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Abstract 

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-

ToF MS) is a technique by which protein profiles can be rapidly produced from 

biological samples. Proteomic profiling and biomarker identification using MALDI-ToF 

MS have been utilised widely in microbiology for bacteria identification and in clinical 

proteomics for disease-related biomarker discovery. To date, the benefits of MALDI-

ToF MS have not been realised in the area of mammalian cell culture during 

bioprocessing. 

 

This thesis explores the approach of ‘intact-cell’ MALDI-ToF MS (ICM-MS) combined 

with projection to latent structures – discriminant analysis (PLS-DA), to discriminate 

between mammalian cell lines during bioprocessing. Specifically, the industrial 

collaborator, Lonza Biologics is interested in adopting this approach to discriminate 

between IgG monoclonal antibody producing Chinese hamster ovaries (CHO) cell lines 

based on their productivities and identify protein biomarkers which are associated with 

the cell line productivities. After classifying cell lines into two categories (high/low 

producers; Hs/Ls), it is hypothesised that Hs and Ls CHO cells exhibit different 

metabolic profiles and hence differences in phenotypic expression patterns will be 

observed. The protein expression patterns correlate to the productivities of the cell lines, 

and introduce between-class variability. The chemometric method of PLS-DA can use 

this variability to classify the cell lines as Hs or Ls. 

 

A number of differentially expressed proteins were matched and identified as 

biomarkers after a SwissProt/TrEMBL protein database search. The identified proteins 

revealed that proteins involved in biological processes such as protein biosynthesis, 

protein folding, glycolysis and cytoskeleton architecture were upregulated in Hs. This 

study demonstrates that ICM-MS combined with PLS-DA and a protein database search 

can be a rapid and valuable tool for biomarker discovery in the bioprocessing industry. 

It may help in providing clues to potential cell genetic engineering targets as well as a 

tool in process development in the bioprocessing industry. With the completion of the 

sequencing of the CHO genome, this study provides a foundation for rapid biomarker 

profiling of CHO cell lines in culture during recombinant protein manufacturing. 
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1. Introduction of Thesis  

Mammalian cell lines have the potential to synthesize, perform complex folding and 

post-translational modifications (e.g. glycosylation) necessary for in vivo biological 

activity; and secrete complex proteins in large-scale suspension cell culture. These 

characteristics give them a significant advantage over their prokaryotic counterparts 

such as bacteria cells (Andersen and Krummen, 2002). The increasing demand for 

biotherapeutic products such as monoclonal antibodies necessitates improved large-

scale production of these complex heterologous proteins from mammalian cell lines. 

Consequently, the biopharmaceutical industry has endeavoured to enhance product titres 

and/or yield by investing in the engineering of cell culture processes resulting in high-

producing cell cultures. Examples of mammalian cell culture cell lines which have been 

extensively used in the biotechnology industry for the production of recombinant 

proteins for biotherapeutic applications include Chinese hamster ovary (CHO), baby 

hamster kidney (BHK), and mouse hybridoma (NS0). Biotherapeutic protein producing 

cell lines generated from the same parent cell line usually display a wide range of 

growth, productivity, and metabolic characteristics (Browne and Al-Rubeai, 2007). This 

behavior is advantageous with respect to mammalian cell engineering. Producing cell 

lines displaying favourable characteristics have resulted in the potential to identify gene 

targets for genetic engineering that will improve product yield (Pascoe et al., 2007).  

 

A number of genetic engineering approaches have been applied with the aim of 

improving product yield. Examples include delaying programmed cell death 

(apoptosis), enhancing cellular metabolism and protein processing, and manipulating 

the cell cycle (Dietmair et al., 2011). Engineering mammalian cells to reduce high 

concentrations of metabolic by-products such as lactate and NH4 is an example of 

changing a cell’s metabolic behaviour. Hybridoma cells transfected with glutamine 

synthetase (GS – enzyme that converts glutamate to glutamine) were able to grow in a 

medium void of glutamine (NH4 is the by-product of nutrient consumption – 

glutamine). This eliminated NH4 as a by-product, otherwise whose presence will inhibit 

cell growth and viability, reducing maximum product yield. However this product titre 

gain came at a price as the stability of the transformed cells were compromised (Paredes 

et al., 1999). Engineering approaches that target the cellular machinery responsible for 

protein processing can be directed towards improving protein folding. For example, 
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overexpression of an isoform of the foldase protein disulfide isomerase (PDI) (ERp57), 

and other proteins that aid protein folding (calnexin and calreticulin), increased the 

specific productivity (qP) of thrombopoietin -producing CHO cells by approximately 

two-fold (Hwang et al., 2003; Chung et al., 2004). In another study, overexpression of 

PDI did not change the productivity of the CHO cells (Mohan et al., 2007). These 

contrasting results indicate that the outcomes of these strategies may be cell line 

dependent (Dietmair et al., 2012). Consequently, steps towards enhancing cellular 

productivity can potentially be achieved through greater understanding of cellular 

protein biology and how this is affected by cellular engineering. 

 

With their track record in industry, high productivity and safety, CHO cells have 

gradually risen to prominence and become the most widely used platform for the 

production of biotherapeutics (Chu and Robinson, 2001). Despite their importance in 

biotechnology, limited information is available with respect to changes throughout the 

culture of CHO cells, due to insufficient genomic information. This is not the case with 

other organisms where genomic approaches (such as proteome and microarray analyses) 

have been applied. The sequencing of the E. coli (Blattner et al., 1997), mouse 

(Waterston et al., 2002), rat (Gibbs et al., 2004) and human (Lander et al., 2001; Venter 

et al., 2001) genomes has provided the potential for the application of genomic tools in 

the study of disease, metabolism, growth, apoptosis investigation in these organisms. 

The lack of genomic information has materialised into proteomic profiling of CHO cells 

to understand their biology. This has been carried out using two-dimensional 

Polyacrylamide Gel Electrophoresis (2D-PAGE) (López, 2007). Proteomic profiling 

studies using 2D-PAGE have previously been applied to mammalian cells under various 

conditions including CHO cell lines undergoing temperature shifts (Kaufmann et al., 

1999), modified cell lines (Krawitz et al., 2006), cells under hyperosmolality conditions 

(Lee et al., 2003), cells with butyrate, zinc, and tunicamycin addition during growth 

(Van Dyk et al., 2003), and NS0 cells displaying different productivity rates  (Smales et 

al., 2004). These studies have contributed to the understanding of the biology of 

mammalian cells under production, hence giving indications of potential genetic 

engineering targets that may be exploited to engineer improved cell lines. However, 

there are a number of drawbacks associated with 2D-PAGE. For example it is a lower 

throughput and time-consuming technique requiring about 3-4 days per run. The runs 

involve many steps and require a high level of laboratory skill to obtain good results. 
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Another drawback is the difficulties in separating high/low molecular weight proteins, 

low abundant proteins, hydrophobic proteins (e.g. membrane proteins). Membrane 

proteins are relatively insoluble in non-ionic detergents at low ionic strength and even 

when solubilised may precipitate at pH values close to their isoelectric points (Bunai 

and Yamane, 2005; Meleady, 2007). 

 

Recent initiatives to sequence the CHO cell genome (Hammond et al., 2011; Xu et al., 

2011), indicate that genomic approaches combined with bioinformatics could 

materialise in the proteomic profiling of CHO cells. The completion of the sequencing 

of the CHO genome has materialised into sequence-derived theoretical molecular 

weights (MWs) of CHO proteins to become increasingly available in compiled internet 

accessible protein databases (http://expasy.org/proteomics, 2012). This has provided the 

possibility of identifying potential protein biomarkers of CHO cells by matching the 

sequence-derived theoretical MWs of the database proteins with experimental MWs 

derived from high throughput proteomic technologies such as mass spectrometry. 

 

‘Intact-cell’ Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-ToF MS or MALDI) has been exploited extensively in the field of 

microbiology for the investigation of bacterial species (Demirev et al., 1999; Ryzhov 

and Fenselau, 2001; Warscheid et al., 2004; Parisi et al., 2008; Dieckmann et al., 2008; 

Ilina et al., 2009; Christner et al. 2010; Hotta et al., 2011; Wang et al., 2012). ‘Intact 

cell’ or ‘whole cell’ MALDI-TOF MS (ICM-MS or WCM-MS) was developed for the 

rapid identification of bacteria through protein profiling. The term (whole or intact cell) 

indicates that the cells to be analysed are not treated or processed to specifically remove 

or isolate any of the cellular components. In “intact cell” analysis, the cells are only 

manipulated to transfer them into the mass spectrometer for analysis and no additional 

steps are included in the procedure to deliberately disrupt cellular membranes or 

separate/recover analytes from the cellular material (Wilkins and Lay, 2006).  

 

Recently, the investigation of microorganisms by ICM-MS, primarily for bacterial 

identification, has been undertaken through two approaches. The first approach is by 

direct comparison of whole cell spectra, deemed to be a bacterial protein fingerprint, to 

reference spectra. This has been made possible by the creation of a bacterial fingerprint 

library of mass spectra from a range of known bacterial species (Mazzeo et al., 2006).   

http://expasy.org/proteomics
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An alternative approach for the identification of bacteria which does not involve the use 

of a fingerprinting library has been developed. This is a bioinformatics approach and is 

based on matching a set of protein biomarker MWs in the spectrum against those of 

sequence-derived theoretical protein MWs. The latter approach has seen wide 

applications in the field of microbiology (Demirev et al., 1999; Ryzhov and Fenselau, 

2001). It has been made possible by the availability of protein biomarkers of bacteria in 

compiled internet-accessible protein databases of microorganisms with completely 

sequenced genomes. 

 

ICM-MS also raises many possibilities for the analysis of complex cellular systems 

such as mammalian cells. Biomarker profiles have been obtained from whole 

mammalian cells of neuronal origin (Li et al., 2000; van Veelen et al., 1993), 

additionally tissue sections have been profiled (Chaurand et al.,, 2006; Chaurand et al., 

2007; Crossman et al., 2006; Khatib-Shahidi et al., 2006; Reyzer et al., 2007). 

Differentiation between human (K562 and GM15226) and rodent (BHK21) mammalian 

cell types through their protein profile ‘fingerprints’ (Zhang et al., 2006), as well as 

between monocytes, T lymphocytes and polymorphonuclear leukocyte immune cells 

(Ouedraogo et al., 2010) has also been carried out using ICM-MS. These applications of 

ICM-MS in bacterial and mammalian cell protein profiling, demonstrate an outcome of 

the approach that could be useful for mammalian cell culture (MCC) in bioprocessing 

for protein profiling to study their biology.  

Despite the application of ICM-MS to bacteria and mammalian cells, there have been 

relatively few studies that have applied this approach to MCC in bioprocessing. ICM-

MS has been used in the profiling of insulin/glucagon-producing pancreatic islet α- and 

β-cells (Buchanan et al., 2007); detection of apoptosis in mammalian cells (Dong et al., 

2011); and characterisation of batches of IgG producing monoclonal antibody CHO cell 

lines (Feng et al., 2010; Feng et al., 2011). The application of MALDI analysis on MCC 

during biotherapeutic protein production leads to the issue of how to reveal the 

information in the mass spectra profiles relating to the state and behaviour of the cell 

lines in the culture. Thus the use of proper data analysis techniques for such spectra 

profiles is crucial in obtaining reliable information concerning potential biomarkers that 

may provide information on the state and behaviour of the cell lines. Multivariate data 
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analysis (chemometric) methods can be used to simplify complex proteomic data 

profiles, making visualisation and classification easier, and hence the possibility of 

detecting biomarker patterns. Methods such as principal component analysis (PCA) 

(Wise et al., 2005), and projection to latent structures – discriminant analysis (or partial 

least squares-discriminant analysis; PLS-DA) (Barker and Rayens, 2003) have 

previously been applied in proteomic profiling (Lee et al., 2003; Eriksson et al., 2004).  

 

PLS-DA (which is the focus of this thesis) is a variant of standard PLS regression. It has 

previously been used in biomarker profiling of MALDI generated data sets in terms of 

discriminating normal from diseased blood specimens, normal from diseased urine 

samples, and between microorganisms (Lee et al., 2003; Norden et al., 2005; Pierce et 

al., 2006). Having the dimensionality reduction advantage of PLS, PLS-DA is suited to 

extracting small, systematic variations from large, noisy data sets by identifying a lower 

dimensional latent variable space within which most of the information lies. It can 

potentially separate classes of samples with respect to the experimental hypothesis, 

forcing them to cluster together if they share a common characteristic. Separation is 

usually achieved on the basis of one or more peaks at certain mass-to-charge ratio (m/z) 

ratio values, offering the opportunity for the identification of specific m/z ratio areas in a 

mass spectra profile which represent potential protein biomarkers. 

 

1.1. Aim of the thesis 

The main aim of this research is to investigate the combined approach of ICM-MS and 

PLS-DA to discriminate between monoclonal antibody-producing mammalian cell lines 

based on their productivities and subsequently identify protein biomarkers (through 

protein database searches) that are differentially expressed in these cell lines.  

 

The rationale behind this approach is that by applying ICM-MS to the CHO cell lines 

would generate mass spectra data where most of the m/z ratio peaks represent molecular 

protein/peptide ions which are singly charged. Since MALDI works through a ‘soft 

ionisation’ principle (that is, little or no fragmentation) each protein/peptide fragment 

usually produces only a single ion (MH
+
) type as they are ionised by acquiring a single 

proton. Hence the mass of each protein/peptide fragment is equal to its m/z ratio value, 

meaning that the latter can be directly inferred as the MW of the protein/peptide 
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fragment.  Consequently, data analysis with PLS-DA would provide the possibility to 

rapidly identify the protein/peptide fragment ions by matching their experimental MWs 

(their m/z ratio values) to sequence-derived theoretical MWs of CHO cell proteins in 

internet accessible protein databases. These identified protein/peptide fragment ions can 

serve as potential productivity-associated protein biomarkers. 

 

The industrial collaborators, Lonza Biologics, are interested in utilising the ICM-MS 

and PLS-DA approach to separate IgG producing CHO cell lines during bioprocessing 

based on their productivities (antibody titre in mg mL
-1

) and identify potential protein 

biomarkers which are associated with the cell line productivities. Cell lines were 

classified into two categories (high/low producers; Hs/Ls), based on a threshold 

antibody titre of 1000 mg mL
-1

 above which cell lines were classed as Hs, otherwise Ls. 

It is hypothesised that Hs and Ls CHO cells exhibit different metabolic profiles and 

hence differences in protein expression patterns. These expression patterns correlate to 

the productivities (titre of IgG antibody produced) of the cell lines, and introduce a 

between-class variability. A multivariate data analysis method (PLS-DA) can be used to 

capture this variability and classify the cell lines based on these differences. This will be 

possible by training the PLS-DA model to capture the between class variability based 

on categories of cell lines, that is, Hs or Ls. Figure 1.1 shows an overview of the various 

steps involved in biomarker profiling using ICM-MS, PLS-DA and protein database 

search used in this thesis. It consists of the following;  

 Preparation of the biological samples and analysis by MALDI mass spectrometry. 

  Preprocessing (signal resampling, baseline correction, alignment, normalsation, 

smoothing and peak identification) of the spectra data generated to remove 

unwanted variation due to data acquisition issues whilst preserving biological 

information. 

 After sampling the preprocessed samples are separated into training and test sets, the 

training set is overviewed using PCA to study initial trends and later analysed using 

PLS-DA, whilst the test sets are retained for external validation of the PCA and 

PLS-DA models built. 

 PLS-DA scores and loadings plot are interpreted and information from the loadings 

plot is used for database search to identify protein biomarkers. This is followed by 

the biological interpretations of the results. 
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As mentioned above, it is hypothesised that identified protein expression patterns (or 

biomarkers) correlate to the productivities of the cell lines. Thus an important goal of 

this research would be the ability to infer the likelihood of a CHO cell line being a high 

or low producer based on these identified biomarkers. This could also provide insight 

into the biology of the mammalian cell lines during biopharmaceutical bioprocessing, 

and may give indications of potential genetic engineering targets that could be exploited 

to engineer enhanced cell lines. Predicting the likelihood of cell lines being Hs or Ls 

earlier in biotechnological process development may lead to early screening of Hs cell 

lines which will have the desired high productivity during manufacturing (bioreactor 

stage). The nature of other CHO cell lines can be inferred by subjecting their MALDI 

spectra data into the calibrated PLS-DA predictive models built with mass spectra data 

generated from known IgG monoclonal antibody-producing CHO cell lines. 
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Figure 1.1: An overview of the pipeline for biomarker discovery using ‘intact-cell’ 

MALDI-ToF MS, projection to latent structure - discriminant analysis and protein 

database search 

SAMPLE PREPARATION
Intact cell samples are prepared and subjected to 

MALDI-TOF MS analysis to obtain mass spectra data 

FIRST STEP:

SECOND STEP:

DATA PREPROCESSING
Signal resampling, Baseline correction, Alignment, 

Normalisation,  Smoothing, Peak identification  

THIRD STEP:

MULTIVARIATE DATA ANALYSIS
PCA overview, PLS-DA modeling, Cross validation, 

External validation, Model evaluation

FOURTH STEP:

DATABASE SEARCH
 UniProtKB/Swiss-Prot Protein Database searches 

are performed to identify protein biomarkers

Biological interpretation of the results

P
I
P
E
L
I
N
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1.2. Contributions of the Thesis 

The main contribution of this thesis is the application of ICM-MS, PLS-DA and protein 

database search approach to identify protein biomarkers from monoclonal antibody 

producing mammalian cell cultures during biopharmaceutical bioprocessing. More 

specifically, the key contributions of this thesis are as follows; 

 

1. Application of the ICM-MS, PLS-DA and protein database search approach to 

IgG monoclonal antibody-producing CHO cell lines during bioprocessing. 

While conceptually straightforward, to the knowledge of the author, no existing 

studies adopt this approach; consequently this is the first study where this 

methodology is used to identify potential mammalian cell biomarkers in the area 

of mammalian cell culture during bioprocessing (chapter 7).  

 

2. An Escherichia coli growth-phase-associated protein biomarker model, where 

ICM-MS, PLS-DA and a protein database search approach is applied to E. coli 

K-12 culture to identify potential protein biomarkers associated with the 

different growth phases of the culture. Mammalian cells are complex systems, 

hence this standard E. coli growth-phase-associated biomarker model is used as 

a proof-of-concept study for the study described above.  Samples were collected 

and analysed from the cultures at points in the three specific growth phases 

(exponential, stationary and decline phase). After establishing the growth curve 

of the bacterial cultures, the predictable timing of growth along the growth curve 

ensured that samples were collected at specific time points during the three 

growth phases. This increased the likelihood that differences between identified 

proteins will be related to the progression from one growth phase to another.  

 

Biologically, it is expected that E. coli cultures at the three different phases of 

growth exhibit different metabolic profiles and hence different protein 

expression patterns so that unique proteins can be induced and differentially 

expressed by these cultures. It is anticipated that the latter protein expression 

patterns correlate with the growth phase of the culture, and hence between-class 

(exponential, stationary and decline phase classes) variability will be evident. 

PLS-DA is used to capture these differences and hence classify the E. coli cells. 
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A database search by matching experimental MWs to sequence-derived 

theoretical MWs of E. coli cells using internet accessible protein databases was 

then carried out to identify potential growth-phase-associated protein 

biomarkers. 

 

3. One challenge involved in biomarker discovery using mass spectrometry is to 

provide an appropriate preprocessing method for the generated mass spectra 

data. Preprocessing is data dependent and one of the goals is to eliminate 

differences between spectra profiles as a consequence of experimental and 

instrumental procedures, while preserving the inherent biological information 

within the spectra profiles. A number of combinations of data preprocessing 

techniques/parameters were considered and empirically investigated to enable 

the most appropriate selection of the combination of methods/parameters. The 

parameters of the preprocessing methods were modified systematically and 

applied to the spectra data. The preprocessed data was used to calibrate PLS-DA 

models. The performances (predictive ability) of the constructed models using 

different preprocessing techniques/parameters were assessed. The combination 

of preprocessing techniques/parameters that gives an improved and optimum 

model performance was selected as the appropriate preprocessing method 

(section 3.6).  

 

It was reasoned that improved classification and predictive model performance 

indicates that predictive models capture as much information as possible relating 

to the experimental hypothesis. This will also imply that these models are valid, 

that is, providing accurate biological information pertaining from the data. Thus 

biomarkers derived from such models will have a high probability of being 

related to the experimental hypothesis as well as being valid. In addition to 

model performance, a result-driven approach further helped to validate the 

appropriate preprocessing methods/parameters. That is, a combination of 

preprocessing methods/parameters was considered as being valid if the 

preprocessed spectra data (after modeling the spectra data with PLS-DA), 

provided accurate information (from the PLS-DA loadings plot) important for 

the identification of protein biomarkers previously described in the literature. 
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1.3. Organisation of this thesis 

The following summarises the main components of the chapters of this thesis. 

 

Chapter 2 presents an introduction to biopharmaceutical therapeutics and gives an 

overview of different aspects pertaining to the production of biotherapeutic proteins in 

cultivated mammalian cells. It also describes expression systems, factors affecting 

intracellular expression and highlights methods involved in enhancing productivities of 

recombinant proteins in mammalian cell cultures. Additionally, the chapter explores the 

Chinese hamster ovary (CHO) cell line highlighting the advantages it has over other 

mammalian cell lines. The chapter concludes with a literature survey of the methods 

that are currently being used for improving large-scale protein production in 

mammalian cell lines. 

  

Mass spectrometry is introduced in chapter 3 with particular focus on Matrix Assisted 

Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry (MALDI-ToF MS). It 

describes how the MALDI-ToF MS instrument is used to collect data from E. coli 

cultures at different growth phases as well as IgG monoclonal antibody-producing CHO 

cell lines during culturing. Methods involved with the preprocessing of mass spectra 

data profiles are also reviewed. An empirical evaluation of preprocessing methods on 

the two sets of spectra data (E. coli growth profile model and IgG producing CHO cell 

lines) is presented.  

 

An introduction to proteomics and biomarker discovery relevant to this work is 

presented in chapter 4. It provides a summary of approaches used in biomarker 

discovery and highlights the top-down proteomics based approach of ‘intact-cell’ 

MALDI-ToF MS (ICM-MS), for the identification of microorganisms that may be 

relevant to biomarker discovery in the biopharmaceutical bioprocessing industry. The 

chapter also explores the potential advantage and usefulness of ICM-MS and internet-

accessible protein databases for rapid biomarker profiling in the area of mammalian cell 

culture in biopharmaceutical bioprocessing. It concludes with a literature review on the 

applications of ICM-MS on both bacterial and mammalian cells. 
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Chapter 5 provides an introduction to multivariate data analysis (chemometrics), and an 

overview of chemometric methodologies underpinning this research – principal 

component analysis (PCA) and projection to latent structures – discriminant analysis 

(PLS-DA). It explores the PLS-DA algorithm involved in modeling the two mass 

spectra data sets discussed in chapter 4. A review on the application of PLS-DA to 

proteomics mass spectra data is given. The chapter ends with a discussion of results of 

an example where PCA and PLS-DA were used to analyse MALDI-ToF mass spectra 

data generated from cell lysate samples of E. coli K-12 cells at different growth phases. 

  

A case study of an E. coli growth-phase-associated protein biomarker discovery model 

is presented in chapter 6, where ICM-MS, PLS-DA and the protein database search 

approach is applied to identify growth phase-associated protein biomarkers. The wet lab 

procedures for mass spectra data collection, PLS-DA modeling of the spectra data, and 

biomarker identification through database searches are presented. The detailed 

interpretations of the results as well as subsequent discussions are presented. 

  

Chapter 7 describes the second case study where WCM-MS, PLS-DA and protein 

database search approach are applied to IgG monoclonal antibody-producing CHO cell 

lines during bioprocessing, to identify productivity-associated protein biomarkers. 

Mammalian cells such as CHO are complex systems, hence the standard E. coli growth-

phase-associated biomarker model is used as a proof-of-concept or benchmark study for 

this case study.  The wet lab procedure for mass spectra data collection, PLS-DA 

modelling of the data, and biomarker identification through a database searches are 

presented. The detailed interpretation of the results as well as discussions is presented. 

 

A summary of the work, along with a discussion regarding the strengths and 

weaknesses of the proposed ICM-MS, PLS-DA and protein database search approach to 

biomarker discovery is presented in chapter 8. The chapter also highlights some areas of 

the research that could benefit from further investigation. 
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2. Biopharmaceutical Therapeutics 

2.1. Overview  

The main purpose of this chapter is to provide an introduction to biopharmaceutical 

therapeutic proteins as well as the science and technology of in vitro mammalian cell 

culture which is used in their production. The chapter also provides an appreciation of 

the impact that mammalian cell culture technology has had on the health and well-being 

of mankind. The chapter will begin by giving an overview of the various expression 

systems used for recombinant protein production as well as their advantages and 

disadvantages which influence their ability as potential hosts. It also explores the 

Chinese hamster ovary (CHO) cell line highlighting the advantages it has over other cell 

lines, which has made it the most widely utilised mammalian cell culture expression 

system. Additionally, the chapter will provide an outline of the general workflow of the 

steps involved in the production of a recombinant protein in stirred, serum-free cultures, 

when beginning from a recombinant vector and a mammalian host cell line. The chapter 

will end with a literature survey of the methods that are currently being used for 

improving large-scale production of heterologous proteins from mammalian cell lines. 

 

2.2. Introduction 

Biopharmaceutical proteins can be defined as pharmaceutical substances originating 

from biological sources and are the basis of approximately one-third of the drugs 

currently in development. Biopharmaceutical drugs or biotherapeutics are large, 

complex protein molecules derived from living cells, used clinically for therapeutic or 

in vivo diagnostic purposes (Sekhon, 2010). Biotherapeutics include monoclonal 

antibodies (MAbs), recombinant proteins and viral vaccines. 

 

Prior to the 1970’s only limited amounts of proteins for clinical use were available as 

they could only be sourced naturally from humans and animals. However, non-natural 

sources are now available with the advent of technologies such as recombinant DNA 

and hybridoma technology. Advances in these technologies have revolutionised the 

production of biotherapeutics. Recombinant DNA technology made possible the large 

scale production of biotherapeutics in the form of recombinant proteins. For its part 

hybridoma technology enabled the production of a new category of biotherapeutic 

proteins known as MAbs that have provided alternative treatment regimens for a 
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number of ailments including cancers infectious, and autoimmune diseases (Birch and 

Onakunle, 2005). 

 

A number of reasons resulted in the move to the production of recombinant proteins 

from recombinant DNA technology. Firstly recombinant proteins have been used 

mainly as a replacement for naturally sourced biotherapeutics such as human growth 

hormone (hGH) extracted from dried pituitary glands of dead humans (Birch and 

Onakunle, 2005). Human insulin became the first biotherapeutic to be manufactured and 

approved by the food and drug administration (FDA) via recombinant DNA technology 

in 1982. Other recombinant products including hGH, tissue plasminogen activator, 

erythropoietin, and blood-clotting Factor VIII have also been produced using 

recombinant DNA technology (Sekhon, 2010). Secondly, safety issues surrounding 

natural sources led to the switch to recombinant proteins. For example production of 

hGH was changed to Escherichia coli after it emerged that hGH from the pituitary 

glands of dead humans was a source of prion protein, the causative agent of 

Creutzfeldt–Jakob disease (Sekhon, 2010). Recombinant DNA technology also replaced 

blood serum from which the potentially dangerous hepatitis B vaccine was extracted; 

this viral vaccine is now produced in baker's yeast (Saccharomyces cerevisiae) (Birch 

and Onakunle, 2005). 

 

Substantial progress has been made with respect to new approaches to treat various 

diseases using MAbs and recombinant proteins. These biotherapeutics have been widely 

used for treatment mainly in the field of cancer and other important areas like infectious 

diseases, autoimmune and cardiovascular disorders (Birch and Onakunle, 2005). Recent 

therapeutic advances in 2011 include the first new treatments for the following diseases 

and disorders: Benlysta is the first drug to be produced in over 50 years, used for 

treating lupus; Adcetris is the first drug to treat Hodgkin's lymphoma since 1977; 

Anascorp is a new drug effective against scorpion stings; Corifact is used for treating 

Factor XIII deficiency; Nulojix is the first drug used against the rejection of organ 

transplants in more than 10 years; and Yervoy is a new drug for the treatment of 

advanced melanoma (Biopharma, 2012). Globally, more than 150 biopharmaceutical 

drugs are currently in the market and as more drugs are gaining approval, the challenge 

has been to provide and maintain suitable expression systems to meet the production of 

biotherapeutics. 
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2.3. Recombinant Protein Expression Systems 

The growing need for therapeutic, diagnostic and functional activity bioassay 

applications of recombinant proteins has enabled the advancement of bioprocessing 

technology for the production of recombinant proteins. However, the expression of a 

spectrum of these recombinant biotechnology products to meet market demands has 

been a major challenge (Andersen and Krummen, 2002). These demands can only be 

met by the heterologous synthesis of these recombinant proteins. Heterologous protein 

production involves the introduction of a foreign DNA into host cells for expression, a 

move which involves a number of considerations (Fig 2.1): isolation of the DNA to be 

introduced; construction of a recombinant vector (cDNA) having the DNA; and 

identification of a suitable expression system to accommodate the cDNA (Rai and Padh, 

2001).  

 

 

 

 

 

 

 

 

 

 

There are a wide range of expression systems available for large-scale recombinant 

protein production. The most commonly used systems include bacteria, insect cells, 

yeast, and mammalian based systems (section 2.3.4). Each has its own advantages in 

terms of cost, ease of use, and post-translational modifications (PTMs) of the protein 

products. Selection of the most appropriate expression system for recombinant protein 

Figure 2.1: Schematic diagram showing the steps involved in heterologous protein 

production 
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production must consider these elements. Most importantly, the choice of a suitable 

expression system is based on the system’s ability to produce the protein in a form 

identical to that found in the cell type from which the recombinant DNA was obtained. 

These expression systems are briefly reviewed in the subsequent sections. 

 

2.3.1.   Bacteria 

The bacteria expression system using Escherichia coli is perhaps the first choice for the 

heterologous production. This is primarily due to the organism being relatively easy to 

manipulate, the low cost of the culture media, the shorter time to obtain acceptable 

production yields, and the potential to use a great variety of strains and hence 

expression vectors. The limitations of this system are its lack of PTMs (for example 

glycosylation and disulfide bond formation), leading to incorrect modification of 

heterologously expressed eukaryotic or mammalian proteins. These proteins require 

proper PTM in order to function properly otherwise the mammalian immune system 

may recognise such proteins as foreign. Incorrect PTMs can also hamper secretion of 

large amounts of expressed eukaryotic proteins from the bacteria expression system. 

Another limitation of this system is the precipitation of large amounts of expressed 

proteins into inclusion bodies creating difficulties in terms of the purification of the 

final product (Hunt, 2005).  Although Escherichia coli remains the most widely used 

bacteria expression system, other bacteria which have been used include Streptococcus, 

Lactococcus, , Leuconostoc, Pediococcus and Lactobacillus species. 

 

2.3.2.   Yeast 

Yeasts are the favoured alternative expression systems for eukaryotic proteins. They 

have advantages in that they are relatively simple to manipulate and inexpensive to 

culture and also offer the possibility of PTM. Yeasts fall in the list of the second most 

commonly used expression systems and has been used as a replacement for bacteria. 

Expression in yeast can be both intracellular and extracellular through the application of 

short signaling sequences. The most common species of yeast used for intracellular 

heterologous protein expression is Saccharomyces cerevisiae since it can secrete the 

proteins it expresses. However S. cerevisiae has hyperglycosylation problems, where 

high mannose glycans are incorporated to the expressed proteins, a phenomenon which 

is not good for human therapeutics. Other yeast strains with better secretion properties 

are Pichia pastoris, Klyveromyces lactis, Schizosaccharomyces pompe, Yarrowia 
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lipolytica, and Hansenula polymorpha. Well developed yeast expression systems for 

large scale heterologous protein expression are based on P. pastoris. With the exception 

of S. cerevisiae, the other yeasts are capable of producing 10 - 100-fold more secreted 

proteins without hyperglycosylation. The main drawback in using a yeast expression 

system is that yeast cells have cell walls so recovering the protein from the interior of 

the cell after intracellular expression is a major challenge (Reyes-Ruiz and Barrera-

Saldana, 2006). 

 

2.3.3.   Insect Cells 

An expression system with insect cells is based on the Baculovirus Expression Vector 

System. It has emerged as a popular eukaryotic expression system for expression of 

recombinant proteins with the ability to produce proteins having the proper PTM: 

folding, O-linked and N-linked glycosylation, amidation, carboxymethylation, 

oligomerisation, phosphorylation, disulfide bond formation, proteolytic cleavage and 

acylation (Reyes-Ruiz and Barrera-Saldana, 2006). Baculoviruses are present in 

invertebrates, primarily insect species, and can be propagated to high titres for growth in 

suspension cultures, creating the potential to obtain large amounts of recombinant 

proteins in a relatively short time (Rai and Padh, 2001). Sf9 and Sf21 are the most 

commonly used insect cell lines for expression as they can be grown in suspension and 

can thus be used in a bioreactor. They are derived from the Spodoptera frugiperda 

larvae and are susceptible to baculovirus infections. Other commonly used insect cell 

lines include High Five cells (derived from Trichoplusia ni egg cell homogenates) and 

the Drosophilia system, which relies on stable cell lines (Reyes-Ruiz and Barrera-

Saldana, 2006). 

 

2.3.4.  Mammalian Culture Cells 

Mammalian cell lines are considered the ideal eukaryotic expression system for proteins 

intended for human therapeutics. Proteins requiring mammalian PTMs are typically 

expressed in this system. The drawbacks of using this expression system include high 

costs of maintenance when compared to bacteria or yeast cultures due to complexity of 

the facilities, long culture times and nutrient requirements. In addition, handling of such 

facilities requires qualified and trained personnel; safety risks are involved as the 

required growth factors are added by calf serum which can be contaminated with 

viruses or prions; and there is no guarantee of always obtaining high product yields. 
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Despite these limitations, mammalian cell lines offer the greatest degree of product 

fidelity having appropriate post-translational modifications. For example mammalian 

cell lines express proteins with glycosylation identical to native endogenous human 

proteins. They are also the expression system of choice especially if clinical efficacy of 

the biotherapeutics is determined by its authenticity. That is, proteins not properly 

glycosylated may be recognised as “foreign” by the immune system of higher 

mammals, resulting in an immediate response against such proteins preventing them 

from fulfilling their therapeutic purpose (Reyes-Ruiz and Barrera-Saldana, 2006). Some 

commonly used mammalian cell lines for the construction of mammalian expression 

systems for large-scale commercial recombinant protein production are Chinese hamster 

ovary (CHO), mouse myeloma (NS0), and baby hamster kidney (BHK-12). 

 

2.3.5.   Cell-free Systems 

Cell free systems are in vitro expression systems which contain cellular extracts 

obtained from either prokaryotic or eukaryotic cells, and provide the necessary 

molecular machinery and biochemical constituents required for transcription and 

translation. This system has the advantage of avoiding limitations associated with the in 

vivo systems of bacteria and eukaryotes, where over-expressed protein is toxic to the 

host cell, where the protein has insolubility problems or forms inclusion bodies, or 

where the protein is susceptible to rapid degradation by intracellular proteolytic 

enzymes. Common cell-free expression systems contain prokaryotic and eukaryotic 

cellular extracts (initiation, elongation and termination factors, 70S or 80S ribosomes, 

aminoacyltRNA synthetases, and tRNAs) from rabbit reticulocytes, wheat germ and E. 

coli (Reyes-Ruiz and Barrera-Saldana, 2006). 

 

2.3.6.   Plants 

Plants are an interesting alternative to the aforementioned expression systems and are 

capable of providing low cost in vitro expression systems. The advantage with plant 

expression systems is the absence of contamination from endotoxins and animal viruses 

which are associated with bacteria and eukaryotic expression systems. Plant expression 

systems have drawbacks mainly from an economic perspective making them 

unattractive as hosts for expression. It is time consuming to express recombinant 

proteins in plant expression systems typically taking about two years from the initial 

transformation event to small-scale evaluation and production. This is a consequence of 
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the relatively slow growth rate of terrestrial plants. Furthermore, with plant systems 

recombinant proteins are produced and deposited in specific organs such as leaves, 

fruits, and seeds rendering the protein purification complex and costly (Reyes-Ruiz and 

Barrera-Saldana, 2006). 

 

2.4. Monoclonal Antibodies  

2.4.1.   Overview of Monoclonal Antibodies 

Antibodies are protein molecules, known as immunoglobulins, synthesised by the 

immune cell of an animal in response to a foreign macromolecule known as an antigen 

(Farid, 2006). Monoclonal antibodies (MAbs) are pure populations of antibodies that 

recognise and attack the same molecular target. They are produced by a population of 

immune cells (B lymphocytes) derived from the same parent cell. MAbs began to be 

widely applied in research and development following the development of hybridoma 

technology in mice by Kohler and Milstein in 1975 for their large-scale production 

(Gombotz and Shire, 2010).  

Recently, MAbs have become one of the fastest growing classes of all 

biopharmaceuticals, with a total of 26 therapeutic MAbs approved in 2007 in the US by 

the Food and Drug Administration (FDA). These had a market value of more than 

$12,612 million (Gombotz and Shire provide a list of all the commercial MAb products 

approved in the U.S) (Gombotz and Shire 2010). The global market for therapeutic and 

diagnostic MAbs increased from $26 billion in 2006 to an estimated $31 billion in 2007. 

This upward trend continued in 2009 and 2010. For example Fig. 2.2 shows a pie chart 

of US sales of nine biotherapeutics drug categories, and table 2.1 shows data for the 

sales and the growth rates of the nine drug categories between 2009 and 2010 

(Aggarwal, 2011).  

 

Fig. 2.2 indicates that MAbs remained the best-selling class of biologics and in 2010, 

US sales of MAb products reached ~$18.5 billion, 9.7% higher than 2009 sales. The 

table indicates that MAbs and enzymes are the drug categories that showed the fastest 

growth rate during that period. The global market for MAbs is expected to top $56 

billion by the end of 2012 which represents a compound annual growth rate of 13% 

(Bccresearch, 2008). Projections for the next five years (2012 to 2017) suggest that 

MAbs are expected to be the biggest drivers in the global biopharmaceutical market. 
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This is mainly a consequence of the rich late stage pipeline and a strong uptake from 

both developed and emerging markets (Imarcgroup, 2012). MAbs play a major role in 

treating a wide variety of diseases including cancer, infectious disease, allergy, 

autoimmune disorders and inflammation. MAbs are produced in the following main 

forms: murine (100% mouse protein); chimeric (approximately 65% human and 35% 

mouse protein); humanised (95% human and 5% mouse protein); and fully human 

(100% human protein) (Gombotz and Shire, 2010). 

 

 

       Figure 2.2: A pie chart showing US sales of nine biotherapeutics drug categories 
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  2009 

sales ($) 

2010 

sales ($) 

2009 growth 

rate (%) 

2010 growth 

rate (%) 

MAbs 16.9 18.5 8.3 9.7 

Hormones 9.8 11.0 14.7 12.3 

Growth factors 10.4 10.2 -9.1 -2.0 

Cytokines 3.9 4.1 6.8 4.6 

Fusion proteins 3.9 4.0 1.1 4.5 

Therapeutic enzymes 1.1 1.2 -4.2 4.9 

Recombinant vaccines 0.7 0.8 -37.0 13.0 

Blood factors 1.3 1.2 5.0 -2.6 

Anticoagulants 0.3 0.4 -1.2 7.9 

 

 

 
Table 2.1: The table shows the growth rates of the categories between 2009 and 

2010 (data obtained from Aggarwal, 2011) 
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2.4.2.  Challenges with Monoclonal Antibody Development 

The first therapeutic MAbs to be produced, Orthoclone (an immunosuppressant drug 

against kidney transplant rejection) had little success as far as commercialisation was 

concerned. Clinical trials failed as patients who received infusions of the early 

therapeutic MAbs developed immune responses against the administered product. Such 

products were also rapidly destroyed by the liver even before they could reach their 

therapeutic target (Ezzell et al., 2001). This behaviour could be attributed to the fact that 

MAbs were made with hybridoma technology and were of mouse origin. The human 

immune system recognises these as being foreign and generates human anti-mouse 

antibodies (HAMA response) against the administered products. 

 

The therapeutic properties of MAbs strongly depend on their glycosylation pattern. 

Most of the currently approved MAbs are produced in mammalian cell lines, as they 

have the propensity to express proteins with almost human-like glycosylation. 

Moreover, the advancement of humanisation technology has facilitated the 

incorporation of murine (mouse) residues complimentarity determining regions 

(responsible for antigen binding) into a human antibody framework giving rise to 

antibody sequences with up to 90–95% human content (Gombotz and Shire, 2010). For 

example, a humanised MAb drug, mogamulizumab (Poteligeo®), with engineered 

glycosylation to enhance the pharmacological properties - designed to treat cancer - has 

recently been approved globally. This is the first glyco-engineered antibody to reach the 

market in the field of therapeutic antibodies (Subramaniam et al., 2012). 

 

2.5.    Mammalian Cell Cultures for production of MAbs  

2.5.1.  Introduction 

The cultivation of mammalian cells in vitro (for example as suspension culture in 

bioreactors) is known as mammalian cell culture. It has evolved from an experimental 

science in the 20
th

 century to a modern quantitative science in recent times. It has seen 

wide application in terms of research and development in the industrial, academic and 

medical fields (Kretzmer, 2002). Mammalian cell culture has been applied in the areas 

of cell and molecular biology, providing reproducible model systems in which the 

physiology and biochemistry of the cell can be studied; the area of medical sciences for 

efficacy and toxicological assessment of potential new drugs; and for the large scale 
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production of biotherapeutics including vaccines, recombinant proteins and monoclonal 

antibodies. 

 

2.5.2.   Chinese Hamster (CHO) Ovary Cell 

There are some key issues that affect the choice of a mammalian cell line for use in a 

large scale manufacturing process during therapeutic MAb production. These include 

the capability of attaining high product yield; the ability to produce post-translationally 

modified products which impact on the pharmacokinetic and pharmacodynamic 

properties of the product (solubility, stability and therapeutic efficiency, time taken to 

be cleared from the body); the ability to be amenable to genetic manipulation to easily 

accommodate a foreign DNA; the ability to rapidly and consistently produce safe 

products; and the ability for the cells to adapt and grow in suspension cultures is an 

important characteristic which enables volumetric scalability and use of large stirred-

tank bioreactors (Jayapal et al., 2007).  

 

CHO cell lines meet these criteria and have become the most widely applied 

mammalian cell line industrially, for the large-scale production of therapeutic MAbs, 

from a range of alternative cell lines including NS0, BHK-12, mouse myoloma cell line 

(SP2/0), human embryonic kidney (HEK-293) and human-retina-derived cell line (PER-

C6). Fig. 2.3 shows that the majority of therapeutic Mabs approved globally in 2012 

were produced in CHO cell lines. Of the 30 MAbs that were approved and licenced 

globally as of March 2012, 12 (40%) were produced in CHO cells, whilst 7 (23%) were 

produced in SP2/0 cells, 5 (17%) were produced in NS0 cells, 2 (7%) were produced 

using hybridoma technology and 2 (7%) in E. coli (Reichert, 2012). Moreover, there are 

derivatives of CHO cell lines, (for example dhfr
-
 CHO) deficient in their ability to 

produce the dihydrofolate reductase enzyme (DHFR), an essential enzyme which 

catalyses the conversion of folate to dihyfrofolate (Simonsen and McGrogan, 1994). 

