulation products of these double, triple, ...; allocations are kept
in a stack and all possible multiple allocations are enumerated by
backtracking. Whenever an allocation is unsuccessful, then all larger request
sizes at the current level must also fail, so that they need not be tried, and
the stack level can be reduced by backtracking to try the next size of request
at the previous level in the stack. The same is true when an allocation is
successful but has a lower index than the»first or leftmost column of the
output segment; it is not required for this segment since it is outside the
segment columns and also all its successors in still higher powers of A will
lie even further to the left because of the particular index order of the

states, so that they need not be considered. Both these tests serve to cut
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down the amount of backtracking computation. When an allocation is successful
and the index of the resulting configuration has not become too low for the
output column range, the configuration and its accumulated probability product

are stored and used to begin a new level of the backtracking stack.

6.2.4 Reducing inefficiencies in the "no matrices stored" implementation

There are a number of ways in which this revised implementation of the
power method as described so far would be more inefficient than necessary, if
no further action was taken to avoid them. The main cause of inefficiency is
that many of the segment sized submatrices contain all zeroes or operate on
segments which become all zero at a particular stage of the computation.
Checks have been included wherever possible in the program to avoid computing

numbers which must always be zero.

The array of information describing whereabouts on‘secondary storage each
segment of the vectors Tgs Tys W cCan be found, also describes segmenis which
are known to contain all zeroes. This description of zero segments is kept
up-to-date as segments are rewritten. Whenever such a segment is input to an
operation which must as a consequence produce all zeroes, the operation is
bypassed at the point of input if it has not already been 'avoided by anothzar
check. Even if the operation is not nullified, for example if the segment is
from the as yet still ‘empty output vector being accumulated, the input
operation itself is avoided and the input vector merely set to zero instead.
Setting an entire output vector to zero becomes the simple operation of

setting all the segment descriptors to indicate zero.

Operations which in general update vectors by first reading them in,

modifying them and then writing them out again, check that modification has
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actually occurred as the operation proceeds, and if there is no change, the

output operation is bypassed.

Many of the segments of which are input to the multiplication by QnD,

_T_I:O
n=1,...,N, are completely set to zero by the multiplication by Qn’
especially the later segments and for low values of n. The maximum gap in the
first state of each segment is the least such maximum for all the states in
the segment, and if it is not less than the request size n then the
multiplication by QnD, which would produce a zero segment after the

multiplication by Qn’ is bypassed. Approximately half these particular

segment computations are avoided in this way.

As has already been mentioned, in the multiplication by (I-A)'l, the
backtracking computation of ail possible mU]tip]e allocations is cut off at
any stage by observing whether the resulting state from any particular
allocation lies outside and tc the left of the columns of the particular
submatrix being considered. Since further allocations into this state can
only result in states even further to the left, there is no point in
attempting them, so that the nexf request size at the current level can be

immediately attempted.

The recursive splitting of the general form of an allocation type matrix
into segment sized submatrices is wasteful of computing time as it is more
general than is necessary for the multiplication by An’ since the blocks along
the bottom of the matrix in figure 6.4(a) not including the last one can only
be diagonal. Further, only one of these diagonal blocks can have non-zero
entries if at all, corresponding to n-word allocations into the beginning of
the subset of memory represented by the allocation-type matrix, which can only
occur if the subset of memory is at least n words long. The segmentation of

much more than half of all the submatrices in the complete multiplication by



6.2 : Using the algebraic form of P to try to improve the power method 189

An is avoided by only computing the correct bottom diagonal block.

In the two stage multiplication by QnDAn’ there are some segments of L)
computed from EOQnD which, although they contain non-zero probabilities, are
unused in the subsequent multiplication by An' This happens if the state
corresponding to the Tast column of the particular submatrix of D, which will
be the state containing the Targest maximum gap of all the output (column)
states of this submatrix, still has no gap large enough to allocate a request
of size n. It is simple to check for this during the partitioning of QnD into

segments and bypass those for which this is the case.

As a further comment on the efficiency of the computation, the simple
action of turning off array subscript bound checking which by default is
normally performed in Algol W, reduced the processing time required by the
finished program to three quarters that of the time needed with subscript
checking. A program operformance measuring tool of the MTS operating system on
the 370/168 called TIMETALLY was used on the working program. TIMETALLY
divides the memory space occupied by any program it is measuring into separate
areas of arbitrary equal size, and then samples and records as a histogram the
areas from which instructions are being fetched while the program is running.
This useful measurement tool gives a good indication of which parts of a
program use the most processing time. For the present program it showed that
between a third and a half of the time was being spent in four particular
procedures, three of thch are concerned with converting state indices tov
state configurations and vice versa, and the fourth was the procedure which
implemented the allocation algorithm by p]acfng a given request into a given
configuration. Normally, this indication would be sufficient justification
for examining these reasonably simple procedures.with a view to replacing the

Algol W with Assembler code for example, to make them faster. Although they
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were examined, this extra recoding effort, which it was estimated would
possibly have saved as much as another twenty or thirty per cent of the time
used, was judged not to be worthwhile. The exponential growth in the number
of states and processing time caused by increasing the memory size N means
that an increase in speed by a factor of more than three times is required to
be able to compute one more point on any graph of performance (utilisation for

example) against increasing values of N.

A necessary convenience in the program's operation is that after each of
the (2N+2) multiplication stages in each iteration: (30 %(QnD),
(m) XA, n=l,eie N, (WX (I-A)'lT), (mg X T'D'T), al three of the vectors
Tgs Mo W and a small number of other necessary variables in the computation
are copied to a "checkpoint" file on secondary (disc) storage. This allows
the program's operation to be interrupted at any point and resumed later at
the most recently checkpointed stage of the computation. When the program is
restarted, it cycles quickly arcund the control structure of the computation
until, from a count written with each set of checkpoint information, it
determines that the point at which the most recent checkpoint was written last
time has been reached. The vectors and all the variabies that were saved are
restored and the computation then proceeds. - By the crude method of doubling
the amount of secondary storage checkpoint space available and alternating
between essentially two checkpoint files, it was found possible to avoid the
chance that interrupting the program at random (by operator intervention, or
by job time limit exceeded) during the middle of a checkpointing operation
would make the checkpoint data useless by only being partially updated. A
pointer indicating which checkpoint Tile contains the most current set of data
is updated in one non-interruptible operation only after all the data has been
successfully written. (A better way would be to delay the acceptance of such

an interruption if checkpointing is in progress until it is completed. This
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would be possible with a Tittle more ingenuity. Further savings in the space
reqdired to save the intermediate stages of a computation could have been made
by noting which vector changes, and which two do not, in each stage of the
computation between checkpoints and only saving a copy of the one thét has
changed. These precautions and measures were not found to be necessary as in
practice there was sufficient temporary space on secondary storage for the

described operation to be carried out.)

6.3 Predicting converged values with the epsilon sequence transformation

As the successive vectors n(T) computed by the power method converge to

the steady state eigenvector m for increasing T, the utilisation:

U(T) = =(T) . u' (scalar product) eees 3.1

also converges tc ths steady state value
(scalar product) eees 3.3

where u' is the column transpose of a row vector u with elements representing
the fraction of memory occupied in each state, as defined in equation 3.2. If
the eigenvalues of the transition matrix P are (As), s =1,...,5", and the
corresponding left eigenvectors are (Es)’ s =1,...,5', where A1 =1 and
=, then in general the power method produces successive approximations
x(T) to = of the form

X

w(T) =Sflcs.(x

. |
) T cees 6.6

for some set of constants (cs), s=1,...,5" determined by the starting vector

a(T=0). It follows that the successive values of U(T) are of the form
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SI
WT) = ¢

.
C.(x.) cees 6.7
S;].S S

where the constants CS = Cgisdi' (scalar product), s = 1,...,S'. Convergence
follows for the (stochastic, irreducible) transition matrix P because as shown
in chapter 3, il =1, IASI <1 for all s = 2,...,S'. The expression for U(T)
in equation 6.7 is just the form for which the so-called "epsilon algorithm"
or method of extrapolation is most suitable. This method enables the eventual

- limit of the convergent sequence (U(T)) to be estimated from the initial terms

of the sequence.

For a full description of the epsilon algorithm, see for example Wynn
(1961), or more readably, Gragg (1972). Given any sequence U(0),U(1),U(2)...
known or guessed to be of the form 6.7 or at least close to such a form, the

table of differences in table 6.1 is constructed. This table uses the

o O o o

Table 6.1 Array of differences for the epsilon algorithm

“rhombus rule":

a

b ¢ (d-a)(c-b) =1, so that ¢ = b + 1/(d-a) cee. 6.8
d
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or in table 6.1,

D(j+1,T) = D(j-1,7-1) + 1/(D(j,T)-D(j,T-1)) . ' eees 6.9

An initial column of zeroes is placed in the j=0 column, and the sequence to
be extrapolated (in the present case, the successive numbers

u(0), u(1), u(2),...) appears in the j=1 column. As usual for difference
tables, successive columns contain elements staggered halfway between those in
adjacent columns. If the sequence U(T) is of the form U(T) = A + Bx! for some
x and constants A and B, then all the differences in the second computed
column (D(3,T) for T = 2,3,4,...) will be identically equal to the constant A.

If U(T) is of the form U(T) = A + BxT T

+ Cy', then the differences in the
fourth computed column (D(5,T) for T = 4,5,6,...) will all be identically
equal to A, and so on. The theory behind the epsilon algorithm and the
reasons why it works, are not obvious and in fact are far from trivial; they
are buried in the anaiysis of functions and Padé approximants (rational
functions of a complex variable). There is an extensive literature much of
which can be found by reference to the survey article by Gragy (1972).

Because the form of U(T) as given by equation 6.7 is exactly suited to it, the
epsilon algorithm has been used in the above described implementation of the
power method to give advance predictions of the storage utilisation U from the
values U(T). The algorithm costs almost nothing anyway, being simple, cheap
and quick to implement, as the rhombus rule is so simple. Only the upward
sloping diagonal vector of elements U(T), D(2,T), D(3,T),... 1in tablie 6.1
needs to be kept and not the whole table, as this is sufficient to calculate
the succeeding diagonal as soon as a new element U(T+1) is available. The
results of the prediction obtained from the epsilon algorithm appear with the
results in section 6.5. In general its accuracy was such that it was usua]]j

giving the value for U finally arrived at by the power method after about half

of the iterations of the power method were complete, when the uniform
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distribution of request sizes was being used, but it was disappointingly much

slower for the negative exponential distribution; see section 6.5.2 below.

