
Creating Novel Ligand Libraries from 
Air-Stable, Chiral Primary Phosphines 

 

 

PhD Thesis Submitted by 

Arne Ficks 
 

 

 

 

 

Supervisor 
Dr. Lee J. Higham 

 

 

 

 

School of Chemistry 
Faculty of Science, Agriculture and Engineering 

Newcastle University, Newcastle upon Tyne 
NE1 7RU, United Kingdom 

April 2013 



II 

Thesis Abstract 

The fearsome reputation of primary phosphines, many of which are toxic and highly reactive 

towards atmospheric oxygen, has constrained the use of these versatile compounds in 

synthetic chemistry. However, a few examples of user-friendly stable primary phosphines 

have been reported which owe their stability to high steric encumbrance or is as yet 

unexplained. Recently an electronic stabilisation has allowed for the synthesis of novel MOP-

type phosphorus ligands with previously inaccessible architectures that have potential 

applications in homogeneous asymmetric catalysis; an introduction into the topic is given in 

Chapter 1. 

The first air-stable chiral primary phosphines 1a,b were developed in our labs. We 

subsequently simplified and improved the synthetic approach to afford these and previously 

unreported synthons on a multigram scale, which is described in Chapter 2. 

 

Phosphiranes are highly strained heterocycles with a small sum of bond angles at the 

phosphorus (Σ°(P): <260). They act as ligands with interesting properties upon metal 

complexation due to the unusual electronics they possess as a result of the imposed ring 

strain; this leads to high s-character at the phosphorus and both lowered HOMO and LUMO 

energy levels compared to their acyclic counterparts. In Chapter 3 we report the synthesis of 

chiral binaphthyl-phosphirane ligands 14a,b offering high thermal and air stability, as well as 

the synthesis and solid state structures of their platinum(II) dichloride complexes. Initial 

findings for the application of the phosphiranes in the palladium catalysed asymmetric 

hydrosilylation of styrene are discussed. 

Furthermore, we were able to synthesise MOP-dimethylphosphine, MOP-bis(dimethyl-

amino)phosphine and MOP-dimethylphosphonite ligands in one-pot reactions from 1a,b. 

Their peculiar structural and electronic parameters, in addition to those of MOP-phosphiranes 

14a,b, are discussed in Chapter 4. The coordination chemistry of these compounds was 

investigated on platinum(II) and palladium(II) metals elucidating their cis/trans influences 



III 

and aryl side-on coordination respectively. We also carried out comparative studies in the 

allylic alkylation of (rac)-(E)-1,3-diphenylallyl acetate and the hydrosilylation of styrene, 

utilising palladium complexes of those MOP-type ligands as asymmetric catalysts. 

In Chapter 5 we report the efficient synthesis of novel MOP-phosphonite hybrid ligands 33a,b 

and 34a,b which incorporate two binaphthyl groups around the single phosphonite P-donor. 

We present their methallylpalladium complexes, which were studied in detail both in the 

solid-state and in solution. The palladium catalysed asymmetric hydrosilylation of styrene 

was again carried out and the results analysed in view of the molecular structure of the 

ligands. Furthermore, rhodium complexes of the same ligands were investigated, in particular 

with a view to examining their binding behaviour towards the metal. An unusual aromatic 

side-on binding mode was revealed by X-ray crystallography and further elucidated in 

solution by extended NMR experiments. Solution NMR studies also revealed a dynamic 

behaviour of these complexes, triggered by the hemilabile binding of the ligands towards the 

metal centre. 

Finally, we describe the synthesis of novel MOP-phosphonodichalcogenoite and MOP-

phosphaalkene ligands in Chapter 6. Their corresponding gold(I) complexes were prepared 

and representative examples were characterised by X-ray diffraction. For the MOP-

phosphonodiselenoite derivatives we also report the characteristic 
77

Se NMR data. 
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Chapter 1 —  Asymmetric Catalysis Using Monodentate P-Ligands 

Transition metal catalysts provide a versatile approach to the synthesis of a variety of 

chemical compounds. Common homogeneous catalytic systems contain a metal-centre 

decorated with a suitable ligand scaffold. In chemical reactions these catalysts activate 

substrates by lowering activation barriers to transition states. In an asymmetric environment, 

e.g. when using a chiral ligand, catalysts can orientate pro-chiral substrates selectively in a 

certain way so that the formation of one enantiomer product is favoured. Thus, asymmetric 

catalysis is a convenient way to synthesise large amounts of optically active material from 

achiral substrates using only small fractions of chiral catalysts to start with. An important 

class of ligands used in homogeneous catalysis are the phosphines. They are organo-

phosphorus compounds that can act as Lewis bases by utilising their free electron pair on the 

P(III)-atom in order to coordinate onto metals. 

1.1 A Brief Historic Overview 

Homogeneous catalysis utilising monodentate phosphine ligands was introduced by 

Wilkinson and co-workers in 1965, who showed that [RhCl(PPh3)3] catalysed the 

hydrogenation of alkenes.
1
 It was the first time that a homogeneous catalyst showed 

comparable high catalytic activity to their, at the time already well-known, heterogeneous 

counterparts. Homogeneous catalysis may offer better selectivity, milder reaction conditions 

and better variation possibilities than heterogeneous processes; disadvantages normally lie in 

catalyst/product separation and lower thermal stability of the catalyst.
2
 For his contributions 

in the area of organometallic chemistry Wilkinson was awarded the Nobel Prize in chemistry 

in 1973 (shared with E. O. Fischer).
3
 

Later in 1965, Vaska et al. used their trans-[IrCl(CO)(PPh3)2] complex as a homogeneous 

catalyst for the reduction of alkenes.
4
 Horner and co-workers, who were investigating the 

influence of different phosphine ligands on the catalytic activity of Wilkinson’s rhodium 

complex, reported in 1968 that they were planning to use chiral tertiary phosphines (the 

synthesis of which they had published back in 1961)
5
 in order to achieve stereospecific 

hydrogenations.
6
 In October of the same year Knowles et al. were the first to utilise an 

optically active phosphine ligand MePPh(iPr) (Figure 1.1) on rhodium so that they could 

prepare hydratropic acid in 15% optical yield.
7
 



Chapter 1 — Asymmetric Catalysis Using Monodentate P-Ligands 2 

 

Figure 1.1 Early examples of chiral monophosphine ligands. 

The ligand that was used is chiral by virtue of its three different substituents on the P-atom; 

the inversion barrier of phosphines, 29–31 kcal/mol for methyl(phenyl)(n-propyl)phosphine 

(MPPP, Figure 1.1), lies sufficiently high to prevent racemisation.
8
 Horner and co-workers 

published their contribution to asymmetric catalytic hydrogenations in December 1968, 

showing that prochiral styrene derivatives can be hydrogenated in up to 8% optical yield by 

using MPPP (Figure 1.1) as the P-chiral ligand.
9
 In 1971 Morrison and co-workers 

synthesised neomenthyldiphenylphosphine (NMDPP, Figure 1.1) from menthyl chloride, a 

readily available chiral precursor.
10

 Although the chirality of the ligand is located away from 

the P-atom, it gave up to 61% ee in rhodium catalysed hydrogenations.
11

 The enantio-

selectivity of this reaction could be further enhanced in 1972 when Knowles and co-workers 

accomplished up to 90% ee in the reduction of α-(acylamino)acrylic acids utilising their chiral 

CAMP and PAMP ligands (Figure 1.1).
12

 

 

Figure 1.2 Selection of bidentate chiral phosphine ligands. 

For the next 25 years the development of phosphine ligands focused mainly on the synthesis 

of bidentate derivatives. The first chiral diphosphine ligand DIOP (Figure 1.2) was developed 

by Kagan et al. in 1971; the ligand was prepared from naturally occurring (+)-tartaric acid and 

used in several asymmetric reductions giving optical yields of up to 72%.
13

 In 1975 Knowles 

and co-workers reported the bidentate DiPAMP phosphine (Figure 1.2) which was derived 

from the monodentate PAMP ligand.
14
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DiPAMP was employed by the Monsanto Company for the commercial synthesis of L-DOPA 

(a drug for the treatment of Parkinson’s disease), thus providing the first example of an 

asymmetric organometallic catalyst being used on an industrial scale (Scheme 1.1).
15

 For his 

pioneering work in the field of asymmetric hydrogenations, Knowles was eventually awarded 

the Nobel Prize in chemistry in 2001 (shared with Noyori and Sharpless).
16

 

 

Scheme 1.1 Monsanto L-DOPA synthesis using (R,R)-DiPAMP as chiral ligand in the hydrogenation step. 

Another milestone in the development of bidentate phosphine ligands was the discovery of 

BINAP by Noyori in 1980 (Figure 1.2, page 2).
17

 This atropisomeric C2-symmetrical 

bisphosphine ligand worked well in Rh(I) and Ru(II) catalysed asymmetric hydrogenations 

(for atropisomerism see Chapter 1.3.1). The scope of the reaction was greatly extended so that 

the catalytic hydrogenation worked with a wide range of functionalised alkenes.
18

 Dupont’s 

DuPHOS-Rh catalysts achieved the effective synthesis of various unnatural α-amino acids in 

asymmetric hydrogenations from their α-enamide substrates;
19

 the DuPHOS ligand (Figure 

1.2) was first reported by Burk in 1991.
20

 

JosiPhos (Figure 1.2) is a successful bidentate ligand that features planar chirality (the chiral 

plane is on the substituted ring) in addition to its chiral centre. It is based on a ferrocene 

ligand motif that was first used by Hayashi in the early 1980s (vide infra). The ligand was 

developed by Togni and co-workers in the research laboratories of Ciba-Geigy in 1994. The 

company is now known as Solvias and currently sells 40 ligand derivatives of the JosiPhos 

family.
21

 

While many new bidentate ligands were developed and applied in asymmetric transformations 

in the 1980s and 1990s, the field of chiral monophosphine ligands remained relatively 

unexplored for a number of years. Nevertheless, a few examples of ligands that were capable 

of achieving high levels of enantioselectivities were synthesised. In particular Hayashi and co-

workers contributed in this field. They reported the PPF-OMe ligand containing ferrocene-

based planar chirality,
22

 the axially chiral OMe-MOP ligand
23

 and a variety of different 

substituted derivatives (Figure 1.3).
24
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Figure 1.3 Selection of chiral monophosphorus ligands. 

The renaissance of monodentate phosphorus ligands was finally initiated in the year 2000, 

whereby the conventional wisdom at the time, that “efficient asymmetric hydrogenation will 

generally require the use of chelating (bidentate) ligands”, was revolutionised.
25

 A 

monodentate species of the DuPHOS ligand had been published by Fiaud and co-workers 

(Figure 1.3)
26

 which gave 82% ee in the asymmetric hydrogenation of methyl N-acetylphenyl-

dehydroalaninate.
27

 Subsequently three different research groups independently reported 

monodentate phosphorus ligands based on the BINOL binaphthyl-backbone that could 

achieve high turnover numbers and high selectivities of up to >99% ee in similar reactions. 

These efforts by Pringle’s,
28

 Reetz’s,
29

 and Feringa’s
30

 research groups (Figure 1.3) were later 

highlighted by Komarov and Börner.
31

 Also published in 2000 was a review by Lagasse and 

Kagan in which the authors stated that monophosphines “will play a role of increasing 

importance in many aspects of organometallic catalysis”.
32

 Indeed, phosphoramidite ligands 

turned out to have a significant academic and commercial impact with their applications as 

chiral catalysts in a variety of asymmetric transformations.
33

 Consequently these and other 

monodentate phosphorus ligands were further developed and refined. Today, a large number 

of derivatives of each of the discussed ligands are available, as well as completely new ligand 

scaffolds relying on a single phosphorus donor atom.
34

 

1.2 Electronic and Steric Parameters of Phosphorus Ligands 

Ligands play a key role in organometallic chemistry as their electronic and steric parameters 

significantly impact the overall properties of transition-metal complexes. The development 

and optimisation of homogeneous organometallic catalysts therefore often requires the 

screening of a number of possible ligand candidates. Having a deeper understanding about the 

effects that a specific ligand might have on the outcome of a catalytic reaction can help focus 

experimental efforts and guide further experiments in that optimisation process.
35
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The quantitative measurement of electronic and steric properties of phosphorus ligands was 

most prominently rationalised by Tolman, whose key contribution from 1977 has been cited 

more than 3500 times as of January 2013.
36

 Two parameters were defined to describe ligand 

effects separating electronic and steric contributions. It is important to notice that this 

separation is somewhat arbitrary as the two effects can be closely related to each other. For 

example, large substituents on the P-atom normally decrease the pyramidalisation of the 

structure which results in a lower s-character of the phosphorus lone pair.
37,38

 

1.2.1 Steric Parameters 

The Tolman cone angle θT is most commonly used to describe the steric effects of phosphorus 

ligands. It was introduced after it became apparent that the coordination equilibrium in NiL4 

complexes (Table 1.1) was inexplicable by solely relying on electronic properties.
39

 Instead, 

the dissociation constant Kd increases with the growing steric encumbrance around the 

phosphorus atom and is thereby almost unaffected by the electronic character. 

Table 1.1 Equilibrium constant Kd of NiL4 in relation to the ligand parameters θT and S4. 

 

entry L Kd
a
 θT

a
 S4

b
 

1 P(OEt)3 < 10
–10 c

 109° 43.2° 

2 PMe3 < 10
–9 c

 118° 38.9° 

3 PEt3 1.2 * 10
–2

 132° 38.2° 

4 PMePh2 5.0 * 10
–2

 136° 33.4° 

5 PPh3 –
d
 145° 31.2° 

a
 Selected values (Kd at 25 °C in benzene) from ref. 36. 

b
 Values from ref. 46a. 

c
 At 70 °C. 

d
 No Ni(PPh3)4 was detected.

 

The θT parameter was originally determined using a mechanical angle measuring device and 

was defined as the apex angle of a cylindrical cone centred at a distance of 2.28 Å from the 

donor atom; the sides of the cone just touch the van der Waals surfaces of the outermost 

atoms.
39

 This relatively simple model has some limitations, mainly based on approximations 

made to determine the lowest energy conformation and the van der Waals surface. For 

unsymmetrically substituted phosphorus compounds the half-angles θi can be used to define 

an average effective cone angle θT. However, if the substituent groups of the phosphorus 

ligand differ greatly, the values obtained may not reflect the actual properties of the 

compound.
40

 The cone angle concept was modified and extended to overcome some 

limitations of the original model; cone angles were calculated based on X-ray structure 
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data.
40,41

 The geometrical determination from crystallographic data according to Mingos et al. 

is shown in Figure 1.4.
42

 The following relationships apply: 

 𝜃𝑖 = 𝛼 +
180

𝜋
∗ 𝑠𝑖𝑛−1 (

𝑟 

𝑑
) (1.1) 

 𝜃T =
2

3
∑ 𝜃𝑖
3
𝑖  (1.2) 

where rH is the van der Waals radius of hydrogen. 

Rather than being based on an idealised molecular model, this methodology leads to cone 

angles of individual structurally characterised molecules.
40,41,42

 Alternatively, the utilisation of 

quantum chemical calculations may be desirable to obtain the necessary structural data.
43

 

 

Figure 1.4 Cone angle determination from crystallographic data based on geometric relationships. 

Geometric deformations in phosphorus fragments may be more directly described using the 

symmetric deformation coordinate S4' which was first introduced by Orpen and co-workers.
44

 

As a measure of flattening or pyramidality around the phosphorus, S4' is defined as the sum 

of Z-P-R angles (αi) minus the sum of R-P-R angles (βi), with Z describing the coordinated 

atom of the PR3 ligand (Figure 1.5). A modified descriptor coined S4 is given for free ligands, 

where Z is a perpendicular vector to the plane containing the three substituents of the 

phosphorus atom.
45

 The descriptor is part of a computational ligand knowledge base that was 

developed by Fey, Harvey, Orpen and co-workers;
46

 selected S4 values are listed in Table 1.1 

on page 5. 

 

Figure 1.5 Definition of angles for the calculation of S4' = (α1 + α2 + α3) – (β1 + β2 + β3). 
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1.2.2 Electronic Parameters 

In order to quantify the electronic effects of phosphorus ligands, Tolman chose to use IR 

spectroscopy to determine the symmetric stretching frequency of [Ni(CO)3L] complexes.
36

 

The resonance of the carbonyl groups is very sensitive towards alteration of L and its 

magnitude depends on the electronic properties of the complex. The phosphine ligand 

normally acts as a σ-donor and increases the electron density on the metal. The increased 

electron count is transferred through π-back-bonding into anti-bonding orbitals of the 

carbonyl group, which reduces the bond order of CO (Figure 1.6). Thus, good net-donor 

ligands are indicated by a shift of the CO stretching frequency to lower wavenumbers (lower 

in energy). The value is thereby almost unaffected by the specific size of the ligand or steric 

crowding on the metal. 

 

Figure 1.6 Back-donation into anti-bonding orbitals reduces the bond order of the carbonyl group. 

Other transition-metal carbonyl complexes can be used as alternatives to [Ni(CO)3L] to gain 

quantitative insights into the electronic structure of phosphorus ligands.
47

 Tolman himself 

stated that “We could have chosen some other carbonyl complex, but Ni(CO3)L forms readily 

[…] even if L is very large.”
36

 Rhodium(I) complexes of the general structure trans-

[RhCl(CO)(L)2] have been studied in this context, which have an advantage in their safety of 

preparation (Ni(CO)4 is highly toxic) and their high degree of stability.
48

 The values correlate 

fairly well with those obtained from Ni(0) complexes; selected wavenumbers for both types of 

carbonyl complexes are given in Table 1.2. 

In addition to IR measurements, coupling constants between phosphorus and selenium have 

been used to evaluate the electronics of phosphorus ligands.
49

 It was demonstrated that the 

1
JPSe coupling in a phosphine selenide is inversely correlated to the σ-donor strength of the 

parent phosphine.
50

 According to Bent atoms tend to concentrate their s-character in orbitals 

directed towards electropositive groups.
51

 For ligands that carry electron-donating 

substituents, the s-character of the phosphorus hybrid orbital forming the P-Se σ-bond is 

therefore decreased. The reduced Fermi-contact between the bond-forming s-orbitals 

manifests itself in a smaller coupling constant. Values for a selection of phosphorus ligands 
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can be found in Table 1.2. The synthesis of phosphine selenides can be achieved from the 

respective phosphines by reaction with selenium or potassium selenocyanate.
49,52 

Table 1.2 IR data for the [Ni(CO)3L] and trans-[RhCl(CO)(L)2] complexes and NMR data for [(L)Se]. 

entry L ν(CONi)/cm
–1 a

 ν(CORh)/cm
–1 a

 
1
JP,Se/Hz

 b
 

1 P(p-Cl-Ph)3 2072.8 1983 746.9 

2 PPh3 2068.9 1979 728.9 

3 P(p-Me-Ph)3 2066.7 1976 717.6 

4 P(o-Me-Ph)3 2066.6 1974 704.6 

5 PPhCy2 2060.6 1964 701.2 

6 PCy3 2056.4 1943 672.9 
a
 Values (in CH2Cl2) from ref. 48a. 

b
 Values (in CDCl3) from ref. 50.

 

1.3 MOP Ligands and Derivatives 

The OMe-MOP ligand (Figure 1.3, page 4) is based on the chiral 1,1'-binaphthyl backbone 

which also forms the basic skeleton of the successful BINAP ligand family.
17

 The synthesis of 

MOP-type ligands was first reported by Hayashi and co-workers,
24

 starting from 1,1'-

binaphthyl-2,2'-diol (BINOL) that is commercially available in its enantiopure forms.
53

 The 

configuration of the molecule is normally retained during the synthetic route to the desired 

MOP-type ligand. The binaphthyl backbone of these ligands is capable of forming hemilabile 

binding interactions with various metals; palladium and ruthenium complexes of this type 

have been studied to some extent, mainly by Pregosin and co-workers.
54

 

1.3.1 Axial Chirality and Nomenclature 

In MOP-type ligands the rotation around the bonding of the two naphthyl groups is restrained 

due to the interfering hydrogen atoms on the rear aromatic rings. Therefore, the binaphthyl 

backbone possesses an axis of chirality, also referred to as atropisomerism.
55

 To determine the 

absolute configuration of molecules with axial chirality, sequence rules apply along the chiral 

axis (Figure 1.7, left).
56

 In the Newman projection the atoms in the front have a higher priority 

than those in the back (Figure 1.7, middle and right). The priority increases with the rise of 

the atomic number; the clockwise progression of the priority is assigned as (R)-configuration, 

whereas an anti-clockwise progression is assigned as (S)-configuration. The absolute 

configuration of 1a and 1b in Figure 1.7 is reversed (despite the same orientation on the 

backbone) because of the different order of priorities of the substituents.
57
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Figure 1.7 Assignment of the absolute configuration of (S)-1a and (R)-1b. 

1.3.2 Synthesis 

The H-MOP ligand bears no substituent at the 2'-position and was originally prepared starting 

from monotriflate I (Scheme 1.2).
58

 The starting material was available by monotriflation of 

BINOL using Tf2NPh and 2,4,6-trimethylpyridine, a procedure developed by Katsuki and co-

workers.
59

 The following hydrogenolysis and subsequent sulfonylation of the resulting 

hydroxy-binaphthyl gave monotriflate II in 92% yield. The palladium catalysed 

phosphinylation was carried out using an in situ generated Pd-dppb complex as catalyst. The 

phosphine oxide III was reduced with trichlorosilane yielding enantiopure H-MOP. 

 

Scheme 1.2 Synthetic procedure to H-MOP. 

The introduction of a variety of substituents in the 2'-position is possible and was achieved 

starting from 1,1'-binaphthyl-2,2'-ditriflate (IV, Scheme 1.3).
60

 The selective monophos-

phinylation of IV was first described by Morgans et al. in 1990,
61

 and was found to be a 

convenient method of preparing monophosphine compounds. The reaction of the remaining 

triflate group in V is prevented in the palladium catalysed reaction because of the steric bulk 

of the diphenylphosphinyl group in the 2-position. It is however a convenient functional 

group for the introduction of other various types of substituents. The methoxy group in OMe-

MOP was introduced in two steps from V as shown in Scheme 1.3.
60

 Subsequent reduction of 

the phosphine oxide VI finally led to the desired phosphine in excellent yields. 
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Scheme 1.3 Synthetic procedure to OMe-MOP. 

Different 2'-substituted MOP derivatives were obtained from V by comparable reaction 

sequences (Figure 1.8). For example, triflate V was reacted with Grignard reagents in a nickel 

catalysed cross-coupling reaction to give 2'-alkyl-substituted compounds such as (S)-Et-

MOP.
60

 Nickel catalysis was also used for the introduction of the cyano group in (R)-CN-

MOP, which could be further transformed to obtain (R)-CH2NMe2-MOP.
58

 The hydroxy 

derivative (R)-OH-MOP was obtained by missing out the alkylation step of the corresponding 

phosphine oxide. 

The aryl-backbone of the MOP ligand was also modified (Figure 1.8); (R)-MOP-phen was 

prepared from 3,3'-dihydroxy-4,4'-biphenanthryl in analogy to the binaphthyl synthesis which 

had given OMe-MOP.
62

 The biaryl derivative VII was synthesised from its 2,6-bistriflate 

precursor by a palladium catalysed enantioposition-selective cross-coupling reaction.
63

 

 

Figure 1.8 MOP-type ligands with different 2'-substituents (left) or a modified aryl-backbone (middle/right). 

The P-aryl substituents of the H-MOP ligand were changed using a slightly modified reaction 

procedure compared to the original synthesis by varying the diarylphosphine oxide. Good to 

excellent yields were obtained for the palladium catalysed phosphinylation of II and the 

subsequent reduction (Scheme 1.4).
64

 In the case of P-aryl substituted OMe-MOP derivatives 

an alternative synthetic route has been developed because some of the bulky diarylphosphine 

oxides failed to undergo the phosphinylation reaction with IV.
65

 Access to these derivatives 

was achieved via diethylphosphonate VIII, subsequent conversion to the dichloride using 

thionyl chloride, and further treatment with an excess of the appropriate aryl Grignard reagent 
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(Scheme 1.4).
65

 The final alkylation and reduction steps followed the usual procedures that 

were known from the synthesis of OMe-MOP (cf. Scheme 1.3 on page 10). 

 

Scheme 1.4 MOP-type ligands with modified P-aryl substituents. 

The preparation of electron-rich P-alkyl substituted MOP ligands was reported by Buchwald 

and co-workers using the palladium catalysed phosphinylation reaction in analogy to 

Hayashi’s method (Scheme 1.5).
66

 Good yields were achieved in the case of the diisopropyl-

phosphine (R' = iPr) but conversions were rather low for the more sterically demanding 

dicyclohexyl derivative (R' = Cy). The MOP-dimethylphosphine (R' = Me) was prepared by 

another research group (Shi et al.) using similar reaction conditions, but no yields were 

reported.
67

 

 

Scheme 1.5 Electron-rich MOP-type ligands bearing different P-alkyl substituents. 

An alternative synthesis of electron-rich MOP derivatives was described by Zhang and co-

workers, whereby the use of precious metals and triflic anhydride was completely avoided 

(Scheme 1.6).
68

 Dinaphthofuran IX was obtained by dehydration of BINOL with an HY 

zeolite. This reaction step required elevated temperatures of 180 °C and therefore is 

unsuitable for the synthesis of single enantiomer products. The heterocycle was opened with 

lithium metal to afford the intermediate dilithium salt X. This was further reacted with chloro-
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dicyclohexylphosphine to give MOP-phosphine XI. Due to the vulnerability of XI towards 

oxidation, the alkylation was achieved in a sequence of four reaction steps via the phosphine 

oxide. 

 

Scheme 1.6 Alternative synthetic route to MOP-type ligands which avoids the use of precious metals. 

Gilheany and co-workers reported the synthesis of the P-chiral MOP analogue XIII (Scheme 

1.7).
69,70

 The direct phosphinylation of triflate XII was achieved using nickel catalysis under 

reaction conditions that were first described by Cai et al. for the synthesis of BINAP.
71

 The 

two resulting diastereomers of the MOP-phosphine were separated in the form of their 

protected phosphine boranes by column chromatography. The deprotection of the borane 

adducts was carried out in a basic environment with diethylamine. 

 

Scheme 1.7 Synthesis of P-chiral MOP-type ligands. The two diastereomers were separated on silica media by 

column chromatography. 

The heterocyclic MOP derivative XVI was synthesised by RajanBabu and co-workers 

(Scheme 1.8).
72

 Primary phosphine XV was obtained from reduction of phosphonate XIV, 

which was then reacted with a cyclic sulfate to give MOP-phospholane XVI. The reported 

yields for these reactions were rather low; however the reduction of XIV can be achieved in 

very good yield using both LiAlH4 and Me3SiCl as reducing agents, as shown by Higham, 

Gilheany and co-workers.
73

 An optimised large scale synthesis of this and other chiral primary 

phosphine precursors is described in more detail in Chapter 2. 
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Scheme 1.8 Synthesis of a MOP-phospholane ligand via its primary phosphine precursor. 

1.3.3 Aryl Side-on Coordination of Binaphthyl Ligands 

In addition to their P-atom, the atropisomeric MOP-type ligands are capable of using their 

aromatic backbone as donors to stabilise coordinatively unsaturated metal complexes; in 

particular palladium and ruthenium metal-complexes of this kind have been investigated in 

some detail.
54

 The chelating ligand fragments are often described as hemilabile; in contrast to 

the P-donor, the arene is usually only weakly bonded. The MeO-MOP Pd(I) dinuclear salt 

XVII provides an example of η
2
-arene interactions (Figure 1.9); its crystal structure shows 

that the naphthyl groups are acting as bridging diene fragments across the Pd–Pd bond.
74

 The 

complex was obtained from the reaction of two MeO-MOP ligands with [Pd2(MeCN)6](BF4)2.  

 

Figure 1.9 Aryl η
1
- and η

2
-binding modes of the MeO-MOP ligand on palladium. 

When the same ligand was reacted with [Pd(acac)(MeCN)2]BF4 it formed an η
1
-arene 

coordinated complex XVIII exhibiting a σ-bond to the 1'-carbon of the binaphthyl fragment.
75

 

The positive charge is thereby delocalised on the naphthyl moiety. The similarly coordinated 

compound XIX was obtained from the reaction of a slightly modified OMe-MOP ligand (Ar 

= 3,5-di-t-butylphenyl), allylpalladium dimer, and subsequent treatment with NaBArF.
76

 An 

alternative η
2
-arene π-coordination mode for an allylpalladium complex using the OMe-MOP 

ligand was postulated by Kocovsky and co-workers.
77

 Finally, coordination of the methoxy-

oxygen (rather than the aryl backbone of the MOP ligand) was observed in complex XX.
74

 

The favoured coordination of the oxygen atom was interpreted as a result of the increased 

trans influence of the σ-bonded carbon donor, in contrast to the η
3
-allyl group in XIX.

54a
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In general, both σ- and π-bonding to the arene can occur, mostly depending on the MOP 

substituent in the 2'-position. H-MOP ligand derivatives have been analysed for their side-on 

coordination behaviour; compared to their OMe-MOP counterparts subtle differences in 

coordination modes were found (Figure 1.10). Allylpalladium complex XXI shows π-

coordination to the MOP aryl-backbone (cf. XIX in Figure 1.9).
76

 In XXII the metal is 

coordinated to the 2'-binaphthyl-carbon in a η
1
-σ-bound fashion (cf. XX in Figure 1.9).

74
 

 

Figure 1.10 Aryl binding modes in H-MOP-type Pd-complexes. 

Complex XXIII was synthesised from H-MOP and Pd(OAc)2 with subsequent addition of 

proline sodium salt.
78

 The H-MOP ligand was thereby deprotonated in the 2'-position during 

the initial reaction step. A comparable palladium complex was obtained from the oxidative 

addition of bromobenzene to (BINAP)2Pd, initially giving (BINAP)Pd(Ph)(Br). The resulting 

palladacyclic structure XXIV was formed when the reaction mixture was heated to 65 °C 

overnight under elimination of benzene.
79

 

The most common aryl bonding mode for ruthenium is η
6
 as shown in Scheme 1.9.

80
 The H-

MOP complexes XXVI and XXVII are easily accessible from BINAP complex XXV under 

acidic conditions and in the presence of water. The P–C bond cleavage of one PPh2 group 

leads to the cationic MOP-complex XXVI. Phenyl migration to XXVII is possible in 

methanol; the P–C bond splitting and P–O bond making reactions are stereospecific and give 

rise to a single diastereomer. 

 

Scheme 1.9 Synthesis of binaphthyl ruthenium complexes with η
6
-aryl coordination. 
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In a synthetic approach that is also reliant on P–C cleavage of BINAP, the rhodium complex 

XXIX was synthesised via phosphonium salt XXVIII (Scheme 1.10).
81

 Migration of the 

PPh2Me group onto the metal is achieved in refluxing ethanol. According to the proposed 

mechanism the binaphthyl ligand is protonated by oxidation of the ethanol solvent to 

acetaldehyde. The η
4
-aryl-coordiantion mode was described based on 

13
C NMR data, 

although the authors were unable to obtain a crystal structure. 

 

Scheme 1.10 The H-MOP ligand in a proposed η
4
-aryl coordinated rhodium complex (XXIX). 

Coordination studies with other transition-metals have been investigated for related bi- and 

terphenyl derivatives but not for MOP-type ligands themselves. Metal-arene interactions of 

various strengths have been found for biphenylphosphines in their copper(I), silver(I), and 

gold(I) complexes, as exemplarily shown for XXX in Figure 1.11.
82

 Side-on aryl coordination 

to nickel(I) was reported for a terphenyldiphosphine derivative in complex XXXI.
83

 

 

Figure 1.11 Copper(I) and nickel(I) aryl side-on coordination has been investigated for biphenyl- and terphenyl 

derivatives XXX and XXXI, but not for MOP-type ligands. 

1.3.4 Palladium Catalysed Allylic Alkylation 

The allylic alkylation reaction has been studied in great detail and is nowadays a common 

transformation used in organic synthesis.
84

 The palladium catalysed asymmetric version with 

1,3-diphenylallyl acetate (Scheme 1.11, R = Ph) has become a common benchmark reaction to 

test the activity and selectivity of new chiral ligands.
85,86

 The typical reaction mechanism is 

depicted in Scheme 1.11. The substrate coordinates to the electron-rich palladium(0) centre to 

give complex A. The leaving group is located in the anti position relative to the metal. The 

oxidative addition to the η
3
-allylpalladium complex B is rate determining. Thus, electron 
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donating phosphines are necessary to enrich the palladium atom and allow the reaction to take 

place. The electrophilicity of B is thereby reduced, but the following nucleophilic substitution 

to D is irreversible and therefore is the driving force of the reaction. 

 

Scheme 1.11 Representative catalytic cycle for the palladium catalysed allylic alkylation. 

The nucleophilic attack occurs in the anti position to the metal. Its regioselectivity determines 

the enantioselectivity of the product if prochiral substrates with identical substituents at the 

terminal allyl carbons are used. The dashed arrow in Scheme 1.11 marks the alternative 

position of the attack leading to the opposite enantiomer. The allyl fragment can also undergo 

isomerisation to C before being attacked by the nucleophile, and thus influencing the 

enantioselectivity of the reaction. 

Dynamic equilibria of allylpalladium complexes have been studied in the absence of a 

nucleophile and different mechanisms for the allyl rotation have been described.
87

 The herein 

discussed processes are known as (i) syn/anti exchange and (ii) apparent allyl rotation. The 

observed dynamics depend on the steric and electronic nature of the complex. For 

monodentate phosphine ligands the allyl rotation is typically the result of a η
3
–η

1
–η

3
 

equilibrium, leading to a syn/anti exchange (i) through C–C bond rotation in the η
1
-bonded 

mode (Scheme 1.12).
88

 Due to the strong trans influence of the phosphine ligand, the syn/anti 

displacement is normally observed in cis position to the phosphine (R
1
 and R

2
), following the 

selective η
3
–η

1
 opening of the allyl ligand and rotation around the cis terminus.

89
 The syn/anti 

dynamics of the MOP complex [PdCl(allyl)(OMe-MOP)] were measured by NOESY NMR 

yielding an exchange rate of 2.2 s
–1

 at 0 °C.
76
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Scheme 1.12 Syn-anti exchange (i) via η
3
–η

1
–η

3
 mechanism for a generic allylpalladium complex. 

Another dynamic equilibrium can be caused by the apparent allyl rotation (ii), a formal 

rotation of the allyl group around the Pd-allyl axis. Three possible pathways have been 

proposed (Scheme 1.13): (ii a) A dissociative mechanism which leads to the formation of a 

coordinatively unsaturated three-coordinated complex; this is followed by the rotation around 

the L–Pd bond.
76,90

 (ii b) A η
3
–η

1
–η

3
 coordination equilibrium with a rotation around the C–

Pd bond in the η
1
-mode.

64b,91
 (ii c) An associative mechanism that involves the coordination 

of an additional ligand (coordination of a solvent molecule or an anion) forming a five-

membered coordination sphere to allow for pseudorotation.
92

 

 

Scheme 1.13 Possible pathways for the apparent allyl rotation in allylpalladium complexes: (ii a) dissociative 

mechanism with L–Pd bond rotation; (ii b) η
3
–η

1
–η

3
 exchange mechanism with C–Pd bond rotation; (ii c) 

associative mechanism with Berry pseudorotation. 

The apparent allyl rotation is the dominant exchange process in complexes with bidentate 

nitrogen ligands.
92,93

 However, an apparent allyl rotation has been observed for the MOP 

complex [Pd(allyl)(OMe-MOP)]OTf as the minor mode of interconversion, which occurred in 

addition to a syn/anti interchange in a relative ratio of 4:6 at 24.8 °C; none of the two 

exchange mechanisms were detected at lower temperature (–25 °C).
94
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Monophosphine ligands based on the atropisomeric binaphthyl backbone successfully 

alkylated allylic substrates in palladium catalysed reactions as illustrated in Figure 1.12. The 

results are summarised in Table 1.3. The symmetrically substituted (E)-1,3-diphenylallyl 

acetate (XXXII) was converted in up to 99% ee using ligands XXXV or XXXVI.
95,96

 

 

Figure 1.12 Examples of the allylic alkylation catalysed by chiral monophosphine-palladium complexes. 

Table 1.3 Palladium catalysed asymmetric allylic alkylation of substrates XXXII, XXXIII and XXXIV. 

entry ligand substrate base solvent T/°C t/h. Yield b:l
a
 ee ref. 

1 XXXV XXXII BSA CH2Cl2 0 16 82% — 86% 95 

2 XXXV XXXII BSA toluene 0 48 95% — 99% 95 

3 XXXVI XXXII BSA toluene 0 48 95% — 99% 96 

4 MAP XXXII BSA CH2Cl2 rt 24 87% — 64% 97 

5 MAP XXXIII BSA CH2Cl2 rt 24 91% 3:97 n.d. 97 

6 MAP XXXIV BSA CH2Cl2 rt 24 94% 1:200 n.d. 97 

7 OMe-MOP XXXIII NaH THF –30 6 97% 82:18 86% 98 

8 OMe-MOP XXXIV NaH THF 20 12 97% 21:79 n.d. 99 
a
 Ratio of branched to linear product formation.

 

For the alkylation of the pure regioisomers of linear (XXXIII) or branched (XXXIV) 

phenylpropenyl acetate the selective formation of the linear product was observed when MAP 

was employed as ligand in the reaction.
97

 In the case of OMe-MOP a regiochemical memory 

effect was noted; the linear substrate reacted predominantly to the linear product while the 

branched isomer gave the branched product as major compound.
98,99

 The regioselectivity and 

memory effect of the allylic alkylation have been subjected to further investigations.
94,100,101
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1.3.5 Palladium Catalysed Hydrosilylation 

The asymmetric hydrosilylation of alkenes has been recognised as an important reaction for 

the preparation of chiral alcohols via their respective silanes.
102

 It was first reported by 

Hayashi et al. who were utilising their OMe-MOP ligand in this palladium catalysed 

transformation in order to obtain 2-alkanols from terminal alkenes.
103

 The branched 

regioisomers were formed in ratios of about 9:1 compared to the linear products and high 

enantioselectivities of up to 95% were achieved. 

The hydrosilylation of styrene derivatives gave complete regioselectivity forming the 

branched products exclusively (Figure 1.13).
104

 Major improvements to the observed 

enantioselectivities in this reaction were made when the 2'-substituent of the MOP ligand was 

modified; selected results are listed in Table 1.4 (entries 1-5). The most successful derivative 

was the H-MOP ligand which was used to convert styrene to the branched silane product in 

93% ee.
105

  

 

Figure 1.13 Examples of MOP-type ligands that were used in the hydrosilylation of styrene. 

Table 1.4 Palladium catalysed asymmetric hydrosilylation of styrene. 

entry ligand
a
 T/°C t/h. Yield ee ref. 

1 (S)-H-MOP 0 12 100% 93% (R) 105 

2 (R)-OMe-MOP 0 24 100% 14% (R) 105 

3 (S)-Et-MOP 0 12 100% 18% (R) 105 

4 (R)-CN-MOP 0 24 100% 26% (R) 105 

5 (R)-OH-MOP 0 22 84% 34% (S) 105 

6 XXXVII 5 16 100% 88% (R) 106 

7 XXXVIII 5 43 100% 57% (R) 106 

8 XXXIX 5 2 100% 81% (S) 106 
a
 Catalysts were prepared in situ; reactions were conducted in solvent free conditions.
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The H-MOP ligand was modified by introducing different aryl-substituents onto its phenyl 

groups.
64a

 As a result, the selectivity of the hydrosilylation reaction could be further enhanced 

to 97% ee at 0 °C using a H-MOP ligand derivative with 3,5-(CF3)2C6H3 aryl groups on the 

phosphine. Modification of the P-aryl substituents also improved the selectivity of the OMe 

and CN substituted MOP ligands; the utilisation of 3,5-di-t-butylphenyl derivatives XXXVIII 

and XXXIX led to major selectivity improvements compared to the use of their respective 

MOP counterparts (Table 1.4, entries 7-8).
106

 The introduction of aryl-substituents in the 2'-

position of the binaphthyl group gave ligands that were successfully used in the asymmetric 

hydrosilylation of cyclic dienes.
107

 

The proposed catalytic cycles for the asymmetric hydrosilylation of styrene are depicted in 

Scheme 1.14.
108

 In the presence of a 2:1 ratio of monophosphine (LP) to palladium the 

reaction is believed to proceed via cycle A. The oxidative addition of trichlorosilane to the 

Pd(LP)2 species affords complex a. The following ligand exchange reaction allows for 

coordination of the alkene to give b; the equilibrium is expected to be on the side of the 

substrate because of the much higher metal affinity of the phosphine ligand. Hence, bidentate 

phosphorus ligands were found to be poor ligands in this transformation, due to their 

reluctance to liberate a coordination space for the incoming alkene. Subsequent migratory 

insertion and ligand coordination proceed to c and d. The cycle is closed after reductive 

elimination of the silane product and reformation of the Pd(LP)2 complex. 

 

Scheme 1.14 Proposed catalytic cycles for the palladium catalysed hydrosilylation of styrene at higher (cycle A) 

and lower (cycle B) phosphine loading. 

Low loadings of P-ligand facilitate the formation of complex e in which the palladium atom is 

stabilised by coordination of an additional alkene molecule. Reductive elimination of the 

silane product gives the two-coordinate complex f. Cycle B is completed after the oxidative 
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addition of trichlorosilane and formation of b. Cycle B is expected to proceed at a faster rate 

than cycle A as it does not require the displacement of a phosphine ligand. The possibility for 

side-on aryl coordination of MOP-type ligands (see Chapter 1.3.2) suggests that such arene 

interactions may arise to stabilise the low coordinated intermediates (i.e. c and f).
102a

 

1.3.6 Asymmetric Hydrogenation of Alkenes 

The asymmetric hydrogenation of alkenes is arguably one of the most studied reactions in 

homogeneous catalysis (cf. Chapter 1.1). In recent years monodentate binaphthyl based 

ligands with phosphonite,
28

 phosphite
29a

 and phosphoramidite
30

 functionalities have received 

much attention in this area of research.
34,109

 Their straightforward synthesis allows for the 

creation of large ligand libraries and subsequent combinatorial screening with any given 

substrate.
110

 For example, the MonoPhos ligand (XLIV) is synthesised in one step from 

BINOL-PCl, Et2NH and Et3N; the same reaction parameters have been used with a wide 

variety of secondary and primary amines to create hundreds of differently substituted 

MonoPhos derived phosphoramidite ligands.
110,111

  

The asymmetric hydrogenations of methyl 2-acetamidoacrylate (XL) and (Z)-2-acetamido-

cinnamate (XLI) are common benchmark reactions for this type of catalysis (Figure 1.14). 

BINOL-based phosphonite ligands XLII and XLIII gave up to 92% ee in the rhodium 

catalysed hydrogenation of XL and XLI (Table 1.5, entries 1-4). 

 

Figure 1.14 Examples of monodentate binaphthyl based phosphorus ligands that were employed in catalytic 

asymmetric hydrogenations. 

MonoPhos (XLIV) is one of the most successful ligands for asymmetric hydrogenations as it 

gives excellent enantioselectivities of up to 99% ee depending on the substrate (entries 5-6). 

Complete conversion of the starting material is normally achieved after a few hours at 

atmospheric pressure of hydrogen gas.
30
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MOP-type ligands have scarcely been used in asymmetric hydrogenation reactions and ligand 

XLV is one rare example. The reactivity of the catalyst was found to be considerably lower 

than MonoPhos yielding only 13% in the hydrogenation of XLI after 16 hours with a 

moderate selectivity of 60% ee (entry 7).
112

 In a different study the same reaction was tested 

with a H-MOP ligated rhodium complex (XXIX, Scheme 1.10 on page 15), but only 6% of 

product and no significant enantioselection were detected after 40 hours reaction time.
81

 

Table 1.5 Rhodium catalysed asymmetric hydrogenation of alkenes. 

entry ligand
a
 substrate solvent p(H2)/bar T/°C t/h Yield ee ref. 

1 XLII XL CH2Cl2 1.5 25 20 100% 80% (R) 28 

2 XLIII XL CH2Cl2 1.5 25 20 100% 63% (R) 28 

3 XLII
b
 XLI CH2Cl2 1.3 rt 20 100% 92% (S) 29b 

4 XLIII
b
 XLI CH2Cl2 1.3 rt 20 100% 73% (S) 29b 

5 XLIV XL CH2Cl2 1 25 20 100% 95% (R) 30 

6 XLIV XLI CH2Cl2 1 25 20 100% 99% (R) 30 

7 XLV XLI 
benzene/ 

methanol
c
 

2.6 25 16 13% 60% (R) 112 

a
 Catalysts were prepared in situ. 

b
 The (R)-configured enantiomer was employed. 

c
 Used in a 1:1 ratio.

 

1.4 Primary Phosphines as Ligand Precursors 

1.4.1 Air-stability of (Primary) Phosphines 

Primary phosphines have a reputation as unstable hazardous compounds due to their 

commonly observed high reactivity towards oxygen. Certain alkyl mono- (e.g. CH3PH2) and 

di- (e.g. H2P(CH2)2PH2) primary phosphines have been found to spontaneously ignite in air.
113

 

They also possess a characteristic pungent odour. For instance, King et al. reported that “...the 

odors emanating from the hood exhausts were so strong that they invalidated experiments on 

the olfactory sense of snakes in a neighbouring building. Phenylphosphine was the worst 

offender followed by phenyldivinylphosphine and 1,2-diphosphinoethane.”
114

 However, a few 

examples of user-friendly air-stable primary phosphines have been described.
115

 The 

introduction of steric encumbrance around the phosphorus usually leads to increased stability. 

As such, supermesitylphosphine (XLVI, Figure 1.15) is reasonably air-stable and only 

oxidised very slowly over a few months in air.
116

 Sterics have also been used to rationalise the 

air-stability observed for (9,10-dihydro-9,10-ethenoanthracen-9-yl)phosphine (XLVII).
117
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Figure 1.15: Primary phosphines with a high degree of air stability. 

More unexpected was the air-stability reported for ferrocenylphosphine XLVIII; its X-ray 

crystallographic analysis indicated that the PH2-unit is orientated away from the ferrocenyl 

group, and thus cannot offer steric protection at least in the solid-state.
118

 The authors 

proposed that the stability is caused by kinetics due to the presence of the redox-active 

ferrocene. Furthermore, the alkyl spacer seemed to play a key role in providing air-stability as 

the derivative without the spacer group was found to be sensitive to oxidation.
119

 The primary 

bisphosphine XLIX is also stable in air; the authors attributed the stabilisation to the remote 

electronegative heteroatoms which might confer stability through negative hyperconjugation 

to the P(III) centre.
120

 The first air-stable chiral primary phosphines 1a,b were reported by our 

group (Figure 1.16).
73

 Crystallographic analysis of 1b revealed that the environment around 

the phosphino group is exposed without any direct steric shielding, and an interaction between 

the P atom and O atom can be ruled out. 

 

Figure 1.16 Air-stable chiral primary phosphines 1a,b (left) and the solid-state structure of OMe-MOP-H2 (1b, 

right) showing the exposed phosphino group. 

Decreasing the amount of conjugation on the aryl backbone had a noticeable effect on the air-

stability. Primary phosphines with varied aryl substituents were exposed to air over 7 days at 

room temperature either neat or in chloroform solution. The relative amounts of primary 

phosphines remaining after this timeframe are shown in the diagram of Figure 1.17. The 

solution samples show a clear trend from the highly conjugated stable MOP-H2 phosphines 

1a,b (100% respectively), to the reasonably stable naphthylphosphines (72/74% respectively), 

to the even less conjugated and less stable 5,6,7,8-tetrahydro(2-naphthyl)phosphine (59%) and 



Chapter 1 — Asymmetric Catalysis Using Monodentate P-Ligands 24 

phenylphosphine (42%). The observed variations for the values in the neat state were 

attributed to the fact that 1a,b and 2-naphthylphosphine are solids under ambient conditions 

while 1-naphthylphosphine, tetrahydro(2-naphtyl)phosphine and phenylphosphine are oils. 

 

Figure 1.17 Stability of primary phosphines with a different extend of aromatic conjugation. 

As sterics are apparently an insignificant factor for the stabilisation of 1a,b towards air-

oxidation, the electronic nature of the compounds was investigated by the means of quantum 

chemical calculations. Remarkably few mechanistic studies on the air oxidation of phosphines 

have been published.
121

 From one of the more recent investigations there is spectroscopic 

evidence that the photolytic formation of the radical cation of triphenylphosphine leads to its 

oxidation in air via a radical mechanism.
121d

 The proposed mechanism is shown in Scheme 

1.15; the radical cation is formed and reacts with dioxygen to give a peroxy radical that 

ultimately leads to the phosphine oxide after reaction with a second equivalent of phosphine. 

 

Scheme 1.15 Proposed mechanism for the oxidation of phosphines to phosphine oxides. 

The SOMO energy levels of the radical cations of 1a,b were modelled and compared to those 

phosphines with less conjugated aryl-backbones (Figure 1.18) and a threshold value of  

–10 eV was postulated; phosphines with values above this level were found to be air-stable.
122

 

The model therefore allows for a universal prediction of the air stability/sensitivity of 

phosphine functionalised compounds. One must keep in mind however, that the oxidation of 

air-stable phosphines may still occur in specific environments such as in the presence of 

peroxides in aged ether solvents or by certain transition metal complexes. 



Chapter 1 — Asymmetric Catalysis Using Monodentate P-Ligands 25 

 

Figure 1.18 Radical cation SOMO energies (in eV) for different primary phosphines. Phosphines above -10 eV 

are found to be air-stable. 

1.4.2 Reactivity of Primary Phosphines as Ligand Precursors 

The high reactivity of the PH2 group and its consequently easy functionalisation makes 

primary phosphines an ideal class of precursor compound for other phosphorus ligands, which 

can be used in a variety of applications.
113,123

 Representative examples of synthetic 

transformations for primary phosphines are shown in Scheme 1.16.  

 

Scheme 1.16 Primary phosphines as versatile precursors to a variety of phosphorus compounds. 

The formation of dichlorophosphines was achieved using PCl5,
124

 triphosgene,
125

 phosgene
126

 

or N-chlorosuccinimide
127

 as chlorinating reagent. The PCl2 group can function as an 

electrophile to give access to P–C, P–O, and P–N derivatives that are potentially useful 

ligands in homogeneous catalysis (see Chapters 4.2 and 5.2).
125
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Water soluble (hydroxymethyl)phosphine derivatives have potential applications in biphasic 

catalysis and biomedicine. They are synthesised from the reaction of primary phosphines with 

aldehydes or ketones.
128

 The products form stable amine linkages with amino acids or 

peptides.
128a,129

 

Burk’s DuPHOS ligand family are very effective catalysts in rhodium catalysed asymmetric 

hydrogenations (q.v. Chapter 1.1).
19

 The five-membered phosphine heterocycles (phos-

pholanes), as well as the four membered counterparts (phosphetanes), are obtained from 

primary phosphines and the corresponding cyclic sulfates.
72,130

 

The hydrophosphination of the PH2 group has been carried out to get access to tripodal P-

ligand motifs (for example with Z=PPh2 or P(O)(OEt)2).
131

 Highly fluorescent derivatives of 

this type, which can potentially act as imaging agents in analytical biomedicine, have recently 

been synthesised in our group.
132

 

Further transformations from primary phosphines include the syntheses of dialkylphosphines 

(see Chapters 3.2 and 4.2),
133

 or diazaphospholanes
134

. 

1.5 Objectives 

This thesis aims to exploit new chiral ligand systems based on the MOP-type architecture. 

Primary phosphines 1a,b are the first air-stable chiral primary phosphines and ideal precursors 

for the purpose of accessing a variety of P-ligand functionalities (Chapter 1.4). Firstly, we 

describe the optimisation of the synthetic route to the valuable precursors 1a,b, in order to 

prepare these compounds on a multigram scale (Chapter 2). Secondly, the functionalisation of 

the PH2 group was undertaken, generally relying on two different synthetic strategies: (a) 

deprotonation of the primary phosphines enabled the reaction with electrophiles which gave 

access to novel phosphiranes (14a,b; Chapter 3), and (b) the transformation of primary 

phosphines to the corresponding dichlorophosphines made the phosphorus atom electrophilic, 

which then reacted with nucleophiles and facilitated the synthesis of dimethylphosphines 

(16a,b; Chapter 4), bis(dimethylamino)phosphines (18a,b; Chapter 4), phosphonites (19a,b, 

33a,b, 34a,b; Chapters 4-5) and phosphonodichalcogenoites (51a,b, 52a,b, 53b; Chapter 6). 

Thirdly, the coordination chemistry of these ligands was investigated on catalytically relevant 

transition-metals. The ligand-effects were described by their individual steric and electronic 

parameters, and a number of spectroscopic and crystallographic analyses were carried out to 

get a more detailed insight into the nature of the ligand-metal bonds. Aryl side-on 

coordination of MOP-type ligands via their binaphthyl backbone was found for selected 
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compounds in their palladium and rhodium complexes. Fourthly, we looked at the application 

of our ligands in asymmetric catalytic processes. The hydrosilylation of styrene and the allylic 

alkylation of (rac)-(E)-1,3-diphenylallyl acetate are common benchmark reactions to test the 

asymmetric induction of MOP-type ligands. These catalytic reactions were carried out 

(amongst others) in comparative studies to evaluate the potential of our ligands. 
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Chapter 2 —  Multigram Synthesis of Primary Phosphines 

 

 

Air-stable, chiral primary phosphines have been synthesised on a multigram scale. The key 

synthetic step is an optimised palladium catalysed phosphonylation reaction of aryltriflates, 

which opens up a valuable synthetic route to a chiral scaffold that is easily derivatised into 

novel phosphines.
135

 

2.1 Introduction 

Primary phosphines are largely neglected from the perspective of synthetic methodology, 

owing to their reputation as highly air-sensitive, toxic and pyrophoric compounds.
136

 In recent 

years a very limited number of “user-friendly” primary phosphines have been reported,
137

 

some of which take advantage of steric encumbrance in order to afford kinetic stability 

towards air oxidation;
138

 by definition this impacts on subsequent opportunities for further 

functionalisation. A handful of other primary phosphines whose unexplained and surprising 

air stability cannot be accounted for on steric grounds have also appeared in the literature (cf. 

Chapter 1.4.1).
139

 

 

Figure 2.1 (R)-OMe-MOP and the primary phosphines 1a and 1b. 

We discovered the first air-stable chiral primary phosphines 1a,b (Figure 2.1);
140

 according to 

our density functional theory-based model their air stability is attributable to the high level of 

conjugation in the binaphthyl backbone (Chapter 1.4.1).
141

 We have since shown that, despite 

this resistance to air oxidation (in air, no oxidation in the solid state or in chloroform solution 

was observed after seven days
140,142

), the phosphino group remains readily transformable to 
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yield diverse, previously inaccessible derivatives of the hemilabile phosphine MOP, an 

effective yet expensive ligand used in asymmetric catalysis.
143,144

 The potential of 1a,b as 

ligand precursors was demonstrated by the synthesis, inter alia, of novel phosphiranes and 

phosphonites which were then employed in asymmetric catalysis (Chapters 3-6).
145

 

After our earlier discovery, we therefore sought an efficient large-scale synthesis of 1a,b. The 

described synthetic approach was re-evaluated and the most problematic key step identified as 

the carbon-phosphorus coupling reaction which yields the diethyl phosphonates 6 and 9 

(Scheme 2.1). Typical yields for this transformation were moderate and reaction times of 3–4 

days were rather long. We also found that this reaction was somewhat temperamental and did 

not always provide us with the reported yields. Herein we report a new synthetic method 

which affords both these and previously unreported synthons in multigram quantities via a 

simplified and improved approach, with the focus on the phosphonylation step. 

 

Scheme 2.1 Synthesis of 1a, 1b and 1c: (i) Tf2O, (iPr)2NEt, DCM, 0 °C; (ii) Alkyl iodide, K2CO3, acetone; (iii) 

NEt3, HP(O)(OEt)2, Pd(OAc)2, DPPP, DMSO, H2O, 90 °C, or μ-wave, THF, 120 °C; (iv) H2, NEt3, Pd/C, EtOH; 

(v) Alkyl iodide, KOH, acetone; (vi) Tf2O, pyridine, DCM; (vii) LiAlH4, TMSCl, THF, –78 °C to rt. 

2.2 Results and Discussion 

The synthesis of 1a and 1b both started from commercially available (R)-BINOL (2; Scheme 

2.1). The slow addition of one equivalent of triflic anhydride at 0 °C in the presence of N,N-

diisopropylethylamine selectively afforded the monotriflated hydroxy binaphthalene 3 in an 
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excellent yield of 97%. The hydrogen atom as substituent in the 2'-position was introduced via 

hydrogenation on palladium/charcoal to give 4 in 84% yield; subsequent triflation of the 

remaining hydroxyl group led to 5 in 92% yield. All of these reactions proceeded 

quantitatively and yielded sufficiently clean products that could be used for subsequent 

reactions without the need for purification by column chromatography. 

Originally, access to the MeO-MOP derivative 1b was via the methoxy triflate 7. This was 

prepared by reacting 2 with the mild yet costly triflating reagent N-phenyl 

trifluoromethanesulfonimide
146

 to give monotriflate 3, followed by subsequent addition of 

methyl iodide.
147

 The transformation of 7 into the phosphonate 9 caused us some difficulties 

due to its unpredictable nature, erratic yields and small scale. A number of protocols 

describing the transition-metal catalysed phosphonylation and mechanistic studies of 

phosphorus-carbon bond formation have been published.
148,149

 However, reports about the 

preparation of arylphosphonates from aryltriflates remain relatively scarce.
150

 

Table 2.1 Screening of reaction conditions for the palladium catalysed phosphonylation.
a
 

 

entry ligand solvent additive yield (%)
b 

1 DPPP DMSO – 0 

2 DPPP DMSO KOAc (4.5 mg) 0 

3 DPPP DMSO H2O (0.01 mL) 43 

4 DPPP DMSO H2O (0.1 mL) 47 

5 DPPP EtOH – 0 

6 DPPP THF – 0 

7 DPPP THF H2O (0.01 mL) 12 

8 DPPP THF H2O (0.1 mL) 8 

9 DPPP Toluene – 0 

10 DPPB DMSO H2O (0.1 mL) 32 

11 DPPF DMSO H2O (0.1 mL) 0 

12 PPh3 DMSO H2O (0.1 mL) 0 

13 (S)-BINAP DMSO H2O (0.1 mL) 0 
a
 Conditions: 200 mg (0.46 mmol) 7, 0.10 mL NEt3, 0.07 mL diethyl phosphite, 5.2 mg 

(23 μmol) Pd(OAc)2, 35 μmol bidentate ligand or 70 μmol PPh3, 2 mL solvent, reflux or max. 

90 °C, 18 h. 
b
 Isolated yields after column chromatographic work-up. 
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Following on from our earlier investigations, optimisation of the reaction conditions was 

carried out by screening the phosphonylation of 7 to obtain 9 (Table 2.1). The active species 

in the catalytic cycle is palladium(0); when using palladium(II) acetate as catalyst precursor, 

an excess of phosphine is used as the reducing agent.
151

 The amount of starting material, the 

relative ratio of substrates, and the reaction time were kept constant throughout the screening. 

The quantity of diethyl phosphite was reduced to 1.2 equivalents as it has been reported that a 

significant excess of this compound can deactivate the palladium catalyst.
149 

The reaction was first attempted in dry dimethylsulfoxide and by employing the ligand 1,3-

bis(diphenylphosphinopropane), but no product could be isolated either in this case (entry 1), 

or when potassium acetate was used as an additive (entry 2). Interestingly, the addition of 

small amounts of water did lead to product formation (entries 3-4). The positive effect of 

added water on phosphonylation reactions has been described before, and was found to 

improve reproducibility of results.
152

 The exact role of the water in the original report and in 

our reaction has not yet been elucidated; however, it quickly became apparent that its 

presence appears crucial for product formation. The reaction could also be performed with 

tetrahydrofuran as solvent, again with added water, but this significantly lowered the yields 

(entries 6–8). Other phosphorus ligands tested were found to be inactive or inferior compared 

to the use of bis(diphenylphosphinopropane) (entries 10–13). 

Table 2.2 Substrate screening for the palladium catalysed phosphonylation.
a
 

 

entry substrate product yield (%)
b 

1 7 (R = OMe) 9 42 (33
d
) 

2 5 (R = H) 6 70 (14
d
) 

3 3 (R = OH) 8 74 (84
d
) 

4 12 (R = OTf) 13
c
 42 

5 10 (R = OEt) 11 38 
a
 Conditions: 0.46 mmol aryltriflate, 0.10 mL NEt3, 0.07 mL diethyl phosphite, 5.2 mg Pd(OAc)2, 

14.2 mg DPPP, 2 mL DMSO, 0.1 mL H2O, 90 °C, 24 h. 
b
 Isolated yields after column chromato-

graphic work-up. 
c
 Crude product also contained 6 which was isolated in 3% yield. 

d
 μ-wave, closed 

vessel: 2 mL THF, 0.1 mL H2O, 120 °C, 15 min. 

Having established viable reaction parameters for the conversion of triflate 7 to phosphonate 

9, we varied the aryltriflate using the optimised conditions. The procedure was carried out 

with the 2'-substituted binaphthyl triflates 3, 5, 7, 10 and 12, and the results are listed in Table 
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2.2. The reaction gave moderate to good yields, depending on the nature of the substituent. 

The best yields were achieved with the hydroxy derivative 3 and the H-substituted triflate 5. 

The yields decreased for the more sterically demanding triflates 7 and 10. The use of 

bis(triflate) 12 gave a moderate yield of the monophosphonate derivative 13; however, trace 

amounts of 6 in the reaction mixture made the purification of the crude material extremely 

difficult. 

