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ABSTRACT 

Storage fragmentation, the splitting of available computer memory space 

into separate gaps by allocations and deal locations of various sized blocks 

with consequent loss of utilisation due to reduced ability to satisfy 

reque~ts, has ~roved difficult to analyse. Most previous studies rely on 

simulation, and nearly all of the few published analyses that do not, simplify 

the combinatorial complexity that arises by some averaging assumption. 

After a survey of these results, an exact analytical approach to the 

study of storage allocation and fragmentation is presented. A model of an 

allocation scheme of a kind common in many computing systems is described. 

Requests from a saturated fi rst come fi rst served queue for varyi ng amounts of 

contiguous storage are satisfied as soon as sufficient space becomes available 

in a storage memory of fixed total size. A placement algorithm decides which 

free locations to allocate if a choice is possible. After a variable time, 

allocated requests are completed and their occupied storage is freed again. 

In general, the avail ab 1 e space becomes fragmented because allocated requests 

are not relocated ~r moved around in stora~e. 

The model's behaviour and in particul~r the storage utilisation are 

studied under conditions in which the model is a finite homogeneous Markov 

chain. The algebraic structure of its sparse transition matrix is discovered 

to have a striki~g recursive pattern, allowing the steady state equation to be 

simplified considerably and unexpectedly to a simple and direct statement of 

the effect of the choice of placement algorithm on the steady state. Possible 

developments and uses of this simplified analysis are indicated, and some 

investigated. The exact probabilistic behaviour of models of relatively small 

memory sizes is computed, and different placement algorithms are compared with 

each other and with the analytic results which are derived for the 

corresponding model in which relocation is allowed. 
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Chapter 1 Introduction 

Storage fragmentation is the term used to describe the splitting of the 

space available for allocating requests for computer storage, or memory, into 

separate non-contiguous areas inbetween blocks already allocated to requests 

which cannot be moved around in the storage once they have been allocated. 

This thesis describes and analyses a model of a storage allocation scheme of a 

kind which is common in many computing systems. A storage, or memory, 

consists of a fixed integer amount N of contiguous "words", numbered from 1 

to N say. A word cannot be split for the purpose of allocating storage. The 

unit of allocation in a practical application might be a word, a page, or some 

other fixed size unit of memory, and "word" is used here to include all these 

terms. Requests from a saturated or never empty queue for varying 

integer-sized blocks of contiguous words are satisfied as soon as sufficient 

space becomes available. An allocation placement algorithm decides which 

avai~dble, or free, locatior.s to allocate i7 a choice is possible. Blocks 

remain allocated for a variable time, after which the requests are completed 

and their occupied storage is freed again. In general, the available space 

becomes fragmented because allocated requests are not relocated or moved 

around in storage. 

1.1 The origin and purpose of this investigation, and its significance 

The original purpose of this investigation was to provide if possible a 

theoretical analysis of storage allocation and fragmentation, sufficient to 

predict in advance such quantities as the likely storage utilisation (the 

fraction of memory allocated to requests) and amount of fragmentation that can 

be expected to occur, given such necessary parameters as the total storage 
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size, the method of deciding where to choose to put new requests, some 

information about the expected duration of allocated requests in storage and 

the probability distribution of the size of a new request. A particular 

stimulus to this investigation was given by Randell (1969), who observed some 

unexpected fragmentation behaviour when performing simulations of a storage 

all ocation scheme. He noticed that the attempt to reduce fragmentation and 

increase utilisation by rounding up each storage request size to the next 

nearest multiple of a fixed quantum before allocating the request, was in 

practice more than offset by the consequent loss of utilisation caused by the 

rounding up process. Increasing the quantum size appeared to make this net 

loss steadii y worse rather than better. Randell found this observed resul t to 

be intuitively surprising, and called for analytical confirmation to discover 

its cause and the region of its validity. 

Storage fragmentation has proved to be quite difficult to analyse. The 

available thec~etical analysis ~f such a general storage allocation system 

has, at least until ver,v recently, in Randell1s words beer. IIsorely lackingll. 

Most previous studies have relied on simulation, and most of the few that do 

not, have simplified the combinatorial complexity that arises by at least one 

approximating assumption about the average behaviour of a large number of 

possible cases, even after having already made such mathematically tractable 

assumptions as a uniform or negative exponential distribution of request size. 

The analysis presented in this thesls has similarly had to make some 

initial simplifying assumptions for tractability, in particular that request 

sizes are identically and constantly distributed independent of each other, 

that the distributions of request size and duration (amount of time spent in 

the memory) are independent and that the requested duration in memory is in 

fact distributed such that at any moment any allocated block in storage is 
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equally likely to be the next to be deal located. The last requirement can be 

met for instance by assuming a negative exponential distribution of request 

duration. The plausibility of these assumptions is argued in chapter 3, where 

they are in fact shown to be sufficient, with suitable definitions of stat~ 

and transition between states, for the model to be considered as a finite 

discrete-time Markov chain. When this chain is ergodic, as in general it is, 

its equation of steady state has a unique eigensolution which is the dominant 

eigenvector of steady state probabilities. 

Unlike most previous studies, the subsequent analysis is then exact as it 

makes no further approximating or averaging assumptions and also it does allow 

any general request size distribution to be assumed. The apparently 

inevitable combinatorial explosion which results for increasing total memory 

size is managed by noticing that certain aspects of the model constantly recur 

whatever the total size of memory may be, and by studying the properties of 

the model wh ich cause thi s to be so. 

The storage utilisation in the steady state is usually of interest in any 

practical storage all ocation scheme in which space is either expensive or at a 

premi urn. Properl y defi ned, the expected amounts of storage ut i 1 i sati on and 

fragmentation (wasted space due to rounding as well as space unused because it 

is scattered between the blocks) can be calculated directly as linear 

functions of a steady state eigenvector of probabilities. Consequently it is 

interesting to see how much information about this equilibrium eigenvector can 

be discovered from the knowledge of the structure of the transition matrix, 

which in turn depends in part upon the allocation algorithm and request size 

probability distribution. There is thus a direct link between these last two 

and quantities such as the expected utilisation and fragmentation, and it is 

one achievement of the present work to discover that there is a short, simple 
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and direct algebraic statement of this link, the reduced steady state 

equations. 

The transition probability matrix of the Markov chain is in fact 

discovered to have an algebraic expansion as sums and products of much simpler 

matrices of probabilities, each of which represent a single momentary stage in 

a complete transition. These simpler matrices have a striking recursive 

structure which can partly be seen as visual patterns, when the states are 

ordered in ways which are related to the properties of the model which are 

responsible for this structure. These simple component matrices can still be 

specified exactly in the general case of arbitrarily large memory size by 

recurrence relations which express their form in terms of smaller versions of 

themselves and each other. This algebraic expansion of the transition matrix 

allows the equation of steady state to be rearranged and substantially 

simpl ified to a much simpler form in which the effect of the choice of 

placement algorithm and request size distribution on the eigenvector of steady 

~ta~e probabilities is stated quite directly. 

This reduced equation and the algebraic expaDsion of the transition 

matrix, both expressed in terms of simple matrices with recursive structures, 

can be used as starting pOints for discovering the model's behaviour. As an 

example of the possible uses of the reduced steady state equations, the 

constrai nts whi ch must be sati sfi ed regardl ess of the allocation al gorithm are 

obtained by the discovery that groups of states may be defined to ignore any 

differentiation which the choice of allocation algorithm may introduce. When 

this is done the steady state equations reduce further to a statement of the 

constraints \'/hich the modified vector of grouped steady state probabil ities 

must satisfy irrespective of the allocation algorithm actually used. Both the 

expected utilisation and fragmentation are still expressible as linear 



1 Introduction 5 

functions of the grouped steady state probabilities. Another rather different 

example of the use of the structure of the transition matrix occurs in an 

imple~entation of the power method. This is used to gather whatever exact , 

numerjcal results may be possible for memory sizes up to as large as can be 

managed, by using a knowledge of the structure to avoid storing the transition 

matrix and thereby allowing larger models to be computed. 

The rest of this chapter expands on the above outline by summarising the 

work of each subsequent chapter according to the order in which each is 

arranged. 

1.2 Relation of the present analysis to existing work 

Chapter 2 summarises the existing work that has been done on this kind of 

storage allocation problem, and describes different features of the storage 

allocation schemes that have been studied. It also surveys possible 

connections with some other related areas of study such as random space 

filling problems in which the fragmentation of the available space is of 

interest. ~~ith the few exceptions that are noted, there is not much useful 

mathematical analysis of this general kind of problem, which perhaps indicates 

that solutions are hard to find. Most authors who have tried to produce 

positi'!e predictions about particul ar allocation systems have used simul ation 

to estimate model behaviour and performance. The mathematical analysis that 

has been done is mainly either quite short and not in general very precise, or 

else it is longer and more detailed, and the conclusions harder to reach. 

Knuth's (1968) well known fifty per cent rule, for example, makes some 

assumptions about averages and so produces a conclusion which is an 

approximation in general. The more detailed analyses which make less 

assumptions about averages, are longer and have more difficulty in carrying 
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the mathematical complexities which arise to a useful conclusion. A good 

example is Purdom and Stigler's (1970) analysis of the buddy system. By 

assuming Poisson arrivals and exponential service times they were able to 

estimate the .average number of available blocks at the smallest level of size, 

and to estimate the approximate relationships between block lifetimes on 

adjacent pairs of level sizes, but were unable to combine these relationships 

for the model as a whole except by considering each pair of levels 

independently. The analysis presented in this thesis is of this second type, 

for if nothing else it is certainly more detailed, longer and more complicated 

than the fifty per cent rule, for example. It provides a particular 

mathematical foundation for analysing the problem, and part of its 

contribution is that one aspect at least of the analysis unexpectedly 

simplifies to a sufficient degree that it is not unreasonably optimistic to 

expect useful results will be possible besides those presented here. 

1.3 Analysis based on a Markov model of storage allocation 

The model of storage allocation to be used as a vehicle for study in this 

thesis is defined in chapter 3. Certain assumptions about the distributions 

of request size and duration in storage are made, and definitions of state and 

transition between states are given, with which the model is proved to be a 

finite homogeneous Markov chain. These assumptions are not unreasonable for a 

wide range of situations in which storaqe allocation and fragmentation are of 
.' -

interest, and some arguments to support this are presented. Although unusual 

circumstances are shown to be possible in which the Markov chain is not so 

well behaved (it is not always irreducible), it i~ proved to be ergodic in 

general. The transition probability matrix then has a unique eigenvector of 

equilibrium or steady state probabilities to which the time-dependent vector 
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of state probabilities always converges as time passes whatever its starting 

value at some initial time origin. 

1.4 Number of states, sparsen~ss, and comparison with relocation . 
Chapter 4 contains a preliminary analysis of this particular storage 

allocation model just defined, and introduces some more terms and notation 

7 

needed in the following chapters. The number of states in the Markov chain is 

shown to increase exponentially with memory size and in fact it takes on 

values which are every second term from the Fibonacci sequence. The matrix of 

transition probabilities is seen to be sparse, as on average comparatively few 

other states can be reached from any given state in one transition. 

An easier to analyse variation of the model in which relocation is 

allowed, and which is interesting because it provides an upper bound to the 

storage utilisation in ~~e non-relocating model, is considered. Randell 

(1969) also used this relocating variation to compare the performance obtained 

with different allocation algorithms and request distributions. An example of 

this relocating variation of the model is presented and closed form 

expressions are obtained for the expected equilibrium values of the 

utilisation and fragmentation. 

1.5 Algebraic expansion, simplification and use of the steady state equation 

The heart of the work in this thesis is in chapter 5. Because this 

material is new and therefore more unfamiliar than that of the (necessarily 

partly introductory) preceding two chapters, the exposition and proofs here 

are a little longer in"style than in chapters 3 and 4. This extra care may 

seem in places, perhaps especially in the first section, to be longwinded or 
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to be proving the obvious. It has been taken nevertheless because of the 

importance of v/hat is contained here to the rest of the v/ork in the remaining 

chapters. Section 5.1 reveals the recursive structure of the transition 

probability matrix of the Markov chain. This structure is used in section 5.2 

to transform the steady state transition equation to the reduced form already 

mentioned above, which represents the choice of allocation algorithm in a very 

simple and direct way. The properties of this simple form and the prospects 

for its use are examined in section 5.3. The example of this use which is 

given is to produce by a further reduction the allocation-independent 

constraints already referred to. It was discovered that these could be 

achieved by grouping the states, guided by the choices indicated by the 

matrices which represent the action of the allocation algorithm. The rules 

for constructing these new state groups and the matrix of the constraining 

equations without prior reference to the transition matrix, are set out in 

detail. 

Tb.is reduced set of equat;on~ contains some degrees of freedom as there 

are fewer constraints than grouped states, and so it is possible for example 

to consider using linear programming techniques to discover how utilisation 

and fragmentation may vary when the allocation algorithm is chosen with 

compl ete freedom. Interesti ngly, there are many fewer degrees of freedom in 

these further reduced equations governing the grouped state probabilities than 

there appear to be in the allocation algorithm specification, implying that 

many of the choices possible when selecting an algorithm are redundant or 

immaterial as far as utilisation and fragmentation are concerned. 
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1.6 Exact numerical results for small memories. and their usefulness 

Chapter 6 presents the attempts based on the power method which have been 

made to calculate exact numerical solutions for models of small memory sizes, 

and the results which have been obtained. The means used to obtain results 

for as large a memory size as possible are explained. The most successful of 

these which allO\'/s the largest possible size so far ~chieved to be computed 

(12 words), uses the sparse structure of the transition probability matrix set 

out in chapter 5 to avoid storing the matrix anywhere at all. The results 

from three allocation algorithms and two request distributions are compared 

with each other and \,/ith the corresponding upper bound results for the 

relocating model from chapter 4. Even such small memory sizes can produce 

useful results, not least because the unit of allocation in a practical 

Situation might be large, a page or a disc track for instance, so that the 

number of "words" in such a memory might not be very great. As an example of 

the possible usefulness of these results even for these small memory sizes, 

Ran~ell's observations (abov~) on the effect on storage utilisation of 

increasing the quantum size when requests are being rounded up before 

allocation, are successfully demonstrated 'and corroborated. 

1.7 The beginnings of further development and use of the analysis so far 

The development of an algebraic means of analysing storage allocation and 

fragmentation to the state described in the preceding chapters has the happy 

consequence that there are now a number of different ways in which to apply 

the ana'lysis and to develop it further. Before the conclusions in chapter 8 

these possibilities are examined in chapter 7, and most of them give 

indica~ions that more interesting resul ts may well be obtained to add to those 
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al ready described here. It is possible, al though perhaps not very 1 ikely as 

the first section in this chapter indicates, that a better method than the 

straightforward iterative power method may be found to determine the steady 

state probability eigenvector. Certainly it seems that more use might be made 

of the exact converged values obtained for small memory sizes. 

There is undoubtedly·more to be discovered in the way in which the 

recursive structure of the transition matrix determines that of the steady 

state equations, and furthe"r study should lead to greater insight into the 

properties of these equations and their solution. Not the least interesting 

possibility is of applying the presently developed analysis to other similar 

models of storage allocation. There are a number of ways in which the 

saturated queue model defined and studied in detail in the earlier chapters 

can be modified to match the variety of allocation schemes which exist in 

practice. Chapter 7 surveys some of these variations. The algebraic 

structure of the transition ma"C"rix simplifies quite a lot when the queue of 

reqlJests is specified as being unsaturated, as this chapter show~, C'nd sinre 

unsaturated storage allocation models have occurred more often in previously 

published work it will be interesting to see how the analytical methods 

presented here can be applied to this model and to compare any results 

obtai ned. 

1.8 Previous work which has been assimilated into this thesis 

The author has previously written a number of papers (1971, 1973, 1973a, 

1974, 1974a, 1977) as the analysis of the storage allocation problem has been 

developed. Almost all of their contents appear and have been extended in this 

thesis in some form, although the converse is most certainly not true; there 
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is much extra work reported here which has not previously been published 

anywhere else. The (1971) report was concerned with the analysis of what 

happens when relocation is allowed, and its results are incorporated and 

extended in section 4.4 of the present work. The (1973) report which was 

subsequently published with a few additions (1974) was concerned with the 

definition of the model, some of its properties as a Markov chain, and the 

first implementation to obtain numerical results. It is covered by chapters 3 

and 4, and parts of chapter 6. The (1973a) report began the algebraic 

analysis of chapter 5, and this was subsequently extended (1977). The (1974a) 

report documents the author's failure to achieve much progress with an 

extension of the model definition to infinite memory sizes, summarised here in 

chapter 7 section 7.3. 
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Chapter 2 A survey of previous work 

Before attempting an analysis of storage fragmentation it-is of course 

necessary to ·study the work of others who have considered the same or a 

similar problem. This is partly to avoid needless duplication of effort, but 

mainly because it is wise to judge what progress has already been made, what 

might possibly be done that would be useful, and how it could be achieved by 

using existing results where possible and appropriate. The purpose of the 

present chapter is to make such a survey of the previous efforts that have 

been made to analyse the generally difficul t probl ems of storage 

fragmentation. 

Storage fragmentation occurs as one aspect of a much more general class 

of problems which are concerned with how to allocate or divide up some kind of 

fixed storage space among a nu~jer of requests for it, often with the aim of 

doing this as well as possible with respect to some measure of efficiency. 

Usually in this kind of problem there are some rules or constraints as to how 

the allocation should or must be performed. The most common of these is 

excl usiveness, that the space reserved for the use of one request .can not be 

used for another until the first has finished \,/ith it. Also very frequent is 

the requirement that the space allocated to one request should not be 

scattered but instead has to be compact or contiguous, occurring all together 

in one piece in some sense. When there is also variability of the size (and 

possibly the shape) of the requested space and of the time for which it may be 

required, and ~men the space that has been allocated to a request is not 

easily moved around, these are the general conditions in which the available 

space will be spl it up or fragmented into separate pieces. Since in these 

conditions the fragmented space is generally less able to satisfy requests 
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than it would be if it could be all collected together, the question arises of 

how best to allocate or give out the space to minimise this effect. 

The allocation of requests for space for storing programs and data in 

computer memories is an obvious example, and many aspects of computer memory 

allocation have been studied since the earliest days of computing. Knuth 

(1968), pages 456 - 461 gives a survey quoting many developments from 1946 

onwards, and Randell and Kuehner (1968) also give a similar explanatory 

survey. From both these sources it is clear that the term IIstorage 

allocation ll was sometimes used in the early days of computing to mean much 

more than it usually does now. Indeed in a few places where it was used a 

more appropriate present-day term would now be lIoperating system ll
; see the 

description by Maher (1961) of storage allocation in the Burroughs B5000 

computer, for example. (The storage allocation routine loads programs, 

assigns memory, assigns I/O buffers (with semi-automatic tanking?!), assigns 

I/O units, configures the system when the B5000 is switched on, protects 

sto _'age and relocates addrcs constants.) 

With such a general problem it is not surprising to find that storage 

fragmentation effects have been studied in a variety of other guises. Most 

notably these include space-filling problems, the practical origin of which 

ir.clude in their range of scope a desire to know the best shape for a lump of 

coke so as to get the most fuel into a given volume such as a railway wagon, 

Renyi (1958) below, to a requirement (Page (1959), also see below) to estimate 

the likely amount of hydrogen deposited inmolecular doublets as a thin film 

on a rectangular lattice surface, and the amount subsequently adsorbed from it 

by mercUt'y. Because of the difficulty of the analysis both Renyi and Page 

managed only to consider the one-dimensional case instead of the original 

three- and two-dimensional problems. In such a general sense of course the 
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problem is an everyday one, familiar for example to the housewife arranging 

groceries on the pantry shelf or the building site foreman deciding where to 

store steelwork temporarily on a building site. (An interesting example of 

this last problem is given by Lovell (1968).) This thesis is concerned mainly 

with expressing the problem in terms of the application to computer memory 

management however, and thi s wi 11 be cl ear from the next and subsequent 

sections of this chapter. 

2.1 External and internal fragmentation, and Randell's observation 

Randell (1969) published the results of some simulation experiments which 

were intended to investigate the various factors which might affect storage 

fragmentation, in a paper the importance of which can partly be judged by the 

regularity with which it has been referenced by subsequent authors. He 

distinguished and defined two kinds of fragmentation. In the present thesis, 

the p.xternal fragmer.ttition EF of a ~tcrage me'lor~' at any particular inscant, 

containing available or free storage possibly separated by allocated or 

unavailable blocks, is here defined to be the fraction (expressed as a ratio 

between 0 and 1) of the whole memory wh i chi s av a i1 ab 1 e at that instant. The 

complementary quantity storage utilisation is defined as the fraction of the 

whole memory which is allocated, so that always 

external fragmentation EF = 1 - storage utilisation •... 2.1 

This is the definition of external fragmentation, as a loss in storage 

utilisation caused by the separation of the available space, which has been 

used by nearly all authors most of whom have referred to it as being due to 

Randell. In fact the definition he gave, which is harder to work with 

directly, is slightly different. He defined external fragmentation as the 
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difference in storage util isation betv/een two experiments, one using a 

non-relocating placement algorithm and an otherwise identical experiment in 

which allocated blocks were always moved (relocated) so as to collect together 

the free space whenever necessary. This difference can be derived from the 

definition given above if the storage utilisation in the relocating model is 

known. Randell's definition is perhaps more correct as it recognises that 

even when blocks can be moved as required, the last allocated block will not 

in general be a perfect fit. In fact in most practical situations where block 

sizes are generally small compared to the total size of memory, the difference 

is sl ight since storage utilisation in a relocation scheme will be close to 

the maximum if the queue of requests is saturated. Randell concentrated in 

his simulations on the effect of rounding up requests for storage to the 

nearest multiple of a given allocation quantum, in order to assess the effect 

of reducing the number of different sizes of blocks coexisting in storage. 

This introduces a second kind of loss of storage utilisation, which he called 

internal fragmentation, defined to be at any instant the fraction of total 

memory within the allocated blocks wasted by the rounding process. Some 

Subsequent authors have defined this term ,to be the ratio of the space wasted 

by rounding to the total allocated space, but Randell's original definition 

will be adopted here as it is simpler to use. The alternative definition is 

obviously g'iven by the expression IF/(l-EF), It/here IF is the internal 

fragmentation as defined by Randel1 and EF is defined in equation 2.1 above. 

The difference in numerical value will not be slight if the unallocated space 

fraction EF is significant. 

Clearly in a storage allocation systBn in which both external and 

internal fragmentation are occurri ng, the fraction of memory actually 11 in use" 

at any moment by being allocated to the original requests before rounding, is 

given by 
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proper storage utilisation (with rounding) = (1 - EF) - IF .... 2.2 

so that the term "storage util isation" defined above as the space allocated to 

blocks, and therefore including the wasted space due to rounding, is 

misleading wnen request sizes are being rounded up before allocation is being 

performed. In fact internal fragmentation is only considered expl icitly at 

t~~ specific places (sections 4.4 and 6.5.3) below, since most of this thesis 

is concerned with the more difficult task of examining the behaviour which 

produces external fragmentation, which logically has to be considered first 

anyway. It is therefore convenient to keep the term "uti1 isation" as defined, 

the fraction of memory allocated to blocks as though no rounding is taking 

place, and to remember to subtract the term for internal fragmentation when 

the amount of rounding up is subsequently brought in to the argument. 

To iJlustrate what was discovered as the allocation quantum was 

increased, one of the diagrams from Randell's paper is reproduced in chapter 6 

as figure 6.8. As mentioned in the introduction to chapter 1, all of the 

simulations which he reported showed the unexpected result that as the 

allocation quantum increased the loss of utilisation due to increased internal 

fragmentation distinctly outweighed the gain due to decreased external 

fragmentation. The proper or combined loss went up rather than down as a 

result, and Randell called for an analytical investigation to confirm this. 

The present thesis, the contained results and any subsequent work exist 

largely as a consequence of this appeal although the scope of the 

investigation has widened considerably beyond an attempt to answer this direct 

question alone. 
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2.2 Some different possible allocation algorithms 

Various methods have been used to decide where to allocate a new request 

for storage in a given memory configuration when a choice is possible. 

Perhaps the best known of these are first fit and best fit, described by Knuth 

(1968), but certainly used long before then. Collins (1961) for example 

reports pl aying experimental "games" to compare the first, best, worst and 

random fit algorithms, but he gave no results other than to say that best fit 

lasted longer before overflow occurred than the others. It seems likely that 

the first and best fit algorithms were probably among the first placement 

rules to be used in storage allocation schemes in which fragmentation could 

Occur. 

2.2.1 First and best fit, and some variations 

Consider the ~"ords of memory to be ordered from 1 to N whe)"e there are N 

words in the memory, or "left to right" in a pictorial sense. Then first fit 

searches from left to right, and allocates the request at the left end of the 

first gap encountered which is 1 arge enough to receive it. Obvious 

modifications to this rule are to search from right to left, or to begin the 

search at the point where it stopped last time (this last algorithm is known 

as modified first fit). Best fit allocates the request into the smallest gap 

which is sufficiently large enough to receive it, not necessarily the first 

encountered. If there is more than one such gap of this smallest size, then 

one of them is chosen by some rule such as the leftmost or first encountered 

in a left to right search. Figure 3.1 at the beginning of the next chapter 

for instance illustrates an example of both of these algorithms in operation, 

and shows a situation in ~"hich they will perform different actions to each 
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other. Knuth performed a number of experiments to compare first fit and best 

fit, and commented that in general first fit was better since best fit tended 

to produce more smaller gaps than first fit. 

However; Shore (1975) has also compared these two algorithms and has a 

different explanation of the comparison, that first fit performs better than 

best fit because small blocks and gaps tend to congregate at the beginning or 

left hand end of memory, and larger blocks and gaps at the other end, so that 

first fit is more likely to be able to satisfy a large request. Shore found 

that best fit was generally better than first fit for the uniform request size 

distribution, and that although the comparison was reversed for the 

exponential distribution, as the maximum request size was reduced in his 

experiments the difference became less until best fit performed better than 

first fit for the exponential distribution as well. Shore pOinted out that 

the relative performance depends strongly on the request distribution. He 

reported that, as Randell (1969) had also discovered, the variation in 

util isation caused by changing the ~1location algo~ithm did ~ot often cause a 

difference of more than one or two per cent, whereas the change in request 

distribution for the same al gorithm can produce differences of five or 

sometimes ten per cent in the utilisation. Shore proposed a combined 

algorithm, "best then first" fit, in which memory is divided into two regions. 

The algorithm tries best fit in the first or left hand region, and then only 

if necessary, first fit in the right hand region. He argued that if the 

boundary between the two regions could be correctly adjusted, this might 

combine the advantages of both algorithms. 

To compa r'e with the resul ts of both these authors, it wi 11 be seen in 

section 6.5.3 in chapter 6 below that when the queue of requests is saturated, 

best fit always performs as well as or better than first fit for both these 
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request size distributions, at least for the memory sizes which have been 

computed using the model described in that chapter. Knuth used a model in 

which the request queue \'1as not saturated, that is, whenever a request arrived 

it could be immediately satisfied, and not to have the space available for it 

(overflow) was considered as a failure. Storage utilisation in such a system 

is certain to be lower, and less relevant anyway without saturation; his 

comparison of methods \'/as apparently based more upon how long each algorithm 

would last before an overflow failure occurred. Shore's model did use a 

saturated (essentially infinite) queue of requests. 

2.2.2 Fenton and Payne's half fit algorithm 

Fenton and Payne (1974) also compared first and best fit by performing a 

number of simulation experiments, and found that best fit invariably performed 

better for various request size distributions, including uniform and 

exponential. Their results. which thpy reported in a different way to 

previous authors, also appear to show that the difference in utilisation 

between these two al gorithms is usually not more than two per cent. They al so 

reported results on the modified first fit algorithm, and the half fit 

allocation algorithm (see below). Modified first fit consistently performed 

worse than first fit, generally up to 5 per cent lower utilisation, 

supporting Shore's remarks on the separation of small and large gaps which is 

not expected to occur in modified first fit. That modified first fit performs 

worse thdn first fit is also supported by the simu1ations reported in a short 

note by Eays (1977) who compared first fit, best fit and r.1odified first fit 

finding a result consistent with Shore, and Fenton and Payne. 

Fenton and Payne's half fit algorithm allocates a request into a gap 
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which is approximately twice its size, and falls back upon using best fit if 

this is not possible. The idea is to deal more successfully with a 

distribution dominated by one size of request. If the next request is likely 

to be for th~ same size as the current one, then it might be a good idea to 

find and use a gap of twice the needed size if possible rather than, say, one 

which is too big by only half as much, (and to use best fit otherwise, to use 

up the already created gaps of the right size). They found that this idea was 

only moderately successful in practice, IIhal f fit performed well in some cases 

but the resul ts were too erratic to draw any concl usion ll , and gave the same 

figure as that for first fit for its average performance over a number of 

simulations. 

2.2.3 Campbell IS optimal fit algorithm; the optimal stopping problem 

Besides Shorels IIbest then firstll fit, another algorithm which canbines 

first and b~st fit is the optimal fit method propcled by Ca~~bEll (1971). 

This is based on an analysis of the problem of optimal choice, or optimal 

stopping problem, which has been analysed by Dynkin and Yushkevich (1969) 

using Markov theory. Campbell quotes an explanation of the problem in terms 

of a cyclist wishing to stop overnight at one of a known number G of hotels, 

to determine the optimal strategy for finding the best hotel in the absence of 

any other advance information if a strong following wind prevents him from 

going back to any hotel once he has left it for the next. (Although it is 

less practical, Oynkin and Yushkevichls charming alternative example of an 

aspiring but astute bride-to-be wishing to make an unerring choice of the best 

of all suitors proposing marriage to her is more amusing.) To allocate any 

request, the optimal fit algorithm first computes an integer k(G) as a 

function of the number G of free gaps currently in the memory. The gaps are 
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then scanned from left to right. The best possible fit in the first k(G)-l is 

noted, but allocation is not performed. The algorithm then chooses the first 

gap numbered from k(G) onwards which has a better fit than all the previous 

gaps so far en~ountered. If there is no such gap, the best fitting gap is 

used (the one that the best fit algorithm would have chosen, and \mich must 

therefore be in the first k(G)-l gaps; the cyclist and the bride-to-be do not 

have this option). For large G, a good approximation to k(G) is to choose the 

rounded up value of G/e = G/2.718 approximately. Campbell implemented the 

optimal and first fit algorithms in a particular application program and 

compared their performance as measured by the number of garbage collections 

required, finding that optimal fit was generally better, keeping the free 

storage list of gaps in the memory noticeably more compact. 

2.2.4 Random and worst fit 

Two more poss~ble ways of deciding how to choose whe;~ to plac~ a new 

request in storage which have received less attention in the literature than 

best or worst fit, are the so-called random fit and worst fit allocation 

algorithms. Given a request to be allocated, random fit chooses at random 

from all the available gaps sufficiently large to receive it. Reeves (1979, 

1980) has used the random fit algorithm to successfully demonstrate how 

storage allocation systems may be analysed algebraically by means of 

generating functions, see section 2.6 below. Randell (1969) included it as 

one of the algorithms he compared in his simulations, as he thought it likely 

to be near the opposite extreme in performance to best fit. In fact, it is 

possible to be quite a lot more perverse than this, for after all a random 

choice will sometimes be made "correctly" as well as soml=times badly. With 

this idea in mind, the present author has devised and used a "worst fit" 
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algorithm for the canputations of chapter 6 in an attempt to discover how much 

the storage util isation can be affected by IIbad ll allocation. One feature of 

this particular algorithm does not seem to have been described elsewhere. 

Given a request to be allocated in a particular configuration of memory, the 

worst fit algorithm allocates the request into the middle of the largest 

available gap, leaving an amount of space on either side of the newly formed 

block in two new gaps which are either equal in size or else different by only 

one word. The predicted results of using this algorithm appear and are 

discussed in section 6.5. 

This version of the worst fit algorithm thus introduces an idea which, 

while it is not new, has not been discussed or analysed in this context 

elsewhere, that a request need not be allocated at the left or right hand end 

of the chosen gap but somewhere in the middle of it. This does not guarantee 

to do \'Iorse than putting the request at either end, although intuition again 

suggests that it usually shoula. To see why worse performance is not 

autom?ti':ally gllar?nteed, consider figure 2.1. This shows a 5-wo r d memory in 

which the first and last words are initially each allocated to blocks A and B 

each of length 1 word, and words 2, 3, 4 are empty. The queue requests which 

will arrive to be allocated are shown as C (1 word), D and E (each 2 ~ords). 

If request C of 1 word is allocated, and then blocks A and Bare deal located , 

II/orst fit leaves the available space in two equal halves of 2 \'Iords each so 

that blocks D and E can subsequently be fitted in, whereas best fit divides it 

into 1 word and 3 words so that only 0 can be allocated. In this example, 

best fit would of course do better if D was a request for 3 words and E for 

1 word. It should be pOinted out that this idea of leaving a space on either 

side is inherent in an alternative meaning which can be attached to the word 

IIra"ndornll to that intended by either Reeves or Randell. Thi s is that instead 

of chOOSing equally one gap fran each of the gaps sufficiently large for a 
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Initial configuration: . IT] Queue: III 

"Worst fit" 

(1 word) 

(2 words) 

(2 words) 

IIBest fit" 
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m . [I) . III ~<-- Algorithm allocates [I) --~) [I) [IJ. . [[] 

. [I). . E-(-- Blocks ~ and []J deal located -~)·m· 

I[DL-.I E---JI ~ ID f, I E allocated by worst ~ • [£]1_0 __ 

but best fit stuck with I E I. 
ID 

Figure 2.1 An example to show how "worst fit" can be better than "best fit" 

given reques~, the cho~ce can be equally at randum from any of the possible 

positions in the memory in which the nev·, block will not overlap any existing 

blocks. This therefore allows requests to be allocated in the middle of gaps 

as well as at their ends, and weights the choice towards the larger gaps. It 

is like trying to lay a new brick at random on a partially completed course of 

bricks whilst blindfolded; attempts which hit already existing bricks are 

discarded, and there is no guarantee that the successful try will place the 

brick exactly end up against one that is already laid. This is the idea of 

randomness which was used by Renyi (1958) in his consideration of space 

filling problems, see section 2.7 below. 
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2.2.5 Good and bad allocation; performance bounds, worst case behaviour 

Whilst on the subject of inefficient as opposed to efficient performance, 

it should be mentioned that section 5.3 in chapter 5 below determines the 

algebraic conditions which must be satisfied by any allocation algorithm, 

good, bad or otherwise inbetween, in the model which is considered in this 

thesis from chapters 3 to 6. These conditions form a set of constraints 

within which the algorithms may cause the utilisation for example to be 

varied, so that by studying the variation within these constraints it may be 

possible to determine upper or lower bounds on performance. A different pOint 

of view on bad performance is also provided by Robson (section 2.5 below), who 

is concerned not with inefficient allocation algorithms but with worst 

possible behaviour in terms of the request sizes and sequences of allocations 

and deal locations which can occur. 

2.2.6 Buddy systems 

For no very clear reason these allocation algorithms have generated more 

interest and had more papers written about them than any other kind of 

algorithm, if not more than all the others put together. Their distinguishing 

feature (apart from taki ng longer to expl ai n than most other al goritt.r.is, as 

can be seen here) is to make explicit and direct use of a tree structure to 

organise the configurations of ~llocated blocks and intervening gaps in 

memory. Consequently they tend to be quicker in operation than most other 

algorithms, that is they take less time on average to allocate or deal locate a 

block, but unless a particular request distribution is such that a particular 

buddy system can be tailored to suit it this is paid for in a higher wastage 

of space, especially internal fragmentation due to rounding. Most of the 
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practical interest that has been shown is probably because of their speed of 

operation, in systems where execution time is more critical than storage 

space, but undoubtedly the opportunity to exercise a little ingenuity in 

tinkering with the mechanism of the algorithm has also been an attraction to 

some authors. 
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A description of the simplest scheme, the binary buddy system, was first 

published by Knowlton (196?a) although Knuth (1968) says that H. Markowitz 

independently invented and used it in 1963. Interestingly, Knowlton does not 

use the word "buddy" in his description. Initially the memory which has size 

a power of 2, N = 2M say, is empty. To allocate a request of size n, the 

requested size is first rounded up to the nearest power of 2, so that 

2m-1 < n ~ 2m. If m=r~ the request is allocated, otherwise the empty memory 

of size 2M is considered to be split into two equal halves, or buddies, of 

2M-1 words each. One of these, it does not matter which, remains for 

subsequent requests and the other is again split into two equal halves, size 

2M-2 d 2M-2 d "1 th 1 h ' h '2m 0 f th . an ; an so on, ~n'':l e equa ,a,ves a"~ ~'ze • ne 0 em'~ 

used to satisfy the request and the other remains for subsequent requests. 

The action of an allocation is similar for s~bsequent requests when the memory 

is initially not empty. If a free block (gap) of the correct sized pov/er of 2 

is available, it is used to allocate the (rounded up) request, but if not then 

a larger free block of the smallest size for which there is a free block 

available is recursively split, as before. The action on a deal location 

merely reverses this procedure. If the buddy of a freed block also happens to 

be free, then the two are recombined into a single free block of twice the 

size, and its buddy is likewise examined in turn. Recombination stops either 

\'/hen a buddy is reached which is not free or el se the originally empty memory 

of 2M words in one free block is reached. 
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The speed of the algorithm lies in the complete absence of any list 

searching and the relatively small number M = lo92N of possible block sizes. 

Free blocks all of the same size are remembered by means of a last in first 

out list, or stack, usually implemented by address pointers kept in the free 

blocks themselves. Thus there is one stack for each possible size 2m. When a 

free block of a given size is required, the first one on the list is taken 

(and the list updated of course). When a block of the same size becomes free 

it is simply put onto the front of the list. To find the buddy of a given 

block, if this is not maintained also by a pointer then the very quick method 

given by Knowl ton can be used, 11 ••• simply to compl ement the m-th order bit of 

the 2m-block ' s address. Thus if the address of the beginning of a 2-word 

block ends in binary ••• 011000, then the address of its mate ends in ... 
••• 011010. Similarly if the address of a 4-word block ends in ••• 010100 then 

the address of its mate ends in ••• 010000 11
• One bit is required in each block 

to mark it as allocated or free. 

Knowl tun (1965) al so described an impl ementat~on of a l-:ng~age compi 1 er 

using the binary buddy algorithm. The description of the binary buddy system 

as a tree structure was made more expl icit by Knuth (1968), and the word 

"buddy" was introduced. Since then other variations on the number and sizes 

of the buddies into which a block can be split have been proposed, more 

elaborate tricks for finding buddies of blocks and deciding whether or not 

they are free have accompanied these, and (in keeping with other storage 

allocation sch~es) the results of a number of simulations and just a few 

preliminary analyses have been published. One of the first of these 

developnents was a technique by Isoda, Goto -and Kimura (1971) for reducing the 

amount of information needing to be kept to describe whether a block is free 

and what size it is, if this information is kept in a separate table rather 

than in the first few bits of each block. These authors also avoid the name 
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"buddy", not referencing Knuth. The first proper extension away from powers 

of 2 to be published was by Hirschberg (1973), who did reference Knuth because 

he developed an idea which Knuth proposed as an exercise, to have blocks of 

sizes which are terms from the Fibonacci sequence and to split them according 

to the fundamental definition of that sequence (equation 4.2 in chapter 4 

below). A year later, Shen and Peterson (1974) suggested a scheme which they 

called the weighted buddy system, providing blocks of sizes 2m and 3X2m upon 

splitting a block of size 2m+2; blocks such as 3X2m which are multiples of 3 

are themselves split to form blocks of size 2m+1 and 2m. The greater range of 

block sizes which are therefore closer to each other in the Fibonacci and 

weighted buddy systems tend to reduce the internal fragmentation since in 

general, and on average, there is less far to go to reach the next rounded up 

block si ze. 