6.4 An index mapping of the memory configurations onto the integers 1,...,S(N)

In implementing the power method it is both convenient and necessary to
be able to map the total number of states S(N) including the empty state, onto
the integers 1,...,5(N) so that each integer corresponds to just one state or
memory configuration. Whatever index mapping is used thereby defines an
ordering of the states. The implementations described used a mapping which
gives the same ordering as that in section 4.3 and shown in most of the
figures. For completeness' sake and because it is not quite trivial the

description of this mapping is given here.

Any memory configuration is Zascribed as a sequence of (gap block) pairs
as in section 4.3. For any given memory size N a mapping table is constructed
and used to map the states exbressed as (gap block) pair sequences into the
index integers and back again. As an example, table 6.2 shows this for N = 4,
Each row of the table corresponds to a (gap block) pair, in the order defined
by the relations 4.5 in section 4.3, so that the top row is for the pair (0 1)
and the bottom row is for the "special" (no pair) used tu indicate a final gap
of any length. Each of the N columns of the table corresponds to a memory
size n = 1,...,N. Each valid enf}y of the taS]e contains a displacement from
the first index integer, 1, to be used (added) when developing the index

integer for a given state.

The table is quite simple to construct. The top row contains all zero
entries. There is a valid entry at a given row and column position if the

(gap block) pair corresponding to the row can possibly exist (that is, it is
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(01)fo o 0 O

(0 2) 2 5 13

(0 3) 7 18

(0 4) 20
(11) 3 8 21
(gap block) pairs : (1 2) 10 26
(1 3) 28

(2 1) 11 29

(2 2) 31
(31) 32

(no pair) {1 4 12 33

Table 6.2 Index table for mapping states to integers, N=4

not too big) in the memory size n corresponding to the column. Where this is
not possible a special marker is used to indicate this fact (in the
implementation, fcr efficiency in column searching this marker is made to
point to the next valid entry in the column). The difference between any two
consecutive valid entries in any given column n, is the number of possible
configurations that there are of an n-word memory which begin with the

(gap block) pair corresponding to the first entry, and so it is a term from
the Fiponacci sequence. For example, there are f2(N-(1+2)) = f2 =2
configurations of an N=4 word memory which begin with the pair (1 2), so that
2 has to be added to the entry in the table in the n = 4 column at the (1 2)

rov to get the entry at the (1 3) row; 2 + 26 = 28.

For N = 4, to index the state (1 1)(0 1) for example, first consider the
pair (1 1). Since there are initially 4 memory words, find the ((1 1),n=4)
entry in the N = 4 table which is 21. This pair uses up 1 + 1 = 2 words and
so there are 2 left; take the next pair, (0 1), and find the ((0 1),n=2) entry
which is 0. With one word Teft, the final contribution is the ((no pair),n=1)

entry which is 1. The required index is then one more than the sum of these,
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or

Index[ (1 1)(01) J=1+21+0+1=23

Conversely, given the index 23, first subtract 1 to obtain the current
"index displacement", and start by searching the N = 4 column of the table for
~the largest entry not greater than this value 22. In this case it is 21,
giving the pair (1 1). This uses up 2 words, so proceed by subtracting 21
from the index displacement and skip to the n = 4-2 = 2 word column, to repeat
the search for the next pair. Continue until both word count and index
displacement reduce to zero. The special (no pair), if encountered, exhausts

the word count immediately.

6.5 Results

The largest size of memcry for which it has been practical to perform the
computations of either of the above implementations of the power method, is
N = 12. It has been found that there are relatively small differences between
different allocation algorithms at these low memory sizes, undoubtedly because
there are relatively few of the total number of possible configurations in
which a genuine choice is possible to any algorithm. Because of this,
although the original intention was to calculate values of the expectéd
utilisation U and internal fragmentation E[IF] for a range of allocation
dlgorithms and request distributions, it is sufficient to compare just three
algorithms, best fit, first fitland worst fit as well as the results obtained
from the relocation model described in chapter 4. The best fit and first fit
algorithms were described in chapter 2. Because they give results which are
very similar indeed up to N=12, the same computations have been repeated for

the "worst fit" algorithm. This algorithm, which is understandably not to be
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found described elsewhere (certainly not in any practical system), has been
designed so that intuitively one may expect that its performance is close to
the worst possible for any algorithm without regard to the shape of the
request distribution. As explained in chapter 2 sectfon 2.2, given a reaquest
to be allocated in a particular configuration of memory, the worst fit
algorithm allocates the request into the middle of the largest available gap,
leaving an amount of space on either side of the newly formed block in two new
gaps which are either equal in size or else different by only one word. (For
any particd]ar request distribution it may be possible to devise an algorithm
with even lower values for the expected storage yti]isation, by taking the
distribution into account. For example, if one particular request size,

say 10 words, has & very much higher probability of occurring in the queue
than any other, then to perform badly it might well be a good idea when
allocating requests to try and leave or create as many gaps of just 9 words as
possible.) The purpcsz of trying worst fit was to get at least some
experimental indication of how much variation in performance might be possible
just by changing the allocation a]gdrithm. The results of all this
computation appear in figures 6.5, 6.6 and 6.7 and tables 6.3, 6.4 and 6.5 and
show, again at these low memory sizes, that although the difference is

appreciable it is not very great.

As with the choice of allocation algorithm, when the largest possible
variation in request size is from 1 to 12 words, there is not a lot of scope
for comparing the resulting performance for very many different shapes of
request size distribution. Having regard to this and to the very few
measurements of actual request distributions which have been published as
noted in chapter 2, two such distributions have been considered here; negative
exponential and uniform. Of course, the computations could be repeated for

any distribution. OCne may intuitively expect that any distribution such as
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negative exponential in which the smaller request sizes occur more frequently
and larger sizes infrequently should result in better performance than is the
case with the uniform distribution which gives equal weight to all request

sizes.

6.5.1 Convergence of the power method

One reason for preferring to obtain the vector of steady state
probabilities by the power method, besides its simplicity, is that it also
naturally indicates the transient behaviour from any given starting point.
This has turned out to be unimportant, for small memory sizes anyway, as can
be seen from the examples in table 6.3, plotted in figure 6.5. Values of the
expected utilisation U(T) are shown after successive iterations 7=1,2,3... ,
starting at T=0 from the configuration which was called E in section 4.4.1.
Other starting states have been tried, and they give essentially the same
behavinour. After an ‘nitial short pe~icd of adjustment convergence to the
equilibrium vector is steady and at a constant rate which is neither very fast
nor, fortunately for the power method, excessively slow. The rate of
convergence is determined by the sub-dominant eigenvalues of the transition
matrix P and is discussed further in the next chapter, in section 7.1. The
number of iterations required depends on the memory size N and also on the

request size distribution as can be seen from figure 6.5.

It should be noted in passing that another reason for deciding to use the
power method is that it is compﬁtationa]]y stable. Because any starting
vector will always lead by exact computation to the unique steady state
eigenvector, any rounding errors which may be introduced into the computation

of the successive vectors n(T) do not build up but automatically decay, the
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(a) : Uniform request size distribution, first fit algorithm

T N=1 N=2 N=3 N=6 N=10

1 1.0 0.8750000 0.8271605 0.7752308 0.7531167
2 1.0 0.8750000 0.8143148 0.7518197 0.7243359
3 1.0 0.8750000 0.8189300 0.7547872 0.7258510
4 1.0 0.8750000 0.8193111 0.7559696  0.7270166
5 1.0 0.8750000 0.8195334 0.7564573 0.7275472
6 1.0 0.8750000 0.8195831 0.7566610 0.7277897
7 1.0 0.8750000 0.8195934 0.7567464 0.7279012

(b) : Exponential request size distribution, first

fit algorithm

T N=1 N=2 N=3 N=6 N=10

1 1.0 0.8819660 0.8518250 0.8627041 0.9027041
2 1.0 0.8819660 0.8226989 0.8017398 0.8414428
3 1.0 0.8819660 0.8331066 0.7963910 0.8134895
4 1.0 0.8819660 0.8338175 0.8022597 0.8074937
5 1.0 0.8819660 0.8337341 0.8054673 0.8094640
6 1.0 0.8819660 0.8350006 0.8070752 0.8121949
7 1.0 0.8819660 0.8350908 0.8079403 0.8140472
8 1.u 0.8319660 0.835112z5 0.808412C 0.8152171

Table 6.3 Convergence of expected utilisation U(T) T=1,2,... (see figure 6.5)

effect being to achieve convergence as if from a slightly different starting
vector. In practice there were no noticeable problems introduced by rounding
in either implementation both of which used the double-length (64 bit)

float rg point arithmetic of the IBM 360/370 computers. After each iteration
a check was made thgt the elements of each vector n(T) still summed to unity.

Since they always did, to better than at least eight significant figures, the

question of rounding errors was not investigated further.
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Figure 6.5 Convergence behaviour : utilisation U{(T) against event time T
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6.5.2 The epsilon algorithm: predictions of eventual converged values

The epsilon sequence transformation was described in section 6.3, and it
has been used in an attempt to predict the steady state utilisation U as soon
as possible from the initial values U(T), T7=0,1,2,... as T increases.
Typical examples are shown in table 6.4. The results did not 1ive up to
expectation for the uniform distribution, and were 1ndeed quite disappointing
for the exponential request size distribution. It is just as well that the
method is relatively simple, and cheap‘in its use of storage and execution

time.

The pattern of table 6.1 is followed in presenting the values in
table 6.4, except as follows. Because the upward sloping diagonals of
table 6.1 become available on successive iterations, they are presented as
successive rows in table 6.4; and also the 1ntermediaté even-numbered columns
of table 6.1 have been left out since although they are part of the epsilon
algorithm they contain values which are not approximations to the final
converged value of U. It can be seen that for the uniform request
distribution, the epsilon algorithm produces values for U to any given
accuracy no sooner than after about half as many iterations as are necessary
for the power method to produce convergence to the same accuracy. Thus
although it is certainly not startling its use in this case might be said to
be worthwhile. For the exponential distribution however it is hardly any
quicker than the power method itself, being quite obviously fooled to begin
with for instance by the initial downward swing of U below the eventual
converged value. Since the amount of computation required to get a value of U
increzses by avfactor of about three times for each extra word of memory size,
using the epsilon algorithm might allow one further such point to be computed

than might otherwise be obtained for the uniform distribution, but it is of no
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u(T)

1.0
.75311671
.72433592
.72585101
.72701662
72754715
.72778966

.72790119

.72795386
«72797943
.72799215
. 72799859

(a) N =

u(T)

1.0
.90270407
.84144280
81348350
.80749368
.80946395
.81219490
.81404717
.81521711
.81598778
.81651164
.81687232
81712331
.81730013

10,

6 : Exact

D(3,T) .

