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Abstract

In this thesis we use the stochastic Gross-Pitaevskii equation (SGPE), a finite

temperature model for weakly interacting ultracold Bose gases which fully in-

corporates density and phase fluctuations, to demonstrate ab initio quantitative

agreement with a number of quasi-one-dimensional experiments. To achieve this,

we propose and numerically solve a quasi-one-dimensional form of the SGPE,

supported by a self-consistent treatment of radially-excited thermal modes.

The quasi-one-dimensional stochastic Gross-Pitaevskii equation provides an

accurate finite temperature description of the dynamical equilibrium of the low-

energy axial modes of a Bose gas, assumed to be highly populated and thus

treated within the ‘classical field’ approximation. This treatment allows to self-

consistently account for transverse, quasi-one-dimensional effects, which makes

it a valid model in the regime where the chemical potential, µ, is approximately

equal to a few times the transverse excitation energy, ~ω⊥. In the regime where

the thermal energy, kBT , is also comparable to or larger than ~ω⊥, the transverse

excited states play an increasingly important role, and are treated here as one-

dimensional independent Bose gases at static equilibrium.

Firstly, we demonstrate that this is an excellentmodel for ab initio investigation

of equilibrium properties, such as density profiles and density fluctuations. This

is shown by accurately reproducing the in situ density profiles recently obtained

in the experiments of Trebbia et al. [Phys. Rev. Lett. 97, 250403 (2006)] and van

Amerongen et al. [Phys. Rev. Lett. 100, 090402 (2008)], and the density fluctuation

data reported by Armijo et al. [Phys. Rev. Lett. 105, 230402 (2010)].

Moreover, we perform an ab initio analysis of the temperature dependence

of the phase coherence of finite temperature, quasi-one-dimensional Bose gases

measured in the experiments of Richard et al. [Phys. Rev. Lett. 91, 010405 (2003)]

and Hugbart et al. [Eur. Phys. J. D 35, 155 (2005)]. We find very good agreement

across the entire observed temperature range in both experiments, and improve

upon previous theoretical modelling of the latter.
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Introduction
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Part I of this thesis is divided in two chapters entitled ‘Ultracold quantum Bose gases’

and ‘Theoretical background’.

In the first chapter we discuss the essential theoretical and experimental background to

the study of Bose-Einstein condensation in both uniform and trapped Bose gases. We then

turn to a description of the low-dimensional counterpart, highlighting the main differ-

ences with respect to the three-dimensional case. We mainly focus on systems whose dy-

namics is effectively one-dimensional, characterizing the interesting physics that emerges

in such systems. Finally we offer a broad comparative introduction to the results pre-

sented in this thesis, also highlighting the parameter regime of the various experiments

modelled in Part III in an appropriate graph and table.

In the second chapter we outline some of the theoretical approaches for modeling

weakly interacting Bose gases. Firstly we discuss the lowest order mean-field descrip-

tion, the Gross-Pitaevskii equation, strictly valid at T=0 K. We then turn to a descrip-

tion of finite-temperature mean-field models, in the static case: while the Hartree-Fock

and Hartree-Fock-Bogoliubov theories are symmetry-breaking approaches, the alternative

modified Popov theory additionally explicitly includes fluctuations in the phase. For the

dynamical case, we review the important aspects of the Zaremba-Nikuni-Griffin (ZNG)

approach, describing the coupled dynamics of the condensate and the thermal cloud; we

then introduce the number-conserving method, where the violation of atom number con-

servation, due to a broken-symmetry procedure, is carefully handled. Finally we conclude

this review of the theoretical methods with a very broad discussion of classical field (c-

field) methods, focussing on a particular implementation, the so-called Stochastic Pro-

jected Gross-Pitaevskii equation (SPGPE), given its close analogy to the theory used in

this thesis, which is in turn discussed in Part II.
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Chapter 1

Ultracold quantum Bose gases

The theoretical prediction of Bose-Einstein condensation (BEC) dates back to 1924,

when an Indian scientist, named Satyendra Nath Bose, derived through statistical

arguments the formula of black-body radiation (previously obtained by Planck in

a heuristic manner), by treating the photons as a gas of identical particles. The sci-

entific community was initially sceptical and did not accept these results. How-

ever, Albert Einstein recognised the value of Bose’s work and not only helped

him to publish it [1], but he also applied the same arguments to a gas of non-

interacting, massive particles [2]. The outcome of this work was the Bose-Einstein

statistics:

f(ǫi) =
1

e(ǫi−µ)/kBT − 1
, (1.1)

where f(ǫi) determines the statistical distribution of non-interacting bosons over

the energy states ǫi at temperature T , kB is the Boltzmann constant and µ is the

chemical potential of the system.

The interesting aspect about Bose-Einstein statistics is that Eq. (1.1) predicts

at low enough temperatures a macroscopic occupation of the lowest quantum

energy level, leading to the formation of a Bose-Einstein condensate.

1.1 Bose-Einstein condensation

Let us consider a three-dimensional (3D) gas of non-interacting massive parti-

cles: there are two relevant length scales in such a system which are the mean

interparticle distance and the thermal wavelength of each particle.

• The mean interparticle distance is the average distance between the parti-

cles in the gas and is given by n−1/3, where n is the number density for a 3D

system.

3



Chapter 1. Ultracold quantum Bose gases

• The thermal wavelength, λT, associated to every particle, is the de Broglie

wavelength at a specific temperature T . Loosely speaking λT represents the

uncertainty in the position of the particle, and is conventionally defined by:

λT =

√

2π~2

mkBT
, (1.2)

where m is the mass of the particle and ~ = h/2π is the reduced Planck’s

constant.

As we can see, λT is inversely proportional to the square root of T ; depending

on the value of the temperature and consequently on the relative size of the two

length scales mentioned above, we can distinguish two regimes:

• At high temperatures, such that the thermal de Broglie wavelength is much

smaller than the mean interparticle distance (i.e. λT ≪ n−1/3), the classical,

particle-like behaviour dominates and one can potentially follow the trajec-

tory of each individual particle.

• At low temperatures, the quantum mechanical behavior of the particles

comes into playwhen the particle wavelength becomes comparable with, or

smaller than the average distance between the particles (i.e. λT . n−1/3). In

this so-called quantum degenerate regime, the indistinguishability of par-

ticles becomes important and the notion of a particle trajectory no longer

makes sense.

Quantum mechanics accounts for the wave-like properties of the particles,

and classifies them into two distinct categories: fermions and bosons. This clas-

sification is based on the value of the spin of the particles and consequently on

their statistics. Fermions have a half integer value of spin, and are characterised

by Fermi-Dirac statistics, while bosons have an integer value of spin and are gov-

erned by Bose-Einstein statistics. Fermions follow the Pauli exclusion principle,

which precludes any pair of fermions to occupy the same quantum state simulta-

neously. Conversely, Bose-Einstein statistics allows any number of bosons to be

in the same energy level, and this is the essence of BEC.

At high temperatures, the effects of quantum statistics can be neglected, and

the distinction between fermions and bosons is not relevant: the mean occupa-

tion number in each quantum energy level is in fact much less than one, and

the particles behave according to the classical Boltzmann distribution. However,

when the temperature is lowered to a critical value (which depends on the ther-

modynamic parameters of the system), the wavelengths become comparable to

4



Chapter 1. Ultracold quantum Bose gases

the interatomic distance, and begin to overlap. When this occurs, the particles be-

come indistinguishable (roughly speaking they lose their ‘identity’), and exhibit

a wave-like behaviour. In a bosonic gas this leads to the onset of a macroscopic

occupation of a single quantum state, i.e. a number of particles, N0, shares the

same (lowest) energy level with decreasing temperature, with N0 → N (the to-

tal particle number in the system) in the limit T → 0K. We should emphasise

that this process (BEC), can also occur in an ideal bosonic gas: it is not caused

by interparticle interactions, but it is only a consequence of the specific quantum

statistics (i.e. the Bose-Einstein distribution) governing the particles. The BEC is

a phenomenon occurring in momentum space, when a finite fraction of the parti-

cles occupy the zero momentum state (p = 0). The criterion for the onset of BEC

in a 3D non-interacting uniform system, can be cast into the following form:

nλ3T ≥ ζ(3/2). (1.3)

In the above equation ζ(3/2) ≈ 2.612 is the Riemann zeta function, calculated

at the value 3/2. The parameter nλ3T is called the phase-space density, and gives

the number of particles contained in a volume equal to the cube of the thermal

de Broglie wavelength. Related to the above condition, one can derive the cor-

responding critical temperature, Tc, for a homogeneous gas, at which the Bose-

Einstein phase transition occurs:

Tc =
2π~2

mkB

(

n

ζ(3/2)

)2/3

. (1.4)

This is the highest temperature at which a finite fraction of the particles exists

in the zero momentum state (p = 0): for temperature higher than the critical

one, there is no energy state macroscopically occupied. The occupancy of the

lowest energy level, for a 3D uniform system, can then be cast as a function of

temperature via the expression:

N0

N
= 1−

(

T

Tc

)3/2

. (1.5)

In typical experiments with ultracold bosonic gases, the system is instead con-

fined in a trap, which to a good approximation can be considered harmonic:

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (1.6)

5



Chapter 1. Ultracold quantum Bose gases

where ω{x,y,z} are the harmonic oscillator frequencies in the x, y, z direction re-

spectively. The confinement makes the system non-uniform, and the critical tem-

perature, as well as the condensate occupancy have different expressions. For an

ideal harmonically trapped 3D Bose gas, the critical temperature is given by:

Tc =
~ω̄

kB

(

N

ζ(3)

)

≈ 0.94~ω̄N1/3, (1.7)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the oscillator frequencies.

The condensate occupancy for an ideal harmonically trapped 3D Bose gas is

characterised by the following expression:

N0

N
= 1−

(

T

Tc

)3

. (1.8)

Typical values for the critical temperature in a bosonic atomic gas are of the

order of 10−6K: at such temperatures the thermodynamical stable phase would

be the solid state [3]. However, in order to observe Bose-Einstein condensation,

it is necessary to maintain the system in the gaseous phase. This is achieved by

making the gas extremely dilute: densities of the order of 1013 − 1015 cm−3 are

required to prevent the formation of clusters (e.g. 3-body recombination) on the

time-scale of the experiment. For comparison, density of air at room temperature

is ∼ 1019 cm−3. In typical experiments the above conditions can be maintained

for a short time only (i.e. up to few minutes).

In these dilute systems, the atoms are on average far from each other, As a

result we are only interested in the long-range effect of the interatomic poten-

tial, and the exact details of it at short distances are unimportant. Moreover the

rate of two-body recombination is much higher than the three-body recombina-

tion, i.e. the probability that three or more particles interact simultaneously is

very low. The very low temperatures associated with such systems guarantee

that the high energy scattering channels (i.e. d-wave etc...) can be typically dis-

carded in the description of interactions: scattering only occurs via the s-wave

channel (corresponding to the angular momentum l = 0). According to standard

scattering theory, the interactions in such conditions can be described by a single

parameter, the binary s-wave scattering length, here denoted by as. The value of

the scattering length depends on the internal structure of the particular atomic

species; moreover, its sign determines whether the interactions are attractive (-)

6



Chapter 1. Ultracold quantum Bose gases

or repulsive (+). The condition of diluteness in a 3D system can then be cast as:

as ≪ n−1/3. (1.9)

This condition also implies that the gas is weakly-interacting, which however

does not mean that interactions do not have a significant effect.

1.2 Experimental realisation

In the decade following the publications by Bose and Einstein, there was large

scepticism on the validity of the prediction for BEC. However in 1938, Fritz Lon-

don suggested that the phenomenon of superfluidity in 4He was intimately re-

lated with Bose-Einstein condensation [4]. The superfluidity of 4He had been

discovered by Kapitza [5], Allen and Misener [6]: it was found that at the critical

temperature Tc = 2.17K, the liquid 4He undergoes a phase transition to a super-

fluid state characterised by the absence of viscosity. It was actually suggested,

that superfluid 4He was the first experimental realisation of Bose-Einstein con-

densation, although interactions in this system are very strong, and the system is

a liquid rather than a gas. In fact, Einstein first predicted the formation of BEC

for a non-interacting gas; in superfluid 4He however, the condensed fraction (i.e.

occupancy of the lowest energy state) is reduced by the strong interactions, and

approximately 10% of the system is condensed. In the following years this led

to the quest for a weakly-interacting gas, for which interparticle collisions are so

rare, that the system would remain in the gaseous phase even at very low tem-

peratures. For such systems, the condensed fraction would be much higher than

in superfluid 4He, and therefore more easily observed.

In 1959, Hecht suggested [7] that spin-polarised hydrogen could be the ideal

candidate for the first experimental realisation of BEC, since the characteristic in-

teractions were estimated to be weak, even at very low temperatures. This idea

was later confirmed by Stwalley and Nosanow in 1976 [8], stimulating numerous

experiments (e.g. by Silvera and Walraven [9]) to cool down spin-polarised hy-

drogen. Such experiments came quite close to the required degeneracy early on,

but the final step proved rather challenging. Following such work, several other

experiments were initiated with the more heavy alkali gases, for which it was

estimated that their three-body recombination rate would be lower than in spin-

polarised hydrogen. In 1995 BECwas first realised in a dilute vapour of rubidium

(87Rb) by the group of E. A. Cornell and C. E. Wieman at NIST [10], and subse-

7



Chapter 1. Ultracold quantum Bose gases

quently in sodium (23Na) by the group of W. Ketterle at the Massachusetts Insti-

tute of Technology (MIT) [11]: for this achievement, they were jointly awarded

the Nobel prize in 2001. This was soon followed by litium (7Li) in the group of

R. G. Hulet [12, 13], with the experimental realisation of BEC in spin-polarised

hydrogen realised a few years later in 1998 by the group of T. J. Greytak and D.

Kleppner at MIT [14].

The early pioneering work on spin-polarised hydrogen resulted in major ad-

vances in experimental techniques which are currently used in the experiments

with ultracold quantum gases. The experimental route to the realisation of BEC

in a weakly-interacting gas consists of different cooling stages, largely based on

the powerful methods of laser cooling developed since the 1970s, alongside mag-

netic trapping. A brief description of this procedure follows. Initially a beam of

atoms at a temperature of the order of hundreds of Kelvin is cooled down by a

so-called Zeeman slower, i.e. a laser propagating in the opposite direction of the

atomic beamwhich reduces the temperature by around two orders of magnitude.

The effect produced by the counter-propagating laser is to exert a radiative force

on the atoms due to the absorption of photons; since the subsequent photon emis-

sion is randomly directed, on average the net effect is a transfer of momentum in

the direction opposite to the beam. To take into account the Doppler effect, the

frequency of the laser has to be lower than the atomic resonance; however, to

compensate for the fact that the velocity of the atoms is gradually reducing, the

frequency has to be increased in time accordingly.

At temperatures as low as T ∼ 1K, the vapour can be loaded into a magneto-

optical trap (MOT), that combines the use of laser cooling andmagnetic trapping.

A typical scheme for a MOT is as follows: a pair of counter-propagating lasers is

arranged in each perpendicular direction, creating a so-called optical molasses,

in which the atoms are subjected to a viscous-like force; in addition, a magnetic

gradient is applied, such that it is zero at the centre of the trap and increases to-

wards the edges. Each of the six counter-propagating lasers is ‘red’ detuned (i.e.

the frequency is smaller than the atomic resonance) to account for the Doppler

effect; in this way the probability of absorbing a photon in the direction opposite

to the propagation of the atomic beam will always be greater than the one of ab-

sorbing a photon in the same direction. Themagnetic field confines the atoms in a

very small region (typically ∼ µm), by exploiting the interaction energy between

the field and the magnetic moment of the atoms. The use of alkali atoms is very

convenient for magnetic trapping, since their orbital configuration contains one

unpaired electron in the outer shell which makes their magnetic moment rela-

8



Chapter 1. Ultracold quantum Bose gases

tively big. In a MOT, there is a lower limit (called Doppler limit) on the attainable

temperature, which is of the order of∼ mK; this occurs when the cooling rate bal-

ances the heating rate due to absorption and random emission of photons within

the atomic vapour. However, temperatures below the Doppler limit can be re-

alised via a process called Sisyphus cooling: this exploits the degeneracy nature

of the energetic levels in an alkali atom, as well as the fact that the radiation field

created by counterpropagating lasers is inhomogeneous. Roughly speaking the

atoms tend to move up the potential ‘hill’ created by the lasers, and by doing so

they lose kinetic energy; this process is repeated several times, by continuously

optically pumping the atoms into a state where they are at the bottom of the po-

tential. The so-called recoil limit characteristic of this technique corresponds to

temperatures several orders of magnitude smaller than the Doppler limit, and is

given by the kinetic energy that an atom acquires by absorbing a photon.