Cranston and Thomas (1975) removed a very awkward restriction of the 

Fibonacci buddy scheme, that to avoid the possibly large amount of storage 

req(.rired for pointers to f~nd the buddy of any blocl:, a time-consuming 

calculation was required to discover whether a block had a buddy on the left 

or the right instead of Knowlton's simple bit-inverting technique which does 

this automatically. Their neat solution requires only two extra bits per 

block, which record the information not only about whether each block is left-

or right-handed but al so the same information for the resul ting recombined 

block so that upon recombination of the buddies the same information is 

available to be able to repeat the process. Hinds (1975) also noticed that 

this could be achieved by keeping a count for each block. For left hand buddy 

blocks this would be the number of spl its that were required to reach the 

block starting from an initially empty memory, and the count would be zero for 

right hand buddies. Peterson and Norman (1977) have produced algorithms for 

implementing buddy systems in which the block sizes can be chosen freely so 
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long as they satisfy recurrence relations of a certain general form used to 

perform the splitting. These relations allow the possibility of splitting 

into more than two buddies, and of tailoring the block sizes in this general 

buddy system to suit a known range of request sizes by an appropriate choice 

of the recurrence relations. They give an example accommodating sizes 12~ 80 

and 132 which might be used for control blocks and card and printer record 

buffers. Another example is that of Burton (1976) who also further developed 

the generalised Fibonacci relations suggested by Hirschberg in a similar way 

to Peterson and Norman, and applied it in an implementation of a disc storage 

allocation scheme in which the sizes 50, 128, 150, 1024 and 10240 occurred. 

Concerning the performance and behaviour of the various buddy systems, 

apart from the descriptions of Knuth's experiences in trying out the binary 

buddy system the first performance analyses were by Purdom and Stigler (1970), 

and Purdom, Stigler and Cheam (1971). They were concerned with external 

fragmentation and running speed, and their analysis concentrated on the 

interrstion bet'"~er one level of block si~e and the next. They fQu~d that 

compared with the first fit method, although the buddy system was much faster 

at allocating and deal locating requests its total "fragmentation was higher, 

quoting about 15 per cent more for the distributions they used, and that of 

this total the more important element was the internal space wasted due to 

rounding. (It has already been mentioned in the introduction above that in 

order to carry out their analysis at all, they assumed Poisson arrival times 

and exponential service times.) 

subsequently by Nielsen (1977). 

Their comparison agrees with that obtained 

Shen and Peterson found that the request size 

distribution made quite a difference to the amount of wasted space when 

comparing the weighted buddy and binary buddy systems, binary buddy being 

better for a uniform distribution and weighted buddy better for an exponential 

distribution. Hirschberg compared Fibonacci and binary buddy for a size 
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distribution with an approximately exponential shape, and found that while the 

Fibonacci buddy system caused more external fragmentation than binary buddy it 

also had less internal fragmentation. He concluded that the Fibonacci buddy 

system was better as running times were generally about the same. As for 

estimating and predicting the amounts of external and internal fragmentation 

in advance, Bromley (1977) has given a block-counting technique for estimating 

practically useful upper and lower bounds on external fragmentation given the 

request distribution and knowing the set of possible block sizes, while 

Russell (1977) has shown how to investigate the expected internal 

fragmentation in a generalised buddy system when the largest possible request 

size is not simply equal to a convenient blocksize of the system. 

2.2.7 Summary: comparison of the wide range of possible allocation algorithms 

The above list of possibilities form a surprisingly large collection of 

di7ferent rules that have actually been u~ed for de~id~ng where to place a new 

block in a possibly fragmented memory. In chapter 5 below it will be seen how 

a complete family of placement rules or allocation algorithms, including all 

those above as well as many others, can be obtained by choosing different 

values for those particular elements which may be varied in a set of 

lIallocation matrices ll which are defined in that chapter, and \'1hich 

characterise all the possible placement rules. Each resulting set of these 

matrices obtained by a particular choice of values can be considered as a 

repn~~,<~:1tation of an allocation algorithm, and conversely each algorithm 

detennines a set of values to be used in the allocation matrices. 

~1ention should be made of the extensive simul ation comparisons performed 

by Nielsen (1977), and the simulations of Weinstock (1976). Both of these 
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authors parameterised storage allocation schemes not only by the above choice 

of placement rule, but also in terms of the choice of free list order, search 

strategy, compaction strategy and rounding up rule used by each algorithm as 

well as some other variables, and simulated some of the large number of 

resulting different schemes. Both were concerned with execution speed at 

least as much as the efficient use of storage space however, if not more so, 

and while this is a worthwhile concern it is outside the scope of the problems 

addressed by the present work. Nielsen characterised his input request 

distributions mainly by duration and inter-arrival time, and measured the 

maximum rather than the average space used by any scheme during a simulation 

run. Weinstock also measured the probability of failure (overflow caused by 

fragmentation) as a fraction of storage utilisation. Both were concerned with 

storage allocation models in which the queue of requests is not saturated, and 

indeed for which it is considered as a failure if it becomes so, that is, if a 

request arrives which cannot be immediately serviced. Consequently of course, 

their measures of the efficiency of storage space use cannot be applied to a 

saturated queue model. They do not give fi.gures for the average storage 

utilisation, which should in any case be predictably lower than for 

saturation. 

2.3 Empirically observed distributions of request size and duration 

It is a remarkable fact that there are apparently very few existing 

published measurements concerning the distributions of request size and 

duration which hdve actually been observed tQ occur for storage allocation 

schemes in real computing systems. Consequently the analyses and simulations 

of such schemes which have been made have either had to rely on the few 

measurements that have appeared, or else more usually on some assumption about 
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the shape of the distributions, which one may suspect are often chosen either 

just according to the author1s intuition or for their tractability, or perhaps 

both. The only other possibil ities open to \'JOuld-be modellers in this respect 

are ~ither to ignore the distribution altog~ther, as with the fifty per cent 

rule (below, section 2.4) or else to study a wide range of possibilities 

whether by simulation or analytically, perhaps by considering the general 

case. 

Batson, Ju and Wood (1970) measured the distribution of segment sizes 

requested by Algol programs running on a Burroughs B5500 system in a 

university environment. They found some variation between requests generated 

by system activities such as the operating system and compil ers which favoured 

a fewer number of larger segments without much variation of different sizes, 

and requests from user programs which were generally smaller and ranged widely 

in size. The distributions they found were for large numbers of relatively 

small segments, with a long tail of a few requests for much larger segments. 

These matched an expo;.en"'.;ial.distribution only fairly rou.ghly~ although si!1ce 

the mechanism for generating storage demands was hidden they could not propose 

any other sensible model which would serve to parameterise the results. 

Later, by a different method Batson and Brundage (1977) again measured the 

segment sizes and lifetimes of \'v'orking Algol programs in the same system. 

They agai n (not surpri si ngly as it \'Jas presumably a 1 ate,' version of the same 

system) found quite similar reslJlts, and that almost all of their empirical 

data did not fit very well to the exponential or other distributions commonly 

used in stochastic modelling. 

Bryan (1967) reported rr;easurements made over along period on the JOSS 

computing system of the Rand corporation. The limited amount of data which he 

collected and reported on program sizes indicated that they could be 
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approximated reasonably well by a negative exponential distribution. The data 

presented on program duration are similar to that of Batson and his colleagues 

(1970, 1977) with a long tail of a few requests for long storage duration or 

residency times. Although the first part of the curve can be fitted quite 

reasonably, the upper part of the tail, although small at any point, is less 

well approximated to by a negative exponential distribution. 

Totschek (1965) collected a variety of data on the use made of the SDC 

time sharing system, including program sizes and computation and elapsed 

times. The observed frequency distribution of program sizes for the jobs 

which were run during the collection periods was W-shaped; programs tended to 

be under 10000, or about 20000, or over 40000 words long. Nearly half of 

these jobs involved utility functions such as compilation, interpretation, 

editing and filing. He made a number of statistical analyses of the collected 

data samples, and one of his findings was that program size, computation time 

and elapsed time were not significantly correlated for the jobs being run in 

the sy~tcm. He ~l~a noticed that the obsErved di~tributions oj t~e 

computation, elapsed and inter-arrival time for each job all had a similar 

shape. These times ranged over several orders of magnitude, there was a long 

slowly decreasing tail, and the variance was larger than but proportional to 

the mean. Totschek reported that these distributions could be fitted 

reasonably \'/ell by a 3-parameter lognormal curve. 

Margolin, PaYTIlelee and Schatzoff (1971) measured request size and 

duration statistics for the IBM CP-67/Ct~S computing system, and used the data 

to simulate and measure the performance of alternative allocation strategies 

which were candidates to replace and improve upon the existing algorithm. 

They were mainly concerned to find ways of reducing time inefficiencies while 

maintaining roughly the same space requirements as the original algorithm. 
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Their paper appears to be the only reported work in the literature which both 

presents such data for a real system and also the effects of using it to 

improve performance. Although Fenton and Payne1s (1974) work was for the same 

general purpose of guidance in designing an efficient storage allocation 

scheme, they did not present any existing data on request distributions and so 

they could not "tailor" the algorithm in the same v/ay; they used a variety of 

different distributions instead. Margolin, Parmelee and Schatzoff found that 

in CP/CMS, requests were not independently distributed, request size and 

duration were not independent, and the distribution did not have the simple 

profile (such as uniform or negative exponential) which is often assumed. for 

tractability. This published data on request durations does not differ very 

much in general shape from negative exponential if the dependence of duration 

on request size is ignored. The distribution of sizes is quite irregular 

however, and they comment that the dependence between the two is a significant 

complication which ca~ easily produce strong effects on performance. After 

quite extensive data collection and correlation and subsequent simulation, 

they found that an algorithm which gave special treatment by keeping separate 

lists of free gaps for the thirteen most frequently requested block sizes, 

reduced the processing time spent in th2 allocation algorithm by a factor of 

seven or eight to one. They also reported a slight gain in storage 

utilisation, but this was much less significant than the time saving. 

Another example of a practical investigation of the effects of storage 

fragmentation on a real computing system is the work of Scherr (1966) 

subsequently extended by Lehman and Rosenfeld (1968). The operating system 

which they simulated and measured the perfonnance of was IBM's OS/~1VT, 

(Multiprogramming with a Variable number of Tasks), and the fragmentation that 

was studied was of the allocation of storage to each step of a job. The 

simulations modelled the behaviour of the real system closely and were 
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therefore correspondingly complicated by a number of features of the way that 

MVT controls the selection and progress of jobs to be executed. For example, 

jobs in storage are not treated equally when sharing processing time, but 

instead the j?b-step that has been in storage longest is given the highest 

priority for execution, and thus runs as if it were alone. Run times for 

other jobs have to be multiplied by expansion factors in the simulation to 

allow for the fact that each job can run only when all jobs of longer 

residency in storage are in the wait state. The input data to the simulation 

was also an attempt at realism, a "standard" job stream containing Fortran, 

Cobol and Sorting jobs. The memory requirement or requested size varied 

according to the type of job-step, and was either chosen from a range of small 

sizes or else one of three possible large sizes. A figure was given for the 

average execution or run time but the distribution used was not specified. 

The conclusions of this work included the observations that the throughput 

rate of jobs was basically unaffected so long as the multiprogramming level 

and storage space were sufficient, although fragmentation did affect the order 

in which jobs were completed and hence the delay characteristics. Some jobs 

could be kept in the system for as much as 8 hours as a result of 

fragmentation, while other classes of jobs with less storage requirement 

suffered almost no delay. This suggested that modifying the first fit 

algorithm used to allocate storage to job steps would be a good idea, to take 

account of the jobs expected (by their job class) to stay a long time in the 

memory, and not divide the memory in two by allocating them in the middle but 

put them at one end or other of memory if at all possible. 

These few results indicate that modelling 'real-life situations should be 

performed with as much generality as possible in the allowed distributions of 

request size and duration, although to choose the negative exponential 

distribution for request duration times is less unrealistic in most cases than 
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for the size distribution. Thus the choice in the present work (chapter 3, 

section 3.2) of this exponentially decreasing distribution of request times, 

which has been dictated by the requirement of simplicity at least to begin 

with and the desirability (as will be seen) of being able to use Markov 

theory, is not necessarily an unfortunate one. In any case it has been found 

possible to allow a general distribution of request size to be assumed so that 

there can be no objection to this, although the two requested quantities size 

and time are assumed to be chosen independently of each other for the same 

request, and of other requests. 

2.4 Fifty per cent, two-thirds and unused memory rules 

The fifty per cent rule of Knuth (1968) has become so well known that no 

survey of storage fragmentation would be complete without mentioning it. 

Stated rather brierlY, this rule says that on the average there will be only 

half, or fiTty per ce~t, as many free gaps in msmory as nllocated block~. In 

the same style as this result and based directly upon it are the unused memory 

rule of Denning (1970), and the b/o-thirds rule of Gelenbe (1971). All three 

are concerned with the equilibrium behaviour of an unsaturated storage 

allocation scheme and rely on intuitively simple arguments about average 

quantities. That they are approximate indicators of average behaviour cannot 

be denied, but their predictions should not be taken as exact except in 

special cases, as the following closer examination of their statement and 

derivation shows. 

The quantity p is defined as the probability that an arbitrarily chosen 

allocation of a block will be into a gap of larger size than the block, 

leaving a smaller resulting gap which remains unallocated. Then if the 
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average number of allocated blocks in equilibrium is N and the average number 

of free gaps is M, the fifty per cent rule actually states that 

M = O.5pN .... 2.3 

Denning's unused memory rule is just a trivial corollary; if the average gap 

size in equilibrium is no less than k times the average block size, then the 

average fraction of the memory occupied by free blocks is no less than 

k/(k+2). The two-thirds rule is also derived from the fifty per cent rule and 

states that if the probability (l-p) that an arbitrary block allocation is 

into a gap of exactly the right size is very small (this is intuitively likely 

for large memories where the range of possible block sizes is large compared 

with the average number of allocated blocks, especially if the best fit 

algorithm is not being used) then the average memory utilisation U is nearly 

equal to 2/3. If p=l, then U = 2/3 exactly according to this rule. The 

two-thirds rule includes the uf;used memory rule~ as during its derivation it 

is "shown" that the average size in equilibrium of a gap is equal to the 

average block size, so that both these rules say the same thing. 

Interestingly, although Gelenbe references Denning, it is for Denning's 

derivation of the fifty per cent rule, and he fails to even mention the unused 

memory rule. 

These rules take little or no account of the allocation algorithm or the 

_ di stribut ion of request si zes; an are supposed to give the same average 

utilisation in equilibrium. That this is not so, although for many cases it 

may not be far wrong, is indicated by almost any of the simulation studies of 

models with unsaturated request queues which have been carried out. Shore 

(1977) has noted deviations from the fifty per cent rule .and investigated 

these by simulation. He advances an explanation that the systematic 

allocation of blocks always to the same end of gaps will reduce the 
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free-to-allocated ratio below 0.5 if the coefficient of variation 

(standard deviation/average) of the distribution of request duration times is 

less than about 0.8. He discusses this in terms of the relative ages of the 

blocks in contiguously allocated groups. The groups tend to migrate along the 

memory because of the systematic pl acement bias which will always join a neVI 

block at the same end of an already existing group. The oldest block in such 

a contiguous group is usually at or near the trailing end (unless the group 

behind it catches up), which upsets the assumption of uniform randomness about 

which category (see below) a deallocated block is likely to belong to. 

The derivation given by Knuth of the fifty per cent rule is in fact as 

follows. IIConsider the following memory map, figure 2.2. This shows the 

gee B 

~ 

Figure 2.2 Example of a fragmented (or IIcheckerboarded ll ) memory 

reserved blocks divided into three categories, A (surrounded by two gaps), B 

(surrounded by one gapand another block), and C (surrounded by two other 

blocks). Let N be the number of reserved blocks, and M be the number of 

available gapsll, [at this point some vagueness creeps in as N has by this time 

already been defined as the average number of allocated blocks], lIand let A, 

B, C be the number of blocks of the above categories. Then 
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N = A + B + C 
.... 2.4 

M = 0.5(2A + B + e) 

where e = 0, 1, or 2 depending on conditions at the boundaries.!' [In a 

circular memory, e (for end) = 0; this variable is probably unimportant as far 

as this rule is concerned, for large memories.] "To derive the fifty per cent 

rule, set 

Probability[M increases by one] = Probability[M decreases by one] •••• 2.5 

which leads to 

c = A + (l-p)N " 2.6 

Equation 2.5 is an imprecise statement, although Knuth does admit this and 

qual ify it, " ••• more precisely, the average change in M per unit time is set 

to zero during equilibrium". If 2.6 is accepted, then the fifty per cent rule 

2.3 certainly follows by the use of 2.4, when the end-effect variable e is 

negl €:ted. 

The objection which may be raised to the above argument is as follows. 

If M is an average, then it is a fixed quantity and it is nonsense to discuss 

"M increases or decreases by one". If on the other hand M is a random 

variable, then it must be dependent on the particular configuration of blocks 

and gaps in the memory, and no justification for the statement of 2.5 or its 

derivation as 2.6 is given for any arbitrary configuration in general. The 

same remarks apply to the quantity p, originally defined as an average, but 

representing a (Y'andom variable) probability ~/hich is obviously dependent on 

the particular configuration being ccnsidered. It is a little surprising that 

apparently no-one has bothered to point this out before. 
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2.5 The allocator-defellder games of Robson 

Robson (1971, 1974, 1977) has studied those storage allocation schemes 

which can be considered in terms of a game played between an attacker and a 

defe"nder. The game is pl ayed with a fi xed maximum number M of tokens, each 

representing one word, which can be formed into strings to represent blocks to 

be allocated, on a board representing the memory. The length of a string (or 

size of a block) may never exceed n words, and M and n are given parameters of 

the game. The attacker chooses and removes strings of tokens (allocated 

blocks of words) from the board (memory), and forms new strings \',hich the 

* defender must then decide where to place on the board. The number N (H,n) is 

defi ned as the si ze of the smallest board on which the defender, with correct 

pl ay, can always manage to pl ace the stri ngs whatever the attacker may do. 

Robson's work, and subsequently that of Krogdahl (1973) and Ting (1975), is 

* concerned with finding and improving upon bounds for this quantity N (M,n). 

Upper bounds are discovered by inventing and improving on successful 

strategies for the de-:enc!er if enough memory is provided, and lower boulldS by 

conversely discovering a strategy for the attacker (in a smaller memory of 

course) which must 1 ead to embarrassment for the defender by forcing a 

situation in which he is presented with a string ~/hich will not fit on the 

board. The strategies which have been described become cleverer and more 

compl i cated as the bounds are improved. In most. real-l i fe situations, storage 

allocation is not played as a game in this way, and RODson's v/ork is concerned 

with the worst behaviour possible by the attacker and how to cope with it. 

Although such "pathological" sequences of requests and releaSeS are not 

impossible, they are generally extremely unlikely in practice (unless of 

course, this game is expl icitly being pl ayed). There is quite a difference 

* between the amount of memory N (M,n) Y'equired for the defender to be sure of 

winning against all corners, and the smaller amount which is suffiCient in more 
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general situations to make the probability of overflow very small. 

Typical results are the later ones published by Robson. In his 1974 

paper, he showed that the optimal strategy for the defender requires between 

0.5Mlog2n and"about 0.S4Mlog2n words asymptotically, as M and n increase and 

where n is much less that M, although practical allocation strategies may 

require more space than this. The 1977 paper shows that the first fit 

algorithm is after all quite close to the optimal strategy and requires not 

much more memory, about Mlog2n words altogether. On the other hand the best 

fit algorithm needs about Mn words. Robson pOints out that "these results 

should be contrasted with the simulations of Shore (1975) which suggest that 

even when an allocation system is run on the brink of breakdown due to 

fragmentation, storage utilisation averages about 70 to 95 per cent for a 

fairly wide range of distributions of allocated block size. Clearly the sort 

of catastrophic fragmentation which is possible occurs only very rarely". 

Robson's work has stimulated three other authors, Knuth (1973), Krogdahl 

(1973) and ling (1975) to publish further results. Knuth shvwet: that in the 

buddy system the defender requires 2Mlog2n words to always succeed. Krogdahl 

considers extending the game by specifying the allowable set of string (block) 

sizes as a set of integers (b1, ••• ,b n). If attention is restricted to the 

cases where n divides M and is small compared with it, Robson showed (1974) 

* that the ratio N (M,n)/M tends to a limit of 3/2 as M increases, if n=2. 

Krogdahl showed that for block sizes b1 < b2 < ••• < bn this limit bec0mes 

1 + (1 - b1/b2) + + (1 - bn_1/bn) • 

Ting removes the restriction that n should be much 1 ess than M, and shows that 

in this case the optimal defence strategy needs no more than Mlog2n - M/2 

words for all n =- 1, ••• ,~1. 
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2.6 The generating function technique of Reeves 

Recently Reeves (1979, 1980) has analysed a random fit storage allocation 

model algebraically by a generating function technique, with encouraging 

success. In his model, the memory is assumed to be circular to avoid end 

effects, the queue of requests ;s not saturated so that requests are allocated 

the moment they appear (and so the probability distribution of the relative 

frequencies of their sizes in the memory is therefon:: known), and the random 

fit allocation method is used. The choice of these three characteristics of 

the model represents good judgement as each one has the effect of bypassing 

difficulties which would otherwise occur in the analysis. The size 

distribution in equilibrium of free gaps in the memory is represented by a 

generating function 

<p(a) = E<Pra
r 

r 

where ~r is the equilibrium probability that a randomly selected free gap has 

length r. A similar generating function b is defined for the size 

distribution of generated requests, and + is shown to be related to b by 

studying the actions occurring at block allocation and release. The analysis 

contains an argument, based on an assumption that certain configurations are 

equiprobable, whfch relates the probability (P2) that a randomly se~cted 

allocated block is surrounded by gaps on either side, to the "block 

utilisation" ratio k = B/F, the ratio of the number B of allocated blocks to 

the number F of free gaps. The subsequent paper by Reeves (1980) continues 

the analysis and concentrates on the numbers of allocated blocks occurring in 

cont i 9'iOUS sequences irrespective of their sizes, and defines O'"r to be the 

probability that a randomly selected such sequence contains r blocks. Then as 

before a generating function 
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~(a) = ro-ar 
r r 

is defined for this distribution. By again considering the equilibrium 

probabilities at block allocation and release, a condition on ~(a) is found~ 
..... 

and is immediately used to obtain a revised expression for P2 in terms of k 

which is more satisfactory because it no longer depends on the former 

assumption. The analysis treats in detail the case when all requests are for 

just one word~ the relation between ~ and b and the condition on ~simplifying 

for thi s particul ar di stribut i on. An i nteresti ng prediction is that for 

stable solutions ~ to exist the storage utilisation has to be above a certain 

threshold found to be about 0.48, and this is confirmed by simulating the 

model for a range of values of the storage utilisation. These simulations 

also confirm the predictions of the model for higher values of storage 

utilisation. Reeves also observed from this simulation that at low 

utilisations the free memory tends to form into one large gap and a number of 

smaller gaps, so that ~ is unstable because the model is not a suitable 

descr~pt~on of ~hi~ situation. He developp.d a revised version of the model 

containing an infinitely large gap, and this makes predictions for'low 

utilisation which are in good agreement with the simulation results, 

The future work with this model should extend the analysis to variable 

request sizes, perhaps possibly as far a$ being able to investigate for 

example the anomalies noted by Shore (1977) in the behaviour predicted by the 

fifty per cent rule. It is clear that continuing to extend this use of 

generating functions as developed so far by Reeves will be a most useful way 

of coping with the combinatorial complexity of storage fragmentation problems. 
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2.7 Space filling: the "car parkinglJ and other problems. A note of caution 

Loosely related to storage allocation and fragmentation are a number of 

different problems which can be described under this heading. Although the 

publ"ished work on space filling problems is not directly relevant it can be 

helpful by suggesting various points of view which can be used for thinking 

about the present problem as well as ideas for ways to try and tackle it. 

Further, this work forms a useful background of knowledge of what may be 

called the static properties of storage fragmentation as opposed to the 

dynamic behaviour which starts when blocks are moved about by allocating and 

deal locating them. This section concludes this chapter by presenting a brief 

summary; it is by no means a complete survey. 

Renyi (1958) considered the one-dimensional model which repeatedly 

allocates unit sized non-intersecting intervals uniformly at random in the 

initially empty real interval (O,x) until no further allocations are possible. 

Allocating an interval "uniformly at random lJ in (O,x) means, for each 

succeed i ng interval to be all ocated, choosi ng its midpoi nt uni formly at random 

from the interval (O.5,x-O.5); if this chosen interval would overlap one 

already alloca.ted, the choice is disc-al'ded and another is tried. Thus there 

is no commitment to placing each interval at one end of a gap. and indeed such 

an occurrence has vanishingly small probabil-ity (compare the discussion of the 

random allocation algorithm in section 2.2 above). He obtained a closed form 

expression for the expected number M(x) of allocated interval s, and showed 

that as x increases M(x)/x approaches a constant limit c = 0.748 

appr·o:i~mately. t~annion (1964), and Dvoretzky and Robbins (1964) studied the 

distribution of M(x) as opposed to just its mean, and show~d it to be 

asymptotically nomal for increasing x. Palasti (1960) extended Renyi's work 

by considering the equivalent problem in two and three dimensions, 
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conjecturing that for the expected number M(x,y) of non-intersecting unit 

squares which can be placed at random in a rectangle of sides x and y, 

M(x,y)/xy similarly approaches a limit which is c2 = (0.748)2 as x and y 

increase. Ne.y (1962) has considered the important general isation of this 

interval filling problem on a continuous line in which the lengths of the 

allocated intervals are also allowed to vary randomly, and has studied the 

mean and moments of the number N(b,x) of such intervals of length at least b 

in the interval (O,x). He showed that the mean of N(b,x) approaches a linear 

function of x as x increases, and for example determined this function to 

be: C(b)x, when the positions of the intervals are unif~rmlY distributed, 

and where C(b) is a certain specified integral dependent on b and on the 

length distribution of the allocated intervals. The origin of this work is in 

the theory of "cascades" of colliding (atomic) particles and their energy 

levels. As far as the present author can discover, Neywas the first to 

describe this, in the literature anyway, as the "car parking" problem. In 

this very convenient and descriptive analogy, a street is represented by the 

interval (O,x) and the cars which are to be parked on it (without 

overlapping!) by the allocated intervals. Solomon (1964) has surveyed some of 

the above work on this problem, and repeeted and extended the Monte Carlo 

experiments performed by Palasti to support her conjecture. 

As for the relevance to storage allocation schemes, c = 0.748 is the 

value of the average storage utilisation which should be expected from the 

corresponding random storage allocation model in which all the requests are 

for the same unit size. In such a model, the queue would be saturated, the 

request distribution would specify blocks of a single constant size much less 

than the memory size, and the allocation algorithm would be random in the same 

(not left or right justified) sense that Renyi intended it. 
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Stevens (1939), Robbins (1944), Votaw (1946) and Domb (1947) have 

considered aspects of the related problem in which a finite number of 

intervals are placed independently of each other. This lack of dependence is 

a f~ndamental difference since the intervals may then overlap. Stevens 

obtained frequency distributions for the number of gaps \';hen n intervals of 

length x are placed in this way at random on the circumference of a circle of 

unit length. For instance, he found that the probability f(k) of obtaining 

the maximum of n gaps (no overlapping) where k is the greatest integer less 

than l/x, is 

f(k) = (~)(l_kX)n-l [ (~) = binomial coefficient] 

The expressions for the other f's are similar but more lengthy. Robbins found 

expressions as integral s for writing down the expected val ue and higher 

moments of the amount covered by at least one interval without having to first 

determine its probability distribution. These expressions generalise quite 

naturally to the case where the overlapping intervals become overlapping sets 

in Euclidean n-space, and the random placement is·not uniform but specified by 

a given probability distribution function. Votaw considered the latter 

difficult problem of determining the frequency distribution of the amount 

covered, for intervals in one dimension again, and succeeded when the 

interval s are l'dndomly pl aced either uniformly or distributed negative 

exponentially. Domb considered all these problems and arrived at the same 

resul ts by different analyt ical arguments which 1 ead naturally to the use of 

continuous functions, making great use of Laplace transforms to solve the 

intesnl equations which arise. 

Page (1959) studied a similar discrete problem suggested by physical 

experiments in VJhich hydrogen atoms are first deposited in pairs as molecules 
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on a rectangular lattice surf~ce, and then subsequently removed again in 

possibly different adjacent pairs. He considered the analogue in one 

dimension, allocating pairs of points at random on a line of N pOints until 

only single vacancies remain, and found the mean and higher moments of the 

distribution of the number of remaining vacancies, the mean for example 

approaching approximately 13 per cent of N as N increases. 

Although it is a digression, it may be worth bearing in mind that there 

are other kinds of physical experiments which lead to similar problems 

concerned for example with the number of regular solids, usually spheres or 

regular polyhedra, which can be closely packed together either regularly or at 

random into a given volume. This can be appl ied for example to some aspects 

of the study of the growth of cells in undifferentiated living tissue, and the 

physical properties of 1 iquids. The papers of Bernal and Mason (1959, 1960, 

1960a), Scott (1960, 1962) and Coxeter (1958) introduce the latter as a new 

and relevant aspect of this much older problem. As ~'Iith simulation for 

computer stcrage fragmentation, the~' rel ied heavil~' t~ begin with on actual 

experiments in which the volume of lead shot, ball bearings, marbles and even 

plasticine pellets were measured inside such varied containers as steel 

cylinders under compression and uninflated balloons immersed in water. Matzke 

(1950) has surveyed the history of this problem in an amusing address in which 

he warned of the dangers of relying too much on intuition by, for example, 

assuming that regular patterns are formed. Experiment and observation (by him .. 
and others on lead shot, living cells, bubbles in a foam and even by repeating 

an apparently famous two-centuries old experiment of compressing peas, known' 

erroneously it SeL'ITIS as "Buffon ' s peas") sho'w that this does not in fact 

happen, whether for peas or for bubbles, although for many years even leading 

authorities of the scientific community believed that it did. Perhaps 
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Matzke1s cautionary remarks are the most relevant contributions that this work 

can make to storage fragmentation studies; Randell1s surprise on observing the 

effects of rounding on fragmentation and util isation is a case in pOint. 
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Chapter 3 :"Definition of a model of storage allocation 

One quantity of great interest in any storage allocation scheme is the 

average or expected utilisation U = U(T), defined as the expected value of 

the fraction of memory occupied at time T. In many present day systems this 

is obviously important for main memory (which in, say, the Burroughs B5500 and 

B6700 series of computers is allocated in a way which gives rise to 

fragmentation, see Organick (1973) for just one example). Decreases in main 

memory cost are unlikely to make utilisation of no importance whatsoever, and 

in any case the allocation of secondary memory is likely to be of considerable 

importance for some time to come. The average utilisation is usually the most 

important quantity whenever the queue of requests is saturated or nearly so, 

since it determines the throughput or rate of servicing requests, which in 

most cases is desired to be as high as possible. In the stochastic model of 

storage allocation which is about to be defined, U may be calculated as a 

scalar product: 

U(T) = :!(T) • u' (scal ar product) 

where u' is the transpose of a constant row vector u = (ui): 

ui = fraction of memory occupied by allocated 
requests when the model is in state i, i = 1, ••. ,S' 

.. .. 3.1 

.... 3.2 

and where the model has a certain number S' of states, and :!(T) is a vector of 

state probabilities at time T. Under certain general conditions, as T 

increases .!.(T) \iill converge to an equil ibrium vector :!. so that U(T) will 

converge to the steady state utilisation U : 

U = 1f • u' (scalar product) .... 3.3 
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The model provides the means of calculating and investigating U, principally 

by studying or using properties of the,matrix P of transition probabilities 

between states. The steady state equation, 3.11 below: 

1T = 1T P 

is the starting point for the algebraic analysis in chapter 5. Values of ~(T) 

and hence U(T) for increasing T may be calculated by the well known power 

method, equation 3.13 below: 

!.(T+1) = ~(T) p 

by starting from some arbitrary initial distribution ~(O) of state 

probabilities at T = o. The utilisation U can be obtained this way as U(T) 

converges, and some ~~rk and results from this method are reported in 

chapter 6. Unless the transient behaviour is of particular interest, only the 

limit K = ~(T=m) is needed. Other quantities of interest besides U such as 

the expected amount of internal fragmentation can also be calculated kno\'iing 

the request distribution and hence the average rounding up for each size of 

block, and the expected number of allocated blocks of each size. These last 

numbers can be obtained from K or ~(T), the computation of the state 

probability vectors giving a complete description of the probabilistic 

behaviour of the model. 

3.1 Definition of the storage allocation model to be investigated 

Suppose that a computing system has a fixed si ze memory of N words and 

its control program contains an allocation al gorithm servicing a queue of 

requests, each for a single block of contiguous words. Figure 3.1 is intended 

to illustrate this. The unit of allocation in a practical appl ication might 
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be a word, a page, or some other fixed size unit of memory, and IIword ll is used 

here to include all these terms. Each request specifies a random variable r 

(the size of the request) which may have any integer value from 1 to N words. 

The queue is i nfi nite or saturated, i.e. it never becomes empty, and requests 

are serviced in a first-come-first-served order as soon as sufficient free 

space becomes available for the request at the head of the queue. A request 

of size r is allocated by choosing r contiguous free words from the memory, 

and an allocation algorithm is used to make a choice if this is possible in 

more than one way. Figure 3.1 illustrates the different actions of two 

possible example allocation algorithms. When blocks are dea110cated any 

adjacent gaps of free '.'/ords are merged together, but the blocks \'Ihich remain 

allocated are not moved. Queued requests are then serviced in order until one 

is reached for which insufficient contiguous free storage is available. The 

ne\,1 configuration of memory and queue thus arrived at then remains unchanged 

until the next deal location occurs. Deal locations and allocations are 

considered to be performed instantaneously, and the probability of two or more 

blocks being simultaneously deal located is zero since the timescale is chosen 

to be real. 

3.2 Assumptions leading to Markovian nature 

Despite the assumptions already made about the mode1's operation, 

(saturated first come first served queue, requests serviced as soon as 

possible), it is still too general to be considered as a finite discrete-time 

Narkov chain and some more assumptions mainly concerned \'/ith the passane of 

time are necessary before this is possible. Before stating them precisely, 

some discussion and justification of their validity is in order. They are of 

course not necessarily the only ones which achieve the requirements for the 
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model to be a Markov chain. 

Computing systems which share processor time in equal amounts in a 

"round-robin" are common, and "processor sharing", the term given to the 1 imit 

of this behaviour as the quantum of allocation time tends to zero, has been 

modelled quite extensively; see Kleinrock (1976) for example who lists some of 

the work on processor sharing, or Coffman, Muntz and Trotter (1970), who 

incidentally also make the assumption below on exponentiality. Thus it is 

quite reasonable to assume that the time of some processor imagined for the 

purpose is being shared equally among all the blocks present in storage at any 

moment, each of them having an equal claim for attention. It is also not 

particularly unreasonable to assume that each request requires a randomly 

variable amount of this processor's un shared time or undivided attention which 

is distributed negative exponentially, so that most requests are for short 

time durations with a progressively smaller minority needing increasingly 

longer times. This assumption has also been made in the past in the absence 

r-f Lny better conclusive ilifonnation than the few ::;tudies discuss~d in 

section 2.3 of the last chapter. Whilst this little evidence suggests that 

negative exponential is not necessarily a very close fit to real life 

distributions, nevertheless it indicates that it has the right general shape 

and is a lot better than the uniform distribution, say. Of course, the 

negative exponential distribution is attractive as it does lead to some 

. conveni ent mathemat ics, and thi.~ al so bri ngs one to suspect that it is found 

more often in the models of the literature than it occurs in real life. 

However, for the purpose of the analysis presented here, these two assumptions 

(processor sharing and negative exponential request durations) are actually 

only needed to justify the statement that at any moment each of the remaining 

blocks allocated in storage is equally likcly to be the next to be 

deal located, and if this latter is taken as a starting assumption thcn the 
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first two are not required. In general, equal likelihood of deallocation is 

sometimes the only reasonable assumption that can be made in the absence of 

other information, and of course it has been used previously in analytical 

studies of storage allocation models, by Reeves for example (1979,1980). In 

particul ar, because it follows as a consequence from the preceding two 

assumptions, and as it also may be true or nearly so to a greater or lesser 

extent in other cases where they do not hold, it is not particular~y 

restrictive judged by the standards of previous \,Iork. In practice therefore, 

this assumption or consequence of equally shared deal location probability 

among the remaining blocks in storage should be quite widely applicable to a 

fair proportion of real life situations. 

The corresponding necessary assumptions made about the distribution of 

request sizes can hardly be considered restrictive as the distribution may in 

general have any 11 shape ll
, the onl y requi rement bei ng that it be unvaryi ng, or 

COiistant. This 1s 1 ii<eiy to be the case in very many computing systems for 

relatively long periods of time compared with the "Iverage lifetime of a bloc~(, 

the more so where many independent but similar activities are going on. Two 

more related assumptions are that successive requests are independent and that 

each request asks for independently distributed storage size and duration 

time. As pointed out in section 2.3 although Totschek (1965) found no 

significant correlation in the SDC system, Margolin, Parmelee and Schatzoff's 

(1971) observations of the CP-67 system do not confirm this. This is 

unfortunate although perhaps not surprising, but to take account of such 

dependenci es \1/oul d so greatl y compl icate matters that it is better to assume 

independence in the analysis at least on a first attempt. At two places in 

the present analysis, it has been necessary to assume that the request size 

distribution is not quite general but that (in the ergodicity proof of section 

3.3.3) the probability of a request for a block of unit size is non-zero, 
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which is reasonable, and further on (in the definition of the inverse of the 

basic allocation termination matrix in section 5.1.3), that the probability of 

a request for a block equal to the size of the memory is non-zero, which is 

much less reasonable. The probabilities can of course be very small. The 

consequences of these restrictions are discussed as the need for them arises, 

and there are good indications that both can be relaxed. 

3.2.1 Some precise assumptions allowing Markov theory to be used 

1) For each request, an independent random variable t called the "processing 

timell is defined which may have any positive real value. t is the 

amount of time spent IIprocessingll for which the block allocated to the 

request needs to remain in storage. The probability distribution of t is 

assumed to be constant, negative exponential with mean 1/1 for some 

1 > o. Successive new requests joining the queue have independently 

distributed values of t, and also t and the request size rare 

independent of each other. 

2) (Processor sharing.) Imagine the existence of a single IIprocessorll which 

works at a uniform constant rate in real time. If at any instant there 

are n > 0 allocated blocks in memory, each of them receives l/n of the 

lI attentionll or time of this processor. That is, the time spent in 

IIprocessingll any given block accumulates at a rate which is l/n that of 

real time. When the accumulated processing time for any given block 

matches the amount requested, t, it is deallocated. 

Section 3.2.3 below shows that (1) and (2) imply (not very surprisingly) the 

following two statements: 

3) The distribution of real time t which elapses between successive e 
deal locations is known and constant (in this case, the same as the 

distribution of t, deallocations occurring at a rate Al. 
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4) At any moment, each of the blocks present in memory has equal probability 

of being the next to be deallocated, independent of its size and the time 

it has been resident. 

As mentioned above, these assumptions (3) and (4) may be true in practice for 

various reasons, but they follm-I autom~tically if assumptions (1) and (2) are 

made. 

5) Definition of request size probability distribution: 

The probability distribution (rn) of the random variable r, the size of 

requests joining the queue, is assumed to be constant (and known): 

rn = Probability[r = n] , n = 1, ••• ,N • .... 3.4 

The sizes of successive new requests are taken independently from this 

distribution, which at least to begin with is otherwise unrestricted, 

N 
E r = 1 n n=l 

n=l, ••• ,N. 

3.2.2 States and transitions between states 

.... 3.5 

For the model to be considered as a Markov chain the states of the chain, 

and transitions between states, have to be defined. The dependence of 

transitions only on the current state must of course also be shown, and this 

is done in the next section. A state of the chain is specified by giving the 

sizes and locations of all the allocated blocks in memory. Configurations of 

the memory and queue which differ in these respects, and these only, define 

different states. In figure 3.1, for example, (a), (c) and (d) represent 

different states, although it happens that (c) and (d) have the same total 

utilisation and (a) and (d) the same maximum gap size. Assumption (4) above 
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makes it unnecessary to include time information when specifying a state. The 

number of different states obtained by this definition is obviously finite for 

a given size of memory, N, although it is large; in chapter 4 it is shown that 

the total number of states increases exponentially with N, so that for example 

(see table 4.1, section 4.4.5) there are 89 states in a five word memory, and 

10946 if N = 10. A transition occurs whenever a deallocation takes place, and 

it is defined to be a deal location followed by (possibly zero) subsequent 

allocations from the queue which continue until the request currently at the 

head of the queue is too large to fit in even the largest free gap in the 

memory. This instantaneous operation is considered to be indivisible for the 

purpose of defining transitions between states, and although the intermediate 

stages of memory encountered during the allocation process are (except for the 

empty configuration) valid states of the model, and would be reached on 

another occasion with a different set of requests in the queue, they are 

discounted for the analysis in this chapter. The separation of complete 

transitions into sequences of Simpler transitions between the intermediate 

stages is studied in chapter 5. 

