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Abstract 

The purpose of this thesis was to investigate the contribution of the inflammatory 

mediators Nuclear factor κB and complement during the progression of renal 

diseases. The first two results chapters in this thesis demonstrated a novel role for 

complement component 3 (C3) during the progression of chronic renal disease in the 

murine model of unilateral ureteric obstruction (UUO) C3 gene up-regulation and 

complement activation persisted throughout the course of UUO in wild type (WT) 

mice. In situ hybridisation showed that renal tubular epithelial cells were the primary 

site of C3 gene expression during early ureteric obstruction in the renal cortices of 

WT mice. Gene expression for transforming growth factor-beta (TGF-β) and 

collagen I in obstructed C3 deficient (C3
-/-

) mouse kidneys was significantly reduced 

compared with obstructed kidneys from WT mice. The decrease in TGF-β and 

collagen I also coincided with a significant reduction in mRNA expression for alpha-

smooth muscle actin (α-SMA) as well as a significant decrease in interstitial collagen 

deposition. In addition to these observations, the number of infiltrating CD8
+
 T cells 

and F4/80
+
 macrophages counted within the cortical tubulointerstitial compartment, 

was significantly higher in C3
-/-

 mice. 

Gene expression for the membrane-bound complement regulatory proteins 

complement receptor-related protein-y (crry), CD59a and decay accelerating factor 1 

(DAF1) decreased in WT and C3
-/-

 mice during the course of UUO. In particular, 

crry, CD59a and DAF1 mRNA expression was found to be much lower in C3
-/-

 mice. 

A transition from membrane to cytoplasmic expression of crry protein was also 

demonstrated in tubular epithelial cells of obstructed WT mouse kidneys. In contrast 

to this, factor H gene expression was markedly elevated in WT mice, but not in C3
-/-

 

mice. 
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In vitro stimulation of mouse proximal tubular cells using lipopolysaccharide (LPS) 

resulted in complement activation, C3 gene up-regulation and production of C3 

protein, providing an in vitro model to use for future targeting of proximal tubular 

epithelial cell C3 gene expression. 

The final results chapter of this thesis demonstrated an important role for nuclear 

factor kappa-B (NF-κB) subunit nfκb1 during the progression of renal inflammation 

in the nephrotoxic serum nephritis model of acute renal injury. nfκb1 deficient mice 

developed significantly worse glomerular injury and proteinuria and displayed 

sustained up-regulation of interleukin-6 and S100 calcium binding proteins A8 and 

A9. Finally, in contrast to observations in the nephrotoxic serum model, fibrosis, 

immune cell infiltration and cytokine mRNA expression were all unchanged in nfκb1 

deficient mice compared with WT mice after ten days of ureteric obstruction. 
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1 Introduction 

1.1 The urinary tract 

1.1.1 General anatomy of the kidney 

The kidneys are paired lobular organs weighing 120-170g in adults. They are situated 

on the posterior abdominal wall either side of the vertebral column, with the right 

kidney normally lower than the left. Each kidney is covered in a thin uniform capsule 

which is surrounded by adipose tissue contained within the renal fascia. The kidney 

can be divided into two distinct regions, the cortex and the medulla. The medulla is 

made up of a number of renal pyramids, which then project into the renal pelvis 

(Figure 1.1). 

 

1.1.2 The nephron 

The basic functional unit of the kidney is the nephron and there are approximately 

one million nephrons in a human kidney. Each nephron consists of a cortical 

Bowman‟s capsule containing the glomerulus which then connects to a system of 

tubules delivering urine to the collecting ducts (Figure 1.2). The glomerulus itself is 

made up of a network of capillaries supplied by the afferent arteriole. The fenestrated 

endothelium, specialised endothelial basement membrane and epithelial podocytes of 

the glomerular capillaries allow selective ultrafiltration according to size and charge 

(Figure 1.3). Following passage through the glomerulus, the filtrate enters the tubular 

system and is subsequently modified by re-absorption and secretory processes. 
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Figure 1.1. General anatomy of the kidney 

Extracted from http://www.d.umn.edu 

 

 

Figure 1.2. Structure of an individual nephron 

Extracted from http://wikieducator.org 

 

http://www.d.umn.edu/
http://wikieducator.org/
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The tubular system is divided into functionally distinct regions known as the 

proximal tubule, loop of Henle, the distal tubule and collecting duct, each region 

differing functionally, structurally and cytologically.  Re-absorption is enhanced by 

increased surface area due to the presence of cellular microvilli forming a 

characteristic apical brush border. The urine is then concentrated at the loop of Henle 

and collecting ducts before reaching the renal pelvis. 

 

1.1.3 The ureters 

The ureters originate from the renal pelvis of each kidney (Figure 1.1). Their 

structure consists of a hollow muscular tube lined with transitional epithelial cells 

and their function is to facilitate the movement of urine from kidney to bladder by 

ureteric peristalsis. 

 

1.1.4 The bladder 

The bladder is a highly distensible structure responsible for the short-term storage of 

urine. The wall of the bladder is made up of smooth muscle bundles and the lumen is 

lined with a multi-layered transitional epithelium attached to the bladder wall via a 

thin basement membrane. The upper layer of differentiated epithelial cells, secrete 

uroplakins to their apical surface which serve to strengthen the underlying epithelium 

and provide an impermeable barrier. 
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Figure 1.3. Anatomy of the glomerulus 

Extracted from (Kriz et al., 1998). 
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1.1.5 Renal function 

The kidney plays an important role in the maintenance of extracellular fluid and 

electrolyte homeostasis. This is achieved by ultrafiltration of blood plasma followed 

by the active and passive re-absorption of solutes along each distinct segment of the 

nephron. The kidney functions to excrete waste products, drugs and excess acid. It is 

also involved in the metabolism of small proteins and vitamin D as well as the 

production of erythropoietin and prostaglandins. 

 

1.2 Chronic kidney disease 

Chronic kidney disease (CKD) is a general term applied to an array of heterogeneous 

disorders affecting renal structure and function and is becoming increasingly 

recognised worldwide as a major public health problem. It is often asymptomatic and 

therefore not usually detected until later during disease progression. In the clinic, 

CKD is detected by testing for the presence of proteinuria or haematuria and by 

using serum creatinine to estimate glomerular filtration rate (Levey and Coresh, 

2012). CKD is diagnosed when structural and functional abnormalities persist for >3 

months and is categorised into five stages of increasing disease severity according to 

remaining kidney function; (Table 1.1; (Cirillo, 2010)). When remaining kidney 

function becomes insufficient to maintain homeostasis, renal failure occurs. Patients 

with end stage renal disease (ESRD) require renal replacement therapy (RRT) in the 

form of either dialysis or transplantation to survive. Over the last 20 years, the 

number of patients diagnosed with ESRD has continued to escalate, thereby 

increasing the cost of providing RRT (Zoccali et al., 2010; Zhang and Rothenbacher, 

2008). 
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Stage Description eGFR 

(mL/min/1.73m
2
) 

1 Kidney damage with normal or raised GFR >90 

2 Kidney damage with mildly reduced GFR 60-89 

3 Moderately reduced GFR 30-59 

4 Severe reduction in GFR 15-29 

5 Kidney failure <15 

 

Table 1.1. National kidney foundation KDOQI staging for CKD  

Glomerular filtration rate (GFR). Extracted from Stevens et al., 2007 

 

Figure 1.4. RRT incident rates in countries of the UK 1990-2009 

Renal replacement therapy (RRT). Extracted from the UK Renal Registry 13
th

 

Annual Report 2010 (Caskey et al., 2011). 
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1.2.1 Prevalence of CKD 

According to a large primary care study in 2007 the UK age-standardised prevalence 

of CKD stages 3-5 was 8.5% (10.6% in females and 5.8% in males; (Stevens et al., 

2007)). In 2009, the number of new patients requiring RRT was 6,730 in the UK, 

equating to 109 patients per million population (Figure 1.4). The number of UK 

patients requiring some form of RRT has increased from approximately 7000 

patients in 1982 up to almost 50,000 patients in 2009 and currently costs the NHS an 

estimated £30,000/patient/year (Figure 1.5). Research into CKD has intensified 

during the last 10 years and it is widely believed that early detection could delay or 

even prevent progression towards renal failure (Anderson and Glynn, 2011; Caskey 

et al., 2011). 

 

1.2.2 Causes of CKD  

In 2010, a national analysis of patients beginning RRT in the UK reported that 

diabetes and glomerulonephritis were the first two primary renal diagnoses, of which 

diabetic nephropathy was the most common, accounting for 25% of all incident 

diagnoses (Table 1.2; (Caskey et al., 2011)). Other research has suggested that co-

morbidities such as hypertension, diabetes and obesity can significantly increase the 

chances of developing CKD (Levey et al., 2010). Diabetes mellitus is a chronic 

metabolic condition characterised by high blood sugar (hyperglycaemia) and is 

caused by either a resistance to or a deficiency of the hormone insulin. Prolonged 

hyperglycaemia leads to microangiopathy of small blood vessels, of which the 

glomerular arterioles are particularly susceptible. 
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Over time, glomerulosclerosis develops in many diabetic patients leading to 

proteinuria and progression toward ESRD (Levey et al., 2010). Glomerulonephritis 

(GN) is the general term ascribed to a group of different diseases targeting both 

kidneys, causing inflammation of the glomerulus and reduced renal function. It is 

characterised by the presence of haematuria and proteinuria and may have either 

primary (intrinsic) or secondary (systemic) causes (Vassalotti et al., 2007). 

Progression towards ESRD is often unavoidable, but the rate at which this occurs 

varies depending on the type of disease. CKD has been shown to have an inter-

relationship with other diseases and is itself a risk factor for clinical complications 

and death from other chronic diseases and infections. A study by Levey and Coresh 

demonstrated that patients diagnosed with CKD (particularly the elderly) have an 

increased risk of cardiovascular complications (Levey and Coresh, 2012). The same 

study also showed that the risk of death arising from cardiovascular disease (CVD) in 

patients diagnosed with ESRD increased by 100 times. Another study showed that 

patients diagnosed with CKD at stages 4-5 had a 2-4 times greater risk of death 

(Zoccali et al., 2010). 

 

1.2.3 End stage renal disease 

It is well known that renal function is correlated to kidney architecture and the 

replacement of functioning nephrons with fibrotic scar tissue remains a strong 

indicator of renal disease progression in the clinical setting. 
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In healthy renal biopsies, tubules exist in close proximity to one another and are 

surrounded by a sparse extracellular matrix (ECM). ESRD is defined by the presence 

of extensive interstitial fibrosis (characterised by the deposition of collagen), 

infiltrating leukocytes and tubular atrophy. Patients diagnosed with ESRD have an 

estimated glomerular filtration rate (eGFR; mL/min/1.73m
2
) of <15 and require RRT 

or a kidney transplant to survive. 

 

1.3 Animal models of experimental renal injury 

Animal models of experimental renal injury have been developed over time and are 

used to mimic the progression of numerous acute and chronic renal diseases 

encountered in the clinical setting. They are important for studying the mechanisms 

of renal fibrosis and provide a better understanding of the preceding 

pathophysiological events; assisting with the development of improved therapeutic 

interventions to help preserve renal function. 

 

1.3.1 Obstructive nephropathy 

Obstructive nephropathy (ObN) is a relatively common renal disease caused by the 

impaired flow of urine, resulting in hydronephrosis and tubulointerstitial injury. It is 

induced by the presence of functional or structural changes within the urinary tract 

that prevent the normal flow of urine. ObN can affect patients of all ages. 
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Table 1.2. Primary renal diagnosis  

Incidence rates per million population (2009), *includes presumed glomerulonephritis not biopsy proven.  

Extracted from the UK Renal Registry 13th Annual Report 2010 (Caskey et al., 2011). 

 



28 

 

 

Figure 1.5. Growth in prevalent patients by treatment modality 

Extracted from the UK Renal Registry 13
th

 Annual Report 2010 (Caskey et al., 

2011). 
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It may be asymptomatic, or present with a range of clinical symptoms such as 

hypertension, acute and chronic renal failure or an enlarged kidney (Klahr, 2000). 

The characteristic pathophysiological events of ObN include renal vasoconstriction, 

interstitial infiltration of macrophages and T cells, interstitial accumulation of ECM 

proteins, proliferation of intrinsic renal calls and eventual tubular cell atrophy (Guo 

et al., 2001; Truong et al., 1996). 

 The unilateral ureteric obstruction (UUO) experimental model of chronic renal 

injury is induced by surgical ligation of a single ureter (Klahr and Purkerson, 1994; 

Kuncio et al., 1991). It is a well characterised model of renal disease which is 

commonly used for studying the mechanisms of renal inflammation and fibrosis and 

to evaluate potential therapeutic approaches towards improving the outcome of renal 

disease (Wang et al., 2005a; Yang and Liu, 2002; Satoh et al., 2001). This model is 

characterised by the gradual development of interstitial inflammation and fibrosis, 

macrophage, T cell and fibroblast infiltration and eventual loss of functioning 

nephrons. Both infiltrating immune cells and resident renal cells are thought to be the 

source of pro-inflammatory and pro-fibrotic cytokine generation during ureteric 

obstruction. 

 

1.3.2 Nephrotoxic serum nephritis 

Anti-glomerular basement membrane (a-GBM) nephropathy is a rare but destructive 

glomerular disease caused by IgG antibodies which target and disrupt the α3 chain of 

type IV collagen present within the capillary walls of the GBM of the kidney. 
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Onset of disease is rapid and affected patients present with acute renal failure, 

haematuria, oedema and on biopsy have a crescentic glomerulonephritis. 

Occasionally the a-GBM antibody also targets the pulmonary alveolar basement 

membrane in a rare condition known as Goodpasteure‟s syndrome. Patients affected 

in this way present with concomitant pulmonary haemorrhage in addition to acute 

renal failure. Nephrotoxic serum (NTS) nephritis is an experimental model of renal 

injury used to study the development and progression of antibody-mediated 

glomerular injury. Nephrotoxic serum contains an anti-collagen antibody which 

binds to the GBM and induces a cascade of complement-mediated injury. In this 

model, renal injury following NTS injection is characterised by rapid neutrophil 

infiltration followed by glomerular thrombosis and proteinuria (Chen et al., 2002; 

Hebert et al., 1998). 

 

1.4 Tubulointerstitial inflammation and fibrosis 

The cortical region of the kidney is comprised of the tubulointerstitium (around 90%) 

and the glomeruli (remaining 10%). The tubulointerstitial compartment contains 

predominantly tubular epithelial cells, but also a small number of quiescent 

fibroblasts and immune cells. Tubulointerstitial inflammation and fibrosis is a major 

factor in the progressive loss of renal function in a variety of kidney diseases, 

including glomerulonephritis, chronic allograft nephropathy and ObN (Harris and 

Neilson, 2006). The process itself is particularly complex due to the number of 

interacting pathways which ultimately result in the replacement of functioning 

nephrons with scar tissue. 
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1.4.1 Mediators of inflammation and fibrosis during renal injury 

Cellular stress and injury result in the generation of inflammatory and fibrogenic 

mediators including growth factors and pro-inflammatory cytokines as well as 

activation of the renin-angiotensin system. 

 

1.4.1.1 Renin-angiotensin system 

The progression of a number of renal diseases toward end-stage renal failure (ESRF) 

is driven by the multiple effects of angiotensin-II (ANG II). Following ureteric 

ligation, there is an alteration in renal haemodynamics resulting in significant 

vasoconstriction of the renal vasculature. These changes in renal blood flow are 

mediated by ANG II via the AT1 receptor (Klahr and Morrissey, 2002b; Satoh et al., 

2001). Angiotensinogen gene expression (a precursor to angiotensin) is stimulated by 

nuclear factor-κB (NF-κB). Other effects of ANG II are illustrated in Figure 1.6 (Guo 

et al., 2001; Klahr and Morrissey, 1998). 

 

1.4.1.2 Pro-inflammatory cytokines 

Numerous cytokines have been inferred in the progression of inflammation during 

renal disease. One of the most widely studied acute phase pro-inflammatory 

cytokines is tumour necrosis factor-α (TNF-α). Following its discovery, it was 

initially thought to be exclusively produced by macrophages; however fibroblasts 

and endothelial cells have since demonstrated their capacity to produce TNF-α in 

response to stimuli such as interleukins and bacterial LPS. 
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TNF-α mediates inflammation by binding to one of its specific TNF-α receptors 

(TNFR1 or TNFR2), subsequently inducing activation of a distinct cell signalling 

pathway, including the NF-κB pathway (Figure 1.6; (Grande et al., 2010)). 

Depending upon which pathway is activated, TNF-α signalling is capable of eliciting 

cell survival, proliferation, differentiation and apoptosis. In animal models of ureteric 

obstruction, ANG II mediated NF-κB signalling contributes towards an early 

increase in TNF-α mRNA expression (Ucero et al., 2010). The resulting 

inflammatory environment then stimulates the production of chemoattractants such 

as monocyte chemoattractant protein 1 (MCP-1), causing macrophages to migrate 

into the renal interstitium. Further, TNF-α production by macrophages and resident 

renal cells contributes towards increasing infiltration of leukocytes and mediates 

cellular changes such as apoptosis and necrotic cell death (Misseri et al., 2005). 

Rodent studies using angiotensin-converting enzyme (ACE) inhibitors and 

angiotensin receptor knock-out mice (Khalil et al., 2012; Klahr and Morrissey, 

2002a; Ishidoya et al., 1996; Kaneto et al., 1994), have demonstrated that TNF-α 

production is mediated at least in part, by ANG II signalling (Esteban et al., 2004; 

Dinh et al., 2001). TNF-α signalling via TNFRs is also an important contributor 

towards tubulointerstitial inflammation and fibrosis during UUO. Mice lacking 

TNFR1 exhibit decreased NF-κB activation, reduced collagen deposition and fewer 

alpha-smooth muscle actin (α-SMA) positive interstitial myfibroblasts (Guo et al., 

1999). 
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Figure 1.6. Angiotensin-II mediated activation of TNF-α and NF-κB 

Taken from Klahr and Morrissey 2002. 
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Interleukin-6 (IL-6) is a pleiotropic cytokine that mediates the acute phase 

inflammatory response following tissue stress and trauma. It is produced by T cells, 

macrophages and endothelial cells and has an important role in T cell and B cell 

differentiation and the activation of other immune cells. IL-6 signalling pathways 

control the transcription of many proteins and may exert either pro or anti-

inflammatory actions depending upon the nature of activation. A recent study by 

Zhang and co workers identified ANG II-mediated IL-6 signalling as a key 

contributor towards renal fibrosis in mice and demonstrated that IL-6 is mRNA also 

up-regulated in kidneys taken from CKD patients (Zhang et al., 2012). Earlier studies 

also showed that IL-6 receptor blockade significantly suppressed development of 

IgG class antibody autoimmune kidney disease and that production of IL-6 by 

macrophages in a mouse model of renal ischaemia reperfusion injury (IRI) 

exacerbated renal injury (Kielar et al., 2005). More recently, Buraczynska and co 

workers demonstrated a link between an IL-6 gene single nucleotide polymorphism 

and progression to ESRD in patients with chronic glomerulonephritis (Buraczynska 

et al., 2007). 

 

1.4.1.3 Growth factors 

There are several growth factors implicated in the development of tubulointerstitial 

fibrosis (Wang et al., 2005b; Bottinger and Bitzer, 2002; Yang and Liu, 2002). 

Perhaps the most important of these is Tumour growth factor-β (TGF- β). The role of 

TGF-β and its subsequent activation of down-stream signalling events leading to the 

progression of CKD have been investigated in detail (Oliver, 2002; Miyajima et al., 

2000; Kaneto et al., 1999). 
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Figure 1.7. TGF-β mediated ECM deposition during renal injury 

Taken from Klahr and Morrissey 2002. 
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TGF-β belongs to a multifunctional superfamily of regulatory cytokines produced in 

virtually all mammalian tissues. The TGF-β family of secreted peptides includes the 

three TGF-β isoforms (TGF-β1, -β2 and –β3), bone morphogenetic proteins (BMP) 

and activins. TGF-β isoforms are widely distributed and exert their effects on 

mammalian cells by ligand-induced activation of TGF-β receptors at the cell surface, 

triggering an intracellular signalling cascade of smad proteins. Depending on the 

physiological context of activation, smad proteins can directly influence the 

transcription of a number of different genes, including those associated with cellular 

homeostasis and development, apoptosis, immunological response and ECM re-

modelling (Blobe et al., 2000). TGF-β1 plays an important role in inflammation by 

regulating the repair and regeneration of tissue following injury. It contributes to 

fibrogenesis through ECM re-modelling, fibroblast proliferation and migration, 

chemoattraction of macrophages and upregulation of gene expression for collagen, 

fibronectin, laminins and integrins (Grygielko et al., 2005). 

 

1.4.2 The extracellular matrix 

In the normal kidney, structural integrity and biological function are dependent upon 

a network of cellular and extracellular interactions. The ECM is an organised 

heterogeneous structure providing an architectural scaffold for cell-cell contact and 

cell-matrix adhesion (Kuncio et al., 1991; Lemley and Kriz, 1991). Alterations to the 

composition or topography of the ECM can have important consequences for normal 

functioning of nephrons and for the kidney as a whole. Fibrosis is characterised as 

the imbalance between ECM deposition and degradation and is a common 

histopathological feature of progressive renal diseases. 
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1.4.3 Source of renal fibroblasts in disease 

A contributing factor to the progression of renal fibrosis is the proliferation of 

fibroblasts in the interstitial compartment. The precise origin of these fibroblasts 

remains controversial, though several mechanisms that may contribute towards their 

increasing numbers during fibrogenesis have been suggested (Iwano and Neilson, 

2004). One hypothesis is that bone marrow derived cells (fibrocytes) circulate to 

peripheral organs where they act as progenitors for resident tissue fibroblasts (Bucala 

et al., 1994). A different hypothesis suggests that interstitial fibroblasts, resident in 

the normal kidney around blood vessels (pericytes), are stimulated to divide by the 

presence of cytokines and growth factors originating from injured renal epithelial 

cells (Klahr and Morrissey, 2002b; Strutz et al., 2000). These intrinsic renal 

fibroblasts subsequently transform into myofibroblasts during the early stages of 

injury and contribute to the development of renal fibrosis (Picard et al., 2008). 

Finally, there is the hypothesis that renal epithelial cells can themselves 

transdifferentiate into myofibroblasts by a process known as epithelial to 

mesenchymal transition (EMT; (Iwano et al., 2002; Strutz et al., 2002). This change 

from an epithelial to mesenchymal phenotype is thought to be driven by a number of 

different factors including TGF-β (Yang and Liu, 2002; Stahl and Felsen, 2001). 

 

1.5 The role of the immune system during renal injury 

Recently, excessive immune activation has been shown to play an important role in 

the development of tubulointerstitial injury. The pathophysiological events following 

ObN include infiltration of macrophages, monocytes and T-lymphocytes into areas 

of interstitium surrounding the renal tubules. 



38 

 

It has been suggested that following tubular injury, renal epithelial cells release 

inflammatory mediators and chemokines that in turn stimulate infiltration and 

proliferation of lymphocytes and macrophages in the affected area (Lange-Sperandio 

et al., 2002). CD4
+
 lymphocytes have an important role in disease progression. In 

particular T helper 2 (TH2) cells are strongly linked to the development of a pro-

fibrotic phenotype (Wynn, 2004). In addition, TH1 CD4
+ 

T-cells induce a potent 

inflammatory response by producing interferon-γ (IFN-γ). The direction of disease 

progression therefore depends upon the phenotype of the TH response. CD8
+ 

T-

lymphocytes play more of an effector role in that they may directly target native 

renal cells and induce phenotypic changes such as EMT or apoptosis (Robertson et 

al., 2004; Wynn, 2004). Knowledge surrounding the mechanism by which activation 

of invading lymphocytes takes place remains incomplete, but another area which 

may be of interest is the interaction between the adaptive and innate immune 

systems. A component of the innate immune system that may be important in this is 

the complement system, since complement is able to directly influence the adaptive 

immune response. 
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1.6 The complement system 

The complement system is a biochemical cascade made up of approximately 30 

serum and membrane-bound proteins which constitute almost 10% of all serum 

proteins and make up part of one of the major defence systems within the body, the 

innate immune system. Complement was identified in the late 19
th

 century by 

German scientist Paul Ehrlich as a heat-labile blood serum component with non-

specific antimicrobial activity. The heat-sensitive component observed by Ehrlich 

was named “complement” due to the observation that it complemented other 

elements of the immune system. As part of the innate immune system, the 

complement system responds rapidly to defend the host against a variety of invading 

microorganisms (Morgan and Walport, 1991). The complement system can also 

participate during the inductive phase of the acquired immune response by 

contributing to the recognition and presentation of non-self antigen, triggering B-cell 

activation, maturation and proliferation (Carroll, 2004; Nielsen et al., 2000). In 

addition to this, the complement system also plays a role in the solubilisation of 

immune complexes and the control of inflammatory reactions (Frank and Fries, 

1991; Atkinson, 1988). 

The components of the complement system exist as inactive pro-enzymes which 

require proteolytic cleavage in order to become biologically active. Regulatory 

molecules including; complement receptor 1 (CR1), membrane cofactor protein 

(MCP), decay accelerating factor (DAF), C4 binding protein (C4bp), Factor H (FH) 

and Factor I (FI), target complement activation to non-self targets to prevent damage 

to neighbouring host cells (Liszewski et al., 1996). 
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1.6.1 Complement production 

The primary location for biosynthesis of complement is the liver. Although Erlich 

and Morgenroth suggested the liver as the main source of complement production in 

1900, it was only confirmed by Alper and Rosen in recipient to donor allotype 

conversion during liver transplantations in 1976. Further support for this initial 

observation came from studies of primary human hepatocyte cultures, rodent 

hepatoma cell lines and the human hepatoma derived cell line HepG2 (Morris et al., 

1982). In addition, at a similar time, studies supporting the extrahepatic synthesis of 

complement began to emerge and have continued to do so up to the present day. It is 

now widely acknowledged that extrahepatic complement synthesis contributes 

approximately 10% of circulating C3, the pivotal component of the complement 

cascade. These alternative sites for complement production include epithelial cells, 

fibroblasts, lymphocytes and macrophages derived from different organs, including 

the kidney (Naughton et al., 1996). In the kidney, local complement production has 

been shown to occur at different sites along the nephron and may be further 

enhanced by the presence of cytokines and infiltrating immune cells during acute 

infection (Sheerin et al., 1997; Sacks et al., 1993; Brooimans et al., 1991). 

 

1.6.2 Activation of the complement system 

Activation of the complement cascade is triggered by one of three distinct pathways: 

the classical pathway, the alternative pathway and the mannose-binding lectin (MBL) 

pathway (Figure 1.8). All three pathways converge to cleave complement component 

C3, which subsequently initiates activation of the terminal complement pathway and 

formation of the membrane attack complex (MAC). 
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Figure 1.8. Complement activation pathways 

Complement activation is triggered via activation of either the alternative, classical 

or lectin pathways, all three of which converge to cleave central component C3. 

Briefly, activation of the alternative pathway occurs following the spontaneous 

hydrolysis of C3 to C3(H2O). C3(H2O) binds factor B (FB) to form C3bB which is 

then cleaved by factor D (FD) leaving the C3bBb complex. C3bBb is stabilised by 

properdin to form the alternative pathway C3 convertase. C3 is subsequently cleaved 

to C3a and C3b to form the C5 convertase C3BbC3b. Activation of the classical 

complement pathway occurs when immunoglobulin-bound antigens bind to and 

activate the C1 complex (consisting of C1qr2s2). Activated C1qr2s2 cleaves C4 to 

C4a and C4b. C4b becomes membrane-bound and binds to pro-enzyme C2, which is 

then cleaved to C2a and C2b fragments by C1s. C2a remains bound to C4b, forming 

the classical C3 convertase C4b2a. C3 is cleaved to C3a and C3b to form the C5 

convertase C4b2aC3b. The lectin complement pathway is homologous to the 

classical pathway, with the exception that it is activated by the binding of lectin to 

microbial cell surface carbohydrates (mannose). Surface-bound lectin activates 

MBL-associated serine proteases (MASPs), which directly activate C3 and directly 

cleave C2 and C4. Activation of the terminal complement pathway occurs when the 

alternative and classical C5 convertases C3bBbC3b or C4b2aC3b cleave C5 in to 

C5a and C5b. C5b binds to C6 and C7, forming C5b67, which associates with an 

adjacent membrane. C5b67 then binds to C8 and multiple C9 molecules forming the 

transmembrane pore C5b-9, also known as the MAC. *denotes the analphyatoxins 

C3a and C5a. Orange boxes highlight regulatory complement proteins. 
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1.6.2.1 The classical pathway 

The classical pathway is initiated by the activation of the C1 complex (one molecule 

of the hexameric C1q and two molecules each of C1r and C1s forming C1qr2s2). 

Activation of C1qr2s2 usually occurs when C1q binds to IgG or IgM bound antigens, 

however activation may also occur independently of antibody in the presence of 

nucleic acids and damaged cellular components. Activated C1q undergoes a 

conformational change, inducing auto-activation of the pro-enzyme C1r which then 

cleaves the remaining C1s molecules. The activated C1qr2s2 molecule then cleaves 

C4 which releases a small C4a fragment and a large C4b fragment. The exposed 

thioester group in C4b is then able to bind covalently and irreversibly with 

membrane or activating surface amino or hydroxyl groups. In the presence of Mg
2+

 

ions membrane-bound C4b is able to bind and present pro-enzyme C2. Bound C2 is 

cleaved to C2a and C2b fragments by adjacent C1s. The larger C2a fragment remains 

bound to C4b to form C4b2a, the classical pathway C3 convertase. C3 binds to the 

C2a part of C4b2a where it is cleaved, releasing the small C3a fragment. The 

exposed thioester bond on the remaining C3b fragment allows the binding of C3b to 

the C4b2a complex forming the C5 convertase C4b2a3b (Figure 1.8). 

 

1.6.2.2 The alternative pathway 

Activation of the alternative pathway is dependent on the spontaneous low level 

hydrolysis of the internal thioester bond of C3 to C3(H2O). C3(H2O) resembles C3b 

and can bind to factor B (FB). C3(H2O)B or C3bB, is cleaved by factor D (FD), 

releasing the smaller fraction Ba. 
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The resulting complex is further stabilised by properdin, forming the alternative 

pathway C3 convertase C3bBb. C3bBb cleaves C3 to form C3a and C3b. Binding of 

C3b to C3bBb forms the alternative pathway C5 convertase C3bBbC3b. C3bBb is 

also able to cleave more C3 to C3b, creating a positive feedback loop and increasing 

deposition of C3b at the target surface. Bound C3b in turn acts as a receptor for C5 

which is then cleaved by Bb in an adjacent C3bBb complex (Figure 1.8). 

 

1.6.2.3 The lectin-binding pathway 

The third complement activation pathway, the lectin-binding pathway, is 

homologous to the classical pathway except that it is activated by the binding of 

lectin to carbohydrates on microbial surfaces. Binding of lectin activates the MBL-

associated serine proteases MASP-1 and MASP-2. MASP-1 is able to directly 

activate C3 and MASP-2 is able to directly cleave C2 and C4 (Figure 1.8; (Thiel et 

al., 1997)).  

 

1.6.2.4 The terminal complement pathway 

Complement components C6 and C7 bind to C5b, releasing C5b67 which is then 

able to form a stable association with an adjacent membrane, resulting in the binding 

of C8 and multiple C9 molecules. The C9 molecules associate with one another to 

form a barrel-like structure which traverses the membrane to form a C5b-9 pore also 

known as the MAC (Figure 1.8). 
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1.6.3 Consequences of complement activation 

The main purpose of complement activation is to remove invading pathogenic 

organisms such as bacteria. This may be achieved directly through the formation of 

the MAC (sections 1.6.2.4 and 1.6.3.2) or indirectly via the activation of 

phagocytosis and removal of immune complexes. 

 

1.6.3.1 Opsonisation 

Opsonisation is important in the defence against infection. It involves the binding of 

IgG antibody or complement proteins to the surface of foreign particles such as 

micro-organisms, to facilitate their removal by phagocytosis (Ehlenberger and 

Nussenzweig, 1977). The major complement opsonin is activated C3 (C3b). C3b and 

the C3b breakdown product C3bi are recognised by the complement receptors CR1 

and CR3 present on phagocytic cell membranes, leading to phagocytosis of the 

opsonised target. 

 

1.6.3.2 Cell lysis 

The complement-mediated direct killing of micro-organisms occurs via activation of 

the terminal complement pathway and subsequent formation of MAC (section 

1.6.2.4). These membrane traversing barrel-like complexes are inserted into the lipid 

bi-layers of target cells to create pores allowing diffusion of cellular solutes and ions 

resulting in cell lysis. 
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1.6.3.3 Generation of anaphylatoxins 

Complement activation results in cleavage of the complement proteins C3 and C5 to 

form the small, biologically active molecules C3a and C5a (Figure 1.8). These 

readily diffusible complement components have a variety of functions, including 

cellular chemotaxis during inflammation and the ability to stimulate release of 

histamine from mast cells. Their inflammatory effects are mediated by receptor 

specific binding to C3aR and C5aR (Wetsel, 1995). 

 

1.6.3.4 Augmentation of the acquired immune response 

Complement receptor 2 (CR2) provides one link between innate and acquired 

immunity. CR2 is present on B-cells and promotes their uptake of C3 opsonised 

antigen for processing and subsequent presentation to T-lymphocytes (Jacquiersarlin 

et al., 1995). It is also present on dendritic cells where it is able to interact with B-

cells and allow the complement system to play a role in B-cell maturation (Fischer et 

al., 1998). 