Hence a well-established expression vector (the dihydrofolate reductase (DHFR) 

expression vector system) can be used as a basis to develop platform technologies 

which allows for the transfection, amplification, selection and expansion of high 

producing and stable CHO cell clones based on this property (DHFR deficiency).   

 

Another vector system based on an amplifiable gene, glutamine synthetase (GS) is an 

alternative to DHFR system that provides a well characterised platform technology 
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usable in CHO cell lines, providing them with an added advantage over other cell lines. 

GS is a dominant selectable marker that can be used with GS-negative and positive NS0 

cells and provide a possibility of gene amplification (Birch and Onakunle, 2005). The 

next section provides a brief description of the production of therapeutic MAbs in a 

typical CHO cell suspension culture system. 
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2.6. Production of Recombinant Therapeutic Monoclonal Antibodies 

by Mammalian Cells in Suspension Culture  

2.6.1. Cell Line Development 

There is a general format that is typically used in producing a recombinant protein in a 

stirred, serum-free culture beginning from a recombinant vector (plasmid) and a 

mammalian host cell line. This format was used at Lonza Biologics in producing the 

MAb, Immunoglobulin G (IgG), using a CHO cell line generated in-house (Lonza 

Biologics, Slough, UK). The development of a manufacturing process for a recombinant 

therapeutic MAb follows a well-established procedure. In this project, the 

manufacturing process was carried out in accordance with established procedures 

explained in detail in Chu et al. (2005), in Smales and James, (2005). Details of the 

materials, reagents and protocols involved are provided in Chu et al., (2005). Cell line 

development was carried out in this project and samples were collected for MALDI 

analysis as described in section 3.3.6.2.  

 

2.7.     Enhancing Productivities of Recombinant proteins in 

Mammalian Cell Cultures 

2.7.1. Introduction 

As previously mentioned mammalian cells are the host of choice for production of 

biotherapeutics with human-like post-translational modification. However, they are 

slow, expensive and productivities are low when compared to bacteria and yeast 

expression systems. The well-established scheme for cell line development during the 

manufacturing process used at Lonza Biologics in producing the MAb, IgG has 

described in section 2.6. Although this has provided the opportunity for optimisation of 

medium composition and high-producing cell line screening which has delivered 

significant increase in volumetric product titres over the past decades, there has been 

little increase in spectfic productivity (qP) since 1990 (Dietmair et al., 2012). 

  

Mammalian cell line engineering with superior growth characteristics, and optimised for 

the production of high concentrations of proteins, has been noted to significantly reduce 

the development time for a high productivity cell line. Consequently, significant effort 

has been invested in using various genetic engineering strategies to improve those 

aspects of the cell line related to product titres. For example aspects of the cell line such 
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as delaying apoptosis, enhancing the cell’s processing capacity, increasing the rate of 

cell proliferation, and increasing the cell’s metabolic efficiency have been carried out 

(Mohan et al., 2008; Schroeder, 2008; Lim et al., 2010).  

 

In this respect, an approach to identifying protein biomarkers whose genes may act as 

potential genetic engineering targets as well as serving as a basis to identifying high 

producing cell lines earlier in process development is presented in this thesis (chapter 

7). Genetic engineering and the selection of high producing cell lines would enable the 

optimisation of protein production at high concentrations. New cell lines with optimised 

growth and productivity properties (potentially capable of producing high yields of 

MAb products) can be created by manipulating the genes in the cells that are 

responsible for controlling growth and productivity. Selecting only high producing cell 

lines will also have the benefits of potentially providing high yields of MAb products. 

Before this approach is presented, it is important to review some of the strategies for 

improving mammalian cell line productivities that have already been proposed in the 

literature. 

 

2.7.2. Review on Enhancing Productivities of Recombinant proteins in 

Mammalian Cell Cultures 

Methods currently applied for improving the large-scale production of heterologous 

proteins from mammalian cell lines include optimisation of the cell culture 

environment, bioprocess design and improving expression vectors through genetic 

engineering (Bebbington et al., 1992; Zhou et al., 1997; Fussenegger et al., 1998; Ibarra 

et al., 2003). Bebbington et al., (1992) reported a method in which transfectants were 

selected in terms of growth in a glutamine-free medium using the glutamine synthetase 

(GS) selectable marker. cDNA amplification as well as selection for transfectants was 

subsequently carried out using the specific inhibitor of GS, methionine sulfoximine. 

DNA sequences encoding a chimeric IgG4 antibody were expressed in NS0 cell line 

transfected with cDNA vectors controlled by human cytomegalovirus major immediate 

early (hCMV-MIE) promoters. High levels of productivities of up to 560 mg/L antibody 

were observed.  

 

In another study Fussenegger et al., (1998) saw an increase in qP by decreasing the cell 

specific growth. In this study they reprogrammed the regulatory complex involved in 
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the CHO cell cycle by blocking proliferation at high cell densities leading to an 

extended period of high production. This led to a 10–15 times increase in the production 

of the heterologous protein, secreted alkaline phosphatase. Alternatively, rather than 

causing the cessation of cell proliferation, Ibarra et al., (2003) instead increased 

productivity by inducing the overexpression of anti-apoptotic genes, which 

overexpresses proteins against apoptosis (programmed cell death). An NS0 cell line, 

which expressed a chimeric IgG4 antibody, was further engineered to constitutively 

overexpress the anti-apoptotic proteins (Bcl-2 and p21CIP1). Effects of overexpression 

of these anti-apoptotic proteins on cell proliferation, cell viability, and antibody 

production were investigated in batch and continuous perfusion cultures, and mixed 

results were obtained. Mutant Bcl-2 expression did not show any significant 

improvement in cell viability of arrested cells. In contrast, p21CIP1 protein arrested cell 

proliferation, and gave a 4-fold increase in antibody production, the mutant Bcl-2 had 

observed change in cell viability. 

 

2.8. Summary 

As the demand for biotherapeutics continues to increase, there is the need for this to be 

matched by increased global large-scale recombinant protein production. There are a 

wide range of expression systems available for large-scale recombinant protein 

production, with the most commonly used ones being bacteria, insect cells, yeast, and 

mammalian cell based systems including  CHO, NS0, BHK-12. The choice of 

expression system for the production of a recombinant protein is influenced by a 

number of factors. All the expression systems have some advantages as well as 

limitations which must be considered before selecting the most appropriate one. The 

factors include cost, yield, propensity for post-translational modification and the 

economics of scale-up. Mammalian cell lines are considered to be the ideal eukaryotic 

expression system for the production of biotherapeutics as they are capable of producing 

proteins with posttranslational modification patterns closest to those in humans. Proteins 

with glycosylation patterns not resembling those found in higher mammals will not 

work in humans therapeutically, hence failing to fulfil the very purpose for which they 

were manufactured.  

Therapeutic MAbs have become one of the fastest growing classes of all 

biotherapeutics, expecting to top $56 billion by the end of 2012 representing a 

compound annual growth rate of 13% (Bccresearch, 2008). Advances in technology as 
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well as the increased global capacity of mammalian cell culture have made the latter the 

most utilised system for large-scale commercial manufacture of therapeutic MAbs. 

Although there are numerous mammalian cell lines that can serve as suspension cultures 

in bioreactors (for example NS0, BHK, SP2/0, CHO, and PER-C6) CHO cell lines have 

emerged as the cell line of choice industrially, for the large-scale production of 

therapeutic MAbs. Compared to others, CHO cell lines have the advantage of well-

established expression vector systems (the DHFR and GS systems) with platform 

technologies that allow for the transfection, amplification, selection and expansion of 

high producing and stable CHO cell clones.  

During the production of a recombinant protein in a stirred and serum-free culture, cell 

line development (involving transfection, amplification, selection and expansion of cell 

lines) is very important for generating high producing cell lines with the potential to 

increase productivity. However, cell line development times are usually long (about 14 

weeks) and there has not always been an increase in qP after successful screening and 

selection of high producing cell lines.  

 

Methods such as optimisation of the cell culture environment, bioprocess design and 

expression vector genetic engineering are currently being applied to improve the large-

scale production of recombinant proteins therapeutics from mammalian cell cultures. 

Specifically, emphasis has been placed on using various genetic engineering strategies 

to improve cell line product titres. Cellular aspects including delaying apoptosis, 

increasing the rate of cell proliferation, and increasing the cell’s metabolic efficiency 

have been assessed and manipulated to engineer useful variants of cell lines. However 

these have had mixed results where an increase in productivity is not guaranteed for all 

the cell lines. This suggests that the understanding of molecular details of mammalian 

cells is limited, and the ability to isolate cell lines and eventually identify potential 

genetic engineering targets will come from a better understanding of the cell’s 

phenotypic biology. 
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3. Mass Spectrometry  

3.1. Overview 

In chapter 2, the production of therapeutic proteins in mammalian cell cultures was 

discussed along with a literature review of some of the genetic engineering strategies 

that have been used to modify cell lines with the aim of enhancing cellular productivity. 

Mixed results were obtained with only a few studies reporting significant improvements 

of productivity. This suggests that more genes that can be manipulated by genetic 

engineering may be required. Furthermore, the ability to isolate cell lines and eventually 

identify potential genetic engineering targets will require a better understanding of the 

cell’s phenotypic biology. The area of highthroughput data-rich biology is termed “-

omics” and include proteomics, transcriptomics, genomics and metabolomics. These 

approaches can be used to study the overall biology of a cell and they have played a 

major role in providing knowledge in the biological sciences. Examples of such 

techniques include two-dimensional gel electrophoresis (2-D-PAGE) and mass 

spectrometry used for proteomic profiling. 

 

In this chapter, the mass spectrometry technique of matrix assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS) is 

introduced. The chapter begins with an overview of mass spectrometry with specific 

emphasis on describing the MALDI-ToF mass spectrometer. A description of how the 

MALDI-ToF MS instrument was used to collect data from E. coli cultures at different 

growth phases as well as from the IgG monoclonal antibody- producing CHO cell lines 

during culturing. Aspects relating to mass spectrometry data preprocessing are also 

discussed and preprocessing results from the aforementioned spectral data sets are 

reported. Finally, the chapter concludes with a review of applications of mass spectra 

data preprocessing. 
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3.2. Introduction 

Over the years, advancements in the field of proteomics have led to the development of 

a number of analytical techniques based primarily on chromatography and 

electrophoresis, including 2-D PAGE, two-hybrid analysis, high performance liquid 

chromatography (HPLC), and protein microarrays. This toolkit of techniques, have been 

developed to a high technical standard, but are inappropriate with respect to selectivity, 

sensitivity, cost-efficiency ratio, accuracy and speed (McGuire et al., 2008). The ability 

of mass spectrometry (MS) to meet these demands and handle the complexities 

associated with the proteome has led to its increased popularity (Han et al., 2008).  

 

MS is a microanalytical technique used for the identification of unknown compounds, 

quantification of known compounds, and for helping understand the structure and 

chemical properties of a given analyte. The basic principle of MS is the experimental 

measurement of the mass (in terms of mass-to-charge (m/z) ratio) of gas-phase 

molecular ions produced from the molecules of a sample. Unique features of MS 

include its ability to directly determine the nominal mass of a sample, and to produce 

and detect fragments of the molecule that correspond to discrete groups of atoms of 

different elements that reveal structural features (Watson and Sparksman, 2007).  

 

The fundamental basis of MS is a mass spectrometer with the data generated termed 

mass spectrum. The components of a mass spectrometer are: (i) a sample inlet (ii) an ion 

source, (iii) a mass analyser, (iv) a detector and (v) a software system to store and 

analyse data (Fig. 3.1). From Fig. 3.1, the full meanings of the abbreviations are APCI 

(atmospheric pressure chemical ionisation), AP-MALDI (atmospheric pressure 

MALDI), CI (chemical ionisation), ESI (electrospray ionisation), FI (field ionisation), 

and LSIMS (liquid secondary ion mass spectrometry). 
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The sample to be analysed is introduced into the ionisation source of the instrument. 

Sample molecules are then ionised into gaseous ions through the application of electric 

and magnetic fields. These ions are accelerated and transferred into the analyser region 

of the mass spectrometer where they are separated according to their individual m/z 

ratios. The separated ions are detected and this signal is sent to the data system where 

the m/z ratios of the ions are stored together with their relative abundance (Bergquist et 

al., 2007). The vacuum system removes molecules thereby providing a collision-free 

path for the ions from the ion source to the detector. The software system coordinates 

the functions of the individual components and records and stores the data in the format 

of a mass spectrum (Watson and Sparksman, 2007). A mass spectrum is a pattern 

representing the distribution of molecular ions by m/z ratio in a sample, with the length 

of each m/z ratio peak representing the relative abundance (intensity) of the molecular 

ion. Fig. 3.2 is an example of a MALDI-ToF mass spectrum from a CHO cell line (a) 

and an E. coli cell sample (b). 

Figure 3.1: A conceptual illustration of the mass spectrometer showing the various 

components 
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3.3. Matrix-assisted Laser Desorption/Ionisation Time-of-Flight 

(MALDI-ToF) Mass Spectrometry  

3.3.1. Introduction to MALDI 

When first introduced to mass spectrometry, lasers were directly applied to the analyte 

without the use of a matrix, an organic compound within which the analyte is embedded 

prior to analysis. In the 1960s, a technique called laser desorption (LD) used ultra violet 

(UV) lasers to transfer energy and ionise the analyte through electron excitation (or 

vibrational excitation when infrared (IR) lasers were used) (Watson and Sparksman, 

2007). The limitation of this was that as the lasers were applied with intense pulses for 

short durations, compounds with large molecular weights and those that were thermally 

labile could not be analysed. Applying the lasers directly led to destruction of the 

analyte. Previous experiments in resonant and non-resonant laser desorption had 

demonstrated that large molecules may be thermally dissociated upon energy transfer 

(Gantt et al., 1999). Furthermore, ions produced from molecules with masses greater 

than 500 Daltons (Da) were likely to undergo fragmentation. These limitations were 

overcome through the development of MALDI in the late 1980s (De Hoffmann and 

Stroobant, 2008). 

  

The MALDI technique was introduced principally by Karas and Tanaka in 1987, for 

which they were awarded part of the 2002 Nobel Prize in Chemistry (Watson and 

Sparksman, 2007). MALDI has since become a widespread and powerful source for the 
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Figure 3.2: Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-ToF) mass spectra: 

(a) CHO cell line and (b) E. coli cell 
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production of intact gas-phase ions from a wide variety of large thermally labile 

compounds including proteins, oligonucleotides, synthetic polymers and large inorganic 

compounds. The routine technique for MALDI where the analyte is embedded in an 

organic matrix, as used today was developed by Karas and Tanaka as described in the 

following sections. 

 

3.3.2. Principles of MALDI 

The MALDI technique is a two-step process. In the first step, the sample is pre-mixed 

with a UV-light absorbing matrix solution, usually weak organic acids. The matrix-

analyte solution mixture is then dried to remove any liquid solvent. The result is a co-

crystal of matrix-analyte where the analyte molecules become incorporated into the 

matrix crystals so that they are completely isolated from one another. The second step, 

which occurs under vacuum conditions inside the ion source, involves irradiation of the 

matrix-analyte mixture with intense UV laser (337 nm) pulses. Fig. 3.3 is an illustration 

of the MALDI desorption ionisation process. The exact mechanism of the process is 

still not fully understood.  However, as shown in Fig. 3.3, one thought is that irradiation 

by the laser induces rapid heating of the co-crystals through the accumulation of a large 

amount of energy resulting in the vaporisation of the matrix. The analyte molecules 

within the co-crystal vaporise as well but without having to directly absorb energy (De 

Hoffmann and Stroobant, 2008). 

 

A number of chemical and physical processes for the formation of ions have been 

proposed including gas-phase photoionisation, excited state proton transfer, ion–

molecule reactions, and desorption of preformed ions. The most widely accepted ion 

formation mechanism involves proton transfer to the analyte molecules in the solid 

phase before desorption. Alternatively, it can be a gas-phase proton transfer to analyte 

molecules in the vaporised co-crystal complex from photoionised matrix molecules. 

Protein molecules are usually ionised by adding a proton (H
+
) to the molecule  (M) to 

create a singly charged protein molecular ion [M+H]
+
, but there may also be some 

doubly charged proteins [M+2H]
+
 (Fig. 3.3) (Watson and Sparkman, 2007). The ions in 

the gas phase are then accelerated by an electrostatic field towards the analyser. 
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3.3.3. Matrix 

The matrix which consists of an organic solid or liquid species, performs two important 

functions: (1) it absorbs photon energy from the laser beam and transfers it into 

excitation energy, and (2) it serves as a solvent for the analyte, so that the 

intermolecular forces are reduced and aggregation of the analyte molecules is kept to a 

minimum. Desirable attributes of a typical MALDI matrix are: 

 Strong light absorption at the wavelength of the laser flux. 

 The ability to form micro-crystals with the analyte. 

 A low sublimation temperature, which facilitates the formation of an instantaneous 

high-pressure plume of matrix-analyte material during the laser pulse duration. 

 The participation in a photochemical reaction so that the analysed molecules can be 

ionised to produce large amounts of ions. 

 

The matrix is usually a solution of organic molecules. However, when the matrix is in a 

solid form, the analyte and the matrix are mixed together in a mutually soluble organic 

solvent, and allowed to co-crystallise. The co-crystallisation of the analyte and the 

matrix is critical to the success of the MALDI experiment. Studies of protein ground up 

in a dry crystalline matrix failed to produce any spectra (Horneffer et al., 2006). The 

ratio of matrix molecule to analyte molecules are typically between 500:1 and 5000:1. 

This ratio ensures that the analyte molecules are diluted in the matrix hence separating 

the analyte molecules to prevent analyte-analyte molecular interaction during the 

ionisation process. Typically examples of MALDI matrices are α-cyno-4-

Figure 3.3: Diagram illustrating the ionisation principle of MALDI 
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hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic 

acid), 3-amino-4 hydroxybenzoic acid and 2,5-dihydroxy-benzoic acid (DHB). 

 

3.3.4. The MALDI -Time-of-Flight (ToF) Mass Spectrometer 

The linear time-of-flight (ToF) analyser is the simplest analyser compared to others 

such as the reflectron and orthogonal acceleration analysers. It is widely used alongside 

the MALDI (the MALDI–ToF mass spectrometry platform). It has recently seen wide 

applications to electrospray as well as gas chromatography electron ionisation mass 

spectrometry (GC/MS). A MALDI instrument can be used in either linear or reflectron 

mode (Fig. 3.4). In linear mode (which is the focus of this thesis) the ions travel down a 

linear flight path and their m/z ratios are determined based on the time taken for the ion 

to reach the linear detector. A reflectron MALDI has an ion mirror at its end which 

reflects the ions back (at a slight angle) to the detector, into a different flight path. These 

deflected ions are detected at the level of the microchannel detector. Hence, this 

instrument is called a time-of-flight (ToF) instrument.  

 

The relationship that allows the m/z ratio to be determined is:  

 

                        

                                                             
 

 
(
 

 
)                                                       (3.1)   

Figure 3.4: Schematic representation of a linear or reflectron mode MALDI-ToF 

Mass Spectrometer 
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where E is the energy imparted to the charged ions as a result of the voltage that is 

applied by the instrument and, v, is the velocity of the ions along the flight path. Since 

all the ions are exposed to the same electric field, all similarly charged ions will have 

similar energies. Therefore, based on equation 3.1, heavier ions will have lower 

velocities and hence ions take longer to reach the detector because of their lower 

velocity, whilst the lighter ions will reach the detector first because of their greater 

velocity (Watson and Sparkman, 2007).    

 

The time for an ion to reach a detector from the source is given by equation 3.2, in 

which (t - to) is the time-of-flight for an ion from the source to the detector, m is the 

mass of the ion, z is the charge of the ion, d is the length of accelerating region in the 

electric field, L is the length of non-accelerating region without the electric field, and Vo 

is the potential of the electric field. 

 

       [
   

  
]

 

 
   [
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                                               (3.2) 

  

After rearranging equation 3.2 for m/z ratio, the quadratic relationship between m/z ratio 

and ToF is apparent in equation 3.3. The constants a and b depends on the instrument, 

potential applied at the source, electric field, and length of the flight tube: 

                                     

                                                 
 

 
         

                                                      (3.3)                    

                                                                                              

The quadratic relationship between m/z ratio and ToF (equation 3.3) means that ions 

having the same m/z ratio will also have the same ToF and thus impact the detector at 

the same time. A cascade of secondary electrons is released when the ions strike the 

detector. This electron current is captured by an anode and converted to a voltage using 

a preamplifier. The resulting voltage is recorded by a digital storage oscilloscope or by a 

digitizer card in a computer, and the amplitude of the signal corresponds to the number 

of ions that struck the detector in each bin of ion flight time. Other sources of noise 

from physical and electrical components of the mass spectrometer are also recorded (for 

instance, high frequency noise) (Shin and Markey, 2006). After the instrument is 

calibrated with compounds of known mass, the constants in the quadratic equation 3.2 
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relating time to m/z ratio are determined, and the m/z ratio of the detected ions are 

calculated (section 3.3.6.1) (Watson and Sparkman, 2007). 

  

3.3.5. Advantages of MALDI-ToF MS 

MALDI-ToF was used in this thesis for biomarker studies because of its various 

advantages. Firstly, it is more sensitive than other laser ionisation techniques and the 

matrix separates single analyte molecules from each other and minimises the 

aggregation due to a large excess of matrix molecules. Furthermore, energy is 

transferred from the matrix molecules to the analyte molecules to help them to ionise. In 

this way, the energy imparted by the laser is absorbed and retained by the matrix 

molecules. This prevents the analytes from dissociation and increases the efficiency of 

energy transfer from the laser to the analyte leading to an increase in sensitivity 

(Harrington et al., 2006).  

 

Generally, MALDI-ToF is considered a soft ionisation technique, that is, there is little 

or no fragmentation of the protonated ions formed during the MALDI process. This 

absence of fragmentation is a key advantage of MALDI-ToF MS compared to other 

classical mass spectrometry proteomic approaches such as electrospray ionisation (ESI) 

MS (Bergquist et al., 2007). Since MALDI has the inherent advantage that most ions 

are singly charged, the mass of the molecular ion usually is equal to the m/z ratio and 

each analyte typically only produces a single ion type. By recording the ToF, the mass 

of the molecular ion (MH
+
) and hence peptide/protein can be directly determined. This 

makes it particularly appealing for protein biomarker discovery and identification. The 

experimental molecular weights (MWs) of MALDI protein molecular ions can be 

matched against sequence MWs of organisms with sequenced genomes, directly 

identifying the protein (chapters 6 and 7). 

  

MALDI is also more widely applicable than the other laser ionisation techniques. 

Adjusting the wavelength to match the absorption frequency of each analyte is not 

required since it is the matrix that absorbs the laser pulse. Furthermore, because the 

process is independent of the absorption properties and size of the compound to be 

analysed, MALDI allows the desorption and ionisation of analytes with very high 

molecular mass including those in excess of 100 000 Da. For example, MALDI allows 
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the detection of femtomoles of proteins with MWs of up to 300 000 Da (De Hoffmann 

and Stroobant, 2008). 

 

3.3.6. MALDI-ToF Data Analysis 

In this thesis two case studies were carried out involving the use of MALDI-ToF mass 

spectrometry. In the first case study Escherichia coli (E. coli) K-12 cells were grown in 

culture and samples were collected when the cultures reached exponential, stationary 

and decline phases. Cell pellets prepared from the samples collected were subjected to 

MALDI-ToF mass spectrometry analysis. In the second case study, IgG monoclonal 

antibody Chinese hamster ovaries (CHO) cell lines (Lonza Biologics, Slough, UK) were 

harvested during cell line development. Samples were then prepared for MALDI-ToF 

analysis. The sample preparation procedures as well as the MALDI-ToF analysis are 

described in the following sections. 

 

3.3.6.1. MALDI-ToF Analysis E. coli K-12 cells in different growth phases 

Intact Cell Pellet Sample Preparation: Cell pellets to be analysed that had been stored 

under -70
o
C were re-suspended in 300µl distilled water, followed by the addition of 

900µL of pure ethanol to give a final ethanol concentration of 75%. The suspension was 

mixed thoroughly by vortexing. A two-layer method was used for matrix/analyte 

sample preparation. In this two-layer method, 1µL of suspension from the previous step 

was deposited onto a sample spot of a MALDI target plate (MSP 96 target, ground 

steel; Bruker Daltonics, Germany) and was allowed to air-dry at room temperature. 

Finally, 1μL of the saturated sinapinic acid (SA) matrix solution was deposited onto the 

dried sample and allowed to dry at room temperature for co-crystallisation to take place. 

At this stage, the plate was ready for MALDI analysis. For the matrix preparation, SA 

(20 mg/mL), was prepared fresh by weighing 10mg of the SA powder and dissolving in 

500µL of 40:60 ACN/TFA (0.1%, v/v). This was mixed thoroughly and sonicated for 

15 minutes, then vortexed to mix and completely dissolve all traces of powder. The 

saturated solution was then ready for use.  

 

Cell Lysate Sample Preparation: The ethanol suspension was made, as described for 

the intact cell pellet sample preparation procedure. Fifty microlitres of 70% formic acid 

was added to the pellets and mixed well.  This was followed by the addition of 50µL 

pure acetonitrile and centrifuged at 17949 × g for 2 minutes.  One-microlitre of the 
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bacterial lysate was spotted onto a sample spot of a MALDI target plate and overlaid 

with 1μL of the saturated SA matrix solution. This was allowed to dry at room 

temperature and was then ready for MALDI-ToF analysis. All the bacterial suspensions 

were prepared on the same day. 

 

Instrumentation and Data Analysis 

The mass spectra were acquired with an Ultra Flex MALDI-ToF mass spectrometer 

(Bruker Daltonics, GmbH, Germany) (Fig. 3.5), based in the School of Biosciences, 

University of Kent, Canterbury, Kent, UK. Before the samples could be analysed, a 

series of cell pellet samples were first spotted onto the MALDI plate and used as test 

samples for instrument optimisation studies. During optimisation, the parameter settings 

of the instrument were modified to identify the combination of parameters that would 

give visible and intense spectra signals with less noise. Factorial design was used with 

different MALDI-ToF parameters as design variables. Table A.1 of Appendix A shows 

the optimisation results. Based on the results of instrument optimisation, the following 

parameters were set in the mass spectrometer for MALDI spectra acquisition: 

accelerating voltage 24.24 kV, a pulse ion voltage 88% (21.23 kV) of the total 

accelerating voltage, a laser firing rate of 20 Hz, a delayed extraction time of 300 ns, a 

lens voltage of 5.5kV, matrix suppression 2 kDa, and a linear detector voltage of 1.681 

kV. The instrument was controlled by FlexControl v2.4 (Bruker Daltonics), operated in 

positive polarity and linear mode targeting a mass range of 2,000 – 30,000 m/z ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.5: Schematic diagram to illustrate the MALDI spectra data collection 
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MALDI data acquisition was performed manually. Five single composite spectral scans 

were acquired from each sample spot, which were summed to give a 6
th

 spectrum. Each 

composite spectra scan was the average of 20 single laser shots fired from the same 

location. Once the signal was depleted (that is, areas in sample consumed due to the 

laser irradiation), a new scan position was selected manually. As shown in Fig. 3.6, each 

of the 6 groups of sample was spotted 20 times to obtain sufficient spectra for data 

modelling. The samples were named as di (intact cell pellets for cultures at decline 

phase), mi (intact cell pellets for cultures at mid-log or exponential phase), si (intact cell 

pellets for cultures at stationary phase), dl (cell lysate for cultures at decline phase), ml 

(cell lysate for cultures at exponential phase), and sl (cell lysate for cultures at stationary 

phase).  So for each of the 20 spots per sample, 6 spectra per MALDI spot (5 single and 

1 sum), 120 spectra were obtained to give a total of 720 spectra for the six samples. 

After data acquisition, the raw mass spectra data were saved and exported as text files. 

 

Instrument Calibration 

Before MALDI analysis, external mass calibration was used to calibrate the instrument. 

The calibrant used as a standard was a protein mixture containing insulin (MW 5,735), 

ubiquitin (MW 8,566), cytochrome C (MW 12,361), myoglobin (MW 16,952) and 

myoglobin (MW 8,477) (Bruker Daltoniks, Germany), all covering the mass range 

4,000 - 20,000Da. About 50µL of SA was pre-mixed with calibrant by pipetting up and 

down until the solution became cloudy. The solution was kept ready for use. About 1µl 

of calibrant was spotted onto of the MALDI target plate onto six specific sample spots 

surrounded by 20 spots containing samples to be analysed (Table A.2, Appendix A). 

The instrument used the conventional three-term calibration equation as follows:  

 

                                 2/3

2

2/1

1 )/()/( zmCzmCCToF o                                     (3.4) 

where, Co represents any internal delay in the acquisition system, C1(m/z)
1/2

 is the time-

of-flight (ToF) of an ion with zero initial velocity from the target surface to the detector, 

and  C2(m/z)
3/2

 is a small flight time correction for the ion velocities at the onset of the 

extraction pulse (Moskovets & Karger, 2003). As can be seen from Tables 3.1 and 3.2 

the ToF of the molecular ions (with their accurately known reference masses) recorded 

by the instrument were used to calculate the constants C0, C1 and C2 from equation 3.4. 
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Fit result 

Equation terms Values 

C0 425.47 

C1 1256359.66 

C2 0.00 

Initial ppm 1500.00 

Result ppm 266.81 

Calibration result 

Ions Reference 

mass 

Current 

mass 

Error (100 

ppm) 

Insulin [M+H]
+ 

avg 5734.52 5736.51 347.28 

Ubiquitin [M+H]
+ 

avg 8565.83 / / 

Cytochrome C [M+H]
+ 

avg 12360.97 12357.95 -244.03 

Myoglobin [M+H]
+ 

avg 16952.31 16955.55 191.00 

Cytochrome C [M+2H]
2+ 

avg 6181.05 / / 

Myoglobin [M+2H]
2+ 

avg 8476.66 8474.45 -261.00 

Table 3.1: Linear calibration information for E. coli cell lysate samples 

Fit result 

Equation terms Values 

C0 427.10 

C1 1259863.64 

C2 0.00 

Initial ppm 1500.00 

Result ppm 250.20 

Calibration result 

Ions Reference 

mass 

Current 

mass 

Error (100 

ppm) 

Insulin [M+H]
+ 

average (avg) 5734.52 5735.97 252.43 

Ubiquitin [M+H]
+ 

avg 8565.83 / / 

Cytochrome C [M+H]
+ 

avg 12360.97 12356.47 -364.45 

Myoglobin [M+H]
+ 

avg 16952.31 16956.02 218.91 

Cytochrome C [M+2H]
2+ 

avg 6181.05 / / 

Myoglobin [M+2H]
2+ 

avg 8476.66 8476.01 -77.03 

Table 3.2: Linear calibration information for intact E. coli cell samples 
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The calibration molecular ions were a singly charged protonated molecules of insulin, 

ubiquitin, cytochrome C and myoglobin, and doubly charged protonated molecules 

cytochrome C and myoglobin. The constants were then used to calculate the current 

masses of the molecular ion to generate a calibration. The ToF of molecular ions from 

samples analysed by the instrument are subsequently converted to m/z ratio via the 

calibration (equation 3.3). The error given in parts per million (ppm) is the difference 

between the reference and current masses of the calibration molecular ions. The mass 

accuracy in the instrument was 100 ppm, i.e., for the proteins, experimental MW masses 

should be within 0.01% of their theoretical MWs (+/- 1 mass unit for 10,000 MW 

protein. After performing the calibration, the spectra were preprocessed in order to 

remove systemic errors. 

 

3.3.6.2. MALDI-ToF Analysis of IgG Monoclonal Antibody Producing CHO Cell 

Lines 

Sample Preparation for MALDI-ToF Analysis  

Samples were prepared in accordance with protocols determined by collaborators of this 

project at the School of Biosciences, University of Kent, UK. Aliquots of required 

volumes of intact cells (0.5×10
6
 cells) from exponential cultures in 96 deep well plate 

(DWP) were pelleted in microfuge tubes using a centrifuge at 956 × g for 5 minutes. 

The supernatant was removed and 1mL of ice-cold PBS buffer was added to the cell 

pellet, with gentle pipetting up and down to resuspend cells. Cells were centrifuged at 

3000 rpm for 5 minutes again and the PBS buffer was removed. Cell pellets were then 

resuspended in 0.35M of sucrose (previously prepared and stored at -20
o
C) with gentle 

pipetting up and down. The cell samples were kept in an ice bath in-between the 

washing steps and centrifugation. Finally, after another round of centrifugation, at956 × 

g for 5 minutes, the cell pellets were transferred to -70
o
C.  

 

Sinapinic acid (SA, Sigma; 20 mg/mL), was prepared fresh for 20 samples, by 

dissolving in 1.2mL of buffer and made up with buffer. This was mixed thoroughly and 

sonicated for 15 minutes in a water bath. The matrix solution was spun at 956 × g for 5 

minutes after which 50µL of the solution was added to each cell pellet sample which 

had been removed from -70
o
C, and allowed to reach room temperature. Cells were then 

re-suspended in the sinapinic acid solution by pipetting up and down in order to 
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dislodge clumps of cells. All samples were then transferred to 4
o
C and left for 3hours 

prior to spotting (1µL of sample each) on the MALDI plate.  

 

A two-layer method was used for matrix/analyte sample preparation to spot the sample 

for MALDI analysis. In this two-layer method, 1µL of sample suspension was deposited 

onto a sample spot of a MALDI target plate (MSP 96 target, ground steel; Bruker 

Daltonics, Germany) and was allowed to air-dry at room temperature. Finally, 1μl of the 

saturated SA matrix solution was deposited onto the dried sample and allowed to dry at 

room temperature for co-crystallisation to take place. The plate was ready for MALDI 

analysis. MALDI data analysis was carried out as explained in section 3.3.6.1. 
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3.4. Mass Spectra Data Preprocessing 

3.4.1. Introduction 

A MALDI-ToF mass spectrometry (MS) instrument generates a mass spectrum with 

each being the result of two measurements, m/z ratio and intensity, that is corrupted by 

noise due to data acquisition issues. The first step in the analysis is to preprocess the 

spectra to remove systematic noise and bias while preserving the information content 

inherent within the profiles. The goal of preprocessing is to take the MS proteomic data 

set, and generate a data set whereby statistical techniques can be applied. 

Issues with the data acquisition can be divided into two areas: 

 Flawed experimental technique. This includes samples prepared utilising 

different procedures, spectra data sets not acquired randomly to minimise 

systematic errors; and comparing spectra acquired with different MALDI 

instruments. In this situation the experimental processes need to be addressed 

(Baggerly et al., 2004). 

 Instrument miscalibration, noise, and variation in sensitivity. Problems 

associated with these issues can be minimised by applying preprocessing 

methods described in this section (Monchamp et al., 2007).  

Preprocessing aims to consider the issues of (i) reducing noise (ii) reducing the amount 

of data, and (iii) ensuring the spectra are comparable. 

  

Preprocessing of mass spectra includes a number of techniques including signal 

resampling, baseline correction, m/z ratio alignment, intensity normalisation 

smoothing/filtering, and peak identification (Hilario and Kalousis, 2008; Monchamp et 

al., 2007). However, these tasks are inter-related and different combinations may have 

to be tested to identify an acceptable procedure. A good preprocessing method should 

be able to eliminate differences between spectra profiles as a consequence of 

experimental and instrumental procedures, while preserving the inherent biological 

information within the spectra profiles (section 3.6). A number of techniques for 

MALDI-ToF MS data preprocessing have been described in the literature and the 

sequence has been proposed by Monchamp et al., (2007) (Fig. 3.6). In this thesis, the 

proprocessing techniques are applied using functions from the Bioinformatics Toolbox 

of MathWorks.  
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3.4.2. Signal Resampling 

As proposed by (Monchamp et al., 2007), resampling is the first preprocessing 

technique to be performed. Resampling is the process of calculating a new signal with 

intensity values at selected m/z ratio points. By selecting m/z ratio points, the signal can 

be down-sampled (fewer points than the original signal), up-sampled (more points) or 

synchronised (approximately the same amount of points).  

 

Resampling can be used to create a constant scale for the m/z ratio values, allowing for 

the comparison of different spectra utilising the same reference m/z ratio vector and the 

same resolution. Unequal spacing of the m/z ratio values can occur (due to random and 

systematic errors) with the same instrument or when different instruments are used to 

generate the spectra. Resampling has several advantages: 

 

Signal resampling

Baseline correction

Spectral alignment

Normalisation

Smoothing

Peak identification

Figure 3.6: Typical preprocessing task workflow for mass 

spectra data (Monchamp et al., (2007)) 
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 During down-sampling, the m/z ratio vector can be converted into a vector with 

fewer data points, whilst preserving the information content of the spectra. This 

is important when working high-resolution data sets, as the quantity of data can 

be impractical to work with using computationally intensive algorithms. If the 

sampling rate is higher than the resolution of the instrument redundant values 

may become immersed in noise. These values may be removed by down-

sampling (Monchamp et al., 2007).  

 Resampling can be used to fill “missing” values. Abundances may be “missing” 

for certain m/z ratio values so resampling can provide a value. A mass 

spectrometer may have trouble detecting the weak signals of low-abundance 

peptides during MS experiments. Even when the signal is detected by the 

instrument, the peak intensities may be too low to be distinguished from 

background noise during data processing. Therefore, the lower the ion 

abundance, the more likely the peptide will be “missing” in the mass spectra 

data. Bias maybe introduced during subsequent analyses if these “missing” 

values are ignored. Filling the “missing” values helps when data needs to be 

visualised (Wang et al., 2006). 

 

Care must be taken when resampling the mass spectra profiles not to set the number of 

resampling units too low since information may be masked or removed due to the 

signals losing resolution. The ‘msresample’ function from the bioinformatics toolbox of 

MathWorks is used for resampling 

(http://www.mathworks.com/products/bioinfo/demos.html). With this function, the 

selection of the m/z ratio vector is carried out by down-sampling a raw mass spectrum to 

give an output spectrum with the spacing between the points increasing linearly within 

the specified range.  

 

Prior to down-sampling, the function prefilters the spectrum to prevent aliasing by using 

an antialias filter, a linear-phase finite impulse response (FIR) filter with least-squares 

error minimisation. Aliasing is a phenomenon whereby it is difficult to distinguish 

between high frequency and low frequency signals with the latter being mistaken for the 

former in the down-sampled spectra. The high frequency signals in MS data are mostly 

noise. The ‘msresample’ function automatically sets the cut-off frequency to a value 

equal to the minimum distance between two contiguous data points within the m/z ratio 

http://www.mathworks.com/products/bioinfo/demos.html
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vector range (MATLAB, 2008). This filter allows those frequencies below the cut-off 

frequency to remain unchanged while it suppresses those above the cut-off frequency.   

 

As an example, the effects of resampling on raw spectra data are shown in Fig. 3.7. Fig. 

3.7(a) and (b) shows a CHO cell line spectrum before and after down-sampling from 

24000 to 10000 bins. Note the change in the thickness of the plots as a result of a 

reduction in the number of m/z ratio data points by eliminating redundant ones, but the 

relative intensity pattern of the down-sampled spectrum (Fig. 3.7(b)) looks very much 

like the raw spectrum.  
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Figure 3.7: Mass spectra of CHO cell line samples illustrating the 

effects of resampling 
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Fig. 3.8(a) shows the process by which the ‘msresample’ function reduces original m/z 

ratio data points in a raw spectrum of an E. coli cell sample to a subset which is much 

easier to handle. The red spots and line in the graph represent the newly calculated m/z 

ratio data points that would best fit the original raw spectra data. The blue spots 

represent the original m/z points. Fig. 3.8(b) indicates the E. coli cell sample spectrum 

with the resampled m/z ratio data points. Note how the resampled spectra (Fig. 3.8(b) 

and Fig. 3.8(b)) still show variation in baseline after the number of data points has been 

reduced suggesting that baseline correction is required. 
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Figure 3.8: Mass spectra of E. coli cell samples illustrating the effects 

of resampling 
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3.4.3. Baseline Correction 

After signal resampling, baseline correction is applied on the data. Varying baseline is 

caused by chemical noise from sources such as the sample ion dispensing, matrix 

chemical contamination, and data collection. Baseline correction is applied after 

resampling as it uses spectra with aligned m/z ratio vectors.  

 

Observed mass spectra can theoretically be decomposed into three components 

(Guangtao and Wong, 2008); 

  

                                

                                                                                                                   (3.4) 

 

 

where f(i, j) is the observed value, b(i, j) is the baseline value, s(i, j) is the true signal 

and ε(i, j) is the noise for ith sample at jth m/z ratio. The baseline is considered to be the 

low frequency component of the observed signal. Baseline variation is especially 

significant at low peak intensities because the signal to noise ratio is larger. The 

consistent decrease in baseline exhibited by MS data may be caused by the interaction 

of the matrix material with itself as well as with the sample proteins, during the MALDI 

analysis. More specifically, the baseline originates from small clusters of the matrix 

material and since the likelihood of cluster formation decreases with cluster size, the 

baseline diminishes consistently with an increase in m/z ratio (Shin and Markey, 2006).  

 

Baseline correction estimates a low-frequency baseline, which is latent within the high-

frequency noise and signal peaks and then subtracts this baseline to give a baseline 

corrected spectrum. This is done in three steps: (1) the baseline in a small window of 

width 200 m/z ratio is first estimated; (2) spline interpolation is then performed to 

regress the varying baseline to the estimated window baseline; and (3) the estimated and 

regressed baseline is subtracted from the spectrum (MATLAB, 2008). The 

bioinformatics toolbox of MathWorks uses the ‘msbackadj’ function to perform 

baseline correction (http://www.mathworks.com).  

 

In baseline correction, an iterative algorithm uses quantile value (i.e. equal proportions 

of spectral points are taken at regular intervals), for the observed value within a window 

to remove the varying baseline from a spectrum by iteratively calculating the best fit 

straight line through a set of estimated baseline points (Fig. 3.9). As demonstrated in 

http://www.mathworks.com/
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Fig. 3.9, the number of points above and below the best fit straight line (line in red) is 

then counted. If there are fewer points above the line than below, they are considered 

peaks and discarded. A new line is then fitted through the remaining data points. After 

repeating the process until the number of points above the line is greater than or equal to 

those below the line, this final line is subtracted from the spectrum to get the baseline 

corrected spectrum (Veltri et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 shows examples of raw mass spectrum of a CHO cell line (a), and the baseline 

corrected spectrum (b). Fig 3.11(a) shows how the ‘msbackadj’ function calculates the 

new baseline of the resampled spectrum of E. coli cell samples. Note the red line 

indicates the newly estimated baseline. Fig. 3.11(b) is the baseline corrected spectrum 

of the E. coli cell clearly showing a uniform baseline. 

 

 

 

 

 

 

 

 

 

Figure 3.9: An example baseline correction within a window 
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Figure 3.10: Mass spectra of CHO cell line samples demonstrating the 

effects of baseline correction 
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Figure 3.11: Mass spectra of E. coli cell samples demonstrating the 

effects of baseline correction 
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3.4.4. Spectra Alignment 

Instrument measurement error (0.03% - 0.06%) can cause miscalibration leading to 

variations in the relationship between the observed m/z ratio vector and the true ToF of 

the ions. Therefore, systematic shifts can appear in repeated experiments and the spectra 

for two identical proteins acquired can have different m/z ratio values. Alignment 

consists of aligning corresponding peaks across samples to address this problem (Veltri, 

2008). 

Alignment is usually applied when: 

 Known profiles of peaks are expected in the spectrogram of a biological sample 

which can be used to standardise the m/z ratio values. This can allow an easy 

and effective comparison of different spectra;  

 Internal and external calibration standards of known spectral profiles to aid 

calibration show variation in m/z ratio peak positions. Calibration standards are 

usually a set of known proteins which are expected to appear with reference 

peaks at specific m/z ratio points. However, there may be a slight shift across 

spectra with respect to the m/z ratio points of the reference peaks. So alignment 

needs to be performed to adjust the known peaks from the celebrants to their 

correct location. 