3.2.3 Proof that the model is Markov with the above assumptions 

This section presents a proof that assumptions (4) and (5) above are 

sufficient for the model to be Markovian with the above definitions of state 

and transition, and it is similar to that given for the storage allocation 

model described by Betteridge (1974). As a preliminary to this proof, the 

next two paragraphs show that assumptions (3) and (4) are indeed consequences 

of (1) and (2). 

Consider the distribution of the real time interval te which elapses 
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between successive transitions. Suppose a transition has just occurred, and 

that as a result there are n blocks in memory. Each of these has a certain 

amount of processing time to complete before being deal located , by assumptions 

(1) and (2). Because request~ arriving in the memory have independent 

t-values distributed negative exponentially by assumption (I), and at this 

instant these blocks are still present, then the remaining processing times of 

each block also have this same distribution of t, regardless of however much 

processing time may have already elapsed for each or at whatever rates (Feller 

(1968), section 17.6). Therefore, each of the blocks present in memory is 

equally likely to be the first to be deal located causing the next event to 

occur, which is assumption (4). 

Since by assumption (2) processing time for each block is elapsing at a 

rate n times slov/er than real time, each block currently has a remaining real 

time t 1 in memory distributed negative exponentially with mean n/A , i.e. rea 

J -Ax/n Probability[trea1 ~ x = 1 - e , x ~ 0 

Therefore the distribution of te is that of the minimum of n independent 

random variables (t i ) each with the distribution of t real • This is easily 

shown to be the same as the distribution of t: 

Probabil ity[te > xJ = Probabil ity[t1 > x and t2 > x and ••• and tn > xJ 

= Prob[t1 > xJ X Prob[t2 > xJ X ... X Prob[tn > x], by independence, 

3.6 

so Probabil ity[te > x] = (e-Ax/n)n = e- AX = Probabil ity[t > xJ 3.7 

Thus the distribution of t is known and constant, and events occur at a rate e 

determined only by A (from the distribution of t) independently of whatever 

states the model may enter. This is assumption (3). 

Using only assumptions (4) and (5) now, consider the factors which 
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influence state transitions. Suppose the model is in a particular state at 

some arbitrary time. Then the positions and sizes of blocks and gaps in the 

memory are known. By assumption (5) and because the queue is first come first 

served, the probabil ity distributions of size r of all the requests in the 

queue which may take part in the transition to the next state are known, and 

are independent and constant, except for the size distribution of the first 

request in the queue. This has to be dependent at least on the given state, 

for allocations are performed if at all possible, so the size of this request 

must be larger than the maximum gap size in memory. In the next section 3.2.4 

it is shown that this particular size distribution does in fact depend only on 

the (given) maximum gap size as well as the distribution of r, and so is also 

known. Knowing how any given particular allocation algorithm works, 

everything that is needed to calculate the transitions and their probabilities 

from the given state is available. These must therefore be independent of the 

model's past history and of the time at which the model enters the given 

state, and so with the states and transitions as defined the model is a finite 

discrete-time Markov chain.· 

3.2.4 Distribution of request size for the first request in the queue 

Because the allocation process continues until the request which is 

currently first in the queue will not fit in memory, the probability 

distribution of the size of the first request is different when viewed at 

times inbetween transitions, because it is affected at least by the memory 

configuration. The distribution of subsequent requests which have not yet 

reached the front of the queue is unaffected because the allocation algorithm 

restricts its attention to this first request. In fact, in any state of the 

Markov model (i.e. one which is waiting for a deallocation, not an 
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intermediate stage of an allocation process) with configuration C having a 

maximum gap size g < N, the probability distribution of q, the size of the 

request at the h~ad of the queue, is: 

if n ~ 9 
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qn = Probability[q=n] =-0 
.... 3.8 

= r /c9+1 if n > 9 

\~ere by definition, 

k = 1, ••• ,N .... 3.9 

(The symbol "C" has been chosen, to stand for "cumulative".) The statement of 

equation 3.8 may seem almost obvious, but in any case it can be justified with 

a formal proof, to which the rest of this section is devoted. 

Consider the last block movement which took place during the state 

transition which resulted in the present state. It must have been either an 

allocation or a deal location. 

If the last block movement was an allocation, then immediately before it 

the request now at the head of the queue was second in the queue. Because of 

the first come first served queue discipline, up to this point the probability 

distribution of its size q was independent of the model's operation and so was 

(rn), n = 1, ••• ,N (definition 3.4). Applying the theorem of conditional (or 

total) probability: 

rn = Prob[q=n] 

= Prob[q=n I n>g] X Prob[n>g] 
+ Prob[q=n I n~g] X Prob[n~g] , n = 1, ••• ,N 

When the allocation occurs resulting in configuration C and q rises to the 

head of the queue, it is given that the allocation process stops and therefore 

that q > g, the size of the largest gap in C. It follows that in this case 
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Prob[q=n n~g] = 0 , 

and so Prob[q=n n>g] = rn/Prob[n>g] = rn/cg+1 
as requi red. 

If the last block movement was a deal location, then immediately before it 

occurred the memory configuration was Cl, say, with maximum gap size gl ~ 9 , 

and with ml words of memory allocated out of the total N. Suppose that there 

are m words of allocated memory in C, then ml > m. Consider the (descending) 

inductive hypothesis, for x = N, N-l, ••• ,l : 

H(x): in any state with w ~ x words allocated, equation 3.8 above holds. 

H(N) is true from the argument above, since any block movement which results 

in a state with all N words allocated must be an allocation. Assume H(x) ;s 

true for all x > m. Then it is true for Cl, and so the request at the head of 

the queue in state Cl has size ql with probability distribution 

ql = Probability[q'=n] = 0 
n 

if n ~ gl 

if n > gl 

Again applying the theorem of conditional probability, 

Prob[q'=n] = Prob[q'=n I n>g] X Prob[n>g] + Prob[q'=n I n~g] X Prob[n~g] 

For n satisfying n > 9 ~ gl , 

Probability[q'=nJ = ~n/Cg'+l 

and Probability[n>g] = E rn/cg'+1 = cg+1/cg'+1 n>g 

When the deal location occurs from Cl to C, it ;s given that ;n this case the 

request ql at the head of the queue remains there, and so ql = q > 9 • 

Therefore, in this case, 

Prob[q'=n I n~gJ = 0 
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and so, for n > 9 , 

qn = Prob[q=q'=n I n>g] = Prob[q'=n]/Prob[n>g] 

= rn/cg ' +1 ~ C9+1/cg'+1 = rn/cg+1 
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as required. Thus for any state C with m words allocated, if C was arrived at 

by a deal location, equation 3.8 holds inductively, and if C was arrived at by 

an allocation, equation 3.8 has already been shown to be true. Hence H{m) is 

true, and so by induction it is true for all m, m = N,N-1, ••• ,1 • 

3.3 Time measurement, ergodicity 

The previous t~~ sections of this chapter introduced a model of storage 

allocation, and showed that it is a finite state discrete time Markov chain if 

certain further defined conditions are made. This section examines how the 

model behaves as ti~e :asses. The assumptions or conditions of the previous 

section guarantee that events occur randomly at a constant rate independently 

of the states entered. Event time T, the vector ~(T) of state probabilities, 

the i-th component of which is the probability of being in state i at time T, 

and the transition probabil ity matrix P are all introduced. Section 3.3.3 

shows that under normal circumstances the Narkov chain is ergodic. An 

important consequence of this is that the steady state (or equilibrium, or 

limiting) probabilities are uniquely determined by the steady state equation, 
. 

3.11 below, so that whatever 'state the model starts in this state probability 

vector ~(T) will always converge to a unique "steady state" or equil ibrium 

vector TI. A counter example of unusual conditions in which the chain is not 

irreducible is presented in section 3.3.5, to show that this possibility 

exists and can exceptionally occur. 
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3.3.1 Time measurement 

The assumption that at any moment any of the remaining blocks in memory 

is equally likely to be the next to be deal located, (4) of section 3.2.1, and 

the discrete time formulation which merely numbers successive events, avoid 

the use of any explicit timing information in the model. This significant 

saving in the total amount of information required to be kept, and the added 

simplification of not needing to know about time to compute state transitions, 

follow conveniently from this assumption. As a substitute for real time, the 

integer variable T is used to count lIevent time ll
, i.e. for any non-negative 

integer T it is possible to determine the state probabilities after T 

transitions have occurred from a given initial state at T = O. It is worth 

repeating assumption (3) of section 3.2.1 that the distribution of real time 

te which elapses between transitions is assumed known, and events occur at a 

constant rate A independently of whatever states the model may enter. 

3.3.2 A brief summary of the basic theory of Markov chains; ergodicity 

Discrete-time Markov chains are classified into various types according 

to their properties; see for example Feller (1968), chapter 15, or Seneta 

(1973), chapters 1 and 4. Basic Markov theory is well known and can be found 

in many other reference texts besides these. A very brief summary is included 

here merely to explain a few terms. 

The property of being able to reach any state from any other after 

sufficiently many transitions as are necessary, is called irreducibility. The 

states of an irreducible chain can not be separated into groups such that the 

states in one group can not eventually be reached from those in another group. 

Reducible Markov chains can be split into such groups however, and the groups 
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can then be studied separately as chains distinct from each other. 

Periodicity is the property of only being able to reach one state from another 

after numbers of transitions which, apart from a constant of addition, are 

mult.iples of an integer (called the period, or cycle index) greater than 

unity; for example if state j can only ever possibly be reached from state i 

after 1, 4, 7, 10, 13, 16, ••• transitions. If one state of an irreducible 

chain is periodic, then so must all the others be, and with the same period. 

Periodic Markov chains can also be spl it into groups by equal periodic 

position, so that all the states in each group can only occur at the same 

place in the period. Markov chains with a finite number of states which are 

irreducible and non-periodic are called ergodic. (Ergodicity is usually 

defined in terms of non-periodicity, irreducibility and persistence; finite 

chains which are non-periodic and irreducible are automatically persistent.) 

The basic Markov theory shm'l's that ergodic chains are "well behaved" in the 

sense that, irrespective of the starting state, the probabilities of being in 

any of the states must eventually converge after sufficiently many transitions 

to a set of uniquely determined values called the steady state (or 

equilibrium) probabilities. 

Thus it is enough to know in the present case that the Markov chain 

representing the storage allocation model is finite, non-periodic and 

irreducible, to know that its behaviour as time passes must so converge. It 

is interesting to know this because useful quantities such as the expected 

storage utilisation and expected fragmentation must also then converge to 

val ues ',o.Jhich can be determined from the steady state probabil ities. 
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3.3.3 Proof that the Markov chain storage allocation model is ergodic 

A sufficient condition for this to be so is that the probability of a 

request for a block of one word is non-zero, i.e. r1 > 0, and the present 

proof is based on this assumption. An example which the reader might like to 

see first and which may make the details clearer is given in the next section 

after this proof (which does not depend on the example). 

Consider the particul ar state in which the memory of N words is 

completely filled by N I-word blocks, and call it F (for full). By section 

3.2.4, the size q of the request at the head of the queue in state F retains 

the (rn) distribution, (equation 3.4), the same as all the other subsequent 

queued requests. 

1) F can be reached from any other state in a finite number of steps. 

This is because in any state, the N requests after the first at the head of 

the queue can all be for I-word blocks with non-zero probability, and because 

also with nO:I-zero probability any ,~llocated blocks of more t'lar one word in 

any state can be successively deal located in preference to any of the I-word 

blocks which may be in memory. Since requests must always be satisfied as 

long as at least one sufficiently large gap exists, any allocation algorithm 

will in these circumstances have no choice but to continue allocating the N 

I-word blocks once the first request has been allocated, while at various time 

intervals any larger blocks initially present are removed, and this process 

must eventually reach state F after no more than N+l blocks have been 

all ocated. 

2) Any "pos~'ible" state (configt.:ration of memory) can be reached from F 

in a finite number of steps, whatever allocation algorithm is used. A 

"possible" state is any containing no allocated block of a size i with zero 
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request probability r i = 0, (that is it only has blocks of sizes which can 

occur in the queue), and containing no gap as large as the size, (max) say, of 

the largest possible request for which r(max) > 0 (this is so that there can 

be a request, (for example for (max) words), waiting at the head of the queue 

for which no gap is sufficiently large). For any Ipossib1e" state, the 

requests at the front of the queue in state F can be for just the number and 

sizes of blocks \vhich occur in it, in some order, followed by a request for a 

block of size (max), the largest which can occur. Then in succession and with 

non-zero probability, the I-word blocks present in state F in the memory 

positions where the first queue request is allocated in the given "possible" 

state can be deal located; when the last such I-word block is removed, the 

allocation algorithm has no choice but to allocate the first request at this 

position. It is possible for this sequence to then be repeated for the 

succeeding requests until all the blocks which are in memory in the given 

state have been allocated. Finally, if there are any, it is possible for the 

I-word blocks at the remaining memory locations where there are gaps in the 

given state to be deal located. All this can occur with non-zero probability. 

The result when the last unwanted I-word block is removed will be the given 

"possible" state. The request for (max) words will not be allocated 

immediately when the last unwanted block is removed, since by the above 

definition of "possible" there is no gap large enough for it. This choice of 

queue sizes and sequence of dea1locations and allocations starting from F has 

a non-zero probability and is certain to take no more than 2N transitions 

since each word of the memory is involved in at most one deal location and one 

all GC 2 ti on • 

3) If F is reachable from any state in k transitions, then since 

subsequent requests can also be for 1 word, F is reachable in (k+I), (k+2), 

••• transitions. 
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It follows from the definition of a "possible" state that the set of 

"possible" states is closed and absorbing, since they can only make 

transitions to other "possible" states. It is not hard to prove that all 
, 

other states can only be transient, since they can only be not "possible" 

because they contain blocks of sizes with zero request probabilities, all of 

which must eventually be deallocated with certain probability. 

(1) and (2) together prove that the set of "possible" states is 

irreducible, so that there is just this one irreducible absorbing subchain, 

and (3) proves that they are aperiodic. Since the subchain is finite, it must 

therefore be ergodic; see for example Feller (1968), chapter 15, or Seneta 

(1973), section 4.2. 

3.3.4 An example to illustrate the foregoing proof of ergodicity 

An example of the argument to show that F can be reached from any other 

state is illustrated by figure 3.2. Part (a) of this figure represents one 

such other state, and the succeeding parts (b) - (f) show how it is possible 

to reach F after, in this case, five complete transitions. 

In part (a), a memory of 20 words contains one 4-word block, two 3-word 

blocks, a 2-word and a I-word block. The largest gap is 4 words long, and the 

request at the head of the queue is for 7 words. Subsequent requests in the 

queue are for I-word blocks. 

In part (b) ~ the 4-word request has been deallocated (with probability 

1/5). This action begins a transiti0n. The largest gap is now 8 words long, 

so the allocation algorithm can choose from two places to put the 7-word 

request. It does not matter which it chooses. 
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Figure 3.2 Illustration of ergodicity proof: From any state, to F 

In part (c), the 7-word request has been allocated. The first request in 

the queue is now for a I-word block, so the allocation process will continue 

by allocating it. 

In part (d), all the available gaps have been filled with 1-word blocks 

and there are no remaining gaps. The first transition is complete. 

In part (e), the 7-word block has been deallocated (with probability 1/9) 

and the resulting gap immediately filled with I-word blocks from the queue, 

com~12ting the second transition. This process of choosing successively to 

deal locate the 2-word and two 3-word blocks then continues, causing three more 

transitions to Qccur. 

In part (f), all the larger blocks have been deallocated and replaced by 
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I-word blocks. State F has been reached. The first request in the queue can 

be for any of the possible sizes. 
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Figure 3.3 Illustration of ergodicity proof: From F to any state 

An exampl e to sho\'J how any 11 possib 1 ell state can be reached from state F, 

is shown in figure 3.3. The state to be reached is the original starting 

state shown in figure 3.2(a). 

In figure 3.3(a), the memory is filled with I-word blocks, and the queue 

contains successive requests for 4, 2, 3, 3, 7 words. 

In part (b), three of the I-word blocks have been deallocated one 
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transition at a time, with successive probabilities 1/20, 1/19, 1/18. The 

resulting gap is still too small to allocate the first queue request for 4 

\'wrds. 
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In part (c), a fourth I-word block has been deallocated. The four words 

form a gap in exactly the position that a 4-word block occupies in the ·final 

state. 

In part (d), the allocation algorithm has had no choice but to put the 

first request in this gap, and a 2-word request is now first in the queue. 

This process of deallocating the I-word blocks one at a time from the 

positions where the larger blocks are to be, is continued. At each stage, the 

allocation algorithm is allm'led no choice. 

In part (e), all of the larger blocks are in place, and the first queue 

request is for 7 words. 

In part (f), seven of the remai ni ng eight I-word blocks have been 

deal located in some order in seven successive transitions. No allocations 

have taken place, and the final state has been reached. 

3.3.5 A reducible example of the Markov storage allocation model 

Th2 Markov model is not always irreducible, if there are no requests for 

I-word blocks and if the allocation algorithm is chosen rather unusuall~. 

Perhaps the simplest example is shown in figure 3.4, of a five v/ord memory and 

a queu2 of requests all of v.Jhich are for 2-vwrd blocks. That is, N = Sand 

r2 = 1. r1 = r3 = r4 = r5 = O. It is not hard to see that between transitions 

there must ah/ays be exactly two blocks in memory, in one of three possible 

configurations. Since blocks are deal located one at a time, the memory can 
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Figure 3.4 Transitions in an example of a reducible model 

never be empty after the start, not even instantaneously. In this example, 

the allocation algorithm is chosen so that it always allocates a new request 

starting on a word of the same even-odd parity as the existing allocated 

block. Of the three possible configurations, one is transient with this 

algorithm, and the otl,c:.r two form chscd grourc; of one state each. Once one 

of these two states has been reached, as it must be at the latest after just 

one transition, the allocation algorithm ensures that the Markov chain never 

1 eaves it. 

This example can easily be extended for any N-word memory, where r4 } 5. 

The request distribution is chosen to allow only even-sized blocks of sizes up 

to but always less than (N+2)/3 words. The memory can consequently never be 

completely emptied, and so there must always be at least one block present to 

serve as an indicator of the even-odd parity of the previous configuration, 

which the all ocat ion al gorithm is chosen to preserve. 

The existence of this possibility of non-ergodicity is something of a 

surprise, but it is surely most unlikely to occur by accident in practice. 
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The style of this proof and the counter-example is reminiscent of the 

perverseness of the attacker and cunning of the defender which Robson finds it 

necessary to assume in his studies, referred to in chapter 2 section 2.5. 

These roles are reversed here as now it is the allocation algorithm (defender) 

which has to be forced into sufficiently reasonable or ergodic behaviour. The 

author has the intuitive feeling that, even without requests for 1 word, the 

existence of enough relatively prime request sizes should be sufficient 

ammunition for the attacker. For example, all the integers greater than 1 can 

be produced by adding 2 and 3 (2,3,2+2,2+3,3+3,2+2+3, etc.). However, 

remembering Matzke's warning from the end of chapter 2, this intuition has yet 

to be proved and it may be wrong. 

3.4 Transition matrix P, state probabilities TI 

This chapter has established the Markov nature of the storage allocation 

model beins studied, anct ends by introducing the most important object hhich 

is the key to the subsequent analysis. Let the transition probability 

matrix P = (p .. ) 
lJ 

of the Markov model be defined: 

(conditional) [model will make 
Probability[ a transition 

[ to state j 

model ] 
is in] , for 1 ~ i ,j ~ SI 

state i] 
•••• 3.10 

Where S' = S' (N) is the number of states (non-empty memory configurations) for 

a given memory size N words. The quantity S'(N), and possible orderings of 

the Slates, are discussed in more detail in chapter 4. Each p .. is 
lJ 

independent of time (the Markov chain has stationary transition probabilities, 

or is homogeneous) because of assumptions (4) and (5) of section 3.2.1. P is 

finite, square, stochastic (row sums are all unity, all elements are real and 

non-negative) and primitive (irreducible and aperiodic). The Perron-Frobenius 
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theorem (see for example Seneta (1973), chapters 1 and 4, or Gantmacher (1959) 

chapter 13) therefore applies to show that P has a real, non-repeated 

eigenvalue 1 which is dominant, that is, all other eigenvalues A of P have 

modul us IAI < 1. The left eigenvector ~ = (n i ) of P corresponding to this 

eigenvalue exists, has positive elements n. > 0 , i = 1, ••• ,S', and is unique 
1 

if it is normalised so that its elements sum to 1. n is the unique steady 

state probability distribution of P, satisfying: 

n = n P 3.11 

If the normalised row vector ~(T) = (ni(T)) of state probabilities is 

defined: 

= Probability[model is in state i at time T] , 
for i = 1, ••• ,S' 

then 

~(T+1) = .!!.(T) P 

and by the ergodic theorem for primitive M~rkov chains, 

lim n(T) = n 
T~ -

•••• 3.12 

•••• 3.13 

•••• 3.14 

Equation 3.13 is the basis of the well-known power method of von Mises, also 

known as the method of iterated vectors. For an extended exposition of the 

power method, see for example Bodewig (1956), page 231 onwards, and especially 

pages 250-254 which are particularly critical, pointing out that convergence 

using this method can on occasion be exceedingly slow, depending on the 

eigenvalues of the matrix. This topic will be returned to in chapter 6 

sections 6.3 and 6.5 and in chapter 7 section 7.1, where happily it will 

appear that this pessimism is unfounded for the present family of transition 

matrices P being considered. The rate of convergence is geometrically rapid 
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and depends on the largest absolute value magnitude IAI of the eigenvalues of 

P not equal to 1, the above limit being approached as IAIT ~ O. This 

convergence to ~ is independent of the starting state or states, i.e. ~(O) may 

be any arbitrary (non-negative, normalised) probability row vector. 
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Chapter 4 Prel iminary analysis of the storage allocation model 

Before proceeding with the algebraic analysis of the ~1arkov model of 

storage allocation defined in the last chapter, it is useful to make a 

preliminary survey of the model and this is done in this chapter. The number 

of states in the model depends on the memory size N, and it is the number of 

different possible ways that there are of arranging any number of blocks and 

intervening gaps of arbitrary sizes greater than zero into an N-word memory. 

This number turns out to be just the 2N-th term from the Fibonacci sequence, 

which increases exponentially with N. Any straightforward attempt to 

calculate the transition matrix and steady state eigenvector for general N is 

therefore qui ckl y 1 imited, whether directly or iteratively by the pm'/er method 

for instance. If the definition of the model is changed to eliminate external 

fragmentation by allowing relocation (compaction) of the blocks in memory 

whenever necessary, it has been found possible to obtain direct expressions 

for the expected ste?dy state ~torage utilisation with relocation, and an 

example is given. The performance of this model gives an upper bound for the 

expected storage utilisation in the corresponding non-relocating model. 

4.1 Size of problem, and empty state 

A major difficulty facing any simple analysis, such as the implementation 

of the power method described in chapter 6, is the rapidly increasing number 

of states in the Markov chain as the memory. size N increases. It is proved 

quite easily below that the number S(N) of different configurations of an 

N-word memory into allocated blocks with possible intervening gaps is given by 

S(N) = f2N ' N = 1,2, ••• .... 4.1 . 
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where f2N is the 2N-th Fibonacci number, 

fO = f1 = 1; fn = f n-1 + fn-2 , n = 2,3, •••• . ... 4.2 

, 
S(N) includes the empty configuration (no blocks in memory). In section 3.3.3 

it vias sho\'Jn that in the general case where the request probab i 1 ity 

distribution (rn) is strictly positive, every non-empty configuration is a 

possible state, so that the number of possible states S'(N) is just one less 

than this: 

S'(N) = S(N) -1. . ... 4.3 

In chapter 5 the empty configuration will necessarily be included as it ;s a 

possible intermediate stage during a transition. S(N) is an exponentially 

increasing function of N: 

S(N) = f 2N 

= 0.72 ••• X (Z.o •.• )N approximately, as N increases .... 4.4 

Values of S(N) for increasing N are shown in table 4.1 below. 

4.1.1 Proof that the number of memory configurations is f2N 

This simple proof proceeds by induction on N. By inspection, 

S( 1) = f 2 = 2 , 

for a memory of one Hord is either empty or occupied by a single block. 

Assume inductively that 

S( n) = f 2n n = 1,2, ••• ,N 

and consider n = N+l, a memory of N+l words. There are b/o contributions to 
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the total, S(N+1): 

1) The first ~rord is unoccupied. There are then S(N) possible 

configurations of words (2,3, ••• ,N+1) considered as an N-word memory. 

When the empty first word is added, N-memory configurations which start 

with a block at word 2 of the· (N+1 )-memory are unchanged, whil e those 

which start with a gap of length g produce (N+1)-memory configurations 

which start with a gap of length (g+1) at word 1. 

2) The first word is occupied, by a block of length b, b = 1,2, ••• ,N+1. For 

b < N+1 there are then S{N+1-b) possible configurations of the remaining 

words, and for b = N+1 the contribution to S{N+1) is a single 

possibil ity. 

Thus altogether, 

S{N+1) = S(N) + S(N) + 

= 2f 2N + f 2N -2 + 

+ S(2) + S(l) + 1 

+ f4 + f2 + f1 

= f 2N+2 ' as required. 

4.2 Illustration of increasing transition matrix size 

Figures 4.1 to 4.7 display examples of the transition probability 

matrices for models of memory size up to N = 6 words. Figures 4.1 to 4.4 are 

the transition matrices for model s with N = 1, 2, 3, 4 words respectively. 

The states are represented diagrammatically do~m the left hand side, ("from" 

states) and along the top ("to" states) of .each of the matrices. Thus the 

first state shown in each case is that in which the memory is completely 

filled with N one-~lOrd blocks, the state ~/hich was called F in section 3.3.3 

in fact. All the possible configurations are present in the diagram, and for 
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Figure 4.3 Transition matrix P for N=3 Uniform distribution, first fit 
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Figure 4.4 Transition matrix P for N=4 Uniform distribution, first fit 
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Figure 4.5 Transition matrix P for N=4 Uniform distribution, first fit 

(A different state ordering to that in figure 4.4 has been used) 
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Figure 4.6 Silhouette, or incidence matrix of transition 

completeness' sake the empty configuration has been included but of course 

with zero row and column as it can only occur momentarily as an intermediate 

stage of a transition. Except for the empty state, the elements of any row of 

these matrices are the probabilities that the state shown at the left of the 

row will make a transition to the respective state shown above the columns. 

Non-zero probabilities occur wherever a transition is possible, and blank 

spaces indicate zero probabilities elsewhere. 

From section 3.2.2 a transition from any state consists of a deal location 

of just one of the blocks in the state, follov/ed by (possibly zero) 

allocations from the quelJe. Th~ request at the head of the queue cannot be 

for a block of words which could have been allocated before the deallocation 

occurred. In these examples, the probability distribution of request size is 

the uniform distribution, for example in figure 4.4, N = 4 : 

r1 = r2 = r3 = r4 = 1/4. The "first fit" allocation algorithm is used, which 

allocates a request into the left hand end of the leftmost gap large enough to 

take it. In such small memories there are very few cases where a choice is 



4.2 : Illustration of increasing transition matrix size 81 

J "" 
~ 

I 

.. .. 
* !I 
J I 

i 
I 
I 
L .--.. ----

Figure 4.7 Silhouette, or incidence matrix, of transition probability matrix P 

(N=6, best fit) 
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possible ("small" memories might in fact be large ones being allocated in 

large quanta, of course, and section 6.5.4 presents just such an example of 

this, showing the use to which this observation can be put). 

Figure 4.5 shows the same transition matrix as in figure 4.4, for N = 4 

words, but with a different ordering of the states. The state ordering which 

has been used in figures 4.1 to 4.4 and throughout most of the rest of this 

thesis is described below. The example of figure 4.5 is merely to show that 

other orderings are possible and may be no more or less arbitrary. 

Figures 4.6 and 4.7 continue the sequence of figures 4.1 to 4.4 for N = 5 

and 6 respectively, but now the matrices are too large to be able to show the 

individual non-zero elements, so their positions only have been marked. All 

models using the best fit algorithm and in which the request probabilities are 

non-zero have this same shape, or incidence matrix. 

Two features are very noticeable from these examples. Firstly, the 

elements seem to fa11 into a markec repetitive pttern, both in positicn and 

(although it is less evident in the figures) in value, the pattern repeating 

within the same matrix and also from one matrix to the next in the sequence. 

This repetitive pattern is the key to the analysis in chapter 5. It is there 

because the transition matrix is a combination of much simpler matrices whose 

non-zero elements form some obvious and simple recursive patterns: Secondly, 

the transition matrix is sparse, and this is because any individual state can 
,; 

make a transition to relatively few of the other states, (although given 

enough transition steps, eventually to them all byergodicity). This sparsity 

is used in the implementations of the model for small memory SiZES described 

in chapter 6, in the attempt to make "small" become as large as possible with 

the computational resources available. 
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4.3 State ordering 

In princi~e, the order in which states are indexed is irrelevant as the 

transition matrix is essentially unchanged whatever order its rows and columns 

are permuted into. However it has been found desirable to use an order which 

makes certain features of the component parts of the transition matrix easily 

apparent, such as upper or lower triangularity and the existence of diagonal 

submatrices. The ordering which so far has been found to do this as well as 

any other is illustrated by figures 4.1 to 4.4, and as the analysis of chapter 

5 is described in terms of this ordering, it is defined here so that it is not 

in doubt. As pointed out in the last section, it is arbitrary in the sense 

that any other ordering which allows the same or other properties of the 

transition matrix to be studied would be equally as good. 

It should be apparent from figur2s 4.1 to 4.4 that in the ordering which 

has been used, shorter ::~cks take precedence over long ones, gaps having the 

lowest precedence. Specifically, any configuration can be represented as a 

sequence of (gap block) pairs, for example in figure 4.4, N = 4, 

state 8 = (0 1)(0 3), state 17 = (0 2)(1 1), state 33 = (3 1). States with a 

fi nal gap of any 1 ength can al so be described thi sway, for exampl e 

state 23 in figure 4.4 = (1 1)(0 1), state 31 = (2 1). The length of the 

final gap can be found by subtracting from the memory sizeN. The pairs are 

given the following order of precedence: 

if gl < g2 then (gl b1) < (g2 b2) 

if gl = g2 ' b1 < b2 then (gl b1) < (g2 b2) •••• 4.5 

for all g , b : (g b) < no pa ir ( fi na 1 gap) 

For N = 4, the order of precedence of the pairs is 

( 01 ) , ( 0 2 ) ,( 03 ) ,( 04 ) ,( 11 ) , ( 12) , ( 13 ) ,( 21 ) ,( 22 ) ,( 31 ) ,( no pa i r) 
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The ordering of states can now be defined. To decide the relative order 

of two given states, their (gap block) pair representations are compared pair 

with pair from left to right until an inequality is reached, as it must be if 

the memory configurations are different. The first such pair inequality is 

used to decide the order of the states. For example, for N = 4, 

(0 1)(0 1)(0 2) occurs before (0 1)(0 1)(1 1) because (0 2) < (1 1), and 

(0 1)(0 1)(1 1) is before (0 1)(0 1) because (1 1) < (no pair). 

This definition is trivially a well-:-ordering. If states a , b, care 

related such that a < band b < c by this ordering, then let the first 

non-equal pairs in the pair-representations of a and b be the i-th, and the 

j-th pairs the first unequal between band c. Then if k = minimum(i,j} the 

k-th pairs must be the first unequal between a and c, and they define that 

a < c. The ordering is also strict, two states only comparing equal by this 

order if their memory configurations are equal, that is, if they are the same 

state. 

Chapter 6, section 6.4 describes an algorithm for computing the 

(gap block) representation of a state given its index, and vice versa. 

4.4 Analysis of a model in which relocotion is allowed 

If the model as described in section 3.1 is modified so that allocated 

blocks in memory are moved around to collect together the free space whenever 

necessary, then the problem of calculating how much memory is used on average 

becomes simpler, and closed form solutions are possible in individual cases. 

The reason for wanting to study the relocating model, besides the 

practical fact that it is much easier than the fragmented non-relocating 
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version, is for a comparison with the fragmented model. Randell (1969) used 

this comparison in his definition of external fragmentation as the difference 

in storage utilisation between two otherwise identical models, one with 

relocation and one without. It is obvious that the storage utilisation in the 

relocating model is an upper bound for that in the fragmented case, for 

anything that can be allocated in a fragmented memory must also fit if all the 

bloc~s can be pushed together as required to bring the free space into one 

gap. The idea of an allocation algorithm becomes irrelevant in this model; it 

makes no difference where a block is, and only its size matters. With a 

saturated queue the only external fragmentation possible will b~ any remaining 

words left over which are insufficient for the size of the request currently 

at the head of the queue. Thus its simplicity and the provision of an upper 

bound to any possible performance with fragmentation, make the relocating 

model interesting and worthwhile to study. 

As an addition to the external fragmentation, following the simulation 

experiments of Randell, it is possible to include in the calculatiun 'Lhe 

effect of rounding up requests to the nearest integral multiple of a fixed 

quantum size, and the internal fragmentation so introduced can be calculated. 

Two different distributions of request sizes, uniform and negative 

exponential, will be presented as examples. Since this relocation model was 

analysed in detail in Betteridge (1974) and the analysis is in fact very 

straightforward consisting mainly of several easy but lengthy algebraic 

reductions, the algebra will be slightly shortened and summarised here. 
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4.4.1 Steady state fragmentation in the relocating model 

The first step to obtain information about the steady state behaviour 

when relocation is allowed is to show that, whatever the request size 

distribution"is, if the memory is allowed to fill up from empty then the 

probabil ity of any resul ting configuration is the same as its probabil ity of 

occurrence in equilibrium, and this was proved rigorously as a theorem in 

Betteridge (1974). With this established, the steady state behaviour becomes 

much easier to discover as the problem reduces to the simpler one of deciding 

what happens on the average when the memory is allowed to fill up from empty 

until a request is reached which will not fit. 

It is convenient to identify the "filling Up" process as being the set of 

possible transitions from one particular state E in which' the memory is 

completely filled by a block of N words. The first action to occur during any 

transition from this state mus~ result in a completely empty memory (hence the 

choice of the symbol E) and the size of the request waiting at the head of the 

queue retains the (rn) probability distribution. Two simple observations are 

justified in the proof \'/hich is given in the 1974 paper. Firstly, filling the 

memory up from empty by discarding the first request and start'ing from the 

second request instead, must give all the same transition probabilities as 

starting ... rith the first request. Secondly, in getting to some state i in two 

transitions, after the first transition from E the first allocated request in 

any intermediate state j may as well be deal located as any other, since the 

probability distribution of the sizes of the remaining blocks in memory after 
" 

the deal location will be the same whichever of the blocks in state j is 

deal located. But these two observations show that the probability of getting 

to any state, i say, from E in two transitions is the same as the probability 

of reaching it in one transition and this is also proved in the theorem. Then 
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for any i, 

Prob[from E to iJ = E Prob[from E to j] X Prob[from j to i] .... 4.6 
all j 

But this shows that the probabilities Prob[E to iJ satisfy the steady state 

equation and so by uniqueness they are the steady state probabilities, since 

the probabilities Prob[j to i] are just the elements of the transition 

probability matrix of this relocating model. 

4.4.2 Two example request distributions for the relocation analysis 

The uniform request size distribution is easily defined: 

rn(uniform) = 1/N n = 1, ••• ,N •... 4.7 

That is, for any request arriving in the queue, all possible block sizes from 

the smallest (1) ~o ~he iargest (N) are equally likely. The mean Euniform of 

this distribution, or aver~g€ reques~ed block size, is evident~y: 

Euniform = (N+1)/2 .... 4.8 

The negative exponential request size distribution that has been used in the 

following example calculation, is defined: 

,n=1, ••• ,N .... 4.9 

The value rN' which depends on N, must of course be chosen so that 

Er = 1 n and o ~ rn ~ 1 n = 1, .. . ,N 

and this impl ies th:t rN is the root of the equation 

rN+ 1_2 r+ 1 = 0 •••• 4.10 
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lying in the range 0.5 < rN < 1 (for N > I). The average requested block size 

Eexp of this distribution may be evaluated: 

N 
E = ~ n(r )n = 2N _ (N-1 ) •••• 4.11 
exp n=l N 1-rN 

Values of rN and Eexp are given in table 4.1 below; their respective limits as 

N increases are 0.5 and 2. 

It is possible to perform all of the following analysis for a more 

general form of exponential request size distribution: 

rn(general exponential} = arn-1 , n = 1, ••• ,N •••• 4.12 

Here, a and r must be chosen to satisfy 

o < a,r ~ 1 
N 

and ~arn-1 = 1 •••• 4.13 
n=l 

which gives 

arN - ~a+r) + 1 = 0 4.14 

The algebra which follows this is then more complicated, but closed form 

expressions may still be obtained. By setting a = r, the simpler version 

presented above is obtained. The reason for using this is that the one degree 

of freedom allowed in the choice of a and r allows the mean of the 

distribution to be varied while retaining the exponential characteristic. By 

making the starting value a approach l/N from above, and r approach 1, the 

distribution becomes close to uniform. Conversely if a approaches 1 and r 

becomes very small, then most requests will .be for 1 word and large requests 

will become correspondingly unlikely. It did not seem worthwhile to use this 

more general exponential distribution for the sizes of memory in the models 

which can presently be computed, and the above simpler version 4.9, 4.10 of 



4.4 Analysis of a model in which relocation is allowed 89 

the exponential distribution is the one that has been used. 

4.4.3 External fragmentation in the relocating model 

This will be considered in terms of the average utilisation U~ the 

average fraction of memory occupied by requests. Then by the definition 2.1 

in chapter 2~ 

average external fragmentation = 1 - average utilisation = 1 - U • 

Whatever distribution of request sizes is used, the expected utilisation 

U(reloc) in the relocating model satisfies: 

N [exactly i \'lOrds 
U(reloc) = ~X E i X Probability~ allocated 

i=1 [at T=1 

\'/here Probabil ity[i words at T=1 I E at T=OJ 

i 

state EJ 
at T=O ] 

] 
•••• 4.15 

= ~ ProbabilitYLi woras allocated to n blocks at T=1 ( E at T=OJ •••• 4.16 
n=1 

i 
= 1: Probabil ity[r1 +r2+ ••• +.I.n=iJ X Probabil itY[.I.n+1 > N-i] 

n=1 
.... 

and where L1~ r2, ••• are the random variables representing the sizes of 

successive requests in the queue in state E. 

For the uniform distribution, it is not hard to show by induction 

(Betteridge (1974)) that 

4.17 

•••• 4.18 

and of course 

ProbabilitY[Ln+1 > N-i] = i/N •••• 4.19 
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so that the algebraic summation of 4.17 gives 

and after the summation in equation 4.15 

Average utilisation U(re10c,uniform) = (1+k)N+1 - 2 - ~ 

Similarly, for the exponential distribution, 

Probabi1ity[r1+ ••• +!fl=i] = ri(~=i) writing r for rN 

d P b b 1 · [ ] N-i+l (ri_I) an ro a i ,ty Ifi+l > N-i = r • r-l 

so that the summations of 4.17 and 4.15 lead to 

Average utilisation U(reloc,exp) = ~(2N+l - 2 - 2r1_1) 
N 

4.4.4 Internal fragmentation in the relocating model 

•••• 4.20 

•••• 4.21 

•••• 4.22 

•••• 4.23 

In order to discuss internal fragmentation, a rounding up process has to 

be introduced whereby requests are allocated blocks which are equal to or 

larger than the amount requested. This can be done in a number of different 

ways, for example the (binary) buddy scheme rounds request sizes up to the 

next higher power of two, but i~ the present calculation the rounding that 

will be considered is to the next higher multiple of a fixed quantity, the 

allocation quantum. Rather than introducing this as an integral number of 

words, w say, so that allocated blocks are always w, 2w, 3w, ••• words long 

which would require the external fragmentation analysis of the last section to 

be (fairly trivially) modified, this will equivalently be done by supposing 

that the unit of 1 word is the allocation quantum and that requests can· 
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originally have been for some fraction of this, with a size probability 

distribution before the rounding which results in the distributions 4.7, 4.9 

of section 4.4.2 after the requests have been rounded. The difference bet\'/een 

roun.ding original requests in words to multiples of w \'Iords, and rounding 

requests in fractions of words to integral amounts, is only one of scale and 

possibly of convenience in the calculation. 