 

1.6.4 Regulation of complement 

In humans, the complement system contains proteins which regulate it at different 

stages of activation (Figure 1.8). These regulatory proteins function to prevent 

uncontrolled activation of complement, maintain homeostasis, and prevent host 

damage by restricting the effects of complement to target antigen. 
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The regulators of complement activity are segregated into two distinct groups; fluid 

phase complement regulators (factor H, C4 binding protein, S-protein and clusterin) 

and membrane-bound regulators (CR1, MCP, DAF and CD59). Of the fluid phase 

regulators, S-protein and clusterin prevent MAC insertion by binding terminal 

complement components, thus preventing cell lysis. C4bp accelerates the 

dissociation of the C3 convertase during classical pathways activation. FH protects 

self-cells from complement activation by accelerating dissociation of the C3 

convertase of the alternative pathway. FH also has co-factor activity for FI mediated 

C3b cleavage. 

The membrane bound regulator CR1 acts on both alternative and classical pathway 

convertases through binding and subsequent dissociation. DAF prevents assembly of 

the C3 convertase C3bBb and can also accelerate the decay of pre-formed C3bBb, 

subsequently inhibiting formation of the MAC. CD59 (CD59a and CD59b isoforms 

in mice) inhibits formation of the MAC by binding to C5b678, preventing binding 

and polymerisation of C9. CD46 and CR1 in conjunction with FI, inhibit formation 

of the MAC by promoting enzymatic cleavage of C3b thus restricting C3/C5 

convertase activity. FI cleaves both cell-bound and fluid phase C3b and C4b. In 

mice, CR1 related protein-y (crry), a membrane-bound complement regulator, 

inhibits classical and alternative complement pathways by binding to C3b and C4b. 

Crry-bound C3b and C4b is then cleaved by FI (Lesher and Song, 2010; Sjoberg et 

al., 2009; Zipfel and Skerka, 2009). 
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1.6.5 Complement receptors 

The binding of complement components to specific receptors on target cells is 

important in mediating the variety of effects of the complement system including 

activation of phagocytosis and cell lysis, enhanced antibody responses, presentation 

of immune complexes and local inflammation. The specificities and properties of the 

main complement receptors are summarised in Table 1.3. 

 

1.6.6 Complement in renal injury 

1.6.6.1 Renal ischaemia reperfusion injury 

Ischaemia reperfusion injury (IRI) occurs when tissues are temporarily deprived of a 

blood supply after which perfusion is restored eliciting an intense inflammatory 

response. IRI is common after tissue transplantation and is an important factor in 

determining graft survival. It is a common cause of acute renal failure in native 

kidneys and allografts and when present is associated with high mortality. Renal IRI 

causes activation and subsequent migration of neutrophils to the site of tissue injury 

and is also characterised by cytokine release, formation of reactive oxygen species 

(ROS), acute tubular necrosis and activation of complement. The role of complement 

during the progression of renal IRI has been debated for some time. Studies using 

C3
-/- 

C4
-/- 

and C6 deficient (C6
-
)
 
mice have demonstrated that C3

-/-
 and C6

-
 mice are 

significantly protected from IRI (Lien et al., 2003; Thurman et al., 2003). The 

contribution of locally produced C3 during IRI has been demonstrated in vivo (Zheng 

et al., 2006) and is discussed in more detail in section 1.6.6.3. 
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Receptor 
Alternative 

name(s) 
Location Specificity Role 

CR1 CD35 

Macrophages 

Neutrophils 

B-cells 

Some T-cells 

Renal 

epithelium 

C3b 

C4b 

Binding of opsonised 

immune complexes 

for transport to 

phagocytes 

CR2 CD21 

B-cells 

Some T-cells 

Dendritic cells 

Epithelia 

C3d 

Link between innate 

and acquired immune 

response on B-cells. 

Presentation of 

immune complexes to 

B-cells 

CR3 CD11b/18 

Macrophages 

Natural killer 

cells 

Neutrophils 

iC3b 

Cellular-extracellular 

matrix linkage. 

Promotes 

phagocytosis of 

opsonised complexes 

CR4 CD11c 
Macrophages 

Neutrophils 

iC3b 

C3dg 

Receptor for iC3b-

opsonised particles 

C3aR 

 
- 

Renal 

epithelium 

Macrophages 

Neutrophils 

C3a 
Mediation of 

inflammation 
C5aR - 

C5a 

 

C1qR - 

Leukocytes 

Platelets 

Monocytes 

Neutrophils 

Collagen 

 

Up-regulation of 

phagocytic capacity 

Protein chaperone 

 

Table 1.3. Properties of complement receptors 

Adapted from Morgan and Harris 1999. 
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Further evidence for the involvement of the alternative complement pathway in IRI 

was provided in studies using FB deficient (FB
-/-

) mice. 24 hours after reperfusion of 

FB
-/- 

mice, serum urea nitrogen and infiltrating neutrophils were significantly lower 

and the levels of functional and morphological injury appeared less severe in 

comparison to FB sufficient mice. In addition, C3 and C9 staining was not present 

within renal tissues of FB
-/-

 mice following IRI (Lien et al., 2003; Thurman et al., 

2003). Other studies have performed IRI in rodents lacking components of the 

classical complement pathway and have not shown significant reductions in 

ischaemic injury. The ability to regulate formation of the MAC during complement 

activation appears to be of importance in renal IRI. A study in which mice deficient 

in CD59a (CD59a
-/-

) were subjected to renal IRI demonstrated that a lack of CD59a 

resulted in more severe polymorphonuclear (PMN) leukocyte infiltration, enhanced 

tubular injury and increased apoptosis. Compared with WT mice, CD59a
-/- 

mice also 

had increased interstitial deposits of C9 and affected kidneys did not show recovery 

from IRI (Turnberg et al., 2004). 

 

1.6.6.2 Proteinuric renal disease 

Adriamycin nephropathy (AN) is a non-immune mediated experimental model of 

acute glomerular injury leading to proteinuria and progressive loss of renal function. 

Intravenous administration of adriamycin rapidly induces podocyte damage, causing 

glomerulosclerosis, proteinuria, tubulointerstitial damage and tubular atrophy. The 

hallmark development of interstitial fibrosis and accumulation of myofibroblasts 

during AN closely resembles the final common pathway observed in human 

glomerular disease. 
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Complement-mediated tubulointerstitial injury caused by heavy proteinuria is not 

completely understood. A recent study suggested a pivotal role for C3 in the 

progression of proteinuric disease. Approximately 48 hours after induction of AN, 

C3 protein was present within the glomerulus. Glomerular deposition of C3 

increased up to day 10. C3 deposition was also observed in the damaged 

tubulointerstitial compartment of the kidney and was significantly elevated compared 

with saline injected WT mice (Sheerin et al., 2008). Another study demonstrated that 

C3
-/-

 mice exhibited less damage to glomerular podocytes and had significantly 

reduced histological glomerular and tubulointerstitial injury compared with WT 

mice. Similarly, FD
-/-

 mice exhibited preserved renal function and were protected 

from early proteinuria. In the same study, AN-induced renal injury in WT and C1qa
-/-

 

mice was equivalent, demonstrating that complement activation via the alternative 

complement pathway was contributing towards disease progression in this model 

(Turnberg et al., 2006). 

The terminal complement pathway has also been shown to be an important mediator 

of renal damage. One study showed that compared to WT mice, CD59a
-/-

 mice had 

increased levels of C9 within glomeruli and significantly more interstitial collagen 

and α-SMA deposition during AN (Turnberg et al., 2006). In a second study, 

researchers evaluated adriamycin-induced renal injury in C6 sufficient (C6
+
) and C6

-
 

rats and discovered that both interstitial ECM deposition and peritubular 

myofibroblast accumulation at days 21 and 42 were attenuated in C6
- 

rats. In 

addition, no C5b-9 deposition was observed in C6
-
 rats (Rangan et al., 2004). 
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In the AN model of renal disease it is apparent that deficiency of various 

complement components can offer some protection from progression towards renal 

insufficiency. A more recent in vivo study using the AN model of glomerular injury, 

complement C3a receptor deficient (C3aR
-/-

) mice had reduced albuminuria and 

histological injury compared to WT mice and saline controls, suggesting that an 

absence of complement receptors may protect against disease progression. 

Interestingly, C3aR
-/-

 mice in this study also exhibited fewer infiltrating macrophages 

and less fibrosis (measured by collagen-I and α-SMA deposition) compared with that 

observed amongst WT mice (Tang et al., 2009; Tang et al., 1999). 

 

1.6.6.3 Renal complement synthesis 

Liver hepatocytes are the primary source of plasma complement, however, there is 

increasing evidence that smaller amounts of complement proteins are synthesised by 

other cell types and organs, including bone marrow cells, adipocytes, the brain and 

the kidney (Zhou et al., 2001). The contribution of complement towards renal injury 

is well documented (Welch and Blystone, 2009; Welch, 2001). The majority of 

components from each complement activation pathway can be synthesised by the 

kidney and under different inflammatory conditions, complement synthesis is 

stimulated in distinct regions including the glomerular mesangium, endothelium and 

epithelium and the tubular epithelium (Marsh et al., 2001). 
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Several studies have highlighted the importance of intrarenal synthesis of 

complement component C3 as an important mediator of local tissue injury (Quigg, 

2003; Springall et al., 2001; Daha and van Kooten, 2000; Welch et al., 2000). One 

study of AN in mice showed that WT mice receiving C3
-/-

 mouse kidney transplants 

prior to induction of AN had improved renal function and reduced mortality, 

demonstrating that renal synthesis of C3 was in part responsible for complement-

mediated injury in this model (Sheerin et al., 2008). The contribution of C3 towards 

progression of renal disease in vivo was confirmed in a renal IRI study utilising C3 

specific small interfering RNA (siRNA). This study showed that administration of 

C3 siRNA prior to induction of IRI inhibited C3-mediated progression of standard 

and severe IRI. 24 hours post-IRI, reductions in serum creatinine and blood urea 

nitrogen were observed. In addition, neutrophil infiltration, C9 deposition and 

infarction of tissues were reduced compared with mice not given C3 siRNA (Zheng 

et al., 2006). 

Renal synthesis of C3 has also been shown to affect long term graft survival 

following transplantation. In one study, C57BL/6 C3
-/-

 mouse kidneys transplanted 

into B10.Br recipient mice demonstrated long term graft function with 8/10 mice 

surviving to 100 days. Conversely, C57BL/6 mouse kidneys transplanted into B10.Br 

mice were acutely rejected with a mean graft survival of just 12.5 days (Pratt et al., 

2002). 
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1.6.6.4 The role of complement in unilateral ureteric obstruction 

The role of complement in non-proteinuric renal disease is not understood. A recent 

study demonstrated that mice deficient in C5 were protected from renal injury during 

the acute phase of ureteric obstruction (Boor et al., 2007). Studies in other animal 

models of renal disease have demonstrated that animals deficient in either 

complement components or complement receptors also show a reduction in renal 

injury. It is becoming increasingly apparent that manipulation of the complement 

system could provide an alternative therapeutic strategy capable of treating renal 

inflammation and fibrosis in the future. 
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1.7 Nuclear factor kappa-B 

NF-κB was identified approximately 25 years ago in eukaryotes as a transcription 

factor regulating the expression of the kappa-B (κB) light chain in B cells. In 

response to numerous different exogenous and endogenous stimuli, NF-κB signalling 

has since been shown to induce and repress the expression of many genes, including 

cytokines, chemokines and adhesion molecules. During normal physiological 

conditions, NF-κB regulates critical cellular processes such as development, cell 

growth, apoptosis and cellular immunogenic and inflammatory responses 

(Kucharczak et al., 2003; Chen et al., 2001). As well as regulating normal cellular 

activities, NF-κB has been shown to have an important role in the progression of a 

number of pathological states including asthma, arthritis, heart disease, neurological 

degeneration and cancer. Owing to its highly conserved role in signalling pathways 

of the innate and adaptive immune systems and its diverse biological role in other 

cellular signalling mechanisms, inappropriate activation of NF-κB causes a broad 

range of harmful effects (Ghosh et al., 1998). 

 

1.7.1 NF-κB/Rel protein family 

NF-κB regulated gene expression is mediated by NF-κB and Rel proteins which 

belong to a structurally related, dimer-forming family of transcription factors (Figure 

1.9). NF-κB/Rel proteins are separated into two classes or subfamilies; the NF-κB 

subfamily (class one) and the Rel subfamily (class two). Both NF-κB and Rel 

proteins share a homologous and highly conserved DNA binding and 

heterodimerisation „Rel homology domain‟ (RHD; (Gilmore, 2006; Bonizzi and 

Karin, 2004). 
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1.7.1.1 Rel sub-family 

The Rel protein subfamily consists of RelA (also known as p65), RelB, c-Rel, 

Drosophila dorsal and dif (Figure 1.9, top row). In contrast to their NF-κB subfamily 

counterparts, Rel proteins are defined by their C-terminal transcriptional activation 

domains (TAD). In vertebrates, Rel proteins are able to form hetero and homodimers 

with one another with the exception of RelB, which does not form homodimer 

complexes (Hayden and Ghosh, 2008). Rel proteins also dimerise with NF-κB 

subfamily proteins, indeed the major NF-κB/Rel complex present in most cells is the 

p50/RelA heterodimer. The combinational diversity of NF-κB and Rel homo and 

heterodimers serve to regulate very distinct, but overlapping sets of genes. In 

addition, individual dimmers also have distinct DNA binding site specifications for a 

group of related κB binding sites (Ghosh et al., 1998). 

 

1.7.1.2 NF-κB sub-family 

The proteins categorised within the NF-κB subfamily are p105, p100 and Drosophila 

relish (Figure 1.9, second row). Each NF-κB protein has a characteristic long C-

terminal domain containing inhibitory ankryin repeat sequences rendering them 

unable to activate gene transcription in their monomeric form. p105 and p100 NF-κB 

proteins are synthesised as inactive precursor proteins and are subsequently 

converted to the shorter DNA binding proteins p50 (nfκb1) and p52 (nfκb2) 

respectively, following proteolysis of their C-terminal domains. 
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Figure 1.9. The Rel/NF-κB family of proteins 

Generalised structures of the NF-κB and Rel transcription factor subfamilies. NF-κB 

and Rel proteins both have a highly conserved DNA binding domain known as the 

Rel homology domain (RHD). The C-terminal portions of Rel proteins contains a 

transcriptional activation domain (TAD), whereas the C-terminal portion of NF-κB 

proteins has an inhibitory domain containing ankyrin repeats and two serine residues 

(SS). Similarly, the majority of inhibitory κB (IκB) proteins contain a series of 

inhibitory ankyrin repeats and N-terminal SS residues. The SS residues on NF-κB 

and IκB proteins function as phosphorylation sites for inhibitory κB kinase (IKK) 

proteins. In general, IKK α and β consist of a kinase domain, a helix-loop-helix 

(HLH), leucine zipper (LZ) and NEMO binding domain (NBD). NF-κB essential 

modifier protein (NEMO) consists of two coiled coils (CC), a LZ and a zinc finger 

(ZF) domain. 

Taken from TD Gilmore (2006). 
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nfκb1 and nfκb2 typically form transcriptionally active dimmers with Rel subfamily 

proteins, nfκb1 is also able form dimmers with other nfκb1 molecules (Hayden and 

Ghosh, 2008; Perkins and Gilmore, 2006; Ghosh et al., 1998). 

 

1.7.2 Regulation of NF-κB 

NF-κB activity is tightly regulated by inhibitory κB (IκB) proteins. Following 

activation of the NF-κB pathway, IκB proteins become targets for either proteolysis 

or phosphorylation, subsequently permitting NF-κB to translocate to the nucleus and 

regulate target genes. Upstream signalling events preceding the regulation of IκB, 

involve the activity of a myriad of adaptor proteins and kinases, whose role it is to 

determine precisely which NF-κB dimer is activated and, subsequently, which genes 

are targeted for transcription. 

 

1.7.2.1 IκB proteins 

Rel homo and heterodimers and NF-κB heterodimers are maintained in an inactive 

state in the cytoplasm through interactions with IκB. nfκb1 and nfκb2 homodimers 

are an exception to this as they are not regulated by IκB proteins and are frequently 

found within the nucleus. One of the functions of IκB proteins is to mask highly 

conserved nuclear localisation sequences (NLS) present in the RHDs of NF-κB 

subunits, preventing nuclear accumulation and DNA binding. Several IκB proteins 

have been identified, each with a different affinity for discrete dimer complexes. 
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In addition, IκB proteins are regulated slightly differently from one another and 

exhibit different tissue-specific patterns of expression (Figure 1.9, third row; (Wan 

and Lenardo, 2009; Hayden and Ghosh, 2008). 

 

1.7.2.1.1  IκBα, IκBβ and IκBε 

Inhibitory κB proteins IκBα, IκBβ and IκBε each possess different functional 

characteristics and activation kinetics, of which IκBα and its role in the conanical 

NF-κB activation pathway has been most widely studied. The nfκb1/RelA NF-κB 

heterodimer is largely bound to IκBα and during periods of inactivity, IκBα prevents 

NF-κB activation of gene transcription by two means; firstly, by masking the NLS on 

RelA to prevent nuclear localisation and secondly by the binding of its own nuclear 

export sequence (NES) to the exposed NLS of nfκb1, resulting in a constant shuttling 

of the IκBα-nfκb1/RelA complex between the nucleus and cytoplasm. Upon 

activation of the canonical pathway, IκBα is rapidly degraded by proteosomes 

resulting in nuclear translocation and DNA binding of nfκb1/RelA, inducing 

transcription of target genes. IκBα transcription is also included and the subsequent 

increase in expression of IκBα provides a negative feedback loop for NF-κB 

signalling. In addition to nfκb1/RelA, other NF-κB dimmers have been shown to 

bind IκBα and when IκBα is not present, the termination of NF-κB activation is 

markedly prolonged. Unlike IκBα, IκBβ and IκBε exhibit considerably slower 

degradation and re-synthesis during NF-κB signalling. IκBβ has been shown to 

associate with NF-κB dimers already bound to κB sites on target genes within the 

nucleus, suggesting a regulatory role for IκBβ at the site of DNA binding (Hayden 

and Ghosh, 2008; Perkins, 2007; Hayden and Ghosh, 2004). 
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1.7.2.1.2  p100 and p105 

The nfκb1 and nfκb2 precursor proteins p105 and p100 respectively, are important 

for the regulation of NF-κB. nfκb2 has been shown to induce and regulate activity of 

NF-κB complexes including RelB dimer dependent gene expression. Another study 

has demonstrated that upon activation of the canonical NF-κB pathway the nfκb1 

precursor protein p105 is degraded, suggesting that p105 may behave in a similar 

way to IκB proteins. In mice, the 3‟ end of the p105 gene also encodes the inhibitory 

IκB protein IκBγ, though its precise role in the mouse is not presently clear (Perkins, 

2007). 

 

1.7.2.1.3  Bcl-3 and IκBζ; atypical IκB proteins 

The behaviour and mode of action of the atypical IκB proteins, Bcl-3 and IκBδ, is yet 

to be completely clarified, though the two proteins do share greater homology to one 

another than to the above-mentioned IκB proteins. Bcl-3 has been located within the 

nucleus of cells in association with nfκb1 and nfκb2 homo and heterodimers. It 

possesses a TAD that may act to both stabilise repressive NF-κB dimers such as 

nfκb1/nfκb1 (inhibiting NF-κB activation by preventing dimer access to κB sites) 

and to remove repressive NF-κB dimers bound to κB sites on target genes, allowing 

access to other NF-κB dimers. IκBδ is the least homologous out of all of the IκB 

proteins. Depending upon how IκBδ is activated, it is thought to either associate with 

nfκb1 homodimers in the nucleus or negatively regulate activity of RelA NF-κB 

dimmers (Wan and Lenardo, 2009; Hayden and Ghosh, 2008). 
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1.7.2.2 TNF receptor associated factor (TRAF) adaptors 

TRAF proteins have been identified as intermediate adaptors in the canonical and 

non-canonical NF-κB signalling pathways. In all, seven TRAF protein family 

members have been identified, and are distinguishable by their homologous C-

terminal TRAF domains. In canonical and non-canonical NF-κB activation 

pathways, the key role for TRAF adaptors appears to be the mediation of receptor 

induced IKK activation via protein-protein interaction, though the precise 

mechanisms by which TRAF adaptors contribute to IKK activation remain unclear 

(Hayden and Ghosh, 2008). 

 

1.7.2.3 Receptor interacting proteins (RIP) 

RIP proteins belong to a family of kinases whose role in most canonical NF-κB 

signalling pathways is to interact with TRAF proteins in order to activate IKK. RIP is 

thought to recruit IKK complexes via the binding of NEMO proteins, a process 

which is required for TNF-α and toll-like receptor induced NF-κB signalling as well 

as IKK activation following T cell and B cell antigen receptor activation (Hayden 

and Ghosh, 2008). 

 

1.7.2.4 NF-κB inducing kinase (NIK) 

NIK is regulated by TRAF proteins during the activation of non-canonical NF-κB 

signalling pathways and is thought to directly phosphorylate and activate IKKα 

independently of NEMO (Hayden and Ghosh, 2008). 
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1.7.2.5 NF-κB essential modifier protein (NEMO) 

NEMO (also known as IKKγ), belongs to the IKK family of proteins, and is present 

as a multimer of either dimeric and/or trimeric molecules (Figure 1.9, bottom row). 

Following ubiquitinylation, NEMO is thought to activate and recruit IKK during 

classical NF-κB signalling, as well as functioning independently of IKK. Although 

classified within the IKK family, NEMO does not have kinase activity and is not 

related to the two other family members, IKKα and IKKβ (Perkins and Gilmore, 

2006). 

 

1.7.2.6 Inhibitory κB kinases (IKK) 

IKK proteins are an important regulatory step in determining NF-κB response and 

commonly exist as dimmers containing the catalytic subunits IKKα and/or IKKβ 

which may or may not associate with the regulatory IKK protein NEMO (Figure 1.9, 

fourth row). IKKα and IKKβ are classified as serine/threonine kinases and each 

possess an N-terminal kinase domain, a C-terminal helix-loop-helix (HLH) domain 

(required for complete IKKβ activity and down regulation of kinase activity) and a 

leucine zipper domain (required for kinase activity). In vivo, IKKα and IKKβ can 

form homodimers, but preferentially form the heterodimeric IKKα/IKKβ complex, 

which has the greatest catalytic efficiency. IKK complexes become active following 

phosphorylation of at least one subunit and subsequently activate NF-κB by 

phosphorylating IκB family members, a common step in all NF-κB activation 

pathways. Regulation of IKK activity is thought to be mediated by adaptor proteins 

such as RIP and TRAF and also through autophosphorylation of its own C-terminal 

domain as part of a negative feedback loop. 
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Following activation of the canonical NF-κB pathway, IKKβ is necessary for the 

subsequent phosphorylation of IκBα, whereas during non-canonical pathway 

stimulation, NF-κB activation occurs by NIK mediated activation of IKKα (Hayden 

and Ghosh, 2008; Perkins, 2007; Perkins and Gilmore, 2006; Hayden and Ghosh, 

2004; Karin and Delhase, 2000). 

 

1.7.3 Activation of NF-κB 

NF-κB activation is triggered by numerous stimuli including ANG II, oxidative 

stress, haemodynamic changes and endogenous/exogenous ligand-receptor binding. 

The phosphorylation, ubiquitination and proteolysis of specific inhibitory-κB (IκB) 

proteins results in dissociation of NF-κB. Un-bound NF-κB then freely translocates 

to the nucleus where it binds to κB sites to induce the transcription of target genes 

(Bonizzi and Karin, 2004). Of the many distinct, but overlapping, NF-κB activation 

pathways described in the literature, the two most studied pathways are the canonical 

and non-canonical pathways (Gilmore, 2006). 

 

1.7.3.1 The canonical pathway 

The canonical pathway is thought to be the most frequently observed NF-κB 

activation pathway and is induced in response to inflammatory stimuli such as TNF-

α binding to its cell surface receptor TNFR1. In this case, the binding of TNF-α to its 

receptor causes the recruitment of TRAF adaptor proteins to the cytosolic domain of 

the receptor, which in turn recruit and phosphorylate the IKK complex 

(IKKα/IKKβ/NEMO). 
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The activated IKK complex subsequently phosphorylates IκBα, resulting in the 

ubiquitinylation and proteosomal degradation of IκBα, releasing nfκb1/RelA NF-κB 

dimers. Free nfκb1/RelA dimers translocate to the nucleus where they bind to κB 

sites on target genes to elicit the production of specific cytokines, growth factors and 

MHC antigens (Figure 1.10, left panel). Another target gene activated by nfκb1/RelA 

DNA binding is the IκBα gene. The increased production of IκBα forms an 

autoregulatory feedback loop resulting in the re-sequesteration of active nfκb1/RelA 

dimmers and their subsequent removal from the nucleus (Gilmore, 2006; Perkins, 

2006). 

 

1.7.3.2 The non-canonical pathway 

During T cell and B cell development, the alternative NF-κB activation pathway is 

stimulated by the binding of specific receptor ligands such as CD40 and B cell 

activating factor respectively. This activates NIK which subsequently phosphorylates 

and activates the IKKα/IKKα complex. Activated IKKα/IKKα in turn phosphorylate 

the IκB domain of the p100/RelB NF-κB dimer liberating nfκb2/RelB (Figure 1.10, 

right panel; (Gilmore, 2006; Perkins, 2006). 

 

1.7.4 Terminating NF-κB activation 

The mechanism by which NF-κB pathway activation is terminated remains poorly 

understood. One possible mechanism is the re-synthesis of IκB proteins and 

subsequent re-sequesteration of active NF-κB. 
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Figure 1.10. Canonical and non-canonical NF-κB activation pathways 

NF-κB activation and signalling via canonical and non-canonical pathways. 

Activation of both pathways is initiated by the binding of a ligand to its specific cell 

surface receptor. Upon activation of both pathways, adaptor proteins are recruited to 

the cytosolic receptor domain. After binding to receptors, adaptor proteins recruit and 

phosphorylate the canonical pathway inhibitory κB (IκB) kinase complex (IKK; 

consisting of IKKα, IKKβ and NEMO). During non-canonical pathway activation, 

adaptor proteins activate NF-κB inducing kinase (NIK) which subsequently 

phosphorylates and activates the non-canonical IKK complex (IKKα/IKKα). 

Subsequent phosphorylation of canonical IκB and non-canonical p100 inhibitory 

domains by activated IKK complexes causes ubiquitinylation and degradation of IκB 

and p100 inhibitory domains, releasing nfκb1/RelA (p50/RelA) and nfκb2/RelB 

(p52/RelB) dimmers. Free NF-κB dimmers translocate to the nucleus where they 

bind κB sites on target genes. 

Taken from TD Gilmore (2006). 
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Alternatively, the synthesis of other gene products inhibiting the upstream 

components of the NF-κB signalling pathway may also contribute towards 

terminating NF-κB activity (Wan and Lenardo, 2009; Saccani et al., 2004). 

 

1.7.5 NF-κB in disease 

Since its discovery, NF-κB signalling is increasingly being implicated in the 

development and progression of a number of pathophysiological states, such as those 

preceding the development of colorectal cancer and hepatitis-induced hepatocellular 

carcinomas. Whilst NF-κB may not play a role in the initiation of tumour cell 

expansion and subsequent metastasis it has been shown to promote tumour survival 

and expansion through stimulating the expression of anti-apoptotic proteins (Karin, 

2006; Mann and Oakley, 2005). 

In experimental atherosclerosis and wounded aortic endothelium models, systemic 

infusion of ANG II stimulates NF-κB activity in vascular smooth muscle cells 

(VSMC) causing up regulation of IL-6, vascular cell adhesion molecule 1 (VCAM-1) 

and MCP-1; (Guzik and Harrison, 2007). ANG II also induces the generation of 

ROS, another known stimulant for NF-κB (Pueyo et al., 2000). Antioxidant treatment 

of an angiotensin-stimulated rat aortic endothelial cell line demonstrated a reduction 

in IκB degradation and ANG II-induced VCAM-1 expression (Muller et al., 2000a).  
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In vitro administration of ACE inhibitors and angiotensin receptor antagonists to 

VSMCs also demonstrated that NF-κB activation and IκB degradation were 

dependent upon ANG II mediated angiotensin receptor stimulation (primarily via 

AT1 receptors) indicating a potential role for NF-κB in the pathogenesis of 

cardiovascular and renal diseases (Henke et al., 2007; Ruiz-Ortega et al., 2001; Ruiz-

Ortega et al., 2000). In contrast to its role during inflammation, there is increasing 

evidence to suggest that NF-κB may be involved in mediating resolution from 

inflammation (Lawrence and Fong, 2010; Oakley et al., 2005; Lawrence et al., 

2001). 

 

1.7.6 NF-κB signalling in renal disease 

NF-κB activation leading to inflammatory injury has been implicated in both acute 

and chronic renal disease (Sanz et al., 2010; Guijarro and Egido, 2001). In previous 

studies, pro-inflammatory stimulation of cultured mesangial cells induced 

phosphorylation of IκB and activation of NF-κB, switching on expression of VCAM-

1, MCP-1, IL-6, IL-8 and ROS. Inhibition of NF-κB subsequently decreased the 

expression of IL-8 and MCP-1 in human and mouse mesangial cell cultures (Massy 

et al., 1999). In a model of immune-mediated mesangial cell injury, NF-κB activity 

during acute and chronic injury was shown to be biphasic. Following complement-

mediated lysis of mesangial cells in the rat anti-Thy 1 model, monocytes and 

macrophages were recruited to the site of injury and deposition of ECM components 

within the glomerulus increased between 24 hours and seven days.  



67 

 

Resolution of glomerular injury started from day eight and was monitored up until 

day 14. During this time, MCP-1 expression returned to control levels and both 

glomerular damage and macrophage infiltrate resolved. 

To determine whether different NF-κB subunits were activated in a time-dependent 

manner, anti-nfκb1 and anti-RelA antibodies were used to stain renal tissues from 

anti-Thy 1 irradiated rats. nfκb1 and RelA were present in glomerular nuclei at 24 

hours post-ATS however by day ten, only nfκb1 could be detected, suggesting a role 

for p50 in the resolution of glomerular injury (Panzer et al., 2009). In an accelerated 

model of acute immune-mediated glomeular injury, activation of NF-κB also 

occurred during the resolution phase (in vivo and in vitro data). In this model, 

injection of LPS (a classical activator of NF-κB), induced significant interstitial 

oedema and infiltration of CD3
+
 T cells and F4/80

+
 macrophages by three hours (first 

NF-κB peak). However by 48 hours, oedema and immune cell infiltrates had 

returned to control levels (second NF-κB peak; (Panzer et al., 2009)). Using nfκb1 

deficient mice (nfκb1
-/-

), the authors demonstrated a reduction in the first peak for 

NF-κB activity and a complete absence of a second NF-κB activity peak. In addition, 

LPS-treated nfκb1
-/-

 mice also had significantly elevated levels of cytokines and pro-

inflammatory mediators compared with WT mice after three hours. In nfκb1
-/-

 mice, 

infiltrating CD3
+
 T cells and F4/80

+
 macrophages persisted at 48 hours and a more 

severe pathological phenotype was apparent (Panzer et al., 2009). 
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1.7.6.1 Activation of NF-κB during UUO 

The changes in haemodynamics following ureteric obstruction are mediated through 

the effects of ANG II signalling via AT1 and AT2 receptors, inducing activation of 

NF-κB signalling and subsequent stimulation of angiotensinogen gene transcription. 

In mice, administration of ACE inhibitors such as Enalapril or the use of individual 

AT1/AT2 receptor antagonists have been shown to reduce the activity of NF-κB (and 

subsequent up-regulation of NF-κB-related pro-inflammatory genes), prevent 

infiltration of monocytes and immune cells into renal tissues and slow renal disease 

progression during UUO (Esteban et al., 2004; Nakatani et al., 2002; Morrissey and 

Klahr, 1997). In another study of AT1 and AT2 receptor deficient mice, it was shown 

that each receptor played a different role in controlling NF-κB signalling by 

activating different NF-κB dimmers (Klahr, 2000). TNF-α signalling via TNFR1 and 

TNFR2 receptors has also been shown to contribute towards early NF-κB activation 

in rodent models of ureteric obstruction. Mice deficient in either TNFR1 (TNFR1
-/-

) 

or TNFR2 (TNFR2
-/-

) displayed significantly less NF-κB activation during UUO 

than TNFR sufficient animals. In particular, TNFR1
-/-

 mice had significantly reduced 

TNF-α mRNA expression as well as marked reduction in the deposition of collagen 

IV and α-SMA compared to their WT counterparts (Guo et al., 1999). 

During the early stages of UUO (10-12 hours post-obstruction), oxidative stress is 

induced by the physiological effects of fluid dynamic alterations within renal tissue. 

This in turn increases ANG II production and the subsequent synthesis of ROS, 

which increase the activity of NF-κB. 
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When applied experimentally, antioxidant compounds such as pyrrolidine 

dithiocarbamate (PDCT), have been shown to restore the redox equilibrium by 

ameliorating ANG II mediated NF-κB activity. In the UUO model, an attenuation in 

UUO-induced increases in NF-κB DNA binding was observed rats treated with 

PDCT and candesartan. MCP-1 gene expression and macrophage infiltration were 

also attenuated and renal interstitial fibrosis was ameliorated (Nakatani et al., 2002). 

 

1.7.6.2 NF-κB activation during NTS glomerulonephritis 

The role of NF-κB in NTS glomerulonephritis has received some attention. In one 

study, NF-κB DNA binding activity was detected in the glomerular nuclear extracts 

of rats injected with NTS. In the same study, administration of the antioxidant PDCT 

inhibited albuminuria, NTS-induced NF-κB DNA binding activity and mRNA 

expression of; MCP-1, intracellular adhesion molecule-1, interleukin-1β (IL-1β) and 

inducible nitric oxide synthase (Sakurai et al., 1996). Another study investigated the 

effects of administering glucocorticoids to NTS-injected rats and reported that 

therapeutic doses of prednisolone suppressed NF-κB activity, reduced proteinuria 

and decreased mRNA expression of IL-1β, MCP-1, and TGF-β (Sakurai et al., 1997). 