 

During alignment, a smooth function (which can be any higher-order polynomial) twists 

the spectral signals by resampling them. It builds a new signal with two or more peaks 

represented by a normal distribution. The m/z ratios of the new signal are shifted and 

adjusted until a cross-correlation between the mass spectrum and the new signal reaches 

a maximum value closest to the true peak location. After determination of a new m/z 

ratio vector, a new spectrum is calculated by piecewise cubic interpolation and shifted 

from the original m/z ratio vector (Monchamp et al., 2007).  

  

Alignment can be carried out by the ‘msalign’ function from the bioinformatics toolbox 

of MathWorks (http://www.mathworks.com). Fig. 3.12 and Fig. 3.13 shows an overall 

spectra heat map (Fig. 3.12(a) and (b)) and two overlaid spectra (Fig. 3.13(a) and (b)) of 

an E. coli cell sample demonstrating the alignment of peaks in the original spectra.  

Baseline-corrected spectra were aligned to the reference peaks of 6411, 6855, 7273, 

7333, 7869, 9061, 9218, 9532, and 9736. A close look at the heat maps show the spectra 

http://www.mathworks.com/
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peaks are more aligned along the m/z ratio reference peaks after alignment (Fig. 3.12(b)) 

than before alignment (Fig. 3.12(a)). After alignment, Figs. 3.13(a) and (b) show 

observed improvements in peak alignment between spectra based on peak height. 
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Figure 3.12: Heat maps of mass spectra of E. coli cell samples illustrating the effects 

of alignment 
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Figure 3.13: Mass spectra of E. coli cell samples illustrating the effects of 

alignment 



     MALDI-ToF Mass Spectrometry  
 

57 
 

3.4.5. Normalising the Relative Intensity 

In repeated experiments, it is also common to find systematic differences in the total 

amount of desorbed and ionised proteins. Sample size may differ, sample preparation 

may not be consistent between different technicians, there may be ion saturation or 

changes in the sensitivity of the instrument. This may result in variations in the 

amplitude of the ion intensities. Normalisation is a row-oriented transformation used to 

force the intensities of the data to the same scale thereby enabling the comparison of 

different samples (Veltri, 2008).  

 

There are a number of normalisation methods (Fung and Enderwick, 2002; Wang et al., 

2003). In the bioinformatics toolbox of MathWorks, the normalisation function, 

‘msnorm’, provide a number of options (http://www.mathworks.com): 

  

Area normalisation: To compensate for systemic differences, the relative intensities of 

the spectra are normalised to the average area under the spectra curves or the height of a 

selected peak. The area under the spectra curve (AUC) can be defined as,  

                                                                 ∑   
 
                                                (3.5) 

 

where Xi is the signal at ith m/z ratio, and n is number of m/z ratio values.  

Normalisation can be carried out by dividing the spectra signals by a constant, 

                                                           

                                                       
            

      

  
                                              (3.6)                                                       

where Xi is the signal at ith m/z ratio, n is number of m/z ratio values, and Ai is a 

constant.  

Area or height of an internal standard: A second normalisation method uses the area 

or height of an internal standard. The internal standard can be a compound with a 

known mass and the same amount of the substance is added to each analyte. Differences 

in the area of the internal standard should be proportional to the differences in the area 

for proteins in the analyte. For example, the maximum intensity of every signal can be 

rescaled to a specific value, for instance 100, with respect to the highest peak in the 

signal. It is also possible to ignore problematic regions; for example, the low-mass 

region (m/z ratio < 4000 Da) which may be due to matrix molecules may be ignored. 

http://www.mathworks.com/
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This is done by choosing a threshold value that eliminates the large amount of noise at 

the lower m/z ratio values but does not remove any important proteins (MATLAB, 

2008). The example shown in Fig. 3.14 and Fig. 3.15 shows the effects of normalisation 

on spectra. It is a mass spectrum before and after normalisation of a CHO cell line 

sample (Fig. 3.14(a) and (b)) and an E. coli cell sample (Fig. 3.15(a) and (b)). Notice the 

change in scale of the relative intensity axis of the spectra before and after normalisation 

because the base peak (largest peak in the spectrum) was rescaled to 100%. All other 

peaks were then normalised based on the respective base peaks. 
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Figure 3.14: Mass spectra of a CHO cell lines sample illustrating the 

effects of normalisation 
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Figure 3.15: Mass spectra of E. coli cell samples illustrating the effects of 

normalisation 
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3.4.6. Smoothing (Noise Filtering)  

Standardised spectra usually contain a mixture of noise and signal. Noise can be defined 

as unwanted signal interfering with the clarity of desired signals. Some applications 

require the denoising of the spectrograms to improve the validity and precision of the 

observed m/z ratio values of the peaks in the spectra. Additionally, denoising facilitates 

the application of peak detection algorithms to select significant features as noise which 

may be confused for peaks are removed. Filtering usually involves removing high 

frequency noise (Monchamp et al., 2007). Filtering is usually carried out after 

resampling, baseline correction, alignment and normalisation. There are two main 

smoothing techniques reported in the literature; 

 

Lowess filter smoothing: Lowess filters smoothes a mass spectrum by using a locally 

weighted linear regression method. In summary, Lowess smoothing finds a data value 

by averaging the values within a span of data points. Smoothing is directly proportional 

to the span size (i.e. the segment size containing a specific number of m/z ratio data 

points), so care must be taken when choosing the span size as a large span size may lead 

to information loss. For example a span size of 10 means performing a locally weighted 

regression smoothing algorithm by applying a full least-square fit to the 10 m/z ratio 

data points within the span. The step is repeated for every point in the signal 

(Monchamp et al., 2007). 

 

Savitzky-Golay filters: This technique (Savitzky-Golay, 1964), smooths mass spectra 

using a least-squares digital polynomial filter. Digital polynomials have points with 

coordinates often referred to as pixels.  This method of smoothing is basically a 

generalisation of the Lowess method. The filter coefficients can be derived by 

performing a linear least squares fit using a polynomial of a given degree. As a result, 

the algorithm preserves signal features such as the resolution between ion peaks and the 

height of the peaks. A higher degree of polynomial will fit the data better. Smoothing is 

controlled by the span size and the polynomial order. The data at both ends are 

truncated and the larger the segment size, the more the smoothing.  For instance for 

low-resolution mass spectra data, the span sizes commonly used are 15 - 20 (Monchamp 

et al., 2007).  
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The ‘mssgolay’ function of the bioinformatics toolbox of MathWorks uses the Savitzky-

Golay filter to carry out smoothing (http://www.mathworks.com).  Fig. 3.16 shows an 

example of mass spectra before and after smoothing.  Fig. 3.16(a) and (b) shows the 

spectrum of a CHO cell line sample before and after smoothing respectively. A portion 

of the spectrum has been enlarged so that the high frequency noise is apparent. As 

expected the scale of the noise within the raw spectrum is decreased after filtering. Fig. 

3.17(a) demonstrates how the ‘mssgolay’ function filters a resampled, baseline corrected 

and normalised spectra of an E. coli cell sample. In the figure, a raw spectrum (blue) 

can be seen with overlays of Savitzky-Golay smooths (green). Fig. 3.17(b) shows the 

completely smoothed spectrum. 
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Figure 3.16: Mass spectra of CHO cell line samples illustrating the effects of noise 

filtering 

http://www.mathworks.com/
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3.4.7. Peak Identification 

After baseline adjustment, alignment, normalisation of the intensities and smoothing of 

spectra, peak identification can be considered.  One approach of doing this is by looking 

at the first derivative of the smoothed spectra. Alternative peak detection methods uses 

descrete wavelet transforms (DWTs). The ‘mspeaks’ function of the bioinformatics 
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Figure 3.17: Mass spectra of E. coli cell samples illustrating the effects of 

noise filtering 
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toolbox of MathWorks uses this approach to perform peak identification 

(http://www.mathworks.com). 

   

As previously mentioned, a mass spectrum can contain tens of thousands (10,000 up to 

1,000,000) of m/z ratios, each with a corresponding signal intensities. However, mass 

spectra can contain regions that do not contain useful information. Extracting the 

relevant signals from a mass spectrum is therefore a means to reduce its dimensionality. 

Fig. 3.18 shows two mass spectra of E. coli cell samples demonstrating peak 

identification. A relative intensity of 10 was specified for peak identification in the 

algorithm, that is, only peaks with a relative intensity of 10 and above were identified.        
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Figure 3.18: Two mass spectra of E. coli cell samples demonstrating peak identification 
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3.5. Review of the Applications of Mass Spectra Data Preprocessing 

Several studies have been carried out to demonstrate the importance of preprocessing 

techniques on mass spectra data. A number of baseline correction methods have been 

reported in previous mass spectra proteomic studies. Tibshirani et al. (2004) used a 

logarithmic transformation on MALDI-ToF data, to reduce the dependence of signal 

width on mass values. By log-transforming the data, the peak widths were 

approximately constant across the m/z ratio range, correcting the baseline and 

facilitating peak detection, and multivariate data analysis. Filters with fast Fourier 

transform technique have also been used on MALDI-ToF mass spectra data to estimate 

the baseline. In this approach, the filters first to estimate the baseline level of the spectra 

and remove unwanted maxima and minima (Breen et al. 2000). Using a two-step 

algorithm, Coombes et al. (2003) combined baseline correction and peak detection. The 

algorithm first detected peaks as well as the base of the peaks. It then interpolated across 

the bases linearly after removing the peaks. The baseline was computed subsequently as 

the local minimum in a window of specified width. Finally a revised spectrum is 

constructed by subtracting the baseline from the original spectrum to give a final 

baseline-corrected spectrum. 

  

Other approaches to alignment such as cubic splines have been proposed for mass 

spectra data sets (Jeffries, 2005).  Du et al. (2006) provided a different approach where 

a continuous wavelet transform (CWT)-based peak detection algorithm was applied to 

identify peaks with different scales and amplitudes. By transforming the spectrum into 

wavelet space, the pattern-matching problem was simplified and in addition provided a 

powerful technique for identifying and separating the signal from the spike noise and 

coloured noise. The algorithm evaluated with surface-enhanced laser 

desorption/ionisation time-of-flight (SELDI-ToF) spectra data showed that no baseline 

removal or peak smoothing preprocessing steps were required before peak detection; 

and it improved the peak detection across different scales of the CWT algorithm and on 

spectra showing varying peak intensities. 

 

Some studies have been undertaken where various normalisation techniques were used 

(Satten et al., 2004; Wagner et al., 2003). In one such study, Satten et al. (2004) 

proposed a standardisation procedure where the spectra is centred using a local estimate 

of the median spectral intensity, and divided by a local estimate of the interquartile 
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range. The interquartile range is chosen over the standard deviation as a measure of 

scale because it is less likely to be sensitive to peak intensity values. Wagner et al. 

(2003) choose to normalise with respect to the sum of the intensities. Each peak 

intensity was divided by the sum of all peak intensities and multiplied by 1000, so that 

the processed intensities could be interpreted over a uniform range across fractions and 

samples. 

 

Other smoothing techniques have been proposed in various studies.  Barak (1995) 

suggested an extension to the Savitzky-Golay algorithm, in which the window width 

and the degree of the polynomial can be defined for adaptively every m/z ratio data 

point window size. The digital filter used varies the degree of the fitting polynomial as 

it slides down the m/z ratio data point window, leading to an improvement in noise 

reduction compared to Savitzky-Golay filters with optimally-chosen polynomial 

degrees.  

 

3.6. Preprocessing Studies for MALDI-ToF data generated from E. 

coli K-12 cells in different growth phases 

As previously explained preprocessing is important especially if biomarker 

identification is the final goal of mass spectra data modeling. Incorrect or inadequate 

preprocessing may lead to the incorrect identification of biomarkers and make it 

difficult to reach meaningful biological conclusions, which could have serious 

implications if such biomarkers are clinically relevant.  In this thesis, before the mass 

spectra generated were subjected to multivariate data analysis for biomarker 

identification, preprocessing was carried out.  

 

Preprocessing was carefully considered and empirically investigated to select an 

appropriate combination of preprocessing techniques and associated parameters. The 

parameters of the preprocessing methods were modified systematically and applied to 

the spectra data. The preprocessed spectra data was used to calibrate PLS-DA models 

(chapter 5). The qualities and performances of the constructed models using different 

preprocessing techniques/parameters were assessed. Factorial designs (and random 

designs) was used with different parameters of the preprocessing techniques defining 

the design variables and the PLS-DA root mean square error of prediction (RMSEP) 

(model performance), RMSE cross validation (RMSECV) (model quality), and R
2 

of 



     MALDI-ToF Mass Spectrometry  
 

66 
 

calibration and prediction (model quality and performance respectively) as the response 

variables to determine the optimal combination. In random design, the parameters were 

modified systematically (but not through factorial designs) and tested in order to 

increase the range of the factorial design and test parameter combinations that were not 

covered in the factorial design. 

 

The preprocessing was carried out using MATLAB
®
 v.7.6.0.324 (R2008a the 

MathWorks, Inc.) and functions from the Bioinformatics toolbox of MathWorks (v 3.1, 

R2008a, Eigenvector Research, Inc.). Sixty E. coli cell sample mass spectra data sets 

were preprocessed using the sequence in accordance with the recommendation by 

Monchamp et al., (2007) (Fig. 3.7). The data sets were first cropped and down sampled 

from 12722 to 8423 data points prior to the analyses. Cropping involved removing 

extremes of the intensity vector where missing m/z ratio values were found. For 

example the m/z ratio region from 0-4000 is usually considered as noise since signals in 

this area are from matrix ion molecules. This region was removed during cropping. 

 

3.6.1. Selecting the Appropriate Combination of Spectral Preprocessing 

Technique 

3.6.1.1. Cropping and Signal Resampling 

Initially, cropping and signal resampling were investigated the model quality 

(RMSECV and R
2
) of the constructed models using different cropping and signal 

resampling parameters were used as output to verify the suitability of the two 

preprocessing methods on these mass spectra data sets. Table 3.3 and 3.4 show the 

percentage R
2
 and RMSECV values across a number of latent variables (2 to 11) 

demonstrating the effect of cropping and signal resampling on the quality of PLS-DA 

models. As see from the tables, the percentage RMSECV of the three growth phases 

representing three classes were recorded as RMSECV1 (decline phase), RMSECV2 

(exponential phase) and RMSECV3 (stationary phase) respectively. The average value 

of the three latter values was calculated and recorded. This procedure was repeated for 

the R
2
 values.  
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Table 3.3: The effect of cropping (left table), no cropping (right table) and  

number of latent variables on quality of  PLS-DA  models 
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Table 3.4: The influence of resampling and number of latent 

variables on quality of PLS-DA model 
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Resampling was carried out after cropping the data.  The data sets were resampled by 

down sampling to 7000 bins within the range 2350 to 20400 m/z ratio values. Initially, 

attempts to resample to other data points such as 8000, 9000, 10000 or 11000 m/z ratio 

values were unsuccessful, rejected by the software suggesting that discriminatory 

information may be lost from data. The RMSECV and R
2
 values were plotted against 

the latent variables (Table A.3 in Appendix A and Fig. 3.19). As seen in Fig. 3.19, 

results suggest that LV2 had the worst model qualities with low average R
2 

(32.5%) 

with a correspondingly high RMSECV (39.3%), which increases until LV4 is reached, 

from where the graphs start levelling out. This suggests that to obtain models with good 

qualities, LV4 to LV11 should be considered for the models. Furthermore, there was no 

change on R
2
 or RMSECV to raw spectra, and spectra that was cropped and/or 

resampled. This suggest that cropping and resampling may not be necessary or suitable 

for this data set, at least on their own, as far as the qualities of predictive models are 

concerned. Probably they may be more effective if applied alongside the other 

preprocessing techniques of baseline correction, normalisation, alignment and 

smoothing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: Graphs showing the effect of cropping and resampling on quality of PLS-

DA models across latent variables 2 to 11 
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3.6.1.2. Baseline Correction 

Table 3.5 and 3.6 show the recorded values of RMSECV and R
2
 for the three classes 

and their averages respectively for different latent variables and parameter settings after 

baseline correction. Since the raw data had a vertical shift of in the mass spectra profile 

at the lower m/z ratio region, baseline correction on these mass spectra data set was a 

necessity. As summarised in Table 3.5, the window size was fixed at 200 and the 

quantile value at 0.2; LV4 gave the optimal model with the highest R
2
 value (62.5%) 

and the lowest RMSECV (3.01%) This is demonstrated in Fig. 3.20. As seen in Fig. 

3.20, R
2 

increased sharply until LV4 is reached while RMSECV fell sharply to the same 

LV; from where they level out up to LV11. Thus the optimal parameter settings 

(window size and quantile vale) for baseline correction were tested on LV4 (Table 3.6). 
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Table 3.5: Influence of number of latent variables after baseline 

correction on quality of PLS-DA models 
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Figure 3.20: Graph showing the influence of latent variable on the quality of PLS-DA 

models 

 

As shown in Table 3.6, a 2
2
 full factorial design matrix (with 2 center points) was set up 

with two variables, window size and quantile value set at 100-500 and 0.1-1 as lower 

and higher levels. A combination of window size, 500 and quantile value 0.1 gave the 

optimal model with average R
2
 of 72.4% and RMSECV of 23.6%. Thus two different 

random designs were set up to investigate the window of 500 and 0.1 quantile value 

more closely.  

 

In the first random design (random design 1) the quantile value was fixed at 0.1 whilst 

the window size was increased progressively from 100 to 1000 at intervals of 100.  The 

optimal model (R
2
 of 72.3% and RMSECV of 24%) was found when window size was 

400 and quantile value 0.1. In the second random design (random design 2) the quantile 

value was increased progressively from 0.1 to 1 at intervals of 0.1 whilst the window 

size was fixed at 500. No window size and quantile value combination gave a model 

with R
2
 better that 72% (Table 3.6). These R

2
 values however were better than that 

obtained (69.8%) when no preprocessing was applied to the data. These suggest that 

baseline correction, at least on its own, will improve model quality of the models built 

with the spectra data. The optimal parameter setting for baseline correction was also 

found to be a window size of 500 and a quantile value of 0.1 (Table 3.6 in bold). 
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Table 3.6: Design matrix showing the influence of different baseline correction 

parameter settings on the quality of PLS-DA models 
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3.6.1.3. Alignment, Normalisation and Smoothing 

Table 3.7 shows the effect of alignment across a number of latent variables. Alignment 

of the spectra data was carried out along five m/z ratio peaks 6411, 6855, 7273, 7333, 

7869, 9061, 9218, 9532, 9736 which were found to be common among most of the 

spectra profiles. Results in Table 3.7 suggest that applying alignment on the data 

slightly improved the qualities of the PLS-DA models built using the mass spectra data, 

on average. This can be clearly seen from Fig. 3.21 (Table A.4, Appendix A). This 

suggests that using alignment may be necessary for this spectra data sets, at least on its 

own. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
u
m

b
e
r 

o
f 

la
te

n
t 

v
a
ri

a
b
le

s

R
M

S
E

C
V

 1
 

(%
)

R
M

S
E

C
V

 2
 

(%
)

R
M

S
E

C
V

 3
 

(%
)

A
v

e
ra

g
e
 

R
M

S
E

C
V

 

(%
)

R
2
1

 (
%

)
R

2
2

 (
%

)
R

2
3

 (
%

)
A

v
e
ra

g
e
 

R
2
 (

%
)

2
4

7
.2

2
8
.1

3
9
.5

3
8
.2

9
.1

6
7
.2

3
0
.9

3
5
.7

3
3

8
.9

2
8
.4

3
0
.6

3
2
.6

3
8

6
6
.3

5
8
.2

5
4
.2

4
3

1
.5

2
9
.3

2
4
.7

2
8
.5

5
9
.1

6
4
.8

7
2
.9

6
5
.6

5
3

2
.1

2
6
.9

2
5

2
8

5
9
.4

6
9
.6

7
3
.5

6
7
.5

6
3

1
.1

2
5
.6

2
5
.4

2
7
.4

6
2
.8

7
2
.3

7
2
.7

6
9
.3

7
2

7
.6

2
5
.4

2
5
.6

2
6
.2

6
9
.6

7
0
.7

7
3
.6

7
1
.3

8
2

6
.1

2
5
.8

2
5
.8

2
5
.9

7
2
.9

7
3
.1

7
3
.2

7
3

9
2

6
.9

2
5
.6

2
6
.4

2
6
.3

7
2
.2

7
3
.4

7
2
.5

7
2
.7

1
0

2
6
.7

2
5
.8

2
6
.1

2
6
.2

7
2
.2

7
3
.6

7
2
.5

7
2
.8

1
1

2
6
.2

2
6

2
6
.5

2
6
.2

7
3
.1

7
3
.4

7
3
.1

7
3
.2

Table 3.7: Influence of alignment and number of latent variables on the quality 

of PLS-DA models 
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Table 3.8 shows results of the quality of PLS-DA classification models obtained after 

the data used to build the models was normalised at with varied parameter settings. The 

model evaluations were carried out at a fixed LV (LV 4). A 2
3
 full factorial design 

matrix (with no center points) was set up with two variables, rescaling and quantile 

value. Eight runs were carried out with the rescaling fixed at 100 and the quantile value 

was increased progressively from fixed at 0.1 to 0.6 at intervals of 0.1. A random design 

was subsequently set up and quantile values from 0.7 to 1 were evaluated against a 

fixed rescaling value of 100; whilst a fixed quantile value of 0.1 was evaluated against 

rescaling values of 20, 50 and 80. Results suggested that better models (R
2 

of 86% and 

RMSECV of 17.4%) were produced after normalisation, than when no preprocessing 

was performed on the data (R
2
 of 69. 8% and RMSECV of 65.4%). This suggests that 

data normalisation improves the quality of the PLS-DA models built with the mass 

spectra data. 
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Figure 3.21: Graphs showing the effect of alignment on quality of PLS-DA 

models across latent variables 
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Table 3.8: Design matrix showing the influence of different 

normalisation parameter settings on the quality of PLS-DA models 
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Table 3.9 shows results of the quality of PLS-DA classification models obtained built 

with smoothed mass spectra data. Smoothing was performed with varied parameter 

settings. The parameter involved during smoothing was the smoothing span value (i.e. 

the segment size containing a specific number of m/z ratio data points). This was 

systematically changed from 10 to 100 at intervals of 5 units. The model evaluations 

were carried out at a fixed LV (LV4). 

 

As can be seen from the Table 3.9, span values of 20 and 25 produced better models, 

with an R
2 

of 72.2% and RMSECV of approximately 27% (indicated in bold in Table 

3.9). This also suggests that smoothing improves the quality of classification models. To 

conclude, results thus far suggest that evaluating the preprocessing methods in isolation 

remove undesired effects, increasing between class variations and hence the 

classification models as seen through the R
2 

and RMSECV. In the next section, the 

preprocessing methods were combined and evaluated together to verify if this will be of 

value. 
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Table 3.9: Influence of different smoothing values on PLS-DA model 

optimisation 
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3.6.1.4. Using all Preprocessing Techniques for the E. coli Spectra Profiles 

Tables 3.10 and 3.11 shows the effect of the spectra preprocessing techniques on the 

quality and performance of PLS-DA classification techniques obtained after the data 

used to build the models was preprocessed with all the techniques, with varied 

parameter settings. The model evaluations were carried out at a fixed LV (LV 4). A 2
4
 

full factorial design matrix (with 2 center points per block) was set up with four factors, 

i.e. baseline correction quantile value, baseline correction window size, normalisation 

quantile value and smoothing span value. All these factors were held at 2 levels (upper 

and lower levels).  

 

Eighteen runs were performed with baseline correction quantile value at 0.1-0.2, 

baseline correction window size at 300-500, normalisation quantile value at 0.1-1 and 

smoothing span value at 20-25. These intervals were those that gave optimal results 

(high R
2
 and low RMSECV) when the corresponding preprocessing techniques were 

used in isolation. A random design was subsequently set up with baseline correction 

quantile value at 0.1-0.2, baseline correction window size at 100-200, and normalisation 

quantile value at 0.1-0.2, evaluated against a fixed smoothing span value of 25. The 

qualities of the models were evaluated through the R
2
 and the RMSECV whilst the 

performance was evaluated against the root mean square error of prediction (RMSEP) 

and the R
2 

of prediction.  

 

As can be seen from the results (Tables 3.10 and 3.11, run order 21 and 24) the best 

models were obtained (with R
2
 of calibration 33.46%; RMSECV of 82.01%; R

2
 of 

prediction 89.19%; and RMSEP of 15.85%), when the baseline correction quantile 

value was at 0.1, baseline correction window size was set to 200, normalisation quantile 

value, 0.1 or 0.2,  and smoothing span value was at 25. These parameter settings were 

used as standard settings for the preprocessing approach applied to the E. coli mass 

spectra data. The standard preprocessing algorithm used for all spectra data sets can be 

found in Appendix A, Fig. A.1. 
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Table 3.10: Design matrix showing the influence of different preprocessing techniques 

of various parameter settings on the quality of PLS-DA mode 
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Table 3.11: Design matrix showing the influence of different preprocessing 

techniques/parameter settings on the performance or quality of PLS-DA models 
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Fig. 3.22 shows the main effects and interaction plots for the preprocessing techniques 

with output being the RMSEP. The latter was used because prediction error is an 

absolute measure. Furthermore, using a parameter which test for model performance 

will help increase confidence on conclusions drawn with respect to model quality, and 

hence the preprocessing method.  

 

A seen in Fig. 3.22, the main effects plot suggests that all the preprocessing techniques 

are significant, with baseline correction quantile value and smoothing span value being 

the most significant preprocessing techniques affecting the model performance. This 

goes to support the earlier view that all these techniques were essential for 

preprocessing the spectra data. The main effects for average RMEP are maximised 

when baseline correction quantile value was set at 0.2 and smoothing span value to 20.  

 

From the interaction plots, the following interactions could be observed;  

 baseline correction window size and normalisation quantile value;  

 smoothing span value and normalisation quantile value;  

 baseline correction window size and smoothing span value; and  

 baseline correction window size and quantile value.  

 

At baseline correction window sizes of 300 or 500, model performance are increased 

(with lower average RMSEP) when the baseline correction quantile value is reduced 

from 0.2 to 0.1, and when the smoothing span value is increased from 20 to 25. At 

baseline correction window sizes of 300 or 500, model performance is increased when 

the normalisation quantile value is increased from 0.1 to 1. At normalisation quantile 

values of 0.1, 0.2 or 1, model performance is improved when the smoothing span value 

is increased from 20 to 25. At baseline correction quantile value of 0.2, model 

performance is improved when the normalisation quantile value is increased from 0.1 to 

1. However the gain is not as large as simply setting the baseline correction quantile 

value at low levels of 0.1. These interactions prove the notion that looking at one 

preprocessing technique in isolation from the others may be of limited value, an 

argument which was stressed by Baggerly et al, (2003). The factorial design enabled the 

incorporation of the possibility of interactions between the different preprocessing 

techniques whilst helping to evaluate the relative importance of the individual methods.  
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3.7. Preprocessing Studies for MALDI-ToF data generated from 

Monoclonal Antibody Producing CHO cell line Spectra Profiles 

3.7.1. Using all Preprocessing Techniques for the CHO Cell Line Spectra Profiles 

The procedure described in section 3.6 was repeated for the CHO cell line spectra data 

sets. All the preprocessing techniques were evaluated for the CHO cell line spectra data. 

The qualities and performances of the constructed models using different preprocessing 

techniques/parameters were assessed. Factorial and random designs was used with 

different parameters of the preprocessing techniques defining the design variables and 

the PLS-DA RMSEP and R
2 

of prediction as the response variables to determine the 

optimal combination.  

 

Tables 3.13 shows the effect of the spectra preprocessing techniques on the quality and 

performance of PLS-DA classification techniques obtained after the CHO cell line 

spectra data used to build the models was preprocessed with all the techniques varying 

the parameter settings. The model evaluations were carried out at a fixed LV (LV 5). A 

24 full factorial design matrix (with 2 centre points per block) was set up with four 

factors, i.e. baseline correction quantile value, baseline correction window size, 

normalisation quantile value and smoothing span value. All these factors were held at 2 

levels (upper and lower levels).  

 

Eighteen runs were performed with baseline correction quantile value at 0.1-0.2, 

baseline correction window size at 300-500, normalisation quantile value at 0.1-1 and 

smoothing span value at 20-25. These intervals were those that gave optimal results 

(high R
2
 and low RMSECV) when the corresponding preprocessing techniques were 

used in isolation. A random design was subsequently set up with baseline correction 

quantile value at 0.1-0.2, baseline correction window size at 100-200, and normalisation 

quantile value at 0.1-0.2, evaluated against a fixed smoothing span value of 25. The 

qualities of the models were evaluated through the R
2
 and the RMSECV whilst the 

performance was evaluated against the root mean square error of prediction (RMSEP) 

and the R
2 

of prediction.  

 

As can be seen from the results (Tables 3.12, run order 20) the best models were 

obtained (with R
2
 of calibration 48.5%; RMSECV of 46.2%; R

2 
of prediction 33.5%; 

and RMSEP of 50.3%), when the baseline correction quantile value was at 0.2, baseline 
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correction window size was set to 100, normalisation quantile value, 0.1, and smoothing 

span value was at 25. These parameter settings were used as standard settings for the 

preprocessing approach applied to the CHO cell line mass spectra data. The standard 

preprocessing algorithm used for all spectra data sets can be found in Appendix A, Fig. 

A.2. 
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Table 3.12: Design matrix showing the influence of different preprocessing 

techniques/parameter settings on the performances and qualities of PLS-DA models 
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3.8. Summary 

In this chapter, mass spectrometry was introduced as an important ‘omics’ tool. In 

particular, the capabilities and advantages of the MALDI-ToF mass spectrometry 

platform was explored. The relative ease of operation of MALDI coupled with ToF 

detection and its characteristic generation of mostly singly charged peptide and protein 

ions makes a useful mass spectrometry technique. Ions are generated from high-mass 

and non-volatile protein molecules through laser irradiation. A key aspect of MALDI is 

the use of an energy absorbing matrix which can co-crystallise with the analyte 

preventing decomposition of the latter due to the laser energy. Gas phase protein 

molecular ions produced by the matrix-analyte co-crystal traverse a field-free flight tube 

and are then separated according to their m/z ratio. MALDI-ToF was used for data 

analysis in this thesis because of the advantages it has such as high sensitivity, little or 

no fragmentation, widespread use and predominance of singly charged molecules as 

MALDI uses a soft ionisation approach. The fact that mostly singly charged molecular 

ions (with the mass equal to m/z ratio) are generated from the instrument is a key 

advantage as it enables the direct determination of the mass of the protein molecular ion 

and hence protein molecules. This offers the opportunity for rapid biomarker discovery 

as the experimental molecular weight of MALDI molecular ions can be matched against 

sequence molecular weight of organisms with sequenced genomes, directly identifying 

the protein (chapters 6 and 7).  

 

However, before any data mining is carried out on mass spectra data for biomarker 

identification, the raw spectra profiles have to be preprocessed. Preprocessing serves to 

reduce the spectral noise, reduce the amount of data, and ensure the spectra comparable. 

It includes a number of techniques including resampling, baseline correction, alignment, 

normalisation smoothing, and peak identification. Studies have shown that these 

preprocessing techniques are interrelated, and several combinations of the different 

techniques may have to be tested to identify an appropriate preprocessing approach 

(Baggerly et al., 2004). A review of the applications of the application of preprocessing 

on mass spectra data was provided, emphasising the importance of preprocessing. 

 

In this chapter, preprocessing studies were carried out using the MALDI-ToF mass 

spectra profiles generated from E. coli cells and CHO cell lines. A quantitative 

assessment of the impact of different combinations of preprocessing techniques on the 
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mass spectral data was carried out by factorial designs with the parameter settings of the 

various preprocessing techniques used as factors, and root mean square error of 

prediction (RMSEP), RMSE cross validation (RMSECV), R
2 

of prediction and 

calibration as the response. After combining all the preprocessing techniques, the 

combinations that gave favourable responses for the RMSEP and R
2
 of prediction were 

used as the preprocessing procedures for the E. coli cell spectra profiles. Moreover, 

identification of protein biomarkers from the reprocessed spectra profiles, consistent 

with those already described in the literature further helped validate the preprocessing 

methods/parameters combination used (chapter 6 and 7). The next chapter explores 

proteomic profiling for biomarker discovery as well as some important mass 

spectrometry based techniques. It focuses on intact-cell MALDI-ToF mass spectrometry 

(ICM), the technique that was used for analysing the samples in this thesis. 
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4. Protein Profiling for Biomarker Discovery 

4.1. Overview 

The previous chapter introduced the technique of mass spectrometry with a description 

of MALDI-ToF MS which is the main analytical technique used in this thesis. It also 

described the importance of pre-treatment of the high dimensionality mass spectra data 

generated from the MALDI, a number of preprocessing techniques, substantiated by 

examples using suitable mass spectra data from E. coli cells at different growth phases 

as well as from the IgG monoclonal antibody producing CHO cell lines during 

culturing. 

 

This chapter describes the concept of proteomic biomarker discovery and introduces the 

top-down proteomics based approach of ‘intact-cell’ MALDI-ToF MS (ICM-MS). The 

application of ICM-MS for the analysis of microorganism and mammalian cell line is 

given. The chapter also explores the potential advantages and usefulness of ICM-MS 

and internet-accessible protein databases for rapid biomarker profiling in the area of 

mammalian cell culture in biopharmaceutical bioprocessing. Finally the chapter 

concludes with a literature review on the applications of the application of ICM-MS on 

both bacterial and mammalian cells. 

 

4.2. Introduction 

Recent advances in genomics with the sequencing of the human genome (Venter et al.,, 

2001) and many other species including E. coli (Blattner et al., 1997), mouse 

(Waterston et al., 2002), and rat (Gibbs et al., 2004) are providing increasing 

knowledge in terms of the fundamental genetic code that characterises signal 

transduction pathways, and the control of important cellular events like growth, 

differentiation, and cell death. Although gene-related-information is of value, evidence 

within the context of clinical research suggests that analysing genome sequences alone 

provides insufficient indicators for the development of new therapies to fight human 

disease. Potentially of greater value will be to have knowledge of global patterns of 

protein content and activity and how these are altered during development or in 

response to disease. This type of information will be required to facilitate the discovery 

of novel drug targets and new therapies (Gygi et al., 1999). 
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Contrary to genomic studies, the analysis of proteomes is significantly more challenging 

and complicated mainly because the proteome is dynamic and is in constant flux. Other 

factors such as alternative splicing of the respective mRNAs, and posttranslational 

modifications can result in important functional differences in proteins of higher 

eukaryotes (Wery, 2012). The term proteome refers to all proteins expressed by a cell, 

tissue or a body fluid and is thus a complex mixture. Proteomics can be defined as ‘the 

systematic analysis of protein populations and the protein complement of cells, 

including the concurrent identification, modification, quantification, and localisation of 

large numbers of proteins in a functional context’ (Pothur et al., 2001). Among the 

many vital functions they perform, proteins catalyse a variety of chemical reactions, 

support a range of skeletal structures, control membrane permeability, modulate the 

concentration of metabolites, and control gene expression. Thus information at the level 

of the cellular proteome is essential for determining which proteins or groups of 

proteins are responsible for a specific function or phenotype in cells. This could be in 

relation to health and diseases, as in clinical proteomics, or cell systems involved in the 

production of a therapeutic protein in bioprocessing.  

 

Protein profiling, a sub-discipline of proteomics, has provided significant insight into 

biological events such as transcription and translation. It is the generation of extended 

protein expression data sets for analysing changes in global protein expression patterns 

in biological systems as a function of developmental, physiological, and disease 

processes. Protein profiling can promote understanding of aspects of a disease such as 

pathogenesis, improved early detection, staging, therapeutic monitoring and prognosis 

(Bakry et al., 2011). In clinical proteomics, biomarkers are among the important tools 

critical to understanding these disease aspects. 

  

4.3. Protein Biomarker Discovery 

Biomarkers can be defined as biological molecules that correlate to a specific biological 

or pathological state, pharmacologic response or a therapeutic intervention.  As 

advances in the fields of genomics and proteomics continue to contribute to a wide-

range of scientific disciplines (e.g. industrial manufacture of therapeutic proteins) 

through new technologies, the field of biomarker discovery, development and 

application has become an area of considerable research focus and activity.  
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The discovery of biomarkers can be carried out through the use of a variety of 

approaches depending on the nature of the biomarker involved. Approaches can range 

from transcriptional profiling and DNA methylation studies which have shown strong 

potential for biomarker discovery in cancer, to metabolomic approaches as 

demonstrated for metabolic disease, drug and toxicity studies (Rifai et al., 2006). 

However, with protein domains being the most affected entities during a pathological 

condition, protein biomarkers have become one of the most valuable classes of 

biomarkers over the past 100 years. As a consequence, proteomic biomarker discovery 

studies have become commonplace.  

 

In the context of clinical proteomics, protein biomarkers serve as important tools in 

terms of acting as an early indicator of a disease, for the monitoring of disease 

progression, and for assisting with disease detection. Protein biomarkers are often low-

molecular-weight proteins and their secretion and appearance in the bloodstream is 

triggered by the onset and progression of a disease process and their prominence has 

made them the cornerstone of medical care (Frank and Hargreaves, 2003). Blood 

biomarker measurements can provide indicators relating to the source of patient 

symptoms such as abdominal pain (transaminase biomarkers - hepatitis, alkaline 

phosphatase - biliary disorders, and human chorionic gonadotropin (β-hCG) - 

pregnancy) or chest pain (troponin biomarkers - heart attack). The demonstrated success 

of biomarkers in terms of impacting the prognosis of numerous patients and could 

providing insights into the appropriate patient therapy in situations where immediate 

treatment is necessary; the development of more and better therapeutic and diagnostic 

biomarkers has now become a priority area in the clinical sciences (Paulovich et al., 

2008). 

 

4.3.1. Biomarker Discovery Pipeline 

As reviewed in Rifai et al. (2006), the mass spectrometry-based biomarker development 

pipeline (Fig. 4.1) in clinical research usually consists of several phases. Discovery or 

identification is a step that involves the definition of differential protein expression 

between biological states. Biomarker discovery or identification is usually carried out 

using a series of proteomic technologies including gel-based mass spectrometry (MS) 

(e.g. two-dimensional polyacrylamide gel electrophoresis with matrix assisted laser 

desorption ionisation time of flight MS; 2D-PAGE/MALDI-ToF-MS), or gel-free MS 
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approaches, i.e., MudPIT (multidimensional protein identification technology) or ‘shot-

gun proteomics’. An example of ‘shot-gun proteomics’ is liquid chromatography with 

electrospray ionisation MS; LC/ESI MS. Sample systems used in discovery include 

model systems (e.g. mouse models or cell lines) or materials of human biological origin, 

and usually consist of a binary comparison between diseased and normal tissues. The 

outcome of the discovery phase is a compiled list of specific proteins differentially 

expressed between the normal and diseased states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 4.1, the next phase in biomarker development is qualification. 

Qualification confirms the differentially expressed candidate biomarkers, i.e., it links 

the biomarkers with a biological state. Qualification may also serve to confirm the 

candidate biomarkers in comparisons of diseased and normal human samples, if 

discovery was not initially performed in such samples. Discovery and qualification are 

mainly involved in verifying that the candidate biomarkers are consistently associated 

with the disease. Principally, they both demonstrate the sensitivity of a candidate 

biomarker (the likelihood that a diseased sample will test positive) over specificity (the 

likelihood that an unaffected sample will test negative). 
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Figure 4.1: Process flow for protein biomarker development 
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Qualification is followed by the verification step, which serve to determine if there is 

sufficient evidence for potential clinical utility of a given candidate biomarker to 

warrant further investment in that candidate for clinical validation studies. Hundreds of 

human samples are involved, where factors such as environmental, genetic, biological 

and variation in the population are tested, to confirm the sensitivity and specificity of 

the biomarkers. Biomarkers which perform well under verification are taken forward to 

clinical validation. This stage involves the use of quantitative methods on large 

populations of samples to confirm that the candidate biomarkers have clinical utility, 

i.e., the biomarker candidates are evaluated in clinical trials in a context most relevant to 

their eventual clinical application.  If not performed during the verification phase, 

immunoassays are used to assess the diagnostic abilities of the biomarkers, followed by 

assessment of performance characteristics such as reproducibility and accuracy (e.g. the 

ability to be accurately used as a disease indicator). Successfully validated biomarkers 

are then selected for commercialisation. 

 

4.3.2. Overview of Proteomic Approaches for Biomarker Discovery 

Currently, protein biomarker discovery is undertaken by one of two approaches (Fig. 

4.2), the analysis of intact proteins (top-down proteomics) and the analysis of peptide 

mixtures from digested proteins (bottom-up proteomics). Proteomic studies in the past 

have always been based on a trade-off between throughput (top-down proteomics) and 

resolution (bottom-up proteomics) (Dalmasso et al., 2009). These two proteomic 

approaches are briefly described in the subsequent sections. 

 

 

 

 

 

 

 



                                                                               Protein Profiling for Biomarker Discovery  
 

94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3. Bottom-up Proteomics 

Bottom-up proteomics, also known as ‘shot-gun’ proteomics, involves mass 

spectrometry analysis of purified proteins, or complex protein mixtures, that have 

initially undergone enzymatic digestion, using enzymes such as trypsin (Fig. 4.3). 

Protein mixtures are treated with a proteolytic enzyme (e.g., trypsin) to fragment 

proteins into peptides. The resulting peptides can be subjected to either mass 

spectrometry (MS) or MS/MS for protein identification. Proteins purified by employing 

gel electrophoresis or chromatography containing only one or a few proteins are 

subjected to MS. In MS, the samples are ionised in the ionisation chamber, analysed by 

m/z ratio in the mass analyser, and detected by the ion detector (Fig. 4.3). 

Relative quantification 
and identification

Biological samples

LC-MS/MS or LC-MALDI 
MS/MS Analysis

Mass spectrometric 
profiling

Sample preparation 
(optional depletion, 

tagging and labelling)

Biological samples

Enzymatic digestion

Chromatographic 
separation

Selected biomarker 
cadidates identified

Statistical significant 
candidate biomarkers 

selected based on 
relative quantification

Bottom-up approach to 
proteomic profiling

Top-down approach to 
proteomic profiling

Figure 4.2: General workflows for bottom-up and top-down proteomic profiling 
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Alternatively (Fig. 4.3), if the analysis involves a complex protein mixture, MS/MS (or 

tandem MS) is used. In MS/MS (or tandem MS), peptides are fragmented in the 

collision cell at their peptide bonds before entering the second MS. Better sample 

resolution can be achieved by processing proteins/peptides before running MS. This is 

achieved by 2-dimensional gel electrophoresis (2D-GE) and gel purification of protein 

bands before tryptic digestion. The digested product may contain hundreds of thousands 

of peptides, and may require separation in liquid chromatography (LC) columns or 

capillary electrophoresis (CE) before MS analysis (Wehr, 2006). Examples of some 

quantitative shotgun proteomic technologies are stable isotope labelling by amino acids 

in cell culture (SILAC), isotope-coded affinity tagging (ICAT) and isobaric tags for 

relative and absolute quantification (iTRAQ) technology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: Schematic diagram showing steps involved in bottom-up proteomics 
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The main advantage of bottom-up proteomics is its ability to achieve high resolution 

proteomic separations, for example, HPLC provides high-resolution separations of 

proteolytic protein products. The approaches are amenable to automation, with 

automated on-line nano-scale reversed-phase LC–ESI–MS–MS being widely used for 

bottom-up proteomics (Wehr, 2006). The identification of proteins from complex 

proteolytic mixtures such as cell lysates has been most successfully carried out using the 

bottom-up strategy using on-line multidimensional capillary HPLC–MS-MS (Link et 

al., 1999).  