There are obviously many possible distributions of request size which 

will result, after rounding up to the nearest integer number of words, in the 

uniform and exponential distributions being considered here. For simplicity 

it will be assumed in the following examples that the average loss or amount 

of rounding up per request is hal f of one word. The same assumption will be 

made in chapter 6 in order to compare the results of that chapter with the 

analysis of these present examples. Having modified the request distribution 

in this way so that the distribution of rounded up request sizes remains the 

same, it is necessary to consider again the meaning of the quantity U, 

introduced as the average utilisation. As explained in section 2.1, it i~ 

convenient to keep the definition of U as the average fraction of the memory 

occupied by the (possible rounded up) allocated blocks, so that the average 

unused space between them is given by 

E[EF] = 1 - U • 

The fraction of memory \'/hich is allocated at any moment to the original 

request sizes before rounding up, or the fraction of memory which is actually 

"being used" at any moment, the "proper utilisation" of chapter 2, is then 

equal to) U minus the amount IF of rounding up or internal fragmentation which 

has occ:.!rred. This amount of rounding is considered now for the relocating 

model and again below for the non-relocating case in chapter 6 section 6.5.3. 

Whatever original distribution of request sizes is used, if the random 
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variable IF is used to denote the fraction of memory unused because of 

rounding up, then 

E[IF] = (1/2N) X (average number of allocated requests) 

But (average number of aJlocated requests) 

N 
= E nX Probability[n requests allocated in N words] 

n=1 

and as before, 

Probability[n requests in N words] 

.... 4.24 

•••• 4.25 

•••• 4.26 

where also as before from section 4.4.1 it is understood that these are the 

probabilities at T=1 given that the model is in state E at T=O. The component 

quantities in this equation are the same as those occurring and already 

evaluated in the above expressions for the external fragmentation, but now the 

order of summation is different. 

For the uniform distribution, using 4.18 and 4.19 of the last section 

4.4.3, 4.24, 4.25 and 4.26 above can be summed to give 

Average internal frag~entation E[IF](uniform) = ~N[(l+k)N_1] •••• 4.27 

Similarly for the exponential distribution, using 4.21 and 4.22 of the last 

section the algebra can again be summed and eventually simplifies, if that is 

the right word, to give 

4.28 

where r = rN has the value just above 0.5 determined by equation 4.10. 
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4.4.5 Summary of relocation analysis 

Figure 4.8 plots the expressions for the expected utilisation U(reloc) 

and internal fragmentation E[IF], for values of memory size N up to N = 12, 

for the uniform and negative exponential request size distributions. The 

values shown in this figure appear in table 4.1. 

Uni form di stribution Exponential request size distribution 
(equations 4.7, 4.8) (equations 4.9, 4.10, 4.11) 

N S(N) U E[IF] Both rN Eexp U E[IF] Both 

1 2 1.0 0.5 0.5 1.0 1.0 1.0 0.5 0.5 
2 5 0.8750 0.3125 0.4375 0.6180 1.3820 0.8820 0.3455 0.4635 
3 13 0.8272 0.2284 0.4012 0.5437 1.6170 0.8518 0.2963 0.4445 
4 34 0.8018 0.1802 0.3784 0.5188 1.7657 0.8475 0.2744 0.4269 
5 89 0.7860 0.1488 0.3628 0.5087 1.8590 0.8532 0.2633 0.4101 
6 233 0.7752 0.1268 0.3516 0.5041 1.9165 0.8627 0.2573 0.3946 
7 610 0.7674 0.1105 0.3431 0.5020 1.9514 0.8734 0.2541 0.3807 
8 1597 0.7615 0.0979 0.3364 0.5010 1.9721 0.8840 0.2522 0.3682 
9 4181 0.7569- O_G878 0.3309 0.5005 1.9842 0.8938 0.2512 0.3574 

10 10946 0.7531 0.0197 0.3266 0.5002 1.9912 0.9027 0.2507 0.3480 
11 28657 0.7500 0.0729 0.3229 0.5001 1.9951 0.9106 0.2504 0.3398 
12 75025 0.7475 (1.0672 0.3197 0.5001 1.9973 0.9175 0.2502 0.3327 

Table 4.1 Average utilisation and fragmentation in the relocating model 

Notes: N = memory size. 
S(N) = f = total no. of configurations, including the empty state. 
Average ~~il isation U and average internal fragmentation E[IF] are 

computed from equations 4.20, 4.23, 4.27 and 4.28 (see figure 4.8). 
Both = average total fragmentation, extcrnal+internal = (l-U)+E[IF]. 

The exponential distribution, for increasing values of N gives almost 

constant weights to small request sizes, approaching the limits 1/2, 1/4, 

1/8, ••• as can be seen in table 4.1. The probability of a request for any 

given fraction of the total memory, say half of it, approaches zero as N 

increases, and this is reflected in the utilisation and internal fragmentation 
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Figure 4.8 Utilisation and internal fragmentation in the relocating model 

Average utilisation U and average internal fragmentation E[IF] are computed 
from equations 4.20, 4.23, 4.27 and 4.28. 

U and E[IF] are shown for both the uniform and exponential distributions. 
Compare this figure with tables 4.1 and 6.5, and figures 6.6 and 6.7. 
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curves shown in figure 4.8. The utilisation approaches 1.0 as the expected 

amount of wasted space left over at the end of memory (because the next 

request is too large for it) becomes insignificant compared to N, but the 

internal fragmentation approaches the limit 0.25 as the average number of 

allocated blocks approaches N/2. 

95 

Conversely, for the uniform distribution the average number of allocated 

blocks becomes insignificant compared with N, since the memory is just as 

likely to be filled by the next request in the queue being for N words as that 

it is for one word, and so the average internal fragmentation approaches zero 

as N increases. The average amount of space wasted at the end of memory 

because it is insufficient for the next request remains significant compared 

with N, and so the utilisation approaches a limit of 0.718 approximately. 

All four of these curves provide upper limits for the corresponding 

quantities when reioc~:~on is not allowed, as will be seen in chapter 6, and 

the curves in figure 4.8 are consequently reproduced in figures 6.6 and 6.7 

below so that they can be compared with the values computed from the various 

non-relocating models reported on in that chapter. 

4.5 Storage fragmentation and the problem of size: ways to proceed 

This chapter has shmm that any straightforward appl ication of the Markov 

theory established in chapter 3 to the present storage allocation model (and 

indeed to other similar exact models, as will be indicated in chapter 7) is 

likely to run into difficulties because of the very large number of states 

which naturally occur for any reasonable memory size N. One traditional way 

which is often used to overcome such a difficulty is to redefine the model and 

start again, or in other words to leave the difficult problem on one side and 
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solve an easier one instead. This has been done here; by allowing blocks to 

be relocated the difficulties of fragmented space go away, the problem no 

longer grows as rapidly with memory size, and in any case closed fonm 

solutions for quantities of interest such as the expected utilisation and 

wasted space can be obtained in individual cases, although not always without 

more than a little labour. Of course this does not solve the original problem 

which still remains, but the relocating analysis is particularly" useful anyway 

as its space utilisation perfonmance provides an upper bound to that of the 

corresponding non-relocating model which does become fragmented. 

The rest of this thesis is increasingly concerned either directly or 

indirectly with trying to answer the question, what can be done with the 

original problem in spite of the very large growth in the number of states 

with memory size, without the side-stepping trick such as changing the problem 

definition as was done to produce the relocation analysis. Chapter 5 

concentrates with some suc:ess 8~ the constant underlying algebraic structure 

which has already been noted at the beginning of this chapter as apparently 

being present in the transition matrix whatever its size. The hope in doing 

this is that useful properties can be deduced from the structure which in turn 

will either allow the problem to be collapsed to a more manageable size, or 

else penmit the dependence of utilisation and fragmentation on parameters such 

as the distribution of requests and the choice of allocation algorithm to be 

studied regardless of the size of the matrix. Chapter 6 presents the results 

of directly computing the transition matrix P and its dominant eigenvector ~ 

from which the average utilisation and fragmentation can be extracted. It 

also explains the variety of ways that have'been used to contain the 

exponential growth of the number of states for as long as possible, for the 

range of still comparatively small memory sizes up to the largest (N=12) that 

has been managed so far. Chapter 7 outlines the subsequent ideas and 
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alternative approaches (some of which are concerned with the size of the 

problem) which have been generated as a result of this work, and suggests ways 

in which they can be followed up. From these three chapters it will be clear 

that making exact predictions about storage allocation models would not always 

be easy to do if the problems of size were not present, but it is certainly 

much harder to do because of them. 
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Chapter 5 Algebraic analysis of the steady stat€ equation 

This chapter concentrates again on the non-relocating model of storage 

allocation described in chapter 3 section 3.1, which was shown in section 3.2 

to be Markovian if certain assumptions about its behaviour were made. The 

transition matrix P = (Pij) of this Markov chain was defined in section 3.4 in 

the natural way by equation 3.10, Pij being the conditional probability of a 

transition at the next event to state j given that the model is in state i. 

In chapter 4 section 4.2, some examples of P were exhibited (figures 4.1 to 

4.7), for models of memory size up to N = 6 words. These examples indicate 

that the elements of P might be arranged in some sort of complicated repeating 

pattern, suggesting that P might perhaps have a structure which could be 

analysed. 

In section 5.1 below it ~s shown by considering the intermediate stages 

or steps of a complete transition that P does indeed have an algebraic 

expansion as sums and products of much simpler matrices which represent these 

individual steps. The elements of these simpler matrices are found to be 

arranged in simple repeating patterns, the complexity of the transition 

probability matrix P being produced almost entirely by the algebraic 

combinati~n of these matrices. Section 5.2 reduces this complexity and 

justifies the usefulness of this expansion of P by using it to simpl ify the 

steady state equation 3.11 to a form more suitable for analysis, which is 

investigated in section 5.3. 
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5.1 Algebraic expansion of the transition matrix P 

Any single transition between two states consists in general of a 

sequence of more basic transitions between intermediate memory configurations 

which each move just one block, either out of the memory (basic deal location 

transition) or into memory from the top of the queue (basic allocation 

transition). Since the request initially at the head of the queue would have 

been allocated as part of the previous transition if it could have been, the 

first movement in each transition must be a deal location. All of the rest, if 

any, are allocations because deal locations and allocations are performed 

instantaneously and the probabil ity of more than one simul taneous deal location 

is zero. If the request initially at the head of the queue before the 

transition occurs will still not fit after the deal location then there are no 

sub sequent a 11 ocat ions and the transit ion is compl eted, otherwi se requests are 

allocated from the queue until one is reached which cannot be fitted into 

memory. If the ~emory contained just one allocated biock, then after its 

deallocatic!1 the memc-ry is momentarily empty ar,d so the empty configur~tion is 

a possible intermediate state. 

It follows that the transition probability p .. from any state i to any 
lJ 

state j can be expanded in the usual way as products of the individual 

probabilities of these more basic transitions summed over all the possible 

\iVays of combi ni ng them to get from i to j. In fi gure 3.1 for exampl e, the 

probab il ity of the occ'urrence of the ill ustrated transition using the best fi t 

algorithm given that the initial state of memory is as sho\,ln, is the 

probability of the initial deallocation of the 2-\'wrd block multiplied by the 

probability of a 4-word, a 2-word and a 3-word request being allocated in the 

indicated positions, multiplied by the probability that the next request in 

the queue is for more than one word. The complete probability of getting from 
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this particular initial to this equally particular final state is therefore 

the total of all such products of probabilities, summed for all the 

deal location - allocation sequences which are possible between these two 

states. It t~erefore becomes necessary to knovI what are the probabil ities of 

deal locating or allocating exactly one block from or into any given memory 

configuration, and what are all the ways in which these may be combined. 

These are studied in detail in the following sections. The basic deal location 

transition probabilities are considered first because they occur first in any 

transition and are simpler because there is just one deal location in each 

complete transition. 

5.1.1 Deal location matrix 

This is the matrix D = (d;;) of basic deallocation transition 
1..; 

probabil ities dij , i,j = 1, ••• ,N , which are obtained by deall ocating one 

block: 

d .. 
lJ 

[ state j will be reached 
= conditional [by deal locating at random 

Probability[ one of the allocated 
[ blocks in state i 

model ] 
is in] 

state i] 
] 

. . .. 5.1 

Whatever state i the model is in, the block to be deal located is chosen with 

equal probability from those present. The matrix has cl nice simple recursive 

structure, the reasons for which are not hard to see but which are somewhat 

lengthy when set out rigorously below as a formal argument. 

Informal expl anati on 

As an example, consider the deal location matrix of the N = 4 model, 

figure 5.1. The 34 states can be split into five groups, those which begin 

(i .e. at the left hand end) with a block of length k words, k = 1, 2, 3, 4, 
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and those in which the first word is empty. The ordering used, defined in 

section 4.3, naturally groups these states together in that order. First, 

consider a group of states all of which begin with a block of length k, for 

example, k =~. In th~s group, for any state i having exactly ai allocated 

blocks there are two possibilities for deal location. Either 

1) the first block (of length k) is deallocated with probabil ity l/ai • 

These possibilities for all the states i in group k form a diagonal 

submatrix (for k = 2 this is the submatrix labelled F(O,2) in figure 

5.1). This is because the relative ordering of states beginning with a 

k-word block is the same as those beginning with at least a k-word gap, 

or 2) the first block stays put with probability 1 - l/ai and another is 

deallocated, as if this was the (N-k) problem applied to the last (N-k) 

words of memory but in which the row sums no longer add to 1. These 

possibilities naturally lie within the square submatrix on the main 

diagonal of 0 (for k = 2, labelled 0(1,2) in figure 5.1) which includes 

all possible deal location transitions from group k states to other group 

k states. 

Now consider the last group of states all of which have an unallocated 

first word. Their deal locations can be considered exactly as if this was an 

(N-1)-word memory ignoring the first word, and so they also form a square 

submatrix on the main diagonal of 0 (labelled 0(0,3) in figure 5.1), this time 

_with row Slms which are all equal to 1 (except of course for the empty state). 

Formal argument 

The recursion of submatrices of 0 should now be apparent. At any stage, 

a subset of states is chosen by dividing memory into a left and right region, 

see figure 5.2. The left region contains a single fixed configuration, L say, 
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Figure 5.3(a) Subset Sub(L,m,n) 
N=5, m=n=2 

Figure 5.3(b) Subset Sub(L' ,m,n) 
N=5. m=n=2 

of exactly m ~ 0 allocated blocks and possibly some gap~. while the right 

region of length n words, 0 ~ n ~ N , varies through all the S(n) = f2n 

possible configurations of blocks and gaps that it can contain, the m fixed 

blocks being completely contained in the first N-n words. Either region may 
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have zero length, in which case the other will have all N words. 

The juxtaposition of the left configuration with all f2n right 

configurations gives a set of states: Sub(L,m,n) which \</i11 be grouped 

together by tHe state ordering defined in section 4.3. Figure 5.3(a) shows an 

example of such a subset Sub(L,m,n). In this example, N=5, i.e. it is a 

.5-word memory, and m=2, n=2; the left region of N-n = 5-2 = 3 words contains a 

configuration L with m=2 allocated blocks, which happen to be I-word blocks in 

the first and second words in this example, and the right region of n=2 words 

can contain any of f2n = f4 = 5 possible configurations, so that there are 

five states in this subset. Figure 5.3(b) shows another subset Sub(L' ,m,n) in 

which again N=5, m=n=2, the only difference being that the left region 

contains a different fixed configuration L' say, still having m=2 allocated 

blocks in this example. 

Strictly, the notation Sub::L.,m,n) is redundant as L determines both m and 

n, but it is convenient to make them explicit. Two gaps may be adjacent at 

the boundary between left and right, as in the last two states of the example 

in figure 5.3(a); they \</il1 combine to form a single gap when the regions are 

viewed together as an N-word memory. Cases in which blocks are allowed to 

straddle the boundary will not have to be considered. 

The notation D{m,n) is defined to be the submatrix of the whole 

_deal location matrix D = (d .. ) containing all the entries d .. for which both i 
lJ' lJ 

and j represent states in Sub(L,m,n), so that D(m,n) contains all the possible 

one-block basic deal location transitions from states in Sub(L,m,n) for which 

the resulting states are also in Sub(L,m,n). Because the chosen state 

ordering groups all the states of Sub(L,m,n) together, D{m,n) is a square 

block on the diagonal of D. Dropping L from the definition of D{m,n) 

nevertheless leaves it well defined, as any other left-hand configuration L' 



5.1 Algebraic expansion of the transition matrix P 105 

having the same values for m and n will give rise to the same deal location 

submatrix, except of course that it will be in a different place on the main 

diagonal of D. 

The recursive composition of 0 begins with 

o = D{O,N) = whole deal location matrix. • ••• 5.2 

Following the example in the above informal explanation, any square submatrix 

D(m,n} lying on the main diagonal of 0 can be recursively split by grouping 

the f2n states of Sub(L,m,n} into (n+l) groups, those in which the right 

region begins with a block of length k, k = 1, •• ·.,n , and those in which the 

first word of the right region is empty, see figure 5.4. Consider each group 

in turn. Call the group in which the right region begins with a block of k 

words SUb(L,m,n}:(k}. Then by concatenating this k-block to the left-hand 

fixed region L leaving (n-k) words on the right, 

Sub{L,m,n}:(k) = Sub{L{k),m+l,n-k}, 5.3 

where L{k} is the new left-hand region formed by this concatenation. As in 

the informal example, there are two possible sets of deal locations in D(m,n} 

for this subset, the submatrix D(m+l,n-k} in which L and the k-block are 

preserved and a block in the {n-k} rightmost words is deal located, and the 

diagonal submatrix F{m,n-k} {F for first} in which the block of length k is 

deal located. The last. subset of Sub{L,m,n} in which the first word of the 

right-hand region is empty can similarly be called Sub(L,m,n}:(-I), where the 

notation :{-k} is meant to indicate all those states in which the right hand 

region begins with at least k contiguous empty ~"ords. Then 

SUb(L,m,n):{-I} = Sub{L(-l},m,n-l} 5.4 

where the notation L(-k) indicates the new left hand region formed by 
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concatenating L \'Iith k contiguous empty words. Hence this last subset of 

states of Sub(L,m,n) gives the submatrix D(m,n-1). 

Summarising so far, 

n-1 n-1 

107 

D(m,n) = E D(m+l,i) 
i=O 

+ E F(m,i) + D(m,n-l) .... 5.5 
;=0 

where, in the use of "+" or addition, the position of each of these variously 

sized submatrices is understood. 

It remains to see how to detemine the values in the diagonal F matrices. 

A recursive formula can be found for these also, and figures 5.5 and 5.6 may 

help to illustrate the following slightly complicated argument, which 

identifies other smaller F matrices and shows that these contain the same 

val ues as any given F matrix. 

From equation 5.5, each F(m,n) arises from the decomposition of a larger 

D matrix, D(m,kTn) for some positive k. Replacing n by k+n, equation 5.5 can 

be rewritten: 

D{m,k+n) = D(rn+1,k+n-1) + 
+ F( m, k+n-l) + 
+ D( m, k+n-1) 

+ D{m+1,n) + 
+ F( m, n) + 

+ D(m+1,0) 
+ F( rn, 0) 

5.6 

F(m,n) represents the transitions made by deal locating the block of length k 

beginning in the first word of the right-hand half of length (k+n) for all 

those states 

Sub(L,m,k+n):(k) = Sub(L(k),m+l,n) 

of Sub(L,m,k+n) with such a block at the beginning of the (.k+n)-word right 

half. That is, the states which give rise to F(m,n) have a left half L of 

(N-k-n) words \'lith m blocks allocated, and then at the beginning of the right 

half of (k+n) words a block of length k, the deal location of which gives 

F(m,n). Except for the very last of these states, the only one in which the 
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rightmost n words are empty, each of them (there are f2n altogether) has 

alternative deallocations in D(m,k+n) to the k-word block, i.e. D.(m+l,n) from 

equation 5.6, and each alternative will have the same probability as the 

corresponding element of F{m,n) which is being sought, because in any state 

each allocated block is equally likely to be deallocated. In particular for 

.the first f 2n-1 states in Sub(L(~),m+l,n) in which the first word of the 

n-word right half is allocated to a block, there are the alternatives 

F{m+l,n-l), ••• , F{m+l,O) ~mich will arise in the decomposition of D{m+l,n), 

the alternative to F{m,n). Thus, the values of F{m,n) will be the same as 

those of F(m+l,n-l), ••• , F{m+l,O) for these first f 2n-1 states. For the 

remaining f 2n-2 states, those in which the first word of the n-word right half 

is empty, there is a matching subset of states SUb(L{-k),m,n):(l) elsewhere in 
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Sub{L,m,k+n), where the match is obtained by removing the k-block to leave a 

gap of length k and adding instead a block of length 1 in the (empty) first 

word of the n-word right half. Each of the states in Sub(L(-k),m,n):{l) will 

have deallocation transition alternatives with the same probabilities (but to 

different destination states of course) as the corresponding states in the 

remainder of Sub{L(k),m+1,n), including the last one, because the number of 

allocated blocks is pairwise state for state the same. Pick out one 

alternative for each state in Sub(L(-k),m,n):(l) by choosing to deallocate the 

I-word block. These are exactly the values which will appear in a diagonal 

submatrix F{m,n-1) in the decomposition of D(m,n) for the set Sub{L{-k),m,n) 

of which the states Sub(L(-k),m,n):(l) are a subset. 

Summary of section 5.1.1 (Deallocation matrix) 

For integer m ~ 0, n > 0, 

~ 

D(m,n) = D(m+1,n-1) + 
+ F( m, n-l) + 
+ D{ m, n-1) 

F(m,n) = F{m+1,n-1) + 
+ F{ m, n-1) 

inspection, 

~ u(m+1,0) 
~ f( m, 0) 

+ F{m+1,0) 

(positionai placing 
understood) 

D = whole deal location matrix = D(O,N) 

D(m,O) = ° ) 
) 1 X 1 matrices 

F(m,O) = 1/(m+1) ) 

5.1.2 Basic allocation transitions 

5.S 

5.7 

5.2 

.... 5.8 

The allocation part of the decomposition of the transition probability 

matrix P is more complicated than the deal location matrix because 
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a) this is where the choice of allocation placement algorithm enters, 

b) the size q of the first request waiting at the head of the queue varies 

not according to the unconditional distribution (rn) (equation 3.4, 

section 3.2.1), but to the related conditional distribution (qn) 

(equation 3.8, section 3.2.4), whereas the sizes of subsequent requests 

in the queue follow the unconditional distribution, 

c) a variable number of requests will be allocated depending on how far the 

allocation process gets before a request is reached \fflich will not fit. 

Suppose the allocation process is proceeding and has reached a pOint at 

which the allocation of the request now at the head of the queue is about to 

be attempted, and that the size n of this request is known. Theallocation 

placement algorithm ~hich is being used, e.g. first fit, best fit, is also 

supposed known. Then given the configuration of allocated blocks in memory, 

everything is available to determine if the request will fit and if it does, 

where it will be allocated, or if there is a random element in the placement 

algorithm, the probability of its being allocated at any possible location. 

Allocation algorithms which require more information than this, for instance 

those which look down the queue to see what is coming next before deciding 

where to put the present request, will not be considered here. Taking all the 

memory configurations together, all the entries can be determine~ in a 

matrix An' the basic allocation probability matrix for request size n, of 

probabilities which represent these basic allocation transitions. 

To understand the matrices An' n = 1, ••• ,N, it is helpful to consider a 

matrix which has as its non-zero entries the size of request that would cause 

the corresponding basic allocation transition to occur. This is referred to 

as the generalised allocation incidence matrix. Figure 5.7 is the generalised 

allocation incidence matrix for N = 4. It indicates where the non-zero 
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Figure 5.7 Generalised allocation incidence matrix for N=4 

All possible allocations are shown. The entries are not probabilities, but 
indicate where non-zero allocation transition probabilities may occur, Each 
entry (1,2,3 or 4) is the size of request for the corresponding allocation. 
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entries can occur in such a basic allocation probability matrix An' for all 

possible request sizes n = 1, 2, 3, 4 in an N = 4-word memory. Not all of the 

entries that can be non-zero need necessarily be so in, any particular An' 

depending on the allocation algorithm. For example, if n = 2 and the first 

fit allocation algorithm is used, then the basic allocation probability matrix 

A2 for N=4 is as shown in figure 5.8. It has zero probabilities everywhere 

except for lis which can only occur at those places where a 2 appears in 

figure 5.7. Of course, the choice of allocation algorithm is almost 

irrelevant for a memory size as small as N = 4. 

Figures 5.9 to 5.12 show the four general basic allocation probability 

matrices AI' A2, A3, A4 for N=4. They have been displayed at length because 

they are referred to again in section 5.3. In these general matrices all the 

possible allocation choices have been retained by using variables in place of 

constants to mark the entries where a choice is possible. For example, in a 

four \'Iord memory there is just one state (the empty state) for which there is 

a choice of where to place a block of three \'~ords, and so in A3 for' N = 4, 

shown in figure 5.11, only the last row which describes the possible 

transitions from the empty state contains more than one non-zero element. The 

entry h is the probability that the three word block will be allocated in 

the fi rst three words of the memory, and hi is the compl ementary probabil ity 

of the only possible alternative that it will be allocated in the last three 

\vords. Of course, h, hi ~ 0 and h + hi = 1; and similarly for the choices in 

Al and A2, figures 5.9, 5.10. The choice may be bebieen several states, in A2 

there occurs i + i l + i" = 1 , and in AI' 

w + wl + \,/1 = S + Si + s" = p + pi + p" = m + ml + m" = 1 

and 1 + i I + 111 + 1111 = 1. States which contai n exactl y one gap just 

sufficiently large enough to allocate the requested block have corresponding 

rows containing precisely one non-zero transition probability, value 1. For 
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Figure 5.9 Basic allocation matrix Al N=4, general allocation algorithm. 

The entries in this matrix are probabilities. 
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Figure 5.11 Basic allocation matrix A3 N=4, general allocation algorithm. 

The entries in this matrix are probabilities. 
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example, there are two such states in A3, figure 5.11, those which already 

contain one I-word block at one end of memory. States which contain no gap 

sufficiently large to allocate the request give rise to completely zero rows. 

For .general N, the basi c all ocation probabi 1 ity matrices Al' ••• ,AN encompass 

all the possible allocation algorithms which are being considered here, the 

variables taking on particular values for any given algorithm. For example, 

the first fit algorithm determines that h = 1 , hi = 0 in A3, figure 5.11. 

Figure 5.7 has a simple recursive structure which is set out in figure 

5.13. Allocation transitions from states beginning with a k-word block 

obviously map onto the same subset of states, hence the square regions on the 

upper part of the main diagonal of figure 5.13 marked 3, 2, 1, 0 (for N = 4). 

For such a group of states the allocation transitions occur entirely within 

the last (N-k) words so that each block is a smaller complete allocation 

transition matrix contained recursively within the original matrix. 

Transitions from states with an unallocated first .word mayor may not cause 

the first wurd to be allocated. Those that do not, again form a square 

submatrix on the diagonal ~mich recursively has the same pattern as an 

(N-l)-word memory allocation matrix. Transitions which do allocate the first 

word to a block of 1, 2, ••. \'lOrds form the submatrices below the main 

diagonal marked 1, 2, 

a re d i ago na 1 • 

The state ordering ensures that these submatrices 

It should be clear from figure 5.13 how the rigorous argument justifying 

this r0cursive structure is constructed. The argument will not be explained 

in suetl detail as the corresponding argument for the deallocation matrix was 

in section 5.1.1, partly to shorten the description but mainly because it is 

in fact the same as for the deal location case, but in reverse. Comparison of 

figures 5.1, 5.4 with 5.7, 5.13 reveals that as far as their pattern is 
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The pattern is composed recursively of similar smaller patterns and diagonals. 
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concerned one is the transpose of the other. Of course this must be so, as 

the former include all possible deallocations of one block for all possible 

states, while the latter include all possible allocations of one block into 

all states. Just as the deal location matrix 0 is upper triangular, each 

matrix A is strictly lower triangular with the given state ordering. 
n 

5.1.3 Basic allocation termination matrix 

121 

Corresponding to each basic allocation probability matrix An' define a 

diagonal matrix Tn as follows. For a given request size n, n = 1, ••• ,N , Tn 

contains the value 1 on the diagonal for all rows for which the corresponding 

configuration of memory contains no gap large enough to allocate the request, 

that is, all gaps in the configuration have size < n. All other entries of 

T are zero. T represents the unsuccessful allocation attempts, T for 
n n 

terminal, those in which the request is tried but does not fit in memory. The 

state of memory is unchanged, hence the 1 on the main diagonal, and no ~ore 

allocations will be attempted. An represents all the successful allocations, 

subsequent to \'/hich more allocations will be attempted. For a given request 

size n, the sum (Tn+An) describes completely all the possible transitions the 

model may make when allocation of the request is attempted, including the 

identity transitions for all the cases in which it is not possible. 

By applying definition 3.4 of the request distribution (rn) and the 

theorem of conditional probability, the transition probability matrix for a 

single dllocation step which is not the first, and so for which the size of 

the request is drawn from the (rn) distribution, is 
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r1(T1+A1) + r2(T2+A2) + ••• + rN(TN+AN) 

= T + A , where 
.••• 5.9 

T = r1T1 + r2T2 + + rNTN 

A = r1~1 + r2A2 + + rNAN 

T, the allocation termination matri~, is diagonal and A, the allocation 

probability matrix, is strictly lower triangular. As an example with N = 4 

figure 5.14 shows T, and A for the first fit allocJtion algorithm. The matrix 

A depends in general on the choice of allocation algorithm. T is independent 

of this choice, since for each n, Tn has non-zero elements only where a 

request of size n will not fit. 

5.1.4 Eventual termination of the allocation process 

This section shows that, corresponding to attempting after a deal location 

in the model to continue to allocate requests until it is no longer possible, 

forming repeated products of allocation probability matrices eventually leads 

to transition probability matrices which are all zero. As a result, it is 

possible to write down completely the probabilities of all the multiple 

transitions which can occur in terms of finite products of the allocation 

probability matrix A with the allocation termination matrix T. 

From the definition in section 5.1.2 of the A matrices, any matrix n 

product ending with An ' n = 1, ••• ,N , and consequently A by equation 5.9, can 

have non-zero el"~ments only in columns corresponding to states \f/ith at least 

one block alloc(ltcd. See figure 5.15 which illustrates the N=4 case. 

Products ending with two A's, i.e •••• AiAj , any 1 ~ i,j ~ N, can have 

non-zero elements only in columns corresponding to states with at least two 

blocks allocated, and so on. Products of more than N A-matrices must be 
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Lower triangle: A = first fit allocation matrix, N=4. 

.. 

This fis'Jre contains two separate but complementary matrices, for convenience. 
Both cont::l~n probabilities. 

r = Probability[new request jOining the queue is for n words] 
c~ = rn + ••• + rN ' so that cl = 1, cN = rN always 
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This matrix does not contain probabilities. A I-digit appears in the i,j-th 
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of any size. A 2-digit appears at i,j if it is possible to get to j from i by 
allocating two blocks of any size, etc. All possibilities are shown, for N=4. 
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identically zero, in particular: 

AN+1 = AN+2 = ••• = 0 5.10 

since no state can have more than N blocks allocated. In other words, it is 

impossible to make more than N successive allocations, and the only way to 

make as many as N is to start from the empty state and allocate None-word 

blocks. 

Another way of considering this limit on the non-zero powers of A is 

illustrated by figures 5.15, 5.16, which concentrate on the positions of the 

non-zero elements of any of the A (or A) matrices, their actual values being 
n 

unimportant. As pointed out in section 5.1.2 any allocation matrix for an 

N-word memory has non-zero elements taken from a recursive pattern, see figure 

5.13 for example. Let the ordinary incidence matrix of the generalised 

allocation incidence matrix defined in that section be denoted AI N, for an 

N-word memory. That 1S, AIN contains a 1 entry in all positions (i ,j) where 

so;ne allocation probabil ity matrix A could have a non-zero transition 

probability from i to j, and zeroes everywhere else. Then AIN includes as 

part of itself the pattern AI N_1 for an (N-1)-word memory, and AI N_2 and so 

on, as well as identity (diagonal) submatrices below the main diagonal, 

arranged as shown in figure 5.16. Raising any such matrix to successively 

higher powers results in matrices with incidence patterns as shown, 

coefficients having been left out as they affect only the values and not the 

positions of the non-zero elements. By inspection of the multiplication in 

the general case, as shown in the figure, the recursive block structure is 

retained and the non-zeroes do not spread into the other areas of the matrix. 

Consequently it is easy to see by induction that if powers of AI N_1 greater 

than N-1 are identically zero, then powers of A1N greater than N must al so be, 

and that this is trivially true for N = 1,2,3 say. 
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Figure 5.16 Powers of generalised allocation incidence matrix AI 

Incidence patterns only, ; gnore values of non-zero elements. 
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5.1.5 Allocation of first gueued reguest 

As implied in section 5.1.3, the one-step allocation matrix 

N 
(T+A) = E r (T +A ) 5.9 
. n=l n n n 

does not apply to the first allocation after the deallocation. This is 

because the probability distribution of the size of the request at the head of 

the queue, q, is not in general the same as (rn), as explained in section 

3.2.4. To overcome this difficulty the diagonal matrices 

n = 1, ••• ,N •••• 5.11 

are introduced, where for each state i = 1, ••• ,S(N) down the main diagonal 

q~i) = Probability[q = n in state i] • 

By section 3.2.4 these diagonal matrices are known and depend only on the 

request distribution (rn) : 

( i ) = 0 ifn ~ g. qn 1 .... 3.8 
= r/cg .+1 ifn > g. 

1 
1 

where g. = maximum gap in state i , 
1 .... 3.9 

and ck = rk + ... + rN k = 1, ••• ,N , 

As an example, the four Q diagonals for N = 4 are shown diagrammatically in 
n 

figure 5.17. 

5.1.6 l:,..!gebraic expansion of the transition matrix P 

With the results of the previous sections established, this expansion can 

now be written down. It follows the general plan: 
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Figure 5.1.7 First queued request matrices Ql~2~3' Q4 for N=4 

Each Qn matrix ls diagonal and square. To save space, the diagonals are here 
shown as columns. 

rn = Probabili,tYLnew request joining queue is for n \'/ords] cn = rn+ ••• +r
N 

Each entry q(l) is a probability, dependent on i as well as (rn): 
q~i) =problf~rst queue request in state i is for n words]. Blanks are all zero 
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Pick a starting state (down the left hand side of the deal location matrix 

D). 

Calculate the transition (deallocation) probabilities from this state 

(corresponding row of D). 

Post-multiply this by some allocation matrix to obtain the corresponding 

rO\'1 of matrix P, i.e. 

D X allocation matrix = P • 

The transition probabil ity matrix P can nO\'1 be specified exactly, in 

several steps: 

1) Pick a starting state i (configuration of memory). 

2) Fix on the size q of the first queued request. Consider the N 

possibilities, q = n, n = 1, ••• ,N in turn, with probabilities from the 

(q(i) ) distribution. Some of these probabilities will be zero. 
n 

3) For each of these possibilities q = n, calculate the deal location 

tran~ition probabilities from the starting state i. This gives th~ i-th 

row of the deallocation matrix D, multiplied by q~i). Taking all the 

states i together gives N probability matrices QnD for n = 1,2, ••• ,N. 

4) For each of the q = n possibilities, calculate the transition 

probabilities up to the end of the first allocation step, by 

post-multiplying by the basic transition probability matrix for a single 

allocation step (T +A ) corresponding to the value n of q. Here the n n 
benefit of knowing q is obtained at the previous expense of splitting 

~ti:O 1'4 distinct possibil ities. Resul ting from this are the N distinct 

prubability matrices 

Q D(T +A ), n n n n = 1, ••• ,N 

5) At this point the N possibilities can be recombined (added) as subsequent 
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allocations depend on requests in the original queue after the first, 

which are independent of q due to the first come first served queue 

discipline and independence of successive queued requests. The result of 

this addition is a single matrix: 

N N N 
E Q O(T +A } = E Q OT + E Q OA 

n=1 n n n n=1 n n n=1 n n 

The cumulative probabilities EQ OA so far calculated, i.e. those which n n 

represent successful first-step allocations,are further multiplied by 

the one-step allocation matrix (T+A) to accumulate the transition 

probabilities up to the second allocation step: 

N N 
E QnOTn + ( E Q OA )(T+A) 

n=1 n=1 n n 

Corresponding to continuing to attempt to allocate requests as long as 

they continue to fit, this process of multiplying the part of the allocation 

matrix which represents successful allocations so far by the one-step 

alloc ... tion matr:x (T+A) is repeated, in principle indefinitely. In fact, the 

process can be stopped after N allocations. Physically, no more can be 

possible. Algebraically, further multiplications by (T+A) factors has the 

identity effect, since by section 5.1.4 

if n > 1, 

ifn=l, 

= 0 = A AN-IT 
n 

= A N 
1 

and so post-multiplication by T again has the identity effect; 
N = A1 T • 

Eventually therefore, P is reached, 

N N 
P = r Q DT + ( E Q DA )( T +A (T +A ( ••• ( T +A) ••• ) ) ) 

n=l n n n=l n n 

where there are N-I factors T+A • 

•••• 5.12 
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Equation 5.13 for P follows immediately: 

N N 
P = r Q OT + ( r Q OA )(I+A+A2+ ••• +AN-1)T 

n=l n n n=l n n 
•••• 5.13 

N N 2 N-1 N 
= t Q OT + ( r Q OA )(I+A+A + ••• +A +A + ••• )T 
n=l n n n=l n n 

5.1.7 Summary of section 5.1 : transition matrix expansion 

Refer again to figures 4.1 to 4.7 for examples of the transition 

probability matrix P, especially figure 4.4 for N=4 which follows from figures 

5.1, 5.7, 5.8, 5.14, 5.17. As mentioned in the ~ntroduction to this chapter, 

the elements of the simpler matrices Qn' 0, Tn' An' A, T which appear in the 

expansions 5.12, 5.13 of P are arranged in simple recursive patterns the 

general form of which can be extended for any memory size N. These simple 

matrices are either diagonal (Qn' Tn' T) or else very sparse indeed for 

increasing N, generally much less than N entries per row in a square matrix of 
N order S(N) = f 2N , = 0.72 X (2.6) approximately. The apparent complicatedness 

of P arises therefore mainly from what complexity there is in equations 5.12, 

5.13. Reducing this complexity and making use of these equations, is the 

subject of the next section 5.2. 
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5.2 Algebraic simplification of the steady state equation 

The expression for P so far derived (5.12 or 5.13) as sums and products 

of simple matrices, is complicated enough that it is unlikely that any useful 

properties co~ld be derived from it as it stands. However, by good fortune, 

the eigenvector equation: 

n = n P •••• 3.11 

does simplify considerably and somewhat unexpectedly. Two preliminary steps 

are necessary. 

5.2.1 The allocation inverse matrix 

Any allocation transition.probability matrix An' and so in particular A 

itself from equation 5.9, is strictly lower triangular because of the choice 

of ordering of the states. Hence the matrix I-A is non-singular and has an 

. (I A)-1 I . AN+1 0 f . 5 10 lnverse, - • n any case Slnce = rom equatlon • , 

so 

(I + A + A2 + ••• + AN) (I-A) = I 
(I_A)-l = (I + A + A2 + ••• + AN) 

5.2.2 The pseudo-inverse of the allocation termination matrix 

•••• 5.14 

T is a diagonal matrix, but not all the elements on the main diagonal are 

non-zero. From section 5.1.3, each Tn' n = .1, ••• ,N , has elements t~i) on 

the diagonal: 
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(i = 1, ••• ,S; Tn is square of order S X S) 

where 

t ( i) = 0 ifn ~ gi n 
= 1 if n > gi •••• 5.15 

and g. , = maximum gap in state i . 

Let T = Er T = diag(t.} have elements t,. on its diagonal, i = 1, ••• ,S. Then n n , 

from equations 5.9, 5.15, 

t.=r l+ ••• +rN , g.+ 
1 

= c g.+l 
1 

from definition 3.9. 