In vitro studies using mesangial cell cultures have also demonstrated that LPS and 

pro-inflammatory molecules such as IL-1β and TNFα can induce measurable NF-κB 

activation. In addition to this, the application of NF-κB inhibitors to stimulated 

mesangial cells significantly reduced IL-1β, IL-8 and MCP-1 gene expression. A 

more recent study used gene expression profiling to identify the presence of the 

active NF-κB target genes IL-1β, Il-6 and C3 during NTS glomerulonephritis (Kim 

et al., 2004). 
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1.8 Aims 

Multiple factors including complement activation and NF-κB signalling, have been 

shown to contribute towards the progression of many renal diseases. Of the 

numerous components belonging to each of the complement and NF-κB systems, it is 

thought that the central complement component C3 and the NF-κB family protein 

nfκb1 may each be involved during the progression of injury in experimental models 

of acute and chronic renal disease. 

In the first part of this study, UUO will be induced in WT and C3
-/-

 mice to 

determine the contribution of complement component C3 towards the progression of 

tubulointerstitial injury, including analyses of; histological examination, immune cell 

infiltration, cytokine expression, ECM deposition and gene up-regulation of key 

ECM components after three, five and ten days of UUO. Following on from this, 

complement activation and deposition will be measured in WT and C3
-/-

 mice where 

appropriate. mRNA expression of C3 and regulatory complement components will 

be compared in WT and C3
-/-

 mice at time points of three, five and ten days post-

UUO to determine the mechanism of complement activation in this disease model. 

The site of C3 up-regulation will be determined using in situ hybridisation. 

In the second part of this study, NTS nephritis and UUO will be induced in WT and 

nfκb1
-/-

 mice to compare the contribution of nfκb1 during the progression of acute 

and chronic renal disease. Histological analyses will be used to determine neutrophil 

infiltration and glomerular injury at two and 24 hours post-NTS administration and 

interstitial expansion and tubular dilatation after three and ten days of ureteric 

obstruction. 
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Renal injury during NTS nephritis will be determined by urinary albumin output and 

gene expression of known pro-inflammatory mediators. Disease progression in 

obstructed WT and nfκb1
-/-

 mice will be analysed in an identical manner as set out in 

the previous paragraph. 
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2 Materials and Methods 

2.1 Materials 

General chemicals and histological stains were purchased from Sigma Aldrich, 

Poole, UK. Cell culture reagents were purchased from; PAA Laboratories, Yeovil, 

UK, Invitrogen, Paisley, Scotland and Sigma Aldrich, Poole, UK. General 

consumables and cell culture consumables were purchased from; Gibco Life 

Sciences, Paisley, Scotland, Scientific Laboratory Supplies, Nottingham, UK, 

Starlab, Milton Keynes, UK and VWR International, Lutterworth, UK. Unless 

otherwise stated, the general chemicals used for in situ hybridisation were purchased 

from Sigma Aldrich and BDH Prolab, VWR International, Lutterworth, UK. 

GoTaq DNA polymerase was purchased from Promega, Southampton, UK. Reverse 

transcription reagents were purchased from Invitrogen, Paisley, Scotland and Agilent 

Technologies, Wokingham, UK. DyNAmo HS SYBR green PCR kit was purchased 

from New England Biolabs, Hitchin, UK. All primers were purchased from Eurofins 

MWG Operon, Ebesberg, Germany. 

 

2.1.1 General buffers 

 

Phosphate buffered saline 1.15g of Na2HPO4, 8.0g of NaCl, 0.2g of KCl 

and 0.2g of KH2PO4 in 1000ml dH2O with pH 

adjusted to 7.4 
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Sodium phosphate buffer (0.2M) 1.18g of Na2HPO4 and 1.61g of NaH2PO4 in 

100ml dH2O with pH adjusted to 6.5 

 

Carbonate buffer (0.1M) 1.06g of Na2CO3 and 0.85g of NaHCO3 in 

100ml dH2O with pH adjusted to 9.5 

 

Formal saline (3.8%) 10ml of 38% formaldehyde in 90ml PBS 

 

 

2.1.2 DNA buffers 

 

Tris-Boric acid EDTA 10.8g of Tris-base, 5.5g of boric acid and 9.3g 

of EDTA in 1000ml dH2O with pH adjusted to 

8.3 

 

2.1.3 In situ hybridisation buffers 

 

20x SSC 3M NaCl, 0.3M sodium-citrate with pH 

adjusted to 7.2. diluted to 5x and 2x SSC with 

ddH2O 

 

Buffer 1 0.1M Tris (pH 7.6), 0.15M NaCl. Made up to 

1000ml with ddH2O 
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Buffer 2 0.1M Tris (pH 9.5), 0.1M NaCl. Made up to 

1000ml with ddH2O 

 

2.1.4 Other buffers and wash solutions 

 

Destain solution for RIA 450ml H2O, 450ml absolute ethanol and 100ml 

acetic acid 

1% coomassie blue 10g of coomassie blue powder dissolved in1 

litre of destain solution 

 

2.2 Animals 

All animals were used in accordance with the Animals (Scientific Procedures) Act 

1986 and were housed under pathogen-free conditions. C3 and nfκb1 sufficient 

C57BL/6 wild type mice (WT) were purchased from Charles River UK Ltd, Kent. 

 

2.2.1 C3
-/-

 mice 

C3 deficient (C3
-/-

) mice were produced using homologous recombination in 

embryonic stem cells. Briefly, disruption of the C3 coding sequence was achieved by 

the targeted deletion of nucleotides spanning the N-terminal region of the β chain and 

the C-terminal region of the α chain (Wessels et al., 1995). C3
-/- 

homozygous mice 

were phenotypically normal, had no antigenic or functional C3 and were backcrossed 

onto a C57BL/6 background for >7 generations. 
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2.2.2 nfκb1-/-
 mice 

nfκb1
-/-

 mice were originally formed by the targeted disruption of the NFKB1 gene at 

exon 6. NFKB1 encodes p105, the precursor of the shorter DNA binding protein p50. 

p105 and p50 proteins produced by nfκb1
-/-

 mice are functionally inactive and are 

unable to bind DNA or dimerise with other Rel/NF-κB proteins (Sha et al., 1995). 

nfκb1
-/-

 mice were backcrossed onto a C57BL/6 background for at least 5 generations 

and were kindly provided by Professor Derek Mann, Newcastle University. 

 

2.2.3 Experimental unilateral ureteric obstruction 

Experimental UUO was induced in male WT and C3
-/-

 mice aged 6-8 weeks and 

female nfκb1
-/-

 mice aged 8-10 weeks. Mice were anaesthetised by inhalation using 

2-3% isofluorane mixed in oxygen. Small clippers were used to remove fur from the 

abdominal area and then mice were injected subcutaneously with 250µL of 6µg/ml 

buprenorphine. The abdominal area was cleaned using a sterile wipe. A ventral 

laparotomy incision was made along the linea alba, extending from just above the 

symphysis pubis to the xyphi sternum. To gain access to the left kidney, the bowels 

were reflected upwards outside of the abdomen onto a piece of gauze moistened with 

saline. Under an operating microscope, the left ureter was located and tied twice with 

waxed 7/0 silk in double-knots approximately 3 mm apart then a cut was made 

between the two ties (Figure 2.1). The bowels were replaced and the abdomen was 

closed with 5/0 vicryl. Anaesthetic was reversed by removing isofluorane and 

leaving on oxygen for a few minutes. Mice were allowed to recover over night in an 

incubator set to 30°C before being transferred back to their standard housing to 

following day. 
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Figure 2.1. Unilateral ureteric obstruction (UUO) procedure. 
Following anaesthesia and a ventral laparotomy incision, the left ureter was tied 

twice and then cut between the ties. The left ureter was dissected and two 7/0 silk 

sutures were placed underneath (A). R, right kidney; L, left kidney; DC, descending 

colon; U, left ureter. The first knot was tied and moved to a distal position (B). The 

second knot was tied and positioned further distal in close proximity to the bladder 

(C). The left ureter was cut between the two ties (D). Following this the laparotomy 

incision was closed using 5/0 vicryl. Images obtained with kind permission from the 

Ph.D. Thesis of Dr. Thomas Tapmeier. 
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2.2.4 Induction of nephrotoxic serum (NTS) nephritis 

NTS nephritis was induced in 8 week old female WT and nfκb1
-/-

 mice by injecting 

200µl of NTS containing 0.5ng/µl LPS via the tail vein. Sheep anti-mouse 

nephrotoxic serum was a kind gift from Dr Mike Robson, King‟s College London. 

After NTS injection, mice were housed in standard metabolic cages for a period of 

24 hours so that urine samples could be collected. 

 

2.2.5 Harvesting of tissues post-ureteric obstruction 

Prior to harvesting tissues blood samples were obtained by cardiac puncture under 

terminal anaesthesia. Both kidneys were excised and urine was extracted from the 

dilated pelvis of obstructed kidneys. Each kidney was bisected along its longitudinal 

axis and a small part of the cortex removed and snap-frozen in liquid nitrogen for 

RNA extraction. One half of each kidney was fixed in 3.8% formal saline (section 

2.1.1), then processed and embedded in paraffin for histological analysis. The other 

half was snap-frozen in isopentane over liquid nitrogen and then stored at -80°C for 

immunohistochemical analyses. Blood samples were allowed to clot at room 

temperature before centrifugation at 10,000rpm to obtain serum. Urine and serum 

samples were stored at -20°C. 

 

2.2.6 Harvesting of tissues following NTS administration 

Mice were killed at 2 and 24 hours post-NTS injection. Blood samples and renal 

tissues were harvested, processed and stored as described in section 2.2.5. 
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The volume of urine produced in each 24 hour period was recorded and urine 

samples were stored at -20°C. 

 

2.3 Histology and immunochemistry analyses 

2.3.1 Periodic acid Schiff’s histology 

Periodic acid Schiff‟s (PAS) histology is a technique used to visualise pathological 

changes in tissues during disease. It works by staining large carbohydrate structures 

found in connective tissues & basement membranes, the latter of which surrounds 

renal tubules. Paraffin blocks containing formalin-fixed embedded kidney tissues 

were sectioned at 2µm intervals using a Leica Microtome. Sections were transferred 

to a 40°C water bath to be stretched out, then collected onto superfrost plus slides 

and dried at 37°C over night. Following this, sections were de-paraffinised by 

immersion in 100% xylene for 10 minutes. Tissue sections were rehydrated through 

graded ethanol (100%, and 95%) to deionised water (dH2O). Tissue sections were 

incubated in 1% periodic acid for 6 minutes at room temperature (RT) then washed 

three times for two minutes in dH2O. Schiff‟s reagent was applied to all sections for 

10 minutes at RT then slides were washed under running tap water for 12 minutes. 

Sections were counterstained with Mayer‟s haematoxylin for 1 minute then blued 

under running tap water for 5 minutes. Finally, slides were dehydrated through 

graded ethanol washes (50%, 75%, 95% and 100%) and two final xylene washes 

before mounting in DPX. 
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2.3.1.1 Histological scoring of kidney sections 

PAS histology was examined by bright field microscopy at x250 magnification using 

a Leica DMR microscope. For each contralateral and obstructed kidney section, 20 

cortical field images were acquired and the percentage of interstitial expansion and 

tubular dilatation was calculated. Briefly, a 10 x 10 grid was superimposed onto each 

image and the number of grid intersections overlaying areas of interstitium and 

tubular luminae were counted and expressed as a percentage of the total area 

containing 81 grid intersections (excluding glomeruli), for each image (Figure 2.2). 

All counts were preformed in a blinded manner. 

Glomerular thrombosis (identified as PAS positive material) in the lumen of 

glomerular capillaries 24 hours post-NTS injection was scored in 30 glomeruli per 

tissue section and classified as either „0‟ (no injury), „1‟ (<25% injury), „2‟ (25-50% 

injury), „3‟ (50-75% injury) and „4‟ (75-100% injury). 2 hours after NTS injection, 

the number of infiltrating neutrophils (identified by their typical multi-lobulated 

nuclear morphology), were counted in 15 glomeruli per tissue section. Glomerular 

thrombosis and neutrophil counts were both carried out in a blinded manner. 

 

2.3.2 Sirius red histology 

Paraffin-embedded renal tissue sections of 3µm in thickness were prepared as 

described previously (section 2.3.1). Tissue sections were washed under running tap 

water for 2 minutes then washed briefly in 0.1% acetic acid. 

 



80 

 

 

Figure 2.2. Manual scoring of periodic acid Schiff’s stained renal tissues. 

Counting of grid intersections over areas of interest to measure interstitial expansion 

(A), and tubular dilatation (B), then expressing these as a percentage of the total 

number of grid intersections per high powered field. Small black circles highlight 

grid intersections falling over areas of interstitium (A) and dilated tubules (B). 

Magnification is x250. 
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Slides were incubated in 0.1% Sirius red F3B for 1 hour at RT after which, sections 

were washed twice in 0.1% acetic acid. Finally, slides were rapidly dehydrated 

through three 100% ethanol washes and then cleared in xylene before mounting in 

DPX. For day 3 and day 10 UUO analyses, histological staining was examined in a 

blinded manner at 125x magnification using a Leica DMR microscope and 

accompanying Leica QWin computer software. For each slide, 20 random cortical 

field images (0.143mm
2
 each) were acquired. For each field the percentage area of 

Sirius red staining was determined using Leica Q-win analysis software. Day 5 UUO 

tissues were analysed using an Aperio slide scanner and accompanying Scanscope 

software. 

 

2.3.3 Immunohistochemical staining for CD4, CD8 and F4/80 

Cryo-preserved kidneys from all animals were sectioned at 5µm using a Leica 

cryostat. Sections were collected on to Superfrost plus slides (VWR International, 

UK), dried for 24 hours at RT and then stored at -80°C. Prior to 

immunohistochemical staining, slides were thawed to RT for 1 hour. Slides were 

fixed for 5 minutes in ice cold acetone (-20°C), left to air dry for 5 minutes and then 

washed once in PBS for 5 minutes. Endogenous peroxidase activity was blocked by 

immersing slides in 0.3% H2O2 in PBS for 10 minutes, after which, slides were 

washed once in PBS for 5 minutes. Endogenous avidin & biotin were blocked using 

a streptavidin and biotin blocking kit (Vector Labs). Briefly, slides were first 

incubated with streptavidin blocking solution for 15 minutes then washed once in 

PBS for 5 minutes. 
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Following this, slides were incubated with biotin blocking solution for 15 minutes 

then washed once in PBS for 5 minutes. Slides were then incubated with primary 

antibodies (Table 2.1); rat anti-mouse CD4 and CD8 antibodies (1:20 dilution in 

PBS) and a rat anti-mouse F4/80 antibody (1:50 dilution in PBS), for 1hr at RT, then 

washed in PBS for 3 x 5 minutes. Following this, slides were incubated with a 

biotinylated goat anti-rat secondary antibody (1:100 dilution; Table 2.1), for 30 

minutes at RT, then washed three times in PBS each for 5 minutes. Next, slides were 

incubated with pre-diluted streptavidin-conjugated horse radish peroxidise (BD 

Biosciences) for 30 minutes at RT. After this slides were washed twice in PBS each 

for 3 minutes. During this time, 3,3-diaminobenzidine (DAB) solution was prepared 

according to manufacturer‟s instructions and kept in the dark. 

Slides were covered with excess DAB solution and incubated for 5 minutes in the 

dark until sections had developed. After DAB detection, slides were washed once in 

dH2O for 5 minutes. Slides were then counterstained with Mayer‟s haematoxylin for 

5 minutes and „blued‟ for 5 minutes under running tap water. Finally, slides were 

taken through a series of alcohol dehydration steps (50%, 75%, 95% and 100%), 

cleared with xylene, then mounted in DPX and left to dry overnight. Slides were 

analysed using an Aperio slide scanner and Scanscope software. Images were taken 

using a Leica LCM microscope and accompanying computer software. 
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Table 2.1. Primary antibodies 

 

Protein Antibody Clone Source Application Dilution Secondary 

antibody 

α-SMA Anti-mouse α-smooth muscle actin 1A4 Sigma Aldrich, UK IHC 1:10,000 1 

C3 Goat anti-mouse C3 FITC-conjugate - Cappel IF 40µg/ml - 

Anti-NTS Donkey anti-sheep FITC-conjugate - JIR Labs Inc. IF 7.5µg/ml - 

F4/80 antigen Rat anti-mouse F4/80 Cl:A3-1 AbD Serotec IHC 1:50 2 

CD8 antigen Rat anti-mouse CD8a 53-6.7 BD Parmingen IHC 1:20 2 

CD4 antigen Rat anti-mouse CD4 H129.19 BD Parmingen IHC 1:20 2 

Collagen type 1 Rabbit anti-mouse collagen type 1 - Millipore IHC 1:200 3 

C3a Rat anti-mouse C3a I87-1162 BD Parmingen ELISA 4µg/ml 4 and 7 

C5a Rat anti-mouse C5a I52-1486 BD Parmingen ELISA 1µg/ml 5 and 7 

C3 Goat anti-mouse C3 - MP Biomedicals ELISA 8µg/ml 6 

Crry Rat anti-mouse crry IF2 BD Parmingen IF 0.25µg/ml 8 

Mouse albumin Rabbit polyclonal to mouse serum albumin - Abcam RID 15µl/ml - 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

Table 2.2. Secondary and capture antibodies 

 

Number Antibody Source Application Dilution 

 

1 Anti-mouse Envision
+
 Dako IHC Manufacturer‟s instructions 

2 Biotinylated goat anti-rat BD Parmingen IHC 1:100 

3 Goat anti-rabbit HRP-conjugate Dako IHC 1:200 

4 Biotinylated rat anti-mouse C3a BD Parmingen ELISA 1µg/ml 

5 Biotinylated rat anti-mouse C5a BD Parmingen ELISA 1µg/ml 

6 Goat anti-mouse C3c HRP-conjugate Autogen Bioclear Ltd ELISA 2µg/ml 

7 Streptavidin HRP BD Parmingen IHC 1:1000 

8 Goat anti-rat FITC-conjugate Sigma Aldrich IF 0.5µg/ml 



85 

 

2.3.4 Immunohistochemical staining for collagen I 

Kidneys were cryo-sectioned, acetone-fixed and blocked with H2O2 using methods 

outlined previously in section 2.3.3. Non-specific binding of the secondary antibody 

was reduced by incubating slides in 20% goat serum in PBS for 1 hour at RT. Slides 

were then incubated with rabbit anti-mouse collagen type I primary antibody (1:200 

dilution in PBS; Table 2.1), for 1hr at RT, then washed three times in PBS each for 5 

minutes. Following this, slides were incubated with a horse radish peroxidase (HRP) 

conjugated goat anti-rabbit secondary antibody (diluted 1:200 in PBS; Table 2.2), for 

1 hour at RT, then washed three times in PBS each for 5 minutes. During this time, 

DAB solution was prepared as outlined in section 2.3.3. Slides were covered with 

excess DAB solution and incubated for 12-13 minutes in the dark until sections had 

developed and turned brown. After DAB detection, slides were counterstained, 

dehydrated, imaged and analysed as outlined in section 2.3.3. 

 

2.3.5 Immunohistochemical staining for alpha-smooth muscle actin 

Paraffin-embedded renal tissue sections 3µm in thickness were prepared as described 

in section 2.3.1. Endogenous peroxidise activity was blocked by immersing slides in 

0.3% H2O2 in PBS for 15 minutes, after which, slides were washed once in PBS for 5 

minutes. Slides were then incubated with anti-mouse α-smooth muscle actin (α-

SMA) primary antibody (diluted 1:10,000 in PBS; Table 2.1), for 1hr at RT and then 

washed three times in PBS each for 5 minutes. An Envision
+
 System-HRP kit (Table 

2.2) purchased from DAKO specifically for the detection of mouse primary 

antibodies, was used to detect the presence of anti-mouse α-SMA antibody. 
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Briefly, the kit consists of an HRP-labelled avidin and biotin-free polymer which is 

conjugated to a secondary antibody. Applied in the same way as a secondary 

antibody, the Envision
+ 

system provides higher specificity, enhanced signal 

generation of antigens present at low concentrations and elimination of nonspecific 

endogenous avidin and biotin activities. Slides were covered with excess DAB 

solution and incubated for 15 minutes in the dark until sections had developed and 

turned brown. After DAB detection, slides were counterstained, dehydrated, imaged 

and analysed as outlined in section 2.3.3. 

 

2.3.6 Immunofluorescence staining for anti-GBM antibody 

Control staining to verify equal distribution of bound anti-GBM antibody was 

performed on un-fixed frozen kidney sections. 24 hour cryo-preserved NTS kidneys 

were sectioned and collected onto slides as described previously (section 2.3.3). 

Following 1 x 5 minute wash in PBS, sections were blocked in 5% horse serum 

(diluted in 1x PBS), for 1 hour at room temperature, followed by incubating with a 

FITC-conjugated donkey anti-sheep antibody (Table 2.1) for 1 hour at room 

temperature. Finally, slides were washed 3 x 5 minutes in PBS before mounting with 

fluorescent mounting medium (DAKO, UK) and glass cover slips. After 12 hours 

drying at RT, cover slips were sealed with nail varnish and slides stored at 4°C. 

Slides were imaged using a Leica LMD microscope. 

 

 



87 

 

2.3.7 Immunofluorescence staining for crry 

Immunofluorescent staining was used to determine the distribution of crry within the 

renal cortex. Day three and day ten contralateral and UUO kidneys were cryo-

sectioned using methods outlined previously in section 2.3.3. Sections were then 

washed 3 x 2 minutes with PBS to remove residual OTC compound. Slides were 

incubated with 0.25µg/ml rat anti-mouse antibody to crry/p65 (Table 2.1) for 1 hour 

at RT, before washing 3 x 5 minutes with PBS. Slides were then incubated in the 

dark at RT for 1 hour with 0.5µg/ml of FITC-conjugated goat anti-rat secondary 

antibody (Table 2.2). Slides were washed in the dark for 3 x 5 minutes with PBS 

before mounting with cover slips and storing as described previously (section 2.3.6). 

Slides were imaged using a Leica LMD microscope. 

 

2.3.8 Immunofluorescence staining for C3 

Immunofluorescent staining was used to determine the renal distribution of C3. Day 

three and day ten contralateral and UUO kidneys were cryo-sectioned using methods 

outlined previously in section 2.3.3. Sections were then washed 3 x 2 minutes with 

PBS to remove residual OCT compound. Following this, sections were blocked with 

20% goat serum (Sigma Aldrich, UK) for 1 hour at RT. Serum block was removed 

by gently tapping slides onto the lab bench. Slides were then incubated in the dark at 

RT for 1 hour with 40µg/ml goat anti-mouse FITC-conjugated antibody (Table 2.1). 

Slides were washed in the dark for 3 x 5 minutes with PBS before mounting with 

cover slips and storing as described previously (section 2.3.6). Slides were imaged 

using a Leica confocal microscope. 
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2.3.9 Aperio and grid-based immunohistochemical analyses 

Automated immunohistochemical analyses were performed using the Aperio 

Scanscope system (Staniszewski, 2009). Digital bright field images of renal tissues 

were captured using an Aperio Scanscope slide scanner at x20 magnification. For 

each tissue section, a region of interest (ROI) was selected and highlighted. The ROI 

was restricted to the renal cortex, which was itself defined by the presence of 

glomeruli. Automated analyses of all ROIs were performed using Aperio image 

analysis algorithms, which were modified for the purpose of this study (Figure 2.4, 

Figure 2.5 and Figure 2.6). A non-automated counting method was used to verify 

automated analyses and to assess whether the results generated from using a less 

time-consuming automated method correlated with results obtained from quantifying 

observations using a non-automated counting method (Figure 2.3). For each animal, 

ten random screen shots of Aperio-scanned renal cortices at x20 magnification were 

captured and saved as image files. Images were then exported to Adobe Photoshop 

CS3 and a 10 x 10 grid was superimposed over each image. To analyse F4/80, 

collagen-1 and α-SMA immunohistochemical (IHC) staining, grid intersections 

present over areas of positive staining were counted and expressed as a percentage of 

the total number of grid intersections for each image (Figure 2.3B-C). Analysis of 

CD4 and CD8 positive T-cells was performed by counting the number of positively 

stained cells per high power field (HPF) image (Figure 2.3A). All Aperio and non-

automated counts were carried out in a blinded manner. 
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Figure 2.3. Manual scoring of immunohistochemically stained renal tissues 

CD4 and CD8 positively stained T-cells in each HPF were counted (A). F4/80 

macrophage staining was quantified by counting the number of grid intersections 

over areas of positive staining in each HPF (B). Collagen I and α-SMA staining was 

quantified in the same way as for F4/80 macrophage staining (C). Magnification 

x250. 
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2.3.9.1 Immunohistochemical nuclear algorithm 

The IHC nuclear algorithm was used to count CD4 and CD8 positive T-cells within 

the renal cortices of day 10 WT and C3
-/-

 mice (Figure 2.4). The algorithm was 

modified to account for a range of acceptable cell shapes and sizes and to detect only 

those cells with strong positive staining. The number of positive cells for each ROI 

(Figure 2.4A) were summed and expressed as the total number of positive cells per 

mm
2
 of renal cortex. 

 

2.3.9.2 Positive pixel count algorithm 

The positive pixel count algorithm was used to measure the area of positive staining 

for F4/80, α-SMA and collagen-1 within the cortical interstitium of day 10 WT and 

C3
-/-

 mice and for Sirius red histological staining in day 5 WT and C3
-/-

 mice. For 

Sirius red and α-SMA staining, the algorithm measured the number of weak-positive, 

positive and strong-positive pixels (Figure 2.5A-D). For collagen I IHC, the 

algorithm measured the number of positive and strong positive pixels and for F4/80 

IHC staining, the algorithm measured only the number of strong positive pixels 

(Figure 2.6A-B). The number of positive pixels for each ROI was converted to mm
2
 

and then expressed as a percentage of the overall area measured for each tissue 

section. 
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Figure 2.4. Automated immunohistochemistry cell count 

A region of interest is selected (A). The IHC nuclear algorithm is used to count the 

number of positively stained cells (red) within the region of interest (B). The 

algorithm can also be used to identify negatively stained cells (blue). Magnification 

x150. 

 

 

Figure 2.5. Automated α-SMA immunohistochemistry scoring 

A region of interest is selected (A), x 60 magnification. The positive pixel count 

algorithm is used to count the number of strongly stained positive pixels (red), the 

number of positively stained pixels (orange) and the number of weakly stained 

positive pixels (yellow) within the region of interest (B and C), at x60 and x200 

magnification respectively. A numerical read out for the selected region of interest in 

A, B and C (D). The same version of this algorithm was used for the automated 

analysis of day 5 UUO tissues stained for Sirius red. 
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Figure 2.6. Automated F4/80 immunohistochemistry scoring 

A region of interest is selected (A). The positive pixel count algorithm is used to 

count the number of strongly stained positive pixels (red) within the region of 

interest (B). A numerical read out for the selected region of interest in A and B (C). 

Magnification x120. 
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2.4 Molecular biology 

2.4.1 Total RNA extraction from whole kidney 

Total RNA was extracted from whole kidney tissue by phenol chloroform extraction 

and isopropanol precipitation. Unless otherwise stated, all centrifugation steps were 

carried out at 4°C. Snap frozen fragments of kidney cortex were transferred to 800μl 

of TRIzol reagent in a 1.5ml RNase free microcentrifuge tube without allowing the 

tissue to defrost. The tissue was homogenised for 2-3 minutes using a plastic RNase 

free pestle and then centrifuged at 8161g for 10mins. The supernatant was transferred 

to a phase lock gel tube (Eppendorf UK Limited) into which 160μl of chloroform 

was added and the solutions mixed by vigorous shaking. 

Samples were left at RT for 2-3mins before centrifugation at 8161g for 15 minutes. 

The top aqueous phase was then transferred to a new tube into which 640μl of 

isopropanol was added. Samples were incubated at -20°C for 60 minutes to allow the 

RNA to precipitate out. Following further centrifugation at 8161g for 10 minutes, the 

supernatant was removed leaving the RNA pellet. After washing in 75% ethanol, the 

RNA pellet was dried at RT for up to 60 minutes to allow evaporation of excess 

ethanol and then re-suspended in 25μl nuclease-free water. All RNA samples were 

stored at -80°C until required. 

 

2.4.2 Extraction of RNA from cells 

RNA was extracted from cells using an RNeasy mini kit purchased from Qiagen Ltd, 

Crawley, Sussex according to manufacturer‟s instructions. 
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Briefly, cells were lysed in their culture vessels by addition of 600µl of guanidine-

thiocyanate buffer (buffer RLT). An equal volume of 70% ethanol was added to the 

lysate and the solution mixed by pipette aspirating. The resulting suspension was 

transferred to an RNeasy spin column and centrifuged at 8000g for 15 seconds. The 

flow-through was discarded and RNA which had bound to the column was washed 

twice each with buffers RW1 and RPE. RNeasy spin columns were centrifuged 

between each wash as before. Finally, RNA was eluted by the addition of 25µl 

nuclease-free water. 

 

2.4.3 Quantification and integrity of RNA from tissues and cells 

The quantity and purity of whole RNA was measured using a Nanodrop 

spectrophotometer. Briefly, a 1µl RNA sample was loaded on to the platform of the 

Nanodrop and the ratio of absorbance at 260 and 280nm for each sample was 

calculated. Ratios in the range of 1.8-2.0 were accepted as „pure‟ RNA for this study. 

The ratio of absorbance at 260 and 230nm was also used as a secondary measure of 

RNA purity, with ratios in the range of 1.8-2.2 accepted for this study. In addition to 

this, RNA integrity and genomic DNA contamination were determined by RNA gel 

electrophoresis. Briefly, a 1.2% native agarose gel was prepared in 1 x TBE buffer 

by heating with ethidium bromide (EtBr) added to give a final concentration of 

0.5μg/ml. The ssRNA ladder (New England Biolabs, UK), RNA samples and loading 

buffer mixes were prepared and heated to 65ºC for 5 minutes before cooling on ice. 

Once the gel had set, it was transferred to an electrophoresis gel tank and submerged 

in 1 x TBE buffer. The ssRNA ladder and RNA samples were added to the wells and 

the gel was resolved at 90V for 40 minutes. 
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Discrete bands for 18s and 28s ribosomal RNA were detected under UV light using 

an Alpha Innotech gel doc and accompanying computer software (Alpha Innotech, 

CA). 

 

2.4.4 Reverse transcription reactions 

Before mRNA can be amplified using primers and measured in a PCR reaction it 

must first be reverse transcribed to obtain cDNA. In this study, two different methods 

of reverse transcription were used. In the first method, cDNA synthesis was carried 

out according to the method of Sambrook et al (1989) using the RNA extracted in 

section 2.4.1. RNA samples were denatured by heating to 90
o
C for 5 minutes and 

then transferred to ice.  A master mix containing reverse transcription reagents in the 

following quantities (excluding RNA and nuclease-free water), was prepared in a 

nuclease-free microcentrifuge tube kept on ice: 

Reverse transcriptase buffer (5) 4 l 

DTT (100mM) 2 l 

RNAsin (40U/l) 0.75 l 

dNTP mixture (5mM each) 2 l 

oligo (dT)15 (0.5 g/l) 0.32 l 

Superscript reverse transcriptase III (200U/μl) 1 l 

250ng of total RNA  

Nuclease-free water (up to total volume of 20μl)  
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The resulting 20μl reaction mixture was incubated at 37
o
C for 90 minutes using. The 

cDNA product was diluted in nuclease-free water and then stored at -20
o
C. In the 

second cDNA synthesis method, RNA extracted in sections 2.4.1 and 2.4.2 was 

reverse transcribed using a cDNA synthesis kit purchased from Agilent 

Technologies, Wokingham, UK. Briefly, 250ng of RNA was combined with 

nuclease-free water up to a final volume of 15.7µl and then 1µl of 0.5µg/µl oligo 

(dT) primer was added. The RNA-oligo (dT) mix was heated to 65°C for 5 minutes 

and then gradually cooled to 22ºC using a G-storm 482 thermal cycler. The RNA-

oligo (dT) samples were transferred to ice and the following reagents were added in 

the order set out below: 

10 x AffinityScript buffer 2µl 

100mM dNTPs (25mM each dNTP) 0.8µl 

RNase Block Ribonuclease inhibitor (40U/µl)  0.5µl 

AffinityScript Multiple temperature Reverse Transcriptase 1µl 

 

The final reaction mixture was transferred to a thermal cycler and heated to 45°C for 

5 minutes, 55°C for 1 hour and 70°C for 10 minutes, then cooled to 4°C. The cDNA 

product was diluted and stored as described previously. 

 

2.4.5 Real time PCR 

Real time PCR (rtPCR) is a quantitative method used for precisely measuring the 

mRNA expression of different genes. 
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For conventional PCR, amplification of the correct product can only be visualised as 

bands on an agarose gel at the end point of the reaction. In contrast to this, an rtPCR 

reaction can be monitored during the early (exponential) stages of amplification, 

prior to the reaction slowing down (linear stage) and reaching the final end point 

(plateau). It is during the exponential phase of an rtPCR reaction that the quantity of 

a product can be determined, since doubling of the product is occurring at each cycle 

at this time. 