 

Bottom-up approaches have several practical limitations. They are generally time-

consuming, as an on-line multidimensional LC–MS-MS proteomic analysis using ion-

exchange coupled to reversed-phase columns have run times of up to 15 hours or more. 

Furthermore, as each protein in the samples is reduced to multiple individual peptides, 

there is an overall increase in complexity during the analysis. This reduction into 

individual peptide leads to loss of some information concerning specific proteins and so 

there is no thorough coverage of the protein sequence. This limited sequence coverage 

and fragmentation process commonly used during bottom-up approaches leads to a loss 

of information about posttranslational modifications (PTMs) (phosphorylation, 

glycosylation, and methylation), which are potential biomarkers in clinical proteomics. 

This is because smaller proteins (below 30 kDa) and peptides have fewer proteolytic 

cleavage sites and do not generate enough peptides for confident identification PTMs. 

Other problems may include the masking of low-abundance peptides by high-

abundance species in the generated spectra, leading to a loss of information about low-

abundance peptides (Wehr, 2006) 

 

4.3.4. Top-down Proteomics 

Top-down proteomics involves separating intact proteins from complex mixtures using 

conventional separation techniques such as liquid chromatography or 2-DE followed by 

differential expression analysis using spectrum analysis (such as MALDI or ESI). The 

generated intact molecular ions are then subjected to gas-phase fragmentation by 

MS/MS, for subsequent bioinformatics data analysis through database searches 

(Dalmasso et al., 2009). Top-down proteomics is essential for the identification of small 

proteins with MWs below 20 kDa. Examples of top-down proteomic techniques are, 
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fourier-transform ion cyclotron resonance (FT-ICR), and surface enhanced laser 

desorption ionisation time-of-flight mass spectrometry (SELDI-ToF MS). 

 

There are two major advantages of the top-down approach. First, there is the possibility 

to gain access to the protein sequence and detect the native molecular mass (MW) of the 

protein; as well as locating and characterising PTMs. Secondly, it is less time 

consuming compared to the bottom-up approaches due to a simplified sample 

preparation procedure and the absence of time-consuming protein digestion that is 

required for bottom-up approaches. The absence of multiple digested peptides means 

there is an overall reduction in the complexity of the samples to be analysed (Dalmasso 

et al., 2009). 

 

Top-down proteomics is a relatively new field and is not as widespread as bottom-up 

proteomics. Limitations of the approach include the fact that it is restricted to isolated 

proteins or simple protein mixtures because its output is a complex spectra which 

comprises mainly multiply charged protein ions. Moreover, the fragmentation behaviour 

of the latter ions is not well understood. Secondly, the favoured FT-ICR instrumentation 

in top-down proteomics is expensive to purchase and operate. Finally, there are fewer 

bioinformatics tools for top-down proteomics compared with those for bottom-up 

proteomics making protein identification more challenging (Wehr, 2006). 

 

4.3.5. Top-down Proteomics without digestion: ‘Intact-cell’ MS by MALDI-ToF 

MS 

The development of a new MS-based top-down protein profiling technique has created a 

new wave of excitement amongst microbiologists as well as the biomarker discovery 

community. This approach is called intact- or whole-cell MALDI-ToF MS. The power 

of MALDI-ToF MS in protein profiling resides in its minimal sample preparation as 

well as rapid computer-assisted data handling. It should be emphasized that this 

approach differs from classical proteomics based-approaches. The latter may either 

employ 2-DE, followed by proteolytic digestion, and extraction prior to MALDI-ToF 

MS analysis (top-down proteomics); or the digested sample is subjected to clean up 

prior to tandem MS analysis (LC-ESI-MS/MS) (bottom-up proteomics). 

 

In intact-cell MALDI-ToF MS (ICM), the word “intact” literally means that the cell 

samples to be analysed are not treated or processed in any way specifically for the 
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removal or isolation of any cellular components. In “intact-cell” analysis, the cells are 

manipulated only as necessary to transfer them into the mass spectrometer for analysis. 

The cells are usually applied to the MALDI target plate along with a matrix compound 

and solvents in which the matrix has been dissolved. However, intimate contact 

between cells, matrix and matrix solvents means that osmotic pressure may result in 

stress on the cellular membrane and hence cell disruption. Moreover, in the case of 

bacteria cells, suspension of cells in solvents to minimise exposure to the organisms in 

the laboratory may lead to the disruption of the cells. Because none of these steps are 

intended to disrupt cells, and no steps are added to isolate proteins or other analytes, the 

technique is called “whole-cells” or “intact cell” MALDI analysis to differentiate it 

from procedures where additional steps are included in the procedure to deliberately 

disrupt cellular membranes or separate/recover analytes from the cellular material 

(Wilkins and Lay, 2006). Consequently, this techniques has been rapidly exploited by 

microbiologists for the investigation of microorganisms. 

 

4.3.5.1. Intact-cell MALDI-ToF (ICM) MS-based Biomarker Identification in 

Microorganisms  

MALDI-ToF MS analysis of bacterial whole cell proteins, as well as viruses, fungal 

vegetative cells, and spores, is now well established as reviewed by Lay, (2001); and 

Fenselau and Demirev (2001). For the analysis of bacteria through ICM, one proposed 

approach has been the rapid identification of bacteria (Holland et al., 1996). 

Identification of bacteria is based on the direct comparison of whole cell spectra 

considered to be the bacterial protein fingerprint, to reference spectra. This has been 

made possible by the creation of a bacterial fingerprint library of mass spectra from a 

wide range of known bacterial species (Mazzeo et al., 2006).  

 

A bioinformatics approach for microorganism identification and characterisation which 

does not involve the use of a fingerprinting library has also been used. This approach is 

based on matching a set of protein biomarker signal ion molecular weights (MWs) in 

the spectrum with those of sequence-derived theoretical MWs of proteins (Demirev et 

al., 1999; Fenselau and Ryzhov, 2001), to identify the protein biomarker signal ions. 

This is a consequence of the availability of protein biomarkers of bacteria in compiled 

internet-accessible protein databases of microorganisms with completely sequenced 

genomes (http://www.uniprot.org/uniprot/). 

http://www.uniprot.org/uniprot/


                                                                               Protein Profiling for Biomarker Discovery  
 

99 
 

 

4.3.5.2. Bioinformatics and Internet Accessible Protein Databases 

Bioinformatics is the storage, organisation and analysis of huge amounts of biological 

data using computational tools and information technology. Such data are typically 

generated in the form of sequences and structures of proteins and nucleic acids.  

Genome sequencing of organisms has generated an exponential growth in biological 

data compiled in databases that are structured, searchable and up-to-date. Protein 

databases in particular have become a crucial part of modern biology. One of the first 

steps in the study of a new protein usually involves searching protein databases. 

Information about the relationship between proteins within a genome or across different 

species can be obtained by comparing with different proteins or protein families, 

offering much more valuable information than when studying an isolated protein due to 

coevolution (evolution of two or more interdependent proteins, each adapting to 

changes in the other). Since cellular proteins are connected to each other (through 

pathways and interaction networks), comparing proteins can expose functional 

interactions between molecules in the cell, generating insights into biological processes 

of interactions important for cellular function (Tillier and Charlebois, 2009). An 

example of such a protein database is the UniProt Knowledgebase (UniProtKB). 

 

4.3.5.3. UniProtKB/Swiss-Prot and UniProtKB/TrEMBL Protein Databases 

In 2002, the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics 

Institute (EBI) and the Protein Information Resource (PIR) group at the Georgetown 

University Medical Center and National Biomedical Research Foundation in the U.S, 

joined forces to create what is known as the UniProt consortium. The mission of 

UniProt is to provide the scientific community with a single, comprehensive, high 

quality and freely accessible protein sequence database, UniProtKB (www.uniprot.org). 

The UniProt Knowledgebase (UniProtKB) is the central access point and consists of 

two sections: UniProtKB/Swiss-Prot, a manually annotated and reviewed section; and 

the UniProtKB/TrEMBL, an in-silico annotated section which is not reviewed. Both 

databases provide sequences and theoretical MWs of 'complete proteome sets', which 

are the entire set of proteins thought to be expressed by organisms. The bulk of the 

UniProt complete proteome sets are derived from the translation of completely 

sequenced genomes of organisms, and normally includes sequences that are derived 

http://www.uniprot.org/
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from extra-chromosomal elements such as plasmids or organellar genomes in organisms 

(www.uniprot.org).  

 

The sequencing of organisms such as E. coli (Blattner et al., 1997), mouse (Waterston 

et al., 2002), rat (Gibbs et al., 2004) and human (Lander et al., 2001; Venter et al., 

2001) genomes, with their eventual placing in the UniProt databases, has provided the 

possibility of applying the novel bioinformatics approach in protein profiling studies for 

biomarker discovery and identification in these organisms. Initiatives to completely 

sequence the CHO cell genome (Hammond et al., 2011; Xu et al., 2011), implies that 

the  bioinformatics approach could also be used for the proteomic profiling of CHO 

cells. Recently, the complete sequencing of the CHO genome has materialised into 

sequence-derived theoretical molecular weights (MWs) of CHO proteins becoming 

increasingly available in compiled internet accessible protein databases such as the 

UniProtKB database (http://expasy.org/proteomics, 2012). The advantage of requiring 

minimal sample preparation with MALDI-ToF MS, along  with  the production of 

singly charged ions, and the ease with which biomarker signal assignments can be 

sought from internet accessible databases raises the  possibility for the rapid 

identification of biomarkers for industrially relevant production platforms such as CHO. 

With the importance of the CHO cell platform for the commercial production of 

biopharmaceutical therapeutic products, this approach could be an asset for the 

biotechnology industry. 

 

4.3.5.4. Applications of Intact-cell MALDI-ToF MS (ICM) for the Analysis of 

Microorganisms 

It is now well-established that MALDI-ToF can be used to identify biomolecules above 

4kDa. These biomolecules are readily desorbed from unprocessed microorganisms and 

are intact protein ions (Ryzhov and Fenselau, 2001). Demirev et al., (1999) showed that 

the proteins of prokaryotic microorganisms have the propensity to fall in the range 

4±15kDa MALDI and this is supported in the literature using experimental evidence 

(Demirev et al., 1999; Ryzhov and Fenselau, 2001; Dieckmann et al., 2008; Ilina et al., 

2009; Christner et al. 2010; Hotta et al., 2011; Wang et al., 2012).  

 

In the last few years MALDI-ToF MS has been increasingly applied for the 

identification using the ‘fingerprint’ matching approach, a method that was first 

http://www.uniprot.org/
http://expasy.org/proteomics
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introduced by Holland et al., (1996). More recently, MALDI-ToF MS has been applied 

clinically for microbiological diagnostics. Wang et al. (2012) applied the technique for 

the identification of 65 Streptococcus pyogenes isolates, a gram-positive pathogen, 

obtained from patients. ‘Intact cell’ measurements obtained using MALDI were 

matched with reference spectra found in the MALDI Biotyper software through a 

pattern recognition algorithm. This ‘fingerprint’ matching facilitated the isentification of 

61 of the 65 S. pyogenes isolates with 93.85% accuracy. In a similar study involving 

cilinical proteomics, Ilina et al. (2009) sought to identify and categirise the genus 

Neisseria into its pathogenic and non-pathogenic subtypes. Human pathogens, Neisseria 

meningitidis and Neisseria gonorrhoeae, as well as several nonpathogenic Neisseria 

species was profiled via MALDI and visual inspections coupled with ‘fingerprint’ 

matching using the MALDI Biotyper software successfully distinguished the pathogenic 

from the the non-pathogenic Neisseria isolates.  

 

Several other clinically relevant studies have used the MALDI technique for the 

identification, diagnosis and hence earlier treatment of bloodstream bacterial infections 

mainly through the MALDI Biotyper software. Vlek et al. (2012) directly profiled a 

suspension of bacteria and blood cell samples for Methicillin-resistant Staphylococcus 

aureus and vancomycin resistant enterococci to allow for earlier implementation of 

appropriate antimicrobial treatments. In another of such studies aimed at improving the 

clinical outcomes of bloodstream infections, Christner et al. (2010) used ‘fingerprint’ 

matching to reference spectra to identify aerobic and anaerobic bacteria in culture broth, 

providing identification rates as hiog as  87% with mismatching mostly resulting from 

insufficient bacterial numbers. 

 

A bioinformatics-based approach for microorganism analysis and identification applies 

only to microorganisms with sequenced genomes. It exploits the wealth of information 

contained in prokaryotic genome and protein biomarker sequences in internet-accessible 

databases like UniProtKB or SwissPROT and uses the fact that the majority of observed 

biomarkers above m/z ratio 4000 in MALDI spectra of intact organisms are proteins. 

This approach for microorganism identification was first introduced by Demirev et al. 

(1999), who analysed B. subtilis and E. coli, two organisms with completely sequenced 

genomes. The spectra m/z ratio peaks or signal ions of the microorganisms were 

tentatively assigned to protein biomarkers, by matching experimental spectra MWs 

against theoretical MWs for the protein biomarkers based on genome sequences in 
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internet-accessible protein databases. Subsequent ranking of the organisms 

corresponding to matched ions resulted in the identification of the microorganism.  

 

To further explore the bioinformatics aoproach, a second study was carried out by 

Ryzhov and Fenselau (2000). In the latter study, various features of the proteins rapidly 

desorbed by MALDI from intact E. coli K-12 cells, mass spectra m/z ratio ion peaks 

were also matched and correlated to protein biomarkers found in internet-accessible 

databases.  Forty m/z ratio peaks observed in the mass range 4-20kDa, and the matched 

proteins were analysed for hydrophobicity, basicity, copy number and location within 

the cell. It was shown that the bulk of matched proteins originating from the cytosol, 

were ribosomal, which are abundant within the cell, and are basic in nature with 

medium hydrophilicity.  

 

More recently, another bioinformatics-based approach has been applied for the 

identification of the genus Bacillus (Hotta et al., 2011). MALDI-ToF MS analysis of 

ribosomal proteins as biomarkers i.e. S10, S14, S19, L18, L22, L24, L29, and L30, 

coded in S10 and spc operons successfully distinguished Bacillus subtilis subsp. subtilis 

from B. subtilis subsp. spizizenii. Identification was possible by matching the 

experimental mass spectrum of the ribosomal protein biomarkers against the in silico–

predicted masses of the genome-sequenced Bacillus strains. In another recent study, 

Dieckmann et al. (2008) identified and classified various Salmonella subspecies, i.e. 

Salmonella enterica subsp. enterica, S. enterica subsp. salamae, S. enterica subsp. 

arizonae, S. enterica subsp. diarizonae, S. enterica subsp. houtenae, and S. enterica 

subsp. indica, and Salmonella bongori, using ‘intact cell’ MALDI analysis, based on 

matching 200 spectra protein biomarker peaks. These spectra biomarker peaks with 

masses corresponding mainly to abundant and highly basic ribosomal proteins were 

matched to biomarker masses of Salmonella genome sequence data in internet 

accessible protein databases. 

 

4.3.5.5. Applications of Intact-cell MALDI-ToF MS (ICM) for the Analysis of 

Mammalian cells   

‘Intact-cell’ MALDI-ToF MS (ICM-MS) raises many possibilities for the analysis of 

complex cellular systems like those of mammalian cells. Biomarker profiles have been 

obtained from whole mammalian cells of neuronal origin (Li et al., 2000; van Veelen et 

al., 1993) and tissue sections have been profiled (Chaurand et al., 2006; Chaurand et al., 



                                                                               Protein Profiling for Biomarker Discovery  
 

103 
 

2007; Crossman et al., 2006; Khatib-Shahidi et al., 2006; Reyzer et al., 2007). 

Differentiation between human (K562 and GM15226) and rodent (BHK21) mammalian 

cell types through their protein profile ‘fingerprints’ (Zhang et al., 2006), as well as 

between monocytes, T lymphocytes and polymorphonuclear leukocyte immune cells 

(Ouedraogo et al., 2010) have also been carried out using ICM-MS. These applications 

of ICM-MS in bacterial and mammalian cell protein profiling, demonstrate an outcome 

of the approach that could be useful for mammalian cell culture (MCC) in 

bioprocessing. 

  

Despite the numerous applications of ICM-MS to bacteria and mammalian cells, there 

have been relatively few studies that have applied this approach to MCCs in 

bioprocessing. ICM-MS has been used in profiling insulin/glucagon-producing 

pancreatic islet α- and β-cells (Buchanan et al., 2007); detection of apoptosis in 

mammalian cells (Dong et al., 2011); and characterisation of batches of monoclonal 

IgG-producing CHO cell lines (Feng et al., 2010; Feng et al., 2011). The 2006 work 

from Zhang’s group is an example of a MALDI approach where minimal sample 

pretreatment is involved (Zhang et al., 2006). The paper described a fast and simple 

approach to cellular protein profiling in which mammalian cells were lysed directly in 

the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analysed using 

MALDI-ToF MS. Similar to the ‘fingerprint’ approach for microorganism 

identification, a unique MALDI mass spectral ‘fingerprint’ was generated in this 

analysis, to demonstrate that it was possible to differentiate between several different 

mammalian cell lines.  

 

Buchanan et al., (2007) applied ICM-MS in a direct analysis to cells from two cell lines 

representative of pancreatic islet α- and β-cells and acquired data in the 2000–20000 m/z 

ratio range.  They identified the expected secretory products (i.e. insulin and glucagon) 

from these intact cultured endocrine cells. Moreover, mass consistent with a protein 

oxyntomodulin was visualised in the cultured α -cells, a finding that had not been 

previously reported.  

 

A recent study conducted by Feng et al., (2010) has clearly demonstrated how 

biomarker profiling by ICM could be exploited to screen cultured mammalian cell lines 

in bioprocessing. They succeeded in distinguishing viabilities of CHO cells through the 

different ‘fingerprints’ of mass spectra after rapid and simple cell pretreatments. A 
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chemometric method (PLS) was used to discriminate between these cell lines with 

different productivities. As a follow-up of this work, the latter group more recently used 

PLS-DA to model spectra data sets obtained from another batch of monoclonal IgG-

producing CHO cell lines (Feng et al., 2011). In both studies mass spectra peaks from 

the spectra generated were identified, and hypothesised as being associated with 

potential protein biomarkers which can be correlated to the productivity of the cell lines. 

 

4.4. Summary 

In this chapter a brief introduction to biomarker discovery was presented with particular 

emphasis on protein biomarker discovery, as well as the biomarker discovery pipeline in 

clinical research. Moreover, an overview of MS-based has associated advantages and 

drawbacks.  

Several key points are as follows: 

 The main advantage of bottom-up proteomics approaches is the ability to 

achieve high resolution separation, the approaches are amenable to automation, 

and there is the availability of sophisticated quantitative proteomic technologies. 

 The limitations of bottom-up proteomics are that they are generally time-

consuming, the samples to be analysed are usually complex, and there is a lack 

of complete coverage of the protein sequence during analysis.  

 The advantages of the top-down approach is the direct determination of the 

MWs of the proteins, the simplified sample preparation procedure and it is less 

time-consuming. 

 The limitations of top-down proteomics is that it is relatively novel, generates 

high dimensionality data which is difficult to analyse, and there are fewer 

bioinformatic tools available for top-down proteomics for protein identification. 

 ICM-MS can be applied for the identification of microorganisms through two 

main approaches: a ‘fingerprint’ approach through direct comparison of intact-

cell spectra considered to be a bacterial protein fingerprint to reference spectra; 

and a bioinformatics approach, by matching a set of experimental protein 

biomarker MWs in the mass spectra with those of sequence-derived theoretical 

MWs of proteins in databases. 

 

The bioinformatics approach to microorganism identification through ICM has been 

widely applied in the field of microbiology as discussed in this chapter. The rapidity and 
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minimal sample preparation advantage of ICM, as well as the usefulness of internet-

accessible protein databases demonstrates aspects of this approach that could be useful 

in rapid biomarker profiling for mammalian cell culture in bioprocessing as well as the 

rapid sorting of important protein biomarkers. A number of studies have already been 

reported in terms of mammalian cell lines. Feng’s research group (Feng et al., 2010; 

Feng et al., 2011) in particular has successfully demonstrated the discrimination of 

monoclonal antibody producing CHO cell lines using ICM and PLS-DA. However, they 

did not use internet-accessible databases to identify protein biomarkers, an aspect that is 

explored and applied in this thesis. 

 

‘Intact-cell’ MS by MALDI-ToF MS is a top-down-based proteomic approach and 

produces high throughput proteomic mass spectra data with high dimensionality. 

Preprocessing plays an important part in reducing the dimensionality of such 

multivariate mass spectra data sets as discussed in chapter 3. Even after performing 

preprocessing that reduces the dimensionality (number of m/z ratio values), such 

reductions are usually insufficient, hence chemometric techniques have to be applied to 

the data to further reduce the dimensionality of the data, mine the data, help classify the 

samples and identify protein biomarkers. The next chapter introduces multivariate data 

analysis techniques, including principal component analysis (PCA) and partial least 

squares discriminant analysis (PLS-DA), the algorithm primarily used in this thesis 

(PLS-DA). It also presents some results on the application of PLS-DA to data for a 

greater understanding of how this technique performs with respect to biomarker 

discovery/identification and classification. 
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5. Partial Least Squares –Discriminant Analysis (PLS-DA) Scores and 

Loadings Plots 

5.1. Overview 

The objective of this chapter is to give a general introduction to and to discuss the 

multivariate data analytical techniques considered in this thesis, principal component 

analysis (PCA), partial least squares (PLS) and PLS –discriminant analysis (PLS-DA). 

These methods are appropriate for analysing high dimensional data sets such as mass 

spectra where the objectives are to obtain an overview of the data (PCA), data 

modelling (PLS) or classification (PLS-DA). PCA is a multivariate projection method 

that is designed to extract the systematic variation in a multivariate data set X. A brief 

introduction to PCA including its mathematical basis is provided. PLS is an extension to 

PCA and is used to develop a model between two blocks of variables, X and Y. A brief 

description of the PLS technique will be given followed by the associated algorithm. 

Particular attention will be given to PLS-DA as it forms a core aspect in terms of the 

mass spectra data analysis since it is used for classification and the eventual 

identification of biomarkers. A detailed explanation of the PLS-DA algorithm is given 

followed by a review of the application of PLS-DA method to other mass spectra 

studies. The chapter concludes with the results of where PCA and PLS-DA were used to 

analyse MALDI-ToF mass spectra data generated from cell lysate samples of E. coli K-

12 cells during different growth phases. This is to demonstrate specifically how the 

scores and loadings plot for the PLS-DA model can be easily interpreted and utilised to 

subsequently identity biomarkers. 

 

5.2. Introduction 

The term chemometrics was first introduced in 1971 to describe the application of 

mathematical, multivariate statistical and other logic-based techniques in the field of 

chemistry, in particular analytical chemistry. The application of chemometrics has 

found considerable success in three areas, (a) calibration and validation of biological 

measurements (multivariate calibration); (b) optimisation of chemical measurements 

and experimental procedures; and (c) extraction of chemical information from analytical 

data (classification, pattern recognition, clustering) (Haswell, 1992).  
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Mass spectra-based proteomic experiments for biomarker discovery typically comprise 

a data generation stage, a data preprocessing step (described in section 3.4) and a data 

analysis phase that may include data mining, pattern extraction and peptide or protein 

identification. The raw MS data has two basic characteristics that serve to guide the 

mining technology to be applied; firstly, the quality of the mass spectra data and 

secondly the issue of high-dimensionality (Hilario and Kalousis, 2008). Preprocessing 

addresses the problem of quality and transforms the MS data into a representation that is 

then ready to be mined.  

  

A mass spectrum typically comprises thousands of m/z ratios and since the sample size 

(e.g. the number of patients) is relatively small, this results in a so-called ‘high 

dimensionality small sample problem’. This data structure is the feature of microarray 

and MS data and suffers from the ‘curse of dimensionality’, i.e. the number of samples 

needed to describe a (discrimination) problem increases exponentially with the number 

of dimensions (variables). (Smit et al., 2007). To solve the high-dimensionality 

problem, it is important to use techniques that are capable of selecting a small number 

of discriminative variables from the thousands of variables in the spectrum. 

 

5.3. Multivariate Projection Methods and Dimensionality Reduction 

There are two approaches to overcome the high-dimensionality problem: variable 

selection or variable transformation. Variable selection is the extraction of a small 

subset of variables (m/z ratio peak selection) whilst variable transformation is the 

creation of new latent variables which express relationships between the original 

variables by applying a mathematical transformation (Fig. 5.1). Fig. 5.1(a) indicates 

how variable selection deletes some of the variables (X1 and X4) from the model, and 

Fig. 5.1(b) shows how in variable transformation all x–variables and transformed into 

linear combinations t1 and t2 which are related to y in a regression equation. 
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A number of variable selection methods have been reported in the literature, including 

the t-test (Wu et al., 2003), the X
2
-performance through neural-network analyses 

(Rogers et al., 2003) and the Wilcoxon test (Kozak et al., 2003). The benefits of 

variable selection are that it is simple and fast to apply, and the results are interpretable. 

Variable selection procedures reduce the size of the original variables by removing 

potentially uninformative variables. The output is a list of variables that contain 

potentially useful information (Hilario and Kalousis, 2008). 

  

However, information contained in the data may be removed when variable selection is 

used to identify uninformative variables if interactions and correlations between 

variables are ignored. Variable transformation methods have the ability to handle the 

large amounts of data contained within the spectra data sets and overcome the issue of 

high-dimensionality. Unlike variable selection, such methods use all the variables 

included in the original data set. The data are projected onto a lower dimensional sub-

space, and new components are attained that provide information underlying the 

structure of the data. Two of these are principal component analysis (PCA) (Pearson, 

1901; Hotelling, 1933) and partial least squares analysis (PLS) (Wold et al., 1984).  

 

Supervised methods such as PLS use the class information to construct new components 

whilst for unsupervised methods, PCA, no class information is utilised (Eriksson et al., 

(a) 

(b) 

Figure 5.1: Conceptual illustration of the differences between variable 

selection and variable transformation (adapted from Naes et al., 2002) 
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1999). During multivariate data analysis of spectra data, an overview of the information 

contained in the data is usually carried out using PCA, with classification techniques 

later applied to identify those proteins considered as significant, and which can then be 

categorised and used as potential biomarkers. PLS is the method that is used in 

regression modeling between two data matrices (X and Y), with the aim of predicting Y 

from X for new observations. 

  

5.4. Principal Component Analysis  

5.4.1. Theory of Principal Component Analysis 

Principal component analysis (PCA) is the method used by chemometricians for data 

compression, information extraction and preliminary visualisation of observations or 

samples (Hilario et al., 2004; Hilario and Kalousis, 2008). PCA’s main function is the 

reduction of the high-dimensionality of the multivariate data to a few dimensions that 

capture the main source of variability in the data. The new space is defined in terms of 

principal components (PCs) that are a linear combination of the original variables.  

 

The weights of the individual variables in the principal components are termed loadings. 

They are useful for identifying the important variables in individual PCs, and also 

contain information on how the variables relate to each other. Scores are the coordinates 

of the original data in the new space and contain information on how samples relate to 

each other with groups of samples indicating similar behaviour (Lee et al., 2003). 

  

5.4.2. The PCA Algorithm 

There are a number of PCA algorithms, including non-iterative partial least squares 

(NIPALS), the power method (POWER), singular value decomposition (SVD) and 

eigenvalue decomposition (EVD). The EVD algorithm is briefly described in this thesis. 

According to this algorithm, PCA is based on the eigenvalue decomposition of the 

covariance or correlation matrix of the original data (Wise et al., 2005). For a given data 

matrix X with m rows and n columns, the covariance matrix of is defined as: 

 

                                                                               
   

   
                                     (5.1)                                   
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provided that the columns of X have been “mean centred”. If the columns of X have 

been “autoscaled”, equation 5.1 gives the correlation matrix of X. PCA decomposes the 

data matrix X as the sum of the outer product of vectors ti and pi: 

                                                              
       

          
                        (5.2) 

In equation 5.2, the ti vectors are known as score vectors while the pi vectors are known 

as the loading vectors. Equation 5.2 can be written in the following matrix form: 

                                                                                                                          (5.3) 

where T = [t1 t2 ... tm]
T
 is the score matrix and P = [p1 p2 ... pm]

T
 is the loading matrix. In 

the PCA decomposition, the pi vectors are the eigenvectors of the covariance matrix; 

    

                                                                                                                     (5.4) 

where λi is the eigenvalue associated with the eigenvector pi.  

 

The PCs are arranged in descending order based on the eigenvalues: λ1 ≥ λ2 ≥ ... ≥ λm 

i.e. the first PC explains the greatest amount of variability with the second PC 

explaining the next greater amount variability in X. As many PCs as variables, if m > n, 

can be calculated but the majority of the variability will be captured in the first few PCs. 

 

Therefore the PCA decomposition of X, can be represented as: 

                                                
       

          
                             (5.5) 

where E is the residual matrix. In practical applications k must be less than or equal to 

the smaller dimension of X, i.e. k ≤ min {m, n}. Since E typically contains noise, it has 

the effect of noise filtering and will not cause any significant loss of useful information.  

 

In this thesis, PCA was first applied to the mass spectra data sets during this project to 

help identify the major factors that may be useful in terms of differentiating between 

samples. 
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5.5. Partial Least Squares Analysis 

Partial least squares (PLS) was first introduced by Herman Wold and co-workers, as a 

method for modeling data sets in terms of chains of matrices, known as path models. 

Wold then developed NIPALS (Non-linear Iterative Partial Least Squares) algorithm, an 

efficient way of estimating the parameters in the path models. The acronym PLS 

(Partial Least Squares) was thus used to refer to these models (Wold, 2001).  

 

The goal of PLS is to relate two sets of variables, predictor variables, X-block, and the 

response variables, y-block (PLS1). In this thesis, the y-block is a vector but the 

algorithm can be generalised to the case where Y is a matrix, PLS2.  The basis of the 

algorithm is: 

                                                                 (5.6) 

                                                                  (5.7) 

where q and f  are the loadings and residual vectors of the response variables. T, P and 

E are the scores, loadings and residual matrices of the response variables respectively. 

The dimensions of T, P and q are M × A, A × N and N × J (J = 1), where A is the 

number of PLS components (latent variables) retained in the model. The PLS scores are 

orthogonal (as in PCA) and each latent variable (LV) is obtained by maximising the 

covariance between y and the X-variables. Fig. 5.2 is an illustration of the principles of 

PLS1. The PLS1 algorithm can be found in Fig. C.1, Appendix C.  

Figure 5.2: An illustration of the principles of PLS1 (adapted from Brereton, 2000) 
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5.6. Partial Least Squares - Discriminant Analysis (PLS-DA) 

PLS-DA is a variant of PLS regression that is used for classification. PLS-DA is used in 

this thesis as it has a number of advantages over other commonly used classification tools 

such as soft independent modelling of class analogies (SIMCA), linear discriminant 

analysis (LDA), canonical correlation analysis (CCA), support vector machines (SVMs) 

and quadratic discriminant analysis (QDA).  

 

In contrast to PLS-DA, SIMCA computes PCA submodels that captures variation within 

a class but it does not identify directions in the data space that directly discriminate 

between classes. The major classification advantage of PLS-DA is that it can handle the 

situation where the number of variables exceeds the number of samples (high-

dimensionality). Overfitting may occur where such models may be describing noise rather 

than the underlying variability in the data set (Barker and Rayens, 2003). Techniques 

such as SVMs are more suited for discrimination analysis as opposed to determining the 

influence of variables (Brereton, 2009). With PLS-DA however, there is the potential to 

determine the important variables which are responsible for discrimination, and hence 

enable the identification of biomarkers.  

 

In PLS-DA the prediction matrix, Y comprises the entries denoting the class with as many 

columns as classes and is termed a ‘dummy’ matrix. If there are two classes to be 

modeled, PLS-DA is based on the PLS1 algorithm, otherwise PLS2 algorithm is used 

where the number of class is greater than 2 i.e. C > 2 (where C = number of classes). 

Typically, ‘1’ denotes belonging to a class and ‘0’ not (Fig. 5.3). As shown in Fig. 5.3, 

the ‘dummy’ matrix contains ‘1’ and ‘0’ which describes class membership of samples in 

a calibration data set. The matrix has 3 columns (for 3 classes) such that 1
st
 column is ‘1’ 

and the others are ‘0’ for samples belonging to class one. In practice, the model does not 

predict either a ‘1’ or ‘0’ precisely, so a threshold value is set, say 0.7, above which a 

sample is assumed to belong to a class otherwise not (Wise et al., 2005).  
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In order to better define the threshold value for classes, a probabilistic version of PLS-DA 

has been developed (Pérez et al., 2009). In this version (used in this thesis), the 

distribution of calibration sample predictions ( ̂) obtained from a PLS model built for two 

or more classes to determine a threshold value which will best split the classes with the 

least probability for false classification for future predictions. If the calibration data 

contains more than two classes, the thresholds to distinguish each class are determined 

(Botella et al., 2009).  

 

The algorithm for the probabilistic PLS-DA version calculates the classification threshold 

based on a probability density function (PDF) with the mean and standard deviation of all 

the sample predicted responses,  ̂, for each class. It assumes that the predicted responses 

for samples for each class in the calibration data set are approximately normally 

distributed. An empirical PDF is then used to derive posterior probabilities based on 

Bayes Theorem and a threshold is defined, the value of  ̂ at which the posterior 

probabilities of both classes are equal. It is based on this threshold that a sample is 

assigned to a class. The probabilistic PLS-DA algorithm used in this thesis is described in 

detail in the following sections. 

 

5.6.1. Summary of PLS-DA Algorithm 

The algorithm started with the calculation of a PLS model (see PLS1 algorithm in Fig. 

C.1, Appendix C) for A latent variables (LVs) with spectra data sets (X-block) for 

calibration samples and y vector (Fig. 5.4). The PLS-DA algorithm applied performed 

classification on two classes at a time (C = 2), so the y vector contained ‘1’ and ‘0’ which 

describes class membership of calibration samples as belonging to class,    (the class of 

4
th

 sample 

belongs to 

class 2 

 
 
 
 
 
 
 
 
 
1 0 0
1 0 0
1
0
0
0
0
0
0

0
1
1
1
0
0
0

0
0
0
0
1
1
1 
 
 
 
 
 
 
 
 

 Samples 

1 2 3 

Class 
1

st
 sample 

belongs to 

class 1 

7
th

 sample 

belongs to 

class 3 

Figure 5.3: A ‘dummy’ matrix structure showing ‘1’ and ‘0’ denoting 

class of samples 
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interest) otherwise   . For a sample i (i = 1,2,3,…,m), the value predicted by the PLS 

model was,  ̂  , calculated from equation 5.8, where,    , were the regression coefficients 

of the PLS model for A LVs. With the y vector coding class membership, calibration or 

training samples with predicted values close to 1 were assigned to class,   , whilst those 

with predicted values close to 0 were assigned to class   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PLS-DA algorithm was as follows:  

Step 1: Predicted Responses of Samples 

For each training sample i (i = 1,2,3,…,m) the predicted response value,  ̂   was 

calculated: 

 ̂      
  ̂                                                         (5.8) 

where    is the column vector of n m/z ratios measured for that sample and,  ̂, is the 

vector of regression coefficients attained from the PLS model.  

Step 2: Gaussian Functions 

For each of the m training samples a Gaussian function centred at the predicted value,  ̂  , 

was calculated: 

    ̂  (
 

    √  
)    

 (
( ̅  ̂  )

    
)
 

                                  (5.9) 

 

1
st
 sample 

belongs to class 

of interest, 𝜔 . 

7
th

 sample does not 

belong to class of 

interest, hence belongs 

to class 𝜔 . 

Figure 5.4: A y vector structure showing ‘1’ and ‘0’ denoting 

class of samples 
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where SEPi is the standard error of prediction of the samples (i = 1,2,3,…,m),  ӯ is the 

known mean of predicted values ( for class    or   ), and  ̂   is the predicted value (Fig. 

5.5). The figure shows a plot of the potential functions,    ̂     (c = 1 or 0), as a function 

of the predicted value, which were the Gaussian functions centred at each   ̂    of samples 

of each class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Probability Density Functions (PDFs) 

The Gaussian functions of the training samples,   , belonging to class   , the class of 

interest, were averaged to obtain the probability density function (PDF) of the class. 

)ˆ(
1

)/ˆ(
11

1 yf
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yp
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i

i


                                               (5.10) 

The procedure was repeated for the    training samples belonging to the class   . 

)ˆ(
1

)/ˆ(
0
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0 yf
m

yp
m

i

i


                                               (5.11) 

where     ,    ̂     and    ,    ̂      are the number of samples and PDFs of class    

and class   , respectively (Fig. 5.6). Fig. 5.6 shows a plot of the PDFs,    ̂     (c = 1 or 

0), as a function of the predicted value. The PDFs were the averages of the Gaussian 

functions centred at each   ̂   of samples for the two classes,    and   . 

 

Figure 5.5: Calculation of the Gaussian functions for class 𝝎𝟏 and 

class 𝝎𝟎, centred at each  �̂�𝒊  
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Step 4: Posterior PDFs 

Using Bayes theorem, the posterior PDFs were calculated: 
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                                       (5.12) 
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                                      (5.13) 

where     ̂     and    ̂     are the conditional probabilities while       and       

are the prior probabilities. Both the priors were estimated as the proportion of samples of 

each class in the training set, as the set was a representative of the total number of 

samples, m, that is: 

     ) =       and       ) =     , where m =       . 

The denominator of equation (5.12) and (5.13) was: 

                                ̂    =    ̂      .       +      ̂      .                                                 (5.14)          

 

 

 

Figure 5.6: PDFs for classes 𝝎𝟏 and class 𝝎𝟎 was calculated as the 

average the individual Gaussian functions for each class in Fig. 5.5 
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Step 5: Classification Threshold 

The value of  ̂ (predicted value) corresponding to the point where the two posterior 

probability functions (for class    and   ) are equal is identified as the threshold value, 

  , for the class of interest. The threshold value,   , for each class can then be used to 

classify the test samples (Fig. 5.7).  

 

Fig. 5.7(a) shows a plot of the PDFs,    ̂      multiplied by the prior probability       

(c = 1 or 0), as a function of the predicted value, whilst Fig. 5.7(b) shows a plot of the 

posterior probability,       ̂ , versus the predicted value. Fig. 5.7(b) also shows the 

point where posterior probabilities were equal, indicating the classification threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 5.7: PDFs for classes 𝝎𝟏 and class 𝝎𝟎 and classification 

threshold for class 𝝎𝟏 
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Step 7:  Classification Rule 

The predicted,  ̂     , for a test sample was first calculated from equation 5.8, and 

the samples were then classified according to the following rules: 

 

Assign the sample to: class    if   ̂     >   ; otherwise assign to class   . 

 

A flow chart of the PLS-DA algorithm described above for the modelling of 

MALDI-ToF mass spectra data sets is shown in Fig.  5.8. 
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Figure 5.8: Flow chart of the PLS-DA algorithm for modeling of MALDI-ToF mass 

spectra data sets 
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5.6.2. Applications of the PLS-DA Algorithm 

5.6.2.1. MALDI-ToF Mass Spectra Data of E. coli K-12 Cells at Different Growth 

Phases  

The PLS-DA algorithm (described in section 5.6.1) was initially applied to MALDI-

ToF MS data obtained from E. coli cell samples to determine if such an approach could 

be used to distinguish between and characterise different growth phases. For the 

application of PLS-DA, the training data set consisted of a matrix, X, of E. coli culture 

MALDI spectra, comprising 7000 m/z ratio values measured for 300 samples, and a 

dependent variable vector, y (300 × 1) in which the class of each sample was coded as 

‘0’ or ‘1’ depending on whether it belongs to the class of interest or not. The PLS-DA 

algorithm performed classification on two classes at a time and the classes were defined 

as follows:   , class 1 represented the decline phase;   , class 2 represented the 

exponential phase; and   , class 3 represented the stationary phase. One of the classes 

was defined to be the one of interest, i.e. coded as ‘1’ and the other two were coded as 

‘0’ i.e. class   . 

 

5.6.2.2. MALDI-ToF Mass Spectra for IgG Monoclonal Antibody producing CHO 

Cell Lines 

MALDI-ToF mass spectra were generated from IgG monoclonal antibody producing 

Chinese hamster ovaries (CHO) cell lines. The PLS-DA algorithm was also applied to 

model the data to discriminate between high and low producer cell lines. For this data 

set, the training sample consisted of a matrix, X, the CHO cell line MALDI spectra, 

comprising 18092 m/z ratio values measured in 44 samples, and a dependent variable 

vector, y (44 ×1), in which the class of each sample was coded as ‘0’ or ‘1’ depending 

on whether it belongs to the class of interest or not. The classes were defined as follows: 

  , class 1 represented the high producer cell lines (Hs) whilst   , class 2 represented 

the low producer cell lines (Ls). 

  

5.6.3. PLS-DA Model Quality and Performance Evaluation 

5.6.3.1. Calibration 

After the application of PLS-DA the quality and performance of the models is assessed 

mainly through their ability to predict unknown response (y) values. This is even more 

important when selecting the number of latent variables (LVs), A, to include in the 
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model. It is important to select an appropriate number of LVs which guarantees good 

model quality and performance without overfitting i.e. when the model describes noise 

rather than the underlying variability in the data set. One measure used is the root mean 

square error of calibration (RMSEC) (Naes et al., 2002). It gives indication about the fit 

of the model to the calibration data set. It can be used to access the model quality and it 

is a measure of how well the model fits the data. It is the error of calibration and the 

smaller it is, the greater is the model quality. 

    

 

M

yy

RMSEC

I

i

ii




 1

2
ˆ

                                          (5.15) 

where iy  and iŷ  are the actual and predicted value of the response for the ith 

calibration sample  respectively, and M is the number of calibration samples. 

 

5.6.3.2. Cross-validation 

Cross validation involves the removal of a subset of samples from the calibration set, 

and the construction of a model using the remaining samples, and the subsequent 

application of the resulting model to the samples withheld from the calibration set. This 

way the model is tested with samples that were not used to build the model (Naes et al., 

2002). The process is repeated for a number of subsets of the calibration data set. 

Estimation of the root mean square error (RMSE) based on this technique is the RMSE 

of cross-validation (RMSECV). The RMSECV is a measure of the model’s ability to 

predict samples that were not used to build the model. A good model compared to 

others is one that has the lowest RMSECV.  

 

5.6.3.3. Prediction Testing 

Prediction testing is an external validation technique based on splitting the samples into 

two, one set called the training or calibration set and the other called the test set. The 

prediction testing estimate is called the root mean square error of prediction (RMSEP). 

The latter is a RMSE assessment involving the use of a test set of samples that have 

known y-values. RMSEP is obtained when the model is applied to the test data.  

 



                                                                Partial Least Squares –Discriminant Analysis (PLS-DA)  
 

123 
 

5.6.3.4. Coefficient of Determination (R
2
) 

The coefficient of determination (R
2
) of a model is a measure of the goodness of fit of 

the model and can be used to assess the quality of the model. It lies between 0 to 1 and 

the quality of the model improves as R
2 

gets closer to 1. It is calculated as follows: 
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                                              (5.16)
 

where iy  and iŷ  are the actual and predicted value of the response for the ith sample  

respectively;  is the average response for calibration (R
2
),  for validation (R

2
CV),  or for  

prediction (R
2

p); and M  is the number of samples. 