72053802
712577524
.73090422
.72799034
.72799386
.72799616
.72800098
72800358
.72800472
72800520

first fit

D(3,T)

. 73729468
79003002
.80585643
.80897664
.80239030
.81795182
81722308
.81747540
.81762349
.81766954
.81769767
.81772162

computations for small memories

D(5,T)

.72720626
.72796530
.72799385
.72800038
.72799166
.72800634
72800555

LI

D(7,T)

. 72799527
.72799633
.72799163
.72796611

D(9,T)

.72799500
. 72800850

D(11,T)

.72800547 .72800540 .72800553
.72800552 ...(quantities too nearly equal to
divide by their difference)

algorithm, uniform request size distribution

D(5,T)

.83039737
81377428
81392700
.81577345
.81715992
.81740006
.81778479
.81768769
81773762
81783213

«ve

D(7,T)

.81392278
.81375472
81970436
.81761859
.81764484
.81768133
.81770948
.81792845

e o

D(9,T)

,81593826
.81716063
.81764313
.81749357
.81702974
.81777642

D(11,T) D(13,T)

.81680571
.81767438
.81701286 .81770847
.81753981 .81776523

se 0 L X ]

(b) N =10, first fit algorithm, exponential requast size distribution

Table 6.4 Epsilon sequence approximations for U from U(T): two cases

Compare table 6.1. Also see table 6.3 and figure 6.5 for the successive
values of the expected utilisation U(T) in these examples.

Each row in this table contains entries corresponding to alternate entries in
the upward sloping diagonals of table 6.1. All the entries in each row T can
be computed from the entries in the previous row (T-1), as soon as the value
of U(T) becomes availabie.
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use where it is really needed with the exponential distribution, which takes

longer anyway to converge.

Thus, any success with this method is clearly limited in practice. One
poséib}e reason may lie in equation 6.7; as explained in section 6.3, the
method is only guaranteed to work for sequences of this kind.after enough
iterations have been made in order to produce at least as many columns in
table 6.4 as there are terms in the summation. In this case, there are up
to S' terms in equation 6.7 corresponding to the number of eigenvalues, or
size, of the matrix P so for any reasonable value of N this guaranteed state
of affairs is unattainable. The original hope that the earlier columns might
nevertheless produce good accuracy, is clearly at best only partly realised.
This lack of success with the epsilon algorithm does not of course rule out
the possibility that a different sequence transformation, or another method of

extrapolation, might do better.

6.5.3 Computed values of the steady state utilisation and fragmentation

The values obtained by the power method for the expected utilisation U,
the expected external fragmentation E[EF] and the expected internal

fragmentation ELIF] are shown in table 6.5 and plotted in figures 6.6 and 6.7.

Figures 6.5(a),(b) show the values obtained for U when the request sizes
are uniformly or exponentially distributed respectively, for the first fit,
best f:t and worst fit algorithms and also for the relocating model of
chapter 4 section 4.4. (Thus figure 6.6 repeats the values in figure 4.8.)
Not al! of the models have been computed for N=12. For the first fit
algorithm, uniform request distribution, the value of U = 0.7206 accurate to

four decimal places was arrived at after 11 iterations, taking 7 hours
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(equations
N S(N) U ELEF]
1 2 1.0 0.0
2 5 0.8750 0.1250
3 13 0.8196 0.1804
4 34 0.7901 0.2099
5 89 0.7703 0.2297
6 233 0.7568 0.2432
7 610 0.7467 0.2533
8 1597 0.7391 0.2609
9 4181 0.7329 0.2671
10 10946 0.7280 0.2720
11 28657 0.7239 0.2761
12 75025 0.7206 0.279%

ELIF]

0.5

0.3125
0.2256
0.1768
0.1450
0.1229
0.1066
0.0942
0.0843
0.0763
0.0696
0.0641

(a) : First fit

N S(N) U ELEF]
2 | 1.0 0.0
5 0.8750 0.1250

13 0.8196 0.1804
34 0.7901 0.2099
89 0.7703 0.2297
0.7569 0.2431

610 0.7469 0.2531
1597 0.7393 0.2607
4181 0.7332 0.2668
10946 0.7284 0.2716

— .
COOWONOOPDWN =
(AN
w
W

ELTF]

0.5

0.3125
0.2256
0.1768
0.1450
0.1230
0.1067
0.0942
0.0843
0.0763
0.0697

(b) : Best fit

11 28657 0.7743 0.2757
12 75025
N S(N) U ELEF]
1 2 1.0 0.0
2 5 0.8750 0.1250
3 13 0./681 0.2019
4 34 0.7522 0.2478
5 89 G.7261 0.2739
6 233 0.7077 0.2923
7 .610 0.6542 0.3058
8 1597 6.6838 0.3162
9 4181 0.6757 0.3243
10 10946 G.otvl 0.3309
11 28657 G.6037 0.3363
12 75025

ELIF]

0.5

0.3125
0.2178
0.1667
0.1353
0.1137
0.0980
0.0861
0.0768
0.0693
0.0631

Uniform request distribution
4.7, 4.

8)
Both

0.5

0.4375
0.4060
0.3867
0.3747
0.3661
0.3599
0.3551
0.3514
0.3483
0.3457
0.3435

Exponential distribution
(equations 4.9, 4.10, 4.11)

U

1.0

0.8820
0.8351
0.8192
0.8102
0.8090
0.8095
0.8120
0.8146
0.8177
0.8205

E[EF]

0.0

0.1180
0.1649
0.1808
0.1898
0.1910
0.1905
0.1880
0.1854
0.1823
0.1795

allocation algorithm

Both

0.5

0.4375
0.4060
0.3867
0.3747
0.3661
0.3598
0.3549
0.3511
0.3479
0.3454

u
.0
.8820
.8351
.8192
.8102
.8098
.8110
.8141
8173
.8210
8242

COOO0OOCOoOCOoOC OO

E[EF]

0.0

C.1180
0.1649
0.1808
0.1898
0.1902
0.18%0
0.1859
0.1827
0.1790
0.1758

allocation algorithm

Both

0.5
0.4375
0.4197

0.4145

0.4092
0.4060
0.4038
0.4023
0.4011
0.4002
0.3994

U
1.0
0.8820
0.8203
0.7901
0.7818
0.7803
0.7812
0.7840
0.7870
0.7902
0.7932

ELEF]

0.0

0.1180
0.1797
0.2099
0.2182
0.2197
0.2188
0.2160
0.2130
0.2098
0.2068

(c) : Worst fit allocation algorithm

ELCIF]

0.5

0.3455
0.2896
0.2646
0.2494
0.2410
0.2353
0.2318
0.2293
0.2276
0.2263

ELIF]

0.5

0.3455
0.2896
0.2646
0.2494
0.2412
0.2358
0.2325
0.2301
0.2285
0.2272

E[IF]

0.5

0.3455
0.2838
0.2558
0.2424
0.2344
0.2291
0.2256
0.2232
0.2214
0.2200

Both

0.5

0.4635
0.4545
0.4454
0.4392
0.4320
0.4258
0.4198
0.4147
0.4099
0.4058

Both

0.5
0.4635
0.4545
0.4454
0.4392
0.4314
0.4248
0.4184
0.4128
0.4075
0.4030

Both

0.5

0.4635
0.4635
0.4657
0.4606
0.4541
0.4479
0.4416
0.4362
0.4312
0.4268

Table 6.5 Average steady state utilisation and fragmentation: Results
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(b) Exponential request size distribution

Figure 6.6 Steady state utilisation U against memory size N : computed values

Values for the best, first, worst and relocation fit algorithms are shown.
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(b) Exponential request size distribution

Figure 6.7 External E[EF], internal E[IF] and combined fragmentation against N

Values for the best, first, worst and relocation fit algorithms are shown.
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50 minutes of computation time on the 370/168 computer with the second more
efficient implementation described above. In case this seems excessive (and
it certainly is a lot of computation) it should be remembered that the
calculation had to obtain the principal (dominant) eiéenvector of a sparse but
large square matrix of size 75024 X 75024. (To the same scale as most of the
matrix diagrams in this thesis, this matrix is over 1080 feet square. It has

not, needless to say, been included as a figure.)

As expected, the utilisation in the relocating model is always greater
than when the memory may become fragmented. The first fit and best fit
algorithms perform very similarly for these small memory sizes as can be seen
both from figure 6.6 and table 6.5. Even the so-called worst fit algorithm
still achieves a utilisation not much more than 10 per cent less than the
maximum possibie with relocation. However, small as the difference is, there
is a steady divergence between the algorithms as N increases and it is
interesting to guess or extrapolate from these figures to values of N one or
more orders of magnitude greater than this. The known closed forms of
equations 4.20, 4.23 for U in the relocating model should presumably guide the
choice of function to be used to fit the values of U for the other algorithms.
Judging from figure 6.6 the indication seems to be that as N increases, U will
always approach some constant 1imit asymptotically just as it does in the
relocating model. So far however, the author has had no success with this
approach. The extrapolation must be made to fit as accurately as possible to
the existing data if it is to be of any use, since for instance the first and
best “:t algorithms may reasonably be expected to differ appreciably in their
perforizance for large values of N whereas the differences so far are still

very small.,

It will be noticed that, contrary to the results reported by Knuth (1968)



208 6 : Exact computations for small memories

mentioned in chapter 2 section 2.2, tHat best fit always performs at least as
well as first fit for these two distributions, and increasingly better as soon
as a difference occurs. This therefore generally supports the results of
Shore (1975) who was also comparing the performance of these two‘algorithms
for other request distributions as well; his simulation results indicated that
first fit was sometimes better, for some of the other distributions. As
already mentioned in chapter 2 however, Knuth's model did not use a saturated

request queue, and this possibility will be examined in the next chapter.

Figure 6.7 and table 6.5 show the expected fragmentation for these
algorithms, again for the uniform and exponential request size distributions.
The expected external fragmentation E[EF] is, as explained in chapter 2 and
chapter 4 section 4.4.3, simply defined to be the space not occupied by the
allocated blocks; E[EF] = 1-U. Internal fragmentation is introduced by
adopting the modifications to the discrete request size distributions
described in section 4.4.4 and by assuming that requests are always rounded up
to the nearest integer. Assuming that the average cpace wasted Lty rounding is
tnen half a word, equation 4.24 can be used to find the expected wastage due
to rounding. When the probability m of the occurrence of each configuration
or state i in equilibrium is known, it is relatively simple to scan this

vector = to form the sum:

S
E[IF] = ¢

(ni/ZN)>< (number of allocated blocks in state i) eeee 6.10
;

i

and this has been done with the results shown.