The temperature (∼ µK) and phase-space density ( ∼ 10−5) attained through

the use of a MOT are still not enough to reach the conditions for BEC, for which

the phase space density should be of order 1. Therefore, a final cooling stage

is typically applied, known as evaporative cooling: roughly speaking this consists

of the selective removal of the high energy atoms from the trap, so that the re-

maining atoms rethermalise at a lower temperature (provided elastic collisions

dominate). This is done by using a radio frequency pulse which flips the spin of

high energy atoms so that they enter high-field seeking states, and are expelled

from the trap. This process must be performed slowly enough in order not to

lose too many atoms; in fact, there must remain a sufficient number of atoms

in the trap, to reach the density necessary for BEC to occur. This process is ap-

plied until temperatures of the order of nano-Kelvin are reached; in general, BEC

occurs at temperatures of < 10−6K, and densities of ∼ 1013 cm−3. In addition to
87Rb [10], 23Na [11] and 7Li [12, 13], several atomic species have been shown to un-

dergo Bose-Einstein condensation, such as 85Rb [15], 41K [16], 4He [17], 174Yb [18],
133Cs [19], 52Cr [20], 84Sr [21, 22], 86Sr [23], 88Sr [24], 40Ca [25], 164Dy [26].

1.3 Low-dimensional geometry

In the previous sections we have seen that an ideal uniform bosonic gas under-

goes a phase transition at a specific critical temperature, whereby a large frac-

tion of the atoms condense in the lowest energy state. This was explicitly dis-

cussed for a three-dimensional Bose gas; the situation changes drastically for

two- and one-dimensional systems. For a homogeneous system in two dimen-

9



Chapter 1. Ultracold quantum Bose gases

sions, the phenomenon of BEC only occurs at T = 0K (i.e. there is no macro-

scopic occupation at non-zero temperature), while for a one-dimensional weakly-

interacting system, BEC does not take place at any temperature. This is be-

cause long-wavelength excitations are more pronounced in lower dimensions,

and tend to destroy the coherence in the system: this is essentially the content

of the Mermin-Wagner-Hohenberg theorem [27, 28], which states that no spon-

taneous symmetry breaking occurs for finite temperature systems in dimensions

smaller or equal than two. However the theorem is strictly valid in the thermody-

namic limit, i.e. N → ∞, V → ∞, and N/V → constant, where V is the volume

of the gas.

In a low-dimensional inhomogeneous (e.g. harmonically trapped) weakly in-

teracting Bose gas instead, a condensate can exist provided the external trapping

sufficiently restricts the size of the system [29–32]. A magneto-optical trap can

be modelled, to a good approximation, with a harmonic potential of the form of

Eq. (1.1). The ability to manipulate the frequencies of the harmonic potential of-

fers the possibility to change the spatial extent of the system in each direction sep-

arately, thus rendering it anisotropic, and consequently new interesting physics

emerges. The dimensionality in fact plays a crucial role in such systems in deter-

mining the properties of these gases.

In three-dimensional harmonic traps, as discussed before, the system under-

goes a phase transition1 which leads to the appearance of coherence across the

entire sample, as experimentally demonstrated in [34–37]. By setting the trap fre-

quency in one direction much larger than the others, the effective dynamics of the

system is reduced to two dimensions [38–41], with many interesting phenomena

occurring, such as the Berezinskii-Kosterlitz-Thouless transition [42–49]. Increas-

ing the trap frequency in a further direction allows to realise highly elongated

traps, where the interesting physics occurs in the axial direction, and the system

is effectively one-dimensional (1D) [31, 32, 38, 50–80].

In a 1D set-up, one may obtain [31] either a weakly-interacting system, or, for

rather low densities2, a strongly-interacting Tonks-Girardeau gas [55–57, 81]. The

interactions can be parametrised by the Lieb-Liniger coupling constant (essen-

tially giving the ratio of interaction energy to kinetic energy [82]), which in one

1 Strictly speaking a phase transition only occurs in the thermodynamical limit, which for a 3D
harmonic trap is defined asN → ∞, ω → 0, and Nω3 → constant [33].

2 such that nlcor ≪ 1, where 1/n is the interparticle distance and lcor = ~/
√
mg1dn is the

correlation length [31].
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dimension takes the form [31, 83]:

γint =
mg1d
~2n

, (1.10)

where n is the density of the gas in 1D. We notice that the strongly interacting

regime, γint ≫ 1, occurs, rather counterintuitively, for low densities. In this

thesis however, we deal with weakly-interacting Bose gases, characterised by

the condition3 γint ≪ 1 (typical values of γint evaluated at the trap centre are

γint ∼ (10−5 − 10−2), see Table 1.1 for more details).

Provided as ≪ l⊥, where l⊥ =
√

~/mω⊥ is the radial harmonic oscillator

length, the scattering, parametrised by as, is still considered three-dimensional,

and the effective interaction coupling constant g1d reduces to [84, 85]:

g1d =
2~2as
ml2⊥

. (1.11)

The above interaction parameter can also be derived by integrating the 3D

effective interaction, g3d = 4π~2as/m, over the radial density profile which is

assumed to be Gaussian. The finite temperature phase diagram of a weakly in-

teracting 1D Bose gas [31, 62, 86] is more complex than that of a 3D gas, due to

a separation in the temperatures for the onset of density and phase fluctuations.

Density fluctuations are typically suppressed at higher temperatures than phase

fluctuations, allowing for the formation of a so-called quasi-condensate [87]. In

such systems, two characteristic temperatures become relevant, associated with

the onset of phase (Tφ) and density (Td) fluctuations [31].

The degeneracy temperature, Td, for a harmonically confined interacting gas

in 1D, takes the form [31]:

Td =
N~ωz
kB

. (1.12)

For T > Td we have a classical gas where density fluctuations are pronounced (as

will become apparent from Eq. (1.13), phase fluctuations are also pronounced in

this regime).

For temperatures Tφ < T < Td instead, density fluctuations are relatively sup-

pressedwith respect to phase fluctuations and the system reduces to a condensate

with fluctuating phase known as a quasi-condensate [87]. In 1D, Tφ is given by

3 Notice that for a inhomogeneous Bose gas γint ≡ γint(z), i.e. it varies with the position z in
the trap.
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the expression4 [31]:

Tφ =
N(~ωz)

2

kBµ
. (1.13)

Loosely speaking, Tφ corresponds to the temperature where the off-diagonal one-

body density matrix (first-order correlation function) g(1)(z, z′), decays to zero at

the edge of the quasi-condensate [32, 86, 88].

Thus, for T < Tφ, and clearly Tφ ≪ Td in relevant systems, both density and

phase fluctuations are suppressed and the gas becomes in some sense a ‘true’ con-

densate [31]. Notice that the expression of Eq. (1.13) for Tφ will be revisited and

further analysed in Chapters 5 and 6, to closely follow related definitions used in

the experiments where phase fluctuations are investigated (see also Appendix B).

In practice Td is a rather high temperature, and in order to determine where

the crossover to quasi-condensation occurs it is more convenient to use another

characteristic temperature, which we here denote as Tqc [89]:

Tqc =
~ωz
kB

N

ln (2N)
. (1.14)

In the work by Ketterle and van Druten [89] it was found that, at such temper-

ature, a macroscopic ground state occupation occurs for a trapped 1D ideal gas.

The dependence of the crossover temperature Tqc on the interactions was also

studied in the work by Al Khawaja et al. [90], in which it was found that Tqc in-

creases with interactions.

1.3.1 Weakly-interacting quasi-one-dimensional Bose gases

The pure one-dimensional limit discussed in the previous section is characterised

by the condition that both the chemical potential of the gas µ, and the thermal

energy kBT , are much smaller than the transverse excitation energy ~ω⊥ (while

still focusing here on the limit of a weakly-interacting gas in the sense of γint ≪
1). This means that the transverse motion is reduced to a zero-point oscillation,

as the energy is not sufficient to populate the excited transverse modes of the

gas. Although experiments can nowadays be engineered to produce gases which

are both weakly interacting and practically 1D [55, 59–61, 63, 65, 68, 72, 91, 92],

the early experiments performed did not satisfy these conditions so well, and

the system was instead in the 1D-3D crossover regime [32, 51–54, 58, 64, 93–95],

henceforth referred to in this thesis as ‘quasi-1D’.

4Corresponding expression for highly elongated 3D systems [32] is given in Appendix B.
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In such quasi-1D systems, characterised by µ, kBT ∼ ~ω⊥, low-energy ther-

mal excitations of the axial modes play a crucial role, as they tend to destroy the

coherence in the sample [31, 64, 86–88, 90, 96–102]. Such excitations may have

wavelengths greater than the transverse extent of the system, therefore acquiring

a one-dimensional (1D) character [51–54, 58–61, 63–65, 68, 72, 91, 93–95].

Given the central role played by fluctuations in a finite temperature quasi-1D

Bose gas, it is crucial to include these effects in order to give an accurate theoreti-

cal description of the entire weakly-interacting regime.

1.3.2 Early experiments

Anumber of experiments have probed the physics of highly-elongated finite tem-

perature weakly-interacting Bose gases at equilibrium. In 2001 Görlitz et al. [38]

realised BECs of sodium atoms 23Na, which were brought to transition from the

3D Thomas-Fermi regime (see Section 2.1.1) into the 2D and 1D regime, by reduc-

ing the number of atoms in the system, through interaction with a thermal beam.

In a separate experiment, Greiner et al. [103] created 1D Bose gases of 87Rb stored

in thousands of individual tubes formed with a 2D optical lattice; the phase co-

herence properties of this quantum system were also studied by releasing the

atoms and observing the interference pattern.

Fluctuations of the phase in highly elongated BECs were first experimentally

observed in 2001, in the experiment by Dettmer et al. [51]; it was found that after

the ballistic expansion, phase fluctuations, expected to exist in the trapped sys-

tem, transformed into density ripples. A different technique was used by Hell-

weg et al. [53], who investigated the phase correlation properties by measuring

the spatial correlation function of very elongated 3D 87RbBEC. Thiswas achieved

by observation of the interference pattern generated by two displaced copies of

the initial condensate (see also Ref. [58]). The physics of these systems has also

been studied bymeans of Bragg spectroscopy, for the purpose of investigating the

momentum distribution; in Richard et al. [54] it was found that phase fluctuations

lead to a broadening of the momentum distribution. While in the fully coherent

case, the momentum distribution tends to a Gaussian-like behaviour [104], in the

phase-fluctuating regime this tends to a Lorentzian-like shape [64]. In 2005, Hug-

bart et al. [95] used a similar technique to the one adopted in the earlier work by

Hellweg et al. [53], to probe highly elongated 3D BECs, in a regime of lower T/Tφ

such that the effect of phase fluctuations is somewhat reduced compared to the

earlier experiment by Richard et al. [54]. Notice that the experiments by Richard

et al. [54] and Hugbart et al. [95] (in the group of A. Aspect) are investigated in
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Part III of this thesis. Further experiments have also analysed the coherence prop-

erties of nonequilibrium BECs, by means of a condensate-focusing technique (see

Shvarchuck et al. [52]).

Direct observation of density fluctuations was performed in 2006 in the exper-

iment by Estève et al. [63], via in situmeaurements of highly elongated Bose gases

confined in atom chips; subsequently in 2010, Armijo et al. [61] carried out a simi-

lar experiment, and density fluctuations were found to saturate in the presence of

a quasi-condensate — see Section 3.7.1. First realised in 2001 [76, 77], atom chips

are microfabricated circuits, particularly suitable for realising highly confining

potentials to achieve one-dimensional systems [80]. The technology of atom chips

was also used to realise atom interferometers, as achieved in the experiment by

Schumm et al. [68], and to perform in situmeasurements of density profiles of 1D

Bose gases at the crossover between the classical and quasi-condensate regimes

[59, 60].

An accurate analysis of the coherence properties in such systems is then nec-

essary for potential applications, such as matter-wave interferometry [66–68, 70–

74, 105, 106], atom chips [69, 75–80] and atom lasers [35, 107–110].

1.4 Thesis overview

This thesis is divided into three main parts, consisting of a generic introduction

to theories for modeling ultracold Bose gases (Part I), a detailed description (Part

II) of the model used to reproduce the results from experiments, and a direct ab

initio comparison to five independent experiments (Part III).

Part I - Introduction

In Chapter 2, we provide an essential theoretical background for modeling Bose

gases, starting from a review of the zero-temperature Gross-Pitaevskii model.

We then describe the main aspects of finite-temperature approaches, where the

non-condensed part, i.e. the thermal cloud, is treated statically (Hartree-Fock ap-

proach, modified Popov theory [97]) and dynamically (Zaremba-Nikuni-Griffin

theory [111]). Further finite-temperature approaches are discussed, namely the

number-conservingmethod [112–114], and classical field (c-field) techniques [115],

focusing on the so-called stochastic Projected Gross-Pitaevskii equation.

Part II - A Self-Consistent Quasi-1D Stochastic model
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In Chapter 3, we introduce the Stochastic Gross-Pitaevskii equation (SGPE) [116,

117], which is a Langevin equation that takes the form of a dissipative nonlinear

Schrödinger equation in the presence of dynamical noise added so as to mimick

the effect of fluctuations.

We then describe our extended quasi-one-dimensional form of the SGPE [118,

119], which is suitable to describe the axial modes of a weakly interacting Bose

gas, in a regime where the main dynamics occur along one dimension, but trans-

verse effects also need to be accounted for. The quasi-1D SGPE is here supported

by a static treatment of the transverse excited modes, which are treated as inde-

pendent Bose gases at equilibrium, and the numerical scheme for solving these is

discussed.

Part III - Quantitative Ab Initio Comparison to Quasi-1D Experiments

In this part of the thesis we demonstrate that our model is an excellent tool for

ab initio studies of quasi-one-dimensional weakly-interacting Bose gases. The pa-

rameter regimes of the five experiments investigated in this part are shown in

Figure 1.1 and in Table 1.1.

Chapter 4 deals with the regime µ < ~ω⊥. Here we show that this model

accurately reproduces in situ densities (hollow symbols in Fig. 1.1) and density

fluctuations (filled red squares in Fig. 1.1) in atom chip experiments of the groups

of I. Bouchoule [59, 61] and N. J. van Druten [60].

• The experiment by Trebbia et al. [59] (in the group of I. Bouchoule) in-

vestigated the physics of a quasi-one-dimensional weakly-interacting Bose

gas in harmonic trap. Density profiles were measured in situ, at four val-

ues of the temperature, and it was observed that the gas enters the quasi-

condensate regime. The theoretical analysis used in [59] was based on a

3D Hartree-Fock approach, which failed to predict the existence of a quasi-

condensate in the center of the atomic cloud.

We demonstrate that the model described in Part II provides excellent pre-

diction of the experimental results at all temperatures, thereby improving

on previous theoretical analysis [59].

• The experiment by van Amerongen et al. [60] (in the group of N. J. van

Druten) also dealt with quasi-one-dimensional weakly-interacting Bose gases,

in harmonic trap. The system, realised on an atom chip, was investigated at
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the crossover between the classical and the quasi-condensate regimes and

spatial density profiles were measured in situ. The analytical model used

in [60] to interprete the experimental results was based on the Yang-Yang

thermodynamics, and provided very good agreement.

We further probe the model explained in Part II, undertaking a compari-

son with the experimental density profiles of [60], finding excellent agree-

ment across the entire temperature regime. This test indirectly provides an

insight on the matching between the predictions of the model explained

in Part II and those from the Yang-Yang model; this agreement is further

demonstrated by showing that the values of the numerical chemical poten-

tial in the SGPE are identical to those from the Yang-Yang model.

• The experiment by Armijo et al. [61] (in the group of I. Bouchoule) investi-

gated the density fluctuations in a quasi-one-dimensional weakly-interacting

Bose gas, confined on atom chip. The second- and third-order correlation

functions were evaluated at the crossover between the ideal gas and the

quasi-condensate regimes. Density fluctuations were measured by investi-

gating the shot-to-shot variations of atom number in several independent

experimental realisations; it was found that density fluctuations saturate in

the presence of a quasi-condensate at low enough temperature. The analyt-

ical interpretation, based on a modified Yang-Yang model [61], recovered

the experimental results in the ideal gas regime, but predicted too great a

reduction of the density fluctuations in the lowest temperature case investi-

gated.

The quasi-1D SGPE model (Part II) gives instead excellent agreement with

both second- and third-order experimental correlation functions at all tem-

peratures. The numerical predictions are shown to provide a smooth crossover

between the two regimes investigated, in perfect agreement with the corre-

sponding mean-field results (ideal gas, quasi-condensate), only valid in the

appropriate limits.

The work presented in this chapter has been previously published as:

Quantitative study of quasi-one-dimensional Bose gas experiments via the stochastic

Gross-Pitaveskii equation

S. P. Cockburn, D. Gallucci and N. P. Proukakis,

Phys. Rev. A, 84, 023613 (2011).

This work was undertaken jointly with Stuart Cockburn — who was leading the

simulations — and its aim was to address the question of the optimummodel for
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analysing the experiments which form the key aspect of this thesis.