T is thus a diagonal matrix whose main diagonal elements cg .+1 have values , 
from the (descending) cumulative probability distribution (ck), k = 1, ••• ,N • 

T is shown for N=4 in figures 5.14 and 5.18. In particular, the last (or 

S-th, i.e. bottom right) element is identically zero since it is impossible 

not to be able to allocate a block into the empty state (algebraically, 

9S = N), and others may be zero depending on the request distribution. For 

example, if r N-1 > 0, rN = 0; then cN = 0 although ck > 0 for k < N. For the 

time being, assume that all the ci ' i = 1, ••• ,N are non-zero (or, which is the 

same thi ng, that .rN > O) and do not worry about the bottom right corner, the 

empty state. Define T' to be a diagonal matrix with main diagonal elements 

which are the reciprocals of the corresponding elements of T: 

= 1, ••• ,S'=S-1 •••• 5.16 

excep~ for the last (i=S) which \,/i11 turn out to be immaterial, and so may as 

\Ale 11 be zero. Then 

TT'=T'T=I' 

where I' is the identity matrix except for a zero in the bottom right corner. 
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Figure 5.18 Upper triangle: EQnDTn (compare figures 5.17, 5.1, 5.14) for N=4. 

Di agonal: T, repeated for convenience, see figure 5.14. 

This figure contains two separate matrices. 
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TI is known as a pseudo-inverse of T. 

5.2.3 Reduction of n = nP to a simple form in terms of the allocation matrices 

Substituting expansion 5.13 for P in the steady state equation 3.11~ 

2 n = n(EQ OT ) + n(EQ OA )(1 + A + A + ••• )T - - nn - nn 
= n(EQ OT ) + n(EQ OA )(1-A}-lT - n n - n n 5.17 

On the left hand side of this vector equation, the last element of n is zero 

since it represents the steady state probability of being in the empty state, 

which can never be possible between transitions. On the right hand side, the 

last column of every Tn and every An is identically zero, and so on 

multiplying throughout by TI, its arbitrary last element is eliminated and the 

product 11 = TTI can be replaced by the identity matrix: 

nTI = n(EQ OT )TI + n(EQ OA )(1-A)-l - n n - n n 

and hence 

nTI(1-A) = n(EQ OT )T'(1-A) + n(EQ OA ) - - nn - nn 

Rearranging and collecting the Als together, 

n[[(EQ OTn)-1]TIA - (EQ OA )] = n[(EQ OT )-1]T I 
- n n n - n n 

Define 

.... 5.18 

K is a (square, S X S) matrix which is constant with respect to the Als. See 

figures 5.18, 5.19 which show K and its components. Then 

n(KA - EQ OA ) = nK - n n 
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Figure 5.19 K = ((EQn~)-I)T' for N=4 

See figure 5.18 and equation 5.18; also see figure 5.20 and equation 5.21. 
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Figure 5.20 T'(0-1) for N=4 

See equation 5.21 and section 5.2.4, \tJhich compares this matrix with that in 
the last.figure 5.19 for K=((EQ OT )-I)T'; they are identical except in the 

n n last column (the empty state). 
See figure 5.1 for 0 (deal location) and 5.14, 5.18 for T (termination matrix) 
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Oefi ne 

K =rK-QO n n n' n = 1, ••• ,N .... 

(see figures 5.21 to 5.24), then since A = ErnAn from definition 5.9, the 

steady state equation becomes 

N 

5.19 

1f( L K A ) = 1fK - n n - •••• 5.20 
n=l 

This last equation looks somewhat simpler than equation 5.17. As examples, 

figures 5.25 to 5.27 show the matrices EKnAn' (EKnAn)-K, and K-1 for N=4, 

first fit allocation algorithm. Other matrices (EKnAn)-K can be constructed 

for different allocation algorithms, using the general An matrices shown in 

figures 5.9 to 5.12. Of course, some of the complexity of equation 5.17 has 

disappeared into the definitions of the K and Kn matrices. However there is 

an unexpected further simpl ification. It turns out that 

K = TI(O-I) , except in the last column •••• 5.21 

Figure 5.20 shows the matrix TI(O-I) and figure 5.19 shows K, for N=4. Each 

Kn is also much simpler than expected, terms in rnK and QnO cancelling each 

other, see figures 5.21 to 5.24. 

5.2.4 Unexpect~dly simple structure of the constant coefficient matrix K 

Before discussing the implications of the simplification of the steady 

state equation to equation 5.20, it is necessary to show that the equality in 

equation 5.21 an') the cancellation in equation 5.19 do indeed occur. The 

present sect ion 5.2.4 shows the former and so reveal s how the matrix K is much 

simpler than might be expected from its definition, and the next section 5.2.5 

similarly explains hhy the subsequently derived Kn matrices are also simpler 
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Figure 5.21 K1 = r1K-Q1D, for N=4 

See equation 5.19. Also see figures 5.19 for K, 5.17 for Q1' and 5.1 for D. 
Notice the cancellation between r1K and Q10. 
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Figure 5.22 K2 = r2K-Q2D, for N=4 
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See equation 5.19. Also see figures 5.19 for K, 5.17 for Q2' and 5.1 for D. 
Not; ce the cancell at ion betv/een r 2K and Q2D• 
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Figure 5.23 K3 = r3K-Q3D, for N=4 

See equation 5.19. Also see figures 5.19 for K, 5.17 for Q3' and 5.1 for D. 
Even more cancellation between r3K and Q3D. 
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Figure 5.24 K4 = r4K-Q4D, for N=4 

See equation 5.19. Also see figures 5.19, 5.17, 5.1 for K, Q and D. 
Cancellation is complete except for the last column and the diagonal. 
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Figure 5.27 K ,where K=((EQn1IT.n)-I)T' , see equation 5.18, figure 5.19 
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than their definition might lead one to believe. 

Concerning. K and equation 5.21, it is required to shovl that 

(EQnDTn)TI = TID except for the last column. Both sides of this' equation 

(5.21, Hith K 'replaced by its definition from 5.18) are square matrices of 

size S = S(N). See equation 4.4 and Table 4.1 for the definition and some 

early values of the total number of states S, and refer to figures 5.1, 5.17 

to 5.20 throughout this section. Choose any states with indices i,j such that 

1 ~ i,j < S(N) • Then the i,j-th element of (EQnDTn)TI is 

N (') (') 1 d" N (') (') 
( 1: q 1 d, ,t J ) - = -.!.J..1: q 1 t J 
n=l n lJ n tj tj n=1 n n 

since Qn = (q~i) ), Tn = (t~i) ) and TI = 

5.11, 5.15 and 5.16. 

(lit,) are diagonal by equations 
1 

If i ~ j , then dij = 0 since D is strictly upper triangular from section 

5.1.1, and clearly the equality with T'D holds. Consider the remaining 

triangle 1 ~ i < j < S. For dij = 0 in this triangle there is again equality 

with TID, so restrict attention to dij > o. Let gi' gj be the sizes of the 

largest gaps in states i, j respectively. Since i, j < S then gi' gj < N • 

From the definition by equation 5.1 of D, if d" > 0 then g, ~ gJ' , for a lJ 1 

deallocati~n can not cause the maximum gap size to decrease. 

(i) From the definition by equations 5.11, 3.8 of qn 

q(i) = 0 
n 

= r le n u:-.1 
- ! 

if n ~ g, 
1 

if n > g. 
1 

and the definition by equation 5.15 of t~i) 

t (j) = 0 if n ~ g. 
n J 

= 1 if n > g, 
J 

.... 3.8 

• • •• 5.15 
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For such dij > 0 with gi ~ gj it fo 11 ows that 

But 

and 

d .. N (.) (.) 
---1.J. >: q 1 t J 
tj n=l n n 

t.=~rt(j) 
J n=l n n 

= cg .+1 
J 

d .. N 
= -.1l L 

tj n>gj 

rn 
c g.+l 

1 

(from the definition by equation 5.9) 

(by equations 3.9 and 5.15) 

so the i ,j-th element with d .. > 0 
lJ 

becomes 

d .. 1 N d .. d .. 
lJ X E rn = lJ = -1L 

cg .+1 cg.+1 cg .+1 
t. n>g. 1 

J 1 J 1 

which is the i ,j-th element of the matrix TIO, which completes the proof. 

The last column of (EQnOTn) is zero as every Tn has a zero last column. 

But TID has a non-zero last column, so there is a definite inequality here. 