The values »f ELIF] turn out to be even closer together for the different
algorithms than tre values of E[EF]. Clearly, E[IF] for the relocating model
is never less than in any fragmented model since it is always possible to get

at least as many blocks into memory in a relocation scheme as it is in the
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corresponding scheme without relocation. Hence for the uniform distribution,
since it is already known from equation 4.27 that E[IF](uniform) tends to zero
as N increases, the expected internal fragmentation in any allocation scheme
must similarly approach zero at least as quickly. Fof example, the maximum
difference in internal fragmentation between the relocating and worst fit
algorithms occurs as early as N=4 (0.1802 - 0.1667 = 0.0135) or N=5

(0.1488 - 0.1353 = 0.0135), if it can be assumed from figure 6.7(a) that
nothing unusual happens beyond N=11. For the exponential distribution, the
relocation asymptote of E[IF] is 0.25, so that in any fragmented model any

eventual 1limit can be no greater than this.

As noted in chapter 2 section 2.1, having introduced internal
fragmentation by modifying the request distribution so that the distribution
of rounded up request sizes remains unchanged, the idea of "utilisation" has
to be similarly modified. The quantity U is, as before, the average space
allocated to (roundea up) blocks, so that U + E[EF] = 1 as before, but the
value of U now contains tre space w-sted by rounding as well s the space

originally requested. This effect can be studied by considering the quantity:
total fragmentation = E{EF] + E[IF] ,

the true or proper utilisation (equation 2.2) then being the complement of
this. The total fragmentation is included in table 6.5 (where it is labelled

as "Both") and is plotted in figure 6.7.
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6.5.4 Randell's observation on the effects of rounding on fragmentation

The behaviour of the total fragmentation is made even clearer by

following the presentation given by Randell (1969). Figure 6.8 1is extracted

|

50F, .
fa'é'?s:b‘ffé'ﬁ'éﬂom All the results show the unexpected (to the author at ‘
240 1024 WORD MEAN REQUEST least) .fact that as Q increases the loss of utilization due to
gmf (EXPONENTIAL DISTR) increased internal fragmenlation distinctly oulweighs the !
£ [. gain due to decreased exzlernal fragmenlation. This is a |
%zo.— very interesting result, though of course analytical con- |
o
[T

- firmation, as well as determination of the region of validity
of the result, is sorely lacking. ‘In fact very little ana-
lytical work has been done in this area at all, |

=]

EXTERNAL
06

FLL T #i3 768 1524
QUANTUM OF ALLOCATION (Q)

F'KG. 2. The effects of rounding up storage requests (exponential
distribution) |

Figure 6.8 Extract from Randell's 1969 paper on storage fragmentation

from his paper. In his simulation, the memory size was 215

= 32768 words, and
the rounding quantum sizes were 54, 128, 256, 512, 1024 words as shown. Also,
his definition of external fragmentation was the extra space wasted between
allocated blocks compared with the inevitable émount left over in the
relocation model due to requests not always adding exactly to N. The data
plotted in figure 6.8 were obtained by simulations of the storage allocation
model. They can be compared with the computed theoretical values in

figure 6.7 rearranged to produce the data plotted in figure 6.9. Here, the
memory size is taken to be N=12 words, since Randell's choice of N is still
(even after allowing for his quantum sizes by dividing by the largest of them)
beyond the computing capacity of the present implementation. Following the
spirit of Randell's presentation, the quantum sizes which are now integral
numbers of words, are chosen to be 1,2,3,4,6 and 12 words. (That is, 12

quanta of 1 word each, or 6 quanta of 2 words each, and so on.) Then since

the behaviour of a 12 word memory in which the allocation quantum is, for
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(a) Uniform request size distribution
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(b) Exponential request size distribution

Figure 6.9 Rearrangement of figure 6.7 to match the presentation in figure 6.8
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example, 2 words is the same with the uniform request distribution as in a 6
word memory with a quantum of 1 word, the values of E[EF] and E[IF] for N=6 in
figure 6.7 can be transferred to figure 6.9 to correspond to an allocation
quantum of size 2 in a memory of 12 words. The other values are,made to
correspond similarly. In figure 6.8 Randell was using the best fit algorithm
(which he called "MIN") with the exponential distribution but in figure 6.9
the (almost equal) first fit algorithm has been used, with both the uniform
and the exponential distributions, because that is the algorithm for which it
happened that a value with N=12 was computed. The{correspondence between

the curves for the experimental data in figure 6.8, and the theoretically
exact data in figufe"6.9;rfgvééod; aﬁd éées ét 1éast some way‘fowards thé
"analytical confirmation" called for. However, this good agreement says
almost nothing about the "region of validity of the result" which will, except
for one small point which may be noted here, have to be left to the further
analysis of the work which is focunded in chapter 5. The small point of
interest comes from figure 6.7(b), and it is that, contrary to the general
trend, in one case at least it is possible with constant quantum size and
increasing memory size for the total fragmentation to increase (or in
Randell's terms, for the total fragmentation to decrease with constant memory
size and increasing quantum size, as he originally intuitively expected).
This is demonstrated by the worst fit algorithm with the exponential
distribution, between the values N=2 to N=4. The existence of this
bossibi]ity makes it indeed interesting to know if more reasonable algorithms

can also produce the same behaviour, and under what conditions.
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6.6 Computing exact allocation models for small memories: a summary

The simple approach to solving the steady state equation 3.11: = = «P of
just working out all the possible states, finding all the possible transitions
between them with their probabilities and storing these as the transition
matrix P, and then applying standard matrix techniques for obtaining the
eigenvector =, fails for all but the smallest values of N. Beyond about N=6
words (or S'(N=6) = 232 states), the storage time and computation requirements
required for general methods which take no account of the structure of P

quickly become excessive as the number S' of states increases exponentially.

That anything at all can be done about this, depends entirely on the
particular properties of the transition matrix and what is required from it.
Because it is sparse, a storage representation can be chosen to take advantage
of this so that by leaving out the zeroes larger matrices can be stored in the
same space. That it is also stochastic and usually ergodic as well, plus the
fact that at most only the eigenvector of the dominant unit eigenvalue is
needed, allows the power iteration method to be considered for obtaining it.
Amongst other advantages, this method is able to make good use of the sparse
representation of the matrix since the operation to be performed is only that
of multiplying a vector by the matrix. Further, this can be managed
reasonably efficiently by almost entirely sequential operations so that both
the matrix and the vector can recede from main storage which is usually fairly
restricted in size, into the comparatively vast background of secondary (disc)
storage without (because of the sequentiality) too much of a penalty in

increased access time.

The power method allows the possibility of further refinement in at least
three ways, although as already seen for one and as will be seen in the next

chapter for another, two of these have not yet come to much. Successive
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approximations to finally converged values produced by each iteration bring
the possibility of extrapolating directly to the limit, although the epsilon
algorithm which was tried was not particularly successful at doing this.
Recent numerical techniques such as simul taneous iteration are baged on the
power method and can in some cases produce big savings in computation time,
but in section 7.1 this is shown to be uncertain for the present models
although not every possibility has yet been examined. A third trick which has
been used in the present computations but not as yet to its full potential, is
to make as good an initial guess as possible at the final converged vector,
and to use this as the starting point to reduce the number of iterations
required. For example, since best fit and first fit appear to behave so
similarly for these low memory sizes, having performed a computation for first
fit the finally converged eigenvector of state probabilities can be used to
start the computation for the best fit model with the same memory size and
request distribution, instead of the rather arbitrary state E which for want
of anything better has generally been used. This has been done for some of
the computed values in table 6.5. There is also the possibility of using the
converged eigenvector from a given memory size N to construct a good guess ta
be used as the initial vector for the next larger size (N+1) words. If this
can be done sufficiently well, then given that the extra storage space is
available it may just be possible for instancé to produce the converged
eigenvector for N=13 in no more time and many fewer iterations than were
needed for N=12 starting from the arbitrary state E, the Targest memory
computed so far. This idea has occurred only recently to the author despite

its obviousness and has not yet been properly investigated.

In addition tu the sparsity and the various possible ways of speeding up
and enlarging on the basic power method, the fact that the transition matrix

has a regular recursive structure has been used to advantage to avoid storing
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it altogether, and this has been implemented with a considerable saving in
both storage space for the no Tonger needed matrix and access time to retrieve
it. The detailed knowledge available from chapter 5 of the structure allows
further efficiencies in the resulting "multip]icationbby parts", by avoiding
the computing of whole groups of numbers which are either known in advance to

be all zero or else which are subsequently unused or are multiplied by zeroes.

One result of all these improvements was the remarkable experience,
albeit at the expense of a great deal of machine time, of computing the
eigenvector of an (admittedly sparse) matrix of order more than 75000 elements
square, and of doing this several times for matrices of order more than 28000.
In the end however, none of these techniques affect the exponential nature of
the growth of the size of the transition matrix, and so they are all limited
much too quickly relative to the effort needed to implement them. An
improvement 1in efficiency by what are in practice large factors of about
three, or ten times, resulted each time in only one or two extra points along
the grapr of increasing N. Douktling the efficiency, normally praiseworthy,
was not enough to gain even one extra point in the same computation time and
so a number of minor improvements which could have been made (for instance to
recode certain heavily used sections of the program more efficiently than is
possible in Algol W) were just not worthwhile. It remains to be seen whether
any fundamental improvements as yet undiscovered are still possible which will
reduce the exponential growth with increasing N, but anything less drastic
will probably not be sufficient to justify much further effort than has

alreacty been spent.

As for the results which have been obtained, they are already quite
valuabie in at least three ways. First, they indicate the 1ikely behaviour of

models with much larger and more reasonable memory sizes. Although attempts
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to extrapolate to large values of N from the limited data available have not
so far been successful, it probably is possible to do much better. Second,
they provide an (admittedly very limited) nursery ground for comparing
different algorithms and request distributions. These comparisons can also be
made for other similar models which have slightly different rules (some of
these are described in the next chapter). Given the limitations set by the
number of states on the size of the problem, there is no reason in principle
why comparable results should not be possible for these other models. The
confirmation of Randell's findings, that rounding up requests to large quantum
sizes does not in general make more efficient use of the memory, is a good
example of what can be achieved with models of memory size no greater than
N=12. Thirdly and probably most importantly, in the usual way that practical
experience always improves the use of and complements theory, actually
computing and seeing such quantities as the transition matrix probabilities
and their relationships to each other in a particular model eventually forces
insights into their structure and composition to be noticed which might not
otherwise be seen. It is unfortunate that these observations have nearly
always seemed to be obvious aftef they were made so that they should perhaps
have been noticed sooner. However it is also true that some of the work in
chapter 4 and more especially in chapter 5 that probably would have passed

unnoticed otherwise was first realised in this practical way.
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Chapter 7 : Further possibilities for analysis and investigation

The investigation presented in this thesis may be extended in several
different ways. Besides pursuing the analysis and computation of chapters 5
and 6 further to learn more about the storage allocation model as defined in
chapter 3, either the definition of the model or the assumbtions on its
parameters or both can be altered to obtain related models, and the analytical
and numerical methods presented in chapters 4, 5 and 6 can similarly be
applied to investigate their behaviour. The author is currently following
these lines of enquiry, some of which appear straightforward.and promising of

results, and will report on their progress in due course.