 

2.4.5.1 SYBR green I chemistry 

In this study, SYBR green I fluorescent dye was used to quantify the amount of 

cDNA in each reaction. SYBR green is highly specific for dsDNA. It binds to the 

minor-groove of a DNA template and increases its fluorescence once bound. For 

each new copy of dsDNA, a proportionate increase in fluorescence occurs. A 

disadvantage to SYBR green chemistry is that it is also possible for non-specific 

dsDNA products such as dimerised primers to be amplified, giving a false positive 

signal. To overcome this, a dissociation curve analysis is run after the rtPCR reaction 

to determine the melting temperatures of all dsDNA products. For each primer set, it 

is expected that the amplified product in all sample wells will have the same melting 

temperature. Amplification of non-specific products using SYBR green can be 

determined in this way and further confirmed by agarose gel electrophoresis.
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Table 2.3. rtPCR primers 

 

Name Sequence Amplicon 

size, reference 

rtPCR cycle 

conditions 

β-actin 

forward 

5'- GAT CAA GAT CAT 

TGC TCC TCC TG -3' 
182bp 

NM_007393.3 

GI:145966868 

40 cycles: 

95°C for 15 seconds 

60°C for 45 seconds 

72°C for 45 seconds 

β-actin 

reverse 

5'- GGG TGT AAA ACG 

CAG CTC AGT -3' 

C3 

forward 

5'- TCA CAC ACC GAA 

GAA GAC TGC C -3' 
408bp 

NM_009778.2 

GI:126518316 

40 cycles: 

94°C for 15 seconds 

60°C for 60 seconds 

72°C for 20 seconds 

C3  

reverse 

5'- GTG GCT GAT GAA 

CTT GCG TTG C -3' 

FB 

forward 

5'- ACA AGC CAG TTG 

TGA GAG AGA TG -3' 

195bp 

NM_0011427

06.1 

GI:218156290 

50 cycles: 

94°C for 15 seconds 

60°C for 60 seconds 

72°C for 60 seconds 

FB  

reverse 

5'- ATC ACA CCA ACT 

TGA ATG AAG CGG -3' 

FH 

forward 

5'- TGC TGT GAC CAC 

AGT TCA TAG C -3' 162bp 

NM_009888.3  

GI:109627651 

40 cycles: 

95°C for 15 seconds 

54°C for 60 seconds 

72°C for 45 seconds 

FH  

reverse 

5'- GAG GAC CTT TAC 

AAT CTT CTG CTG C -

3' 

FI  

forward 

5'- TTT CCA CTG GGT 

GTT CGT GAC -3' 
105bp 

NM_007686.2 

GI:110347405 

40 cycles: 

95°C for 15 seconds 

56°C for 45 seconds 

72°C for 45 seconds 

FI  

reverse 

5'- GGT CTC TAC TCC 

CCG GCA AT -3' 

CD59a 

forward 

5'- GAG CAT GAG CAC 

AGT CAC TGG CG -3' 

259bp 

NM_0011110

60.1 

GI:161484615 

(Var-1) 

139bp 

NM_007652.4 

GI:161484614 

(Var-2) 

40 cycles: 

95°C for 15 seconds 

60°C for 45 seconds 

72°C for 45 seconds 

CD59a 

reverse 

 

 

 

5'- GAA CAC AGC CAG 

AAG CAG CAG GAG -3' 
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Crry 

forward 

5'- GGC AGC TGG AAT 

CCT CTT CTG GC -3' 
258bp 

NM_013499.2 

GI:52426749 

40 cycles: 

95°C for 15 seconds 

62°C for 60 seconds 

72°C for 20 seconds 

Crry 

reverse 

5'- TGC TGG GCT AGT 

GGT ACT GCT GTT -3' 

CD55 

forward 

5'- AGC CTA ACA CAG 

GTG GTG ACC G -3' 111bp 

NM_010016.2 

GI:114326521 

50 cycles: 

95°C for 15 seconds 

60°C for 45 seconds 

72°C for 45 seconds 

CD55 

reverse 

5'- TCT TCG TTG GCT 

ATG TCA AGT AGC C -

3' 

TNF-α 

forward 

5' - ATC CGC GAC GTG  

GAA CTG GC -3' 
279bp 

NM_013693.2 

GI:133892368 

40 cycles: 

95°C for 15 seconds 

60°C for 45 seconds 

72°C for 45 seconds 

TNF-α 

reverse 

5'- GTG GTT TGC TAC 

GAC GTG GGC T -3' 

TGF-β 

forward 

5'- CCT GAG TGG CTG 

TCT TTT GAC G -3' 
91bp 

NM_011577.1 

GI:6755774 

40 cycles: 

95°C for 15 seconds 

58°C for 60 seconds 

72°C for 20 seconds 

TGF-β 

reverse 

5'- AGT GAG CGC TGA 

ATC GAA AGC -3' 

IL-6 

forward 

5'- GAG GAT ACC ACT 

CCC AAC AGA -3' 
141bp 

NM_031168.1 

GI:13624310 

40 cycles: 

94°C for 15 seconds 

55°C for 60 seconds 

72°C for 20 seconds 

IL-6 

reverse 

5'- AAG TGC ATC ATC 

GTT GTT CAT A -3' 

Collagen

-I(a1) 

forward 

5'- GAG CGG AGA GTA 

CTG GAT CG -3' 204bp 

NM_007742.3 

GI:118131144 

40 cycles: 

94°C for 15 seconds 

53°C for 60 seconds 

72°C for 20 seconds 

Collagen

-I(a1) 

reverse 

5'- TAC TCG AAC GGG 

AAT CCA TC -3' 
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Collagen

-III(a1) 

forward 

5'- CTA GTG GCT TCC 

GAG GAC CT -3' 65bp 

NM_009930.2 

GI:226423932 

40 cycles: 

95°C for 15 seconds 

55°C for 60 seconds 

72°C for 20 seconds 

Collagen

-III(a1) 

reverse 

5'- CTC TCC GGG AGG 

ACC CTT TT -3‟ 

α-SMA 

forward 

5'- CTG ACA GAG GCA 

CCA CTG AA -3' 
160bp 

NM_007392.2 

GI:31982518 

40 cycles: 

95°C for 15 seconds 

60°C for 45 seconds 

72°C for 45 seconds 

α-SMA 

reverse 

5'- CAT CTC CAG AGT 

CCA GCA CA -3' 

S100a8 

forward 

5'- TGC GAT GGT GAT 

AAA AGT GG -3' 
69bp 

NM_013650.2 

GI:113930764 

40 cycles: 

95°C for 10 seconds 

55°C for 30 seconds 

72°C for 30 seconds 

S100a8 

reverse 

5'- GGC CAG AAG CTC 

TGC TAC TC -3' 

S100a9 

forward 

5'- CAC CCT GAG CAA 

GAA GGA AT -3' 
95bp 

NM_009114.2 

GI:133893069 

40 cycles: 

95°C for 10 seconds 

55°C for 30 seconds 

72°C for 30 seconds 

S100a9 

reverse 

5'- TGT CAT TTA TGA 

GGG CTT CAT TT -3' 
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2.4.5.2 Setting up a qPCR reaction 

In this study, rtPCR was performed on all cDNA samples using SYBR green I. Prior 

to using in rtPCR, primers were diluted to 1.25pmol/µl in nuclease-free water. All 

rtPCR reactions were performed in triplicate in a 20µl reaction mixture containing 

the following reagents: 

SYBR green master mix (2x) 10µl 

Forward and reverse primer mix (0.3125pmol/µl each) 5µl 

ROX passive reference dye (50x) 0.4µl 

Nuclease-free water 0.6µl 

cDNA 4µl 

 

An ABI Prism 7000 Sequence Detection System and a StepOnePlus Real-Time PCR 

System were used to measure expression of all genes of interest relative to the 

housekeeping gene. A housekeeping gene is defined as a gene which is present at the 

same level of expression during both normal and disease states. In some studies the 

expression of genes of interest are calculated relative to the average expression of a 

panel of different housekeeping genes. For the purpose of this study, gene of interest 

expression was calculated relative to that of the housekeeping gene β-actin. 

Following an initial denaturation period at 95°C for 15 minutes, primer-specific 

cycles of denaturation, annealing and extension were run as set out in Table 2.3. At 

the end of each cycle, SYBR green fluorescence was measured. After the last rtPCR 

cycle, a melt curve analysis was performed on all samples, before cooling to 4°C. 
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Amplification data and melt curve recordings were collated using accompanying 

computer software programmes for each detection system and then interpreted using 

Microsoft Excel and GraphPad Prism 5 software packages. rtPCR products were 

confirmed visually by agarose gel electrophoresis to verify amplification of the 

correct product. Briefly, a 2 or 2.5% agarose gel (depending upon predicted size of 

rtPCR product) was prepared by the addition of 1 or 1.25g agarose to 50ml 1x TBE 

buffer (pH8.3). The solution was heated in a microwave for up to two minutes to 

facilitate the agarose to dissolve. 50µl of EtBr was added to give a final 

concentration of 0.5μg/ml. When the agarose gel had cooled slightly, it was poured 

into a running chamber which had been sealed at the top and bottom. One or more 

combs were placed onto the running chamber, creating small wells into which 

samples would be loaded once the gel had set (after 30-40 minutes). The solidified 

gel was placed into an electrophoresis gel tank containing 1x TBE running buffer and 

then PCR product samples were added directly to wells at a volume of 10µl each. 

10µl of a 50-1000 bp DNA ladder (Geneflow Ltd, Staffordshire, UK) was added to 

one of the wells on the gel to assist with identification of PCR products according to 

their size. Gels were resolved for 30-45 minutes at 100V and then imaged using an 

Alpha Innotech gel doc with accompanying computer software. All melt curve 

abnormalities, were confirmed by agarose gel electrophoresis and subsequently 

excluded from relative quantification of gene expression calculations. 

 

2.4.5.3 Relative quantification of gene expression (ΔΔCT method) 

The comparative CT method (ΓΓCT) is a type of analysis used to quantify the 

expression of a target gene relative to the expression of a control (reference) gene. 



103 

 

During exponential amplification, the number of PCR cycles required for a 

fluorescent signal to cross a threshold that exceeds background fluorescence levels is 

known as the cycle threshold (CT). Unlike the target gene, the reference gene 

(usually a housekeeping gene) maintains a constant level of expression during 

healthy and diseased states. Comparative expression of the target gene relative to an 

endogenous reference is calculated as 2
-ΓΓCT 

.Where ΓΓCT = ΓCT target gene - ΓCT 

reference gene. 

 

2.4.5.4 Primer efficiencies  

To calculate the efficiency and sensitivity of all primer pairs used in rtPCR reactions, 

a series of 1:5 serial dilutions of affected cDNA were prepared and added to the 

SYBR green reaction mixture as described previously (section 2.4.5.2). The rtPCR 

cycle conditions for each primer pair are described in Table 2.3. For a given primer 

pair, the CT values obtained for each sample dilution were used to calculate the 

efficiency of the PCR reaction and the samples resolved on an agarose gel to verify 

correct amplicon size. 

 

2.5 In situ hybridisation 

In situ hybridisation (ISH) is a method used to visualise the precise location of target 

nucleic acid sequences within morphologically identifiable structures such as tissues 

and cells. It is based on the principle that labelled nucleic acid probes will pair with 

complementary nucleic acids present in target tissues. 
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2.5.1 Design and synthesis of PCR-derived RNA probes  

A sequence of bases specific to the RNA polymerases SP6 and T7 were added to the 

beginning of forward and reverse C3 primer sequences as set out below: 

Probe Sequence 

SP6 

„sense‟ 

5‟ – AAT ACG ATT TAG GTG ACA CTA TAG ATT ACC TTG 

TGT GGG GCT GTT AAA TG – 3‟ (50 bases) 

T7 

„anti-sense‟ 

5‟ – TAA GTT AAT ACG ACT CAC TAT AGG GCG ACA 

AGG CTT GGA ATA CCA TGA AGG – 3‟ (51 bases) 

 

Sequences in RED represent SP6 and T7 binding sites, sequences in GREEN 

represent C3 forward and reverse primer sequences. Three rounds of conventional 

PCR with the above designed primers were used to amplify part of mouse 

complement C3 which was 598 base pairs in length, using day 10 WT UUO mouse 

cDNA as a template. The purpose of performing multiple rounds of conventional 

PCR was to generate a highly purified cDNA product from which high quality RNA 

probes could be synthesised later. Following the first round of PCR amplified 

product was resolved by electrophoresis on a 2% agarose gel, at 100V for 30 minutes 

(section 2.4.5.2) and then extracted using a QIAquick gel extraction kit (Qiagen, 

Crawly, UK), according to the manufacturer‟s instructions The amount of PCR 

product was quantified using a Nanodrop spectrophotometer. Purified PCR product 

derived from the first round of PCR amplification was diluted 1:10 and 1:100 and 

used as a template for two individual second round PCR reactions. 
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The resulting second round PCR products were resolved by agarose gel 

electrophoresis then purified and quantified. The second round PCR products were 

used as a template for third round PCR reactions, from which the resulting products 

were purified and quantified in the same way as for first and second round PCR 

reactions. Purified PCR products were stored at -20°C. 

PCR cycle conditions: 94°C for 2 minutes 

94°C for 30s, 55°C for 30s, 68°C for 30s(x 30) 

72°C for 10 minutes 

 

First, second and third round PCR reaction mixes were made as outlined below. Note 

that second and third round PCR reactions were performed twice, each using 

different dilutions (1:10 and 1:100) of first and second round PCR reaction products: 

Reagents (stock concentration) 1
st
 round 

PCR 

2
nd

 round 

PCR 

3
rd

 round 

PCR 

Sense primer (100µM) 0.2µl 0.1µl 0.1µl 

Anti-sense primer (100µM) 0.2µl 0.1µl 0.1µl 

DEPC H20 11.6µl 17.8µl 17.8µl 

PCR mix 80µl 80µl 80µl 

cDNA template (4ng/µl) 8µl - - 

PCR product (1:100) - 1µl  1µl  

PCR product (1:1000) - 1µl 1µl 
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2.5.1.1 In vitro transcription of DIG-UTP labelled RNA probes 

During RNA probe synthesis, T7 and SP6 RNA polymerases are to be used to 

produce “run-off” transcripts which incorporate digoxigenin (DIG)-UTP into the 

newly synthesised RNA probes at approximately every 20-25
th

 nucleotide. Single 

stranded complementary RNA probes were synthesised by in vitro transcription 

using reagents purchased from Roche Applied Science, Burgess Hill, UK: 

PCR DNA probe 75ng 

Transcription buffer (10x) 2µl 

Digoxigenin (DIG) labelling mix 2µl 

RNAsin 1µl 

RNA polymerase 2µl 

ddH2O Up to 20µl 

 

The above reaction mixture was incubated at 37°C for 2 hours. To remove template 

DNA, 2µl of DNase 1 from the same kit was added to the reaction mixture and then 

incubated for a further 15 minutes at 37°C. Following the second incubation, DEPC 

H2O was added to the reaction mixture up to a final volume of 50µl. Unincorporated 

NTPs were removed from the mixture by spin column purification using Spin 

ProbeQuant G-50 Micro Columns (GE Healthcare, Buckinghamshire, UK), 

centrifuged at 2500rpm for 2 minutes. Probes were quantified using a Nanodrop 

spectrophotometer. 
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2.5.1.2 Dot blot verification of Dig-labelled RNA probes 

Following in vitro transcription of RNA probes, a dot blot was used to verify DIG 

labelling of the probes. Briefly, 1:10, 1:100, 1:1000 and 1:10.000 dilutions of 

labelled probe and control RNA (Roche Applied Science) were prepared in sterile 

water. 1µl of each dilution was blotted onto a piece of Hybond nitrocellulose 

membrane (GE Healthcare), air-dried and then cross-linked by exposure to UV at 

125Mj. The membrane was washed in PBS Tween 20 (PBST) containing 0.3% 

Tween 20 for 2 minutes and then blocked with 1% blocking solution (Sigma Aldrich) 

for 30 minutes. Following this, the membrane was incubated with an alkaline 

phosphate-labelled Anti-Digoxygenin (anti-Dig) antibody (Roche Applied Science) 

diluted 1:5000 in PBS for 20 minutes. The blot was then washed with 0.3% PBST for 

5 minutes. The above incubations and washes were carried out at RT with agitation. 

Nitro-blue tetrazolium (NBT) and 5-bromo-4-chloro-3‟-indolyphosphate (BCIP) 

chromogen solution (Roche Applied Science) was prepared in buffer 2 (20µl NBT-

BCIP/ml). The blotting membrane was immersed in NBT-BCIP solution for 1 hour 

in the dark at RT. Following this, the membrane was washed in ddH2O for 5 minutes 

with agitation at RT and then air dried. 

 

2.5.1.3 Formamide gel resolution of RNA probes 

Using RNase-free glassware, 5ml of 10x 3-(N-morpholino) propanesulphonic acid 

(MOPS) was added to 36ml of diethylpyrocarbonate (DEPC)-treated ddH2O. 1g of 

agarose was added to the above solution which was then microwaved for 1 minute. 

The agarose solution was made up to 41 ml by addition of DEPC ddH2O and then up 

to a final volume of 50 ml using 37% formamide. 
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The gel was poured into a cast and left to set at RT. Once set, the gel was transferred 

to a gel electrophoresis tank and immersed in 1 x MOPS EDTA running buffer. The 

RNA samples and RNA ladder (Fermentas GMBH, St. Leon-Rot, Germany) were 

heated to 70°C for 10 minutes and then cooled for 2 minutes on ice before loading on 

to the gel. 

RNA samples RNA ladder 

5µl H2O 3µl H2O 

6µl loading dye 6µl loading dye 

1µl RNA  1µl ladder 

 

The RNA formamide gel was run at 50V for approximately 2 hours. After this time, 

the gel was stained with SYBR green II dye (Invitrogen) in Tris-EDTA buffer for 15 

minutes in the dark with agitation. Finally, the gel was washed briefly in ddH2O, 

before visualisation. 

 

2.5.2 Pre-hybridisation 

Under RNase-free conditions, paraffin blocks containing formalin-fixed embedded 

kidney tissues were sectioned at 7µm intervals using a Leica Microtome. Sections 

were carefully transferred to RNase-free slides covered in DEPC-treated dH2O. 

When all sections had been mounted on to slides, excess dH2O was removed and 

slides were then allowed to dry at 37°C over night. 
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All solutions were made using DEPC treated H2O or PBS and all glass ware was 

baked at 180° for 4 hours prior to use. Slides were taken through a series of 

rehydration steps consisting of three 5 minute washes in xylene, one 5 minute wash 

in 50% xylene:50% ethanol, two 3 minute washes in 100% ethanol and one wash 

each in 90%, 70% and 50% ethanol for 3 minutes. Slides were then washed twice for 

2 minutes in PBS, before RNA was exposed by incubating with 20μg/ml proteinase 

K (Sigma Aldrich) in PBS for 8 minutes at 37°C. As a control, one slide was also 

treated with RNase. The purpose of this was to verify mRNA-specific binding of 

DIG-labelled probes during hybridisation. Slides were washed briefly in PBS before 

fixation in 4% paraformaldehyde in PBS for 20 minutes at RT. Following fixation, 

slides were washed twice with PBS each for 2 minutes. Slides were treated with 

0.1M triethanolamine (Sigma Aldrich, pH 8.0) containing 0.25% acetic anhydride 

(Sigma Aldrich) in DEPC PBS for 10 minutes at RT and then washed twice in PBS. 

Acetic anhydride acetylates any amines that are present, neutralising their positive 

charge and subsequently preventing the binding of any DIG-labelled probes by 

electrostatic interaction. Sections were then dehydrated in the reverse order to which 

they were hydrated, for the same incubation times and using the same solutions as 

detailed above for the rehydration process. Once dehydrated, slides were air dried in 

a filtered air stream for 1 hour. 

 

2.5.3 Hybridisation 

Slides were transferred to a DEPC ethanol-treated hybridisation chamber containing 

slide trays and paper towel soaked in 50% 2x saline-sodium citrate buffer (2x SSC). 
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Slides were transferred onto the slide trays and then 100µl of probe-hybridisation 

mix (Roche Applied Science) containing 3ng/µl DIG-labelled probe was added to 

each slide before gently covering with a glass cover slip. Slides were incubated in the 

hybridisation chamber over night at 68°C. 

 

2.5.4 Post-hybridisation 

Following over night hybridisation, cover slips were removed by rinsing slides in 5x 

SSC which was pre-warmed to 60°C. Slides were then washed twice in 5x SSC and 

once in 2x SSC each for 10 minutes at 60°C, followed by a final wash in 2x SSC 

heated to 60°C, but incubated at room temperature on a shaker for 10 minutes. Prior 

to detection of the Dig-labelled probe, slides were washed three times in buffer 1 

(section 2.1.3) each for 10 minutes and then transferred to a humidity chamber 

containing paper towels soaked in buffer 1. Dig-labelled probe was detected by 

incubating tissue sections with 150µl anti-Dig (Roche Applied Science, diluted 

1:1000 in buffer 1, containing 2% foetal calf serum) at 4°C over night. Tissue 

sections were covered in parafilm cover slips for the duration of the above 

incubation. The following day, slides were washed three times in buffer 1 and then 

equilibrated in buffer 2 (section 2.1.3) by washing three times, each for 5 minutes. 

Slides were then transferred to a tray before being flooded with NBT/BCIP (Roche 

Applied Science; diluted to 20µl/ml in buffer 2). Slides were left to develop in the 

dark at room temperature over night. When slides had developed, further staining 

was inhibited by rinsing slides in buffer 2, followed by several changes of deionised 

water. 
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Slides were then mounted in Aquatex aqua mount (BDH Prolab) and sealed using 

nail polish. Slides were imaged using a Leica LCM microscope and accompanying 

computer software. 

 

2.6 Cell culture 

2.6.1 Boston University mouse proximal tubule cells 

Boston University mouse proximal tubule cells (BUMPTs) were a generous gift form 

Professor John Schwartz. 

 

2.6.2 Maintenance of BUMPT cells 

Cells were cultured in high-glucose Dulbecco‟s Modified Eagle‟s Medium (DMEM) 

containing 100U/ml penicillin, 100µg/ml streptomycin and 10% foetal calf serum 

(FCS) and were maintained at 37°C with 5% CO2 under constant humidity. 

 

2.6.3 Passage of BUMPT cells 

On reaching confluence (Figure 2.7A), cells were passaged and split 1:8 (Figure 

2.7B). The supernatant was removed and the cells washed twice in PBS without 

Mg
2+

 and Ca
2+

. Pre-diluted Trypsin-EDTA containing 0.5g/L trypsin and 0.2g/L 

EDTA, was added to the cell monolayer and the culture vessel incubated at 37°C for 

5 minutes. Trypsinisation was stopped by the addition of one volume of complete 

culture medium. 
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The resulting cell suspension was centrifuged at 1000rpm for 5 minutes and the cell 

pellet re-suspended in complete medium. Cells were cultured in 75cm
2
 culture flasks. 

Unless otherwise stated, cells were used at passage 15. 

 

2.6.4 Preparation of frozen stocks of BUMPT cells 

Frozen stocks of cells were prepared in DMEM containing FCS and dimethyl 

sulfoxide (DMSO). Cells used to produce frozen stocks were in the log phase of 

growth and were detached from culture vessels as described previously. Following 

centrifugation, cells were re-suspended in DMEM containing 10% FCS and 10% 

DMSO at a maximum concentration of 2x 10
6
 cells/ml. 2ml aliquots of cell 

suspension were transferred to cryo-vials and cooled at a rate of 1°C/minute using an 

isopropyl alcohol bath placed in a -80°C freezer. Cells were then transferred to liquid 

nitrogen for long-term storage. 

 

2.6.5 Revival of cryo-preserved BUMPT cells 

Cells were warmed to room temperature as quickly as possible by removing from 

liquid nitrogen and transferring to a 37°C water bath until fully thawed. To prevent 

osmotic lysis, 5ml of culture media was added to the cell suspension very slowly 

drop-wise. The resulting cell suspension was centrifuged at 1000rpm for 5 minutes 

and the cell pellet re-suspended in 10ml complete medium before transferring to a 

75cm
2 

cell culture vessel. Cells were maintained as described in section 2.6.2. 
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2.6.6 Lipopolysaccharide stimulation of BUMPT cells 

On reaching confluence, cells cultured in 75cm
2
 culture flasks were passaged as 

described previously (2.6.3). Cells were seeded at a density of 60,000/cm
2
 in 6-well 

plates. After 3 days, culture medium was replaced with fresh serum-free culture 

medium and left for 24 hours. The following day, cells were stimulated with 

lipopolysaccharide (LPS; Sigma Aldrich, UK) at 10ng/ml, 100ng/ml and 1000ng/ml, 

in triplicate wells under serum-free conditions for 12, 24 and 48 hour time points. 

Triplicate wells of un-stimulated cells were also established for each time point and 

LPS concentration. Following stimulation for each time point, 1ml of supernatant 

was removed for ELISA analysis and stored at -20°C. RNA was extracted from lysed 

cells using an RNeasy mini kit from Qiagen and following manufacturer‟s 

instructions. cDNA was synthesised as described previously (section 2.4.2). rtPCR 

was used to determine changes in C3 gene expression following LPS stimulation. An 

ELISA assays were used to measure C3 and C3a protein present in the supernatant. 

 

2.7 Protein methodology 

2.7.1 C3a ELISA 

Corning EIA/RIA medium-binding 96 well plates were coated with 4µg/ml purified 

rat anti-mouse C3a (Table 2.1; BD Biosciences, UK) in 0.2M sodium phosphate 

buffer (pH 6.5) overnight at 4°C. Excess antibody was removed by washing three 

times with PBS. The plates were blocked by the addition of 1% bovine serum 

albumin (BSA) in PBS for 2 hours then washed three times with PBST containing 

0.05% Tween 20 (0.05% PBST). 
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Figure 2.7. Boston University mouse proximal tubule (BUMPT) cells.  

Confluent and sub-confluent BUMPT cells at passage 15 (A and B respectively). 

BUMPT cells displayed typical „cobble stone‟ epithelial morphology. Magnification 

x200. 
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Mouse urine samples and BUMPT cell supernatants were diluted 1:25 and 1:10 

respectively in 0.5% BSA-PBS and then added to wells and incubated for 2 hours. 

Similarly, BUMPT cell supernatants were diluted 1:10. Purified mouse C3a protein 

(BD Biosciences, UK) was selected as a standard control and diluted to 50, 25, 12.5, 

6.25, and 3.125ng/ml in 0.5% BSA-PBS before adding to wells and incubating as for 

the urine samples above. Following this, plates were washed five times with PBST 

before incubating with 1µg/ml biotinylated rat anti-mouse C3a (BD Biosciences, 

UK; Table 2.2) in PBS for 1 hour. Plates were again washed five times with 0.05% 

PBST and then incubated with streptavidin-HRP (BD Biosciences, UK; Table 2.2) 

diluted 1:1000 in PBS for 1 hour. Plates were once again washed five times with 

0.05% PBST. HRP was detected by the addition of O-Phenylenediamine 

dihydrochloride substrate (SigmaFast-OPD) for 30 minutes in the dark. 

The reaction was stopped by the addition of 50µl 2M H2SO4 and the optical density 

(OD) measured at 490nm using an OpsysMR plate reader (Dynex Technologies 

Limited, UK). Unless otherwise stated, all antibody incubations were carried out at 

RT. A standard curve for OD of known C3a concentrations was plotted and urinary 

C3a concentrations were then calculated. 

 

2.7.2 C3 ELISA 

Corning EIA/RIA medium-binding 96 well plates were coated with 8µg/ml purified 

goat anti-mouse C3 (MP Biomedicals Inc, Ohio; Table 2.1) in PBS (pH 7.4) 

overnight at 4°C. Excess antibody was removed by washing twice with PBST and 

twice again with PBS. 
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The plates were blocked by the addition of 2% BSA-PBST for 1 hour at RT then 

washed twice with PBST and then twice again with PBS. Mouse serum collected by 

cardiac puncture was diluted to 1:1000, 1:2000, 1:4000, 1:8000, 1:16,000, 1:32,000, 

1:64,000, 1:128,000, 1:256,000, 1:512,000, 1:1024,000 in 2% BSA-PBST then 

added to wells and incubated for 1 hour at 37ºC. Following this, plates were washed 

twice with PBST and twice again with PBS before incubating with HRP-conjugated 

goat anti-mouse C3c (Autogen Bioclear Ltd, UK; Table 2.2) diluted to 2µg/ml in 2% 

BSA in PBST for 1 hour at 37ºC. Plates were once again washed twice with PBST 

and then twice again with PBS. HRP was detected by the addition of O-

Phenylenediamine dihydrochloride (SigmaFast-OPD) substrate for 7.5 minutes at RT 

in the dark. The reaction was stopped by the addition of 50µl 2M H2SO4 and the OD 

measured at 490nm using an OpsysMR plate reader (Dynex Technologies Limited, 

UK). Initial serum C3 concentration was assumed to be 1mg/ml. 

 

2.7.3 C5a ELISA 

Corning EIA/RIA medium-binding 96 well plates were coated with 100µl/well 

1µg/ml purified rat anti-mouse C5a (BD Biosciences, UK; Table 2.1) in 0.2M 

sodium phosphate buffer (pH 6.5) overnight at 4°C. Excess antibody was removed 

by washing three times with PBST. The plates were blocked by the addition of 

200µl/well 10% FCS in PBS for 1 hour and then washed three times with PBST. 

Mouse urine collected from the dilated pelvis of day 3 and day 10 obstructed kidneys 

was diluted 1:25 in 0.5% BSA-PBS then added to wells and incubated for 2 hours. 
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Purified recombinant mouse C5a protein (BD Biosciences, UK), was selected as a 

standard control and diluted to 200, 100, 50, 25, 12.5, 6.25, 3.125, 1.5626pg/ml in 

0.5% BSA-PBS before adding to wells and incubating as for the urine samples 

above. Following this, plates were washed five times with PBST before incubating 

with biotinylated rat anti-mouse C5a (BD Biosciences, UK; Table 2.2) diluted 1:500 

in PBS for 1 hour. After washing five times with PBST, the plates were incubated 

with the streptavidin-HRP used in section 2.7.1 under identical conditions. Plates 

were once again washed five times with PBST. HRP was detected by the addition of 

3,3‟,5,5‟-tetramethylbenzidine substrate (Sigma Aldrich) for 10 minutes in the dark. 

The reaction was stopped by the addition of 50µl 2M H2SO4 and the OD measured at 

450nm using a Dynatech MRX microplate reader (Dynatech Laboratories Inc, 

Chantilly, VA) standard curve for OD of known C5a concentrations was plotted and 

urinary C5a concentrations were then calculated. Unless otherwise stated, antibody 

incubations were carried out at RT. 

 

2.7.4 Radial immunodiffusion assay to detect urinary albumin 

Urine albumin concentration was measured by radial immunodiffusion in 1.2% 

agarose gels containing 150µl of rabbit anti-mouse albumin antibody (Abcam, 

Cambridge, UK; Table 2.1) per 10ml of gel. The agarose/antibody solution was 

carefully poured onto a 10x10cm glass plate on a flat surface and left to set at RT. 

Once set, 3mm wells were cut in to the gel and the plugs removed by suction. 

Standard solutions of mouse albumin measuring 1.6, 0.8, 0.4, 0.2, 0.1 & 0.05mg/ml 

and test urine samples (diluted 1:10), were prepared in dH2O and added to the 

agarose gels in duplicates each containing 4µl/well. 
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The agarose-coated glass plates were incubated in a humidified box for 24 hours at 

4°C to equilibrate. The next day, gels were transferred on to the hydrophilic side of a 

piece of gel-bond membrane (Lonza Biologics plc, Tewkesbury, UK) and detached 

from the glass plates. Filter papers were then stacked on top of the non-membrane 

side of the gel and a small weight placed on top for 1-2 hours to facilitate absorption 

of excess moisture. Following this the gels were dried using a hairdryer. The albumin 

diffusion rings on the membrane were visualised by staining with 1% coomassie blue 

(section 2.1.4) for 20 minutes, after which, the membranes were repeatedly washed 

with destain solution (section 2.1.4) and then allowed to air dry. Coomassie-stained 

membranes were scanned to obtain computerised image files. Triplicate 

measurements for each standard solution diameter ring were obtained using ImageJ 

(v.1.45) software and then averaged to construct a standard curve of known albumin 

concentrations. The albumin concentration for each urine test sample was 

extrapolated from the standard curve using an averaged triplicate measurement for 

each urine test diffusion ring. 

 

2.8 Statistical analyses 

Data were analysed using an unpaired t-test, a Mann-Whitney U-test (with 

Bonferroni Correction) or a Wilcoxon Signed Rank test as appropriate and were 

expressed as either the mean + the standard error of the mean (SEM) or as median 

values. All statistical analyses were performed using Graphpad Prism 5.0 computer 

software. Data were considered statistically significant where p<0.05. 
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3 Characterisation of renal injury in WT and C3
-/-

 mice during 

UUO 

3.1 Introduction 

The first stage in determining the role of complement during obstructive nephropathy 

was to characterise the progression of renal tissue injury in WT and C3
-/-

 mice at 

early and advanced time points during the course of disease progression. The 

histological and pathological hallmarks of obstructive renal disease were compared 

in WT and C3
-/-

 mice to determine the role of complement towards progression of 

fibrosis. For this study the model of UUO was chosen as it has been extensively 

studied and leads to the development of fibrosis, a common feature in the 

development of many human renal diseases leading to decline in renal function and 

subsequent ESRD. 

 

3.2 Scoring of histological injury in WT and C3
-/- 

mice following 

UUO 

Interstitial expansion and tubular dilatation were evident in the renal cortices of WT 

and C3
-/- 

mice following three days of UUO. In both experimental animal groups, 

epithelial cells lining dilated tubules had lost their characteristic apical membrane 

brush boarder and appeared flattened (Figure 3.1A and B). Some of the dilated 

tubules contained debris. 
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Figure 3.1. Histological injury at day three UUO 

Histological injury in WT and C3
-/- 

mice after three days of UUO. PAS staining of 

obstructed WT (A) and C3
-/- 

(B) renal cortices. Representative image of contralateral 

renal cortex illustrating normal renal morphology (C). Arrows indicate areas of 

interstitial expansion. Asterisks identify dilated tubules. Tubules (t), glomerulus (g). 