5.2.5 The simplification of the derived constant coefficient matrices K 
~~~~-~~~~~~----~----~~~~~~~~~~~~~~n 

Refer again to figures 5.1, 5.17, 5.19 to 5.24 for examples of the 

matrices in this section. By the definition in equation 5.18, 

K = [(EQnDTn)-1]TI 

= TI(0-1) except for a zero last column, by section 5.2.4. 

Therefore, continuing the notation of this last section, the i ,j-th element of 

if i < j < S 

if = j < S 

= 0 otherwi se. 
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Similarly, the i,j-th element of QnO 

if i < j (0 is upper triangular), and (.) 
if n > g. (definition 3.8 of q 1 ) 

1 . n 
= 0 otherwi se. 

Combining these, the i,j-th element of Kn = rnK-QnO (definition 5.19) is as 

foll ows: 

i = j < S , diagonal 

i < j < Sand n > 9 i 

i < j < Sand n ~ g. 
1 

i < j = S 

o 

rn 
t d .. = 

i lJ 

rn 
- -t d .. . lJ 

1 

i = j = S , bottom : 0 
cornE~:' 

d .. 
lJ 

d .. 
lJ 

(cancellation occurs) 

if n > gi 

(both zero) 

The bigger n is, the more often n > g. and the more that cancellation occurs. 
1 

So K1.has relatively quite a lot of elements, while KN_1, KN have ver'y few. 

5.2.6 Summary of section 5.2: Algebraic simplification 

In this section the algebraic expansion (equations 5.12, 5.13) developed 

in section 5.1 ef the transition probability matrix P was applied to the 

equat ion of ste"dy state 3.11: .!!. = .!!.P , to show that the ei genvector of steady 

state probabilities must also satisfy equation 5.20: n(EK A ) = nK. This - n n -

result holds for any non-zero request distribution (rn > 0 all n=l, ••• ,N) and 

for any allocation algorithm of the class described in section 5.1.2. For 
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reasons of continuity as well as intuition one may expect that it will 

continue to hold when some of the (rn) are allowed to take zero values, 

although the treatment of the pseudo inverse matrix TI of T will need careful 

consideration. 
filii 

As explained in section 5.1.2, any allocation algorithm is realised 

algebraically as a set of basic allocation transition matrices An' and 

conversely these matrices determine the algorithm. Equation 5.20 can 

therefore be seen as a very promising development, especially for questions 

such as studying the effect of the choice of allocatitin algorithm on the 

steady state behaviour. From being buried inside the transition matrix P, 

expressed either implicitly as in ~ = ~P or explicitly but apparently 

intractably in the expansion of that equation as the An matrices in equations 

5.9 (definition of A = ErnAn)' 5.12, 5.13, the allocation algorithm now 

appears in equation 5.20 in a most simple way. 

1) Each matrix A , n = 1, ••. ,N, appears exactly once. 
n 

2) The Kn and K matrices, each of which also appear just once, turn OUT. 

unexpectedly to be quite simple, certainly much simpler than their original 

definitions would indicate. 

3) The Kn and K matrices are variable only in depending on the request 

distribution (r ), and so may be considered constant as far as varying the 
n 

allocation algorithm is concerned. 

4) The An matrices have no dependence on the request distribution. 

5) There ;s therefore a complete separation of the influence of allocation 

algJrithm and request distribution into the A , and K and K, matrices in n n 

equation 5.20. 

6) The vJhole are combined as a simple linear combination. 

It is not easy to imagine how the influence of the allocation algorithm 
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on the steady state could have turned out to have been algebraically expressed 

any more simply than the actual reduction which has been found in equation 

5.20. 
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5.3 Making use of the algebra: first steps 

A first possibility in studying the effect on the model of choosing 

different basic allocation transition probability matrices An would be to 

determine the 1 imits within which the effects may vary. It surprisingly turns 

out that the equations governing or constraining the model's stochastic 

behaviour, independently of whatever allocation algorithm may be being used, 

can be derived very satisfactorily from the simplified steady state equations 

5.20 by combining the various choices available in the An matrices so as to 

ignore these choices, and most of this section is devoted to explaining how 

and why this can be done. -The result is a smaller set of lumped states and 

corresponding equations 5.23 with an interesting pattern, or structure. The 

behaviour which they determine is common to all allocation algorithms, which 

cannot therefore be compared by means of these equations alone. -

By contrast, a second idea which if it is successful will allow the 

performance of different allocation algorithms to be compared, is to treat the 

model as a Markov decision process and apply the dynamic programming 

techniques of Bellman (1957) and Howard (1960). This might perhaps even lead 

to a way of determining the allocation algorithm that has the best possible 

performance in a given model, or it might allow the dependence of a given 

algorithm's performance on the request distribution to be studied. 

To see how this might be done, consider again the basic allocation 

matrices AI' A2, A3, A4 shown in figures 5.9 to 5.12 for N=4. Most of the 

elerncr~ts of these matrices are fixed and must be zero (all the blank spaces in 

fact). f'lany of the comparatively few remaining elements must take the 

value 1, indicating that there is no possible choice of how to allocate a 

given sized block into a particular configuration of memory. However as 

pointed out in section 5.1.2, where choices are possible they can be 
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represented as variables, for example h and hi in figure 5.11. Since 

h + hi = 1, there is just one degree of freedom for this pair, although more 

are possible in the cases for which there is a choice between three or more 

positions where a block in memory could be placed. In terms of the dynamic 

programming approach as developed by Howard, the choice of a particular 

allocation algorithm is equivalent to a choice of policy which then determines 

the transition matrix (the request size distribution being regarded as given), 

and each variable element of an allocation matrix such as h becomes a policy 

variable. The policy space is then the rather large set of all possible 

allocation algorithms, or choices of values for all the variables such as h in 

the allocation matrices. The payoff or expected return for a given policy can 

be measured as usual by the expected equilibrium utilisation (since this is a 

linear function of the steady state probabilities) obtained with the 

allocation algorithm which is represented by the policy. Howardls technique 

for finding the optimal policy consists of iterating round an alternating 

sequence of "val ue determination" (finding the expected return for a given 

pol icy) and "pol icy improvement" operations (using the val ues obtained with 

this policy to find a better one) until the choice of policy converges, which 

it will do if the expected return is a linear function of the state and 

transition probabilities, and the Markov chain is ergodic. 

In principle the sheer size of the policy space, the number of different 

possible allocation algorithms (represented by all the possible different sets 

of values that the variable elements in the allocation matrices might take) 

appears to make this idea impractical before it even gets started, and so of 

course it would be in general. However the hope behind the idea of using this 

technique is that it might be possible to take advantage of the strong 

recursive structure ~'/hich has been displ ayed in the components of the 

transition matrix, to see how the (value determination - policy improvement) 
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iteration will work in the light of the knowledge of this structure. The hope 

is an optimistic one perhaps but a closer study, which has not been pursued 

further in the present work, may enable some kind of comparison between 

algqrithms to be made. For example, it should indicate that in the given 

model with N=4 the values of h and hI in figure 5.11 are immaterial since they 

represent the choice of where to place a 3-word block in the empty 4-word 

memory. For k,k ' and j ,jl in figure 5.10 however, it seems clear that it is 

better to place the 2-word block at one end rather than in the middle of the 

memory, so that the prediction should be k' = j = 1, k = jl = O. It will be 

interesting to see if these kinds of statements,and more, can be predicted by 

using dynamic programming techniques. 

The rest of this section now returns to explaining the first possible 

development mentioned above. This is the natural grouping of the states which 

has been di scovel~ed from the simpl ifi ed steady state equations 5.20" and the 

effect of this grouping on these equations. 

5.3.1 Grouping states by columns and by rows 

In constructing a set of allocation matrices An' there are generally many 

(increasingly many with N) states or memory confi~urations for which there is 

a choice of where a new request of a given size n should be placed, that is, 

there is an increasing choice of places in which non-zero probabilities may 

occur, and therefore of what their values should be; see figures 5.7, 

5.9 - S.12. These choices indicate that h/o separate grouping operations can 

be per t orll1cd, first on the columns of equations 5.20) and then on the rows. 

These opetations 1 ead as a t'esul t to equations in \'1hich new steady state 

probability variables appear. They hold true regardless of the choice of 

allocation algorithm. 
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Column grouping. The individual (column) equations of 5.20, are grouped 

together if thei r corresponding 11 to 11 states contai n the same number and si zes 

of allocated blocks, without regard to their allocated positions~ Figure 5.28 

shows how the matrix (tKnAn)-K of thes~ equations is grouped for the example 

case N=4. 

This guarantees that if any two "to" states are possible alternatives in 

the allocation of a request into any of the "from" states, that is, if any row 

of the An matrices could contain positive probabilities in the columns 

corresponding to these 11 to 11 states, then these columns of equations 5.20 will 

be grouped together. In terms of figures 5.9 - 5.12 this grouping brings 

together again all the terms containing factors which are allocation 

alternatives, such as terms containing z and z· ; w, w· and w" ; etc. All the 

column equations in each group are added together and a new column equation 

results. This grouping replaces the uncertainty of not knowing which of a 

group of possibl e "to" states any all ocation transition may 1 ead to, by the 

certain,y that it must go to one of them in the group. Again in terms of the 

diagrams, when the addition is performed the variables z and z· are replaced 

by their constant sum, z+z· = 1, and similarly w+w·+w" = 1, etc. The groups 

of "to" states, which appear along the top of figures 5.28, 5.29, 5.30 for the 

N=4 case, can be used to label the new column equations which result from this 

addition. 

Row groupi ng. Following the column grouping, the "from" states, each of 

which corresponds lo a steady 'state probabil ity variable 1Ti or row shown on 

the left hand side of figure 5.28, also fall naturally into groups, see figure 

5.29. States, or rm'ls of equations 5.20, are grouped together if they contain 

the same numbers and sizes of allocated blocks and also if they have the same 

maximum gap size, without any other regard to the allocated blocks· positions. 
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Figure 5.;.:8 prouping columns of matrix (EKn~)-K of column equations 5.20. N=4 

The labels z,y,x, ••• ,h attached to the columns and rows have been taken from 
figures 5.9 to 5.12 to indicate how and where the alternative choices 
available to any possible allocation algorithm have been recombined to form 
the columns shown here. 
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Figure 5.29 Row grouping of equations 5.20 following the column grouping, N=4 

This figure is just a rearrangement of the rows of figure 5.28. 
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All the states i in such a row group k are then found to have exactly the same 

coefficients in the modified set of column equations resulting fram the column 

grouping. By replacing the individual steady state probability variables (n.) 
1 

in e~ch group k by their sum nk ' i.e. 

nk* = 1: n. 
i is in 1 
group k 

these coefficients can therefore be retained, one for each group, and 

equations 5.20 are condensed: 

N * * * 
n* 1: K A = n* K - n n -n=l 

• ••• 5.22 

•••• 5.23 

The number of 11 un known 11 variabl es (n i) is significantly reduced to the number 

of groups (nk ). 

Equations 5.20 are thus reduced to a grouped set of equations in fewer 

grouped unknowns, as shown in figure 5.30. The two groupings are similar but 

not quite the same, in fac~ une is a subsct uf the cthLr. The matrix of 

equations 5.20 is square so that there are an equal number S'(N} of equations 

as there are unknowns, the steady state probabilities (n i ), but the columns or 

IItoll states combi ne into fewer but 1 arger groups than the IIfrom ll states or 

rows, so that the result is less new equations than new unknowns. Their 

solution therefore contains some degrees of freedom which must be wholly or 

partly t~e variation which is dependent on the choice of allocation algorithm. 

This introduces the possibil ity of treating the optimisation of the expected 

ston~g~' ,Ycilisation U for example as a linear programming problem in the 

variabLe's (ut). These variables have to satisfy the constraints 5.23 and the 

two additional requirements that they remain probabilities, that is: 

I:n* = 1 
k and 
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but they can otherwise be varied. As they do so, any quantity such as the 

average fraction U of memory allocated to blocks which is a linear combination 

of the ~k will also vary and can be optimised by the standard techniques of 

linear programming. From equation 3.3 : 

U = ..:! • .!!' = ~* .u*' , 

where u*' is the transpose of u* = (uk ). Each ut is defined as in chapter 3 

equation 3.2 in the natural way as that fraction of the memory which has been 

allocated to blocks in any of the states i in group k. 

5.3.2 Explanation and Justification of the state grouping 

Combining groups of columns of equations 5.20 by adding them together is 

trivially legitimate since ~ is a row vector premultiplying the K and A 

matrices. It merely corresponds to replacing linear equations by their sum. 

To be able to red~ce the number of rows, it has to be shown that i~ e~ch 

resulting condensed equation the coefficients of all the states i in a row 

group k are the same, as was claimed in the last section, so that the 

replacements indicated by equations 5.22 can be made. This is the purpose of 

the present section, which proceeds by examining the individual basic matrix 

components which contribute to equations 5.20. 

The n-th component of the LHS of equations 5.20 can be expanded: 

K i~ -= (r K-Q D}A n ;-, n n n 
= (r T'(D'-I}-Q D)A n n n 

- r T'D'A - rnT'An - QnDAn n n 

where D' :; D except for the last column which is zero, by section 5.2.4. 
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Using the expansion for K : 

K = TI(OI-1) = T'O'-T' 

estab1 ished in. that section, equations 5.20 can be rewritten 

n(rr T'O'A - Er T'A - EQ OA - T'O' + T') = 0 - n n n n n n -

•••• 5.21 

•••• 5.24 

Each of these components makes a contribution to the matrix of the uncondensed 

equations 5.20, depending on the values of the maximum gap size gi and the 

number of all ocated blocks mi in each of the "from" states i = 1, ••• ,5 , as 

fo 11 ows. 

l} rnT'O'An• For "from" states i with one block, m(1, the contribution to 

n(tr T10IA ) is zero as 0' has a zero right hand column. For states i 
- n n' 

~th more than one block, mi > 1, the cases with n > gi cancel with 

corresponding cases from -QnOAn ' 3) below, leaving contributions with 

val ues 

rn 1 • m. X (allocation probability) 
cg .+1 1 

1 

from all the cases n = 1, ••• ,gi • The basic transitions represented are 

formed by deallocating one block from each "from" state i with more than 

one block, in all possible ways, and then allocating a new block of size 

n up t~ gi words, with corresponding probabilities. 

2) -rnT1An. The contribution is for all states i with gi > 0 and consists 

of all possible ways of allocating a new block of size n not greater than 

the maximum gap size, that is, n = 1, ••• ,gi • The value of each 

contribut '!Ol~ 'is 

r 
- _l,'!.._ X (all ocation probabil ity) • 

cg .+1 
1 

There can be no contribution from states i for values of n > 9i by the 
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definition of the ~ matrices, which have zero rows whenever the block to 

be allocated exceeds the maximum size gap for the configuration of memory 

corresponding to the row. 

3). -QnDAn. For all states i with exactly one allocated block, mi = 1, the 

contributions have values 

r 
c n X (allocation probability) 

g.+1 
1 

and for each state i they represent all possible ways of allocating a new 

block of any size n greater than the original maximum gap size, n > 9i' 

into the empty state. The contribution in the cases mi = 1, n ~ g. is 
1 

zero by definition of Q , as it is for m. > 1, n ~ gl .• In the remaining n 1 

cases mi > 1, n > gi' it happens that Qn = rnTI and D = 0 1 in the i-th 

row, so that as promised the contribution from -QnDAn is cancelled by 

the corresponding cases from rnTIDIAn' 1) above. 

4) -TIDI. Since DI has a zero right hand column, the non-zero contribution 

here is for all states i with more than one allocated block, mi > 1. For 

each such state i, all possible deallocations of one block are included, 

with contribution values 

1 1 
cg .+1 mi 

1 

5) T' has a contribution to all states i, with values 

1 
c g.+1 

1 

on the main diagonal in the matrix diagram. 

From this list of contributions it can be seen that, as claimed above, 

for any state i of any given row group k the sum of the contributions 

occurring within. a given column group is constant. Any variation in the 

allocation matrices An can only redistribute the contribution within the 
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columns of a column group and can not cause variation between column groups~ 

as the resulting total number and sizes of blocks must stay the same. If an 

allocation is possible into a column group for one state i of a row group k, 

then it must be equally possible for all the other states of k. In cases 1) 

and 3) above it does not matter that the resulting maximum gap size may 

possibly increase from gi as a result of a deallocation~ and moreover possibly 

increase differently for different i in a row group k, because of the very 

fortunate cancellation of the allocation contributions from rnT'O'An and 

-QnOAn in the cases n > gi. The contributions from the other components D', 

T' , Qn depend in val ue only on gi and mi and are equally confi ned to col umn 

groups. 

For example, consider the contributions to equations 5.20 from the first 

component, rnT'O'An, which occur for those states i with more than one block, 

mi > 1~ and (for a given n) with maximum gap size gi ~ n. Consider the 

factors of this component in turn. rn is a constant irrespective of choice 

of state. T' is diagnnal with ple~ents 1/cg .+1 which wil~ remain constant for 
1 

a given row group, since gi is constant for all states i in the group. 

The non-zero values in 0' depend only on m., in fact they are 1/m., and so 
1 1 

will be constant for a row group, further, it is easy to see that if one state 

in a row group has a deallocation transition (non-zero element of 0') to just 

one (two, three, ••• ) state(s) in a group of columns, then all the other 

states in the same row group must also have just one (two, three, ••• ) such 

transitions to some state (not necessarily the same one of course) in the same 

group of columns. Finally, a block of size n can be allocated into any of the 

resulting states since n ~ g. and the maximum gap s~ze can not decrease on a 
1 

deallocation. Wtli.rtcver allocation choice is made (including possibly mixtures 

of choices with varying probabilities) for any of the states in the row group, 

the addition of all the column equations in a group reduces the choice to the 
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certainty of knowing the resulting set of sizes of allocated blocks in memory, 

that is, the allocation must take place and the result is confined to the 

states labelling the columns of the group. 

The following rules for writing down the coalesced set of equations 5.23, 

or filling in the condensed matrix (figure 5.30 for N=4), are derived by 

collecting together the contributions from 1) - 5) above. 

1) Row groups k with more than one allocated block. 

a) -TIDI: deallocate one block all possible ways, 

coefficient = -(deal location fraction)N.B. X 1 
c
9k

+1 

b) rnTIDIAn: deallocate one block all possible ways, then allocate one 

block for all possible sizes n up to and including the original 

maximum gap size gk. 

r 
coefficient = -(deallocation fraction) X c n 

gk+ I 

2) ~ow groups k with exactly one allocated block. 

-QnDAn : allocate one block for all possible sizes n greater than 

the maximum gap size gk' into the empty state. 

rn 
coefficient = - ~"--

c
9k

+1 

3) All row groups. 

a) -rnTIAn: allocate one block for all possible sizes n up to and 

____ .. _ ... __ 0 ____ _ 

N.B. The tet'm IIdeallocation fraction" means, for each column group, that 
proportion of the total ways of deal locating one block which leads to that 
group. For example, if a row group contains three 2-word blocks, and two 
I-word bOI ocks, then there are two possibil ities, either deall ocate a 2-word 
block (three \'Jays), deallocation fraction = 3/5 , or deal10cate a I-word block 
(two ways), deallocation fraction = 2/5 • 
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including the maximum gap size gk. 

coefficient 

b) TI:' enter a value on the "diagonal", i.e. in the column group entry 

which matches (contains) the row group. 

Each coefficient contains a factor 1/c
9k

+1, which is constant along a 

given rO\'I group k. As they stand, equations 5.23 are homo~eneous 1 inear 

equations in the unknowns 1Tk ' with the added constraint that L1Tk = 1. It is 

therefore possible, if convenient and desired, to absorb this constant factor 

by redefining the "variables" so that the equations 5.23 govern the "unknowns" 

1Tk /c
9k

+1' and the matrix is simpler, as appears in figure 5.31 for N = 4. 

The new unknowns no longer add to 1, but the previous constraint L1Tk = 1 is 

unchanged of course. 

5.3.3 Summary of section 5.3: Allocation independent equations 

Following the reduction of the steady state equation to equation 5.20, a 

study with the aid of figures 5.9 to 5.12, the basic allocation matrices for 

the general allocation algorithm in the N=4 case, revealed that there is a 

natural way of grouping together the states corresponding to the individual 

column equations of 5.20. This is by reference to the choices possible when 

constructing thp allocation transition matrices A , that is, the choice of 
n 

allocation algor;-r.hm. States which are possible alternatives as the result of 

any particular allocation in any configuration, are put into the same group. 

This grouping nullified the allocation choice in the sense that in any 

individual case, whatever alternative resulting state is actually chosen, the 
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1 -1 
, 

-b. I 
1 3 -~ 

1 -.1- -.l-
2- 2-

1 -1 

l-t Lt- -t3 -1; -t2. 

-t , 1 .... t1 -1 

-tl , ... :tL +. _1. -1 2.. '1 z 

-t, I -tit 1-t3 -t2 
, 

-t2 -t, t2 1+tl -1 
- . -f-

-t, 1+·t1 -1 

-t3 -fj q. -t2 -'ti 1 

-t q. -tL -t3 -tl 1 

-t. 2. -t4- -t 1 -t3 1 

-tq. -t1 -t3 l-tl 

Figure 5.31 Simpl ified matrix of condensed equations 5.23 2 N=4 

The simplification from figure 5.30 is by absorbing the factors llc +1 
gk ' 

constant along each row, into the defi nition of the IIvari abl es ll 'Irk IC
g 

+1. 
k 
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resulting group must be the same. 

Having performed this column grouping, perhaps to some surprise it was 

then found that the rows of the resulting modified form of equations 5.20 can 

also be similarly grouped as a consequence. This is because in all the 

modified equations the coefficients of the states in each row group turn out 

to be the same, so that the group probability variables (wk ) defined by 

equation 5.22 can be introduced. The rows can be formed into the same groups 

as the columns but less completely as an extra property ignored by the column 

grouping, maximlJTl gap size, is preserved. 

The details of both sets of groupings are confirmed in section 5.3.2. the 

reasons for the unexpected row grouping displayed and examined, and the rules 

for writing down the condensed equations 5.23 directly without reference to 

equations 5.20 are derived. 

These condensed allocation independent equations 5.23 were discovered 

initially from curiosity aroused by Gopstructi~g ~lternative matrices 

(LKnAn)-K to that of the first fit allocation algorithm shown in figure 5.26 

for N=4. These reduced equations represent an advance ·on equations 5.20, 

which they really are in a composite form. The original number S(N) of states 

and equations is reduced to the number of grouped state probability variables 

wk ' with a further reduced number of equations. The difference between 

these, the maximum number of degrees of freedom allowed to the allocation 
.' 

algorithm in equations 5.23, introduces the possibility of doing linear 

programming on these equations,. for example to find the best or worst possible 

utilisation since this is a linear function of the variables w~. The 

condensed equations have so far resisted attempts at solving them directly or 

reducing them further by appealing to the apparently fairly complicated 

structure of their matrix (figures 5.29 - 5.31). 



5.3 Using the algebra Allocation independent equations 167 

A related possibility instead of removing the possible allocation choices 

by grouping the states together is to try using dynamic programming techniques 

to see if it is possible to compare these choices in terms of some linear 

performance function, such as the storage utilisation. This was discussed at 

the beginning of this section although the investigation has not yet been 

carried very far, and has not been examined further in this thesis. 
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Chapter 6 Computing the exact probability behaviour of small memories 

One way of investigating the model of storage allocation developed so far 

is actually to construct the transition probability matrix P and use the power 

method of equation.3.13 to calculate the convergent sequence of successive 

vectors ~(T) for T = 1,2, ••• from a given initial vector of state 

probabilities ~(O). Although, as \'Iil1 become clear below, the memory sizes 

for which such an investigation can be attempted are very small, it can 

provide an indication of performance behaviour in models v/ith larger memories. 

The choice of allocation algorithm is almost irrelevant for the 4-word memory 

which appears in most of the example figures (these have been constrained by 

the practical difficulty of displaying larger matrices in detail, such as the 

89 X 89 matrix needed for N=5, on one page), but there are increasingly many 

memory configurations where an allocation choice is possible as N increases. 

It is possible that any differences in utilisation or fragmentation which may 

be observed, for N=10 for example, will be enollgh to indicate what may b,: the 

differences between alternative allocation algorithms when N is large. This 

applies equally when comparing the effects of different request distributions, 

in an effort to find out how the relative performance of different allocation 

algorithms depends on the choice of distribution. 

Suc h differences vlOul d not be apparent at N=4. However, there may 

equally be effects that are invisible at N=10, say. It must be pointed out 

that the influences of both the end effects and the lack of choices available 

in memories d') ~;I'ldl1 as this will be very strong when compared with memory 

si zes which are Om: or more orders of magnitude greater, and so any inferences 

about the behaviour in a 1 arger memory must be made with caution. Because of 

this and of the unlikely possibility of being able to extend these 
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computations very much further with the present implementation~ only a 

representative set of computations have been made to try to find out what 

comparisons this implementation of the model is able to make • 

169 

. One significant advantage of the power method is that it gives an 

indication of hm'l quickly or slowly the successive state probabil ity vectors 

~(T) converge to the steady state equilibrium vector~. The convergence of 

this method depends on the relative magnitude of the dominant eigenvalue 

(which has value 1) of the transition matrix P to the next largest. If this 

next largest magnitude eigenvalue is close to 1~ then convergence will be slow 

and it is at least possible that better numerical methods such as simultaneous 

iteration will speed it up. See Jennings and Stewart {1975}~ or Stewart 

(1977, 1978) for a description and comparison of simultaneous iteration and 

some other methods. However, unlike these other possibly more direct 

techniques \'Ihich may proceed more quickly to the solution, the power method 

reflects the actual behaviour of the model so that if convergence is SlOW with 

"the power w~thod then th~ transient behaviour from a given starting st~tc in 

the model will take a correspondingly long time to die away. In practice the 

rate of convergence has been found to vary mainly with the request 

distribution, but never to be so slow that no progress is apparent at each 

iteration of the computation. In case the rate of convergence did turn out to 

be unreasonably slow, a simple and cheap numerical technique which ought to be 

appropriate for the pO\'/er method, the epsilon algorithm, has been used as the 

computation proceeds to provide an estimate of the final converged value of 

the eq;)i1 ibrium storage util isation U. There is no dependence of the power 

method Ct)mputat i on on the eps il on algorithm. 

The practical computation of the transition probabil ity matrix Pis 

worthwhile if it leads to insights and understanding both of its structure and 
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of other aspects of the working of the model. This was in fact the case when 

an early implementation of the calculations described here led to a careful 

exami nation of the method which Vias used to construct the transition matrix, 

and so to the .real isation of the algeb:--aic structure of P as described in 

chapter 5. In principle P can be constructed if the memory size Nand 

allocation algorithm are given, for it is then determined. For any starting 

state (or row of P) all the possible transitions that can be made to other 

states can be calculated with their respective probabilities, and so each row 

of P can be filled in accordingly. Alternatively, the basic matrices (Qn)' D, 

(Tn), (An)' A, T defined in chapter 5 can first be calculated, so that 

expression 5.12 or 5.13 can then be used to calculate P in terms of these 

simpler matrices. This will have exactly the same result as working P out row 

by row, for as chapter 5 showed, the t~JO procedures are essenti ally the same. 

In practice of course the rapidly increasing number S = S(N) of states as the 

memory si ze N increases is bound to mean that any such computati on is 

eventually limited either by storage space or by computation time, and by both 

sooner rather than later. With the computing resources available to the 

author at the University of Newcastle, the IBM 360/67 and subsequently the 

370/168 computers runni ng under the ~1TS operati ng system, it has been found 

possible to compute models of memory size up to N=12 words. At this point the 

time required to compute models of larger memory sizes was increasing by a 

factor of over three times as much for each extra word of memory. A model 

with N = 13 wor'ds would have required over 24 hours of computing time, and 

this was judged to be not ~'1orth\'Jhile ~Jith the present implementation. 
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6.1 A straightfon"lard implementation of the power lIlethod 

This was programmed in Fortran on the IBM 360/67, before the 370/168 

computer was available. After reading in the parameters: memory size Nand 

distribution of request size (rn), the transition matrix P was first 

constructed and then used to compute successive vectors ~(T), T = 1,2, .•• 

starting with an initial probability vector ~(T=O). As each vector ~(T) was 

found, the scalar product U(T) = ~(T) • u' was formed to obtain the expected 

utilisation U(T). 

This method will not be described in detaiJ since a subsequent different 

implementation described below proved to be more efficient. It is worth 

mentioning that the representation and accessing of P, ~(T), ~(T+l) and ~ 

presented a problem since in general each was too large to be stored in main 

memory to allO\'I random access. To get round thi s, the row vectors and the 

matrix were partitioned into equal width subvectors and submatrices 

respectively, and all were stored sequentially on secondary memory (disc 

storage). Each submatrix of P was calculated and stored row by row, and only 

the non-zero values kept so as to take advantage of the sparseness of P. A 

gap of n intervening zeroes was represented and easily distinguished by 

storing (-n) in place of a probability. The operation of equation 3.13 was 

performed once with a single scan of P, ~(T+l) and ~, and several sequential 

scans of ~(T). Equation 3.13 takes the partitioned form: 

k=I,2, ••• 6.1 

where the suffix k is used to index the subvectors and submatrices. The 

largest memory size computed with this method was N=8, which required over an 

hour of computing time on the 360/67 computer. 
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6.2 Using the algebraic form of P to try to improve the power method 

It turned out that roughly one third or more of the processing time to 

perform one compl ete computation for a given si ze of memory and 'choice of 

allocation algorithm and request distribution in this first implementation, 

was taken up with computing and storing the transition probability matrix P, 

before it could be used to produce the ~(T) vectors in successive iterations. 

Moreover, although P is very sparse it does contain a fairly approximate 

average of 2N non-zero elements per row, all of which had to be stored along 

with roughly N or more indicators of gaps in each row; compare figures 

4.6, 4.7 for example. In contrast to this, in the algebraic expansion 5.12 of 

P: 

•••• 5.12 

the basic matrices in this expansion have an average of one non-zero element 

per row so that they are very sparse, and moreover these are arranged in 

diagonal pat~erns acccrding to the r~cursive struct:!r€s descr':bec! in 

chapter 5. It seemed a possibility therefore that instead of multiplying the 

rO\'1 vector ~(T) by a pre-computed and stored P, the vector could be multiplied 

one step at a time by each of the basic matrices according to the expansion 

5.12. The advantage of this would be that none of these basic matrices would 

need to be kept anywhere in storage, with a consequent saving in both space 

for storage and time for accessing the array, although some of this saved 

processing time would have to be used to continually recompute the elements of 

the matrix. 

The space Jd'J antage gai ned by no: stori ng the matrix has indeed all owed 

larger models to bE computed, and it has been accompanied by a drop by a 

factor of more than tv-IO in the processi ng time needed compared with the simpl e 
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implementation. This is possible because the second implementation can and 

does recognise and avoid those parts of the computation which are either all 

zero or are subsequently unused. Although this justifies the structured 

approach as being more successful with regard to both space and time, its 

increased efficiency has not been found sufficient to progress as far as would 

have been liked along the exponential curve of increasing computation time 

with increasing memory size. In both implementations of the model, the 

processing time has been found to increase by over three times for each extra 

word of memory size so that there is approximately thirty-seven times as much 

computat ion in the N=ll model as there is for N=8 with the same 

implementation. N=12 is the largest model that has been computed with the 

structured model, 120 times as much computation or over two orders of 

magnitude larger than the N=8 model. Although the difference between 8 and 12 

is not great, each iteration of the N=8,9,10,11,12 models took respectively 

23, 78, 262, 850 and 2762 seconds of computation time on the 370/168 computer 

to complete. For the uniform request distribution, the N=8 model required 

10 iterations to achieve convergence to four decimal places of accuracy and 

was complete in 218 seconds (the first two iterations are shorter due to the 

efficiency checks detecting and bypassing whole blocks of initially zero 

probabilities). -This compares favourably with the 70 minutes needed for N=8 

by the former more simple implementation on the 360/67, ever. though that 

computer is about fi ve times slower. Ho\t-Iever, the N=12 model requi red 

11 iterations and 28160 seconds (7 hours, 49 minutes, 20 seconds) of 

computation time to complete with the second implementation on the 370/168. 
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6.2.1 Explanation of the idea by which no matrices need be stored 

The idea is that the position of the diagonal s in any given basic matrix 

should dictate which segments of ~(T+l) will be contributed to by which 

segments of ~(f), and the values of the elements in the diagonals of each 

basic matrix are sufficiently simple to be easily calculated on the spot by 

knowing the position of the diagonal and of the element within it. This 

scheme has been implemented using recursive procedures in Algol W on the 

370/168. 

As an example to explain how this is intended to \'1ork, more or less in 

the pictorial way that the idea originally occurred, consider the operation 

displayed in figure 6.1. An arbitrary (row) vector ~ is to be post-multiplied 

by a basic matrix (0, say) to produce a row vector ~: 

x • 0 = ~ .... 6.2 

In this conceptual example ~ would start off at the beginning of the (T+l}-th 

iteration as ~(T), at the end of the iteration some vector ~ would contain 

n(T+l), and during the iteration the matrix would be any of those in equation 

5.12. In figure 6.1, the deallocation matrix 0 has been chosen as the example 

(compare figure 5.1). The vector x is shown turned on its side (transposed) 

dovm the left hand side of the diagram, and the vector 1. appears along the 

top. The multiplication ~D produces the elements (Yj) of ~: 

S 
y. = L x.d .. 

J i =1 1 lJ 
j = 1, ••• ,S 6.3 

This can be v·ie~.f(i pictorially as producing the elements Yj one at a time, by 

"marchi ng" the co' unm vector ~ across the matrix 0 one col umn at a time; for 

each column j of D thus marched over, Yj at the top is formed by taking the 

scalar product of ~ with the j-th column of D. Since 0 is sparse, this can be 
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Figure 6.1 Operation of equation 6.2 : x • 0 ~ y 

Contributions to the output vector y and from the input vector x occur in 
contiguous segments because the elements of 0 occur in contiguous diagonals. 
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viewed as accumulating contributions to the appropriate elements of ~ whenever 

a non-zero el ement of x 11 hits 11 a non-zero el ement of D; the product of each 

such "collision" gets sent up to be added in to the element of ~ sitting at 

the top of th~ column in which the collision occurred. 

The point of labouring this piece of elementary matrix algebra now 

appears. The matrix D consi sts of a coll ection of non-zero diagonal s (some of 

which may be only one el ement long). As x "marches" across any particul ar 

diagonal of D, successive elements (xi) of ~ make contributions to successive 

elements (Yj) of~, for as long as the diagonal lasts. The diagonal has the 

effect of choosing a segment of x to be contributed to ~ •. The length of the 

segment is the length of th~diagonal. Its position depends only on the 

position of the diagonal; if the diagonal is near the top of the matrix then 

the segment of ~ comes from. near the beginning of ~, and if the diagonal is 

near to the right of the matrix~ then the segment contribution to ~ is near to 

the right hand end of~. Tne values of the contributions to each element of ~ 

d~pe~d on the correspanding values of the elements of ~ and of the d~agonal 1f 

the matrix. 

Hence if the matrix D (or any other of the basic matrices in the 

expansion of P) is viewed without the aid of figure 6.1 just as a collection 

or list of diagonals, then the multiplication operation can be viewed as a set 

of selections of segments of the input vector to be contributed to the output 

vector, the actual positions and' va1 ues of the segment contributions being 

determined by the actual diagonals. In terms of a computer implementation, 

this becomes a set of sequential operations on an input vector and an output 

vector, the actual values used in each sequential operation (the values of the 

elements of the diagonal of the matrix) being computed each time they are 

required instead of being stored. 
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These sequential operations, resulting directly from the sparse, simple 

diagonal nature of each of the basic matrices, are the key to the 

implementation, as they allow the length S(N) of the input and output vectors 
, 

to greatly exceed the amount that can be stored and randomly accessed in 

random access memory. The vectors are kept on secondary (disc) storage and 

the sequential access with relatively few jumps needed, one·for the beginning 

of each new diagonal, makes it possible to use this storage medium reasonably 

efficiently. 

6.2.2 Partitioning the computation by using the recursive algebraic structure 

The earlier implementation of the power method described in section 6.1 

which started by computing and storing the transition matrix P, took no 

account of its structure other than its sparseness, either to compute or to 

storE it. The partitioning of the computation into equal sized segments 

li~ited in size so that they fitted into ~a;n memory w~s chosen without regar1 

to any other properties of the matrix. In the revised implementation, the 

recursive structure of the transition matrix P has been used to choose the 

sizes and positions of the segments, and in fact to some extent this is 

necessary for the dynamic computation of the elements of the basic matrices. 

In this section, the notation S(N) is written as SN for convenience. The 

states 1, ••• ,S(N) are partitioned into segments of two different sizes, f2M 

and f~1_1 as follows; see figure 6.2. The maximum number of such segments 

ever requi red to be in mai n memory at once in order to be able to carry out 

the power method computation turns out (below) to be two. A positive integer 

~1, the "memory size index", is chosen for which it is assumed to be possible 

that two segments or vectors of length f2M can be accommodated in memory at 
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Figure 6.2 ~ states split by egn. 6.4 into ,segments of size f2M and f 2M-
1 

In this illustration, N=5 and M=2, so that SN=89, f 2M=5, f 2M_1=3 
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once. Here as before, f defined in equation 4.2 is the n-th Fibonacci 
n 

number. 

subsets: 

The set of states indexed from 1, ••• ,S(N)=f2N is split into N-M+2 

SN = f2N = f 2N -2 + f 2N -4 + 

= SN_l + SN_2 + 

+ f2M + f 2M-1 + f 2N -2 

+ SM + f 2M-1 + SN_l •••• 6.4 

that is, from 1 to SN_l' from (SN_l+1) to (SN-l+SN_2) and so on. As can be 

seen in figure 6.2, the first SN_l states are all those which begin with a 

I-word block, and so on until the group of size SM which are all those 

beginning with an M-word block. The term f 2M-1 which follows is the number of 

states which begin with a block of M+l words or more, and the final SN_l 

states are all those for which the first word of memory is empty. 

After this initial partitioning, all the segments larger than SM' those 

of sizes SN_l' SN_2' ••• SM+l' are themselves partitioned in the same way, and 

this process is repeated until all the resulting segments are either ~(f2M or 

f 2M-1 in size. There will be f2(N-~1) of size Sw and f2 (N-M)-1 of size f 2M-1• 

The resulting set of segments forms the partitioning of the SN states with 

which the computation is carried out. 

6.2.3 Multiplying a partitioned vector in stages by the transition matrix 

At the start of each iteration in this implementation of the power 

method, there are three part it i oned vectors in secondary storage. The fi rst 

.... ", nri ....,. ca.,,,", ~~}' is to be multiplied by P and the result placed in the second, 

A third work vector w is initialised to contain all zeroes. The 

computdtion proceeds in several stages. 

For n = 1,2, ••• ,N the following is carried out: (2!.oXQnD) is placed 
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temporarily in ~1' and then (~1 X An) is accumulated in w. After n=1, w 

contains EnQ10A1 ; after n=2 ~ contains En(Q10A1 + Q20A2) and eventually 

after n=N, w contains nn(~Q OA ). 
- -u n n 

Next, (wX (I-A)-l T) is placed in ~1' which then contains 

~(rQnOAn)(I-A)-lT. 

Next, (~X T'O'T) is accumulated in ~1' 0' is the same as the 

deallocation matrix 0 except that it has a final zero column, and T' is the 

pseudo-inverse of T defined by equation 5.16 in section 5.2.2. From seetion 

5.2.4, 

N 
T'O'T = r Q OT 

n=l n n 
6.5 

After this operation therefore, the vector called ~1 contains the final 

product. A simple linear scan is made to collect the utilisation and, in 

order to be able to compute the ex~ected internal fragmentation E[IF] in 

equation 6.10 below, the subtotal sums of the individual probability elements 

of .!!..1 sepa rated into subg roups accord i n9 to the number of allocated blocks in 

each state. As a check, the sum of all the elements of.!!..l should be unity, 

and so this sum is also collected for inspection after each iteration. After 

a test for convergence, the pOinters to !n and ~1 are interchanged and then 

the next iteration is started if convergence to sufficir.nt accuracy has not 

been reac hed • 

The details of each of these stages are complicated. Although simple in 

principle, the program was not ~asy to write and extensive and careful 

checki ng \'/as necessary to eliminate mi stakes. 

The order in which the procedure written to calculate (~X QnO) performs 

its operations is illustrated in figure 6.3(a), and it follows equation 5.5 
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for the recursive composition of the deal location matrix D. The procedure is 

written to perfonn any part of this computation for whatever submatrix of D is 

passed as a parameter, and it is initially called with parameters to indicate 

the whole of D. It breaks up whatever sub~atrix of D it is passed according 

to equation 5.5, and calls itself recursively passing as parameters the 

successively diminishing submatrices on the main diagonal, then again 

recursively calls itself passing the successively diminishing diagonals on the 

right hand side and finally calls itself for the submatrix in the lower right 

corner. No computation takes place until a call of this procedure is passed a 

parameter to indicate a submatrix of D equal to 9ne or other of the segment 

sizes f2M or f 2M _1o When this happens the appropriate segment of ~ is read 

into main storage and is first multiplied by the corresponding segment of Qn. 

Since Qn is diagonal this requires only a linear scan of the segment of ~. 

This vector is then used to compute the output segment to be written to K1' by 

multiplying it by the specified submatrix of D. The arrangement of this 

multiplication is also performed recursively in exactly the same way that D is 

recursively split into f2M and f 2M _1-sized segments. This is possible because 

the recursive structure of D expressed in equation 5.5 does not of course stop 

just because the arbitrary segment size M is reached, but continues to be 

valid for smaller submatrices. The order in which each segment-sized 

submatrix of D is deal t with as a resul t of t:,i s recursive spl i tting is 

illustrated in figure 6.3(b). ~1 is initialised to zero before this 

multiplication is started, and each segment of the matrix requires one read of 

the corresponding segment of ~ from secondary storage, a read of the segment 

of ~1 (since a previous submatrix in the same column but a different row 

position of D may have already accumulated some probabilities in this segment 

of ~l)' and a write of the updated ~1 segment back again to secondary storage. 

The other stages of the computation for one iteration, (~1 X An)' 
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Figure 6.3 Multipl ication by QnO : the order in \'Jhich segments are computed 

The top figure (a) shows how a submatrix of 0 is split by equation 5.5 into 
small er submatrices, and the order in '''hich these are processed. 
The bottom figure (b) shows the resulting split into submatrices of size f 2M , 
f 2M-1 and the order of processing these. Compare figures 5.1, 6.2. 
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{wX (I-A)-lT), (!o X T'O'T) are similar in the manner by which the 

computation for the whole matrix is recursively split up until segments of a 

size for which vectors can be brought into the program's main storage are 

achieved. Each computation contains only one basic ma~rix (An; (I-A)-l; 

or 0') which is non-diagonal, the multiplication by the diagonal T' and T 

matrices being accomplished as it is for Qn by a single sequential scan of the 

input or output vector, either just after being read in or before being 

written out to secondary storage. 

TIle multiplication by T'D'T is very similar to that by QnO. A check is 

necessary to make sure that the elements in the final column of 0' are set to 

zero. T has elements cg.+l' and T' has reciprocals of these, where as before , 
g. is the size of the largest gap in state i and cg .+1 is the probability that 

1 1 

a request will be for a block larger than this size. The calculation of the 

elements of T and T' is therefore straightforward and, as in the case of Qn 
which has elements r Ic +1 or 0, depends only on the maximum gap size g,. in 

n gi 
each state ~, which r.)S to be calculated each time it is required. 

The multiplication by An' and by (I_A)-l, is arranged in a way which 

allows any possible allocation algorithm to be as easily implemented, and in 

just the same way, as it would be in any actual storage allocation system. 

The arrangement of the splitting of either of these two computations into 

segments is the same in both and is illustrated in figures 6.4{a),{b); it 

mirrors that of the deal location matrix. Figure 6.4(a) shows how any 

submatrix which is still too large is split first into successively smaller 

bloc~~ 0awn the main diagonal, then into correspondingly sized blocks along 

the bottom, and one final block in the bottom right hand corner. Figure 

6.4(b) shows the order in which the submatrices of size f2M and f 2M-1 into 

which the matrix is eventually spl it, are processed as a resul t of arranging 
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Figure 6.4 Allocation matrix multiplication, An or (I_A)-l : order of segments 

(a) Top figure: how each submatrix is recursively split, and the order 
(b) Bottom figure: the order in which segments are processed as a result 
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the recursion in this order. When such a submatrix is reached, the input 

segment of either w or !o is read into main storage as before but the 

computation \'Iithin the submatrix is not recursively spl it as it can be for the 

dea1location matrix, owing to the more complicated possible variation of the 

elements in either of these allocation matrices, An or (I-A}-l. Instead, each 

row or input state of the submatrix is considered in turn ~nd the 

configuration of memory which it represents is calculated as a sequence of 

gaps and blocks. For multiplication by ~ , the allocation algorithm is 
n 

invoked with this configuration and request size n, to find the resulting 

possible configuration, or configurations, and t,heir probabilities if more 

than one is possible with a non-deterministic algorithm. If any of these 

configurations have state indices \'~ithin the columns of the submatrix, then 

the probabilities which are the elements of the submatrix are used to perform 

the resulting multiplication by contributing their product with the input 

vector element to the :Jrrect place in the output vector. Resulting allocated 

configurations with indices outside the column range of the submatrix are 

discarded (they v/ill cause contributions when another submatrix is 

considered), and also so are the cases for which no allocation is possible. 

This method has the disadvantage that it can compute many of the allocation 

transitions from each state for all the submatrices lying along the row 

corresponding to the state, in order to find and use only those which lie 

within a given submatrix, and so has to "throw away" a fair amount of 

computation. On the other hand, because it disregards any (possibly very 

complicated) structure possessed by the allocation algorithm, which would 

require a different traversal of the structure to be re-programmed in each 

case, this method is able to cope with any possible allocation algorithm. The 

algorithm itself is programmed in the same way that it would be in a real 

situation, by placing a block of a given size into a specified configuration 
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of the memory, and not by reference to any structure that may be imposed on 

the allocation matrix. 

For the more compl icated mul ti pl ication by (I-Af1, thi s is' of course 

equal to the sum (I+A+A2+ ••• ) and this is the way in which the multiplication 

is effected. The procedure is the same as for the mul ti pl ication by An. A 

check is made for each segment-sized submatrix, to see if it is lying on the 

main diagonal, and if it is then the entire input vector segment is 

contributed to the output segment to give the multiplication by the identity 

matrix. Allocations are then computed row by row as for An. In this case 

there is a recursion, but a different one from the structure derived method of 

partitioning which obtains the segment sized submatrices. The allocation of 

all possible sizes of request from 1 to N is attempted into the currently 

reached configuration at each stage. Each allocation that is made is not only 

checked to see if it lies between the column boundaries of the particular 

segment-sized submatrix being considered to give the contributions for the 

m:.;lt~plication by A, but is also used as the starti.lg point for fu"ther 

allocations to give the multiplications by elements of A2, A3, ••• and so on. 

The accumulation products of these double, triple, ••• , allocations are kept 

in a stack and all possible multiple allocations are enumerated by 

backtracking. Whenever an allocation is unsuccessful, then all larger request 

sizes at the current level must also fail, so that they need not be tried, and 

-the stack l~vel can be reduced by backtracking to try the next size of request 

at the previous level in the stack. The same is true when an allocation is 

successful but has a lower index than the first or leftmost column of the 

output segment; it is not required for this segment since it is outside the 

segment columns and also all its successors in still higher powers of A will 

lie even further to the left because of the particular index order of the 

states, so that they need not be considered. Both these tests serve to cut 
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down the amount of backtracking computation. When an allocation is successful 

and the index of the resulting configuration has not become too low for the 

output column range, the configuration and its accumulated probability product 

are stored and used to begin a new level of the backtracking stack. 

6.2.4 Reducing inefficiencies in the lino matrices stored" implementation 

There are a number of ways in which this revised implementation of the 

power method as described so far would be more inefficient than necessary, if 

no further action was taken to avoid them. The main cause of inefficiency is 

that many of the segment sized submatrices contain all zeroes or operate on 

segments which become all zero at a particular stage of the computation. 

Checks have been included wherever possible in the program to avoid computing 

numbers which must always be zero. 

The array of information describing whereabouts on secondary storage each 

segment of the vectors !O' ~1' w can be found, also describes segments which 

are known to contain all zeroes. This description of zero segments is kept 

up-to-date as segments are rewritten. Whenever such a segment is input to an 

operation which must as a consequence produce all zeroes, the operation is 

bypassed at the point of input if it has not already been 'avoided by anothzr 

check. Even if the operation is not nullified, for example if the segment is 

from the as yet still empty output vector being accumulated, the input 

operation itself is avoided and the input vector merely set to zero instead. 

Setting an entire output vector to zero becomes the simple operation of 

setting all the segment descriptors to indicate zero. 

Operations which in general update vectors by first reading them in, 

modifying them and then writing them out again, check that modification has 
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actually occurred as the operation proceeds, and if there is no change, the 