In the regime µ ∼ few ~ω⊥, we also demonstrate excellent reconstruction of

two earlier quasi-one-dimensional phase fluctuation experiments in the group of

A. Aspect [54, 95] (respectively denoted by stars and triangles in Fig. 1.1).

• Chapter 5 deals with the experiment by Richard et al. [54], who investigated

the phase coherence properties of a 3D elongated weakly-interacting Bose

gas confined in harmonic trap. In order to do so Richard et al. [54] mea-

sured the axial momentum distribution by means of Bragg spectroscopy,

and extracted the coherence length from the measure of the half-width at

half-maximum of the momentum profile. The regime of relatively ‘strong’

phase fluctuation, 6 < T/Tφ < 28, was analysed and the coherence length

was found to be smaller than the quasi-condensate extent.

By using the quasi-1D SGPEmodel (Part III) we investigate the temperature

dependence of the phase coherence length; in particular we undertake a

point-by-point analysis, and find excellent agreementwith the experimental

values of the coherence length (scaled to the size of the system), reported

here as a function T/Tφ.

• Chapter 6 deals with the experiment by Hugbart et al. [95], who investi-

gated the regime of relatively ‘weak’ phase fluctuations 0.8 < T/Tφ < 8.

The spatial correlation function of a 3D elongated weakly-interacting Bose

gas was investigated by means of an interferometric technique and the co-

herence length was finally extracted. The temperature dependence of the

scaled coherence length was then investigated. The model used in [95] to

reproduce the experimental results provided with predictions in line with

the experimental trend, but were affected by a systematic shift.

We further compare the quasi-1D SGPE model (Part II) with these experi-

mental predictions, and find instead very good agreement across the tem-

perature range investigated. Our findings however span a slightly smaller

range of T/Tφ, an issue that we also address here. This is partially resolved

by extracting the values of T/Tφ with an alternative method, based on the

analysis of the distributions of the phase in our numerical simulations.

The work presented in these chapters has been previously published as:

Phase coherence in quasicondensate experiments: An ab initio analysis via the stochastic

Gross-Pitaevskii equation

D. Gallucci, S. P. Cockburn and N. P. Proukakis,
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Phys. Rev. A, 86, 013627 (2012).

In order to identify the parameter regime of the five experiments discussed in

Part III of this thesis, we report in Figure 1.1 the value of the thermal energy kBT ,

against the numerical chemical potential µ, (each scaled to the transverse excita-

tion energy ~ω⊥), for all the data considered in the experiments. The vertical solid

line separates the thermal (µ < 0) and quasi-condensate (µ > 0) regimes. The ver-

tical dashed line instead divides the experiments for which µ < ~ω⊥ (Trebbia et

al. [59] (hollow, black circles), van Amerongen et al. [60] (hollow, blue diamonds)

and Armijo et al. [61] (filled, red squares) from those for which µ ∼ few ~ω⊥ (i.e.

Richard et al. [54] (brown stars) and Hugbart et al. [95] (filled, violet triangles)).

The horizontal dashed line is only a guide to separate the data for which the

transverse excited modes are not significantly populated (kBT < ~ω⊥) from those

for which these states are also thermally populated (kBT > ~ω⊥).

In Table 1.1 we report approximate characteristic temperatures and interaction

parameters as extracted from our theoretical analysis, presented in this thesis.

Experiment T/Tφ T/Td T/Tqc γint(0) g1d[~ωzlz]

Trebbia et al. [59] 45− 83 ∼ 0.04 ∼ 0.4 ∼ 10−3 0.65
van Amerongen et al. [60] 26− 100 0.08− 0.09 0.76− 0.83 ∼ 10−2 1.05

Armijo et al. [61] 35− 100 0.05− 0.06 0.5− 0.7 ∼ 10−2 1.25
Richard et al. [54] 6 – 28 ∼ 10−3 ∼ 0.07 ∼ 10−4 0.32
Hugbart et al. [95] 0.8 – 8 ∼ 10−3 ∼ 10−2 ∼ 10−4 0.13; 0.24

Table 1.1: Approximate values (or ranges) of the reduced temperaturesT/Tφ, T/Td, T/Tqc
and interaction parameters γint, g1d, for the experimental data considered [54, 59–61, 95]
(based on the theoretical analysis presented in this thesis).
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Figure 1.1: Phase diagram showing the regimes of all experimental data considered in
this thesis (based on the theoretical analysis discussed in Chapter 3). Hollow symbols
indicate density profiles data of Trebbia et al. [59] (circles) and van Amerongen et al. [60]
(diamonds), whereas filled symbols indicate the density fluctuation data of Armijo et
al. [61] (squares), and the phase fluctuation data of Richard et al. [54] (stars) and Hugbart
et al. [95] (triangles).
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Chapter 2

Theoretical background

A dilute interacting Bose gas confined in an external potential can be described

by the following Hamiltonian [120]:

Ĥ =

∫

dr Ψ̂ †(r, t)ĥ0(r)Ψ̂ (r, t) +
1

2

∫ ∫

drdr′ Ψ̂ †(r, t)Ψ̂ †(r′, t)V (r− r
′)Ψ̂ (r′, t)Ψ̂(r, t).

(2.1)

This is written in the occupation number representation (second quantised form),

in terms of Bose field operator Ψ̂ †(r, t) ( Ψ̂ (r, t))1, which respectively creates (an-

nihilates) a particle at position r and time t [122]. The single particle operator

ĥ0(r) is defined by ĥ0(r) = −~
2∇2/2m+ V ext(r, t), where V ext(r, t) is the external

potential confining the system. The use of the exact two-body interatomic po-

tential V (r − r
′) is valid under the assumption that the gas is extremely dilute

(|as| ≪ n−1/3), as the probability that three- (or many-) body collisions occur is

very low [123]. The factor 1/2 avoids double counting of the interaction between

pairs of particles.

For dilute, weakly-interacting Bose gases at very low temperature, the ex-

act two-body potential V (r − r
′) can be replaced by a contact interaction of the

form [120]:

V (r− r
′) = g3dδ(r− r

′), (2.2)

where g3d = 4π~2as/m is the effective interaction strength. Under this approxi-

mation the Hamiltonian of Eq. (2.1) takes the form :

1Ψ̂ †(r, t) =
∑

i
â†
i
(t)ϕ∗

i
(r, t)

(

Ψ̂(r, t) =
∑

i
âi(t)ϕi(r, t)

)

, where â†
i
and âi are the single-

particle creation and annhilation operators [121] , and ϕi(r, t) are single-particle wavefunctions.
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Ĥ =

∫

dr Ψ̂ †(r, t)ĥ0(r)Ψ̂(r, t) +
g3d
2

∫

dr Ψ̂ †(r, t)Ψ̂ †(r, t)Ψ̂(r, t)Ψ̂(r, t). (2.3)

In order to study the dynamics of the system, one can solve the equation of

motion for the Bose field operator, which can be cast in the ‘Heisenberg’ picture 2

as follows:

i~
dΨ̂(r, t)

dt
= [Ψ̂ (r, t), Ĥ], (2.4)

where [· · · ] indicates the commutator. In order to work out an expression for the

commutator in Eq. (2.4), it is useful to recall the commutation relations for the

bosonic field operators:

[Ψ̂(r, t), Ψ̂ †(r′, t)] = δ(r− r
′), [Ψ̂(r, t), Ψ̂(r′, t)] = [Ψ̂ †(r, t), Ψ̂ †(r′, t)] = 0. (2.5)

The commutator in Eq. (2.4) can be expanded as (we drop the time dependence

for compactness):

[Ψ̂ (r), Ĥ] =

= Ψ̂ (r)

(
∫

dr′ Ψ̂ †(r′)ĥ0(r
′)Ψ̂(r′)

)

−
(
∫

dr′ Ψ̂ †(r′)ĥ0(r
′)Ψ̂ (r′)

)

Ψ̂(r)+

g3d
2

[

Ψ̂ (r)

(
∫

dr′ Ψ̂ †(r′)Ψ̂ †(r′)Ψ̂ (r′)Ψ̂(r′)

)

−
(
∫

dr′ Ψ̂ †(r′)Ψ̂ †(r′)Ψ̂ (r′)Ψ̂(r′)

)

Ψ̂ (r)

]

=

∫

dr′ Ψ̂ (r)Ψ̂ †(r′)ĥ0(r
′)Ψ̂(r′)−

∫

dr Ψ̂ †(r′)Ψ̂(r)ĥ0(r
′)Ψ̂ (r′)+

g3d
2

[
∫

dr′ Ψ̂(r)Ψ̂ †(r′)Ψ̂ †(r′)Ψ̂(r′)Ψ̂ (r′)−
∫

dr′ Ψ̂ †(r′)Ψ̂ †(r′)Ψ̂(r)Ψ̂(r′)Ψ̂(r′)

]

=

∫

dr′ [Ψ̂ (r), Ψ̂ †(r′)]ĥ0(r
′)Ψ̂(r′) +

g3d
2

∫

dr′ [Ψ̂ (r), Ψ̂ †(r′)Ψ̂ †(r′)]Ψ̂(r′)Ψ̂(r′).

(2.6)

By exploiting the commutation relations of Eq. (2.5) and the standard properties

of commutators, the equation of motion for the Bose field operator becomes:

i~
dΨ̂(r, t)

dt
= ĥ0Ψ̂ (r, t) + g3dΨ̂

†(r, t)Ψ̂(r, t)Ψ̂(r, t). (2.7)

Bose condensed systems at very low temperature are typically characterised

2In this picture all the time-dependence is incorporated in the operators, whereas the state
vectors are time-independent.
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by the presence of a condensate surrounded by a thermal cloud; the former cor-

responds to the macroscopic occupation of the single (lowest) quantum state,

whereas the latter refers to the particles lying in the excited quantum states above

the condensate. Such a description can be mathematically reflected with a split

of the bosonic field operator into two contributions as follows [124]:

Ψ̂(r, t) = φ̂(r, t) + δ̂(r, t). (2.8)

Here the condensate is contained into the operator φ̂(r, t) = â0(t)ϕ0(r, t) , while

the operator δ̂(r, t) =
∑

i 6=0 âi(t)ϕi(r, t) accounts for both thermal and quantum

fluctuations. In the limit of a large number,N0, of condensed atoms (i.e. N0 ≃ N),

where N is the total atom number in the system, one can perform the so-called

Bogoliubov replacement [125] through which â0 ≃
√
N0. The condensate con-

tribution can therefore be treated as a classical field, and all the operator depen-

dence is contained into the fluctuation operator:

Ψ̂(r, t) = φ(r, t) + δ̂(r, t), (2.9)

with φ(r, t) =
√
N0ϕ0(r, t) often named the ‘condensate wavefunction’. Perform-

ing the above approximation implies fixing the phase of the condensate, techni-

cally known as a symmetry-breaking procedure, which leads to the violation of

particle number conservation [120]. In fact, since N0 ≫ 1, it is assumed that the

addition or removal of one particle in the condensate does not affect the system,

which implies that the states |N〉, |N − 1〉 and |N + 1〉 are physically equivalent

[126].

A direct consequence is that the ensemble average of the bosonic field oper-

ator is equivalent to the condensate wavefunction, that is 〈Ψ̂(r, t)〉 = φ(r, t) 6= 0,

which means that the average is a well defined value [120]. In this case the sym-

bol 〈· · · 〉 indicates the average between two states, where the left one contains

one atom less than the right one [126].

At this stage one can substitute the approximation of Eq. (2.9) into the Heisen-

berg equation (Eq. (2.7)), and then take the mean-field value of this equation; this

leads to an equation of motion containing products of two or three operators δ̂.

Several levels of approximation arise then, depending on the order retained in

the equation of motion; in the next section we discuss the lowest-order mean-

field theory, corresponding to a zero-temperature treatment.
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2.1 T = 0: Gross-Pitaevskii equation (GPE)

In the limit of very low temperature (T = 0), and to the lowest order of approx-

imation, practically all the atoms are in the condensate (N = N0); one can there-

fore neglect the operator for thermal and quantum fluctuations (i.e. δ̂ = 0), and

simply replace the bosonic field operator Ψ̂ (r, t) with the classical wavefunction

φ(r, t). The Heisenberg equation then takes the form of a nonlinear Schrödinger

equation, known as the Gross-Pitaevskii equation [126, 127]:

i~
∂φ(r, t)

∂t
= [ĥ0(r, t) + g3d|φ(r, t)|2]φ(r, t). (2.10)

This equation represents the lowest order mean-field approximation, and it is

formally valid only at T = 0; however it describes very well a wide range of phe-

nomena of BECs up to T ≈ Tc/2. The nonlinear character of the equation is given

by the presence of the mean-field term, g3d|φ|2, which describes the interactions

among the particles in the condensate.

The GPE (Eq. (2.10)) has both static and dynamical solutions. In order to seek

for the stationary solution, characterising the ground state, one can eliminate the

time via the replacement:

φ(r, t) = φ0(r)e
−iµt/~ (2.11)

and this yields the time-independent GPE [120]

µφ0(r) =

[

− ~
2

2m
∇2 + V ext(r) + g3d|φ0(r)|2

]

φ0(r). (2.12)

Here µ is the chemical potential, representing the energy necessary to add

(remove) one particle from the condensate (i.e. µ = E(N)− E(N − 1) ∼ ∂E/∂N)

[126].

2.1.1 Thomas-Fermi approximation

We now consider a typical approximation to the ground state solution of a con-

densate confined in harmonic trap:

V ext(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.13)

where ωx,y,z is the frequency of the trap in each direction. It can be shown that

for sufficiently large clouds and repulsive interactions (as > 0), the kinetic term

in Eq. (2.12) can be neglected, as it is smaller than the interaction and potential
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energies [127]. Under this so-called Thomas-Fermi approximation, Eq. (2.12) can

be rewritten as:

[V ext(r) + g3d|φ0(r)|2]φ0(r) = µφ0(r). (2.14)

The approximate density of the ground state is then given by:

|φ0(r)|2 =
µ− V ext(r)

g3d
. (2.15)

This takes the form of an inverted parabola in the central region of the trap

(within the Thomas-Fermi radius defined as R2
x,y,z = 2µ/mω2

x,y,z), and it is de-

fined as long as µ ≥ V ext.

It is interesting to notice that under such an approximation the chemical po-

tential is the same everywhere in the trap, and it is given by the sum of two

contributions, i.e. the interaction term and the external potential confining the

system [127]:

µ = g3d|φ0(r)|2 + V ext(r). (2.16)

2.1.2 Elementary excitations

In order to study the dynamics of the condensate, one can seek small amplitude

oscillations. Typically one looks for solutions of the form [120]

φ(r, t) = e−iµt/~[φ0(r) + δφ(r, t)], (2.17)

where δφ(r, t) represents small excitations on top of the condensate wavefunction.

One can then use the above ansatz into the time dependent GPE of Eq. (2.10): if

δφ(r, t) ≪ φ0(r), it is possible to linearise the equation, keeping only terms up to

the first order in δφ(r, t). By subtracting the time independent GPE of Eq. (2.12)

we then obtain:

i~
∂

∂t
δφ(r, t) = [ĥ0 + 2g3d|φ0|2 − µ]δφ(r, t) + g3dφ

2
0δφ

∗(r, t). (2.18)

One can assume excitations of the form [120]:

δφ(r, t) =
∑

i

[ui(r)e
−iωit + v∗i (r)e

iωit], (2.19)

where ωi is the frequency of the oscillation. Inserting the above into Eq. (2.18),

and collecting all the terms containing prefactors like eiωit and e−iωit yields the

following pair of equations, known as the (zero-temperature) Bogoliubov equa-
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tions (analogous to the Bogoliubov de Gennes equations in superconductivity)

[33, 120]:

[ĥ0 + 2g3d|φ0(r)|2 − µ]ui(r) + g3d[φ0(r)]
2vi(r) = ǫiui(r), (2.20)

[ĥ0 + 2g3d|φ0(r)|2 − µ]vi(r) + g3d[φ
∗
0(r)]

2ui(r) = −ǫivi(r). (2.21)

These equations describe the collective modes in the system and represent

the response of the condensate to excitations at zero temperature, with energies

ǫi = ~ωi [127]. These excitations can be considered as dressed particles (or quasi-

particles), i.e. particles interacting via the mean-field [120].

For uniform condensates the solutions of the Bogoliubov equations are plane

waves, that is ui(r) = upe
ip·r/~ and vi(r) = vpe

ip·r/~; moreover the time indepen-

dent GPE of Eq. (2.12) reduces to µφ0 = (g3d|φ0|2)φ0. The Bogoliubov equations

then become:

[ |p|2
2m

+ g3d|φ0(r)|2 − ǫi

]

up + g3d[φ0(r)]
2vp = 0, (2.22)

[ |p|2
2m

+ g3d|φ0(r)|2 + ǫi

]

vp + g3d[φ
∗
0(r)]

2up = 0. (2.23)

This system of coupled equations can be solved by imposing that the determinant

of the coefficient equals zero, which yields:

~ωp =

√

|p|2
2m

[ |p|2
2m

+ 2g3d|φ0|2
]

. (2.24)

The above equation represents the Bogoliubov dispersion relation [125]. For

small momenta (large wavelengths) the energy spectrum tends to the phonon dis-

persion relation ~ωp =
√

g3d|φ0|2/m |p|, whereas in the opposite regime it tends

to the free particle spectrum plus a mean- field contribution, ~ωp = |p|2/2m +

g3d|φ0|2.