Scoring of interstitial expansion (D) and tubular dilatation (E) using a grid based 

counting method. Scale bars on A-C represent 20µm. Bars on graphs D and E 

represent median values. 
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Three days post UUO, the tubular interstitium had expanded, forcing tubules apart, 

and contained a small number of cells as indicated by haematoxylin-stained nuclei. 

The glomeruli were unaffected at this stage and displayed normal glomerular 

morphology. In order to semi-quantify tubular and interstitial injury, a grid was 

superimposed onto each acquired image and the number of intersections over areas 

of interest counted and expressed as a percentage area. After three days of UUO, 

interstitial volume (Figure 3.1D), was significantly greater in obstructed groups 

compared with the contralateral kidney (median values of 8.21% vs. 1.81% and 

12.81% vs. 2.17% in WT and C3
-/-

 UUO groups respectively; p<0.005). The 

interstitial compartment of C3
-/-

 UUO mice had expanded more than that of their WT 

counterparts (p<0.005). Tubular dilatation (Figure 3.1E) was also found to have 

increased in WT and C3
-/-

 UUO groups compared with contralateral kidneys (median 

values of 8.60 vs. 2.62% and 9.62% vs. 1.12% respectively; p<0.005). The extent of 

tubular dilatation representing mechanical injury was equivalent for both UUO 

groups, although the median value for C3
-/-

 UUO mice was numerically higher. 

Unaffected (contralateral) kidneys in WT and C3
-/-

 mice displayed normal renal 

morphology, with no interstitial expansion or tubular dilatation. 

Following ten days of ureteric obstruction, interstitial expansion and tubular 

dilatation had continued to develop in the renal cortices of obstructed WT and C3
-/-

 

mice (Figure 3.2A and B). At this time, injury had progressed to such an extent that 

some tubules had become atrophic in appearance. Such tubules were identifiable by 

their marked reduction in size and the presence of an irregular basement membrane. 
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Figure 3.2. Histological injury at day ten UUO 

Histological injury in WT and C3
-/-

 kidneys following ten days of ureteric 

obstruction. PAS staining of WT UUO (A), C3
-/-

 UUO (B) and representative 

contralateral renal cortices (C). All tissues were formalin-fixed and then paraffin-

embedded. Arrows show areas of expanded interstitium. Asterisks highlight severely 

dilated tubules. Glomerulus (g), tubule (t). Scale bars on A-C represent 20µm. 

Interstitial expansion (D) and tubular dilatation (E) scoring carried out using a grid-

based counting method. Bars on graphs represent median values. 
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Cortical interstitial volume (Figure 3.2D) had increased in obstructed WT and C3
-/-

 

groups compared with contralateral kidneys (median values 19.52% vs. 3.90% and 

22.72% vs. 5.16% respectively; p<0.001). The interstitial volumes of WT and C3
-/-

 

UUO mice, was equivalent. Renal tubule dilation (Figure 3.2E) compared to the 

contralateral kidney was greater in WT and C3
-/-

 UUO groups compared with 

contralateral kidneys (median values 8.54% vs. 3.46% and 8.55% vs. 4.03% 

respectively; p<0.001 and p<0.005 respectively). As with interstitial expansion, 

tubular dilatation in obstructed WT and C3
-/-

 mice was equivalent. Contralateral 

kidneys remained unchanged. 

 

3.3 Infiltration of lymphocytes into obstructed kidneys during 

UUO 

To identify the presence of infiltrating leucocytes, obstructed kidneys were harvested 

from WT and C3
-/-

 mice following ten days of ureteric obstruction and indirect IHC 

was used to stain CD4
+
 (Figure 3.3A and B) and CD8

+
 T cells (Figure 3.4A and B) 

and F4/80
+
 macrophages (Figure 3.5A and B). In the obstructed kidneys of WT mice, 

there was a pronounced and significant infiltration of CD4
+
 and CD8

+
 T cells 

(median numbers of cells per HPF of 37.52 and 15.20 respectively; p<0.001). 

Numerically, fewer CD4
+
 T cells were present at day ten in the obstructed cortices of 

C3
-/-

 mice (median number of cells was 24.11 per HPF; Figure 3.3D). There was 

greater variability within the C3
-/-

 UUO group, nevertheless CD4
+
 cell infiltration 

was significant when compared with contralateral C3
-/-

 kidneys (p<0.001). The 

median number of CD4
+ 

T cells in obstructed WT and C3
-/-

 kidneys was not 

statistically different. 
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Figure 3.3. CD4
+
 T cell infiltration at day ten UUO 

Indirect IHC was used to detect CD4
+
 T cells in cryo-preserved renal tissues. WT 

obstructed (A), C3
-/-

 obstructed (B) and a representative unaffected contralateral 

kidney (C). Bars on A-C represent 20µm. For each animal, ten randomised cortical 

HPFs were acquired using an Aperio scanner and accompanying computer software. 

Positively stained cells (indicated by red arrows) present in each HPF field were 

manually counted. CD4
+
 cells were compared in WT and C3

-/-
 obstructed renal 

cortices (D). Bars on graph represent median values. 
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Figure 3.4. CD8
+
 T cell infiltration at day ten UUO 

CD8
+
 T cells present in frozen renal tissues of day ten obstructed mice were 

determined using indirect IHC. WT obstructed (A), C3
-/-

 obstructed (B) and a 

representative contralateral kidney (C). Scale bars on A-C represent 20µm. An 

Aperio scanner and accompanying computer software were used to capture ten 

cortical HPFs at random for each animal. Cells present in each HPF field which had 

stained positive for CD8
+
 (indicated by red arrows), were manually counted (D). 

CD8
+
 cells were present in obstructed WT kidneys and were more abundant in C3

-/-
 

obstructed kidneys. Bars on graph represent median values. 
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Similarly, CD8
+
 T cells had also significantly increased in obstructed C3

-/-
 mice 

(median number of cells was 32.28 per HPF; p<0.001), however, more than twice as 

many CD8
+
 cells were present in C3

-/-
 UUO mice (p<0.005; Figure 3.4D). Although 

no CD4
+
 and CD8

+
 cells were observed in the interstitium of contralateral WT and 

C3
-/-

 renal cortices (Figure 3.3C and Figure 3.4C respectively), on rare occasions 

positively-stained cells were observed in glomeruli. Macrophage infiltration was 

quantified by scoring areas of interstitium which had positive staining for F4/80 

(Figure 3.5A and B). In obstructed WT and C3
-/-

 renal cortices, F4/80
+
 cells occupied 

a median of 21.24% and 27.18% of the tubulointerstitial compartment vs. 0% in WT 

and C3
-/-

 contralateral kidneys (p<0.01 for WT and C3
-/-

 obstructed kidney groups). 

Interestingly, as observed with infiltrating CD8
+
 T cell numbers, F4/80

+
 

macrophages were significantly elevated in the obstructed kidneys of C3
-/-

 mice 

compared with the WT obstructed group (p<0.005; Figure 3.5D). No F4/80
+
 areas of 

interstitium were present in the un-obstructed renal cortices of WT and C3
-/-

 mice 

(Figure 3.5C). 

 

3.4 Expansion of the interstitial compartment by collagen 

deposition and alpha-SMA
+
 myofibroblasts 

Sirius red is a histological technique which allows the visualisation of collagen fibres 

within tissues. Following treatment with Sirius red F3B dye, collagen fibres are 

stained red, distinguishing them from other structures. Leica QWin software was 

used to generate a macro capable of counting red coloured pixels. 
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Figure 3.5. F4/80
+
 macrophage infiltration at day ten UUO 

Indirect IHC was used to semi-quantify F4/80
+
 macrophages present in cryo-

preserved kidneys of day ten obstructed mice. WT UUO (A), C3
-/-

 UUO mice (B) 

and a representative unaffected contralateral kidney (C). Scale bars on A-C represent 

20µm. Ten random cortical HPFs were acquired for each experimental group using 

an Aperio scanner and accompanying computer software. Areas of F4/80
+
 cells 

present in each HPF field (as indicated by red arrows), were manually counted using 

a grid-based method (D). F4/80
+
 macrophages were elevated in the renal cortices of 

all mice which had undergone UUO however a greater area of positive staining was 

present in C3
-/-

 UUO mice. Bars on graph represent median values. 
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In contralateral and obstructed kidneys harvested at three and ten days post-UUO, the 

number of positively stained (red) pixels was expressed as a percentage of the total 

area measured for each animal. In WT mice interstitial collagen staining, was 

significantly greater after ureteric obstruction compared with contralateral kidneys 

(Figure 3.6A) with median values of 5.75% vs. 0.61% and 10.45% vs. 1.28% in 

obstructed vs. contralateral kidneys at day three and day ten respectively (p<0.005 

and p<0.001 respectively; Figure 3.6D). Collagen deposition within the cortical 

interstitium of day three obstructed C3
-/-

 mice (Figure 3.6B and D) was also 

significantly higher when compared with unobstructed kidneys (median values of 

2.76% vs. 0.90 respectively; p<0.005). Interestingly, interstitial collagen staining in 

day three obstructed C3
-/-

 mice was significantly lower (p<0.05) when compared 

with day three WT UUO mice. Following ten days of UUO, collagen deposition had 

increased to 9.03% in obstructed vs. 0.85% contralateral kidneys of C3
-/-

 mice 

(Figure 3.7A, B and D). At this time, collagen staining was statistically equivalent in 

obstructed kidneys of WT and C3
-/-

 mice. Collagen staining was also detected around 

glomeruli, tubules and blood vessels in the contralateral kidneys of WT and C3
-/-

 

groups (Figure 3.7C). 

Specific identification of collagen I fibres was achieved using IHC staining in renal 

tissues harvested after ten days of ureteric obstruction. In the obstructed kidneys of 

WT and C3
-/-

 mice, collagen I fibres were abundant throughout the expanded 

interstitium (Figure 3.8A and B). Median values for collagen I deposition in 

obstructed kidneys was higher than in unobstructed kidneys; 21.79% compared with 

4.69% and 15.71% compared with 4.07% in WT and C3
-/-

 mice respectively 

(p<0.001 and p<0.01 respectively; Figure 3.8D). Interestingly, cortical interstitial 

staining of collagen I was significantly lower in obstructed C3
-/-

 mice (p<0.05). 
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Figure 3.6. Interstitial collagen deposition at day three UUO 

Following three days of ureteric obstruction, formalin-fixed paraffin embedded renal 

tissues were stained with Sirius red. Collagen fibres stained an intense red colour in 

WT (A) and C3
-/-

 (B) renal cortices. An image of a representative unobstructed 

kidney (C). Collagen was present around glomerular and vascular structures in 

contralateral kidneys. Arrows indicate collagen fibres and (g) indicates a glomerulus. 

Scoring for collagen deposition was performed by a computer macro specifically 

designed to detect red pixels which was created using LeicaQwin software (D). Scale 

bars on A-C represent 40µm. Bars on graph represent median values. 
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Figure 3.7. Interstitial collagen deposition at day ten UUO 

Ten days post-UUO, paraffinised renal tissues were stained with Sirius red. In WT 

(A) and C3
-/-

 (B) renal cortices, collagen fibres were stained an intense red colour. 

Collagen was also present around tubules, blood vessels and glomeruli in 

contralateral renal cortices of WT and C3
-/-

 mice (C). Arrows illustrate collagen 

fibres and „g‟ identifies glomeruli. Collagen deposition was measured using a 

LeicaQwin software macro which was specifically designed to detect red pixels (D). 

Scale bars on A-C represent 40µm. Bars on graph represent median values. 
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Figure 3.8. Collagen I deposition at day ten UUO 

Following ten days of ureteric obstruction, immunohistochemical staining was used 

to semi-quantify collagen I deposition within the renal cortices of cryo-preserved 

kidneys. WT UUO (A), C3
-/-

 UUO (B) and a representative contralateral kidney (C). 

Scale bars on A-C represent 20µm. For each experimental group, ten random cortical 

HPFs were acquired. Areas staining positive for collagen I fibres within each HPF 

field (as indicated by red arrows), were manually counted using a grid-based method 

(D). Collagen I deposition was observed in the obstructed renal cortices of WT and 

C3
-/-

 mice, but was less severe in the absence of C3. Bars on graph represent median 

values. 
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Contralateral kidneys from WT and C3
-/-

 mice exhibited weak collagen I staining 

around blood vessels (Figure 3.8C). α-SMA
+
 myofibroblasts present within the renal 

cortex after ten days of ureteric obstruction were identified by IHC staining (Figure 

3.9A and B). Obstructed WT and C3
-/-

 kidneys exhibited extensive α-SMA 

deposition within the tubulointerstitial compartment (Figure 3.8D) compared with 

unobstructed kidneys (66.91% vs. 2.59% and 63.46% vs. 2.59% respectively; 

p<0.005 and p<0.001 respectively). Median values for day ten obstructed WT and 

C3
-/-

 groups were equivalent. Positive α-SMA staining was also present around blood 

vessels in all obstructed and contralateral WT and C3
-/-

 kidneys (Figure 3.9C). 

 

3.5 Cytokine gene expression during UUO 

rtPCR was used to analyse changes in gene expression following UUO. RNA was 

extracted from the renal cortex and reverse transcribed. The resulting cDNA was 

analysed in a rtPCR reaction and the relative expression for each gene of interest was 

calculated by comparing expression to that of the house keeping gene β-actin. In the 

kidneys of day three obstructed WT mice, no significant increase in TNF-α mRNA 

expression was observed compared with unobstructed kidneys (2.82 vs. 1.34; Figure 

3.10A), however TNF-α was significantly up-regulated after three days of UUO in 

kidneys of C3
-/-

 mice compared with contralateral kidneys (4.30 vs. 1.80; p<0.05). 

By day ten, TNF-α gene expression in obstructed WT and C3
-/-

 kidneys was 

significantly up-regulated (Figure 3.10B) compared with contralateral kidneys (5.65 

vs. 0.86 and 12.58 vs. 1.93 respectively; p<0.001 and p<0.005 respectively). 
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Figure 3.9. α-SMA
+
 myofibroblasts at day ten UUO 

Following ten days of ureteric obstruction, α-SMA
+
 myofibroblasts present in the 

renal cortices of paraffinised kidneys were detected by IHC and semi-quantified. WT 

UUO (A), C3
-/-

 UUO mouse kidney (B) and representative contralateral kidneys (C). 

Scale bars on A-C represent 40µm. Ten random cortical HPFs for each experimental 

group were selected in a blinded fashion. Areas containing α-SMA
+
 myofibroblasts 

(as indicated by red arrows), were counted using a grid-based method (D). 

Myofibroblasts staining positive for α-SMA were observed in the obstructed renal 

cortices of WT and C3
-/-

 mice. Bars on graph represent median values. 
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Figure 3.10. TNF-α gene expression at day three and day ten UUO 
Gene expression of TNF-α in contralateral (cont) and obstructed (UUO) renal 

cortices three (A) and ten (B) days post-ureteric obstruction was quantified by rtPCR. 

TNF-α mRNA expression was first normalised to that of the house-keeping gene β-

actin and then the relative mRNA expression of TNF-α was calculated. TNF-α was 

significantly elevated to boarder line significance in the obstructed renal cortices   

C3
-/-

 mice and was elevated to boarder line significance in obstructed WT mouse 

kidneys. By day ten, TNF-α was significantly up-regulated in WT and C3
-/-

 UUO 

mice. Bars on graphs represent median values. rtPCR was performed in triplicate for 

each animal. 
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There were no significant differences in TNF-α expression for WT and C3
-/-

 

obstructed kidneys at day three. However by day ten UUO, TNF-α gene expression 

in the obstructed kidneys of C3
-/-

 mice was of boarder line significance compared 

with obstructed WT mice (p=0.05). Following three days of UUO, there was no 

significant change in the amount of TGF-β gene expression observed in obstructed 

WT and C3
-/-

 kidneys (Figure 3.11A). After ten days of ureteric obstruction, median 

TGF-β expression in obstructed WT renal cortices was significantly elevated (Figure 

3.11B) compared to unobstructed renal cortices (2.23 vs. 1.06; p<0.05). Similarly, 

median expression of TGF-β in day ten obstructed C3
-/-

 kidneys was significantly 

higher compared with contralateral kidneys (1.04 vs. 0.54; p<0.001). Interestingly, 

TGF-β gene expression in obstructed C3
-/-

 mice was significantly lower than that 

observed in WT UUO kidneys (p<0.01). 

 

The median value for IL-6 expression in day three obstructed WT mice was 0.64, a 

significant increase of almost 18 times the median of 3.5x10
-3

 detected in 

contralateral kidneys of WT mice (p<0.005, Figure 3.12A). Similarly, in kidneys 

harvested from C3
-/-

 mice, IL-6 mRNA expression was increased from a median of 

4.6x10
-3

 to 0.57, although this increase was not statistically significant. The level of 

IL-6 gene expression in obstructed WT and C3
-/-

 mice was not statistically different 

at this time point. After ten days of ureteric obstruction, IL-6 mRNA expression had 

continued to increase in obstructed WT and C3
-/-

 kidneys. In WT mice, median IL-6 

gene expression had increased 85.59 fold in obstructed kidneys vs. 0.95 in 

contralateral kidneys (p<0.001; Figure 3.12B). 
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Figure 3.11. TGF-β gene expression at day three and day ten UUO 

rtPCR was used to quantify gene expression of TGF-β in contralateral (cont) and 

obstructed (UUO) renal cortices three (A) and ten (B) days post-ureteric obstruction. 

Gene expression levels were first normalised to β-actin and then the relative mRNA 

expression of TGF-β was calculated. Following statistical analysis, TGF-β 

expression was found to have increased significantly in the obstructed kidneys of 

WT and C3
-/-

 mice by day ten. Bars on graphs represent median values. rtPCR was 

performed in triplicate for each animal. 
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Figure 3.12. IL-6 gene expression at day three and day ten UUO 

Quantification of IL-6 gene expression in obstructed (UUO) and contralateral (cont) 

renal cortices was performed by rtPCR following three (A) and ten (B) days of UUO. 

mRNA expression was normalised to the house-keeping gene β-actin, after which, 

the relative expression of IL-6 compared to β-actin was determined. IL-6 mRNA 

levels increased in obstructed WT and C3
-/-

 kidneys during the latter stages of UUO. 

Bars on graphs represent median values. rtPCR was performed in triplicate for each 

animal. 
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Similarly, median IL-6 mRNA expression had significantly increased in the renal 

cortices of obstructed C3
-/-

 mice to a median value of 63.73 vs. 1.14 in contralateral 

kidneys (p<0.005). IL-6 gene expression remained equivalent in obstructed WT and 

C3
-/-

 kidneys. 

 

3.6 Collagen and α-SMA gene expression during UUO 

After three days of ureteric obstruction, median values for collagen I gene expression 

in WT mice was 1.18 in contralateral kidneys vs. 7.78 in obstructed kidneys 

(p<0.005; Figure 3.13A). A significant elevation in median collagen I mRNA 

expression was also present in C3
-/-

 mice (3.77 in obstructed kidneys vs. 0.57 in 

contralateral kidneys; p<0.005). Despite the median level of collagen I gene 

expression in day three WT UUO kidneys being approximately twice as high as that 

observed in C3
-/-

 UUO kidneys, this difference did not reach statistical significance. 

Following ten days of UUO, median collagen I mRNA expression in obstructed WT 

mice remained significantly elevated at 4.98 compared with 0.82 in contralateral 

kidneys (p<0.001; Figure 3.13B). The median expression of collagen I in day ten 

obstructed C3
-/-

 mice was 2.72 fold and remained significantly higher than that of 

contralateral C3
-/-

 kidneys (median value of 0.58; p<0.001). Interestingly, collagen I 

mRNA expression in day ten C3
-/-

 UUO kidneys was significantly lower than that 

observed in WT UUO kidneys (p<0.01). Three days post-UUO, there was no 

significant change in the level of collagen III gene expression in obstructed WT and 

C3
-/-

 kidneys (Figure 3.14A). 
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Figure 3.13. Collagen I gene expression at day three and day ten UUO 

Collagen I mRNA expression was quantified by rtPCR in obstructed (UUO) and 

contralateral (cont) renal cortices following three (A) and ten (B) days of ureteric 

obstruction. Gene expression was normalised to β-actin, then the relative expression 

of collagen I was calculated. Collagen I gene expression was elevated in obstructed 

WT and C3
-/-

 kidneys during the early and late stages of UUO, but was only 

significantly elevated in WT mice ten days post-obstruction. rtPCR was performed in 

triplicate for each animal. Bars on graphs represent median values. 
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Figure 3.14. Collagen III gene expression at day three and day ten UUO 

 rtPCR was used to measure gene expression of collagen-III in obstructed (UUO) and 

contralateral (cont) renal cortices at three (A) and ten (B) days post-ureteric 

obstruction. Collagen III gene expression levels were normalised to the house-

keeping gene β-actin. After ten days of UUO, collagen III gene expression had 

significantly decreased in WT obstructed kidneys, whereas a significant increase in 

expression was observed in C3
-/-

 UUO kidneys. Overall, obstructed C3
-/-

 kidneys had 

significantly higher collagen III expression compared with obstructed kidneys from 

WT mice. rtPCR was performed in triplicate for each animal. Bars on graphs 

represent median values. 
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Following ten days of UUO, collagen III gene expression (Figure 3.14B) as 

significantly lower in obstructed WT kidneys compared to contralateral kidneys 

(0.21 vs. 0.83; p<0.05). In the obstructed kidneys of C3
-/-

 mice, median collagen III 

mRNA expression was significantly elevated compared with contralateral kidneys 

(2.87 vs. 0.97; p<0.05). Compared with WT UUO kidneys, collagen III gene 

expression was significantly elevated in obstructed C3
-/-

 kidneys after ten days of 

ureteric obstruction (p<0.05). 

Following three days of ureteric obstruction, α-SMA expression in obstructed 

kidneys from WT mice was significantly higher than in contralateral kidneys (5.56 

vs. 1.20; p<0.05). Although α-SMA expression was elevated in obstructed kidneys of 

C3
-/-

 mice, this was not significantly different from expression in unobstructed 

kidneys (3.64 vs. 1.11; Figure 3.15A). There were no significant differences in the 

levels of α-SMA mRNA expression observed in obstructed WT and C3
-/-

 kidneys. 

After ten days of ureteric obstruction median α-SMA gene expression in obstructed 

kidneys of WT mice remained significantly elevated at 4.71 compared with 1.04 in 

contralateral kidneys (p<0.05; Figure 3.15B). Median mRNA expression of α-SMA 

in day ten C3
-/-

 UUO mice had decreased to 0.81 and was statistically equivalent to 

the median α-SMA gene expression of 0.48 in contralateral C3
-/-

 kidneys. Median 

day ten α-SMA expression in C3
-/-

 UUO kidneys was significantly lower than that 

observed in WT UUO kidneys (p<0.001). 
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Figure 3.15. α-SMA gene expression at day three and day ten UUO 

α-SMA gene expression in obstructed (UUO) and contralateral (cont) renal cortices 

three (A) and ten (B) days post-UUO was measured using rtPCR. α-SMA gene 

expression was normalised to β-actin, and the relative expression of α-SMA 

compared to β-actin was deduced. α-SMA mRNA expression increased in obstructed 

WT and C3
-/-

 kidneys during the early stages of UUO, but only remained elevated in 

WT mice at day ten. Bars on graphs represent median values. rtPCR was performed 

in triplicate for each animal. 
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3.7 Analysis of renal injury following five days of UUO 

After day three and day ten analyses had been conducted, it was decided that a sub-

acute UUO time point should be included in the study. Day five UUO was chosen 

because it had been used in a previous study investigating the role of complement C5 

during UUO (Boor et al., 2007). The same study had used day ten UUO as their final 

time point and so it was decided that inclusion of day five UUO in this study would 

allow a more direct comparison of the two studies. The day five UUO experiments in 

this study were conducted at a later time and so the findings are discussed separately 

to those of day three and day ten. 

 

3.7.1 PAS and Sirius red histology 

Expansion of the cortical tubular and interstitial compartments was evident after five 

days of ureteric obstruction. A number of tubules were dilated and the surrounding 

interstitium had distended in WT and C3
-/-

 UUO groups as illustrated by asterisks 

and arrows respectively (Figure 3.16A and B). Expansion of the cortical interstitium 

was increased in WT and C3
-/-

 obstructed mice respectively, with medians of 11.38% 

and 10.95% vs. 1.07% and 1.12% in contralateral kidneys (p<0.005 for both groups; 

Figure 3.16D). Tubular dilatation was also evident and had increased in WT and C3
-/-

 

UUO groups to medians of 5.01% and 5.41% compared to with medians of 1.48% 

and 0.93% respectively in unobstructed kidneys (p<0.005 for both groups; Figure 

3.16E). Tubular dilatation and interstitial expansion in WT and C3
-/-

 mice were both 

equivalent at this time. Contralateral kidneys belonging to both experimental groups 

displayed normal renal morphology with no visible tubular or interstitial expansion 

(Figure 3.16C). 
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Figure 3.16. Histological injury at day five UUO 

After five days of ureteric obstruction, paraffinised renal tissues were stained with 

PAS. Tubular basement membrane staining was evident in WT UUO (A), C3
-/-

 UUO 

(B) and unaffected (C) renal cortices. Arrows on A and B show areas of expanded 

interstitium. Tubules (t), glomeruli (g). Asterisks indicate dilated tubules. Scale bars 

on A-C represent 50µm. Interstitial expansion (D) and tubular dilatation (E) were 

semi-quantified using a grid based counting method. Bars on graphs D and E 

represent median values. 
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WT and C3
-/-

 day five contralateral and obstructed kidneys were harvested and 

stained with Sirius red as described previously (section 3.4.) Images used for 

measuring Sirius red staining were captured using an Aperio scanner and Scanscope 

software. And the number of positively stained (red) pixels within the renal cortex 

was determined using a modified positive pixel counting algorithm. Following five 

days of UUO, collagen deposition in obstructed WT mice was 0.60% compared with 

0.14% in contralateral kidneys (Figure 3.17A and D). There was significantly more 

collagen staining in obstructed C3
-/-

 kidneys (Figure 3.17B and D) compared with 

unobstructed kidneys (1.30% vs. 0.39%; p<0.05). This was not statistically 

significant compared to observations in the WT obstructed group. Contralateral 

kidneys from WT and C3
-/-

 mice exhibited weak collagen staining around blood 

vessels and glomeruli (Figure 3.17C). 

 

3.7.2 F4/80, Collagen I and alpha-SMA immunohistochemistry 

Following five days of UUO, F4/80
+
 macrophages (Figure 3.18A and B), collagen I 

fibres (Figure 3.19A and B) and α-SMA
+
 myofibroblasts (Figure 3.20A and B) were 

identified in obstructed renal tissues of WT and C3
-/-

 mice using methods described 

previously (section 3.3 and 3.4) By day five, median values for F4/80
+
 staining 

occupied 13.35% and 13.43% of the obstructed cortices of WT and C3
-/-

 mice 

respectively (Figure 3.18C). The quantity of F4/80
+
 macrophages in both 

experimental groups was equivalent. Interstitial deposition of collagen I fibres in WT 

and C3
-/-

 day five obstructed kidneys , had increased significantly to median values 

of 20.75% and 17.47% respectively (Figure 3.19C). 
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Figure 3.17. Interstitial collagen deposition at day five UUO 

Sirius red was used to detect collagen deposition in paraffin-embedded renal tissues 

five days after unilateral ureteric obstruction. In WT (A), C3
-/-

 (B) and contralateral 

renal cortices (C), collagen fibres present in vascular structures and within the 

interstitium. Arrows illustrate areas of collagen deposition and „g‟ identifies a 

glomerulus. A computer macro created using LeicaQwin software detected Sirius red 

staining by counting red pixels (D). Scale bars on A-C represent 50µm. Bars on 

graph represent median values. 
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Figure 3.18. F4/80
+
 macrophage infiltration at day five UUO 

Infiltrating F4/80
+
 macrophages present in frozen renal tissues of day five obstructed 

mice were semi-quantified by indirect IHC. WT and C3
-/-

 obstructed mice (A and B 

respectively) contralateral kidneys not shown. Scale bars on A and B represent 

50µm. An Aperio scanner and Scanscope software were used to capture ten random 

cortical HPFs for each experimental group. Areas present in each HPF field which 

were positive for F4/80
+
 (as indicated by red arrows), were manually counted using a 

grid-based method (C). Bars on graph represent median values. 
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Figure 3.19. Collagen I deposition at day five UUO 

The interstitial deposition of collagen I in frozen renal tissues of day five obstructed 

mice was semi-quantified by indirect IHC. WT and C3
-/-

 UUO mice (A and B 

respectively). Scale bars on A and B represent 50µm. An Aperio scanner and 

Scanscope software were used to select ten random cortical fields for both 

experimental groups. Areas stained positive for collagen I fibres (as indicated by red 

arrows), were then manually counted using a grid-based method (C). Bars on graph 

represent median values. 
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Numerically, collagen I scoring in the kidneys of obstructed C3
-/-

 mice was lower, 

however, this was not statistically different to collagen-I deposition observed in the 

renal cortices of obstructed WT  mice. The median area occupied by α-SMA
+
 

myofibroblasts in day five obstructed WT and C3
-/-

 was 11.73% and 11.60% 

respectively (Figure 3.20C). There were no statistical differences between these 

values. 

 

3.7.3 Gene expression 

Following five days of UUO, TNF-α gene expression in WT and C3
-/-

 obstructed 

kidneys (Figure 3.21A) was significantly elevated compared with contralateral 

kidneys (2.87 vs. 1.00 and 4.50 vs. 1.29 respectively; p<0.001 and p<0.005 

respectively). TNF-α mRNA expression in obstructed WT and C3
-/-

 UUO kidneys 

was equivalent. 

Five days post-UUO, TGF-β mRNA levels in obstructed WT and C3
-/-

 had increased 

(Figure 3.21B). Median TGF-β gene expression in obstructed WT mice was 

significantly elevated by almost three-fold to 2.86 compared with 1.00 in 

contralateral WT kidneys (p<0.001). Similarly, median expression of TGF-β in day 

five obstructed C3
-/-

 mice was elevated approximately two-fold to 1.85 compared to 

a median of 0.93 in contralateral C3
-/- 

kidneys (p<0.05). TGF-β mRNA expression in 

C3
-/-

 UUO kidneys was significantly lower compared with levels observed in WT 

UUO kidneys (p<0.05). 

IL-6 gene expression in obstructed WT and C3
-/-

 kidneys was elevated after five days 

of UUO (Figure 3.21C). In WT obstructed kidneys, median IL-6 expression had 

increased compared with contralateral kidneys (25.00 vs. 0.44; p<0.001). 
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Figure 3.20. α-SMA
+
 myofibroblasts at day five UUO 

Immunohistochemistry was used to semi-quantify the presence of α-SMA
+
 

myofibroblasts in cryo-preserved renal tissues of day five WT and C3
-/-

 UUO mice 

(A and B respectively). Scale bars on A and B represent 50µm. For both 

experimental groups, ten random cortical HPFs were acquired using an Aperio 

scanner and accompanying computer software. Areas of positive staining for α-SMA 

(as indicated by red arrows), were manually counted using a grid-based method, (C). 

Bars on graph represent median values. 

 



151 

 

 

Figure 3.21. TNF-α, TGF-β and IL-6 gene expression at day five UUO 

rtPCR was used to quantify levels of mRNA for TNF-α (A), TGF-β (B) and IL-6 (C) 

in obstructed (UUO) and contralateral (cont) renal cortices five days following 

ureteric obstruction. Gene expression was normalised to β-actin and the relative 

expression of TNF-α, TGF-β and IL-6 compared with that of β-actin was deduced. 

Elevated TNF-α, TGF-β and IL-6 gene expression was observed in WT and C3
-/-

 

obstructed renal cortices. TGF-β mRNA expression was significantly reduced in 

obstructed C3
-/-

 kidneys. Bars on graphs represent median values. rtPCR was 

performed in triplicate for each animal. 
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Similarly, median IL-6 mRNA expression was elevated in renal cortices of 

obstructed C3
-/-

 mice compared with unobstructed kidneys (36.15 vs. 0.35; p<0.005). 

The median value for collagen I expression in day five obstructed WT mice was 

5.31, a significant increase compared to the median of 1.1 in contralateral kidneys of 

WT mice (p<0.001; Figure 3.22A). Similarly, in obstructed kidneys harvested from 

C3
-/-

 mice, median collagen I gene expression was higher compared to unobstructed 

kidneys (3.73 vs. 0.80), though this was not statistically significant. Collagen I gene 

expression in obstructed WT and C3
-/-

 mouse kidneys was equivalent at this time. 

Five days post-UUO, there were no significant differences in the levels of collagen-

III gene expression in obstructed WT and C3
-/-

 kidneys compared with contralateral 

kidneys (0.81 and 1.50 vs. 0.60 and 0.85 respectively; Figure 3.22B). 

Following five days of ureteric obstruction, there were no significant differences in 

the levels of α-SMA mRNA expression observed in obstructed WT and C3
-/-

 kidneys 

(Figure 3.22C). In obstructed kidneys harvested from WT mice, median α-SMA 

expression was elevated compared with unobstructed kidneys (1.62 vs. 1.00). 

Similarly, median α-SMA mRNA expression in obstructed C3
-/-

 mice was also 

higher compared with unobstructed kidneys (0.71 vs. 0.55). Interestingly, α-SMA 

expression in C3
-/-

 UUO kidneys was significantly lower than that observed in WT 

UUO kidneys (p<0.05). 
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Figure 3.22. Collagen I & III and α-SMA gene expression at day five UUO 

rtPCR was used to quantify gene expression of collagen I (A), collagen III (B) and α-

SMA (C) in obstructed (UUO) and contralateral (cont) renal cortices five days after 

induction of ureteric obstruction. Gene expression was normalised to β-actin and the 

relative expression for collagen I, collagen III and α-SMA were calculated. At this 

time, collagen I expression was elevated in WT and C3
-/-

 obstructed renal cortices. 