7.1 Improving the numerical convergence of the computations of chapter 6

The power method used in the last chapter is perhaps the simplest
iterative technique that can be applied to obtain the eigenvector n of steady
state probabilities. The successive vectors «(T) = n(T-1)P are calculated
until sufficient convergence is obtained. This method was used in practice in
the first instance not only because it is simple, but because it also
indicates clearly the transient behaviour. The successive vectors =(T) which
are obtained and which lead to = in the numerical computation, happen
naturally to be the vectors of probabilities of being in any of the possible
stafes after T events have occurred, starting from some initial state (or
probability vector =(0)) at T = 0, and so they are of interest in their own
right. The power method cah of course suffer from an excessive number of
iterations required before sufficient convergence is obtained, however, and

this depends upon the magnitudes of the eigenvalues of P nearest to the
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dominant unit eigenvalue. If uy is an eigenvalue of P having absolute
magnitude closest to 1 of the remaining eigenvalues, then =(T) converges to m
as rapidly as IplT-9 0, so that the closer that |u| is to 1, the slower will

be the convergence.

There are other iterative methods of finding the dominant eigenvector =
besides the power method, and amongst these is "simultaneous iteration", due
originally to Bauer (1958) although he did not give it this name, and
particularly its extension to "lop-sided iteration" by Jennings and Stewart
(1975). This technique simultaneously calculates the first n dominant left
(or right) eigenvectors of a general real unsymmetric matrix, where n may be
chosen at will to suit the particular problem. It requires n times as much
storage space, and rather more than n times as much computation time per
iteration, but as in the power method, the rate of convergence is governed by
the relative ratio between two eigenvalues, in this case the first and the
(n+1)-th (ordered in decreasing magnitude) instead of the first and second,
that is, the relative ratio of the first eigenvalue for which the eigenvector
is not being calculated, to the dominant eigenvalue. Stewart (1978) has
compared the running times of the power method and 1ob-sided iteration, and
points out that lop-sided iteration can be very much faster than the power
method if, for whatever reason, there is a "gap" or sudden sizeable drop in
the spectrum of eigenvalue magnitudes whereas the second eigenvalue happens to
‘be close in magnitude to the first. If n is chosen so that this drop occurs
between the n-th and (n+1)-th eigenvalues, then lopsided iteration can be much
faster even allowing for the extra computation of the (intrinsically unwanted)

(n-1) eigenvectors after the first.

Tables 7.1, 7.2, 7.3 show the complete spectra of eigenvalues of the

transition matrix P for N ="2,3,4 respectively for the first fit algorithm and
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Uniform distribution Exponential distribution
Eigenvalues, Moduli . Eigenvalues, Moduli
1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

Table 7.1 Transition matrix eigenvalues for N=2, first fit algorithm

Uniform distribution Exponential distribution
Eigenvalues, Moduli Eigenvalues, Moduli
1.0 1.0 1.0 : 1.0
0.316+0.078i 0.325 0.372+0.0891 0.383
0.316-0.0781 0.325 0.372-0.0891 0.383
0.167 0.167 0.272 0.272

-0.066+0.024i 0.070 -0.111 0.111

-0.066-0.0241 0.070 -0.066 0.066
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 .0 0.0
0.0 0.0 0.0 0.0

Table 7.2 Transition matrix eigenvalues for N=3, first fit algorithm

the uniform and exponential distributions used in chaptersb4 and 6. The
pottom row and right hand column of P have been excluded as they are
identically zero, so there are S'(N) = 4, 12, 33 values in each case. There
does not appear to be any physical significance to attach to the eigenvalues
after the first. Approximately half of the values are zero; some zero values
are certainly to be expected from each matrix since certain of the states must
have the same set of transitions with equal probabilities, giving rise to

equal rows of the transition matrix. For N=3, for example, the states

C_1-17 - [ - o <[ 1in
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Uniform distribution Exponential distribution
Eigenvalues, Moduli Eigenvalues, Moduli
1.0 1.0 1.0 1.0
0.390+0.030i 0.391 0.551 0.551
0.390-0.030i 0.391 0.500 0.500
0.281 0.281 0.449 0.449
0.238 0.238 0.325 0.325
0.163+0.039i 0.168 0.289+0.090i 0.302
0.163-0.039i 0.168 0.289-0.0901 0.302
0.139 0.139 0.189 0.189
0.016+0.0981 0.099 0.013+0.1317i 0.132
0.016-0.098i 0.099 0.013-0.131i 0.132

-0.093 0.093 -0.120+0.0361 0.124
0.054+0.051i 0.075 -0.120-0.0361 0.124
0.054-0.051i 0.075 , 0.063+0.063i 0.089

-0.064 0.064 0.063-0.0631 0.089

-0.016+0.043i 0.046 -0.020+0.057i 0.060

-0.016-0.043i 0.046 -0.020-0.057i 0.060
0.034 0.034 0.038 0.038
0.0 0.0 0.0 0.0

. (16 zeroes) . . (16 zeroes) .
0.0 0.0 0.0 0.0

Table 7.3 Transition matrix eigenvalues for N=4, first fit algorithm

(see figure 4.3) have all the same transitions, since the first action to
occur will empty the memory and (since the maximum gap fn each state is just
one word) leave an identically distributed queue to fill it. Apart from the
drop to the first of these zero eigenvalues, there does not seem to be any
suitably large sudden drop in modulus in any of these early spectra for small
values of N, which would be suitable for simultaneous iteration. Indeed, the
biggest drop for these early mairices is the first one, so that the power
method does not look at all bad, and may be the best of the iterative methods
after all.

In another recent paper by Stewart (1977), he points out that

simultaneous iteration can also be applied to a transformed version of the
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steady state equation, for instance by writing
P=L+D+U 000.7.1

where P has been separated info L and U which are lower and upper triangular,
and D is diagonal. Then equation 3.11: = = wP becomes = = m(L+D+U), which

can be rewritten for example as

aU(1-L-D)"}

=
"

or m = ED(I—L—U)_1
. ceer 7.2
or = = sL(I-D-U)”

or = ='1r_(L+U)(I-D)'1 , and so on

Quoting Stewart, "it is desirable to apply the iterative methods (simultaneous
jteration, etc.) to that matrix which yields convergence in the smallest
number of iterations, i.e. the matrix whose subdominant eigenvaTues are, in
modulus, furthest frcm unity". Thus it is possible that such a rearrangement
could result in faster convergence even where simultaneous iteration applied
directly to P would proﬂuce little or no advantage, though this has yet to be

investigated.

It was disappointing that the epsilon algorithm extrapolation technique
which was tried in order to short cut the iterations by predicting the
converged values in advance after the first few iterations, did not in
practice work very effective]y. If it had done so reliably, then almost
certainly models of memory size at least one or two words larger could have
been computed in the same time by only producing the first few iterations for
7=1,2,3,... and then relying on the values extrapolated from there for
large T. More effort put into discovering a better technique may well prove
worthwhile; perhaps the epsilon algorithm may do a little better from a more

suitable starting state, though this does not seem very likely as in effect



222 7 : Further possibilities for analysis

any of the successive approximations U(T), 7=1,2,3,... can be considered as
starting positions (although of course they are all related to each other
because they all derive from the initial probability vector_l(O)‘so that as
far as the epsilon algorithm is concerned they may all be tarred with the same
brush), just by excluding those parts of table 6.1 (the first few downward
sloping diagonals) which depend on the earlier approximations
u(o),u(1),...,U(T-1). The extrapolation need not be with the values U(T) but
might for instance be applied with some extra effort to the successive vectors
#(T) themselves. Of course computing better estimates for =(T) is in a sense

what simul taneous iteration does.

7.2 Continued algebraic analysis of the reduced steady state equations

The complete surprise cf finding the reduction of the steady state
equation 3.11 to the simple form of equation 5.20, and the subsequent
reduction which was found to be possible by state aygregation to the
equations 5.23 constraining the allocation algorithm, lends hope to the
possibility that there is further structure in these eduations which has not
yet been noticed and which could be exploited to understand and predict the
model's behaviour. The structure of the transition matrix P as an expansion
in terms of simpler matrices which was explained in section 5.1, now seems
obvious (to the author) with hindsight and perhaps should have been noticed
much earlier than it actually was, in principle if not in detail. However it
was not in fact appreciated until the first direct implementation of the power
method described in chapter 6 which first calculated and stored the entire
transition matrix, forcing attention to be drawn to the repetition occurring
not only in P but in its component parts (which this first implementation was

in essence already calculating). It seems likely that there is more to be



7.2 : Continued algebraic analysis of the reduced steady state equations 223

gained from a study of these equations, although the relationships between the
various components of the K and Kn matrices for example appears to be
certainly no simpler than has been shown: As mentioned in chapter 5,
equations 5.23 are in a form where they might be formﬁ]ated as part of a
linear programming problem, for instance to maximise the storage utilisation
U=x .u' , equation 3.3, by varying the allocation algorithm and this may

lead to further simplification.

It might be worth bearing in mind that it is by no means necessary to

know all the individual elements of = to form the product U == . u'

, just
the sum of all those for each state with the same number of allocated words
and hence the same entry in the vector u. This kind of study may well be
productive also for the modified but related versions of the present model
described below in section 7.5. Certainly any analysis which allowed one to
determine for example which allocation algorithm gives the best storage

utiiisation with a given request distribution, or even just to compare one

algorithm with anoth~r to say which was the bétter, would be most useful.

This latter problem is just the one that is addressed by dynamic
programming techniques, for which the states are not grouped to nullify the
possible allocation choices but are left separate so that the choices can be
compared with each other. It will be interesting to see if comparative
statements 1ike the above will be possible by using the known algebraic
structure of the allocation and the other matrices to either simplify or

extend the dynamic programming analysis.
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7.3 Infinite extensions of the storage allocation model

The apparent underlying structure of the transition matrix P Tooks much
the same, whatever the value of memory size N, and this suggests that
extending the memory size to infinity in some way might prove worthwhile by
simplifying the analysis or providing an alternative viewpoint. Two
possibilities have been considered in a previous memorandum (Betteridge
(1974a)), either extending the memory indefinitely somehow to the set of all
positive integers, or alternatively mapping if onto the real interval [0,1].

They are both presented informally below.

Consider figures 7.1{a,b,c) which for simplicity show the deallocation
matrix D defined in chapter 5 instead of the full transition matrix P, for
memory sizes N = 2, 3, 4. These same deallocation matrices appear in figures
7.2(a,b,c) also, but the scales of drawing fhese figures have been altered so
that each matrix is the same sizz. As N increases, the "resolution" or
"definition of detail" also increases. Each is still a discrete matrix, the
sequence growing exponentially in size with N, compare figures 4.1-4.4,

4.6, 4.7. The constant recursive structure described in chapter 5 differing
between the matrices only in the fine detail, is indicated and prompts the
question of what could happen to this sequence of matrices in the Timit as N

increases indefinitely.