2.2 T > 0: Static models

The aim of this section is to go beyond the zero-temperature limit, and account

for finite temperature effects. This is done by explicitly including the contribution

from the fluctuation operator δ̂, within a mean-field treatment, in such a manner

which corresponds to the thermal cloud being static.
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2.2.1 Generalised mean-field: Phase-coherent condensate

In order to go beyond the zero temperature limit, and account for finite tempera-

ture effects, onemust retain the non-condensate operator in Eq. (2.9); if we replace

the full expression of Eq. (2.9) in the hamiltonian of Eq. (2.3) we can see that we

obtain an expression containing products of three and four δ̂. At this stage one

can perform a mean-field approximation, which reduces to the full hamiltonian

into a quadratic form (which is convenient for performing the diagonalisation).

Based on Wick’s theorem, which states that at equilibrium an average over mul-

tiple operators is equal to the sums of averages of pairwise contracted operators

[122], i.e. 〈δ̂†δ̂†δ̂δ̂〉 = 2〈δ̂†δ̂〉〈δ̂†δ̂〉+ 〈δ̂δ̂〉〈δ̂†δ̂†〉, one may approximate:

δ̂†δ̂†δ̂δ̂ ≃ 4〈δ̂†δ̂〉δ̂†δ̂ + 〈δ̂†δ̂†〉δ̂δ̂ + 〈δ̂δ̂〉δ̂†δ̂† − [2〈δ̂†δ̂〉〈δ̂†δ̂〉+ 〈δ̂δ̂〉〈δ̂†δ̂†〉] (2.25)

and

δ̂†δ̂δ̂ ≃ 2〈δ̂†δ̂〉δ̂ + δ̂†〈δ̂δ̂〉, δ̂†δ̂†δ̂ ≃ 2δ̂†〈δ̂†δ̂〉+ 〈δ̂†δ̂†〉δ̂. (2.26)

It can be shown that the approximation of Eq. (2.25) physically implies that

collisions between thermal atoms are neglected. Analogously one can take the

average of Eq. (2.26) which leads to 〈δ̂†δ̂δ̂〉 = 〈δ̂†δ̂δ̂〉 = 0, since by construction

〈δ̂(†)〉 = 0. This approximation is instead equivalent to neglecting collisions that

lead to exchange of atoms between condensate and thermal cloud. The only col-

lision processes allowed are therefore those which preserve the number of atoms

in the condensate and in the thermal cloud.

The above approximations have reduced both four- and three- points correla-

tions to two-points correlations, allowing only mean-field coupling between the

two subcomponents of the systems, i.e. the condensate nc(r, t) = |φ(r, t)|2 and

the thermal cloud ñ(r, t) = 〈δ̂†(r, t)δ̂(r, t)〉. An additional mean-field contribution

arises from the approximation in Eqs. (2.25) and (2.26), m̃(r, t) = 〈δ̂(r, t)δ̂(r, t)〉,
which is often referred to as the pair anomalous average, because an unequal

number of creation and annihilation operators is averaged over [120]. This term

is particularly important when dealing with attractive interactions, while it plays

a minor role in repulsive BECs [33, 120].

In the so-called Hartree-Fock limit, one discards all the pair correlations of like

non-condensed operators, i.e. the anomalous average and its conjugate. In this

picture the generalised form of the time-independent GPE takes the form:

[ĥ0 + g3d|φ0|2 + 2gñ0]φ0 = µφ0.
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The additional contribution is given by the (static) thermal cloud ñ0, (a zero sub-

script denotes a static value), that accounts for collisions between one condensate

and one thermal atoms. The system is still described by single-particle energies;

however these energies are modified by the presence of the condensate mean

field and by the thermal atoms, leading to dressed Hartee-Fock energies:

ǫ̃i(r) = ǫi + 2g3d[|φ0|2 + ñ0]− µ.

On the other hand, if the anomalous average is taken into account, the limit

discussed is called Hartree-Fock-Bogoliubov, and the system is well described

in terms of quasiparticles, whose energy is given by the generalised Bogoliubov

equations [120]. The generalised GPE in this case takes an additional term [120]:

[ĥ0 + g|φ0|2 + 2g3dñ0]φ0 + g3dm̃0φ
∗
0 = µφ0.

2.2.2 Modified Popov: Inclusion of phase fluctuations

The methods discussed so far are symmetry-breaking approaches, thus meaning

that the phase of the condensate is assigned a definite, yet random, value. In three

dimensions, fluctuations in the phase only play a role in a very narrow region

around the critical temperature; however, this is not the case for low dimensional

Bose gases, where these fluctuations are enhanced and effectively preclude the

formation of a condensate. The inclusion of phase fluctuations can be done by

replacing the splitting of the Bose field operator of Eq. (2.8), with a more general

expression [97]:

Ψ̂ (r, t) =
√

n0(r, t)e
iΘ̂(r,t) + ψ̂′(r, t). (2.27)

The operator Θ̂(r, t) permits to treat phase fluctuations exactly, and allows to eval-

uate the phase coherence in the system through calculation of first order correla-

tion functions. Moreover density fluctuations are also accounted for via the pres-

ence of the operator ψ̂′(r, t). The density of the whole field can then be expressed

as:

〈Ψ̂ †(r, t)Ψ̂ (r, t)〉 = n0(r, t)〈e−iΘ̂(r,t)eiΘ̂(r,t)〉+ 〈[ψ̂′(r, t)]†ψ̂′(r, t)〉
+
√

n0(r, t)〈e−iΘ̂(r,t)ψ̂′(r, t)〉+
√

n0(r, t)〈[ψ̂′(r, t)]†eiΘ̂(r,t)〉,
(2.28)

where the first and second term on the right hand side can be identified as n0(r, t)

and ñ(r, t), while the other terms vanish in the assumption that correlations be-

tween condensate phase and non-condensate density can be neglected.
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The mean-field methods discussed so far retain correlations of fluctuations

about the mean field condensate only up to quadratic order, as we have seen

before. Such a procedure is practically equivalent to taking the lowest order ex-

pansion in Eq. (2.27) such that eiΘ̂(r,t) ≃ 1 + iΘ̂(r, t).

It turns out that this approximation is not accurate enough for describing low

dimensional systems, because the total density in Eq. (2.28) would then acquire

an extra contribution, n0〈θ̂(r, t)θ̂(r, t)〉. This term becomes extremely large for

momentum p → 0 in one- and two-dimensional homogeneous systems (except

at T=0 for the two dimensional case ), leading to a so-called infrared divergence.

This has been carefully handled by Andersen et al. [97], where they improved

on the Popov theory by proposing a model where phase and density fluctua-

tions are treated exactly, and the equations of state are free from any divergences.

Practically, this is achieved by subtracting the term n0〈θ̂(r, t)θ̂(r, t)〉, that leads to
the infrared divergence, from the total density, yielding a system of two coupled

equations, that in the homogeneous case takes the form [90]:

n = n0 +
1

V

∑

p

[

ǫp − ~ωp
2~ωp

+
n0g3d

2ǫp + 2µ
+

ǫp
~ωp

N(~ωp)

]

, (2.29)

µ = (2n− n0)g3d = (2n′ + n0)g3d, (2.30)

where n′ = n−n0 is the depletion in the condensate due to quantum and thermal

fluctuations and N(x) = 1/(eβx − 1).

The corresponding equations for the trapped case are derived in [97] , and the

generalisation of Eq. (2.30) to the trapped case (in the local density approxima-

tion) becomes the nonlinear Schrödinger equation:

µΥ0(r) =

[

− ~
2

2m
∇2 + V ext(r) + g3d(2n

′(r) + |Υ0(r)|2)
]

Υ0(r), (2.31)

where Υ0(r) =
√
n0. However it turns out that to a good approximation one

can calculate the densities through the Thomas-Fermi approximation, and solve

Eqs. (2.29) and (2.30) locally at each point with a local chemical potential µ(r) =

µ− V ext(r).

This model provides a good description of three-dimensional Bose gas, re-

producing the quantum depletion expression (for a condensate) of the original

Popov theory [128]; moreover it enables the study of the physics of low dimen-

sional Bose gases, with an exact treatment of phase fluctuations, thereby avoiding

the problem of infrared divergency.
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2.3 T > 0: Dynamical and stochastic models

The static models discussed in the previous sections describe the Bose condensed

system at different levels of approximation; however all of these methods neglect

the dynamics of the thermal cloud, by assuming it to be static. At the mean-

field level, one can derive the time-dependent generalisation of the Hartree-Fock

and Hartree-Fock-Bogoliubov equations where the dynamics of the condensate

is now coupled to the evolution of the normal and anomalous averages. To show

this, we first write the Heisenberg equation for the condensate mean field, and

use the split of Eq. (2.9) to obtain:

i~
∂φ(r, t)

∂t
= ĥ0φ(r, t) + g3d〈Ψ̂ †(r, t)Ψ̂(r, t)Ψ̂(r, t)〉, (2.32)

where

〈Ψ̂ †(r, t)Ψ̂(r, t)Ψ̂(r, t)〉 = ncφ+ 2ñφ+ m̃φ∗ + 〈δ̂†δ̂δ̂〉. (2.33)

Note that terms including average of only one non-condensate operator are zero,

due to the assumed symmetry-breaking. Analogously, one can derive the corre-

sponding Heisenberg equation for the non-condensate operator:

i~
∂δ̂(r, t)

∂t
= [δ̂(r, t), Ĥ] = i~

∂

∂t
(Ψ̂(r, t)− 〈Ψ̂(r, t)〉), (2.34)

which can be expressed as [111]:

i~
∂δ̂

∂t
= ĥ0δ̂ + g3d[2|φ|2δ̂ + φ2δ̂†] + 2g3dφ(δ̂

†δ̂ − 〈δ̂†δ̂〉)

+ g3dφ
∗(δ̂δ̂ − 〈δ̂δ̂〉) + g3d(δ̂

†δ̂δ̂ − 〈δ̂†δ̂δ̂〉).
(2.35)

By exploiting the above equation, one can then obtain the Heisenberg equations

for the normal and anomalous averages:

i~
∂ñ(r, t)

∂t
= 〈[δ̂†δ̂, Ĥ]〉, i~

∂m̃(r, t)

∂t
= 〈[δ̂δ̂, Ĥ ]〉. (2.36)

At the Hartree-Fock level one discards the contribution from i) the anomalous

average m̃(r, t), which takes into account that collisions do not occur in vacuum,

but may involve states already occupied, and ii) the triplet term, 〈δ̂†δ̂δ̂〉, responsi-
ble for the scattering processes leading to exchange of atoms between condensate

and non-condensate part. If instead one considers the Hartree-Fock-Bogoliubov

approximation, then the anomalous average is also included.
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To also describe the collisional processes occurring within the thermal cloud,

and the exchange collisonal processes between condensate and thermal cloud,

one has to go beyond the mean-field approximations of Eq. (2.25) and Eq. (2.26)

respectively.

2.3.1 Zaremba-Nikuni-Griffin (ZNG) kinetic model

In this section we describe the main aspects of the so-called ‘ZNG’ approach,

named after the authors Zaremba, Nikuni and Griffin [111]. This method follows

the lines of the early pioneering work by Kirkpatrick andDorfman [129–131], and

by Eckern [132].

The ‘ZNG’ method is a self-consistent treatment that describes the coupled

dynamics of the mean-field condensate, via a dissipative Gross-Pitaevskii-like

equation, and the thermal cloud, through a quantum Boltzmann equation.

In the evolution of the condensate, the anomalous averages are assumed to

be zero; however a large part of their contribution is accounted for by implicitly

retaining the triplet term, 〈δ̂†δ̂δ̂〉, into the theory. The equation for the evolution

of the condensate then takes the form of a GPE at the Hartree-Fock level of ap-

proximation, with an additional dissipative term:

i~
∂φ(r, t)

∂t
= [ĥ0 + g3d(|φ(r, t)|2 + 2ñ(r, t))− iR(r, t)]φ(r, t). (2.37)

The term iR is directly linked to the triplet term as shown in the following equa-

tion:

R(r, t) =− ig3d
〈δ̂†δ̂δ̂〉(r, t)
φ(r, t)

= 2πg23d

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3
× (2π~)3δ(mvc + p2 − p3 − p4)

× δ(ǫc + ǫ2 − ǫ3 − ǫ4)× [f2(f3 + 1)(f4 + 1)− (f2 + 1)f3f4].

(2.38)

The energies ǫi are evaluated semi-classically, whereby one assumes that the rele-

vant quantities, such as densities, vary slowly on the length scale of the trapping

potential [120, 127]. In the Hartree-Fock limit these energies are single-particle

energies dressed by the condensate and non-condensate mean-field potentials:

ǫi(r, t) =
|pi|2
2m

+ U(r, t), (2.39)
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where U(r, t) = V ext(ri, t) + 2g3d[|φ(ri, t)|2 + ñ(ri, t)] is the generalised mean field

potential.

The functions fi in Eq. (2.38) are phase space distribution functions represent-

ing the thermal cloud, whose density is defined as:

ñ(r, t) =

∫

dp

(2π~3)
f(p, r, t). (2.40)

In Eq. (2.38) these functions represent the statistical factor for which a particle can

be created (fi+1) or destroyed (fi) in the state i. The dissipative term iR therefore

leads to a transfer of atoms between the two subsystems (i.e. condensate and

thermal cloud); however at equilibrium, this term becomes zero (on average), and

we are left with a generalised GPE, at the Hartree-Fock level of approximation.

We have introduced the single particle distribution function, describing the

thermal cloud in phase space; it is now desirable to also have an expression for

the evolution of this distribution, in order to obtain a closed set of equations. The

formulation of Zaremba, Nikuni and Griffin [111] is based on a Boltzmann-like

equation [133] for the dynamics of the thermal cloud:

df(p, r, t)

dt
= C[f ]. (2.41)

We first focus on the left hand-side of the above equation: the total derivative

for a gas subjected to a slowly varying potential U(r, t) is [133]:

df(p, r, t)

dt
=
∂f(p, r, t)

∂t
+

p

m
· ∇f(p, r, t)−∇U(r) · ∂f(p, r, t)

∂p
, (2.42)

where p/m = dr/dt and −∇V (r) = dp/dt is the force exerted on the gas.

The functional C[f ], appearing on the right hand-side of Eq. (2.43) is the col-

lisional integral, that represents the rate at which the distribution f changes over

time. In absence of collisions, this term would be zero, and the Boltzmann equa-

tion would reduce to the Liouville equation df/dt = 0. When instead collisions

are introduced in the treatment, then the Boltzmann equation becomes [111, 123]:

∂f(p, r, t)

dt
+

p

m
· ∇f(p, r, t)−∇U(r) · ∂f(p, r, t)

∂p
= C12[f ] + C22[f ]. (2.43)

The collisional integral C12 describes the transfer of an atom from the thermal
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cloud into the condensate (and its inverse process):

C12[f ] =
4π

~
g23d|φ|2

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3δ(mvc + p2 − p3 − p4)

× δ(ǫc + ǫ2 − ǫ3 − ǫ4)

× (2π~)3[δ(p− p2)− δ(p− p3)− δ(p− p4)]

× [(f2 + 1)f3f4 − f2(f3 + 1)(f4 + 1)].

(2.44)

This integral is directly connected to the source term R(r, t) :

R(r, t) =
~

|φ(r, t)|2
∫

dp

(2π~)3
C12[f(p, r, t)]. (2.45)

The term C22 instead accounts for scattering processes involving two particles

within the thermal cloud, and that leads to a rearrangement of the atoms in each

mode:

C22[f ] =
4π

~
g23d

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3δ(p+ p2 − p3 − p4)

× δ(ǫ+ ǫ2 − ǫ3 − ǫ4)

× [(f + 1)(f2 + 1)f3f4 − ff2(f3 + 1)(f4 + 1)].

(2.46)

The ‘ZNG’ theory is a fully self-consistent dynamical approach, that can de-

scribe a considerable part of the physics of finite temperature BECs; it is however

a method based on symmetry-breaking. For this reason it is not suitable to de-

scribe low-dimensional systems, where fluctuations are enhanced with respect to

their three-dimensional counterpart; moreover it can not reproduce the formation

of a condensate, as it assumes that a condensate already exists.