 

5.7. Review of the Applications of PLS-DA on Mass Spectra Data 

PLS-DA modelling has been applied in a number of areas of proteomic research and 

technology (Lee et al., 2003; Norden et al., 2005; Liley and Cupree, 2006; Pierce et al., 

2006; Feng et al., 2011). Lee et al. (2003) directly applied PLS-DA to address the high-

dimensionality problem involving a proteomic mass spectra data set comprising 60,000 

m/z ratio variables. The PLS-DA model performed well, reducing the data set to 545 

m/z ratio variables, and clearly identifying biomarkers that potentially contributed to the 

discrimination between normal and diseased specimens of cancer patients.  

 

In another biomarker identification study, Norden et al., (2005) applied PCA and PLS-

DA to mass spectra data from clinical urine samples. A number of peptide-biomarker 

fingerprints related to the diagnosis and progression of chronic obstructive pulmonary 

disease were identified. A similar approach was adopted by Liley and Dupree, (2006), 

to study plant organelles. Quantitative proteomic analysis using differential isotope 

tagging strategies coupled to non-gel-based LC-MS allowed proteins in different 

organelles to be discriminated between based on their differential fractionation in 

density gradients of the LC. PCA and PLS-DA scores plots showed clustering of 

proteins according to their subcellular localisation. 

 

PLS-DA was applied to linear mode MALDI-ToF mass spectra data to confirm the 

identification and presence of the microorganism Coxiella burnetti as a category B 
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bioterrorism agent in the U.S. (Pierce et al., 2006). The mass spectra data were 

preprocessed (normalisation, baseline-correction, filtering, and binarisation) prior to 

being modeled by PLS-DA using leave-one-out cross-validation. The model was 

validated by the prediction of unknown C. burnetii test samples resulting into a 100% 

sensitivity (proportion of actual C. burnetii samples correctly classified) and specificity 

(the proportion of non C. burnetii samples correctly classified), and successfully 

identifying five out of six strains of the microorganism. 

 

A recent study conducted by Feng et al., (2011) demonstrated how biomarker profiling 

by ‘intact cell’ MALDI-ToF mass spectrometry in combination with chemometrics 

could be exploited to screen cultured mammalian cell lines in bioprocessing. They 

succeeded in distinguishing viabilities of IgG-producing CHO cell lines through 

different ‘fingerprints’ of mass spectra for the CHO cells. PLS-DA was used to 

discriminate between the cell lines with different productivities. In this study, m/z ratio 

peaks from the spectra generated were identified, and hypothesised as being associated 

with potential protein biomarkers which could be correlated to productivity of the cell 

lines. 

  

5.8. Multivariate Data Analysis of MALDI-ToF Mass Spectra Data 

from E. coli K-12 Cell Lysate at Different Growth Phases Using 

PCA and PLS-DA 

The multivariate projection methods (PCA and PLS-DA) were applied to MALDI-ToF 

mass spectra data generated from cell lysate samples of E. coli K-12 cells at different 

growth phases. The application of PCA and PLS-DA to the spectral data was carried out 

using the MATLAB® software v.7.6.0.324 (R2008a, The MathWorks, Inc.) and the 

MATLAB® PLS Toolbox v.3.5 (Eigenvector Research, Inc.). 

 

5.8.1. Data Sampling 

The cell lysate sample preparations as well as MALDI-ToF analysis of the samples to 

generate the spectra data sets has been described in chapter 3.3.7.1. The data were first 

divided into a training and a test data set, for each group of spectra samples 

(exponential, stationary and decline phases) using simple random sampling. There is no 

generally accepted rule as to the proportion of samples to assign to the test and training 
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set (Brereton et al., 2009). In this application, 4/5 of the samples were placed in the 

training set whilst the rest were included in the test set. 

From a total of 120 exponential phase cell lysate spectra samples, 100 were selected as 

training samples and 20 as test samples. For the stationary phase samples, the split was 

100/16 training/test, and for the decline phase the split was 100/19 training/test. This 

gave a total of 300 spectra for training and 66 for testing. The data set was represented 

by three classes: class 1, decline phase; class 2, exponential phase; and class 3, 

stationary phase. The data sets were first preprocessed (section 3.6) and PCA was then 

applied to the preprocessed mass spectra. 

  

5.8.2. Results 

The results in this section are focused primarily on the interpretations of PCA and PLS-

DA scores and loadings plot to emphasise their importance in this work, and to 

specifically demonstrate how the PLS-DA scores and loadings are graphical 

representations that can easily be interpreted and subsequently used in biomarker 

identification.  

 

5.8.2.1. Interpretation of Principal Component Analysis Scores Plot 

Prior to sampling the data into training and test sets, PCA was applied to get an 

overview of the 355 preprocessed cell lysate mass spectra to identify any groupings and 

to determine if differences occur due to the growth phase. The first three principal 

components (PCs) were retained and these account for 93.36% of the variability (Table 

B.1 in Appendix B). The PC scores plots are shown in Fig. 5.9(a) and (b). The Samples 

are colour-coded according to their growth phase or class and the ellipse (blue dashed 

line) represents the 95% confidence region based on Hotelling's T
2
. The three-

component model shows clear evidence that class 2 (exponential phase samples) are 

separate from the other two classes along the second principal component (Fig. 5.9(a)). 

Separation between class 1 and 3 is not evident from the three PCs. These preliminary 

observations suggest that a major part of the spectral variation is related to the growth 

phase.  
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5.8.2.2. PLS-DA Model Quality and Performance 

The next step was to apply PLS-DA to the full preprocessed 300 calibration mass 

spectral profiles from the E. coli cell lysate. During PLS-DA model calibration, leave-

one-out-cross-validation (LOOCV). In practice, the cross-validation (CV) method used 

here can be termed a leave-class-out-cross-validation (LCOCV), a modified version of 

LOOCV, where all samples belonging to the same class were removed from the 

calibration data set and a sub-model based on the remaining samples was used to build 

the PLS-DA model and predict the left out samples.  

 

The process was repeated with all the 300 calibration data set until each of the three 

classes had been left out once. Since samples of the same class were replicates, LCOCV 

helped to avoid the ‘replicate sample trap’; where the presence replicates of the same 

physical sample in both the calibration and test data sets may lead to overly optimistic 

cross-validation results giving a biased estimate of the error rate (Hansen et al., 2009). 

A cross-validation was customised by creating a vector (Fig. B.1, Appendix B) and 

specifying how the cross-validation was to be performed. The validation residual 

variance, the RMSECV was then computed to help identify the number of LVs to 

retain. Fig. 5.10 shows a plot of RMSECV as a function of number of LVs. For the class 

2 samples (RMSECV 2), the error stabilises after 4 LVs whilst for the other two classes 
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Figure 5.9: PCA overview of 355 mass spectra data sets for E. coli cell lysate samples 
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(1 and 3) the RMSECV is a minimum for LV1. From Fig. 5.10, as the results were not 

conclusive 3 LVs were retained. 

 

 

 

 

 

 

 

 

 

 

 

The percentage of variance explained for the individual LVs and the individual and 

cumulative explained is reported in Table B.2 (Appendix B), for the 3 LVs. The 3-LV 

PLS-DA model captured 90.50% of the X-block variance and explained 85.25% of the 

Y-block variance of the training data set. From the results reported in Table B.3 

(Appendix B), the quality of this model was good, according to the values of R
2 

calculated both fitting (73.1% for class 1, 93% for class 2 and 67.2% for class 3) and in 

cross-validation (86.3% for class 3). Table B.3 shows that the quality of the model was 

good both in calibration and CV with a sensitivity (proportion of samples correctly 

classified that belong to the class being modeled), and specificity (proportion of samples 

correctly classified that do not belong to the class being modeled) of at least 92%. This 

suggests that the model had a good practical value.  

 

The same conclusions can be drawn from Fig. B.3 (Appendix B) representing the 

calculated versus the measured responses both in fitting and in prediction (using test 

sample). This suggests that all the useful information was taken into account by the 

model. The model was successfully validated using the test data sets, and results of the 

model performance are summarised in Fig. B.3 and Table B.4 (Appendix B). The 

successfully validation of the model means that the model parameters such as scores 

and loadings are valid. 
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5.8.2.3. Interpretations of PLS-DA Scores Plot  

The practical value of the model was demonstrated by its ability to discriminate 

between the three classes as shown in the scores plot (Fig. 5.11). A plot of the first two 

components (LV1 vs LV2) shows that the model concentrates most of the 

discriminating information into the second LV (Fig. 5.11(a)). Exponential phase (class 

2) samples appear quite distinct from the other two classes and have high positive 

scores along LV2 well separated from the other two classes with negative scores along 

the same LV. A few stationary phase samples however are borderline and have low 

positive scores. This observation is supported by a plot of scores on LV2 as a function 

of samples (Fig. 5.11(c)). A plot of LV2 vs LV3 (Fig. 5.11 (b) and (d)). shows that there 

is an indication of separation between stationary phase (class 3) and decline phase (class 

1) samples along LV3, with overlapping. Majority of class 3 samples have a positive 

score whilst their class 1 counterparts have a negative score (Fig. 5.11(b)). This 

observation is supported by a plot of scores on LV3 as a function of samples (Fig. 

5.11(d)). 
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Figure 5.11: PLS-DA scores plots for the 300 preprocessed calibration spectra data sets for 

cell lysate 
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5.8.2.4.   Interpretations of PLS-DA Loadings Plot 

The PLS-DA loadings plot for a specific LV potentially contains valuable information 

regarding the regions of the mass spectra (m/z ratio peaks or signal ions) that contribute 

to the ability of the PLS-DA model to distinguish between classes. There is a direct 

geometric link between the scores and the loadings plot of PLS-DA, so interpreting 

scores and loadings plot together could provide the possibility of identifying the mass 

spectra regions (from the loadings plot) that influence the behavior of samples in the 

scores plot.  

 

The loadings plot for LV2 and LV3 (Fig. 5.12) indicates which variable loadings 

(associated with m/z ratio signals in the MALDI data sets) that contain information that 

is causing the separation of the samples in the scores plot. The loadings describe the 

weighting coefficients for each m/z ratio signal ions (experimental MWs of proteins) 

with the magnitude of the variable loadings being indicative of how the expression of 

proteins varies with growth phase. In Fig. 5.12(a), it can be seen that variables 3578, 

3462 and 2679 have absolute loadings of large positive magnitude. Since the 

exponential phase cell samples have positive scores along LV2, this implies that these 

samples can be differentiated from the other two classes by these m/z ratio signal ions 

associated with variables of large positive loadings in the LV2 loadings plot. These 

signal ions potentially identify those proteins which are differentially expressed in cells 

during the exponential phase and are most likely to be biomarkers of the exponential 

phase. 

 

For the loadings associated with LV3 (Fig. 5.12(b)), the variables 3110, 2635 and 2293 

have loadings with large positive magnitude. Most stationary phase cell samples can 

thus be differentiated from decline phase samples by the presence of m/z ratio signals 

associated with variables with positive loadings in the LV3 loadings plot. These m/z 

ratio signal ions are indicative of those proteins which are differentially expressed in 

cells during the stationary phase. Variables 3639, 3095 and 2684 have loadings with 

large negative magnitude on the LV3 loadings plot (Fig. 5.12(b)), and since the decline 

phase cell samples have negative scores along LV3, they can be distinguished from the 

stationary phase cell samples by the differential expression of proteins associated with 

signals with positive loadings in the LV3 loadings plot.  
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To identify protein biomarkers through data base searches, PLS-DA loadings plots for 

LV2 and LV3 can be considered for further analysis.  The variables from the loadings 

plot are associated to m/z ratio peaks or signal ions, and since most of the m/z ratio 

signal ions are singly charged protonated protein (MH
+
) molecules, they represent the 

approximate MALDI experimental molecular weights (MWs) of the ionised proteins 

Figure 5.12: PLS-DA loadings plots on LV2 and LV3 
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expressed by the cells at the different growth phases. The MWs of protein ions can be 

used as search parameters and matched with sequence derived theoretical MWs of 

proteins in the UniProtKB/Swiss-Prot database (http://expasy.org/proteomics). Details 

of how the database searches are carried out as well as the identified protein biomarkers 

are explained in section 6.5 (chapter 6). The biological implications of such identified 

biomarkers are also given subsequently. 

 

5.9. Summary  

In this chapter an introduction to multivariate data analysis was given focusing on the 

dimensionality reduction techniques of PCA and PLS-DA. It has been proposed in the 

literature that these methods are more realistic for multivariate data analysis of data sets 

such as mass spectra because of their ability to handle large amounts of data by 

reducing the high-dimensionality, handling correlated variables, ability to handle 

missing data, and providing graphical representations that are informative and easily 

interpretable. PCA, PLS and PLS-DA were introduced including the underpinning 

theory. 

 

The probabilistic PLS-DA approach was explored and the PLS-DA algorithm used in 

this thesis was outlined. Applications of PLS-DA algorithm were demonstrated using 

MALDI-ToF mass spectra data obtained from E. coli cell samples to distinguish 

between and characterise different growth phases. A second application for the 

algorithm considered spectra from IgG monoclonal antibody-producing CHO cell lines.  

 

The chapter is concluded with results of an example where PCA and PLS-DA were 

applied to MALDI-ToF mass spectra data generated from cell lysate samples of E. coli 

K-12 cells at different growth phases. Results of the models were shown and 

interpreted. Scores plot (shows relationships among the samples as in PCA) were also 

shown and interpreted, in order to demonstrate how results from these multivariate 

projection methods are easily interpretable. PLS-DA loadings (parameters that also 

supply information related to the variables) were also explained and interpreted. The 

importance of using loadings plots for database searches for biomarker identification as 

well as how this is carried out is explained in section 6.4.3 (chapter 6). 

http://expasy.org/proteomics
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6. CASE STUDY I: Biomarker Profiling Of E. coli Utilising the 

ICM, PLS-DA, and Protein Database Search Approach  

6.1. Overview 

In previous sections, the potential and applications of the methods of intact-cell 

MALDI-ToF MS (ICM-MS) (section 4.3.4.1), projection to latent structure – 

discriminant analysis (PLS-DA) (section 5.6), and protein database search (section 

4.3.4.3) in various areas of proteomics have been discussed. In this chapter, the 

approach of combining ICM-MS, PLS-DA, and protein databases search is applied for 

growth phase-associated protein biomarker profiling of E. coli K-12 cultures. This case 

study was going serve as a proof-of-concept study for applying this approach for 

biomarker profiling of IgG-producing CHO cell lines during bioprocessing discussed in 

chapter 7. 

6.2. Specific Aims of Chapter 

The purpose of this study is to serve as a proof-of-concept study for applying the 

approach (ICM-MS and PLS-DA along with a database search) for biomarker profiling 

of IgG-producing CHO cell lines during bioprocessing. In this study a ICM-MS and 

PLS-DA  along with a database search, is used to identify potential protein biomarkers 

associated with the different growth phases (exponential, stationary and decline) of 

unprocessed whole (or intact) E. coli K-12 culture.  

 

Biologically, it is expected that E. coli cultures at the three different phases of growth 

exhibit different metabolic profiles and hence different protein expression patterns so 

that unique proteins can be induced and differentially expressed by these cultures. It is 

anticipated that the latter protein expression patterns correlate with the growth phase of 

the culture, and hence between-class (exponential, stationary and decline phase classes) 

variability will be evident. The multivariate classification method (PLS-DA) is used to 

capture these differences and hence classify the E. coli cells. A database search (based 

on the bioinformatics approach of microorganism identification), by matching the 

MALDI spectra experimental molecular weights (MWs) to sequence-derived theoretical 

MWs of E. coli cells using internet accessible protein databases, was then carried out to 

identify potential growth-phase-associated protein biomarkers.  
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Figure 6.1 shows an overview of the various steps involved in biomarker profiling using 

ICM-MS, PLS-DA and protein database search used in this E. coli growth phase-

associated protein biomarker profiling model. It begins with preparation of the E. coli 

cell samples at different growth phases (section 6.1), the analysis of the samples by 

MALDI mass spectrometry, and preprocessing of the spectra data generated to remove 

to remove unwanted variation whilst preserving biological information. Sampling is 

carried out on the preprocessed data sets to separate the samples into training and test 

sets. The training set is overviewed using PCA to study initial trends and later analysed 

using PLS-DA, whilst the test sets are retained for external validation of the PCA and 

PLS-DA models built. PLS-DA scores and loadings plot are interpreted. The 

information from the scores and loadings plot is used for database searches to identify 

protein biomarkers.  
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Figure 6.1: An overview of the various steps involved in the growth phase-

associated protein biomarker profiling of E. coli K-12 cultures using ICM-MS, 

PLS-DA and protein database search 
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6.3. The Bacterial Growth Curve and Growth Measurements 

The growth of bacteria in culture comprises a number of phases, characterised by a 

variation in the growth rate (Monod, 1949). The following definitions are growth phases 

usually distinguished in a bacterial culture, assuming a genetically homogeneous 

bacterial population. In Fig. 6.2,  A is the lag phase of null growth rate (initial 

acclimatisation of cells to their new environment); B, the acceleration phase: growth 

rate increases; C, the exponential (logarithmic) phase: growth rate is constant (rapid 

growth as cell biomass increase linearly with time); D, the retardation phase: growth 

rate decreases; E is the stationary phase: null growth rate (nutrient becomes exhausted, 

rapid growth is halted); F. accelerated death phase; G, the logarithmic decline phase of 

negative growth rate negative (waste accumulates, cells die) (Stainier et al., 1987). It is 

not uncommon for one or several of these growth phases to be absent. For instance 

under suitable conditions of abundant nutrients, the lag and acceleration phases may 

often be suppressed.  It is also not uncommon to have very short retardation or 

stationary phases so that they are indiscernible (Monod, 1949). Thus some phases are 

usually ignored to give the main growth phases as lag, log, stationary and death phases. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Schematic diagram of a bacterial culture growth curve 

showing the various growth phases 
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In this study, cells were grown in culture, and samples were prepared and MALDI-ToF 

mass spectra were recorded in a manner comparable with the previously reported 

studies (Saenz et al., 1999; Reilly et al., 1999; Holland et al., 2000; Harrington et al., 

2008). Samples were collected and analysed from the cultures at points in the three 

specific growth phases (exponential, stationary and decline phases). To determine the 

sample collection times (in hours), the bacteria was first grown in culture and the 

growth curve was determined. The predictable timing of growth along the growth curve 

ensured that samples (bacteria cell pellets) were collected at specific time points during 

the three growth phases (Fig. 6.3). This increased the likelihood that differences 

between identified proteins will be related to the progression from one growth phase to 

another. The specific points (indicated by the thick arrows) of the growth curve at which 

samples were collected for MALDI analysis are shown on Fig. 6.3. To quantify the 

amount of bacteria to be analysed in the MALDI, the wet/dry cell weights (mg/mL) and 

bacterial number through the viable cell counts (CFU/mL) were also determined. The 

next sections describe the materials and methods used in this study, followed by the 

results, discussions and conclusions drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3: Growth curve (optical density vs growth time) of E. coli 

K-12 grown in 200mL LB growth media 
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6.4. Experimental Section  

6.4.1. Materials 

This section outlines the materials used to carry out the laboratory experiments. Freeze-

dried stock cultures of E. coli K-12 strains ATCC 15223 were purchased from DSMZ 

GmbH, Germany. Acetonitrile/trifluoroacetic acid (ACN/TFA; 0.1%, v/v), absolute 

ethanol (Analytical grade reagent), glycerol (100% analytical grade reagent), 

hydrochloric acid (~36%), formic acid, and acetonitrile were obtained from Fisher 

Scientific, UK. Calcium chloride, disodium hydrogen phosphate, potassium dihydrogen 

phosphate, sodium chloride (Sigma Ultra, min 99.5%), were purchased from Sigma-

Aldrich Co., USA. Distilled water was obtained from a Milli-Q Plus purification system 

(Millipore Corporation, Bedford, MA, USA). Nutrient broth was purchased from Oxoid 

(Basingstoke, Hampshire, United Kingdom) and nutrient agar was obtained from 

Merck, Germany. Sinapinic acid and the MALDI-ToF calibrant (a protein mixture 

containing insulin, ubiquitin I, cytochrome C, and myoglobin) was purchased from 

Bruker Daltonics, GmbH, Germany. 

6.4.2. Culture Growth 

This section briefly describes how the bacteria were cultured. Glycerol stocks were 

prepared from the freeze-dried stock cultures of E. coli. A growing culture was used to 

inoculate a 100 mL Luria Bertani (LB) medium in an Erlenmeyer flask and grown 

overnight at 37
o
C in a shaker incubator set at 200 rpm. The volume required to produce 

an optical density at 600 nm (OD600) of 0.05 OD units was then used to inoculate three 

flasks of 100 mL LB medium. The OD600 of the cultures were measured with a 6705 

UV/Vis Spectrophotometer (JENWAY, Bibby Scientific Ltd, UK) at hourly intervals of 

incubation. 

 

6.4.3. Determination of Bacteria Numbers, Dry and Wet Cell Weights 

The bacteria was quantified using both standard plate counting on nutrient agar and by 

measuring the wet cell weight (WCW) and dry cell weight (DCW). Serial dilutions of 

bacterial culture were plated and incubated after which colonies were counted. For 

weight determination, ten 1 ml samples of culture were centrifuged at 17949 × g for 10 

mins in a bench-top centrifuge in pre-weighed tubes. The supernatants were carefully 
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removed by first pouring and then using stretched cotton wool swabs. The tubes 

containing cell pellets were then re-weighed both whilst wet and following drying, and 

the weight of the cell pellet was determined. Calibration curves determined from serial 

dilutions of the 12-hour culture using the bacteria numbers and weights were used to 

determine the amount of bacteria to be analysed by the MALDI. 

 

6.4.4. MALDI-ToF MS Analysis and Data Preprocessing 

‘In-tact cell’ sample preparation for MALDI analysis was carried out (on samples that 

had been stored at -70
o
C) as described in section 3.3.7.1. Previously, the calibration 

curves were used to determine the amount of ‘intact’bacteria cell pellets (approximately 

3.3 × 10
9
cells, 10.2 mgmL

-1
 (WCW), and 0.44 mgmL

-1
 (DCW)) to be analysed. All 

mass spectra were acquired with an Ultra Flex MALDI-ToF mass spectrometer (Bruker 

Daltonics, GmbH, Germany), located in the School of Biosciences, University of Kent, 

Canterbury, Kent, UK. The instrument parameters used as well as the analysis 

procedure has been described in section 3.3.7.1. Data preprocessing was carried out as 

described in section 3.6 using in-house scripts developed from MATLAB
®
 v.7.6.0.324 

(R2008a the MathWorks, Inc.) and functions from the Bioinformatics Toolbox of 

MATLAB
®
 (v 3.1, R2008a, Eigenvector Research, Inc.). Preprocessing studies was 

carried out as described in section 3.6, to find the appropriate combination of 

preprocessing techniques. 

 

6.4.5. Multivariate Data Analysis 

The application of multivariate data analysis (PCA and PLS-DA) to the spectral data 

was carried out as described in section 5.8 using the PLS Toolbox v.3.5 and MATLAB
®
 

software v.7.6.0.324 (Eigenvector Research, Inc.). The first step was to divide the mass 

spectra data into training and a test data set for each group of spectra samples 

(exponential, stationary and decline phases). The PLS-DA algorithm used in modeling 

this data set has been described in detail in section 5.6.1. 

 

Random sampling was undertaken and 80% of the samples were placed in the training 

set whilst the rest were included in the test set. For the exponential phase, 100 were 

denoted as training samples and 22 as test samples, with 100 training and 20 test 

samples for the stationary phase; and finally 100 selected as training set and 24 as test 
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set samples for the decline phase. This resulted in a total of 300 training samples and 66 

test set samples (from a total of 366 E. coli cell samples). PCA was then applied to the 

preprocessed mass spectral data sets to identify any groupings. 

 

6.5. Database Search 

The m/z ratio peak values (as experimental MWs) were submitted to a protein database 

search with the aim of assigning protein identities to mass spectra ion signals obtained 

from the PLS-DA modeling results. The searches were conducted using the MALDI 

mass spectra protein experimental MWs and the organism’s theoretical MWs found in 

the UniProtKB/Swiss-Prot database, which is the Expert Protein Analysis System 

(ExPASy) of the Swiss Bioinformatics Institute (http://expasy.org/proteomics).  With 

the query specified as E. coli K-12, the experimental MWs were matched to biomarker 

peaks contained in the Protein Knowledgebase (UniProt) and TrEMBL query form 

given in the database for the identification of the bacterial main biomarkers. Potential 

assignments from m/z ratio signal ions were possible for a number of m/z ratio values 

within the range 4 to 20kDa. 

 

6.6. Results and Discussions  

6.6.1. PCA Modeling of E. coli MALDI-TOF MS Data at different Growth Phases 

PCA was applied to the 366 preprocessed mass spectral for preliminary data 

visualisation. The objective of applying PCA was to determine if the growth phase is 

the trend that differentiates samples into classes. The scores of the first three principal 

components (PC1 vs PC2 and PC2 vs PC3), which account for 93.73% of the variability 

in the original data set are shown in Fig. 6.4 and the variance explained is summarised 

in Table 6.1.  

 

 

Principal 

component (PC)  

number 

Eigenvalue of 

covariance (X) 

% Variance captured 

for this PC 

Total % variance 

captured 

               1 1.36 × 10
5
 81.37 81.37 

2 1.71 × 10
4
 10.25 91.62 

3 3.53 × 10
3
 2.12 93.73 

Table 6.1: Results of PCA model for all 366 mass spectra data sets for intact cells 

 

http://expasy.org/proteomics
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In Fig. 6.4, the ellipse (blue dashed line) represents the 95% confidence region for the 

two PCs based on Hotelling's T
2
. The samples are colour-coded according to their 

growth phase or class. The three-component model shows clear evidence of class 2 

(exponential phase culture samples) being separate from the other two classes along the 

second principal component (Fig. 6.4a). The representation also showed an indication of 

a difference between class 1 and 3 from the PC2 vs PC3 plot (Fig. 6.4b). These 

preliminary observations suggest that a major part of the spectral variation is related to 

the growth phase.  

 

 

 

 

 

 

 

 

 

6.6.2. PLS-DA Modeling of E. coli MALDI-TOF MS Data at different Growth 

Phases 

6.6.2.1. Latent Variable (LV) Selection 

The next step was to apply PLS-DA to the full preprocessed mass spectral profiles from 

the ‘intact’ E. coli cells. During PLS-DA model calibration, leave-class-out-cross-

validation (LCOCV), a modified version of leave-one-out-cross-validation was carried 

out. In LCOCV, all samples belonging to the same class were removed from the 

training data set and a sub-model based on the remaining samples were used to build the 

PLS-DA model and predict the left out samples. Cross-validation was customised by 

creating a vector (Fig. A.3, Appendix A) and specifying how the cross-validation was to 

be performed.  
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Figure 6.4: Principal component scores plot for 366 intact cell E. coli mass 

spectra data 
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Fig. 6.5 shows a plot of the root mean square error of cross-validation (RMSECV) for 

LCOCV as a function of number of the number of LVs and illustrates the impact of 

increasing the number of LVs under cross-validation conditions. The number of LVs 

was chosen to simultaneously maximise the percentage of explained systematic 

variation whilst achieving correlation with Y. Fig. 6.5 indicates that exponential phase 

(class 2) samples behaved differently from the other two classes. For the exponential 

phase samples, the lowest RMSECV of 0.6 was attained with two LVs, with the 

RMSECV leveling out after 3 LVs. The other two classes achieved their lowest 

RMSECV for LV1. As a rule of thumb, the appropriate LV should have a minimum 

RMSECV (Li et al., 2002). Based on these observations three LVs were retained for the 

subsequent model. The 3-LV model captured 86.62% of the Y-block of the training data 

set. 

 

 

 

 

 

 

 

 

 

 

 

 

6.6.2.2. Model Quality 

The model parameters are summarised in Tables 6.2 and 6.3, and Fig. 6.6. The 

percentage of explained and cumulative explained variance of the X and Y- variables are 

reported in Table 6.2 for the first six LVs. The results in the table suggest that three LVs 

was the appropriate choice or number of LVs. This is because starting from LV 6, the 

percentage variance captured on the Y-block gets gradually larger until LV 4 is reached, 

then there is a sudden jump up to LV 3 (Table 6.2). The 3-LV PLS-DA model captured 
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Figure 6.5: Root mean square error of cross validation (RMSECV) as 

a function of the number of LVs added to the PLS-DA model 



           CASE STUDY I: Biomarker Profiling of Escherichia coli  
  
 

143 
 

86.7% of the Y-block variance and explained 93.2% of the X-block variance of the 

training data set under cross-validation.  

 

 

 

 

 

 

 

Table 6.3 shows the parameters that describe the quality of the model after calibration 

(Cal) and cross-validation (CV). The Table shows that the quality of the model was 

good both in calibration and CV with a sensitivity (proportion of samples correctly 

classified that belong to the class being modeled), and specificity (proportion of samples 

correctly classified that do not belong to the class being modeled) of at least 93%. 

Furthermore, the model had a low classification error over the three classes, with the 

highest value being 3.7% (class 1). R
2 

values calculated were high, both fitting (74% for 

class1, 90% for class 2 and 71% for class 3) and in cross-validation (81% for class 3). 

Latent 

variable 

(LV) 

number 

X-Block Y-Block 

% Variance 

captured for 

this LV 

Total % 

variance 

captured 

% Variance 

captured for 

this LV 

Total % 

variance 

captured 

1 81.18 81.18 32.36 32.36 

2 10.49 91.66 31.68 64.04 

3 1.56 93.22 22.60 86.65 

4 1.57 94.79 4.17 90.81 

5 0.60 95.39 3.39 94.17 

6 0.71 96.10 1.01 95.18 

Table 6.2: PLS-DA percentage variance explained by the LVs calculated 

for X and Y variables 

Modeled class 
Class 1 

(Decline phase) 

Class 2 

(Exponential phase) 

Class 3 

(Stationary phase)  

Sensitivity (Cal) 0.930 1.000 0.980 

Specificity (Cal) 0.995 0.990 0.936 

Sensitivity (CV) 1.000 1.000 1.000 

Specificity (CV) 0.505 0.955 0.005 

Classification 

error (Cal) 
0.037 0.005 0.042 

 Classification 

error (CV) 
0.248 0.023 0.498 

RMSEC 0.238 0.148 0.254 

RMSECV 0.773 0.599 1.038 

R
2 

Cal 0.745 0.904 0.708 

R
2
 CV 0.057 0.028 0.885 

Table 6.3: PLS-DA modeling results showing the quality of the model is good after 

calibration (Cal) and cross-validation (CV) 
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The high values of R
2 

in fitting (and the consequent small values of RMSEC (24% for 

class1, 15% for class 2, and 25% for class 3) show that the model is characterised by a 

large fitting ability. 

 

Fig. 6.6 shows the calculated Y versus measured Y in fitting and prediction for the PLS-

DA model after cross-validation. This figure also supports the assertion that the model 

is good. It represents the calculated versus the measured responses both in fitting and in 

prediction: no deviations can be identified along the y-axis in all three classes. This 

suggests that all the useful information is taken into account by the model. 
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6.6.2.3. External Validation and Model Performance 

The model was successfully validated with the 66 test data sets (Table 6.4; Fig. 6.7) 

indicating that the PLS-DA model is informative in terms of class separation. Table 6.4 

shows that the model had a very high performance (95-100% sensitivity and 

specificity). Furthermore, the model had a low classification error over all the three 

classes, with the highest being 3.6% (class 3).  

 

During the PLS-DA model building stage (calibration), the algorithm utilises Bayesian 

statistics to make a decision as to whether a future unknown sample will belong to a 

given class or not. During prediction of a test set, samples associated with a Y-value 

(predicted value) above the decision line have a statistically significant probability of 

belonging to the target class; the samples associated with Y-values below the decision 

line have a statistically significant probability of not belonging to the target class.  As 

indicated in Fig. 6.7, the decision threshold shown in each case (middle dashed red line) 

is calculated using the distribution of predicted Y values obtained during model 

building. Misclassified samples have been labelled and coloured in pink.  

 

As indicated in Fig. 6.7, just one sample from class 1 (1di01) was misclassified falling 

below the decision threshold. This gave an excellent prediction sensitivity and 

specificity of 95.8% and 100% respectively. No class 2 samples were misclassified 

giving 100% prediction sensitivity and specificity. Only one class 3 sample (4si13) was 

Modeled class 
Class 1 

(Decline phase) 

Class 2 

(Exponential 

phase) 

Class 3 

(Stationary 

phase)  

Sensitivity 

(prediction) 
0.958 1.000 0.950 

Specificity 

(prediction) 
1.000 1.000 0.978 

Classification 

error 

(prediction) 

0.021 0.000 0.036 

RMSEP 0.228 0.156 0.228 

Prediction Bias -0.026 0.036 0.012 

R
2 

prediction 0.786 0.902 0.771 

Table 6.4: PLS-DA modeling results showing the performance of the 

model after external validation 
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misclassified giving an excellent prediction sensitivity and specificity of 95% and 

97.8% respectively. These results suggest that the model had an excellent performance 

and is valid. The successfully validation of the model means that the model parameters 

such as scores and loadings are valid. The model performance also validates the choices 

of the preprocessing methods/parameters used for the spectra data described in section 

3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.6.2.4. Scores Plot 

The practical value of the model was demonstrated in its ability to separate the three 

classes as shown in the scores plot. Fig. 6.8 shows the resulting PLS-DA scores plot. A 

plot of the first two components (LV1 vs LV2) shows that the 3-LV model concentrates 
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most of the discriminatory information into the second LV (Fig. 6.8(a)), with the 

exponential phase cell samples (class 2) exhibiting differences from the other two 

classes. This observation is supported by a plot of scores on LV2 as a function of 

samples (Fig. 6.8(c)). A plot of LV2 vs LV3 shows separation between the stationary 

phase (class 3) and decline phase (class 1) cell samples (Fig. 6.8(b)), an observation 

supported by Fig. 6.8(d). Stationary phase samples have positive scores (found in the 

left quadrant) whilst decline phase samples have positive scores (found in the right 

quadrant) in LV3 (Fig. 6.8(b)). 
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Figure 6.8: PLS-DA scores plot for the E. coli calibration mass spectra data 
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6.6.2.5. Loadings Plot 

The PLS-DA model uses whole m/z ratio regions (without variable selection) to 

differentiate between classes so it is possible to investigate which m/z ratio regions 

contributing towards the discriminatory ability of the model for classifying a given 

sample as class 1, 2 or 3, that is, decline, exponential and stationary phases respectively. 

The PLS-DA loadings plot for a specific LV potentially contains valuable information 

regarding the regions of the mass spectra (m/z ratio peaks or ion signals) that contribute 

to the ability of the PLS-DA representation to distinguish between classes. There is a 

direct geometric link between the scores and the loadings plot of PLS-DA.  

 

The loadings plot for LV2 and LV3 (Fig. 6.9 and 6.10) indicates which variable 

loadings (associated with m/z ratio ion signals in the MALDI data sets) that contain 

information which are causing the separation of the samples in the scores plot. The 

loadings describe the weighting coefficients for each m/z ratio ion signal (experimental 

MWs of proteins) with the magnitude of the variable loadings being indicative of how 

the expression of proteins varies with growth phase. In Fig. 6.9, it can be seen that 

variables 1702, 2271, 2344, 2729 and 3642 have loadings of large negative magnitude. 

Since the exponential phase cell samples have negative scores along LV2, this implies 

that these samples can be differentiated from the other two classes by these m/z ratio 

signals associated with variables of large negative loadings in the LV2 loadings plot. 

These ion signals potentially identify those proteins which are differentially expressed 

in cells during the exponential phase and are most likely to be biomarkers of the 

exponential phase.  

 

 

 

 

 

 

 

 

 

 

 Figure 6.9: PLS-DA loadings plot on LV2 
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For the loadings associated with LV3 (Fig. 6.10), the variables 1701, 2271, 2344, 2915 

and 3719 have loadings with large positive magnitude. Stationary phase cell samples 

can thus be differentiated from decline phase samples by the presence of m/z ratio 

signals associated with variables with positive loadings in the LV3 loadings plot. These 

m/z ratio signals are indicative of those proteins which are differentially expressed in 

cells during the stationary phase. Variables 2550, 2735, 3473 and 3528 have loadings 

with large negative magnitude on the LV3 loadings plot (Fig. 6.10), and since the 

decline phase cell samples have negative scores along LV3, they can be distinguished 

from the stationary phase cell samples by the differential expression of proteins 

associated with signals with positive loadings in the LV3 loadings plot. 

 

 

 

 

 

 

 

 

 

 

 

6.6.3. Protein Database Search for Database Search for the E. coli Cell Samples 

The PLS-DA loadings plots for LV2 and LV3 are now considered for further analysis.  

The variables from the loadings plot are associated to m/z ratio peak or signal ions 

(Table A.6 to A.8, Appendix A). Since most of the m/z ratio signal ions are singly 

charged protonated protein (MH
+
) molecules, they represent the approximate MALDI 

experimental MWs of the ionised proteins expressed by the cells at the different growth 

phases. Thus the m/z ratio signal ions (experimental MW of protein ions) were 

submitted to a protein database search to assign protein identities to them. The 

experimental MWs of protein ions were used as search parameters and were matched 

Figure 6.10: PLS-DA loadings plot on LV3 
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with sequence derived theoretical MW values in the UniProtKB/Swiss-Prot database 

(http://expasy.org/proteomics).   

 

A number of matches resulted in protein biomarkers which have been predicted in the 

organism's genome, and there is experimental evidence that these proteins are expressed 

in vivo at the different phases of growth (Yoon et al., 2003; Nystrom, 2004; Han and 

Lee, 2006). Table 6.5 summarises the results of the database search and shows the 

compiled results of the protein matches obtained for the three growth phases. If no 

match was found after the initial search, the search was repeated assuming N-terminal 

Methionine (Met) is lost (experimental MW with less than 131 Da). In prokaryotes, it is 

estimated that more than 50% of E. coli proteins undergo Met loss as posttranslational 

modification (PTM) (Hirel et al., 1989).  E. coli have been well studied and N-terminal 

Met excision PTM is reflected in the UniProt/SwissPROT databases which contains 

proteins with or without N-terminal Met (Gibson et al., 1997; Demirev et al., 1999).  

 

Most of the experimental MWs were matched with proteins in the mass range 4 – 20 

kDa.  Matches were not found for the majority of experimental MWs below 4 kDa. 

These MWs may represent the bacterial cell lipooligosaccharide and peptidoglycan 

molecules (Guo et al., 2002). Information relating to the synthesis of these non-protein 

biomolecules is not derived from the genetic code and hence would not be found in the 

protein database. MWs less than 4 kDa may also partly be a combination of abundant 

matrix-related ions since most of the currently used matrices have MWs less than 3 

kDa. They may also act as their own matrices, producing a variety of matrix-related ions 

during laser ionisation (Ochoa et al., 2005). Thus any assignment to m/z ratio ion 

signals below the 4 kDa region is tentative, and necessitates further conclusive 

evidence. Such assignments were therefore excluded. 

 

6.6.4. SwissPROT/TrEMBL Protein Molecular Weight Distribution for E. coli 

K-12, MALDI Mass Accuracy and Biomarker Identification 

Biomarker assignment and identification was based on several factors. Biomarker 

identification was based on m/z ratio values or experimental MW ranges can correspond 

to variable count ranges in the PLS-DA loadings plot. An average experimental MW is 

assigned to a protein biomarker if it falls within this range and matches the theoretical 

http://expasy.org/proteomics
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MW of the protein biomarker based on the mass accuracy of linear mode MALDI-ToF 

MS instrument. The assigned proteins to take into account the mass accuracy in the 

linear mode MALDI-ToF which is 100 ppm, i.e., for all the assigned proteins, 

experimental MW masses was within 0.01% of their theoretical MWs (+/- 1 mass unit 

for 10,000 MW protein). Tables A.9 to A.11 (Appendix A) shows variable count ranges 

and their experimental MW ranges as well as the average experimental MWs (within 

the latter range) matching theoretical MWs for the all the protein biomarkers shown in 

Table 6.5. 

 

Secondly, assignments took into consideration the molecular mass distribution of 20653  

protein sequences (providing theoretical MWs) of E. coli K-12 proteins derived from 

genomic open reading frame as well as nongenomic entries found in the 

SwissPROT/TrEMBL database. The molecular mass distribution of known E. coli K-12 

proteins (Fig. 6.11) has a peak centered around 12 kDa. Fig. 6.11 shows the molecular 

mass distribution (in bins of 1 kDa) of E. coli K-12 proteins deposited in the 

SwissPROT/TrEMBL sequence database. Fig. 6.11 suggest that many E. coli K-12 

proteins have masses in the range of mass range 4 – 20 kDa. Therefore, it may be also 

expected that unique combinations of protein masses in the mass range from 4 to 20 

kDa can serve as protein biomarkers for E. coli K-12 (Arnold and Reilly, 1999; Ryzhov 

and Fenselau, 2001). For example most experimental MWs were assigned to ribosomal 

proteins because the latter are highly abundant in growing cells (almost half of the cell 

mass), relative to other cytosolic proteins and most have MWs of less than 20kDa. 

Moreover, ribosomal proteins are very basic, and basic proteins are more amenable to 

protonation during MALDI analysis. Experimental MWs that did not match ribosomal 

proteins were assigned to other abundantly produced non-ribosomal cytosolic proteins 

which are basic, and expressed at the different growth phases based on evidence from 

the literature (Arnold and Reilly, 1999; Ryzhov and Fenselau, 2001). 
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Figure 6.11: Molecular weight (MW) distribution (in bins of 1 kDa) of 20653 

E. coli K-12 proteins deposited in the SwissPROT/TrEMBL sequence database 

 

The full explanation of superscript letters assigned to column titles in Table 6.5 are as 

follows:    

a
Experimental MWs were the m/z ratio ion (MH

+
) signals associated to the variables 

(associated to m/z ratio ion signals in the MALDI data set) from the PLS-DA loadings 

plot.  

b
The intensity of the variables ( m/z ion signals) 

 
is the magnitude of their loadings in 

the loadings plot. High: intensity ≥ ±0.1 units; medium: intensity ≥ ±0.05 and ≤ ±0.1 

units; low: intensity between 0 and ±0.05 units.  

c
Theoretical sequence MWs were calculated using the Compute pI/MW tool 

(http://web.expasy.org/compute_pi/). Assigned proteins took into account the mass 

accuracy in the linear mode MALDI-ToF which is 100 ppm, i.e., for the proteins, 

experimental MW masses should be within 0.01% of their theoretical MWs (+/- 1 mass 

unit for 10,000 MW protein).
  

d
MWs of the proteins described in previous studies using MALDI-TOF analysis of E. 

coli K-12.   
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ef
MW from studies by Arnold and Reilly (1999); and Ryzhov and Fenselau (2001) 

respectively. Proteins in bold with ‘none’ as paper match are proteins identified that 

were not reported in previous E. coli culture MALDI studies.  

g
Protein names, description, PI, accession numbers and remarks were from ExPASy 

Proteomics Server (http://www.uniprot.org/uniprot/ ). 
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Table 6.5: SwissProt/TrEMBL Database Proteins Matching Experimental Biomarker 

Masses in MALDI-ToF MS for the E. coli  K-12 Cell Samples 
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6.6.5. Identification of Growth Phase-associated Biomarkers 

As seen in Table 6.5, most of the database matches identified corresponded to 

intracellular proteins of the bacteria suggesting that the E. coli cells from the culture 

were lysed releasing intracellular contents. Cell lysis may have occurred as a result of 

the sample preparation procedure as a consequence of the organic solvents used or 

possibly during the storage and freeze-thawing of the cell pellets at -70
o
C prior to the 

MALDI analysis. The majority of protein matches corresponded to ribosomal proteins 

in the 50S and 30S subunits. This outcome was expected since ribosomal proteins have 

a high abundance of up to 45% of the total mass of E. coli cells and these proteins make 

up to 21% of the cell’s protein content (Ryzhov and Fenselau, 2001; Ochoa et al., 

2005). Previous MALDI studies on whole E. coli cultures have also matched several 

m/z ratio peaks to ribosomal proteins (Ryzhov and Fenselau, 2001; Jones et al., 2003; 

Ochoa and Harrington, 2005). Ribosomal proteins are basic (that is, pI greater than 9), 

and basic proteins are more amenable to MALDI analysis because they can easily be 

protonated as they comprise many basic functional groups (Ochoa and Harrington, 

2005).  It is interesting to observe that exponential phase cultures had more ribosomal 

protein matches than the other phases with the number of ribosomal protein matches 

dropping from the exponential to the decline phase. The predominance of ribosomal 

proteins in actively growing cells has previously been reported (Saenz et al., 1999; 

Harrington et al., 2008). This trend is in keeping with the biology of these cultures since 

during the exponential phase, cultures are metabolically at their maximum, actively 

growing and protein synthesis is higher than in the other phases. At later growth phases, 

cultures are less metabolically active and grow less so it is not necessary to retain a high 

level of ribosomes (Reilly et al., 1999). This suggests that ribosomal proteins may serve 

as biomarkers for exponential phase E. coli cultures.   