We were also interested in the effect of using microwave irradiation for our phosphonylation 

reactions; the conversion of phenyltriflate to diethyl phenylphosphonate has been shown to be 

accelerated considerably by using a microwave power source.
153

 We chose to use the same 

reaction parameters that we had found from our initial screening (vide supra), but using 

closed microwave vessels. The employment of dimethylsulfoxide as solvent, however, led to 

an instant increase in pressure due to its degradation, a phenomenon that has been observed 

before.
154

 As a result, the solvent was changed to tetrahydrofuran and the temperature 

increased to 120 °C for 15 minutes. Although for the starting triflates 5 and 7 worse yields 

were attained from microwave irradiation, for the transformation of the hydroxy derivative 3 

into phosphonate 8, the yield increased to 84%, which successfully decreased the reaction 

time from 24 hours. This product crystallised as a dichloromethane solvate of a hydrogen-

bonded dimer, exhibiting pairwise interactions between the phenolic H atom and terminal O 

atom of the phosphonate group, with distances O1–H1···O6 of 0.83(5) Å and 1.83(5) Å, and 

O5–H5···O2 of 0.74(7) Å and 1.98(7) Å (Figure 2.2). 

 

Figure 2.2 View of the structure of the hydrogen-bonded dimer of 8 (25% probability displacement ellipsoids for 

non H-atoms, 10% for H atoms). All hydrogen atoms except H1 and H5 are omitted for clarity, together with the 

disordered solvent and minor disorder components of ethyl groups. The main conformational differences 

between the two halves of the dimer are in the orientations of the ethyl groups. 
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Having established high-yielding access to phosphonate 8 by both conventional heating and 

microwave irradiation, we reacted this derivative with methyl or ethyl iodide to give the 

corresponding alkoxy derivatives 9 and 11 respectively, using potassium hydroxide as base. It 

should be noted that, due to the lower solubility of 8 compared to its alkoxy-substituted 

counterparts in non-chlorinated organic solvents such as diethyl ether and ethyl acetate, it is 

convenient to directly alkylate the crude product of 8 and only then purify the resulting alkoxy 

compounds 9 and 11 by column chromatography; this gave higher overall yields (68–79%). 

The X-ray crystal structure of phosphonate 9 is shown in Figure 2.3. 

 

Figure 2.3 View of the structure of one of the two crystallographically independent molecules of 9 in the 

asymmetric unit (50% probability displacement ellipsoids). Hydrogen atoms are omitted for clarity. The two 

molecules show only minor conformational differences. 

The phosphonates 6, 9 and 11 were subsequently reduced to give the corresponding primary 

phosphines 1a, 1b and 1c using lithium aluminium hydride and trimethylsilyl chloride as co-

reductants. This combination of reducing agents is important, as it allows for essentially 

quantitative conversion; in the absence of trimethylsilyl chloride the reduction of 9 to 1b was 

limited to just 16%.
155

 The use of peroxide-free solvents is crucial to achieve a clean reaction 

process as the products are prone to oxidation by this species. The remarkable air-stability of 

the primary phosphines allowed for their straightforward purification on silica media, a 

procedure seldom considered or indeed applicable for this family of compound, with good 

yields of 81–85% recorded. 

2.3 Conclusion 

In summary we have now optimised an economical and more versatile synthetic route to 

valuable chiral primary phosphines. All reactions have been carried out on a multigram scale 

without reductions in yields. Hydroxy phosphonate 8 is functionalised readily to give new 
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alkoxy-substituted phosphonates and primary phosphines, as has been shown by the synthesis 

of the ethoxy derivatives 11 and 1c. 

2.4 Experimental Section 

2.4.1 General Considerations 

Table 2.3 Selected crystallographic data for compounds 8 and 9. 

 8 9 

formula 2C24H23O4P·CH2Cl2 C25H25O4P 

formula wt 897.71 420.42 

cryst syst orthorhombic monoclinic 

space group P2221 P21 

a, Å; α, deg 11.29130(10); 90 8.1104(12); 90 

b, Å; β, deg 23.1203(3); 90 18.188(5); 100.908(13) 

c, Å; γ, deg 33.9256(4); 90 14.941(4); 90 

V, Å
3
 8856.56(17) 2164.2(8) 

Z 8 4 

ρcalc, g cm
–3

 1.347 1.290 

μ, mm
–1

 2.449 0.156 

F(000) 3760 888 

Tmin/Tmax 0.5472/0.7577 0.9374/0.9547 

hkl range –13 to 11, –25 to 27, –40 to 40 –10 to 10, –22 to 23, –18 to 19 

θ range, deg 4.0 to 67.1 4.1 to 27.5 

no. of measd rflns 13362 17135 

no. of unique rflns (Rint) 7134 (0.0265) 9417 (0.0238) 

no. of obsd rflns, I > 2σ(I) 6550 7443 

refined params/restraints 608/34 541/1 

goodness of fit 1.038 1.043 

Abs. structure param. 0.06(2) 0.01(7) 

R1/wR2 (I > 2σ(I)) 0.0576/0.1597 0.0434/0.0845 

R1/wR2 (all data) 0.0622/0.1653 0.0687/0.0945 

resid electron dens, e Å
–3

 0.39/–0.67 0.26/–0.40 

   

All air- and/or water-sensitive reactions were performed under a nitrogen atmosphere using 

standard Schlenk line techniques. Tetrahydrofuran (sodium/benzophenone ketyl), toluene 

(sodium), ethanol (calcium hydride) and dichloromethane (calcium hydride) were dried and 

distilled prior to use. DMSO (Aldrich) was purchased in an anhydrous state and stored over 

molecular sieves. All other chemicals were used as received without further purification. 

Microwave-assisted reactions were performed in 10 mL closed vessels on a CEM Discover 

apparatus under automated power control based on temperature feedback. Flash 
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chromatography was performed on silica gel from Fluorochem (silica gel, 40-63u, 60A, 

LC301). Thin-layer chromatography was performed on Merck aluminium-based plates with 

silica gel and fluorescent indicator 254 nm. 
1
H NMR, 

13
C{

1
H} NMR, 

19
F NMR, and 

31
P{

1
H} 

NMR spectra were recorded on a JEOL Lambda 500 (
1
H 500.16 MHz) or JEOL ECS-400 (

1
H 

399.78 MHz) spectrometer at room temperature (21°C) using the indicated solvent as internal 

reference. Optical rotation values were determined on an Optical Activity Polaar 2001 device. 

Mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service 

Centre at Swansea. Compounds 7
147

 and 12
156

 have been prepared according to literature 

procedures. Analytical data for 1a,b,
140

 3,
157

 4 and 5,
158

 6 and 9,
140

 and 13
159

 were consistent 

with the previously published values. Key crystallographic data are given in Table 2.3; the 

labelling scheme is given in Figure 2.4.  

 

Figure 2.4 Labelling scheme used for binaphthyl compounds (R has a higher priority than R'). 

2.4.2 (R)-2'-Hydroxy-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate (3) 

 

(R)-BINOL (2, 8.00 g, 27.9 mmol) was dissolved in CH2Cl2 (500 mL). The solution was 

cooled to 0 °C and DIPEA (4.9 mL, 27.9 mmol) was added followed by the dropwise addition 

of Tf2O (4.7 mL, 27.9 mmol). The reaction mixture was stirred at room temperature 

overnight, after which time the solution was concentrated to half of its volume. The organic 

phase was washed with H2O (100 mL), 1M aqueous HCl (100 mL), and brine (100 mL), and 

dried over MgSO4. The fairly pure product was isolated as pale yellow oil (11.3 g, 27.0 mmol, 

97%).
157

 

1
H NMR (400 MHz, CDCl3): δ = 8.12 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 8.02 (d, 

3
JHH = 8.2 Hz, 

1H, ArH), 7.97 (d, 
3
JHH = 8.2 Hz, 1H, ArH), 7.88 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 7.60 (m, 2H, 

2 ArH), 7.44 (m, 2H, 2 ArH), 7.37-7.24 (m, 3H, 3 ArH), 7.01 (d, 
3
JHH = 8.2 Hz, 1H, ArH), 



Chapter 2 — Multigram Synthesis of Primary Phosphines 44 

4.90 (br s, 1H, OH) ppm. 
19

F NMR (376 MHz, CDCl3): δ = –74.3 ppm. TLC (silica gel; 

toluene): Rf = 0.25. 

2.4.3 (S)-[1,1'-Binaphthalen]-2-ol (4) 

 

To a solution of 3 (8.25 g, 19.7 mmol) in EtOH (40 mL) was added NEt3 (8.24 mL, 59.2 

mmol) and 5% Pd on charcoal (419 mg, 0.20 mmol Pd). The suspension was stirred for 2 days 

under 5 bar H2 gas pressure in a miniclave system, after which time TLC analysis showed 

complete consumption of the starting material. The reaction mixture was filtered and the 

residue washed with CH2Cl2. More CH2Cl2 (100 mL) was added to the filtrate and the organic 

phase was washed with H2O (80 mL), 1 M aqueous HCl (80 mL), 0.1 M aqueous NaHCO3 

(80 mL), and brine (80 mL). After drying over MgSO4 the fairly pure product was obtained as 

a white solid (4.46 g, 16.5 mmol, 84%).
158

 

1
H NMR (400 MHz, CDCl3): δ = 8.03 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 7.98 (d, 

3
JHH = 8.2 Hz, 

1H, ArH), 7.91 (d, 
3
JHH = 8.7 Hz, 1H, ArH), 7.86 (d, 

3
JHH = 7.8 Hz, 1H, ArH), 7.65 (m, 

JHH = 8.2 Hz, 1H, ArH), 7.53 (m, 2H, 2 ArH), 7.41-7.21 (m, 5H, 5 ArH), 7.01 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 4.91 (s, 1H, OH) ppm. TLC (silica gel; toluene): Rf = 0.5. 

2.4.4 (S)-[1,1'-Binaphthalen]-2-yl trifluoromethanesulfonate (5) 

 

To a solution of 4 (9.30 g, 34.4 mmol) in CH2Cl2 (125 mL) and pyridine (4.20 mL, 

51.6 mmol) was slowly added Tf2O (8.70 mL, 51.6 mmol) at 0 °C. The resulting yellow 

suspension was allowed to warm up to ambient temperature and stirred for 2 hours. The 

organic phase was washed with H2O (70 mL), 1M aqueous HCl (70 mL), 0.1 M aqueous 

NaHCO3 (70 mL) and brine (70 mL), dried over MgSO4, filtered and concentrated to give the 

title product as a pale orange solid (12.7 g, 31.6 mmol, 92%).
158
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1
H NMR (400 MHz, CDCl3): δ = 8.06-7.95 (m, 4H, 4 ArH), 7.64 (t, 1H, ArH), 7.58-7.47 (m, 

4H, 4 ArH), 7.42-7.29 (m, 3H, 3 ArH), 7.21 (d, 
3
JHH = 7.8 Hz, 1H, ArH). 

19
F NMR 

(376 MHz, CDCl3): δ = –74.4 ppm. TLC (silica gel; toluene): Rf = 0.9. 

2.4.5 (R)-2'-Ethoxy-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate (10) 

 

To a solution of 3 (1.14 g, 2.72 mmol) in acetone (100 mL) were added K2CO3 (1.51 g, 10.90 

mmol) and EtI (0.87 mL, 10.90 mmol). The mixture was stirred for 3 days, during which time 

the reaction was monitored by TLC analysis. After complete consumption of the starting 

materials, the volatiles were removed in vacuo and the residue was dissolved in CH2Cl2 (30 

mL). The organic phase was washed with H2O (30 mL) and dried over MgSO4. The crude 

product was purified by column chromatography through silica media using hexane to remove 

the impurities, then toluene to obtain the title product as an off-white solid (967 mg, 

2.16 mmol, 79%). 

1
H NMR (500 MHz, CDCl3): δ = 8.03 (d, 

3
JHH = 9.1 Hz, 1H, H4), 8.03 (d, 

3
JHH = 9.1 Hz, 1H, 

H4'), 7.97 (d, 
3
JHH = 8.2 Hz, 1H, H5), 7.88 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.58 (d, 

3
JHH = 9.1 Hz, 

1H, H3), 7.54 (m, 1H, H6), 7.43 (d, 
3
JHH = 9.1 Hz, 1H, H3'), 7.37-7.32 (m, 3H, H6'+H7+H8), 

7.26-7.23 (m, 1H, H7'), 7.02 (d, 
3
JHH = 8.2 Hz, 1H, H8'), 4.15-4.10 (m, 2H, CH2), 1.15 (t, 

3
JHH = 7.0 Hz, 3H, CH3) ppm. 

13
C{

1
H} NMR (126 MHz, CDCl3): δ = 154.7 (C2'), 145.7 (C2), 

133.8 (C9'+C1), 132.6 (C9), 131.0 (C4'), 130.2 (C4), 128.9 (C10'), 128.3 (C5), 128.1 (C5'), 

127.5 (C10), 127.3 (C7), 127.1 (C8), 126.8 (C7'+C6), 125.0 (C8'), 123.7 (C6'), 119.6 (C3), 

115.6 (C1'), 114.2 (C3'), 64.6 (CH2), 14.8 (CH3) ppm. 
19

F NMR (376 MHz, CDCl3): δ =  

–74.8 ppm. HRMS (NSI
+
, MeOH): Found: m/z = 447.0879. Calculated for [M + H]

+
: 

m/z = 447.0872. OR (CHCl3, c = 1.0 mg/ml): [α]D
20

 = –78°. TLC (silica gel; toluene): 

Rf = 0.9. 

2.4.6 General Procedure for the Phosphonylation of Aryltriflates 

Method A: Pd(OAc)2 (193 mg, 0.86 mmol), DPPP (532 mg, 1.29 mmol) and the appropriate 

trifluoromethanesulfonate (17.2 mmol) were dissolved in DMSO (60 mL) and H2O (0.1 mL) 

and purged with nitrogen for 10 minutes. NEt3 (3.60 mL, 25.8 mmol) and diethyl phosphite 

(2.66 mL, 20.6 mmol) were added subsequently and the solution was heated to 90 °C 
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overnight. H2O (30 mL) was added to the reaction mixture and the suspension was extracted 

with CH2Cl2 (100 mL). The organic layer was washed with brine (3 x 50 mL) and dried over 

MgSO4 to give the crude product, which was usually used without further purification for its 

alkylation.  

Method B: Pd(OAc)2 (5.2 mg, 23 μmol), DPPP (14.2 mg, 35 μmol) and the appropriate 

trifluoromethanesulfonate (0.46 mmol) were placed in a microwave vessel and dissolved in 

THF (2 mL) and H2O (0.01 mL). The solution was stirred for 15 minutes, after which time 

NEt3 (0.10 mL, 0.67 mmol) and diethyl phosphite (0.07 mL, 0.56 mmol) were added. The 

closed vessel was irradiated with microwaves at 120 °C for 15 minutes. The volatiles were 

evaporated to give the crude product. 

2.4.7 (S)-Diethyl [1,1'-binaphthalen]-2-ylphosphonate (6) 

 

The crude product was further purified by column chromatography (EtOAc/hexane, 2:1) on 

silica media (h = 16 cm, d = 4 cm) to give the title product as a white solid (4.34 g, 

11.1 mmol, 65%).
140

 

1
H NMR (400 MHz, CDCl3): δ = 8.20 (dd, 

3
JHP = 12.4 Hz, 

3
JHH = 8.7 Hz, 1H, H3), 8.01 (dd, 

3
JHH = 8.7 Hz, 

4
JHP = 3.7 Hz, 1H, H4), 7.97-7.90 (m, 3H, 3 ArH), 7.59 (d, 

3
JHH = 7.8 Hz, 1H, 

ArH), 7.54-7.47 (m, 2H, 2 ArH), 7.42 (m, 1H, ArH), 7.27-7.15 (m, 3H, 3 ArH), 7.07 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 3.81-3.50 (m, 4H, 2 OCH2CH3), 0.96 (t, 

3
JHH = 6.9 Hz, 3H, 

OCH2CH3), 0.69 (t, 
3
JHH = 6.9 Hz, 3H, OCH2CH3) ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): 

δ = 18.6 ppm. TLC (silica gel; EtOAc/hexane, 2:1): Rf = 0.3. 

2.4.8 (R)-Diethyl (2'-hydroxy-[1,1'-binaphthalen]-2-yl)phosphonate (8) 

 

The crude product was usually used without further purification for its methylation (next 

synthetic step, vide infra) but further cleaning was possible by column chromatography 
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(CH2Cl2/MeOH, 50:1) on silica media (h = 26 cm, d = 4 cm) to give the title product as a 

white solid (5.50 g, 13.5 mmol, 79%). 

1
H NMR (400 MHz, CDCl3): δ = 8.08 (ddd, 

3
JHP = 11.8 Hz, 

3
JHH = 8.5 Hz, JHH = 1.0 Hz, 1H, 

H3), 8.01 (dd, 
3
JHH = 8.5 Hz, 

4
JHP = 4.3 Hz, 1H, H4), 7.92 (d, 

3
JHH = 8.2 Hz, 1H, H5), 7.87 (d, 

3
JHH = 8.9 Hz, 1H, H4'), 7.83 (d, 

3
JHH = 8.9 Hz, 1H, H5'), 7.53 (m, 1H, H6), 7.35 (dd, 

3
JHH = 8.9 Hz, JHH = 1.2 Hz, 1H, H3'), 7.29-7.23 (m, 2H, H6'+H7), 7.19 (d, 

3
JHH = 8.5 Hz, 1H, 

H8), 7.14 (m, 1H, H7'), 6.77 (d, 
3
JHH = 8.5 Hz, 1H, H8'), 6.52 (s, 1H, OH), 3.99-3.85 (m, 2H, 

OCH2CH3), 3.58 (m, 1H, OCH2CH3), 3.22 (m, 1H, OCH2CH3), 1.05 (t, 
3
JHH = 6.9 Hz, 3H, 

OCH2CH3), 0.69 (t, 
3
JHH = 6.9 Hz, 3H, OCH2CH3) ppm. 

13
C{

1
H} NMR (101 MHz, CDCl3): 

δ = 152.4 (C2'), 139.5 (d, 
2
JCP = 10.0 Hz, C1), 135.5 (d, 

4
JCP = 2.6 Hz, C10), 134.6 (C9'), 

133.3 (d, 
1
JCP = 16.2 Hz, C2), 130.1 (C4'), 129.0 (C10'), 128.5 (C9), 128.4 (C6), 128.4 (C4), 

128.2 (C5), 127.9 (C3), 127.9 (C5'), 127.3 (C7), 127.3 (C8), 126.3 (C7'), 125.5 (C8'), 123.4 

(C6'), 120.2 (C3'), 119.6 (d, 
3
JCP = 5.3 Hz, C1'), 62.5 (d, 

2
JCP = 6.0 Hz, CH2), 62.4 (d, 

2
JCP = 

6.0 Hz, CH2), 16.0 (d, 
3
JCP = 6.7 Hz, CH3), 15.6 (d, 

3
JCP = 6.7 Hz, CH3) ppm. 

31
P{

1
H} NMR 

(162 MHz, CDCl3): δ = 18.6 ppm. HRMS (NSI
+
, MeOH): Found: m/z = 407.1404. Calculated 

for [M + H]
+
: m/z = 407.1407. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = –98°. TLC (silica gel; 

CH2Cl2/MeOH, 50:1): Rf = 0.35. 

2.4.9 General Procedure for 2'-Alkoxy-[1,1'-binaphthalen]-2-ylphosphonates from 8 

Phosphonate 8 (27.7 mmol) was dissolved in acetone (500 mL). KOH (6.22 g, 111 mmol) and 

alkyl iodide (111 mmol) were added to the solution. The reaction mixture was stirred 

overnight, after which time TLC analysis showed complete consumption of the starting 

material. The volatiles were removed in vacuo and the residue was dissolved in diethyl ether 

(150 mL). The organic phase was washed with H2O (80 mL), 1 M aqueous HCl (80 mL), 

0.1 M aqueous NaHCO3 (80 mL), and brine (80 mL) and dried over MgSO4 to give the crude 

product. 

2.4.10 (R)-Diethyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphonate (9) 
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The crude was purified by column chromatography on silica media (EtOAc/hexane, 3:1) or 

recrystallised from acetone to yield the intended product as a white solid (9.15 g, 21.8 mmol, 

79%).
140

 

1
H NMR (400 MHz, CDCl3): δ = 8.20 (dd, 

3
JHH = 8.2 Hz, 

3
JHH = 11.9 Hz, 1H, ArH), 8.00 (m, 

2H, 2 ArH), 7.93 (d, 
3
JHH = 8.2 Hz, 1H, ArH), 7.83 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 7.52 (m, 

3
JHH = 8.2 Hz, 1H, ArH), 7.41 (d, 

3
JHH = 9.2 Hz, 1H, ArH), 7.25 (m, 3H, 3 ArH), 7.15 (m, 1H, 

ArH), 6.86 (d, 
3
JHH = 8.7 Hz, 1H, ArH), 3.80-3.48 (m, 4H, 2OCH2CH3), 3.76 (s, 3H, OCH3), 

0.96 (t, 
3
JHH = 7.3 Hz, 3H, OCH2CH3), 0.76 (t, 

3
JHH = 7.3 Hz, 3H, OCH2CH3) ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): δ = 18.6 ppm. TLC (silica gel; EtOAc/hexane, 3:1): 

Rf = 0.25. 

2.4.11 (R)-Diethyl (2'-ethoxy-[1,1'-binaphthalen]-2-yl)phosphonate (11) 

 

Further purification by column chromatography (EtOAc/hexane, 3:1) on silica media gave the 

intended product as a white solid (7.72 g, 18.4 mmol, 68%). 

1
H NMR (500 MHz, CDCl3): δ = 8.20 (dd, 

3
JHP = 12.1 Hz, 

3
JHH = 8.6 Hz, 1H, H3), 8.00 (dd, 

3
JHH = 8.6 Hz, 

4
JHP = 3.8 Hz, 1H, H4), 7.96 (d, 

3
JHH = 9.0 Hz, 1H, H4'), 7.92 (d, 

3
JHH = 8.3 Hz, 1H, H5), 7.83 (d, 

3
JHH = 8.3 Hz, 1H, H5'), 7.50 (m, 1H, H6), 7.39 (d, 

3
JHH = 9.0 Hz, 1H, H3'), 7.27-7.24 (m, 3H, H6'+H7+H8), 7.15 (m, 1H, H7'), 6.90 (d, 1H, 

3
JHH = 8.6 Hz, H8'), 4.09-3.99 (m, 2H, ArOCH2CH3), 3.83-3.75 (m, 1H, P(O)OCH2CH3), 

3.70-3.55 (m, 3H, P(O)OCH2CH3), 1.01 (t,
 3

JHH = 6.9 Hz, 3H, ArOCH2CH3), 1.00 (t,
 

3
JHH = 7.0 Hz, 3H, P(O)OCH2CH3), 0.77 (t,

 3
JHH = 7.0 Hz, 3H, P(O)OCH2CH3) ppm. 

13
C{

1
H} NMR (126 MHz, CDCl3): δ = 154.5 (C2'), 140.9 (d, 

2
JCP = 9.3 Hz, C1), 135.2 (C10), 

134.7 (C9'), 133.2 (d, 
1
JCP = 16.3 Hz, C2), 129.9 (C4'), 129.1 (d, 

2
JCP = 10.5 Hz, C3), 128.7 

(C10'), 128.0 (C5), 127.8 (C6), 127.7 (C5'), 127.5 (C9), 127.4 (C4), 127.3 (C7), 126.6 (C8), 

126.1 (C7'), 125.9 (C8'), 123.4 (C6'), 121.5 (C1'), 114.5 (C3'), 64.6 (ArOCH2CH3), 61.7 (d,
 

2
JCP = 17.3 Hz, P(O)OCH2-CH3), 61.6 (d,

 2
JCP = 17.3 Hz, P(O)OCH2CH3), 16.1 (d, 

3
JCP = 

6.7 Hz, P(O)OCH2CH3), 15.7 (d,
 3

JCP = 6.7 Hz, P(O)OCH2CH3), 15.0 (ArOCH2CH3) ppm. 

31
P{

1
H} NMR (202 MHz, CDCl3): δ = 18.7 ppm. HRMS (APCI

+
, MeCN): Found: 
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m/z = 435.1719. Calculated for [M + H]
+
: m/z = 435.1720. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = +46°. TLC (silica gel; EtOAc/hexane, 3:1): Rf = 0.4. 

2.4.12 General Procedure for the Reduction of Phosphonates 

LiAlH4 (2.20 g, 57.6 mmol) was dissolved in THF (60 mL) and cooled to −78 °C. Me3SiCl 

(7.3 mL, 57.6 mmol) was added and the reaction mixture was warmed up to room temperature 

over 30 min. The solution was cooled to −78 °C and the appropriate phosphonate (19.2 mmol) 

in THF (60 mL) was added slowly to the reaction mixture. The solution was allowed to warm 

up to room temperature and stirred overnight. The reaction was quenched with H2O (20 mL) 

and extracted with Et2O (3 x 30 mL). The organic phase was washed with H2O (20mL) and 

dried over MgSO4. Purification was performed by column chromatography (CH2Cl2/hexane, 

1:1) on silica media to give the intended product. 

2.4.13  (S)-[1,1'-Binaphthalen]-2-ylphosphine (1a) 

 

The product was obtained as a white solid (4.66 g, 16.4 mmol, 85%).
140

 

1
H NMR (400 MHz, CDCl3): δ = 7.98 (m, 2H, 2 ArH), 7.90 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 7.86 

(d, 
3
JHH = 8.2 Hz, 1H, ArH), 7.72 (dd, 

3
JHH = 8.7 Hz, 

3
JHH = 5.5 Hz, 1H, ArH), 7.72 (dd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.9 Hz, 1H, ArH), 7.51-7.40 (m, 3H, 3 ArH), 7.32-7.15 (m, 4H, 4 ArH), 

3.67 (AB quartet, 
1
JPHa = 204.7 Hz, 

1
JPHb = 206.5 Hz, 

2
JHH = 11.9 Hz, 2H, PH2) ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): δ = –124.8 ppm. TLC (silica gel, hexane/CH2Cl2, 2:1): 

Rf = 0.55. 

2.4.14 (R)-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphine (1b) 

 

The product was obtained as a white solid (4.66 g, 14.7 mmol, 83%).
140
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1
H NMR (500 MHz, CDCl3): δ = 8.03 (d, 

3
JHH = 9.2 Hz, 1H, ArH), 7.89 (d, 

3
JHH = 8.3 Hz, 

2H, 2 ArH), 7.86 (d, 
3
JHH = 8.7 Hz, 1H, ArH), 7.75 (dd, 

3
JHH = 8.3 Hz, 

3
JHH = 5.5 Hz, 1H, 

ArH), 7.44 (m, 2H, 2 ArH), 7.34 (t, 
3
JHH = 6.9 Hz, 1H, ArH), 7.24 (m, 2H, 2 ArH), 7.16 (d, 

3
JHH = 8.3 Hz, 1H, ArH), 6.97 (d, 

3
JHH = 8.3 Hz, 1H, ArH), 3.80 (s, 3H, OCH3), 3.64 (AB 

quartet, 
1
JPHa = 203.9 Hz, 

1
JPHb = 204.8 Hz, 

2
JHH = 12.4 Hz, 2H, PH2) ppm. 

31
P{

1
H} NMR 

(202 MHz, CDCl3): δ = –125.7 ppm. TLC (silica gel, hexane/CH2Cl2, 2:1): Rf = 0.5. 

2.4.15 (R)-(2'-Ethoxy-[1,1'-binaphthalen]-2-yl)phosphine (1c) 

 

The product was obtained as a white solid (268 mg, 0.81 mmol, 81%). 

1
H NMR (500 MHz, CDCl3): δ = 8.05 (d, 

3
JHH = 9.2 Hz, 1H, H4'), 7.96 (m, 2H, H5+H5'), 

7.91 (d, 
3
JHH = 8.5 Hz, 1H, H4), 7.82 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 5.4 Hz, 1H, H3), 7.50 (d, 

3
JHH = 9.2 Hz, 1H, H3'), 7.50 (m, 1H, H6), 7.40 (m, 1H, H6'), 7.30 (m, 3H, H7+H7'+H8), 7.09 

(d, 
3
JHH = 8.5 Hz, 1H, H8'), 4.20-4.09 (m, 2H, OCH2CH3), 4.05-3.44 (AB quartet, 

1
JPHa = 203.9 Hz, 

1
JPHb = 204.8 Hz, 

2
JHH = 12.3 Hz, 2H, PH2), 1.17 (t,

 3
JHH = 7.0 Hz, 3H, 

OCH2CH3) ppm. 
13

C{
1
H} NMR (126 MHz, CDCl3): δ = 154.0 (C2'), 139.2 (d, 

2
JCP = 16.4 

Hz, C1), 133.7(d, 
4
JCP = 1.3 Hz, C9'), 133.5 (C10), 133.4 (d, 

1
JCP = 3.6 Hz, C2), 133.8 (d, 

2
JCP = 8.2 Hz, C3), 130.2 (C4'), 129.4 (C10'), 129.0 (d, 

3
JCP = 8.2 Hz, C9), 128.3 (C5), 128.3 

(C5'), 127.5 (d, 
3
JCP = 3.9 Hz, C4), 127.0 (C7'), 126.5 (C7), 126.1 (C8), 126.0 (C6), 125.0 

(C8'), 124.0 (C6'), 123.0 (C1'), 115.3 (C3'), 65.0 (OCH2CH3), 15.3 (OCH2CH3) ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): δ = –125.4 ppm. HRMS (NSI

+
, MeOH): Found: 

m/z = 331.1252. Calculated for [M + H]
+
: m/z = 331.1246. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = +14°. TLC (silica gel, hexane/CH2Cl2, 1:1): Rf = 0.7. 
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Chapter 3 —  Easy-to-handle Chiral Phosphiranes 

 

 

Enantiopure chiral phosphiranes possessing a binaphthyl backbone demonstrate remarkable 

thermal stability, are highly resistant to air-oxidation and are effective ligands in catalytic 

asymmetric hydrosilylations.
160

 

3.1 Introduction 

The phosphiranes are heterocycles which possess a three-membered phosphorus-containing 

ring which is highly strained as a result of the small sum of bond angles at the phosphorus 

atom (Σ(P) <260°).
161

 The resultant greater s-character in the pyramidalised structure is 

considered to manifest itself in the form of lowered HOMO and LUMO energy levels (Figure 

3.1), conferring upon the ligand a poorer σ-donor, but better π-acceptor electronic profile. 

Such characteristics are desirable because they offer the opportunity to synthesise ligand 

libraries for catalysis with a different window of activity from that offered by the more typical 

PR3 reagents. For instance, if one assumes that the reductive elimination is the rate 

determining step in a catalytic conversion, the stabilisation of the lower oxidation state of the 

metal would increase the overall efficiency of the process. This can be achieved by the 

introduction of electronegative substituents or electron accepting ligands (e.g. phosphiranes) 

to reduce the electron density on the metal. 

However, these intriguing molecules are still overlooked because of their tendency to be 

unstable:
161b

 The synthesis of the parent phosphirane HP(C2H4) was confirmed in 1967 by 

Wagner et al. and the product was reported to decompose completely within 24 h at 25°C.
162

 

About two decades later the more stable phosphirene complex L (Figure 3.2) was prepared by 

Mathey and co-workers and unambiguously characterised by X-ray crystallography.
163

 Bulky 

substituents around the phosphorus lend stability to the ring; thus phenylphosphirane LI is 
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stable at 0 °C for a month but undergoes decomposition at higher temperatures,
164,165

 LII is a 

distillable liquid
166

 and LIII is a colourless crystalline solid.
167

 The other strategy one can 

employ to stabilise a phosphirane (apart from metal coordination) is to incorporate the three-

membered ring into an elaborate polycyclic structure. This niche approach was used to 

prepare the elegant BABAR-Phos (LIV) series of phosphiranes which resist 

decomposition.
168

 Phosphirano-[1,2]-thiaphospholes LV have [a]-annelated bicyclic 

structures, isomerising in their tungsten complexes over the temperature range 25–80 °C.
169

 

  

Figure 3.1 (Left) Walsh diagram showing the relative orbital energies of a molecule with trigonal planar (D3h) 

symmetry converting into pyramidal (C3v) symmetry.
168b

 (Right) Ligand orbital interaction with metal centred 

orbitals. 

 

Figure 3.2 Phosphirene L and phosphiranes of varying thermal stability. Phenylphosphine (LI) is unstable above 

RT; steric protection (LII, LIII) and ring fusion aid stability (LIV, LV). The chiral derivative LVI 

(Men ≡ menthyl) has been used as a ligand in asymmetric catalysis. 
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Phosphiranes can be synthesised from oxiranes if the substrates are coordinated to group 6 

transition metal complexes (Scheme 3.1, a).
170

 Alternatively primary phosphines provide a 

suitable platform as phosphirane precursors. Gaspar and co-workers reacted primary 

phosphines with diol ditosylates to obtain molecules with a stereocentre located on the 

phosphirane ring (Scheme 3.1, b).
171

 Similarly, chiral phosphiranes LVI (Men ≡ menthyl) 

were synthesised and tested on their catalytic behaviour in the rhodium catalysed 

hydrogenation of alkenes.
170b 

1-(9-Anthracenyl)phosphirane has been synthesised from the 

parent anthracenyl primary phosphine and 1,2-dichloroethane, and its coordination chemistry 

on platinum has been studied in some detail.
172

 Furthermore, a number of theoretical studies 

about the reactivity of phosphiranes were carried out investigating the possible ring-opening 

polymerisation of the small phosphorus heterocycle,
173

 and 1-trimethylsilylphosphirane has 

been reported as a stable masked reagent for phosphirane.
174

 

 

Scheme 3.1 Available synthetic strategies to obtain phosphiranes. 

In Chapter 1.4.1 we discussed an electronic stabilising effect whereby increasing the amount 

of π-conjugation on the backbone of primary phosphines allowed us to prepare the novel air-

stable, chiral derivatives 1a,b.
175

 These primary phosphines have since been efficiently 

synthesised on a multigram scale (Chapter 2) and therefore we were keen to use these 

precursors to prepare chiral phosphiranes to examine their properties, structure and reactivity. 

According to our predictions the resulting binaphthyl phosphirane compounds should exhibit 

similar resistance to air-oxidation as the parent primary phosphines.  

3.2 Results and Discussion 

Following the synthetic method of Kubiak and co-workers,
176

 1a,b were treated with two 

equivalents of methyllithium followed by dichloroethane, and thus we were able to prepare 

the asymmetric compounds 14a,b in high yields (Scheme 3.2). 
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Scheme 3.2 Synthetic procedure for 14a (R = H) and 14b (R = OMe). 

The 
31

P{
1
H} NMR spectroscopic data for the two phosphiranes are consistent with those 

found for other members of this class, showing a characteristic resonance at very high field 

(δ = –235.0 ppm for 14a, and –235.4 ppm for 14b). The 
1
H NMR spectrum shows four 

distinctive peaks for the protons on the heterocycle, with a complicated fine-structure arising 

from coupling to each other and coupling to the phosphorus nucleus (Figure 3.3). Simulation 

of the four heterocyclic proton resonances in 14b with gNMR
177

 gave an accurate match to 

experimental data when homonuclear coupling constants of 10.6 Hz (for endo1-endo2 and 

exo1-exo2), 8.3Hz (endo1-exo2 and endo2-exo1) and 6.5 Hz (endo1-exo1 and endo2-exo2) 

were used.
178

 The coupling of the phosphorus nucleus to the two exo protons is significantly 

larger (
2
JHP = 18.7 Hz respectively) than its coupling to the endo protons (

2
JHP = 1.7 Hz 

respectively). The latter smaller coupling was thereby not fully resolvable in the proton 

undecoupled 
31

P NMR spectrum which has the shape of an apparent triplet. The 

13
C{

1
H} NMR spectra also demonstrate the diastereotopic nature of the phosphirane-ring 

carbon atoms; two individual resonances are observed although the phosphorus-carbon 

coupling constants within the phosphirane ring are equivalent (
1
JPC = 40.3 Hz for 14a; 

1
JPC = 

40.1 Hz for 14b). 

 

Figure 3.3 Observed nOe correlations (arrows) and aliphatic sections of the 
1
H and 

1
H{

31
P} NMR spectra of 14b 

(JHH ≈ 10.6 Hz, 8.3Hz, 6.5 Hz). Comparable nOe contacts and coupling constants are also found for 14a. 

The two proton signals at lower field (endo protons) both show nOe correlations to the 

aromatic proton in the 3-position. Quantum chemical calculations at the B3LYP/6-31G* level 
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of theory indicated that the phosphirane unit might be rotating in solution. To elucidate the 

likelihood of different rotamers, the torsion angle of the heterocycle relative to the binaphthyl 

backbone was constrained, and rotated stepwise to give the relative energies of the molecules 

(Figure 3.4).  

 

Figure 3.4 The effect of changing the phosphirane torsion angle in 14a and 14b on the relative optimised energy 

(B3LYP/6-31G*) of the molecules. The phosphirane is shown in the Newman projection. 

The conformer in which the heterocycle is pointing over the aromatic backbone is disfavoured 

( ≈ 150°), being approximately 5.5 kcal/mol higher in energy than the lowest energy 

conformer. Both derivatives show the presence of three rotamers with relative energies of 

under 0.7 kcal/mol ( ≈ 50°, 260°, 340°), which can interconvert via an activation barrier 

smaller than 1.5 kcal/mol. 

Two important features of our novel phosphiranes lie in their high thermal stability and their 

excellent resistance to air-oxidation. Remarkably 14a,b showed no sign of decomposition 

when heated overnight in refluxing toluene (under nitrogen). Nor was there any evidence of 

decomposition when the compounds were left open to the atmosphere in chloroform solution 

for seven days. In fact, in the solid state they can be stored in air over several months without 

problems. Treatment of the phosphiranes by peroxides in reagent-grade tetrahydrofuran does 

oxidise the compounds, but this process takes place via a different mechanistic process than 

the oxidation by air.
179

 A larger study on the air-stability or otherwise of the phosphine class 

of compounds in general has been provided elsewhere,
180

 and has also been introduced in 

Chapter 1.4.1. 

This remarkable behaviour led us to further investigate the reactivity of the phosphiranes. It 

has previously been reported that 2,6-dimethoxyphenylphosphirane reacts readily with sulfur 

at room temperature;
181

 14a,b gave no reaction under these conditions, nor were any 
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differences observed when the samples were heated at 50 °C in toluene for two hours. 

However, 14a,b reacted with the strong methylating agent methyl trifluoromethanesulfonate 

which led to 15a,b in a quantitative conversion (Scheme 3.3). The same reactivity pattern was 

reported for 1-phenylphosphirane,
182

 while the stabilised 
iPr

BABARphos phosphirane ligand 

was found to be unreactive in this conversion,
168a

 further highlighting reactivity differences 

within the phosphirane class. The 
31

P NMR spectra showed single peaks at –101.2 ppm for 

15a and –102.0 ppm for 15b, whilst in the 
1
H NMR spectrum, the newly introduced methyl 

group appears as a doublet for both compounds at 1.60 ppm for 15a (
2
JPH = 17.9 Hz) and at 

1.63 ppm for 15b (
2
JPH = 18.3 Hz). 

 

Scheme 3.3 Left: Synthetic procedure for the methylphosphiranium triflates 15a and 15b. Right: Unstrained 

MOP-dimethylphosphine derivatives 16a,b. 

In order to gain further insights into the geometry and electronic nature of the phosphirane 

group, we undertook a number of quantum chemical calculations of 14a,b at the B3LYP/6-

31G* level of theory. The HOMO and LUMO energy levels of 14a,b were calculated and 

compared to their unstrained dimethylphosphine MOP derivatives 16a,b (Scheme 3.3). For 

each pair, introduction of the phosphorus heterocycle lowers the energy of both the HOMO 

and LUMO (Figure 3.5). Thus we anticipate the phosphiranes 14a,b to be poorer σ-donors but 

better π-acceptors than their corresponding unstrained dimethylphosphines 16a,b (cf. Figure 

3.1 on page 54). Furthermore, the HOMO and LUMO energies for both H-MOP derivatives 

14a and 16a were lower than their respective OMe-MOP counterparts, indicating that one has 

to consider not just the presence of the strained heterocycle but the backbone as a whole when 

ascertaining the relative energy levels of these compounds (a more detailed comparison is 

given in Chapter 4.2.2). Calculated bond angles around the phosphorus show a similar degree 

of pyramidalisation for 14a and 14b (Σ(P) 250/251°). 

We were keen to study the coordination chemistry of these binaphthyl-based phosphiranes 

with late transition metals as these are highly relevant for contemporary catalysis, but to date 

few examples have been reported.
169a,176

 Reaction of two equivalents of 14a,b with cis-[Pt(η
4
-

cod)Cl2] resulted in the rapid, quantitative formation of cis-[Pt(14a,b)2Cl2] (17a,b) complexes 
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respectively, as shown by HRMS, NMR, and X-ray crystallographic analyses. In the 
31

P NMR 

spectra of both complexes the 
195

Pt satellites accompanying the central peak show large 
1
JPPt 

coupling constants (17a: –149.2 ppm, 
1
JPtP = 4170 Hz; 17b: –149.3 ppm, 

1
JPtP = 4160 Hz). 

This is a much larger coupling than those observed for the more conventional cis-

[Pt(PR3)2Cl2] complexes (
1
JPtP = 3400–3700 Hz),

183
 but it relates well to that found for the 

only bisphosphirane platinum dichloride complex previously isolated (
1
JPtP = 4133 Hz).

176b
 

The 10 Hz larger coupling for 17a could be interpreted as a result of the ligand’s higher π-

acceptor strength in comparison to 17b,
183,184

 which would also be in agreement with our 

calculated LUMO energy levels for these phosphirane ligands. 

 

Figure 3.5 HOMO and LUMO energies of 14a, 16a and 14b, 16b calculated at the B3LYP/6-31G* level of 

theory. 

Crystals suitable for X-ray analysis were grown from concentrated dichloromethane (17a, 

Figure 3.6) or chloroform (17b, Figure 3.7) solutions, and both compounds were obtained as 

the respective solvates. Selected bond lengths and angles are given in the figure captions. 

Complex 17b has a crystallographic two-fold rotational symmetry, with the two phosphirane 

ligands equivalent, while 17a has no imposed symmetry. The complexes each show a 

distorted square planar platinum(II) coordination geometry with typical bond lengths and 

angles about the platinum centre. The high degree of strain in the phosphirane ring is shown 

by the small C-P-C angles of 50.2(4) and 50.8(4)° for 17a and 50.9(3)° for 17b. The 
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heterocycles point over the aromatic rings of the second coordinated ligand (closest inter-

ligand CC distances: 3.5-3.7 Å). The steric demand of the methoxy group in 17b appears 

responsible for the increased torsion angle of the binaphthyl backbone, the value of 94.7(8)° 

being significantly larger than those in 17a of 81.8(10) and 88.5(9)°. These values compare 

well with the related complex cis-dichlorobis[1-(9-anthracene)phosphirane]platinum(II)
176b

 

which exhibits slightly longer Pt-P bond lengths of 2.235(4) and 2.256(4) Å. This 

anthracenylphosphirane derivative has a slightly higher strain within its heterocyclic ring and 

is more pyramidalised at phosphorus (C-P-C bond angles: 49.7(8)–49.8(8)°) than 17a or 17b. 

 

Figure 3.6 View of the molecular structure of cis-[Pt(14a)2Cl2] (17a) with 50% probability displacement 

ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°]: Pt–Cl1 

2.337(2), Pt–Cl2 2.334(2), Pt–P1 2.212(2), Pt–P2 2.209(2), P1–C41 1.802(3), P1–C42 1.816(8), P1–C1 

1.814(7), C41–C42 1.534(11), P2–C43 1.786(8), P2–C44 1.782(7), P2–C21 1.794(8), C43–C44 1.529(11); Cl1-

Pt-Cl2 90.52(8), Cl1-Pt-P2 87.06(10), Cl2-Pt-P1 85.40(9), P1-Pt-P2 97.02(8), Pt-P1-C1 118.8(2), C1-P1-C41 

107.6(4), C1-P1-C42 111.7(4), C41-P1-C42 50.2(4), Pt-P2-C21 119.1(3), C21-P2-C43 109.8(4), C21-P2-C44 

106.4(4), C43-P2-C44 50.8(4); C1-C10-C11-C12 81.8(10), C21-C30-C31-C32 88.5(9). 

 

Figure 3.7 View of the molecular structure of cis-[Pt(14b)2Cl2] (17b) with 50% probability displacement 

ellipsoids. Hydrogen atoms have been omitted for clarity. Selected average bond distances [Å] and angles [°]:Pt–

Cl 2.338(3), Pt–P 2.204(3), P–C1 1.799(7), P–C2 1.811(7), P–C3 1.802(7), C1–C2 1.550(10); Cl-Pt-Cl′ 

90.42(15), Cl-Pt-P 87.28(7), P-Pt-P′ 96.92(14), Pt-P-C3 115.3(2), C1-P-C3 110.6(3), C2-P-C3 106.0(3), C1-P-

C2 50.9(3); C3-C12-C13-C22 94.7(8). A prime indicates a symmetry-equivalent atom. 
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Having established that the thermal and air-stability of our phosphiranes does not infringe on 

their ability to coordinate to a late transition metal, we sought to extend the research to 

include a pilot study of the potential of these ligands for asymmetric catalysis. A field of 

major importance in asymmetric catalysis is the hydrogenation of C=C double bonds, as it 

allows access to a variety of substituted chiral compounds.
185

 As a first test of chiral 

induction, phosphirane ligands 14a,b were evaluated in the asymmetric hydrogenation of (Z)-

methyl-2-acetamido cinnamate (cf. Chapter 1.3.6). The reaction was examined on a 1.0 mmol 

scale using 7.5 bar hydrogen pressure and 2 mol% of in situ generated catalyst (from ligand 

and [Rh(η
4
-cod)2]PF6 in a 2:1 ratio) in methanol (Scheme 3.4). 

 

Scheme 3.4 Rhodium catalysed hydrogenation of (Z)-methyl-2-acetamido cinnamate. 

The catalytic activity was effective in particular for 14a with 89% conversion of the starting 

material after an overnight reaction (20 h). For 14b the conversion over the same time frame 

was low, at 33%. Only low enantioselectivities were observed for both ligands, which was as 

expected for MOP-type ligands (see Chapter 1.3.6). In situ generated catalysts from ligands 

14a,b gave an enantiomeric excess of 14% (S) and 23% (R) respectively. Interestingly the 

excess enantiomer of the product has the opposite stereochemistry depending on the 

substituent in the 2’-position of the phosphorus ligand.  

As an additional benchmark, the asymmetric induction capabilities of 14a,b were investigated 

in the catalytic hydrosilylation of styrene (Scheme 3.5; see also Chapter 1.3.5).
186

 The 

reaction is required to be both highly regio- and enantioselective; oxidation of the initially 

formed trichlorosilane proceeds with retention of configuration and chiral 1-phenylethanol is 

produced. Our catalysts were prepared in situ by reacting the chiral phosphirane ligand with 

[PdCl(η
3
-C3H5)]2. 

The results obtained with the two ligands differ significantly. The hydrogen substituent in the 

2′-position of the binaphthyl backbone seems to promote the activity as well as the 

enantioselectivity of the catalyst. A similar trend was found for the related parent MOP 

ligands when used in this transformation (cf. Chapter 1.3.5).
187

 The full conversion obtained 

with 14a, coupled with attaining an enantiomeric excess of 80% indicates the potential 
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applications of this neglected class of ligand. To the best of our knowledge this is the first 

time that phosphiranes with the chirality located solely on the ligand backbone have been 

utilised in asymmetric catalysis.
188

 Note that these reaction conditions are not optimised and 

the results represent only a first glance at the catalytic potential of these ligands. 

 

Scheme 3.5 The asymmetric hydrosilylation of styrene gives the chiral trichlorosilane, subsequent oxidation of 

which gives 1-phenylethanol. 

3.3 Conclusion 

In summary, we have synthesised the chiral phosphiranes 14a,b and their corresponding 

platinum(II) complexes 17a,b. The phosphiranes themselves possess remarkable thermal 

stability and resistance to air-oxidation. Importantly, these properties do not impinge on the 

typical reactivity associated with phosphines; they still behave as nucleophiles with methyl 

trifluoromethanesulfonate to generate the novel chiral phosphiranium salts 15a,b and they 

also react in a classic fashion with transition metal precursors to yield novel platinum and 

palladium complexes. The latter have demonstrated here their intriguing potential as ligands 

in asymmetric catalytic transformations, which indicate that chiral phosphiranes in general 

may play a more prominent role in the future. 

3.4 Experimental Section 

3.4.1 General Considerations 

All air- and/or water-sensitive reactions were performed under a nitrogen atmosphere using 

standard Schlenk line techniques. Tetrahydrofuran and dichloromethane were dried over 

sodium/benzophenone and calcium hydride respectively, and distilled prior to use. Toluene 

(Acros) was purchased in an anhydrous state. Flash chromatography was performed on silica 

gel from Fluorochem (silica gel, 40-63u, 60A, LC301). Procedures for the preparation of 1a,b 

are given in the Experimental Section of Chapter 2. (Z)-Methyl-2-acetamido cinnamate was 

synthesised according to a literature procedure.
189

 All other chemicals were used as purchased 

without further purification. 
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All calculations were carried out using the Spartan 10 software.
190

 Full geometry 

optimisations of the studied compounds were performed using density functional theory with 

a B3LYP/6-31G* basis set. A vibrational frequency analysis was performed at the same level 

to characterise calculated structures as minima. 

Table 3.1 Selected crystallographic data for the platinum complexes 17a and 17b. 

 17a 17b 

formula C44H34Cl2P2Pt·0.5CH2Cl2 C46H38Cl2O2P2Pt·CHCl3 

formula wt 933.10 1070.06 

cryst syst monoclinic monoclinic 

space group P1211 P121 

a, Å; α, deg 14.8961(3); 90 19.9049(8); 90 

b, Å; β, deg 8.09270(10); 105.640(2) 8.3739(2); 122.417(6) 

c, Å; γ, deg 16.9803(3) 14.7846(6); 90 

V, Å
3
 1971.18(6) 2080.30(13) 

Z 2 2 

ρcalc, g cm
–3

 1.572 1.708 

μ, mm
–1

 3.875 3.811 

F(000) 922 1060 

Tmin/Tmax 0.4442/0.6980 0.7502/0.9277 

hkl range –17 to 16, –9 to 9, –20 to 20 –23 to 23, –9 to 9, –16 to 17 

θ range, deg 2.8 to 25.0 2.8 to 25.0 

no. of measd rflns 11728 8694 

no. of unique rflns (Rint) 6013 (0.0343) 3631 (0.0521) 

no. of obsd rflns, I > 2σ(I) 5534 3587 

refined params/restraints 470/1 235/1 

goodness of fit 1.036 1.048 

Abs. structure param. –0.003(8) 0.010(9) 

R1/wR2 (I > 2σ(I)) 0.0337/0.0905 0.0337/0.0766 

R1/wR2 (all data) 0.0370/0.0913 0.0341/0.0767 

resid electron dens, e Å
–3

 2.00/–0.82 1.62/–0.82 

   

Melting points were determined in open glass capillary tubes on a Stuart SMP3 melting point 

apparatus. 
1
H, 

13
C{

1
H}, 

19
F, and 

31
P{

1
H} NMR spectra were recorded on a JEOL Lambda 500 

(
1
H 500.16 MHz) or JEOL ECS-400 (

1
H 399.78 MHz) spectrometer at room temperature 

(21°C) if not otherwise stated using the indicated solvent as internal reference. The labelling 

scheme is given in Figure 3.8; if necessary, the assignment of signals was carried out by using 

two-dimensional NMR experiments (COSY, NOESY, HSQC, HMBC). The absolute 

assignment of the spin system on the phosphirane heterocycle (1"/2" signals) relative to the 

spin-system on the binaphthyl group was unavailable due to absence of conclusive nOe 

contacts. Infrared spectra were recorded on a Varian 800 FT-IR spectrometer. Mass 
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spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre, 

Swansea. Optical rotation values were determined on an Optical Activity Polaar 2001 device. 

Thin layer chromatography was performed on Merck aluminium-based plates with silica gel 

and fluorescent indicator (254 nm). For indicating, UV light (λ = 254 nm/366 nm) or 

potassium permanganate solution (1.0 g KMnO4, 6.7 g K2CO3, 0.1 g NaOH, 100 ml H2O) was 

used. Analytical high performance liquid chromatography (HPLC) was performed on a Varian 

Pro Star HPLC equipped with a variable wavelength detector using a Daicel Chiralcel OD or 

Chiralpak AD-H column, or on a Shimadzu Prominence HPLC equipped with diode-array 

detector using a Lux 5u Cellulose-1 column. Key crystallographic data are given in Table 3.1. 

 

Figure 3.8 Labelling scheme used for binaphthyl phosphirane compounds. 

3.4.2 (S)-1-([1,1'-Binaphthalen]-2-yl)phosphirane (14a) 

 

Primary phosphine 1a (500 mg, 1.75 mmol) was dissolved in THF (10 mL) and cooled to  

–78 °C. Methyllithium (2.40 mL, 1.6 M in Et2O, 3.84 mmol) was added and the orange-red 

solution was stirred at –78 °C for 30 minutes. 1,2-Dichloroethane (0.17 mL, 2.10 mmol) was 

added, the solution was allowed to warm-up to ambient temperature and stirred for 2 hours to 

give a yellow-brown solution. The reaction was slowly quenched with H2O (10 mL) and 

extracted with Et2O (2x 30 mL). The organic phase was dried over MgSO4 to give the fairly 

pure crude product as a pale-yellow solid (513 mg). Purification was performed by column 

chromatography (cyclohexane/CH2Cl2, 1:1) on silica media (w = 2 cm, h = 10 cm), to yield 

the intended product as a white solid (473 mg, 1.51 mmol, 87%). 

MP (uncorrected): 92 °C. 
1
H NMR (500 MHz, CDCl3): δ = 8.04 (d, 

3
JHH = 8.2 Hz, 1H, H4'), 

8.00 (d, 
3
JHH = 8.5 Hz, 1H, H5'), 7.88 (d, 

3
JHH = 8.2 Hz, 1H, H5), 7.86 (d, 

3
JHH = 8.2 Hz, 1H, 

H4), 7.69 (dd, 
3
JHH = 8.2 Hz, 

3
JHH = 6.9 Hz, 1H, H3'), 7.54 (d, 

3
JHH = 6.9 Hz, 1H, H2'), 7.51 
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(ddd, 
3
JHH = 8.5 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H6'), 7.47-7.43 (m, 2H, H6+H3), 7.32 

(ddd, 
3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H7'), 7.25 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H7), 7.22 (d, 

3
JHH = 8.3 Hz, 1H, H8'), 7.18 (d, 

3
JHH = 8.3 Hz, 1H, H8), 1.31 (m, 1H, endo-H1"), 1.22 (m, 1H, endo-H2"), 1.01 (m, 1H, exo-

H1"), 0.82 (m, 1H, exo-H2") ppm. 
13

C{
1
H} NMR (101 MHz, CDCl3): δ = 144.9 (d, 

 

2
JCP = 23.0 Hz, C1), 137.4 (d, 

 3
JCP = 8.2 Hz, C1'), 137.4 (d, 

 1
JCP = 40.1 Hz, C2), 133.8, 

133.3, 133.1, 132.9, 129.2 (d, 
 4

JCP = 1.9 Hz, C2'), 128.5 (C5'), 128.4 (C4'), 127.9 (C4+C5), 

127.0 (d, 
 2

JCP = 2.9 Hz, C3), 126.5 (C7), 126.5 (C8), 126.4 (C7'+C8'), 126.2 (C6), 126.1 

(C6'), 125.6 (C3'), 10.7 (d, 
1
JCP = 40.3 Hz, C1"), 10.0 (d, 

1
JCP = 40.3 Hz, C2") ppm. 

31
P NMR 

(202 MHz, CDCl3): δ = –235.4 (pseudo-t, average 
2
JPH = 18.6 Hz) ppm. IR (neat): ν = 3048.3 

(w), 2922.8 (w), 1587.2 (w), 1553.3 (w), 1501.5 (m), 1358.7 (m), 1255.9 (w), 1047.5 (w), 

1014.9 (w), 968.6 (w), 867.5 (w), 801.6 (s), 779.5 (s), 744.9 (s), 686.5 (m), 628.3 (m), 561.2 

(w) cm
–1

. HRMS (ESI
+
, acetone): Found: m/z = 313.1146. Calculated for [M + H]

+
: 

m/z = 313.1146. OR (CHCl3, c = 1.0 mg/ml): [α]D
20

 = +74°. TLC (silica gel; cyclohexane/ 

CH2Cl2, 1:1): Rf = 0.7. 

3.4.3 (R)-1-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphirane (14b) 

 

Primary phosphine 1b (500 mg, 1.58 mmol) was dissolved in THF (10 mL) and cooled to  

–78 °C. Methyllithium (2.17 mL, 1.6 M in Et2O, 3.48 mmol) was added and the orange-red 

solution was stirred at –78 °C for 30 minutes. 1,2-Dichloroethane (0.15 mL, 1.90 mmol) was 

added, the solution was allowed to warm-up to ambient temperature and stirred for 2 hours to 

give an orange solution. The reaction was slowly quenched with H2O (10 mL) and extracted 

with Et2O (2x 30 mL). The organic phase was dried over MgSO4 to give the fairly pure crude 

product (530 mg). Purification was performed by column chromatography (cyclohexane/ 

CH2Cl2, 1:1) on silica media (w = 4 cm, h = 7 cm), to yield the intended product as a white 

solid (482 mg, 1.41 mmol, 89%). 

MP (uncorrected): 142 °C. 
1
H NMR (400 MHz, CDCl3): δ = 8.06 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 

7.91 (d, 
3
JHH = 8.2 Hz, 1H, H5'), 7.86 (d, 

3
JHH = 8.4 Hz, 1H, H4), 7.84 (d, 

3
JHH = 8.2 Hz, 1H, 

H5), 7.50 (d, 
3
JHH = 9.1 Hz, 1H, H3'), 7.44 (dd, 

3
JHH = 8.4 Hz, 

3
JPH = 3.6 Hz, 1H, H3), 7.42 

(ddd, 
3
JHH = 8.2 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H6), 7.34 (ddd, 

3
JHH = 8.2 Hz, 
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3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H6'), 7.27 (m, 2H, H7+H7'), 7.16 (d, 

3
JHH = 8.2 Hz, 1H, 

H8'), 6.96 (d, 
3
JHH = 8.2 Hz, 1H, H8), 3.85 (s, 3H, OCH3), 1.35 (m, 1H, endo-H1"), 1.21 (m, 

1H, endo-H2"), 0.89 (m, 1H, exo-H1"), 0.79 (m, 1H, exo-H2") ppm. 
13

C{
1
H} NMR 

(101 MHz, CDCl3): δ = 155.0 (C2'), 141.2 (d, 
2
JCP = 24.5 Hz, C1), 137.7 (d, 

1
JCP = 38.8 Hz, 

C2), 134.1, 133.2, 132.6, 130.0 (C4'), 129.0, 128.0 (C5'), 127.9 (C4), 127.6 (C5), 127.1 (C3), 

126.7 (C7'), 126.3 (C7), 126.0 (C6), 125.8 (C8), 125.1 (C8'), 123.6 (C6'), 122.0 (d, 
3
JCP = 6.7 

Hz, C1'), 113.4 (C3'), 56.6 (s, OCH3), 9.1 (d, 
1
JCP = 40.1 Hz, C2"), 8.7 (d, 

1
JCP = 40.1 Hz, 

C1") ppm. 
31

P NMR (202 MHz, CDCl3): δ = –235.0 (pseudo-t, average 
2
JPH = 18.6 Hz) ppm. 

IR (neat): ν = 3051.6 (w), 2930.0 (w), 1620.7 (w), 1592.4 (m), 1507.5 (m), 1460.7 (w), 

1338.9 (w), 1249.3 (s), 1147.1 (w), 1079.1 (m), 1050.6 (m), 1019.6 (w), 907.2 (w), 866.2 (w), 

806.2 (s), 774.1 (w), 745.2 (s), 686.1 (w), 627.5 (w) cm
–1

. HRMS (ESI
+
, acetone): Found: 

m/z = 343.1246. Calculated for [M + H]
+
: m/z = 343.1252. OR (CHCl3, c = 1.1 mg/ml): 

[α]D
20

 = +60°. TLC (silica gel; cyclohexane/CH2Cl2, 1:1): Rf = 0.5. 

3.4.4 (S)-1-([1,1'-Binaphthalen]-2-yl)-1-methylphosphiranium triflate (15a) 

 

Phosphirane 14a (31.2 mg, 0.10 mmol) was dissolved in CH2Cl2 (7 mL) and MeOTf 

(32.8 mg, 0.02 mL, 0.05 mmol) was added. The reaction mixture was stirred at room 

temperature for 2 hours. The volatiles were removed in vacuo to give the intended product as 

a colourless solid (quantitative conversion). 