Collagen III expression remained unchanged. α-SMA mRNA expression was 

significantly lower in obstructed C3
-/-

 mouse renal cortices. Bars on graphs represent 

median values. rtPCR was performed in triplicate for each animal. 
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3.8 A comparison of manual and automated immunohistochemical 

scoring methods in the murine model of ureteric obstruction 

Immunohistochemically stained kidney sections taken from the obstructed kidneys of 

WT and C3
-/-

 mice were imaged using an Aperio slide scanner. Accompanying 

Apreio Scanscope computer software was used to apply cell-count and positive pixel 

detection algorithms (modified for use in this study) to scanned renal tissue sections. 

Subsequent automated read-outs for number of cells per mm
2
 and the percentage area 

occupied by positive pixels were obtained and analysed. To determine the 

effectiveness of the Aperio counting method against the manual counting method, 

the Pearson product-moment correlation coefficient (PPMCC) was used to test the 

linear dependence between the two methods. PPMCC regression ranges from -1 to 1, 

where +/-1 implies a perfect linear relationship between X and Y. An r value of zero 

indicates no linear correlation between the two variables. 

 In obstructed kidneys of WT and C3
-/-

 mice Aperio software detected a median of 

252.70 and 225.7 CD4
+
 T cells per mm

2
 respectively (Figure 3.23A). Although these 

median values were not considered statistically different from one another, the 

general trend was toward fewer CD4
+
 cells being present in obstructed C3

-/-
 kidneys, 

as in keeping with the outcome of the manual count method described previously 

(section 3.3). Compared with the manual counting method, the Aperio cell count 

algorithm for CD4
+
 cell detection correlated very well (r=0.80; p<0.001; Figure 

3.24A) The median number of CD8
+
 T cells per mm

2
 of renal cortex in obstructed 

WT and C3
-/-

 mice were calculated to be 131.60 and 176.03 respectively (Figure 

3.23B). 
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Figure 3.23. Aperio analysis of IHC staining at day ten UUO 

IHC staining for CD4, CD8, F4-80 collagen I and α-SMA was visualised using the 

Aperio scanner and Scanscope software and regions of interest (ROI) were selected 

in a blinded manner. The IHC nuclear algorithm was used to count the number of 

positively stained CD4 (A) and CD8 (B) cells present. IHC positive pixel count 

algorithms were used to detect F4/80 (C), collagen I (D) and α-SMA (E) positive 

staining. 
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Figure 3.24. Comparison of day ten UUO Aperio and manual IHC counts 

A statistical comparison of manual and automated immunohistochemical analyses to 

examine correlation between the two methods. CD4
+
 (A) and CD8

+
 (B) cell counts. 

F4/80 (C), α-SMA (D) and collagen I (E) positive staining. 

 



157 

 

The Aperio counting method detected significantly more CD8
+
 cells in obstructed 

C3
-/-

 kidneys (p<0.05). A comparison of the two different counting methods 

demonstrated strong correlation between the two data sets (r=0.84; p<0.001; Figure 

3.24B). The Aperio positive pixel counts for F4/80
+
 macrophages (Figure 3.23C), 

interstitial staining of collagen I (Figure 3.23D) and α-SMA (Figure 3.23E) in 

obstructed WT and C3
-/-

 kidneys were; 38.74% and 43.41%, 31.12% and 17.83% and 

65.77% and 44.45% respectively. Statistically, there were no significant differences 

between obstructed WT and C3
-/-

 renal tissues expressing infiltrating F4/80
+
 

macrophages. Collagen I fibre deposition and α-SMA
+
 myofibroblasts were also 

equivalent in obstructed WT and C3
-/-

 renal cortices. In general, there was 

significantly more variability in the data sets for F4/80, α-SMA and collagen I. 

However, numerical differences between the two groups do follow a similar pattern 

to that observed for the corresponding manual counts, despite their linear correlation 

being weak. The correlation between Aperio and manual F4/80
+
 macrophage counts 

was very weak (r=0.30; p>0.05; Figure 3.24C) and although the correlation between 

Aperio and manual counts for α-SMA deposition were better (r=0.45; Figure 3.24D), 

neither were statistically significant. Similarly, the correlation between Aperio and 

manual counts for collagen I deposition in obstructed kidneys was weak (r=0.49; 

Figure 3.24E). 
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3.9 Discussion 

Interstitial renal fibrosis is the characteristic hallmark of and common endpoint for 

many progressive kidney diseases. A more complete understanding of the 

mechanisms which contribute towards tubulointerstitial pathophysiology will assist 

with the future development of therapeutic strategies directed at preventing 

progressive loss of kidney function leading to renal insufficiency. Recent studies 

have demonstrated a pivotal role for complement during the progression of fibrosis 

in rodent models of proteinuric and ischaemic renal injury. Only one other study has 

addressed the contribution of complement towards the development of 

tubulointerstitial fibrosis in rodent models of ureteric obstruction. In the 

aforementioned study, Boor and co-workers demonstrated that after the induction of 

UUO, C5
-/-

 mice and C5a receptor antagonist treated WT mice both had reduced 

ECM deposition and decreased mRNA levels for growth factors important in 

mediating renal fibrosis (Boor et al., 2007). Following on from the preliminary 

results of Boor et al, part of this study sought to further define the contribution of 

complement towards the progression of renal fibrosis in UUO, by investigating the 

role of the central complement pathway component C3. 

During the course of UUO, interstitial expansion and tubular dilatation significantly 

increased in WT and C3
-/-

 mice. Equivalent scores for tubular dilatation in both UUO 

groups for each time point demonstrated robustness of the UUO model in terms of 

consistent mechanical injury to tubules arising from surgical ligation of the ureter. 

Interestingly, the tubular interstitium of C3
-/-

 mice was significantly more expanded 

at 3 days post-UUO compared with WT mice. This could have been caused by 

oedema, since interstitial volume at days 5 and 10 was equivalent in C3
-/-

 and WT 

mice. 
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These initial findings contrasted with previous histological observations in a study of 

adriamycin nephropathy in mice, which demonstrated that mice deficient in C3 had 

significantly reduced tubulointerstitial injury (Turnberg et al., 2006). UUO and 

adriamycin nephropathy are different models of renal disease, however, both share a 

common fibrotic and inflammatory endpoint. Adriamycin targets the glomerular 

podocyte inducing heavy proteinuria and subsequent activation of tubular epithelial 

cells. During UUO, the back pressure caused by filtrate in the tubules and the 

ensuing compensatory changes to renal heamodynamics cause mechanical and 

hypoxic stress (Yeh et al., 2011; Dendooven et al., 2010). The different mechanisms 

of injury may influence the outcome of early histological observations using a semi-

quantitative method of analysis. In an effort to detect more subtle differences in 

interstitial expansion in this study, the manual grid-counting method was modified 

by increasing the number of grid intersections and then applied in the same way. The 

outcome of this was that increasing the number of grid intersections counted over 

areas of interest only increased the variability of results. 

During UUO, expansion of the interstitial compartment is an indicator of ECM re-

modelling and cell proliferation. Several cytokines and growth factors have been 

implicated in ECM homeostasis (Yang and Liu, 2002; Matsumoto and Nakamura, 

2001; Strutz et al., 2000), of particular importance is the regulatory pro-fibrotic 

cytokine TGF-β (Moon et al., 2006; Wang et al., 2005a; Muller et al., 2000b). Under 

normal physiological conditions, TGF-β is sequestered in an inactive form bound to 

an inhibitory latency associated peptide (LAP). Under permissible conditions, the 

integrin αvβ6 binds to LAP and TGF-β becomes activated. TGF-β is then free to bind 

receptors on target cells and trigger an intracellular signalling cascade. 
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Evidence for TGF-β activation during UUO was illustrated in a study by Ma and co-

workers using β6 deficient mice. In the absence of β6, mice developed less severe 

tubulointerstitial fibrosis, demonstrating that αvβ6 integrin is an important mediator 

of TGF-β activation during UUO (Ma et al., 2003). A number of studies have 

previously demonstrated increased TGF-β mRNA expression during UUO (Misseri 

and Meldrum, 2005; Yamamoto et al., 1994). In this study, TGF-β gene expression 

was significantly elevated in the renal cortices of WT and C3
-/-

 mice after 5 and 10 

days of UUO. In addition to this, significantly elevated collagen I and α-SMA 

mRNA levels were observed in day 10 WT and C3
-/-

 obstructed kidneys. 

Interestingly, in obstructed C3
-/-

 mice, TGF-β mRNA levels were significantly lower 

at day 5 and day 10. Reduced TGF-β expression in the kidneys of obstructed C3
-/-

 

mice also coincided with significantly less collagen I and α-SMA gene expression 

after 10 days of UUO as well as significantly reduced levels of collagen I protein 

deposition within the interstitium. 

These results suggest that during UUO, C3
-/-

 mice are partially protected from TGF-β 

mediated ECM collagen deposition. Although collagen deposition was quantified as 

part of this study, TGF-β protein levels were not measured. Previous studies have 

demonstrated a poor relationship between active TGF-β and total TGF-β. It would be 

interesting to see if both urinary and tissue TGF-β protein levels in C3
-/-

 mice during 

UUO reflected the changes in gene expression observed and if this gave some 

indication as to the site of TGF-β activation. Previous studies have demonstrated that 

up-regulation of TGF-β receptors occurs at the cell surface of tubular epithelial cells 

supporting the hypothesis that TGF-β mediated epithelial activation or transition to a 

mesenchymal phenotype may contribute towards an increase in myofibroblasts 

during renal fibrosis (Bottinger and Bitzer, 2002; Iwano et al., 2002). 
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Following the process of EMT, tubular epithelial cells no longer express 

characteristic markers of epithelial phenotype such as E-cadherin. With this in mind 

it would be intriguing to look at the expression and distribution of TGF-β receptors 

and characteristic epithelial cell markers during the progression of UUO in WT and 

C3
-/-

 mice to see if the absence of C3 affected the transition of different resident renal 

cells into myofibroblasts. 

The observations for collagen III gene expression in obstructed WT and C3
-/-

 mouse 

kidneys in this study were unexpected. In WT mice, collagen III mRNA was lower in 

obstructed kidneys compared with unaffected contralateral kidneys throughout UUO. 

Similarly, collagen III gene expression after three and five days UUO in C3
-/-

 mouse 

kidneys was lower than it was in contralateral kidneys. However, by day ten collagen 

III mRNA levels in the obstructed kidneys of C3
-/-

 mice were significantly elevated. 

Collagen III is usually present within healing wounds and is synthesised by immature 

fibroblasts. In this study, the increase in collagen III seen in obstructed C3
-/-

 mouse 

kidneys during the latter stages of UUO appears to coincide with lower α-SMA and 

collagen I gene expression as well as reduced interstitial collagen I deposition. Since 

collagen I accumulation was higher in the presence of C3, any changes to collagen 

III gene expression may have taken place prior to day three obstruction in WT mice. 

Another explanation could be that the presence of more macrophages in the absence 

of C3 may be occurring more rapidly. Interestingly, the significant increase in 

collagen III gene expression in the absence of C3 also coincided with an increase 

TNF-α gene expression and is discussed in more detail in paragraph on page 162. 
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α-SMA is a marker of myofibroblasts. Whilst α-SMA mRNA expression in WT and 

C3
-/-

 mice at day 5 UUO was not significantly elevated compared to contralateral 

kidneys, α-SMA mRNA levels were significantly lower in C3
-/-

 UUO mice at this 

time. One reason for this could be that myofibroblast proliferation is reduced in the 

absence of C3. 

A general marker of cell proliferation such as Ki-67 could be used to identify 

populations of actively proliferating cells during the progression of UUO which may 

assist with identifying the source of interstitial fibroblasts and perhaps their upstream 

activators. In this study, deposition of Sirius red positive collagen fibres was 

significantly elevated in WT and C3
-/-

 mice after 3 days of UUO. Interestingly 

collagen was less abundant in the tubular interstitium of C3
-/-

 mice at this time. Since 

TGF-β mRNA expression was not significantly up-regulated at this time, the early 

decrease in collagen expression observed may be due to the activation of latent TGF-

β. Activation of other fibrotic mediators may also have contributed towards these 

early differences. One candidate for this could be NF-κB, since NF-κB is known to 

induce the expression of inflammatory genes and participate in the progression of 

numerous pathophysiological states (discussed in chapter 1). In obstructive 

nephropathy, ANG-II has been shown to activate NF-κB signalling which then 

regulates downstream fibrotic responses. 

NF-κB can also contribute to activation of angiotensinogen gene expression, a 

precursor to ANG-II production (Grande et al., 2010). One reason for reduced 

collagen deposition at this time could be that ANG-II mediated NF-κB pro-

inflammatory/pro-fibrotic signalling during acute UUO-mediated injury is blunted in 

the absence of C3. 
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TNF-α is an important activator of NF-κB and during UUO, ANG-II mediated 

activation of NF-κB also contributes towards an early increase in TNF-α gene 

expression. Activation of NF-κB in response to ureteric ligation results in the 

formation of two autocrine reinforcing loops which amplify the production of ANG-

II and TNF-α (Grande et al., 2010). In this study, TNF-α gene expression was 

significantly elevated in WT and C3
-/-

 mouse renal cortices throughout ureteric 

obstruction. Interestingly, the amount of TNF-α mRNA in C3
-/-

 mice after three and 

five days of UUO was numerically greater compared to WT mice and by day ten, the 

obstructed kidneys of C3
-/-

 mice had significantly more TNF-α mRNA present 

compared with kidneys taken from obstructed WT mice. The increase in TNF-α gene 

expression that was observed in C3
-/-

 mice
 
could imply that in the absence of C3, 

TNF-α plays a more dominant role in driving tubulointerstitial inflammation and 

fibrosis during UUO. It would be interesting to see if a reduced TNF-α signal 

(perhaps achieved using TNFR antagonists or TNFR deficient mice) combined with 

the absence of C3 would further decrease interstitial and fibrosis. Future work could 

also explore the combined effects of blocking NF-κB activity or using ACE 

inhibitors in the absence of C3. 

As a mediator of acute inflammatory response following injury to tissues, IL-6 can 

exert either anti- or pro-inflammatory responses depending on the nature of 

activation (Kayama et al., 1997). Expression of IL-6 mRNA in C3
-/-

 mice was 

equivalent to expression in WT mice. In this study, persistent IL-6 gene expression in 

the kidneys of WT and C3
-/-

 mice would suggest pro-inflammatory activity that is not 

altered in the absence of C3. 

Infiltration of T cells and macrophages is a characteristic feature of renal fibrosis 

during obstructive nephropathy (Tapmeier et al., 2010). 
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In this study, CD4
+
 T cells were seen in the renal interstitium of WT and C3

-/-
 mice 

10 days post-UUO and the number of cells was equivalent. A significant number of 

CD8
+
 T cells and F4/80

+
 macrophages were present in C3

-/-
 and WT mouse kidneys 

at day 10 UUO. Interestingly, there were significantly higher numbers of CD8
+
 T 

cells and F4/80
+
 macrophages in the absence of C3. 

Both monocytes and macrophages can express the F4/80 antigen on their cell 

surface. Other antigen presenting cells (APCs) such as dendritic cells (DCs) also 

express F4/80 on their cell surfaces, therefore IHC staining used in this study to 

detect F4/80 antigen is could be detecting the presence of a combination of different 

APCs. An additional degree of complexity arises from the different sub-divisions, 

classes and populations of DCs, macrophages and monocytes respectively. 

Stimulated macrophages and DCs can activate CD4
+
 T cells and so a greater number 

of F4/80
+
 APCs in day 10 UUO C3

-/-
 mice might have been expected to elicit an 

exaggerated CD4
+
 T cell response. This was not the case and so it is possible that the 

macrophages present within C3
-/-

 mouse kidneys could have a different phenotype 

compared with those present in WT mice. 

For example, M2 macrophages are known to promote wound healing and tissue 

repair by producing anti-inflammatory cytokines. In turn, the absence of complement 

activation within the interstitial compartment may confer more favourable conditions 

for the proliferation of anti-inflammatory mediators, reducing the severity of injury. 

In addition to elevated numbers of F4/80
+
 macrophages in C3

-/-
 mice at day 10 UUO, 

CD8
+
 T cells were significantly elevated in this experimental group. Previous studies 

have suggested that CD8
+
 T cells play more of an effector role during renal disease 

by directly targeting damaged or dysfunctional renal cells (Robertson et al., 2004). 
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However the presence of more CD8
+
 T cells in a less fibrotic environment as shown 

in this current study would suggest that these cells are not causing tubular injury. 

CD8
+
 T cells become activated when they encounter major histocompatibility 

complex I (MHC I) presentation of degraded cytosolic protein fragments. It is 

plausible that MHC I presentation of antigens from stressed/wounded cells could 

increase during renal injury, thus increasing the number of CD8
+
 T cells. 

On this basis more CD8
+
 T cells would be expected in WT mice during the 

progression of UUO, since this study has demonstrated that C3
-/-

 mice are partially 

protected from progression of tubulointerstitial fibrosis. It is evident that in the 

absence of complement activation the trafficking or proliferation of CD8
+ 

T cells is 

altered. A future study employing the depletion of macrophages prior to induction of 

UUO in C3
-/-

 mice may assist with understanding how the recruitment process of 

CD8
+
 T cells differs in complement deficient mice. 

The analysis of renal tissues stained immunohistochemically for interstitial collagen I 

and α-SMA deposition and CD4
+
, CD8

+
 and F4/80

+
 immune cell infiltrates was 

conducted using automated and non-automated counting methods. The purpose of 

testing an automated method was to attempt to increase the reproducibility of results 

whilst simultaneously reducing the time spent on IHC analysis in future projects. An 

Aperio Scanscope XT slide scanner was used to capture digital images of renal 

tissues using brightfield imaging at x20 magnification. Following this, Imagescope 

software was used to select regions of interest and then apply automated analyses in 

the form of algorithms. ImageScope software analyses for CD4
+
 and CD8

+
 cell 

counts in Aperio-scanned tissue sections correlated strongly with analyses obtained 

using non-automated counting methods. 
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As with the manual grid-counting method of analysis, the nuclear counting algorithm 

detected an equivalent number of CD4
+
 T cells in day 10 WT and C3

-/-
 obstructed 

mouse kidneys and a greater number of CD8
+
 T cells present in day 10 C3

-/-
 UUO 

kidneys than in WT UUO kidneys. Conversely, application of the positive pixel 

counting algorithm to quantify F4/80
+
 cells, α-SMA

+
 myofibroblasts and collagen I 

deposition did not correlate with non-automated analyses of obstructed kidneys of 

WT and C3
-/-

 mouse kidneys at day 10. 

It is plausible that non-specific background staining of endogenous biotin and avidin 

in renal tissues had more of an effect on the outcome of results obtained using the 

positive pixel counting algorithm, since the algorithm‟s parameters were less 

specific. It is not always possible to completely omit background staining when 

applying mathematical formulae to analyse areas of positive IHC staining that are in 

close proximity. In this study, the interference of background staining was partially 

overcome by selecting only strong positive pixels to undergo further analysis, as was 

the case for F4/80
+
 staining. However this could not be applied to α-SMA and 

collagen I automated IHC analyses, since there was more variation in the intensity of 

positive staining. Non-specific staining for endogenous biotin and avidin did not 

impede when using the nuclear counting algorithm to count CD4
+
 and CD8

+
 cells in 

obstructed renal tissues, since the parameters for this algorithm included size and 

shape restrictions. 

The Aperio slide scanner provides a less time-consuming and more consistent 

method of acquiring suitable images for semi-quantitative IHC analysis. Instead of 

focusing on a restricted number of images acquired using standard bright field 

microscopy, the Aperio slide scanner has the capacity to capture an entire tissue 

section, or even numerous sections on the same slide and save these in digital format. 
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This is particularly useful for providing the option of selecting a larger area to 

analyse at a later date. The ImageScope analysis software nuclear counting algorithm 

proved to be a reliable method for counting IHC-stained cells, but the positive pixel 

counting algorithm does not correlate with non-automated methods. 

 

The results from this chapter provide evidence that complement is involved in the 

mediation of fibrosis during obstructive nephropathy. The mechanism by which 

complement becomes active following the induction of UUO is not known, however 

evidence from studies of other models of progressive renal disease have shown that 

complement is activated via the alternative pathway (Turnberg et al., 2006; Lien et 

al., 2003). The contribution of activated complement and other components of the 

complement system towards the progression of renal disease during ureteric 

obstruction is addressed in the following chapter. 
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4 The role of complement during UUO 

4.1 Introduction 

In the previous chapter, absence of C3 was found to reduce interstitial collagen 

deposition during UUO and attenuate collagen I and TGF-β gene expression during 

the later stages of UUO. This chapter examines C3 and crry protein expression, 

complement activation and gene expression of different components of the 

complement system, including regulatory proteins. 

 

4.2 C3 protein detection in contralateral and obstructed renal 

tissues 

A fluorescein isothiocyanate (FITC) conjugated polyclonal antibody was used to 

detect C3 protein deposition in frozen WT contralateral and obstructed renal tissue 

sections. C3 protein was abundant around the glomeruli and renal tubules of 

unaffected kidneys at both day three and day ten (Figure 4.1A and C). Three days 

following UUO, there appeared to be less C3 protein present around renal tubules 

(Figure 4.1B). A similar pattern of staining was observed following ten days of 

ureteric obstruction, though by this time, it was possible that C3 protein may have 

been subject to degradation as positive C3 staining appeared more fragmented and 

less specifically bound to structures such as tubules in the renal cortex (Figure 4.1D). 

In addition to this, infiltrating cells may also be contributing towards the production 

and expression of C3 at day ten UUO. 
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Figure 4.1. Immunofluorescence staining for C3. 

Distribution of C3 within cryo-preserved renal cortices of WT mice before and 

during UUO (FITC=green, DAPI=blue). Day 3 and day 10, WT contralateral kidneys 

respectively (A and C). Day 3 and day 10, WT UUO kidneys respectively (B and D). 

Above images are representative of renal tissue sections from n=6 (day three) and 

n=8 (day ten) mice. Magnification for all images was x630, scale bar is 50µm. 
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4.3 Crry protein detection in contralateral and obstructed renal 

tissues 

Crry protein was detected in cryo-preserved obstructed and contralateral renal 

cortices of WT mice at three and ten days post-UUO using indirect 

immunofluorescence. In unobstructed kidneys, crry staining was present within 

glomerili and also appeared to be localised to the basolateral membrane of renal 

tubules (Figure 4.2A, B, E and F). Three days following ureteric obstruction, the 

majority of crry seemed to have disappeared from the tubular basolateral membrane 

and instead seemed to show a more diffuse pattern of cytoplasmic staining. 

Glomerular crry staining remained unchanged at this time. After ten days of ureteric 

obstruction, crry staining appeared to be present in cells located in the expanded 

renal interstitium, but remained absent from the tubular basolateral membrane. 

Glomerular crry staining appeared to be more diffuse after ten days of UUO (Figure 

4.2G and H). This part of the work was carried out by Mr Kittiphat Chanthong. 

 

4.4 Complement activation in mice following UUO 

Activation of complement in WT and C3
-/-

 following ureteric obstruction was 

determined using an ELISA test and standard curve of known C3a concentration to 

measure the amount of C3a present in the urine collected from the dilated renal 

pelvis of obstructed kidneys (Figure 4.3D). Complement activation was evident after 

three days of ureteric obstruction and the median concentration of C3a in urine 

collected from WT mice at this time was 6344ng/ml (p<0.005; Figure 4.3A). 
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Figure 4.2 Immunofluorescence staining for crry. 

Distribution of crry within the cryo-preserved renal cortices of WT mice before and 

during UUO (FITC=green, DAPI=blue). Day 3 (A and B) and day 10 (E and F), WT 

contralateral kidneys respectively. Day 3 (C and D) and day 10 (G and H), WT UUO 

kidneys respectively. Magnification for all images was x200, scale bar is 100µm. 
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C3a was significantly elevated to 8661ng/ml in urine taken from day 5 obstructed 

mice (p<0.001), demonstrating sustained complement activation during sub-acute 

ureteric obstruction (Figure 4.3B). Complement activation remained significantly 

elevated in WT mice following ten days of UUO, with a median value of 4457ng/ml 

(p<0.001; Figure 4.3C). C3a was not detected in the urine taken from the obstructed 

kidneys of C3
-/-

 mice. C5 convertase activity, which occurs at the beginning of the 

terminal complement pathway prior to the membrane attack complex formation, was 

tested by measuring the amount of C5a protein present in urine derived from 

obstructed kidneys by ELISA. It was not possible to detect C5a in the urine taken 

from the renal pelvis (data not shown). Although the ELISA was able to detect C5a 

at concentrations above 1.56ng/ml based on the standard curve, the presence of 

urinary C5a at concentrations below this cannot be excluded. 

 

4.5 Complement gene expression in WT and C3
-/-

 mice during UUO 

4.5.1 C3 

4.5.1.1 C3 gene expression 

After three days of UUO, median C3 mRNA expression in the obstructed kidneys of 

WT mice was significantly elevated compared with contralateral WT kidneys 

(102.30 vs. 0.98; p<0.005). In obstructed WT kidneys, C3 gene expression was 

significantly elevated (p<0.005) compared with obstructed kidneys from C3
-/-

 mice 

(Figure 4.4A). 
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Figure 4.3. Urinary C3a after three, five and ten days of UUO 

Urinary fluid which had accumulated within the renal pelvis of obstructed kidneys 

was removed and analysed for the presence of C3a protein (a marker of complement 

activation) by ELISA assay. Urinary concentrations for WT and C3
-/-

 groups at three 

(A), five (B) and ten days post-UUO (C) were calculated from a standard curve of 

known C3a concentrations (D). Bars in graphs represent median values. R
2
 indicates 

linear correlation between optical density (A490mm) and C3a concentration in the 

range used. 
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Figure 4.4 C3 gene expression after three, five and ten days of UUO 

Expression of C3 mRNA was measured by rtPCR in UUO and contralateral renal 

cortices following three (A), five (B) and ten (C) days of UUO. Gene expression was 

normalised to β-actin. C3 was highly expressed in the obstructed renal cortices of 

WT mice at all time points. A Mann-Whitney U-test was used to calculate statistical 

significance. Bars on graphs represent median values. rtPCR was performed in 

triplicate for each animal. 
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After five days of ureteric obstruction, C3 gene expression in the affected (UUO) 

kidneys of WT mice had increased significantly to a median value of 39.82 fold 

(p<0.001), compared to a median value of 1.00 in unaffected WT kidneys (Figure 

4.4B). By day ten, up-regulation of C3 gene expression persisted in the UUO kidneys 

of WT mice compared to unaffected contralateral kidneys (201.53 vs. 0.90; p<0.001; 

Figure 4.4C). No C3 gene expression was detected in C3
-/-

 mouse kidneys (Figure 

4.4A-C). 

 

4.5.1.2 Spatial distribution of C3 gene expression in WT mice during 

early UUO 

The site of C3 gene up-regulation was determined by in situ hybridisation. After 

three days of ureteric obstruction, C3 gene expression in WT mouse kidneys 

appeared to be restricted to tubular epithelial cells, with expression noticeably higher 

in some tubules than others (Figure 4.5A). C3 was not detected in unobstructed 

kidneys (Figure 4.5B). Similarly, C3 was not detected in obstructed or contralateral 

kidneys treated with SP6 sense probe (Figure 4.5C and D respectively). FERM 

domain-containing protein 7 (FRMD7) was used as a positive internal control and 

was expressed in contralateral and obstructed kidneys (Figure 4.5E and F 

respectively). 
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Figure 4.5. C3mRNA distribution in WT mice after three days of UUO 

Detection of T7 anti-sense C3 probe in obstructed (A), but not contralateral (B) WT 

kidneys. No in situ hybridisation of SP6 sense C3 probe in obstructed or contralateral 

kidneys of WT mice (C and D respectively). Positive in situ hybridisation of FRMD7 

probe in obstructed and contralateral kidneys of WT mice (E and F respectively). 

After three days of UUO, the T7 anti-sense probe detected varying amounts of 

C3mRNA within some renal tubular epithelial cells. Scale bar on images measures 

50µm. 
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4.5.2 Crry 

Crry is a murine membrane regulator of complement. It binds to C3b and C4b to 

inhibit classical and alternative pathways. Three days following UUO, there were no 

significant changes to the levels of crry mRNA expression in kidneys of obstructed 

WT and C3
-/-

 mice. (Figure 4.6A). Five days post-ureteric obstruction, median 

mRNA expression for crry in obstructed WT and C3
-/-

 mouse kidneys was 

significantly lower compared with contralateral kidneys (p<0.001 and p<0.005 

respectively; Figure 4.6B). Median crry mRNA expression in day five C3
-/-

 UUO 

kidneys was significantly lower than that observed in WT UUO kidneys (p<0.01; 

Figure 4.6B). The observations for crry gene expression after ten days of ureteric 

obstruction was similar to day five UUO. Crry mRNA was significantly reduced in 

both WT and C3
-/-

 obstructed kidneys compared with unaffected contralateral 

kidneys (p<0.05 and p<0.005; Figure 4.6C). Crry gene expression was significantly 

reduced in obstructed C3
-/-

 kidneys compared with WT UUO kidneys (p<0.05). 

 

4.5.3 DAF1 

DAF1 is a cell surface regulator of complement. It prevents the assembly of and 

accelerates the disassembly of the alternative pathway C3 convertase C3bBb. Three 

days post-UUO, no significant differences were observed in expression of DAF1 

mRNA in WT and C3
-/-

 kidneys when obstructed and contralateral kidneys were 

compared (Figure 4.7A). 
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Figure 4.6. Crry gene expression after three and ten days of UUO 

Relative crry gene expression in UUO and contralateral renal cortices was 

determined using rtPCR following three (A), five (B) and ten (C) days of UUO. 

mRNA expression was normalised to β-actin. Following five and ten days of UUO, 

Crry expression had decreased in the obstructed renal cortices of WT and C3
-/-

 mice. 

Bars on graphs represent median values. rtPCR was performed in triplicate for each 

animal. 
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However, median DAF1 gene expression in obstructed WT kidneys was significantly 

higher than that seen for C3
-/-

 kidneys after three days of UUO (p<0.05). Following 

five days of UUO, DAF1 mRNA expression in obstructed WT and C3
-/-

 mouse 

kidneys was significantly lower compared with contralateral kidneys (p<0.005 

respectively). Despite the median levels of DAF1 mRNA expression in WT UUO 

kidneys being more than twice as high than that observed in C3
-/-

 UUO kidneys, this 

did not reach statistical significance (Figure 4.7B). After ten days, DAF1 gene 

expression remained significantly lower in the obstructed kidneys of both WT and 

C3
-/-

 mice compared with their respective contralateral kidneys (p<0.001 

respectively). Interestingly, DAF1 gene expression in C3
-/-

 UUO kidneys was 

significantly lower than that observed in WT UUO kidneys (p<0.05; Figure 4.7C). 

 

4.5.4 CD59a 

CD59a inhibits formation of the MAC by binding to C5b678. This prevents the 

subsequent binding and polymerisation of C9. Following three days of ureteric 

obstruction, CD59a gene expression in WT UUO kidneys was significantly lower 

compared with contralateral kidneys (p<0.05). Conversely, there was no difference in 

CD59a mRNA expression in the renal cortices of obstructed C3
-/-

 mice compared 

with contralateral renal cortices and CD59a expression was equivalent in the 

obstructed renal cortices of WT and C3
-/- 

mice (Figure 4.8A). Five days following 

UUO, CD59a gene expression was significantly lower in obstructed kidneys of WT 

and C3
-/-

 mice compared to their respective contralateral kidneys (Figure 4.8B). 
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Figure 4.7. DAF1 gene expression after three, five and ten days of UUO 

rtPCR was used to measure the relative gene expression of DAF1 mRNA in UUO 

and contralateral renal cortices after three (A), five (B) and ten (C) days of ureteric 

obstruction. mRNA expression was normalised to β-actin. After five and ten days of 

ureteric obstruction, DAF1 gene expression had decreased in the obstructed renal 

cortices of WT and C3
-/-

 mice. Bars on graphs represent median values. rtPCR was 

performed in triplicate for each animal. 
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Figure 4.8. CD59a gene expression after three and ten days of UUO 

Following three (A), five (B) and ten (C) days of ureteric obstruction, rtPCR was 

used to determine gene expression of CD59a in UUO and contralateral renal cortices. 

Gene expression of CD59a was normalised to β-actin. After ureteric obstruction, 

CD59a mRNA levels decreased in the day five and day ten obstructed renal cortices 

of WT and C3
-/-

 mice. In addition, basal levels of CD59a in C3
-/-

 contralateral 

kidneys were lower for all time points. Bars on graphs represent median values. 

rtPCR was performed in triplicate for each animal. 
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CD59a mRNA expression in UUO kidneys of C3
-/-

 mice following five days of UUO 

was significantly lower than that observed in WT UUO kidneys (p<0.05). After ten 

days, CD59a gene expression remained lower in obstructed WT and C3
-/-

 mouse 

kidneys (Figure 4.8C). 

 

4.5.5 Factor B 

Factor B (FB) is cleaved by FD to form Bb, the catalytic subunit which then 

associates with C3b to form the alternative pathway C3 convertase. After three days 

of ureteric obstruction, FB gene expression levels were comparable to contralateral 

kidneys in WT and C3
-/-

 mice (Figure 4.9A). Five days post-UUO, median FB 

mRNA expression was significantly reduced in obstructed WT and C3
-/-

 mouse 

kidneys compared with contralateral kidneys (p<0.005; Figure 4.9B). Interestingly, 

FB gene expression in C3
-/-

 UUO kidneys following five days of UUO was 

significantly lower than that observed in WT UUO kidneys (p<0.05). After ten days 

of UUO FB gene expression was equivalent in obstructed kidneys of WT and C3
-/-

 

mice, but remained significantly lower compared to contralateral kidneys (p<0.01 

and p<0.001 respectively; Figure 4.9C). 