 

Several proteins reported in other research studies as stationary phase proteins were also 

identified in the stationary phase samples (Table 6.13). Amongst these are the nucleoid-

associated proteins (NAPs), IhfA and Dps;  the DNA-binding morphogene (BolA);  

lipoproteins OsmY and OsmB; the glycogen synthesis protein (GlgS); and the 

bacteriocin MccB17 (Connell et al., 1987; Aldea et al., 1989; Jung et al., 1989; Yim 

and Villarejo, 1992; Hengge-Aronis and Fischer, 1992; Azam et al., 1999). Hence these 

proteins could be considered as potential stationary phase biomarker candidates. 

Identified proteins also indicated that a high number of toxin-antitoxin (TA) loci-
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associated proteins (TALAPs) were present in decline phase samples, ChpS antitoxins; 

antitoxin YefM, DinJ, RelB, RelE, and mRNA interferase. The presence of TALAPs is 

in keeping with the concept of either an increased culture die-off or increased culture 

stasis from the exponential to the decline phase (Aizenman et al., 1996; Pedersen et al., 

2002). TALAPs are most likely to be biomarkers of the decline growth phase.  

 

Since MALDI-MS produces mostly singly charged ion protein or peptide fragment, the 

MW of the molecular ion and hence protein can be directly determined, hence 

identification of the protein. However, since information from MW of the proteins is not 

sufficient to identify them (because of matrix effect, post-translational modification, and 

mass errors) protein identifications through database search in this project were 

tentative pending further analysis. Proteins identified in this project have been reported 

in other research studies (Reilly et al., 1999; Guo et al., 2002; Jones et al., 2003; Ochoa 

et al., 2005; Harrington et al., 2008).  

6.7. Summary 

Within this chapter, it is shown that PLS-DA is a potentially powerful tool for 

extracting systematic variation pertaining to biological effects of spectra data generated 

using intact-cell MALDI mass spectrometry (ICM-MS) method. The proposed approach 

has enabled the investigation and potential identification of the biological factors 

involved in a bacterial culture and the biomolecules contributing to the main trends of 

such biological factors. The PLS-DA has indicated that the spectra of bacterial cell 

samples from the exponential, stationary and decline growth phases exhibit differences 

due to differentially expressed proteins which can be identified from examining the 

PLS-DA loadings plot (that is, m/z ratio values) in conjunction with protein database 

search. Proteins such as ribosomal proteins are predominantly expressed during the 

exponential phase cultures since they are actively growing. This and other studies have 

indicated that these are potential biomarkers for cultures in the exponential phase. Other 

proteins previously identified in the literature were found to be differentially expressed 

in both the stationary and decline phases. The minimal sample pretreatment 

requirements for ICM which reduces sample processing time, the straight forward 

interpretability of the PLS-DA results, and the availability of internet accessible 

proteomic databases provide the potential to easily and rapidly identify biomarkers. 

This rapid identification of biomarkers demonstrates one aspect of this approach that 
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could be useful for biomarker profiling in mammalian cell culture. This approach could 

also serve as a valuable tool in process development in the bioprocessing industry to 

enhance cell growth by facilitating the selection of high producing cell lines based on 

identified biomarkers, as well as identify potential targets for cell engineering. This is 

described in the subsequent chapter (chapter 7). 
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7. CASE STUDY II: Biomarker Profiling Of Cultured Intact 

Mammalian Cell Lines Utilising the ICM, PLS-DA, and Protein 

Database Search Approach 

7.1. Overview 

In chapter 6, the application of the approach utilising intact-cell MALDI-ToF MS 

(ICM-MS), projection to latent structure – discriminant analysis (PLS-DA), and 

database search was demonstrated in the study of protein biomarker profiling, using an 

E. coli growth-phase-associated protein biomarker model. This case study acted as a 

proof-of-principle study for the ICM, PLS-DA and protein database search approach. 

The case study demonstrated that if between-class (exponential, stationary and decline 

phase classes in this case) variabilities exist in spectra data, PLS-DA is used to capture 

these differences and hence classify the samples based on these variabilities. The results 

obtained from the proof-of-concept study suggest that this approach was successful in 

identifying protein biomarkers. 

  

In this chapter, the approach is applied in biomarker profiling of IgG-producing CHO 

cell lines during bioprocessing. It is hoped that a between-class variability (based on the 

cell line productivity) will exist within the CHO cell line spectra data so that PLS-DA 

can be used to classify the samples and identify potential protein biomarkers which are 

associated to the CHO cell line productivities. 

 

7.2.  Introduction 

‘Intact-cell’ MALDI-ToF MS (ICM-MS) raises many possibilities for the analysis of 

mammalian cells (Chaurand et al., 2006; Chaurand et al., 2007; Crossman et al., 2006; 

Khatib-Shahidi et al., 2006; Reyzer et al., 2007). These applications have been 

discussed in section 4.3.4.5 (chapter 4). Despite the application of ICM-MS to bacteria 

(section 4.3.4.4) and mammalian cells, there have been relatively few studies that have 

applied this approach to mammalian cell cultures (MCCs) in bioprocessing (Buchanan 

et al., 2007; Feng et al., 2010; Dong et al., 2011; Feng et al., 2011). The few 

applications that exist in the literature (to the best of the author’s knowledge) have also 

been discussed in section 4.3.4.5 (chapter 4).  
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7.3. Specific Aims and Contributions of the Chapter  

In a recent application Feng et al., (2010) applied ICM-MS to a batch of CHO cell lines 

producing the monoclonal antibody, IgG. The mass spectra data sets obtained were 

modeled using PCA and PLS, discriminating between the cell lines (high/low 

producers) based on different expressed recombinant proteins (different productivities). 

As a follow-up to this work, the group more recently used PLS-DA to model spectra 

data sets obtained from another batch of monoclonal IgG-producing CHO cell lines 

(Feng et al., 2011). In both studies mass spectra peaks of potential protein biomarkers 

associated with productivity were identified using the multivariate data analysis 

approaches of PCA, PLS and PLS-DA. Whilst these two studies represent an important 

step forward towards pattern-based biomarker profiling of mammalian cell culture 

(MCC) in bioprocessing, no attempts were made by the experimenters to provide the 

mass spectra peak assignments that were obtained to potential protein biomarkers. 

  

In this chapter, ICM-MS combined with PLS-DA was used to distinguish between cell 

lines in terms of productivities (high/low producers; Hs/Ls). Protein database searches 

were then used to identify potential biomarkers associated with productivity, and whose 

differential presence may be useful in classifying between the two cell line classes. 

Furthermore, biological interpretations as to the presence of such protein biomarkers 

will be provided. The presence of such biomarkers may then be used as a basis for 

predicting cell line productivities; provide insight into biological mammalian cell lines 

used during bioprocessing; and may give indications to potential genetic engineering 

targets that may be exploited to engineer batter cell lines. 

 

Figure 7.1 shows an overview of the various steps involved in using ICM-MS, PLS-DA 

and protein database searches for the biomarker profiling of IgG monoclonal antibody-

producing CHO cell lines. It begins with preparation of the CHO cell samples, the 

analysis of the samples by MALDI mass spectrometry, and preprocessing of the spectra 

data generated to remove unwanted variation whilst preserving biological information. 

Sampling is then carried out on the preprocessed data sets to separate the samples into 

training and test sets. The training set is overviewed using PCA to study initial trends 

and later analysed using PLS-DA, whilst the test sets are retained for external validation 

of the PCA and PLS-DA models built. PLS-DA scores and loadings plot are then 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

163 
 

interpreted. The information from the scores and loadings plot is used for database 

searches to identify protein biomarkers. 

 

Figure 7.1: An overview of the various steps involved in the growth phase-

associated protein biomarker profiling of IgG monoclonal antibody-producing 

CHO cell lines using ICM-MS, PLS-DA and protein database search 
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7.4. Experimental Section  

7.4.1. Chemicals 

This section outlines the chemicals used in this project, as provided by collaborators at 

the School of Bioscienes, University of Kent, to carry out the laboratory experiments. 

Acetonitrile/Trifluoroacetic Acid (ACN/TFA; 0.1%, v/v), Sinapinic acid (SA); Sucrose 

(>99.5%, Sigma Aldrich UK); Phosphate buffer saline (PBS) - Oxoid tablets (made up 

as directed, filter-sterilised and stored at 4
o
C); and the MALDI-TOF calibrant (a protein 

mixture containing insulin, ubiquitin I, cytochrome C, and myoglobin) were purchased 

from Bruker Daltonics, GmbH, Germany 

 

7.4.2. Cell Culture 

This section presents information about the cell line used in this project, as provided by 

collaborators at the School of Bioscienes, University of Kent. Immunoglobulin G (IgG1 

and IgG4) monoclonal antibody expressing mammalian cell lines (concealed identity) 

were generated in-house (Lonza Biologics, Slough, UK) through methothrexate 

amplification. Cell line suspensions of varying productivities were cultivated in a 96 

deep well plate (96DWP), 24 well plate, and bioreactor. The cell line culture time was 5 

days after which exponential phase cells were harvested for analysis. At the 96DWP 

scale of production, cell lines were attributed to a high or low class based on their 

antibody titres in the 96 deep well plate scale during production. 

   

Samples of cell lines which had above 1000mgmL
-1

 antibody titres were classed as high 

producers (Hs). This was the threshold set by Lonza Biologics with respect to cell line 

productivity. Samples which had specific productivity (qP) titres less than 1000mgmL
-1

 

were classed as low producers (Ls). Samples collected were retained for MALDI 

analysis. Viable cell concentration and percentage viable cells were measured using a 

Cedex automated cell counter (Innovatis, Bielefeld, Germany). 

  

7.4.3. MALDI-ToF MS Analysis and Data Preprocessing 

CHO cell line sample preparation for MALDI analysis was carried out as described in 

section 3.3.6.2. All mass spectra were acquired with an Ultra Flex MALDI-ToF mass 

spectrometer (Bruker Daltonics, GmbH, Germany), located in the School of 

Biosciences, University of Kent, Canterbury, Kent, UK. The instrument parameters 
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used as well as the analysis procedure has been described in section 3.3.6.2. Data 

preprocessing was carried out using in-house scripts developed from MATLAB
®

 

v.7.6.0.324 (R2008a the MathWorks, Inc.) and functions from the Bioinformatics 

Toolbox of MATLAB
®

 (v 3.1, R2008a, Eigenvector Research, Inc.). Preprocessing 

studies was carried out as described in section 3.6, to find the appropriate combination 

of preprocessing techniques. 

 

7.4.4. Multivariate Data Analysis 

The application of multivariate data analysis (PCA and PLS-DA) to the spectral data 

was carried out using the MATLAB® software v. 7.12.0.635 (R2011a The MathWorks, 

Inc.) and the PLS Toolbox v. 6.5.1 (Eigenvector Research, Inc.). The PLS-DA 

algorithm used in modeling the CHO cell line spectra data set has been described in 

detail in section 5.6.1. PCA was first applied to get an overview of the preprocessed 

mass spectral data sets to identify groupings in the data sets.  Random sampling was 

used to separate the training set from the test set samples. In this study, 1/5 of the 

spectra data sets were used as the test set and 4/5 as training set.  After random 

sampling, 44 spectra data sets (18 Hs and 26 Ls) were used as the training set whilst 16 

samples (8 Hs and 8 Ls) comprised the test set. 

 

7.4.5. Protein Database Search 

Protein database searches were carried out to assign protein identities to mass spectra 

ion signals obtained from information in the PLS-DA loadings plots. The searches were 

conducted using the MALDI mass spectra protein experimental molecular weights 

(MWs) (m/z ratio peaks or signal ions) and the organism’s theoretical MWs found in the 

UniProtKB/Swiss-Prot database. With the query specified as Chinese Hamster Ovary 

(CHO), the experimental MWs were matched to biomarker peaks contained in the 

Protein Knowledgebase (UniProt) and TrEMBL query form found in the database for 

the identification of the mammalian cell line’s main protein biomarkers. 
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7.5. Results and Discussions  

7.5.1. Principal Component Analysis Modeling of the Spectra Data Sets from 

CHO cell lines 

Principal component analysis (PCA) was applied to get an overview of the 64 

preprocessed CHO cell mass spectral data sets to help identify trends in the data and to 

sample the data into training and test sets. The first four principal components account 

for 46.60% of the original variation (Table 7.1). A plot of PC2 vs PC3 is shown in Fig. 

7.2(a). The four-component model shows evidence of separation between the two 

classes along PC2, with most of the low producer cell line samples lying in the upper 

left quadrant and the high producer cell lines being found in the lower left quadrant. 

Four samples, 2 low producers (Ls) and 2 high producer cell lines (Hs) were outliers as 

they were located outside the 95% confidence region. After removal of the outliers and 

subsequent splitting of the data into training and test set samples, a 2-component PCA 

model was built with the 44 training data sets (Table 7.2). The two component model 

accounted for 93.73% of the variability in the original data set. A plot of PC1 vs PC2 of 

the 2-component model showed a strong evidence of separation between the two classes 

along PC2 (Fig. 7.2(b)). Overall, these suggest that the PCA representation has some 

practical value and that a major part of the spectral variation is related to class 

differences between the high and low producer CHO cell lines. 

 

 

Principal 

component 

(PC)  number 

Eigenvalue of 

covariance (X) 

% Variance 

captured for this 

PC 

Total % 

variance 

captured 

1 5.86 × 10
3
 32.41 32.41 

2 1.24 × 10
3
 6.87 39.28 

3 7.00 × 10
2
 3.87 43.15 

4 6.23 × 10
2
 3.45 46.60 

5 4.85 × 10
2
 2.68 49.28 

6 4.25 × 10
2
 2.35 51.63 

7 3.64 × 10
2
 2.01 53.64 

8 3.46 × 10
2
 1.91 55.55 

Table 7.1: Results of PCA model for all 64 CHO mass spectra data sets 
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Principal 

component 

(PC)  number 

Eigenvalue of 

covariance (X) 

% Variance 

captured for this 

PC 

Total % 

variance 

captured 

1 3.28 × 10
5
 90.13 90.13 

2 1.36 × 10
4
 3.73 93.86 

3 4.91 × 10
3
 1.35 95.21 

4 3.89 × 10
3
 1.07 96.28 

5 2.43 × 10
3
 0.57 96.94 

6 1.53 × 10
3
 0.42 97.36 

7 9.49 × 10
2
 0.26 97.62 

8 8.79 × 10
2
 0.24 97.89 

 

 

 

 

 

 

 

Table 7.2: Results of PCA model for the 44 calibration CHO mass spectra 

data sets after outlier removal 
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Figure 7.2: PCA scores plot for the Chinese hamster ovary mass spectra 

data before and after sampling 
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7.5.2. Partial Least Squares – Discriminant Analysis (PLS-DA) Modeling of the 

Spectra Data Sets from CHO cell lines 

7.5.2.1. Latent Variable (LV) Selection 

The 44 training mass spectra profiles from the CHO cell lines were then modeled by PLS-

DA. The PLS-DA model use the whole m/z ratio region to differentiate between classes 

thus it is possible to investigate which regions were highly weighted in the model when 

classifying a given sample as a low or high producer cell line. Fig. 7.3 shows a plot of 

RMSECV as a function of the number of LVs after cross-validation. It captures the effect 

of increasing the number of LVs in the PLS-DA model. The optimum number of LVs was 

selected to simultaneously maximise the percentage of explained systematic variation 

while achieving correlation with Y. Fig. 7.3 indicates that four LVs should be retained. 
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Figure 7.3: RMSECV as a function of the number of LVs added to the 

PLS-DA model for the CHO cell line data set 
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7.5.2.2. Model Quality 

Results of the PLS-DA analysis are summarised in Table 7.3, 7.4 and Fig. 7.4. The 4-

LV model captured 95.50% of the Y-block of the training data set  (Table 7.3), and the 

100% specificity and sensitivity suggest that the model was excellent (Table 7.4).  This 

was supported by the calculated Y versus measured Y in fitting and prediction for the 

PLS-DA model after cross-validation (Fig. 7.4). There was no deviation identified along 

the y-axis in both the high and the low producer classes, (Fig. 7.4(a)) and (Fig. 7.4(b)) 

respectively, suggesting that that all the useful information is taken into account by the 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeled class 
Class 1 

(High producers) 

Class 2 

(Low producers) 

Sensitivity (Cal) 1.000 1.000 

Specificity (Cal) 1.000 1.000 

Sensitivity (CV) 1.000 1.000 

Specificity (CV) 1.000 1.000 

Classification error (Cal) 0 0 

 Classification error (CV) 0 0 

RMSEC 0.104 0.104 

RMSECV 0.158 0.158 

R
2 

Cal 0.955 0.955 

R
2
 CV 0.897 0.897 

Latent 

variable 

(LV) 

number 

X-Block Y-Block 

% Variance 

captured for 

this LV 

Total % 

variance 

captured 

% Variance 

captured for 

this LV 

Total % 

variance 

captured 

1 7.78 7.78 78.39 78.39 

2 86.06 93.84 3.68 82.07 

3 0.87 94.71 9.05 91.12 

4 0.58 95.28 4.38 95.50 

5 0.36 95.64 2.51 98.01 

6 1.11 96.75 0.56 98.57 

7 0.39 97.14 0.78 99.35 

8 0.49 97.64 0.28 99.63 

Table 7.3: PLS-DA results showing the quality of the model after calibration 

(Cal) and cross-validation 

Table 7.4: Results of PLS-DA model for the 44 calibration CHO mass spectra 

data sets 
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7.5.2.3. External Validation and Model Performance 

The model was successfully validated with 16 (8 Hs and 8 Ls) test data sets (Table 7.5; 

Fig. 7.5); indicating that the PLS-DA model is informative in terms of class separation. 

Table 7.5 shows that the model had a good performance (75-100% sensitivity and 

specificity). Furthermore, the model had a low classification error of 3.3% for both 

classes. As indicated in Fig. 7.5(a) two high producer samples (class 1) were 

misclassified (coloured in pink) falling below the decision threshold. This resulted into 

a good prediction sensitivity and specificity of 75% and 100% for class 1 respectively. 

No class 2 samples were misclassified giving 100% prediction sensitivity (Fig. 7.5(b)). 

The successfully validation of the model means that the model parameters such as 

scores and loadings are valid. The model performance also validates the choices of the 
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Figure 7.4: PLS-DA calculated Y versus measured Y in fitting and prediction after 

cross-validation for the 44 CHO cell line calibration spectra; (a) High producer 

class, and (b) Low producer class 
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preprocessing methods/parameters used for the spectra data described in section 3.6 

(chapter 3). 

 

Modeled class 
Class 1 

(High producers; Hs) 

Class 2 

(Low producers; Ls) 

Sensitivity (prediction) 0.750 1.000 

Specificity (prediction) 1.000 0.750 

Classification error 

(prediction) 
0.125 0.125 

RMSEP 0.328 0.328 

Prediction Bias -0.067 0.067 

R
2 

prediction 0.596 0.596 

Table 7.5: PLS-DA results showing the performance of the model after external 

validation with 16 test set samples 
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Figure 7.5: PLS-DA calculated Y versus measured Y in fitting and prediction after 

external validation with 16 CHO cell line mass spectra test set samples; (a) High 

producer class, and (b) Low producer class 
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7.5.2.4. Scores Plot 

The model demonstrates the ability to separate the two classes (Fig. 7.6). As can be seen 

in Fig. 7.6, a plot of LV1 vs LV2 (a), and LVs 3 (b) indicates that the model 

concentrates most of the discriminatory information in the first LV. The two classes are 

approximately separated along LV1, with the high producer class having negative 

whilst the low producer class has positive scores.  
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Figure 7.6: PLS-DA scores plot for the 44 CHO cell line calibration mass 

spectra data sets;(a) Scores on LV2, and (b) Scores on LV3 
 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

173 
 

7.5.2.5. Loadings Plot 

There is a relationship between the scores and the loadings plot for PLS-DA. The 

loadings plot for LV1 (Fig. 7.7) indicates which m/z ratio ion signals in the MALDI data 

set contain information that is driving the separation of the samples in the scores plot. 

More specifically, it describes the weighting coefficients for each m/z ratio ion signal 

(experimental MWs of proteins) which are associated to variables in the loadings plot. 

  

In Fig. 7.7, it can be seen that variables at approximately 1217, 3056, 3708, 4781, and 

4874 have high loadings with negative contribution. Since high producer CHO cell line 

samples have negative scores in LV1 in the scores plot, it implies that these samples can 

be distinguished from the low producer samples by the presence of m/z ratio signal ions 

associated with variables with negative loadings in the LV1 loadings plot. These signal 

m/z ratio signal ions potentially identify proteins which are differentially expressed in 

high producer cell lines.   
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7.5.3. Protein Database Search for CHO Cell Line Samples 

The PLS-DA loadings plot on LV1 was considered for further analysis.  The variables 

from the loadings plot are associated to m/z ratio signal ions (Table C.1 and C.2, 

Appendix C). Since the m/z ratio signal ions are singly charged protonated protein 

(MH
+
) molecules, the MH

+
 represents the MALDI experimental molecular weights 

(MWs) of the ionised proteins expressed by the cell lines. Thus the m/z ratio ion signals 

(experimental MW of protein ions) were submitted to a protein database search to 

assign protein identities to them. The experimental MWs of protein ions were used as 

search parameters and were matched with sequence derived theoretical MW values in 

the SwissPROT/TrEMBL database (http://expasy.org/proteomics). Tables 7.6 and 7.7 

summarise the results of the database searches. A number of matches resulted in protein 

biomarkers which have been predicted in the CHO genome (Cricetulus griseus). 

Experimental evidence using 2D-PAGE and tandem-mass spectrometry, that some of 

the matched proteins are expressed in CHO cell line culture have been well described in 

the literature (Kaufmann et al., 1999; Lee et al., 2003; Van Dyk et al., 2003; Krawitz et 

al., 2006; Pascoe et al., 2007; Meleady, 2007; Kim et al., 2009; Carlage et al., 2009). 

 

When no protein was found to match an experimental MW, a further search was carried 

out for proteins of related mammalian species such as humans (Homo sapiens) or 

rodents (Mus musculus, mouse; Rattus norvegicus, Rat). For matched CHO proteins 

whose functions are not yet available in the database, the function was inferred from 

related proteins of the above close species and this was mentioned in the ‘remarks’ 

column of Table 7.6 and 7.7. Matches were not found for most experimental MWs 

below 4 kDa. These MWs may be a number of abundant matrix-related ions since most 

of the currently used matrices have MWs less than 4 kDa. They may also act as their 

own matrices, producing a variety of matrix-related ions during laser ionisation (Guo et 

al., 2002).  

 

In Table 7.6 and 7.7, the column ‘protein existence’ includes the value E = ‘ Evidence at 

transcript level level’,  indicating the existence of a protein that has not been proven but 

whose expression data (such as existence of cDNA(s), RT-PCR or Northern blots) 

indicates the existence of a transcript; I = ‘Inferred by homology’, indicates the 

existence of a protein is probable since clear orthologs exist in closely related species; P 

= ‘Predicted’, is used for entries without evidence at protein, transcript, or homology 

http://expasy.org/proteomics
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levels; and U = ‘Uncertain’, indicates the existence of the protein is unsure.  Most of the 

proteins that were identified had a value of ‘P’, implying that they are only predicted 

and no MALDI experimental evidence exist that indicates that such proteins are 

expressed in vivo in CHO cells. 

 

7.5.4. Swiss-Prot/TrEMBL Protein Molecular Weight Distribution for CHO cells, 

MALDI Mass Accuracy and Biomarker Identification 

Biomarker assignment and identification for CHO cells was based on several factors. 

Similar to the E. coli K-12 cells (section 6.6.4), biomarker identification was based on 

m/z ratio values or experimental MW ranges can correspond to variable count ranges in 

the PLS-DA loadings plot. An average experimental MW is assigned to a protein 

biomarker if it falls within this range and matches the theoretical MW of the protein 

biomarker based on the mass accuracy of linear mode MALDI-ToF MS instrument as 

described in section 6.6.4. Tables C.3 to C.4 shows variable count ranges and their 

experimental MW ranges as well as the average experimental MWs matching 

theoretical MWs for the all the protein biomarkers shown in Tables 7.6 and 7.7. 

 

In addition to the mass accuracy, assignments took into consideration the molecular 

mass distribution of 24049 protein sequences (providing theoretical MWs) of CHO cell 

proteins derived from genomic open reading frame as well as nongenomic entries found 

in the SwissPROT/TrEMBL database. The molecular mass distribution of known CHO 

cell proteins (Fig. 7.8) shows a positive skewness i.e.  most proteins tend to cluster 

toward the lower end of the MW scale with increasingly fewer proteins at the upper end 

of the MW scale. Fig. 7.8 shows the molecular mass distribution (in bins of 1 kDa) of 

CHO cell proteins deposited in the SwissPROT/TrEMBL sequence database. The 

positive skewness in in Fig. 7.8 suggests that most of the CHO proteins found in the 

SwissPROT/TrEMBL database are lower MW proteins in the range 2 to 24kDa. 

Therefore, it may be expected that unique combinations of lower MW CHO protein in 

the range 2 to 24 kDa can serve as protein biomarkers. Since basic proteins are more 

amenable to protonation during MALDI analysis assignments also considered the 

basicity of the proteins. 
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Figure 7.8: Molecular weight (MW) distribution (in bins of 1 kDa) of 24049 

CHO cell proteins deposited in the SwissPROT/TrEMBL sequence database 
 

The full explanation of superscript letters assigned to column titles in Table 6.5 are as 

follows:    Tables 7.6 and 7.7:    

 
a
Variable counts were derived from PLS-DA loadings plot on LV1 (along which the 

two classes of cell lines were separated in the cores plot).  

b
The intensity of the variables ( m/z ion signals) 

 
is the magnitude of their loadings in 

the loadings plot. High: intensity ≥ ±0.04 units; medium: intensity ≥ ±0.02 and ≤ ±0.04 

units; low: intensity between 0 and ±0.02 units.  

c
Experimetal MWs were the m/z ratio ion (MH

+
) signals associated to the variable 

counts of the from the PLS-DA loadings plot.  

d
Theoretical or sequence MWs were calculated using the Compute pI/MW tool 

(http://web.expasy.org/compute_pi/) of the SwissProt/TrEMBL Protein database.  
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e
Protein names, existence, PI, accession numbers and remarks were from ExPASy 

Proteomics Server (http://www.uniprot.org/uniprot/) of the SwissProt/TrEMBL Protein 

database. Protein existence with value E = Evidence at transcript level; I = Inferred by 

homology; P = Predicted; and U = Uncertain. Remarks indicate protein functions from 

related mammalian species humans (Homo sapiens) or rodents (Mus musculus, mouse; 

Rattus norvegicus, Rat) for matched CHO proteins whose functions are not yet available 

in the database. 

http://www.uniprot.org/uniprot/
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Table 7.6: SwissProt/TrEMBL Database Proteins Matching Experimental Biomarker Masses 

in MALDI-ToF MS for the High Producer Chinese Hamster Ovaries Cell Line Samples 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

179 
 

 

 

T
a

b
le

 7
.6

 –
 (

C
o

n
ti

n
u

ed
):

  S
w

is
sP

ro
t/

T
rE

M
B

L
 D

at
a

ba
se

 P
ro

te
in

s 
M

a
tc

h
in

g
 E

xp
er

im
en

ta
l 

B
io

m
a

rk
er

 M
as

se
s 

in
 M

A
L

D
I-

T
o

F
 M

S
 f

or
 t

h
e 

H
ig

h
 P

ro
d

u
ce

r 
C

h
in

es
e 

H
am

st
er

 O
va

ri
es

 C
el

l 
L

in
e 

S
am

pl
es

 

V
a

ri
a

b
le

 

co
u

n
t 

of
 

lo
a

d
in

g
s 

p
lo

ta  

In
te

n
si

ty
b
 

E
xp

’t
a

l 

M
W

 

(D
a

)c  

S
eq

u
en

ce
 

M
W

 

(D
a

)d  

P
Ie  

D
a

ta
b

a
se

 

A
cc

es
io

n
 n

u
m

b
er

e  

N
a

m
ee  

P
ro

te
in

 

E
xi

st
en

ce
e  

R
em

a
rk

se  

P
ro

te
in

 B
io

sy
n

th
es

is
 P

ro
te

in
s 

23
71

 
L

ow
 

85
88

.3
5 

85
88

.1
6 

8.
82

 
G

3H
JE

6_
C

R
IG

R
 

40
S

 r
ib

os
om

al
 p

ro
te

in
 S

15
 

I 
 

26
59

 
L

ow
 

91
43

.4
3 

91
43

.4
0 

8.
55

 
G

3H
G

W
7_

C
R

IG
R

 
40

S
 r

ib
os

om
al

 p
ro

te
in

 S
21

 
P

 
 

30
38

 
H

ig
h

 
 9

90
0.

38
 

99
00

.1
4 

7.
09

 
G

3
IM

Y
3_

C
R

IG
R

 
40

S
 r

ib
os

om
al

 p
ro

te
in

 S
2 

P
 

 

31
46

 
M

ed
iu

m
 

10
12

1.
59

  
10

12
2.

12
 

9.
85

 
G

3
IE

D
0_

C
R

IG
R

 
40

S
 r

ib
os

om
al

 p
ro

te
in

 S
15

 
I 

 

36
60

 
H

ig
h

 
11

20
7.

90
 

 

11
20

6.
82

 
4.

31
 

G
3

IL
E

6_
C

R
IG

R
 

60
S

 a
ci

di
c 

ri
bo

so
m

al
 p

ro
te

in
 P

1
 

P
 

F
un

ct
io

n 
in

fe
rr

ed
 f

ro
m

 

R
L

A
1_

H
U

M
A

N
 

36
77

 
L

ow
 

11
24

4.
77

 
11

24
3.

66
 

4.
95

 
G

3G
Z

V
3_

C
R

IG
R

 
60

S
 a

ci
di

c 
ri

bo
so

m
al

 p
ro

te
in

 P
2

 
P

 
 

   
48

73
 

 
H

ig
h

 
13

97
8.

88
 

13
97

8.
00

 
/ 

G
3G

W
A

7_
C

R
IG

R
 

40
S

 r
ib

os
om

al
 p

ro
te

in
 S

6 
P

 
 

65
80

 
L

ow
 

18
42

9.
73

 
18

43
0.

73
 

10
.3

1 
G

3
I0

04
_C

R
IG

R
 

40
S

 r
ib

os
om

al
 p

ro
te

in
 S

11
 

I 
 

64
2 

L
ow

 
56

21
.3

3 
56

20
.5

9 
9.

92
 

G
3

IC
B

6_
C

R
IG

R
 

E
lo

ng
at

io
n 

fa
ct

or
 1

-a
lp

ha
 1

 
P

 
 

65
8 

L
ow

 
56

45
.9

1 
56

46
.6

6 
9.

12
 

G
3H

51
3_

C
R

IG
R

 
R

ib
os

om
al

 p
ro

te
in

 S
27

 
I 

 

16
68

 
L

ow
 

73
06

.4
1 

73
06

.4
2 

10
.1

1 
G

3H
X

33
_C

R
IG

R
 

60
S

 r
ib

os
om

al
 p

ro
te

in
 L

7 
P

 
 

19
79

 
L

ow
 

78
60

.7
5 

78
59

.9
9 

10
.5

4 
G

3G
X

65
_C

R
IG

R
 

60
S

 r
ib

os
om

al
 p

ro
te

in
 L

37
 

P
 

F
un

ct
io

n 
in

fe
rr

ed
 f

ro
m

 

R
L

37
_M

O
U

S
E

  

27
69

 
L

ow
 

93
60

.0
2 

93
59

.3
3 

 

9.
90

 
D

P
M

2_
C

R
IG

R
 

D
ol

ic
ho

l 
ph

os
ph

at
e-

m
an

no
se

 b
io

sy
nt

he
si

s 

re
gu

la
to

ry
 p

ro
te

in
 

I 
M

et
h 

lo
ss

 

28
68

 
L

ow
 

95
57

.1
3 

  

95
57

.8
8 

 

8.
89

 
G

3
IL

V
7_

C
R

IG
R

 

 

E
uk

ar
yo

ti
c 

tr
an

sl
at

io
n 

in
it

ia
ti

on
 f

ac
to

r 
3 

su
bu

ni
t 

E
 

P
 

F
un

ct
io

n 
in

fe
rr

ed
 f

ro
m

 

E
IF

3E
_H

U
M

A
N

 

36
30

 
M

ed
iu

m
 

11
14

2.
98

 
11

14
3.

87
 

8.
91

 
G

3
IN

64
_C

R
IG

R
 

60
S

 r
ib

os
om

al
 p

ro
te

in
 L

11
 

I 
 

38
65

 
M

ed
iu

m
 

11
65

6.
60

 
11

65
7.

32
 

4.
53

 
G

3
IP

A
3_

C
R

IG
R

 
T

ry
pt

op
ha

ny
l-

tR
N

A
 s

yn
th

et
as

e,
 c

yt
op

la
sm

ic
 

I 
 

38
76

 
M

ed
iu

m
 

11
68

0.
92

 
11

68
0.

94
 

4.
38

 
G

3
I3

H
2_

C
R

IG
R

 
60

S
 a

ci
di

c 
ri

bo
so

m
al

 p
ro

te
in

 P
2

 
P

 
 

39
61

 
M

ed
iu

m
 

11
86

9.
75

 
11

86
8.

82
 

8.
95

 
G

3
IF

50
_C

R
IG

R
 

P
ol

ym
er

as
e 

de
lt

a-
in

te
ra

ct
in

g 
pr

ot
ei

n 
3 

P
 

 

46
28

 
L

ow
 

13
40

4.
01

 
13

40
3.

20
 

8.
47

 
G

3
II

H
3_

C
R

IG
R

 
E

uk
ar

yo
ti

c 
tr

an
sl

at
io

n 
in

it
ia

ti
on

 f
ac

to
r 

4E
 

I 
 

48
88

 
H

ig
h

 
14

02
7.

33
 

14
02

7.
07

 
6.

29
 

G
3

I8
A

7_
C

R
IG

R
 

P
ro

te
in

 S
10

0
-A

9
 

P
 

 

51
51

 
L

ow
 

14
69

7.
06

 
14

69
6.

99
 

9.
59

 
G

3H
V

18
_C

R
IG

R
 

60
S

 r
ib

os
om

al
 p

ro
te

in
 L

12
 

I 
 

51
69

 
L

ow
 

14
71

6.
92

 
14

71
6.

18
 

9.
88

 
G

3
I0

78
_C

R
IG

R
 

60
S

 r
ib

os
om

al
 p

ro
te

in
 L

30
 

P
 

 

56
54

 
L

ow
 

15
94

6.
06

 
15

94
5.

34
 

9.
05

 
C

1D
_C

R
IG

R
 

N
uc

le
ar

 n
uc

le
ic

 a
ci

d
-b

in
di

ng
 p

ro
te

in
 C

1D
 

E
 

 

59
78

 
L

ow
 

16
79

4.
64

 
16

79
3.

20
 

5.
38

 
G

3
I9

48
_C

R
IG

R
 

E
uk

ar
yo

ti
c 

tr
an

sl
at

io
n 

in
it

ia
ti

on
 f

ac
to

r 
5A

-2
 

P
 

 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

180 
 

 

 

T
a

b
le

 7
.6

 –
 (

C
o

n
ti

n
u

e
d
):

  
S

w
is

sP
ro

t/
T

rE
M

B
L

 D
a
ta

b
a

se
 P

ro
te

in
s 

M
a

tc
h

in
g

 E
x
p

e
ri

m
e
n

ta
l 

B
io

m
a

rk
e
r 

M
a
ss

e
s 

in
 M

A
L

D
I-

T
o

F
 M

S
 f

o
r 

th
e
 H

ig
h

 P
ro

d
u

c
e
r 

C
h

in
es

e
 

H
a
m

st
e
r 

O
v
a
ri

e
s 

C
el

l 
L

in
e 

S
a
m

p
le

s 

V
a

r
ia

b
le

 

c
o

u
n

t 
o
f 

lo
a

d
in

g
s 

p
lo

ta
 

In
te

n
si

ty
b
 

E
x
p

’t
a

l 

M
W

 

(D
a

)c  

S
e
q

u
e
n

c
e
 

M
W

 

(D
a

)d
 

P
Ie  

D
a

ta
b

a
se

 

A
c
c
e
si

o
n

 n
u

m
b

e
r

e  

N
a

m
e

e  
P

r
o
te

in
 

E
x
is

te
n

c
e

e  

R
e
m

a
r
k

se  

C
y

to
sk

el
et

o
n

/S
tr

u
ct

u
r
a
l 

R
e
la

te
d

 P
r
o
te

in
s 

2
6

6
6
 

M
ed

iu
m

 
9

1
5

7
.1

7
 

9
1

5
6

.6
0
 

1
0

.0
8
 

G
3

H
6

8
7

_
C

R
IG

R
 

C
al

p
o

n
in

-1
 

P
 

 

2
8

8
0
 

M
ed

iu
m

 
9

5
8

1
.1

6
 

9
5

8
0

.8
4
 

5
.4

0
 

G
3

IC
4

9
_

C
R

IG
R

 
A

n
n

ex
in

 A
7
 

I 
 

3
6

2
2
 

L
o

w
 

1
1

1
2

5
.6

9
 

1
1

1
2

4
.7

9
 

9
.5

2
 

G
3

I1
2

6
_

C
R

IG
R

 
C

at
en

in
 a

lp
h

a-
2

 
P

 
 

5
6

5
9
 

L
o

w
 

1
5

9
5

8
.9

9
 

1
5

9
5

7
.9

4
 

5
.2

3
 

G
3

G
R

X
4

_
C

R
IG

R
 

C
o

ac
to

si
n

-l
ik

e 
p

ro
te

in
 

P
 

 

6
5

8
4
 

L
o

w
 

1
8

4
4

0
.8

4
 

1
8

4
3

9
.6

9
 

4
.7

1
 

G
3

H
5

1
1

_
C

R
IG

R
 

T
ro

p
o

m
y
o

si
n

 a
lp

h
a
-1

 c
h

ai
n
 

I 
  

D
N

A
 a

n
d

 R
N

A
 M

e
ta

b
o

li
sm

 P
r
o
te

in
s 

8
1

4
 

L
o

w
 

5
8

8
8

.4
3
 

5
8

8
8

.1
0
 

 

9
.6

0
 

G
3

H
C

T
7

_
C

R
IG

R
 

 

D
N

A
 p

o
ly

m
er

as
e 

su
b

u
n

it
 g

am
m

a
-2

, 

m
it

o
ch

o
n

d
ri

al
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

D
P

O
G

2
_

H
U

M
A

N
 

1
2

2
9
 

H
ig

h
 

6
5

5
8

.4
0
 

6
5

5
7

.4
3
 

 

4
.7

1
 

G
3

G
S

7
3

_
C

R
IG

R
 

H
et

er
o

g
en

eo
u

sn
u

cl
ea

r 
ri

b
o
n

u
cl

eo
p

ro
te

in
 A

3
-

li
k
e 

1
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

R
O

A
3

_
H

U
M

A
N

 

1
6

4
7
 

L
o

w
 

7
2

6
9

.7
0
 

7
2

6
8

.9
7
 

9
.6

9
 

G
3

H
F

W
8

_
C

R
IG

R
 

N
o

n
-h

is
to

n
e 

ch
ro

m
o

so
m

al
 p

ro
te

in
 H

M
G

-1
4

 
P

 
 

1
6

5
4
 

L
o

w
 

7
2

8
1

.9
3
 

7
2

8
2

.4
1
 

1
0

.6
2
 

G
3

IP
Z

7
_

C
R

IG
R

 
A

T
P

-d
ep

en
d

en
t 

R
N

A
 h

el
ic

as
e 

D
H

X
8
 

P
 

 

1
8

6
8
 

L
o

w
 

7
6

6
0

.5
7
 

7
6

5
9

.9
6
 

 

8
.7

1
 

G
3

H
S

M
6

_
C

R
IG

R
 

G
u

an
in

e 
n

u
cl

eo
ti

d
e
-b

in
d

in
g
 p

ro
te

in
 s

u
b

u
n

it
 

g
a
m

m
a
 

I 
 

1
9

7
3
 

 

L
o

w
 

7
8

4
9

.8
6
 

7
8

5
0

.1
4
 

 

7
.7

8
 

G
3

IA
E

2
_

C
R

IG
R

 
G

u
an

in
e 

n
u

cl
eo

ti
d
e
-b

in
d

in
g
 p

ro
te

in
 s

u
b

u
n

it
 

g
a
m

m
a
 

I 
 

2
7

8
4
 

L
o

w
 

9
3

8
7

.7
7
 

9
3

8
8

.7
6
 

7
.5

6
 

G
3

IJ
P

9
_

C
R

IG
R

 
T

ra
n

sc
ri

p
ti

o
n

 e
lo

n
g
at

io
n

 f
ac

to
r 

1
-l

ik
e 

P
 

 

2
8

6
3
 

L
o

w
 

9
5

4
7

.1
2
 

9
5

4
7

.5
6
 

6
.8

2
 

G
3

H
7

G
8

_
C

R
IG

R
 

S
p

li
ci

n
g
 f

ac
to

r 
3

B
 s

u
b

u
n

it
 5

 
P

 
 

3
0

6
6
 

H
ig

h
 

9
9

5
7

.5
0
 

9
9

5
7

.4
0
 

1
1

.9
9
 

G
3

G
U

E
8

_
C

R
IG

R
 

P
u

ta
ti

v
e 

u
n

ch
ar

ac
te

ri
ze

d
 p

ro
te

in
 

P
 

 

3
1

9
0
 

L
o

w
 

1
0

2
1

2
.4

2
 

1
0

2
1

2
.9

3
 

8
.9

6
 

G
3

H
V

3
2

_
C

R
IG

R
 

H
is

to
n

e 
H

3
.3

 t
y
p

e 
1
 

I 
D

N
A

 b
in

d
in

g
 

3
4

8
4
 

L
o

w
 

1
0

8
2

9
.7

0
 

1
0

8
2

9
.7

3
 

1
1

.5
1
 

G
3

H
D

U
7

_
C

R
IG

R
 

H
is

to
n

e 
H

4
 

I 
 

3
6

2
1
 

L
o

w
 

1
1

1
2

3
.5

4
 

1
1

1
2

3
.0

0
 

1
0

.2
8
 

G
3

IL
X

7
_

C
R

IG
R

 
H

is
to

n
e 

H
2

A
 

I 
 

3
6

2
4
 

L
o

w
 

1
1

1
2

8
.3

5
 

1
1

1
2

8
.0

2
 

 