1
H NMR (400 MHz, CDCl3): δ = 8.18 (dd, 

4
JHP = 4.0 Hz,

 3
JHH = 8.7 Hz, 1H, H4), 8.15 (d, 

3
JHH = 8.7 Hz, 1H, H4'), 8.06 (dd, 

3
JHH = 8.7 Hz, 

3
JHP = 13.9 Hz, 1H, H3), 8.03 (m, 

3
JHH = 8.7 Hz, 2H, H5+H5'), 7.72 (dd, 

3
JHH = 7.8 Hz, 

 3
JHH = 8.7 Hz, 1H, H3'), 7.70 (m, 1H, 

H6), 7.57 (m, 1H, H6'), 7.55 (d, 
3
JHH = 7.8 Hz, 1H, H2'), 7.44 (m, 1H, H7), 7.37 (m, 1H, H7'), 

7.34 (d, 
3
JHH = 8.7 Hz, 1H, H8), 7.00 (d, 

3
JHH = 8.7 Hz, 1H, H8'), 2.31 (m, 1H, endo-H1"), 

2.06 (m, 2H, endo-H2"+exo-H1"), 1.91 (m, 1H, exo-H2"), 1.60 (d, 
2
JHP = 17.9 Hz, 3H, CH3) 

ppm. 
13

C{
1
H} NMR (101 MHz, CDCl3): δ = 149.0 (d, 

2
JCP = 10.1 Hz, C1), 136.2, 133.6, 

132.7, 132.5, 132.3, 131.1 (C4'), 130.6, 130.4, 129.2, 129.1, 128.7, 128.6, 128.0, 127.9, 127.8, 

127.4 (C6'), 127.3 (C8), 125.6 (C3'), 125.1 (C8'), 9.5 (d, 
1
JCP = 5.5 Hz, C1"), 7.8 (d, 

1
JCP = 

5.5 Hz, C2"), 6.3 (d, 
1
JCP = 50.5 Hz, CH3) ppm. 

19
F NMR (376 MHz, CDCl3): δ =  

–78.3 ppm. 
31

P{
1
H} NMR (202 MHz, CDCl3): δ = –101.2 ppm. IR (neat): ν = 3062.0 (w), 
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3001.7 (w), 2921.4 (w), 1586.9 (w), 1558.1 (w), 1506.0 (w), 1370.0 (w), 1275.8 (m), 1222.7 

(s), 1162.8 (s), 1027.2 (m), 969.8 (m), 911.1 (m), 806.8 (m), 782.9 (m), 728.9 (s), 688.8 (w), 

634.3 (s) cm
–1

. HRMS (ESI
+
, MeCN): Found: m/z = 327.1301. Calculated for [M – 

CF3SO3]
+
: m/z = 327.1297. 

3.4.5  (R)-1-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)-1-methylphosphiranium triflate 

(15b) 

 

Phosphirane 14b (34.2 mg, 0.10 mmol) was dissolved in CH2Cl2 (7 mL) and MeOTf 

(32.8 mg, 0.02 mL, 0.05 mmol) was added. The reaction mixture was stirred at room 

temperature for 2 hours. The volatiles were removed in vacuo to give the intended product as 

a colourless solid (quantitative conversion). 

1
H NMR (400 MHz, CDCl3): δ = 8.18 (d, 

3
JHH = 9.2 Hz, 1H, H4'), 8.15 (dd, 

3
JHH = 8.2 Hz, 

4
JHP = 4.1 Hz, 1H, H4), 8.05 (dd, 

3
JHH = 8.2 Hz, 

3
JHP = 13.7 Hz, 1H, H3), 8.02 (d, 

3
JHH = 8.2 Hz, 1H, H5), 7.94 (d, 

3
JHH = 8.7 Hz, 1H, H5'), 7.68 (m, 1H, H6), 7.52 (d, 

3
JHH = 9.2 Hz, 1H, H3'), 7.41 (m, 1H, H7), 7.39 (m, 1H, H6'), 7.29 (d, 

3
JHH = 8.2 Hz, 1H, H8), 

7.28 (m, 1H, H7'), 6.71 (d, 
3
JHH = 8.7 Hz, 1H, H8'), 3.81 (s, 3H, OCH3), 2.28 (m, 1H, endo-

H1"), 2.16 (m, 1H, endo-H2"), 2.03 (m, 1H, exo-H1"), 1.84 (m, 1H, exo-H2"), 1.63 (d, 

2
JHP = 18.3 Hz, 3H, CH3) ppm. 

13
C{

1
H} NMR (101 MHz, CDCl3): δ = 154.9 (C2'), 146.1 (d, 

2
JCP = 10.5 Hz, C1), 136.5, 133.2 (C4'), 132.5 (d, 

1
JCP = 15.3 Hz, C2), 128.0 (d, 

3
JCP = 14.4 

Hz, C4), 130.2 (C6), 128.9, 128.8 (C5+C5'), 128.5 (C7+C7'), 128.1 (d, 
2
JCP = 13.4 Hz, C3), 

126.7 (C8), 124.9 (C6'), 123.6 (C8'), 117.7 (d, 
3
JCP = 6.7 Hz, C1'), 113.0 (C3'), 56.3 (s, 

OCH3), 7.6 (d, 
1
JCP = 4.8 Hz, C1"), 7.0 (d, 

1
JCP = 4.8 Hz, C2"), 5.3 (d, 

1
JCP = 50.8 Hz, CH3) 

ppm. 
19

F NMR (376 MHz, CDCl3): δ = –78.3 ppm. 
31

P{
1
H} NMR (202 MHz, CDCl3): δ = –

102.0 ppm. IR (neat): ν = 3087.4 (w), 3002.5 (w), 2922.1 (w), 2846.5 (w), 1621.5 (w), 1592.9 

(w), 1508.8 (w), 1464.6 (w), 1251.3 (s), 1223.0 (s), 1026.9 (s), 969.2 (w), 906.2 (m), 872.7 

(w), 813.1 (m), 775.3 (w), 728.8 (s), 688.2 (w), 634.9 (s), 572.6 (w) cm
–1

. HRMS (ESI
+
, 

MeCN): Found: m/z = 357.1408. Calculated for [M – CF3SO3]
+
: m/z = 357.1403. 
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3.4.6 cis-Bis((S)-1-([1,1'-binaphthalen]-2-yl)phosphirane)dichloroplatin (17a) 

14a (31.2 mg, 0.10 mmol) and cis-[Pt(η
4
-cod)Cl2] (19.2 mg, 0.05 mmol) were dissolved in 

CH2Cl2 (7 mL) and stirred at room temperature for 2 hours. The volatiles were removed in 

vacuo to give the intended product as a colourless solid (quantitative conversion). Crystals 

suitable for X-ray analysis were obtained by slow diffusion of Et2O into a solution of CHCl3 

at ambient temperature. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.07 (d, 

3
JHH = 8.2 Hz, 2H, H4'), 8.00 (d, 

3
JHH = 8.2 Hz, 

2H, H5), 7.89 (d, 
3
JHH = 8.2 Hz, 2H, H5'), 7.81 (d, 

3
JHH = 8.6 Hz, 2H, H4), 7.69 (m, 2H, H3), 

7.66 (dd, 
3
JHH = 8.2 Hz, 

3
JHH = 7.0 Hz, 2H, H3'), 7.54 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 2H, H6), 7.50 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 2H, H6'), 7.32 

(d, 
3
JHH = 7.0 Hz, 2H, H2'), 7.30 (ddd, 

3
JHH = 8.6 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 2H, H7), 

7.21 (ddd, 
3
JHH = 8.6 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 2H, H7'), 7.00 (d, 

3
JHH = 8.6 Hz, 2H, 

H8), 6.80 (d, 
3
JHH = 8.6 Hz, 2H, H8'), 1.21 (m, 2H, endo-H), 0.99 (m, 2H, endo-H), 0.50 (m, 

2H, exo-H), 0.23 (m, 2H, exo-H) ppm. 
13

C{
1
H} NMR (125 MHz, CD2Cl2): δ = 144.2 (C1), 

135.4, 134.3, 133.8, 132.8, 132.5, 131.3, 129.4, 129.1, 129.1, 128.5, 128.0, 127.6, 127.2, 

127.0, 126.8, 126.5, 126.4, 125.5, 10.5 (C1"), 8.3 (C2") ppm. 
31

P{
1
H} NMR (202 MHz, 

CD2Cl2): δ = –149.2 (s with 
195

Pt satellites, 
1
JPPt = 4170 Hz) ppm. IR (neat): ν = 3060.3 (w), 

2991.3 (w), 1586.0 (w), 1557.2 (w), 1501.3 (w), 1376.1 (w), 1313.6 (w), 1258.0 (w), 1013.5 

(w), 946.7 (w), 913.6 (s), 782.3 (s), 739.2 (s), 707.4 (m), 672.6 (m) cm
–1

. HRMS (ESI
+
, 

MeCN): Found: m/z = 913.1054. Calculated for [M + Na]
+
: m/z = 913.1048. 

3.4.7 cis-Bis((R)-1-(2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphirane)dichloroplatin 

(17b) 

14b (34.2 mg, 0.10 mmol) and cis-[Pt(η
4
-cod)Cl2] (19.2 mg, 0.05 mmol) were dissolved in 

CH2Cl2 (7 mL) and stirred at room temperature for 2 hours. The volatiles were removed in 

vacuo to give the intended product as a colourless solid (quantitative conversion). Crystals 

suitable for X-ray analysis were obtained by slow evaporation of CHCl3 at ambient 

temperature. 

1
H NMR (500 MHz, CDCl3): δ = 8.10 (d, 

3
JHH = 9.2 Hz, 2H, H4'), 7.91 (d, 

3
JHH = 8.3 Hz, 2H, 

H5'), 7.84 (d, 
3
JHH = 8.3 Hz, 2H, H5), 7.78 (m, 4H, H3+H4), 7.45 (m, 4H, H3'+H6), 7.39 (m, 

2H, H6'), 7.30 (m, 2H, H7'), 7.18 (m, 2H, H7), 6.90 (d, 
3
JHH = 8.3 Hz, 2H, H8'), 6.84 (d, 

3
JHH = 8.4 Hz, 2H, H8), 3.74 (s, 6H, OCH3), 1.22 (m, 2H, endo-H1"), 1.02 (m, 2H, endo-

H2"), 0.32 (m, 2H, exo-H2"), –0.07 (m, 2H, exo-H1") ppm. 
13

C{
1
H} NMR (125 MHz, 
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CDCl3): δ = 154.7 (C2'), 141.1 (C1), 134.5, 133.7, 132.5, 131.7 (C3), 131.3 (C4'), 129.2, 

128.1 (C5+C5'), 128.0 (C7'), 127.9 (C6), 127.5 (C4), 127.0 (C7), 126.3 (C8), 125.7 (C8'), 

124.6 (C6'), 120.0 (C1'), 113.1 (C3'), 56.4 (s, OCH3), 7.8 (C2"), 7.2 (C1") ppm. 

31
P{

1
H} NMR (202 MHz, CDCl3): δ = –149.3 (s with 

195
Pt satellites, 

1
JPtP = 4160 Hz) ppm. 

IR (neat): ν = 3058.4 (w), 2986.2 (w), 2937.1 (w), 1620.7 (w), 1592.3 (w), 1506.8 (m), 

1473.8 (w), 1429.7 (w), 1383.6 (w), 1333.1 (w), 1271.5 (s), 1252.8 (s), 1215.8 (w), 1181.3 

(w), 1149.6 (w), 1117.8 (w), 1076.9 (m), 1046.5 (m), 1018.8 (w), 951.0 (w), 916.3 (s), 871.4 

(w), 808.1 (s), 774.6 (w), 738.3 (s), 708.9 (m), 680.7 (m), 628.8 (m) cm
–1

. HRMS (ESI
+
, 

MeCN): Found: m/z = 971.1237. Calculated for [M + Na]
+
: m/z = 971.1242. 

3.4.8 Rhodium Catalysed Hydrogenation of (Z)-Methyl-2-acetamido cinnamate 

 

[Rh(η
4
-cod)2]PF6 (9.3 mg, 0.02 mmol) and ligand (0.04 mmol) were dissolved in MeOH 

(20 mL) and left to stir for 2 hours. (Z)-Methyl-2-acetamido cinnamate (219 mg, 1.00 mmol) 

was added and the autoclave was filled with 3.5 bar H2 gas. The reaction mixture was stirred 

for 20 hours, the solvent was evaporated and the conversion was determined by 
1
H NMR 

spectroscopy. The crude product was purified by column chromatography (EtOAc/hexane, 

3:1) on silica media (h = 10 cm, d = 2 cm). The enantiomeric excess was measured by chiral 

HPLC (Column Daicel Chiralpak AD-H; flow rate: 0.8 mL/min; hexane/2-propanol, 90:10; 

retention times: (R) t1 = 9.8 min, (S) t2 = 13.1 min).
191

 

3.4.9 Palladium Catalysed Hydrosilylation of Styrene 

 

[Pd(η
3
-C3H5)Cl]2 (4.6 mg, 0.0125 mmol), ligand (0.050 mmol) and styrene (1.2 mL, 1.0 g, 

10.0 mmol) were stirred at room temperature for 20 minutes. Trichlorosilane (1.2 mL, 1.6 g, 

12.0 mmol) was added and the reaction was stirred at room temperature for the appropriate 

time (24-96 h). The conversion of the reaction was followed by 
1
H NMR spectroscopy, and 

the product was purified by Kugelrohr distillation (reduced pressure, 150 °C). 

Trichloro(1-phenylethyl)silane (400 mg, 1.67 mmol) was dissolved in MeOH (30 mL) and 

THF (30 mL). K2CO3 (1.40 g, 10.1 mmol), KF (600 mg, 10.3 mmol) and 35% H2O2 (1.8mL) 
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were added subsequently and left to stir overnight. The solution was filtered, H2O was added 

and it was extracted with Et2O (3x). The combined organic washings were dried over MgSO4. 

The crude product was purified by column chromatography (hexane/EtOAc, 4:1, Rf = 0.20) 

on silica media to obtain the desired product. The enantiomeric excess was measured by chiral 

HPLC on the Varian (Column Daicel Chiralcel OD; flow rate: 0.5 mL/min; hexane/2-

propanol, 95:5; retention times: (R) t1 = 19.3 min, (S) t2 = 22.3 min), or Shimadzu device (Lux 

5u Cellulose-1 Column, 250 x 4.6 mm; flow rate: 1.0 mL/min; hexane/2-propanol, 95:5; 

retention times: (R) t1 = 8.9 min, (S) t2 = 10.2 min).
192
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Chapter 4 —  MOP-Type Ligands: Structural and Electronic Design 

 

 

The synthesis of chiral MOP-type ligands 14a,b, 16a,b, 18a,b and 19a,b is reported, 

accessible in one-pot reactions from stable primary phosphines 1a,b. They offer a range of 

structural and electronic parameters that have been determined by a number of experimental 

and theoretical studies. Dimethylphosphines 16a,b and bis(dimethylamino)phosphines 18a,b 

are good electron donors, while phosphiranes 14a,b and phosphonites 19a,b are electron poor 

compounds. The ligands were coordinated to platinum(II) and the weak trans-influence of the 

highly strained phosphiranes 14a,b was revealed both in solution and the solid-state. 

Methallylpalladium(II) complexes were analysed for their allyl rotation showing subtle 

differences in exchange rates that were mainly attributed to steric effects. Aryl side-on 

coordination of the MOP-backbone to palladium(II) was observed for complexes with a non-

coordinating counter-ion and structurally analysed in the case of ligand 18b. The asymmetric 

induction and catalytic activity of 14a,b, 16a,b, 18a,b and 19a,b were tested in the 

hydrosilylation of styrene as well as the allylic alkylation of (rac)-(E)-1,3-diphenylallyl 

acetate. Major differences in reactivities were related back to the electronic parameters of the 

ligands.
193

 

4.1 Introduction 

In transition-metal catalysed reactions the design of the chiral ligand is crucial for transferring 

the stereochemical information effectively onto the substrate.
194

 A fine balance of steric and 

electronic properties is often necessary to achieve high asymmetric induction while ensuring 

good catalytic activity. It is therefore desirable to obtain characteristic values for each ligand 

that describe their steric and electronic effects. The separation of electronic and steric 
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parameters of phosphorus(III) ligands was most profoundly influenced by Tolman,
195

 and his 

study was used as the foundation for numerous experimental and theoretical investigations 

thereafter (cf. Chapter 1.2).
196

 

An important class of chiral mono-phosphines are Hayashi’s MOP ligands (Figure 4.1, top 

left).
197,198

 They are based on a binaphthyl-derived skeleton exhibiting axial chirality and are 

capable of catalysing a number of asymmetric transformations.
199

 Different substituents have 

been employed in the 2'-position (most commonly H or OMe) which causes major changes in 

their catalytic behaviour.
197

 The aryl-substituents on the phosphorus atom (phenyl in the case 

of MOP) have been modified in order to tweak the electronics of the donor and thereby 

increase the catalytic performance.
200

 Note that changes in the electronic properties of a 

ligand can have equally dramatic consequences on catalyst activity and selectivity as 

modifications on the ligand’s spatial demand.
196c

 More drastically changed P-substituents 

(e.g. alkyl- instead of aryl-substituents) have seldom been introduced,
201

 presumably as a 

result of synthetic restraints or the need to access these derivatives via their respective 

primary phosphines (cf. Chapter 1.3.2). 

 

Figure 4.1 MOP-type ligands with different functionalities that are investigated in this chapter. 

Primary phosphines are readily functionalised by substitution of their P-bound hydrogen 

atoms; however their reputation as highly air-sensitive, toxic and pyrophoric compounds has 

somewhat inhibited their use in synthetic methodology.
202

 More recently there has been an 

increased amount of interest in the synthesis of air-stable primary phosphines, whose stability 

is owed to steric encumbrance,
203

 or is as of yet unexplained (cf. Chapter 1.4.1).
204

 In this 

context we reported the first air-stable, chiral primary phosphines 1a,b (Figure 4.1; see 
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Chapter 2 for their multigram synthesis) which were subsequently utilised to access chiral 

MOP-type ligands (e.g. see Chapter 3 for the synthesis of MOP-phosphiranes).
205

 The full 

exploration of 1a,b as ligand precursors is still ongoing. Here, we investigate four 

fundamentally different P-donor ligands that were accessible from these primary phosphines 

in one-pot reaction procedures, for the purpose of examining their different structural and 

electronic parameters. 

In our recent communication about phosphirane ligands 14a,b (Figure 4.1) we described some 

of the unusual donor properties caused by the strain of the small P-heterocycle (Chapter 

3.2).
206

 We therefore sought experimental data to compare these intriguing molecules to their 

corresponding unstrained dimethylphosphines 16a,b. Furthermore we wanted to include 

bis(dimethylamino)phosphines 18a,b and dimethyl phosphonites 19a,b into the comparative 

study in order to evaluate the unique properties of a range of P-ligand motifs. The structural 

and electronic impact of the ligands is shown in a number of experimental and theoretical 

analyses, most notably their palladium(II) and platinum(II) complexes, which have been 

studied in detail in solution and in the solid-state. Their application as catalysts was tested in 

the palladium catalysed asymmetric hydrosilylation of styrene as well as in the asymmetric 

allylic alkylation of (rac)-(E)-1,3-diphenylallyl acetate. 

4.2 Results and Discussion 

4.2.1 Ligand Synthesis and Stability 

We recently reported chiral phosphirane ligands 14a,b bearing a highly strained three-

membered heterocycle around the phosphorus. These were prepared from their parent primary 

phosphines 1a,b in a straightforward one-step reaction procedure (Chapter 3.2).
206

 

Phosphiranes 14a,b possess unusual electronic properties caused by the strain of the small P-

heterocycle resulting in greater s-character of the donor orbital. This ultimately leads to 

weaker σ-donor but better π-acceptor properties compared to their unstrained counterparts.
207

 

Dimethylphosphine ligands 16a,b were first reported by Stryker and co-workers,
201f

 and 

further studied by Shi et al. mainly for their application as catalysts in the aza-Baylis-Hillman 

reaction.
208

 We became interested in evaluating these ligands for their steric and electronic 

properties, especially in view with comparing them to other MOP-type entities like our 

phosphiranes 14a,b; synthetic pathways to obtain enantiomerically pure 16a,b are known 

from earlier reports.
208

 However, we were also keen to develop an efficient one-pot synthesis 

starting from our primary phosphines 1a,b which have been proven as valuable synthons in 
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the preparation of phosphorus ligands and have since been prepared efficiently by us on a 

large scale (Chapter 2).
209

 In a synthetic methodology we had originally adapted from 

Weferling,
210

 and which we have used to prepare chiral MOP-phosphonite ligands (Chapter 

5.2.1),
211

 we reacted 1a,b with phosphorus pentachloride in toluene to generate the respective 

dichlorophosphine derivatives in situ (Scheme 4.1, path i). After removing the volatiles in 

vacuo further reactions were performed in the same reaction vessel. Initially we attempted the 

methylation by adding a solution of methyllithium in diethyl ether, but this resulted in the 

formation of compound mixtures. Instead we found that a much cleaner reaction was achieved 

when methylmagnesium chloride in tetrahydrofuran was used as the methylating agent 

(Scheme 4.1, path ii). Analysis of the crude reaction mixtures by 
31

P NMR showed complete 

conversions to the desired products (–54.0 ppm for 16a,b). Thus, dimethylphosphines 16a,b 

were obtained in good yields (76%/73% respectively) after purification on silica media. The 

ligands were found to be air-stable after leaving the compounds open to the atmosphere for 7 

days neat or in chloroform solution. This observation differs from an earlier report in which 

the authors stated that the compounds were air-sensitive but without giving further details on 

their reactivity.
201f

 The remarkable air-stability of primary phosphines 1a,b and MOP-type 

ligands in general has been attributed to the high conjugation in their extended aromatic 

backbone.
205

 We have developed a DFT model in order to predict the air-stability of 

phosphines (Chapter 1.4.1),
212

 and calculations according to this model suggested that 16a,b 

would be air-stable (SOMO energies of the radical cations are –9.05 eV (16a) and –8.83 eV 

(16b) respectively). 

 

Scheme 4.1 Reaction conditions: (i) PCl5, toluene; (ii) MeMgCl, THF, –78 °C to rt; (iii) Me2NH, NEt3, THF; (iv) 

MeOH, NEt3, CH2Cl2. 
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As another target we aimed to synthesise bis(dimethylamino)phosphines 18a,b. In contrast to 

phosphiranes 14a,b and dimethylphosphines 16a,b these compounds possess two P–N bonds 

resulting in a different electronic environment around the phosphorus. The amino-substituents 

are known to lend σ-donor strength to the phosphorus arising from electron donation of the 

nitrogen lone pairs.
213

 Aminophosphines are commonly prepared by condensation reaction of 

phosphorus(III) halides with secondary amines.
214

 Hence, we were able to use our primary 

phosphines 1a,b as starting materials to generate the respective dichlorophosphines in situ 

(vide supra); these were then treated with dimethylamine under basic conditions to give 18a,b 

(Scheme 4.1, path iii) in very good yields (93%/89% respectively after purification). The 
31

P 

NMR spectra show typical resonances for bis-heteroatom substituted 3-coordinated 

phosphines at 99.9 ppm (18a) or 101.0 ppm (18b). Ligands 18a,b are moderately sensitive 

towards moisture and protic solvents such as alcohols. Purification on alumina media with 

reagent grate solvents was possible and no evidence for oxidation of these ligands in air was 

found. Generally 18a,b can be handled in air without the need of an inert atmosphere but they 

should be stored in closed vials to avoid hydrolysis after prolonged exposure to moisture. 

Finally, we decided to assess the effect of incorporating electronegative methoxy groups at 

the phosphorus. Dimethyl phosphonite ligands 19a,b were synthesised in an analogous 

reaction from primary phosphines 1a,b via methanolysis of the respective dichlorophosphine 

intermediates in the presence of triethylamine (Scheme 4.1, path iv). The crude products were 

found to decompose on silica and alumina media. The generated amine-salt impurity was 

therefore separated by filtration of a toluene solution of the ligand through a pad of celite. 

Ligands 19a,b were usually obtained with >90% purity by 
31

P NMR and no further 

purification was performed (P(V)-species were observed as the only remaining side-products). 

Their resonances in the 
31

P NMR spectra are located at lower field relative to the other ligands 

in this study (157.5 ppm for 19a, 155.8 ppm for 19b), caused by the electronegative methoxy 

substituents on the phosphorus atom. Ligands 19a,b are prone to hydrolysis and should 

therefore be stored and handled under the exclusion of moisture. 

4.2.2 Assessment of Structural and Electronic Properties 

The 
1
JPSe coupling in R3P(Se) compounds can be used to determine the effective 

electronegativity of the substituents on the phosphorus atom.
215

 The 
1
JPSe magnitude is 

inversely correlated to the σ-donor strength of a R3P ligand; electron-donating substituents 

cause the coupling constant to decrease (cf. Chapter 1.2.2). Sterically demanding substituents 

can indirectly influence the coupling if the intervalence angles on the phosphorus are 
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widened; the s-character of the phosphorus lone pair is thereby reduced resulting in increased 

Lewis basicity.
216

 Furthermore, it should be noted that the presence of π-back donation may 

also affect the σ-donation due to synergic effects in phosphorus-metal bonds.
217

 

The respective ArP(Se)R2 derivatives were prepared by the reaction of ligands 16a,b, 18a,b or 

19a,b with potassium selenocyanide.
218

 In our initial study on phosphiranes we had found that 

the reactivity of 14a,b towards sulfur is somewhat reduced (Chapter 3.2);
206

 similarly we were 

unable to observe any selenide product formation for these substrates even at elevated 

temperatures and prolonged reaction times. For the ArP(Se)R2 derivatives of dimethyl-

phosphines 16a,b we found lower coupling constant values than for the respective derivatives 

of ligands 18a,b and 19a,b, corresponding to a better σ-donor character (Table 4.1). This is in 

accord with the expectation as the electronegative nitrogen atoms in 18a,b, and to a greater 

extent the oxygen atoms in 19a,b reduce the σ-donor strength of the phosphorus atom.  

Table 4.1 Structural and electronic parameters of phosphorus ligands 14a,b, 16a,b, 18a,b and 19a,b. 

ligand 
1
JPSe

a
 ν (CORh)

b
 EHOMO

c
 PA

d
 S4

e
 

14a — 1983 –5.72 228.0 130.1° 

14b — 1985 –5.41 231.4 127.5° 

16a 685 1965 –5.59 247.3 53.5° 

16b 683 1963 –5.27 250.4 53.7° 

18a 770 1972 –5.11 254.6 52.1° 

18b 765 1969 –5.01 257.5 51.7° 

19a 858 1999 –5.69 243.0 59.5° 

19b 860 1996 –5.38 246.9 62.2° 
a
 Coupling from the ArP(Se)R2 derivative in Hertz. 

b
 CO-stretch of trans-

[RhCl(CO)(ArPR2)2] in CH2Cl2 in cm
–1

. 
c
 Calculated HOMO energies in eV of the 

optimised structures of the free ligand. 
d
 Calculated proton affinity in kcal/mol of the free 

ligand. 
e
 Calculated from the optimised structure of the free ligand.

 

In order to include phosphiranes 14a,b into the comparative study of electronic properties, we 

synthesised trans-[Rh(LP)2(CO)Cl] complexes (LP = phosphorus ligand) and measured the 

symmetric carbonyl stretching frequencies in the IR spectrum. A higher wavenumber of the 

vibration indicates a lower net-donor property of LP as the reduced electron density on the 

metal allows for less back-bonding into the antibonding π*-orbitals of the carbonyl groups.
219

 

The IR spectra were recorded from dichloromethane solutions, since packing effects in the 

solid state may have significant influence on the observed values.
220

 We found that 

dimethylphosphines 16a,b are the strongest net-donors (1965, 1963 cm
-1

), subsequently 

followed by bis(dimethylamino)phosphines 18a,b (1972, 1969 cm
-1

), phosphiranes 14a,b 

(1983, 1985 cm
-1

) and dimethyl phosphonites 19a,b (1999, 1996 cm
-1

). The weak donating 
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properties of phosphiranes 14a,b compared to their dimethylphosphine counterparts 16a,b 

have been attributed to their pyramidalised structures which result in increased s-character of 

the donor orbitals. In fact, phosphiranes 14a,b show weaker net-donation than PPh3 (1979 cm
-

1
), but are better donors than the strongly pyramidalised 

iPr
BABAR-Phos

221
 phosphirane 

ligand (1991 cm
-1

, for the structural formula of this ligand see LIV in Figure 3.2 on page 

54).
219a 

Electronic descriptors measuring the donor abilities of our ligands were calculated in their 

HOMO orbital energy levels and proton affinity (PA) in a series of DFT calculations 

(calculated at the B3LYP/6-31G* level of theory). The energy of the HOMO usually 

corresponds to the lone pair of the phosphorus and PA is a measure of its σ-basicity; the two 

values have been found to correlate fairly well for a range of phosphorus ligands.
222

 

The HOMO energies were calculated from the optimised structures of the free ligands and the 

values are listed in Table 4.1. We observed higher EHOMO values in the direct comparison of 

H-MOP derivatives (a) to their respective OMe-MOP counterparts (b). The spatial 

representations of the HOMO orbitals (Figure 4.2) reveal their distribution on the binaphthyl 

backbone, and also on the methoxy-group in the case of the OMe-MOP derivatives (b). 

Arguably, the differences in energies are amplified by the subtle distinction in HOMO-

delocalisation on the ligand’s backbone. 

 

Figure 4.2 HOMO energies of 14a,b, 16a,b, 18a,b and 19a,b calculated at the B3LYP/6-31G* level of theory. 
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The PA values show much less deviation in this respect (Table 4.1). Their energy was 

calculated from the differential in molecular energies of the DFT-optimised structure of the 

free ligand, and the optimised structure of the protonated ligand (protonated on the 

phosphorus atom).
222,223

 Their magnitude increases (indicating an increasing σ-basicity) in the 

order 14a,b ˂ 19a,b ˂ 16a,b ˂ 18a,b. In comparison to the relative trend of the net-donor 

properties from the experimentally determined values ν (CORh) it is noticeable that the 

calculated σ-basicity is somewhat overestimated for the heteroatom-substituted derivatives 

18a,b and 19a,b. 

To get an insight into the structural properties of the phosphorus ligands we calculated the 

symmetric deformation coordinate from their DFT-optimised geometries. The S4' parameter 

was first introduced by Orpen et al.
224

 as an alternative to Tolman’s cone angle (θT).
195,225

 Its 

use is appropriate for MOP-type compounds in particular since the θT parameter would be 

dominated by the bulky binaphthyl substituent (cf. Chapter 1.2.1).
226

 As a measure of 

flattening or pyramidality around the phosphorus, S4' is defined as the sum of Z-P-R angles 

(αi) minus the sum of R-P-R angles (βi), with Z describing the coordinated atom of the PR3 

ligand (Figure 4.3). A modified descriptor coined S4 is given for free ligands, where Z is a 

perpendicular vector to the plane containing the three substituents of the phosphorus atom.
227

 

The S4 values were determined from the optimised minimal energy geometries of each ligand 

at the B3LYP/6-31G* level (Table 4.1). The pyramidalisation of phosphiranes 14a,b is 

recognised in unusually large values for S4 (130.1° and 127.5° respectively). In contrast, 

16a,b and 18a,b exhibit much smaller S4 values of similar magnitudes (51.7°-53.7°) which is 

unsurprising in the absence of ring-strain. The values are slightly increased for 19a,b (59.5° 

and 62.2° respectively) in comparison to the other unstrained derivatives, presumably as a 

result of the lesser steric hindrance around the phosphorus. 

 

Figure 4.3 Definition of angles for the calculation of S4' = (α1 + α2 + α3) – (β1 + β2 + β3). 

4.2.3 Platinum(II) Coordination Properties 

To investigate the structural and electronic behaviour of our ligands upon coordination to a 

metal centre, we prepared a series of square planar platinum(II) complexes. Solution studies 
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of these compounds can give an insight into the nature of the phosphorus-platinum bonds by 

the 
1
JPtP coupling constants in their NMR spectra.

228
 It has been suggested that the main 

contributor to the one-bond coupling is the Fermi interaction of the two involved nuclei.
229

 

This means that the s-component of the P–Pt bond has a direct influence on the coupling 

constant, yielding larger values with increasing s-orbital overlap. However, p- and d-

components will indirectly affect the s-orbital interaction by changing the bond order, and 

previous reports have shown that there is a good correlation between the 
1
JPtP magnitude and 

the Pt–P bond length.
230

 This relationship allows for the determination of cis and trans 

influences in platinum complexes, i.e. the ability of a ligand to weaken the bond to a 

substituent in the cis/trans position,
231

 which then helps in rationalising the σ-donor and π-

acceptor properties of the ligands.
232,233

 Complementary studies, using X-ray crystallographic 

analysis to determine bond lengths, are available to supplement the results in solution. 

Platinum(II) dichloride complexes with the general formula [Pt(LP)2Cl2] (LP = phosphorus 

ligand) were synthesised from the reaction of cis-[Pt(η
4
-cod)Cl2] with the appropriate ligand 

(Figure 4.4). In solution as well as in the solid state the selective formation of cis-17a,b (the 

crystal structures of cis-17a,b are depicted in Figure 3.6 and Figure 3.7 on page 60)
206

 or cis-

20b (Figure 4.5) was observed when phosphiranes 14a,b or dimethylphosphine 16b were 

used as ligands respectively. Under the same reaction conditions the more sterically 

demanding ligand 18b gave the trans-21b (Figure 4.6) isomer with complete selectivity. The 

31
P NMR spectra show the expected singlet resonance with a doublet of 

195
Pt satellites. For 

the cis complexes the 
1
JPtP coupling is larger in cis-17a,b (4170, 4160 Hz) compared to cis-

20b (3647 Hz) as a result of the higher s-character of the phosphirane donor orbitals. The 
1
JPtP 

coupling in trans-21b (2955 Hz) is significantly smaller compared to the cis complexes 

because of the stronger reciprocal trans influence of the phosphine ligands compared to the 

trans influence of a chloride ligand. 

 

Figure 4.4 Numbering of the platinum complexes used in this study (LP = phosphorus ligand). 
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Figure 4.5 View of the molecular structure of cis-[Pt(16b)2Cl2] (cis-20b) with 50% probability displacement 

ellipsoids. Hydrogen atoms and co-crystallised solvent (2 Et2O) have been omitted for clarity. 

 

Figure 4.6 View of the molecular structure of trans-[Pt(18b)2Cl2] (trans-21b) with 50% probability 

displacement ellipsoids. Hydrogen atoms have been omitted for clarity. 

Table 4.2 Selected bond distances [Å], angles [°] and S4' data from X-ray crystallographic analysis. 

 cis-17a cis-17b
a
 cis-20b trans-21b trans-22b trans-24a 

Pt–P1 2.212(2) 2.204(3) 2.244(3) 2.308(2) 2.3044(18) 2.3395(11) 

Pt–P2 2.209(2) — 2.243(2) 2.314(2) 2.2835(19) 2.3050(11) 

Pt–Cl1 2.337(2) 2.338(3) 2.338(2) 2.292(2) 2.2925(18) 2.3001(10) 

Pt–Cl2 2.334(2) — 2.368(2) 2.3023(19) 2.3072(17) 2.3080(10) 

P1-Pt-P2 97.02(8) 96.92(14) 96.60(10) 170.37(7) 178.76(9) 176.90(4) 

P1-Pt-Cl1 175.90(10) 169.05(10) 172.58(9) 92.00(7) 90.86(6) 92.34(4) 

P1-Pt-Cl2 85.40(9) — 83.37(9) 87.97(7) 88.32(6) 91.41(4) 

P2-Pt-Cl1 87.06(10) 87.28(7) 90.77(9) 87.79(7) 88.06(7) 85.15(4) 

P2-Pt-Cl2 177.57(10) — 178.37(9) 91.82(7) 92.78(7) 91.25(4) 

Cl1-Pt-Cl2 90.52(8) 90.42(15) 89.29(8) 177.54(8) 178.24(11) 173.86(5) 

S4' (P1) 98.0 105.4 24.3 21.3 105.7 18.7 

S4' (P2) 103.6 — 17.9 21.5 24.0 27.8 
a
 Two-fold rotational symmetry 
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Selected bond lengths and angles for the solid-state structures of cis-17a,b, cis-20b and trans-

21b are given in Table 4.2. Phosphirane complexes cis-17a,b form shorter Pt–P bonds 

(2.209(2)-2.212(2) Å) than the dimethylphosphine ligated derivative cis-20b (2.243(2) Å, 

2.244(3) Å), which is attributed to the better π-acceptor character of the phosphirane ligands 

in cis-17a,b. The Pt–P bond lengths are further elongated in trans-21b (2.308(2) Å, 

2.314(2) Å) due to the relatively strong reciprocal trans influence in agreement with the NMR 

data as described above. The strong pyramidalisation of the phosphirane group is retained 

when bound to platinum and manifests itself in large S4' values for cis-17a,b (98.0-103.6°; 

calculated from X-ray structural data). For cis-20b and trans-21b the adjacent groups around 

the phosphorus are only slightly tilted out of the plane, resulting in much smaller S4' values 

(17.9-21.5°). 

For further evaluation of the relative cis and trans influences of the different phosphorus 

donor ligands we synthesised unsymmetrical platinum(II) complexes with the general formula 

[Pt(LP)(PEt3)Cl2] (selected NMR spectral data is given in Table 4.3).
223

 The reaction of two 

equivalents of phosphorus ligand (LP) with [Pt(PEt3)Cl2]2 proceeded quantitatively in all 

instances (Figure 4.4). In the case of phosphiranes 14a,b and dimethylphosphines 16a,b we 

observed the formation of both cis and trans isomers of the corresponding platinum 

complexes 22a,b and 23a,b in solution. The two respective isomers can be easily 

distinguished by their 
2
JPP coupling constants in the 

31
P NMR spectrum. The trans complexes 

show a characteristic large 
2
JPP coupling (482-575 Hz) while the equivalent coupling for the 

corresponding cis isomers is much smaller (18-23 Hz, Figure 4.7). The obtained ratios of cis 

and trans isomers varied from 2:1 to 1:2 depending on the ligand. EXSY experiments showed 

no exchange of the two isomers on the NMR timescale and additional NMR spectra that were 

recorded after leaving the complexes in solution for 24 hours yielded unchanged cis/trans 

ratios. In previous reports about related platinum(II) complexes the trans products have been 

found to convert to their cis isomers over time.
234

 When bis(dimethylamino)phosphines 18a,b 

or dimethyl phosphonites 19a,b were used as ligands the trans-24a,b or trans-25a,b isomers 

were formed exclusively, displaying the typical 
2
JPP coupling constants of 543-604 Hz in the 

31
P NMR (Figure 4.7). 

The fast relaxation time of the platinum nucleus in the studied compounds allowed for a rapid 

collection of their 
195

Pt NMR spectra (Figure 4.7). The resonances for the trans complexes are 

observed downfield (–3839 to –3941 ppm) to their corresponding cis isomers (–4362 to  

–4501 ppm, Table 4.3). The phosphirane ligands in 22a,b generally induce stronger shielding 

to the platinum nucleus. The effect is most pronounced for cis-22a,b which show an upfield 



Chapter 4 — MOP-Type Ligands: Structural and Electronic Design 84 

shift of about 100 ppm compared to cis-23a,b. The strongest de-shielding effects were found 

for complexes of the heteroatom substituted ligands in trans-24a,b and trans-25a,b (–3839 to  

–3881 ppm). 

 

Figure 4.7 Left: 
31

P{
1
H} NMR (202 MHz) spectra of the PEt3 resonances in 22b (cis and trans isomers present) 

and trans-24b. The satellite peaks are caused by coupling to the 
195

Pt nucleus. Right: 
195

Pt{
1
H} NMR (108 MHz) 

spectra of 22b (cis and trans isomers present) and trans-24b. 

Table 4.3 Selected NMR data of the platinum complexes prepared in this study. 

complex δ(Pt)
a 

δ(LP)
b 1

JPtP(LP)
c
 δ(PEt3)

d
 

1
JPtP(PEt3)

e
 

cis-17a n.d. –149.2 4170 — — 

cis-17b n.d. –149.3 4160 — — 

cis-20b –4362 –6.1 3647 — — 

trans-21b –3747 87.8 2955 — — 

cis-22a –4493 –144.1 4381 10.4 3281 

trans-22a –3941 –149.6 2570 15.5 2871 

cis-22b –4501 –144.1 4377 9.8 3282 

trans-22b –3921 –151.9 2566 13.8 2886 

cis-23a –4401 –5.1 3725 7.1 3412 

trans-23a –3914 –4.5 2364 12.5 2479 

cis-23b –4412 –2.9 3737 7.2 3404 

trans-23b –3917 –1.3 2402 12.0 2464 

trans-24a –3869 90.4 3030 10.7 2365 

trans-24b –3839 90.4 3049 10.4 2332 

trans-25a –3881 119.8 3428 10.4 2402 

trans-25b –3859 117.3 3454 8.9 2407 
a 
Chemical shift in ppm. 

b
 Resonance of the ArPR2-ligand in ppm. 

c
 Coupling of the ArPR2-

ligand in Hertz. 
d
 Resonance of the PEt3-ligand in ppm. 

e
 Coupling of the PEt3-ligand in Hertz. 

The 
1
JPtP magnitude of the PEt3 ligand in [Pt(LP)(PEt3)Cl2] corresponds well to the Pt–PEt3 

bond length (vide supra) and can therefore be used as a probe to determine the relative 

cis/trans influences of various phosphorus ligands (LP); a smaller coupling is indicative of a 
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larger cis/trans influence. The trans influence for the phosphirane ligands in trans-22a,b is 

comparatively weak in relation to the dimethylphosphine ligands in trans-23a,b 

(2871/2886 Hz versus 2479/2464 Hz). The situation is reversed for the cis influence which is 

stronger for the phosphiranes in cis-22a,b compared to cis-23a,b (3281/3282 Hz versus 

3412/3404 Hz). The trans influence observed in trans-25a,b (2402/2407 Hz) and trans-24a,b 

(2365/2332 Hz) is subsequently further strengthened; data accounting for the cis influence in 

these compounds is unavailable due to the selective formation of the trans isomer only. 

The rationale for the unusually strong cis influence in 22a,b lies in the higher s-character of 

the phosphirane donor orbital caused by its stronger pyramidalised structure (Figure 4.8). The 

interaction of the donor orbital with a symmetric metal centred s-orbital results in weakened 

bonds to both cis and trans ligands in 22a,b. In contrast, the trans effect is stronger in 23a,b 

without causing much cis effect because the increased p-character of the ligand donor orbital 

predominantly interacts with p- or d-orbitals on the metal. These mainly weaken the bond to 

the ligand in trans position while there is small overlap to orbitals of ligands in the cis 

position. The further increased trans effect in 24a,b and 25a,b is an indication for the 

predominantly p-character of the respective phosphorus donor orbitals in 18a,b and 19a,b. 

 

Figure 4.8 Model of P-ligand and metal centred orbitals. Ligands with higher s-character donor orbitals will 

interact with metal centred s-orbitals weakening cis and trans substituents. P-donors with p-character interact 

with p- and d-orbitals on the metal and show predominantly trans influence. 

Slow evaporation from dichloromethane solutions of trans-22b (Figure 4.9) and trans-24a 

(Figure 4.10) yielded crystals suitable for X-ray analysis (selected structural parameters are 

given in Table 4.2 on page 82). The large S4' value of the phosphirane ligand in trans-22b 

(105.7°) indicates the strain caused by the heterocycle; the S4' value of the unstrained 

bis(dimethylamino)phosphine ligand in trans-24a accounts to only 18.7°. The Pt–P bond 

length of the PEt3 ligand is shorter in trans-22b (2.2835(19) Å) compared to trans-24a 

(2.3050(11) Å) which is in agreement with the solution NMR data and confirms the weak 

trans influence of the phosphirane ligand. The Pt–Cl bond lengths in cis position are almost 
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equidistant in both complexes. The phosphirane ligand in trans-22b has a shorter distance to 

the platinum compared to the bis(dimethylamino)phosphine ligand in trans-24a (2.3044(18) 

versus 2.3395(11) Å), which is a result of the strong π-acceptor character of the phosphirane 

ligand. 

 

Figure 4.9 View of the molecular structure of trans-[Pt(14b)(PEt3)Cl2] (trans-22b) with 50% probability 

displacement ellipsoids. Hydrogen atoms have been omitted for clarity. 

 

Figure 4.10 View of the molecular structure of trans-[Pt(18a)(PEt3)Cl2] (trans-24a) with 50% probability 

displacement ellipsoids. Hydrogen atoms have been omitted for clarity. 

4.2.4 Palladium(II) Coordination Properties 

We next studied the coordination chemistry of ligands 14b, 16b, 18b and 19b on 

palladium(II); the reaction of the appropriate ligand with chloro(2-methallyl)palladium dimer 

gave the respective palladium chloride complexes 26b, 27b, 28b and 29b (Scheme 4.2). For 

all these complexes the formation of two different isomers was indicated by the appearance of 

two independent resonances in the 
31

P NMR spectra, as a consequence of the selective 

orientation of the methallyl group. 



Chapter 4 — MOP-Type Ligands: Structural and Electronic Design 87 

 

Scheme 4.2 Synthesised palladium(II) complexes of ligands 14b, 16b, 18b and 19b. 

In the NOESY spectra we identified a rapid exchange process caused by the selective η
3
–η

1
–

η
3
 interchange mechanism of the methallyl fragment that resulted in broadened peaks at room 

temperature. During that process the protons in the cis position exchange in a syn/anti fashion 

while a syn/syn and anti/anti exchange is observed for the protons in the trans position 

(Scheme 4.3).
211,235

 The selective opening of the allyl ligand in the trans position is due to the 

stronger trans effect of the P-donor ligand compared to the chloride ligand. 

 

Scheme 4.3 Syn/anti exchange (R
1
/R

2
) in cis position to L via a selective η

3
–η

1
–η

3
 mechanism. 

Cooling to –25 °C gave rise to sharpened resonances which allowed for the assignment of the 

two isomers appearing in ~2:1 (26b, 27b), ~3:2 (28b) and ~9:1 (29b) ratios. Quantitative 

analysis of the peaks integrals in the NOESY at –25 °C yielded exchange rate constants of kAB 

≈ 0.8 s
–1

 and kBA ≈ 1.3 s
–1

 for 26b, kAB ≈ 0.4 s
–1

 and kBA ≈ 0.7 s
–1

 for 27b, kAB ≈ 0.1 s
–1

 and 

kBA ≈ 0.2 s
–1

 for 28b, and kAB ≈ 0.3 s
–1

 and kBA ≈ 3.1 s
–1

 for 29b. The same experiment at  

–50 °C showed no evidence of exchange. We believe that the relative ratio of isomers as well 

as the rate of exchange in solution mainly originates from steric effects. For a bulkier MOP-

phosphonite ligand with more pronounced binding pockets and steric encumbrance (see 

complex 36b in Chapter 5.2.3) exchange rate constants have been observed at a significantly 

smaller magnitude (kAB ≈ 0.1 s
-1

 and kBA ≈ 1.5 s
-1

 at room temperature).
211

 

In the case of 26b, slow diffusion of diethyl ether into a dichloromethane solution yielded 

crystals suitable for X-ray crystallographic analysis (Figure 4.11). The structure contains two 

independent molecules which have the (2-methallyl)palladium moiety coordinated in different 



Chapter 4 — MOP-Type Ligands: Structural and Electronic Design 88 

geometric angles. The palladium atom is located at a distance of 3.328(3) Å or 3.590(4) Å 

from the nearest carbon on the naphthyl group. Pd–P bond lengths are found at 2.2970(8) and 

2.2688(9) Å which is shorter than for the two MOP-phosphine allylpalladium complexes 

previously reported (2.3098(9) and 2.3279(9) Å).
236

 

 

Figure 4.11 View of the molecular structure of [Pd(16b)(η
3
-C4H7)Cl] (26b) with 50% probability displacement 

ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°]: Pd1–P1 

2.2970(8), Pd1–Cl1 2.3720(9), Pd1–C2 2.106(3), Pd1–C3 2.183(3), Pd1–C4 2.196(3), Pd1C17 3.3283(1), 

Pd2–P2 2.2688(9), Pd2–Cl2 2.3548(10), Pd2–C29 2.090(4), Pd2–C30 2.154(3), Pd2–C31 2.199(4), Pd2C46 

3.5904(1); P1-Pd1-Cl1 99.77(3), P1-Pd1-C2 99.97(11), Cl1-Pd1-C4 66.88(15), P2-Pd2-Cl2 91.25(3), P2-Pd2-

C29 100.91(12), Cl2-Pd2-C31 100.21(12), C7-C16-C17-C26 –91.4(4), C34-C43-C44-C53 –100.9(4). 

MOP ligands are able to utilise their aromatic backbone to coordinate to a vacant metal site in 

a chelating P,C-σ-donor or P,C-π-arene bidentate fashion (cf. Chapter 1.3.3).
237,238

 The 

reaction of 27b and 28b with NaBArF was carried out to exchange the coordinated chloride 

with the non-coordinating BArF-anion giving complexes 30b and 31b (Scheme 4.2 on page 

87). This frees up a binding site and allows for coordination of the naphthyl moiety. We were 

able to obtain the crystal structure of the bis(dimethylamine) derivative 31b which clearly 

illustrates the P,C coordination mode in the solid-state. The distance between the palladium 

atom and the bonded carbon C11 on the naphthyl ring is 2.302(3) Å (Figure 4.12). The 

position of the palladium above the naphthyl is moved slightly towards C20 to which the 

distance is 2.553(3) Å; in comparison, the distance to C12 is longer at 2.856(3) Å. The 

coordinated naphthyl heterocycle is tilted backwards out of its usual plane. The Pd–P distance 

was found at 2.2546(9) Å and relates well to other MOP-type complexes as described above. 

Interestingly the two Pd–N bond lengths and angles are inequivalent and show a peculiar 

pattern. The phosphorus atom carries a shorter bonded planer N-atom (N2–P distance at 

1.655(3) Å, sum of angles around N-atom: 358°) and a longer bonded N-atom that shows a 

pyramidal distorted geometry (N1–P distance at 1.683(3) Å, sum of angles: 343°). The pattern 

is much less pronounced in the platinum structures trans-21b (Figure 4.6 on page 82) and 
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trans-24a (Figure 4.10 on page 86) which show only minor distortions around the N atom 

(sum of angles: 356° to 360°). It is assumed that the planarity of the nitrogen arises from 

electron donation of its lone pair towards the phosphorus.
213

 

 

Figure 4.12 View of the molecular structure of [Pd(18b)(η
3
-C4H7)]BArF (31b) with 50% probability 

displacement ellipsoids. Hydrogen atoms and the BArF-anion have been omitted for clarity. Selected bond 

distances [Å] and angles [°]: Pd–P 2.2546(9), Pd–C11 2.302(3), PdC12 2.856(3), PdC20 2.553(3), PdO 

3.154(3), Pd–C22 2.109(4), Pd–C23 2.193(4), Pd–C24 2.228(4), N1–P 1.683(3), N2–P 1.655(3), C11–C20 

1.402(4), C22–C23 1.434(6), C23–C44 1.378(7); P-Pd-C11 82.16(8), P-Pd-C20 104.03(9), P-Pd-C22 97.26(11), 

C11-Pd-C24 114.13(14), C20-Pd-C24 87.95(15), C1-C10-C11-C20 –101.3(4). 

In solution we observed the formation of two isomers in a 1:1 ratio for both 30b and 31b 

caused by rotation of the methallyl group (Scheme 4.2 on page 87). As the coordination 

sphere of the palladium atom is filled by side-on bonding to the C1'-carbon (labelled as C11 

in the X-ray structure of 31b), we consequently found an upfield shift of C1' by about 20 ppm 

in the 
13

C NMR spectra compared to the free ligands 16b and 18b and the palladium chloride 

complexes 27b and 28b. The NOESY spectrum of 30b showed exchange of the two isomers 

at room temperature. Interestingly, we detected syn/anti exchange (Scheme 4.3 on page 87) as 

well as an apparent allyl rotation (Scheme 4.4) in a relative ratio of 2:3 (cf. Chapter 1.3.4). 

 

Scheme 4.4 Apparent allyl rotation in allylpalladium complexes (only one possible pathway is shown; for more 

details see Chapter 1.3.4). 

Quantitative analysis of the methoxy resonances in the NOESY spectrum yielded a combined 

total exchange rate of kAB ≈ kBA ≈ 0.2 s
–1

. The exchange rate is therefore smaller than for the 

related allylpalladium chloride complexes 27b, which gave exchange rates of that magnitude 
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at much lower temperature (–25 °C, vide supra). The NOESY spectrum of 31b showed no 

exchange at room temperature. 

We were interested in coordinating two phosphorus ligands to the palladium centre, since 

these species may form as intermediates in catalytic reaction cycles (cf. Chapter 1.3.5).
239,240

 

The addition of one equivalent of dimethylphosphine ligand 16b to complex 30b resulted in 

the quantitative formation of 32b (Scheme 4.2 on page 87). The product was analysed by 

NMR spectroscopy and HRMS; unfortunately we were unable to obtain crystals for X-ray 

diffraction. The 
13

C{
1
H} NMR spectrum gave no further evidence of aryl coordination; the 

vacated coordination-site from the dissociated C1'-carbon of 30b was filled by the added 

phosphorus donor. One single isomer was observed in the 
31

P NMR in the form of two 

doublet resonances (–2.1 ppm and –7.6 ppm) with a reciprocal coupling of 
2
JPP = 43 Hz; we 

suspect that the induced symmetry by coordination of two equivalent phosphorus ligands 

leads to identical structures upon allyl rotation. We detected no dynamic behaviour in the 

NOESY NMR spectrum at room temperature, presumably because of the crowded 

coordination sphere around the metal. We were unable to isolate equivalent products using 

ligands 14b, 18b or 19b. The preferred coordination of either one or two ligands per 

palladium atom will depend on the steric demand around the phosphorus; more bulky groups 

on the phosphorus as in bis(dimethylamino)phosphine 18b allow for the straightforward 

isolation of the 1:1 species (31b) while the smaller methyl groups in dimethylphosphine 16b 

facilitate the formation of the 2:1 species (32b). 

4.2.5 Asymmetric Hydrosilylation 

For testing the catalytic activity of our ligands we performed the asymmetric hydrosilylation 

of styrene (Table 4.4).
200,240

 Johannsen and co-workers have proposed the competitive action 

of two cycles for the catalytic hydrosilylation of alkenes (see Chapter 1.3.5).
239

 According to 

their model either one or two coordination sites can be occupied by phosphine ligands. In the 

case of a one-coordinate phosphine complex, the vacant site is filled with a π-coordinated 

substrate alkene, or alternatively by utilising the aromatic backbone of the MOP-type 

compound, which can act as a hemilabile binding site.
240

 Conversely, when a ligand to 

palladium ratio of 2:1 is employed, the formation of an active catalytic species with two 

coordinated phosphorus ligands may be favoured.
239

 

The catalysts were generated in situ by the reaction of the ligand with allylpalladium dimer. A 

ligand to palladium ratio of 1:1 or 2:1 was chosen to account for both possible catalytic 

pathways as described above, and to selectively promote one pathway over the other. 



Chapter 4 — MOP-Type Ligands: Structural and Electronic Design 91 

However, it should be noted that the complex formation is also dependent on the nature of the 

ligand as we have seen from our coordination studies on palladium(II) (vide supra). 

Table 4.4 Palladium catalysed hydrosilylation of styrene. 

 

entry ligand L:Pd ratio
a
 reaction time conversion

b 
ee

c 

1 14a 1:1 6 h >99% 70% (R) 

2 14a 2:1 24 h >99% 80% (R) 

3 14b 1:1 48 h 65% 17% (R) 

4 14b 2:1 96 h 50% 49% (R) 

5 16a 1:1 48 h 11% 17% (R) 

6 16a 2:1 48 h 88% 86% (R) 

7 16b 1:1 48 h 15% 73% (R) 

8 16b 2:1 48 h 15% 5% (S) 

9 18a 1:1 6 h 86% 28% (R) 

10 18a 2:1 6 h >99% 20% (R) 

11 18b 1:1 6 h 84% 37% (R) 

12 18b 2:1 6 h >99% 43% (R) 

13 19a 1:1 16 h >99% 82% (R) 

14 19a 2:1 16 h >99% 84% (R) 

15 19b 1:1 16 h >99% 7% (R) 

16 19b 2:1 16 h >99% 2% (R) 

17 (S)-H-MOP
d
 2:1 12 h (0 °C) 100% 93% (R) 

18 (R)-OMe-MOP
d
 2:1 24 h (0 °C) 100% 14% (R) 

a
 Catalyst was generated in situ from ligand (0.25 mol% or 0.50 mol%) and [Pd(allyl)Cl]2 

(0.125 mol%) and reacted with styrene (10.0 mmol) and trichlorosilane (12.0 mmol). 
b
 Determined by 

1
H NMR spectroscopy. 

c
 Determined by chiral HPLC (Lux 5u Cellulose-1 

Column). 
d
 Taken from ref. 242. 

The catalytic hydrosilylation reaction of styrene was carried out without additional solvent. 

Subsequent oxidation of the silane afforded 1-phenylethanol, the absolute configuration of 

which was determined. Notably ligands 14a, 18a,b and 19a,b (entries 1-2, 9-16) all showed 

complete consumption of the starting material in less than 24 hours reaction time, whereas the 

OMe-substituted phosphirane 14b (entries 3-4) and dimethylphosphine derivatives 16a,b 

(entries 5-8) are significantly less reactive in this transformation. Calculations on the reaction 

mechanism of the hydrosilylation suggest that the rate determining step in the catalytic cycle 

is the reductive elimination.
241

 Therefore one would expect that the good donor ligands 16a,b 

are less active catalysts as they favour the high oxidation state on the metal. More surprising 

was the high activity that we observed for the electron rich bis(dimethylamino)phosphine 
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ligands 18a,b and the reduced activity of the poor donor ligand 14b, which we are unable to 

rationalise as yet. With the enantioselectivities of the reactions being taken into account, the 

best results were obtained with phosphirane 14a and phosphonite 19a (entries 1-2, 13-14). 

Both derivatives show good activity as well as good selectivity of 70-84% enantiomeric 

excess. Their respective OMe-substituted derivatives 14b and 19b (entries 3-4, 15-16) gave 

inferior selectivities in agreement with the reported values for OMe- and other 2'-substituted 

MOP ligands (entries 17-18).
242

 The bis(dimethylamino)phosphines 18a,b (entries 9-12) gave 

low ee values (20-43%) despite being amongst the most catalytically active catalysts tested. 

The effect of the L:Pd ratio on the reaction was found to be limited and only in the case of 

16a,b (entries 5-8) did we find more pronounced derivations. The inconsistencies may be 

caused by the overall low activity for 16a,b as no complete substrate conversions were 

achieved, but curiously in our coordination studies dimethylphosphine ligand 16b was the 

only derivative that we could utilise to make the related palladium complex 32b with a L:Pd 

ratio of 2:1 (vide supra). Arguably, ligand derivatives 14a,b, 18a,b and 19a,b might favour 

the formation of complexes in a 1:1 ratio of L:Pd, even if an excess of ligand is used. 

4.2.6 Asymmetric Allylic Alkylation 

As another common benchmark reaction to test the efficiency of chiral ligands in catalysis, we 

investigated the asymmetric allylic alkylation of (rac)-(E)-1,3-diphenylallyl acetate (Table 

4.5).
243

 The nucleophile was generated from dimethyl malonate and 

bis(trimethylsilyl)acetamide (BSA). This reaction follows a different mechanism than the 

hydrosilylation one, and hence is expected to show an alternative outcome for the investigated 

ligands. The oxidative addition is regarded as a possible rate determining step and thus a 

donor ligand is necessary to enrich the palladium centre with electrons. The following 

nucleophilic substitution furnishes an energetic barrier that is favoured for electron-

withdrawing ligands, but in contrast to the oxidative addition the reaction step is irreversible 

(cf. Chapter 1.3.4).
244

 

The activity of the catalysts correlates with the net-donor strength of the ligands (Table 4.1 on 

page 78). Consequently the fastest catalysts were found in 16a,b ligated compounds giving 

complete conversions within less than 4 hours (Table 4.5, entries 3-4). Good catalytic 

activities were also found for 18a,b (completed after 6 hours, entries 5-8) and to a lesser 

extent for 14a,b (22 hours, entries 1-2). Reactions with phosphonite ligands 19a,b were 

incomplete even after prolonged reaction time (entries 9-10), most likely as a result of their 

poor σ-donor character. The best selectivities were achieved with ligands 16a (41% ee (R)) 
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and 18a (66-67% ee (S)), interestingly yielding their major enantiomers in opposed absolute 

configurations. In the case of 18a,b we checked for the influence of the L:Pd ratio (2:1 versus 

1:1, entries 5-8) but the reaction gave virtually the same outcome. 

Table 4.5 Palladium catalysed asymmetric allylic alkylation of (rac)-(E)-1,3-diphenylallyl acetate. 

 

entry ligand L:Pd ratio
a
 reaction time

b
 yield

c 
ee

d 

1 14a 2:1 22 h 91% 17% (R) 

2 14b 2:1 22 h 93% 1% (S) 

3 16a 2:1 3 h 91% 41% (R) 

4 16b 2:1 4 h 98% 14% (R) 

5 18a 2:1 5 h 89% 66% (S) 

6 18a 1:1 6 h 86% 67% (S) 

7 18b 2:1 5 h 88% 13% (S) 

8 18b 1:1 6 h 95% 12% (S) 

9 19a 2:1 48 h 20% 15% (R) 

10 19b 2:1 48 h 2% 29% (R) 
a
 Catalyst was generated in situ from ligand (8.0 mol% or 4.0 mol%) and [Pd(allyl)Cl]2 

(2.0 mol%) and reacted with (rac)-(E)-1,3-diphenylallyl acetate (0.5 mmol), dimethyl 

malonate (1.0 mmol), BSA (1.0 mmol) and KOAc (0.05 mmol). 
b
 Reaction progress was 

monitored by TLC analysis. 
c
 Isolated yield after column chromatographic workup. 

d
 Determined by chiral HPLC (Daicel Chiralpak AD-H Column). 