2.3.2 Number-conserving approach

The mean-field methods discussed in the previous sections are based on the as-

sumption that the average of Ψ̂ (r, t) is φ(r, t) (i.e. 〈Ψ̂(r, t)〉 = φ(r, t)). This is

the basis of a broken-symmetry procedure, whereby the phase of the condensate

φ(r, t) takes on a fixed value, thus implying that the number of particles is not

conserved. From a mathematical point of view it is however desirable that for

a closed system with a fixed number N of bosons, the average of the full Bose

field operator is zero (i.e. 〈N |Ψ̂ |N〉 = 0). The operator Ψ̂ in fact annihilates an
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atom at position r and time t, and in the number basis representation one is left

with 〈N |N − 1〉, which is zero because of orthogonality between states with dif-

ferent number. One usually solves the problem by resorting to a different basis,

where each state is represented by a coherent superposition of states with differ-

ent number, e.g. |N − 1〉, |N〉, |N + 1〉... [120]. However, the splitting of Eq. (2.9),

does not guarantee the necessary orthogonality between the condensate and the

fluctuation operator.

Several works have been performed into this direction [112–114, 134], with the

aim of preserving the number of atoms, and ensuring the correct orthogonality

between the two parts of the system. It turns out that these number conserving

approaches essentially lead to equations that look very similar but feature some

subtle modifications, upon redefining the operators in the splitting of Eq. (2.8). In

the work by S. A. Gardiner and Morgan [114], as reviewed in [120], the operator

Ψ̂ is first expanded in terms of an orthogonal set {φN(r), ϕNi (r)}:

Ψ̂ (r, t) = â0φ
N(r, t) + δ̂(r, t) = â0φ

N(r, t) +
∑

i 6=0

ϕi(r, t)âi(t). (2.47)

Here â0, the condensate annihilation operator. is defined as the projection of the

full Bose field operator onto the condensate state φN [114]:

â0(t) = P̂ Ψ̂(r, t) =

∫

drφN(r, t)Ψ̂(r, t). (2.48)

The non-condensate operator is instead defined as the orthogonal projection [114]:

δ̂(r, t) = Q̂Ψ̂ (r, t) =

∫

dr′Q(r, r′, t)Ψ̂(r′, t), (2.49)

where Q(r, r′, t) = δ(r− r
′)− φN(r, t)[φN(r′, t)]∗.

Following the work of Castin and Dum [113], the condensate wave function

φN is defined by using the Penrose-Onsager criterion [135]. The condensate num-

ber N0 is then related to the single-body density matrix ρ(r, r′, t) by the following

expression:

N0φ
N(r, t) =

∫

dr′ ρ(r, r′, t)φN(r′, t) =

∫

dr′ 〈Ψ̂ †(r′, t)Ψ̂ (r, t)〉φN(r′, t). (2.50)

The integral in the above equation can be solved by replacing the full expres-

sion of Eq. (2.47); the orthogonality within the set {φN(r), ϕNi (r)} allows to reduce
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the above equation as:

N0φ
N(r, t) = 〈â†0â0〉φN(r, t) + 〈â†0δ̂(r, t)〉. (2.51)

Multiplying by [φN ]∗ and integrating over r, yieldsN0 = 〈â†0â0〉, and this guar-

antees that the following property is satisfied:

〈â†0δ̂(r, t)〉 = 0. (2.52)

This result motivates the use of 〈â†0δ̂(r, t)〉 as the fluctuation operator: we no-

tice that the above property is now a direct consequence of the orthogonality

between the condensate and the other part of the system, unlike in the symmetry

broken picture, where this result arises in an ad hoc manner [120]. There exist a

number of different definitions for the fluctuation operator in the literature, e.g.

(â†0/
√

N̂0)/δ̂(r, t) [113], or (â†0/
√

N̂)/δ̂(r, t) [112]; in the work by S. A. Gardiner

and Morgan [114] the fluctuation operator contains a prefactor of 1/
√
N0, so that

the Bose field operator can be expressed in a number conserving manner as:

Ψ̂ (r, t) = â0φ
N(r, t) +

√

N0[a
†
0]

−1δ̂N(r, t). (2.53)

At this stage one usually uses the same procedure as adopted in the mean-

field treatments, i.e. to expand the full hamiltonian in powers of the fluctuation

operator; since each of these terms contains a prefactor of 1/
√
N0, such expansion

can be interpreted as a ratio of the non-condensate to condensate atoms. This

procedure leads to the following generalised finite temperature Gross-Pitaevskii

equation:

i~
∂

∂t
φN(r, t) = [ĥ0(r, t)− λ(t)]φN(r, t)

+ g(N0(t) +∆N0))|φN(r, t)|2φN(r, t)
+ 2gñN(r, t)φN(r, t) + gm̃N(r, t)[φN(r, t)]∗ − f(r, t).

(2.54)

The parameter λ takes the form of a nonlinear eigenvalue, whereas the func-

tion f ensures the orthogonality during the temporal evolution [114, 120]. The

quantity∆N0 = ( ˆ〈N2
0 〉−〈N̂0〉2)/N0−1 is instead related to statistical fluctuations,

and usually is a small contribution [114, 120].
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2.3.3 c-field methods

Classical field (c-field) approaches (recently reviewed in [115], see also [120, 136])

share a common feature that consists in treating the low-energy part of the full

quantum Bose field operator as a classical object, in the limit that the mode occu-

pation is very high. The discrete nature of these modes can therefore be approxi-

mated by a continuum, and a classical wave equation is suitable to describe their

dynamics [137]. This is similar in spirit to the approach commonly used in elec-

tromagnetism, for which the quantum description of the blackbody radiation in

terms of Planck’s distribution can be replaced by a classical description using the

Rayleigh-Jeans equation, in the long-wavelength limit (i.e. low energy). How-

ever, by analogy to the well known ultraviolet catastrophe of the electromagnetic

field at short wavelengths, classical field approaches should only be used to de-

scribe the low-energy modes of the full Bose field operator. This is achieved by

firstly imposing a high-energy cutoff, appropriately chosen to eliminate the high-

energy modes; this also allows to use an effective field theory, where the details of

the potential at short distances are unimportant, and one can use the s-wave ap-

proximation for the scattering [115]. The requirement on this high-energy cutoff

is that it should be much greater than the chemical potential, µ, and the thermal

energy, kBT , such that these high-energy modes will not be occupied. The re-

maining part of the spectrum of the full Bose field operator Ψ̂ , is then further split

into two subsets, referred to in the literature as coherent (or c-field region) and

incoherent [115]:

Ψ̂ (r) = Ψ̂C(r) + Ψ̂I(r). (2.55)

In order to perform this split, a projection operator is introduced in the method,

which projects the full Bosonic operator to the coherent region only [137]:

Ψ̂C(r) = PC[Ψ̂(r)] =
∑

n∈C

ânϕn(r), (2.56)

where the ϕn are the eigenvectors in the single-particle Hamiltonian.

• The coherent region includes all the highly occupied low-energy modes, up

to a predetermined cutoff (not to be confused with the high-energy cutoff

discussed before), which depends on the thermodynamic parameters of the

system. The value of the cutoff is chosen in a such a way that the highest

energy mode in the coherent region is highly occupied, i.e. that the mean

average occupation of this mode lies in a range from 1 to 10 [115]. For the

c-field to be treated classically, quantum corrections should be small; the
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mode occupation should therefore be compared to the minimum level of

quantum fluctuations, which typically account for half a particle per mode

[115].

• The incoherent region contains the high-energymodes that are instead sparsely

occupied or vacuum modes, and therefore cannot be treated classically, but

necessitate a quantummechanical description. However as the dynamics of

the c-field is only weakly influenced by the presence of the atoms in these

high-energy modes [115], it is a reasonable first approximation to omit their

dynamics.

There exist a number of distinct implementations of such classical field ap-

proaches, which differ in terms of technical aspects [115]; we discuss briefly here

the stochastic projected Gross-Pitaevskii equation (SPGPE).

The stochastic projected Gross-Pitaevskii equation (SPGPE)

Among the distinct c-field approaches, the SPGPE [138, 139] is the most relevant

to the topic discussed in this thesis, as it is closely related to the underlying the-

ory of the model used here (i.e. Stoof’s theory [116]). The SPGPE combines the

kinetic theory of C. W. Gardiner and co-workers [140–142] with the formalism of

finite temperature Gross-Pitaevskii equation of Davis and co-workers [143, 144].

In this approach the coherent c-field region is treated as an open system coupled

to the incoherent region, which acts as a thermal bath and is assumed to be at

equilibrium. A further approximation is done in this approach, requiring that all

the frequencies of the c-field modes are much smaller than the thermal energy

[139]; for this reason this method is more suitable to describe the physics at rel-

atively high temperatures, e.g. typically from T > 0.5Tc up to T ≈ Tc for a 3D

system.

The SPGPE is derived by means of a master equation for the density operator

associated to the c-field region; this master equation can then be mapped onto

an equivalent Fokker-Planck equation, in terms of the Wigner probability distri-

bution [145]. The resulting Fokker-Planck equation contains third order deriva-

tives of the Wigner function which make the mapping to an equivalent stochastic

representation not simple [145, 146]; however, as the modes in the c-field region

are highly populated one can use the so-called Truncated Wigner approximation

(TWA), by means of which these terms are discarded [146], and the mapping to a
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stochastic equation yields the SPGPE for the classical field ΦC :

dΦC(r) = PC

{

− i

~

(

− ~
2

2m
∇2 + V ext(r) + g3d|ΦC(r)|2

)

ΦC(r) dt

+
G(r)

kBT

[

µ−
(

− ~
2

2m
∇2 + V ext(r) + g3d|ΦC(r)|2

)

ΦC(r) dt+ dWG(r, t)

]

+

∫

dr′M(r − r
′)
i~∇ · JC(r′)

kBT
ΦC(r) dt+ iΦC(r)dWM(r, t)

}

.

(2.57)

The first line of the right hand side of the equation is essentially the Gross-Pitaeskii

equation, with the presence of the projector. The second line describes instead

the growth processes, i.e. scattering events associated with transfer of atoms

in (or out of) the coherent region. The rate of these collisions is given by the

value of G(r) [115], while their random character is ensured by the presence of

the complex noise dWG(r, t). The third line is instead associated with scatter-

ing events (with amplitude M(r − r
′)), that lead to exchange of atoms between

the coherent and incoherent region, but leave the particle number in each sub-

system unchanged. The noise term, dWM(r, t), associated with these scattering

events, is non-local (i.e. 〈dWM(r
′, t′)dWM(r, t)〉 = 2M(r − r

′)dt) and multiplica-

tive, and as a consequence the numerical implementation is not straightforward

[137, 147]. However the equation can be simplified by discarding the terms of the

third line (associated with scattering) yielding the so-called simple growth SPGPE

[115, 148, 149]. The SPGPE has been applied in several contexts, e.g. study of

vortex formation at the condensate transition [150]; for a review about the appli-

cations of the SPGPE, see Ref. [115]. In the next section we introduce a similar

method, namely the Stochastic Gross-Pitaevskii equation [151].

2.4 The stochastic Gross-Pitaevskii equation

The SPGPE approach discussed in the previous section is closely related to the

Stochastic Gross-Pitaevskii equation derived by Stoof [116] (see Chapter 3 for

more details), which essentially relies on a description of the system in terms of

an appropriate probability distribution. Despite different derivations the two ap-

proaches share key aspects in the underlying fundamental assumptions about the

low-lying modes. It has been shown [120] that the two approaches are practically

equivalent (although there may be additional issues with respect to numerical

implementations) upon discarding the projector and the scattering terms in the
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SPGPE.

The Stochastic Gross-Pitaevskii equation takes the form of a nonlinear dissipa-

tive Schrödinger equation, with the presence of a noise to mimic fluctuation, and

describes the evolution of a set of (highly-populated) low-lying modes in contact

with a “heat bath” [152]. It is particularly suitable to model physical systems in

which fluctuations are enhanced, since the wavefunction in the SGPE represents

the condensate and low-lying excitations on top of it.

The first application of the SGPE in its original form (see Eq. (3.11)) was by

Stoof and Bijlsma [151], in which it was shown to qualitatevely recover the fea-

tures of the experiment of Stamper-Kurn et al. [153]. Subsequently a variational

approach was pursued in modelling the low-lying collective modes of a conden-

sate with repulsive interactions at finite temperature [152], the growth and col-

lapse of a condensate with attractive interactions [152] and the vortex motion in

a partially Bose condensed gas [154]. The SGPE was also applied in the context

of low-dimensional Bose gases [90], where good agreement was found with the

modified Popov theory. The coherence properties of a one-dimensional Bose gas

were also investigated in [155, 156], and a reduced form of the SGPE was used to

investigate the dynamics of quasi-condensate on atom chip [157]. The SGPE has

additionally been applied to the study of spontaneous solitons formation around

the phase transition in a low-dimensional Bose gas [158, 159] and to the dynamics

of dark solitons in elongated condensates at finite temperature [160].

In the next chapter we discuss the key aspects of the derivation of the SGPE by

Stoof [151], and we then explain the model adopted throughout this work, which

is based on a modified form of the SGPE.

2.5 Chapter summary

In this chapter we have presented theoretical approaches suitable for a descrip-

tion of weakly-interacting ultracold Bose gases. We started with a brief review of

the Gross-Pitaevskii equation, that provides a mean-field treatment at zero tem-

perature. We then included finite temperature effects, by discussing the Hartree-

Fock and Hartree-Fock-Bogoliubov limits, which incorporate the static contribu-

tion from the thermal cloud and the anomalous average respectively, while only

mean-field coupling is allowed. Beyond a symmetry-breaking procedure, we

have discussed the modified Popov approach, that explicitly retains phase fluc-

tuations. We then highlighted the main aspects of the Zaremba-Nikuni-Griffin

(ZNG) approach, where the coupled dynamics of the condensate and the thermal
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cloud is described at the mean-field level. One of the limitations of a broken-

symmetry procedure, is that the number of atoms is not conserved: this prob-

lem is solved in the number-conserving approach, also discussed here. We have

then concluded this chapter with a general introduction to classical field (c-field)

methods, where a classical wave equation describes the dynamics of the low en-

ergy part of the full quantum Bose operator. We have mainly focused on the im-

plementation known as Stochastic Projected Gross-Pitaevskii equation (SPGPE),

since it is closely related to the Stochastic GPE, briefly introduced here and dis-

cussed in the next chapter.
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Part II

A self-consistent quasi-1d stochastic

model
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Part II introduces the theoretical model we use throughout this thesis. We initally outline

the derivation of the Stochastic Gross-Pitaevskii equation (SGPE). We then discuss the

1D-3D crossover regime (characterised by µ ∼ ~ω⊥), in the simplest mean-field limit and

derive an effective 1D equation, which also incorporates the contribution from the trans-

verse degrees of freedom. Subsequently we extend, in a somewhat heuristical manner,

the above result to the SGPE, by the inclusion of stochastic terms, thereby obtaining the

quasi-one-dimensional SGPE: this provide an accurate description of the axial modes in

a cigar-shaped condensate. The transverse excited modes with energy kBT & ~ω⊥ are in-

stead treated statically, as independent 1D Bose gases. The quasi-one-dimensional SGPE

together with a static treatment of few transverse excited modes provide an ab initio self-

consistent model for quasi-one-dimensional experiments, in the regime µ, kBT & ~ω⊥.

We also provide the detailed numerical procedure that will be adopted in Part III of this

thesis, and show some examples of physical observables calculated at equilibrium, such as

density profiles and first- and second-order correlations functions. Finally we show how

to extract the density and phase coherent parts from the total density distribution within

our model.

We point out that in our numerical simulations we use realistic parameters, taken

from the experiments we model in Part III of this thesis.
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The quasi-1D stochastic

Gross-Pitaevskii equation (SGPE)

3.1 Origin and formulation of the SGPE

In this section we provide a description of the Stochastic Gross-Pitaevskii equa-

tion, which is a theoretical model describing the nonequilibrium dynamics of a

harmonically confined, weakly-interacting Bose gas at finite temperature. We use

the approach given by Stoof [116, 117, 151, 152, 161], which is similar in spirit, but

based on different methods and implementation, to the approach of C. W. Gar-

diner and co-workers [138, 139, 141, 142], as already discussed in Part I of this

thesis.

Focusing on the approach of Stoof, he gives a unified description of the whole

Bose gas in terms of aWigner distribution function P [Φ∗, Φ; t], which describes the

probability for the system to be in a coherent state |Φ(r; t)〉 1. Using a functional

formulation of the Keldysh formalism [162, 163], he derives a Fokker-Planck

equation for the time evolution of the above probability density distribution, as-

sociated with the whole matter wave field.

In order to solve the full equation, one can use a Hartree-Fock type ansatz,

which consists of splitting the Wigner probability distribution into a product, as

P [Φ∗, Φ; t] = P0[ψ
∗, ψ; t]P1[φ

′∗, φ′; t]: here P0 and P1 are the distributions describing

the probability for the system to be in the condensed 2 (ψ) and noncondensed (φ′)

part respectively [151]. This splitting naturally leads to a system of coupled equa-

tions: replacing this ansatz in the full Fokker-Planck equation, and integrating

1A coherent state is an eigenstate of the annihilation operator.
2Here the word ‘condensed’ has a broader meaning than its Gross-Pitaevskii counterpart, as

will be explained later in the text.
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over the condensate degrees of freedom, leads to a quantum Boltzmann equation

for the time evolution of the noncondensed part of the gas (see Appendix A).