output operation is bypassed. 

Many of the segments of Eo which are input to the multiplication by QnD, 

n = 1, ••• ,N, a"re completely set to zero by the multiplication by Qn' 

especially the later segments and for low values of n. The maximum gap in the 

first state of each segment is the least such maximum for all the states in 

the segment, and if it is not less than the request size n then the 

multiplication by QnO, which would produce a zero segment after the 

multiplication by Qn' is bypassed. Approximately half these particular 

segment computations are avoided in this way. 

As has already been mentioned, in the multiplication by (I-A)-l, the 

backtracking computation of all possible multiple allocations is cut off at 

any stage by observing whether the resulting state from any particular 

allocation lies outside and to t~e left of the columns of the particular 

submatrix being considered. Since further allocations into this state can 

only result in states even further to the left, there is no point in 

attempting them, so that the next request size at the current level can be 

immediately attempted. 

The recursive splitting of the general form of an allocation type matrix 

into segment sized submatrices is wasteful of computing time as it is more 

~eneral than is necessary for th~ multiplication by An' since the blocks along 

the bottom of the matrix in figure 6.4(a) not including the last one can only 

be diagonal. Further, only one of these diagonal blocks can have non-zero 

entries if at all ,corresponding to n-word allocations into the beginning of 

the subset of me~ory represented by the allocation-type matrix, which can only 

occur if the subset of memory is at least n words long. The segmentation of 

much more than half of all the submatrices in the complete multiplication by 
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An is avoided by only computing the correct bottom diagonal block. 

In the two stage multiplication by QnDAn' there are some segments of n1 

computed from !oQnD which, although they contain non-zero probabilities, are 

unused in the subsequent multiplication by An. This happens if the state 

corresponding to the last column of the particular submatrix of D, which will 

be the state containing the largest maximum gap of all the output (column) 

states of this submatrix, still has no gap large enough to allocate a request 

of size n. It is simple to check for this during the partitioning of QnD into 

segments and bypass those for which this is the case. 

As a further comment on the efficiency of the computation, the simple 

action of turning off array subscript bound checking which by default is 

normally performed in Algol W, reduced the processing time required by the 

finished program to three quarters that of the time needed with subscript 

check; ng. .A. prograrn p'2:formance measuri ng tool of the MT5 ope rat ing system on 

the 370/168 called TlHETALLY was used on the working program. TlMETALLY 

divides the memory space occupied by any program it is measuring into separate 

areas of arbitrary equal size, and then samples and records as a histogram the 

areas from which instructions are being fetched while the program is running. 

This useful measurement tool gives a good indication of which parts of a 

program use the most processing time. For the present program it showed that 

between a third and a half of the time was being spent in four particular 

procedures, three of which are concerned with converting state indices to 

state configurations and vice versa, and the fourth was the procedure which 

implemented the allocation algorithm by placing a given request into a given 

configuration. Normally, this indication would be sufficient justification 

for examining these reasonably simple procedures with a view to replacing the 

Algol W with Assembler code for example, to make them faster. Although they 
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were examined, this extra recoding effort, which it was estimated would 

possibly have saved as much as another twenty or thirty per cent of the time 

used, was judged not to be worthwhile. The exponential growth in the number 

of states and.processing time caused by increasing the memory size N means 

that an increase in speed by a factor of more than three times is required to 

be able to compute one more point on any graph of performance (utilisation for 

example) against increasing values of N. 

A necessary convenience in the program1s operation is that after each of 

the (2N+2) multiplication stages in each iteration: (.:!!o X QnO), 

(!.1 X An)' n=l, ••• ,N, (wX (I-A,-lT), (.:!!o X T101T), all three of the vectors 

.!a' !.l' ~ and a small number of other necessary variables in the computation 

are copied to a "checkpoint" file on secondary (disc) storage. This allows 

the program1s operation to be interrupted at any point and resumed later at 

the most recently checkpointed stage of the computation. When the program is 

restarted, it cycles quickly around the control structure of the computation 

until, from a co..;nt written with each set uf checkpoint informatioll, it 

determines that the point at which the most recent checkpoint was written last 

time has been reached. The vectors and all the variables that were saved are 

restored and the computation then proceeds.· By the crude method of doubling 

the amount of secondary storage checkpoint space available and alternating 

between essentially two checkpoint files, it was found possible to avoid the 

chance that interrupting the program at random (by operator intervention, or 

by job time limit exceeded) during the middle of a checkpointing operation 

would make the checkpoint data useless by only being partially updated. A 

pointer indicating which checkpoint file contains the most current set of data 

is updated in one non-interruptible operation only after all the data has been 

successfully written. (A better way would be to delay the acceptance of such 

an interruption if checkpointing is in progress until it is completed. This 
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would be possible with a little more ingenuity. Further savings in the space 

required to save the intermediate stages of a computation could have been made 

by noting which vector changes, and which two do not, in each stage of the 

computation between checkpoints and only saving a copy of the one that has 

changed. These precautions and measures were not found to be necessary as in 

practice there was sufficient temporary space on secondary storage for the 

described operation to be carried out.) 

6.3 Predicting converged values with the epsilon sequence transformation 

As the successive vectors ~(T) computed by the power method converge to 

the steady state eigenvector ~ for increasing T, the utilisation: 

U(T) = n(T) .~' (scalar product) .... 3.1 

also converges to the steady state value 

U = n • u' (scalar product) ••.. 3.3 

where u' is the column transpose of a row vector ~ with elements representing 

the fraction of memory occupied in each state, as defined in equation 3.2. If 

the eigenvalues of the transition matrix P are (AS)' s = 1, ••• ,S', and the 

corresponding left eigenvectors are (~s), s = 1, ••• ,S', where A1 = 1 and 

~1 = ~, then in general the power method produces successive approximations 

~(T) to n of the form 

S' 
n(T) = L C .(A )Tn 
- s=1 s s-s ••.. 6.6 

for some set of constants (cs), s = 1, ••• ,S' determined by the starting vector 

~(T=O). It follows that the successive values of U(T) are of the form 
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.... 6.7 

where the constants Cs = csns.~' (scalar product), s = 1, ••• ,5'. Convergence 

follows for the (stochastic, irreducible) transition matrix P because as shown 

in chapter 3, Al = 1; 1AsI < 1 for all s = 2, ••• ,5'. The expression for U(T) 

in equation 6.7 is just the form for which the so-called "epsilon algorithm" 

or method of extrapolation is most suitable. This method enables the eventual 

limit of the convergent sequence (U(T}) to be estimated from the initial terms 

of the sequence. 

For a full description of the epsilon algorithm, see for example Wynn 

(1961), or more readably, Gragg (1972). Given any sequence U(O},U(1),U(2) ••• 

knm'ln or guessed to be of the form 6.7 or at least close to such a form, the 

table of differences in table 6.1 is constructed. This table uses the 

U(O) 
0 0(2,1) 

U(l) 0(3,2) 
0 0(2,2} ... 

U(2) 0(3,3) 
0 0(2,3} 

U(3) 0(3,4} 
0 0(2,4} • 

U(4) 

Table 6.1 Array of differences for the epsilon algorithm 

11 rhombus rul e" : 

a 
b c (d-a)(c-b) = 1, so that c = b + l/(d-a) .... 6.8 

d 
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or in table 6.1, 

0(j+1,T) = 0(j-1,T-1) + 1/(0(j,T)-0(j,T-1)) .... 6.9 

An initial column of zeroes is placed in the j=O column, and the sequence to 

be extrapolated (in the present case, the successive numbers 

U(O), U(l), U(2), ••• ) appears in the j=1 column. As usual for difference 

tables, successive columns contain elements staggered halfway between those in 

adjacent columns. If the sequence U(T) is of the form U(T) = A + BxT for some 

x and constants A and B, then all the differences in the second computed 

column (0(3,T) for T::; 2,3,4, ••• ) will be identically equal to the constant A. 

If U(T) is of the form U(T) = A + BxT + CyT, then the differences in the 

fourth computed column (0(5,T) for T = 4,5,6, ••• ) will all be identically 

equal to A, and so on. The theory behind the epsilon algorithm and the 

reasons why it works, are not obvious and in fact are far from trivial; they 

are buried in the analysis of functions and Pade approximants (rational 

functions of a complex variable). There is an extensive literature much of 

which can be found by reference to the survey article by Gragy (1972). 

Because the form of U(T) as given by equation 6.7 is exactly suited to it, the 

epsilon algorithm has been used in the above described implementation of the 

power method to give advance predictions of the storage utilisation U from the 

values U(T). The algorithm costs almost nothing anyway, being simple, cheap 

and quick to implement, as the rhombus rule is so simple. Only the upward 

sloping diagonal vecto,r of elements U(T), 0(2,T), 0(3,T), ••• in table 6.1 

needs to be kept and not the whole table, as this is sufficient to calculate 

the succeeding diagonal as soon as a new element U(T+1) is available. The 

results of the prediction obtained from the epsilon algorithm appear with the 

results in section 6.5. In general its accuracy was such that it was usually 

giving the value for U finally arrived at by the power method after about half 

of the i terati ons of the power method v.,tere compl ete, when the uni form 
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distribution of request sizes was being used, but it was disapPointingly much 

slower for the negative exponential distribution; see section 6.5.2 below. 

6.4 An index mapping of the memory configurations onto the integers 1, ••• ,S(N) 

In implementing the power method it is both convenient and necessary to 

be able to map the total number of states S(N) including the empty state, onto 

the integers 1, ••• ,S(N) so that each integer corresponds to just one state or 

memory configuration. Whatever index mapping is used thereby defines an 

ordering of the states. The implementations described used a mapping which 

gives the same ordering as that in section 4.3 and shown in most of the 

figures. For completeness' sake and because it is not quite trivial the 

description of this mapping is given here. 

Any memory configuration ;s ~escribed as a sequence of (gap block) pairs 

as in section 4.3. For any given memory size N a mapping table is constructed 

and used to map the states expressed as (gap block) pair sequences into the 

index integers and back again. As an example, table 6.2 shows this for N = 4. 

Each row of the table corresponds to a (gap block) pair, in the order defined 

by the relations 4.5 in section 4.3, so that the top row is for the pair (0 1) 

and the bottom row is for the "special" (no pair) used to indicate a final gap 

of any length. Each of the N columns of the table corresponds to a memory 

size n = 1, ••• ,N. Each valid entry of the table contains a displacement from 

the first index integer, 1, to be used (added) when developing the index 

integer for a given state. 

The table is quite simple to construct. The top row contains all zero 

entries. There is a valid entry at a given rOw and column position if the 

(gap block) pair corresponding to the row can possibly exist (that is, it is 
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(gap block) pairs 

(0 1) 
(0 2) 
(0 3) 
(0 4) 
(1 1) 
(1 2) 
(1 3) 
(2 1) 
(2 2) 
(3 1) 

(no pair) 

N= 1 2 3 4 

0 0 0 0 
2 5 13 

7 18 
20 

3 8 21 
10 26 

28 
11 29 

31 
32 

1 4 12 33 

Table 6.2 Index table for mapping states to integers, N=4 

not too big) in the memory size n corresponding to the column. Where this is 

not possible a special marker is used to indicate this fact (in the 

implementation, for efficiency in column searching this marker is made to 

point to the next va~~G entry in the col umn). The difference between any two 

consecutive valid entries in any given column n, is the number of possible 

configurations that there are of an n-word memory which begin with the 

(gap block) pair corresponding to the first entry, and so it is a term from 

the Fiponacci sequence. For example, there are f2(N-(1+2)) = f2 = 2 

configurations of an N=4 word memory which begin with the pair (1 2), so that 

2 has to be added to the entl'y in the table in the n = 4 column at the (1 2) 

row to get the entry at the (1 3) row; 2 + 26 = 28. 

For N = 4, to index the state (1 1)(0 1) for example, first consider the 

pair (1 1). Since there are initially 4 memory words, find the ((1 1),n=4) 

entry in the N = 4 table which is 21. This pair uses up 1 + 1 = 2 words and 

so there are 2 left; take the next pair, (0 1), and find the ((0 1),n=2) entry 

which is O. With one word left, the final contribution is the (no pair),n=1) 

entry which is 1. The required index is then one more than the sum of these, 
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or 

Index[ (1 1)(0 1) ] = 1 + 21 + 0 + 1 = 23 

Conversely, given the index 23, first subtract 1 to obtain the current 

"index displacement", and start by searching the N = 4 column of the table for 

the largest entry not greater than this value 22. In this case it is 21, 

giving the pair (1 1). This uses up 2 words, so proceed by subtracting 21 

from the index displacement and skip to the n = 4-2 = 2 word column, to repeat 

the search for the next pair. Continue until both word count and index 

displacement reduce to zero. The special (no pair), if encountered, exhausts 

the word count immediately. 

6.5 Results 

The largest size of memory fo~ which it has been practical to perform the 

computations of either of the above implementations of the power method, is 

N = 12. It has been found that there are relatively small differences between 

different allocation algorithms at these low memory sizes, undoubtedly because 

there are relatively few of the total number of possible configurations in 

which a genuine choice is possible to any algorithm. Because of this, 

although the original inter.tion was to calculate values of the expected 

utilisation U and internal fragmentation E[IF] for a range of allocation 

algorithms and request distributions, it is sufficient to compare just three 

algorithms, best fit, first fit and worst fit as well as the results obtained 

from the relocation model described in chapter 4. The best fit and first fit 

algorithms were described in chapter 2. Because they give results which are 

very similar indeed up to N=12, the same computations have been repeated for 

the "worst fit" algorithm. This algorithm, which is understandably not to be 
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found described elsewhere (certainly not in any practical system), has been 

designed so that intuitively one may expect that its performance is close to 

the worst possible for any algorithm without regard to the shape of the 

request distribution. As explained in chapter 2 section 2.2, given a request 

to be allocated in a particular configuration of memory, the worst fit 

algorithm allocates the request into the middle of the largest available gap, 

leaving an amount of space on either side of the newly formed block in two new 

gaps which are either equal in size or else different by only one word. (For 

any particular request distribution it may be possible to devise an algorithm 

with even lower values for the expected storage utilisation, by taking the 

distribution into account. For example, if one particular request size, 

say 10 words, has a very much higher probability of occurring in the queue 

than any other, then to perform badly it might well be a good idea when 

allocating requests to try and leave or create as many gaps of just 9 words as 

possible.) The purpc32 of trying worst fit was to get at least some 

experimental indication of how much variation in performance might be possible 

just by changing the allocation algorithm. The results of all this 

computation appear in figures 6.5, 6.6 and 6.7 and tables 6.3, 6.4 and 6.5 and 

show, again at these low memory sizes, that although the difference is 

appreciable it is not very great. 

As with the choice of allocation algorithm, when the largest possible 

variation in request size is from 1 to 12 words, there is not a lot of scope 

for comparing the resulting performance for very many different shapes of 

request size distribution. Having regard to this and to the very few 

measurements of actual request distributions which have been published as 

noted in chapter 2, two such distributions have been considered here; negative 

exponential and uniform. Of course, the computations could be repeated for 

any distribution. One may intuitively expect that any distribution such as 
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negative exponential in which the smaller request sizes occur more frequently 

and larger sizes infrequently should result in better performance than is the 

case with the uniform distribution which gives equal weight to all request 

sizes. 

6.5.1 Convergence of the power method 

One reason for preferring to obtain the vector of steady state 

probabilities by the power method, besides its simplicity, is that it also 

naturally indicates the transient behaviour from any given starting point. 

Thi s has turned out to be unimportant, for small memory si zes anyway, as can 

be seen from the examples in table 6.3, plotted in figure 6.5. Values of the 

expected utilisation U(T) are shown after successive iterations T=1,2,3 ••• , 

starting at T=O from the configuration which was called E in section 4.4.l. 

Other starting sta~es have Deen tried, and they give essentially the same 

behaviour. After an ~!1itial short pe~icd of acjustment convergence to thz 

equilibrium vector is steady and at a constant rate which is neither very fast 

nor, fortunately for the power method, excessively slow. The rate of 

convergence is determined by the sub-dominant eigenvalues of the transition 

matrix P and is discussed further in the next chapter, in section 7.1. The 

number of iterations required depends on the memory size N and also on the 

request size distribution as can be seen from figure 6.5. 

It should be noted in passing that another reason for deciding to use the 

power method is that it is computationally stable. Because any starting 

vector will always lead by exact computation to the unique steady state 

eigenvectoY', any rounding errors which may be introduced into the computation 

of the successive vectors ~(T) do not build up but automatically decay, the 
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( a) Uniform request size distribution, first fit al gorithm 

T N=1 N=2 N=3 N=6 N=10 

1 1.0 0.8750000 0.8271605 0.7752308 0.7531167 
2 1.0 0.8750000 0.8148148 0.7518197 0.7243359 
3 1.0 0.8750000 0.8189300 0.7547872 0.7258510 
4 1.0 0.8750000 0.8193111 0.7559696 0.7270166 
5 1.0 0.8750000 0.8195334 0.7564573 0.7275472 
6 1.0 0.8750000 0.8195831 0.7566610 0.7277897 
7 1.0 0.8750000 0.8195934 0.7567464 0.7279012 

· .. ... 
· .. . .. . .. 

(b) : Exponential request size distribution, first fit algorithm 

T N=1 N=2 N=3 N=6 N=10 

1 1.0 0.8819660 0.8518250 0.8627041 0.9027041 
2 1.0 0.8819660 0.8226989 0.8017398 0.8414428 
3 1.0 0.8819660 0.8331066 0.7963910 0.8134895 
4 1.0 0.8819660 0.8338175 0.8022597 0.8074937 
5 1.0 0.8819660 0.8337341 0.8054673 0.8094640 
6 1.0 0.8819660 0.8350006 0.8070752 0.8121949 
7 1.0 0.8819660 0.8350908 0.8079403 0.8140472 
8 loll 0.8819660 0.8351125 0.808412:: 0.8152171 

· .. . .. 
· .. . .. 

Table 6.3 Convergence of ex~ected utilisation U{T) T=1,2, ••• (see figure 6.5) 

effect being to achieve convergence as if from a slightly different starting 

vector. In practice there were no noticeable problems introduced by rounding 

in either implementation both of which used the double-length (64 bit) 

float'es point arithmetic of the IBM 360/370 .computers. After each iteration 
i 

i1 cllec~: was made that the elements of each vector .!.(T) still summed to unity. 

Since they always did, to better than at least eight significant figures, the 

question of rounding errors was not investigated further. 
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(b) Exponential request size distribution (defined: equations 4.9,4.10) 

Figure 6.5 Convergence behaviour: utilisation U(T) against event time T 
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6.5.2 The epsilon algorithm: predictions of eventual converged values 

The epsilon sequence transformation was described in section 6.3, and it 

has been used in an attempt to predict the steady state utilisation U as soon 

as possible from the initial values U(T), T=0,1,2, ••• as T increases. 

Typical examples are shown in table 6.4. The results did not live up to 

expectation for the uniform distribution, and were indeed quite disappointing 

for the exponential request size distribution. It is just as well that the 

method is relatively simple, and cheap in its use of storage and execution 

time. 

The pattern of table 6.1 is followed in presenting the values in 

table 6.4, except as follows. Because the upward sloping diagonals of 

table 6.1 become available on successive iterations, they are presented as 

successive rows in table 6.4; and also the intermediate even-numbered columns 

of table 6.1 have been left out since although they are part of the epsilon 

algorithm they contain values which are not approximations to the final 

converged value of U. It can be seen that for the uniform request 

distribution, the epsilon algorithm produces values for U to any given 

accuracy no sooner than after about half as many iterations as are necessary 

for the pm/er method to produce convergence to the same accuracy. Thus 

although it is certainly not startling its use in this case might be said to 

be \110 rthvJh il e. For the exponential distribution however it is hardly any 

quicker than the power method itself, being quite obviously fooled to begin 

with far instance by the initial downward swing of U below the eventual 

con~erged value. Since the amount of computation required to get a value of U 

i ncr2a~~t~S by a factor of about three times for each extra word of memory si ze, 

using the epsilon algorithm might allow one further such point to be computed 

than might otherwise be obtained for the uniform distribution, but it is of no 
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T 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

T 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

U(T) 

1.0 
.75311671 
.72433592 
.72585101 
.72701662 
.• 72754715 
.72778966 
.72790119' 
.72795386 
.72797943 
.72799215 
.72799859 

6 : Exact computations for small memories 

0(3,T) 

.72053802 

.72577524 

O(5,T) 

.73090422 .72720626 

.72799034 .72796530 

0{7,T) 

.72799386 .72799385 .72799527 

.72799616 .72800038 .72799633 

0{9,T) 

.72800098 .72799166 .72799163 .72799500 

.72800358 .72800634 .72796611 .72800850 

0{11,T) 

.72800472 .72800555 .72800547 .72800540 .72800553 

.72800520 .72800552 ••• (quantities too nearly equal to 
divide by their difference) 

(a) N = 10, first fit algorithm, uniform request size distribution 

U(T) 0{3,T) 0(5,T) 0{7,T) 0(9,T} O(l1,T} O(13,T) 

1.0 
.90270407 
.84144280 .73729468 
.81348950 .79003002 
.80749368 .80585643 .83039737 
.80946395 .80897664 .81377428 
.81219490 .80239030 .81392700 .81392278 
.81404717 .81795182 .81577345 .81375472 
.81521711 .81722308 .81715992 .81970436 ,81593826 
.81598778 .81747540 .81740006 .81761859 .81716063 
.81651164 .81762349 .81778479 .81764484 .81764313 .81680571 
.81687232 .81766954 .81768769 .81768133 .81749357 .81767438 
.81712331 .81769767 .81773762 .81770948 .81702974 .81701286 .81770847 
.81730013 .81772162 .81783213 .81792845 .81777642 .81753981 .81776523 ... . .. 

(b) N = 10, first fit algorithm, exponential request size distribution 

Tabl c 6.4 Epsi! on sequence appr'oximations for U from U{T): two cases 

Compare table 6.1. Also see table 6.3 and figure 6.5 for the successive 
values of the expected utilisation U(T) in these examples. 

Each row in this table contains entries corresponding to alternate entries in 
the upward sloping diagonals of table 6.1. All the entries in each row T can 
be computed from the entries in the previous row (T-1), as soon as the value 
of U{T) becomes available. 
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use where it is really needed with the exponential distribution, which takes 

longer anyway to converge. 

Thus, any success with this method is clearly limited in practice. One 

possible reason may lie in equation 6.7; as explained in section 6.3, the 

method is only guaranteed to work for sequences of this kind after enough 

iterations have been made in order to produce at least as many columns in 

table 6.4 as there are terms in the summation. In this case, there are up 

to S· terms in equation 6.7 corresponding to the number of eigenvalues, or 

size, of the matrix P so for any reasonable value of N this guaranteed state 

of affairs is unattainable. The original hope that the earlier columns might 

nevertheless produce good accuracy, is clearly at best only partly realised. 

This lack of success with the epsilon algorithm does not of course rule out 

the possibility that a different sequence transformation, or another method of 

extrapolation, might do better. 

6.5.3 Computed values of the steady state utilisation and fragmentation 

The values obtained by the power method for the expected utilisation U, 

the expected external fragmentation E[EF] and the expected internal 

frag~entation E[IF] are shown in table 6.5 and plotted in figures 6.6 and 6.7. 

Figures 6.5(a),(b) show the values obtained for U when the request sizes 

are uniformly or exponenti ally distributed respecti vely, for the fi rst fit, 

best : j t and worst fit al gorithms and al so for the rel ocati ng model of 

chapter 4 section 4.4. (Thus figure 6.6 repeats the values in figure 4.8.) 

Not al-! of the model s have been computed for N=12. For the first fit 

algorithm, uniform request distribution, the value of U = 0.7206 accurate to 

four decimal places was arrived at after 11 iterations, taking 7 hours 
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Uniform request distribution Exponential distribution 
(equations 4.7, 4.8) (equations 4.9, 4.10, 4.11) 

N Son U E[EF] E[IF] Both U E[EF] E[IF] Both 

1 2 1.0 0.0 0.5 0.5 1.0 0.0 0.5 0.5 
2 5 0.8750 0.1250 0.3125 0.4375 0.8820 0.1180 0.3455 0.4635 
3 13 0.8196 0.1804 0.2256 0.4060 0.8351 0.1649 0.2896 0.4545 
4 34 0.7901 0.2099 0.1768 0.3867 0.8192 0.1808 0.2646 0.4454 
5 89 0'.7703 0.2297 0.1450 0.3747 0.8102 0.1898 0.2494 0.4392 
6 233 0.7568 0.2432 0.1229 0.3661 0.8090 0.1910 0.2410 0.4320 
7 610 0.7467 0.2533 0.1066 0.3599 0.8095 0.1905 0.2353 0.4258 
8 1597 0.7391 0.2609 0.0942 0.3551 0.8120 0.1880 0.2318 0.4198 
9 4181 0.7329 0.2671 0.0843 0.3514 0.8146 0.1854 0.2293 0.4147 

10 10946 0.7280 0.2720 0.0763 0.3483 0.8177 0.1823 0.2276 0.4099 
11 28657 0.7239 0.2761 0.0696 0.3457 0.8205 0.1795 0.2263 0.4058 
12 75025 0.7206 0.2794 0.0641 0.3435 

(a) : First fit allocation algorithm 

N S(N) U HEF] E[IF] Both U E[EF] E[IF] Both 

1 2 1.0 0.0 0.5 0.5 1.0 0.0 0.5 0.5 
2 5 0.8750 0.1250 0.3125 0.4375 0.8820 0.1180 0.3455 0.4635 
3 13 0.8196 0.1804 0.2256 0.4060 0.8351 0.1649 0.2896 0.4545 
4 34 0.7901 0.2099 0.1768 0.3867 0.8192 0.1808 0.2646 0.4454 
5 89 0.7703 0.2297 0.1450 0.3747 0.8102 0.1898 0.2494 0.4392 
6 233 0.7569 0.2431 0.1230 0.3661 0.8098 0.1902 0.2412 0.4314 
7 610 0.7469 0.2531 0.1067 0.3598 0.8110 0.1890 0.2358 0.4248 
8 1597 0.7393 0.2607 0.0942 0.3549 0.8141 0.1859 0.2325 0.4184 
9 4181 0.7332 0.2668 0.0843 0.3511 0.8173 0.1827 0.2301 0.4128 

10 10946 0.7284 0.2716 0.0763 0.3479 0.8210 0.1790 0.2285 0.4075 
11 286~7 0.7?43 0.2757 0.0697 O. 345~ 0.8242 0.1758 0.2272 0.4030 
12 75025 

(b) : Best fit allocation algorith~ 

N S(N) U E[EF] E[IF] Both U E[EF] E[IF] Both 

1 2 1.0 0.0 0.5 0.5 1.0 0.0 0.5 0.5 
2 5 0.8750 0.1250 0.3125 0.4'375 0.8820 0.1180 0.3455 0.4635 
3 13 0./981 0.2019 0.2178 0.4197 0.8203 0.1797 0.2838 0.4635 
4 34 0.7522 0.2478 0.1667 0.4145 0.7901 0.2099 0.2558 0.4657 
5 89 0.7261 0.2739 0.1353 0.4092 0.7818 0.2182 0.2424 0.4606 
6 233 0.7077 0.2923 0.1137 0.4060 0.7803 0.2197 0.2344 0.4541 
7 .610 0.6942 0.3058 0.0980 0.4038 0.7812 0.2188 0.2291 0.4479 
8 1597 C.C838 0.3162 0.0861 0.4023 0.7840 0.2160 0.2256 0.4416 
9 4181 0.(;7')7 0.3243 0.0768 0.4011 0.7870 0.2130 0.2232 0.4362 

10 10946 {}.6L91 0.3309 0.0693 0.4002 0.7902 0.2098 0.2214 0.4312 
11 28657 0.6,>.37 0.3363 0.0631 0.3994 0.7932 0.2068 0.2200 0.4268 
12 75025 

(c) : Worst fit allocation algorithm 

Table 6.5 Average stead~ state utilisation and fragmentation: Results 
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Figure 6.6 Steady state utilisation U against memory size N : computed values 

Values for the best, first, worst and relocation fit algorithms are shown. 
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Figure 6.7 External E[EF], internal E[IF] and combined fragmentation against N 

Values for the best, first, worst and relocation fit algorithms are shown. 
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50 minutes of computation time on the 370/168 computer with the second more 

efficient implementation described above. In case this seems excessive (and 

it certainly is a lot of computation) it should be remembered that the 

calculation had to obtain the principal (dominant) eigenvector of a sparse but 

large square matrix of size 75024 X 75024. (To the same scale as most of the 

matrix diagrams in this thesis, this matrix is over 1080 feet square. It has 

not, needless to say, been included as a figure.) 

As expected, the utilisation in the relocating model is always greater 

than when the memory may become fragmented. The first fit and best fit 

algorithms perform very similarly for these small memory sizes as can be seen 

both from figure 6.6 and table 6.5. Even the so-called worst fit algorithm 

still achieves a utilisation not much more than 10 per cent less than the 

maximum possible with relocation. However, small as the difference is~ there 

is a steady divergence bet\'1een the algorithms as N increases and it is 

interesting to guess or extrapolate from these figures to values of N one or 

more orders of mdgnitude greater than this. The known closed fo~s of 

equations 4.20, 4.23 for U in the relocating model should presumably guide the 

choice of function to be used to fit the values of U for the other algorithms. 

Judging from figure 6.6 the indication seems to be that as N increases, U will 

ah~ays approach some constant 1 imit asymptotically just as it does in the 

relocating model. So far however, the author has had no success with this 

approach. The extrapolation must be made to fit as accurately as possible to 

the existing data if it is to be of any use, since for instance the first and 

best ":t algorithms may reasonably be expected to differ appreciably in their 

per-fur i:;t'ilCe for 1 arge val ues of N whereas the differences so far are still 

very s,!:a"ll. 

It will be noticed that, contrary to the results reported by Knuth (1968) 
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mentioned in chapter 2 section 2.2, that best fit always performs at least as 

well as first fit for these two distributions, and increasingly better as soon 

as a difference occurs. This therefore generally supports the results of 

Shore (1975) w~o was also comparing the performance of these two algorithms 

for other request di stribut ions as well; hi s simul ation resul ts indicated that 

first fit was sometimes better, for some of the other distributions. As 

already mentioned in chapter 2 however, Knuthls model did not use a saturated 

request queue, and this possibility will be examined in the next chapter. 

Figure 6.7 and table 6.5 show the expected fragmentation for these 

algorithms, again for the uniform and exponential request s'ize distributions. 

The expected external fragmentation E[EF] is, as explained in chapter 2 and 

chapter 4 section 4.4.3, simply defined to be the space not occupied by the 

allocated blocks; E[EF] = 1-U. Internal fragmentation is introduced by 

adopting the modifications to the discrete request size distributions 

described in section 4.4.4 and by assuming that requests are always rounded up 

to the nearest integer. Assuming th~t the average ~~a~e wastcj ty rounding is 

then half a ~/ord, equation 4.24 can be used to find the expected wastage due 

to rounding. When the probability vi of the occurrence of each configuration 

or state i in equilibrium is known, it is relatively simple to scan this 

vector v to form the sum: 

SI 

E[IF] = E (v i /2N) X (number of allocated blocks in state i) 
i=l 

and this has been done with the results shown. 

•••• 6.10 

The values nf E[IF] turn out to be even closer together for the different 

algorithms than tr:e values of E[EFJ. Clearly, E[IF] for the relocating model 

is never less than in any fragmented model since it is always possible to get 

at least as many blocks into memory in a relocation scheme as it is in the 
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corresponding scheme without relocation. Hence for the uniform distribution~ 

since it is already known from equation 4.27 that E[IF](uniform) tends to zero 

as N increases, the expected internal fragmentation in any allocation scheme 

mus~ similarly approach zero at least as quickly. For eXnmple, the maximum 

difference in internal fragmentation between the relocating and worst fit 

algorithms occurs as early as N=4 (0.1802 - 0.1667 = 0.0135) or N=5 

(0.1488 - 0.1353 = 0.0135), if it can be assumed from figure 6.7(a) that 

nothing unusual happens beyond N=11. For the exponential distribution~ the 

relocation asymptote of E[IF] is 0.25, so that in any fragmented model any 

eventual limit can be no greater than this. 

As noted in chapter 2 section 2.1, having introduced internal 

fragmentation by modifying the request distribution so that the distribution 

of rounded up request sizes remains unchanged, the idea of "utilisation" has 

to be similarly modified. The quantity U is, as before, the average space 

allocated to (rounaea up) blocks, so that U + E[EF] = 1 as before, but the 

value of U nuw contains tre space w-stcd by rounding as well t..s the space 

originally requested. This effect can be studied by considering the quantity: 

total fragmentation = E[EF] + E[IF] , 

the true or proper utilisation (equation 2.2) then being the complement of 

this. The total fragmentation is included in table 6.5 (where it ;s labelled 

as "Both") and ;s plot~ed ;n figure 6.7. 
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6.5.4 Randell's observation on the effects of rounding on fragmentation 

The behaviour of the total fragmentation is made even clearer by 

following the presentation given by Randell (1969). Figure 6.8 ;s extracted 

50 r 'MIN' PLACEMENT 
32768 WOROMEMORY 

z 40r 1024 WORD MEAN REQUEST 
~ (EXPONENTIAL DISTR) 

;
30r TOTAL 

~20:-
a: .... 

i 
All the results show the unexpected (to the author at 

least) -fact that as Q increases the 1.033 of utilization due to 
increased internal fragmemation di8tindly Otdweigha the 
gain due to decreased external fragmentation. This is a 
very interesting result, though of course analytical con- i 

. firmation, as well as determination of the region of validity j 
of the result, is sorely lacking. ,In fact very little ana-

o---__.-L--- __ l ! -1 lytical work has been done in this area at all.1 
256 512 768 1024 I . 
QUANTUM OF ALLOCATION (Q) 

FIG. 2. The effects or rounding up storage requests (exponential 
distribution) I 

Figure 6.8 Extract from Randell's 1969 paper on storage fragmentation 

from his paper. In his simulation, the memory size was 215 = 32768 words, and 

the rounding quantum sizes were 54, 128, 256, 512, 1024 words as shown. Also, 

his definition of external fragmentation was the extra space wasted between 

allocated blocks compared with the inevitable amount left over in the 

relocation model due to requests not always adding exactly to N. The data 

plotted in figure 6.8 were obtained by simulations of the storage allocation 

model. They can be compared with the computed theoretical values in 

figure 6.7 rearranged to produce the data plotted in fii:jure 6.9. Here, the 

memory size is taken to be N=12 words, since Randell's choice of N is still 

(even after allowing for his quantum sizes by dividing by the largest of them) 

beyond the computing capacity of the present implementation. Following the 

spirit of Randell's presentation, the quantum sizes which are now integral 

numbers of words, are chosen to be 1,2,3,4,6 and 12 words. (That is, 12 

quanta of 1 word each, or 6 quanta of 2 words each, and so on.) Then since 

the behaviour of a 12 word memory in which the allocation quantum is, for 
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Figure 6.9 Rearrangement of figure 6.7 to match the presentation in figure 6.8 
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example, 2 words is the same with the uniform request distribution as in a 6 

word memory with a quantum of 1 word, the values of E[EF] and E[IF] for N=6 in 

figure 6.7 can be transferred to figure 6.9 to correspond to an allocation 

quantum of siz~ 2 in a memory of 12 words. The other values are made to 

correspond similarly. In figure 6.8 Randel1 was using the best fit algorithm 

(which he called IIMIN") with the exponential distribution but in figure 6.9 

the (almost equal) first fit algorithm has been used, with both the uniform 

and the exponential distributions, because that is the algorithm for which it 

happened that a val ue with N=12 _wa~ ~_?mpu~_ed. The i correspondence between I 
the curves for the experimental data in figure 6.8, and the theoretically 

exact data in figure 6.9, is good, and goes at least some way towards the 

"analytical confirmation" called for. However, this good agreement says 

almost nothing about the "region of val idity of the result" which will, except 

for one small point which may be noted here, have to be left to the further 

analysis of the work which is founded in chapter 5. The small point of 

interest comes from figure 6.7(b), and it is that, contrary to the general 

trend, in one case at least it ~ possible with constant quantum size and 

increasing memory size for the total fragmentation to increase (or in 

Randel1 1 s terms, for the total fragmentation to decrease with constant memory 

size and increasing quantum size, as he originally intuitively expected). 

This is demonstrated by the worst fit algorithm with the exponential 

distribution, between the values N=2 to N=4. The existence of this 

possibility makes it indeed interesting to know if more reasonable algorithms 

can also produce the same behaviour, and under what conditions. 
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6.6 Computing exact allocation models for small memories: a summary 

The simple approach to solving the steady state equation 3.11: ~ = nP of 

just working out all the possible states, finding all the possible transitions 

between them with their probabilities and storing these as the transition 

matrix P, and then applying standard matrix techniques for obtaining the 

eigenvector n, fails for all but the smallest values of N. Beyond about N=6 

words (or SI(N=6) = 232 states), the storage time and computation requirements 

required for general methods which take no account of the structure of P 

quickly become excessive as the number SI of states increases exponentially. 

That anything at all can be done about this, depends entirely on the 

particular properties of the transition matrix and what is required from it. 

Because it is sparse, a storage representation can be chosen to take advantage 

of this so that by leaving out the zeroes larger matrices can be stored in the 

same space. That it is also stochastic and usually ergodic as well, plus the 

fact that at most only the eigenvector of the dominant unit eigenvalue is 

needed, allows the power iteration method to be considered for obtaining it. 

Amongst other advantages, this method is able to make good use of the sparse 

representation of the matrix since the operation to be performed is only that 

of multiplying a vector by the matrix. Further, this can be managed 

reasonably efficiently by almost entirely sequential operations so that both 

the matrix and the vector can recede from main storage which is usually fairly 

restricted in size, into the comparatively vast background of secondary (disc) 

stor~ge without (because of the sequentiality) too much of a penalty in 

increj~2d access time. 

The power method allows the possibility of further refinement in at least 

three ways, although as already seen for one and as will be seen in the next 

chapter for another, two of these have not yet come to much. Successive 
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approximations to finally converged values produced by each iteration bring 

the possibility of extrapolating directly to the limit, although the epsilon 

algorithm which was tried v/as not particularly successful at doing this. 

Recent numerical techniques such as simultaneous iteration are based on the 

power method and can in some cases produce big savings in computation time, 

but in section 7.1 this is shown to be uncertain for the present models 

although not every possibility has yet been examined. A third trick which has 

been used in the present computations but not as yet to its full potential, is 

to make as good an initial guess as possible at the final converged vector, 

and to use this as the starting pOint to reduce the number of iterations 

required. For example, since best fit and first fit appear to behave so 

similarly for these low memory sizes, having performed a computation for first 

fit the finally converged eigenvector of state probabilities can be used to 

start the computation for the best fit model with the same memory size and 

request distribution, instead of the rather arbitrary state E which for want 

of anything better has generally been used. This has been done for some of 

the computed values in table 6.5. There is also the possibility of using the 

converged eigenvector from a given memory size N to construct a good guess to 

be used as the initial vector for the next larger size (N+l) vlOrds. If this 

can be done sufficiently well, then given that the extra storage space is 

available it may just be possible for instance to produc£ the converged 

eigenvector' for N=13 in no more time and many fewer iterations than were 

needed for N=12 starting from the arbitrary state E, the largest memory 

computed so far. Thi s idea has occurred only recently to the author despite 

its obviousness jnd has not yet been properly investigated. 

In addition tu the sparsity and the various possible ways of speeding up 

and enlarging on the basic power method, the fact that the transition matrix 

has a regular recursive structure has been used to advantage to avoid storing 
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it altogether, and this has been implemented with a considerable saving in 

both storage space for the no longer needed matrix and access time to retrieve 

it. The detailed knowledge available from chapter 5 of the structure allows 

further efficiencies in the resulting "multiplication by parts", by avoiding 

the computing of whole groups of numbers which are either known in advance to 

be all zero or else which are subsequently unused or are multiplied by zeroes. 

One result of all these improvements was the remarkable experience, 

albeit at the expense of a great deal of machine time, of computing the 

eigenvector of an (admittedly sparse) matrix of order more than 75000 elements 

square, and of doing this several times for matrices of order more than 28000. 

In the end however, none of these techniques affect the exponential nature of 

the growth of the size of the transition matrix, and so they are all limited 

much too quickly relative to the effort needed to implement them. An 

improvement in efficiency by what are in practice large factors of about 

three, or ten times, resulted each time in only one or two extra points along 

the g~apb of increasing N. Doubling the efficiency, normally praiseworthy, 

was not enough to gain even one extra point in the same computation time and 

so a number of minor improvements which could have been made (for instance to 

recode certain heavily used sections of the program more efficiently than is 

possible in Algol ~J) were just not worthwhile. It remains to be seen whether 

any fundamental improvements as yet undiscovered are still possibl e which will 

reduce the exponential growth with increasing N, but anything less drastic 

will probably not be sufficient to justify much further effort than has 

a 1 l't,2;C 0;' been spent. 

P5 for the results which have been obtained, they are already quite 

valuable in at least three ways. First, they indicate the likely behaviour of 

model s \,/ith much 1 arger and more reasonabl e memory si zes. Although attempts 
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to extrapolate to large values of N from the limited data available have not 

so far been successful ~ it probably is possible to do much better. Second~ 

they provide an (admittedly very limited) nursery ground for comparing 
.. 

different algo(ithms and request distributions. These comparisons can also be 

made for other similar models which have slightly different rules (some of 

these are described in the next chapter). Given the limitations set by the 

number of states on the size of the problem~ there is no reason in principle 

why comparable results should not be possible for these other models. The 

confirmation of Randell's findings~ that rounding up requests to large quantum 

sizes does not in general make more efficient use of the memory~ ;s a good 

example of what can be achieved with models of memory size no greater than 

N=12. Thirdly and probably most importantly~ in the usual way that practical 

experience always improves the use of and complements theory~ actually 

computing and seeing such quantities as the transition matrix probabilities 

and their relationships to each other in a particular model eventually forces 

insights into their structure and composition to be noticed which might not 

otherwise be seen. It is unfortunate that these observations have nearly 

always seemed to be obvious after they were made so that they should perhaps 

have been noticed sooner. Hm'lever it is also true that some of the work in 

chapter 4 and more especially in chapter 5 that probably \'lOuld have passed 

unnoticed otherwise was fir'st realised in this practical way. 
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Chapter 7 Further possibilities for analysis and investigation 

The investigation presented in this thesis may be extended in several 

different ways. Besides pursuing the analysis and computation of chapters 5 

and 6 further to learn more about the storage allocation model as defined in 

chapter 3, either the definition of the model or the assumptions on its 

parameters or both can be altered to obtain related models, and the analytical 

and numerical methods presented in chapters 4, 5 and 6 can similarly be 

applied to investigate their behaviour. The author is currently following 

these lines of enquiry, some of which appear straightforward and promising of 

results, and will report on their progress in due course. 

7.1 Improving the numerical convergence of the computations of chapter 6 

The power method used in the last chapter is perhaps the simplest 

iterative technique that can be applied to obtain the eigenvector ~ of steady 

state probabilities. The successive vectors ~(T) = ~{T-1)P are calculated 

until sufficient convergence is obtained. This method was used in practice in 

the first instance not only because it is simple, but because it also 

indicates clearly the transient behaviour. The successive vectors ~(T) which 

are obtained and which lead to ~ in the numerical computation, happen 

naturally to be the vectors of probabilities of being in any of the possible 

states after T events have occurred, starting from some initial state (or 

probability vector ~(O)) at T = 0, and so they are of interest in their own 

right. The power method can of course suffer from an excessive number of 

iterations required before sufficient convergence is obtained, however, and 

this depends upon the magnitudes of the eigenvalues of P nearest to the 
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dominant unit eigenvalue. If ~ is an eigenvalue of P having absolute 

magnitude closest to 1 of the remaining eigenvalues, then ~(T) converges to TI 

as rapidly as hd T 70, so that the closer that 1~lis to 1, the slower will 

be the convergence. 

There are other iterative methods of finding the dominant eigenvector ~ 

besides the power method, and amongst these is "simul taneous iteration", due 

originally to Bauer (1958) although he did not give it this name, and 

particul arly its extension to "lop-sided iteration" by Jenni ngs and Stewart 

(1975). This technique simultaneously calculates the first n dominant left 

(or right) eigenvectors of a general real unsymmetric matrix, where n may be 

chosen at will to suit the particular problem. It requires n times as much 

storage space, and rather more than n times as much computation time per 

iteration, but as in the power method, the rate of convergence is governed by 

the relative ratio between i:WO eigenvalues, in this case the first and the 

(n+l}-th (ordered in decreasing magnitude) instead of the first and second, 

that is, the reldtive ratio of the first eigenvalue for which the eigenvector 

is not being calculated, to the dominant eigenvalue. Stewart (1978) has 

compared the running times of the power method and lop-sided iteration, and 

points out that lop-sided iteration can be very much faster than the power 

method if, for \tJhatever reason, there is a "gap" or sudden sizeable drop in 

the spectrum of eigenvalue magnitudes whereas the second eigenvalue happens to 

be close in magnitude to the first. If n is chosen so that this drop occurs 

between the n-th and (n+1}-th eigenvalues, then lopsided iteration can be much 

faster even allowing for the extra computation of the (intrinsically unwanted) 

(n-1) eigenvectors after the first. 

Tables 7.1, 7.2, 7.3 show the complete spectra of eigenvalues of the 

transition matrix P for N =-2,3,4 respectively for the first fit algorithm and 
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Uniform distribution 

Eigenvalues, Moduli 

1.0 
0.0 
0.0 
0.0 

1.0 
0.0 
0.0 
0.0 

Exponential distribution 

Eigenval ues, Modul i 

1.0 
0.0 
0.0 
0.0 

1.0 
0.0 
0.0 
0.0 

Table 7.1 Transition matrix eigenvalues for N=2, first fit algorithm 

Uniform distribution 

Eigenvalues, Moduli 

1.0 
0.316+0.078; 
0.316-0.078; 
0.167 

-0.066+0 .024 i 
-0.066-0.024i 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

1.0 
0.325 
0.325 
0.167 
0.070 
0.070 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Exponential distribution 

Eigenval ues, Modul i 

1.0 1.0 
0.372+O.089i 0.383 
0.372-0.089i 0.383 
0.272 0.272 

-0.111 0.111 
-0.066 0.066 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
C.O 0.0 
0.0 0.0 

Table 7.2 Transition matrix eigenvalues for N=3, first fit algorithm 

219 

the uniform and exponential distributions used in chapters 4 and 6. The 

bottom row and right hand column of P have been excluded as they are 

identically zero, so there are S'(N} = 4, 12, 33 values in each case. There 

does not appear to be any physical significance to attach to the eigenvalues 

after the first. Approximately half of the values are zero; some zero values 

are certainly to be expected from each matrix since certain of the states must 

have the same set of transitions with equal probabilities, giving rise to 

equal rows of the transition matrix. For N=3, for example, the states 

" 
o -110 
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Uniform distribution Exponential distribution 

E;genval ues~ Modul; E;genvalues~ Modul; 
.. 

1.0 1.0 1.0 1.0 
0.390+O.030i 0.391 0.551 0.551 
0.390-0.030i 0.391 0.500 0.500 
0.281 0.281 0.449 0.449 
0.238 0.238 0.325 0.325 
0.163+0.039; 0.168 0.289+0.090; 0.302 
0.163-0.039i 0.168 0.289-0.090i 0.302 
0.139 0.139 0.189 0.189 
0.016+0.098; 0.099 0.013+0 .131; 0.132 
0.016-0.098i 0.099 0.013-0.131 i 0.132 

-0.093 0.093 -0.120+O.036i 0.124 
0.054+0 .051 i 0.075 -0.120-0.036i 0.124 
0.054-0.051i 0.075 0.063+O.0~3i 0.089 

-0.064 0.064 0.063-0.063i 0.089 
-0.016+0.043i 0.046 -0.020+O.057i 0.060 
-0.016-0.043i 0.046 -0.020-0.057i 0.060 
0.034 0.034 0.038 0.038 
0.0 0.0 0.0 0.0 . . . · • (16 zeroes) . • (16 zeroes) · 

• 
0.0 0.0 0.0 0.0 

Table 7.3 Transition matrix eigenvalues for N=4~ first fit algorithm 

(see figure 4.3) have all the same transitions, since the first action to 

occur will empty the memory and (since the maximum gap in each state is just 

one word) leave an identically distributed queue to fill it. Apart from l the 

drop to the first of these zero eigenvalues~ there does not seem to be any 

suitably large sudden drop in modulus in any of these early spectra for small 

values of N, which would be suitaple for simultaneous iteration. Indeed~ the 

biggest drop for these early matrices is the first one~ so that the power 

method does not look at all bad~ and may be the best of the iterative methods 

after all • 

In another recent paper by Stewart (1977)~ he pOints out that 

simultaneous iteration can also be applied to a transformed version of the 
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steady state equation, for instance by writing 

P = L + D + U .... 7.1 

where P has been separated into Land U which are lower and upper triangular, 

and D is diagonal. Then equation 3.11: n = nP becomes ~ = ~(L+D+U), which 

can be rewritten for example as 

J!. = nU ( I -L -D f 1 

or ~ = nD(I-L-U)-l 

or J!. = nL(I-D-U)-l 

or ~ = ~(L+U)(I-D)-l , and so on 

•... 7.2 

Quoting Stewart, Hit is desirable to apply the iterative methods (simultaneous 

iteration, etc.) to that matrix which yields convergence in the smallest 

number of iterations, i.e. the matrix whose subdominant eigenvalues are, in 

modulus, furthest fr:~ unity". Thus it is possible that such a rearrangement 

could result in faster convergence even where simultaneous iteration applied 
. 

directly to P would produce little or no advantage, though this has yet to be 

investigated. 

It was disappointing that the epsilon algorithm extrapolation technique 

which ~"as tried in order to short cut the iterations by predicting the 

converged values in advance after the first few iterations, did not in 

practice work very ef~ectively. If it had done so reliably, then almost 

certainly models of memory size at least one or two words larger could have 

been computed in the same time by only producing the first few iterations for 

T=1,2,3, ••• and then relying on the values extrapolated from there for 

large T. More effort put into discovering a better technique may well prove 

\'lOrthwhile; perhaps the epsilon algorithm may do a 1 ittle better from a more 

suitable starting state, though this does not seem very likely as in effect 
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any of the successive approximations U(T), T=1,2,3, ••• can be considered as 

starting positions (although of course they are all related to each other 

because they all derive from the initial probability vector ~(O). so that as 

far as the epsjlon algorithm is concerned they may all be tarred with the same 

brush), just by excluding those parts of table 6.1 (the first few downward 

sloping diagonals) which depend on the earlier approximations 

U(O),U(l), ••• ,U(T-1). The extrapolation need not be with the values U(T) but 

might for instance be applied with some extra effort to the successive vectors 

~(T) themselves. Of course computing better estimates for ~(T) is in a sense 

what simultaneous iteration does. 

7.2 Continued algebraic analysis of the reduced stead~ state equations 

The complete surprise of finding the reduction of the steady state 

equation 3.11 to the simple form of equation 5.20, and the subsequent 

reduction WhlCh was found to be possible by state a~gregation to the 

equations 5.23 constraining the allocation algorithm, lends hope to the 

possibility that there is further structure in these equations which has not 

yet been noticed and which could be exploited to understand and predict the 

model's behaviour. The structure of the transition matrix P as an expansion 

in terms of simpler matrices which was explained in section 5.1, now seems 

obvious (to the author) with hindsight and perhaps should have been noticed 

much earlier than it actually was, in principle if not in detail. However it 

was not in fact appreciated until the first direct implementation of the power 

method described in chapter 6 which first calculated and stored the entire 

transition matrix, forcing attention to be drawn to the repetition occurring 

not only in P but in its component parts (which this first implementation was 

in essence already calculating). It seems likely that there is more to be 
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gained from a study of these equations, although the relationships between the 

various components of the K and K matrices for example appears to be n 

certainly no simpler than has been shown. As mentioned in chapter 5, 