4.3 Conclusion 

Primary phosphines are versatile ligand precursors that can give rise to a variety of 

phosphorus compounds. In an earlier communication (see Chapter 3) we have shown the 

synthesis of phosphiranes 14a,b, their remarkable thermal stability, resistance to air-oxidation 

and their intriguing potential as ligands in asymmetric catalytic transformations.
206

 Here, we 

reported the preparation of novel ligands 18a,b and 19a,b as well as a simplified synthesis of 

16a,b which were achieved in straightforward two-step, one-pot reaction approaches. 

We have discussed the unique electronic and steric properties of these different P-ligand 

functionalities, how they compare with each other and how they manifest themselves in 

platinum(II) and palladium(II) metal complexes. The highly strained phosphiranes 14a,b 

show remarkably low trans influence but equally enhanced cis influence in their platinum(II) 

complexes as a result of the high s-character of their donor orbital. Their poor donor but good 

acceptor characteristics compare best to phosphonite ligands 19a,b. These ligands are best 
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employed in catalytic reactions such as hydrosilylations where the reductive elimination is the 

rate determining step. Interestingly, the small size of the P-substituents adding to the MOP-

backbone seems to have little effect on the enantioselectivities. The steric burden of the 

phosphirane moiety is minimal, yet up to 80% ee were obtained when using 14a in this 

transformation. Equally good results were obtained with phosphonite 19a yielding up to 84% 

ee. It should be noted that more bulky P-substituents have been found to alter the position of 

the palladium atom relative to the MOP-fragment in our BINOL-derived phosphonites, and 

they can thereby influence the outcome of the catalytic reaction (cf. Chapter 5.2.3).
211

 

Different electronic characteristics are present in dimethylphosphines 16a,b and 

bis(dimethylamino)phosphines 18a,b which are electron-rich σ-donor ligands. The strongest 

donors were found in 16a,b while the donor properties of 18a,b seem adaptable to some 

extend by transferring electron-density from either one or two of their nitrogen lone pairs onto 

the phosphorus (indicated by the degree of distortion around the nitrogen atom). It may be for 

this reason that, although usually being good donor ligands, 18a,b show high activity in the 

hydrosilylation reaction. Together with 16a,b they are also suitable catalysts for the allylic 

alkylation reaction for which we observed enantioselectivities of up to 67% ee. Notably, the 

absolute configuration of the major product was reversed when bis(dimethylamino)-

phosphines 18a,b were used as asymmetric ligands in this transformation. 

MOP-type ligands can act as hemilabile ligands via coordination of their aryl backbone, 

which we have unambiguously shown by crystallographic analysis of 31b. However, 

hemilabile binding to saturate the coordination sphere of the metal centre may be disfavoured 

when a second P-donor ligand is available. The prominent active species in each of the 

catalytic transformations is still somewhat speculative and further investigations regarding its 

disclosure are underway. 

4.4 Experimental Section 

4.4.1 General Considerations 

All air and/or water sensitive reactions were performed under a nitrogen atmosphere using 

standard Schlenk line techniques. THF (Na/benzophenone ketyl), toluene (Na) and CH2Cl2 

(CaH) were dried and distilled prior to use. Flash chromatography was performed on silica gel 

from Fluorochem (silica gel, 40-63 μm, 60A, LC301) or alumina media from Acros 

(aluminium oxide, neutral, Brockmann I, 50-200 μm, 60A). Thin-layer-chromatography was 

performed on Merck aluminium-based plates with silica gel and fluorescent indicator 254 nm. 
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1
H, 

11
B, 

13
C{

1
H}, 

19
F, and 

31
P{

1
H} and 

195
Pt{

1
H} NMR spectra were recorded on a JEOL 

Lambda 500 (
1
H 500.16 MHz) or JEOL ECS-400 (

1
H 399.78 MHz) spectrometer at room 

temperature (21°C) if not otherwise stated using the indicated solvent as internal reference. 

195
Pt chemical shifts are given relative to Ξ(

195
Pt) = 21.49689 MHz. If necessary the 

assignment of signals was done by using two-dimensional NMR experiments (COSY, 

NOESY, HSQC, HMBC). 

Table 4.6 Summary of X-ray crystallographic data for cis-20b, trans-21b and trans-22b. 

 cis-20b trans-21b trans-22b 

formula 
C46H42Cl2O2P2Pt· 

2 C4H10O 
C50H54Cl2N4O2P2Pt C29H34Cl2OP2Pt 

formula wt 1092.89 1070.90 726.49 

cryst syst orthorhombic orthorhombic triclinic 

space group P212121 P212121 P1 

a, Å; α, deg 11.1244(5) 8.3469(4) 8.3743(3); 65.118(3) 

b, Å; β, deg 20.0436(7) 18.7004(9) 9.5312(3); 71.277(3) 

c, Å; γ, deg 23.8540(12) 29.0688(16) 10.9589(4); 69.349(3) 

V, Å
3
 5318.8(4) 4537.4(4) 727.02(4) 

Z 4 4 1 

ρcalc, g cm
–3

 1.365 1.568 1.659 

μ, mm
–1

 2.840 3.326 5.139 

F(000) 2200 2160 358 

Tmin/Tmax 0.3963/0.4829 0.58086/1.00000 0.5125/0.6275 

hkl range 
–9 to 13, –21 to 23, –24 

to 28 

–11 to 10, –25 to 24, –

38 to 37 

–10 to 11, –12 to 12, –

13 to 14 

θ range, deg 2.9 to 25.0 3.0 to 28.6 3.0 to 28.6 

no. of measd rflns 24393 29323 11179 

no. of unique rflns (Rint) 9364 (0.0392) 9858 (0.0419) 5954 (0.0236) 

no. of obsd rflns, I > 

2σ(I) 
7935 8759 5952 

refined params/restraints 484/0 560/276 320/3 

goodness of fit 1.089 1.180 1.028 

Abs. structure param. –0.008(9) 0.012(8) –0.001(3) 

R1/wR2 (I > 2σ(I)) 0.0526/0.1146 0.0590/0.0971 0.0185/0.0412 

R1/wR2 (all data) 0.0653/0.1202 0.0695/0.1010 0.0185/0.0413 

resid electron dens, e Å
–3

 2.77/–1.50 4.23/–3.68 0.76/–0.80 
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Table 4.7 Summary of X-ray crystallographic data for trans-24a, 26b and 31b. 

 trans-24a 26b 31b 

formula C30H40Cl2N2P2Pt C27H28ClOPPd 
C29H34N2OPPd

+
· 

C32H12BF24
 

 

formula wt 756.57 541.31 1427.18 

cryst syst orthorhombic monoclinic orthorhombic 

space group P212121 P1211 P212121 

a, Å; α, deg 7.8976(3); 90 10.5937(4); 90 12.5151(3); 90 

b, Å; β, deg 12.9784(4); 90 14.2040(5); 14.2040(5) 13.7875(4); 90 

c, Å; γ, deg 29.8031(10); 90 18.3113(8); 90 37.1072(15); 90 

V, Å
3
 3054.76(18) 2710.22(18) 6402.9(4) 

Z 4 4 4 

ρcalc, g cm
–3

 1.645 1.327 1.481 

μ, mm
–1

 4.895 0.857 0.426 

F(000) 1504 1104 2864 

Tmin/Tmax 0.3214/0.3214 0.7255/0.9584 0.8482/0.8829 

hkl range 
–10 to 10, –17 to 13,  

–37 to 38 

–14 to 13, –18 to 18,  

–24 to 19 

–16 to 16, –17 to 18,  

–37 to 50 

θ range, deg 2.9 to 28.6 3.1 to 28.6 3.0 to 28.6 

no. of measd rflns 15460 26914 34951 

no. of unique rflns (Rint) 6419 (0.0391) 11398 (0.0305) 13678 (0.0295) 

no. of obsd rflns, I > 

2σ(I) 
6158 10533 12550 

refined params/restraints 342/0 567/1 883/72 

goodness of fit 1.034 1.055 1.074 

Abs. structure param. –0.010(5) –0.035(16) –0.005(18) 

R1/wR2 (I > 2σ(I)) 0.0296/0.0506 0.0316/0.0702 0.0439/0.0995 

R1/wR2 (all data) 0.0323/0.0520 0.0369/0.0729 0.0492/0.1024 

resid electron dens, e Å
–3

 1.31/–1.08 0.44/–0.36 0.56/–0.52 

    

Infrared spectra were recorded on a Varian 800 FT-IR spectrometer. Mass spectrometry was 

carried out by the EPSRC National Mass Spectrometry Service Centre Swansea. Analytical 

high performance liquid chromatography (HPLC) was performed on a Varian Pro Star HPLC 

or a Shimadzu Prominence HPLC equipped with diode-array detectors. The preparations of 

1a,b and 2a,b are described in the experimental section of Chapter 2 (1a,b) or Chapter 3 

(2a,b). The experimental procedure for the palladium catalysed asymmetric hydrosilylation of 

styrene is described in Chapter 3.4.9. Literature procedures were followed for the synthesis of 

trans-[Pt(PEt3)Cl2]2.
245

 All other chemicals were used as purchased without further 

purification. Key crystallographic data are given in Table 4.6 and Table 4.7. 



Chapter 4 — MOP-Type Ligands: Structural and Electronic Design 97 

4.4.2 (S)-[1,1'-Binaphthalen]-2-yldimethylphosphine (16a) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). 1a (286 mg, 1.00 mmol) was 

added and the reaction mixture was left to stir for 45 minutes. The volatiles were removed in 

vacuo, THF (8 mL) was added and the resulting solution was cooled to –78 °C. MeMgCl 

(0.70 mL, 3.0 M in THF, 2.10 mmol) was added and stirred at –78 °C for 30 minutes. The 

solution was allowed to warm up to ambient temperature and stirred for 1.5 hours. The 

reaction was slowly quenched with H2O (10 mL) and extracted with Et2O (2x 30 mL). The 

organic phase was dried over MgSO4 to give the fairly pure crude product as a pale-yellow 

solid. Purification was performed by column chromatography (hexane/EtOAc, 10:1, Rf = 0.4.) 

on a silica media (w = 2 cm, h = 10 cm) to yield the intended product as a white solid 

(238 mg, 0.36 mmol, 76%). 

MP (uncorrected): 112 °C. 
1
H NMR (400 MHz, CDCl3): δ = 7.99 (d, 

3
JHH = 8.5 Hz, 1H, H4), 

7.98 (d, 
3
JHH = 8.2 Hz, 1H, H4'), 7.94 (d, 

3
JHH = 8.2 Hz, 1H, H5), 7.91 (d, 

3
JHH = 8.2 Hz, 1H, 

H5'), 7.78 (dd, 
3
JHH = 8.5 Hz, 

3
JHP = 2.9 Hz, 1H, H3), 7.62 (dd, 

3
JHH = 8.2 Hz, 

3
JHH = 7.0 Hz, 

1H, H3'), 7.48-7.43 (m, 3H, H6+H6'+H2'), 7.28-7.22 (m, 2H, H7'+H7), 7.19-7.14 (m, 2H, 

H8+H8'), 1.22 (d, 
2
JHP = 3.9 Hz, 3H, CH3), 1.02 (d, 

2
JHP = 3.9 Hz, 3H, CH3') ppm. 

13
C{

1
H} NMR (101 MHz, CDCl3): δ = 143.4 (d, 

2
JCP = 29.7 Hz, C1), 138.8 (d, 

1
JCP = 14.4 Hz, C2), 137.7 (d, 

3
JCP = 7.8 Hz, C1'), 133.5 (C10), 133.4 (d, 

4
JCP = 2.4 Hz, C9'), 

133.3 (C10'), 133.1 (d, 
3
JCP = 5.7 Hz, C9), 128.7 (d, 

4
JCP = 3.3 Hz, C2'), 128.4 (C5), 128.2 

(C4), 128.2 (C4'), 127.9 (C5'), 127.0 (d, 
4
JCP = 2.3 Hz, C8), 126.5 (C8'), 126.4 (C7'), 126.3 

(C7), 126.1 (C6'), 125.9 (C6), 125.7 (d, 
2
JCP = 1.4 Hz, C3), 125.3 (C3'), 15.0 (d, 

1
JCP = 14.0 Hz, CH3), 14.4 (d, 

1
JCP = 14.0 Hz, CH3') ppm. 

31
P{

1
H} NMR (202 MHz, CDCl3): 

δ = –54.0 ppm. IR (neat): ν = 3052.2 (w), 2893.6 (w), 1591.9 (w), 1501.4 (w), 1428.8 (w), 

1360.6 (w), 1154.7 (w), 1013.4 (w), 938.9 (m), 894.3 (m), 869.4 (w), 781.6 (s), 749.5 (s), 

708.0 (m), 685.7 (w), 627.5 (w) 578.5 (w) cm
–1

. HRMS (ESI
+
): Found: m/z = 315.1294. 

Calculated for [M + H]
+
: m/z = 315.1297. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = –44°. TLC 

(silica gel; hexane/EtOAc, 10:1): Rf = 0.4. 
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4.4.3 (R)-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)dimethylphosphine (16b) 

 

The same procedure was followed as for 16a, except for using 1b as the substrate. Purification 

was performed by column chromatography (hexane/EtOAc, 10:1, Rf = 0.4) on a silica media 

(w = 2 cm, h = 10 cm) to yield the intended product as a white solid (125 mg, 0.36 mmol, 

73%). 

MP (uncorrected): 128 °C. 
1
H NMR (500 MHz, CDCl3): δ = 8.03 (d, 

3
JHH = 9.0 Hz, 1H, H4'), 

8.00 (d, 
3
JHH = 8.5 Hz, 1H, H4), 7.91 (d, 

3
JHH = 8.3 Hz, 1H, H5), 7.87 (d, 

3
JHH = 8.3 Hz, 1H, 

H5'), 7.81 (dd, 
3
JHH = 8.5 Hz, 

3
JHP = 2.9 Hz, 1H, H3), 7.45 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.5 Hz,

 

4
JHH = 1.3 Hz, 1H, H6), 7.45 (d, 

3
JHH = 9.0 Hz, 1H, H3'), 7.31 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.5 Hz,

 4
JHH = 1.3 Hz, 1H, H6'), 7.24 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.5 Hz,

 4
JHH = 1.3 Hz, 

1H, H7), 7.20 (d, 
3
JHH = 8.3 Hz, 1H, H8), 7.19 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.5 Hz,

 

4
JHH = 1.3 Hz, 1H, H7'), 6.93 (d, 

3
JHH = 8.3 Hz, 1H, H8'), 3.78 (s, 3H, OCH3), 1.21 (d, 

2
JHP = 3.9 Hz, 3H, CH3), 1.05 (d, 

2
JHP = 4.0 Hz, 3H, CH3') ppm. 

13
C{

1
H} NMR (126 MHz, 

CDCl3): δ = 154.8 (d, 
4
JCP = 1.9 Hz, C2'), 140.1 (d, 

2
JCP = 31.7 Hz, C1), 139.1 (d, 

1
JCP = 13.1 

Hz, C2), 134.4 (d, 
4
JCP = 1.9 Hz, C9'), 133.6 (C10), 132.9 (d, 

3
JCP = 6.8 Hz, C9), 129.9 (C4'), 

128.9 (C10'), 128.1 (C4), 128.0 (C5+C5'), 126.5 (C8+C7'), 126.3 (C6+C7), 125.7 (d, 

2
JCP = 1.9 Hz, C3), 125.4 (C8'), 123.6 (C6'), 122.4 (d, 

3
JCP = 8.7 Hz, C1'), 113.3 (C3'), 56.4 

(OCH3), 14.7 (d, 
1
JCP = 14.4 Hz, CH3), 14.6 (d, 

1
JCP = 13.9 Hz, CH3') ppm. 

31
P{

1
H} NMR 

(202 MHz, CDCl3): δ = –54.0 ppm. IR (neat): ν = 3060.9 (w), 1620.3 (m), 1592.8 (m), 1505.0 

(m), 1457.8 (w), 1428.1 (w), 1344.2 (m), 1251.4 (s), 1178.1 (w), 1147.4 (w), 1119.2 (w), 

1077.7 (s), 1051.3 (m), 1020.7 (m), 937.9 (m), 895.5 (m), 870.5 (w), 810.3 (s), 746.9 (s), 

709.1 (m), 679.9 (m), 627.9 (w) cm
–1

. HRMS (ESI
+
): Found: m/z = 345.1404. Calculated for 

[M + H]
+
: m/z = 345.1403. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = –14°. TLC (silica gel; 

hexane/EtOAc, 10:1): Rf = 0.4. 
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4.4.4 (S)-N,N,N',N'-Tetramethyl-1-(1,1'-binaphthalen-2-yl)phosphinediamine (18a) 

 

PCl5 (687 mg, 3.30 mmol) was dissolved in toluene (12 mL). 1a (429 mg, 1.50 mmol) was 

added and the reaction mixture was left to stir for 45 minutes after which time the volatiles 

were removed in vacuo. The resulting solid was dissolved in THF (12 mL). NEt3 (0.92 mL, 

6.60 mmol) and HNMe2 (1.60 mL, 2.0 M in THF, 3.15 mmol) were added subsequently and 

the solution was left to stir overnight. The volatiles were removed in vacuo and the crude 

product was filtered through a small plug of alumina media in a 1:1 mixture of cyclohexane 

and Et2O (Rf = 0.8). The title product was obtained after removal of the solvent, as a white 

solid (519 mg, 0.93 mmol, 93%). 

MP (uncorrected): 105 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 7.97 (d, 

3
JHH = 8.5 Hz, 1H, 

H4), 7.94 (d, 
3
JHH = 8.3 Hz, 1H, H5), 7.93-7.89 (m, 3H, H5'+H4'+H3), 7.60 (dd, 

3
JHH = 8.3 Hz, 

3
JHH = 7.0 Hz, 1H, H3'), 7.46-7.42 (m, 2H, H6'+H6), 7.41 (d, 

3
JHH = 7.0 Hz, 

1H, H2'), 7.25-7.19 (m, 3H, H7'+H7+H8'), 7.16 (d, 
3
JHH = 8.5 Hz, 1H, H8), 2.42 (d, 

3
JHP = 9.0 Hz, 6H, N(CH3)2), 2.26 (d, 

3
JHP = 9.3 Hz, 6H, N(CH3)2') ppm. 

13
C{

1
H} NMR 

(126 MHz, CD2Cl2): δ = 141.5 (d, 
2
JCP = 26.0 Hz, C1), 138.8 (d, 

1
JCP = 11.0 Hz, C2), 137.5 

(d, 
3
JCP = 4.7 Hz, C1'), 133.7 (d, 

3
JCP = 3.8 Hz, C9), 133.7 (C10), 133.5 (C10'), 132.6 (d, 

4
JCP = 1.4 Hz, C9'), 128.1 (C5), 128.0 (C2'), 128.0 (C3), 127.8 (C4'), 127.5 (C5'), 127.1 (d, 

4
JCP = 1.3 Hz, C4), 127.0 (d, 

5
JCP = 1.3 Hz, C7), 126.4 (d, 

4
JCP = 2.5 Hz, C8), 126.0 (C7), 

125.8 (C6+C6'), 125.6 (C8'), 125.4 (C7'), 125.2 (C3'), 41.0 (d, 
2
JCP = 18.0 Hz, N(CH3)2), 40.9 

(d, 
2
JCP = 18.6 Hz, N(CH3)2') ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = 99.9 ppm. IR 

(neat): ν = 3059.0 (w), 2979.2 (w), 2872.0 (w), 2827.9 (w), 2783.3 (w), 1497.3 (w), 1355.6 

(w), 1261.8 (w), 1189.7 (m), 1061.4 (w), 1022.2 (w), 949.1 (s), 869.2 (w), 824.0 (m), 804.6 

(m), 781.5 (s), 748.2 (s), 667.4 (s), 640.9 (m) cm
–1

. HRMS (ESI
+
): Found: m/z = 373.1827. 

Calculated for [M + H]
+
: m/z = 373.1828. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = –32°. TLC 

(alumina; cyclohexane/Et2O, 1:1): Rf = 0.8. 
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4.4.5 (R)-N,N,N',N'-Tetramethyl-1-(2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphinediamine (18b) 

 

The same procedure was followed as for 18a, except for using 1b as the substrate. The title 

product was obtained as a white solid (536 mg, 1.33 mmol, 89%). 

MP (uncorrected): 122 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 7.97 (d, 

3
JHH = 9.1 Hz, 1H, 

H4'), 7.96 (d, 
3,4

JHP = 2.0 Hz, 2H, H3+H4), 7.92 (d, 
3
JHH = 8.2 Hz, 1H, H5), 7.86 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.47-7.43 (m, 2H, H3'+H6), 7.29 (ddd, 

3
JHH = 8.1 Hz, 

3
JHH = 6.7 Hz,

 

4
JHH = 1.3 Hz, 1H, H6'), 7.21 (ddd, 

3
JHH = 8.5 Hz, 

3
JHH = 6.5 Hz,

 4
JHH = 1.3 Hz, 1H, H7), 

7.18-7.14 (m, 2H, H8+H7'), 6.93 (d, 
3
JHH = 8.5 Hz, 1H, H8'), 3.78 (s, 3H, OCH3), 2.36 (d, 

3
JHP = 9.5 Hz, 6H, N(CH3)2), 2.21 (d, 

3
JHP = 9.2 Hz, 6H, N(CH3)2') ppm. 

13
C{

1
H} NMR 

(126 MHz, CD2Cl2): δ = 154.4 (d, 
4
JCP = 1.6 Hz, C2'), 139.1 (d, 

2
JCP = 13.9 Hz, C1), 139.0 (d, 

1
JCP = 29.0 Hz, C2), 134.0 (d, 

4
JCP = 1.9 Hz, C10), 133.7 (C9'), 133.4 (d, 

3
JCP = 4.8 Hz, C9), 

129.2 (C4'), 128.9 (C10'), 127.9 (C5), 127.8 (d, 
2
JCP = 4.2 Hz, C3), 127.7 (C5'), 126.8 (d, 

3
JCP = 1.2 Hz, C4), 126.1 (C6), 126.0 (d, 

5
JCP = 2.5 Hz, C7), 125.9 (C7'), 125.8 (C8'), 125.8 

(d, 
4
JCP = 1.3 Hz, C8), 123.2 (C6'), 121.9 (d, 

3
JCP = 6.1 Hz, C1'), 113.0 (C3'), 56.0 (OCH3), 

40.5 (d, 
2
JCP = 19.2 Hz, N(CH3)2), 40.4 (d, 

2
JCP = 19.2 Hz, N(CH3)2') ppm. 

31
P{

1
H} NMR 

(202 MHz, CD2Cl2): δ = 101.0 ppm. IR (neat): ν = 3060.3 (w), 2965.9 (w), 2825.5 (w), 

2780.6 (w), 1621.8 (w), 1593.3 (w), 1510.4 (m), 1461.1 (m), 1340.5 (w), 1263.7 (s), 1194.5 

(m), 1078.1 (m), 1053.4 (w), 1021.3 (w), 978.2 (m), 955.4 (s), 910.2 (w), 822.3 (w), 802.7 (s), 

742.1 (s), 674.2 (m), 638.3 (m) cm
–1

. HRMS (ESI
+
): Found: m/z = 403.1939. Calculated for 

[M + H]
+
: m/z = 403.1934. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = –60°. TLC (alumina; 

cyclohexane/Et2O, 1:1): Rf = 0.8. 

4.4.6 Dimethyl [1,1'-binaphthalen]-2-ylphosphonite (19a) 
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PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (5 mL). 1a (286 mg, 1.00 mmol) was 

added and the reaction mixture was left to stir for 45 minutes after which time the volatiles 

were removed in vacuo. The resulting solid was dissolved in CH2Cl2 (5 mL). NEt3 (0.61 mL, 

4.40 mmol) and MeOH (0.09 mL, 2.20 mmol) were added subsequently and the solution was 

left for 2 hours. The volatiles were removed in vacuo and a toluene suspension of the crude 

product was filtered through a small plug of celite. The title product was obtained after 

removal of the solvent, as a pale yellow oil. 

1
H NMR (400 MHz, CD2Cl2): δ = 8.04 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 1.9 Hz, 1H, H3), 8.02-8.00 

(m, 2H, H4+H4'), 7.98-7.94 (m, 2H, H5+H5'), 7.62 (dd, 
3
JHH = 8.5 Hz, 

3
JHH = 7.0 Hz, 1H, 

H3'), 7.52-7.46 (m, 3H, H6+H6'+H2'), 7.29-7.24 (m, 2H, H7+H7'), 7.19-7.13 (m, 2H, 

H8+H8'), 3.45 (d, 
3
JHP = 10.8 Hz, 3H, POCH3), 3.00 (d, 

3
JHP = 11.7 Hz, 3H, POCH3') ppm. 

13
C{

1
H} NMR (101 MHz, CD2Cl2): δ = 142.8 (d, 

2
JCP = 32.6 Hz, C1), 137.7 (d, 

1
JCP = 21.4 

Hz, C2), 135.6 (d, 
3
JCP = 7.8 Hz, C1'), 134.3 (C10), 133.5 (d, 

4
JCP = 1.9 Hz, C9'), 133.3 

(C10'), 132.1 (d, 
3
JCP = 5.0 Hz, C9), 129.6 (d, 

4
JCP = 3.4 Hz, C2'), 128.4 (C5), 128.2 (C5'), 

128.0 (C4'), 127.3 (d, 
3
JCP = 1.4 Hz, C4), 127.0 (C6'), 126.6 (C8'), 126.6 (C8), 126.2 (C7'), 

126.1 (C7), 125.9 (C6), 125.3 (d, 
2
JCP = 3.4 Hz, C3), 125.0 (C3'), 53.8 (d, 

2
JCP = 15.8 Hz, 

POCH3'), 53.2 (d, 
2
JCP = 10.0 Hz, POCH3) ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): 

δ = 157.5 ppm. IR (neat): ν = 3052.1 (w), 2933.4 (w), 2831.1 (w), 1591.7 (w), 1557.6 (w), 

1505.7 (w), 1454.6 (w), 1361.8 (w), 1231.7 (w), 1163.4 (w), 1037.0 (s), 1015.7 (s), 879.9 (w), 

828.9 (m) cm
–1

. HRMS (APCI
+
): Found: m/z = 347.1193. Calculated for [M + H]

+
: 

m/z = 347.1195. OR (CHCl3, c = 1.0 mg/ml): [α]D
20

 = –44°. 

4.4.7 Dimethyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphonite (19b) 

 

The same procedure was followed as for 19a, except for using 1b as the substrate. The title 

product was obtained as a pale yellow oil. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.05 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 8.04 (d, 

3
JHH = 8.5 Hz, 

3
JHP = 1.9 Hz, 1H, H3), 7.99 (d, 

3
JHH = 8.5 Hz, 1H, H4), 7.95 (d, 

3
JHH = 8.1 Hz, 1H, H5), 7.89 

(d, 
3
JHH = 8.2 Hz, 1H, H5'), 7.51 (ddd, 

3
JHH = 8.1 Hz, 

3
JHH = 6.7 Hz,

 4
JHH = 1.3 Hz, 1H, H6), 

7.47 (d, 
3
JHH = 9.1 Hz, 1H, H3'), 7.32 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.7 Hz,

 4
JHH = 1.2 Hz, 1H, 

H6'), 7.28-7.18 (m, 3H, H7+H7'+H8), 6.91 (d, 
3
JHH = 8.5 Hz, 1H, H8'), 3.79 (s, 3H, OCH3), 
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3.43 (d, 
3
JHP = 10.3 Hz, 3H, POCH3), 3.32 (d, 

3
JHP = 11.5 Hz, 3H, POCH3') ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 155.6 (d, 

4
JCP = 2.0 Hz, C2'), 139.6 (d, 

2
JCP = 33.8 

Hz, C1), 137.8 (d, 
1
JCP = 21.7 Hz, C2), 134.6 (C9'), 134.5 (d, 

4
JCP = 2.2 Hz, C10), 132.9 (d, 

3
JCP = 5.2 Hz, C9), 130.2 (C4'), 128.6 (C10'), 128.1 (C5), 127.9 (C5'), 127.1 (C4), 127.0 (C6), 

126.5 (C7'), 126.2 (C7), 126.0 (d, 
4
JCP = 2.4 Hz, C8), 125.7 (d, 

2
JCP = 3.3 Hz, C3), 125.3 

(C8'), 123.5 (C6'), 119.9 (d, 
3
JCP = 8.1 Hz, C1'), 112.9 (C3'), 56.1 (OCH3), 53.6 (d, 

2
JCP = 15.1 Hz, POCH3'), 52.6 (d, 

2
JCP = 8.5 Hz, POCH3) ppm. 

31
P{

1
H} NMR (202 MHz, 

CD2Cl2): δ = 155.8 ppm. IR (neat): ν = 3053.8 (w), 2933.5 (w), 2828.0 (w), 1621.2 (w), 

1592.6 (w), 1507.8 (m), 1461.7 (w), 1332.7 (w), 1268.9 (s), 1248.9 (s), 1147.3 (w), 1079.4 

(m), 1035.7 (s), 1011.6 (s), 907.8 (w), 868.1 (w) cm
–1

. HRMS (APCI
+
): Found: 

m/z = 376.1218. Calculated for [M]
+
: m/z = 376.1223. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 =  

–20°. 

4.4.8 cis-Bis((R)-(2'-methoxy-[1,1'-binaphthalen]-2-yl)dimethylphosphine)-

dichloroplatin (cis-20b) 

[Pt(η
4
-cod)Cl2] (6.7 mg, 17.5 μmol) and 16b (11.0 mg, 35.0 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred at room temperature for 15 minutes. The volatiles were removed in vacuo 

to give the intended product as a colourless solid (quantitative conversion). Slow diffusion of 

Et2O into the reaction mixture yielded colourless crystals overnight which were suitable for 

X-ray diffraction analysis. 

1
H NMR (400 MHz, CDCl3): δ = 8.66 (dd, 

3
JHP = 13.9 Hz, 

3
JHH = 8.7 Hz, 2H, H3), 7.98 (d, 

3
JHH = 9.2 Hz, 2H, H4'), 7.87-7.81 (m, 6H, H5+H4+H5'), 7.48 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 2H, H6), 7.35-7.28 (m, 4H, H3'+H6'), 7.20 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 2H, H7), 7.03 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 

2H, H7'), 6.96 (d, 
3
JHH = 8.3 Hz, 2H, H8), 6.72 (d, 

3
JHH = 8.3 Hz, 2H, H8'), 3.57 (s, 6H, 

OCH3), 1.26 (d, 
2
JHP = 10.6 Hz, 6H, PCH3), 1.11 (d, 

2
JHP = 10.6 Hz, 6H, PCH3) ppm. 

13
C{

1
H} NMR (101 MHz, CDCl3): δ = 154.9 (C2'), 138.5 (C1), 134.5 (C10), 134.5 (C9'), 

133.2 (C9), 132.3 (m, C3), 131.2 (C4'), 128.8 (C5'), 128.7 (C10'), 128.1 (C4), 128.1 (C5), 

127.8 (C6), 127.3 (C7'), 127.1 (C7), 126.5 (C8), 125.7 (C8'), 124.1 (C6'), 119.6 (C1'), 112.8 

(C3'), 55.8 (s, OCH3), 7.8 (d, 
1
JCP = 44.6 Hz, CH3), 7.2 (d, 

1
JCP = 43.1 Hz, CH3) ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): δ = –6.1 (s with 

195
Pt satellites, 

1
JPtP = 3647 Hz) ppm. 

195
Pt{

1
H} NMR (108 MHz, CD2Cl2): δ = –4362 (t, 

1
JPtP = 3647 Hz) ppm. HRMS (ESI

+
, 

MeOH): Found: m/z = 917.1960. Calculated for [M – Cl]
+
: m/z = 917.1975. 
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4.4.9 trans-Bis((R)-N,N,N',N'-tetramethyl-1-(2'-methoxy-[1,1'-binaphthalen]-2-yl)-

phosphinediamine)dichloroplatin (trans-21b) 

[Pt(η
4
-cod)Cl2] (6.7 mg, 17.5 μmol) and 18b (11.0 mg, 35.0 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred at room temperature for 15 minutes. The volatiles were removed in vacuo 

to give the intended product as a colourless solid (quantitative conversion). Slow diffusion of 

Et2O into the reaction mixture yielded colourless crystals overnight which were suitable for 

X-ray diffraction analysis. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.02 (m, 

3
JHH = 8.8 Hz, 

3
JHP ≈ 12.9 Hz, 2H, H3), 7.96 (d, 

3
JHH = 9.1 Hz, 2H, H4'), 7.85 (m, 6H, H5'+H5+H4), 7.44 (d, 

3
JHH = 9.1 Hz, 2H, H3'), 7.41 

(ddd, 
3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz,

 4
JHH = 0.9 Hz, 2H, H6), 7.39 (d, 

3
JHH = 8.5 Hz, 2H, H8'), 

7.27 (ddd, 
3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz,

 4
JHH = 0.9 Hz, 2H, H6'), 7.11 (ddd, 

3
JHH = 8.5 Hz, 

3
JHH = 6.8 Hz,

 4
JHH = 1.2 Hz, 2H, H7), 7.05 (ddd, 

3
JHH = 8.5 Hz, 

3
JHH = 6.8 Hz,

 4
JHH = 1.2 Hz, 

2H, H7'), 6.79 (d, 
3
JHH = 8.5 Hz, 2H, H8) 3.72 (s, 6H, OCH3), 2.77 (pt, 

3
JHP ≈ 9.3 Hz, 12H, 

N(CH3)2), 1.84 (pt, 
3
JHP ≈ 10.0 Hz, 12H, N(CH3)2') ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): 

δ = 154.2 (C2'), 137.6 (pt, 
2
JCP+

4
JCP ≈ 6.3 Hz, C1), 134.6 (C9'), 134.3 (pt, 

1
JCP+

3
JCP ≈ 74.0 

Hz, C2), 133.9 (C10), 133.2 (pt, 
3
JCP ≈ 9.3 Hz, C9), 131.9 (pt, 

2
JCP+

4
JCP ≈ 20.8 Hz, C3), 129.0 

(C4'), 128.9 (C10'), 127.7 (C5), 127.4 (C5'), 126.9 (C6), 126.7 (C8'), 126.4 (C7'), 126.3 (C8), 

125.8 (C7), 125.0 (pt, 
2
JCP+

4
JCP ≈ 13.7 Hz, C4), 123.6 (C6'), 122.0 (C1'), 112.5 (C3'), 55.7 

(OCH3), 41.8 (pt, 
2
JCP+

4
JCP ≈ 6.7 Hz, N(CH3)2), 39.6 (pt, 

2
JCP+

4
JCP ≈ 8.6 Hz, N(CH3)2') ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = 87.8 (s with 

195
Pt satellites, 

1
JPtP = 2955 Hz) ppm. 

195
Pt{

1
H} NMR (108 MHz, CD2Cl2): δ = –3747 (t, 

1
JPtP = 2955 Hz) ppm. HRMS (ESI

+
, 

MeOH): Found: m/z = 1093.2626. Calculated for [M + Na]
+
: m/z = 1093.2636. 

4.4.10 General Procedure for the Preparation of LP(Se) 

The appropriate phosphorus ligand (LP, 50.0 μmol) and KSeCN (14.4 mg, 100 μmol) were 

dissolved in THF (1 mL) and heated to 50 °C for 2 hours. The solvent was removed and the 

residue dissolved in CDCl3. After filtration through celite the product was analysed by 

31
P{

1
H} NMR. 

31
P{

1
H} NMR (202 MHz, CDCl3): δ = 16a(Se): 19.6 (

1
JPSe = 685 Hz); 16b(Se): 22.0 (

1
JPSe = 

683 Hz); 18a(Se): 80.1 (
1
JPSe = 770 Hz); 18b(Se): 79.8 (

1
JPSe = 765 Hz); 19a(Se): 95.8 (

1
JPSe 

= 858 Hz); 19b(Se): 97.4 (
1
JPSe = 860 Hz) ppm. 
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4.4.11 General Procedure for the Preparation of trans-[Rh(LP)2(CO)Cl] 

[Rh(CO)2Cl]2 (1.2 mg, 3.125 μmol) and phosphorus ligand (LP, 12.5 μmol) were dissolved in 

CH2Cl2 (0.5 mL) and left to react for 10 minutes. The solvent was removed in vacuo and the 

product analysed by IR spectroscopy. 

IR (CH2Cl2): ν [Rh(14a)2(CO)Cl]: 1983; [Rh(14b)2(CO)Cl]: 1985; [Rh(16a)2(CO)Cl]: 1965; 

[Rh(16b)2(CO)Cl]: 1963; [Rh(18a)2(CO)Cl]: 1972; [Rh(18b)2(CO)Cl]: 1969; 

[Rh(19a)2(CO)Cl]: 1999; [Rh(19b)2(CO)Cl]: 1996 cm
–1

. 

4.4.12 General Procedure for the Preparation of trans-[Pt(LP)(PEt3)Cl2] 

[Pt(PEt3)Cl2]2 (19.2 mg, 25.0 μmol) and phosphorus ligand (LP, 50.0 μmol) were dissolved in 

CD2Cl2 (0.55 mL) and left to react for 30 minutes. The products were analysed by 
31

P{
1
H} 

and 
195

Pt{
1
H} NMR spectroscopy. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = 22a (trans, 51%): 15.5 (

1
JPPt = 2871 Hz, 

2
JPP = 573 Hz, PEt3), –149.6 (

1
JPPt = 2570 Hz, 

2
JPP = 573 Hz, 14a); (cis, 49%): 10.4 

(
1
JPPt = 3281 Hz, 

2
JPP = 23 Hz, PEt3), –144.1 (

1
JPPt = 4381 Hz, 

2
JPP = 23 Hz, 14a); 22b (trans, 

65%): 13.8 (
1
JPPt = 2886 Hz, 

2
JPP = 575 Hz, PEt3), –151.9 (

1
JPPt = 2566 Hz, 

2
JPP = 575 Hz, 

14b); (cis, 35%): 9.8 (
1
JPPt = 3282 Hz, 

2
JPP = 24 Hz, PEt3), –144.1 (

1
JPPt = 4377 Hz, 

2
JPP = 24 Hz, 14b); 23a (trans, 32%): 12.5 (

1
JPPt = 2479 Hz, 

2
JPP = 484 Hz, PEt3), –4.5 

(
1
JPPt = 2364 Hz, 

2
JPP = 484 Hz, 16a); (cis, 68%): 7.1 (

1
JPPt = 3412 Hz, 

2
JPP = 18 Hz, PEt3), –

5.1 (
1
JPPt = 3725 Hz, 

2
JPP = 18 Hz, 16a); 23b (trans, 36%): 12.0 (

1
JPPt = 2464 Hz, 

2
JPP = 482 Hz, PEt3), –1.3 (

1
JPPt = 2402 Hz, 

2
JPP = 482 Hz, 16b); (cis, 64%): 7.2 

(
1
JPPt = 3404 Hz, 

2
JPP = 18 Hz, PEt3), –2.9 (

1
JPPt = 3737 Hz, 

2
JPP = 18 Hz, 16b); 24a (trans, 

100%): 90.4 (
1
JPPt = 3030 Hz, 

2
JPP = 545 Hz, 18a), 10.7 (

1
JPPt = 2365 Hz, 

2
JPP = 545 Hz, 

PEt3); 24b (trans, 100%): 90.4 (
1
JPPt = 3049 Hz, 

2
JPP = 543 Hz, 18b), 10.4 (

1
JPPt = 2332 Hz, 

2
JPP = 543 Hz, PEt3); 25a (trans, 100%): 119.8 (

1
JPPt = 3428 Hz, 

2
JPP = 604 Hz, 19a), 10.4 

(
1
JPPt = 2402 Hz, 

2
JPP = 604 Hz, PEt3); 25b (trans, 100%): 117.3 (

1
JPPt = 3454 Hz, 

2
JPP = 604 Hz, 19b), 8.9 (

1
JPPt = 2407 Hz, 

2
JPP = 604 Hz, PEt3) ppm. 

195
Pt{

1
H} NMR 

(108 MHz, CD2Cl2): δ = 22a: –3941 (dd, 
1
JPtP = 2871 Hz, 

1
JPtP = 2570 Hz, trans), –4493 (dd, 

1
JPtP = 4381 Hz, 

1
JPtP = 3281 Hz, cis); 22b: –3921 (dd, 

1
JPtP = 2886 Hz, 

1
JPtP = 2566 Hz, 

trans), –4501 (dd, 
1
JPtP = 4377 Hz, 

1
JPtP = 3282 Hz, cis); 23a: –3914 (dd, 

1
JPtP = 2479 Hz, 

1
JPtP = 2364 Hz, trans), –4401 (dd, 

1
JPtP = 3412 Hz, 

1
JPtP = 3725 Hz, cis); 23b: –3917 (dd, 

1
JPtP = 2464 Hz, 

1
JPtP = 2402 Hz, trans), –4412 (dd, 

1
JPtP = 3404 Hz, 

1
JPtP = 3737 Hz, cis); 

24a: –3869 (dd, 
1
JPtP = 3030 Hz, 

1
JPtP = 2365 Hz, trans); 24b: –3839 (dd, 

1
JPtP = 3049 Hz, 
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1
JPtP = 2332 Hz, trans); 25a: –3881 (dd, 

1
JPtP = 3428 Hz, 

1
JPtP = 2402 Hz, trans); 25b: –3859 

(dd, 
1
JPtP = 3454 Hz, 

1
JPtP = 2407 Hz, trans). 

4.4.13 Chloro((R)-1-(2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphirane)(η3-2-

methylallyl)palladium (26b) 

 

[Pd(η
3
-C4H7)Cl]2 (19.7 mg, 50 μmol) and 14b (34.2 mg, 100 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 15 minutes. The intended complex was formed quantitatively. 

1
H NMR (500 MHz, CD2Cl2, –25 °C): δ = isomer A,B 8.14-8.10 (m, 2H, H4'

B
+H4'

A
), 7.99-

7.92 (m, 5H, H4
A
+H4

B
+H5

AB
+H5'

B
), 7.92-7.86 (m, 2H, H5'

A
+H3

A
), 7.84 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 8.5 Hz, 1H, H3

B
), 7.56-7.49 (m, 4H, H3'

AB
+H6

AB
), 7.33-7.23 (m, 5H, H6'

AB
+H7

AB
+ 

H7'
A
), 7.19-7.09 (m, 3H, H7'

B
+H8

A
+H8

B
), 6.98 (d, 

3
JHH = 8.5 Hz, 1H, H8'

A
), 6.83 (d, 

3
JHH = 8.5 Hz, 1H, H8'

B
), 4.19 (dd, 

3
JHP = 7.4 Hz, 

4
JHH = 2.3 Hz, 1H, allyl-Htsyn

B
), 4.12 (dd, 

3
JHP = 7.4 Hz, 

4
JHH = 2.3 Hz, 1H, allyl-Htsyn

A
), 3.83 (s, 3H, OCH3

B
), 3.82 (s, 3H, OCH3

A
), 

3.14 (s, 1H, allyl-Hcsyn
B
), 2.90 (d, 

3
JHP = 12.8 Hz, 1H, allyl-Htanti

B
), 2.47 (s, 1H, allyl-Hcsyn

A
), 

2.75 (d, 
3
JHP = 12.8 Hz, 1H, allyl-Htanti

A
), 2.14 (s, 1H, allyl-Hcanti

B
), 1.71 (s, 3H, allyl-CH3

B
), 

1.61 (s, 3H, allyl-CH3
A
), 1.59 (s, 1H, allyl-Hcanti

A
), 1.55-1.05 (m, 8H, P(CH2CH2)

AB
) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2, –25 °C): δ = isomer A,B 154.7 (C2'

B
), 154.6 (C2'

A
), 140.8 

(d, 
2
JCP = 10.9 Hz, C1

AB
), 134.1 (C9'

A
), 134.0 (C9'

A
), 133.6, 133.5, 132.6-132.4 (m), 132.0-

131.7, (m) 131.4 (d, JCP = 5.9 Hz), 130.9 (C4'
B
), 130.8 (C4'

A
), 130.2 (d, 

2
JCP = 10.2 Hz, C3

A
), 

129.7 (d, 
2
JCP = 11.1 Hz, C3

B
), 129.0 (C10'

B
), 128.9 (C10'

A
), 128.4 (C5

B
), 128.3 (C5

A
), 128.3 

(C5'
B
), 128.3 (C5'

A
), 128.2 (d, 

3
JCP = 9.0 Hz, C4

B
), 128.0 (d, 

3
JCP = 8.5 Hz, C4

A
), 127.6 

(C7'
A
), 127.5 (C6

AB
), 127.2 (C7

B
), 127.1 (C7

A
), 127.0 (C7'

B
), 126.2 (C8

B
), 126.1 (C8

A
), 125.6 

(C8'
A
), 125.2 (C8'

B
), 124.0 (C6'

B
), 123.8 (C6'

A
), 119.9 (m, C1'

AB
), 113.2 (C3'

B
), 113.0 (C3'

A
), 

75.9 (d, 
2
JCP = 40.6 Hz, allyl-Ct

B
), 75.6 (d, 

2
JCP = 40.6 Hz, allyl-Ct

A
), 57.7 (allyl-Cc

A
), 57.6 

(allyl-Cc
B
), 56.2 (OCH3

B
), 56.0 (OCH3

A
), 23.3 (allyl-CH3

B
), 23.2 (allyl-CH3

A
), 18.5 (d, 

1
JCP = 17.5 Hz, P(CH2CH2)

B
), 7.7 (d, 

1
JCP = 16.5 Hz, P(CH2CH2)

A
), 7.6 (d, 

1
JCP = 16.5 Hz, 

P(CH2CH2)
B
), 7.4 (d, 

1
JCP = 17.1 Hz, P(CH2CH2)

A
) ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2, 

–25 °C): δ = isomer A (63%) –164.9; isomer B (37%) –165.8 ppm. HRMS (ESI
+
): Found: 

m/z = 503.0744. Calculated for [M – Cl]
+
: m/z = 503.0751. 
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4.4.14 Chloro((R)-(2'-methoxy-[1,1'-binaphthalen]-2-yl)dimethylphosphine)(η3-2-

methylallyl)palladium (27b) 

 

[Pd(η
3
-C4H7)Cl]2 (19.7 mg, 50 μmol) and 16b (34.4 mg, 100 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 15 minutes. The intended complex was formed quantitatively. Slow 

diffusion of Et2O into the reaction mixture yielded colourless crystals overnight, which were 

suitable for X-ray diffraction analysis. 

1
H NMR (500 MHz, CD2Cl2, –25 °C): δ = isomer A,B 8.07-8.03 (m, 4H, H4'

A
+H4

A
+ 

H4
B
+H4'

B
), 7.96-7.93 (m, 2H, H5

AB
), 7.91 (dd, 

3
JHH = 8.8 Hz, 

3
JHP = 8.8 Hz, 1H, H3

B
), 7.85 

(d, 
3
JHH = 8.2 Hz, 1H, H5'

B
), 7.83 (dd, 

3
JHH = 8.8 Hz, 

3
JHP = 8.8 Hz, 1H, H3

A
), 7.81 (d, 

3
JHH = 8.1 Hz, 1H, H5'

A
), 7.52-7.48 (m, 3H, H3'

B
+H6

AB
), 7.47 (d, 

3
JHH = 9.1 Hz, 1H, H3'

A
), 

7.29-7.18 (m, 5H, H6'
A
+H7

AB
+H6'

B
+H7'

A
), 7.15 (ddd, 

3
JHH = 8.4 Hz, 

3
JHH = 6.8 Hz,

 

4
JHH = 1.3 Hz, 1H, H7'

B
), 7.12 (d, 

3
JHH = 8.5 Hz, 1H, H8'

A
), 7.03-6.99 (m, 2H, H8

AB
), 6.79 (d, 

3
JHH = 8.3 Hz, 1H, H8'

B
), 3.92 (dd, 

3
JHP = 7.1 Hz, 

4
JHH = 2.9 Hz, 1H, allyl-Htsyn

B
), 3.88 (s, 3H, 

OCH3
B
), 3.82 (dd, 

3
JHP = 7.1 Hz, 

4
JHH = 2.6 Hz, 1H, allyl-Htsyn

A
), 3.79 (s, 3H, OCH3

A
), 2.61 

(m, 1H, allyl-Hcsyn
B
), 2.47 (m, 1H, allyl-Hcsyn

A
), 2.14 (d, 

3
JHP = 10.6 Hz, 1H, allyl-Htanti

B
), 

2.03 (d, 
3
JHP = 10.4 Hz, 1H, allyl-Htanti

A
), 1.72 (d, 

2
JHP = 8.7 Hz, 3H, PCH3

A
), 1.65 (s, 3H, 

allyl-CH3
A
), 1.63 (s, 3H, allyl-CH3

B
), 1.53 (d, 

2
JHP = 7.7 Hz, 3H, PCH3

B
), 1.50 (d, 

2
JHP = 9.6 Hz, 3H, PCH3

B
), 1.26 (d, 

2
JHP = 9.1 Hz, 3H, PCH3

A
), 0.91 (s, 1H, allyl-Hcanti

B
), 

0.53 (s, 1H, allyl-Hcanti
A
) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2, –25 °C): δ = isomer A,B 

155.5 (C2'
B
), 155.1 (C2'

A
), 139.5 (d, 

2
JCP = 14.5 Hz, C1

B
), 138.7 (d, 

2
JCP = 11.3 Hz, C1

A
), 

134.4, 134.0, 133.8, 133.8, 133.1 (d, 
1
JCP = 56.2 Hz, C2

B
), 133.0 (d, JCP = 8.4 Hz), 132.8 (d, 

JCP = 8.4 Hz), 132.6 (d, 
1
JCP = 56.2 Hz, C2

A
), 131.9 (d, JCP = 5.4 Hz, allyl-C

B
), 131.2 (d, 

2
JCP = 5.4 Hz, allyl-C

A
), 130.9, 129.9, 128.8, 128.4, 128.3, 128.2, 128.2, 128.1, 127.8, 127.7, 

127.7, 127.5, 127.3 (C6
AB

), 127.2, 127.1, 127.0 (C3
A
), 126.9 (C3

B
), 126.9 (C8'

B
), 126.8 

(C7
AB

), 126.7 (C7'
B
), 125.7 (C8

A
), 123.4 (C8'

B
), 119.8 (d, 

3
JCP = 5.7 Hz, C1'

A
), 119.5 (d, 

3
JCP = 6.7 Hz, C1'

B
), 113.8 (C3'

B
), 112.6 (C3'

A
), 76.8 (d, 

2
JCP = 35.4 Hz, allyl-Ct

B
), 75.1 (d, 

2
JCP = 35.1 Hz, allyl-Ct

A
), 55.8 (OCH3

A
), 55.8 (OCH3

B
), 55.1 (allyl-Cc

B
), 53.6 (d, 

2
JCP = 1.8 Hz, allyl-Cc

A
), 23.6 (allyl-CH3

B
), 23.6 (allyl-CH3

A
), 17.6 (d, 

1
JCP = 26.2 Hz, 

PCH3
B
), 16.3 (d, 

1
JCP = 25.8 Hz, PCH3

A
), 15.4 (d, 

1
JCP = 26.4 Hz, PCH3

B
), 14.4 (d, 
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1
JCP = 28.7 Hz, PCH3

A
) ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2, –25 °C): δ = isomer A 

(67%) –6.1; isomer B (33%) –8.7 ppm. HRMS (NSI
+
, MeOH): Found: m/z = 505.0906. 

Calculated for [M – Cl]
+
: m/z = 505.0918. 

4.4.15 Chloro(η3-2-methylallyl)((R)-N,N,N',N'-tetramethyl-1-(2'-methoxy-[1,1'-

binaphthalen]-2-yl)phosphinediamine)palladium (28b) 

 

[Pd(η
3
-C4H7)Cl]2 (19.7 mg, 50 μmol) and 18b (34.4 mg, 100 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 15 minutes. The intended complex was formed quantitatively. 

1
H NMR (500 MHz, CD2Cl2, –25 °C): δ = isomer A,B 7.99-7.95 (m, 4H, H4'

AB
+H4

AB
), 7.90-

7.87 (m, 4H, H5
AB

+H5'
AB

), 7.68 (dd, 
3
JHP = 12.9 Hz, 

3
JHH = 8.8 Hz, 1H, H3

B
), 7.68 (dd, 

3
JHP = 12.6 Hz, 

3
JHH = 8.8 Hz, 1H, H3

A
), 7.50-7.45 (m, 4H, H3'

AB
+H6

AB
), 7.31-7.26 (m, 2H, 

H6'
AB

), 7.20-7.15 (m, 4H, H7
AB

+H7'
AB

), 7.00 (d, 
3
JHH = 8.4 Hz, 1H, H8'

B
), 6.99 (d, 

3
JHH = 8.4 Hz, 1H, H8'

A
), 6.91 (d, 

3
JHH = 8.5 Hz, 1H, H8

B
), 6.88 (d, 

3
JHH = 8.5 Hz, 1H, H8

A
), 

4.20 (dd, 
3
JHP = 8.1 Hz, 

4
JHH = 3.2 Hz, 1H, allyl-Htsyn

B
), 4.18 (dd, 

3
JHP = 8.0 Hz, 

4
JHH = 3.1 Hz, 1H, allyl-Htsyn

A
), 3.76 (s, 3H, OCH3

B
), 3.74 (s, 3H, OCH3

A
), 3.32 (d, 

3
JHP = 11.2 Hz, 1H, allyl-Htanti

B
), 3.30 (d, 

3
JHP = 11.2 Hz, 1H, allyl-Htanti

A
), 2.78 (s, 1H, allyl-

Hcsyn
B
), 2.59 (s, 1H, allyl-Hcsyn

A
), 2.49 (d, 

3
JHP = 9.4 Hz, 6H, N(CH3)2

A
), 2.44 (s, 2H, allyl-

Hcanti
AB

), 2.30 (d, 
3
JHP = 9.4 Hz, 6H, N(CH3)2

B
), 2.16 (d, 

3
JHP = 10.0 Hz, 6H, N(CH3)2

B
), 2.04 

(d, 
3
JHP = 9.4 Hz, 6H, N(CH3)2

A
), 1.88 (s, 3H, allyl-CH3

B
), 1.85 (s, 3H, allyl-CH3

A
) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2, –25 °C): δ = isomer A,B 153.9 (C2'

A
), 153.9 (C2'

B
), 138.6 

(d, 
1
JCP = 20.3 Hz, C2

A
), 138.3 (d, 

1
JCP = 22.3 Hz, C2

B
), 135.6 (d, 

2
JCP = 6.6 Hz, C1

A
), 135.5 

(d, 
2
JCP = 6.2 Hz, C1

B
), 134.0 (C9'

B
), 133.9 (C9'

A
), 133.5 (d, 

4
JCP = 1.5 Hz, C10

A
), 133.5 (d, 

4
JCP = 1.5 Hz, C10

B
), 133.0 (d, 

3
JCP = 8.1 Hz, C9

A
), 132.9 (d, 

3
JCP = 8.1 Hz, C9

B
), 132.7 (d, 

JCP = 5.7 Hz, allyl-C
A
), 132.6 (d, JCP = 5.7 Hz, allyl-C

B
), 129.6 (d, 

2
JCP = 23.0 Hz, C3

B
), 

129.5 (d, 
2
JCP = 21.9 Hz, C3

A
), 129.2 (C4'

B
), 129.2 (C4'

A
), 128.9 (C10'

B
), 128.8 (C10'

A
), 128.2 

(C5'
A
), 128.2 (C5'

B
), 128.0 (C5

AB
), 127.7 (d, 

3
JCP = 12.6 Hz, C4

B
), 127.7 (d, 

3
JCP = 12.1 Hz, 

C4
A
), 127.1 (C6

B
), 127.1 (C6

A
), 126.7 (C7

AB
), 126.7 (C7'

A
), 126.6 (C7'

B
), 126.5 (C8

A
), 126.5 

(C8
B
), 125.2 (C8'), 123.6 (C6'

B
), 123.5 (C6'

A
), 121.0 (C1'

B
), 120.8 (C1'

A
), 112.9 (C3'

B
), 112.6 

(C3'
A
), 77.8 (d, 

2
JCP = 38.7 Hz, allyl-Ct

B
), 77.4 (d, 

2
JCP = 38.7 Hz, allyl-Ct

A
), 59.9 (allyl-Cc

A
), 
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59.5 (allyl-Cc
B
), 56.0 (OCH3

B
), 55.7 (OCH3

A
), 41.3 (d, 

2
JCP = 7.4 Hz, N(CH3)2

A
), 40.7 (d, 

2
JCP = 7.9 Hz, N(CH3)2

B
), 40.3 (d, 

2
JCP = 7.9 Hz, N(CH3)2

B
), 40.2 (d, 

2
JCP = 7.9 Hz, 

N(CH3)2
A
), 23.2 (allyl-CH3) ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2, –25 °C): δ = isomer A 

(61%) 105.0; isomer B (39%) 105.4 ppm. HRMS (ESI
+
): Found: m/z = 563.1446. Calculated 

for [M – Cl]
+
: m/z = 563.1449. 

4.4.16 Chloro(dimethyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphonite)(η3-2-

methylallyl)palladium (29b) 

 

[Pd(η
3
-C4H7)Cl]2 (9.8 mg, 25 μmol) and 19b (18.8 mg, 50 μmol) were dissolved in CD2Cl2 

(0.7 mL) and stirred for 15 minutes. The intended complex was formed quantitatively. 

1
H NMR (500 MHz, CD2Cl2, –25 °C): δ = isomer A 8.15 (dd, 

3
JHH = 8.6 Hz, 

3
JHP = 5.6 Hz, 

1H, H3), 8.07 (d, 
3
JHH = 8.6 Hz, 1H, H4), 7.99-7.97 (m, 2H, H5'+H5), 7.77 (d, 

3
JHH = 8.1 Hz, 

1H, H5'), 7.54 (ddd, 
3
JHH = 8.1 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.1 Hz, 1H, H6), 7.45 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.30-7.21 (m, 3H, H6'+H7+H7'), 7.18 (d, 

3
JHH = 8.5 Hz, 1H, H8'), 

7.05 (d, 
3
JHH = 8.5 Hz, 1H, H8), 3.78 (d, 

3
JHP = 14.2 Hz, 3H, POCH3), 3.78 (s, 3H, OCH3), 

3.77 (m, 1H, allyl-Htsyn), 3.35 (d, 
3
JHP = 11.2 Hz, 3H, POCH3), 2.73 (s, 1H, allyl-Hcsyn), 1.58 

(d, 
3
JHP = 11.2 Hz, 1H, allyl-Htanti), 0.46 (s, 1H, allyl-Hcanti), 1.65 (s, 3H, allyl-CH3) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2, –25 °C): δ = isomer A 156.1 (C2'), 140.1 (d, 

2
JCP = 22.4 

Hz, C1), 133.9 (C10), 133.0 (d, 
1
JCP = 10.6 Hz, C2), 132.5 (d, 

3
JCP = 8.4 Hz, C9), 131.5 (d, 

allyl-C), 130.6 (C4'), 128.3 (C8'), 128.3 (C5), 127.5 (C4), 127.9 (C6), 127.7 (C7'), 127.3 

(C5'), 127.0 (d, 
2
JCP = 3.9 Hz, C3), 126.8 (C7), 126.1 (C8

A
), 123.9 (C6'), 118.3 (d, 

3
JCP = 7.7 

Hz, C1'), 112.6 (C3'), 76.6 (d, 
2
JCP = 43.5 Hz, allyl-Ct), 56.0 (d, 

2
JCP = 5.8 Hz, POCH3), 55.7 

(OCH3), 54.5 (d, 
2
JCP = 5.2 Hz, allyl-Cc), 52.3 (d, 

2
JCP = 13.0 Hz, POCH3), 23.4 (allyl-CH3) 

ppm; resonances for C9' and C10' are obscured. 
31

P{
1
H} NMR (202 MHz, CD2Cl2, –25 °C): 

δ = isomer A (89%) 148.9; isomer B (11%) 147.2 ppm. HRMS (NSI
+
): Found: 

m/z = 533.0824. Calculated for [M – Cl]
+
: m/z = 533.0827. 
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4.4.17 ((R)-(2'-Methoxy-[1,1'-binaphthalen]-2-yl-κC1')dimethylphosphine-κP)(η3-2-

methylallyl)palladium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (30b) 

 

NaBArF (44.3 mg, 50.0 μmol) and 27b (27.1 mg, 50.0 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 15 minutes. The reaction mixture was filtered through a layer of celite 

and the solvent removed in vacuo; the intended product was obtained as a pale yellow solid. 