The integration over the non-condensate degrees of freedom yields instead a

Fokker-Planck equation, describing the dynamics of the coherent (low-energy)

part of the system [116, 152]:

i~
∂

∂t
P0[ψ

∗, ψ; t] =

−
∫

dr
δ

δψ(r)

(

− ~
2
∇

2

2m
+ V ext(r)− µ(t)− iR(r, t) + g3d|ψ(r)|2

)

ψ(r)P0[ψ
∗, ψ; t]

+

∫

dr
δ

δψ∗(r)

(

− ~
2
∇

2

2m
+ V ext(r)− µ(t) + iR(r, t) + g3d|ψ(r)|2

)

ψ∗(r)P0[ψ
∗, ψ; t]

− 1

2

∫

dr
δ2

δψ(r)δψ∗(r)
~ΣK(r, t)P0[ψ

∗, ψ; t].

(3.1)

In this treatment ψ may be referred to as an ‘order parameter’ describing the

low-energy part of the system, including (but not restricted to) the condensate

[117]. Loosely ψ describes the condensate plus low-lying excitations. A strict

division from the high-lying modes (i.e. noncondensed part φ′) is made in the

numerical implementation. Unlike the wavefunction φ in the Gross-Pitaevskii

equation, which only describes the condensate in the mean-field approximation,

in this context ψ also accounts for the effects of fluctuations around it [117]. In

order to allow for a full dynamical treatment, with the thermal cloud being not

in thermal equilibrium, the chemical potential µ is initially kept time dependent;

however, it is not the purpose of this work to solve the Boltzmann equation (see

Appendix A), therefore we will assume the thermal cloud to be sufficiently close

to equilibrium, as will be explained later.

The imaginary term, iR, in Eq. (3.1) describes the interaction between the low-

energy region of the system and the high-lying thermal cloud (i.e. exchange of

atoms between these two subsystems) due to elastic collisions. The full expres-

sion is given (in the Hartree-Fock approximation) by:

R(r, t) =2πg23d

∫

dp1

(2π)3

∫

dp2

(2π)3

∫

dp3

(2π)3
(2π)3 × δ(p1 − p2 − p3)

δ(ǫc + ǫ1 − ǫ2 − ǫ3)× [N1(1 +N2)(1 +N3)− (1 +N1)N2N3].

(3.2)

The conservation of momentum and energy (i.e. elastic collisions), is ensured by

the presence of the δ functions. The functions Ni(r,pi, t) are the Wigner distri-

butions for the thermal particles in the high-lying modes of the system, and can
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be found by solving Eq. (A.1); at equilibrium these are in general Bose distribu-

tions. The scattering processes described in Eq. (3.2) are associated with transfer

of atoms in the condensate, Γin ∝ |ψ|2(1 + N1)N2N3, and out of the condensate,

Γout ∝ |ψ|2N1(1+N2)(1+N3). The distribution functions Ni represent the bosonic

enhancement of the scattering into the populated level i, whereas additional con-

tribution of the ”1” in Ni + 1 is associated with spontaneous scattering events.

The Keldysh self-energy ~Σk appearing in the diffusive term of Eq. (3.1) pro-

vides the strength of the thermal fluctuations in the system, associated with in-

coherent collisions between the low-lying energy modes and the high incoherent

region in the system. The full expression is as follows [152]:

~ΣK(r, t) = −4πig23d

∫

dp1

(2π)3

∫

dp2

(2π)3

∫

dp3

(2π)3
(2π)3

× δ(p1 − p2 − p3)δ(ǫc + ǫ1 − ǫ2 − ǫ3)

× [N1(1 +N2)(1 +N3) + (1 +N1)N2N3].

(3.3)

Equations (3.2) - (3.3) describe the dissipation and the fluctuations in the sys-

tem; despite looking rather similar at first sight, the two equations account for

the scattering mechanisms in different ways. While in Eq. (3.2) the two scattering

processes are subtracted, in Eq. (3.3) these two contributions are added instead.

A natural consequence is that at equilibrium the contribution from the dissipa-

tive term iR(∝ Γout − Γin) is zero on average; so although transfer of atoms still

occurs, there is no net exchange of atoms between condensate and thermal cloud.

The fluctuations ~Σk ∝ (Γout+Γin)/2, described by Eq. (3.3), are still present, thus

meaning that a dynamical equilibrium is reached when the fluctuations balance

the dissipation in the system.

The energies of the thermal atoms are given by the following expression:

ǫi =
|pi|2
2m

+ V ext(r) + 2g3d|〈ψ(r, t)〉|2. (3.4)

We notice that the contribution due to the mean-field of the thermal component

above the cut-off has not been taken into account in the above equation, under

the assumption that it has a negligible effect on the properties of the condensate

(see also Ref. [164]).

The energy necessary to remove one atom from the low-lying modes repre-

sented by ψ is instead given by [116]:
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ǫc = −~
2
∇

2

2m
+ V ext(r) + g3d|ψ(r, t)|2. (3.5)

Here ǫc represents an operator, which appears in both Eq. (3.2) and Eq. (3.3).

The dependence of both the dissipation iR(r, t) and the Keldysh self-energyΣK(r, t)

on the wavefunction ψ (through their dependence on ǫc ) makes a numerical im-

plementation of the model very complicated at this stage, because the Langevin

equation corresponding to the Fokker Planck equation will in general contain

multiplicative noise, with a prefactor that depends on ψ [152]. In order to make

the numerical treatment easier we may therefore assume that the thermal cloud

is near-equilibrium, and acts as a heat bath in contact with the low-lying modes

in the system. Under this assumption, the Wigner distribution functions for the

thermal cloud Ni(r,pi, t), which for a consistent dynamical description should

be derived by solving Eq. (A.1), can be replaced by the Bose-Einstein distribu-

tions NBE(ǫi) = [eβ(ǫi−µ) − 1]−1, which are the equilibrium solutions to the full

quantum Boltzmann equation. With this assumption, one can then derive a rela-

tion between the magnitude of the fluctuations and the dissipation in the system

[116, 152]:

iR(r; ǫc) = −1

2
~ΣK(r; ǫc)[1 + 2NBE(ǫc)]

−1. (3.6)

This is here the form of the fluctuation-dissipation relation, which states that at

equilibrium the amount of fluctuation in the system is related to the dissipation.

Equation (3.6) ensures that the system tends to the correct equilibrium distribu-

tion, and is only valid in the regime of linear response (i.e. near-equilibrium)

[152].

The Fokker-Planck equation can now bemapped onto an equivalent Langevin

equation, describing the evolution of the low-lying energymodes, in the presence

of a static thermal cloud, which acts as a reservoir. The Langevin equation takes

the form of a nonlinear dissipative Schrödinger equation, in the presence of noise:

i~
∂ψ(r, t)

∂t
=

[

− ~
2∇2

2m
+ V ext(r)− iR(r, t) + g3d|ψ(r, t)|2 − µ

]

ψ(r, t) + η(r, t).

(3.7)

For a partially Bose condensed gas, the low-lying modes in the system are

likely to be highly occupied; the term β(ǫc − µ) is in fact very small (≪ 1) at high
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temperatures (sufficiently close to or below the critical temperature) and near

equilibrium (i.e. ǫc − µ ≪ 1). This allows to replace the fluctuation-dissipation

relation (Eq. (3.6)) with its classical counterpart, whereby one perform the ap-

proximation NBE + 1/2 ≃ [β(ǫc − µ)]−1 [165]. This approximation is justified as

long as the average number of particles per mode is larger than one (typically

between 1 and 10) [115]. With the above classical approximation, the term in

brackets appearing in Eq. (3.6) can be recast as follows:

[1 + 2NBE(ǫc)]
−1 ≃ 1

2
β(ǫc − µ). (3.8)

Replacing this back into Eq. (3.6) leads to the classical approximation of the fluctuation-

dissipation relation:

−iR(r; t) = β

4
~ΣK(r; t)(ǫc − µ), (3.9)

where ǫc is still given by Eq. (3.5). It is important to notice that the classical ap-

proximation to the fluctuation-dissipation theoremmakes the equation amenable

to numerical implementation. By replacing Eq. (3.9) (using the full expression for

ǫc of Eq. (3.5)), the initial Fokker-Planck equation can now be recast as [152]:

i~
∂

∂t
P0[ψ

∗, ψ; t] =

− β

4

∫

dr ~ΣK(r, t)
δ

δψ(r)

(

− ~
2
∇

2

2m
+ V ext(r) + g3d|ψ(r)|2 − µ(t)

)

ψ(r)P0[ψ
∗, ψ; t]

− β

4

∫

dr ~ΣK(r, t)
δ

δψ∗(r)

(

− ~
2
∇

2

2m
+ V ext(r) + g3d|ψ(r)|2 − µ(t)

)

ψ∗(r)P0[ψ
∗, ψ; t]

− 1

2

∫

dr ~ΣK(r, t)
δ2

δψ(r)δψ∗(r)
P0[ψ

∗, ψ; t].

(3.10)

Next we discuss the formulation of the SGPE in three dimensions [152].

3.1.1 3D SGPE

The corresponding Langevin equation (formally equivalent to the Fokker-Planck

of Equation. (3.10)) for the low-lying modes in the system can be re-written as:
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i~
∂ψ(r, t)

∂t
=

(

1 +
β

4
~ΣK(r, t)

)[

− ~
2∇2

2m
+ V ext(r) + g3d|ψ(r, t)|2 − µ

]

ψ(r, t) + η(r, t).
(3.11)

The noise term η(r, t) has Gaussian correlations, defined as:

〈η∗(r, t)η(r′, t′)〉 = i~2

2
ΣK(r, t)δ(t− t′)δ(r− r

′), (3.12)

where the strength of the noise is given by the Keldysh self-energy in Eq. (3.3).

Eq. (3.11) is the so-called Stochastic Gross-Pitaevskii equation (SGPE); it describes

both the effect of dissipation and fluctuations in the system. It was first used

in [117] to discuss reversible formation of a condensate when cycling through

the phase transition. Since then, it has been used under the assumption that the

thermal cloud is sufficiently close to equilibrium, which is equivalent to assuming

that the high-energy modes thermalise on a very short timescale compared to the

dynamics of the low-energy modes. The thermal cloud therefore behaves as a

heat bath with a fixed temperature T and chemical potential µ, in contact with

the low-lying energy modes in the system, represented by ψ.

3.1.2 Key considerations

Physical observables in the SGPE are obtained by averaging the stochastic field

ψ over different realizations of the noise. In particular, since ψ is associated with

both the mean-field and fluctuations around it (i.e. it implicitly retains informa-

tion on density and phase fluctuations), correlation functions of any order can be

calculated within this theory. This is achieved upon making the replacement of

the Bose field operator Ψ̂ , with the stochastic field ψ such that [156]:

〈Ψ̂ †(z, t)Ψ̂ (z′, t′)〉 → 〈ψ∗(z, t)ψ(z′, t′)〉. (3.13)

For example the axial density (corresponding to transversely integrated density

over the low-lying energy modes), at time t is given by 〈ψ∗ψ〉 =
∑N

i=1 ψ
∗
i ψi/N ,

where i identifies a specific noise realization, while N is the total number of

stochastic trajectories, over which the wavefunction ψ is sampled. Nonetheless

single numerical realisations in the SGPE (i.e. single stochastic trajectories) are

still to be considered, as these contain essential informations (e.g. regarding fluc-

tuations in the system) that are needed when comparing to experimental results
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(see Section 4.2).

3.1.3 Formulation in 1D

Next we focus on the formulation of the Stochastic Gross-Pitaevskii equation in

one dimension. This is done to prepare the ground for the theoretical model we

explain in Section 3.3 and use throughout this work (with direct comparison to

experiments discussed in Part III).

We consider a weakly interacting one dimensional Bose gas confined in a har-

monic potential; we assume the conditions ~ω⊥ > µ, kBT and ω⊥ ≫ ωz, where

ω⊥ and ωz are the transverse and axial frequencies respectively. One of the con-

sequences of such a condition is that the main dynamics occurs along the axial

direction z, whereas the system is tightly confined in the radial direction, where

the motion is reduced to the zero point oscillation. The SGPE in one dimension

takes on the following expression:

i~
∂ψ(z, t)

∂t
=

(

1− iγ(z, T, t)

)[

− ~
2

2m

∂2

∂z2
+

1

2
mω2

zz
2 + g1d|ψ(z, t)|2 − µ

]

ψ(z, t) + η(z, t),
(3.14)

where the interaction strength g1d = g3d/2πl
2
⊥ = 2~asω⊥ [84]. This equation is

essentially equivalent to the simple growth stochastic projected Gross-Pitaevskii

equation (SPGPE) used and discussed by Davis and co-workers in [115], with

the main difference arising from the presence of a projector (see also [120] for a

comparison between the two schemes). In Eq. (3.14) γ has been defined via:

γ = i
β

4
~ΣK , (3.15)

with the Keldysh self-energy calculated from Eq. (3.3). The term γ simulates the

interaction between the system (i.e. low-lying highly populatedmodes) parametrised

by ψ and the high-lying modes (“heat bath”). It also sets the rate of growth to-

wards the equilibrium result; although it has in general both spatial and time

dependence, in this work we do not solve the integral in Eq. (3.3), but we use the

following approximation:

γ ≃ κ× 4mkBT

π

(

as
~

)2

. (3.16)

This approximation to the damping term was first used by Penckwitt et al. [166]
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to describe vortex dynamics, and it was found that the value κ = 3 yields good

agreement with the typical experimental growth. Although this is an expression

valid in three dimensions, this does not affect the equilibrium properties calcu-

lated in this work. The value of γ in fact only determines how the system relaxes

(dynamically) to equilibrium: the higher (lower) is the value for γ, the shorter

(longer) is the time needed to reach the equilibrium state. We point out that for

the purpose of our work, which is mainly focussed on investigating the proper-

ties of weakly interacting Bose gases at equilibrium, neglecting the spatial depen-

dence in γ does not have drastic consequences on the equilibrium state, as also

discussed in [165, 167].

The noise term η is related to the values of γ and temperature and is charac-

terised by Gaussian correlations:

〈η∗(z, t)η(z′, t′)〉 = 2~kBTγ(z, t)δ(t− t′)δ(z − z′). (3.17)

The presence of the noise is essential to initiate the growth process [168]: the

wavefunction ψ is in fact equal to zero at time t = 0, and the noise is responsible

for randomly seeding the modes in the system, which then evolve according to

Eq. (3.14). The presence of the noise is therefore crucial at least for the initial

stages of the formation of the condensate. Within the SGPE theory, the growth

to equilibrium is a dynamical process, i.e. the system relaxes to the equilibrium

configuration in a dynamical manner, when scattering and fluctuation balance

out (see Section 3.4).

To conclude this preliminary discussion of the SGPE in one dimension, we

note that the one dimensional conditions µ, kBT ≪ ~ω⊥ under which Eq. (3.14)

can be applied are rather extreme, andwere not fulfilled in the experimental cases

we will consider in Part III of this thesis. The experiments under investigation are

in fact characterised by the more relaxed conditions µ . ~ω⊥, kBT ∼ few ~ω⊥, for

the experiments [59–61] investigated in Chapter 4, and µ, kBT ∼ few ~ω⊥, for

the experiments [54, 95] analysed in Chapter 5-6; we therefore semi-heuristically

propose a quasi-one-dimensional extension to Eq. (3.14), in order to account for

the bulging of the condensate in the transverse direction as well as the excited

transverse modes being also populated. In the next section we first discuss how

this extension arises in the context of mean-field model, by deriving a quasi-one-

dimensional Gross-Pitaevskii equation; we then apply (in a somewhat heuristic

manner) the same approach to the Stochastic Gross-Pitaevskii equation.
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3.2 TheGross-Pitaevskii equation in the 1D-3D crossover

regime

The aim of this section is to discuss how one can obtain an effective 1D equation

that still incorporates some features of elongated 3D systems. Our derivation

here is given in the context of the simple mean-field Gross-Pitaevskii equation.