One way to consider this fo]]oWs figures 7.1(a,b,c), and parallels the
finite case closely. The memory is infinite (or indefinitely large) and
discrete, each word having a positive integer address. Requests are still for
a finite whole number of consecutive words, successive sizes being chosen
independently at random from some fixed distribution. The range of possible
request sizes is in general unlimited in the same way that the memory size is

unlimited. The rate at which events are occurring is problematical however;
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it has to be speeded up, or else the amount of change in a finite time
throughout memory as a whole is indefinitely small. For qtherwise if only one
block is to be deallocated at a time, then since there are in general
infinitely many blocks in memory, the "average" b]ock)is assured of an
infinitely long tenancy. Also, after such a deallocation has occurred (of a
block at a location whose address on average is halfway towards infinity),
there is the possibility although with vanishingly small probability, of an
unlimited sequence of allocations for requests after the first in the queue
all of which can fit into the small gaps a]feady present in memory before the
deallocation. These indefinitely long sequences of allocations will
presumably be represented by whatever is going to correspond to the matrix

product (I-A)'1 = I+A+A2+... in the finite model.

This viewpoint, which was called the "worm's eye view" in the previous
memorandum (1974a), is not very satisfactory as there is only a vague idea of
how the infinite model works or will be represented, and also no idea of how
different it would be from the large, discrete but finite models which are the
actual objects of study. However, Reeves (1979, 1980) has considered a
similar generalisation with success, the use of generating functions being the

key to his analysis.

An alternative proposal for a model to represent the limiting behaviour
of the finite models as memory size N tends to infinity is related quite
closely to the studies by Renyi, Palasti and others of the random intervals on
a line in one and two dimensions, described in chapter 2. It follows the
secuerns of figures 7.2(a,b,c) and is illustrated by figures 7.3 and 7.4.
Instes: of a discrete transition matrix P = (pij) of some large but finite
order there is now a real-valued function P. = Pr(x,y) of two variables x, y

defined on the unit square 0 < x,y < 1. For simplicity in illustrating the
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Figure 7.3 Real-valued function D_ =D (x,y) defined on the unit square

"Bird's eye view"; Dr is zero "everywhere except on the diagonals shown".

principle, the deallocation matrix D appears instead of the full transition
matrix P in figures 7.1 and 7.2, and an attempt has been made in figure 7.3 to
illustrate the 1imit of the progression in figures 7.2(a,b,c) as N increases
indefinitely. The concept of a discrete word of memory has disappeared and an
allocated block is instead specified by its beginning and ending endpoints,
the intervail [b.e} say, where 0 { b < e ¢ 1. Requests for memory specify a
size which is a r=2al value, positive and { 1 instead of a positive integer
number of words «¢s previously. This is initially promising, for if one were
to stand sufficiently far away from a large but finite discrete model so that
the fine details become merged, the effect should look the same as this. This

proposal was consequently called the "bird's eye view" in the previous



229

Infinite extensions of the storage allocation model

7.3 :

[ = 23w syeoys M
":vﬁm ‘K noys 9 ﬁ.... M Jo X x ﬂa.ﬁ.& 2wy v R
w1 Bmeseetg = s RTINS g e e ] Pngepey -

+3N0

Re (hex)y . *p (x) ' wins Fp (F) '+
-~ ~ ~ — ~—" ~ —™ ~
Y
1 x m
: 4 "
m M % < x an R »
' by ) 'H = m..o.. .............o..h..vm.w
lesvanted covecoamccncnad vsonves tecomacncansan

Apa— h—r xp

* e o 7.4

py(x)dx.P.(x,y)dy

1
0

X
X

|

pT+1 (.Y) d.y

Figure 7.4 Illustration of the transition equation 7.4, continuous memnory

("Bird's eye view"):



230 7 : Further possibilities for analysis

memorandum (1974a) to contrast it with the "worm's eye view". It is possible
up to a point to write down the relations between state and transition
probabilities corresponding to the finite model, as follows, and this

possibility is illustrated by figure 7.4.

In the discrete transition matrix P, the value of the (i,j)-th element

p.. is the probability that, starting from state i, an arbitrary transition

iJ
will be to state j. In the Timiting case shown in figures 7.3, 7.4, if the
model is in the state indexed by x, then the probability that an arbitrary

transition will be to state y is Pr(x,y)dy. That is, P is a probability

r
density function when viewed along a 1ine of constant starting state x.

In place of the discrete stochastic condition which says that for any
starting state i the model must make a transition somewhere with

probability 1,

Ip..=1fForanyi,

LS |
j J

there corresponds:

1 |
Jpxmdy =1, anyogxgu. ceee 7.3
0

Similarly, in place of the transition equation (the "equation of motion") of

the system
nj(T+1) = ? "i(T)pij for all j
or in matrix notation,

m{1+1) = =(T) . P
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there corresponds (see figure 7.4):

x=1
, 1
or orag W) = [ prl0P Ly

where pT(X), pT+1(X) are the probability density functions at times T, T+l

defined on 0 < x £ 1 :
pT(x)dx = Probability[model is in state x at time T] eeee 7.5

Thus, the 1imiting probability density function p(x) of the states of the
model as T > « satisfies
1
oly) = f p(x)Pr(x,y)dx ‘ eeee 1.6
0
which is a linear homogeneous integral equation of the second kind, as

discussed in for exam:ziz Smithies (1958).

Where this approach has so far failed, is not in the specification of a
single state as a set of intervals in [0,1] but in making the correspondence
between the set of all possible states and the same real interval. The
progression of figures 7.2(a,b,c) to an apparent limit appears to be
deceptive. There does not seem to be any simple way of making a
correspondence which would allow a real value x in [0,1] to represent such.a
state, which would include all the possible states as x varies between 0 and
1. In other words, the set [0,1] does not seem to be a suitable index set for
the collection of all possible configurations of disjoint intervals of [0,1].
It is possible that some alternative index set may be found to overcome this
difficulty and allow such a one-to-one correspondence to be made, but this
does not seem very likely at the moment. There does not seem to be a way in

which the theory of real-valued functions suggested by equation 7.6 could be
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brought to bear on the problem without such a representation of all the

possible configurations.

7.4 Other ways of specifying time behaviour, and consequent Markov theory

There are at least two ways in which the passage of time in the storage
allocation system can be modelled differently from the conditions assumed in
chapter 3. The constant time-independent behaviour which results from the
assumed negative exponential distribution of inter-event time, can be relaxed
and generalised if more information is available. The model will not in
general lose its memoryless Markov property if this is done, but still remains
a semi-Markov chain. Transitions occur as before but the time between them
becomes dependent on the particular states and transitions. A useful
application of this, and a good reason therefore for considering it, is to
consider a "multiple processing" storage allocation system, instead of the
pr ocessor sharing model assumed in chapter 3. As for any semi-Markov chain,
the behaviour of this multiple processing model can be derived from the
underlying full Markov chain (processor sharing) model With the extra
knowl edge of how the inter-event time is specified. This of course is one

reason why the processor sharing model should be examined in detail first.

A second approach is to specify that events (block deallocations) occur
fandomly at given rates in real t%me, more likely events having greater rates
of occurrence, and then deriving a matrix of transition rates between states
from this, to govern the behaviour of the model. This leads to the storage
allocation system being modelled as a continuous time Markov chain. This is
again equivalent to the discrete time formulation adopted in the earlier

chapters in which events are merely numbered successively as they occur, the
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main difference being that the time between successive events is no longer
derived separately from the statement (in the transition matrix P) of the

relative probabilities of alternative transitions that may occur in any state.

Each of these two alternatives, semi-Markov chain and continuous time

Markov chain, are considered in turn.

7.4.1 Generalisation to semi-Markov chains; multiple processing model

One of the original papers which introduced and described semi-Markov
chains is that of W. L. Smith (1955). Transitions occur according to a
transition probability matrix just as in a full Markov chain, but the time
between events or transitions is an arbitrary random variable which in general
depends upon which state the model is in and which transition it makes from
that state. By iznoring the variability of time, a semi-Markov chain becomes
an ordinary (fuil) Markov chain; suppose its transition probability matrix is
P = (py;

state- and transition-dependent behaviour is introduced, the steady state

) as before, with steady state probability vector = = (“i)' When the

probability vector is modified and becomes (see Smith (1955) section 4.2,
page 20):

S

.T.T_ = ('n'_i' ) ’ WheY‘e Tl'_il = ﬂ_it_i/(jfl‘"jtj) soee 7-7

where ti is the average time, or holding time, spent in state i before a

transition occurs.

Equation 7.7 expresses in precise terms, what one might expect: that in
equilibrium the model is more or less 1ikely to be found at random in a
particular state than in the discrete time model, according to whether its

holding time is relatively longer or shorter, compared with the other holding



234 7 : Further possibilities for analysis

times.

An example where this idea is useful, is if the_condition of processor
sharing assumed in chapter 3 is altered. In processor sharing, each allocated
block in memory "ages", or is serviced, at a rate inversely proportional to
the total number of allocated blocks, and so the expected time to the next
deallocation consequently remains constant however many blocks there are.
Contrasting with this, a different condition would be that all the allocated
“blocks in memory continue to age each at the same rate irrespective of however
many there are, so that when there are more blocks, transitions occur more
quickly, and conversely. This would correspond to a multiple processing
system, in which each allocated block has its own separate process or
processor. In this case the holding time of any particular state is inversely
proportional to the number of allocated blocks. To solve such a system, one
could as before first apply the processor-sharing theory of the full Markov
chain and then use the weighting of equation 7.7 to get the steady state
probabiiities in the semi-Markov mullipie processor case. Equation 7.7
extends to the fully general case where the average conditional holding times
(tij)’ or the average time spent in state i before a transition to state J
occurs given that this transition will occur, cah all be different. The
unconditional holding times (ti) are first obtained from the (tij):

S

t,. =Lp
i =1

.ijt,ij es o 7.8

and the (ti) can then be used in equation 7.7.
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7.4.2 Equivalent continuous time Markov chain formulation

Another way of considering the time behaviour of the storage allocation
system is to model it as a continuous time Markov chain, still with a finite
- discrete set of states. This is really only an alternative viewpoint as there
is no fundamental change to the operation of the model. Elapsed time is
measured by the continuous real variable t. The definition of states of the
chain as configurations of the memory, is unaltered so that there are still
S = f,y states altogether including the empty state, but instead of an S' X S'

matrix of transition probabilities P = (p..) there is now an S' X S' matrix of

1J
constant transition rates R = (rij) where

rij = [rate of transition from state i to state j,] ,i#j .... 7.9
Lgiven that the system is in state i 1
that is, for i#j,
' [transition to state j will occur]
rijdt = Probabilitylduring (t,t+dt), given that the ] eess 7,10
Lmodel is in state i at time t ]
If pri(t) is defined as the probability that the model is in state i at time
t, then it follows that, for i = 1,...,5',

Sl SI
pri(t+dt) = pro(t)(1- & ri.dt) + £ ri:pri(t) + o(dt) eees 7.11

If r.s is defined:
r.. = —Z-r‘..’.‘ ’ 'i = 1,...,5. N LI Y 7-12

then 7.11 reduces to

Sl
pri(t+dt) = pri(t) + (.Elrjiprj(t))dt + o(dt) , or eees 7.13
J:
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SI
g_(pri(t)) = I r.ipr.(t) for i=1,...,S5' eees 7.14
dt j=1 3913

which can be expressed as a matrix multiplication:

pr'(t) = pr(t) R eee 7.15

where pr(t) is the row vector pr(t) = (pri(t)) and pr'(t) is its derivative
with respect to t. If equilibrium is approached in the 1imit as t increases,

then pr'(t) - 0 and so
prR=0 cere 7.16

where pr(t) - pr as t increases. pr is the stationary probability vector of
the continuous time Markov chain, and it can be obtained by solving

equation 7.16.