1
H NMR (500 MHz, CD2Cl2): δ = isomer A,B 8.17-8.11 (m, 4H, H4+H4'), 8.04 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 8.03 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.96 (m, 2H, H5), 7.91 (d, 

3
JHH = 9.3 Hz, 1H, H3'

A
), 7.84 (d, 

3
JHH = 9.2 Hz, 1H, H3'

B
), 7.76 (m, 2H, H3), 7.75 (s, 16H, o-

BArF), 7.58 (s, 8H, p-BArF), 7.54-7.49 (m, 4H, H6'+H6), 7.43 (m, 1H, H7'), 7.35 (m, 1H, 

H7'), 7.19-7.14 (m, 2H, H7), 7.00 (d, 
3
JHH = 8.3 Hz, 1H, H8'), 6.89 (d, 

3
JHH = 8.3 Hz, 1H, 

H8'), 5.83 (d, 
3
JHH = 8.6 Hz, 1H, H8), 5.78 (d, 

3
JHH = 8.6 Hz, 1H, H8), 3.90 (s, 3H, OCH3

A
), 

3.82 (s, 3H, OCH3
B
), 3.58 (d, 

3
JHP = 9.5 Hz, 1H, allyl-Htanti), 3.44 (s, 1H, allyl-Hcsyn), 3.23 (s, 

1H, allyl-Hcsyn), 2.71 (d, 
3
JHP = 9.5 Hz, 1H, allyl-Htanti), 2.61 (s, 1H, allyl-Hcanti), 2.55 (dd, 

3
JHP = 5.8 Hz, 

4
JHH = 3.0 Hz, 1H, allyl-Htsyn), 2.47 (s, 1H, allyl-Hcanti), 2.06 (dd, 

3
JHP = 6.3 Hz, 

4
JHH = 3.1 Hz, 1H, allyl-Htsyn), 1.95 (d, 

2
JHP = 10.2 Hz, 3H, PCH3), 1.93 (d, 

2
JHP = 10.0 Hz, 3H, PCH3), 1.83 (s, 3H, allyl-CH3), 1.80 (d, 

2
JHP = 10.3 Hz, 3H, PCH3), 1.72 

(d, 
2
JHP = 10.3 Hz, 3H, PCH3), 1.10 (s, 3H, allyl-CH3) ppm; in some cases the distinct 

assignment of resonances to the respective isomer was unavailable. 
11

B NMR (128 MHz, 

CD2Cl2): δ = –7.6 ppm. 
13

C{
1
H} NMR (126 MHz, CD2Cl2): δ = isomer A,B 161.8 (q, 

1
JCB = 49.9 Hz, ipso-BArF), 155.6 (C2'

A
), 154.0 (C2'

B
), 140.6 (d, 

2
JCP = 27.0 Hz, C1), 137.0 

(d, 
2
JCP = 27.0 Hz, allyl-C

A
), 136.4 (d, 

2
JCP = 27.0 Hz, allyl-C

B
), 136.1 (d, 

1
JCP = 30.7 Hz, 

C2), 135.8, 135.7 (d, 
1
JCP = 30.7 Hz, C2), 134.9 (o-BArF), 134.2 (C4'

A
), 133.9 (C4'

B
), 132.3 

(C9'
B
), 131.9 (d, 

3
JCP = 3.9 Hz, C9), 131.8 (d, 

3
JCP = 3.7 Hz, C9), 131.5 (C4), 131.4 (C4), 

131.2 (C9'
A
), 129.9 (C10'

B
), 129.7 (C5'), 129.5 (C5'), 129.3, 129.0 (qq, 

2
JCF = 31.2 Hz, 

4
JCF = 2.9 Hz, m-BArF), 128.6 (C5), 128.5 (C6), 128.3 (C7), 128.3 (C7), 126.4 (C6'

B
), 126.3 

(C6'
A
), 124.7 (q, 

1
JCF = 272.3 Hz, CF3), 124.7 (C8), 124.5 (C8), 124.0, 122.6 (C8'

A
), 122.0 

(C8'
B
), 117.5 (septet, 

3
JCF = 4.0 Hz, p-BArF), 115.5 (C3'

B
), 115.0 (C3'

A
), 105.2 (C1'

B
), 104.6 

(C1'
A
), 98.2 (d, 

2
JCP = 30.4 Hz, allyl-Ct), 97.6 (d, 

2
JCP = 30.7 Hz, allyl-Ct), 57.2 (OCH3

A
), 

57.0 (OCH3
B
), 52.7 (d, 

2
JCP = 2.7 Hz, allyl-Cc

B
), 52.5 (d, 

2
JCP = 2.7 Hz, allyl-Cc

A
), 22.9 
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(allyl-CH3
B
), 21.7 (allyl-CH3

A
), 16.2 (d, 

1
JCP = 28.9 Hz, PCH3), 16.2 (d, 

1
JCP = 29.3 Hz, 

PCH3), 15.4 (d, 
1
JCP = 28.3 Hz, PCH3), 15.0 (d, 

1
JCP = 29.3 Hz, PCH3) ppm; in some cases the 

distinct assignment of resonances to the respective isomer was unavailable. 
19

F NMR 

(376 MHz, CD2Cl2): δ = –62.7 ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = isomer A,B (1:1 

ratio) 9.4, 8.7 ppm. HRMS (ESI
+
): Found: m/z = 501.0925. Calculated for [M – BArF]

+
: 

m/z = 501.0934. 

4.4.18 ((R)-N,N,N',N'-Tetramethyl-1-(2'-methoxy-[1,1'-binaphthalen]-2-yl-

κC1')phosphinediamine-κP)(η3-2-methylallyl)palladium tetrakis(3,5-

bis(trifluoromethyl)phenyl)borate (31b) 

 

NaBArF (44.3 mg, 50.0 μmol) and 28b (30.0 mg, 50.0 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 15 minutes. The reaction mixture was filtered through a layer of celite 

and the solvent removed in vacuo; the intended product was obtained as a pale yellow solid. 

Slow evaporation of a CH2Cl2 solution gave crystals which were suitable for X-ray analysis. 

1
H NMR (500 MHz, CD2Cl2): δ = isomer A,B 8.12 (d, 

3
JHH = 9.2 Hz, 2H, H4'), 8.10 (d, 

3
JHH = 8.5 Hz, 2H, H4), 8.05 (d, 

3
JHH = 8.3 Hz, 1H, H5'), 8.03 (d, 

3
JHH = 8.3 Hz, 1H, H5'), 

7.94 (d, 
3
JHH = 8.3 Hz, 2H, H5), 7.93 (d, 

3
JHH = 9.2 Hz, 1H, H3'), 7.85 (d, 

3
JHH = 9.2 Hz, 1H, 

H3'), 7.81 (dd, 
3
JHH = 8.5 Hz, 

3
JHP = 6.5 Hz, 2H, H3), 7.75 (s, 16H, o-BArF), 7.58 (s, 8H, p-

BArF), 7.55-7.47 (m, 4H, H6'+H6), 7.44 (m, 1H, H7'), 7.36 (m, 1H, H7'), 7.15-7.10 (m, 2H, 

H7), 7.07 (d, 
3
JHH = 8.4 Hz, 1H, H8'), 6.95 (d, 

3
JHH = 8.4 Hz, 1H, H8'), 5.67 (d, 

3
JHH = 8.3 Hz, 

1H, H8), 5.66 (d, 
3
JHH = 8.3 Hz, 1H, H8), 3.87 (s, 3H, OCH3), 3.82 (d, 

3
JHP = 10.6 Hz, 1H, 

allyl-Htanti), 3.78 (s, 3H, OCH3), 3.63 (m, 1H, allyl-Hcsyn), 3.33 (m, 1H, allyl-Hcsyn), 2.70 (d, 

3
JHP = 14.4 Hz, 3H, NCH3), 2.69 (d, 

3
JHP = 14.4 Hz, 3H, NCH3), 2.68 (m, 1H, allyl-Htanti), 

2.61 (d, 
3
JHP = 12.2 Hz, 6H, NCH3), 2.58 (m, 1H, allyl-Hcanti), 2.45 (dd, 

3
JHP = 7.4 Hz, 

4
JHH = 2.8 Hz, 1H, allyl-Htsyn), 2.37 (s, 1H, allyl-Hcanti), 1.90-1.84 (m, 4H, allyl-Htsyn+allyl-

CH3), 1.08 (s, 3H, allyl-CH3) ppm; in some cases the distinct assignment of resonances to the 

respective isomer was unavailable. 
11

B NMR (128 MHz, CD2Cl2): δ = –7.5 ppm. 

13
C{

1
H} NMR (101 MHz, CD2Cl2): δ = isomer A,B 161.8 (q, 

1
JCB = 50.2 Hz, ipso-BArF), 

156.2 (C2'), 154.5 (C2'), 140.7 (d, 
1
JCP = 35.3 Hz, C2), 140.6 (d, 

1
JCP = 35.1 Hz, C2), 140.5 
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(d, 
2
JCP = 18.2 Hz, C1), 140.0 (d, 

2
JCP = 18.5 Hz, C1), 136.1 (m, C9), 135.7 (d, 

2
JCP = 7.8 Hz, 

allyl-C), 135.2 (d, 
2
JCP = 8.0 Hz, allyl-C), 134.8 (o-BArF), 134.4 (C4'), 134.2 (C4'), 133.2 

(C9'), 132.2 (C9'), 132.0 (m, C9), 131.9 (m, C10), 130.6 (d, 
3
JCP = 3.4 Hz, C4), 130.5 (d, 

3
JCP = 3.4 Hz, C4), 130.1 (C7'), 129.8 (C7'), 129.5 (C5'), 129.3 (C5'), 129.2 (d, 

5
JCP = 0.9 Hz, 

C10'), 128.9 (d, 
5
JCP = 0.9 Hz, C10'), 128.9 (qq, 

2
JCF = 31.2 Hz, 

4
JCF = 2.9 Hz, m-BArF), 

128.5 (C5+C6), 128.1 (C7), 126.6 (C6'), 126.3 (C6'), 124.7 (q, 
1
JCF = 272.3 Hz, CF3), 124.5-

124.3 (m, C3+C8'+C8), 117.5 (septet, 
3
JCF = 4.0 Hz, p-BArF), 115.6 (C3'), 115.1 (C3'), 102.5 

(C1'), 102.4 (C1'), 101.0 (d, 
2
JCP = 34.8 Hz, allyl-Ct), 100.1 (d, 

2
JCP = 34.4 Hz, allyl-Ct), 57.0 

(OCH3), 56.8 (OCH3), 46.0 (d, 
2
JCP = 5.5 Hz, allyl-Cc), 45.7 (d, 

2
JCP = 5.7 Hz, allyl-Cc), 38.1 

(d, 
2
JCP = 9.1 Hz, NCH3), 38.0 (d, 

2
JCP = 8.7 Hz, NCH3), 37.9 (d, 

2
JCP = 9.1 Hz, NCH3), 37.8 

(d, 
2
JCP = 8.7 Hz, NCH3), 22.9 (allyl-CH3), 21.6 (allyl-CH3) ppm; in some cases the distinct 

assignment of resonances to the respective isomer was unavailable. 
19

F NMR (376 MHz, 

CD2Cl2): δ = –62.7 ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = isomer A,B (1:1 ratio) 

120.5, 120.5 ppm. HRMS (ESI
+
): Found: m/z = 562.1448. Calculated for [M – BArF]

+
: 

m/z = 562.1460. 

4.4.19 Bis((R)-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)dimethylphosphine)(η3-2-

methylallyl)palladium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (32b) 

16b (17.2 mg, 50.0 μmol) and 30b (68.5 mg, 50.0 μmol) were dissolved in CH2Cl2 (2 mL) 

and stirred for 15 minutes. The solvent was removed in vacuo and the intended product was 

obtained as a yellow solid. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.09 (d, 

3
JHH = 9.2 Hz, 1H, H4'

B
), 8.09 (d, 

3
JHH = 9.2 Hz, 

1H, H4'
A
), 8.04 (d, 

3
JHH = 8.7 Hz, 1H, H4

A
), 7.96 (d, 

3
JHH = 8.2 Hz, 1H, H5

A
), 7.93-7.88 (m, 

4H, H5'
B
+H4

B
+H5

B
+H5'

A
), 7.78 (s, 8H, o-BArF), 7.64 (dd, 

3
JHP = 11.5 Hz, 

3
JHH = 8.7 Hz, 

1H, H3
A
), 7.60 (s, 4H, p-BArF), 7.58-7.54 (m, 2H, H6

A
+H6

B
), 7.49 (d, 

3
JHH = 9.2 Hz, 1H, 

H3'
A
), 7.49 (dd, 

3
JHP = 13.9 Hz, 

3
JHH = 8.7 Hz, 1H, H3

B
), 7.46 (d, 

3
JHH = 9.2 Hz, 1H, H3'

B
), 

7.37 (ddd, 
3
JHH = 8.1 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.1 Hz, 1H, H6'

B
), 7.33-7.24 (m, 3H, 

H7
B
+H6'

A
+H7

A
), 7.22 (ddd, 

3
JHH = 8.5 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 1H, H7'

B
), 7.05 (d, 

3
JHH = 8.6 Hz, 1H, H8

B
), 7.05 (ddd, 

3
JHH = 8.5 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 1H, H7'

A
), 

7.00 (d, 
3
JHH = 8.6 Hz, 1H, H8

A
), 6.76 (d, 

3
JHH = 8.5 Hz, 1H, H8'

B
), 6.73 (d, 

3
JHH = 8.5 Hz, 

1H, H8'
A
), 3.79 (s, 3H, OCH3

B
), 3.76 (s, 3H, OCH3

A
), 3.65 (s, 1H, allyl-Hsyn), 3.57 (s, 1H, 

allyl-Hsyn), 1.78 (d, 
3
JHP = 10.1 Hz, 1H, allyl-Hanti), 1.74 (s, 3H, allyl-CH3), 1.64 (d, 

3
JHP = 10.1 Hz, 1H, allyl-Hanti), 1.40 (d, 

2
JHP = 8.5 Hz, 3H, PCH3

A
), 1.21 (d, 

2
JHP = 9.5 Hz, 

3H, PCH3'
A
), 1.10 (d, 

2
JHP = 9.0 Hz, 3H, PCH3

B
), 1.08 (d, 

2
JHP = 8.9 Hz, 3H, PCH3'

B
) ppm; 
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only one isomer was observed; labelled as A,B to distinguish between the resonances of the 

two ligands. 
11

B NMR (128 MHz, CD2Cl2): δ = –7.5 ppm. 
13

C{
1
H} NMR (126 MHz, 

CD2Cl2): δ = 161.9 (q, 
1
JCB = 50.0 Hz, ipso-BArF), 155.4 (C2'

A
), 155.1 (C2'

B
), 139.5 (d, 

2
JCP = 7.6 Hz, C1

A
), 139.3 (d, 

2
JCP = 3.4 Hz, C1

B
), 137.3 (pt, 

2
JCP = 5.4 Hz, allyl-C), 134.9 (o-

BArF), 134.4 (d, 
4
JCP = 2.0 Hz, C10

A
), 134.3 (d, 

4
JCP = 2.0 Hz, C10

B
), 134.3 (C9'

A
), 134.2 

(C9'
B
), 133.4 (d, 

3
JCP = 1.6 Hz, C9

A
), 133.3 (d, 

3
JCP = 2.4 Hz, C9

B
), 131.5 (C4'

A
), 131.4 

(C4'
B
), 130.5 (d, 

1
JCP = 41.6 Hz, C2

A
), 129.9 (d, 

1
JCP = 41.8 Hz, C2

B
), 129.4 (d, 

2
JCP = 24.3 

Hz, C3
B
), 129.1 (C10'

B
), 129.0 (qq, 

2
JCF = 31.2 Hz, 

4
JCF = 2.9 Hz, m-BArF), 128.9 (C10'

A
), 

128.7 (C4
A
+C5'

A
), 128.5 (C4

B
+C5

B
), 128.2 (C5

A
), 128.2 (C6

A
+C6

B
), 128.1 (C5'

B
), 127.6 

(C7
A
), 127.6 (C7

B
), 127.3 (C7'

B
), 127.1 (d, 

2
JCP = 12.6 Hz, C3

A
), 127.1 (C7'

A
), 126.2 (C8

B
), 

126.1 (C8
A
), 124.7 (q, 

1
JCF = 272.3 Hz, CF3), 125.0 (C8'

B
), 124.5 (C6'

B
), 124.3 (C8'

A
), 124.1 

(C6'
A
), 120.1 (C1'

B
), 119.7 (C1'

A
), 117.6 (septet, 

3
JCF = 4.0 Hz, p-BArF), 113.4 (C3'

A
), 113.3 

(C3'
B
), 70.6 (d, 

2
JCP = 30.5 Hz, allyl-CH2), 69.8 (d, 

2
JCP = 30.8 Hz, allyl-CH2'), 56.3 (OCH3

B
), 

55.9 (OCH3
A
), 23.6 (allyl-CH3), 17.7 (dd, 

1
JCP = 27.2 Hz, 

3
JCP = 2.4 Hz, PCH3'

A
), 17.5 (dd, 

1
JCP = 26.9 Hz, 

3
JCP = 2.4 Hz, PCH3

B
), 16.3 (m, PCH3

A
+PCH3'

B
) ppm; only one isomer was 

observed; labelled as A,B to distinguish between the resonances of the two ligands. 
19

F NMR 

(376 MHz, CD2Cl2): δ = –62.7 ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = –2.1 (d, 

2
JPP = 43 Hz, P

A
), –7.6 (d, 

2
JPP = 43 Hz, P

B
) ppm; only one isomer was observed; labelled as 

A,B to distinguish between the resonances of the two ligands. HRMS (ESI
+
): Found: 

m/z = 845.2245. Calculated for [M – BArF]
+
: m/z = 845.2258. 

4.4.20 Palladium Catalysed Asymmetric Allylic Alkylation of (rac)-(E)-1,3-Diphenylallyl 

Acetate 

 

[Pd(η
3
-C3H5)Cl]2 (3.7 mg, 0.01 mmol) and ligand (0.04 mmol) were dissolved in CH2Cl2 

(3ml) and stirred for 20 minutes. Subsequently the reaction was treated with a solution of 

(rac)-(E)-1,3-diphenylallyl acetate (126 mg, 0.5 mmol) in CH2Cl2 (3 mL), KOAc (5 mg, 

0.05 mmol), dimethyl malonate (0.11 mL, 1.0 mmol) and N,O-bis(trimethylsilyl)acetamide 

(0.25 mL, 1.0 mmol). The reaction mixture was stirred at room temperature and the 

conversion was monitored by TLC analysis. After the appropriate reaction time the solution 

was diluted with Et2O (20 ml) and washed with saturated aqueous NH4Cl (3 × 20 ml). The 

organic phase was dried over MgSO4. The product was purified by column chromatography 
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(hexane/EtOAc, 3:1, Rf = 0.50) on silica media (h = 13 cm, d = 2 cm) to give the final product 

as a colourless oil (in some cases the oil became a white solid after a few hours). The 

enantiomeric excess was measured by chiral HPLC (Column Daicel Chiralpak AD-H; flow 

rate: 1.0 mL/min; hexane/2-propanol, 90:10; retention times: (R) t1 = 10.0 min, (S) t2 = 13.4 

min).
246
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Chiral phosphonite ligands 33a,b and 34a,b are synthesised comprising a MOP-type 

backbone with a BINOL-based binaphthyl group bound to the phosphorus. Their reaction 

with [Pd(η
3
-C4H7)Cl]2 affords η

3
-methallylpalladium chloride complexes 36a,b and 37a,b 

which have been isolated and structurally characterised. Solid-state and solution studies 

indicate subtle differences in their coordination behaviour, which ultimately affects their 

efficacy in the asymmetric hydrosilylation of styrene.
247

 

 

 

 

The synthesis of rhodium(I) complexes of chiral MOP-phosphonite ligands is reported. The 

full characterisation of stabilised 18VE complexes is provided, which demonstrates a 

hemilabile η
1
,η

6
-(σ-P, π-arene) binding mode on the arene.

248
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5.1 Introduction 

Chiral monophosphorus ligands have attracted considerable attention as their transition metal 

complexes have been found to be valuable catalysts in a variety of organic transformations.
249

 

Binaphthyl-derived phosphorus ligands based on phosphine,
250

 phosphoramidite
251

 and 

phosphonite
252

 architectures have all demonstrated their effectiveness in asymmetric catalysis 

(Figure 5.1). 

 

Figure 5.1 Established classes of binaphthyl monophosphorus ligands. 

Primary phosphines have a reputation for being difficult compounds to work with owing to 

their perceived high reactivity towards oxygen.
253

 Hence, they are somewhat 

underrepresented as synthons in synthetic chemistry, despite the two P–H bonds being easily 

functionalised. However, a few examples of user-friendly, air-stable primary phosphines have 

been reported,
254

 and we were the first to describe enantiopure analogues.
255

 Subsequently a 

DFT-based model to help rationalise this stability was published by our group (Chapter 

1.4.1).
256

 We also recently described how air-stable, chiral primary phosphines 1a,b (Chapter 

2) could form novel phosphiranes with unusually high oxidative and thermal stability 

(Chapter 3).
257

 We were therefore keen to establish whether we could transform 1a,b into their 

dichlorophosphines, and subsequently access MOP/XuPhos-type hybrids (Figure 5.1). This 

work focuses on the synthesis and characterisation of a novel MOP-phosphonite ligand class. 

The coordination chemistry in their methallylpalladium complexes is described and we have 

subsequently investigated their potential as asymmetric ligands in the palladium catalysed 

hydrosilylation of styrene. 

It has been widely recognised that MOP-type ligands can act as P,arene bidentate chelates to 

stabilise coordinatively unsaturated electron deficient species (see also Chapter 4.2.4).
258

 As 

such, hemilabile arene interactions are expected to be present, or indeed imperative, in 

catalytic processes. Whilst palladium
259

 and ruthenium
260

 complexes of this class have been 

investigated in detail, studies on rhodium-MOP complexes remain scarce.
261

 Some 

controversy persists about the exact nature of the ligand’s coordination via its aryl backbone 
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on rhodium, as no X-ray crystal structures have been reported.
262

 This is despite the 

demonstrated catalytic ability of Rh-MOPs in a number of important asymmetric carbon-

carbon bond forming reactions of biologically relevant targets,
263

 and the presence of an 

additional spectroscopic probe in the form of the NMR active rhodium nucleus (
103

Rh, I = 

½),
264

 which better facilitates the study of these metal bonding modes. We investigated 

rhodium(I) and iridium(I) complexes of ligands 33a,b and 34a,b in particular with a view to 

examining the ligand-metal binding modes. Aryl side-on coordination of a MOP-phosphonite 

ligand was revealed for [Rh(34b)2]BF4 (43b) by X-ray analysis and further elucidated in 

solution by extended NMR experiments. Solution NMR studies also showed a dynamic 

behaviour of this complex, triggered by the hemilabile binding of the ligands towards the 

metal centre. 

Furthermore, we report gold(I) complexes of these phosphonites that are accompanied by 

studies of their asymmetric catalytic transformations utilising this metal. 

5.2 Results and Discussion 

5.2.1 Ligand Synthesis 

Four MOP-phosphonite ligand derivatives have each been synthesised in a straightforward 

two-step, one-pot reaction approach. The ligands differ in the substituent on the 2'-position of 

the MOP-backbone (H or OMe) and in the stereochemistry of the affiliated hydroxyl 

compound ((R)- or (S)-BINOL). By comparing the two pairs of diastereomeric compounds 

with each other, we can elucidate the effect of the second stereocentre. Previous attempts in 

our group for synthesising these intermediates included transformations with triphosgene,
265

 

phosgene
266

 and N-chlorosuccinimide.
267

 Even though the formation of the desired 

compounds was observed by 
31

P NMR spectroscopy, a number of side-products usually made 

the work-up more difficult and lowered the yields significantly. A more convenient reagent 

was found in phosphorus pentachloride;
268

 the chlorination occurred at room temperature in 

less than an hour and the only by-products formed were hydrogen chloride and phosphorus 

trichloride which could both be removed under reduced pressure. Subsequent addition of (R)-

BINOL under basic conditions afforded the MOP-phosphonite hybrids 33a,b as white solids 

(Scheme 5.1). Their diastereomers 34a,b were afforded from reactions with (S)-BINOL, again 

in high yield. 
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Scheme 5.1 Synthesis of the BINOL-derived phosphonites 33a,b and 34a,b. 

The 
31

P NMR spectroscopic data for the phosphonites are as expected, showing characteristic 

resonances (δ = 177.4 ppm for 33a; 177.8 for 33b; 175.7 ppm for 34a; 177.9 for 34b). All 

ligands could conveniently be handled in air without any apparent decomposition. However, 

when dissolved in unstabilised bench chloroform-d (containing trace amounts of HCl and 

H2O)
269

 quick hydrolysis to the corresponding phosphinates was observed. In the case of 34a 

and 34b crystals of the hydrolysis products 35a and 35b were obtained from NMR samples 

after slow evaporation of the solvent (Scheme 5.2), and the molecular structures are shown in 

Figure 5.2. In the absence of acid the hydrolysis occurs much slower; in fact, in stabilised 

bench chloroform and other common reagent grade solvents (dichloromethane, toluene, 

benzene) no hydrolysis products were found. 

 

Scheme 5.2 Decomposition reaction of 34a,b by trace amounts of HCl and H2O in CDCl3. 
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Figure 5.2 Molecular structures of 35a (left) and 35b (right) with 50% probability displacement ellipsoids. 

Hydrogen atoms have been omitted for clarity. 

5.2.2 Structural and Electronic Parameters 

In Chapter 4.2.2 we have introduced the assessment of structural and electronic properties of 

phosphorus ligands; please see that section for a more detailed explanation of the different 

parameters and references to relevant literature. The MOP-phosphonites discussed here have 

been analysed in an analogous way; the values obtained are fully comparable with those 

described earlier as the same experimental procedures were used. Thus, we synthesised the 

corresponding selenide compounds of ligands 33a,b, 34a,b and OMe-MOP to find out about 

the ligands’ σ-donor strengths. The 
1
JPSe couplings of these compounds are among the largest 

that have been reported for organophosphorus selenides (Table 5.1). 

Table 5.1 Structural and electronic parameters of phosphorus ligands 33a,b and 34a,b. 

ligand 
1
JPSe

a
 ν (CORh)

b
 

1
JPPt

c
 EHOMO

d
 PA

e
 S4

f
 

33a 925 2004 2492 –5.49 241.9 57.6° 

33b 930 2004 2509 –5.41 244.4 57.8° 

34a 925 2023 2481 –5.49 242.0 57.2° 

34b 925 2010 2495 –5.39 244.9 55.2° 

OMe-MOP 720 1974 2554 –5.27 253.2 40.9° 
a
 Coupling from the ArP(Se)R2 derivative in Hertz. 

b
 CO-stretch of trans-[RhCl(CO)(LP)2] (LP = P-ligand) in 

CH2Cl2 in cm
–1

. 
c
 Coupling of the PEt3 ligand in trans-[Pt(LP)(PEt3)Cl2]. 

d
 Calculated HOMO energies in eV. 

e
 Calculated proton affinity in kcal/mol. 

f
 Calculated from the optimised structure of the free ligand.

 

For comparison, the couplings observed for (MeO)2PhPSe and (MeO)3PSe are 876 Hz and 

963 Hz respectively,
270

 meaning the donor character of 33a,b and 34a,b (925-930 Hz) is fairly 

weak and mimics simple phosphites rather than typical phosphonites. The large CO stretching 

frequencies in trans-[RhCl(CO)(LP)2] (LP = P-ligand) complexes of 33a,b and 34a,b (2004-

2023 cm
–1

) are another indication for their weak net-donation properties. Interestingly, subtle 
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differences in these values imply a slightly stronger net-donation for the (R)-BINOL derived 

ligands 33a,b compared to their (S)-BINOL derived counterparts 34a,b. 

We determined the trans effect of our P-ligands by measuring the 
1
JPPt coupling of PEt3 in 

trans-[Pt(LP)(PEt3)Cl2] complexes. We found that the trans effect for phosphonites 33a,b and 

34a,b is somewhat larger than the trans effect in OMe-MOP. In comparison to dimethyl 

phosphonite ligands 19a,b (2402-2407 Hz, Chapter 4) the trans effect is however slightly 

reduced. 

We also carried out DFT calculations to determine the HOMO orbital energy levels and the 

proton affinities (PA) of ligands 33a,b and 34a,b. The values are similar for all ligands; the 

difference in HOMO energy between H (a) and OMe (b) derivatives is ~0.1 eV. Most of the 

HOMO orbital is distributed on the BINOL moiety of the ligands (Figure 5.3) which may be 

the reason for the small influence that the 2'-substituent on the MOP moiety has in regard the 

orbital energy. The relative magnitudes of the PA values correlate fairly well with the results 

for the HOMO energy levels, indicating slightly lower Lewis-basicity of the free electron pair 

for the H-substituted derivatives 33a and 34a (cf. Chapter 4.2.2). 

 

Figure 5.3 HOMO energies of 33a,b and 34a,b calculated at the B3LYP/6-31G* level of theory. 

The steric parameter S4 was calculated from the optimised structures of the free ligands. The 

values are very similar to the dimethyl phosphonite ligands 19a,b which have been discussed 

in Chapter 4. Therefore, the strain of the chelating BINOL-substituent on the phosphorus 

seems to have minimal influence on the geometry around the donor atom. The comparably 

larger S4 values in relation to OMe-MOP contribute further to the decreased donor strength as 

the s-character of the donor orbital is increased. 
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5.2.3 Palladium(II) Complexation 

We next studied the coordination chemistry of the phosphonites; reaction of two equivalents 

of the pertinent ligand with [Pd(η
3
-C4H7)Cl]2 resulted in the rapid, quantitative formation of 

36a,b and 37a,b (Scheme 5.3) as shown by NMR, HRMS and X-ray crystallography. Neat 

samples of the methallylpalladium complexes are stable in air for several weeks without any 

decomposition. In solution some minor formation of palladium black was observed when 

leaving the samples at room temperature for several days. 

 

Scheme 5.3 Synthesis of the palladium phosphonite complexes 36a,b and 37a,b. 

In all four complexes the X-ray crystal structure reveals the methyl group on the allyl 

fragment points towards the BINOL component of the ligand (see Figure 5.4 to Figure 5.7). 

The torsion angles of the two binaphthyl fragments present are significantly different from 

each other. The unstrained MOP portion preserves an almost right angle (90.5(4) to 

101.2(3)°), whilst the torsion of the BINOL moiety is enforced by the bonding of both oxygen 

atoms to the phosphorus, and thus appears acutely angled (51.2(3) to 53.8(4)°). The ligands 

coordinate via the phosphorus donor atom in an expected monodentate manner to form a 

pseudo-square-planar configuration around the palladium. Pd–P bond lengths are similar in all 

complexes (2.2354(7) to 2.2542(8) Å) and are found to be shorter than for the two MOP-

phosphine allylpalladium complexes previously reported (2.3098(9) and 2.3279(9) Å);
271

 

however, shortened Pd-P bond lengths are anticipated for phosphonite palladium complexes, 

due to their stronger π-acceptor character.
272

 

The Pd–C(allyl) bond lengths show the dominant trans effect of the P-ligand relative to the 

chloride; the bonds trans to the phosphorus are about 0.1 Å longer compared to the bonds in 

the cis position. In all complexes the position of the palladium centre is face-to-face with the 

lower naphthyl moiety of the MOP fragment of the ligand. However, the exact position of the 

allylpalladium moiety is somewhat diverse. When the phosphonite consists of a (R)-BINOL 
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fragment (36a,b), the palladium is situated towards the back of the lower naphthyl ring 

(Figure 5.4 and Figure 5.5); in 37a,b, as a consequence of the opposite BINOL 

stereochemistry, the metal is instead located above the front of this group (Figure 5.6, and 

Figure 5.7). The distance of the palladium atom from the naphthyl group ranges from 

3.0653(1) Å in 36a to 3.4458(1) Å in 37b. 

 

Figure 5.4 Molecular structure of 36a with 50% probability displacement ellipsoids. Hydrogen atoms have been 

omitted for clarity. Selected bond distances (Å) and angles (deg): Pd–P 2.2476(7), Pd–Cl(1) 2.3854(7), Pd–C(44) 

2.093(2), Pd–C(43) 2.206(2), C(41)–C(43) 1.384(4), C(41)–C(44) 1.415(4), PdC(39) 3.0653(1); P–Pd–Cl(1) 

93.67(2), P–Pd–C(44) 98.23(9), Cl(1)–Pd–C(43) 101.60(7), C(43)–Pd–C(44) 66.68(11), C(21)–C(30)–C(31)–

C(32) 101.2(3), C(1)–C(10)–C(11)–C(20) 51.2(3). 

 

Figure 5.5 View of the molecular structure of 36b. Hydrogen atoms and cocrystallized solvent have been 

omitted for clarity. Selected bond distances (Å) and angles (deg): Pd–P 2.2363(8), Pd–Cl(1) 2.3755(10), Pd–

C(42) 2.104(4), Pd–C(44) 2.185(4), C(42)–C(43) 1.415(6), C(43)–C(44) 1.381(7), PdC(32) 3.4018(1); P–Pd–

Cl(1) 93.29(3), P–Pd–C(42) 98.24(12), Cl–Pd–C(44) 101.41(16), C(42)–Pd–C(44) 67.08(19), C(21)–C(30)–

C(31)–C(40) 98.0(4), C(1)–C(10)–C(11)–C(20) 52.1(4). 
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Figure 5.6 View of the molecular structure of 37a. Hydrogen atoms have been omitted for clarity. Selected bond 

distances (Å) and angles (deg): Pd–P 2.2354(7), Pd–Cl(1) 2.3730(8), Pd–C(44) 2.078(3), Pd–C(42) 2.198(3), 

C(42)–C(43) 1.387(4), C(43)–C(44) 1.409(4), PdC(32) 3.1412(1); P–Pd–Cl(1) 94.51(3), P–Pd–C(44) 96.49(9), 

Cl(1)–Pd–C(42) 101.71(9), C(42)–Pd–C(44) 67.31(13), C(21)–C(30)–C(31)–C(32) 90.5(4), C(1)–C(10)–

C(11)–C(20) 52.1(4). 

 

Figure 5.7 View of the molecular structure of 37b. Hydrogen atoms and cocrystallized solvent have been 

omitted for clarity. Selected bond distances (Å) and angles (deg): Pd–P 2.2542(8), Pd–Cl 2.3675(7), Pd–C(43) 

2.101(3), Pd–C(42) 2.177(3), C(42)–C(44) 1.402(5), C(43)–C(44) 1.412(4), PdC(31) 3.4458(1), PdC(32) 

3.4793(0); P–Pd–Cl 98.46(3), P–Pd–C(43) 96.80(8), Cl–Pd–C(42) 97.23(9), C(42)–Pd–C(43) 67.39(12), C(21)–

C(30)–C(31)–C(40) 98.9(3), C(1)–C(10)–C(11)–C(20) 53.8(4). 

The NMR spectra of complexes 36a and 36b show the presence of two isomers in a 97/3 and 

93/7 ratio respectively, which can be rationalised by a rotation of the allyl moiety. nOe 

contacts between each pair of syn and anti protons and between the syn allyl protons and the 

central methyl group, in addition to allyl proton-phosphorus coupling, allowed for a complete 

NMR assignment of the allyl signals (Table 5.2). The protons trans to the phosphorus ligand 

are deshielded and show coupling with 
31

P whereas the cis protons are observed as singlets at 

higher field.
273
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Table 5.2 Selected 
31

P and 
1
H NMR data (δ in ppm) for complexes 36a,b, 37a,b, 38b and 39b, and the relative 

ratio of isomers observed (CD2Cl2, 21 °C, 202 and 500 MHz). 

complex P Ht
syn

 Ht
anti

 Hc
syn

 Hc
anti

 CH3 A/B
a
 

36a 173.4 (A) 

175.7 (B) 

3.75 

3.96 

1.57 

2.64 

2.56 

2.96 

0.83 

1.53 

1.00 

1.42 

97/3 

36b 173.6 (A) 

175.6 (B) 

3.73 

3.87 

1.63 

1.94 

2.60 

3.18 

0.85 

1.35 

0.92 

1.70 

93/7 

38b 177.5 (A) 

178.0 (B) 

2.43 

2.34 

2.90 

3.16 

2.99 

3.03 

2.34 

2.22 

1.58 

1.30 

52/48 

37a 172.1 4.16 2.56 2.31 0.50 0.93 100/0 

37b 174.4 4.07 2.24 2.35 0.32 0.84 100/0 

39b 178.9 (A) 

179.1 (B) 

2.19 

3.00 

3.76 

2.63 

2.82 

2.87 

2.32 

2.20 

0.96 

1.79 

50/50 

a
 Determined by integration of the allyl resonances in the 

1
H NMR. 

 

Figure 5.8 Section of the 
1
H-NOESY spectrum of 36b in CD2Cl2; two isomers were observed. nOe correlations 

are shown in blue, exchange correlations are shown in red. The spectrum was acquired at 21 °C, using a 

500 MHz spectrometer with a mixing time of 400 ms. 

The 
13

C chemical shifts for the atoms in terminal allyl positions are consistent with those 

reported for similar complexes:
274

 77–79 ppm (
2
JPH ≈ 46 Hz) for the allyl carbons trans to the 

P-donor, and 56–59 ppm (
2
JPH ≈ 5 Hz) for the cis allyl carbons. The phase-sensitive 

1
H NOESY spectrum of 36b shows exchange peaks due to interconversion of the two isomers 

(Figure 5.8). Quantitative analysis of the peak integrals yielded exchange rate constant values 

of kAB ≈ 0.1 s
-1

 and kBA ≈ 1.5 s
-1

 at room temperature. 
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Scheme 5.4 The syn/anti exchange mechanism in allylpalladium complexes. 

The selective syn/anti exchange of the allyl protons cis to the phosphorus is caused by the 

well-known η
3
–η

1
–η

3
 mechanism (Scheme 5.4; see also Chapter 1.3.4); the protons in the 

trans position exchange syn/syn and anti/anti due to the selective opening of the allyl 

ligand.
274,275

 The selectivity of the process is due to the stronger trans effect of the P-donor 

ligand compared to the chloro ligand. An apparent allyl rotation mechanism (cf. Chapter 

1.3.4) requires a syn/syn and anti/anti exchange for both cis and trans allyl protons and can be 

ruled out here as such exchange peaks were not observed.
276

 Note that conversely for 

complexes 37a and 37b only one single isomer was present in each case. 

Table 5.3 Selected 
13

C NMR data (δ in ppm) for ligands 33b and 34b and their palladium complexes 36b, 37b, 

38b and 39b (CD2Cl2, 21°C). 

carbon 33b 36b
a
 38b

b
 34b 37b 39b

b
 

1’ 118.9 118.8 104.6/n.d.
c
 119.0 118.2 103.4/104.5 

2’ 156.6 156.4 157.2/159.0 154.9 156.2 156.6/154.8 

3’ 112.8 113.1 114.9/114.5 113.0 113.5 115.3/115.9 

4’ 130.8 131.0 134.6/134.6 130.7 129.7 134.9/134.3 

10’ 128.2 127.0 128.4/128.4 128.3 128.2 129.3/130.0 

9’ 134.5 134.2 131.5/131.4 135.0 135.5 132.7/133.7 

OMe 56.2 56.2 57.4/57.5 56.4 56.0 57.5/57.4 
a
 Major isomer. 

b
 Two isomers were observed due to allyl rotation. 

c
 No distinctive assignment due to 

signal overlap and peak broadening. 

MOP ligands can display unconventional bonding characteristics upon metal complexation, 

using their aromatic backbone to coordinate to a vacant metal site, as shown by several groups 

who observed binding in a chelating P,C-σ-donor or P,C-π-arene bidentate fashion (see 

Chapter 1.3.3).
271b,274,277,278

 When the chloride counterions of complexes 36b and 37b were 

exchanged for the non-coordinating BArF anion to give complexes 38b and 39b, the C1' 

carbon shifted by –14.3 (38b) or –15.6/–14.5 ppm (for the two isomers of 39b) to lower 

frequency compared to the free ligand, indicative of greater sp
3
 character. The chemical shift 

of the C2' carbon remained almost unchanged (Table 5.3). 
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In agreement with studies made by Pregosin and co-workers
278b

 we therefore propose a weak 

η
1
 binding mode of the lower naphthyl ring via the C-1' carbon (Figure 5.9, left). The 

downfield shifts of 3.8 ppm in 38b and 4.2/3.6 ppm in 39b for the C-4' carbon also suggests it 

carries some of the associated positive charge of the cation, again matching the 

aforementioned work. A section of the 
13

C–
1
H HMBC spectrum of 39b showing the indirect 

resonances of the C1' and C2' carbons is given (Figure 5.9, right). 

 

Figure 5.9 Left: Proposed binding mode in 38b and 39b using 
13

C NMR data. Right: Section of the 
13

C–
1
H 

HMBC spectrum of 39b with key C1′/H3' and C2′/H4' data shown; two isomers of 39b (labelled A, B) are 

present. 

5.2.4 Palladium Catalysed Allylic Alkylation 

The allylic alkylation is a common benchmark reaction for asymmetric ligands in catalysis.
279

 

The reaction usually works best with moderately strong electron donor ligands and a number 

of binaphthyl based ligands have been successfully used in this transformation (see also 

Chapter 1.3.4).
280

 We therefore did not expect very high activities for our electron-poor MOP-

phosphonite ligands (cf. Chapter 4.2.6). As substrates we employed (rac)-(E)-1,3-

diphenylallyl acetate and dimethyl malonate; further reaction conditions and results are given 

in Table 5.4. The catalyst activity was moderate to low; full conversion of the starting 

materials was achieved after 22 h (33a, 34a) or 72-96 . The observed selectivities were low, 

yielding enantiomeric excess values of 12-21%. Interestingly the absolute configuration of the 

major product is reversed in the case of 34b (S configuration) compared to 33a,b and 34a (R 

configuration). Hence, the configuration of the stereocentre on the BINOL moiety in 33b and 

34b seems to have more pronounced influence on the selectivity of the reaction, while for H-

MOP derivatives 33a and 34a the configuration on the BINOL group is less important. 
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Table 5.4 Palladium catalysed asymmetric allylic alkylation of (rac)-(E)-1,3-diphenylallyl acetate. 

 

entry ligand
a
 L:Pd ratio reaction time

b
 yield

c 
ee

d 

1 33a 2:1 22 h 95% 12% (R) 

2 33b 2:1 72 h 92% 15% (R) 

3 34a 2:1 22 h 96% 21% (R) 

4 34b 2:1 96 h 97% 14% (S) 
a
 Catalyst was generated in situ from ligand (8.0 mol%) and [Pd(allyl)Cl]2 (2.0 mol%) and reacted 

with (rac)-(E)-1,3-diphenylallyl acetate (0.5 mmol), dimethyl malonate (1.0 mmol), BSA 

(1.0 mmol) and KOAc (0.05 mmol). 
b
 Reaction progress was monitored by TLC analysis. 

c
 Isolated 

yield after column chromatographic workup. 
d
 Determined by chiral HPLC (Chiralpak AD-H); 

absolute configuration assigned by comparing the retention times to literature data.
281

 

5.2.5 Palladium Catalysed Hydrosilylation 

The catalytic activity of the newly prepared ligands was also tested in the asymmetric 

hydrosilylation of styrene (cf. Chapters 1.3.5 and 4.2.5).
282

 The catalysts were generated in 

situ from allylpalladium chloride dimer and the appropriate phosphonite. To start with we 

chose a ligand to palladium ratio of 1:1 to form the catalyst precursors (Table 5.5, entries 1-6), 

as the methallylpalladium complexes 36a,b and 37a,b had been obtained in this way (vide 

supra). We found that the activity of the catalyst was predominantly dependent on the 

substituent in the 2'-position of the ligand: H-MOP derivatives 33a and 34a showed a higher 

activity (>94% conversion after 6 h, entries 1 and 3) than their corresponding OMe-MOP 

derivatives 33b and 34b (completed after 16 h, entries 2 and 4). In contrast, the selectivity 

was mostly determined by the configuration of the adherent BINOL group. 

Enantioselectivities of 80 and 79% were achieved with the (S)-BINOL derivatives 34a,b 

while the (R)-BINOL compounds 33a,b gave lower ee values (7 and 55%). In previous 

studies H-MOP ligands have been found to be more selective in this transformation than their 

OMe-MOP counterparts (93% vs. 14% ee at 0 °C),
250a

 hence our results for 33a (H-MOP 

derivative, low ee) and 34b (OMe-MOP derivative, high ee) were somewhat surprising. Solid-

state analysis of a H-MOP allylpalladium phosphine complex,
271b

 found to be very selective in 

the same catalytic reaction,
283

 shows a similar P/Pd environment to that found in the H-MOP 

complex [Pd(34a)(η
3
-C4H7)Cl] (37a). In contrast, the palladium atom in [Pd(33a)(η

3
-

C4H7)Cl] (36a) is located more towards the back of the lower naphthyl ring. Thus the subtle 

differences in the position of the palladium atom relative to the MOP fragment in the 
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catalytically active species could be crucial in determining the reaction enantioselectivity, 

again emphasising that we are comparing pairs of diastereomers in this study. 

Table 5.5 Palladium catalysed hydrosilylation of styrene. 

 

entry ligand
a
 L:Pd temp. reaction time conversion

b 
ee

c 

1 33a 1:1 rt 6 h 94%
d
 7% (R) 

2 33b 1:1 rt 16 h >99% 55% (S) 

3 34a 1:1 rt 4 h 95%
d
 80% (R) 

4 34b 1:1 rt 16 h >99% 79% (R) 

5 34a 1:1 0 °C 48 h 85% 62% (R) 

6 34a 1:1 50 °C 2 h 93% 70% (R) 

7 33a 2:1 rt 16 h >99% 40% (R) 

8 33b 2:1 rt 16 h >99% 17% (S) 

9 34a 2:1 rt 16 h 24% 79% (R) 

10 34b 2:1 rt 16 h >99% 76% (R) 
a
 The catalyst was generated in situ from the ligand (0.25 mol%) and [Pd(allyl)Cl]2 (0.125 mol%), and 

reacted with styrene (10.0 mmol) and trichlorosilane (12.0 mmol). 
b
 Determined by 

1
H NMR spectroscopy. 

c
 Determined by chiral HPLC (Chiralcel OD); absolute configuration assigned by comparing the retention 

times to literature data.
284

 
d
 Complete conversion after additional 2 h reaction time. 

For ligand 34a we varied the temperature of the reaction to see its effect on the activity and 

selectivity. When the reaction temperature was reduced to 0 °C the reaction time increased to 

more than 48 h (entry 5). The observed selectivity was also lower compared to the same 

reaction at room temperature. At elevated temperature (50 °C), reaction times were shortened 

but again the selectivity of the reaction was reduced (entry 6). Further studies were therefore 

carried out at room temperature only. 

According to Johannsen and co-workers proposed mechanism, the catalytic pathway for the 

hydrosilylation reaction can change when a high phosphorus ligand loading relative to 

palladium metal is present in the reaction mixture (cf. Chapter 1.3.5).
285

 Increasing the ligand 

to palladium ratio to 2:1 in the catalytic transformation gave indeed different results for 

activities and selectivities (entries 1-4 vs. entries 7-10). Most significantly, the activity for 

ligand 34a was drastically lowered, and only 24% conversion was observed after 16 h 

reaction time (entry 9). The enantioselectivity remained almost constant for the (S)-BINOL 

derivatives 34a,b (entries 9-10), but it was changed for the (R)-BINOL derivatives 33a,b 

giving a moderately better ee value for 33a (entry 7), but a worse result for 33b (entry 8). The 

lower reactivity for ligands 33a and 34a at a 2:1 L:Pd ratio might be rationalised by the steric 
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nature of the bulky ligand, resulting in catalyst deactivation upon coordination of a second 

ligand to the metal. However, further studies need to be undertaken to fully understand the 

catalytic mechanism as a 2:1 L:Pd ratio has been shown to improve the reaction activity for 

some related ligand scaffolds (see e.g. Chapter 4.2.5). 

5.2.6 η1,η6-(σ-P, π-Arene) Chelated Rhodium(I) Complexes 

For an initial evaluation of the coordination behaviour of MOP-phosphonite ligands 33b and 

34b on rhodium(I) we reacted two equivalents of the respective ligand with [Rh(η
4
-cod)Cl]2. 

The resulting complexes [Rh(33b)(η
4
-cod)Cl] (40b) and [Rh(34b)(η

4
-cod)Cl] (41b) were both 

formed quantitatively; the 
31

P NMR spectra (Figure 5.10) show a doublet caused by coupling 

to the rhodium (
103

Rh, I = ½) nucleus (40b: 162.9 ppm, 
1
JPRh = 223 Hz; 41b: δ = 161.5 ppm, 

1
JPRh = 224 Hz). 

 

Figure 5.10: Undecoupled 
31

P NMR (202 MHz) spectra of 40b-43b. Note that in the case of 42b and 43b 

coupling to the hydrogen in the 3-position of the ligand is also resolved in the spectra. 

In the case of 40b single crystals suitable for X-ray analysis were obtained from slow 

diffusion of hexane into a dichloromethane solution (Figure 5.11). Typical bond lengths are 

found within the coordination sphere of the metal. As expected, the Rh–P distance of this 

phosphonite donor (2.2112(7) Å) is shorter than the bond lengths typically observed for aryl 

phosphine ligands (2.297–2.3607(14) Å)
286

 due to their stronger π-acceptor character (the 
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same trend was observed for the Pd–P distances in their allylpalladium complexes; see 

Chapter 5.2.3).
287

 The η
4
-cod ligand shows the dominant trans effect of the phosphorus donor 

compared to the chloride; the alkene bond coordinated in the cis position is longer and closer 

to the rhodium compared to the alkene bound trans to the phosphorus atom. 

 

Figure 5.11 View of the molecular structure of [Rh(33b)(η
4
-cod)Cl] (40b) (50% probability thermal ellipsoids). 

Hydrogen atoms and co-crystallised solvent are omitted for clarity. 

In order to investigate the possibility of a hemilabile aryl coordination of the MOP-type 

ligands, we carried out an anion exchange of 40b and 41b from chloride to the non-

coordinating tetrafluoroborate ion. Specifically, exchange of the counter ion was achieved by 

reacting 40b and 41b with AgBF4 and the reaction was monitored by 
31

P NMR spectroscopy. 

Initial attempts produced large amounts of oxidation and no pure product could be isolated. 

However when another equivalent of the appropriate ligand 33b or 34b was added to the 

reaction mixture (together with the silver salt), a clean quantitative conversion was achieved 

to yield [Rh(33b)2]BF4 (42b) or [Rh(34b)2]BF4 (43b) respectively; the η
4
-cod ligand was thus 

replaced by a second phosphorus donor during the course of the reaction. Alternatively, the 

two compounds could also be obtained from the reaction of two equivalents of either 33b or 

34b with [Rh(η
4
-cod)2]BF4, although in some cases oxidised by-products were formed. 

Crystals of 43b suitable for crystallographic analysis were obtained from slow diffusion of 

diethyl ether into a dichloromethane solution (Figure 5.12). The complex contains two 

phosphorus ligands, one of which is coordinated in the anticipated η
1
 binding mode via the 

phosphorus atom (Rh–P bond length: 2.2145(14) Å). The second ligand fills the coordination 

sphere of the rhodium metal by acting as η
1
,η

6
 chelate; in addition to the η

1
-phosphorus donor 

(Rh–P bond length: 2.1882(14) Å), the lower naphthyl ring coordinates side-on via its π-

system in η
6
-fashion. Selected Rh–C bond lengths of the coordinated aryl group are given in 
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Table 5.6. The plane of the η
6
-arene is only slightly distorted; the distance from its centre to 

the rhodium is 1.85 Å. To the best of our knowledge this is the first time that such a bonding 

motif of a MOP-type rhodium complex has been unveiled in the solid-state. 

 

Figure 5.12 Left: View of the molecular structure of [Rh(34b)2]BF4 (43b) (50% probability thermal ellipsoids). 

Hydrogen atoms, the BF4-anion and co-crystallised solvent are omitted for clarity. Right: View on the metal 

coordination sphere of 43b. Selected bond distances (Å): Rh1–P1 2.2145(14), Rh1–P2 2.1882(14). 

Solution NMR studies confirmed the coordination environment of the structural analysis. The 

31
P{

1
H} NMR spectra (Figure 5.10) show two doublets of doublets (42b: 181.3, 179.6 ppm; 

43b: δ = 183.5, 178.4 ppm) caused by the two inequivalent phosphorus atoms coupling to 

each other (42b: 
2
JPP = 22.3 Hz; 43b: 

2
JPP = 23.5 Hz) and to the rhodium nucleus (42b: 

1
JPRh = 290 Hz, 300 Hz; 43b: 

1
JPRh = 277 Hz, 309 Hz). We attribute the smaller Rh–P 

coupling to the η
1
-bound ligand, in accord with the relative bond lengths found in the solid 

state (listed in the caption of Figure 5.12). In the 
13

C NMR spectra the η
6
-aryl binding 

situation of the coordinated carbon atoms is accompanied by a change in chemical shift to 

upper field. Furthermore, the coordinated C1' and C4' carbons show a doublet splitting 

pattern, which is most likely caused by 
2
J-coupling to the respective 

31
P nucleus in the trans 

position. The values for the respective carbon resonances of the η
1
,η

6
-coordinated ligand and 

the resonances of the non-coordinated counterparts of the η
1
-bound ligand are given in Table 

5.6 (43b) and Table 5.7 (42b). Sections of the 
13

C–
1
H HSQC and 

13
C–

1
H HMBC spectra of 

43b are shown in Figure 5.13. 



Chapter 5 — MOP-Phosphonites: Introducing a Second Stereocentre 135 

Table 5.6 Selected Rh–C bond lengths and 
13

C NMR resonances of 43b. 

 Rh–C [Å]
a
 

13
C(η

1
,η

6
) [ppm]

b,c
 

13
C(η

1
) [ppm]

b
 

C1' 2.189(5)   (C72)
d
 101.6 (15.8 Hz)

e
 118.8 

C2' 2.296(5)   (C81) 145.3 155.8 

C3' 2.337(5)   (C80) 90.1 112.3 

C4' 2.324(5)   (C79) 93.1 (12.7 Hz)
e
 129.9 

C10' 2.477(5)   (C78) 114.0 129.1 

C9' 2.431(5)   (C73) 122.0 133.8 
a
 From X-ray data in the solid-state. 

b
 Solution NMR analysis (126 MHz, CD2Cl2, 21 °C).

 

c
 Resonances of the (σ-P, π-arene)-coordinated ligand. 

d
  Carbon labelling scheme used for 

X-ray data. 
e
 Resonance appeared as doublet with the indicated coupling constant. 

Table 5.7 Selected 
13

C NMR resonances of the rhodium complexes 42b and 44b. 

 42b 44b 

 
13

C(η
1
,η

6
) [ppm]

a,b
 

13
C(η

1
) [ppm]

a
 

13
C(η

1
,η

6
) [ppm]

a,b
 

13
C(η

1
) [ppm]

a
 

C1' 100.5 (14.3 Hz)
c
 121.9 93.6 (13.1 Hz)

c
 118.7 

C2' 149.1 153.8 141.4 154.3 

C3' 87.5 114.2 89.5 112.4 

C4' 95.8 (11.3 Hz)
c
 128.1 92.3 (9.2 Hz)

c
 130.7 

C10' 112.8 128.2 120.2 128.6 

C9' 118.7 134.6 123.1 134.2 
a
 Solution NMR analysis (126 MHz, CD2Cl2, 21 °C). 

b
 Resonances of the (σ-P, π-arene)-

coordinated ligand. 
c
 Resonance appeared as doublet with the indicated coupling constant. 

The proton NMR spectra show the expected 48 independent aromatic resonances, from which 

24 originate from each ligand. At room temperature, exchange of all 24 pairs of signals is 

observed in the 
1
H-NOESY of 42b and 43b (Figure 5.14); at –50 °C the NOESY spectra 

showed strong positive nOe peaks without exchange. Combining the information from 

variable temperature NOESY experiments allowed for the unambiguous assignment of all 48 

proton resonances in 42b and 43b. nOe contacts confirmed the solid-state structure of 43b in 

solution; the solution structure of 42b was also analysed, and the nOe signals in this case 

revealed a rotation of the η
1
-ligand about its C2–P bond in comparison to 43b (details are 

given in Figure 5.15). 
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Figure 5.13 Section of the 
13

C–
1
H HSQC (top) and 

13
C–

1
H HMBC (bottom) spectra of 43b in CD2Cl2 at 21 °C 

using a 400 MHz spectrometer. Metal coordinated carbons (labelled B) are shifted to higher field compared to 

their non-coordinated counterparts (labelled A). 
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Figure 5.14 Aromatic resonances of 43b in the 
1
H-NOESY spectrum in CD2Cl2 at 21 °C (top) and –50 °C 

(bottom). Negative correlations are shown in blue, positive correlations are shown in red. The spectra were 

acquired with 2048 × 512 data points and a spectral width of 9 ppm, recorded using a 500 MHz spectrometer 

with a mixing time of 500 ms. 
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The dynamic behaviour in 42b and 43b is a result of the hemilabile binding of the aryl group; 

the side-on coordination of the η
1
,η

6
 chelating ligand is released while in the same instance 

the η
1
-bound ligand coordinates as a chelate, ultimately reproducing the complex (Figure 

5.16). Quantitative analysis of the 
1
H-NOESY spectra yielded exchange rate constants of 

k294K = 1.2 s
–1

 and k273K = 0.12 s
–1

 for 43b in dichloromethane-d2. The values only changed 

slightly when the experiments were carried out in chloroform-d (k294K = 1.3 s
–1

) or THF-d8 

(k294K = 0.9 s
–1

). Thus, we propose a concerted reaction mechanism as the rate of exchange 

showed no increase in coordinating solvent. Comparable exchange rate values were also 

found for 42b (in THF-d8: k294K = 0.9 s
–1

). 

 

Figure 5.15 Structure of 42b based on nOe correlations in the 
1
H-NOESY NMR. The η

1
 ligand is labelled A, the 

η
1
,η

6
-(σ-P, π-arene) is labelled B. Selected nOe contacts: H18

A
–H18

B
, H13

A
–OCH3

B
, H3

A
–H13'

A
, H14

B
–H13'

A
, 

H18
A
–H18'

A
, H18

B
–H18'

B
. 

 

Figure 5.16 Dynamic behaviour observed in solution for 43b (arrows). The η
1
 ligand is labelled A, the η

1
,η

6
-(σ-

P, π-arene) is labelled B. Selected nOe contacts: H13'
B
–OCH3

B
, H3

A
–H13'

B
, H3

A
–H13

A
, H4'

B
–H8'

A
, H18

B
–

H18'
B
, H18

A
–H18'

A
, H13'

A
–H6'

B
. 

The Eyring equation relates the rate constant k and the activation free energy ΔG
‡
.
288

 The 

most common form of the Eyring equation is: 
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 𝑘 =
𝜅 𝑇

ℎ
∙ 𝑒−∆𝐺

 /𝑅𝑇 (1) 

where κ is the Boltzmann constant, h is Planck’s constant, T is the temperature in Kelvin and 

R is the universal gas constant. The equation can be rewritten as: 

 ∆𝐺 = −ln (
𝑘 ℎ

𝜅 𝑇
)𝑅𝑇 (2) 

The activation free energies of 43b in dichloromethane-d2 were calculated from selected rate 

constants giving values of ΔG
‡

294K=71.2 kJ/mol and ΔG
‡

273K=71.5 kJ/mol. Related studies by 

Mirkin and co-workers gave free energies of activation of similar magnitude for their rhodium 

piano-stool complexes with hemilabile arene ligands.
261f 

In order to clarify whether the phenomenon of η
6
 side-on coordination to rhodium is exclusive 

to our bulky MOP-phosphonite ligands 42b and 43b or is valid for complexes of other MOP 

type ligands too, we utilised Hayashi’s OMe-MOP ligand to synthesise the analogous 

[Rh(OMe-MOP)2]BF4 (44b) complex. Full characterisation by NMR spectroscopy revealed a 

similar (σ-P, π-arene)-binding situation as observed for 42b and 43b. Its two 
31

P NMR 

resonances are observed at 50.0 and 37.2 ppm (
1
JPRh = 217 Hz, 197 Hz; 

2
JPP = 32.1 Hz). The 

13
C NMR resonances of the six coordinated carbon atoms show the characteristic upfield shift 

(shifted by 8.4 to 38.4 ppm) which is slightly less pronounced for C9' and C10' (Table 5.7). In 

contrast to 42b and 43b we detected no dynamic exchange in the 
1
H NOESY NMR spectrum 

at room temperature, suggesting the arene-coordination is stronger in this case. 

 

Figure 5.17 View of the molecular structure of [Ir(33b)(η
4
-cod)Cl] (45b) (50% probability thermal ellipsoids). 

Hydrogen atoms and co-crystallised solvent are omitted for clarity. 
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To further understand the coordination behaviour of MOP ligands with the catalytically 

important group-nine transition-metals, we also reacted MOP-phosphonites 33b and 34b with 

[Ir(η
4
-cod)Cl]2 in an analogous manner to the rhodium chemistry. To the best of our 

knowledge we were therefore able to synthesise and isolate the first iridium-MOP complexes 

[Ir(33b)(η
4
-cod)Cl] (45b) and [Ir(34b)(η

4
-cod)Cl] (46b); the 

31
P NMR spectra show a 

resonance at 140.4 (45b) or 139.6 ppm (46b). The crystal structure of 45b is depicted in 

Figure 5.17; bond lengths and angles are very similar to the corresponding rhodium complex 

40b (Ir–P distance: 2.2242(8) Å). 

In contrast to the bonding situation found for rhodium, treatment of 45b with silver 

tetrafluoroborate and an additional equivalent of 33b gave [Ir(33b)2(η
4
-cod)]BF4 (47b). The 

31
P NMR spectrum exhibits a single resonance at 156.3 ppm; rather than side-on coordination 

of the arene, the coordination sphere of the metal accommodates two equivalently bound η
1
-

phosphines and the η
4
-cod ligand (Figure 5.18). 

 

Figure 5.18 Structure of [Ir(33b)2(η
4
-cod)]BF4 (47b) based on nOe correlations in the 

1
H-NOESY NMR. 

5.2.7 Rhodium Catalysed Reactions 

The rhodium catalysed asymmetric hydrogenation of (Z)-methyl-2-acetamido cinnamate is a 

common benchmark reaction for chiral ligands.
289

 BINOL-based phosphonite ligands were 

successfully employed in this reaction whereas MOP-type compounds were hardly studied 

and gave inferior results (cf. Chapters 1.3.6 and 2.2).
290

 As both of these moieties are present 

in 33a,b and 34a,b we were interested in what influence this would have on the performance 

of the reaction, and moreover how the two stereocentres would affect the enantioselectivity. 