However, this is directly relevant to our subsequent stochastic formulation. The

derivation presented here mainly follows the arguments used in the approach of

Gerbier [101], and Mateo et al [169]. Our starting point is the 3D time dependent

Gross-Pitaevskii equation, which takes the usual form:

i~
∂φ(r, t)

∂t
=

[

− ~
2
∇

2

2m
+ V ext(r) + g|φ(r, t)|2

]

φ(r, t). (3.18)

We consider a weakly interacting Bose gas in a cylindrical harmonic trap, such

that V ext(r) = mω2
⊥r

2
⊥/2+V (z). We consider the case where the gas is tightly con-

fined in the radial direction, such that the aspect ratio ω⊥/ωz ≫ 1, and we allow

for a certain number of transverse modes to be occupied, i.e. µ ≃ few ~ω⊥. In

such a regime the radial degrees of freedom are not completely frozen (the radial

motion is not reduced to the zero point oscillation); we therefore need an effec-

tive 1D equation, able to also incorporate the contribution from the dynamics of

the radial excited states. Since the aspect ratio is very high, the evolution of the

radial degrees of freedom occurs on a much faster timescale than the axial one,

(the characteristic time τ ≃ ω−1
⊥ ≪ ω−1

z ). We can therefore use the adiabatic ap-

proximation [170], as the radial degrees of freedom adapt almost instantaneously

to the new axial configuration. As a consequence the correlations between the

transverse and axial degrees of freedom are negligible, and we can factorise the

wavefunction as follows:

φ(r, t) = Φ(r⊥; z, t)f(z, t). (3.19)

Inserting the wavefunction into Eq. (3.18) yields:

(

i~
∂f

∂t
+

~
2

2m

∂2f

∂z2
−V (z)f

)

Φ =

(

− ~
2

2m
∇

2
⊥Φ+

1

2
mω2

⊥r
2
⊥Φ+g3dN |f |2|Φ|2Φ

)

f. (3.20)

The axial variation of the radial part of the wavefunction has been neglected in

the above equation, since the axial potential is assumed to be sufficiently shallow,

as generally applicable for a highly elongated condensate. The time derivative of
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the radial part has also been neglected, as a consequence of the adiabatic approx-

imation.

Multiplying both sides of the equation by Φ∗ and integrating over the radial

coordinates yields:

(

i~
∂f

∂t
+

~
2

2m

∂2f

∂z2
− V (z)f

)

Φ = µ⊥f, (3.21)

where we have defined the local chemical potential:

µ⊥ =

∫

d2r⊥Φ
∗

(

− ~
2

2m
∇

2
⊥ +

1

2
mω2

⊥r
2
⊥ + g3dN |f |2|Φ|2

)

Φ. (3.22)

We now minimise Eq. (3.22): this is because in condensates with repulsive

interactions, there is a lower bound on µ⊥ [170]. A reasonable ansatz for the radial

part of the wavefunction is a Gaussian whose width σ is a variational parameter:

Φ =
1√
πσ

e−
r⊥

2

2σ2 . (3.23)

In the 1D limit the system is transversally in the ground state given by a Gaussian

with width l⊥ =
√

~/mω⊥ (harmonic oscillator length); in the 1D-to-3D dimen-

sional crossover instead, we expect few transverse excited states to be populated,

and the width of the Gaussian therefore becomes bigger.

By performing the integration in Eq. (3.22), we obtain the following result for

µ⊥:

µ⊥ =
~
2

2m
σ−2 +

mω2
⊥

2
σ2 +

1

2π
g3dN |f |2σ−2. (3.24)

By minimising this expression with respect to the width, σ, we obtain:

σ2 = l2⊥
√

1 + 4asN |f |2. (3.25)

The new equation of state then reads as:

µ⊥ = ~ω⊥

√

1 + 4asN |f |2. (3.26)

By replacing the above expression into Eq. (3.21), we find that the new equa-

tion of motion for the axial wavefunction becomes:

i~
∂f

∂t
= − ~

2

2m

∂2f

∂z2
+ V (z)f + ~ω⊥(

√

1 + 4asN |f |2 − 1)f. (3.27)

This is an effective 1D equation, which also incorporates transverse effects

(due to interactions) via the presence of themodified non-linearity ~ω⊥

√

1 + 4asN |f |2,
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as opposed to the nonlinear term g1d|f |2 in the ordinary GPE. This modification

is likely to become important when the inequality µ ≪ ~ω⊥ is not satisfied, as

demonstrated experimentally by Kruger et al. [91].

3.3 Quasi-1D model

Equippedwith the previous tools, in this sectionwe introduce amodified stochas-

tic equation which enables us to perform a successful ab initio description of

weakly interacting ultracold Bose gas experiments, in the ‘intermediate’ regime

µ, kBT . few ~ω⊥, where quasi-condensate physics dominates, but transverse ef-

fects still need to be appropriately accounted for. The model we present consists

of two parts: i) a quasi-one-dimensional form of the stochastic Gross-Pitaevskii

equation, to describe the dynamics of the low-energy axial modes, and ii) an ad-

ditional equation to account for the static contribution of the excited transverse

modes. In Part III of this thesis, we demonstrate that these two equations pro-

vide excellent ab initio prediction of experimental results from five independent

experiments [54, 59–61, 95].

3.3.1 Quasi-1D stochastic Gross-Pitaevskii equation

The modified one-dimensional (1D) form [118] of the stochastic Gross-Pitaevskii

equation (SGPE) [116, 117, 139], takes the form:

i~
∂ψ(z, t)

∂t
=

[1− iγ(z, t)]

(

− ~
2

2m

∂2

∂z2
+

1

2
mω2

zz
2 + ~ω⊥

[

√

1 + 4|ψ|2as − 1
]

− µ

)

ψ(z, t) + η(z, t).

(3.28)

It was first proposed in [118] (joint work in which I was involved) — where it

was found to be essential to accurately simultaneously reproduce both in situ

density profiles and density fluctuations obtained in several recent quasi-one-

dimensional experiments [59–61].

It differs from the one-dimensional SGPE of Eq. (3.14) in the form of the non-

linear term ~ω⊥

[
√

1 + 4|ψ|2as − 1
]

, as opposed to 2~ω⊥as|ψ|2 of Eq. (3.14). This

modification accounts for the transverse effects when µ . few ~ω⊥. This con-

dition in fact leads to a swelling of the condensate in the transverse direction,

relative to the true 1D transverse ground state, just as in the ordinary GPE. It is

therefore necessary to account for the fact that the system is no longer confined
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trasversely into the ground state of the harmonic potential, but it populates few

transverse modes. This quasi-1D effect, which is due to repulsive interactions and

captured by the new nonlinearity in Eq. (3.28) was verified experimentally in [91].

It is important to notice that the term ~ω⊥[
√

1 + 4|ψ|2as − 1] in Eq. (3.28), reduces

to 2~ω⊥as|ψ|2, in the limit 4|ψ|2as ≪ 1. This result is exactly the nonlinear term,

g1d|ψ|2, appearing in the one-dimensional SGPE of Eq. (3.14). This shows that for

small axial densities, such that 4|ψ|2as ≪ 1, the quasi-one-dimensional SGPE re-

covers the one-dimensional form. This has also been shown in the context of the

ordinary Gross-Pitaevskii equation in Refs. [82, 101, 171–173].

The wavefunction ψ is associated, as in Eq. (3.14), with the low-lying (highly-

populated ) axial modes, up to a cut-off that separates these modes from the high-

energy ones assumed to be at equilibrium and acting as a heat bath. The density

profile |ψ|2 obtained by numerically solving Eq. (3.28) will undergo appropriate

averaging over different realizations of the noise. Although a single-run density

profile contains qualitatively important information, it is generally very noisy.

The process of averaging over a large number (∼ 103) of runs results instead in a

very smooth density profile (but washes away features that vary from realisation

to realisation, e.g spontaneous dark soliton formation).

3.3.2 Transverse thermal atoms

The equation discussed in the previous section describes the dynamics of the low-

energy axial modes, and incorporates the quasi-one-dimensional effects resulting

from the condition µ . few ~ω⊥. However the experiments under investigation

in Part III of this thesis, are characterized by a further important condition, i.e.

kBT . few ~ω⊥. This means that the particle thermal energy, kBT , is also of the

same order of the transverse excitation energy, ~ω⊥, and therefore the transverse

excited modes are populated. In order to match to experimental atom numbers

and density profiles, it is therefore crucial to also include in our treatment the

(static) contribution of transverse thermal atoms with energy greater than ~ω⊥.

These transverse modes are treated as independent 1D Bose gases, and their

(static) contribution to the transversely integrated density profile is derived by

solving the following equation:

n⊥(z;µ, T ) =
1

λdB

∞
∑

j=1

(j + 1)g1/2
(

eµj(z)/kBT
)

. (3.29)
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Here g1/2(e
µj(z)/kBT ) =

∑∞
l=1(e

µj(z)/kBT )l/l1/2 is the polylogarithm (or Bose func-

tion) of order 1/2, and λdB = h/
√
2πmkBT is the thermal de Broglie wavelength.

The fraction of atoms in the transverse modes is therefore accounted for by sum-

ming over transverse quantum levels j (j > 1) with degeneracy j+1. Such an ap-

proach of including the above cut-off static thermal cloud component into the for-

malism has been implemented and described in other works (e.g. [60, 174, 175]).

We now describe the two different levels of approximation to the term µj(z)

(appearing in Eq. (3.29)) that we use throughout this work. In general we find

µj(z) = µ−V eff(z)− j~ω⊥; for Eq. (3.29) to work, we require µj(z) < 0 for all z. In

principle V eff(z) = V (z)+2g1d(〈|ψ(z)|2〉+n⊥(z)); however it is tempting to discard

the contribution 2g1d(〈|ψ(z)|2〉 + n⊥(z)). This does not have a significant effect

on truly 1D weakly-interacting gases, but it does prove crucial when µ ∼ ~ω⊥.

Throughout this thesis we hence use the following approximate scheme:

• In the limit µ < ~ω⊥ studied in [118], it was found sufficiently accurate to

use [60, 175]:

µj(z) = µ− V (z)− j~ω⊥. (3.30)

The transverse thermal atoms are therefore treated as independent 1D ideal

Bose gases. This approach is adopted in Chapter 4, where we model the

density profiles and density fluctuations of the experiments of Refs. [59–61]

• In the regime µ ∼ few ~ω⊥, with µ > ~ω⊥, studied subsequently [119], it

was found to be essential to account for the effect of mean-field potential

experienced by the transverse thermal atoms. This is characteristic of the

experiments of Refs. [54, 95] studied in Chapters 5-6, for which we instead

use the full expression:

µj(z) = µ− V (z)− j~ω⊥ − 2g1d(〈|ψ(z)|2〉+ n⊥(z)). (3.31)

Regardless of the level of approximation used, we note that within this ap-

proach, the thermal atoms above the numerical energy cut-off (i.e. with energies

> ~ω⊥) experience the truemean-field potential due to all atoms in the trap. How-

ever because we expect the contribution of n⊥(z;µ, T ) not to significantly affect

the axial modes (due to the relatively lower density of these high energy atoms),

we do not include the mean-field contribution due to these atoms within the non-

linearity of the SGPE in Eq. (3.28) (see Ref. [164] for a ‘quantitative’ justification

for doing so). We emphasise, that interaction effects due to all atoms (i.e. con-

densate and thermal) within the axial modes beneath the energy cut-off are fully

54



Chapter 3. The quasi-1D stochastic Gross-Pitaevskii equation (SGPE)

accounted for within the nonlinearity of the SGPE.

The total density, corresponding to transversely integrated density profiles,

typical of ultracold gas experiments is ultimately given by

n(z;µ, T ) = 〈|ψ(z;µ, T )|2〉+ n⊥(z;µ, T ), (3.32)

where 〈· · · 〉 denote ensemble averaging, obtained by averaging over many dif-

ferent realizations of the noise in Eq. (3.28).

3.3.3 Numerical procedure

A typical numerical simulation implementing themodified one-dimensional stochas-

tic GPE of Eq. (3.28) together with Eq. (3.29) for the transverse modes, generally

requires a certain number of steps. In this section we provide details of the nu-

merical procedure that needs to be applied in order to reproduce the equilibrium

configurations obtained in the experiments analysed in Part III of this thesis.

For each of the 5 experiments analysed in Part III of this thesis, we initially set

the following parameters as input in the numerical simulations:

1. Mass, m, and scattering length, as, of the atomic species used in the experi-

ment, i.e. 87Rb (m = 1.44× 10−25Kg and as = 5.05nm).

2. Trap configuration, i.e. axial (ωz) and radial (ω⊥) frequencies.

3. Temperature, T , of the gas at equilibrium.

We stress that the above are the only input parameters from the experiments, and

that every other observable is calculated ab initio, as will be explained in more

detail in Part III.

Subsequently, we need to find the exact numerical value of the chemical po-

tential, µ, such that the total number of atoms3, obtained by integrating the density

in Eq. (3.32), matches the experimental one. Notice that the contributions to the

density arise from solving Eqs. (3.28)–(3.29) for the axial and transverse modes

respectively. Therefore we proceed as follows:

1. We initially choose a value for the chemical potential and we solve the

quasi-one-dimensional SGPE (Eq. (3.28)), to generate an axial density pro-

file (appropriately averaged over the noise realizations).

3Notice that for the experiment by Richard et al. [54], we match the experimental quasi-
condensate atom number instead (see Section 5.2 for details).
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2. We then solve Eq. (3.29), to obtain the density of the transverse thermal

atoms.

We iterate the above procedure until a suitable value for the chemical potential is

found. As inmost cases discussed in this thesis, the ratio of the chemical potential

to the transverse excitation energy is already given in the experiment, thus imply-

ing that we know which approximation (Eq. (3.30) or Eq. (3.31)) to use from the

outset. We point out that solving Eq. (3.28) before Eq. (3.29) is a necessary require-

ment if µ > ~ω⊥, as the axial density feeds into Eq. (3.29) through the expression

of µj (Eq. (3.31)).

3.4 Growth to dynamical equilibrium

The equilibrium configuration obtained by numerically solving Eqs. (3.28)–(3.29),

is characterised by a dynamical contribution of the axial modes, and a static con-

tribution of the transverse excited modes. In this section we focus on the process

that leads the axial modes to equilibration, hence we consider only Eq. (3.28). The

wavefunction ψ, associated with the low-energy axial modes in the system, is ini-

tially zero (i.e. ψ(z, t = 0) = 0). The growth process is initiated by the noise term

η, which seeds the population of the low-energy axial modes (described by ψ) in

a random way, but is generally characterised by a prescribed initial shape based

on the Keldysh self-energy. The axial modes then evolve according to Eq. (3.28).

A visual representation of the growth process is given in Figure 3.1: here we

show snapshots of the averaged density profiles at different times during the

equilibration. The initial small amplitude distribution (red, solid) evolves to the

final distribution at equilibrium (black, dashed), which takes the form of an in-

verted parabola around the centre of the trap, as expected, due to the presence of

the harmonic potential. The equilibrium generated via growth is attained when

the number of particles reaches a constant value, determined by the set of param-

eters chosen, as shown in Figure 3.2; given that this is a dynamical equilibrium,

the number of particles exhibits fluctuations around an equilibrium value, and

the actual value about which fluctuations arise also varies slightly from numeri-

cal run to run. The slope of the curve shown in Figure 3.2 is indirectly determined

by γ, which sets the rate of collisions in the gas: the higher (lower) is γ, the faster

(slower) the gas relaxes to equilibrium. As pointed out in Section 3.1.3, we use a

constant value of γ through Eq. (3.15): although this is an approximation, we have

numerically confirmed that a spatial dependent γ does not affect the equilibrium

configuration [165, 167], unlike the case for any dynamical studies. For the pur-
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Figure 3.1: Dynamical growth to equilibrium: snapshots of averaged density profiles
taken at different times during evolution. The dashed black curve corresponds to the
equilibrium configuration. The trap parameters are taken from the experiment of Hug-
bart et al. [95] (discussed further in Chapter 6), and correspond to ωz = 2π × 8.67Hz,
ω⊥ = 2π × 395Hz, µ = 165 ~ωz and T = 116 nK.

pose of this work, focused only on the investigations of properties at equilibrium,

Eq. (3.15) is therefore a sufficient approximation.

Asmentioned in [117], the process shown in Figure 3.1 describes the first stage

of the experiment by Stamper-Kurn et al. [153], where a three-dimensional Bose

gas is initially confined in a cigar-shaped harmonic trap, with frequencies ωz and

ωr, at a temperature just above the critical one; subsequently a dimple is created in

the external potential, with frequencies ωz and ω⊥, that contains only one energy

level along the transverse direction.

The depth of the dimple can be lowered to the point where the only energy

level becomes lower than the chemical potential µ of the noncondensed cloud:

under this condition the atoms condense into the transverse ground state of the

dimple. During the formation of the condensate, the noncondensed part of the

gas remain sufficiently close to equilibrium, acting as a reservoir of particles for

the atoms in the dimple.
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Figure 3.2: Average atom number vs time. The value of γ is approximately 6 × 10−3.
Same parameters as in Fig. 3.1.

3.5 Density profiles

In typical experiments with ultracold Bose gases, similar to those analysed in

Part III of this thesis, the results are generally obtained by repeating the same

experimental conditions several times, and then averaging over the single mea-

surements. Similarly, one single run of our numerical SGPE model can be loosely

associated to a single experimental realization, in the sense of eventually extract-

ing results after averaging. In Figure 3.3 we show a comparison at equilibrium,

between the axial density (〈|ψ|2〉, dashed black) and a single run profile (|ψ|2,
solid orange), obtained by solving Eq. (3.28). As expected, the single run den-

sity profile is very noisy compared to the much smoother averaged one, obtained

by performing an average over 1200 numerical realizations of the noise. Typi-

cally, a large number of stochastic trajectories (i.e. number of numerical runs),

are required to obtain such a smooth profile (this is more crucial in low dimen-

sions due to the enhanced amplitude and role of fluctuations). Nonetheless, a lot

of physics relevant to experiments is captured within one single run; it will be

shown in Chapter 4 that for example, information on density fluctuations are ac-

cessible only through an analysis of atom number fluctuations based on multiple
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Figure 3.3: Density profiles obtained from Eq. (3.28): Comparison between single run
(solid, orange) and averaged (dashed, black) density profile. Parameters are taken from
experiment by Richard et al. [54]: ω⊥ = 2π × 760 Hz, ωz = 2π × 5Hz, T = 345 nK. The
numerical chemical potential is µ = 243 ~ωz.

individual runs.