To obtain the transition rates R = (rij)’ it is necessary only to decide
on the rates at which the deallccations of individual blocks can occur in any
given state. Fo. processor sharing, the rate at wihich any single block in a
given state is 1ikely to be deallocated is as before inversely proportional to
the number of blocks in memory in that state. For multip]e processing, the
rate of service or deallocation of any block is constani for all blocks in all
states. Having determined these deallocation rates, the rates of transitions
(rij) are then fixed, as when a deallocation occurs the subsequent and
immediate chain of allocations from the queue takes place in the same way as
in the discrete time model. Given that a particular deallocation occurring at
a rate x will lead if it does occur from state i to state j, i#j, with
probability y as determined by the distributions of blocks and gaps in state i

and the allocation algorithm, then the contribution to rij is (xy).

To see how the continuous time Markov chain is related to the discrete
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time chain of earlier chapters, choose any arbitrary dt > 0. Then from

equation 7.16,
pr (Rdt) + pr = pr , so that pr(Rdt + I)'= pr vees 7.17

In the processor sharing model let the (constant) rate at which deallocations
are occurring in any state be r, so that for i#j, rij = r/n if there are n
blocks in state i. Then if dt is chosen so that rdt = 1 the matrix (Rdt + I)
js just the transition probability matrix P of the discrete time chain, and
the equilibrium vector pr must therefore be n. Equation 7.17 then becomes

just the steady state equation 3.11, = = =P, and the continuous time Markov

formulation is equivalent to the discrete time model already considered.

7.5 Other rules for allocating space in the storage allocation model

There are a number of ways in which the allocation and management of
storage could be modelled differently from the scheme described in chapter 3.
This scheme is simple in many respects and deliberately so, as the variations
which are possible introducevextra complication which it was judged best to
leave out at least to begin with. This complication usually means that extra
information is required to be kept to decide the probabilities of transitions
from one state to the next, and if there is no other way, this information has
to be absorbed into the state specification‘causing the total number of states
to go up and the relationships between individual states to become usually

more complicated as well.
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7.5.1 Removal of first queue request size, q, from state specification

A good example of how this extra information need not always be included
as part of the specification of a state, but can be left out instead at the
expense of some extra computation in working out the transitions among the
consequently unexpanded set of states, is provided by an earlier version of
the model which was considered and experimented with before the present
version described in chapter 3. In this earlier version a state of the model,
(or Markov chain as it is also possible to prove), is specified not only by
fixing on the sizes and positions of the allocated blocks but also by giving
the size q of the request waiting at the head of the queue.. Unlike the
present version, situations with exactly the same configuration of allocated
blocks and gaps in the memory, but with a different value for q, are
represented by different states in this earlier model. Obviously some states
are inadmissible, except (as with the empty configuration in the present
model) as intermediate stages occurring momentarily during a complete
transition. They are precisely the cases where the queue recuest is less than
or equal to the size of at least one gap in the memory. With a non-zero
request distribution (rn), 'n >0 for all n=1,...,N, all the remaining
states can be reached; this can be shown in the same way as the given proof in
section 3.3.3 for the model that has been studied here. In general therefore,
the number of possible states in this earlier model is larger than S = f

2N?

and will be a significant fraction of the total number NX f, of all the

2N
(admissible and inadmissible) states. As shown in the preceding chapters, it
was found possible to remove the first queue request size q from the state
specification because the relative probabilities (qéi) ) of its possible sizes
n in any given state i could be calculated from the request distribution (rn)
(section 3.2.4), and these were sufficient to allow the transition

probabilities P = (p to be calculated. This exclusion of g however

ij)
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introduced the extra complication of the Qn matrices (section 5.1.5) into the

composition of the transition probability matrix P.

7.5.2 Delayed collapsing of free gaps, and garbage collection

Usually, any extra rules or information describing how the model works
can only obviously be managed by making the state definition more precise,
thus increasing the total number of states. (A notable exception however is
the buddy system, see the next section 7.5.3 below.) An example is provided
by the possibility of changing the collapsing rule which in the present model
requires that a gap created by the deallocation of a block is immediately
merged with its neighbours. One alternative way that collapsing is sometimes
implemented is to only do garbage collection, as it is known, as a special
operation when a reguest is tried which cannot be allocated entirely within
any of the existing gaps as defined in the free storage list maintained by the
allocation rcutine. When this happens, the special garbage collection process
merges any adjacent free gaps to see if the waiting request can then be
allocated into any of the larger gaps so formed. The idea is to save time by
doing the extra housekeeping of collapsing less often. Howver, it is known
from simulation results such as those of Nielsen (1977) for example, that as
might be expected the storage utilisation of such a scheme is lower and memory
becomes more fragmented than in a schame which automatically merges adjacent

free gaps together.
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7.5.3 Buddy systems; no extra state information needed

Another well known example of a class of storage allocation systems which
delay the collapsing of adjacent free blocks are the various buddy systems,
outlined in chapter 2 section 2.2. Adjacent free gaps will only be combined
if they and all their buddies are free, and in systems of the buddy type it is
perfectly possible for there to be adjacent free gaps which can not be
combined together. This apparently extra information is in fact redundant as
it can be constructed from a knowledge of the allocated blocks' positions
and sizes. The model as defined in chapter 3 and its algebraic
representation in chapter 5 is therefore sufficient for buddy-type systems,

needing only a set of correctly defined allocation matrices An'

As an example, figure 7.5 shows the allocation incidence matrix for
N = 4, for the original binary buddy system of Knowlton (1965) (compare figure
5.7, the generalised alloca-icr incidence matrix for N=4). Many of the total

S =1f,, configurations will be inadmissible in a buddy-type system, all those

2N
containing blocks which straddie a boundary between buddies without completely
occupying both of them, and the allocation matrix will avoid these states
which therefore can never occur. In figure 7.5 for example, states 6, 7, 8,
19, 20, 27, 28, and 29 cannot occur in the binary buddy system because they
all contain blocks which 1ie across the boundary between the buddies formed by
words (1,2) and (3,4) without occupying all of both of them, as in state 21
‘which is a possible state. There will also be an implementation difference in
the chnica of which of alternative equal sized buddies should be used to
allocate a request. The model bf chapter 3 cannot imitate the usual
imp]eﬁentation which uses whichever is currently the first in a last in, first

out (that is, a stack) Tist. Since all buddy systems 6rganise the memory into

a tree-like structure so that there can be no interaction between blocks
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Figure 7.5 Allocation incidence matrix for the binary buddy system, N=4

Compare this figure with figure 5.7. All possible allocations in the binary
buddy system are shown. The entries are not probabilities, but indicate where
non-zero allocation transition probabilities may occur. Each entry

(1,2,3 or 4) is the size of request for the corresponding allocation.
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contained in separate buddies until those buddies are recombined, this will
make no difference to such measures of storage utilisation or fragméntation as
for instance the counts of how many blocks there are of a given §1ze, but only
to where the blocks actually happen to be. Because so many of the
configurations of the general model are inadmissible in this weT] defined way,
it may be possible to simplify the set of states to some advantage and
therefore the algebra to automatically exclude them when analysing a buddy

type of system.

7.5.4 Circular instead of 1inear storage

A device sometimes adopted to simplify analysis by avoiding end effects,
and also because computer addressing modulo arithmetic can allow its
implementation (especially perhaps in a virtual memory envfronment), is to
assume that the memory is circular so that if the words of memory are numbered
in order from 1 to N, then word 1 {ollows word N without any boundary. A good
example of an analysis where this is assumed is that of Reeves (1979, 1980).
It should be noted in passing that the end effects so aVoided can be claimed
to be both important and interesting, see for example Page (1959) who however
was studying a related problem in which blocks were only put into storage, and
not (at least during the first stage of his problem) subsequently taken out

again.

In the present model, the set of states or memory configurations must be
extended to inc!ude all the extra cases in which blocks are allowed to
straddle the former (N,1) boundary of the 1inear memory. The reorganisation
of this expanded set of states into some sort of order corresponding to that

defined in section 4.3 for example, seems to be tantalisingly difficult.
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Ideally, such a representation of the states should avoid repeating states
which are merely rotations of each other. In a circular memory'such states
are equivalent for the purpose of allocating a new request and modelling the
subsequent behaviour, for all allocation algorithms except those which take
account of and use a fixed numbering of the words of memory, for instance

those which have an arbitrary fixed starting point.

Figure 7.6(a) shows the S = 34 possib]é configurations of an N = 4 word
memory, together with the extra 12 cases introduced by circularity in no very
good order, making 46 altogether. In part (b) of this figure the 32 of these
states which are merely rotations of an already listed state have been
excluded to leave only 14. Figure 7.7 shows the deallocation and generalised
allocation incidence matrices for this reduced set of states when rotations

are considered equivalent to each other (compare figures 5.1, 5.7).

7.5.5 Unsaturated request queue, and resulting modifications to the alyebra

A very interesting change which can be made to the model as defined in
chapter 3, is to modify the‘arriva] rate of requests in the queue relative to
the service rate as represented by their allocation in the memory so that the
queue is no longer saturated and may become empty. If this is done, theﬁ the
behaviour of an allocation scheme with an unsaturated request queue can be
investigated, and in some respects this turns out to be easier to do. Most
previous analyses of storage fragmentation have assumed a completely
unsat.rated request queue, requests being ser?iced (allocated) as soon as they
arrive. Although storage utilisation is of great interest in a situation
where the queue of requests is saturated or nearly so and the throughput is

desired to be as high as possible, it is still relevant to enquire about the
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behaviour of a storage allocation scheme in which each request can be serviced
or allocated as soon as it arrives, for instance so as to know how much memory

is needed in order for this situation to hold.