From our coordination studies on the relevant rhodium complexes 42b and 43b we concluded 

that a) the BINOL moiety might have a significant influence on the chiral induction, as the 

position of the η
1
-ligand notably changes when the stereocentre is inverted by rotation about 
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the C2–P bond (42b versus 43b, vide supra), and b) the reactivity of the catalyst might be 

reduced as the coordination sphere of the rhodium is saturated by the η
6
-coordination of the 

arene. 

Indeed, we found that the reactions proceeded rather slowly; however reasonable conversions 

of 58% and 77% were achieved for the H-MOP derived compounds 33a and 34a respectively 

after 16 hours reaction time (Table 5.8, entries 1 and 3). The result is in accord with the study 

of our phosphirane ligands that also gave a higher conversion for the H-MOP-type derivative 

(Chapter 3.2). Better selectivities of 40-43% ee were achieved when the BINOL fragment was 

(Rb)-configured (33a,b, entries 1-2) compared to their (Sb)-configured diastereomers 34a,b 

(entries 3-4). Thus, the enantioselectivity of the reaction was increased in relation to our 

phosphirane ligands (14/23% ee, Chapter 3.2) but is still inferior to the related phosphonite 

ligand XLIII (Figure 5.19) that carries a phenyl group instead of the MOP fragment (63% ee, 

Chapter 1.3.6).
291

 It has been suggested that MOP-type rhodium complexes with side-on 

coordinated arene groups might hydrogenate their ligand in situ and thereby removing the 

atropisomeric axis,
262a

 which would partially explain the low enantioselectivity control of this 

class of compounds. 

Table 5.8 Rhodium catalysed hydrogenation of (Z)-methyl-2-acetamido cinnamate. 

 

entry catalyst
a
 conversion

b 
ee

c 

1 33a 58% 43% (S) 

2 33b 12% 40% (S) 

3 34a 77% 9% (S) 

4 34b 17% 26% (S) 
a
 Catalyst was generated in situ from ligand (8.0 mol%) and [Rh(η

4
-cod)2]BF4 (4.0 mol%) and 

reacted with (Z)-methyl-2-acetamido cinnamate (0.25 mmol) and H2 gas (7.5 bar) in DCM 

(4 mL); 16 h, 21 °C. 
b
 Determined by 

1
H NMR. 

c
 Determined by chiral HPLC (Chiralpak AD-

H); absolute configuration was assigned according to literature data.
292

 

As another test for the catalytic performance of our ligands we decided to carry out the 

rhodium catalysed addition of phenylboronic acid to 1-naphthaldehyde.
293

 The reaction was 

first described by Miyaura and co-workers utilising MeO-MOP as the asymmetric ligand 

(Table 5.9, entry 1),
294

 and has been the subject of increasing interest in recent years.
295

 For 

instance, Hayashi et al. were able to increase the selectivity to 86% ee when applying the C2-

symmetric tetrafluorobenzobarrelene LVII as chiral ligand (Figure 5.19).
295e 
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Figure 5.19 Selected ligands that have been used in rhodium(I) catalysed hydrogenations (XLIII) or additions of 

arylboronic acids to aldehydes (LVII). 

Table 5.9 Rhodium catalysed asymmetric addition of phenylboronic acid to 1-naphthaldehyde. 

 

entry ligand Rh precursor
a
 base solvent time yield

b 
ee

c 

1 OMe-MOP
d
 [Rh(acac)(η

2
-C2H4)2] – DME/H2O 36 h 78% 41% 

2 33b [Rh(acac)(η
2
-C2H4)2] – THF 48 h 30% 20% (R) 

3 33b [Rh(acac)(η
2
-C2H4)2] KOH THF 48 h 42% 23% (R) 

4 33b [Rh(η
4
-cod)Cl]2 KOH THF 3 h >99% racemic 

5 33b [Rh(η
2
-C2H4)Cl]2 KOH THF 18 h – – 

6 33b [Rh(acac)(η
2
-C2H4)2] K2CO3 THF 48 h 55% 25% (R) 

7 33b [Rh(acac)(η
2
-C2H4)2] Cs2CO3 THF 48 h – – 

8 33b [Rh(acac)(η
2
-C2H4)2] K3PO4 THF 39 h 77% 28% (R) 

9 33b [Rh(acac)(η
2
-C2H4)2] K3PO4 DME 8 h 49% 30% (R) 

10 33b [Rh(acac)(η
2
-C2H4)2] K3PO4 dioxane 8 h 85% 34% (R) 

11 33a [Rh(acac)(η
2
-C2H4)2] K3PO4 dioxane 72 h 29% 16% (R) 

12 34a [Rh(acac)(η
2
-C2H4)2] K3PO4 dioxane 72 h 11% 25% (S) 

13 34b [Rh(acac)(η
2
-C2H4)2] K3PO4 dioxane 72 h 13% 31% (S) 

a
 Catalyst was generated in situ from ligand (20 μmol) and rhodium precursor (10 μmol Rh) over 30 minutes 

in THF (4 mL). Phenylboronic acid (122 mg, 1.0 mmol), base (2.5 M aqueous solution, 1.0 mmol) and 1-

naphthaldehyde (68 μl, 0.5 mmol) were added subsequently; reaction temp.: 60 °C. 
c
 Determined by chiral 

HPLC (Chiralcel OD). 
d
 Values taken from ref. 294. 

Initially, we adapted the reaction conditions from Miyaura’s protocol using 33b as chiral 

ligand. We decided to use anhydrous THF instead of DME/water as solvent to prevent 

hydrolysis of the phosphonite ligand, which resulted in 30% product formation with a 

selectivity of 20% ee (entry 2). In subsequent runs (entries 3-13) the water was added after the 

in situ formation of the phosphonite-rhodium complexes; we also added different base 

additives to promote the reaction activity (entries 3, 6-8). The best results were obtained with 

K3PO4 which gave a marked increase in yield to 77% after 39 h, as well as a slight increase in 

enantioselectivity (entry 8). Other rhodium precursors were tested but they were found to be 

inferior to [Rh(acac)(η
2
-C2H4)2] (entires 3-5). We achieved a maximum selectivity of 34% ee 



Chapter 5 — MOP-Phosphonites: Introducing a Second Stereocentre 143 

with ligand 33b when we changed the solvent to dioxane (entry 10). We were unable to 

achieve better results with any of the other ligand derivatives 33a or 34a,b. Interestingly, the 

stereochemical configuration on the major product was reversed when the (Sb)-configured 

ligands 34a,b were used instead of (Rb)-configured derivatives 33a,b. The 2'-substituent (H in 

33a and 34a, OMe in 33b and 34b) had only a minor influence on the enantioselectivities. 

Although we were unable to match the performance of the reference ligand OMe-MOP, we 

have shown that our phosphonite ligands give moderate asymmetric induction in this rhodium 

catalysed reaction. Therefore, 33a,b and 34a,b should also be suitable ligands for related 

reactions like the asymmetric addition of arylylboronic acids to isatins, in which OMe-MOP 

achieved up to 93% ee.
296

 

5.2.8 Gold(I) Complexation and Catalysis 

Gold catalysis has received an increased amount of research interest from the beginning of the 

21
st
 century.

297
 It has been realised that gold(I) complexes can act as a soft carbophilic Lewis 

acid towards C–C double and triple bonds and thereby they are efficient catalysts for the 

transformation of alkyne and allene substrates. The tolerance of functional groups is usually 

high as a result of the relatively low oxophilicity of the metal. Asymmetric reactions relying 

on homogeneous gold(I) catalysis have been challenging because of the nature of the two-

coordinate linear complexes that position the substrate far away from the chiral ligand. 

However, good enantioselectivities have been achieved mainly using chiral bisphosphine 

ligands with the general structure [(AuX)2(P–P)] (P–P chiral bisphosphine, X = anionic 

ligand).
298

 

Our chiral MOP-based phosphonite ligands 33a,b or 34a,b are sterically demanding which we 

thought could be a good prerequisite for achieving asymmetric induction from their linear 

coordinated gold(I) complexes. Firstly, we set out to study the coordination chemistry of these 

ligands by reacting 33a,b and 34a,b with [Au(tht)Cl] to obtain the corresponding gold(I) 

complexes 48a,b and 49a,b in quantitative conversions. For complexes 48b (Figure 5.20) and 

49b (Figure 5.21) we were able to analyse the molecular structures by X-ray diffraction. The 

Au–P (2.192(3)-2.200(3) Å) and Au–Cl (2.2647(13)-2.267(3) Å) bond lengths were found to 

be as expected for aryl-phosphonite ligated complexes.
299

 They are slightly shorter than the 

equivalent bonds in gold(I) complexes of the BINAP ligand (Au–P 2.226(2), Au–Cl 

2.290(2))
300

 which is due to the stronger back bonding in the case of the phosphonites. The 

position of the Au-atom relative to the lower naphthyl group of the MOP-fragment is very 

similar in 48b and 49b; it is situated closest to the C2'-carbon with a distance of 3.1156(12) to 
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3.220(3) Å. The two reported gold(I) chloride structures of BINAP-derivatives show the C1-

carbon of the naphthyl group in closest proximity, presumably due to the enhanced steric 

crowding caused by the coordination of two metals in those complexes.
300,301

 The metal-aryl 

interactions in gold(I) complexes have been investigated as part of a theoretical study on 

biphenyl-derived P-ligands suggesting a weak η
2
 side-on coordination of the aryl group.

302
 

 

Figure 5.20 View of the molecular structure of [(33b)AuCl] (48b) with 50% probability displacement ellipsoids. 

Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°]: Au–P 2.1984(12), 

Au–Cl 2.2647(13); P-Au-Cl 177.91(5), O1-P-O2 101.94(16), O1-P-C21 98.52(17), O2-P-C21 106.88(19). 

 

Figure 5.21 View of one of the two independent molecules of [(34b)AuCl] (49b) with 50% probability 

displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles 

[°], respective bond lengths/angles of the second molecule in brackets: Au1–P1 2.200(3) (2.192(3)), Au1–Cl1 

2.267(3) (2.267(3)); P1-Au1-Cl1 173.30(12) (174.78(12)), O1-P1-O2 102.7(4) (102.1(4)), O1-P1-C21 101.2(4) 

(101.3(4)), O2-P1-C21 104.2(4) (103.0(4)). 

We were keen to evaluate the catalytic activity of our complexes 48a,b and 49a,b in the 

gold(I) catalysed cyclopropanation of styrene.
303

 The propargyl acetate coordinates to the 
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metal by a 1,2-carboxylate shift to form the gold(I)-carbenoid intermediate, which 

subsequently reacts with styrene to give the cyclopropane derivative as product (Scheme 5.5). 

The use of bulky ligands enabled the diastereoselective formation of the cis-isomers via the 

favoured intermediate with the least interaction between the alkene and the gold(I)-complex 

(Scheme 5.5); on the same basis a chiral ligand can support the formation of a specific cis-

enantiomer.
304

 

 

Scheme 5.5 Gold(I) catalysed cyclopropanation of styrene with propargyl acetate. 

 

Figure 5.22 Phosphine ligands that have been used in gold(I) catalysed cyclopropanations (BINAP, DTBM-

SegPhos, OMe-MOP) and alkoxycyclisations of 1,6-enynes (tol-BINAP). 

Table 5.10 Catalytic cyclopropanation of styrene with propargyl acetate. 

entry ligand
a
 temp. dr (cis/trans)

b
 yield

c 
ee

d 

1 BINAP
e
 rt >20:1 85% 22% 

2 DTBM-SegPhos
e
 rt >20:1 72% 60% 

3 OMe-MOP
e
 rt >20:1 44% 5% 

4 33a (48a) rt 98:2 50% 15% 

5 33b (48b) rt 91:9 43% 14% 

6 34a (49a) rt 93:7 73% –4% 

7 34b (49b) rt 93:7 36% 0% 
a
 Catalyst was generated in situ from [AuCl(ligand)] (0.025 mmol) and AgSbF6 (0.025 mmol) in 

MeNO2 (4 mL) and reacted with styrene (2.0 mmol) and 2-methylbut-3-yn-2-yl acetate (0.5 mmol); 

2 hours reaction time. 
b
 Determined by integration of the OAc resonances in the 

1
H NMR. 

c
 Isolated 

yield after column chromatographic workup.
d
 Determined by chiral HPLC (Chiralcel OD).

 e
 Values 

taken from ref. 303. 

Toste and co-workers were the first to carry out the reaction using various mono- and 

bidentate P-ligands including BINAP, DTBM-SegPhos and OMe-MOP (Figure 5.22, Table 
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5.10). The best results were obtained using the SegPhos ligand, which gave a diastereomeric 

ratio of >20:1 (cis/trans) and 60% ee (entry 2). For our ligands 33a,b and 34a,b the cis-

product was generally observed as the major isomer in agreement with the literature values 

(entries 4-7). The enantioselectivities of the reactions were however low; nearly racemic 

products were obtained from the (S)-BINOL substituted derivatives 34a,b (entires 6-7). For 

the (R)-BINOL substituted derivatives 33a,b we obtained low enantioselectivities of 15% and 

14% ee respectively (entries 4-5), suggesting that the substituent in the 2'-position of the 

ligand has little influence on the enantioselectivity, and that the configurations of the two 

stereocentres in these ligands are better matched for this type of catalysis. The results are 

comparable to those of the related OMe-MOP ligand which gave a similar yield of 44% and a 

very low enantioselectivity of 5% ee (entry 3). 

For a further test of the asymmetric induction of complexes 48a,b and 49a,b we also 

employed these compounds as catalysts in the alkoxycyclisation of enynes.
301

 The reaction 

proceeds by coordination of the enyne-substrate via formation of gold(I)-carbene and 

carbocation intermediates and subsequent nucleophilic attack of the methanol solvent 

(Scheme 5.6).
304

 Achieving a high level of asymmetric induction has been found particularly 

challenging for this reaction as the generated chiral centre of the substrate is located relatively 

far away from the gold centre.
301

 

 

Scheme 5.6 Gold(I) catalysed alkoxycyclisation with 1,6-enynes. 

Table 5.11 Catalytic alkoxycyclisation of 1,6-enynes. 

entry ligand
a
 temp. time yield

b 
ee

c 

1 tol-BINAP
d
 24 °C 7 h 91% ~2% 

2 33a (48a) rt 2.5 h 89% 2% 

3 33b (48b) rt 3 h 77% 6% 

4 34a (49a) rt 3 h 80% –1% 

5 34b (49b) rt 2.5 h 84% 6% 
a
 Catalyst was generated in situ from [AuCl(ligand)] (0.015 mmol) and AgSbF6 (0.015 mmol) in 

MeOH (4 mL) and reacted with enyne (0.25 mmol). 
b
 Isolated yield after column chromatographic 

workup. 
c
 Determined by chiral HPLC (Chiralpak AD-H). 

d
 Values taken from ref. 301. 
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The observed activities that were achieved with our ligands 33a,b and 34a,b were generally 

good, giving complete conversions of the starting materials in less than 3 hours; very low 

enantioselectivities (up to 6% ee) were obtained in all cases (Table 5.11, entries 2-5). 

However, our results showed a small improvement in comparison to the tol-BINAP ligand 

(Figure 5.22) that only gave about 2% ee in this transformation (Table 5.11, entry 1).
301 

The reaction has been found to be significantly more selective for bulkier substrates (i.e. Z = 

C(SO2Ph)2) giving 43% ee with tol-BINAP.
301

 Hence, the small improvements made with 

ligands 33a,b and 34a,b suggest that these ligands might be more viable candidates for the 

enantioselective transformation of bulkier 1,6-enynes. 

5.3 Conclusion 

In summary, we have demonstrated that the air-stable primary phosphines 1a,b readily form 

their dichlorophosphine counterparts, which react as electrophiles with enantiopure BINOL to 

give novel chiral phosphonites. We have characterised each ligand as its methallylpalladium 

complex by NMR and X-ray crystallography, which together with detailed NMR experiments 

on related cationic complexes indicate the subtly different metal environment in each case and 

the P,C ligation of 38b and 39b. For the hydrosilylation of styrene, enantioselectivities of 80% 

were achieved, in reactions that have not yet been optimised. We have reported the first 

structural confirmation of a η
1
,η

6
-(σ-P, π-arene) chelated MOP-type ligand on rhodium(I) and 

the extent of the bonding has been analysed quantitatively by NOESY NMR. We were also 

able to synthesise the first iridium(I)-MOP complexes. The fine tuning between metal-

stabilisation and catalytic activity will be the focus of future research. The asymmetric 

induction of the MOP-type ligands in gold(I) catalysed reactions has been very moderate. 

However, the initial results reported here show some potential in comparison with literature 

data, given the challenges of gold(I) catalysis.  

5.4 Experimental Section 

5.4.1 General Considerations 

All air- and/or water-sensitive reactions were performed under a nitrogen atmosphere using 

standard Schlenk line techniques. Tetrahydrofuran and dichloromethane were dried over 

sodium/benzophenone and calcium hydride respectively, and distilled prior to use. Toluene 

(Acros) was purchased in an anhydrous state and stored over molecular sieves. Procedures for 

the preparation of 1a,b are given in Chapter 2.4. The experimental procedures for the rhodium 
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catalysed hydrogenation of (Z)-methyl-2-acetamido cinnamate, the palladium catalysed 

hydrosilylation of styrene, and the palladium catalysed allylic alkylation of (rac)-(E)-1,3-

diphenylallyl acetate are described in Chapters 3.4.8, 3.4.9, and 4.4.20 respectively. 

[Rh(C2H4)2Cl]2,
305

 [Rh(η
4
-cod)Cl]2,

306
 [Ir(η

4
-cod)Cl]2

307
 and [Ir(η

4
-cod)2]BF4

308
 were 

synthesised according to literature procedures. All other chemicals were used as received 

without further purification. 

Table 5.12 Selected crystallographic data of 35a,b and 36a,b. 

 35a 35b 36a 36b 

formula C40H27O3P·2C7H8 C42H30Cl3O4P C45H34Cl3O2PPd C45H34Cl3O2PPd 

formula wt 770.85 735.98 850.44 850.44 

cryst syst monoclinic monoclinic orthorhombic orthorhombic 

space group P21 P1211 P212121 P212121 

a, Å; α, deg 9.377(2); 90 8.5896(2); 90 11.9353(3); 90 12.0059(4); 90 

b, Å; β, deg 
13.472(3); 

93.983(3) 

23.5450(5); 

108.165(3) 
13.7947(4); 90 13.8615(4); 90 

c, Å; γ, deg 16.236(4); 90 9.0240(2); 90 22.2867(6); 90 22.5034(7); 90 

V, Å
3
 2046.1(8) 1734.08(7) 3669.37(17) 3745.0(2) 

Z 2 2 4 4 

ρcalc, g cm
–3

 1.251 1.410 1.539 1.508 

μ, mm
–1

 0.113 0.355 0.808 0.791 

F(000) 812 760 1728 1728 

Tmin/Tmax  0.9010/0.9324 0.97796/1.00000 0.82919/1.00000 

hkl range 
–9 to 12, –18 to 

18, –21 to 20 

–8 to 10, –29 to 

30, –11 to 12 

–12 to 15, –16 to 

18, –27 to 28 

–15 to 14, –18 to 

18, –22 to 30 

θ range, deg 2.5 to 27.6 2.9 to 28.5 2.9 to 28.6 2.9 to 28.6 

no. of measd rflns 18683 16587 19447 21950 

no. of unique rflns 

(Rint) 
9114 (0.0383) 7295 (0.0225) 7808 (0.0373) 8064 (0.0447) 

no. of obsd rflns, I 

> 2σ(I) 
8070 6530 6453 6146 

refined 

params/restraints 
595/330 460/1 470/0 471/0 

goodness of fit 1.027 1.027 0.880 0.876 

Abs. structure 

param. 
0.08(8) 0.01(4) –0.024(14) –0.020(16) 

R1/wR2 (I > 2σ(I)) 0.0490/0.1159 0.0308/0.0778 0.0281/0.0444 0.0311/0.0500 

R1/wR2 (all data) 0.0596/0.1242 0.0355/0.0790 0.0396/0.0457 0.0509/0.0525 

resid electron dens, 

e Å
–3

 
0.48/–0.33 0.65/–0.27 0.29/–0.41 0.64/–0.69 
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Table 5.13 Selected crystallographic data of 37a,b, 40b and 43b. 

 37a 37b 40b 43b 

formula 
C45H34ClO3PPd· 

CH2Cl2 
C49H44ClO4PPd C53H49ClO4PRh C90H74BF4O8P2Rh 

formula wt 880.47 869.66 919.25 1535.15 

cryst syst orthorhombic orthorhombic orthorhombic orthorhombic 

space group P212121 P212121 P212121 P212121 

a, Å; α, deg 10.4065(4) 12.1370(2); 90 9.5919(3); 90 14.0434(4); 90 

b, Å; β, deg 17.4563(4) 14.4938(3); 90 19.2348(5); 90 20.3321(6); 90 

c, Å; γ, deg 21.7841(5) 23.2109(5); 90 23.6141(6); 90 25.7605(6); 90 

V, Å
3
 3957.3(2) 4083.06(14) 4356.8(2) 7355.4(3) 

Z 4 4 4 4 

ρcalc, g cm
–3

 1.478 1.415 1.401 1.386 

μ, mm
–1

 0.753 0.604 0.537 2.864 

F(000) 1792 1792 1904 3176 

Tmin/Tmax 0.7945/0.8639 0.8395/0.9420 0.85566/1.00000 0.71860/1.00000 

hkl range 
–9 to 12, –17 to 

22, –21 to 29 

–16 to 16, –19 to 

19, –30 to 31 

–11 to 12, –25 to 

24, –24 to 31 

–14 to 14, –21 to 

21, –27 to 27 

θ range, deg 3.0 to 28.6 3.0 to 28.6 3.0 to 28.5 7.7 to 54.2 

no. of measd rflns 22011 48358 25484 36016 

no. of unique rflns 

(Rint) 
8320 (0.0394) 9182 (0.0525) 9385 (0.0321) 8935 (0.0542) 

no. of obsd rflns, I 

> 2σ(I) 
7461 6798 8683 8181 

refined 

params/restraints 
463/24 509/0 542/0 961/0 

goodness of fit 1.038 0.893 1.081 1.027 

Abs. structure 

param. 
0.03(2) –0.028(16) –0.03(2) –0.037(7) 

R1/wR2 (I > 2σ(I)) 0.0385/0.0887 0.0300/0.0548 0.0330/0.0757 0.0401/0.0986 

R1/wR2 (all data) 0.0455/0.0931 0.0511/0.0575 0.0388/0.0795 0.0461/0.1031 

resid electron dens, 

e Å
–3

 
0.38/–0.54 0.42/–0.40 0.74/–0.45 0.80/–0.50 

     

Flash chromatography was performed on silica gel from Fluorochem (silica gel, 40-63u, 60A, 

LC301). Thin-layer-chromatography was performed on Merck aluminium-based plates with 

silica gel and fluorescent indicator 254 nm. For indicating, UV light or potassium 

permanganate solution (1.0 g KMnO4, 6.7 g K2CO3, 0.1 g NaOH, 100 ml H2O) was used. 

Melting points were determined in open glass capillary tubes on a Stuart SMP3 melting point 

apparatus. Optical rotation values were determined on an Optical Activity Polaar 2001 device. 

Mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service 

Centre, Swansea. Analytical high performance liquid chromatography (HPLC) was performed 

on a Varian Pro Star HPLC equipped with a variable wavelength detector using a Daicel 

Chiralcel OD or a Chiralpak AD-H column. 
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Table 5.14 Selected crystallographic data of 45b, 48b and 49b. 

 45b 48b 49b 

formula C49H39Cl3IrO2P 
C41H27AuClO3P· 

CH2Cl2 

C41H27AuClO3P·CH2Cl2· 

H2O 

formula wt 989.32 915.94 933.95 

cryst syst orthorhombic monoclinic triclinic 

space group P212121 C2 P1 

a, Å; α, deg 11.0978(5); 90 23.505(6); 90 9.1356(3); 108.251(4) 

b, Å; β, deg 13.6168(6); 90 7.956(2); 100.359(2) 13.1385(6); 90.102(3) 

c, Å; γ, deg 26.3077(12); 90 19.215(5); 90 15.5999(6); 101.515(3) 

V, Å
3
 3975.5(3) 3534.7(16) 1738.27(12) 

Z 4 4 2 

ρcalc, g cm
–3

 1.653 1.721 1.784 

μ, mm
–1

 3.642 4.109 4.554 

F(000) 1968 1800 920 

Tmin/Tmax 0.4079/0.5295 0.6384/0.8529 2/1.00000 

hkl range 
–13 to 13, –17 to 18, –

31 to 31 

–31 to 31, –6 to 10, –

25 to 25 

–10 to 10, –15 to 15, –18 

to 18 

θ range, deg 3.0 to 28.6 1.8 to 27.4 3.1 to 25.0 

no. of measd rflns 25042 17861 25237 

no. of unique rflns (Rint) 8542 (0.0381) 7360 (0.0318) 12133 (0.0448) 

no. of obsd rflns, I > 

2σ(I) 
7597 6759 11602 

refined params/restraints 505/0 427/1 923/556 

goodness of fit 1.035 1.017 1.046 

Abs. structure param. –0.037(5) 0.043(6) 0.007(7) 

R1/wR2 (I > 2σ(I)) 0.0312/0.0585 0.0260/0.0615 0.0521/0.1274 

R1/wR2 (all data) 0.0394/0.0629 0.0287/0.0625 0.0544/0.1295 

resid electron dens,  

e Å
–3

 
0.87/–0.81 1.24/–0.98 2.55/–1.36 

    

1
H NMR, 

11
B{

1
H} NMR, 

13
C{

1
H} NMR, 

19
F NMR, and 

31
P{

1
H} NMR spectra were recorded 

on a JEOL Lambda 500 (
1
H 500.16 MHz) or JEOL ECS-400 (

1
H 399.78 MHz) spectrometer 

at room temperature (21°C) if not otherwise stated, using the indicated solvent as internal 

reference. Two-dimensional NMR experiments (COSY, NOESY, HSQC, HMBC) were used 

for the assignment of proton and carbon resonances, the numbering scheme is given in Figure 

5.23. Full range NOESY spectra were acquired with 512 × 1024 data points and a spectral 

width of 9.0 ppm; mixing times were chosen between 10 and 500 ms. For the measurement of 

exchange rate constants, the proton resonances of the methoxy group were used. Peak 

volumes were determined manually from the NOESY spectrum using MestReNova 6, and the 

rate constants were calculated with an estimated error of 10% using EXSYCalc.
309

 Key 

crystallographic data are given in Table 5.12,   
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Table 5.13 and Table 5.14. 

 

Figure 5.23 Numbering scheme used for MOP-type phosphonite compounds (left) and OMe-MOP (right). 

5.4.2 (S,Rb)-[1,1'-Binaphthalene]-2,2'-diyl [1,1'-binaphthalen]-2-ylphosphonite (33a) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1a (286 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 157.1 ppm) as a yellow oil. THF (8 mL), NEt3 (448 mg, 0.64 mL, 4.40 mmol) and (R)-

BINOL (286 mg, 1.00 mmol) were subsequently added and the solution was left to stir 

overnight. The volatiles were removed in vacuo and the crude product was filtered through a 

plug of silica in toluene. The title product was obtained after removal of the solvent as a white 

solid. (404 mg, 0.71 mmol, 71%). 

MP (uncorrected): 158 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.06 (d, 

3
JHH = 8.3 Hz, 1H, 

H4'), 8.01 (d, 
3
JHH = 8.3 Hz, 1H, ArH), 7.95-7.91 (m, 3H, H14+2 ArH), 7.88 (d, 

3
JHH = 8.2 Hz, 1H, ArH), 7.84 (dd, 

3
JHH = 7.0 Hz, 

5
JHP = 1.0 Hz, 1H, H2'), 7.73 (d, 

3
JHH = 8.7 Hz, 1H, H14'), 7.69 (dd, 

3
JHH = 8.3 Hz, 

3
JHH = 7.0 Hz, 1H, H3'), 7.61 (d, 

3
JHH = 8.6 Hz, 1H, H4), 7.56-7.52, (m, 2H, 2 ArH), 7.49-7.40 (m, 4H, H13+3 ArH), 7.38-7.31 

(m, 5H, 5 ArH), 7.30-7.24 (m, 3H, H3+2 ArH), 6.91 (d, 
3
JHH = 8.7 Hz, 1H, H13') ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 150.2 (d, 

2
JCP = 2.4 Hz, C12), 149.0 (d, 

2
JCP = 6.1 Hz, 

C12'), 145.0 (d, 
2
JCP = 37.2 Hz, C1), 136.2 (d, 

1
JCP = 38.9 Hz, C2), 135.0, 134.8 (d, 

JCP = 10.0 Hz), 133.5, 133.3 (d, JCP = 2.1 Hz), 133.0 (d, JCP = 4.7 Hz), 132.9 (d, JCP = 1.5 Hz), 

132.8 (d, JCP = 1.0 Hz), 131.7, 131.2, 130.9 (d, 
4
JCP = 5.8 Hz, C2'), 130.6 (C14), 129.6 (d, 
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4
JCP = 0.7 Hz, C14'), 129.1 (C4'), 128.5, 128.4, 128.3, 128.2, 127.7, 127.1 (C4), 127.0 (d, 

JCP = 2.8 Hz), 126.8, 126.7, 126.6, 126.6, 126.5, 126.3, 126.3, 126.2, 125.0, 124.9 (C3'), 

124.9, 124.7 (d, 
3
JCP = 5.7 Hz, C11), 124.2 (d, 

2
JCP = 2.7 Hz, C3), 123.8 (d, 

3
JCP = 2.6 Hz, 

C11'), 122.2 (C13'), 121.5 (d, 
3
JCP = 1.4 Hz, C13) ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): 

δ = 177.4 ppm. IR (neat): ν = 3055.4 (w), 2981.3 (w), 1588.6 (w), 1505.9 (m), 1462.5 (m), 

1362.2 (w), 1326.4 (m), 1228.2 (s), 1203.1 (w), 1154.9 (w), 1070.0 (m), 949.2 (s), 869.5 (w), 

818.8 (s), 782.0 (m), 747.7 (s), 629.4 (m) cm
–1

. HRMS (ESI
+
, MeOH): Found: 

m/z = 585.1605. Calculated for [M + H2O]
+
: m/z = 585.1614. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = +238°. EA: Found: C 84.49%, H 4.77%. Calculated for [M]: C 84.49%, H 4.43%. 

5.4.3 (R,Rb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)-

phosphonite (33b) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). 1b (316 mg, 1.00 mmol) was 

added and the reaction mixture was left to stir for 45 minutes. The volatiles were removed in 

vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: δ = 159.1 ppm) as 

yellow solid. THF (8 mL), NEt3 (448 mg, 0.64 mL, 4.40 mmol) and (R)-BINOL (286 mg, 

1.00 mmol) were added subsequently and the solution was left to stir overnight. The volatiles 

were removed in vacuo and the crude product was dissolved in toluene and filtered through a 

plug of silica. The title product was obtained after removal of the solvent as a white solid 

(523 mg, 0.87 mmol, 87%). 

MP (uncorrected): >270 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.09 (d, 

3
JHH = 9.1 Hz, 1H, 

H4'), 7.94-7.90 (m, 4H, H5'+H14+H15'+ArH), 7.89 (d, 
3
JHH = 8.2 Hz, 1H, H5), 7.72 (d, 

3
JHH = 8.8 Hz, 1H, H14'), 7.59 (d, 

3
JHH = 8.5 Hz, 1H, H4), 7.55 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 5.7 Hz, 

4
JHH = 2.1 Hz, 1H, H6), 7.53 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.47 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 1H, ArH), 7.44-7.40 (m, 3H, H13+2 ArH), 7.38 

(ddd, 
3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 1H, ArH), 7.36-7.24 (m, 6H, 6 ArH), 7.23 

(dd, 
3
JHH = 8.5 Hz, 

3
JHP = 1.4 Hz, 1H, H3), 7.02 (d, 

3
JHH = 8.5 Hz, 1H, ArH), 6.93 (d, 

3
JHH = 8.8 Hz, 1H, H13'), 3.99 (s, 3H, OCH3) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): 

δ = 156.6 (d, 
4
JCP = 3.5 Hz, C2'), 150.3 (d, 

2
JCP = 2.5 Hz, C12), 154.9 (d, 

2
JCP = 5.8 Hz, C12'), 
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141.8 (d, 
2
JCP = 37.5 Hz, C1), 136.3 (d, 

1
JCP = 37.7 Hz, C2), 135.3, 134.5 (d, 

4
JCP = 2.9 Hz, 

C9'), 132.9, 132.8, 132.7 (d, JCP = 1.0 Hz), 131.6 (d, JCP = 0.9 Hz), 131.4, 131.2, 130.8 (C4'), 

130.5 (C5'), 129.5 (C14'), 128.7, 128.5, 128.5, 128.3 (C5), 128.2 (C10'), 128.1, 127.7, 127.1, 

126.8, 126.7 (C4), 126.6, 126.5, 126.4 (d, JCP = 2.6 Hz), 126.2, 126.1, 125.2, 124.9, 124.8, 

124.5 (d, 
2
JCP = 2.0 Hz, C3), 123.8, 122.7 (C13), 121.6 (C13'), 118.9 (d, 

3
JCP = 10.2 Hz, C1'), 

112.8 (C3'), 56.2 (s, OCH3) ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = 177.8 ppm. IR 

(neat): ν = 2981.2 (w), 1619.8 (w), 1590.0 (m), 1507.0 (m), 1461.8 (m), 1431.0 (w), 1327.7 

(w), 1228.2 (s), 1149.5 (w), 1078.1 (m), 947.3 (s), 866.6 (w), 820.5 (m), 799.5 (m), 746.7 (s), 

686.7 (w), 630.3 (w) cm
–1

. HRMS (ESI
+
, CH2Cl2): Found: m/z = 599.1767. Calculated for [M 

+ H]
+
: m/z = 599.1771. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = +444°. EA: Found: C 82.60%, H 

4.58%. Calculated for [M]: C 82.26%, H 4.55%. 

5.4.4 (S,Sb)-[1,1'-Binaphthalene]-2,2'-diyl [1,1'-binaphthalen]-2-ylphosphonite (34a) 

 

The same procedure was followed as for 33a, except for using (S)-BINOL as the nucleophile. 

The title product was obtained as a white solid after removal of the solvent (527 mg, 

0.93 mmol, 93%). 

MP (uncorrected): 197 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.04 (d, 

3
JHH = 8.2 Hz, 1H, 

H4'), 7.99-7.89 (m, 4H, H14'+3 ArH), 7.88 (d, 
3
JHH = 8.2 Hz, 1H, H5), 7.78 (d, 

3
JHH = 8.7 Hz, 

1H, H14), 7.68 (dd, 
3
JHH = 8.2 Hz, 

3
JHH = 7.0 Hz, 1H, H3'), 7.63 (dd, 

3
JHH = 7.0 Hz, 

5
JHP = 1.2 Hz, 1H, H2'), 7.61 (d, 

3
JHH = 8.6 Hz, 1H, H4), 7.55 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 5.5 Hz, 

4
JHH = 2.5 Hz, 1H, H6), 7.53-7.36 (m, 7H, H13'+6 ArH), 7.35-7.28 (m, 3H, 

H7+H8+ArH), 7.23-7.21 (m, 3H, H3+2 ArH), 6.90 (d, 
3
JHH = 8.7 Hz, 1H, H13) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 150.1 (d, 

2
JCP = 1.9 Hz, C12'), 148.9 (d, 

2
JCP = 5.7 Hz, C12), 145.4 (d, 

2
JCP = 37.0 Hz, C1), 136.5 (d, 

1
JCP = 40.4 Hz, C2), 135.0 (d, 

JCP = 7.9 Hz), 134.1 (d, JCP = 2.9 Hz), 133.5, 133.0 (d, JCP = 4.3 Hz), 132.9, 132.8, 131.6, 

131.4, 131.2, 130.6 (C14'), 129.6 (C14), 129.4 (C2'), 128.7 (C4'), 128.5, 128.4, 128.4, 128.1 

(C5), 127.8, 127.4 (d, JCP = 2.6 Hz), 127.1 (C4), 127.0, 126.9, 126.8, 126.6, 126.5, 126.4, 

126.2, 126.1, 125.9, 125.1 (C3'), 124.9, 124.8 (C11'), 124.3 (d, 
2
JCP = 2.6 Hz, C3), 123.6 

(C11), 122.5 (C13), 121.4 (C13') ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = 175.7 ppm. IR 
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(neat): ν = 3060.6 (w), 2981.3 (w), 1588.6 (w), 1506.5 (w), 1466.0 (w), 1366.0 (w), 1330.0 

(w), 1262.7 (w), 1232.0 (w), 1204.0 (w), 1141.6 (w), 1141.6 (w), 1072.2 (w), 951.6 (w), 869.5 

(w), 822.7 (w), 789.4 (w), 753.7 (w), 684.6 (w), 630.2 (w) cm
–1

. HRMS (EI
+
): Found: 

m/z = 567.1514. Calculated for [M – H]
+
: m/z = 567.1508. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = –264°. 

5.4.5 (R,Sb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)-

phosphonite (34b) 

 

The same procedure was followed as for 33b, except for using (S)-BINOL as the nucleophile. 

The title product was obtained as a white solid after removal of the solvent (430 mg, 

0.72 mmol, 72%). 

MP (uncorrected): 231 °C (decomposition). 
1
H NMR (500 MHz, CD2Cl2): δ = 8.09 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 7.97 (d, 

3
JHH = 8.8 Hz, 1H, H14'), 7.93-7.90 (m, 3H, H15+H5'+ 

H15'), 7.88 (d, 
3
JHH = 8.2 Hz, 1H, H5), 7.76 (d, 

3
JHH = 8.7 Hz, 1H, H14), 7.60 (d, 

3
JHH = 8.6 Hz, 1H, H4), 7.54 (dd, 

3
JHH = 8.0 Hz, 

3/4
JHH = 4.0 Hz, 1H, H6'), 7.52 (d, 

3
JHH = 8.8 Hz, 1H, H13'), 7.51 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.46 (ddd, 

3
JHH = 8.0 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.0 Hz, 1H, H16), 7.42-7.35 (m, 4H, H18+3 ArH), 7.32 (d, 

3
JHH = 4.0 Hz, 2H, H7'+H8'), 7.30 (ddd, 

3
JHH = 8.4 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 1H, 

H17), 7.23-7.18 (m, 4H, H3+3 ArH), 6.87 (d, 
3
JHH = 8.7 Hz, 1H, H13), 3.89 (s, 3H, OCH3) 

ppm. 
13

C{
1
H} NMR (101 MHz, CD2Cl2): δ = 154.9 (d, 

4
JCP = 2.9 Hz, C2'), 150.2 (d, 

2
JCP = 

2.3 Hz, C12'), 149.0 (d, 
2
JCP = 5.9 Hz, C12), 141.9 (d, 

2
JCP = 39.2 Hz, C1), 136.4 (d, 

1
JCP = 

38.3 Hz, C2), 135.3, 135.0 (C9'), 132.8, 132.7, 132.7, 131.6, 131.1, 130.7 (C4'), 130.5 (C14'), 

129.5 (C14), 128.8, 128.4 (C15), 128.4 (C15'), 128.3 (C5'), 128.3 (C10'), 128.2 (C5), 127.7, 

126.9 (C4), 126.8, 126.7, 126.6, 126.5, 126.4 (d, JCP = 2.1 Hz), 126.2, 126.1, 125.5, 124.9, 

124.8 (C16), 124.6 (d, JCP = 2.5 Hz), 123.7, 123.6 (d, JCP = 2.5 Hz), 122.5 (C13), 121.5 

(C13'), 119.0 (d, 
3
JCP = 10.3 Hz, C1'), 113.0 (C3'), 56.4 (s, OCH3) ppm. 

31
P{

1
H} NMR 

(202 MHz, CD2Cl2): δ = 177.9 ppm. IR (neat): ν = 2980.8 (w), 1620.1 (w), 1590.2 (m), 

1506.3 (m), 1462.7 (w), 1431.5 (w), 1329.8 (w), 1230.2 (s), 1203.4 (w), 1146.0 (w), 1070.1 

(m), 949.5 (s), 867.8 (w), 820.8 (s), 789.7 (m), 747.2 (s), 684.7 (m), 628.8 (w) cm
–1

. HRMS 
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(ESI
+
, CH2Cl2): Found: m/z = 599.1766. Calculated for [M + H]

+
: m/z = 599.1771. OR 

(CHCl3, c = 1.0 mg/ml): [α]D
20

 = –310°. 

5.4.6 General Procedure for the Preparation of LP(Se) 

Phosphorus ligand (LP, 50.0 μmol) and KSeCN (14.4 mg, 100 μmol) were dissolved in THF 

(1 mL) and heated to 50 °C for 2 hours. The solvent was removed and the residue dissolved in 

CDCl3. After filtration through celite the product was analysed by 
31

P{
1
H} NMR. 

31
P{

1
H} NMR (202 MHz, CDCl3): δ = 33a(Se): 104.5 (

1
JPSe = 925 Hz); 33b(Se): 105.6 (

1
JPSe 

= 930 Hz); 34a(Se): 107.9 (
1
JPSe = 925 Hz); 34b(Se): 105.8 (

1
JPSe = 925 Hz); OMe-MOP(Se): 

38.3 (
1
JPSe = 720 Hz) ppm. 

5.4.7 General Procedure for the Preparation of trans-[Rh(LP)2(CO)Cl] 

[Rh(CO)2Cl]2 (1.2 mg, 3.125 μmol) and phosphorus ligand (LP, 12.5 μmol) were dissolved in 

CH2Cl2 (0.5 mL) and left to react for 10 minutes. The solvent was removed in vacuo and the 

product analysed by IR spectroscopy. 

IR (CH2Cl2): ν = [Rh(33a)2(CO)Cl]: 2004; [Rh(33b)2(CO)Cl]: 2004; [Rh(34a)2(CO)Cl]: 

2023; [Rh(34b)2(CO)Cl]: 2010; [Rh(OMe-MOP)2(CO)Cl]: 1974 cm
–1

. 

5.4.8 General Procedure for the Preparation of trans-[Pt(LP)(PEt3)Cl2] 

[Pt(PEt3)Cl2]2 (19.2 mg, 25.0 μmol) and phosphorus ligand (LP, 50.0 μmol) were dissolved in 

CD2Cl2 (0.55 mL) and left to react for 30 minutes. The products were analysed by 
31

P{
1
H} 

NMR spectroscopy. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = trans-[Pt(33a)(PEt3)Cl2]: 141.9 (

1
JPPt = 3492 Hz, 

2
JPP = 624 Hz, 33a), 10.5 (

1
JPPt = 2492 Hz, 

2
JPP = 624 Hz, PEt3); trans-[Pt(33b)(PEt3)Cl2]: 

140.4 (
1
JPPt = 3498 Hz, 

2
JPP = 620 Hz, 33b), 9.2 (

1
JPPt = 2509 Hz, 

2
JPP = 620 Hz, PEt3); trans-

[Pt(34a)(PEt3)Cl2]: 140.6 (
1
JPPt = 3529 Hz, 

2
JPP = 621 Hz, 34a), 10.0 (

1
JPPt = 2481 Hz, 

2
JPP = 621 Hz, PEt3); trans-[Pt(34b)(PEt3)Cl2]: 141.4 (

1
JPPt = 3545 Hz, 

2
JPP = 623 Hz, 34b), 

8.6 (
1
JPPt = 2495 Hz, 

2
JPP = 623 Hz, PEt3); trans-[Pt(OMe-MOP)(PEt3)Cl2]: 25.3 

(
1
JPPt = 2440 Hz, 

2
JPP = 468 Hz, OMe-MOP), 13.7 (

1
JPPt = 2554 Hz, 

2
JPP = 468 Hz, PEt3); 

ppm. 
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5.4.9 Chloro((S,Rb)-[1,1'-binaphthalene]-2,2'-diyl [1,1'-binaphthalen]-2-

ylphosphonite)(η3-2-methylallyl)palladium (36a) 

 

[Pd(η
3
-C4H7)Cl]2 (7 mg, 18 μmol) and 33a (20 mg, 35 μmol) were dissolved in CH2Cl2 

(1 mL) and stirred for 10 minutes. The intended complex was formed quantitatively. Slow 

diffusion of Et2O into the reaction mixture yielded colorless crystals overnight, which were 

suitable for X-ray diffraction analysis. Yield: 25 mg (33 μmol, 93%) 

MP (uncorrected): >270 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = isomer A (97%) 7.97 (d, 

3
JHH = 8.1 Hz, 1H, H4'), 7.94-7.90 (m, 4H, H14+H5+H15+H15'), 7.89-7.85 (m, 2H, H2'+ 

H5'), 7.84-7.80 (m, 2H, H13+H4), 7.78 (d, 
3
JHH = 8.9 Hz, 1H, H14'), 7.72 (dd, 

3
JHH = 8.6 Hz, 

3
JHP = 5.5 Hz, 1H, H3), 7.69 (dd, 

3
JHH = 8.1 Hz, 

3
JHH = 7.2 Hz, 1H, H3'), 7.58-7.55 (m, 1H, 

ArH), 7.53-7.43 (m, 5H, H6'+4 ArH), 7.39-7.27 (m, 5H, 5 ArH), 7.18-7.13 (m, 2H, 

H13'+ArH), 3.75 (dd, 
3
JHP = 9.9 Hz, 

4
JHH = 2.5 Hz, 1H, allyl-Htsyn), 2.56 (s, 1H, allyl-Hcsyn), 

1.57 (d, 
3
JHP = 14.1 Hz, 1H, allyl-Htanti), 1.00 (s, 3H, allyl-CH3), 0.83 (s, 1H, allyl-Hcanti); 

isomer B (3%), 8.00-6.99 (m, 23H, 23 ArH), 6.92 (m, 1H, ArH), 6.87 (m, 1H, ArH), 3.96 (d, 

3
JHP = 6.8 Hz, 1H, allyl-Htsyn), 2.96 (m, 1H, allyl-Hcsyn), 2.64 (d, 

3
JHP = 12.3 Hz, 1H, allyl-

Htanti), 1.53 (m, 1H, allyl-Hcanti), 1.42 (s, 3H, allyl-CH3) ppm. 
13

C{
1
H} NMR (126 MHz, 

CD2Cl2): δ = isomer A (97%) 149.1 (d, 
2
JCP = 5.3 Hz, C12), 148.6 (d, 

2
JCP = 13.2 Hz, C12'), 

144.7 (d, 
2
JCP = 27.2 Hz, C1), 135.2, 134.7 (d, 

1
JCP = 9.3 Hz, C2), 133.5, 133.4, 133.3, 133.1, 

132.6 (d, JCP = 1.4 Hz), 132.2 (d, JCP = 1.9 Hz), 131.9 (d, JCP = 1.3 Hz), 131.5 (d, 

JCP = 1.3 Hz), 131.1 (C2'), 131.0 (d, JCP = 28.6 Hz, allyl-C), 130.7 (d, 
4
JCP = 1.1 Hz, C14), 

130.2 (d, 
4
JCP = 1.4 Hz, C14'), 129.7, 129.2 (C4'), 128.6, 128.5, 128.3, 128.2, 128.2, 127.7 (d, 

3
JCP = 5.2 Hz, C4), 127.3, 127.1, 127.1, 127.0 (d, JCP = 2.3 Hz), 126.9, 126.8, 126.7, 126.6, 

126.4, 125.5, 125.4, 125.2 (C3'), 124.9 (d, 
2
JCP = 2.8 Hz, C3), 124.2 (d, 

3
JCP = 3.8 Hz, C11), 

123.7 (d, 
3
JCP = 2.9 Hz, C11'), 122.4 (d, 

3
JCP = 2.4 Hz, C13), 120.4 (C13'), 76.8 (d, 

2
JCP = 45.3 Hz, allyl-Ct), 56.1 (d, 

2
JCP = 5.8 Hz, allyl-Cc), 22.4 (allyl-CH3) ppm; signals of 

isomer B could not be observed. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = isomer A (97%), 

173.4; isomer B (3%) 175.7 ppm. IR (neat): ν = 3052.0 (w), 1587.6 (w), 1505.8 (m), 1460.0 

(w), 1432.9 (w), 1360.3 (w), 1322.4 (m), 1220.7 (s), 1067.8 (m), 977.3 (w), 942.2 (s), 871.8 
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(w), 838.4 (m), 810.2 (s), 759.4 (m), 706.9 (m), 677.2 (w), 634.3 (w), 596.8 (w) cm
–1

. HRMS 

(ESI
+
, MeOH): Found: m/z = 727.1178. Calculated for [M – Cl]

+
: m/z = 727.1176. 

5.4.10 Chloro((R,Rb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η3-2-methylallyl)palladium (36b) 

 

[Pd(η
3
-C4H7)Cl]2 (7 mg, 18 μmol) and 33b (21 mg, 35 μmol) were dissolved in CH2Cl2 

(1 mL) and stirred for 10 minutes. The intended complex was formed quantitatively. Slow 

diffusion of Et2O into the reaction mixture yielded colorless crystals overnight, which were 

suitable for X-ray diffraction analysis. Yield: 26 mg (33 μmol, 93%). 

MP (uncorrected): >270 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = isomer A (93%) 7.98 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 7.93 (dd, 

3
JHH = 8.9 Hz, 

4
JHP = 0.9 Hz, 1H, H13), 7.91-7.86 (m, 4H, 

H14+H5+H15+H15'), 7.78-7.73 (m, 2H, H5'+H4), 7.72 (d, 
3
JHH = 8.9 Hz, 1H, H14'), 7.63 

(dd, 
3
JHH = 8.6 Hz, 

3
JHP = 5.4 Hz, 1H, H3), 7.55 (ddd, 

3
JHH = 8.1 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.1 Hz, 1H, ArH), 7.50 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.47-7.24 (m, 10H, 9 ArH+H6'), 

7.19 (d, 
3
JHH = 8.9 Hz, 

4
JHP = 1.0 Hz, 1H, H13'), 7.14 (d, 

3
JHH = 8.4 Hz, 1H, ArH), 3.97 (s, 

3H, OCH3), 3.73 (dd, 
3
JHP = 10.0 Hz, 

4
JHH = 3.0 Hz, 1H, allyl-Htsyn), 2.60 (m, 1H, allyl-

Hcsyn), 1.63 (d, 
3
JHP = 14.1 Hz, 1H, allyl-Htanti), 0.92 (s, 3H, allyl-CH3), 0.85 (m, 1H, allyl-

Hcanti); isomer B (7%) 8.05 (d, 
3
JHH = 9.1 Hz, 1H, H4'), 7.99-7.10 (m, 20H, 20 ArH), 7.07-

7.02 (m, 1H, ArH), 6.97 (d, 
3
JHH = 8.9 Hz, 1H, H13'), 6.74 (d, 

3
JHH = 8.5 Hz, 1H, ArH), 4.12 

(s, 3H, OCH3), 3.87 (m, 1H, allyl-Htsyn), 3.18 (m, 1H, allyl-Hcsyn), 1.94 (d, 
3
JHP = 13.0 Hz, 

1H, allyl-Htanti), 1.70 (s, 3H, allyl-CH3), 1.35 (m, 1H, allyl-Hcanti) ppm. 
13

C{
1
H} NMR 

(126 MHz, CD2Cl2): δ = isomer A (93%) 156.4 (C2'), 149.3 (d, 
2
JCP = 5.3 Hz, C12), 149.1 (d, 

2
JCP = 12.9 Hz, C12'), 141.5 (d, 

2
JCP = 27.0 Hz, C1), 135.5 (d, 

1
JCP = 1.4 Hz, C2), 134.2 (C9'), 

133.2 (d, JCP = 7.1 Hz), 133.2 (d, JCP = 8.1 Hz), 132.4 (d, JCP = 1.3 Hz), 132.1 (d, 

JCP = 1.4 Hz), 131.8 (d, JCP = 8.1 Hz), 131.6 (d, JCP = 1.1 Hz), 131.3 (d, 
2
JCP = 28.8 Hz, allyl-

C), 131.0 (C4'), 130.5 (d, 
4
JCP = 1.1 Hz, C14), 130.1 (d, 

4
JCP = 1.3 Hz, C14'), 128.6, 128.5, 

128.4, 128.4, 128.3, 128.2 (C6), 128.0, 127.5 (d, 
3
JCP = 5.3 Hz, C4), 127.0 (C10’), 127.0, 

126.9 (C5'), 126.7, 126.4, 126.3 (d, JCP = 2.3 Hz), 126.2 (C8), 125.4, 125.3, 125.0 (d, 

2
JCP = 2.7 Hz, C3), 124.5 (C6'), 124.4 (d, 

3
JCP = 3.8 Hz, C11), 123.7 (d, 

3
JCP = 3.0 Hz, C11'), 
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122.9 (d, 
3
JCP = 2.4 Hz, C13), 121.5 (C13'), 118.8 (d, 

3
JCP = 9.5 Hz, C1'), 113.1 (C3'), 77.3 (d, 

2
JCP = 44.9 Hz, allyl-Ct), 56.2 (OCH3), 56.1 (d, 

2
JCP = 5.3 Hz, allyl-Cc), 22.5 (allyl-CH3) 

ppm; signals of isomer B could not be determined due to their low intensity. 
31

P{
1
H} NMR 

(202 MHz, CD2Cl2): δ = isomer A (93%) 173.6; isomer B (7%) 175.6 ppm. IR (neat): 

ν = 3065.2 (w), 1620.2 (w), 1589.0 (m), 1507.6 (m), 1463.0 (m), 1431.3 (w), 1327.7 (m), 

1247.8 (s), 1223.0 (s), 1194.2 (m), 1151.8 (w), 1068.9 (w), 1021.8 (w), 943.5 (s), 873.9 (w), 

839.0 (w), 807.0 (s), 743.7 (m), 677.2 (w), 637.2 (w), 597.2 (w), 597.8 (w), 560.2 (w) cm
–1

. 

HRMS (ESI
+
, MeOH): Found: m/z = 755.1301. Calculated for [M – Cl]

+
: m/z = 755.1296. 

5.4.11 Chloro((S,Sb)-[1,1'-binaphthalene]-2,2'-diyl [1,1'-binaphthalen]-2-

ylphosphonite)(η3-2-methylallyl)palladium (37a) 

 

[Pd(η
3
-C4H7)Cl]2 (7 mg, 18 μmol) and 34a (20 mg, 35 μmol) were dissolved in CH2Cl2 

(1 mL) and stirred for 10 minutes. The intended complex was formed quantitatively. Slow 

diffusion of Et2O into the reaction mixture yielded colorless crystals overnight which were 

suitable for X-ray diffraction analysis. Yield: 23 mg (30 μmol, 86%). 

MP (uncorrected): >270 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.13 (d, 

3
JHH = 7.0 Hz, 1H, 

H2'), 7.98-7.86 (m, 7H, H4'+H15+H5'+H14'+H5+H15'+H13'), 7.83 (d, 
3
JHH = 8.8 Hz, 1H, 

H14), 7.74 (d, 
3
JHH = 8.7 Hz, 1H, H4), 7.69 (dd, 

3
JHH = 8.7 Hz, 

3
JHH = 7.0 Hz, 1H, H3'), 7.60-

7.57 (m, 1H, ArH), 7.53-7.40 (m, 7H, H3+6 ArH), 7.36-7.23 (m, 5H, 5 ArH), 7.00 (d, 

3
JHH = 8.7 Hz, 1H, H13), 4.16 (dd, 

3
JHP = 10.2 Hz, 

4
JHH = 2.8 Hz, 1H, allyl-Htsyn), 2.56 (d, 

3
JHP = 14.8 Hz, 1H, allyl-Htanti), 2.31 (s, 1H, allyl-Hcsyn), 0.93 (s, 3H, allyl-CH3), 0.50 (s, 1H, 

allyl-Hcanti) ppm. 
13

C{
1
H} NMR (126 MHz, CD2Cl2): δ = 149.1 (d, 

2
JCP = 5.3 Hz, C12'), 

148.4 (d, 
2
JCP = 13.1 Hz, C12), 145.1 (d, 

2
JCP = 29.7 Hz, C1), 135.5, 134.5 (d, 

1
JCP = 9.4 Hz, 

C2), 134.3, 133.6 (d, JCP = 4.7 Hz), 133.5 d, JCP = 4.4 Hz), 133.3, 132.6 (d, JCP = 1.4 Hz), 

132.1, 131.8 (d, JCP = 0.9 Hz), 131.6, 131.5 (d, 
4
JCP = 1.0 Hz, C2'), 130.8 (d, JCP = 28.5 Hz, 

allyl-C), 130.7 (C14'), 130.2 (d, 
4
JCP = 1.4 Hz, C14), 128.6, 128.5, 128.5, 128.3, 128.1, 128.1 

(C4'), 127.6 (d, 
3
JCP = 4.9 Hz, C4), 127.3, 127.2, 127.1, 127.0, 126.6, 126.6, 126.5, 126.3, 

126.3, 126.2 (C3'), 125.5, 125.4, 124.5 (C3), 124.1 (d, 
3
JCP = 4.2 Hz, C11'), 123.5 (d, 

3
JCP = 2.6 Hz, C11), 122.5 (d, 

3
JCP = 2.3 Hz, C13'), 121.1 (d, 

3
JCP = 0.8 Hz, C13), 77.8 (d, 
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2
JCP = 46.5 Hz, allyl-Ct), 57.6 (d, 

2
JCP = 5.3 Hz, allyl-Cc), 22.5 (allyl-CH3) ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = 172.1 ppm. IR (neat): ν = 3047.7 (w), 1585.8 (w), 

1505.6 (m), 1461.1 (w), 1434.2 (w), 1360.9 (w), 1322.9 (m), 1269.3 (w), 1222.1 (s), 1161.0 

(w), 1121.5 (w), 1068.7 (m), 1027.5 (w), 977.3 (w), 943.4 (s), 877.1 (w), 839.5 (w), 803.3 

(m), 757.5 (w), 729.6 (m), 687.3 (w), 634.8 (w), 598.0 (m), 557.6 (w) cm
–1

. HRMS (ESI
+
, 

MeOH): Found: m/z = 725.1195. Calculated for [M – Cl]
+
: m/z = 725.1191. 

5.4.12 Chloro((R,Sb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η3-2-methylallyl)palladium (37b) 

 

[Pd(η
3
-C4H7)Cl]2 (7 mg, 18 μmol) and 34b (21 mg, 35 μmol) were dissolved in CH2Cl2 

(1 mL) and stirred for 10 minutes. The intended complex was formed quantitatively. Slow 

diffusion of Et2O into the reaction mixture yielded colorless crystals overnight, which were 

suitable for X-ray diffraction analysis. Yield: 23 mg (29 μmol, 83%). 

MP (uncorrected): >270 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.02 (d, 

3
JHH = 9.1 Hz, 1H, 

H4'), 8.00-7.97 (m, 2H, H15+H13'), 7.94 (d, 
3
JHH = 8.9 Hz, 1H, H14'), 7.91 (d, 

3
JHH = 8.1 Hz, 

1H, H5), 7.89 (d, 
3
JHH = 8.2 Hz, 1H, H15'), 7.86 (d, 

3
JHH = 8.7 Hz, 1H, H14), 7.83 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.65 (d, 

3
JHH = 8.7 Hz, 1H, H4), 7.59 (ddd, 

3
JHH = 8.1 Hz, 

3
JHH = 6.6 Hz, 

4
JHH = 1.0 Hz, 1H, H6), 7.54-7.51 (m, 1H, H16), 7.49 (d, 

3
JHH = 9.1 Hz, 1H, 

H3'), 7.46-7.39 (m, 3H, 2 ArH+H16'), 7.37-7.27 (m, 7H, ArH+H17+H7'+H6'+H3+H7+H18'), 

7.25-7.22 (m, 1H, H17'), 7.00 (d, 
3
JHH = 8.7 Hz, 1H, H13), 4.07 (dd, 

3
JHP = 9.9 Hz, 

4
JHH = 3.8 Hz, 1H, allyl-Htsyn), 3.87 (s, 3H, OCH3), 2.35 (s, 1H, allyl-Hcsyn), 2.24 (d, 

3
JHP = 13.6 Hz, 1H, allyl-Htanti), 0.84 (s, 3H, allyl-CH3), 0.32 (s, 1H, allyl-Hcanti) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 156.2 (C2'), 149.2 (d, 

2
JCP = 5.3 Hz, C12'), 148.5 (d, 

2
JCP = 12.4 Hz, C12), 142.6 (d, 

2
JCP = 29.8 Hz, C1), 135.6 (d, 

1
JCP = 1.3 Hz, C2), 135.5 (d, 

4
JCP = 0.9 Hz, C9'), 134.0 (d, JCP = 9.2 Hz), 133.1 (d, JCP = 9.8 Hz), 132.7 (d, JCP = 1.5 Hz), 

132.1 (d, JCP = 1.9 Hz), 131.8 (d, JCP = 1.3 Hz), 131.6 (d, JCP = 1.3 Hz), 131.3 (d, 

2
JCP = 26.3 Hz, allyl-C), 130.5 (d, 

4
JCP = 0.9 Hz, C14'), 130.1 (d, 

4
JCP = 1.3 Hz, C14), 129.7 

(C4'), 128.5 (C15), 128.5 (C15'), 128.5 (C6), 128.3 (C5), 128.2 (C10'), 128.0 (C5'), 127.3 (d, 

3
JCP = 4.7 Hz, C4), 127.0, 127.0, 126.9, 126.8, 126.6, 126.6, 126.2 (C17'), 125.5 (C16), 125.3 
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(C16'), 125.3, 125.1 (d, 
2
JCP = 1.4 Hz, C3), 124.1 (d, 

3
JCP = 3.8 Hz, C11'), 123.5, 123.4 (d, 

3
JCP = 2.8 Hz, C11), 123.1 (d, 

3
JCP = 2.4 Hz, C13'), 121.4 (C13), 118.2 (d, 

3
JCP = 10.5 Hz, 

C1'), 113.5 (C3'), 79.3 (d, 
2
JCP = 46.1 Hz, allyl-Ct), 59.0 (d, 

2
JCP = 4.5 Hz, allyl-Cc), 56.0 

(OCH3), 22.3 (allyl-CH3) ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = 174.4 ppm. IR (neat): 

ν = 3066.0 (w), 1619.1 (w), 1587.6 (w), 1506.6 (m), 1463.6 (m), 1429.5 (w), 1323.0 (w), 

1276.0 (m), 1226.1 (s), 1199.8 (w), 1155.9 (w), 1117.7 (w), 1070.1 (m), 1028.0 (w), 946.1 (s), 

867.4 (w), 833.3 (m), 814.2 (s), 751.9 (s), 706.2 (m), 686.6 (w), 634.8 (w), 606.6 (w), 560.1 

(m) cm
–1

. HRMS (ESI
+
, MeOH): Found: m/z = 755.1280. Calculated for [M – Cl]

+
: 

m/z = 755.1296. EA: Found: C 67.61%, H 5.18%. Calculated for [M + Et2O]: C 67.67%, H 

5.10%. 