 

4.5.6 Factor H 

Factor H (FH) regulates alternative complement activation by directing complement 

activation towards invading pathogens and away from host cells. 
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Figure 4.9. FB gene expression after three, five and ten days of UUO 

rtPCR was used to measure FB gene expression in UUO and contralateral renal 

cortices three (A), five (B) and ten (C) days-post UUO. mRNA expression was 

normalised to β-actin. Following ureteric obstruction, FB mRNA expression 

gradually decreased in obstructed renal cortices of WT and C3
-/-

 mice after three 

days of ureteric obstruction. Bars on graphs represent median values. rtPCR was 

performed in triplicate for each animal. 
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It also possesses cofactor activity for FI mediated C3b cleavage and accelerates 

decay of pre-formed C3bBb. There were no significant changes FH mRNA 

expression in the kidneys of obstructed WT and C3
-/-

 mice after three days of ureteric 

obstruction (Figure 4.10A), however, after five days of UUO, FH gene expression in 

the obstructed kidneys of WT mice was significantly higher compared to unaffected 

WT kidneys and obstructed C3
-/-

 mouse kidneys (p<0.05 and p<0.01 respectively; 

Figure 4.10B). FH mRNA expression in obstructed and contralateral C3
-/-

 mouse 

kidneys was equivalent at day five UUO. Following ten days of UUO, FH gene 

expression in WT mice remained higher compared to WT contralateral kidneys 

(p<0.001). Interestingly, median FH mRNA expression in day ten obstructed C3
-/-

 

mouse renal cortices was significantly higher compared to contralateral C3
-/-

 kidneys 

(p<0.05), but remained significantly lower compared to WT UUO kidneys (p<0.001; 

Figure 4.10C). 

 

4.5.7 Factor I 

Factor I regulates classical and alternative complement activation by cleaving C3b 

and C4b. In WT mice, FI expression was significantly higher in obstructed compared 

to contralateral kidneys after three and five days of UUO (p<0.005 and p<0.001 

respectively; Figure 4.11A and B respectively). Although also elevated in obstructed 

C3
-/-

 kidneys, this was only significant at day ten (p<0.05; Figure 4.11C). FI 

expression was significantly higher in obstructed WT kidneys compared to C3
-/-

 

kidneys throughout UUO. 
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Figure 4.10 FH gene expression after three, five and ten days of UUO 

Relative FH gene expression in UUO and contralateral renal cortices was measured 

by rtPCR three (A), five (B) and ten (C) days following ureteric obstruction. mRNA 

expression was normalised to β-actin. During the latter stages of ureteric obstruction, 

FH mRNA levels were only elevated in obstructed renal cortices of WT mice. Bars 

on graphs represent median values. rtPCR was performed in triplicate for each 

animal. rtPCR was performed in triplicate for each animal. 
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Figure 4.11. FI gene expression after three, five and ten days of UUO 

Relative FI mRNA expression in UUO and contralateral renal cortices was measured 

by rtPCR following three (A), five (B) and ten (C) days of ureteric obstruction. Gene 

expression was normalised to β-actin. During the early stages of ureteric obstruction, 

FI gene expression was elevated in obstructed renal cortices of WT and C3
-/-

 mice, 

but gradually declined during the course of UUO. Bars on graphs represent median 

values. rtPCR was performed in triplicate for each animal. 
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4.6 Complement activation in BUMPT cells 

Chapters three and four of this thesis have demonstrated that complement is involved 

during the progression of UUO and that tubular epithelial cells appear to be the 

primary site for complement activation in the kidney. Since PTECs are known to 

synthesis C3, they are a potential source of complement in this disease model. 

Following on from these observations, the next part of this study sought to establish 

an in vitro model of complement activation in an established mouse PTEC cell line 

which could then be used to study the mechanisms of complement activation and 

assess the affect of knock down strategies on C3 gene expression. Complement 

activation in mouse BUMPT cells was stimulated using LPS, a known activator of 

the innate immune response. To establish optimum up-regulation of C3 mRNA, three 

different concentrations of LPS were tested at three different time points. 

The amount of C3 protein produced by BUMPT cells post LPS stimulation was 

measured by ELISA. The concentration of C3 protein present in supernatant samples 

taken from BUMPT cells stimulated with 10, 100 and 1000ng/ml LPS for 12 hours 

was significantly elevated to mean values of 0.08±6x10
-3

µg/ml (p<0.005), 

0.07±5x10
-3

µg/ml (p<0.001) and 0.08±0.02
 
µg/ml (p<0.001) respectively compared 

with a mean of 0.05±2x10
-3

µg/ml in unstimulated cells (Figure 4.12A). After 24 

hours stimulation with 10 and 1000ng/ml LPS, the concentration of C3 in cell 

supernatents had significantly increased to mean values of 0.3±0.04µg/ml and 

0.3±0.02µg/ml respectively compared with a mean value of 0.2±0.02µg/ml in un-

stimulated BUMPT cells (p<0.05 respectively). C3 concentration in the supernatents 

of cells stimulated with 100ng/ml LPS was not significantly elevated 

(0.3±0.03µg/ml) compared to unstimulated cells (Figure 4.12B). 
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The concentration of C3 in BUMPT cell supernatents continued to increase 

significantly to mean values of 0.4±0.05, 0.4±0.02 and 0.4±0.04µg/ml following 48 

hours LPS stimulation at concentrations of 10, 100 and 1000ng/ml respectively 

(p<0.005, p<0.005 and p<0.01 respectively) compared with a mean of 

0.3±0.02µg/ml in unstimulated BUMPT cells (Figure 4.12C). C3 was also detected 

in the supernatants of unstimulated BUMPT cells that had been serum-starved. The 

concentration of C3 protein present in supernatant samples was determined by 

extrapolation from a standard curve of known C3 concentration (Figure 4.12D). 

 

Up-regulation of C3 gene expression by BUMPT cells following stimulation with 

LPS was measured by rtPCR and normalised to the housekeeping gene β-actin. C3 

gene expression  in BUMPT cells stimulated for 12 hours with 10, 100 and 

1000ng/ml LPS had significantly increased to mean values of 1.1±0.07 (p<0.05), 

1.7±0.1 (p<0.001) and 1.8±0.2 (p<0.001) respectively compared with a mean of 

0.98±0.02 in un-stimulated cells (Figure 4.13A). After 24 hours stimulation with 100 

and 1000ng/ml LPS, C3 mRNA expression  had significantly increased to mean 

values of 2.2±0.23 and 1.6±0.04 respectively compared with a mean value of 

0.99±0.08 in un-stimulated BUMPT cells (p<0.001 and p<0.005 respectively). 
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Figure 4.12. LPS-stimulated production of C3 by BUMPT cells 

An ELISA assay was used to measure the concentration of C3 in supernatant taken 

from BUMPT cells that had been stimulated with LPS for 12 (A), 24 (B) and 48 (C) 

hours. Calculation of supernatent C3 concentrations was carried out using a standard 

curve of known C3 concentrations (D). Bars on graphs show mean values, error bars 

depict standard error (SEM). 
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Figure 4.13. C3 mRNA expression in LPS-stimulated BUMPT cells 

rtPCR was used to measure relative C3 gene expression in BUMPT cells stimulated 

with different concentrations of LPS for 12 (A), 24 (B) and 48 (C) hours. Coloured 

bars on graphs show mean values, error bars depict standard error. 
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C3 gene expression in cells stimulated with 10ng/ml LPS remained unchanged 

(Figure 4.13B). C3 mRNA expression in BUMPT cells continued to increase 

significantly to mean values of 1.3±0.08 and 2.5±0.2 following 48 hours LPS 

stimulation at concentrations of 10 and 1000ng/ml respectively (p<0.005 and 

p<0.001 respectively) compared with a mean of 1.1±0.11 in un-stimulated BUMPT 

cells (Figure 4.13C). After 48 hours of exposure to 100ng/ml LPS, C3 gene 

expression in BUMPT cells was not significantly up-regulated compared with un-

stimulated cells. 

Activation of complement following stimulation of BUMPT cells with LPS was 

determined by measuring the concentration of C3a protein present in the supernatant 

using an ELISA. After 12 hours stimulation with 10 and 100ng/ml LPS, the 

concentration of C3a in cell supernatents had increased to mean values of 161.8±73.8 

and 96.5±19.4 respectively compared with a mean of 61.9±13.1ng/ml recorded in un-

stimulated cells (Figure 4.14A). The mean C3a concentration present in cell 

supernatents exposed to 1000ng/ml LPS for 12 hours was lower than that detected 

for unstimlated cells (41.3±39.8ng/ml). C3a concentration in the supernatents of cells 

stimulated with 10ng/ml LPS was significantly elevated compared to unstimulated 

cells (p<0.05). 
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Figure 4.14. Production of C3a by BUMPT cells during LPS stimulation 

Supernatent collected from LPS-stimulated BUMPT cells was analysed using by 

ELISA for the presence of C3a, a marker of complement activation. Concentration of 

C3a in supernatant taken from BUMPT cells stimulated with LPS for 12 (A), 24 (B) 

and 48 (C) hours. Calculation of supernatent C3a concentrations was carried out 

using a standard curve derived from known C3a concentrations (D). Coloured bars 

on graphs show mean values, error bars depict standard error (SEM). 
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The concentration of C3a present in the supernatants taken from cells stimulated with 

10, 100 and 1000ng/ml LPS for 24 hours had significantly increased to mean values 

of 595.1±135.3ng/ml (p<0.05), 657.1±34.6ng/ml (p<0.005) and 621.7±48.6ng/ml 

(p<0.01) respectively compared with a mean of 328.5±49.15ng/ml in unstimulated 

cells (Figure 4.14B). Compared with the concentration of C3a in the supernatents of 

unstimulated cells (mean value of 366.1±45.6ng/ml), the concentration of C3a in cell 

supernatents had continued to increase significantly to mean values of 824.5±13.5 

and 775.8±134.2ng/ml following 48 hours LPS stimulation at concentrations of 10 

and 100ng/ml (p<0.001 and p<0.005 respectively). The concentration of C3a in cell 

supernatents stimulated with 1000ng/ml LPS for 48 hours had also increased 

(585.4±149.6), though this was not significant compared to unstimulated cells 

(Figure 4.14C). Interestingly, in the absence of FBS, C3a was detected in 

supernatants taken from 24 and 48 hour unstimulated BUMPT cells, suggesting that 

BUMPT cells are producing C3 and activating complement under basal conditions 

(Figure 4.14A-C). The concentration of C3a present in cell supernatents was 

calculated from a standard curve constructed using known concentrations of mouse 

C3a (Figure 4.14D). 

 

4.7 Discussion 

Following on from the previous chapter, this chapter sought to further explore the 

activity and distribution of C3 on a protein and molecular level during the 

progression of renal disease following ureteric obstruction in WT mice. 

 



194 

 

In the obstructed kidneys of WT mice, urinary C3a was significantly elevated 

indicating complement activation. The mechanism by which complement becomes 

activated under these circumstances is unclear. There is „tick over‟ of the alternative 

complement pathway at the apical membrane of tubular epithelial cells (Zipfel, 2006) 

and it is plausible that injury to the tubular epithelium could cause up-regulation of 

complement protein synthesis by tubular epithelial cells, as reported previously 

(Timmerman et al., 1996; Ichida et al., 1994; Welch et al., 1993). This could be a 

major source of the complement activation protein C3a detected in urine taken from 

obstructed WT kidneys. Despite the presence of C3a, C5a was not present in urine 

taken from the renal pelvis of obstructed WT mice. A study by Boor et al 

demonstrated that C5aR was expressed on the apical and lateral membranes of 

tubular epithelial cells during UUO and that subsequent treatment with a C5aR 

antagonist ameliorated renal scarring. (Boor et al., 2007), suggesting a key role for 

C5a in the generation of disease in this animal model. 

It is unclear why C5a was not detected in urine taken from obstructed kidneys. One 

possibility is that it may be below the level of detection (12.5ng/ml) in the assay. 

Alternatively, it may only be produced on the basolateral surface of cells or within 

the interstitium and would therefore not be present in urine. Another possibility is 

that C5a protein is not stable in the urine and is degraded. With this in mind, it would 

be interesting to study UUO in the absence of C5aR in future studies to determine the 

role of C5a signalling during the progression of renal fibrosis. 
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In other models of renal disease the presence of complement components in mouse 

urine has been demonstrated previously (Hsu and Couser, 2003). In the current study 

it would be interesting to investigate whether other complement components are 

present in mouse urine taken from obstructed kidneys. This may help to clarify the 

nature of complement activation during UUO. 

Consistent with previous findings (Sheerin et al., 2008), C3 protein was present in 

abundance around the basolateral membrane of tubules in WT contralateral kidneys. 

After three days of ureteric obstruction less C3 was detected around tubules in WT 

mice and by day ten C3 staining was almost absent from tubular basolateral 

membranes. There did appear to be diffuse staining throughout the interstitium after 

ten days of UUO, but it was difficult to define the exact location of C3 protein at this 

time since renal morphology was markedly affected by persistent inflammation and 

fibrosis. Diffuse C3 staining in obstructed WT kidneys may be due to degradation of 

membrane bound C3 by proteases produced to allow ECM re-modelling. These 

observations contrast that of previous findings which reported an increase in tubular 

basal C3 protein expression during proteinuria (Sheerin et al., 2008). Similarly, in a 

rat model of protein overload, C3 is reported to be present at the apical membrane of 

tubular epithelial cells (Nangaku, 2004). C3 was not detected in obstructed or 

contralateral kidneys of C3
-/-

 mice. 

In this study, C3 gene expression was significantly up-regulated in WT renal cortices 

after three, five and ten days of UUO. In day three WT UUO kidneys, C3 mRNA 

was also detected by in situ hybridisation and was found to be present in some (but 

not all) renal tubules. This finding suggests that tubular epithelial cells are the main 

site of complement up-regulation during the early phases of obstructive nephropathy. 
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C3 gene expression was at its highest at day ten UUO and results from the previous 

chapter showed that lymphocytes and macrophages were present at this stage. It 

would be interesting to look at C3 mRNA distribution in day five and day ten WT 

UUO kidneys using in situ hybridisation to see if tubular epithelial cells remained the 

primary source of complement production as UUO progressed. 

The observation that some renal tubules expressed C3 mRNA whilst others did not 

would suggest that only a specific portion of the nephron is up-regulating C3 during 

UUO. One potential site for C3 production could be the proximal tubule. 

Unfortunately immunostaining on in situ sections with the lectin from Lotus 

tetragonobulus (specific for the brush boarder of the proximal tubule) was 

unsuccessful in this study. In future work, other markers of the proximal tubule such 

as aquaporin-1 or glucose transporters could be identified by immunochemistry in 

obstructed kidneys following in situ hybridisation for C3 mRNA. 

In mice crry is an important membrane bound regulator of complement activation. It 

prevents C3b deposition resulting from both alternative and classical complement 

activation and is critical for preventing autologous complement activation. In the 

unaffected kidneys of WT mice, crry is present at the tubular basolateral membrane. 

However during the course of UUO, a shift from membrane to cytoplasmic staining 

of crry occurs and crry gene expression declines simultaneously. Other studies have 

reported a similar loss of surface crry expression during disease progression 

(Thurman et al., 2006; Li et al., 1993). After three days of ureteric obstruction in WT 

and C3
-/-

 mice, there were no changes in crry gene expression compared with 

unaffected kidneys. However at day five and day ten UUO, crry mRNA expression 

was significantly reduced in the obstructed kidneys of WT and C3
-/-

 mice. 
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In comparison to obstructed WT mice, crry gene expression in obstructed C3
-/-

 

mouse kidneys was significantly lower. Crry is ubiquitously expressed in mice and is 

thought to be analogous to another complement regulator, membrane cofactor protein 

(CD46; (Foley et al., 1993)). In response to the altered haemodynamics ensuing from 

ureteric obstruction, blood flow to the kidney is restricted during the early stages of 

UUO, causing progressive ischaemia. In the mouse model of renal IRI, Li and co-

workers reported that basolateral crry expression was disrupted during ischaemia and 

that the subsequent loss of surface crry permitted activation of the alternative 

complement pathway on tubular epithelial cells (Li et al., 1993). Another reason for 

declining crry could be due to the ECM re-modelling occurring within the cortical 

interstitium which may influence the expression of proteins at the basolateral 

membrane. In this study, crry gene expression was significantly reduced in 

obstructed kidneys. This could allow for increased complement activation which may 

in part explain the damage associated with complement activation described in 

chapter three. 

After ten days of UUO, DAF1 gene expression was almost undetectable in 

obstructed WT and C3
-/-

 mouse kidneys compared with respective contralateral 

kidneys. Compared with obstructed kidneys from WT mice, DAF1 mRNA was 

significantly lower in obstructed C3
-/-

 mouse kidneys. The changes in gene 

expression observed for DAF1 follow a similar pattern to that of crry. DAF1 protects 

host cells from C3b and C5b-9 deposition on cell surfaces and inhibits formation of 

the C5 convertase, thus preventing MAC formation. 

In mice, there are two DAF isoforms, DAF1 and DAF2. Of these, DAF1 is present in 

human and rat glomeruli and has been shown to protect against proteinuric renal 

injury during adriamycin nephropathy (Bao et al., 2002). 
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During the early stages of NTS nephropathy, DAF1 is critical in preventing induction 

of complement-mediated podocyte injury (Lin et al., 2002). In the absence of DAF1, 

proteinuria and glomerular C5b-9 deposition increase following induction of NTS 

nephritis (Lin et al., 2004). The present study has shown that, DAF1 and crry are 

both reduced in obstructed WT and C3
-/-

 kidneys after ten days of ureteric 

obstruction. It would be interesting to see what the normal distribution of DAF1 is in 

mouse renal tissues and subsequently how this changes following ureteric 

obstruction. In this study, the role of DAF1 during UUO is unclear. Both crry and 

DAF1 are membrane bound regulators of complement activation and appear to 

behave similarly during UUO. This would increase the potential for complement 

activation and therefore tissue injury. 

CD59a gene expression was reduced significantly in obstructed kidneys from WT 

and C3
-/-

 mice. Generally, expression was lower in C3
-/-

 mice compared to WT mice. 

In mice, two isoforms of CD59 exist, CD59a and CD59b (found only in testes). 

CD59a regulates the terminal complement pathway. Binding of CD59a to C5b678 

prevents binding and polymerising of C9, inhibiting the formation of the MAC. 

Compared to WT mice, CD59a deficient mice have more severe PMN cell 

infiltration, greater tubular atrophy and increased deposition of C9 during renal IRI 

(Turnberg et al., 2006; Turnberg et al., 2004). Similarly, CD59a deficient mice had 

elevated glomerular deposition of C9 and increased expression of α-SMA during 

adriamycin nephropathy (Turnberg et al., 2006). 

These studies suggest that CD59 restricts disease progression by preventing MAC 

formation. The role of CD59a during UUO has not been established. However, it 

would be interesting to see if urinary C5b-9 and renal C9 deposition increased in 

obstructed kidneys of WT and C3
-/-

 mice at the same time as CD59a was in decline. 
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In the present study, the reason for a decline in membrane-bound regulators of 

complement is not clear. One possibility could be that a down regulation of 

membrane complement regulators on apoptotic cells allows increased deposition of 

C3b on apoptotic cell surfaces, making them a target for infiltrating macrophages. 

At day five and day ten, FB had significantly decreased in the renal cortices of 

obstructed WT and C3
-/-

 kidneys and was lower in the absence of C3. FB binds to 

surface-bound C3b to form C3bB, which is then cleaved by FD to form C3bBb, the 

catalytic subunit of the alternative pathway C3 convertase. The presence of Bb in 

urine is an indicator of alternative pathway activation and Bb is known to increase in 

patients with chronic renal failure however, this study did not measure urinary Bb. 

Future work addressing the complement activation pathway involved during UUO 

could look at measuring alternative and classical pathway components present in 

urine taken from the renal pelvis of obstructed kidneys. The alternative complement 

pathway is an important in mediator of renal injury characteristic of IRI. In a mouse 

model of renal IRI, FB deficient mice had fewer infiltrating neutrophils, less severe 

morphological injury and no C3/C9 staining compared with WT mice. During the 

later stages of UUO in this study, FB was equivalent in obstructed WT and C3
-/-

 

mouse kidneys (Lien et al., 2003; Thurman et al., 2003). 

FH accelerates the dissociation of the C3 convertase during alternative complement 

pathway activation and also binds to glycosaminoglycans on host cell surfaces, thus 

protecting host cells by directing complement activation towards pathogens. One 

reason for the increase in FH expression in obstructed WT mouse kidneys at day five 

and day ten UUO could be to regulate complement activation by intrinsic renal cells 

and protect those cells from complement-mediated injury. 
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This is partly supported by a recent study in which Renner and co-workers 

demonstrated that binding of FH to tubular epithelial cells limited interstitial 

complement activation during renal IRI (Renner et al., 2011). The results from the 

first chapter of this thesis demonstrated that F4/80
+
 cells are present in kidney 

cortices after five days of UUO and that T cells and F4/80
+
 cells are present by day 

ten. Macrophages and T cells could be one source of increased FH at day five and 

day ten, since both are capable of producing significant amounts of complement. In 

this study, FH gene expression had also increased in the contralateral kidneys of WT 

mice ten days post-UUO. The reason for this in not clear, perhaps renal synthesis of 

C3 significantly elevated circulating C3 and triggered the activation of protective 

mechanisms in other organs to prevent complement activation on host cells. 

FI promotes cleavage of cell bound and fluid phase C3b and C4b during alternative 

and classical complement activation respectively, reducing C3/C5 convertase activity 

and MAC formation. In mice, FI cleaves crry-bound C3b and C4b. FH also has co-

factor activity for FI-mediated C3b cleavage during alternative pathway activation. 

An early increased in FI mRNA during UUO, suggests an attempt to regulate 

complement activity in WT mice, however FI gene expression declined during the 

course of UUO and was no longer significantly elevated in WT mice by day ten. In 

contrast to this, FH expression increased during the course of UUO, the reason for 

this is unclear. 

LPS is an endotoxin derived from the outer cell wall of gram negative bacteria and is 

reported to activate the alternative complement pathway and induce the activation of 

several cytokines via toll-like receptor signalling (Fu et al., 2006; Kusner et al., 

1991). 
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Following on from earlier work in this chapter which had demonstrated complement 

activation during ureteric obstruction, BUMPT cells were stimulated for different 

lengths of time with varying concentrations of LPS to induce synthesis of 

complement. Complement activation was assessed by measuring C3a protein in cell 

supernatants. The amount of C3a present increased in a time-dependent manner. 

Similarly, the amount of C3 protein in LPS-stimulated cell supernatents increased 

over time. C3 and C3a were also detected in the cell supernatents taken from 

unstimulated cells, suggesting that BUMPT cells are capable of producing and 

activating complement in the absence of serum and LPS. C3 mRNA was 

significantly up-regulated in BUMPT cells following stimulation with LPS. Higher 

concentrations of LPS yielded a greater fold change in C3 gene expression. 

Up-regulation of C3 gene expression and production and activation of complement 

by BUMPT cells demonstrates a good in vitro model of complement activation 

which will be used to select antisense oligonucleotides capable of knocking down C3 

mRNA expression in vitro in future work. When knock down of C3 gene expression 

in vitro has been achieved, the successful oligonucleotide will be modified for in vivo 

applications and tested during UUO. 

 

The findings of this chapter support one hypothesis that local C3 production may be 

a contributing factor during the progression of fibrosis and inflammation in the 

mouse model of UUO. Work following on from this study will investigate C3 

mRNA distribution at day five and day ten UUO and continue to focus on C3 as a 

target for therapeutic intervention. Extensive work is still required to establish which 

complement pathway is involved during the progression of UUO, though it is 

plausible that the alternative pathway is the most likely. 
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A key component for alternative pathway activation is FD, however the primers used 

to detect FD gene expression in this study did not detect FD mRNA taken from 

quiescent liver stellate cells, a positive control for FD expression. One way to 

determine alternative pathway activity in this disease model would be to induce 

UUO in mice lacking FB. 
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5 The role of nfκb1 in acute and chronic renal injury 

5.1 Introduction 

The first two results chapters of this thesis have already illustrated a role for 

complement in a model of unilateral obstructive nephropathy. The concluding part of 

this study sought to investigate the contribution of transcription factor nfκb1 towards 

the progression of acute and chronic renal diseases. The two animal models of renal 

disease selected for the final part of this study were UUO and NTS nephritis. They 

differ with respect to the factors driving disease progression; NTS nephritis is a 

complement-mediated model of acute renal nephropathy characterised by an early 

influx of neutrophils. Conversely, UUO is driven by an ANG-II mediated alteration 

to renal haemodynamics and wide-spread local complement activation, with 

progression towards wide-spread interstitial fibrosis and tubular atrophy and 

macrophage and T cell accumulation. 

 

5.2 Scoring of histological injury in WT and nfκb1
-/- 

mice following 

UUO 

To investigate the effect of nfκb1 deficiency in chronic renal disease,
 
periodic acid 

Schiff‟s histology was used to visualise interstitial expansion and tubular dilatation in 

renal tissues post-ureteric obstruction. Following three days of UUO some renal 

tubules were dilated and their epithelial cells had flattened and started to lose their 

brush boarder (Figure 5.1A and B). Unaffected (contralateral) kidneys in WT and 

nfκb1
-/- 

mice showed normal renal morphology, with no interstitial expansion or 

tubular dilatation (Figure 5.1C). 
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Figure 5.1. Histological injury at day three UUO 

PAS-stained WT (A) and nfκb1
-/-

 (B) renal cortices following three days of UUO. 

Contralateral kidneys showed normal renal morphology in WT and nfκb1
-/-

 mice (C). 

Arrows highlight areas of interstitial expansion. Asterisks show dilated tubules. „t‟ 

represents a tubule and „g‟ identifies a glomerulus. A grid-based counting method 

was used to score interstitial expansion (D) and tubular dilatation (E). Scale bars on 

A-C measure 20µm and bars on graphs D and E represent median values. 
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After three days of ureteric obstruction, median interstitial volume had significantly 

increased in WT and nfκb1
-/-

 UUO kidneys compared with contralateral kidneys 

(2.40% vs. 0.85% and 5.85% vs. 0.70%; p<0.05 and p<0.01 respectively). Similarly, 

median interstitial expansion was significantly elevated in obstructed nfκb1
-/-

 renal 

cortices compared to nfκb1
-/-

 renal cortices from contralateral kidneys. Although the 

interstitial compartment of obstructed nfκb1
-/-

 animals had expanded more than that 

of their WT counterparts, this difference was not statistically significant (Figure 

5.1D). Compared with contralateral kidneys, tubular dilatation had increased 

significantly in day three obstructed WT and nfκb1
-/-

 kidneys (p<0.005 for both). The 

extent of tubular dilatation was equivalent for both UUO groups (Figure 5.1E). 

Following ten days of UUO, interstitial expansion and tubular dilatation had 

continued to develop in the renal cortices of obstructed WT and nfκb1
-/-

 mice (Figure 

5.2A and B). WT and nfκb1
-/-

 contralateral kidneys were normal at this time (Figure 

5.2C). Compared with contralateral renal cortices, interstitial expansion had 

increased significantly in obstructed WT and nfκb1
-/-

 groups (p<0.001 and p<0.005). 

Expansion of the cortical interstitial compartments of obstructed WT and nfκb1
-/-

 

kidneys remained equivalent (Figure 5.2D). Median tubular dilation continued to 

increase in WT and nfκb1
-/-

 UUO mice compared with contralateral kidneys 

(p<0.001 and p<0.005). As with interstitial expansion, tubular dilatation in 

obstructed WT and nfκb1
-/-

 groups was equivalent (Figure 5.2E). 
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Figure 5.2. Histological injury at day ten UUO 

Renal cortices of day ten WT UUO (A) and nfκb1
-/-

 UUO (B) mice. A representative 

image of an unaffected contralateral kidney (C). Arrows show large and distinct 

areas of expanded interstitium. Asterisks high-light severely dilated tubules. „g‟ 

identifies a glomerulus. „t‟ illustrates an intact tubule. Scoring of interstitial 

expansion (D) and tubular dilatation (E), was carried out using a grid-based counting 

method. Scale bars on A-C measure 20µm and bars on graphs represent median 

values. 
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5.3 Immunohistochemical analyses of infiltrating cells and collagen 

deposition during UUO 

Infiltrating immune cells and extracellular matrix components present in tissues day 

ten post-ureteric obstruction were detected by IHC staining. Following ten days of 

ureteric obstruction, CD4
+ 

and CD8
+
 T cell infiltrate counts were significantly 

elevated in WT (p<0.001 for both groups; Figure 5.3A and Figure 5.4A) and nfκb1
-/-

 

renal tissues (p<0.001 for both groups; Figure 5.3B and Figure 5.4B respectively). 

No CD4
+ 

and CD8
+
 T cells were detected in unaffected kidneys (Figure 5.3C and 

Figure 5.4C respectively). The median number of infiltrating CD4
+ 

and CD8
+ 

cells 

was 11.45 and 4.65 per HPF and 14.10 and 3.10 per HPF in obstructed WT and 

nfκb1
-/-

 mice respectively (Figure 5.3D and Figure 5.4D). The number of infiltrating 

CD4
+ 

and CD8
+
 T cells was equivalent for WT and nfκb1

-/-
 mice at this time. 

F4/80
+
 macrophages had infiltrated the renal interstitial compartment of WT and 

nfκb1
-/-

 animals compared with unaffected kidneys (p<0.005 for both groups Figure 

5.5A and B). No F4/80
+
 cells were present in unaffected renal cortices (Figure 5.5C). 

Despite the median values for F4/80
+
 infiltrate in WT and nfκb1

-/-
 UUO mice being 

different this was not significant (Figure 5.5D). Extracellular matrix deposition of 

collagen I was significantly elevated in WT and nfκb1
-/-

 UUO mouse kidneys 

(p<0.001 for both groups; Figure 5.6A and B), compared with contralateral kidneys 

(Figure 5.6C). Median deposition of α-SMA
+
 myofibroblasts in WT and nfκb1

-/-
 

kidneys after ten days of UUO had increased to a similar level (p<0.05 for both 

groups compared with contralateral kidneys; Figure 5.7A-C). 
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Figure 5.3. CD4
+
 T cell infiltration at day ten UUO 

WT obstructed (A), nfκb1
-/-

 obstructed (B) and a representative contralateral kidney 

(C). Ten randomised HPFs were acquired for each animal. Positively stained cells 

present in each HPF field (indicated by red arrows), were counted manually and then 

graphed (D). The number of CD4
+
 cells counted in WT and nfκb1

-/-
 obstructed renal 

cortices, was equivalent. Bars on A-C measure 20µm. Bars on graph represent 

median values. 
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Figure 5.4. CD8
+
 T cell infiltration at day ten UUO. 

WT obstructed (A), nfκb1
-/-

 obstructed (B) and a representative image of a 

contralateral kidney (C). Scale bars on A-C measure 20µm. Ten cortical HPFs were 

acquired at random for each animal. CD8
+
 cells present in each HPF field (as 

indicated by red arrows), were manually counted and then graphed (D). CD8
+
 cells 

were present in the obstructed kidneys WT and nfκb1
-/-

 mice. Bars on graph represent 

median values. 
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Figure 5.5. F4/80
+
 macrophage infiltration at day ten UUO 

WT UUO (A), nfκb1
-/-

 UUO mice (B) and a representative contralateral kidney (C) 

are shown. Scale bars on A-C measure 20µm. For each experimental group, ten 

randomised cortical HPFs were acquired for each animal. Areas of F4/80
+
 cells 

present in each HPF (as indicated by red arrows), were counted manually using a 

grid-based method (D). Equivalent numbers of F4/80
+
 macrophages were present in 

the renal cortices of WT and nfκb1
-/-

 mice following UUO. Bars on graph represent 

median values. 
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Figure 5.6. Collagen I deposition at day ten UUO 

WT UUO (A), nfκb1
-/-

 UUO mouse renal cortices (B) and a representative 

contralateral kidney (C). Scale bars on A-C measure 20µm. Ten randomised cortical 

HPFs were acquired for each experimental group. Collagen I positive staining within 

each HPF field (as indicated by red arrows) was measured using a grid-based method 

(D). Equivalent collagen I deposition was observed in the obstructed renal cortices of 

WT and nfκb1
-/-

 mice. Bars on graph represent median values. 
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Figure 5.7. α-SMA
+
 myofibroblasts at day ten UUO 

WT UUO (A), nfκb1
-/-

 UUO mice (B) and a representative contralateral kidney (C). 

Scale bars on A-C measure 20µm. Ten cortical HPFs were acquired at random for 

each experimental group. Areas of α-SMA
+
 myofibroblasts (indicated by red 

arrows), were counted using a grid-based method (D). Myofibroblasts staining 

positive for α-SMA were observed in the obstructed renal cortices of WT and nfκb1
-/-

 

mice. Bars on graph represent median values. 
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5.4 rtPCR analyses of TNF-α, TGF-β and collagen mRNA 

expression during ureteric obstruction 

Semi-quantitative rtPCR was used to measure the relative changes in gene expression 

of pro-inflammatory cytokine TNF-α. Following three days of ureteric obstruction 

median TNF-α mRNA expression was unchanged in obstructed WT and nfκb1
-/-

 

mouse kidneys. At day ten, median TNF-α gene expression in obstructed WT and 

nfκb1
-/-

 kidneys remained significantly up-regulated compared with contralateral 

kidneys (p<0.05 and p<0.001 respectively). There were no significant differences in 

TNF-α expression observed in WT and nfκb1
-/-

 obstructed kidneys at day three or 

day ten (Figure 5.8B). The expression of TGF-β mRNA in WT and nfκb1
-/-

 

obstructed kidneys was not significantly increased after three or ten days of UUO 

(Figure 5.9A and B). 