6
.2

6
 

G
3

G
S

8
3

_
C

R
IG

R
 

 

T
ra

n
sc

ri
p

ti
o

n
 e

lo
n

g
at

io
n

 f
ac

to
r 

B
 

p
o

ly
p

ep
ti

d
e 

2
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

E
L

O
B

_
H

U
M

A
N

 

3
7

2
2
 

M
ed

iu
m

 
1

1
3

4
2

.6
8
 

1
1

3
4

2
.1

6
 

1
0

.2
9
 

G
3

G
Y

E
5

_
C

R
IG

R
 

H
is

to
n

e 
H

2
A

 
I 

 

3
7

2
3
 

M
ed

iu
m

 
1

1
3

4
4

.8
6
 

1
1

3
4

5
.2

9
 

1
1

.2
0
 

G
3

H
D

T
9

_
C

R
IG

R
 

H
is

to
n

e 
H

4
 

I 
 

3
8

0
3
 

M
ed

iu
m

 
1

1
5

1
9

.9
7
 

1
1

5
1

9
.1

7
 

7
.6

9
 

X
P

A
_

C
R

IG
R

 
D

N
A

 r
ep

ai
r 

p
ro

te
in

 c
o

m
p

le
m

en
ti

n
g
 X

P
-A

 
I 

 

3
8

0
3
 

M
ed

iu
m

 
1

1
5

1
9

.9
7
 

 

1
1

5
1

9
.1

7
 

 

7
.6

9
 

X
P

A
_

C
R

IG
R

 
D

N
A

 r
ep

ai
r 

p
ro

te
in

 c
o

m
p

le
m

en
ti

n
g
 X

P
-A

 

ce
ll

s 
h

o
m

o
lo

g
 

I 
 

4
7

8
3
 

H
ig

h
 

1
3

7
7

3
.9

0
 

1
3

7
7

4
.9

6
 

1
0

.4
8
 

G
3

H
3

H
8

_
C

R
IG

R
 

H
is

to
n

e 
H

2
A

 
I 

 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

181 
 

 

 T
a

b
le

 7
.6

 –
 (

C
o

n
ti

n
u

ed
):

  
S

w
is

sP
ro

t/
T

rE
M

B
L

 D
a
ta

b
a

se
 P

ro
te

in
s 

M
a

tc
h

in
g

 E
x
p

er
im

en
ta

l 
B

io
m

a
rk

er
 M

a
ss

es
 i

n
 M

A
L

D
I-

T
o

F
 M

S
 f

o
r 

th
e 

H
ig

h
 P

ro
d

u
ce

r 
C

h
in

es
e 

H
a
m

st
er

 O
va

ri
es

 C
el

l 
L

in
e 

S
a
m

p
le

s 

V
a

ri
a

b
le

 

co
u

n
t 

o
f 

lo
a

d
in

g
s 

p
lo

ta
 

In
te

n
si

ty
b
 

E
x
p

’t
a

l 

M
W

 

(D
a

)c  

S
eq

u
en

ce
 

M
W

 

(D
a

)d
 

P
Ie  

D
a

ta
b

a
se

 

A
cc

es
io

n
 n

u
m

b
er

e  

N
a

m
ee  

P
ro

te
in

 

E
x
is

te
n

ce
e  

R
em

a
rk

se  

G
en

er
a

l 
M

et
a

b
o
li

sm
/G

ly
co

ly
si

s 
P

ro
te

in
s 

1
0

6
4
 

L
o

w
 

6
2

8
7

.7
0
 

6
2

8
7

.0
7
 

4
.7

5
 

G
3

I1
B

8
_

C
R

IG
R

 
P

h
o

sp
h

o
g
ly

ce
ra

te
 k

in
as

e 
I 

 

1
3

5
2
 

L
o

w
 

6
7

6
3

.9
1
 

6
7

6
3

.9
5
 

 

9
.8

0
 

G
3

H
7

6
7

_
C

R
IG

R
 

N
A

D
H

 d
eh

y
d

ro
g
en

as
e 

[u
b
iq

u
in

o
n
e]

 1
 

al
p

h
a 

su
b
co

m
p

le
x

 s
u

b
u
n

it
 1

 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

  

N
D

U
A

2
_

H
U

M
A

N
 

1
4

9
0
 

L
o

w
 

6
9

9
8

.2
5
 

6
9

9
8

.2
1
 

 

9
.6

5
 

G
3

I1
H

8
_

C
R

IG
R

 
N

A
D

H
 d

eh
y
d

ro
g
en

as
e 

[u
b
iq

u
in

o
n
e]

 1
 

b
et

a 
su

b
co

m
p

le
x

 s
u

b
u

n
it

 1
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

  

N
D

U
B

A
_

H
U

M
A

N
  

1
4

9
6
 

L
o

w
 

7
0

0
8

.5
3
 

7
0

0
9

.1
5
 

4
.8

8
 

G
3

IM
T

0
_

C
R

IG
R

 
T

h
io

re
d

o
x
in

, 
m

it
o

ch
o

n
d

ri
al

 
P

 
 

1
8

6
7
 

L
o

w
 

7
6

5
8

.7
8
 

7
6

5
8

.8
7
 

 

7
.7

2
 

G
3

H
C

J4
_

C
R

IG
R

 
N

A
D

H
 d

eh
y
d

ro
g
en

as
e 

[u
b
iq

u
in

o
n
e]

 1
 

al
p

h
a 

su
b
co

m
p

le
x

 s
u

b
u
n

it
 1

 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

  

N
D

U
A

2
_

H
U

M
A

N
 

2
6

6
9
 

L
o

w
 

9
1

6
3

.0
1
 

9
1

6
3

.2
5
 

6
.6

9
 

G
3

IJ
W

5
_

C
R

IG
R

 
N

u
cl

eo
p
o

ri
n

 S
E

H
1
 

P
 

 

2
9

1
1
 

L
o

w
 

9
6

4
3

.3
8
 

 

9
6

4
4

.2
3
 

 

9
.5

0
 

G
3

H
0

I8
_

C
R

IG
R

 

 

A
lp

h
a-

en
o

la
se

 
P

 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
 

E
N

O
A

_
M

O
U

S
E

 

3
1

6
0
 

M
ed

iu
m

 
1

0
1

5
0

.4
5
 

1
0

1
5

0
.9

6
 

 

8
.8

6
 

G
3

H
Y

3
6

_
C

R
IG

R
 

G
ly

ce
ra

ld
eh

y
d

e-
3

-p
h

o
sp

h
at

e 

d
eh

y
d

ro
g
en

as
e 

E
 

 

3
6

2
3
 

L
o

w
 

1
1

1
2

7
.8

5
 

1
1

1
2

8
.9

3
 

 

6
.0

2
 

G
3

H
H

J9
_

C
R

IG
R

 
A

T
P

 s
y
n

th
as

e 
li

p
id

-b
in

d
in

g
 p

ro
te

in
, 

m
it

o
ch

o
n

d
ri

al
 

I 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
 

A
T

5
G

3
_

H
U

M
A

N
 

3
7

2
5
 

M
ed

iu
m

 
1

1
3

4
9

.2
2
 

1
1

3
4

8
.8

5
 

 

5
.5

5
 

G
3

H
N

2
8

_
C

R
IG

R
 

G
ly

ce
ra

ld
eh

y
d

e-
3

-p
h

o
sp

h
at

e 

d
eh

y
d

ro
g
en

as
e 

P
 

 

3
8

0
9
 

M
ed

iu
m

 
1

1
5

3
3

.1
5
 

1
1

5
3

3
.1

7
 

8
.9

8
 

G
3

G
U

F
3

_
C

R
IG

R
 

G
M

P
 r

ed
u
ct

as
e 

1
 

P
 

 

3
9

4
9
 

L
o

w
 

1
1

8
4

5
.0

0
 

1
1

8
4

2
.5

1
 

8
.7

9
 

G
3

IF
4

5
_

C
R

IG
R

 
C

ar
b

o
n

y
l 

re
d

u
ct

as
e 

[N
A

D
P

H
] 

1
 

P
 

 

4
0

7
9
 

M
ed

iu
m

 
1

2
1

3
4

.3
9
 

1
2

1
3

4
.9

1
 

4
.7

3
 

G
3

IM
8

1
_

C
R

IG
R

 
C

h
o

li
n
e/

et
h
an

o
la

m
in

e 
k
in

as
e 

P
 

 

5
0

5
1
 

L
o

w
 

1
4

4
2

5
.3

1
 

1
4

4
2

5
.4

3
 

6
.1

7
 

Q
6

P
W

1
6

_
C

R
IG

R
 

A
T

P
as

e 
3
 

E
 

 

5
1

4
0
 

L
o

w
 

1
4

6
4

4
.9

8
 

1
4

6
4

5
.5

5
 

 

5
.5

9
 

G
3

H
M

X
1

_
C

R
IG

R
 

 

G
ly

ce
ra

ld
eh

y
d

e-
3

-p
h

o
sp

h
at

e 

d
eh

y
d

ro
g
en

as
e 

I 
 

5
1

6
3
 

L
o

w
 

1
4

7
0

2
.0

2
 

1
4

7
0

3
.2

3
 

 

1
0

.0
4
 

G
3

H
1

V
3

_
C

R
IG

R
 

A
T

P
 s

y
n

th
as

e 
li

p
id

-b
in

d
in

g
 p

ro
te

in
, 

m
it

o
ch

o
n

d
ri

al
 

I 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
  

A
T

5
G

2
_

H
U

M
A

N
 

5
1

7
5
 

L
o

w
 

1
4

7
3

1
.8

2
 

1
4

7
3

0
.9

6
 

5
.8

9
 

G
3

IK
J4

_
C

R
IG

R
 

G
T

P
-b

in
d

in
g
 n

u
cl

ea
r 

p
ro

te
in

 R
an

 
P

 
 

5
1

7
5
 

L
o

w
 

1
4

7
3

1
.8

2
 

1
4

7
3

0
.9

6
 

 

5
.8

9
 

G
3

IK
J4

_
C

R
IG

R
 

G
T

P
-b

in
d

in
g
 n

u
cl

ea
r 

p
ro

te
in

 R
an

 
P

 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
 

R
A

N
_

M
O

U
S

E
  

5
9

7
7
 

L
o

w
 

1
6

7
9

1
.9

8
 

1
6

7
9

2
.2

3
 

5
.1

1
 

G
3

IJ
Y

1
_

C
R

IG
R

 
A

ld
o

se
 r

ed
u
ct

as
e 

I 
 

6
6

0
5
 

L
o

w
 

1
8

5
9

9
.2

7
 

1
8

4
9

8
.0

6
 

 

1
0

.0
4
 

C
5

6
0

_
C

R
IG

R
 

S
u

cc
in

at
e 

d
eh

y
d

ro
g
en

as
e 

cy
to

ch
ro

m
e 

b
5

6
0

 s
u

b
u

n
it

, 
m

it
o

ch
o
n

d
ri

al
 

E
 

 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

182 
 

 

 T
a

b
le

 7
.6

 –
 (

C
o

n
ti

n
u

ed
):

  
S

w
is

sP
ro

t/
T

rE
M

B
L

 D
a
ta

b
a

se
 P

ro
te

in
s 

M
a

tc
h

in
g

 E
x
p

er
im

en
ta

l 
B

io
m

a
rk

er
 M

a
ss

es
 i

n
 M

A
L

D
I-

T
o

F
 M

S
 f

o
r 

th
e 

H
ig

h
 P

ro
d

u
ce

r 
C

h
in

es
e
 

H
a
m

st
er

 O
va

ri
es

 C
el

l 
L

in
e 

S
a
m

p
le

s 

V
a

ri
a

b
le

 

co
u

n
t 

o
f 

lo
a

d
in

g
s 

p
lo

ta
 

In
te

n
si

ty
b
 

E
x
p

’t
a

l 

M
W

 

(D
a

)c  

S
eq

u
en

ce
 

M
W

 

(D
a

)d
 

P
Ie  

D
a

ta
b

a
se

 

A
cc

es
io

n
 n

u
m

b
er

e  

N
a

m
e

e  
P

ro
te

in
 

E
x
is

te
n

ce
e  

R
em

a
rk

se  

C
el

l 
G

ro
w

th
/D

ea
th

 P
ro

te
in

s 

2
9

1
5
 

L
o

w
 

9
6

5
1

.4
2
 

 

9
6

5
2

.0
9
 

5
.5

0
 

G
3

H
V

F
3

_
C

R
IG

R
 

P
ro

h
ib

it
in

 
I 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

P
H

B
_

H
U

M
A

N
  

3
2

0
6
 

L
o

w
 

1
0

2
4

5
.5

5
 

1
0

2
4

4
.8

9
 

 

8
.1

1
 

G
3

I3
0

8
_

C
R

IG
R

 
2

6
S

 p
ro

te
as

o
m

e 
n

o
n

-A
T

P
as

e 
re

g
u

la
to

ry
 

su
b

u
n
it

 2
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

P
S

D
1

0
_

M
O

U
S

E
 

3
2

7
7
 

L
o

w
 

1
0

3
9

3
.2

0
 

1
0

3
9

2
.9

5
 

9
.3

3
 

G
3

IK
C

4
_

C
R

IG
R

 
V

o
lt

ag
e-

d
ep

en
d

en
t 

an
io

n
-s

el
ec

ti
v
e 

ch
an

n
el

 p
ro

te
in

 1
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

V
D

A
C

1
_

M
O

U
S

E
  

3
6

7
5
 

L
o

w
 

 

1
1

2
4

0
.4

3
 

1
1

2
4

0
.9

2
 

 

6
.5

6
 

G
3

H
U

U
6

_
C

R
IG

R
 

P
ro

te
in

 S
1
0

0
-A

1
1

  

 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

S
1

0
A

6
_

M
O

U
S

E
 

5
1

3
7
 

L
o

w
 

1
4

6
3

7
.5

5
 

1
4

6
3

6
.7

2
 

 

6
.1

8
 

G
3

H
U

D
3

_
C

R
IG

R
 

 

P
ro

te
as

o
m

e 
ac

ti
v
at

o
r 

co
m

p
le

x
 s

u
b

u
n

it
 1

 
P

 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
 

P
S

M
E

1
_

H
U

M
A

N
  

5
1

5
1
 

L
o

w
 

1
4

6
7

2
.2

5
 

1
4

6
7

1
.6

1
 

5
.4

9
 

L
E

G
1

_
C

R
IG

R
 

G
al

ec
ti

n
-1

 
E

 
M

et
h
 l

o
ss

 

5
9

8
2
 

L
o

w
 

1
6

8
0

5
.2

5
 

1
6

8
0

4
.8

0
 

 

8
.2

6
 

G
3

G
U

G
8

_
C

R
IG

R
 

E
3

 u
b

iq
u
it

in
-p

ro
te

in
 l

ig
as

e 
R

N
F

1
4

4
B

 
P

 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
  

T
P

M
3

_
H

U
M

A
N

  

5
9

9
6
 

L
o

w
 

1
6

8
4

2
.4

3
 

1
6

8
4

2
.0

7
 

 

5
.6

9
 

G
3

IL
I7

_
C

R
IG

R
 

2
6

S
 p

ro
te

as
o

m
e 

n
o

n
-A

T
P

as
e 

re
g
u

la
to

ry
 

su
b

u
n
it

 3
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

P
S

M
G

4
_

H
U

M
A

N
 

6
6

0
4
 

L
o

w
 

1
8

4
9

6
.4

9
 

1
8

4
9

7
.3

3
 

4
.6

2
 

G
3

G
V

S
0

_
C

R
IG

R
 

N
u

cl
eo

so
m

e 
as

se
m

b
ly

 p
ro

te
in

 1
-l

ik
e 

1
 

I 
 

7
9

1
2
 

L
o

w
 

2
2

3
1

7
.4

6
 

2
2

3
1

8
.7

9
 

 

8
.3

6
 

 

G
3

H
V

P
2

_
C

R
IG

R
 

S
ta

th
m

in
 

I 
F

u
n

ct
io

n
 i

n
fe

rr
ed

 f
ro

m
 

S
T

M
N

1
_

H
U

M
A

N
 

O
th

er
 p

ro
te

in
s 

4
2

9
2
 

L
o

w
 

1
2

6
1

9
.4

8
 

1
2

6
1

9
.5

4
 

 

8
.4

8
 

G
3

H
V

I1
_

C
R

IG
R

 
U

b
iq

u
it

in
-c

o
n

ju
g
at

in
g
 e

n
zy

m
e 

E
2

 D
2

 
I 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

U
B

2
D

2
_

M
O

U
S

E
 

5
4

3
3
 

L
o

w
 

1
5

3
7

9
.8

6
 

1
5

3
7

9
.6

8
 

4
.9

4
 

G
3

H
J4

8
_

C
R

IG
R

 
R

ap
 g

u
an

in
e 

n
u

cl
eo

ti
d

e 
ex

ch
an

g
e 

fa
ct

o
r 

5
 

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

 

R
P

G
F

5
_

M
O

U
S

E
 

5
6

4
8
 

L
o

w
 

1
5

9
3

0
.5

5
 

1
5

9
3

1
.2

7
 

 

4
.6

2
 

G
3

I4
8

2
_

C
R

IG
R

 
A

D
P

-r
ib

o
sy

la
ti

o
n

 f
ac

to
r-

re
la

te
d

 p
ro

te
in

1
  

P
 

F
u

n
ct

io
n

 i
n

fe
rr

ed
 f

ro
m

  

A
R

F
R

P
_

M
O

U
S

E
 

5
7

3
0
 

L
o

w
 

1
6

1
4

3
.1

3
 

1
6

1
4

2
.8

5
 

6
.4

5
 

Q
8

V
H

L
2

_
C

R
IG

R
 

T
ra

n
si

en
t 

re
ce

p
to

r 
p

o
te

n
ti

al
-l

ik
e 

p
ro

te
in

 
E

 
 

7
8

7
0
 

L
o

w
 

2
2

1
8

9
.2

0
 

2
2

1
8

9
.4

4
 

 

5
.0

7
 

T
M

E
D

2
_

C
R

IG
R

 
T

ra
n

sm
em

b
ra

n
e 

em
p

2
4

 d
o

m
ai

n
-

co
n

ta
in

in
g
 p

ro
te

in
 2

 

E
 

 



                                                   CASE STUDY II: Biomarker Profiling of Mammalian Cell Lines         
  
 

183 
 

 

Table 7.7: SwissProt/TrEMBL Database Proteins Matching Experimental Biomarker 

Masses in MALDI-ToF MS for the High Producer Chinese Hamster Ovaries Cell Line 
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7.5.5. Differential Protein Expression on High and Low Producer CHO Cell 

Lines  

Differentially expressed proteins were identified and were characterised with respect to 

upregulation as high, medium or low, based on the magnitude of the PLS-DA loadings 

which are related to experimental MWs (m/z ratio ion signals; MH
+
). A total of 123 

differentially expressed proteins were matched for high producer cell lines while 62 

proteins were matched for low producer cell lines as indicated in Tables 7.6 and 7.7. 

The major functionalities of these proteins include protein folding, protein biosynthesis, 

cytoskeletal structure, DNA and RNA metabolism, glycolysis, and cell growth as 

discussed in the following sections. 

 

7.5.6. Protein Folding/Processing Proteins 

Ten proteins which function in protein folding or processing were identified in the high 

producer cell lines whilst just one was identified in the low producers. As can be seen 

from Table 7.6, half of the protein-processing proteins in high producers are peptidyl-

prolyl cis-trans isomerases (PPIases). PPIases accelerate the folding of proteins.  These 

proteins have been shown to catalyse the cis-trans isomerisation of proline imidic 

peptide bonds in oligopeptides. They are thought to be implicated in the folding, 

transport, and assembly of proteins during cellular protein synthesis (Göthel and 

Marahiel, 1999). Other proteins of interest include the humanised IgG recombinant 

antibody light chain, protein processing related proteins such as 60 kDa heat shock 

protein (HSP60), DnaK-type molecular chaperone (DnaK), FK506-binding protein 2 

(FKBP2), Heat shock cognate protein HSP 90-β (HSCP90), and Heat shock protein β-1 

(HSPB1). These protein processing related proteins were identified only in the high 

producer cell lines. The presence of these proteins only in high producers may suggest 

that they are upregulated in high producers. 

 

HSP60 is part of a class of proteins known as molecular chaperones that are required to 

promote folding and assembly of both misfolded and newly synthesised proteins 

preventing their aggregation during translation, and under conditions of cellular stress 

(Itoh et al., 2002). DnaK belongs to the chaperones of the Hsp70 family. The latter 

proteins have also been shown to be involved in a variety of cellular activities such as 

protein transport across membranes and anti-apoptosis (Mosser et al., 2000; Garrido et 

al., 2006). HSPB1 belongs to another class of molecular chaperones known as Small 
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Heat Shock Proteins (sHSP). Apart from their chaperonin function, they also have a 

protective effect on cell viability at elevated temperatures (Jakob et al., 1993). For high 

producer cell lines (Table 7.6) m/z ratio signal ions representing these chaperon proteins 

all had medium intensity based on the magnitude of the loadings (except for FKBP2 

which had a low intensity) indicating perhaps an upregulation for the high producer cell 

lines. An upregulation of chaperons in high producers suggests that the cells are 

overburdened due to high levels of translation thus more foldases are needed to clear up 

the accumulating proteins by accelerating their folding. 

 

IgG recombinant antibody light chain (LC) showed differential expression with a 

medium intensity in high producers (Table 7.6) based on magnitude of the loadings 

whilst the low producers (Table 7.7) showed a low intensity. Moreover, a higher 

number of human IgG heavy and light chain domain proteins were matched in high 

producers than  low producers (19 as opposed to 5) suggesting more production and 

secretion of IgG in high producers than in low producers . This is an important finding, 

as it corroborates proposed theories from previous SDS-PAGE studies which indicated 

a direct link between the amount of secreted antibody on cell surface and cellular 

productivity (Alete et al., 2003; van Dyk et al., 2003; Pascoe et al., 2007). It may be 

that the high producers may be involved in higher antibody production, transport and 

secretion than their low producer counterparts, hence have high intracellular 

concentration, with eventually high amounts being secreted, of the recombinant protein. 

It can thus be concluded that this observation supports the high productivity trends 

associated with high producing cell lines during cell culture. 

  

7.5.7. Protein Biosynthesis Proteins 

Proteins involved with translation or protein biosynthesis were amongst the most 

abundant class of proteins matched. Several proteins, mainly 40S and 60S ribosomal 

subunits, and translation initiation/elongation factors, were identified both in high 

producers (25 proteins) (Table 7.6) and low producers (13 proteins) (Table 7.7). The 

abundance of protein biosynthetic proteins in high producers, notably with proteins such 

as 40S ribosomal protein S15, 40S ribosomal protein S2, 60S acidic ribosomal protein 

P1, 60S ribosomal protein S7, and Protein S100-A9 showing medium intensity in the 

loadings plot implies they were upregulated in high producers. This suggests that high 

producers perhaps have higher rate of protein synthesis than low producers during 
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culture. As expected, the important roles played by these proteins during protein 

synthesis supports the high productivity trend observed in high producers. 

  

7.5.8. Cytoskeleton Proteins 

A number of structural and growth-associated proteins were among the proteins 

matched in the database. Five proteins each were identified in both the high (Table 7.6) 

and low producer (Table 7.7) cell lines. All the cytoskeleton proteins included Annexin 

A7,  β-actin, Calmodulin, Calponin-1, Catenin α-2, Coactosin-like protein, 

Tropomyosin α-1 chain (for high producers only), and Catenin α-3, Calmodulin, Protein 

S100-A11, Protein S100-A6, Protein S100-Z, Tubulin α-chain (for low producers only). 

These proteins function in stabilising the cell cytoskeletal. For example β-Actin is an 

actin filament component at the golgi complex in mammalian cells. It is part of the actin 

cytoskeleton plays an essential role both in endocytic and secretory pathways. 

Tropomyosin is an actin-binding protein that associates with actin filament to regulate 

its stability (Egea et al., 2006).  

 

Proteomic studies with mouse myeloma (NS0) cell lines showed a direct link between 

increased productivity a general increase in cellular cytoskeletal framework (Smales et 

al., 2004; Dinnis et al., 2006). Experimental evidence has suggested a functional 

interaction between cellular cytoskeletal apparatus, where a disruption of actin filaments 

led to a profound negative effect in translation (Stapulionis et al., 1997). The 

identification of cytoskeleton proteins in both high and low producers may suggest a 

normal cellular physiological phenomenon where the global protein synthesis network 

is supported and stabilised by the actin cytoskeletal framework. Hence it is possible that 

the upregulation of cytoskeleton proteins in high producers may be advantageous in 

providing these cell lines with a more stable and efficient protein synthesis framework, 

hence a guarantee of high product yield. 

  

7.5.9. Metabolism Proteins  

A large number of metabolism proteins were also matched, amongst which are a 

number involved in glycolysis while others are associated with nucleic acid metabolism. 

The high producer cell lines matched 20 glycolysis proteins (Table 7.6) whilst the low 

producer cell lines matched just 9 (Table 7.7). Glycolysis proteins were mainly enzymes 
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with the matched ones including aldose reductase, α-enolase, adenosine triphosphate 

(ATP) synthase, glyceraldehyde-3-phospate dehydrogenase (GAPDH), carbonyl 

reductase, NADH dehydrogenase, phosphoglycerate kinase (PK), succinate 

dehydrogenase (SDH), and superoxide dismutase (SOD). The α-enolase protein, 

matched in both high and low producers, is a key enzyme in the glycolytic pathway and 

hence it is ubiquitously present in abundance in the biological world. It is 

multifunctional, serving as a cell surface plasminogen receptor for a variety of 

hematopoetic, epithelial and endothelial cells; heat-shock protein property; cytoskeletal 

and chromatin structure binding properties suggests that α-enolase may play a crucial 

role in transcription and a variety of physiological processes in the cell (Pancholi 2001). 

With its multifunctional role in cellular physiological processes, the presence of α-

enolase in both high and low producers was expected. 

  

Another important metabolic protein matched in high and low producer cell lines is the 

enzyme SOD. In aerobic respiration, many oxidative metabolic processes (e.g cellular 

respiration, xanthine oxidase, NADPH oxidase, lipoxygenase) produce reactive oxygen 

species (ROS) (superoxide radicals, hydrogen peroxide, and singlet oxygen) as by 

products which are deleterious to the cell. The phenomenon of oxidative stress arises as 

a result of hydroxyl radicals (produced from ROS in the presence of metal ions) 

interacting with cellular macromolecules to cause lipid peroxidation, protein 

denaturation, DNA mutation, and eventual cell death. SOD plays a crucial role in the 

defence mechanism against oxidative stress in the cell by reacting with superoxide 

radicals to produce harmless hydrogen peroxide (Bowler et al., 1992). The presence of 

α-enolase in both high and low producers was expected as the cell lines are all involved 

in aerobic respiration. 

 

Important metabolic proteins matched only in high producers include  ATP synthase 

(synthesizes ATP from adenosine diphosphate (ADP) and inorganic phosphate) 

(Nakamoto et al., 2008); carbonyl reductase (cellular protective role by reduction of 

xenobiotic carbonyls and quinones) (Oppermann, 2007); GAPDH (breakdown of 

glucose into energy during glycolysis) (Sirover, 1997); NADH dehydrogenase 

(catalyses electron transfer from NADH to coenzyme Q in the electron transport chain) 

(Weiss et al., 1991); PK (catalyses the high-energy phosphoryl transfer of the acyl 

phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP) (Blake and Rice, 1981); 
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thioredoxin (antioxidant enzyme - major cellular protein disulfide reductases - with 

growth factor properties responsible for maintaining intracellular proteins in their 

reduced state); glutaredoxin (catalyse glutathione-disulfide oxidoreductions overlapping 

the functions of thioredoxins and using electrons from NADPH via glutathione 

reductase) (Arnér and Holmgren, 2000); SDH (couples the Krebs cycle to the electron 

transport chain by the oxidation of succinate and the reduction of ubiquinone 

respectively) (Oyedotun and Lemire, 2004). This trend of differential expression may be 

related to metabolic differences in the cell lines which may in turn influence cellular 

productivity. The exclusive identification of these proteins for high producer cell lines 

suggests that these cell lines were metabolically more active than low producers. 

 

7.5.10.   Nucleic Acid Metabolism Proteins 

Several proteins involved in DNA and RNA metabolism were also matched. 

Approximately half the number of proteins matched for high producers (18 proteins) 

was matched for the low producers (8 proteins). Proteins matched only in high 

producers included transcription elongation factor 1-like, ATP-dependent RNA helicase 

DHX8, DNA polymerase subunit gamma-2, DNA repair protein complementing XP-A, 

DNA repair protein complementing XP-A cells homolog, guanine nucleotide-binding 

protein subunit gamma, non-histone chromosomal protein HMG-14, and splicing factor 

3B subunit 5. In addition, high producers matched more histone proteins than low 

producers. 

  

The matching of more histones in high producers may represent upregulation of these 

proteins. This result differs from previous studies that found a downregulation of 

histones in high-producing CHO cultures (Nissom et al., 2006; Carlage et al., 2009). 

Histones condense DNA into chromatin structures reducing the accessibility of DNA 

for transcription, hence downregulation of histones makes biological sense as 

transcription is enhanced from chromatin templates of high producers. However, though 

results here unexpectedly suggest an upregulation of histones in high producers,  the 

matching of transcription, splicing factors and enzymes (DNA polymerase subunit 

gamma-2, splicing factor 3B subunit 5, and transcription elongation factor 1-like) 

exclusively in high producers was comforting and makes biological sense as this 

suggests more active transcription and more efficient mRNA processing in high 

producers. 
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7.5.11. Cell Cycle Proteins 

Several proteins that are involved in cell cycle regulation were differentially expressed 

in this study. Fourteen cell cycle proteins were matched for high producers (Table 7.6) 

whilst just 9 were matched for low producers (Table 7.7). Important cell cycle proteins 

that were matched only in high producers include Galectin-1, Protein S100-A11 

(Calgizzarin), Stathmin, Bcl-2-like protein 10, E3 ubiquitin-protein ligase RNF144B, 

and Nucleosome assembly protein 1-like 1.  

 

Calgizzarin is a member of a family of calcium-modulated proteins that is involved in a 

variety of cellular processes such as proliferation and differentiation. Studies have 

implicated this protein as a cellular growth inhibitor on the basis of its down-regulation 

in immortalized compared to fibroblast cells (Donato, 2001). Another protein of interest 

is Galectin-1. Galectins are a group of sugar-binding proteins specific for their 

carbohydrate moieties. They modulate a wide range of cellular activities such as tumor 

progression, cell differentiation, cell growth, and apoptosis (Yang and Liu, 2003). 

Galectin-1 has specifically been shown to have growth modulation properties - having 

both negative and positive effects on cell proliferation. 

  

The identification of Galectin-1 and Calgizzarin only in high producers may suggest an 

upregulation of these proteins in high producers, hence a negative growth modulation. 

These results agree well with previous shortgun proteomic and quantitative proteomic 

profiling of high-producing CHO cell lines (Nissom et al., 2006; Carlage et al., 2009). 

This is not surprising with respect to the growth kinetics of the high producers 

compared to the low producers as low producers will tend to grow faster using up much 

needed energy needed for translation. From a productivity perspective, it is 

hypothesised that the presence of growth inhibitory proteins such as Calgizzarin and 

Galectin-1 in high producer cell lines will enhance product yield as the high producers 

will grow slower and commit all their energy into protein production. 

 

7.6. Summary 

In conclusion, MALDI-ToF MS was used for intact cell profiling of IgG-producing 

CHO cell lines during biopharmaceutical bioprocessing. The spectral data generated 

were preprocessed to reduce experimental variabilities that might otherwise have 
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masked biological trends in the data. PLS-DA was used to model the spectra data and 

distinguish between cell lines with respect to productivity (high/low producers; Hs/Ls). 

  

The theory was that variability exists within cell lines, based on their productivity (titre 

of IgG produced) and that PLS-DA can be used to help understand this behaviour. 

Specific m/z ratio regions were identified (with large absolute loadings) and their ability 

to act as discriminatory molecules between Hs and Ls were investigated, with the aim of 

identifying differentially expressed protein biomarkers associated with cell line 

productivity after a protein database searches.  

 

A total of 185 (123 Hs and 62 Ls) differentially expressed proteins were matched and 

identified after SwissProt/TrEMBL protein database search. The identified proteins 

revealed that more proteins involved in biological processes such as protein 

biosynthesis, protein folding, glycolysis and cytoskeleton architecture were upregulated 

in Hs. These findings are consistent with finding in the literature. A subset of these 

protein biomarkers such as molecular chaperons (heat shock protein families), α-

enolase, and superoxide dismutase, and translation initiation/elongation factors have 

already been identified from mammalian cell lines in a series of publications; and found 

to be correlated with specific antibody productivity. These results provide important 

insights into the overall cellular protein biology, and the gene of these protein 

biomarkers may represent valuable genetic engineering targets aimed at improving cell 

line productivity. It is clear that there is a relationship between the upregulation of some 

proteins in high producers and increases in protein productivity. The genes of such 

proteins can be targeted and genetically engineered to produce enhanced cell lines.  

  

This study demonstrates that PLS-DA if combined with linear mode MALDI-ToF MS 

can be a valuable tool for biomarker discovery in the biopharmaceutical bioprocessing 

industry. More specifically to CHO cell lines in culture, this study provides a foundation 

for rapid biomarker profiling of CHO cell lines with the completion of the sequencing 

of the CHO genome. Although the aforementioned points clearly demonstrate that this 

approach has a good potential in the area of mammalian cell culture during 

bioprocessing, further confirmatory studies are needed before the full potential of this 

approach can be realised. This is discussed in the future work section (section 8.2). 
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8. Conclusions and Future Work 

The findings of this thesis are summarised in this chapter. A summary of the chapters is 

presented and additional approaches beyond the scope of this work, that could provide 

avenues of investigation for future work, are suggested. The key contributions of this 

thesis are as follows: 

 

 This thesis has investigated the potential to utilise the approach of ‘intact-cell’ 

MALDI-ToF MS (ICM-MS) combined with PLS-DA to distinguish between 

IgG monoclonal antibody-producing CHO mammalian cell lines based on their 

productivities and identify protein biomarkers through protein database searches 

that are differentially expressed in these cell lines. Although a number of studies 

have been carried out recently to demonstrate how biomarker profiling by ICM-

MS combined with PLS and PLS-DA could be exploited to screen cultured 

mammalian cell lines in bioprocessing, no attempt was made to assign the mass 

spectra ion signals to potential protein biomarkers (Feng et al., 2010; Feng et al., 

2011). Together with the appropriate use of internet accessible protein data base 

searches, ICM-MS combined with PLS-DA has been shown to be effective for 

classifying CHO cell lines based on their productivities and identify protein 

biomarkers associated with the cell line productivities.  

 

 A proof-of-concept study applied to E. coli K-12 cells at different growth phases 

utilising the same methodology identified potential protein biomarkers 

associated with to the different growth phases of the cells.   

 

 Preprocessing is data dependent so preprocessing studies have been carried out 

for each data set used in this work. A number of combinations of data 

preprocessing techniques/parameters have been considered and empirically 

investigated to enable the most appropriate selection of the combination of 

methods/parameters. The parameters of the preprocessing methods were 

modified systematically and applied to the spectra data which was subsequently 

used to calibrate PLS-DA models. The combination of preprocessing 

techniques/parameters that gave an improved and optimum model performance 

was selected as the appropriate preprocessing method. The successful 
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identification of protein biomarkers from the spectra data suggested that the 

preprocessing methods used were valid, as it eliminated differences between 

spectra profiles as a consequence of experimental and instrumental procedures, 

whilst preserving the inherent biological information within the spectra profiles. 

 

8.1. Thesis Summary 

In chapter 1 an overview of the project was presented, including a summary of the main 

aims and objectives of the thesis. Chapter 2 proceeded to provide an overview of 

biopharmaceutical therapeutic proteins, the science and technology of in vitro 

mammalian cell culture which are used in their production as well as a short review on 

the methods that are currently being used for improving large-scale production of 

heterologous proteins from mammalian cell lines. 

 

MALDI-ToF MS was presented in chapter 3 along with a description of how the 

instrument was used to generate data from E. coli cells at different growth phases as 

well as from IgG monoclonal antibody producing CHO cell lines during culturing. 

Aspects relating to mass spectrometry data preprocessing was also discussed and the 

techniques were applied to the two mass spectra data sets. Finally, applications of mass 

spectra data preprocessing reported in the literature were discussed. 

 

In chapter 4, an introduction to proteomics and biomarker discovery relevant to this 

thesis was given. A summary of the approaches used in biomarker discovery 

highlighting the top-down proteomics based approach of ICM-MS, and its applications 

to microorganisms and mammalian cell line analysis for biomarker discovery in the 

biopharmaceutical bioprocessing industry was presented. The chapter also explored the 

importance of bioinformatics and internet accessible protein databases for biomarker 

identification in top-down proteomics. A literature review on applications of proteomic 

biomarker discovery was also presented. 

 

Chapter 5 focused on the multivariate data analysis techniques of principal component 

analysis (PCA), partial least squares (PLS) and PLS – discriminant analysis (PLS-DA). 

It explored the PLS-DA algorithm involved in modeling MALDI-ToF mass spectra data 

collected from E. coli cells at different growth phases as well as IgG monoclonal 
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antibody producing CHO cell lines with the aim of identifying protein biomarkers. The 

chapter also presented results of an example where PCA and PLS-DA were used to 

analyse the mass spectra data generated from cell lysate samples of E. coli K-12 cells at 

different growth phases. 

 

After discussing the advantages of utilising ICM-MS, PLS-DA, and protein databases in 

various areas of proteomics in chapters 4 and 5, chapter 6 served to provide a proof-of-

principle study of ICM-MS, PLS-DA and a database search to identify protein 

biomarkers associated with the growth phases of the E. coli. Firstly, PLS-DA was 

applied to the MALDI-ToF MS data to determine if such an approach could be used to 

distinguish between the cells at different growth phases. The application of PLS-DA 

resulted in the successful classification of the samples according to the growth phase of 

the cells. A further outcome of the analysis was that it was possible to identify the mass-

to-charge (m/z) ratio ion signals that contributed to the classification of the samples. The 

Swiss-Prot/TrEMBL database and primary literature was then used to assign a number 

of these m/z ion signals to proteins and these assignments revealed that the major 

contributors from the exponential phase were ribosomal proteins. Additional 

assignments were possible for the stationary phase and the decline phase cells where the 

proteins identified were consistent with observed biological interpretation. In summary, 

the results suggested that MALDI-ToF and PLS-DA can be used in combination to 

discriminate between E. coli cells in different growth phases and thus could potentially 

be used as a tool in process development in the bioprocessing industry to enhance cell 

growth and cell engineering strategies.  

 

After the proof-of-concept study successfully demonstrated in chapter 6, in chapter 7 

the approach was applied to the mass spectra data of IgG monoclonal antibody-

producing CHO cell lines. The cell lines were classified according to their productivities 

into high and low producer cell lines. The m/z ratio ion signals that contributed to the 

classification of the cell lines were subjected to Swiss-Prot/TrEMBL database search 

and primary literature. These searches revealed a number of m/z ratio ion signals that 

could be assigned to proteins. The identified proteins classified revealed that more 

proteins were in the high than in the low producer cell lines. These proteins are involved 

in biological processes such as protein biosynthesis, protein folding, glycolysis and 

cytoskeleton architecture. The upregulation of these proteins in high producer cell lines 
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were findings that are consistent with those reported in the literature. The ability to 

identify proteins that correlate to cell line productivity may be important in predicting 

the likelihood of a cell line being a high or low producer, provide insight into the 

biology of mammalian cell lines during biopharmaceutical bioprocessing, and may give 

indications of potential genetic engineering targets that may be exploited to engineer 

better cell lines. Chapter 7 provided the main contribution since no previous studies 

have adapted this approach to the best of the author’s knowledge.  

 

Appendix A and B presents additional information relating to the generation and 

analysis of the E. coli K-12  ‘intact’ cell and cell lysate mass spectra data sets 

respectively. Appendix A provides a summary of the chemicals, reagents and laboratory 

instruments used; the modeled population growth curve of E. coli K-12, ATCC 15223 

to show important growth parameters; the results of average wet and dry cell weight 

measurements for the E. coli cells as well as the calibration curves to determine these 

parameters; the results of standard plate count E. coli cells; approximate amount of 

bacterial cell pellets analysed using MALDI MS; the design of experiment results of 

preprocessing techniques applied to all E. coli MALDI mass spectra data sets; the 

preprocessing algorithms; the variables from the loadings plot that are associated with 

m/z ratio ion signals; and the MALDI-ToF instrumental parameters used in this work. 

Appendix B presents additional information relating to the multivariate data analysis of 

the E. coli K-12 cell lysate spectra data sets. Appendix C provides a summary of the 

PLS algorithm used in this thesis as well as information of the variables from the 

loadings plot that are associated with m/z ratio ion signals for the high and low producer 

CHO cell lines. 

  

8.2. Recommendations for Future Work  

The approach using ICM-MS, PLS-DA, and protein database searches has been shown 

to offer much promise as an effective tool in protein biomarker profiling and potentially 

useful as a tool in process development in the bioprocessing industry to enhance cell 

growth and cell engineering strategies. There are however issues that require further 

investigation before the approach can be considered ready to be used in real world 

situations.  
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The sequencing of the CHO genome and compilation of sequence-derived theoretical 

MWs of CHO proteins in internet accessible protein databases has created the 

possibility of identifying potential protein biomarkers of CHO cells by matching the 

sequence-derived theoretical MWs of the database proteins with experimental MWs 

derived from MALDI-TOF mass spectrometry. Assigning m/z ratio peaks or ion signals 

to protein biomarkers in internet accessible databases is facilitated by the fact that most 

of the m/z ratio peaks from MALDI generated mass spectra data represent singly 

charged protein ions, whose molecular weight can be directly inferred as that of the 

protein molecule. 

 

8.2.1. Further Studies for Protein Identification 

Nevertheless, the provision of molecular weight of the proteins by MALDI-MS is not 

enough information to identify a protein. Therefore all protein assignments in this 

project were tentative for a number of reasons including the fact that there may be more 

than one potential match in the protein database corresponding to a molecular weight. 

For example in the E. coli spectra data sets,  the m/z ratio peak of 7332 could be 

assigned to the ribosomal protein RL29 and the cold shock protein-E (CPSE) as both 

have MWs of 7273 Da. Therefore, it is not possible to provide a definitive conclusion 

about the assignment of the peaks. Moreover, adduct ions, mass errors and post-

translational modifications involved with some proteins may impede the assignment 

process. Matrix effects during the MALDI experiment may lead to ion suppression 

where protein ions are masked by matrix ones leading to improper assignments. 

For a proper assignment and thus a positive identification of an individual protein more 

studies would be required. These usually involve tryptic digestion of the samples which 

are then subjected to tandem mass spectrometry analysis (such as two-dimensional 

polyacrylamide gel electrophoresis with matrix assisted laser desorption ionisation time 

of flight MS; 2D-PAGE/MALDI-TOF-MS or liquid chromatography with electrospray 

ionisation MS (nano-LC-ESI-MS/MS)), providing sequence-specific fragments of the 

individual proteins. 