5.4.13 ((R,Rb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-yl-

κC1')phosphonite-κP)(η3-2-methylallyl)palladium tetrakis(3,5-

bis(trifluoromethyl)phenyl)borate (38b) 

 

36b (30.0 mg, 37.7 μmol) and Na(BArF) (33.4 mg, 37.7 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 30 minutes. The reaction mixture was filtered through a layer of celite 

and the solvent removed in vacuo; the intended product was obtained as a yellow solid 

(48.9 mg, 30.1 μmol, 80%). 

1
H NMR (500 MHz, CD2Cl2): δ = isomer A,B 8.27-7.23 (m, 2H, H4'

B
+H4'

A
), 8.14-7.98 (m, 

10H, H5'+H14+H15'+H15+H14'), 7.93-7.89 (m, 3H, H5'+H3'
B
), 7.86-7.80 (m, 3H, H3'

A
+H4), 

7.74 (br s, 16H, o-BArF), 7.63-7.51 (m, 18H, H6'+H16+H16'+H6+ArH+p-BArF), 7.48-7.38 

(m, 10H, H13+4 ArH), 7.26-7.19 (m, 4H, H7+3 ArH), 7.13-7.02 (m, 4H, H13'+H3), 6.06 (d, 

3
JHH = 8.3 Hz, 2H, H8), 4.06 (s, OCH3

B
), 4.00 (s, OCH3

A
), 3.16 (br d, 

3
JHP = 10.7 Hz, allyl-

Htanti
B
), 3.03 (s, allyl-Hcsyn

B
), 2.99 (s, allyl-Hcsyn

A
), 2.90 (d, 

3
JHP = 13.2 Hz, allyl-Htanti

A
), 2.43 

(br d, 
3
JHP = 8.2 Hz, allyl-Htsyn

A
), 2.39 (s, allyl-Hcanti

A
), 2.34 (br s, allyl-Htsyn

B
), 2.22 (s, allyl-

Hcanti
B
), 1.58 (s, allyl-CH3

A
), 1.30 (s, allyl-CH3

B
) ppm. (A:B ratio from integration of OMe 

signals: 52:48). 
11

B NMR (160 MHz, CD2Cl2): δ = –7.6 ppm. 
13

C{
1
H} NMR (101 MHz, 

CD2Cl2): δ = isomer A,B 161.8 (q, 
1
JCB = 40.8 Hz, ipso-BArF), 159.0 (C2'

B
), 157.2 (C2'

A
), 
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148.1 (d, 
2
JCP = 10.1 Hz, C12'

B
), 148.0 (d, 

2
JCP = 11.0 Hz, C12'

A
), 147.1 (d, 

2
JCP = 7.7 Hz, 

C12), 142.1 (d, 
2
JCP = 41.7 Hz, C1

B
), 141.9 (d, 

2
JCP = 41.7 Hz, C1

A
), 137.9 (d, 

2
JCP = 9.5 Hz, 

allyl-C
A
), 137.0 (C2), 134.8 (o-BArF), 134.6 (C4'), 132.8, 132.5, 132.1, 132.0, 131.7, 131.6 

(C14), 131.5 (C9'
A
), 131.4 (C9'

B
), 131.4 (C14'), 130.9, 130.8, 130.4, 130.3 (C4), 130.1 (C5'), 

130.0, 129.8, 129.4, 128.9 (qq, 
2
JCF = 31.2 Hz, 

4
JCF = 2.8 Hz, m-BArF), 128.8, 128.4 (C10'), 

127.5, 127.4, 127.3, 127.1, 127.0, 126.9, 126.5, 126.4, 126.3, 126.0, 125.0, 124.8, 124.7 (q, 

1
JCF = 273.2 Hz, CF3), 124.1, 124.0 (d, JCP = 3.4 Hz), 123.8, 123.7, 123.3, 122.5, 122.3, 120.7 

(C3), 120.6 (C13'), 120.3 (C13), 120.1, 117.5 (septet, 
3
JCF = 4.0 Hz, p-BArF), 114.9 (C3'

A
), 

114.5 (C3'
B
), 104.6 (C1'

A
), 99.6 (d, 

2
JCP = 40.1 Hz, allyl-Ct

A
), 57.5 (OCH3

B
), 57.4 (OCH3

A
), 

53.2 (allyl-Cc
A
), 22.4 (allyl-CH3

A
), 21.6 (allyl-CH3

B
) ppm (Not all signals could be observed 

due to peak broadening and overlap). 
19

F NMR (471 MHz, CD2Cl2): δ = –62.7 ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = isomer A 177.5; isomer B 178.0 ppm. IR (neat): 

ν = 1612.4 (w), 1588.2 (w), 1506.9 (w), 1464.1 (w), 1353.8 (m), 1273.2 (s), 1220.7 (w), 

1116.5 (s), 953.5 (m), 882.6 (w), 836.8 (m), 813.3 (m), 746.2 (w), 711.9 (w), 681.4 (m), 638.0 

(w), 599.2 (w) cm
–1

. HRMS (ESI
+
, MeCN): Found: m/z = 757.1287. Calculated for [M – 

BArF]
+
: m/z = 757.1281. 

5.4.14 ((R,Sb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-yl-

κC1')phosphonite-κP)(η3-2-methylallyl)palladium tetrakis(3,5-

bis(trifluoromethyl)phenyl)borate (39b) 

 

37b (29.0 mg, 36.5 μmol) and Na(BArF) (32.3 mg, 36.5 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 30 minutes. The reaction mixture was filtered through a layer of celite 

and the solvent was removed in vacuo; the intended product was obtained as a yellow solid 

(54.0 mg, 33.3 μmol, 91%). 

1
H NMR (500 MHz, CD2Cl2): δ = isomer A,B 8.22 (d, 

3
JHH = 9.2 Hz, 1H, H4'

A
), 8.21 (d, 

3
JHH = 9.2 Hz, 1H, H4'

B
), 8.17-8.01 (m, 10H, H14+H14'+H5'+2 ArH), 7.99 (d, 

3
JHH = 9.2 Hz, 

1H, H3'
A
), 7.96-7.89 (m, 5H, ArH+H4+H3'

B
), 7.76 (br s, 16H, o-BArF), 7.64-7.51 (m, 18H, 

5 ArH+p-BArF), 7.49-7.35 (m, 12H, 4.5 ArH+H13
B
+H13'

A
+H13

A
), 7.30-7.22 (m, 4H, 
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0.5 ArH+H7+H13'
B
), 7.20 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 6.9 Hz, 1H, H3

A
), 7.10 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 6.9 Hz, 1H, H3

B
), 6.09 (br d, 1H, H8

B
), 6.00 (d, 

3
JHH = 8.6 Hz, 1H, 

H8
A
), 3.98 (s, OCH3

A
), 3.89 (s, OCH3

B
), 3.76 (d, 

3
JHP = 13.6 Hz, allyl-Htanti

A
), 3.00 (br d, 

allyl-Htsyn
B
), 2.87 (s, allyl-Hcsyn

B
), 2.82 (s, allyl-Hcsyn

A
), 2.63 (d, 

3
JHP = 13.5 Hz, allyl-Htanti

B
), 

2.32 (s, allyl-Hcanti
A
), 2.20 (br s, allyl-Hcanti

B
), 2.19 (d, allyl-Htsyn

A
), 1.79 (br s, allyl-CH3

B
), 

0.96 (s, allyl-CH3
A
) ppm (A:B ratio from integration of OMe signals: 50:50, signals of isomer 

B broadened). 
11

B NMR (128 MHz, CD2Cl2): δ = –7.6 ppm. 
13

C{
1
H} NMR (126 MHz, 

CD2Cl2): δ = isomer A,B 161.8 (q, 
1
JCB = 40.7 Hz, ipso-BArF), 156.6 (C2'

A
), 154.8 (d, 

JCP = 2.4 Hz, C2'
B
), 148.3 (d, 

2
JCP = 13.5 Hz, C12

A
), 148.3 (d, 

2
JCP = 13.3 Hz, C12

B
), 147.2 

(d, 
2
JCP = 7.1 Hz, C12'

A
), 147.1 (d, 

2
JCP = 7.4 Hz, C12'

B
), 142.4 (d, 

2
JCP = 43.5 Hz, C1

B
), 

142.2 (d, 
2
JCP = 41.3 Hz, C1

A
), 138.9 (d, 

2
JCP = 10.4 Hz, allyl-C

A
), 138.1 (d, J = 10.0 Hz, 

allyl-C
B
), 137.1 (C2

B
), 137.0 (C2

A
), 134.9 (C4'

A
), 134.9 (o-BArF), 134.3 (C4'

B
), 133.7 (C9'

B
), 

132.8, 132.7 (C9'
A
) 132.1, 131.8, 131.7, 131.6, 131.5, 130.7 (d, 

3
JCP = 4.7 Hz, C4), 130.0 

(C10'
B
), 129.8, 129.8, 129.7, 129.3 (C10'

A
), 128.9 (qq, 

2
JCF = 31.6 Hz, 

4
JCF = 2.9 Hz, m-

BArF), 128.7, 128.6, 128.0, 127.6, 127.4, 127.4, 127.0, 127.0, 126.6, 126.5, 126.4, 125.1, 

124.8, 124.7 (q, 
1
JCF = 272.3 Hz, CF3), 124.3, 124.1, 123.7 (d, 

2
JCP = 1.4 Hz, C3

B
), 123.7 (d, 

2
JCP = 1.4 Hz, C3

A
), 123.0, 122.3, 122.1, 120.7 (d, 

3
JCP = 1.0 Hz, C13

B
), 120.6 (d, 

3
JCP = 1.0 Hz, C13

A
), 120.1 (d, 

3
JCP = 2.1 Hz, C13'

A
), 119.8 (C13'

B
), 117.5 (septet, 

3
JCF = 4.0 Hz, p-BArF), 115.9 (C3'

B
), 115.3 (C3'

A
), 104.5 (C1'

B
), 103.4 (C1'

A
), 99.5 (d, 

2
JCP = 41.1 Hz, allyl-Ct

A
), 96.9 (br, allyl-Ct

B
), 57.6 (OCH3

A
), 57.3 (OCH3

B
), 56.4(allyl-Cc

B
), 

54.9 (allyl-Cc
A
), 22.6 (allyl-CH3

B
), 21.5 (allyl-CH3

A
) ppm (Not all signals could be observed 

due to peak broadening and overlap). 
19

F NMR (376 MHz, CD2Cl2): δ = –62.7 ppm. 

31
P{

1
H} NMR (202 MHz, CD2Cl2): δ = isomer A 178.9; isomer B 179.1 ppm. IR (neat): 

ν = 1612.1 (w), 1588.9 (w), 1506.1 (w), 1463.5 (w), 1353.6 (m), 1273.0 (s), 1219.8 (w), 

1116.1 (s), 952.9 (m), 882.4 (w), 836.7 (m), 811.4 (m), 745.5 (w), 711.9 (w), 669.8 (m), 638.6 

(w), 602.7 (w) cm
–1

. HRMS (ESI
+
, MeCN): Found: m/z = 757.1296. Calculated for [M – 

BArF]
+
: m/z = 757.1281. 
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5.4.15 Chloro((R,Rb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η4-cycloocta-1,5-diene)rhodium (40b) 

 

33b (21.0 mg, 35.0 μmol) and [Rh(η
4
-cod)Cl]2 (8.6 mg, 17.5 μmol) were dissolved in CH2Cl2 

(1 mL) and stirred for 30 minutes. The solution was filtered and layered with Et2O. Dark 

orange crystals suitable for X-ray analysis were formed overnight. 

MP (uncorrected): 239 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.29 (d, 

3
JHH = 8.8 Hz, 1H, 

H13), 8.21 (d, 
3
JHH = 9.1 Hz, 1H, H4'), 8.14 (d, 

3
JHH = 8.8 Hz, 1H, H14), 8.02 (d, 

3
JHH = 8.3 Hz, 1H, H15), 7.98 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.86 (m, 2H, H5+H15'), 7.73-7.65 

(m, 3H, H3+H4+H14'), 7.60 (d, 
3
JHH = 9.1 Hz, 1H, H3'), 7.52-7.48 (m, 2H, H6+H16), 7.46-

7.39 (m, 4H, H16'+H18+H18'+H6'), 7.33-7.29 (m, 2H, H17+H17'), 7.26-7.21 (m, 2H, 

H7'+H7), 7.18 (d, 
3
JHH = 8.8 Hz, 1H, H8'), 7.16 (d, 

3
JHH = 8.8 Hz, 1H, H13'), 6.92 (d, 

3
JHH = 8.7 Hz, 1H, H8), 5.31 (br s, 1H, cod-CH), 4.26 (br s, 1H, cod-CH), 3.95 (s, 3H, OCH3), 

2.69 (br s, 1H, cod-CH), 2.49 (br s, 1H, cod-CH), 1.88 (m, 1H, cod-CH2), 1.50 (m, 4H, cod-

CH2), 1.32 (m, 1H, cod-CH2), 1.21 (m, 1H, cod-CH2), 1.13 (m, 1H, cod-CH2) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 155.9 (C2'), 150.0 (d, 

2
JCP = 5.4 Hz, C12), 149.8 (d, 

2
JCP = 12.6 Hz, C12'), 140.5 (d, 

2
JCP = 24.6 Hz, C1), 135.1 (C9), 134.5 (C9'), 133.3 (d, 

1
JCP = 11.2 Hz, C2), 132.4 (m, C19+C19'), 131.8 (C20), 131.5 (C4'), 131.4 (C20'), 130.2 

(C14), 129.9 (C14'), 129.8 (C8'), 129.4 (C10'), 128.5 (C15'), 128.4 (C15), 128.2 (C5), 127.8 

(C6), 127.2 (C5'), 126.8 (C18'), 126.7 (C4+C18), 126.6 (C7), 126.5 (C7'+C8), 126.3 (C17), 

126.2 (C17'), 125.5 (d, 
2
JCP = 2.5 Hz, C3), 125.4 (C16), 125.2 (C16'), 124.3 (d, 

3
JCP = 3.6 Hz, 

C11), 124.3 (C6'), 124.1 (d, 
3
JCP = 2.5 Hz, C13), 123.4 (d, 

3
JCP = 2.5 Hz, C11'), 121.7 (C13'), 

119.9 (d, 
3
JCP = 7.6 Hz, C1'), 112.9 (C3'), 111.7 (dd, J = 15.9 Hz, J = 6.5 Hz, cod-CH), 110.1 

(dd, J = 14.4 Hz, J = 5.4 Hz, cod-CH), 73.3 (d, J = 13.8 Hz, cod-CH), 66.8 (d, J = 13.6 Hz, 

cod-CH), 56.1 (OCH3), 33.0 (d, J = 2.9 Hz, cod-CH2), 31.6 (d, J = 2.0 Hz, cod-CH2), 27.2 (m, 

cod-CH2) ppm; the resonance for C10 was obscured. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): 

δ = 162.9 (d, 
1
JPRh = 223 Hz) ppm. IR (neat): ν = 3050.3 (w), 2971.5 (w), 1620.3 (w), 1589.3 

(m), 1508.5 (m), 1462.2 (m), 1430.9 (w), 1326.8 (w), 1249.5 (w), 1224.1 (s), 1152.6 (w), 
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1073.9 (m), 944.9 (s), 868.8 (w), 807.3 (s), 746.6 (s), 695.6 (w), 673.9 (w), 636.5 (m), 598.5 

(w), 559.3 (w) cm
–1

. UV-Vis (CHCl3, ε [L/mol/cm]): λmax = 411 (~2900) nm. HRMS (ESI
+
, 

MeOH): Found: m/z = 867.1257. Calculated for [M + Na]
+
: m/z = 867.1273. 

5.4.16 Chloro((R,Sb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η4-cycloocta-1,5-diene)rhodium (41b) 

 

34b (21.0 mg, 35.0 μmol) and [Rh(η
4
-cod)Cl]2 (8.6 mg, 17.5 μmol) were dissolved in CH2Cl2 

(1 mL) and stirred for 30 minutes. The solution was filtered and layered with Et2O to 

precipitate the product as a yellow solid overnight. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.29 (d, 

3
JHH = 8.8 Hz, 1H, H13'), 8.27 (d, 

3
JHH = 9.2 Hz, 

1H, H4'), 8.13 (d, 
3
JHH = 8.8 Hz, 1H, H14'), 8.00 (d, 

3
JHH = 8.5 Hz, 1H, H15'), 7.99 (d, 

3
JHH = 8.5 Hz, 1H, H5'), 7.93 (d, 

3
JHH = 8.2 Hz, 1H, H15), 7.86 (d, 

3
JHH = 8.2 Hz, 1H, H5), 

7.78 (d, 
3
JHH = 8.7 Hz, 1H, H14), 7.62 (m, 2H, H3'+H4), 7.58-7.52 (m, 2H, H3+H6), 7.50-

7.44 (m, 2H, H16+H16'), 7.42-7.39 (m, 2H, H18+H7'), 7.37-7.23 (m, 6H, H6'+H8'+H17+H7+ 

H17'+H18'), 7.15 (d, 
3
JHH = 8.5 Hz, 1H, H8), 6.99 (d, 

3
JHH = 8.8 Hz, 1H, H13), 5.50 (br s, 1H, 

cod-CH), 5.05 (br s, 1H, cod-CH), 3.80 (s, 3H, OCH3), 2.67 (br s, 1H, cod-CH), 2.17 (m, 1H, 

cod-CH2), 1.83 (m, 1H, cod-CH2), 1.78 (m, 1H, cod-CH2), 1.63 (br s, 1H, cod-CH), 1.49 (m, 

1H, cod-CH2), 1.42 (m, 1H, cod-CH2), 1.22 (m, 1H, cod-CH2), 1.14 (m, 1H, cod-CH2), 0.94 

(m, 1H, cod-CH2) ppm. 
13

C{
1
H} NMR (126 MHz, CD2Cl2): δ = 155.9 (C2'), 150.2 (d, 

2
JCP = 5.6 Hz, C12'), 149.3 (d, 

2
JCP = 12.6 Hz, C12), 141.2 (d, 

2
JCP = 26.4 Hz, C1), 135.2 (d, 

1
JCP = 1.4 Hz, C2), 135.1 (C9'), 133.2 (d, 

3
JCP = 11.2 Hz, C9), 132.8 (d, 

4
JCP = 1.4 Hz, C19), 

132.5 (d, 
4
JCP = 2.1 Hz, C19'), 131.8 (d, 

5
JCP = 1.4 Hz, C20'), 131.3 (d, 

5
JCP = 0.9 Hz, C20), 

131.1 (C4'), 130.2 (d, 
4
JCP = 1.4 Hz, C14'), 130.0 (d, 

4
JCP = 1.1 Hz, C14), 128.5 (C15'), 128.4 

(C15), 128.2 (C5), 128.1 (C5'), 128.1 (C6), 127.0 (C18+C8), 126.9 (C4), 126.7 (C7), 126.6 

(C17'), 126.4 (C17), 126.3 (C18'), 126.2 (C7'), 125.7 (C8'), 125.4 (C16'), 125.3 (C3), 125.3 

(C16), 124.3 (d, 
3
JCP = 2.1 Hz, C13'), 123.9 (d, 

3
JCP = 4.0 Hz, C11'), 123.3 (C6'), 123.1 (d, 

3
JCP = 2.5 Hz, C11), 121.4 (C13), 119.3 (d, 

3
JCP = 8.3 Hz, C1'), 113.2 (C3'), 111.7 (dd, 

J = 15.3 Hz, J = 6.7 Hz, cod-CH), 108.4 (dd, J = 14.9 Hz, J = 5.5 Hz, cod-CH), 75.4 (d, 
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J = 13.6 Hz, cod-CH), 67.2 (d, J = 13.0 Hz, cod-CH), 55.9 (OCH3), 33.1 (d, J = 2.5 Hz, cod-

CH2), 31.5 (d, J = 2.4 Hz, cod-CH2), 27.4 (d, J = 1.5 Hz, cod-CH2), 27.1 (d, J = 1.9 Hz, cod-

CH2) ppm; resonances for C10 and C10' were obscured. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): 

δ = 161.5 (d, 
1
JPRh = 224 Hz) ppm. HRMS (ESI

+
, MeCN): Found: m/z = 809.1672. Calculated 

for [M – Cl]
+
: m/z = 809.1686. 

5.4.17 ((R,Rb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite-κP)((R,Rb)-[1,1'-binaphthalene]-2,2'-diyl (1',2',3',4',9',10'η-2'-

methoxy-[1,1'-binaphthalen]-2-yl)phosphonite-κP)rhodium tetrafluoroborate 

(42b) 

 

Method A: 33b (30 mg, 50 μmol) and [Rh(η
4
-cod)2]BF4 (10 mg, 25 μmol) were dissolved in 

CH2Cl2 (1 mL) and stirred for 30 minutes. The solution was filtered and layered with Et2O to 

precipitate the product as a yellow solid overnight. 

Method B: 40b (21 mg, 25 μmol) was dissolved in CH2Cl2 (1 mL), AgBF4 (4.8 mg, 25 μmol) 

and 33b (15 mg, 25 μmol) were added and stirred for 30 minutes. The solution was filtered 

and concentrated in vacuo. The crude product was washed with Et2O to give the product as a 

yellow solid. 

MP (uncorrected): 267 °C (decomposition). 
1
H NMR (500 MHz, CD2Cl2): δ = 8.31 (d, 

3
JHH = 8.3 Hz, 1H, H4

A
), 8.15 (d, 

3
JHH = 8.3 Hz, 1H, H5

A
), 8.07 (d, 

3
JHH = 8.8 Hz, 1H, H14

B
), 

7.94 (d, 
3
JHH = 8.3 Hz, 1H, H5

B
), 7.83 (m, 1H, H15

B
), 7.83 (m, 1H, H8

B
), 7.80 (m, 1H, H6'

B
), 

7.78 (m, 1H, H15'
B
), 7.76 (m, 1H, H15

A
), 7.75 (m, 1H, H4'

A
), 7.75 (m, 1H, H14

A
), 7.70 (m, 

1H, H7'
B
), 7.69 (m, 1H, H6

B
), 7.64 (m, 1H, H6

A
), 7.61 (m, 1H, H4

B
), 7.61 (m, 1H, H7

B
), 7.60 

(m, 1H, H3'
A
), 7.58 (m, 1H, H3

A
), 7.57 (m, 1H, H15'

A
), 7.45 (d, 

3
JHH = 8.9 Hz, 1H, H14'

B
), 

7.39 (d, 
3
JHH = 8.3 Hz, 1H, H5'

B
), 7.34 (pt, JHH = 7.3 Hz, 1H, H16'

B
), 7.28 (m, 1H, H7

A
), 7.24 

(m, 1H, H16'
A
), 7.23 (m, 1H, H3'

B
), 7.17 (m, 1H, H16

B
), 7.17 (m, 1H, H5'

A
), 7.15 (m, 1H, 

H16
A
), 7.08 (m, 1H, H14'

A
), 7.08 (m, 1H, H8

A
), 7.06 (m, 1H, H17'

B
), 6.87 (m, 1H, H18'

B
), 
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6.86 (m, 1H, H17'
A
), 6.85 (m, 1H, H8'

B
), 6.85 (m, 1H, H13

B
), 6.78 (d, 

3
JHH = 8.6 Hz, 1H, 

H13
A
), 6.63 (pt, JHH = 7.9 Hz, 1H, H17

B
), 6.54 (pt, JHH = 7.9 Hz, 1H, H17

A
), 6.42 (d, 

3
JHH = 8.6 Hz, 1H, H18

B
), 6.39 (br d, 

3
JHH = 8.0 Hz, 1H, H4'

B
), 6.34 (pt, J = 8.1 Hz, 1H, H3

B
), 

6.21 (d, 
3
JHH = 8.6 Hz, 1H, H18

A
), 6.17 (d, 

3
JHH = 8.6 Hz, 1H, H18'

A
), 6.17 (pt, JHH = 8.6 Hz, 

1H, H6'
A
), 6.03 (d, 

3
JHH = 8.9 Hz, 1H, H13'

B
), 5.76 (d, 

3
JHH = 8.9 Hz, 1H, H13'

A
), 5.14 (d, 

3
JHH = 8.6 Hz, 1H, H8'

A
), 4.82 (pt, JHH = 7.7 Hz, 1H, H7'

A
), 4.18 (s, 3H, OCH3

B
), 4.07 (s, 3H, 

OCH3
A
) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 153.8 (C2'

A
), 150.5 (d, 

1
JCP = 53.0 Hz, 

C2
B
), 149.1 (C2'

B
), 148.9 (d, 

2
JCP = 15.5 Hz, C12'

B
), 147.9 (d, 

2
JCP = 7.6 Hz, C12

B
), 147.7 (d, 

2
JCP 13.2 Hz, C12'

A
), 146.2 (d, 

2
JCP = 6.7 Hz, C12

A
), 137.4 (d, 

2
JCP = 33.7 Hz, C1

B
), 136.4 

(C2
A
), 135.6 (C1

A
), 135.3 (C9

B
), 135.0 (C10

B
), 134.8 (C10

A
), 134.6 (C9'

A
), 132.8 (C9

A
), 

132.4 (C19
B
+C19

A
), 132.1 (C7'

B
+C20

B
), 131.9 (C19'

B
), 131.7 (C19'

A
), 131.5 (C20

A
), 131.0 

(C20'
B
), 130.8 (C14

B
+C20'

A
), 130.2 (C4

B
+C14'

B
), 129.9 (C14

A
), 129.6 (C6

B
), 129.3 (C14'

A
), 

128.7 (C7
B
), 128.5 (C5

B
+C6

A
), 128.4 (C15

B
), 128.3 (C5

A
), 128.2 (C6'

B
+C15'

B
+C15

A
+C10'

A
), 

128.1 (C4'
A
), 127.9 (d, J = 13.5 Hz, C4

A
), 127.7 (C15'

A
), 127.5 (C7

A
), 127.4 (C8

A
), 126.9 

(C18'
B
+C18

B
), 126.6 (C18'

A
+C3

A
), 126.6 (C5'

B
), 126.5 (C18

A
), 126.4 (C8

B
), 126.2 (C17'

B
), 

126.1 (C5'
A
), 125.8 (C17

B
), 125.6 (C17

A
), 125.5 (C17'

A
), 125.4 (C16

B
), 125.3 

(C16'
B
+C16

A
+C7'

A
), 125.1 (C3

B
), 124.9 (C16'

A
), 123.3 (C8'

B
), 123.0 (C6'

A
), 122.8 (C8'

A
), 

122.4 (C11
A 

), 121.9 (C1'
A
), 121.6 (C11

B
), 121.3 (C11'

A
), 120.9 (C13

B
), 120.7 (C13

A
), 120.1 

(C13'
B
), 120.1 (C11'

B
), 119.5 (C13'

A
), 118.7 (C9'

B
) 114.2 (C3'

A
), 112.8 (C10'

B
), 100.5 (d, 

J = 14.3 Hz, C1'
B
), 95.8 (d, J = 11.3 Hz, C4'

B
), 87.5 (C3'

B
), 58.1 (OCH3

B
), 58.1 (OCH3

A
). 

31
P NMR (202 MHz, CD2Cl2): δ = 181.3 (ddd, 

1
JPRh = 290 Hz, 

2
JPP = 22.3 Hz, 

3
JPH = 16.6 Hz, 

P
A
), 179.6 (ddd, 

1
JPRh = 300 Hz, 

2
JPP = 22.3 Hz, 

3
JPH = 6.6 Hz, P

B
) ppm. IR (neat): ν = 3058.4 

(w), 1621.3 (w), 1590.9 (w), 1506.2 (m), 1463.6 (m), 1324.4 (w), 1277.9 (w), 1222.9 (s), 

1154.4 (w), 1069.0 (s), 956.8 (s), 837.3 (s), 810.1 (m), 746.4 (m), 696.2 (w) cm
–1

. UV-Vis 

(CHCl3, ε [L/mol/cm]): λmax = 412 (~2800) nm. HRMS (ESI
+
, MeOH): Found: 

m/z = 1299.2432. Calculated for [M – BF4]
+
: m/z = 1299.2445. 
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5.4.18 ((R,Sb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite-κP)((R,Sb)-[1,1'-binaphthalene]-2,2'-diyl (1',2',3',4',9',10'η-2'-

methoxy-[1,1'-binaphthalen]-2-yl)phosphonite-κP)rhodium tetrafluoroborate 

(43b) 

 

The same procedures as described for the synthesis of 42b were utilised using 34b as ligand. 

Yellow crystals suitable for X-ray analysis were formed overnight. 

MP (uncorrected): >270 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.47 (dd, 

3
JHH = 8.6 Hz,  

4
JHP = 1.1 Hz, 1H, H4

A
), 8.34 (dd, 

3
JHP = 13.7 Hz, 

3
JHH = 8.6 Hz, 1H, H3

A
), 8.32 (d, 

3
JHH = 8.6 Hz, 1H, H14'

B
), 8.15 (d, 

3
JHH = 8.2 Hz, 1H, H5

A
), 8.07 (d, 

3
JHH = 8.2 Hz, 1H, 

H5'
A
), 7.98 (d, 

3
JHH = 8.2 Hz, 1H, H15'

B
), 7.90 (d, 

3
JHH = 8.2 Hz, 1H, H5

B
), 7.80 (d, 

3
JHH = 9.1 Hz, 1H, H4'

A
), 7.78 (d, 

3
JHH = 8.2 Hz, 1H, H15

B
), 7.75 (m, 1H, H13'

B
), 7.74 (m, 

1H, H15'
A
), 7.73 (m, 1H, H8

B
), 7.67 (m, 3H, H6

A
+H6

B
+H7'

B
), 7.61 (m, 1H, H7'

A
), 7.55 (m, 

2H, H6'
A
+H7

B
), 7.51 (m, 1H, H15

A
), 7.50 (m, 1H, H4

B
), 7.49 (m, 1H, H6'

B
), 7.36 (m, 1H, 

H16
B
), 7.34 (m, 1H, H14

B
), 7.31 (m, 1H, H16'

B
), 7.28 (m, 1H, H14'

A
), 7.27 (m, 1H, H7

A
), 

7.24 (m, 1H, H16'
A
), 7.19 (pt, JHH = 7.5 Hz, 1H, H16

A
), 7.10 (m, 1H, H3'

B
), 7.09 (m, 1H, 

H17
B
), 7.08 (m, 1H, H8'

A
), 7.06 (m, 1H, H8

A
), 6.99 (ddd, 

3
JHH = 8.6 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.1 Hz, 1H, H17

A
), 6.93 (m, 2H, H8'

B
+H18

B
), 6.92 (d, 

3
JHH = 8.2 Hz, 1H, H14

A
), 6.84 

(d, 
3
JHH = 8.6 Hz, 1H, H18

A
), 6.71 (ddd, 

3
JHH = 8.6 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.1 Hz, 1H, 

H17'
B
), 6.60 (m, 1H, H4'

B
), 6.59 (m, 1H, H17'

A
), 6.57 (m, 1H, H3'

A
), 6.48 (d, 

3
JHH = 8.6 Hz, 

1H, H18'
B
), 6.42 (d, 

3
JHH = 8.6 Hz, 1H, H18'

A
), 6.11 (d, 

3
JHH = 8.8 Hz, 1H, H5'

B
), 6.09 (dd, 

3
JHH = 8.3 Hz, 

3
JHP = 8.3 Hz, 1H, H3

B
), 5.54 (d, 

3
JHH = 8.6 Hz, 1H, H13

A
), 5.42 (d, 

3
JHH = 8.6 Hz, 1H, H13

B
), 4.68 (d, 

3
JHH = 8.6 Hz, 1H, H13'

A
), 4.06 (s, 3H, OCH3

B
), 1.79 (s, 

3H, OCH3
A
) ppm. 

11
B NMR (128 MHz, CD2Cl2): δ = –2.0 ppm. 

13
C{

1
H} NMR (126 MHz, 

CD2Cl2): δ = 155.8 (C2'
A
), 149.2 (d, 

1
JCP = 56.2 Hz, C2

B
), 148.6 (d, 

2
JCP = 12.5 Hz, C12

B
), 

148.1 (m, C12
A
+C12'

B
), 147.3 (d, 

2
JCP = 5.7 Hz, C12'

A
), 145.3 (C2'

B
), 137.4 (d, 

2
JCP = 32.0 Hz, C1

B
), 136.6 (C1

A
), 135.2 (C10

B
), 134.9 (d, 

1
JCP = 44.1 Hz, C2

A
), 134.7 
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(C10
A
), 133.8 (C9'

A
), 132.9 (C19'

B
), 132.8 (C9

A
), 132.7 (C19'

A
), 132.2 (C20'

B
), 132.0 (C19

B
), 

131.7 (C19
A
), 131.5 (C20'

A
), 131.1 (C20

B
), 131.0 (C14'

B
), 130.9 (C7'

B
), 130.8 (C20

A
), 130.7 

(C9
B
), 129.9 (C4'

A
+C4

B
+C16

A
), 129.6 (C6

B
), 129.5 (C6'

B
), 129.2 (C14'

A
), 129.1 (C14

A
), 

129.0 (C5'
A
), 128.7 (C6

A
+C10'

A
), 128.6 (C7

B
), 128.5 (C4

A
+C15'

B
+C5

B
), 128.4 (C5

A
), 128.3 

(C15
B
), 128.1 (C15'

A
), 128.0 (C15

A
), 127.6 (C7

A
), 127.5 (C8

A
), 127.3 (d, 

2
JCP = 26.0 Hz, 

C3
A
), 127.1 (C7'

A
), 126.8 (C18

A
), 126.6 (C18'

B
+C18'

A
), 126.4 (C18

B
), 126.2 (C17

A
), 126.2 

(C17'
B
), 126.1 (C8

B
), 125.8 (C17'

A
), 125.7 (C17

B
), 125.5 (C5'

B
+C14

B
+C16'

A
+C16'

B
), 125.2 

(C3
B
), 125.1 (C8'

A
), 124.9 (C16

B
), 123.8 (C8'

B
), 123.7 (C11'

A
), 123.3 (C6'

A
), 122.0 (C9'

B
), 

121.3 (C11'
B
), 121.1 (C11

A
), 121.0 (C13'

B
), 120.2 (C13'

A
, C11

B
), 120.1 (C13

B
), 119.6 (C13

A
), 

118.9 (C1'
A
), 114.0 (C10'

B
), 112.3 (C3'

A
), 101.6 (d, J = 13.1 Hz, C1'

B
), 93.1 (d, J = 12.3 Hz, 

C4'
B
), 90.1 (C3'

B
), 58.4 (OCH3

B
), 54.6 (OCH3

A
) ppm. 

19
F NMR (376 MHz, CD2Cl2): δ = –

152.9 ppm. 
31

P NMR (202 MHz, CD2Cl2): δ = 183.5 (ddd, 
1
JPRh = 277 Hz, 

2
JPP = 23.5 Hz, 

3
JPH = 13.7 Hz, P

A
), 178.4 (ddd, 

1
JPRh = 309 Hz, 

2
JPP = 23.5 Hz, 

3
JPH = 8.3 Hz, P

B
) ppm. IR 

(neat): ν = 3063.2 (w), 1621.2 (w), 1591.7 (w), 1506.3 (m), 1463.7 (m), 1324.2 (w), 1274.0 

(m), 1223.7 (s), 1153.8 (w), 1068.9 (s), 956.1 (s), 837.0 (w), 810.1 (s), 746.6 (s), 696.3 (m) 

cm
–1

. HRMS (ESI
+
, MeOH): Found: m/z = 1299.2440. Calculated for [M – BF4]

+
: 

m/z = 1299.2445. 

5.4.19 ((R)-(2'-Methoxy-[1,1'-binaphthalen]-2-yl)diphenylphosphine-

κP)(1',2',3',4',9',10'η-(R)-(2'-methoxy-[1,1'-binaphthalen]-2-

yl)diphenylphosphine-κP)rhodium tetrafluoroborate (44b) 

 

The same procedures as described for the synthesis of 42b were utilised using OMe-MOP as 

ligand. The solution was filtered and layered with hexane to precipitate the product as a 

orange solid overnight. 

1
H NMR (500 MHz, CDCl3): δ = 7.94 (d, 

3
JHH = 8.2 Hz, 1H, H5

B
), 7.86 (d, 

3
JHH = 8.0 Hz, 

1H, H5
A
), 7.82 (dd, 

3
JHH = 9.0 Hz, 

4
JHP = 1.3 Hz, 1H, H4

B
), 7.78 (dd, 

3
JHH = 8.3 Hz, 

5
JHP = 0.8 Hz, 1H, H8

B
), 7.70 (d, 

3
JHH = 7.5 Hz, 1H, H3'

B
), 7.64 (ddd, 

3
JHH = 8.2 Hz, 
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3
JHH = 6.9 Hz, 

4
JHH = 1.2 Hz, 1H, H6

B
), 7.60 (d, 

3
JHH = 8.7 Hz, 1H, H4

A
), 7.57 (d, 

3
JHH = 8.2 Hz, 1H, H5'

A
), 7.54 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.9 Hz, 

4
JHH = 1.3 Hz, 1H, H7

B
), 

7.49-7.46 (m, 2H, H6
A
+H4'

A
), 7.38 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 7.2 Hz, 

4
JHH = 1.3 Hz, 1H, 

H7'
B
), 7.30 (m, 1H, H14'

B
), 7.25 (m, 1H, H14

B
), 7.17-7.12 (m, 3H, H6'

B
+H6'

A
+H7

A
), 7.11-

7.07 (m, 4H, H3
B
+H13'

B
+H14'

A
), 7.04-6.98 (m, 4H, H3

A
+H5'

B
+H13

B
), 6.96 (ddd, 

3
JHH = 8.4 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 1H, H7'

A
), 6.92-6.84 (m, 5H, H12'

B
+H13'

A
+ 

H14
A
), 6.81-6.73 (m, 5H, H12'

A
+H8'

B
+H3'

A
+H8

A
), 6.60-6.54 (m, 3H, H12

B
+H8'

A
), 6.33 (m, 

2H, H13
A
), 6.24-6.19 (m, 3H, H4'

B
+H12

A
), 3.89 (s, 3H, OCH3

B
), 3.61 (s, 3H, OCH3

A
) ppm. 

11
B NMR (128 MHz, CD2Cl2): δ = –1.6 ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): δ = 154.3 

(C2'
A
), 145.9 (d, 

1
JCP = 50.3 Hz, C2

B
), 141.4 (C2'

B
), 139.3 (d, 

2
JCP = 21.6 Hz, C1

B
), 137.2 

(C1
A
), 134.9 (d, 

2
JCP = 13.1 Hz, C12'

A
), 134.2 (C9

B
+C9'

A
), 133.9 (d, 

2
JCP = 13.1 Hz, C12

A
), 

133.7 (C10
A
), 133.5 (C9

A
), 133.1 (d, 

2
JCP = 12.2 Hz, C12'

B
), 132.3 (d, 

2
JCP = 11.7 Hz, C12

B
), 

132.3 (C11
B
), 131.9 (C11

A
), 131.4 (m, C3

A
), 131.3 (C14'

B
), 130.7 (C4'

A
), 130.6 

(C4
B
+C14

B
+C14'

A
), 130.0 (d, 

1
JCP = 49.8 Hz, C11'

A
), 129.6 (C7'

B
), 129.4 (C14

A
), 128.8 

(C6
B
), 128.7 (d, 

3
JCP = 3.7 Hz, C13'

B
), 128.6 (d, 

3
JCP = 10.8 Hz, C13

B
), 128.6 (C10'

A
), 128.4 

(C5
B
+C7

B
), 128.3 (C6'

A
), 128.0 (C5

A
+C3

B
), 127.9 (C5'

A
), 127.7 (C6

A
), 127.5 (C13'

A
), 127.1 

(C7
A
), 126.9 (d, 

3
JCP = 14.0 Hz, C4

A
), 126.5 (C8

A
), 126.5 (d, 

3
JCP = 3.4 Hz, C13

A
), 126.2 

(C8
B
), 126.0 (C7'

A
), 124.7 (C5'

B
), 124.6 (C8'

A
), 123.2 (C6'

B
), 123.1 (C9'

B
), 121.9 (C8'

B
), 

120.2 (C10'
B
), 118.7 (C1'

A
), 112.4 (C3'

A
), 93.6 (d, J = 13.1 Hz, C1'

B
), 92.3 (d, J = 9.2 Hz, 

C4'
B
), 89.5 (C3'

B
), 57.2 (OCH3

B
), 55.8 (OCH3

A
) ppm; resonances for C2

A
, C10

B
 and C11'

B
 

were obscured. 
19

F NMR (376 MHz, CD2Cl2): δ = –153.3 ppm. 
31

P{
1
H} NMR (162 MHz, 

CDCl3): δ = 50.0 (dd, 
1
JPRh = 217 Hz, 

2
JPP = 32.1 Hz, P

B
), 37.2 (dd, 

1
JPRh = 197 Hz, 

2
JPP = 32.1 Hz, P

A
) ppm. HRMS (ESI

+
, MeOH): Found: m/z = 1039.2321. Calculated for [M 

– BF4]
+
: m/z = 1039.2336. 

5.4.20 Chloro((R,Rb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η4-cycloocta-1,5-diene)iridium (45b) 
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33b (28.4 mg, 50.0 μmol) and [Ir(η
4
-cod)Cl]2 (16.8 mg, 25.0 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 30 minutes. The solution was filtered and layered with Et2O. Dark 

orange crystals suitable for X-ray analysis were formed overnight. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.17 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 8.10 (d, 

3
JHH = 8.8 Hz, 

1H, H13), 8.05 (d, 
3
JHH = 8.8 Hz, 1H, H14), 8.00 (d, 

3
JHH = 8.9 Hz, 1H, H15), 7.93 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.87 (d, 

3
JHH = 8.1 Hz, 1H, H15'), 7.87 (d, 

3
JHH = 8.1 Hz, 1H, H5), 

7.75 (dd, 
3
JHH = 8.7 Hz, 

3
JHP = 6.3 Hz, 1H, H3), 7.71 (dd, 

3
JHH = 8.7 Hz, 

4
JHP = 6.3 Hz, 1H, 

H4), 7.68 (d, 
3
JHH = 8.9 Hz, 1H, H14'), 7.57 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.52-7.41 (m, 5H, 

H6+H16+H16'+H18'+H18), 7.37-7.29 (m, 3H, H6'+H17+H17'), 7.24-7.18 (m, 2H, H7+H7'), 

7.17 (d, 
3
JHH = 8.9 Hz, 1H, H13'), 7.04 (d, 

3
JHH = 8.5 Hz, 1H, H8'), 6.94 (d, 

3
JHH = 8.5 Hz, 

1H, H8), 5.08 (m, 1H, cod-CH), 3.98 (m, 1H, cod-CH), 3.96 (s, 3H, OCH3), 2.18 (m, 1H, cod-

CH), 2.08 (m, 1H, cod-CH), 1.75 (m, 1H, cod-CH2), 1.51-1.40 (m, 3H, cod-CH2), 1.31 (m, 

1H, cod-CH2), 1.05 (m, 1H, cod-CH2), 1.00-0.95 (m, 2H, cod-CH2) ppm. 
13

C{
1
H} NMR 

(101 MHz, CD2Cl2): δ = 155.8 (C2'), 149.7 (d, 
2
JCP = 4.3 Hz, C12), 149.6 (d, 

2
JCP = 10.9 Hz, 

C12'), 140.7 (d, 
2
JCP = 22.4 Hz, C1), 135.1 (C2), 134.6 (C9'), 133.2 (d, J = 11.7 Hz), 132.8, 

132.4 (d, J = 1.3 Hz), 132.3 (d, J = 2.2 Hz), 132.2, 131.7, 131.4 (C4'), 129.9 (C14'), 129.8 

(C14), 129.6 (C8'), 129.2 (C10'), 128.4 (C15), 128.4 (C15'), 128.1 (C5), 127.9 (C6), 127.1 

(C5'), 126.9 (C4), 126.7 (C18), 126.7 (C18'), 126.6 (C7), 126.6 (C8), 126.3 (C17+C17'), 

126.2 (C7'), 125.8 (d, 
2
JCP = 3.3 Hz, C3), 125.4 (C16), 125.2 (C16'), 124.5 (C13), 124.0 

(C6'+C11), 123.3 (d, 
3
JCP = 2.7 Hz, C11'), 121.7 (C13'), 120.0 (d, 

3
JCP = 7.8 Hz, C1'), 112.7 

(C3'), 102.5 (d, 
2
JCP = 18.5 Hz, cod-CH), 101.8 (d, 

2
JCP = 15.9 Hz, cod-CH), 56.1 (cod-CH), 

56.0 (OCH3), 49.7 (cod-CH), 33.6 (d, 
3
JCP = 3.9 Hz, cod-CH2), 32.1 (d, 

3
JCP = 2.7 Hz, cod-

CH2), 27.9 (d, 
3
JCP = 2.3 Hz, cod-CH2), 27.6 (d, 

3
JCP = 2.6 Hz, cod-CH2) ppm; resonances for 

C9, C19, C19', C20 and C20' could not be specifically assigned. 
31

P{
1
H} NMR (202 MHz, 

CD2Cl2): δ = 140.4 ppm. HRMS (ESI
+
, MeCN): Found: m/z = 897.2214. Calculated for [M – 

Cl]
+
: m/z = 897.2237. 
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5.4.21 Chloro((R,Sb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η4-cycloocta-1,5-diene)iridium (46b) 

 

34b (30.0 mg, 50.0 μmol) and [Ir(η
4
-cod)Cl]2 (16.8 mg, 25.0 μmol) were dissolved in CH2Cl2 

(2 mL) and stirred for 30 minutes. The solution was filtered and layered with Et2O to 

precipitate the product as a yellow solid overnight. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.20 (d, 

3
JHH = 9.2 Hz, 1H, H4'), 8.08 (d, 

3
JHH = 8.8 Hz, 

1H, H13'), 8.04 (d, 
3
JHH = 8.8 Hz, 1H, H14'), 7.97-7.92 (m, 3H, H15'+H5'+H15), 7.87 (d, 

3
JHH = 8.3 Hz, 1H, H5), 7.80 (d, 

3
JHH = 8.9 Hz, 1H, H14), 7.66 (d, 

3
JHH = 8.8 Hz, 1H, H4), 

7.61 (dd, 
3
JHH = 8.7 Hz, 

3
JHP = 6.3 Hz, 1H, H3), 7.53 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 1H, H6), 7.51 (d, 

3
JHH = 9.2 Hz, 1H, H3'), 7.49 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.3 Hz, 1H, H16), 7.46-7.39 (m, 4H, H16'+H7'+H18+H8'), 7.36-7.30 

(m, 2H, H6'+H17), 7.29-7.23 (m, 3H, H7+H17'+H18'), 7.13 (d, 
3
JHH = 8.6 Hz, 1H, H8), 7.04 

(d, 
3
JHH = 8.9 Hz, 1H, H13), 5.26 (m, 1H, cod-CH), 4.70 (m, 1H, cod-CH), 3.76 (s, 3H, 

OCH3), 2.13 (m, 1H, cod-CH), 2.04 (m, 1H, cod-CH2), 1.72 (m, 1H, cod-CH2), 1.65 (m, 1H, 

cod-CH2), 1.36-1.26 (m, 2H, cod-CH2), 1.18 (m, 1H, cod-CH), 0.96-0.86 (m, 2H, cod-CH2), 

0.73 (m, 1H, cod-CH2) ppm. 
13

C{
1
H} NMR (126 MHz, CD2Cl2): δ = 155.6 (C2'), 149.8 (d, 

2
JCP = 5.8 Hz, C12'), 149.2 (d, 

2
JCP = 12.8 Hz, C12), 141.3 (d, 

2
JCP = 24.1 Hz, C1), 135.3 (d, 

1
JCP = 1.8 Hz, C2), 135.0 (C9'), 133.1 (d, 

3
JCP = 11.6 Hz, C9), 132.8 (d, 

4
JCP = 7.4 Hz, C19), 

132.4 (d, 
4
JCP = 1.6 Hz, C19'), 131.7 (d, 

5
JCP = 1.6 Hz, C20'), 131.4 (d, 

5
JCP = 0.9 Hz, C20), 

131.1 (C4'), 130.0 (C14'), 129.8 (C14), 128.4 (C15'), 128.4 (C15), 128.2 (C5'), 128.1 (C5), 

128.1 (C6), 127.1 (d, 
4
JCP = 2.0 Hz, C8), 127.1 (C4), 127.0 (C8'+C18), 126.7 (C18'), 126.4 

(C7), 126.3 (C17'), 126.2 (C7'), 125.8 (d, 
2
JCP = 3.1 Hz, C3), 125.6 (C17), 125.3 (C16'), 125.3 

(C16), 124.7 (d, 
3
JCP = 2.7 Hz, C13'), 123.6 (d, 

3
JCP = 3.7 Hz, C11'), 123.3 (C6'), 123.0 (d, 

3
JCP = 2.5 Hz, C11), 121.4 (d, 

3
JCP = 1.4 Hz, C13), 119.5 (d, 

3
JCP = 8.0 Hz, C1'), 112.9 (C3'), 

102.6 (d, 
2
JCP = 18.5 Hz, cod-CH), 99.7 (d, 

2
JCP = 17.0 Hz, cod-CH), 57.9 (d, 

2
JCP = 1.5 Hz, 

cod-CH), 55.7 (OCH3), 50.5 (cod-CH), 33.4 (d, 
3
JCP = 3.5 Hz, cod-CH2), 32.2 (d, 

3
JCP = 3.0 Hz, cod-CH2), 27.8 (d, 

3
JCP = 2.4 Hz, cod-CH2), 27.7 (d, 

3
JCP = 2.9 Hz, cod-CH2) 
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ppm; resonances for C10 and C10' were obscured. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): 

δ = 139.6 ppm. HRMS (ESI
+
, MeCN): Found: m/z = 897.2226. Calculated for [M – Cl]

+
: 

m/z = 897.2237. 

5.4.22 Bis((R,Rb)-[1,1'-binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-

yl)phosphonite)(η4-cycloocta-1,5-diene)iridium tetrafluoroborate (47b) 

 

Methode A: 33b (30.0 mg, 50.0 μmol) and [Ir(η
4
-cod)2]BF4 (12.4 mg, 25.0 μmol) were 

dissolved in CH2Cl2 (1 mL) and stirred for 30 minutes. The solution was filtered and layered 

with Et2O to precipitate the product as a green solid overnight. 

Methode B: 45b (23.4 mg, 25.0 μmol) was dissolved in CH2Cl2 (1 mL), AgBF4 (4.8 mg, 

25.0 μmol) and 33b (15.0 mg, 25.0 μmol) were added and stirred for 30 minutes. The solution 

was filtered and concentrated in vacuo. The crude product was washed with Et2O to give the 

product as a green solid. 

1
H NMR (500 MHz, CDCl3): δ = 8.27 (d, 

3
JHH = 8.8 Hz, 2H, H14), 8.14 (d, 

3
JHH = 8.2 Hz, 

2H, H15), 7.85 (d, 
3
JHH = 8.3 Hz, 2H, H5), 7.69 (d, 

3
JHH = 9.1 Hz, 2H, H4'), 7.61 (d, 

3
JHH = 8.1 Hz, 2H, H15'), 7.58-7.54 (m, 4H, H4+H16), 7.83 (pt, JHH = 7.5 Hz, 2H, H6), 7.37-

7.30 (m, 6H, H3+H16'+H3'), 7.24 (d, 
3
JHH = 8.8 Hz, 2H, H13), 7.16 (d, 

3
JHH = 8.2 Hz, 2H, 

H5'), 7.12-7.02 (m, 8H, H17+H7+H14'+H17'), 6.84 (d, 
3
JHH = 8.6 Hz, 2H, H8), 6.81 (d, 

3
JHH = 8.6 Hz, 2H, H18), 6.58 (d, 

3
JHH = 8.6 Hz, 2H, H18'), 6.10 (pt, JHH = 7.5 Hz, 2H, H6'), 

5.64 (m, 2H, cod-CH), 5.10 (d, 
3
JHH = 8.8 Hz, 2H, H13'), 5.08 (d, 

3
JHH = 8.5 Hz, 2H, H8'), 

4.86 (pt, JHH = 7.6 Hz, 2H, H7'), 4.67 (m, 2H, cod-CH), 3.62 (s, 6H, OCH3), 2.73 (m, 2H, 

cod-CH2), 2.57 (m, 2H, cod-CH2), 2.15 (m, 2H, cod-CH2), 2.00 (m, 2H, cod-CH2) ppm. 

13
C{

1
H} NMR (126 MHz, CDCl3): δ = 153.2 (C2'), 147.6 (pt, 

2
JCP = 12.2 Hz, C12'), 147.2 

(pt, 
2
JCP = 7.0 Hz, C12), 138.8 (C1), 134.7 (C10), 134.5 (C9'), 132.9 (pt, 

3
JCP = 8.4 Hz, C9), 

132.8 (C19), 132.4 (C19'), 132.1 (C20), 131.4 (C20'), 130.9 (C14), 130.2 (C4'), 130.0 (C14'), 
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128.7 (C15), 128.6 (C6), 128.2 (C5), 128.1 (C4), 127.9 (C15'), 127.6 (C8), 127.6 (C18), 127.5 

(C18'), 127.4 (C10'), 127.4 (C7), 126.8 (C17), 126.3 (C5'), 126.0 (C17'), 125.9 (C16), 125.5 

(C16'), 125.4 (C7'), 123.5 (C11), 122.4 (C6'), 122.3 (C8'), 121.6 (C11'), 120.6 (C13), 119.6 

(C13'), 119.5 (C1'), 111.5 (C3'), 99.2 (pt, 
2
JCP = 14.8 Hz, cod-CH), 94.3 (pt, 

2
JCP = 10.2 Hz, 

cod-CH), 55.6 (OCH3), 33.3 (cod-CH2), 29.3 (cod-CH2) ppm; resonances for C2 and C3 were 

obscured. 
31

P{
1
H} NMR (202 MHz, CDCl3): δ = 156.3 ppm. HRMS (ESI

+
, MeOH): Found: 

m/z = 1495.3935. Calculated for [M – BF4]
+
: m/z = 1495.3935. 

5.4.23 ((S,Rb)-[1,1'-Binaphthalene]-2,2'-diyl [1,1'-binaphthalen]-2-

ylphosphonite)chlorogold (48a) 

 

Phosphonite 33a (29.9 mg, 50 μmol) and [AuCl(tht)] (16.0 mg, 50 μmol) were dissolved in 

CH2Cl2 (2 mL) and stirred for 15 minutes. Removal of the solvent gave the product as a 

colourless solid which was washed with hexane. Yield: 38 mg (95%). 

1
H NMR (400 MHz, CD2Cl2): δ = 8.16 (d, 

3
JHH = 8.3 Hz, 1H, ArH), 8.05 (d, 

3
JHH = 8.8 Hz, 

1H, ArH), 8.03 (d, 
3
JHH = 8.1 Hz, 1H, ArH), 7.96 (d, 

3
JHH = 8.3 Hz, 1H, ArH), 7.93 (d, 

3
JHH = 9.0 Hz, 1H, ArH), 7.91 (d, 

3
JHH = 8.8 Hz, 1H, ArH), 7.82 (dd, 

3
JHH = 7.0 Hz, 

J = 1.3 Hz, 1H, ArH), 7.80 (d, 
3
JHH = 8.3 Hz, 1H, ArH), 7.74-7.67 (m, 2H, 2 ArH), 7.61 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, J = 1.5 Hz, 1H, ArH), 7.55-7.21 (m, 6H, 6 ArH), 7.37-7.27 (m, 

6H, 6 ArH), 7.10 (d, 
3
JHH = 8.3 Hz, 1H, ArH), 7.04 (dd, 

3
JHH = 8.8 Hz, J = 1.1 Hz, 1H, ArH) 

ppm. 
13

C{
1
H} NMR (101 MHz, CD2Cl2): δ = 147.4 (d, J = 7.0 Hz), 146.9 (d, J = 12.8 Hz), 

146.3 (d, J = 24.7 Hz), 135.6, 134.1, 133.6, 133.3 (d, J = 10.4 Hz), 133.2 (d, J = 11.2 Hz), 

132.6, 132.5, 132.3, 131.9, 130.8, 130.7, 130.2, 129.3, 129.2, 129.0, 128.8, 128.6, 128.2, 

128.1, 128.0, 127.7, 127.4, 127.0, 126.9, 126.8, 126.6, 126.1, 126.0, 125.3, 124.8, 124.7, 

123.6, 123.1, 120.7, 120.5 ppm. 
31

P{
1
H} NMR (162 MHz, CD2Cl2): δ = 149.6 (d, 

JPH = 6.1 Hz) ppm. HRMS (EI): Found: m/z = 800.0948. Calculated for [M]
+
: 

m/z = 800.0946. 
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5.4.24 ((R,Rb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)-

phosphonite)chlorogold (48b) 

 

Phosphonite 33b (29.9 mg, 50 μmol) and [AuCl(tht)] (16.0 mg, 50 μmol) were dissolved in 

CH2Cl2 (2 mL) and stirred for 15 minutes. The intended complex was formed quantitatively. 

Slow diffusion of Et2O into the reaction mixture yielded colourless crystals overnight which 

were suitable for X-ray diffraction analysis. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.24 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 8.07 (d, 

3
JHH = 9.0 Hz, 

1H, ArH), 8.00-7.95 (m, 3H, H5'+H15'+ArH), 7.93 (d, 
3
JHH = 8.3 Hz, 1H, H5), 7.82 (d, 

3
JHH = 8.8 Hz, 1H, H14'), 7.70 (d, 

3
JHH = 8.8 Hz, JHP = 2.2 Hz, 1H, H4), 7.63 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.7 Hz, JHH = 1.4 Hz, 1H, H6), 7.56 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.56-

7.49 (m, 3H, 3 ArH), 7.47 (d, 
3
JHH = 8.5 Hz, 1H, ArH), 7.42-7.23 (m, 8H, H3+H7+6 ArH), 

7.05 (d, 
3
JHH = 8.8 Hz, 1H, H13'), 7.86 (d, 

3
JHH = 8.5 Hz, 1H, ArH), 4.02 (s, 3H, OCH3) ppm. 

13
C{

1
H} NMR (101 MHz, CD2Cl2): δ = 156.6 (C2'), 147.5 (d, J = 7.3 Hz), 147.2 (d, 

J = 12.9 Hz), 143.3 (d, J = 25.4 Hz, C2), 136.0 (d, J = 1.8 Hz), 134.7 (C9'), 133.1 (d, 

J = 11.6 Hz), 132.6 (d, J = 1.8 Hz), 132.4 (d, J = 1.8 Hz), 132.2 (d, J = 1.4 Hz), 132.1 (C4'), 

131.9 (d, J = 1.4 Hz), 131.8 (d, J = 1.8 Hz), 130.8 (d, J = 1.8 Hz, C14'), 129.4, 129.3, 129.0, 

128.8 (C10'), 128.6, 128.4, 128.2, 127.6 (d, J = 7.8 H, C4), 127.4 (d, J = 1.4 Hz), 127.4, 

127.1, 127.1, 126.9 (d, J = 3.7 Hz), 126.8 (d, J = 4.2 Hz), 125.9 (d, J = 6.4 Hz), 124.9 (d, 

J = 4.4 Hz), 124.8, 124.1, 123.8 (d, J = 3.8 Hz), 123.2 (d, J = 3.2 Hz), 121.1 (d, JCP = 1.9 Hz, 

C13'), 120.9 (d, JCP = 2.9 Hz), 117.2 (d, 
2
JCP = 10.9 Hz, C1'), 112.6 (C3'), 56.2 (OCH3) ppm. 

31
P NMR (202 MHz, CD2Cl2): δ = 149.9 (d, JPH = 6.8 Hz) ppm. HRMS (EI): Found: 

m/z = 830.1039. Calculated for [M]
+
: m/z = 830.1052. 
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5.4.25 ((S,Rb)-[1,1'-Binaphthalene]-2,2'-diyl [1,1'-binaphthalen]-2-

ylphosphonite)chlorogold (49a) 

 

Phosphonite 34a (29.9 mg, 50 μmol) and [AuCl(tht)] (16.0 mg, 50 μmol) were dissolved in 

CH2Cl2 (2 mL) and stirred for 15 minutes. Removal of the solvent gave the product as a 

colourless solid which was washed with hexane. 