Collagen I gene expression was not significantly up-regulated in WT or nfκb1
-/-

 UUO 

renal cortices after three days of obstructive nephropathy (Figure 5.10A). Following 

ten days of UUO, median collagen I mRNA expression in obstructed WT mice had 

increased significantly compared with contralateral kidneys (p<0.05). Median 

expression of collagen I in day ten obstructed nfκb1
-/-

 mice was equivalent to 

contralateral kidneys As observed at day three UUO, collagen I gene expression 

remained equivalent in the day 10 obstructed kidneys of WT and nfκb1
-/-

 mice 

(Figure 5.10B). 
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Figure 5.8. TNF-α gene expression at day three and day ten UUO 

Relative gene expression of TNF-α in contralateral (CL) and UUO renal cortices 

three (A) and ten (B) days post-ureteric obstruction was semi-quantified by rtPCR. 

mRNA expression was first normalised to that of the house-keeping gene β-actin. 

After three days of UUO TNF-α gene expression was unchanged in the obstructed 

renal cortices of WT and nfκb1
-/-

. By day ten, TNF-α expression was significantly 

up-regulated in WT and nfκb1
-/-

 UUO mice. Bars on graphs represent median values. 

rtPCR was performed in triplicate for each animal. 
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Figure 5.9. TGF-β gene expression at day three and day ten UUO 
rtPCR was used to measure the relative mRNA expression of TGF-β in CL and UUO 

renal cortices three (A) and ten (B) days post-ureteric obstruction. There were no 

significant changes to the expression of TGF-β in obstructed WT and nfκb1
-/-

 mouse 

kidneys after three and ten days of UUO. Bars on graphs represent median values. 

rtPCR was performed in triplicate for each animal. 
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Figure 5.10. Collagen I gene expression at day three and day ten UUO 

rtPCR was used to quantify collagen I in UUO and CL renal cortices three (A) and 

ten (B) days post-UUO. Gene expression was normalised to β-actin. Collagen I gene 

expression was not upregulated in WT or nfκb1
-/-

 kidneys during the early stages of 

UUO, but was significantly elevated in obstructed kidneys of WT mice at day ten. 

Bars on graphs represent median values. rtPCR was performed in triplicate for each 

animal. 
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5.5 Glomerular injury and neutrophil infiltration in WT and  

nfκb1
-/-

 mice after induction of NTS nephritis 

Two hours after NTS injection, cells with multi-lobulated nuclei, characteristic of 

neutrophils, had infiltrated the glomeruli of WT and nfκb1
-/-

 mice (Figure 5.11A and 

B respectively). The average number of neutrophils per glomerulus was statistically 

equivalent in WT and nfκb1
-/-

 NTS-treated mice (2.73 and 2.00 respectively; Figure 

5.11D). By 24 hours, glomerular injury was visibly apparent in WT and nfκb1
-/-

 

groups (Figure 5.12A and B respectively) and protein casts had started to form in 

some renal tubules. Glomerular injury was significantly higher in nfκb1
-/-

 mice 

compared with WT mice at 24 hours (3.25 vs. 0.60; Figure 5.12D; p<0.01). 

Neutrophils and glomerular injury were not present in control kidneys (Figure 5.11C 

and Figure 5.12C). 

The distribution of sheep anti-mouse anti-GBM antibody within the glomeruli two 

and 24 hours post-injection was visualised using a FITC-conjugated donkey anti-

sheep antibody and quantified by measuring the fluorescence intensity of randomly 

selected glomeruli (Figure 5.13A-D). In WT and nfκb1
-/-

 NTS groups, mean arbitary 

units for fluorescence intensity were 85.24±2.99 and 96.81±4.41 respectively at two 

hours and 88.80±0.61 and 88.95±1.28 respectively at 24 hours (Figure 5.13E). 

 

5.6 Proteinuria in WT and nfκb1
-/- 

mice 

In addition to histological analyses of renal injury 24 hours following NTS injection, 

glomerular injury was also determined by measuring urinary albumin concentration 

using an immunodiffusion assay (Figure 5.14A-E). 
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Figure 5.11. Neutrophil infiltration two hours after NTS injection 

Following NTS injection, periodic acid Schiff‟s histology was used to identify 

infiltrating neutrophils present within the glomeruli of WT (A) and nfκb1
-/-

 (B) mice. 

The average number of neutrophils present in randomly selected glomeruli was 

determined by counting muli-lobulated nuclei-containing cells in a blinded fashion. 

No neutrophils were present in the glomeruli of unaffected WT and nfκb1
-/-

 mice (C). 

Scale bars on A-C represent 20µm. There were no differences in the number of 

infiltrating neutrophils in WT and nfκb1
-/-

 tissues at two hours (D). Bars on graphs 

represent median values. 
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Figure 5.12. Glomerular injury 24 hours after NTS injection 

Glomerular injury at 24 hours post-NTS injection was much less severe in WT mice 

(A) compared with nfκb1
-/-

 mice (B). Control renal tissues displayed normal 

glomerular structure in WT and nfκb1
-/-

 mice (C). Glomerular injury was measured 

using a +1 (<25% injury), +2 (25-50% injury), +3 (50-75% injury) and +4 (>75% 

injury) scoring system. A Mann-Whitney U-test showed that glomerular injury was 

significantly worse in nfκb1
-/-

 mice (p<0.01) compared with WT mice. Scale bars on 

A-C represent 20µm. Bars on graphs represent median values. 
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Figure 5.13. Anti-GBM antibody distribution in glomeruli post-NTS injection 

FITC-stained glomeruli 2 and 24 hours post-NTS injection in WT mice (A and C 

respectively) and nfκb1
-/-

 mice (B and D respectively). Fluorescence intensity scoring 

for glomerular-bound anti-GBM antibody (E). An unpaired t-test was performed and 

revealed no significant differences in mean fluorescence intensity of FITC-stained 

glomeruli between WT and nfκb1
-/-

 groups at 2 and 24 hours post-injection. Bars on 

graph represent mean +SEM. 
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Figure 5.14. Urinary albumin concentration 24 hours after NTS injection 

A standard control used for calculating urinary albumin measurements in the range 

0.05-1.6mg/ml (A). No albumin was detected in the urine of WT (B) and nfκb1
-/-

 (C) 

mice (n=6 for both groups, only 3 are illustrated). Albumin was detected in the urine 

collected from WT (D) and nfκb1
-/-

 (E) mice 24 hours following NTS injection. 

Extrapolation of urinary albumin concentrations for WT and nfκb1
-/-

 mice (F) using a 

standard curve of known albumin concentrations (G). 
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Albumin was present in urine collected from WT and nfκb1
-/-

 animals at a median 

concentration of 1.48 and 2.74mg/24 hours respectively (p<0.05; Figure 5.14F). 

Albumin was not detected in urine collected from control mice. A standard curve of 

known albumin concentrations was used to extrapolate urinary albumin 

concentrations from NTS-injected WT and nfκb1
-/-

 mice (Figure 5.14G). 

 

5.7 Gene expression of pro-inflammatory mediators of glomerular 

injury 

Changes in the relative gene expression of pro-inflammatory calcium binding 

proteins S100A8 and S100A9 were measured using rtPCR. S100A8 and S100A9 

mRNA expression was significantly up-regulated two hours after NTS injection in 

WT and nfκb1
-/-

 groups (p<0.005 for all analyses). S100A8 and S100A9 gene 

expression in WT and nfκb1
-/-

 kidneys was equivalent 2 hours post-NTS injection 

(Figure 5.15Figure 5.16). By 24 hours, S100A8 mRNA levels remained significantly 

elevated by approximately 10 fold and 60 fold in affected WT and nfκb1
-/-

 mouse 

kidneys respectively (p<0.005 for both groups; Figure 5.15). Interestingly, S100A8 

gene expression in the kidneys of nfκb1
-/-

 mice was significantly higher than that 

observed in WT mouse kidneys 24 hours following NTS injection (p<0.01). At 24 

hours post-NTS treatment, S100A9 gene expression had fallen below baseline levels 

in WT kidneys (p<0.005), but remained significantly elevated in kidneys taken from 

nfκb1
-/-

 mice (p<0.005). Compared to affected WT kidneys, S100A9 gene expression 

in affected nfκb1
-/-

 mouse kidneys was significantly greater 24 hours post-NTS 

administration (p<0.01; Figure 5.16). 
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Figure 5.15. S100A8 gene expression two and 24 hours post-NTS injection 

rtPCR was used to measure the relative gene expression of S100A8 in affected 

kidneys two and 24 hours following NTS injection. Gene expression was normalised 

to β-actin. Two and 24 hours following NTS injection, S100A8 mRNA expression 

had significantly increased in the kidneys of WT and nfκb1
-/-

 mice. Bars on graphs 

represent median values. rtPCR was performed in triplicate for each animal. 
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Figure 5.16. S100A9 gene expression two and 24 hours post-NTS injection 

rtPCR was used to determine the relative mRNA expression of S100A9 in affected 

kidneys at two and 24 hours following NTS injection. S100A9 mRNA expression 

was calculated following gene expression normalisation to the house keeping gene β-

actin. S100A9 gene expression was elevated in the kidneys of WT and nfκb1
-/-

 mice 

two and 24 hours after NTS injection. Bars on graphs represent median values. 

rtPCR was performed in triplicate for each animal. 
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Figure 5.17. IL-6 gene expression two and 24 hours post-NTS injection 

Relative IL-6 gene expression in affected kidneys two and 24 hours following NTS 

injection was measured by rtPCR. mRNA expression was normalised to that of the 

house keeping gene β-actin. Two hours after NTS treatment, IL-6 was up-regulated 

in the kidneys of WT and nfκb1
-/-

 mice. IL-6 expression remained elevated in nfκb1
-/-

 

mice at 24 hours. Bars on graphs represent median values. rtPCR was performed in 

triplicate for each animal. 
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Two hours following NTS treatment, IL-6 gene expression was significantly up-

regulated in WT and nfκb1
-/-

 NTS-treated groups respectively (p<0.005 for all 

analyses). By 24 hours IL-6 gene expression had returned to normal levels in 

affected WT mouse kidneys, but remained elevated in nfκb1
-/-

 renal tissues (p<0.01). 

24 hours following NTS injection, IL-6 expression was significantly elevated in 

NTS-treated nfκb1
-/-

 kidneys compared to WT kidneys (p<0.05; Figure 5.17). 

TNF-α gene expression had increased by approximately 6 and 8 fold 2 hours after 

NTS was administered in WT and nfκb1
-/-

 kidneys respectively (p<0.05 and 

p<0.005). The increase in TNF-α mRNA observed in WT and nfκb1
-/-

 kidneys was 

equivalent two hours post-NTS treatment (Figure 5.18). 24 hours after NTS 

administration, TNF-α gene expression in WT kidneys was significantly elevated by 

approximately 3 fold (p<0.05), whereas TNF-α mRNA expression in nfκb1
-/-

 kidneys 

had returned to normal levels There was no significant difference in TNF-α gene 

expression 24 hours post-NTS treatment in WT and nfκb1
-/-

 mice (Figure 5.18). 

 

5.8 Discussion 

Recent studies have demonstrated that NF-κB activation is a common feature of 

renal pathophysiology, however, little is known about the contribution of individual 

NF-κB subunits during inflammation. To add to the complexity surrounding NF-κB, 

there is increasing evidence to suggest that NF-κB may exhibit both pro and anti-

inflammatory actions depending upon the nature of activation. The last part of this 

thesis explored the contribution of nfκb1 towards inflammation and fibrosis during 

mouse models of acute and chronic renal disease. 
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Figure 5.18. TNF-α gene expression two and 24 hours post-NTS injection 

Relative gene expression for TNF-α at two and 24 hours after NTS injection was 

measured by rtPCR and the gene expression of TNF-α relative to that of the house 

keeping gene β-actin was calculated. Two hours after NTS treatment, TNF-α was 

significantly up-regulated in the obstructed kidneys of WT and nfκb1
-/-

 mice. TNF-α 

mRNA expression remained significantly elevated in WT mice at 24 hours. Bars on 

graphs represent median values. rtPCR was performed in triplicate for each animal. 
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Compared with kidneys from WT mice, glomerular thrombosis was worse in nfκb1
-/-

 

mouse kidneys 24 hours after NTS injection. As a consequence of increased 

glomerular injury, nfκb1
-/-

 mice developed more severe proteinuria compared with 

WT mice. Interestingly, the number of neutrophils present in glomeruli was 

equivalent in WT and nfκb1
-/-

 mouse kidneys 2 hours post-NTS administration. 

Therefore, nfκb1 does not appear to mediate the recruitment of neutrophils into 

injured glomeruli. The level of neutrophil chemotaxis due to intrinsic cell signalling 

may be responsible for the exacerbated glomerular injury and proteinuria observed in 

nfκb1
-/-

 mice. 

In this study, two hours after NTS injection the expression of TNF-α mRNA had 

significantly increased in WT and nfκb1
-/-

 mouse kidneys, but was equivalent. At 24 

hours post-NTS injection, significant up-regulation of TNF-α gene expression was 

sustained in WT kidneys, but not in kidneys taken from nfκb1
-/-

 mice. In animal 

models of NTS nephritis TNF-α has been shown to contribute towards glomerular 

injury and modulate the severity of inflammation during the heterologous phase of 

glomerular injury (Abbott et al., 1991; Hruby et al., 1990). 

One study demonstrated that TNF-α deficient mice developed less severe NTS-

induced nephritis (Ryffel et al., 1998). A second study showed that antibody 

blockade of TNF-α successfully reduced renal inflammation and scarring in a rat 

model of crescentic glomerulonephritis, thus preserving renal function (Khan et al., 

2005). During NTS nephritis, intrinsic renal cells contribute towards the production 

of  TNF-α (Timoshanko et al., 2003). 
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Although the present study only quantified infiltrating neutrophils, previous earlier 

work has demonstrated that macrophages and a small number of T cells also infiltrate 

the kidney during NTS nephritis, particularly when the model progresses beyond 24 

hours (Kurts et al., 2007; Tesch et al., 1999). The changes in TNF-α gene expression 

observed in this study were relatively minor. One reason for this could be that the 

duration of the study was relatively short. Another reason could be that the tissue 

undergoing molecular analysis consisted of all components of the renal cortex, 

including the renal tubules, which will not have been significantly injured during 

disease induction. Considering the end-points used in this study, it is likely that the 

primary source of TNF-α would be the glomerulus, including mesangial cells, which 

in contrast to the surrounding tubular interstitium, are relatively few in number. 

Interestingly, an in vitro study using human mesangial cell cultures demonstrated 

that TNF-α can stimulate the production of IL-6 and IL-8 (Abbott et al., 1991). As 

observed with TNF-α, IL-6 gene expression observed in the present study was 

significantly elevated, but equivalent in the kidneys of WT and nfκb1
-/-

 mice two 

hours after NTS injection. Compared with kidneys taken from WT mice, the 

sustained elevation of IL-6 mRNA in nfκb1
-/-

 mouse kidneys 24 hours post-NTS 

administration is consistent with a more severe disease phenotype in this group. 

IL-6 is involved in the regulation of inflammatory responses and can also control the 

expression of other cytokines. However, there are mixed views on the contribution of 

IL-6 towards the development of renal injury, due to its pleiotropic activities. 

Although in vitro studies have demonstrated that human mesangial cells produce   

IL-6 in response to stimulation with TNF-α and that this in turn stimulates 

proliferation of mesangial cells, rodent models of mesangioproliferative 

glomerulonephritis have not found a role for IL-6 (Eitner et al., 1997). 
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In the present study, up-regulation of IL-6 gene expression persisted in nfκb1
-/-

 

mouse kidneys, contributing towards a more severe injury phenotype. This 

observation suggests that signalling by nfκb1 may be important for switching off IL-

6 mediated pro-inflammatory activities. In addition to the roles of TNF-α and IL-6 

during the progression of inflammation, cytoplasmic calcium-binding proteins 

S100A8 and S100A9 also act as pro-inflammatory mediators during acute and 

chronic inflammation. mRNA expression of S100A8 and S100A9 was equivalent in 

the kidneys of WT and nfκb1
-/-

 mice two hours after NTS injection. Since S100A8 

and S100A9 are expressed and secreted by neutrophils (Gebhardt et al., 2006), this 

observation was consistent with the presence of equivalent neutrophil numbers at two 

hours post-NTS administration. Previous studies have also demonstrated that 

blockade of S100A8 and S100A9 can reduce neutrophil migration (Ikemoto et al., 

2007; Vandal et al., 2003). In the absence of nfκb1, persistent elevation of S100a8 

and S100a9 24 hours after giving NTS was consistent with prolonged IL-6 elevation 

observed in nfκb1
-/-

 mouse kidneys. Of further relevance to these observations are 

studies that have demonstrated up-regulation of S100A8, S100A9 and S100A8/A9 

heterodimer mRNA expression to be stimulated by IL-6 production (Kim et al., 

2012; Eggers et al., 2011). 

Another study also reported that heterodimeric S100A8/A9 enhanced the production 

of IL-6 (Ehlermann et al., 2006), suggesting a positive reinforcement mechanism. In 

the present study, elevated IL-6, S100A8 and S100A9 gene expression in the absence 

of nfκb1 suggests interplay between these proteins that is normally controlled at least 

in part by nfκb1signalling. The findings of this study suggest that NF-κB signalling 

via the nfκb1 subunit may provide an important off-switch for the mechanisms that 

drive inflammation during NTS nephritis. 
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The precise mechanism by which this is achieved is unknown. One possibility is that 

other NF-κB pathways exist whereby NF-κB homodimers (including nfκb1) could 

translocate to the nucleus and inhibit inflammatory gene transcription via interactions 

with IκB proteins such as IκBδ. Similarly, the binding of nfκb1 homodimers to κB 

sites on activated genes may work to prevent activation by other pro-inflammatory 

NF-κB dimers. The observation that nfκb1 may have a protective role during injury 

is supported by a previous study of carbon tetrachloride liver necrosis in rodents 

(Oakley et al., 2005). 

Other studies using rodent models of NTS nephritis have also demonstrated that 

activation of different NF-κB subunits takes place during disease progression and 

that this is responsible for the transcriptional activation of other inflammatory 

mediators such as IL-1β and IL-8 (Sakurai et al., 1997; Sakurai et al., 1996). The 

same studies showed that renal injury and proteinuria were both reduced in animals 

treated with NF-κB inhibitors. Based on the preliminary observations of this study, 

future work will address the relative contributions of intrinsic renal cells and 

circulating leukocytes towards the progression of NTS nephritis in the presence and 

absence of nfκb1 using bone marrow chimeric mice. 

Support for this comes from a similar study by Timoshanko and co-workers who 

demonstrated that intrinsic renal cells were the primary source of TNF-α in a murine 

of crescentic glomerulonephritis (Timoshanko et al., 2003). Following on from the 

observation that nfκb1 appeared to assist with resolution from renal injury after NTS 

administration the final part of this chapter used the mouse model of UUO to 

determine if nfκb1 contributed to the development of chronic renal fibrosis. 
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Interstitial expansion and tubular dilatation increased significantly in the obstructed 

renal cortices of WT and nfκb1
-/-

 mice, but was equivalent at day three and day ten 

UUO. After ten days of UUO, equivalent numbers of CD4
+ 

and CD8
+ 

cells and 

macrophages were observed in WT and nfκb1
-/-

 mouse kidneys. Extracellular 

deposition of collagen I and accumulation of α-SMA
+ 

myofibroblasts within the renal 

interstitium of nfκb1
-/-

 mice was equivalent to WT mice. These observations suggest 

that nfκb1 is not implicated in the recruitment of leukocytes and myofibroblasts 

during UUO and that nfκb1 does not influence ECM re-modelling with respect to 

collagen I accumulation. 

Despite previous studies demonstrating TGF-β activity during ureteric obstruction 

(Moon et al., 2006; Wang et al., 2005b), TGF-β mRNA expression did not appear to 

change in WT or nfκb1
-/- 

obstructed kidneys during the course of UUO in this study. 

It was expected that TGF-β mRNA expression would be detected in WT UUO 

mouse kidneys, since collagen I deposition and interstitial expansion increases. An 

explanation for the discrepancy in renal injury mediated by nfκb1 signalling during 

acute and chronic renal disease in this study remains incomplete. In the UUO model 

of chronic renal fibrosis, nfκb1 does not influence disease progression. Numerous 

articles in the literature highlight the multiple effects of NF-κB signalling during 

UUO. 

During the early stages of ureteric obstruction, ANG II up-regulates NF-κB 

activation, which in turn activates other downstream inflammatory and fibrotic 

mediators such as TNF-α and TGF-β (Grande et al., 2010; Ucero et al., 2010; Misseri 

and Meldrum, 2005). The pivotal role for NF-κB in progression of UUO was shown 

in studies where administration of ACE inhibitors or blockade of angiotensin 

receptors limited NF-κB activation (Esteban et al., 2004). 
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Additionally, other studies showed that administration of pharmacological inhibitors 

of NF-κB reduced the number of infiltrating T cells and macrophages during ureteric 

obstruction (Nakatani et al., 2002). Although a promising strategy for reducing renal 

injury, pharmacological NF-κB inhibition lacks specificity and could have a negative 

impact on NF-κB mediated resolution from injury. There is also the possibility that 

other NF-κB subunits are predominantly involved with the progression of UUO or 

that in the absence of nfκb1, different NF-κB subunits become active to compensate. 

A more specific approach could be the development of gene therapy to target other 

NF-κB dimers that have been identified as behaving in a deleterious manner during 

disease states. However, with respect to the current study the relative contribution of 

different NF-κB dimers during UUO would first require additional exploration. 

Future studies could be directed towards investigating the relative contributions of 

different NF-κB subunits during ureteric obstruction and other renal diseases. 

Additionally, since nfκb1 is reportedly concerned with the limitation of inflammation 

during renal injury and other organ-specific models of disease, it may be interesting 

to investigate renal recovery from ureteric obstruction in nfκb1
-/-

 mice, by surgically 

re-implanting the ureter into the bladder following an initial period of ureteric 

obstruction. 

Depending upon the nature of activation, nfκb1 is known to form active homo or 

heterodimers, each with their own distinct κB binding sites. Of these dimers, the 

nfκb1 homodimer is thought to inhibit gene expression by binding to κB sites on 

activated genes, preventing further activation by other NF-κB dimmers (Gilmore, 

2006). The results from this chapter demonstrate that nfκb1 is an important modifier 

of disease progression during acute glomerular nephritis, but not during obstructive 

nephropathy. 
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Future work will be directed towards exploring the participation of nfκb1 during 

recovery from UUO as well as establishing the relative contributions of intrinsic 

renal cells and circulating lymphocytes during NTS nephritis. 
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6 Conclusion 

Data from this thesis has demonstrated a prominent role for the immune system in 

mediating the progression of renal disease in mice. During early experimental 

obstructive nephropathy, this study demonstrated complement activation and 

intrarenal complement synthesis by tubular epithelial cells. Exploration of the precise 

mechanisms by which complement activation occurs during UUO, were 

unfortunately beyond the time constraints of the present study. However, one 

possibility is that an accumulation of tubular debris and cellular waste within the 

renal tubule lumina may cause activation of complement at the apical brush boarder 

membrane. The abundance of C3a detected in urine extracted from the obstructed 

kidneys of WT mice certainly supports this idea, as do previous studies 

demonstrating „tick over‟ of the alternative complement pathway at the apical 

membrane as well as the synthesis of complement proteins by tubular epithelial cells 

(Zipfel, 2006; Timmerman et al., 1996; Ichida et al., 1994). 

An investigation into complement regulatory proteins during this study demonstrated 

a decrease in gene expression for the membrane-bound regulators crry, DAF1 and 

CD59a. Whilst interesting, this observation adds little to the current knowledge of 

complement regulatory mechanisms during ureteric obstruction without further 

analysis of crry, DAF1 and CD59a protein expression and deposition. The increase 

in FI and FH observed during UUO, would suggest an attempt to regulate 

complement activation, however FH and FI are concerned with the regulation of both 

alternative and classical complement pathways, so it is not possible to determine 

their precise roles or mechanisms in the context of the present study. 
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Li and co-workers demonstrated a loss of crry protein expression in the murine 

model of IRI (Li et al., 1993), in which activation of the alternative complement 

pathway is well characterised. However, activation of complement via the classical 

pathway cannot be excluded in the UUO model. Further studies into the expression 

of classical complement pathway proteins such as C1, C2 and C4 are needed to 

verify the nature of complement activation. These could take the form of measuring 

gene and protein expression in WT mouse obstructed kidneys used in the present 

study or by inducing UUO in mice lacking the classical pathway components C1q 

and C4 or the alternative complement pathway proteins FB and FD. Another 

approach to future work could be to measure complement components present in 

urine taken from obstructed mouse kidneys using ELISA or western blot analyses. 

Overall, there were no significant differences in histological injury in C3
-/-

 mouse 

renal cortices compared to WT mice in the present study. However this observation 

contrasted with the findings of a previous adriamycin nephropathy study in C3
-/-

 

mice, which demonstrated a reduction in tubulointerstitial injury (Turnberg et al., 

2006). These differences are most likely due to the different mechanisms of injury in 

each of the experimental models. 

Up-regulation of TGF-β gene expression has previously been shown to be an 

important contributor towards fibrosis in experimental models of renal injury (Ma et 

al., 2003; Oliver, 2002; Miyajima et al., 2000). During experimental obstructive 

nephropathy in this study, C3 enhanced TGF-β gene expression, which was most 

likely to have contributed towards the accumulation of activated myofibroblasts and 

interstitial deposition of collagen. Coinciding with C3-mediated activation and 

expression of TGF-β, collagen I and α-SMA mRNA expression were also increased 

after ten days of UUO in this study. 
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In addition to the documented changes in TGF-β mRNA expression in the present 

study, it would be interesting to measure TGF-β protein in obstructed renal tissues 

and urine and also TGF-β receptor expression within the renal cortices of UUO 

kidneys. T cells and macrophages can produce and activate TGF-β however CD4
+
 T 

cell numbers were unchanged in the absence of C3. It could be that intrinsic renal 

cells are the main source of TGF-β during UUO, since elevated numbers of CD8
+
 T 

cells and macrophages did not enhance TGF-β gene expression in the absence of C3. 

Although the gene expression patterns of collagen III were determined in this study, 

the presence and expression of other ECM proteins such as fibronectin, heparin 

sulphate and laminins was not explored. In addition to this, the activities of other 

growth factors such as platelet-derived growth factor, fibroblast growth factor and 

hepatocyte growth factor were not measured in this study, however previous work in 

this field has demonstrated activity of numerous growth factors in other animal 

models of renal disease (Matsumoto and Nakamura, 2001; Creely et al., 1990). 

Quite unexpectedly and in contrast to the decrease in TGF-β, collagen I and α-SMA 

expression, the number of CD8
+
 T cells and F4/80

+
 macrophages counted in C3

-/-
 

mouse kidneys was significantly higher compared to those counted in WT mouse 

renal cortices. The exploration of different macrophage phenotypes was beyond the 

scope of this study however, it is plausible that the increase in F4/80
+
 macrophages is 

due to a predominant expression of one phenotype and that complement expression 

influences macrophage phenotype to some degree during experimental obstructive 

nephropathy. An environment containing a higher number of cells which are 

responsible for the phagocytosis and subsequent removal of damaged cells may also 

reduce the inflammatory response and ensuing fibrosis that is characteristic of 

tubulointerstitial renal injury. 
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The presence of more CD8
+
 T cells in the absence of C3 would suggest that CD8

+
 T 

cells are not contributing towards fibrosis during obstructive nephropathy and that 

activation of complement might actually be regulating the trafficking or the 

proliferation of CD8
+
 T cells during UUO. TNF-α and collagen III gene expression 

were also unusually high in C3
-/-

 day ten UUO mouse kidneys compared with WT 

mice. One possible explanation for this could be that expression of collagen III in the 

absence of C3 is either dependent upon or controlled by TNF-α. This observation has 

not been reported elsewhere and additional work would be required to prove this 

theory. Another reason for the unexpected observations for TNF-α and collagen III 

gene expression in the C3 UUO study and the reduced expression of TNF-α, TGF-β 

and collagen I in the nfκb1 UUO study compared to the C3 UUO study could be due 

to minor alterations in mRNA expression for the housekeeping gene β-actin during 

renal fibrosis. Although no obvious differences were visualised by agarose gel 

electrophoresis resolution of rtPCR products, a better strategy for the future might be 

to implement the screening of multiple housekeeping genes in order to compare the 

expression of genes of interest to the average mRNA expression of a few different 

housekeeping genes. 

The preliminary in vitro work using mouse PTECs presented in this thesis forms the 

basis for future work involving antisense silencing of C3 gene expression, but will 

need to be repeated in the future for the purpose of further optimisation and testing of 

candidate antisense oligonucleotides prior to any in vivo applications in the UUO 

mouse model. In the clinical setting, total inhibition of complement activation could 

predispose to infection and immune complex disease. 
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However, if tubular epithelial cells were the primary site of C3 production during 

ureteric obstruction, a strategy for inhibiting renal C3 synthesis could be used 

therapeutically in the future to delay the onset of ESRD. Aside from Boor and co-

workers‟ demonstration of terminal complement pathway activation during UUO, the 

role of complement during ureteric obstruction remains relatively uncharacterised at 

the present time. Following on from this thesis, there is still much work to be done to 

begin to piece together a picture of the complement system‟s involvement during 

obstructive nephropathy. 

The contribution of C3 during the development of injury following ureteric 

obstruction has been demonstrated in this thesis, but despite previous reports of TNF-

α and ANG II mediated NF-κB activity in animal models of ureteric obstruction, the 

NF-κB subunit nfκb1 did not influence disease expression during UUO as measured 

within the parameters set out in this study (Guo et al., 2001; Satoh et al., 2001). This 

finding contrasted with a recent study of liver fibrosis by Oakley and co-workers, in 

which nfκb1 (p50) was shown to limit the amount of injury mediated by TNF-α 

dependent recruitment of inflammatory cells in the carbon tetrachloride model of 

chronic liver fibrosis (Oakley et al., 2005). It is interesting to note that this particular 

model of chronic hepatic fibrosis is neutrophil-driven, as is the NTS model of acute 

renal injury. Perhaps the nfκb1 subunit is specifically concerned with the mediation 

of neutrophil chemotaxis and activation as well as regulating the production of 

neutrophil-derived cytokines and signalling during inflammation. Future work could 

address this hypothesis by investigating the role of the nfκb1 subunit in other well 

characterised models of neutrophil-mediated injury in the kidney, for example, renal 

IRI. 
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nfκb1 does not contribute towards injury in the UUO model at the time points 

measured in this thesis however; it is possible that other NF-κB subunits play a more 

dominant role in macrophage and T cell mediated inflammation, or that the activities 

of different subunits dominate at distinct times during the development of injury in 

this particular model. The contribution of individual NF-κB subunits towards injury 

in the UUO model could be explored further using mice deficient in other NF-κB 

subunits, for example RelA. If resolution from injury was another factor mediated by 

nfκb1 signalling, then this could be investigated using a surgical technique to re-

implant the ureter after a defined number of days of ureteric obstruction. 

nfκb1 contributed towards the resolution of injury as demonstrated in the NTS 

nephritis model in the latter part of this study. Data from the final chapter of this 

thesis supports previous studies which have shown that the NF-κB subunit nfκb1 

plays an important role in mediating the recovery from renal injury during NTS 

nephritis (Panzer et al., 2009; Kim et al., 2004; Sakurai et al., 1996). This further 

supports the idea of nfκb1 being associated with exerting anti-inflammatory activity 

during the resolution of injury and was demonstrated in this study. nfκb1 prevented 

the persistent up-regulation of gene expression of the pro-inflammatory mediators 

IL-6, TNF-α, S100A8 and S100A9. In the presence of nfκb1, proteinuria and 

glomerular injury were also reduced. Following on from the preliminary NTS 

nephritis model data presented in this thesis, ongoing work in the lab is now 

addressing the relative contributions of both intrinsic renal cells and infiltrating cells 

using bone marrow chimeric mice. 
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Although NF-κB inhibitors and antioxidant compounds have been used 

experimentally to ameliorate NF-κB activity in various disease models, a clearer 

understanding of the role of specific NF-κB subunits and the mechanisms by which 

they become activated during disease states, may provide more suitable targets for 

future therapies. 

The present study focused on the individual contributions of complement component 

C3 during UUO and nfκb1 during the progression of UUO and NTS nephritis 

however, there is increasing evidence to suggest that NF-κB signalling may actually 

regulate complement activation. In a recent study, Gancz and colleagues used mouse 

embryonic fibroblasts prepared from RelA and IKKα deficient mice to demonstrate 

that the NF-κB pathway promoted cell survival by contributing towards cell 

resistance to C5b-9 induced injury (Gancz et al., 2012). The authors speculated that 

their findings suggested crosstalk between NF-κB and c-jun terminal kinase (JNK) 

pathways and that NF-κB signalling may either directly activate the synthesis of 

C5b-9 elimination proteins or counteract the damaging effects of C5b-9. Prior to 

their 2012 study, the lead author had also demonstrated that JNK participated during 

the MAC-induced signalling cascade, resulting in rapid necrotic cell injury (Gancz et 

al., 2009). 

Cancer resistance to complement-dependent cytotoxicity was reviewed by Gancz and 

Fishelson around the same time (Gancz and Fishelson, 2009). The significance of 

this review is two-fold; firstly, NF-κB signalling has been shown previously to occur 

during periods of chronic inflammation which precede the development of cancer 

and secondly, NF-κB stimulates the expression of anti-apoptotic factors promoting 

tumour cell survival (Karin, 2006; Mann and Oakley, 2005). 
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With this in mind, it would be interesting to expand upon the role of the terminal 

complement pathway during UUO, by looking at cell surface expression of C5b-9 

and other complement regulatory proteins. In addition, NF-κB signalling mediated 

by different NF-κB subunits in the presence and absence of C3 could be measured. 

Data from this thesis suggests that the specific targeting of locally produced C3 and 

individual NF-κB subunits may potentially provide effective therapeutic strategies 

for reducing renal injury and delaying the progression to ESRD in the future. 

 



243 
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