»

If the request queue is to be unsaturated, simple queueing theory (as
well as common sense) dictates that its average rate of arrivals must not

exceed the average service rate, in other words that the traffic intensity
p = arrival rate / service rate

must be no greater than 1. Once again, a simple first appfoach is to assume
that processor sharing is in force, so that the single server (the combination
of processor and memory) works at a constant rate independent of the number of
allocated blocks as long as there is at least one, and to assume that both the
service and arrival times are independent random variables with negative
exponential distributions, so that the storage allocation scheme becomes an

M/M/1 queue.

7.5.5.1 Comparison of the empty queue, finite queue and infinite queue models

As a first simplified approximation to this unsaturated request queue
model, if the traffic intensity p is not too close to 1 and the memory size N
is reasonably large compared with the average request size, then the
possibility of overflow (no room for a request in memory) can be ignored. One
way to realise this, is just to discard those requests which arrive and cannot
be immediately u!iocated due to insufficient available space. A queue of
requests is then never allowed to form. It should be stressed again that this
empty queue simplification is to allow a first attempt at this unsaturated

model to concentrate on the memory space allocation and fragmentation
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behaviour alone, although of course the empty (or immediately served) queue
model is the one most often used in storage allocation studies. The action of
the storage allocation model is different when the queue is empty, when it
contains a finite number of requests, and when it can}be assumed infinite, and
the behaviour of the queue varying between these cases can be added after the

empty queue model has been studied.

The empty queue model differs in three ways from the saturated or
infinite queue model. First, the probability distribution of the size q of
the request at the head of the queue is no longer conditional on the maximum
size of gap in memory, and is in fact unchanged from the original request
distribution (rn). This is a considerable simplification of the algebra since
there are no Q-matrices. Second, events in the model are identified with
deallocations as before, but also with allocations as well. Third, only one
allocation is performed at each allocation event, instead of the chain of
allocations which stop only when a request 1is reached which will not fit, and

this also is a considerable simplification of the algebra in chapter 5.

In the finite queue model, when the queue is not empty but cannot be
assumed infinite, the waiting request queue size q will have the qéi)
distribution (equation 3.8) as in the infinite queue model, and events only
occur at deallocations, as in the infinite queue model, but after a
dea]]dcation, the chain of allocations has to stop if and when the existing
queue has been exhausted. The general, varying queue length model 1is a
combination of the empty and finite queue models, with events occurring both
as new requests arrive at the queue and wheneQer a block is deallocated from

the memory.
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7.5.5.2 The empty queue model

The transition probability matrix of the empty queue model is much
simpler than in the infinite queue model and it can be written down directly
in terms of the basic allocation and deallocation matrices of chapter 5. For
traffic intensity p, except when the memory is empty the probability that a
randomly chosen event is a deallocation (service) event is 1/(1+p), and that
it is an allocation (arrival) is p/(14p). With the allocation matrix A,
deallocation matrix D and allocation termination matrix T as defined in
chapter 5, (equations 5.9 and 5.1) the transition probability matrix Pe of the

empty queue model can be expressed:

Pe = 1/(1+p) X D + p/(1l+p) X (A+T) esee 7.18

everywhere except for the row corresponding to the empty state. This last row
of Pe is equal to the correspcnding row of the allocation matrix A. Since D
and T are zero in this row anyway, the only alteration necessary to make
eyualion 7.18 completely correct is to replace the coefficient p/(i+p) of A vy
the value unity for this row only. Pe is thus muqh easier to write down than
its counterpart P is in the infinite queue case, as can be seen by comparison
with equations 5.12 or 5.13. As an example, figure 7.8 shows Pe for N =4,
with the first fit allocation algorithm. The addition of the three matrices
D, A, T in equation 7.18 is a simple affair as D is strictly upper triangular,

A is strictly lower triangular and T is diagonal.
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This matrix is easily formed according to equation 7.18 merely by

superimposing D (upper triangle),
appropriate coefficients;

compare figure

s 5.1,

A (Tower triangle) and T (diagonal) with the
5.14 (first fit algorithm).
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7.5.5.3 The finite queue model

The variation of this model's behaviour from the infinite queue model
when there is an non-empty but finite queue is in one respect only, that after
a deallocation a maximum of only as many allocations as there are requests in
the queue is possible. The transition probability matrix Pf thus resembles P

of the infinite queue model closely (compare equations 5.12, 5.13):

o
i}

£ anDTn + (anDAn)(T+A(T+...+A(T+A)...)) (L-1 factors)

1 DT+ (xQnDAﬁ)((I+A+A2+...+AL'2)T+AL-1)

"

LN R ] 7-19

where the queue length is L requests. If L is not less than the memory size,

L 2 N, then Pf = P,

7.5.5.4 Unsaturated model as a combination of empty and finite queue models

As already mentioned, the transition probability matrix of this model
will have to combine the algebraic statements of Pe and Pf, equations 7.18 and
7.19 above, and also to keep track of changes of the number of elements in the
queue. The latter may be possible separately, for example just by using the
probability (1—p)pL of finding L requests in the M/M/1 queue. It will be
interesting to develop both this model and especially that of the empty queue
in their own right, to see if and how far the simpler algebra can be analysed

and compared with the existing results of others in the published 1iterature.
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7.6 Summary of further analysis and extension of storage allocation models

The study and application of the storage allocation model so far
developed can be continued and extended in a number of useful ways. More
powerful numerical methods, perhaps those recently suggested by Stewart (1977)
may allow the convergence of the computations described in chapter 6 to be
accelerated. This in turn should allow computations for slightly larger |
memory sizes, although the exponentially increasing amount of information
required in these calculations is still a limiting factor. There are
reasonable prospects of being able to learn more of the model's structure by
continuing the algebraic analysis presented in chapter 5. There is also still
a possibility that a useful way of defining an analogous infinite model
amenable to analysis may be found, either by extending memory size‘N to
infinity in the discrete case or by "smearing" the discreteness to the real
continuum. The model may be made more general, either in its time behaviour
as a semi-Markov chaiﬁ or stochastic renewal process, or eise by introducing
extra rules for allocating storage, for example to study systems in which the
treatment of gaps is more general, such as those including garbage collection.
Buddy systems can already be represented by the present model, although their
study may be helped by rearranging the set of states or memory configurations
into an order which more closely represents their natural interrelationships
in any particular system. Models of circular memory are sometimes studied to
avoid awkward end effects, and rearranging the states will be necessary in
this case also. The extension of the model to the case where the queue of
requests is not saturated but can become empty introduces alternative
algebraic derivations of the transition probability matrix when the queue is
empty or only finite, and these can be combined to produce a stochastic model

for such an unsaturated queue.
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A topical example of a useful way in which to extend and apply the
analysis of the present model, would be to build an algebraic model
corresponding to that studied by Reeves (1979, 1980). This has a circular
storage (though this may not of course introduce significant differences for
large memories, depending on the request distribution) and uses the empty
queue described above, requests being satisfied immediately they arrive. It
would be most interesting to compare thé analysis of such a model with the
results obtained by using generating functions, and it would not be surprising
if at least one of the methods could benefit from results obtained by the

other.
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Chapter 8 : Conclusion

This thesis has presented a survey of the existing studies which have
been made of the behaviour and performance of systems concerning the
allocation and fragmentation of storage, and a method of analysing such an
allocation scheme as a probability model. In the simplest céses, the model is
a finite discrete-time Markov chain, and an example in which this is the case
has been justified and studied. Quantities of interest such as the average
amount of storage which is allocated to requests at any time, can be derived
from the consequent vector of state probabilities. The transition probability
matrix upon which these probabilities depend has been discovered to have a
recursive structure. This arises from the simple recursive nature of certain
more basic matrices of probabilities of which the transition matrix is
composed. Advantage has been taken of this algebraic structure in a numerical
implementation to calcuiate the state and eventually the steady state
probabilities, of which the latter ére impcrtant because they determine the
average performance of the allocation scheme in equilibrium. This computation
avoids storing the transition matrix and so uses less time and space. By this
means, models with larger memories have been computed than would otherwise
have been possible. Although the memory sizes are still small, the results
can provide useful indications of the performance of larger but otherwise
corresponding models. The algebraic composition of the transition matrix has
aiso ied to the discovery of an unexpected simplification of the steady state
equatiins which determine the steady state probabilities. The dependence of
thesa orobebilities on the choice of allocation algorithm and the request
distribution is expressed in a much more direct way in these simple equations
than it is in the original version. The simplicity of the reduced form of

these equations should make them amenable to further analysis in a number of
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ways besides those presented here, and some possible further uses and
investigation of the algebraic structure which has been found, have been

indicated.

It is conventional to make concluding remarks under the above heading,
but in the present case the term is misleading as the most interesting work is
yet to come. The value of the ideas and analysis which have been presented in
the preceding chapters is mainly that they have begun the foundation of an
analytical technique for studying dynamic storage allocation and fragmentation
phenomena where, with few exceptions, none existed before. The benefits which
1ie ahead will come by further use of this technique on the wide range of
storage allocation models to which it can be applied, to see where and how far
the analysis will lead. The author is confident that the applications
presented here represent only a beginning, and that there is still plenty of
mileage left in the sturdy treads of this approach to the “storage

fragmentation problem".

-

One of tﬁe abdve-mentioned exceptions is Reevés' generating function
technique, the analytical approach of which is complementary to the present
work. The general method presented here in this thesis is to describe the
behaviour of a storage allocation model by means of a probability vector
containing one element for each state and to rely on discovering and using the
resulting discrete and recursive structure of the transition matrix to
determine and compare the model's performance. By contrast, in Reeves' method
other but simiiar probability variables (such as the probability in
equilibrium thet 3 randomly chosen gap or block is of a given size) which
contain the infornation about what is going on in the model are considered and
in fact they are made to be the coefficients jn a generating function. The

principle of this analytical technique then becomes simple enough; the
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allocation and deallocation actions of the model determine conditions which
the generating functions so introduced must satisfy. The functions can then
be determined from these and any similar conditions which arise from their
definition, and the main purpose of the investigation is to extract properties
of the model suéh as the performance statistics from the form of these
functions. This simplicity of principle belies the considerable practical
skill needed with this as with most theoretical model building, the ability to
successfully compromise between what is analytically possible and the
complexities of real life. The application of the algebraic technique
developed here in the present work will bring plenty of opportunities to
practise the art of bringing these two opposing factors together without

losing the important features of any situation being considered.
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