1
H NMR (400 MHz, CD2Cl2): δ = 8.15 (d, 

3
JHH = 7.8 Hz, 1H, ArH), 8.05 (d, 

3
JHH = 8.9 Hz, 

1H, ArH), 8.01 (d, 
3
JHH = 8.2 Hz, 1H, ArH), 7.99-7.88 (m, 5H, 5 ArH), 7.78 (dd, 

3
JHH = 8.6 Hz, J = 2.1 Hz, 1H, ArH), 7.64-7.57 (m, 3H, 3 ArH), 7.56-7.44 (m, 5H, 5 ArH), 

7.39-7.31 (m, 5H, 5 ArH), 7.29-7.21 (m, 2H, 2 ArH), 7.11 (dd, 
3
JHH = 8.9 Hz, 

3
JHH = 1.2 Hz, 

1H, ArH) ppm. 
13

C{
1
H} NMR (101 MHz, CD2Cl2): δ = 147.5 (d, J = 7.3 Hz), 147.1 (d, 

J = 12.7 Hz), 146.1 (d, J = 24.0 Hz), 135.8, 134.0, 133.7, 133.5 (d, J = 11.3 Hz), 133.3 (d, 

J = 10.2 Hz), 132.6, 132.5, 132.2, 131.9, 131.8, 131.3, 130.9, 129.9, 129.7, 129.4, 128.9, 

128.8, 128.6, 128.4, 128.2, 128.1, 127.8, 127.5, 127.3, 127.1, 126.9, 126.7, 126.5, 126.1, 

126.0, 124.8, 124.7, 124.1, 124.0, 123.5, 122.8, 121.0, 120.7, 117.8 ppm. 
31

P{
1
H} NMR 

(162 MHz, CD2Cl2): δ = 149.5 (d, JPH = 7.5 Hz) ppm. HRMS (EI): Found: m/z = 800.0936. 

Calculated for [M]
+
: m/z = 800.0946. 

5.4.26 ((R,Sb)-[1,1'-Binaphthalene]-2,2'-diyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)-

phosphonite)chlorogold (49b) 

 

Phosphonite 34b (29.9 mg, 50 μmol) and [AuCl(tht)] (16.0 mg, 50 μmol) were dissolved in 

CH2Cl2 (2 mL) and stirred for 15 minutes. The intended complex was formed quantitatively. 
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Slow evaporation of a Et2O/CH2Cl2 solution yielded colourless crystals which were suitable 

for X-ray diffraction analysis. 

1
H NMR (500 MHz, CD2Cl2): δ = 8.25 (d, 

3
JHH = 9.2 Hz, 1H, H4'), 8.10 (d, 

3
JHH = 8.8 Hz, 

1H, ArH), 7.97 (m, 2H, H5'+ArH), 7.92 (d, 
3
JHH = 8.2 Hz, 1H, ArH), 7.89 (d, 

3
JHH = 8.8 Hz, 

1H, ArH), 7.73 (dd, 
3
JHH = 8.8 Hz, 

3
JHP = 2.1 Hz, 1H, H4), 7.65-7.61 (m, 2H, 2 ArH), 7.56 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.55-7.34 (m, 10H, 10 ArH), 7.29-7.23 (m, 2H, 2 ArH), 7.16-7.13 

(m, 2H, 2 ArH), 3.93 (s, 3H, OCH3) ppm. 
13

C{
1
H} NMR (126 MHz, CD2Cl2): δ = 155.3 

(C2'), 147.6 (d, J = 7.2 Hz), 147.0 (d, J = 12.9 Hz), 143.8 (d, J = 25.7 Hz, C2), 135.9 (d, 

J = 1.8 Hz), 134.8 (C9'), 133.1 (d, J = 11.8 Hz), 132.6, 132.6 (d, J = 0.9 Hz), 132.3 (d, 

J = 1.6 Hz), 131.9 (d, J = 1.8 Hz), 131.8 (d, J = 1.2 Hz), 131.6 (C4'), 130.8 (d, J = 1.5 Hz), 

129.4, 128.9, 128.8, 128.7 (C5'), 128.6 (C10'), 128.3, 127.9 (d, J = 8.0 H), 127.6 (d, 

J = 1.4 Hz), 127.1, 127.1, 127.0, 126.9, 126.7, 126.0 (d, J = 2.9 Hz), 124.9 (d, J = 4.3 Hz), 

124.8, 123.9, 123.7 (d, J = 3.7 Hz), 122.9 (d, J = 3.1 Hz), 120.9 (d, JCP = 2.1 Hz), 120.8 (d, 

JCP = 2.9 Hz), 117.3 (d, 
2
JCP = 10.8 Hz, C1'), 114.2 (C3'), 56.1 (OCH3) ppm. 

31
P NMR 

(202 MHz, CD2Cl2): δ = 149.2 (d, JPH = 6.7 Hz) ppm. HRMS (EI): Found: m/z = 830.1056. 

Calculated for [M]
+
: m/z = 830.1052. 

5.4.27 Rhodium-Catalysed Asymmetric Addition of Arylboronic Acids to Aldehydes 

 

Rhodium precursor (10 μmol Rh) and ligand (20 μmol) were dissolved in THF (4 mL) and 

left to stir for 20 minutes. Phenylboronic acid (122 mg, 1.0 mmol), base (2.5 M aqueous 

solution, 1.0 mmol) and 1-naphthaldehyde (68 μl, 0.5 mmol) were added subsequently. The 

reaction mixture was heated to 60 °C and the conversion was followed by TLC analysis. After 

the stated reaction time the solvent was evaporated and the crude product was purified by 

column chromatography (hexane/EtOAc, 10:1) on silica media (h = 15 cm, d = 2 cm) to give 

the product as a colourless oil. The enantiomeric excess was measured by chiral HPLC 

(Column Daicel Chiralpak OD; flow rate: 1.0 mL/min; hexane/2-propanol, 80:20; retention 

times: (S) t1 = 10.1 min, (R) t2 = 19.4 min).
310
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5.4.28 Gold Catalysed Cyclopropanation of Styrene 

 

The catalyst was generated in situ by reacting [Au(L)Cl] (0.025 mmol, L = chiral ligand) and 

AgSbF6 (8.6 mg, 0.025 mmol) in MeNO2 (5 mL) for 30 minutes. Styrene (0.23 mL, 208 mg, 

2.0 mmol) was added, followed by the addition of 2-methylbut-3-yn-2-yl acetate (0.5 mmol, 

0.1 M solution in MeNO2). After 2 hours reaction time the mixture was concentrated and 

purified by column chromatography (hexane/EtOAc, 5:1) on silica media. The 

diastereoselectivity was determined by 
1
H NMR spectroscopy. The enantiomeric excess was 

measured by chiral HPLC (Column Daicel Chiralcel OD; flow rate: 1.0 mL/min; hexane/2-

propanol, 95:5; retention times: t1 = 5.4 min, t2 = 6.4 min). 

5.4.29 Gold Catalysed Cyclization of Enynes 

  

The catalyst was generated in situ by reacting [Au(L)Cl] (0.015 mmol, L = chiral ligand) and 

AgSbF6 (5.2 mg, 0.015 mmol) in MeOH (4 mL) for 10 minutes. The enyne
311

 (0.25 mmol, 

0.0625 M solution in MeOH) was added and the reaction mixture was stirred at room 

temperature until full conversion was achieved. The progress of the reaction was followed by 

TLC analysis. The mixture was concentrated and purified by column chromatography 

(hexane/EtOAc, 4:1) on silica media. The enantiomeric excess was measured by chiral HPLC 

(Column Daicel Chiralpak AD-H; flow rate: 0.5 mL/min; hexane/2-propanol, 95:5; retention 

times: t1 = 9.7 min, t2 = 11.6 min). 
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Chapter 6 —  Phosphonodichalcogenoites and Phosphaalkenes 

 

 

A series of chiral phosphonodichalcogenoite ligands and their corresponding gold(I) 

complexes were prepared and characterised by NMR and HRMS. Four representative X-ray 

crystal structures are reported. The ligands coordinate via their P-atom in a nearly linear 

fashion to the AuCl fragment. Furthermore, we synthesised a highly reactive MOP-

phosphaalkene in a one-pot reaction sequence from the corresponding primary phosphine. 

6.1 Introduction 

Primary phosphines based on the MOP-type architecture have been developed in our labs.
312

 

They are stable towards air-oxidation and their synthesis from enantiopure BINOL in 4-5 

steps has been optimised and was carried-out on a multigram scale (Chapter 2).
313

 

Subsequently we have successfully employed these compounds as chiral ligand precursors to 

access a variety of phosphorus functionalised ligands, e.g. phosphiranes (Chapter 3-4),
314

 

dimethylphosphines (Chapter 4), bis(dimethylamino)phosphines (Chapter 4) and 

phosphonites (Chapter 4-5).
315

 While phosphorus-donor ligands carrying C, N, or O 

substituents are fairly common, organothio- and organoseleno-phosphorus compounds have 

rarely been studied, and only a small number of their transition metal complexes have been 

crystallographically analysed.
316

 The coordination chemistry of trialkyltrithiophosphites has 

been summarised in the literature,
317

 however their specific donor/acceptor properties in 

comparison to more typical ligand entities are largely unknown.
318

 Hence, we were keen on 

using our primary phosphine precursors to prepare these more exotic ligands and 

subsequently study their metal coordination. Here we report the synthesis of phosphono-

dithioite and phosphonodiselenoite ligands based on the MOP-scaffold and their coordination 

chemistry on gold(I). The compounds have been unambiguously characterised by NMR 

spectroscopy and in some cases by X-ray crystallography; for the selenium containing 
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compounds we report 
77

Se NMR data which can give further insights into the coordination 

properties of those ligands. 

Phosphaalkenes are low-coordinate compounds that possess a phosphorus-carbon double 

bond.
319

 As expected for an element of the third period this double bond is normally very 

reactive and therefore usually requires steric stabilisation to be viable at ambient conditions. 

Chemical bonds of this type posess extremely low lying π* orbitals, and the strong π-acceptor 

property of the phosphorus lone-pair allows for the stabilisation of electron rich metal centres 

upon coordination. Consequently compounds of this type have been used as ligands in a 

number of catalytic processes.
319a,b,320

 Furthermore, synthetic methodologies have been 

developed that enable P=C bonds to be polymerised leading to new phosphine-containing 

macromolecules that have applications in polymer-supported catalysis.
321

 In the second part 

of this chapter we report the synthesis of an unusual MOP-phosphaalkene (Ar–P=CPh2) 

which is highly reactive towards thermal decomposition. 

6.2 Results and Discussion 

6.2.1 Phosphonodichalcogenoites 

We synthesised the novel phosphonite ligands 50a,b as well as phosphonodithioites 51a,b and 

52a,b and phosphonodiselenoite 53b in a two-step, one-pot reaction procedure (Scheme 6.1) 

that we had used before to access various other MOP-type ligands. Primary phosphines 1a,b 

were first treated with phosphorus pentachloride to generate the respective 

dichlorophosphines in situ. Further reactions were carried out in the same reaction vessel by 

adding the appropriate alcohol, thiol or selenol reagents. Conversions were usually 

quantitative so that the overall yields were only lowered during purification. 

 

Scheme 6.1 Synthesis of phosphonodichalcogenoites from primary phosphines via dichlorophosphines. 

Phosphonite ligands 50a,b are moisture sensitive and therefore should be stored under an inert 

atmosphere. The 
31

P NMR spectra show the expected resonances at 151.6 (50a) and 

153.7 ppm (50b). Phosphonodithioites 51a,b and 52a,b are air-stable compounds as they 
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showed no sign of oxidation or hydrolysis even after prolonged exposure to air and moisture. 

Their resonances in the 
31

P NMR spectra are shifted to higher field compared to 50a,b. The 

aryl-dithioite signals were observed at 82.0 (52a) or 72.0 ppm (52b) while the alkyl-

derivatives 51a,b were found further upfield at 54.2 ppm in each case. For 51b we were able 

to obtain crystals suitable for X-ray diffraction (Figure 6.1). The asymmetric unit contains two 

independent molecules with similar structural parameters; the positions of the isopropyl 

groups are slightly disordered. The P–S bond lengths compare well to those reported for other 

arylphosphonodithioites (2.101(2) to 2.122(1) Å).
322

 

 

Figure 6.1 View of one of the two independent molecules of 51b in the asymmetric unit with 50% probability 

displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles 

[°], respective bond lengths/angles of the second molecule in brackets: P2–S3 2.1169(8) (2.1125(9)), P2–S4 

2.1192(8) (2.1176(8)), P2–C28 1.8232(19) (1.831(2)); S3-P2-S4 103.54(3) (103.44(4)), S3-P2-C28 99.78(6) 

(100.56(7)), S4-P2-C28 95.05(7) (94.75(7)). 

Phosphonodiselenoite 53b exhibits similar properties to 51a,b and 52a,b; it is stable towards 

air and moisture in the solid state, however it will decompose in solution within a number of 

days accompanied by formation of a dark grey residue. In the 
31

P NMR spectrum the 

resonance of 53b at 72.0 ppm is accompanied by satellite peaks caused by coupling to the 

77
Se nucleus (Figure 6.2). The coupling of the two selenium atoms to the phosphorus is 

equivalent within measuring accuracy. The satellites appear as a doublet with a 
1
JPSe coupling 

constant at 224 Hz. Its magnitude compares well to the coupling constants found for 

Me2PSeMe (205 Hz),
323

 tBuP(2-SePy)2 (228 Hz),
316d

 and the ferrocene derivative 

Fe(C5H4Se)2PPh (247 Hz).
324

 The chemical shifts of the two selenium atoms in the 
77

Se NMR 

are inequivalent; the two resonances were observed as doublets at 361.2 and 348.8 ppm 

(Figure 6.2). From the satellite peaks in the selenium NMR spectra (due to their low intensity 

these are hardly recognisable in Figure 6.2) we were able to determine the reciprocal coupling 

of the two selenium atoms (
2
JSe,Se = 71 Hz). 
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Figure 6.2 Left: 
31

P{
1
H} NMR (162 MHz) spectra of 53b and Au(53b)Cl (56b). The satellite peaks are caused 

by coupling to the 
77

Se nucleus. Right: 
77

Se{
1
H} NMR (95 MHz) spectra of 53b and 56b. 

 

Figure 6.3 View of the molecular structure of 53b with 50% probability displacement ellipsoids. Hydrogen 

atoms have been omitted for clarity. Selected bond distances [Å] and angles [°]: Se1–P 2.2785(9), Se2–P 

2.2672(9), P–C1 1.826(3); Se1-P-Se2 105.05(4), Se1-P-C1 100.55(9), Se2-P-C1 95.50(10). 

Crystals suitable for X-ray crystallographic analysis were obtained from slow evaporation of 

an ethyl acetate/hexane solution (Figure 6.3). As expected, the Se–P bond lengths at 2.2785(9) 

and 2.2672(9) Å in 53b are significantly longer than the P–S bonds in 51b (vide supra), but 

shorter than the Se–P bonds found in the carborane derivative LVIII (Figure 6.4) which is, to 

the best of our knowledge, the only other structurally characterised example of an ArP(SeR)2 

binding motif (2.3106(15) and 2.3061(16) Å).
325

 The P–C1 distance and the intervalence 

angles around the phosphorus are comparable to those found for the dithioite derivative 51b. 

 

Figure 6.4 Phosphonodiselenoite LVIII is a rare example of a structurally characterised ArP(SeR)2 binding 

motif. 
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For testing the coordination behaviour of our phosphonodichalcogenoites 51b-53b we 

synthesised their corresponding gold(I) complexes (Scheme 6.2). The quantitative formation 

of 54b-56b was achieved by reacting the appropriate ligand with [AuCl(tht)] (tht = 

tetrahydrothiophene). The 
31

P NMR spectral resonances of 54b (78.8 ppm) and 55b 

(101.3 ppm) are shifted to lower field while an upfield shift is observed for 56b (68.1 ppm) 

compared to the free ligands respectively. Satellite peaks due to coupling of the phosphorus to 

selenium (
1
JPSe = 346 Hz) were observed in the case of 56b. The coupling constant increased 

by 120 Hz compared to the free ligand, indicating strengthened P–Se bonding in the gold 

complex (Figure 6.2). The 
77

Se resonances were shifted to lower field compared to the free 

ligands, appearing at 433.0 ppm and 432.3 ppm. 

 

Scheme 6.2 Synthesis of the MOP-phosphonodichalcogenoite gold(I) complexes 54b, 55b and 56b. 

 

Figure 6.5 View of the molecular structure of [(51b)AuCl] (54b) with 50% probability displacement ellipsoids. 

Hydrogen atoms have been omitted for clarity. Selected bond distances [Å] and angles [°]: Au–P 2.2201(16), 

Au–Cl 2.2710(17), P–S1 2.091(2), P–S2 2.086(3), P–C1 1.825(6); Cl-Au-P 173.51(7), S1-P-S2 102.55(10), S1-

P-C1 108.31(19), S2-P-C1 97.24(19). 

We were able to obtain single crystals suitable for X-ray diffraction of 54b (Figure 6.5) and 

55b (Figure 6.6) from slow evaporation of a dichloromethane solution. The asymmetric unit 

of 55b contains three molecules which differ in the orientation of their phenyl groups. The P–

S distances range from 2.086(3) to 2.108(3) with the slightly longer bonds being observed for 

55b. In comparison to the free ligand 51b, the P–S bond lengths in 54b are shortened by 
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about 0.03 Å and thus they follow the same trend as the phosphorus-selenium coupling 

constants suggested in ligand 53b and gold(I) complex 56b. The Au–P distance is longer in 

the isopropyl-derivative 54b (2.2201(16) Å) compared to phenyl-derivative 55b (2.206(2)-

2.2138(18) Å). Structurally related compounds from the literature have Au–P bond lengths at 

2.2184(16) Å ((PhS)3PAuCl),
316c

 2.2352(8) Å ((MeS)3PAuCl)
316c

 and 2.237(2) Å (tBuP(2-

SePy)2AuCl).
316d

 

 

Figure 6.6 View of one of the two independent molecules of [(52b)AuCl] (55b) in the asymmetric unit with 

50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity. Selected bond distances 

[Å] and angles [°], respective bond lengths/angles of the second molecule in brackets: Au3–P3 2.2138(18) 

(2.206(2), 2.2116(18)), Au3–Cl3 2.2745(18) (2.273(3), 2.2703(18)), P3–S5 2.092(3) (2.096(3), 2.100(3)), P3–S6 

2.104(3) (2.108(3), 2.106(3)), P3–C67 1.806(8) (1.810(8), 1.823(8)); P3-Au3-Cl3 175.71(8) (172.75(13), 

178.09(7)), S5-P3-S6 109.24(11) (107.66(14), 100.34(11)), S5-P3-C67 100.0(3) (104.2(3), 100.2(3)), S6-P3-C67 

97.0(3) (97.8(3), 105.7(3)). 

6.2.2 Phosphaalkenes 

For the synthesis of phosphaalkene 57b we adapted a procedure that was first described by 

Yoshifuji and co-workers.
326

 Primary phosphine 1b was reacted with one equivalent of n-

butyllithium, followed by the addition of tert-butyldimethylsilyl chloride to form the 

corresponding silyl substituted secondary phosphine. Further reaction in the same pot with n-

butyllithium and benzophenone afforded the desired product 57b in 77% yield after 

chromatographic purification (Scheme 6.3). 

The formation of 57b was clearly indicated by the characteristic carbon resonance at low field 

and its splitting due to coupling to the phosphorus nucleus (192.2 ppm, 
1
JCP = 43.5 Hz); the 

31
P NMR showed a resonance at very low field (223.6 ppm). The compound was found to be 

very reactive and decomposed at room temperature within hours. Therefore we were unable to 

carry out coordination studies or indeed obtain a crystal structure. However, we have shown 

that the synthesis of the chiral phosphaalkene 57b can be easily achieved and this result will 
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foster further studies in collaboration with Derek Gates, an expert in the field of low-valent 

phosphorus compounds and their polymerisation.
321 

 

Scheme 6.3 Synthetic route to phosphaalkene 57b. 

6.3 Conclusion 

In summary we have synthesised novel MOP-type phosphonodichalcogenoites which are 

easily prepared in one-pot procedures from their parent primary phosphines. We have 

established that these ligands coordinate onto gold(I) and analysed two representative 

examples of phosphonodithioite complexes by X-ray crystallography. The coordination of the 

phosphonodiselenoite results in a larger 
31

P-
77

Se coupling and a downfield shift of the 

selenium resonances. 

In the second part of this chapter we have shown the synthesis of a MOP-phosphaalkene 

which is highly reactive and decomposes under ambient conditions. Although we were unable 

to carry out any coordination studies, this compound might be a suitable substrate for the 

synthesis of chiral phosphorus functionalised polymers with possible applications in 

asymmetric catalysis. 

6.4 Experimental Section 

6.4.1 General Considerations 

All air and/or water sensitive reactions were performed under a nitrogen atmosphere using 

standard Schlenk line techniques. THF (Na/benzophenone ketyl), toluene (Na) and CH2Cl2 

(CaH) were dried and distilled prior to use. Flash chromatography was performed on silica gel 

from Fluorochem (silica gel, 40-63 μm, 60A, LC301). Thin-layer chromatography was 

performed on Merck aluminium-based plates with silica gel and fluorescent indicator 254 nm. 

1
H, 

13
C{

1
H}, 

31
P{

1
H} and 

77
Se{

1
H} NMR spectra were recorded on a JEOL Lambda 500 (

1
H 

500.16 MHz) or JEOL ECS-400 (
1
H 399.78 MHz) spectrometer at room temperature (21°C) 

if not otherwise stated using the indicated solvent as internal reference. 
77

Se chemical shifts 
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are given relative to Ξ(
77

Se) = 19.071513 MHz. If necessary the assignment of signals was 

done by using two-dimensional NMR experiments (COSY, NOESY, HSQC, HMBC). Infrared 

spectra were recorded on a Varian 800 FT-IR spectrometer. Mass spectrometry was carried 

out by the EPSRC National Mass Spectrometry Service Centre, Swansea. The preparations of 

1a,b are described in the Experimental Section of Chapter 2 (1a,b). All other chemicals were 

used as purchased without further purification. Key crystallographic data are given in Table 

6.1. 

Table 6.1 Selected crystallographic data for compound 51b, 53b, 54b and 55b. 

 51b 53b 54b 55b 

formula C27H29OPS2 C33H25OPSe2 C27H28AuClOPS2 C33H25AuClOPS2 

formula wt 464.59 626.42 696.00 765.04 

cryst syst monoclinic orthorhombic orthorhombic orthorhombic 

space group P21 P212121 P212121 P212121 

a, Å; α, deg 16.5205(9); 90 10.1464(4); 90 7.9141(15); 90 8.7934(3); 90 

b, Å; β, deg 
8.3250(3); 

113.808(6) 
11.5518(5); 90 18.420(4); 90 21.8830(4); 90 

c, Å; γ, deg 19.7757(9); 60 23.3402(11); 90 18.715(4); 90 47.3991(9); 90 

V, Å
3
 2488.4(2) 2735.7(2) 2728.2(10) 9120.8(4) 

Z 4 4 4 12 

ρcalc, g cm
–3

 1.240 1.521 1.694 1.671 

μ, mm
–1

 0.295 2.787 5.250 5.142 

F(000) 984 1256 1364 4488 

Tmin/Tmax 0.95643/1.00000 0.4886/0.7680 0.6218/0.6218 0.2329/0.4262 

hkl range 
–20 to 21, –11 to 8, 

–26 to 27 

–12 to 13, –15 to 

10, –23 to 30 

–8 to 10, –23 to 24, 

–24 to 25 

–10 to 11, –28 to 

29, –63 to 58 

θ range, deg 3.2 to 29.6 2.8 to 28.6 1.5 to 27.4 3.0 to 28.6 

no. of measd rflns 16333 10547 26174 55181 

no. of unique rflns 

(Rint) 
9568 (0.0221) 5596 (0.0309) 6652 (0.0523) 19632 (0.0513) 

no. of obsd rflns, I > 

2σ(I) 
7766 5015 6289 17911 

refined 

params/restraints 
622/537 335/0 299/0 1057/0 

goodness of fit 0.961 1.035 1.012 1.103 

Abs. structure 

param. 
–0.02(4) –0.004(7) 0.097(8) 0.014(5) 

R1/wR2 (I > 2σ(I)) 0.0346/0.0826 0.0317/0.0616 0.0633/0.0880 0.0470/0.0917 

R1/wR2 (all data) 0.0453/0.0855 0.0402/0.0657 0.0651/0.0891 0.0538/0.0939 

resid electron dens, 

e Å
–3

 
0.38/–0.34 0.48/–0.54 2.54/–1.42 2.35/–2.77 
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6.4.2 (S)-Diisopropyl [1,1'-binaphthalen]-2-ylphosphonite (50a) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1a (286 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 157.1 ppm) as a yellow oil. CH2Cl2 (8 mL), NEt3 (233 mg, 0.31 mL, 2.20 mmol) and 

isopropanol (132 mg, 0.17 mL, 2.20 mmol) were added subsequently and the solution was left 

to stir overnight. The volatiles were removed in vacuo and the crude product was dissolved in 

toluene. The title compound was obtained, after filtration and removal of the solvent, as a 

yellow oil (quantitative conversion). 

1
H NMR (500 MHz, CDCl3): δ = 8.13 (dd, 

3
JHH = 8.5 Hz, 

3
JPH = 2.7 Hz, 1H, H3), 7.99 (d, 

3
JHH = 8.5 Hz, 1H, H4), 7.97 (d, 

3
JHH = 8.3 Hz, 1H, H4'), 7.93 (d, 

3
JHH = 8.3 Hz, 1H, H5), 

7.91 (d, 
3
JHH = 8.3 Hz, 1H, H5'), 7.60 (dd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.9 Hz, 1H, H3'), 7.51 (d, 

3
JHH = 6.9 Hz, 1H, H2'), 7.48-7.43 (m, 2H, H6'+H6), 7.23 (m, 3H, 3 ArH), 7.18 (d, 

3
JHH = 8.3 Hz, 1H, ArH), 4.12 (m, 1H, iPr-CH), 3.77 (m, 1H, iPr'-CH), 1.20 (d, 

3
JHH = 6.3 Hz, 

3H, iPr-CH3), 1.91 (d, 
3
JHH = 6.3 Hz, 3H, iPr-CH3), 1.08 (d, 

3
JHH = 6.2 Hz, 3H, iPr'-CH3), 

0.69 (d, 
3
JHH = 6.2 Hz, 3H, iPr'-CH3) ppm. 

13
C{

1
H} NMR (126 MHz, CDCl3): δ = 141.9, 

141.6, 140.1, 136.3, 134.2, 133.8, 133.4, 133.0, 129.3 (C2'), 128.3 (C4'), 128.2 (C5), 128.0 

(C5'), 127.7 (C4), 127.1, 126.9, 126.7 (C6'), 126.1, 125.9 (C6), 125.6 (d, 
3
JCP = 4.3 Hz, C1'), 

125.0 (C3'), 71.2 (d, 
2
JCP = 21.1 Hz, iPr'-CH), 71.0 (d, 

2
JCP = 18.0 Hz, iPr-CH), 24.8 (d, 

3
JCP = 

4.8 Hz, iPr-CH3), 24.6 (d, 
3
JCP = 3.4 Hz, iPr-CH3), 24.5 (d, 

3
JCP = 4.3 Hz, iPr'-CH3), 24.0 (d, 

3
JCP = 5.3 Hz, iPr’-CH3) ppm. 

31
P{

1
H} NMR (202 MHz, CDCl3): δ = 151.6 ppm. IR (neat): 

ν = 3055.4 (w), 2971.4 (w), 2873.7 (w), 1590.9 (w), 1505.6 (w), 1451.4 (w), 1368.5 (m), 

1229.0 (m), 1166.4 (w), 1113.2 (m), 1014.8 (w), 970.0 (s), 943.2 (s), 858.9 (s), 820.9 (w), 

801.9 (w), 781.7 (m), 746.4 (s), 688.5 (m), 631.5 (w) cm
–1

. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = –40°. 
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6.4.3 (R)-Diisopropyl (2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphonite (50b) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). 1b (316 mg, 1.00 mmol) was 

added and the reaction mixture was left to stir for 45 minutes. The volatiles were removed in 

vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: δ = 159.1 ppm) as 

yellow solid. CH2Cl2 (8 mL), NEt3 (233 mg, 0.31 mL, 2.20 mmol) and isopropanol (132 mg, 

0.17 mL, 2.20 mmol) were added subsequently, and the solution was left to stir overnight. 

The volatiles were removed in vacuo and the crude product was dissolved in toluene. The title 

product was obtained, after filtration and removal of the solvent, as a white solid (191 mg, 

0.44 mmol, 44%). 

MP (uncorrected): 96 °C. 
1
H NMR (500 MHz, CDCl3): δ = 8.19 (dd, 

3
JHH = 8.3 Hz, 

3
JPH = 2.8 Hz, 1H, H3), 8.04 (d, 

3
JHH = 9.2 Hz, 1H, H4'), 8.03 (d, 

3
JHH = 8.3 Hz, 1H, H4), 7.94 

(d, 
3
JHH = 8.3 Hz, 1H, H5), 7.88 (d, 

3
JHH = 8.3 Hz, 1H, H5'), 7.48 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 5.5 Hz, 

4
JHH = 2.7 Hz, 1H, H6), 7.46 (d, 

3
JHH = 9.2 Hz, 1H, H3'), 7.32 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H6'), 7.28-7.25 (m, 2H, H7+H8), 7.21 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H7'), 7.05 (d, 

3
JHH = 8.3 Hz, 1H, H8'), 4.19 

(m, 1H, iPr-CH), 3.80 (s, 3H, OCH3), 3.74 (m, 1H, iPr'-CH), 1.29 (d, 
3
JHH = 6.0 Hz, 3H, iPr-

CH3), 1.21 (d, 
3
JHH = 6.0 Hz, 3H, iPr-CH3), 1.06 (d, 

3
JHH = 6.0 Hz, 3H, iPr'-CH3), 0.64 (d, 

3
JHH = 6.0 Hz, 3H, iPr'-CH3) ppm. 

13
C{

1
H} NMR (126 MHz, CDCl3): δ = 155.0 (C2'), 140.6 

(d, 
2
JCP = 14.3 Hz, C1), 138.4 (d, 

1
JCP = 36.3 Hz, C2), 134.9, 134.6, 132.8, 130.0 (C4'), 129.2, 

128.9, 128.4, 128.2 (C5), 127.8 (C5'), 127.7 (C4), 126.5, 126.4, 126.1 (C8'), 125.9 (d, 
2
JCP = 

3.5 Hz, C3), 123.6 (C6'), 121.0 (d, 
3
JCP = 8.4 Hz, C1'), 113.3 (C3'), 71.0 (d, 

2
JCP = 19.0 Hz, 

iPr'-CH), 70.9 (d, 
2
JCP = 20.8 Hz, iPr-CH), 56.4 (s, OCH3), 24.8 (d, 

3
JCP = 4.7 Hz, iPr-CH3), 

24.7 (d, 
3
JCP = 4.3 Hz, iPr-CH3), 24.5 (d, 

3
JCP = 4.3 Hz, iPr'-CH3), 23.9 (d, 

3
JCP = 5.3 Hz, iPr'-

CH3) ppm. 
31

P{
1
H} NMR (202 MHz, CDCl3): δ = 153.7 ppm. IR (neat): ν = 3055.4 (w), 

2969.8 (w), 1621.4 (w), 1592.8 (m), 1509.0 (m), 1462.4 (w), 1370.4 (w), 1270.3 (m), 1250.1 

(m), 1221.9 (w), 1115.9 (w), 1080.6 (m), 1052.8 (w), 1019.0 (w), 971.9 (s), 945.0 (s), 859.1 

(m), 808.0 (s), 747.8 (s), 688.5 (w), 633.1 (w) cm
–1

. HRMS (NSI
+
, MeCN): Found: 

m/z = 433.1929. Calculated for [M + H]
+
: m/z = 433.1927. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = –20°. 
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6.4.4 (S)-Diisopropyl [1,1'-binaphthalen]-2-yl)phosphonodithioite (51a) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1a (286 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 157.1 ppm) as a yellow oil. CH2Cl2 (8 mL), NEt3 (233 mg, 0.31 mL, 2.20 mmol) and 2-

propanethiol (168 mg, 0.20 mL, 2.20 mmol) were added subsequently and the solution was 

left to stir overnight. The volatiles were removed in vacuo and the crude product was 

dissolved in toluene. The title product was obtained, after filtration and removal of the 

solvent, as a yellow oil (quantitative conversion). 

1
H NMR (400 MHz, CDCl3): δ = 8.14 (d, 

3
JHH = 8.5 Hz, 1H, H3), 7.99 (d, 

3
JHH = 8.5 Hz, 1H, 

H4'), 7.98 (d, 
3
JHH = 8.5 Hz, 1H, H4), 7.95 (d, 

3
JHH = 8.5 Hz, 1H, H5), 7.90 (d, 

3
JHH = 8.5 Hz, 

1H, H5'), 7.59 (dd, 
3
JHH = 8.5 Hz, 

3
JHH = 6.9 Hz, 1H, H3'), 7.50 (d, 

3
JHH = 6.9 Hz, 1H, H2'), 

7.48 (m, 1H, H6'), 7.45 (m, 1H, H6), 7.24 (m, 3H, 3 ArH), 7.18 (m, 1H, ArH), 2.96 (dsept, 

3
JHH = 6.9 Hz, 

3
JPH = 6.9 Hz, 1H, iPr-CH), 2.64 (dsept, 

3
JHH = 6.9 Hz, 

3
JPH = 6.9 Hz, 1H, iPr'-

CH), 1.25 (d, 
3
JHH = 6.8 Hz, 3H, iPr-CH3), 1.23 (d, 

3
JHH = 6.8 Hz, 3H, iPr-CH3), 1.06 (d, 

3
JHH = 6.8 Hz, 3H, iPr'-CH3), 0.88 (d, 

3
JHH = 6.8 Hz, 3H, iPr'-CH3) ppm. 

13
C{

1
H} NMR 

(101 MHz, CDCl3): δ = 140.7 (d,
 1

JCP = 38.9 Hz, C2), 137.0 (d,
 2

JCP = 22.8 Hz, C1), 136.8 (d,
 

3
JCP = 10.0 Hz, C1'), 134.0, 133.5, 133.1 (d,

 
JCP = 2.6 Hz), 132.8 (d,

 
JCP = 6.6 Hz), 129.2, 

129.1 (C3), 128.9 (d, JCP = 4.9 Hz), 128.7 (C2'), 128.5, 128.2, 128.0 (C5'), 127.4 (d,
 
JCP = 

3.0 Hz), 126.9 (d,
 
JCP = 5.5 Hz), 126.6, 126.2, 126.0, 125.1 (C3'), 38.4 (d, 

2
JCP = 22.7 Hz, iPr'-

CH), 38.3 (d, 
2
JCP = 20.6 Hz, iPr-CH), 25.6 (d, 

3
JCP = 6.3 Hz, iPr-CH3), 25.2 (d, 

3
JCP = 6.4 Hz, 

iPr-CH3), 25.2 (d, 
3
JCP = 4.6 Hz, iPr'-CH3), 25.1 (d, 

3
JCP = 5.7 Hz, iPr'-CH3) ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): δ = 54.2 ppm. IR (neat): ν = 3044.3 (w), 2956.3 (m), 

2921.4 (w), 2860.3 (w), 1500.2 (w), 1446.9 (m), 1363.9 (m), 1314.5 (w), 1237.4 (m), 1152.9 

(m), 1050.7 (w), 1014.8 (w), 867.9 (w), 801.5 (s), 780.2 (s), 745.6 (s), 686.7 (w), 628.7 (m), 

605.3 (w) cm
–1

. HRMS (EI
+
): Found: m/z = 434.1289. Calculated for [M]

+
: m/z = 434.1286. 

OR (CHCl3, c = 1.0 mg/ml): [α]D
20

 = +148°. 
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6.4.5 (R)-Diisopropyl (2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphonodithioite (51b) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1b (316 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 159.1 ppm) as yellow solid. CH2Cl2 (8 mL), NEt3 (233 mg, 0.31 mL, 2.20 mmol) and 2-

propanethiol (168 mg, 0.20 mL, 2.20 mmol) were added subsequently and the solution was 

left to stir overnight. The volatiles were removed in vacuo and the crude product was 

dissolved in toluene. The title product was obtained, after filtration and removal of the 

solvent, as a white solid (435 mg, 0.93 mmol, 93%). 

MP (uncorrected): 155 °C. 
1
H NMR (500 MHz, CDCl3): δ = 8.17 (dd, 

3
JHH = 8.5 Hz, 

3
JPH = 1.8 Hz, 1H, H3), 8.02 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 7.98 (d, 

3
JHH = 8.5 Hz, 1H, H4), 7.89 

(d, 
3
JHH = 8.2 Hz, 1H, H5), 7.86 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.46 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.4 Hz, 

4
JHH = 1.6 Hz, 1H, H6), 7.43 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.29 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H6'), 7.23 (m, 2H, H7+H8), 7.18 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.3 Hz, 1H, H7'), 6.97 (d, 

3
JHH = 8.3 Hz, 1H, H8'), 3.78 

(s, 3H, OCH3), 2.98 (dsept, 
3
JHH = 6.7 Hz, 

3
JPH = 6.7 Hz, 1H, iPr-CH), 2.47 (dsept, 

3
JHH = 6.7 Hz, 

3
JPH = 6.7 Hz, 1H, iPr'-CH), 1.28 (d, 

3
JHH = 6.7 Hz, 3H, iPr-CH3), 1.22 (d, 

3
JHH = 6.7 Hz, 3H, iPr-CH3), 0.96 (d, 

3
JHH = 6.7 Hz, 3H, iPr'-CH3), 0.73 (d, 

3
JHH = 6.7 Hz, 3H, 

iPr'-CH3) ppm. 
13

C{
1
H} NMR (126 MHz, CDCl3): δ = 154.7 (d, 

4
JCP = 2.5 Hz, C2'), 137.5 (d, 

1
JCP = 39.9.5 Hz, C2), 137.2 (d, 

2
JCP = 22.6 Hz, C1), 134.2, 134.2, 132.6, 130.2 (C4'), 129.1 

(C3), 128.9, 128.5 (C4), 128.2 (C5), 127.8 (C5'), 126.8 (C6), 126.5 (C7+C8), 126.1 (C7'), 

123.6 (C6'), 121.0 (d, 
3
JCP = 9.9 Hz, C1'), 112.9 (C3'), 56.2 (s, OCH3), 38.3 (d, 

2
JCP = 22.1 Hz, 

iPr'-CH), 38.2 (d, 
2
JCP = 21.0 Hz, iPr-CH), 25.6 (d, 

3
JCP = 6.6 Hz, iPr-CH3), 25.2 (d, 

3
JCP = 

5.5 Hz, iPr-CH3), 24.9 (d, 
3
JCP = 5.5 Hz, iPr'-CH3), 24.8 (d, 

3
JCP = 6.6 Hz, iPr'-CH3) ppm. 

31
P{

1
H} NMR (202 MHz, CDCl3): δ = 54.2 ppm. IR (neat): ν = 2961.4 (w), 2925.4 (w), 

1622.0 (w), 1593.9 (m), 1508.1 (m), 1458.0 (m), 1334.7 (w), 1270.3 (s), 1251.8 (s), 1150.5 

(m), 1080.9 (m), 1051.1 (m), 1020.0 (w), 871.2 (w), 806.4 (s), 751.7 (s), 686.0 (m), 627.0 (m) 

cm
–1

. HRMS (NSI
+
, MeCN): Found: m/z = 465.1469. Calculated for [M + H]

+
: 

m/z = 465.1470. OR (CHCl3, c = 1.0 mg/ml): [α]D
20

 = +20°. 
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6.4.6 (S)-Diphenyl [1,1'-binaphthalen]-2-yl)phosphonodithioite (52a) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1a (286 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 157.1 ppm) as a yellow oil. CH2Cl2 (8 mL), NEt3 (233 mg, 0.31 mL, 2.20 mmol) and 

thiophenol (231 mg, 0.21 mL, 2.10 mmol) were added subsequently and the solution was left 

to stir overnight. The volatiles were removed in vacuo and the crude product was dissolved in 

toluene. The title product was obtained, after filtration and removal of the solvent, as a yellow 

oil (quantitative conversion). 

MP (uncorrected): 115 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.18 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 1.1 Hz, 1H, H3), 8.08 (d, 

3
JHH = 8.5 Hz, 1H, H4), 8.00-7.97 (m, 2H, H5+H4'), 7.95 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.57-7.50 (m, 3H, H3'+H6+PhH), 7.47 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.6 Hz, 

4
JHH = 1.1 Hz, 1H, H6'), 7.43 (dd, 

3
JHH = 7.0 Hz, 

4
JHH = 1.2 Hz, 1H, H2'), 7.33-

7.28 (m, 2H, H7+PhH), 7.27-7.13 (m, 6H, 3 PhH+H7'+H8+H8'), 7.08 (m, 1H, PhH), 6.98 (m, 

2H, 2 PhH), 6.93 (d, 
3
JHH = 8.2 Hz, 2H, 2 PhH) ppm. 

13
C{

1
H} NMR (126 MHz, CD2Cl2): 

δ = 142.3 (d,
 1

JCP = 38.9 Hz, C2), 136.0 (d,
 3

JCP = 10.5 Hz, C1'), 135.0 (d,
 2

JCP = 28.7 Hz, C1), 

134.4, 133.5, 133.4 (d,
 
JCP = 5.8 Hz, PhC), 133.3 (d,

 
JCP = 5.6 Hz, PhC), 133.1 (d,

 
JCP = 

5.6 Hz), 133.0 (d,
 
JCP = 2.8 Hz), 132.9 (d,

 
JCP = 6.3 Hz), 129.2 (C2'), 129.1 (d, JCP = 4.3 Hz), 

129.0 (PhC), 128.8 (C4'), 128.8 (C4), 128.7 (PhC), 128.4 (C3), 128.3 (C5'), 128.1 (C5), 127.7 

(d,
 
JCP = 2.0 Hz), 127.6, 127.5 (d,

 
JCP = 2.0 Hz), 127.4 (C6), 127.3, 127.2 (d, JCP = 3.4 Hz), 

126.8 (C7), 126.5, 126.3, 126.1 (C6'), 125.1 (C3') ppm. 
31

P{
1
H} NMR (162 MHz, CD2Cl2): 

δ = 82.0 ppm. IR (neat): ν = 3054.0 (w), 1580.0 (w), 1499.9 (w), 1474.4 (m), 1438.3 (m), 

1365.0 (w), 1318.5 (w), 1163.6 (w), 1118.4 (w), 1021.8 (m), 901.5 (w), 869.2 (w), 810.0 (m), 

781.0 (m), 738.2 (s), 683.8 (s), 628.9 (m), 605.3 (w) cm
–1

. HRMS (NSI
+
, MeOH): Found: 

m/z = 503.1052. Calculated for [M + H]
+
: m/z = 503.1052. OR (CHCl3, c = 1.0 mg/ml): 

[α]D
20

 = +236°. 
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6.4.7 (R)-Diphenyl (2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphonodithioite (52b) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1b (316 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 159.1 ppm) as a yellow solid. CH2Cl2 (8 mL), NEt3 (233 mg, 0.31 mL, 2.20 mmol) and 

thiophenol (231 mg, 0.21 mL, 2.10 mmol) were added subsequently and the solution was left 

to stir overnight. The volatiles were removed in vacuo and the crude product was filtered 

through a plug of silica media in toluene. The title product was obtained, after filtration and 

removal of the solvent, as a pale yellow solid (527 mg, 0.93 mmol, 99%). 

MP (uncorrected): 162 °C. 
1
H NMR (500 MHz, CD2Cl2): δ = 8.16 (d, 

3
JHH = 8.3 Hz, 

3
JHP = 1.3 Hz, 1H, H3), 8.06 (d, 

3
JHH = 8.3 Hz, 1H, H4), 8.04 (d, 

3
JHH = 9.2 Hz, 1H, H4'), 7.98 

(d, 
3
JHH = 8.3 Hz, 1H, H5), 7.89 (d, 

3
JHH = 8.3 Hz, 1H, H5'), 7.55 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.3 Hz, 1H, H6), 7.53-7.50 (m, 1H, PhH), 7.41 (d, 

3
JHH = 9.2 Hz, 1H, 

H3'), 7.34-7.13 (m, 8H, 4 PhH+H6'+H7+H7'+H8), 7.10-7.06 (m, 1H, PhH), 6.98-6.94 (m, 3H, 

2 PhH+H8'), 6.81 (d, 
3
JHH = 8.5 Hz, 2H, 2 PhH), 3.67 (s, 3H, OCH3) ppm. 

13
C{

1
H} NMR 

(126 MHz, CD2Cl2): δ = 154.7 (d, 
4
JCP = 2.9 Hz, C2'), 138.9 (d, 

1
JCP = 38.5 Hz, C2), 135.2 (d, 

2
JCP = 28.9 Hz, C1), 134.5, 134.0 (d, JCP = 2.7 Hz), 133.8 (d, JCP = 13.8 Hz), 133.5 (d, 

JCP = 14.5 Hz), 133.3 (d, JCP = 5.5 Hz, PhC), 132.7 (d, JCP = 6.3 Hz, PhC), 130.6 (C4'), 129.2, 

128.9, 128.7, 128.6 (C4), 128.5 (C3), 128.3 (C5), 128.0 (C5'), 127.6, 127.5, 127.4 (C6), 

127.3, 126.8, 126.7, 125.4 (C8'), 123.6 (C6'), 120.0 (d, 
3
JCP = 10.3 Hz, C1'), 112.9 (C3'), 56.1 

(OCH3) ppm. 
31

P{
1
H} NMR (202 MHz, CD2Cl2): δ = 82.8 ppm. IR (neat): ν = 3054.6 (w), 

1618.8 (w), 1576.3 (w), 1510.0 (w), 1471.4 (m), 1437.9 (m), 1333.6 (w), 1269.5 (m), 1251.1 

(w), 1148.8 (w), 1079.0 (m), 1051.3 (w), 1020.7 (w), 905.3 (w), 810.9 (s), 741.9 (s), 688.0 (s), 

627.9 (w) cm
–1

. HRMS (NSI
+
, CH2Cl2): Found: m/z = 533.1152. Calculated for [M + H]

+
: 

m/z = 533.1157. OR (CHCl3, c = 1.0 mg/ml): [α]D
20

 = +110°. 
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6.4.8 (R)-Diphenyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphonodiselenoite (53b) 

 

PCl5 (458 mg, 2.20 mmol) was dissolved in toluene (8 mL). Primary phosphine 1b (316 mg, 

1.00 mmol) was added and the reaction mixture was left to stir for 45 minutes. The volatiles 

were removed in vacuo to give the corresponding dichlorophosphine (
31

P{
1
H} NMR, CDCl3: 

δ = 159.1 ppm) as yellow solid. CH2Cl2 (8 mL), NEt3 (448 mg, 0.64 mL, 4.40 mmol) and 

benzeneselenol (330 mg, 0.31 mL, 2.10 mmol) were added subsequently and the solution was 

left to stir overnight. The volatiles were removed in vacuo and the crude product was purified 

by column chromatography (hexane/EtOAc, 5:1) on a silica media and subsequent 

crystallisation by slow evaporation of the solvent. The title product was obtained as pale 

yellow crystals (383 mg, 0.61 mmol, 61%). 

MP (uncorrected): 178 °C. 
1
H NMR (400 MHz, CDCl3): δ = 8.15 (dd, 

3
JHH = 8.5 Hz, 

3
JHP = 1.1 Hz, 1H, H3), 7.98 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 7.97 (d, 

3
JHH = 8.5 Hz, 1H, H4), 7.92 

(d, 
3
JHH = 8.2 Hz, 1H, H5), 7.84 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.49 (ddd, 

3
JHH = 8.3 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.4 Hz, 1H, H6), 7.36-7.20 (m, 6H, 2 PhH+H3'+H6'+H7+H8), 7.18-

7.12 (m, 2H, PhH+H7'), 7.11-7.02 (m, 3H, 3 PhH), 6.95 (d, 
3
JHH = 8.6 Hz, 1H, H8'), 6.92-6.89 

(m, 4H, 4 PhH), 3.62 (s, 3H, OCH3) ppm. 
13

C{
1
H} NMR (101 MHz, CDCl3): δ = 154.9 (d, 

4
JCP = 2.1 Hz, C2'), 138.3 (d, 

1
JCP = 39.1 Hz, C2), 134.5 (m, PhC), 134.4 (m, PhC), 133.9, 

132.7, 131.6, 130.5 (C4'), 130.2 (C3), 129.7, 129.3, 128.9, 128.7, 128.6 (C4), 128.2 (C5), 

127.9 (C5'), 127.4, 127.2 (C6), 126.9, 126.8, 125.6 (C8'), 123.6 (C6'), 120.3 (d, 
3
JCP = 10.3 

Hz, C1'), 113.0 (C3'), 56.3 (OCH3) ppm. 
31

P{
1
H} NMR (162 MHz, CDCl3): δ = 72.0 (s with 

77
Se satellites, 

1
JSeP = 224 Hz) ppm. 

77
Se{

1
H} NMR (95 MHz, CDCl3): δ = 361.2 (d with 

77
Se 

satellites, 
1
JSeP = 224 Hz, 

2
JSeSe = 71 Hz), 348.8 (d with 

77
Se satellites, 

1
JSeP = 224 Hz, 

2
JSeSe = 71 Hz) ppm. IR (neat): ν = 2981.1 (w), 1617.7 (w), 1510.1 (m), 1473.1 (m), 1437.4 

(m), 1332.2 (w), 1269.3 (s), 1149.0 (m), 1079.5 (s), 1050.8 (w), 1017.7 (m), 804.8 (w), 810.3 

(s), 748.6 (s), 688.8 (s), 627.1 (w) cm
–1

. HRMS (NSI
+
, MeOH): Found: m/z = 619.0137. 

Calculated for [M + H]
+
: m/z = 619.0133. OR (CHCl3, c = 1.0 mg/ml): [α]D

20
 = +130°. TLC 

(silica gel; hexane:ethyl acetate, 5:1): Rf = 0.5. 
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6.4.9 ((R)-Diisopropyl (2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphonodithioite-

κP)chlorogold (54b) 

 

48b (23.2 mg, 50 μmol) and [AuCl(tht)] (16.0 mg, 50 μmol) were dissolved in CH2Cl2 (2 mL) 

and stirred for 15 minutes. Removal of the solvent gave the product as a colourless solid 

which was washed with hexane. 

1
H NMR (500 MHz, CDCl3): δ = 8.26 (dd, 

3
JPH = 10.6 Hz, 

3
JHH = 8.8 Hz, 1H, H3), 8.23 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 8.07 (dd, 

3
JHH = 8.8 Hz, 

4
JPH = 1.9 Hz, 1H, H4), 7.93 (d, 

3
JHH = 8.2 Hz, 1H, H5), 7.93 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.55 (m, 1H, H6), 7.48 (d, 

3
JHH = 9.1 Hz, 1H, H3'), 7.34-7.27 (m, 2H, H6'+H7), 7.19 (ddd, 

3
JHH = 8.5 Hz, 

3
JHH = 6.8 Hz, 

4
JHH = 1.2 Hz, 1H, H7'), 7.15 (d, 

3
JHH = 8.5 Hz, 1H, H8), 6.82 (d, 

3
JHH = 8.5 Hz, 1H, H8'), 

3.82 (s, 3H, OCH3), 3.59-3.48 (m, 1H, iPr-CH), 3.22-3.11 (m, 1H, iPr'-CH), 1.40 (dd, 

3
JHH = 6.7 Hz, 

3
JPH = 1.2 Hz, 3H, iPr-CH3), 1.30 (d, 

3
JHH = 6.6 Hz, 3H, iPr-CH3), 1.29 (d, 

3
JHH = 6.5 Hz, 3H, iPr'-CH3), 1.04 (d, 

3
JHH = 6.9 Hz, 3H, iPr'-CH3) ppm. 

13
C{

1
H} NMR 

(126 MHz, CDCl3): δ = 154.9 (C2'), 140.1 (d, 
2
JCP = 19.2 Hz, C1), 135.0 (d, 

4
JCP = 2.2 Hz, 

C10), 134.1 (C10'), 133.3 (d, 
3
JCP = 10.6 Hz, C9), 131.6 (C4'), 129.5 (d, 

1
JCP = 54.8 Hz, C2), 

129.2 (C9'), 128.9 (d, 
3
JCP = 9.6 Hz, C4), 128.7 (C5'), 128.5 (C6), 128.2 (C5), 127.5 (C8), 

127.4 (C7), 127.3 (C3), 126.8 (C7'), 125.2 (C8'), 123.9 (C6'), 118.8 (d, 
3
JCP = 10.1 Hz, C1'), 

113.5 (C3'), 56.0 (s, OCH3), 44.1 (d, 
2
JCP = 2.1 Hz, iPr'-CH), 43.7 (d, 

2
JCP = 1.9 Hz, iPr-CH), 

25.7 (d, 
3
JCP = 4.8 Hz, iPr'-CH3), 25.2 (d, 

3
JCP = 6.1 Hz, iPr'-CH3), 25.1 (d, 

3
JCP = 5.7 Hz, iPr-

CH3), 24.8 (d, 
3
JCP = 7.6 Hz, iPr-CH3) ppm. 

31
P {

1
H} NMR (202 MHz, CDCl3): δ = 78.8 ppm. 

HRMS (NSI
+
, MeCN): Found: m/z = 719.0634. Calculated for [M + Na]

+
: m/z = 719.0644. 

6.4.10 ((R)-Diphenyl (2'-Methoxy-[1,1'-binaphthalen]-2-yl)phosphonodithioite-

κP)chlorogold (55b) 
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49b (18.6 mg, 35 μmol) and [AuCl(tht)] (11.2 mg, 35 μmol) were dissolved in CH2Cl2 (2 mL) 

and stirred for 15 minutes. Removal of the solvent gave the product as a colourless solid 

which was washed with hexane. 

1
H NMR (500 MHz, CDCl3): δ = 8.18 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 8.04 (dd, 

3
JHH = 8.6 Hz, 

3
JHP = 8.6 Hz, 1H, H3), 8.01 (dd, 

3
JHH = 8.6 Hz, 

4
JHP = 3.0 Hz, 1H, H4), 7.97 (d, 

3
JHH = 8.2 Hz, 1H, H5), 7.92 (d, 

3
JHH = 8.2 Hz, 1H, H5'), 7.60 (ddd, 

3
JHH = 8.2 Hz, 

3
JHH = 6.7 Hz, 

4
JHH = 1.2 Hz, 1H, H6), 7.45-7.42 (m, 2H, 2 PhH), 7.40-7.24 (m, 7H, 

H3'+H6'+H7+4 PhH), 7.20 (m, 6H, H7'+H8+4 PhH), 6.76 (d, 
3
JHH = 8.4 Hz, 1H, H8'), 3.73 (s, 

3H, OCH3) ppm. 
13

C{
1
H} NMR (126 MHz, CDCl3): δ = 155.2 (C2'), 141.5 (d, 

2
JCP = 19.4 

Hz, C1), 136.4 (d, JCP = 4.7 Hz), 136.2 (d, JCP = 5.1 Hz), 135.2 (d, 
4
JCP = 2.2 Hz, C10), 134.1 

(C10'), 133.4 (d, 
3
JCP = 10.3 Hz, C9), 131.7 (C4'), 130.3 (d, JCP = 3.5 Hz), 130.2 (d, JCP = 3.5 

Hz), 129.8 (d, JCP = 2.8 Hz), 129.7 (d, JCP = 2.8 Hz), 129.2, 129.1, 128.8 (C6), 128.8 (C5'), 

128.6 (d, 
4
JCP = 9.2 Hz, C4), 128.2 (C5), 127.6 (d, JCP = 1.5 Hz), 127.5 (d, JCP = 2.5 Hz), 

127.4 (d, 
3
JCP = 6.4 Hz, C3), 127.1 (C7'), 124.8 (C8'), 123.9 (C6'), 118.2 (d, 

3
JCP = 10.4 Hz, 

C1'), 113.4 (C3'), 56.2 (s, OCH3) ppm. 
31

P{
1
H} NMR (202 MHz, CDCl3): δ = 101.3ppm. 

HRMS (APCI, solid): Found: m/z = 532.1071. Calculated for [M – AuCl]
+
: m/z = 532.1079. 

6.4.11 ((R)-Diphenyl (2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphonodiselenoite-

κP)chlorogold (56b) 

 

50b (22.0 mg, 35 μmol) and [AuCl(tht)] (11.2 mg, 35 μmol) were dissolved in CH2Cl2 (2 mL) 

and stirred for 15 minutes. Removal of the solvent gave the product as a colourless solid 

which was washed with hexane. 

1
H NMR (400 MHz, CDCl3): δ = 8.16 (d, 

3
JHH = 9.1 Hz, 1H, H4'), 7.94-7.89 (m, 3H, 

H5+H4+H5'), 7.85 (dd, 
3
JPH = 10.2 Hz, 

3
JHH = 8.8 Hz, 1H, H3), 7.58-7.50 (m, 3H, H6+ 

2 PhH), 7.40-7.36 (m, 2H, PhH+H3'), 7.34-7.21 (m, 7H, H6'+H7+H8+4 PhH), 7.17-7.09 (m, 

4H, H7'+3 PhH), 6.69 (d, 
3
JHH = 8.5 Hz, 1H, H8'), 3.73 (s, 3H, OCH3) ppm. 

13
C{

1
H} NMR 

(101 MHz, CDCl3): δ = 155.1 (C2'), 140.6 (d, 
2
JCP = 17.5 Hz, C1), 137.3 (d, J = 4.0 Hz), 

137.0 (d, J = 4.0 Hz), 135.1 (d, J = 1.3 Hz), 133.9, 133.4 (d, J = 9.9 Hz), 131.6 (C4'), 130.1, 
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129.9, 129.3, 128.8 (C4+C5), 128.6 (C6), 128.3 (C3), 127.8 (C5), 127.5 (C7), 127.1 (C7'), 

124.7 (C8'), 123.9 (C6'), 118.4 (d, 
3
JCP = 9.3 Hz, C1'), 113.3 (C3'), 56.2 (s, OCH3), ppm. 

31
P{

1
H} NMR (162 MHz, CDCl3): δ = 68.1 (s with 

77
Se satellites, 

1
JSeP = 346 Hz) ppm. 

77
Se{

1
H} NMR (95 MHz, CDCl3): δ = 433.0 (d, 

1
JSeP = 346 Hz), 432.3 (d, 

1
JSeP = 343 Hz) 

ppm. HRMS (APCI, solid): Found: m/z = 621.9995. Calculated for [M – AuCl]
+
: 

m/z = 622.0015. 

6.4.12 (R)-(Diphenylmethylene)(2'-methoxy-[1,1'-binaphthalen]-2-yl)phosphine (57b) 

 

Primary phosphine 1b (100 mg, 0.316 mmol) was dissolved in THF (4 mL) and cooled to  

–78 °C. n-Butyllithium (0.14 mL, 2.5 M in hexane, 0.348 mmol) was added and the orange-

red solution was stirred for 5 minutes, warmed-up to room temperature, and stirred for 

additional 15 minutes. tert-Butyldimethylsilyl chloride (53 mg, 0.348 mmol) was added and 

the reaction mixture was stirred at room temperature for 30 minutes. n-Butyllithium (0.14 mL, 

2.5 M in hexane, 0.384 mmol) was added and the solution was stirred for 15 minutes at room 

temperature and then cooled to –78 °C. Benzophenone (64 mg, 0.348 mmol) was added and 

the reaction was allowed to warm-up to ambient temperature and stirred for 1 hour. The 

reaction was slowly quenched with trimethylsilyl chloride (0.05 mL) and stirred for 15 

minutes before the volatiles were removed in vacuo. Purification was performed by column 

chromatography (cyclohexane/CH2Cl2, 2:1) on a silica media (w = 2 cm, h = 20 cm) to yield 

the intended product as a yellow solid (117 mg, 0.243 mmol, 77%). 

1
H NMR (500 MHz, CDCl3): δ = 7.99 (d, 

3
JHH = 9.0 Hz, 1H, H4'), 7.86 (d, 

3
JHH = 8.0 Hz, 1H, 

H5'), 7.76 (d, 
3
JHH = 8.0 Hz, 1H, ArH), 7.46 (d, 

3
JHH = 8.5 Hz, 1H, ArH), 7.44 (d, 

3
JHH = 9.0 Hz, 1H, H3'), 7.42 (m, 1H, ArH), 7.35-7.32 (m, 3H, 3 ArH), 7.30-7.11 (m, 12H, 

12 ArH), 7.08 (d, 
3
JHH = 8.5 Hz, 1H, ArH), 3.88 (s, 3H, OCH3) ppm. 

13
C{

1
H} NMR 

(126 MHz, CDCl3): δ = 192.2 (d, 
1
JCP = 43.5 Hz, P=CPh2), 155.7 (C2'), 145.2 (d, JCP = 

25.1 Hz), 143.6 (d, JCP = 13.8 Hz), 141.4 (d, 
1
JCP = 42.8 Hz, C2), 140.7 (d, JCP = 20.8 Hz), 

134.1, 133.5, 133.0 (d, JCP = 4.5 Hz), 132.5, 130.7, 130.6, 130.4, 130.2, 130.0, 129.1, 128.9, 

128.8, 128.4, 128.2, 128.1, 128.0, 127.9, 127.6, 126.9, 126.7, 126.5, 126.1, 126.0, 125.5, 

123.8, 121.5 (d, 
3
JCP = 7.1 Hz, C1'), 113.4 (C3'), 56.4 (s, OCH3) ppm. 

31
P{

1
H} NMR 
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(202 MHz, CDCl3): δ = 223.6 ppm. HRMS (NSI
+
, CH2Cl2): Found: m/z = 513.1601. 

Calculated for [M + O2 + H]
+
: m/z = 513.1614. TLC (silica gel; cyclohexane/DCM, 2:1): 

Rf = 0.4. 
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