equations 5.23 are in a form where they might be formulated as part of a 

linear programming problem, for instance to maximise the storage utilisation 

U = ~ • ~I ,equation 3.3, by varying the allocation algorithm and this may 

lead to further simplification. 

It might be worth bearing in mind that it is by no means necessary to 

know all the individual elements of 1f to form the product U = 1T .,!!I ~ just 

the sum of all those for each state with the same number of allocated words 

and hence the same entry in the vector~. This kind of study may well be 

productive also for the modified but related versions of the present model 

described below in section 7.5. Certainly any analysis which allowed one to 

determine for example which allocation algorithm gives the best storage 

utiiisation with a given request distribution, or even just to compare one 

algorithm \...;th anoth"'r +0 say which was the better, would be most usefu1. 

This latter problem is just the one that is addressed by dynamic 

programming techniques, for which the states are not grouped to nullify the 

possible allocation choices but are left separate so that the choices can be 

compared with each other. It will be interesting to see if comparative 

statements like the above will be possible by using the known algebraic 

structure of the allocation and the other matrices to either simplify or 

extend the dynamic programming analysis. 
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7.3 Infinite extensions of the storage allocation model 

The apparent underlying structure of the transition matrix P looks much 

the same, whatever the value of memory size N, and this suggests that 

extending the memory size to infinity in some way might prove worthwhile by 

simplifying the analysis or providing an alternative viewpoint. Two 

possibilities have been considered in a previous memorandum (Betteridge 

(1974a)), either extending the memory indefinitely somehow to the set of all 

positive integers, or alternatively mapping it onto the real interval [0,1J. 

They are both presented informally below. 

Consider figures 7.1(a,b,c) which for simplicity show the deallocation 

matrix D defined in chapter 5 instead of the full transition matrix P, for 

memory sizes N = 2, 3, 4. These same deallocation matrices appear in figures 

7.2(a,b,c) also, but the scales of drawing these figures have been altered so 

that each matrix is the same si::::. As N increases, the "resolution" or 

"definition of detail 11 also increases. Each is still a discrete matrix, the 

sequence growing exponentially in size with N, compare figures 4.1-4.4, 

4.6, 4.7. The constant recursive structure described in chapter 5 differing 

between the matrices only in the fine detail, is indicated and prompts the 

question of what could happen to this sequence of matrices in the limit as N 

increases indefinitely. 

One way to consider this fol,lows fig'Jres 7.1(a,b,c), and parallels the 

finite case closely. The memory is infinite (or indefinitely large) and 

discrete, each word having a po~it;ve integer address. Requests are still for 

a finite whole number of consecutive words, successive sizes being chosen 

independently at random from some fixed distribution. The range of possible 

request sizes is in general unlimited in the same way that the memory size is 

unlimited. The rate at which events are occurring is problematical however; 
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N=2 (5 x 5) 

N;3 

X 1. 

Figure 7.1 Deal location matrices D for N=2,3,4 (compare figure 5.1) 
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it has to be speeded up, or else the amount of change in a finite time 

throughout memory as a whole is indefinitely small. For otherwise if only one 

block is to be deallocated at a time, then since there are in general 
, 

infinitely many blocks in memory, the "average" block is assured of an 

infinitely long tenancy. Also, after such a deal location has occurred (of a 

block at a location whose address on average is halfway towards infinity), 

there is the possibility although with vanishingly small probability, of an 

unlimited sequence of allocations for requests after the first in the queue 

all of which can fit into the small gaps already present in memory before the 

deal location. These indefinitely long sequences of allocations will 

presumably be represented by whatever is going to correspond to the matrix 

product (I-A)-l = I+A+A2+ ••• in the finite model. 

Thi s viewpoi nt, which was call ed the 11 worm , s eye view" in the previous 

memorandum (1974a), is not very satisfactory as there is only a vague idea of 

how the infinite model works or will be represented, and also no idea of how 

different ~t ~ould bA from the large, discrete but finite models whicr Gre the 

actual objects of study. However, Reeves (1979, 1980) has considered a 

similar generalisation with success, the use of generating functions being the 

key to his analysis. 

An alternative proposal for a model to represent the limiting behaviour 

of the finite models as memory size N tends to infinity is related quite 

closely to the studies by Renyi, Palasti and others of the random intervals on 

a li~2 in one and two dimensions, described in chapter 2. It follows the 

seqUt~":'>' of figures 7.2(a,b,c) and is illustrated by figures 7.3 and 7.4. 

Inslf;c" of a di screte transition matrix P = (p .. ) of some 1 arge but fi nite 
lJ 

order there is now a real-valued function Pr = Pr(x,y) of two variables x, y 

defined on the unit square 0 ~ x,y ~ 1. For simplicity in illustrating the 
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Figure 7.3 Real-valued function Or = 0r(x,y) defined on the unit sguare 

"Bird 1 s eye view ll
; Or is zero lIeverywhere except on the diagonals shown ll

• 

principle, the deallocation matrix ° appears instead of the full transition 

matrix P in figures 7.1 and.7.2, and an attempt has been made in figure 7.3 to 

illustrate the limit of the progression in figures 7.2(a,b,c) as N increases 

indefinitely. The concept of a discrete word of memory has disappeared and an 

allocated block is instead specified by its beginning and ending endpoints, 

the interval [b,ej say, where 0 ~ b < e ~ 1. Requests for memory specify a 

size which is ~ r~~l value, positive and ~ 1 instead of a positive integer 

number of words d:'; previously. This is initially promising, for if one were 

to stand sufficiently far away from a large but finite discrete model so that 

the fine details become merged, the effect should look the same as this. This 

proposal was consequently call ed the IIbird l s eye viewll in the previous 
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Figure 7.4 Illustration of the transition equation 7.4, continuous memory 

x=l 
PT+l(y)dy = f PT(x)dx.Pr(x,y)dy 

x=o 
(IIBird's eye viewll): .... 7.4 
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manorandum (1974a) to contrast it with the "worm1s eye view". It is possible 

up to a point to write down the relations between state and transition 

probabilities corresponding to the finite model, as follows, and this 

possibility is. illustrated by figure 7.4. 

In the discrete transition matrix P, the value of the (i,j)-th element 

Pij is the probability that, starting from state i, an arbitrary transition 

will be to state j. In the limiting case shown in figures 7.3~ 7.4, if the 

model is in the state indexed by x, then the probability that an arbitrary 

transition will be to state y is Pr(x,y)dy. That is, Pr is a probability 

density function when viewed along a line of constant starting state x. 

In place of the discrete stochastic condition which says that for any 
~ 

starting state i the model must make a transition somewhere with 

probab i 1 ity 1, 

E Pij = 1 for any i, 
j 

there corresponds: 

1 S Pr(x~y)dy = 1, 
o 

any 0 ~ x ~ 1. . ... 7.3 

Similarly, in place of the iran~ition equation (the "equation of motion") of 

the system 

'lf
J
.(T+1) = E 'If.(T)p .. 

ill J 

or in matrix notation, 

~(T+l) = ~(T) • P 

for all j 
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there corresponds (see figure 7.4): 

x=l 
PT+1 (y)dy = J X=OPT(X)dX.P r(x,y)dy 

1 
PT+l (y) = SoPT(X)Pr(X,y)dX or 

•... 7.4 

v/here PT(x), PT+1 (x) are the probabil ity density functions at times T, T+1 

defined on 0 ~ x ~ 1 

PT(x)dx = Probability[model is in state x at time TJ 7.5 

Thus, the limiting probability density function p(x} of the states of the 

model as T ~ ~ satisfies 

1 
P (y) = J p( x) P ( x ,y ) dx o r 

which is a linear homogeneous integral equation of the second kind, as 

discussed in for excr;,~12 Smithies (1958). 

•••• 7.6 

Where this approach has so far failed, is not in the specification of a 

single state as a set of intervals in [0,1] but in making the correspondence 

between the set of all possible states and the same real interval. The 

progression of figures 7.2(a,b,c) to an apparent limit appears to be 

deceptive. There does not seem to be any simple way of making a 

correspondence which woul d allow a real val ue x in [0, 1J to represent such a 

state, which would include all the possible states as x varies bebJeen 0 and 

1. In other words, the set [0,1] does not seem to be a suitable index set for 

the collection of all possible configurations of disjoint intervals of [0,1J. 

It is possible that some alternative index set may be found to overcome this 

difficulty and allow such a one-to-one correspondence to be made, but this 

does not seem very likely at the moment. There does not seem to be away in 

which the theory of real-valued functions suggested by equation 7.6 could be 
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brought to bear on the problem without such a representation of all the 

possible configurations. 

7.4 Other ways of specifying time behaviour, and consequent Markov theory 

There are at least two ways in which the passage of time in the storage 

allocation system can be modelled differently from the conditions assumed in 

chapter 3. The constant time-independent behaviour which results from the 

assumed negative exponential distribution of inter-event time, can be relaxed 

and generalised if more information is available. The model will not in 

general lose its memoryless Markov property if this is done, but still remains 

a semi-Markov chain. Transitions occur as before but the time between them 

becomes dependent on the particular states and transitions. A useful 

application of this, and a good reason therefore for considering it, is to 

consider a "multiple processing" storage allocation system, instead of the 

pl~ccssor sharing model assumed in chapter 3. As for any semi-Mar~ov chain, 

the behaviour of this multiple processing model can be derived from the 

underlying full Markov chain (processor sharing) model with the extra 

knowledge of how the inter-event time is specified. This of course is one 

reason why the processor sharing model should be examined in detail first. 

A second approach is to specify that events (block deallocations) occur 
, 

randomly at given rates in real time, more likely events having greater rates 

of occurrence, and then deriving a matrix of transition rates between states 

from this, to govern the behaviour of the model. This leads to the storage 

allocation system being modelled as a continuous time Markov chain. This is 

again equivalent to the discrete time formulation adopted in the earlier 

chapters in which events are merely numbered successively as they occur, the 
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main difference being that the time between successive events is no longer 

derived separately from the statement (in the transition matrix P) of the 

relative probabilities of alternative transitions that may occur in any state • 

. Each of these two alternatives, semi-Markov chain and continuous time 

Markov chain, are considered in turn. 

7.4.1 Generalisation to semi-Markov chains; multiple processing model 

One of the original papers which introduced and described semi-Markov 

chains is that of W. L. Smith (1955). Transitions occur according to a 

transition probability matrix just as in a full Markov chain, but the time 

between events or transitions is an arbitrary random variable which in general 

depends upon which state the model is in and which transition it makes from 

that state. By i';n:Ji~ilg the variabil ity of time, a semi-Markov chain becomes 

an ordinary (fuil) ~iarkov chain; suppose its transition probability matrix is 

P = (Pij) as before, with steady state probability vector ~ = (n i ). When the 

state- and transition-dependent behaviour is introduced, the steady state 

probability vector is modified and becomes (see Smith (1955) section 4.2, 

page 20): 

S 
where ni = n.t·/( L n.t.) 

1 1 j=l J J 

where ti is the average time, or holding time, spent in state i before a 

transition occurs. 

7.7 

Equation 7.7 expresses in precise terms, what one might expect: that in 

equilibrium the model is more or less likely to be found at random in a 

particular state than in the discrete time model, according to whether its 

holding time is relatively longer or shorter, compared with the other holding 
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times. 

An example \,/here this idea is useful, is if the condition of processor 

sharing assumed in chapter 3 is altered. In processor sharing, each allocated 

block in memory lIages ll
, or is serviced, at a rate inversely proportional to 

the total number of allocated blocks, and so the expected time to the next 

deal location consequently remains constant however many blocks there are. 

Contrasting with this, a different condition would be that all the allocated 

blocks in memory continue to age each at the same rate irrespective of however 

many there are, so that \'/hen there are more blocks, transitions occur more 

quickly, and conversely. This would correspond to a multiple processing 

system, in which each allocated block has its own separate process or 

processor. In this case the holding time of any particular state is inversely 

,proportional to the number of allocated blocks. To solve such a system, one 

could as before first apply the processor-sharing theory of the full Markov 

chain and then use the weighting of equation 7.7 to get the steady state 

probabiiities in the ~emi-Markov multipie proc~5svr case. Equation 7.7 

extends to the fully general case where the average conditional holding times 

(tij ), or the average time spent in state i before a transition to state j 

occurs given that this transition will occur, can all be different. The 

unconditional holding times (ti ) are first obtained from the (tij ): 

s 
t· = 1: p .. t .. 

1 j=l lJ lJ 

and the (ti ) can then be used in equation 7.7. 

•••• 7.8 
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7.4.2 Equi val ent conti nuous time ~larkov chai n formul ation 

Another way of considering the time behaviour of the storage allocation 

system is to model it as a continuous time Markov chain, still with a finite 

discrete set of states. This is really only an alternative viewpoint as there 

is no fundamental change to the operation of the model. Elapsed time is 

measured by the continuous real variable t. The definition of states of the 

chain as configurations of the memory, is unaltered so that there are still 

S = f2N states altogether including the empty state, but instead of an S' X S' 

matrix of transition probabilities P = (p .. ) there is now an S' X S' matrix of 1J 
constant transition rates R = (r .. ) where 

1J 

r .. 
lJ = [rate of transition from state i to state j,] 

[given that the system is in state i ] 

that is, for ifj, 

[transition to state j will occur] 
r .. dt = Probabl1ity[during (t,t+dt), given that the] 
1J [model is in state i at time t ] 

, i;ij ..•. 7.9 

•••• 7.10 

If pri(t) is defined as the probability that the model is in state i at time 

t, then it follows that, for i = 1, ••• ,S', 

S' S' 
pri(t+dt) = pri(t)(l- .~.rijdt) +.~.rjiprj(t) + o(dt) 

Jr1 Jr1 

If r.. i s d efi ned : 11 

S' 
r·· = -r r·· 11 jfi 1J 

then 7.11 reduces to 

i = 1, ••• ,S' , 

S' 
pr;(t+dt) = pri(t) + (.r rJ·iprJ.(t))dt + o(dt) 

J=l 
, or 

•••• 7.11 

•••• 7.12 

•••• 7.13 
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Si 
d (pr. (t)) = r r .. pr. (t) 
dt 1 j=l J 1 J 

for i = 1, ... ,SI •••• 7.14 

which can be expressed as a matrix multipl ication: 

~I(t) =.p!:.(t) R •••• 7.15 

\'/here 'p!:'(t) is the row vector 'p!:'(t) = (pri(t)) and'p!:'l (t) is its derivative 

with respect to t. If equilibrium is approached in the limit as t increases, 

then 'p!:'1 (t) 7 Q and so 

•••• 7.16 

where 'p!:'(t) 7'p!:' as t increases. £r is the stationary probability vector of 

the continuous time Markov chain, and it can be obtained by solving 

equation 7.16. 

To obtain the transition rates R = (rij ), it is necessary only to decide 

on the rates at which the deallocations of individual blocks can occur in any 

given :.tate. Fo,' pr'ocessor sharing, the rate at which any single block in a 

given state is likely to be deallocated is as before inversely proportional to 

the number of blocks in memory in that state. For multiple processing, the 

rate of service or deallocation of any block is constijnt for all blocks in all 

states. Having determined these deal location rates, the rates of transitions 

(rij ) are then fixed, as when a deallocation occurs the subsequent and 

-irrmediate chain of allocations from the queue takes place in the same 'vlay as 

in the discrete time model. Given that a particular deal location occurring at 

d rate x Hill 1 ead if it does occur from state i to state j, i fj, with 

probability y as determined by the distributions of blocks and gaps in state i 

and the allocation algorithm, then the contribution to r ij is (xy). 

To see how the continuous time ~1arkov chain is related to the discrete 
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time chain of earl ier chapters, choose any arbitrary dt > o. Then from 

equation 7.16, 

237 

Er. (Rdt) + .£!: = £.l: , so that .£!:(Rdt + I) '= .£!: •••• 7.17 

In the processor sharing model let the (constant) rate at which deallocations 

are occurring in any state be r, so that for iij, r ij = r/~ if there are n 

blocks in state i. Then if dt is chosen so that rdt = 1 the matrix (Rdt + I) 

is just the transition probability matrix P of the discrete time chain, and 

the equilibrium vector ~ must therefore be~. Equation 7.17 then becomes 

just the steady state equation 3.11, .!. = ~P, and the continuous time ~1arkov 

formulation is equivalent to the discrete time model already considered. 

7.5 Other rule~ for all,?_cating space in the storage allocation model 

There are a number of ways in which the allocation and management of 

storage could be modelled differently fr~n ~he scheme described in chapter 3. 

This scheme is simple in many respects and deliberately so, as the variations 

which are possible introduce extra compl ication which it was judged best to 

leave out at least to begin with. This complication usually means that extra 

information ;s required to be kept to decide the probabilities of transitions 

from one state to the next, and if there is no other way, this information has 

to be absorbed into the state specification causing the total . number of states 

to go up and the relationships between individual states to become usually 

more comp 1 i cated as \~e 11 • 
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7.5.1 Removal of first queue request size, q, from state specification 

A good example of how this extra information need not always be included 

as part of the specification of a state, but can be left out instead at the 

expense of some extra computation in working out the transitions among the 

consequently unexpanded set of states, is provided by an earlier version of 

the model which was consi dered and experimented with before the present 

version described in chapter 3. In this earlier version a state of the model, 

(or Markov chain as it is also possible to prove), is specified not only by 

fixing on the sizes and positions of the allocated blocks but also by giving 

the size q of the request waiting at the head of the queue. Unlike the 

present version, situations with exactly the same configuration of allocated 

blocks and gaps in the memory, but with a different value for q, are 

represented by different states in this earlier model. Obviously some states 

are inadmissible, except (as with the empty configuration in the present 

model) as intermediate stages occurring momentarily during a complete 

transition. They are precisely the cases where the qL!eUe re(111est is less than 

or equal to the size of at least one gap in the memory. With a non-zero 

request distribution (rn), rn > 0 for all n = 1, ••. ,N, all the remaining 

states can be reached; this can be shown in the same way as the given proof in 

section 3.3.3 for the model that has been studied here. In general therefore, 

the number of possible states in this earlier model is larger than S = f 2N , 

and will be a significant fraction of the total number N X f2N of all the 

(admissible and inadmissible) states. As shown in the preceding chapters, it 

was found possible to remove the first queue request size q from the state 

specification because the relative probabilities (qJi) ) of its possible sizes 

n in any given state i could be calculated from the request distribution (rn) 

(section 3.2.4L and these were sufficient to allow the transition 

probabilities P = (Pij) to be calculated. This exclusion of q however 
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introduced the extra complication of the Q matrices (section 5.1.5) into the n 

composition of the transition probability matrix P. 

7.5.2 Delayed collapsing of free gaps, and garbage collection 

Usually, any extra rules or information describing how the model works 

can only obviously be managed by making the state definition more precise, 

thus increasing the total number of states. (A notable exception however is 

the buddy system, see the next section 7.5.3 below.) An example is provided 

by the possibility of changing the collapsing rule which in the present model 

requires that a gap created by the deallocation of a block is ilrunediately 

merged with its neighbours. One alternative way that collapsing is sometimes 

implemented is to only do garbage collection, as it is known, as a special 

operation when a request is tried \'Ihich cannot be allocated entirely within 

any of the existing gaps as defined in the free storage list maintained by the 

allocation routine. When this happens, the special garbage collection process 

merges any adjacent free gaps to see if the waiting request can then be 

allocated into any of the larger gaps so formed. The idea is to save time by 

doing the extra housekeeping of collapsing less often. Hm;f,!"er, it is known 

from simulation results such as those of Nielsen (1977) for example, that as 

might be expected the storage utilisation of such a scheme is lower and memory 

becomes more fragmented than in a se il':'!!l1C Hh ic il .. lUtomat i ca 11 y merges adj acent 

free gaps together. 
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7.5.3 Buddy systems; no extra state information needed 

Another vlell known example of a class of storage allocation systems which 

delay the collapsing of adjacent free blocks are the various buddy systems~ 

outlined in cnapter 2 section 2.2. Adjacent free gaps will only be combined 

if they and all their buddies are free, and in systems of the buddy type it is 

perfectly possible for there to be adjacent free gaps which can not be 

combined together. This apparently extra information is in fact redundant as 

it can be constructed from a knowledge of the allocated blocks' positions 

and sizes. The model as defined in chapter 3 and its algebraic 

representation in chapter 5 is therefore sufficient for buddy-type systems~ 

needing only a set of correctly defined allocation matrices An. 

As an example, figure 7.5 shows the allocation incidence matrix for 

N = 4, for the original binary buddy system of Knowlton (1965) (compare figure 

5.7, the generalised alloca~icr. incidence matrix for N=4). Many of the total 

S = f2N configurations will be inadmissible in a buddy-type system, all those 

containing blocks which straddle a boundary between buddies without completely 

occupying both of them, and the allocation matrix will avoid these states 

which therefore can never occur. In figure 7.5 for exampl e, states 6, 7, 8, 

19, 20, 27, 28, and 29 cannot occur in the binary buddy system because they 

all contain blocks which lie across the boundary between the buddies formed by 

words (1,2) and (3,4) without occupying all of both of them, as in state 21 

which is a possible state. There will also be an il11plementation difference in 

the C~ll)L:r~ of \",hich of alternative equal sized buddies should be used to 

allocate a request. The model of chapter 3 cannot imitate the usual 

implementation which uses whichever is currently the first in a last in, first 

out (that is, a stack) list. Since all buddy systems organise the memory into 

a tree-like structure so that there can be no interaction between blocks 
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Figure 7.5 Allocation incidence matrix for the binary buddy system, N=4 

Compare this figure with figure 5.7. All possible allocations in the binary 
buddy system are shown. The entries are not probabilities, but indicate where 
nOIl-zero allocation transition probabil ities may occur. Each entry 
(1,2,3 or 4) is the size of request for the corresponding allocation. 
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contained in separate buddies until those buddies are recombined, this will 

make no difference to such measures of storage utilisation or fragmentation as 

for instance the counts of how many blocks there are of a given size, but only 
, 

to where the bJocks actually happen to be. Because so many of the 

configurations of the general model are inadmissible in this well defined way, 

it may be possible to simplify the set of states to some advantage and 

therefore the algebra to automatically exclude them when analysing a buddy 

type of system. 

7.5.4 Circular instead of linear storage 

A device sometimes adopted to simplify analysis by avoiding end effects, 

and also because computer addressing modulo arithmetic can allow its 

implementation (especially perhaps in a virtual memory environment), is to 

assume that the memory is circular so that if the words of memory are numbered 

in ord~r from 1 to N, then word 1 follows word N without any boundary. A good 

example of an analysis where this is assumed is that of Reeves (1979, 1980). 

It should be noted in passing that the end effects so avoided can be claimed 

to be both important and interesting, see for exampl e Page (1959) who however 

was studying a related problem in which blocks were only put into storage, and 

not (at least during the first stage of his problem) subsequently taken out 

again. 

In the pr\~5ent model, the set of states or memory configurations must be 

extended to inc!,de all the extra cases in which blocks are allowed to 

straddle the former (N,l) boundary of the linear memory. The reorganisation 

of this expanded set of states into some sort of order corresponding to that 

defined in section 4.3 for example, seems to be tantalisingly difficult. 
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Ideally, such a representation of the states should avoid repeating states 

which are merely rotations of each other. In a circular memory such states 

are equivalent for the purpose of allocating a new re~uest and modelling the 

subsequent behaviour, for all allocation algorithms except those which take 

account of and use a fixed numbering of the words of memory, for instance 

those which have an arbitrary fixed starting point. 

Figure 7.6(a) shows the S = 34 possible configurations of an N = 4 word 

memory, together with the extra 12 cases introduced by circularity in no very 

good order, making 46 altogether. In part (b) of this figure the 32 of these 

states which are merely rotations of an already listed state have been 

excluded to leave only 14. Figure 7.7 shows the deallocation and generalised 

allocation incidence matrices for this reduced set of states when rotations 

are considered equivalent to each other (compare figures 5.1, 5.7). 

7.5.5 Unsaturated request queue, and resulting modifications to the al!;Jebra 

A very interesting change which can be made to the model as defined in 

chapter 3, is to modify the arrival rate of requests in the queue relative to 

the service rate as represented by their allocation in the memory so that the 

queu~ is no longer saturated and ~ay become empty. If this ,is done, then the 

behaviour of an allocation scheme with an unsaturated request queue can be 

investigated, and in some respects this turns out to be easier to do. Most 

previous analyses of storage fragmentation have assumed a completely 

unsat:,r'ated request queue, requests being serviced (allocated) as soon as they 

arrive. Although storage utilisation is of great interest in a situation 

where the queue of requests is saturated or nearly so and the throughput is 

desired to be as high as possible, it is still relevant to enquire about the 
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Figure 7.6 Extra states included for a circular memory, N=4 

(a) The original 34 and the extra 12, (in no very good order). 
(b) 32 of the 46 can be excluded if rotations are considered equivalent. 
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Figure 7.7 Deallocation and allocation incidence matrices, circular memory 

Memory size N=4. States which are rotations are considered equivalent, see 
figure 7.6. Compare figures 5.1, 5.7 for the linear memory matrices. 
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behaviour of a storage allocation scheme in which each request can be serviced 

or allocated as soon as it arrives, for instance so as to know how much memory 

is needed in order for this situation to hold. 

If the request queue is to be unsaturated, simple queueing theory (as 

well as common sense) dictates that its average rate of arrivals must not 

exceed the average service rate, in other words that the traffic intensity 

p = arrival rate / service rate 

must be no greater than 1. Once again, a simple first approach is to assume 

that processor sharing is in force, so that the single server (the combination 

of processor and memory) works at a constant rate independent of the number of 

allocated blocks as long as there is at least one, and to assume that both the 

service and arrival times are independent random variables with negative 

exponential distributions, so that the storage allocation scheme becomes an 

M/M/1 queue. 

7.5.5.1 Comparison of the empty queue, finite queue and infinite queue models 

As a first simplified approximation to this unsaturated request queue 

model, if the traffic intensity p is not too close to 1 and the memory size N 

is reasonably large compared with the average request size, then the 

possibility of overflow (no room for a request in memory) can be ignored. One 

way to realise this, is just to discard those requests which arrive and cannot 

be immediately ·)1 located due to insufficient available space. A queue of 

requests is then never allowed to fOnil. It should be stressed again that this 

empty queue simplification is to allow a first attempt at this unsaturated 

model to concentrate on the memory space allocation and fragmentation 
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behaviour alone, although of course the empty (or immediately served) queue 

model is the one most often used in storage allocation studies. The action of 

the storage allocation model is different \'1hen the queue is empty, when it 

con~ains a finite number of requests, and when it can be assumed infinite, and 

the behaviour of the queue varying between these cases can be added after the 

empty queue model has been studied. 

The empty queue model differs in three ways from the saturated or 

infinite queue model. First, the probability distribution of the size q of 

the request at the head of the queue is no longer conditional on the maximum 

size of gap in memory, and is in fact unchanged from the original request 

distribution (rn). This is a considerable simplification of the algebra since 

there are no Q-matrices. Second, events in the model are identified with 

deal locations as before, but also with allocations as well. Third, only one 

allocation is performed at each allocation event, instead of the chain of 

al-Iocations which stop only when a request is reached which will not fit, and 

this also is a considerable simplification of the algebra in chapter 5. 

In the finite queue model, when the queue is not empty but cannot be 

assumed infinite, the waiting request queue size q will have the qJi} 

distribution (equation 3.8) as in the infinite queue model, and events only 

'occur at deallocations, as in the infinite queue model, but after a 

deallocation, the chain of allocations has to stop if and when the existing 

queue has been exhaust'ed. The general, varying queue length model is a 

combi nat ion of the empty and fi nite queue model s, with events occurring both 

as ne\'J requests arrive at the queue and whenever a block is deal located from 

the memory. 
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7.5.5.2 The empty queue model 

The transition probability matrix of the empty queue model is much 

simpler than in the infinite queue model and it can be written down directly 

in terms of the basic allocation and deal location matrices of chapter 5. For 

traffic intensity p, except when the memory is empty the probability that a 

randomly chosen event is a deallocation (service) event is l/(l+p), and that 

it is an allocation (arrival) is p/(l+p). With the allocation matrix A, 

deallocation matrix D and allocation termination matrix T as defined in 

chapter 5, (equations 5.9 and 5.1) the transition probability matrix Pe of the 

empty queue model can be expressed: 

Pe = l/(l+p) X D + p/(l+p) X (A+T) •••• 7.18 

everywhere except for the row corresponding to the empty state. This last row 

of Pe is equal to the corresponding row of the allocation matrix A. Since D 

and T are zero in this row anyway, the only alteration necessary to make 

eyuation 7.18 completely correct is to replace the coefficient p/(l+p) of A uy 

the value unity for this row only. Pe is thus much easier to write down than 

its counterpart P is in the infinite queue case, as can be seen by comparison 

with equations 5.12 or 5.13. As an example, figure 7.8 shows Pe for N = 4, 

with the first fit allocation algorithm. The addition of the three matrices 

D, A, T in equation 7.18 is a simple affair as D is strictly upper triangular, 

A is strictly lower triangular and T is diagonal. 
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Figure 7.8 Transition probabil ity matrix Pe for the empty queue model, N=4 

This matrix is easily formed according to equation 7.18 merely by 
superimposing 0 (upper triangle), A (lower triangle) and T (diagonal) with the 
appropriate coefficients; compare figures 5.1, 5.14 (first fit algorithm). 
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7.5.5.3 The finite queue model 

The variation of this model's behaviour from the infinite queue model 

when there is an non-empty but finite queue is in one respect only, that after 

a deallocation' a maximum of only as many allocations as there are requests in 

the queue is possible. The transition probability matrix Pf thus resembles P 

of the infinite queue model closely (compare equations 5.12, 5.13): 

Pf = EQnDTn + (EQnDAn)(T+A(T+ ••• +A(T+A) ••• » (L-1 factors) 

= EQnDTn + (EQnDAn)((I+A+A2+ ••• +AL-2)T+AL-1) .... 7.19 

where the queue length is L requests. If L is not less than the memory size, 

L ~ N, then Pf = P. 

7.5.5.4 Unsaturated model as a combination of empty and finite queue models 

As already mentioned, the transition probability matrix of this model 

will have to combine the algebraic statements of Pe and Pf , equations 7.18 and 

7.19 above, and also to keep track of changes of the number of elements in the 

queue. The latter may be possible separately, for example just by using the 

probabil ity (l_p)pL of finding L requests in the M/M/! queue. It will be 

interesting to develop both this model and especially that of the empty queue 

in their own right, to see if and how far the simpler algebra can be analysed 

and compared with the existing results of others in the published literature. 



7.6 Summary 251 

7.6 Summary of further analysis and extension of storage allocation models 

The study and application of the storage allocation model so far 

developed can be continued and extended in a number of useful ways. More 

pOWerful numerical methods, perhaps those recently suggested by Stewart (1977) 

may allo\'/ the convergence of the computations described in chapter 6 to be 

accelerated. This in turn should allow computations for slightly larger 

memory sizes, although the exponentially increasing amount of information 

required in these calculations is still a limiting factor. There are 

reasonable prospects of being able to learn more of the model's structure by 

continuing the algebraic analysis presented in chapter 5. There is also still 

a possibility that a useful way of defining an analogous infinite model 

amena~le to analysis may be found, either by extending memory size N to 

infinity in the discrete case or by IIsmearingll the discreteness to the real 

continuum. The model may be made more general, either in its time behaviour 

as a semi-Markov chain or s~ochas~ic renewal process, or else by introducing 

extra rule~ for allocating storage, fo~ example to study systems in which the 

treatment of gaps is more general, such as those including garbage collection. 

Buddy systems can already be represented by the present model, although their 

study may be helped by rearranging the set of states or memory configurations 

into an order which more closely represents their natural interrelationships 

in any particular system. Models of circular memory are sometimes studied to 

avoid awkward end effects, and rearranging the states will be necessary in 

this case also. The extension of the model to the case where the queue of 

requests is not saturated but can become empty introduces alternative 

algebraic derivations of the transition probability matrix when the queue is 

empty or only finite, and these can be combined to produce a stochastic model 

for such an unsaturated queue. 
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A topical example of a useful way in which to extend and apply the 

analysis of the present model, would be to build an algebraic model 

corresponding to that studied by Reeves (1979, 1980). This has a circular 

storage (thoug~ this may not of course introduce significant differe~ces for 

large memories, depending on the request distribution) and uses the empty 

queue described above, requests being satisfied immediately they arrive. It 

would be most interesting to compare the analysis of such a model with the 

results obtained by using generating functions, and it would not be surprising 

if at least one of the methods could benefit from results obtained by the 

other. 
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Chapter 8 Conclusion 

This thesis has presented a survey of the existing studies which have 

been made of the behaviour and performance of systems concerning the 

allocation and fragmentation of storage, and a method of analysing such an 

allocation scheme as a probability model. In the simplest cases, the model is 

a finite discrete-time Markov chain, and an example in which this is the case 

has been justified and studied. Quantities of interest such as the average 

amount of storage which is allocated to requests at any time, can be derived 

from the consequent vector of state probabilities. The transition probability 

matrix upon which these probabilities depend has been discovered to have a 

recursive structure. This arises from the simple recursive nature of certain 

more basic matrices of probabil ities of which the transition matrix ;'s 

composed. Advantage has been taken of this algebraic structure in a numerical 

implementation to calculate the state and eventually the steady state 

probabil ities, of which the 1 atter are ir.pcrtant becal.!se they determine the 

average performance of the allocation scheme in equilibrium. This computation 

avoids storing the transition matrix and so uses less time and space. By this 

means, models with larger memories have been computed than would otherwise 

have been possible. Although the manory sizes are still small, the results 

can provide useful indications of the performance of 1 arger but otherwi se 

corresponding models. The algebraic composition of the transition matrix has 

also lea to the discovery of an unexpected simpl ification of the steady state 

equat~,ns ~'Ihich determine the steady state probabil ities. The dependence of 

these )robabilities on the choice of allocation algorithm and the request 

distritJution is expressed in a much more direct way in these simple equations 

than it is in the original version. The simplicity of the reduced form of 

these equations should make them amenable to further analysis in a number of 
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ways besides those presented here, and some possible further uses and 

investigation of the algebraic structure which has been found, have been 

indicated. 

It is conventional to make concluding remarks under the above heading, 

but in the present case the term is misleading as the most interesting work is 

yet to come. The value of the ideas and analysis which have been presented in 

the preceding chapters is mainly that they have begun the foundation of an 

analytical technique for studying dynamic storage allocation and fragmentation 

phenomena where, with few except ions, none existed before. The benefi ts \'/hi ch 

lie ahead will come by further use of this technique on the wide range of 

storage allocation models to which it can be applied, to see where and how far 

the analysis will lead. The author is confident that the applications 

presented here represent only a beginning, and that there is still plenty of 

mileage left in the sturdy treads of this approach to the "storage 

fragmentation problem". 

One of the above-mentioned exceptions is Reeves' generating function 

technique, the analytical approach of which is complementary to the present 

work. The general method presented here in this thesis is to describe the 

behaviour of a storage allocation model by means of a probability vector 

containing one element for each state and to rely on discovering and u$ing the 

resulting discrete and recursive structure of the transition matrix to 

determine and compare the model's performance. By contrast, in Reeves' method 

other but similar probability variables (such as the probability in 

equil ibrium th~t. ,~ randomly chosen gap or block is of a given size) which 

contain the infor,ilation about what is going on in the model are considered and 

in fact they are made to be the coefficients in a generating function. The 

principle of this analytical technique then becomes simple enough; the 
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allocation and deallocation actions of the model determine conditions which 

the generating functions so introduced must satisfy. The functions can then 

be determined from these and any similar conditions which arise from their 

definition, and the main purpose of the investigation is to extract properties 

of the model such as the performance statistics from the form of these 

functions. This simpl icity of principle belies the considerable practical 

skill needed with this as with most theoretical model building, the ability to 

successfully compromise between what is analytically possible and the 

complexities of real life. The application of the algebraic technique 

developed here in the present work will bring pJenty of opportunities to 

practise the art of bringing these tv/o opposing factors together without 

losing the important features of any situation being considered. 



256 

References 

Batson, A. P., Brundage, R. E. (1977): 
Segment sizes and lifetimes in Algol 60 programs. 
CACM 20,1 (January 1977), 36-44. 

Batson, A. P.; Ju, S.-t~., Wood, D. C. (1970): 
Measurements of segment size. 
CACM 13,3 (March 1970), 155-159. 

Bauer, F. L. (1958): 
On modern matrix iteration processes of Bernoulli and Graeffe type. 
JACM 5 (1958), 246-257. 

Bays, C. (1977): 
A comparison of next-fit, first-fit and best-fit. 
CACM 20,3 (March 1977), 191-192. 

Bellman, R. (1970): 
Dynamic programming. 
Princeton university press, Princeton N.J. (1957). 
Markovian decision processes are formulated in chapter 11. 

Bernal, J. D. (1959): 
A geometrical approach to the structure of liquids. 
Nature 183 (1959), 141-147. 

Be rna 1, J. D. (1960 ) : 
Geometry of the structure of monatomic liquids. 
Nature 185 (1960),68-70. 

Bernal, J. D., Mason, J. (1960a): 
Co-ordination of randomly packed spheres. 
Nature 188 (1960),910-911. 

Betteridge, 1. (1971): 
An analysis of relocating storage allocation fragmentation. 
Newcastl e University Computing Laboratory report MR~1/10 (March 1971). 

Betteridge, T. (1973): 
An analytic storage allocation model. 
Newcastle University Computing Laboratory technical report 43 
(March 1973). 

Betteridge, To (l973a) : 
Structure ot the transition probability matrix of the storage allocation 
probl em. 
Newcastl e i.J' i versity Computing Laboratory report MRM/65 (October 1973). 

Betteridge, To (1974): 
An analytic storage allocation model. 
Acta Infonnatica 4, (1974), 101-122. 



References 257 

Betteridge, T. (1974a): 
Infinite extensions of the storage allocation model. 
Newcastl e University Computing Laboratory report ~lRW79 (December 1974). 

Betteridge, T. (1977): 
Towards exact solutions of the storage fragmentation problem. 
Newcastl e University Computing Laboratory report MR~l/129 

. (September 1977). 

Bodewi g, E. (1956): 
Natrix cal cul us. 
North Holland, Amsterdam (1956). 

Bromi ey, A. G. (1977): 
Memory fragmentation in buddy methods for dynamic storage allocation. 
University of Sydney Basser Department of Computer Science technical 
report 121 (May 1977), (al so submitted for publ ication to 
Acta Informat ica) • 

Bryan, G. E. (1967): 
JOSS: 20,000 hours at a console - a statistical summary. 
AFIPS Fall Joint Computer Conference Proceedings, volume 31 (1967), 
769-777 • 

Burton, W. (1976): 
A buddy system variation for disk storage allocation. 
CACM 19,7 (July 1976),416-417. 

Campbell, J. A. (1971): 
A note on an optimal-fit method for dynamic allocation of storage. 
Computer Journal 14,1 (January 1971), 7-9. 

Coffman, E. G. jr., ~luntz, R. R., Trotter, H. (1970): 
Waiting time distributions for processor-sharing systems. 
JACM 17 (1970), 123-130. 

Co11ins, G. O. jr. (1961): 
Experience in automatic storage allocation. 
CACM 4,10 (October 1961),436-440. 

Coxeter, H. S. t;1. (1958): 
Close-packing and froth. 
Illinois J. Math. 2 (1958), 746-758. 

Cranston, B., Thomas, R. (1975): 
A simplified recombination scheme for the Fibonacci buddy system. 
CACM 18,6 (June 1975), 331-332. 

De n ni' (j, P. J. (1970) : 
Vi rtud 1 memory. 
Cc:nputing Surveys 2,3 (September 1970),153-189. 

Domb, L. (1947): 
The problem of random intervals on a line. 
Pl~oceedings of the Cambridge Philosophical Society 43 (1947), 329-341. 



258 References 

Dvoretzky,A., Robbins, H. (1964): 
On the "parking problem". 
Publ ication of the ~1athematical Institute of the Hungarian Academy of 
Science 9 (1964), 209-226. 

Dynkin, E. B., Yushkevich, A. A. (1969): 
Markov processes: theorems and problems. 
Plenum press, New York (1969). 
Pages 87-98 describe the optimal stopping problem. 

Feller, w. (1968): 
Introduction to probability theory and its applications, volume 1. 
Wiley, New York 3rd edition: (1968). 

Fenton, J. 5., Payne, D. W. (1974): 
Dynamic storage allocation of arbitrary sized segments. 
IFIP Congress 1974, Volume 2: Software. North Holland (1974), 344-348. 

Gantmacher, F. R. (1959): 
The theory of matrices, volume 2. 
Chelsea publishing company, New York (1959). 

Gelenbe, E. (1971): 
The two-thirds rule for dynamic storage allocation under equilibrium. 
Information Processing Letters 1,2 (July 1971), 59-60. 

Gragg, W. B. (1972): 
The Pade tabl e and its rel ation to certai n al gorithms of numerical 
methods. 
SIM1 Review 14,1 (January 1972), 1-62. 

Hinds, J. A. (1975): 
An algorithm for locating adjacent storage blocks in the buddy system. 
CACM 18,4 (April 1975), 221-222. 

Hirschberg, D. S. (1973): 
A class of dynamic memory allocation algorithms. 
CACM 16,10 (October 1975), 615-618. 

Howard, R. A. (1960): 
Dynaffi~c programming and Markov processes. 
MIT Technology Press, and Wiley, New York (1960). 

Isoda,S., Goto, E., Kimura, I. (1971): N 
An efficient bit-table technique for dynamic storage allocation of 2 -
word blockS. 
CACM 14.9 (September 1971), 589-592. 

Jennings, A., . ewart, W. J. (1975): 
Simultane:Hc:, iteration for partial eigensolution of real matrices. 
J. Inst. t':ath. Appl. 15 (1975), 351-361. 



References 

Kleinrock, L. (1976): 
Queueing systems, volume 2: Computer applications. 
~li 1 ey, New York (1976). 
Processor sharing is referred to on page 166. 

Knowlton, K. C. (1965): 
A programmer1s description of LLLLLL, Bell Telephone Laboratories 

. low-level list language. 
Bell Telephone Laboratories, Inc., (~larch 1965). 

Kno\'Jlton, K. C. (1965a): 
A fast storage allocator. 
CACM 8,10 (October 1965), 623-625. 

Knuth, D. E. (1968,1973): 
The art of computer programming, volume 1: Fundamental algorithms. 
Addison Wesley, Reading ~lass. (1968); 2nd edition: (1973). 
Storage allocation is discussed in pages 435-455. 

Krogdahl, S. (1973): 
A dynamic storage allocation problem. 
Information processing letters 2,4 (October 1973),96-99. 

Lehman, N. M., Rosenfeld, J. L. (1968): 
Performance of a simulated multiprogramming system. 
AFIPS Fall Joint Computer Conference 33 (1968), 1431-1442. 

Lovell, A. C. B. (1968): 
The story of Jodrell Bank. 
Oxford University Press, London (1968), 139-140. 

Maher, R. J. (1961): 
Problems of storage allocation in a multiprocessor multiprogrammed 
system. 
CACM 4,10 (October 1961), 421-422. 

Mannion, D. (1964): 
Random space-filling in one dimension. 
Publ ication of the t~athematical Institute of the Hungarian Academy of 
Science 9 (1964), 143-154. 

Margolin, B. H., Parmelee, R. P., Schatzoff, M. (1971): 
Analysis of free storage algorithms. 
lB~'l System Journal 10,4 (1971), 283-304. 

~1atzke, E. B. (1950): 
In the twi nkl i ng of an eye. 
'.l.i!ietin Torrey Botanical Club 77 (1950),.222-2.27. 

Ney, P. f:. ( 1962 ) : 
J.'. random interval filling problem. 
flJl!lal s of tvJath. Statistics 33 (1962), 702-718. 

259 



260 References 

Nielsen, N. R. (1977): 
Dynamic memory allocation in computer simulation. 
CAC~1 20,11 (November 1977), 864-873. 

Organick, E. I. (1973): 
Computer system organization - the B5500/B6700 series. 
Academic.Press, New York (1973). 

Page, E. S. (1959): 
The distribution of vacancies on a line. 
J. Royal Statistical Society B 21,2 (1959), 364-374. 

Palasti, 1. (1960): 
On some random space filling problems. 
Publ ication of the Nathematical Institute of the Hungarian Academy of 
Science 5 (1960), 353-360. 

Peterson, J. L., Norman, T. A. (1977): 
Buddy systems. 
CACM 20,6 (June 1977), 421-431. 

Purdom, P. W. jr., Stigler, S. N. (1970): 
Statistical properties of the buddy system. 
JACM 17,4 (October 1970), 683-697. 

Purdom, P. W. jr., Stigler, S. M., Cheam,T.-O. (1971): 
Statistical investigation of 3 storage allocation algorithms. 
BIT 11 (1971), 187-195. 

Randell, B. (1969): 
A note on storage fragmentation and program segmentation. 
CACM 12,7 (July 19ti9), 36S-372. 

Randell, B., Kuchner, C. J. (1968): 
Dynamic storage allocation systems. 
CACM 11,5 (Nay 1968), 297-306. 

Reeves, C. M. (1979): 
Free store distribution under random-fit allocation. 
Computer Journal 22,4 (November 1979, to appear). 

Reeves, C. M. (1980): 
Free store distribution under random-fit allocation, part 2. 
Computer Jou~nal 23,2 (May 1980, to appear). 

Renyi, A. (1958) : 
On a one-d"!rne'1sional problem concerning random space-filling. 
PublicatH)( :::f the Mathematical Institute of the Hungarian Academy of 
S . ') f "'ha) 109 127 ClenCe..; ,.'::::Ju, - • 

Robbins, H. E. (1944): 
On the meaSlir'e of a random set. 
Annals Math. Statistics 15 (1944), 70-74. 



References 261 

Robson, J. M. (1971): 
An estimate of the store size necessary for dynamic storage allocation. 
JACM 18 (1971), 416-423. 

Robson, J. M. (1974): 
Bounds for some functions concerning dynamic storage allocation • 

. JACM 21,3 (July 1974),491-499. 

Robson, J. M. (1977): 
Worst case fragmentation of first fit and best fit storage allocation 
strategies. 
Computer Journal 20,3 (August 1977), 242-244. 

Russell, D. L. (1977): 
Internal fragmentation in a class of buddy systems. 
SIAM J. Computing 6,4 (December 1977), 607-621. 

Scherr, A. (1967): 
An analysis of time-shared computer systems. 
MIT Technology Press (1967). 

Scott, G. D. (1960): 
Packing of spheres. 
Nature 188 (1960), 908-909. 

Scott, G. D. (1962): 
Radial distribution of the random close packing of equal spheres. 
Nature 194 (1962), 956-958. 

Seneta, E. (1973) : 
Non-negative matrices. 
r.ll(;n and Unwin, London (1973). 

Shen, K. K., Peterson, J. L. (1974): 
A weighted buddy method for dynamic storage allocation. 
CAOl 17,10 (October 1974),558-562; Corrigendum, CACM 18,4 (April 1975), 
202. 

Shore, J. E. (1975): 
On the external storage fragmentation produced by first fit and. best fit 
allocation stragegies. 
CA CM 18,8 (August 1975), 433-440. 

Shore, J. E. (1977): 
Pmomalous behaviour of the fifty-percent rule in dynamic memory 
al1ocation. 
CM,pl 20,11 (November 1977), 812-820. 

Srn-i t (I.. ',~. L • (1955 ) : 
k~gcnerative stochastic processes. 
Pr:JC. Royal Society A 232 (1955),6-31. 



262 References 

Smithies, F. (1958): 
Integral equations. (Cambridge tracts in mathematics and mathematical 
physics, no. 49). 
Cambridge University Press (1958). 

Solomon, H. (1965): 
Random packing density. 
Stanford University Department of Statistics technical report 105 
(Jul y 1965). 

Stevens, W. L. (1939) : 
Solution to a geometrical problem in probability. 
Annals of Eugenics, London 9 (1939), 315-320. 

Stewart, W. J. (1977): 
A new approach to the numerical analysis of Markovian models. 
In: Computer perfonmance (editors: K. M. Chandy, M. Reiser), 
North Holland (1977), 279-295. 

Stewart, W. J. (1978): 
A comparison of numerical techniques in Markov modelling. 
CA CM 21,2 (February 1978), 144-152. 

ling, D. W. (1975): 
Some results of the space requirements of dynamic memory allocation 
algorithms. 
Cornell University Department of Computer Science technical report 75-229 
(Februa ry 1975). 

Totschek, R. A. (1965): 
An empirical investigation into the behaviour of the SDC timesharing 
system. 
Report SP 2191, System Development Corporation, Santa Monica, California 
(1965), AD 622 003. 

Vota\v, D. F. jr. (1946): 
The probability distribution of the measure of a random linear set. 
Annals of Mathematical Statistics 17 (1946), 240-244. 

Weinstock, C. B. (1976): 
Dynamic storage allocation techniques. 
Ph. D. Thesis, Carnegie-Mellon University (1976). 

Wynn, P. (1961): 
The epsilon algorithm and operational fonmulas of numerical analysis. 
Nath. Comp. 15 (1961), 151-158. 


	449696_001
	449696_002
	449696_003
	449696_004
	449696_005
	449696_006
	449696_007
	449696_008
	449696_009
	449696_010
	449696_011
	449696_012
	449696_013
	449696_014
	449696_015
	449696_016
	449696_017
	449696_018
	449696_019
	449696_020
	449696_021
	449696_022
	449696_023
	449696_024
	449696_025
	449696_026
	449696_027
	449696_028
	449696_029
	449696_030
	449696_031
	449696_032
	449696_033
	449696_034
	449696_035
	449696_036
	449696_037
	449696_038
	449696_039
	449696_040
	449696_041
	449696_042
	449696_043
	449696_044
	449696_045
	449696_046
	449696_047
	449696_048
	449696_049
	449696_050
	449696_051
	449696_052
	449696_053
	449696_054
	449696_055
	449696_056
	449696_057
	449696_058
	449696_059
	449696_060
	449696_061
	449696_062
	449696_063
	449696_064
	449696_065
	449696_066
	449696_067
	449696_068
	449696_069
	449696_070
	449696_071
	449696_072
	449696_073
	449696_074
	449696_075
	449696_076
	449696_077
	449696_078
	449696_079
	449696_080
	449696_081
	449696_082
	449696_083
	449696_084
	449696_085
	449696_086
	449696_087
	449696_088
	449696_089
	449696_090
	449696_091
	449696_092
	449696_093
	449696_094
	449696_095
	449696_096
	449696_097
	449696_098
	449696_099
	449696_100
	449696_101
	449696_102
	449696_103
	449696_104
	449696_105
	449696_106
	449696_107
	449696_108
	449696_109
	449696_110
	449696_111
	449696_112
	449696_113
	449696_114
	449696_115
	449696_116
	449696_117
	449696_118
	449696_119
	449696_120
	449696_121
	449696_122
	449696_123
	449696_124
	449696_125
	449696_126
	449696_127
	449696_128
	449696_129
	449696_130
	449696_131
	449696_132
	449696_133
	449696_134
	449696_135
	449696_136
	449696_137
	449696_138
	449696_139
	449696_140
	449696_141
	449696_142
	449696_143
	449696_144
	449696_145
	449696_146
	449696_147
	449696_148
	449696_149
	449696_150
	449696_151
	449696_152
	449696_153
	449696_154
	449696_155
	449696_156
	449696_157
	449696_158
	449696_159
	449696_160
	449696_161
	449696_162
	449696_163
	449696_164
	449696_165
	449696_166
	449696_167
	449696_168
	449696_169
	449696_170
	449696_171
	449696_172
	449696_173
	449696_174
	449696_175
	449696_176
	449696_177
	449696_178
	449696_179
	449696_180
	449696_181
	449696_182
	449696_183
	449696_184
	449696_185
	449696_186
	449696_187
	449696_188
	449696_189
	449696_190
	449696_191
	449696_192
	449696_193
	449696_194
	449696_195
	449696_196
	449696_197
	449696_198
	449696_199
	449696_200
	449696_201
	449696_202
	449696_203
	449696_204
	449696_205
	449696_206
	449696_207
	449696_208
	449696_209
	449696_210
	449696_211
	449696_212
	449696_213
	449696_214
	449696_215
	449696_216
	449696_217
	449696_218
	449696_219
	449696_220
	449696_221
	449696_222
	449696_223
	449696_224
	449696_225
	449696_226
	449696_227
	449696_228
	449696_229
	449696_230
	449696_231
	449696_232
	449696_233
	449696_234
	449696_235
	449696_236
	449696_237
	449696_238
	449696_239
	449696_240
	449696_241
	449696_242
	449696_243
	449696_244
	449696_245
	449696_246
	449696_247
	449696_248
	449696_249
	449696_250
	449696_251
	449696_252
	449696_253
	449696_254
	449696_255
	449696_256
	449696_257
	449696_258
	449696_259
	449696_260
	449696_261
	449696_262
	449696_263
	449696_264
	449696_265
	449696_266
	449696_267
	449696_268
	449696_269
	449696_270