 

8.2.2. Integration of ‘Omics’ Data for Biomarker Discovery 

This research involves a proteomics technology (MALDI-ToF) that has the potential of 

identifying or discovering biomarkers. However, to enhance the contextualisation of the 
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proteomics results, it can be integrated with of data from other platforms such as 

metabolomics or transcriptomics. Thus having the possibility of working with 

transcriptomics data from the same system (E. coli or CHO cell lines) would be more 

interesting as there would be the linkage of known proteins with their identified genes 

or metabolites to relevant biochemical pathways. Correlating the changes in protein 

abundance from proteomics and gene expression from transcriptomics with changes in 

the cell function will permit the exploration of a broad range of biological processes. 

This will help provide insight into the biology of mammalian cell lines during 

biopharmaceutical bioprocessing. 

 

8.2.3. Future Studies using an alternative PLS-DA Algorithm 

Whilst the PLS-DA algorithm improves the arbitrary selection of classification which 

now depends on the distribution of sample predictions than other methods which sets 

threshold at an arbitrary value, that is, 0.5, the algorithm assumes that each sample will 

have a predicted y-value greater/less than the threshold making it to fall to one of the 

class or the other. However this may not be the case as we may have a y-value equal to 

the threshold hence no class and misclassification will be inevitable where sample will 

be included in one of the classes. Consequently, the algorithm needs a ‘Rejection Rule’ 

where such a sample is rejected altogether (Such an algorithm has been proposed by 

Botella et al. (2009). It is recommended that future study should involve using an 

algorithm which provides ‘Rejection Rule’ option in order to avoid the risk of 

misclassification and improve the quality of the models.  

 

8.2.4. Predictive Modelling for Process Development 

There is another dimension to this approach not considered in this project that could 

have a direct contribution to process development in the bioprocessing industry. The 

MALDI-ToF mass spectra data generated from IgG monoclonal antibody-producing 

CHO cell lines can be used to train predictive models of PLS-DA. These models can 

then be used to predict the likelihood of other CHO cell lines being high or low 

producers. Predicting productivity earlier on during biotechnological process 

development may lead to early screening of high producing cell lines which will have 

the desired high productivity during manufacturing (bioreactor stage). 
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Appendix A      Additional information for the ‘intact’ cell E. coli K-12 

project 

Appendix A provides a summary of the chemicals, reagents and laboratory instruments 

used; the modeled population growth curve of E. coli K-12, ATCC 15223 to show 

important growth parameters; the results of average wet and dry cell weight 

measurements for the E. coli cells as well as the calibration curves to determine these 

parameters; the results of standard plate count E. coli cells; approximate amount of 

bacterial cell pellets analysed using MALDI MS; the design of experiment results of 

preprocessing techniques applied to all E. coli MALDI mass spectra data sets; the 

preprocessing algorithms; the variables from the loadings plot that are associated with m/z 

ratio ion signals; and the MALDI-ToF instrumental parameters used in this work. 

Figures 

A.1     Preprocessing algorithm used for the E. coli mass spectra profiles 

 

For the optimal combination of preprocessing techniques and associated parameters, the 

baseline correction quantile value was at 0.1, baseline correction window size was set to 

200, normalisation quantile value, 0.1 or 0.2,  and smoothing span value was at 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

files=dir('*dat'); 

for i = 1:366; 

files(i).data = load(files(i).name); 

MZ = files(i).data(:,1); 

Y(:,i)=[files(i).data(:,2)]; 

Ynew=Y(4300:end,:); 

MZnew=MZ(4300:end,:); 

[MZR, YR(:,i)]= msresample(MZnew,Ynew(:,i),7000,'range',[2350 

max(MZnew)]); 

YB(:,i)=msbackadj(MZR,YR(:,i),'WINDOWSIZE',200,'QUANTILE',0.1,'PRESER

VEHEIGHTS',true); 

P=[6411 6855 7273 7333 7869 9061 9218 9532 9736]; 

YA(:,i)=msalign(MZR,YB(:,i),P); 

YN(:,i) = msnorm(MZR,YA(:,i),'Quantile',0.1,'MAX',100); 

YS(:,i) = mssgolay(MZR,YN(:,i),'SPAN',25); 

YStcal=[YS']; End 

P=mspeaks(MZR,YS,'Denoising',false,'HeightFilter',10,'SHOWPLOT',false); 

 Figure A.1: Preprocessing algorithm used for the E. coli mass spectra 
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A.2      Preprocessing algorithm used for the CHO cell line mass spectra profiles 

For the optimal combination of preprocessing techniques and associated parameters, the 

baseline correction quantile value was at 0.2, baseline correction window size was set to 

100, normalisation quantile value, 0.1, and smoothing span value was at 25 

 

 

 

 

 

 

 

 

 

 

 

A.3      Cross-validation vector used for the intact cell E. coli data sets 

The cross-validation vector was used for cross-validation of 300 ‘intact’ cells E. coli 

MALDI mass spectra calibration data sets. Leave-class-out-cross-validation was 

performed. The vector was coded as ‘1’ to indicate that the sample involved belonged to 

class 1; ‘2’ for class 2; and ‘3’ for class 3. All samples coded with ‘1’, belonging to the 

same class 1 were removed from the calibration data set and a sub-model based on the 

remaining samples was used to build the PLS-DA model and predict the left out samples. 

The process was repeated with all the 300 calibration data set of classes 2 and 3 had been 

left out once. 

[1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 1 

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 31 1 1 1 1 1 1 

1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 

1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3]  

 

 

files=dir('*txt'); 

for i = 1:80; 

files(i).data = load(files(i).name); 

MZ = files(i).data(:,1); 

Y(:,i)=[files(i).data(:,2)]; 

Ynew=Y(6200:end,:); 

MZnew=MZ(6200:end,:); 

[MZR, YR(:,i)]= msresample(MZnew,Ynew(:,i),7000,'range',[6200 

max(MZnew)]); 

YB(:,i)=msbackadj(MZR,YR(:,i),'WINDOWSIZE',200,'QUANTILE',0.2,'PRESE

RVEHEIGHTS',true); 

P=[6411 6855 7273 7333 7869 9061 9218 9532 9736]; 

YA(:,i)=msalign(MZR,YB(:,i),P); 

YN(:,i) = msnorm(MZR,YA(:,i),'Quantile',0.1,'MAX',100); 

YS(:,i) = mssgolay(MZR,YN(:,i),'SPAN',25); 

YStcal=[YS']; End 

P=mspeaks(MZR,YS,'Denoising',false,'HeightFilter',10,'SHOWPLOT',false); 

Figure A.2: Preprocessing algorithm used for the CHO cell line mass spectra profiles 

Figure A.3: Cross-validation vector used for the intact cell E. coli data sets 
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Tables  

A.1      Results of MALDI-ToF instrument parameter optimisation  

Table A.1 summarises the results of MALDI-ToF instrument parameter optimisation 

when the parameters were altered based on the design matrix.  As can be seen from the 

table, the parameters that were changed were ion source voltage 1 (accelerating voltage), 

ion source voltage 2 (grid voltage), pulse ion extraction (PIE), and the laser beam focus. 

All other parameters were maintained at a fixed value. For good signals, the grid voltage 

was always set at approximately 88% of the accelerating voltage. The two values for the 

accelerating and grid voltage used were 24 and 21, and 24.24 and 21.23 respectively. The 

PIE was altered at intervals of about 50 units ranging from 150-500ns. Only two values 

(35 or 39%) of the laser beam were used. Results were based on the signal-to-noise (s/n) 

ratio of the peaks observed. This was rated from bad to excellent as follows. As can be 

seen from the table, results suggest that higher PIE values in the range 350-500ns gave 

very good signals observed only in taller spectra peaks. PIE value of 300ns gave very 

good signals observed only in smaller peaks while PIE values of 300 and 350ns gave 

excellent signals across all spectra peaks. Consequently, trial 10 was adopted as condition 

for MALDI analysis. 
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Table A.1: Results of MALDI-ToF instrument parameter optimisation 
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A.2     MALDI ground steel target plate layout showing the E. coli cell pellet sample 

arrangement 

Table A.2 shows the MALDI ground steel target plate layout of the E. coli cell pellet 

sample arrangement for analysis. STD (standard) represented the calibrant.  About 1µl of 

calibrant was spotted onto of the MALDI target plate onto six specific sample spots 

surrounded by 20 spots containing samples to be analysed. Each calibrant within each 

group of sample was used to calibrate the instrument before analysing all samples in the 

group.  The samples were named as di (intact cell pellets for cultures at decline phase), mi 

(intact cell pellets for cultures at mid-log or exponential phase), si (intact cell pellets for 

cultures at stationary phase), dl (cell lysate for cultures at decline phase), ml (cell lysate 

for cultures at exponential phase), and sl (cell lysate for cultures at stationary phase). To 

explain the labeling, for example the 20 different MALDI spots of intact cells at the 

decline growth phase were labeled di01, di02, di03,...., di018, di19, di20;  intact cells at 

the exponential growth phase  mi01, mi02, mi03,...., mi018, mi19, mi20. All the other 

sample spots were labeled following this format. 
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Table A.2: MALDI ground steel target plate layout showing the E. coli cell 

pellet sample arrangement 
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A.3     Data used for graph of Figure 3.19 showing the effect of cropping and 

resampling on quality of PLS-DA models across LV2 

Table A.3 presents the data used in plotting graph in Figure 3.19 which shows the effect 

of cropping and resampling on quality of PLS-DA models across latent variables 2 to 11. 

Signal resampling was carried out after cropping the data.  The data sets were resampled 

by down sampling to 7000 data points from 2350 to 20400 m/z ratio values. 

 

Table A.3: Data used for graph of Figure 3.19 

Number 

of latent 

variables 

Average R
2
 (%) Average RMSECV (%) 

Raw 

data 

Data 

after  

cropping 

Data after 

cropping 

and 

resampling 

Raw 

data 

Data 

after  

croppin

g 

Data after 

cropping 

and 

resampling 

2 2.9 32.5 32.6 39.3 39.4 39.3 

3 34.8 48.2 48.2 34.8 34.7 34.7 

4 55 64.3 64.6 29.2 28.7 28.8 

5 62.3 66.9 67.1 28.5 28.4 27.9 

6 60.3 68.5 68.6 27.7 27.6 27.5 

7 64 70 70 27.2 27.4 27.4 

8 65.7 70 70.1 27.2 27.2 27.2 

9 67.4 69.9 69.9 26.9 27.7 27.7 

10 68.8 70.6 70.5 26.9 27.6 27.7 

11 70.5 70.1 70.2 27.6 27.9 27.9 
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A.4     Data used for graph of Figure 3.21 showing the effect of alignment across a 

number of latent variables  

Table A.4 shows the effect of alignment across a number of latent variables. Alignment of 

the spectra data was carried out along five m/z ratio peaks 6411, 6855, 7273, 7333, 7869, 

9061, 9218, 9532, 9736 which were found to be common among most of the spectra 

profiles. The results suggest that applying alignment on the data slightly improved the 

qualities of the PLS-DA models built using the mass spectra data, on average. 

 
 

A.5     Design of experiment (DOE) results of preprocessing techniques applied to 

all E. coli spectra data  

Table A.5 summarises the results for the main effects and interaction plots for the 

preprocessing techniques with output being the RMSEP. RMEP was used because 

prediction error is an absolute measure.  

 

A 2
4
 full factorial design matrix (with 2 center points per block) set up with four factors, 

i.e. baseline correction quantile value, baseline correction window size, normalisation 

quantile value and smoothing span value. All these factors were held at 2 levels (upper 

and lower levels). Eighteen runs were performed with baseline correction quantile value 

at 0.1-0.2, baseline correction window size at 300-500, normalisation quantile value at 

0.1-1 and smoothing span value at 20-25. These intervals were those that gave optimal 

results (high R
2
 and low RMSECV) when the corresponding preprocessing techniques 

Number 

of latent 

variables 

Average R
2
 (%) Average RMSECV (%) 

Raw data 
Data after  

alignment 

Raw 

data 

Data after  

alignment 

2 2.9 35.7 39.3 38.2 

3 34.8 54.2 34.8 32.6 

4 55.0 65.6 29.2 28.5 

5 62.3 67.5 28.5 28.0 

6 60.3 69.3 27.7 27.4 

7 64.0 71.3 27.2 26.2 

8 65.7 73.0 27.2 25.9 

9 67.4 72.7 26.9 26.3 

10 68.8 72.8 26.9 26.2 

11 70.5 73.2 27.6 26.2 

Table A.4: Data used for graph of Figure 3.21 
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were used in isolation. A random design was subsequently set up with baseline correction 

quantile value at 0.1-0.2, baseline correction window size at 100-200, and normalisation 

quantile value at 0.1-0.2, evaluated against a fixed smoothing span value of 25. The 

qualities of the models were evaluated through the R
2
 and the RMSECV whilst the 

performance was evaluated against the root mean square error of prediction (RMSEP) and 

the R
2 

of prediction.  

 

A seen in Fig. 3.22 (chapter 3), the main effects plot suggests that all the preprocessing 

techniques are significant, with baseline correction quantile value and smoothing span 

value being the most significant preprocessing techniques affecting the model 

performance. This goes to support the earlier view that all these techniques were essential 

for preprocessing the spectra data. The main effects for average RMEP are maximised 

when baseline correction quantile value was set at 0.2 and smoothing span value to 20.  

 

From the interaction plots, the following interactions could be observed;  

 baseline correction window size and normalisation quantile value;  

 smoothing span value and normalisation quantile value;  

 baseline correction window size and smoothing span value; and  

 baseline correction window size and quantile value.   

 

Estimated Effects and Coefficients for Average RMSEP (coded units) 

 

Term                                                  Effect     Coef       SE Coef        T            P 
Constant                                                         17.8744     0.1111      160.87     0.000 

Baseline correction window size   0.0800      0.0400      0.1179      0.34          0.767 

Baseline correction quantile va      1.8200     0.9100       0.1179     7.72          0.016 

Normalisation quantile value        -0.1650    -0.0825       0.1179     -0.70         0.556 

Smoothing span value                   -1.4750    -0.7375       0.1179    -6.26         0.025 

Baseline correction window size*  0.0100     0.0050       0.1179     0.04          0.970 

  Baseline correction quantile va 

Baseline correction window size* -0.1650    -0.0825      0.1179    -0.70         0.556 

  Normalisation quantile value 

Baseline correction window size*  -0.0950   -0.0475     0.1179    -0.40         0.726 

  Smoothing span value 

Baseline correction quantile va*    -0.1650    -0.0825     0.1179    -0.70        0.556 

  Normalisation quantile value 

Baseline correction quantile va*     0.0450      0.0225    0.1179      0.19         0.866 

  Smoothing span value 

Normalisation quantile value*        0.1650      0.0825     0.1179     0.70         0.556 

  Smoothing span value 

Baseline correction window size*  -0.1650    -0.0825     0.1179    -0.70        0.556 
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  Baseline correction quantile va* 

  Normalisation quantile value 

Baseline correction window size*   -0.2250    -0.1125    0.1179    -0.95      0.441 

  Baseline correction quantile va* 

  Smoothing span value 

Baseline correction window size*    0.1650     0.0825    0.1179      0.70        0.556 

  Normalisation quantile value* 

  Smoothing span value 

Baseline correction quantile va*      0.1650     0.0825     0.1179     0.70       0.556 

  Normalisation quantile value* 

  Smoothing span value 

Baseline correction window size*    0.1650     0.0825     0.1179     0.70       0.556 

  Baseline correction quantile va* 

  Normalisation quantile value* 

  Smoothing span value 

 

 

S = 0.471405    PRESS = 1024.44 

R-Sq = 98.11%   R-Sq(pred) = 0.00%   R-Sq(adj) = 83.95% 

 

 

 

Analysis of Variance for Average RMSEP (coded units) 

 

Source                      DF   Seq SS   Adj SS   Adj MS      F      P 

Main Effects               4  22.0866  22.0866  5.52165  24.85  0.039 

2-Way Interactions     6   0.3713   0.3713  0.06188   0.28  0.906 

3-Way Interactions     4   0.5292   0.5292  0.13230   0.60  0.705 

4-Way Interactions     1   0.1089   0.1089  0.10890   0.49  0.556 

Residual Error             2   0.4444   0.4444  0.22222 

  Lack of Fit                 1   0.4444   0.4444  0.44444 

  Pure Error                  1   0.0000   0.0000  0.00000 

Total                           17  23.5404 

 

 

Unusual Observations for Average RMSEP 

 

               Average 

Obs  StdOrder    RMSEP       Fit         SE Fit     Residual    St Resid 

  1         1           16.1600     16.1044    0.4698     0.0556      1.41 X 

  2         2           20.4200     20.3644    0.4698     0.0556      1.41 X 

  3         3           16.1600     16.1044    0.4698     0.0556      1.41 X 

  5         5           19.3500     19.2944    0.4698     0.0556      1.41 X 

  6         6           17.7500     17.6944    0.4698     0.0556      1.41 X 

  7         7           18.0100     17.9544    0.4698     0.0556      1.41 X 

  8         8           18.2400     18.1844    0.4698     0.0556      1.41 X 

  9         9           17.7500      17.6944   0.4698     0.0556      1.41 X 

 10        10         17.8100      17.7544   0.4698     0.0556      1.41 X 

 11        11         16.3600      16.3044   0.4698     0.0556      1.41 X 

 12        12         16.3600      16.3044   0.4698     0.0556      1.41 X 

 13        13         18.0100      17.9544   0.4698     0.0556      1.41 X 

 14        14         19.3500      19.2944   0.4698     0.0556      1.41 X 

 15        15         17.8100      17.7544   0.4698     0.0556      1.41 X 

 16        16         18.2400      18.1844   0.4698     0.0556      1.41 X 

 18        18         19.1000      19.0444   0.4698     0.0556      1.41 X 
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X denotes an observation whose X value gives it large leverage. 

 

 

Estimated Coefficients for Average RMSEP using data in uncoded units 

 

Term                                                   Coef 

Constant                                             38.7794 

Baseline correction window size      -0.0460167 

Baseline correction quantile va        -127.750 

Normalisation quantile value           -11.0000 

Smoothing span value                       -1.02800 

Baseline correction window size*      0.405167 

  Baseline correction quantile va 

Baseline correction window size*      0.0366667 

  Normalisation quantile value 

Baseline correction window size*      0.00196667 

  Smoothing span value 

Baseline correction quantile va*        110.000 

  Normalisation quantile value 

Baseline correction quantile va*         6.20000 

  Smoothing span value 

Normalisation quantile value*            0.44000 

  Smoothing span value 

Baseline correction window size*      -0.366667 

  Baseline correction quantile va* 

  Normalisation quantile value 

Baseline correction window size*      -0.0170667 

  Baseline correction quantile va* 

  Smoothing span value 

Baseline correction window size*      -0.00146667 

  Normalisation quantile value* 

  Smoothing span value 

Baseline correction quantile va*         -4.40000 

  Normalisation quantile value* 

  Smoothing span value 

Baseline correction window size*        0.0146667 

  Baseline correction quantile va* 

  Normalisation quantile value* 

  Smoothing span value  
 

 

Table A.5: Design of experiment (DOE) results of preprocessing 

techniques applied to all E. coli spectra data 
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A.6     Variables from the loadings with their corresponding m/z ratio signal ions 

for exponential phase samples  

Table A.6 shows the variables from the loadings plots which are associated to m/z ratio 

signal ions for exponential phase samples. Since most of the m/z ratio ion signals are 

singly charged protonated protein (MH
+
) molecules, they represent the approximate 

MALDI experimental MWs of the ionised proteins expressed by the cultures at the 

exponential phase samples.  The magnitude of the loadings may reveal how expression of 

proteins varies with growth phase. Loadings were considered to have high intensity if the 

magnitude was greater than 0.2; medium intensity if the magnitude was greater than 0.05, 

but less than 0.2; and low intensity if the magnitude was between 0 and 0.05. 

Variables 

from 

loadings 

plot 

Intensity of 

variable from 

loadings plot  

Associated m/z 

(MH
+
) or 

experimental 

MW  

Intensity of 

variable from 

loadings plot 

Intensity 

Associated m/z 

(MH
+
) or 

experimental 

MW 

362 Low 2846.1 2911 Low 7700.7 

615 Low 3222.2 2912 Low 7703.1 

903 Low 3678.6 2913 Low 7705.5 

904 Low 3680.2 2914 Low 7707.8 

905 Low 3681.9 2915 Low 7710.2 

906 Low 3683.5 2983 Low 7872.0 

1326 Low 4403.7 2984 Low 7874.4 

1327 Low 4405.5 2985 Low 7876.8 

1335 Low 4419.9 3302 Low 8654.8 

1337 Medium 4423.5 3396 Low 8882.3 

1443 Medium 4615.8 3520 Medium 9211.0 

1533 Low 4782.4 3521 Medium 9213.6 

1701 Medium 5100.7 3522 Medium 9216.2 

1703 Medium 5104.5 3641 Medium 9527.2 

1810 Medium 5313.0 3642 Medium 9529.9 

1878 Medium 5447.7 3643 Medium 9532.5 

1879 Medium 5449.6 3961 Low 10389.2 

1880 Medium 5451.6 4073 Low 10699.8 

1881 Medium 5453.6 4248 Low 11197.0 

2270 Medium 6256.7 4520 Low 11983.9 

2297 Medium 6314.5 4596 Low 12210.4 

2301 Medium 6323.1 4741 Low 12645.8 

2344 High 6415.8 5175 Low 13997.6 

2538 Medium 6842.2 5599 Low 12219.3 

2539 Medium 6844.4 5604 Low 15403.2 

2540 Medium 6846.6 2756 Medium 7337.7 

2541 Medium 6848.9 2818 Low 7482.0 

2728 High 7273.1 2845 Low 7545.5 

Table A.6: Variables from the loadings with their corresponding m/z ratio ion signals 

for exponential phase samples 
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A.7     Variables from the loadings with their corresponding m/z ratio  signal ions 

for stationary phase samples  

Table A.7 shows the variables from the loadings plots which are associated to m/z ratio 

signal ions for stationary phase samples. The magnitude of the loadings may reveal how 

expression of proteins varies with growth phase. Loadings were considered to have high 

intensity if the magnitude was greater than 0.2; medium intensity if the magnitude was 

greater than 0.05, but less than 0.2; and low intensity if the magnitude was between 0 and 

0.05. 

Table A.7: Variables from the loadings with their corresponding m/z ratio ion 

signals for stationary phase samples 

Variables 

from 

loadings plot 

Intensity of 

variable from 

loadings plot  

Associated m/z 

(MH
+
) or 

experimental 

MW  

Intensity of 

variable from 

loadings plot 

Intensity 

Associated m/z 

(MH
+
) or 

experimental 

MW 

411 Low 2917.15 2915 Medium 7710.20 

628 Low 3242.11 2991 Medium 7891.22 

902 Low 3676.94 3005 Low 7925.00 

909 Low 3688.07 3180 High 8351.03 

1014 Low 3862.56 3168 Low 8321.55 

1070 Low 3956.71 3264 Low 8559.58 

1236 Low 4243.58 3267 Low 8567.07 

1305 Medium 4366.20 3381 Low 8854.33 

1308 Medium 4371.55 3387 Low 8869.58 

1407 Low 4549.61 3463 Medium 9063.84 

1422 Low 4576.96 3553 Low 9296.72 

1538 Low 4791.26 3554 Low 9299.32 

1583 Low 4876.15 3555 Low 9301.92 

1591 Medium 4890.81 3654 High 9561.51 

1701 High 5101.12 3719 Medium 9733.70 

1816 Low 5324.82 3730 High 9763.22 

2271 Medium 6259.30 3731 High 9765.89 

2304 Medium 6329.57 3800 Low 9950.62 

2305 Medium 6331.71 3810 Low 9977.82 

2306 Medium 6333.86 3970 Low 10414.02 

2307 Medium 6336.01 4097 Low 10766.89 

2344 Medium 6416.10 4488 Low 11890.24 

2553 Medium 6875.70 4522 Low 11989.77 

2738 Medium 7296.09 5250 Low 14238.17 

2739 Medium 7298.40 5256 Low 14259.00 

2920 High 7721.85 5615 Low 15440.04 

2921 High 7724.23 6393 Low 18157.87 
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A.8     Variables from the loadings with their corresponding m/z ratio signal ions 

for decline phase samples  

Table A.8 shows the variables from the loadings plots which are associated to m/z ratio 

signal ions for decline phase samples. The magnitude of the loadings may reveal how 

expression of proteins varies with growth phase. Loadings were considered to have high 

intensity if the magnitude was greater than 0.2; medium intensity if the magnitude was 

greater than 0.05, but less than 0.2; and low intensity if the magnitude was between 0 and 

0.05. 

 

Variables 

from 

loadings 

plot 

Intensity of 

variable 

from 

loadings plot  

Associated m/z 

(MH
+
) or 

experimental 

MW  

Intensity of 

variable 

from 

loadings plot 

Intensity 

Associated 

m/z (MH
+
) or 

experimental 

MW 

1222 Low 4219.00 4053 Low 10643.97 

1223 Low 4220.76 4054 Low 10646.76 

1224 Low 4222.51 4055 Low 10649.54 

1225 Low 4224.26 4056 Low 10652.33 

1441 Low 4611.73 4259 Low 11225.56 

1517 Low 4752.10 4474 Low 11849.06 

1574 Low 4858.77 4742 Low 12649.85 

2069 Low 5834.88 5598 Low 15383.06 

2335 Low 6396.33 5599 Low 15386.41 

2540 High 6846.62 5600 Low 15389.76 

2541 High 6848.86 5601 Low 15393.11 

2542 High 6851.09 5602 Low 15396.46 

2676 Low 7153.81 6400 Low 18186.28 

2723 Medium 7261.54 3524 High 9221.37 

2906 Low 7688.67 3641 High 9527.22 

2976 Medium 7855.29 3715 High 9723.24 

3165 High 8069.70 3795 Low 9937.40 

3373 Low 8834.02 3954 Low 10369.98 

3457 High 9048.47 3986 Low 10458.15 

3458 High 9051.04 4052 Low 10641.19 

Table A.8: Variables from the loadings with their corresponding m/z ratio 

ion signals for decline phase samples 
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A.9    Ranges of variables from the loadings with their corresponding m/z ratio 

signal ion ranges for exponential phase sample 

 

The full explanation of superscript letters assigned to column titles in Tables A.9 to 

A.11 are as follows:    

a 
Variable count range were the variables (associated to m/z ratio values or ion signals in 

the MALDI data set) from the PLS-DA loadings plot.  The loadings plot help provide 

the m/z ratio values (which are experimental MWs) of potential protein biomarkers. 

  

b
Exp’tal MW (m/z ratio value) range mapped to variable count range.   Located within a 

range is an average exp’tal MW which can be matched to the theoretical MW of a 

protein in the database. 

 

c
Average variable count was a variable located within a variable count range from the 

PLS-DA loadings plot that was mapped to a m/z ratio value (exp’tal MW). The latter 

can be matched to the theoretical MW of a protein in the database. 

 

d
Average exp’tal MW was the m/z ratio value (within an exp’tal MW range) that was 

matched to the theoretical MW of a protein in the database  taking into account the mass 

accuracy in the linear mode MALDI-ToF which is 100 ppm, i.e., exp’tal MW masses 

should be within 0.01% of their theoretical MWs (+/- 1 mass unit for 10,000 MW 

protein) 

 

e
The intensity of the variables ( m/z ion signals) 

 
is the magnitude of their loadings in the 

loadings plot. High: intensity ≥ ±0.1 units; medium: intensity ≥ ±0.05 and ≤ ±0.1 units; 

low: intensity between 0 and ±0.05 units.  

 

f
Match or theoretical sequence MW was calculated using the Compute pI/MW tool 

(http://web.expasy.org/compute_pi/). 

 
  

g
Error was the difference between the theoretical sequence MW of the protein in the 

database and the  exp’tal MW of the MALDI experiment obtained from the PLS-DA 

loadings plot 

 

http://web.expasy.org/compute_pi/
http://web.expasy.org/compute_pi/
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h
Proteins names were those of proteins whose theoretical sequence MW in database 

tentatively matches  exp’tal MW of the MALDI experiment obtained from the PLS-DA 

loadings plot. 

Table A.9: Variable count ranges from loadings plot and their corresponding 

experimental MW ranges for exponential phase samples 
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A.10    Ranges of variables from the loadings with their corresponding m/z ratio 

signal ion ranges for stationary phase sample 
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Table A.10: Variable count ranges from loadings plot and their corresponding 

experimental MW ranges for exponential phase samples 
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A.11    Ranges of variables from the loadings with their corresponding m/z ratio 

signal ion ranges for decline phase sample 
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Table A.11: Variable count ranges from loadings plot and their corresponding 

experimental MW ranges for exponential phase samples 
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Appendix B      Additional information for the E. coli K-12 cell lysate 

project     

Appendix B presents additional information relating to the multivariate data analysis of 

the E. coli K-12 cell lysate spectra data sets. It provides a summary of the cross-validation 

vector used; figure of calculated Y versus measured Y in fitting and prediction after leave-

class-out cross-validation for PLS-DA model built with the data sets; figure of calculated 

Y versus measured Y in fitting and prediction after external validation for PLS-DA model 

built with the data sets; results of PCA model for the mass spectra data sets; PLS-DA 

results for the data sets showing percentage variance explained by the LVs calculated for 

X and Y variables; PLS-DA results for the data sets showing the quality of the model after 

calibration and cross-validation; and PLS-DA results for the data sets showing the 

performance of the model after external validation. 

Figures  

B.1      Cross-validation vector used for the E. coli cell lysate data sets  

The cross-validation vector was used for cross-validation of 300 E. coli cell lysate 

MALDI mass spectra calibration data sets. Leave-class-out-cross-validation was 

performed. The vector was coded as ‘1’ to indicate that the sample involved belonged to 

class 1; ‘2’ for class 2; and ‘3’ for class 3. All samples coded with ‘1’, belonging to the 

same class 1 were removed from the calibration data set and a sub-model based on the 

remaining samples was used to build the PLS-DA model and predict the left out samples. 

The process was repeated with all the 300 calibration data set of classes 2 and 3 had been 

left out once. 

 

[1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 1 

1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 31 1 1 1 1 1 1 

1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 

1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3]  
 

           Figure B.1: Cross-validation vector used for the E. coli cell lysate data sets 
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B.2      Calculated Y versus measured Y in fitting and prediction after leave-class-

out cross-validation 

Figure B.2 shows the PLS-DA calculated Y versus measured Y in fitting and prediction 

after leave-class-out cross-validation 300 preprocessed calibration spectra data sets for 

cell lysate. No significant deviations can be identified along the y-axis in all three classes 

suggesting that that all the useful information is taken into account by the model.  
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Figure B.2: Calculated Y versus measured Y in fitting and prediction after leave-class-

out cross-validation 
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B.3       PLS-DA calculated Y versus measured Y in fitting and prediction after 

external validation 

Figure B.3 shows the PLS-DA calculated Y versus measured Y in fitting and prediction 

after external validation with 55 test set samples of cell lysate. The decision threshold 

shown in each case (middle dashed red line) is calculated using the distribution of 

predicted Y values obtained during model building. As seen from the model, just one 

class 1 (decline phase) sample (1dl18) was misclassified falling below the decision 

threshold. This gave an excellent prediction sensitivity and specificity of 95.7% and 

95.2% respectively. No class 2 (exponential phase) samples were misclassified giving 

100% prediction sensitivity and specificity. Only two class 3 (stationary phase) samples 

(1sl18 and 3sl16) were misclassified giving very good prediction sensitivity and 

specificity of 88.9% and 85.1% respectively. 
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Figure B.3: PLS-DA calculated Y versus measured Y in fitting and prediction after 

external validation 
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Tables  

B.1      PCA model of the cell lysate mass spectra data sets 

Table B.1 summarises the results of PCA model for the 355 preprocessed E. coli cell 

lysate mass spectra data sets. PCA was applied to get an overview of the mass spectra to 

identify any groupings and to determine if differences occur due to the growth phase. The 

first three principal components were retained and these account for 93.36% of the 

variability. 

 

B.2      PLS-DA percentage variance explained by the LVs calculated for X and Y 

variables  

Table B.2 shows PLS-DA percentage variance explained by the LVs calculated for X and 

Y variables for the 300 preprocessed calibration spectra data sets for E. coli cell lysate. 

The 3-LV PLS-DA model captured 90.50% of the X-block variance and explained 

85.25% of the Y-block variance of the training data 

Principal 

component (PC)  

number 

Eigenvalue of 

covariance (X) 

% Variance 

captured for this 

PC 

Total % 

variance 

captured 

1 9.14 × 10
4
 70.48 70.48 

2 2.04 × 10
4
 15.76 86.24 

3 5.35 × 10
3
 4.13 93.36 

Table B.1: PCA model of the cell lysate mass spectra data sets 

Latent 

variable 

(LV) 

number 

X-Block Y-Block 

% Variance 

captured for 

this LV 

Total % 

variance 

captured 

% Variance 

captured for 

this LV 

Total % 

variance 

captured 

1 71.79 71.79 32.06 32.06 

2 16.62 88.41 32.31 64.38 

3 2.09 90.50 20.87 85.25 

Table B.2: PLS-DA percentage variance explained by the LVs calculated for X 

and Y variables 
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B.3      PLS-DA results showing the quality of the model after calibration and cross-

validation 

Table B.3 summarises the PLS-DA results showing the quality of the model after 

calibration (Cal) and cross-validation (CV) for the 300 preprocessed calibration spectra 

data for E. coli cell lysate. The quality of this model is good, according to the values of R
2
 

calculated both fitting (73.1% for class 1, 93% for class 2 and 67.2% for class 3) and in 

CV (86.3% for class 3). The quality of the model was good both in calibration and CV 

with a sensitivity (proportion of samples correctly classified that belong to the class being 

modeled), and specificity (proportion of samples correctly classified that do not belong to 

the class being modeled) of at least 92%. The high values of R
2
 in fitting (and the 

consequent small values of RMSEC, (0.245 for class1, 0.125 for class 2, and 0.267 for 

class 3) shows that the model is characterised by a large fitting ability. 

 

Modeled class 
Class 1 

(Decline phase) 

Class 2 

(Exponential 

phase) 

Class 3 

(Stationary 

phase)  

Sensitivity (Cal) 0.948 1.000 0.944 

Specificity (Cal) 0.941 0.995 0.927 

Sensitivity (CV) 1.000 1.000 1.000 

Specificity (CV) 0.519 0.957 0.000 

Classification 

error (Cal) 
0.05545 0.00269 0.06405 

 Classification 

error (CV) 
0.24064 0.02150 0.50000 

RMSEC 0.24555 0.12586 0.26716 

RMSECV 0.79172 0.61399 0.90605 

Bias -0.00566 -0.01060 -0.01018 

CV Bias -0.20691 -0.31593 0.25343 

R
2 

Cal 0.73125 0.93043 0.67168 

R
2
 CV 0.03328 0.01120 0.86356 

Table B.3: PLS-DA results showing the quality of the model after calibration and 

cross-validation  
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B.4      PLS-DA results showing the performance of the model after external 

validation  

Table B.4 summarises the PLS-DA results showing the performance of the model after 

external validation with 55 test set samples for cell lysate. This model has an excellent 

prediction sensitivity and specificity of 95.7% and 95.2% respectively. These results are 

supported by those in Fig. B.3. 

 

 

Modeled class 
Class 1 

(Death phase) 

Class 2 

(Exponential 

phase) 

Class 3 

(Stationary 

phase)  

Sensitivity (prediction) 0.957 1.000 0.889 

Specificity (prediction) 0.952 1.000 0.851 

Classification error 

(prediction) 
0.04555 0.00000 0.01300 

RMSEP 0.25455 0.12477 0.30432 

Prediction Bias -0.01623 -0.02150 0.01605 

R
2 

prediction 0.71893 0.93518 0.56058 

Table B.4: PLS-DA results showing the performance of the model 

after external validation 
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Appendix C      Additional information for the CHO cell line spectra 

data sets 

Appendix A provides a summary of the PLS algorithm used in this work as well as 

information of the variables from the loadings plot that are associated with m/z ratio ion 

signals for the high and low producer CHO cell lines. 

Figures  

C.1      The non-iterative partial least squares (NIPALS) algorithm for PLS1 

algorithm  

The non-iterative partial least squares (NIPALS) algorithm for PLS1 algorithm was a 

prerequisite for the PLS-DA algorithm used in this work. The PLS-DA algorithm started 

with the calculation of a PLS model of A latent variables (LVs) with spectra data sets (X-

block) for calibration samples and y vector (Fig. 5.4). From step 12 (equation 13), the 

calculated predicted response value,  ̂  from PLS1 is the starting point of the PLS-DA 

algorithm (section 5.6.1).  

 

The non-iterative partial least squares (NIPALS) algorithm for PLS1 is presented as 

follows: 

Step 1: 

Using a temporary y factor as output scores, u (that summarises the remaining variability 

in y), calculate the loading weights, w, by regressing columns of the X block data of 

calibrated samples on u. Give some initial values to u e.g. the column of y with the largest 

sum of squares. 

 

                         
    

    
                                             (1) 

Step 2: 

Normalise w to unit length       

   
 

‖ ‖
                                                  (2) 

Step 3: Estimate the input scores 

   
   

   
                                             (3) 

Step 4: 
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Estimate the output loadings    

    
    

    
                                           (4) 

Step 5: 

Normalise input loadings, q,  to unit length       

   
 

‖ ‖
                                              (5) 

Step 6: 

Estimate new output scores, u,  

   
   

   
                                              (6) 

Step 7: 

Test the occurrence of convergence on u, by checking that the t has no longer changed 

meaningfully since the last iteration, that is:  

 

‖       ‖

‖ ‖
                                         (7) 

 

where ε is “small” e.g. 10
-6

 or 10
-8

. If convergence has occurred it means the PLS 

component has been adequately modelled, proceed to step 8. If not, put t as told  and 

calculate a new u vector by repeating step 1. 

Step 8: 

Estimate the input loadings    

    
    

    
                                         (8) 

Step 9: 

Compute the estimated regression coefficient of the relation, b.            

   
    

    
                                             (9) 

 

where W is the input weights matrix and P is input loading matrix 

Step 10: 

Estimate the input and output residual matrices 

                                               (10) 

                                              (11) 
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If additional PLS  components are necessary, replace X and Y by E and F, 

respectively and repeat steps 1-9. 

Step 11: 

Compute the regression coefficient vector used for the linear PLS predictor 

 ̂                                                  (12) 

Step 12: 

Calculate the y predicted values,   ̂, for calibration data by fitting a linear relationship 

between the independent and dependent variable scores. 

  ̂                                                      (13)   

 

 

Figure C.1: The non-iterative partial least squares (NIPALS) algorithm for PLS1 

algorithm 

 

 

 

Tables  

C.1      The variables from the loadings plot and their corresponding to m/z ratio 

signal ions for high producer cell line samples   

Since most of the m/z ratio signals ions are singly charged protonated protein (MH
+
) 

molecules, they represent the approximate MALDI experimental MWs of the ionised 

proteins expressed by the high producer cell lines. The magnitude of the loadings may 

reveal how expression of proteins varies with growth phase. Loadings were considered to 

have high intensity (H) if the magnitude was greater than 0.04; medium intensity (M) if 

the magnitude was greater than 0.02, but less than 0.04; and low intensity (L) if the 

magnitude was between 0 and 0.02. 
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Variables 

from 

loadings 

plot 

Intensity of 

variable 

from 

loadings 

plot  

Associated m/z 

(MH
+
) or 

experimental 

MW  

Variables 

from 

loadings 

plot 

Intensity 

of 

variable 

from 

loadings 

plot  

Associated m/z 

(MH
+
) or 

experimental 

MW  

518 M 5431.57 3165 M 10160.76 

 641 L 5618.72 3817 L 11550.75 

644 L 5623.33 3936 M 11814.05 

818 L 5893.61 3724 M 11347.04 

1121 L 6379.42 6608 L 18507.62 

1217 H 6537.35 6406 L 17949.32 

1489 L 6995.31 6339 L 17766.03 

1650 L 7273.68 2918 L 9657.46 

1866 L 7655.69 6409 L 17957.55 

1983 L 7866.69 4888 M 14027.33 

2106 L 8091.60 5434 L 15382.40 

2365 M 8575.57 660 L 5648.99 

2673 L 9169.39 2782 L 9385.79 

2676 L 9175.27 2775 L 9385.78 

2777 L 9374.39 6329 L 17738.76 

2879 L 9577.65 3205 L 10243.47 

3048 H 9900.38 3113 L 10053.74 

3154 M 10136.51 4638 L 13425.84 

3255 L 10345.75 4779 L 13762.37 

3482 L 10825.94 4781 L 13767.18 

3629 L 11139.15 4873 H 13978.88 

3620 L 11121.38 5048 L 14415.97 

3703 H 11299.61 5159 L 14692.09 

3708 H 11310.49 5165 L 14706.99 

3934 M 11807.87 5172 L 14724.37 

3874 L 11676.50 5417 L 15337.20 

4075 L 12123.61 5502 L 15553.46 

4078 M 12130.37 5720 L 16130.13 

4292 L 12617.67 5652 L 15940.89 

3938 L 11818.50 5731 L 16143.60 

4631 L 13411.12 5971 L 16773.89 

5434 L 15382.40 6329 L 17738.76 

3161 M 10152.51 6583 L 18435.72 

4631 L 13411.12 2907 L 9635.34 

4783 H 13773.90 8257 M 23385.04 

1112 M 11340.44 8327 L 23601.91 

Table C.1: The variables from the loadings plot and their corresponding to m/z ratio 

ion signals for high producer cell line samples 
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C.2      The variables from the loadings plot and their corresponding to m/z ratio 

signal ions for low producer cell line samples   

Since most of the m/z ratio signal ions are singly charged protonated protein (MH
+
) 

molecules, they represent the approximate MALDI experimental MWs of the ionised 

proteins expressed by the high producer cell lines. The magnitude of the loadings may 

reveal how expression of proteins varies with growth phase. Loadings were considered to 

have high intensity (H) if the magnitude was greater than 0.04; medium intensity (M) if 

the magnitude was greater than 0.02, but less than 0.04; and low intensity (L) if the 

magnitude was between 0 and 0.02. 

 

Variables 

from 

loadings 

plot 

Intensity of 

variable from 

loadings plot  

Associated m/z 

(MH
+
) or 

experimental 

MW  

Variables 

from 

loadings 

plot 

Intensity of 

variable from 

loadings plot  

Associated 

m/z (MH
+
) or 

experimental 

MW  

536 L 5458.76 3817 L 11550.75 

768 L 5815.29 3830 L 11579.37 

979 L 6149.35 3835 L 11590.39 

1179 L 6474.60 534 L 5455.73 

1294 L 6665.42 1180 L 6476.25 

1589 L 7167.57 1293 L 6663.75 

2306 L 8464.08 1466 L 6955.98 

2737 L 9295.27 1589 L 7167.57 

2967 L 9754.76 1781 L 7504.19 

3110 L 10046.03 2308 L 8467.85 

3198 L 10227.40 4783 H 13773.90 

3829 L 11575.46 2967 L 9754.76 

3851 L 11623.96 3110 L 10046.03 

3972 L 11892.56 3654 L 11193.23 

4129 M 12245.63 3970 L 11888.09 

5170 L 14717.39 4126 M 12238.84 

5236 L 14881.76 4830 L 13885.12 

6354 L 17804.70 5230 L 14866.78 

6404 L 17941.54 6205 L 17400.02 

9403 L 27107.20 1112 M 11340.44 

47 L 6382.26 9403 L 27107.20 

72 L 6482.42 711 L 9307.20 

115 L 6656.52 902 L 10250.44 

187 L 6953.20 1091 L 11228.61 

275 L 7324.59 1135 L 11462.73 

396 L 7851.03 1275 L 12223.72 

516 L 8391.16 2202 L 17879.63 

2829 L      22306.94    

Table C.2: The variables from the loadings plot and their corresponding to m/z ratio 

ion signals for low producer cell line samples 
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