It is worthwhile mentioning that the set of parameters used to generate the

density profile in Figure 3.3 are taken from the experiment of Richard et al. [54],

whose experimental findings we model in Chapter 5.

We also highlight the fundamental role of the nonlinearity in Eq. (3.28), which

makes the quasi-one-dimensional version of the SGPE more suitable to the im-

plementation of typical experimental conditions. This can be demonstrated by

estimating the value of 4as〈|ψ|2〉, appearing in Eq. (3.28), at the trap centre; the

values of the density in the central region of the trap (∼ 103[l−1
z ], with lz = 3.7µm)

and of the scattering length (as ≈ 5nm), yield 4as〈|ψ|2〉 ≈ 5, hence this term is

not negligible, and the simpler one-dimensional SGPE would be inappropriate in

this case (see Section 3.3.1 for further details).

The density profiles shown in Figure 3.3 represent the contribution from the

low-energy axial modes; however, as already discussed in Section 3.3, the model

used in Part III also incorporates the contribution of the transverse excited modes

with energy kBT ∼ few ~ω⊥ via Eq. (3.29). In Figure 3.4 we show a comparison

between the density profile (dashed black) obtained from Eq. (3.28) alone and
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the corresponding profile (red solid) which also incorporates the density from

Eq. (3.29). Note that the latter corresponds to transversely integrated density pro-

files as relevant in experiments based on imaging. We notice that taking into
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Figure 3.4: Comparison between axial (dashed, black) and axial plus transverse thermal
cloud (solid, red) density profiles, the latter corresponding to total transversely integrated
profiles. Same parameters as in Fig. 3.3.

account the presence of the atoms in the transverse excited modes mainly affects

the wings of the density distribution, where the highly energetic atoms reside.

As visible in Figure 3.4, the inclusion of the transverse thermal atoms result in an

increase of the density in the outer region of the trap, compared to the contribu-

tion of the axial thermal wings. Moreover, the tails of the transversely integrated

density distribution decay exponentially, a feature that is not present in the axial

distribution, where the density of thermal atoms decays algebraically, because of

the classical approximation discussed in Section 3.1 and in [115, 117].

3.6 Correlation functions

Reducing the dimensionality of a system can have dramatic consequences on

its coherence; fluctuations are in fact much more pronounced than in the 3D

counterpart - where they are important only in a very narrow range around

60



Chapter 3. The quasi-1D stochastic Gross-Pitaevskii equation (SGPE)

the critical temperature [176] - and tend to destroy the long range order in the

system. An accurate analysis of the coherence properties in such systems is

therefore necessary for potential applications, such as matter-wave interferom-

etry [67, 68, 77, 105, 106, 177, 178], atom chips [179] and atom lasers [35, 107–110].

The SGPE model in this respect is well suited to such a study, since the fluctu-

ations are retained within ψ, and we can therefore access the information about

coherence by studying the auto-correlation functions, first introduced by Glauber

[180]. Usually the lowest order correlation function is already sufficent to ob-

tain important information on the coherence properties of the system. An in-

depth numerical study of the three lowest order correlation functions, in equilib-

rium one-dimensional Bose gases, by means of the Stochastic GPE is reported in

[156]; these observables can also be explored experimentally, as demonstrated in

[53, 58, 61, 63, 103].

In this work we focus on the study of systems at equilibrium; as a conse-

quence we are only interested in equal time auto-correlation functions. We there-

fore firstly let the system evolve for a sufficient time to reach equilibirum, and

then we compute the auto-correlation functions.

3.6.1 First-order correlation function

In the Chapters 5-6 we investigate the phase coherence properties of quasi-one-

dimensional Bose gases; the information about the phase coherence of the system

is accessible through the first order correlation function, which we here define in

its symmetrical form, normalised to the central density:

g(1)(−z/2, z/2) = 〈ψ∗(−z/2)ψ(z/2)〉
.

〈|ψ(0)|2〉 (3.33)

This function is referred to, in the condensed matter literature, as the off-

diagonal one-body density matrix, and gives information on the correlation be-

tween pairs of points in the system separated by a distance z. There also exist

other forms for the first order correlation function: for example it can be defined

in asymmetrical form, or it can be normalized to the densities in each spatial

point. A comparison between the symmetrical and asymmetrical first order cor-

relation function in 1D can be found in [156]. Here we use the definition given

in Eq. (3.33), as this is relevant for the experiments of Refs. [54, 95] analysed in

Chapters 5-6. Each state of matter is characterized by a definite type of correla-

tion between particles: for example the solid state features a diagonal long-range

order, because of the periodicity in the atomic density [181]. In a classical gas
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Figure 3.5: Spatial dependence of the first-order symmetrical correlation functions (nor-
malized to the central peak density) at T/Tφ = 0.8 (black), T/Tφ = 4.2 (blue), and
T/Tφ = 24.9 (red). The axial coordinate z is scaled to the temperature dependentThomas-
Fermi radius RTF(T ). Parameters are taken from the experiments of Hugbart et al. [95]
(T/Tφ = 0.8 and T/Tφ = 4.2) and from Richard et al. [54] (T/Tφ = 24.9).

the first order correlation function decays to zero on a distance which is of the

order of the de Broglie wavelength (see, e.g. [182]). In a three-dimensional Bose

gas below the degeneracy temperature the off-diagonal long-range order is the

signature of the Bose-Einstein condensation, therefore the first-order correlation

function is expected to be non-zero across the entire sample. In low-dimensional

homogeneous Bose gases instead, the Bose-Einstein condensation does not occur

(except at T = 0 in 2D) [27, 28].

If the system is confined in a trap, at sufficiently low T (such that T ∼ Tφ),

the first-order correlation function g(1) is found to decay to zero within the sys-

tem size, at a slower rate compared to the classical gas case. Figure 3.5 shows a

comparison between first-order correlation functions for three different tempera-

tures. At T/Tφ = 24.9 (red), the correlation function decays exponentially within

the system size. At T/Tφ = 4.2 (blue), the coherence increases, but the correlation

function still shows an exponential behaviour; at T/Tφ = 0.8 (black) instead the

gas shows a large amount of phase coherence, revealed by a Gaussian-like be-

haviour of the correlation function, which decays to zero only at the edges of the
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system. The variation of the correlation function from exponential to Gaussian

indicates the crossover from quasi-condensation to “true” condensation [31, 64,

156]. In Figure 3.5 the spatial coordinate z is scaled to the half-size of the quasi-

condensate, given by the temperature dependent Thomas-Fermi radius, RTF (T )

(see Section 3.7.2 for details), which takes on a different value in each of the three

cases analyzed. Notice that the correlation function for the lowest temperature

case goes to zero at z = ±2RTF (T ); this is because we compute g(1)(−z/2, z/2) as
opposed to g(1)(−z, z), in which case it would go to zero at z = RTF (T ).

3.6.2 Second-order correlation function

The second-order correlation function gives information about density coherence

in the system, and can be computed through the following expression:

g(2)(z) =
〈|ψ(z)|4〉
(〈|ψ|2〉)2 . (3.34)

This is also called the density-density correlation function and gives information

on the probability of finding two particles at the same spatial point. The second

order correlation function tends to the value of one (g(2)(z) → 1) if the density

fluctuations are suppressed; the system is then said to be a quasi-condensate.

For a density incoherent system instead, where density flucuations are large,

g(2)(z) → 2. It is in fact well established that for a system where a single mode

dominates, g(2) = 1, whereas for a multimode incoherent field g(2) = 2 [183, 184].

In Figure 3.6 we plot the second order correlation function of a degenerate

Bose gas, confined in harmonic trap, at temperatures T/Tφ = 0.8 (black), T/Tφ =

4.2 (blue) and T/Tφ = 24.9 (red). The spatial coordinate z is scaled to the tem-

perature dependent Thomas-Fermi radius, RTF (T ) (see Section 3.7.2 for details),

which actually differs slightly for each of the cases analysed.

For the lower temperature case (T < Tφ) the system is fully density coherent

(g(2) = 1) within the quasi-condensate size, which is given by the temperature de-

pendent Thomas-Fermi radius, RTF (T ) (see Section 3.7.2 for details); at the edges

instead it becomes incoherent as g(2) = 2. For the intermediate temperature case

(solid blue), the density coherence is reduced with respect to the previous case,

but it still extends over a large part of the system. For the higher temperature

case (solid red), the system is not fully density coherent, as the correlation func-

tion is slightly greater than one (g(2) & 1), even at the centre of the trap. We also

notice that the crossover to the incoherent region is quantitatively different in the

two extreme temperature cases, as g(2) changes smoothly for T/Tφ = 24.9, while
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Figure 3.6: Density correlation function g(2)(z) [Eq. (3.34)] from SGPE simulations, at
T/Tφ = 0.8 (solid black), T/Tφ = 4.2 (solid blue) and T/Tφ = 24.9 (solid red). The spa-
tial coordinate z is scaled to the temperature dependent Thomas-Fermi radius, RTF(T ).
Same parameters as in Fig. 3.5

it exhibits a very steep jump for T/Tφ = 0.8.

3.7 Density and phase coherent part

The quasi-1D stochastic Gross-Pitaevskii equation (Eq. (3.28)) provides the atomic

density profile |ψ(z)|2 along the axial direction; as already discussed before, |ψ(z)|2
represents a set of low-lying highly populated modes up to a predetermined cut-

of (and in general higher-lying modes should also be considered for the total den-

sity). However the SGPE density distribution contains all coherent and a large

part of the incoherent density in the system (up to the cut-off), and so a method

to identify the coherent component within |ψ(z)|2 is required. This is analogous
to what is typically done in experiments with degenerate Bose gases, where the

experimental measurement of the total density profile includes all atoms, while

the coherent fraction is extracted a posteriori (e.g. by bimodal fit).

We now discuss different means that can be used to extract the coherent com-

ponent of |ψ(z)|2, and contrast their different physical interpretations.
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3.7.1 Quasi-condensate density

The quasi-condensate is the density-coherent part of |ψ|2; unlike other theories

(e.g. modified Popov [97]) where the separation between quasi-condensate and

thermal component is done explicitly at the beginning, for the SGPE (and related

classical field theories) it is necessary to extract the quasi-condensate a posteriori,

via the following formula:

nqc(z) =
√

2〈|ψ(z)|2〉2 − 〈|ψ(z)|4〉. (3.35)

Such a definition had been already put forward by Prokofev et al. [185], in

the case of a two-dimensional weakly interacting Bose gas, and it has been used

in the context of the SGPE model in [156, 167, 186] and classical field methods

[187]. In particular, see Ref. [156] for a brief review of its physical origin and a

corresponding illustration for the SGPE.

In Figure 3.7 we compare the quasi-condensate (Eq. (3.35)) to the axial (Eq. (3.28))

density profiles at three different temperatures. For T/Tφ = 0.8 (Figure 3.7 left),

the axial density profile (solid black), closely matches the quasi-condensate den-

sity (dashed red), thus suggesting that the density coherence extends through-

out the whole system, represented by |ψ(z)|2. This is in agreement with the be-

haviour of the second order correlation function, analyzed in Figure 3.6 , for the

same temperature case. At relatively high temperature (T/Tφ = 24.9, Figure 3.7

central), most of the atoms reside in the quasi-condensate, but the density coher-

ence does not extend over the whole sample, given that the tails of the quasi-

condensate distribution (dashed red) decay faster to zero. For the highest tem-

perature case (T/Tφ ∼ 40, Figure 3.7 right) far less of the system atoms are in the

quasi-condensate (dashed red) density, which is further distinguished from the

axial profile (solid black), than the lower temperature case. In this (high tem-

perature) case, it is more meaningful to compare the value of the temperature to

Tqc of Eq. (1.14), which roughly indicates the crossover to the quasi-condensate

regime. We find that T ≈ 0.7Tqc, as opposed to the other lower temperature cases

in Fig. 3.7 where T ≪ Tqc.

3.7.2 Identifying the size of the quasi-condensate

In some of the plots shown in this chapter, we scale the axial coordinate, z, to the

so-called temperature dependent Thomas-Fermi radius, RTF(T ), which identifies

the extent of the quasi-condensate in our model. By scaling correlation func-

tions, density profiles, and coherence lengths to the effective size of the quasi-
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Figure 3.7: Comparison between axial density distributions (solid black, Eq. (3.28)) and
quasi-condensate profile (dashed red, Eq. (3.35)) at T/Tφ = 0.8 (left), T/Tφ = 24.9
(central) and T/Tφ ∼ 40 (right). Three different trap configurations were used, taken
from: Hugbart et al. [95] ωz = 2π × 8.67Hz and ω⊥ = 2π × 395Hz (left), Richard et
al. [54] ωz = 2π × 5Hz and ω⊥ = 2π × 760Hz (central), van Amerongen et al. [60]
ωz = 2π × 8.5Hz and ω⊥ = 2π × 3280Hz (right).

condensate gives an idea of the behaviour of these observables relative to the

particular system under investigation. This scaling is also performed in the exper-

iments, in which case the size of the quasi-condensate is typically identified via

bimodal fits. Unlike this parameter, the temperature dependent Thomas-Fermi

radius accounts instead for finite temperature effects, as it results smaller for in-

creasing temperatures, due to quasi-condensate depletion.

In previous works (see e.g. [88, 156, 186]) the extent of the quasi-condensate

within the SGPEmodel was obtained by also independently solving the modified

Popov theory of Andersen et al. [90, 97] in parallel for the same paramaters, since

a well defined criterion exists for identifying the quasi-condensate in modified

Popov. Such an approach is supported by the excellent agreement between the

density profiles extracted within the SGPEmodel and the modified Popov theory,

as demonstrated in [167]. However the aim in this work is to make the SGPE fully
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self-consistent, with all the necessary parameters calculated ab initiowithin SGPE.

We therefore calculate the size of the quasi-codensate (in a somewhat heuristic

manner) by extending the modified Popov criterion to our SGPE model, in the

way we explain below.

We recall that in order to find the quasi-condensate density within the modi-

fied Popov theory, one has to solve Eq. (2.31) (see also [90, 167].

However, for the purpose of only extracting the size of the quasi-condensate,

one can use the Thomas-Fermi approximation, that neglects the kinetic term, and

Eq. (2.31) is recast (in 1D) as:

[V (z)− µ+ g1d(n0 + 2n′)]
√
n0 = 0, (3.36)

where n0 is the quasi-condensate density and n′ is the thermal part (i.e. quasi-

condensate depletion).

We now wish to extend Eq. (3.36) to the quasi-one-dimensional case, in anal-

ogy to the approach used for the GPE and SGPE, as discussed in Sections 3.2-3.3.1.

In the quasi-one-dimensional limit, Eq. (3.36) takes the following form:

[

V (z)− µ+ ~ω⊥

(
√

1 + 4as(n0 + 2n′)− 1
)]√

n0 = 0. (3.37)

We point out that the above expression is heuristic, and actually relies on a

somewhat crude approximation 〈|ψ|2〉 ≈ n0 + 2n′; the latter makes a distinction

between density-coherent quasi-condensate (prefactor of 1) and incoherent ther-

mal (prefactor of 2, as usual for thermal contribution due to direct and exchange

terms) and is further supported by the excellent agreement between the SGPE

and the modified Popov theory [167]. One could however argue that an alter-

native form to Eq. (3.37) is also plausible, in which the quasi-one-dimensional

character is reflected only on the quasi-condensate n0, yielding:

[

V (z)− µ+ ~ω⊥

(√
1 + 4asn0 − 1

)

+ 2g1dn
′
]√
n0 = 0. (3.38)

While the correct form remains an open issue here, we decided to opt for the form

of Eq. (3.37), as this is also consistent with the identification between the densities

in the SGPE andmodified Popov theory. However, we point out that the resulting

values of the temperature dependent Thomas-Fermi radius are not noticeably

affected by the particular form chosen, at least for the data of the experiments

analysed in Chapters 5-6 of this thesis. We find in fact that the values of the

Thomas-Fermi radius — calculated assuming Eq. (3.38) holds — result smaller
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only in 4 (out of 35) cases (for the data set in the experiments of Refs.[54, 95]

analysed in Chapters 5-6), and the percentage difference compared to the values

obtained assuming that Eq. (3.37) holds instead, is less than 1%.

The Thomas-Fermi radius is then identified as the spatial point, z, at which

the quasi-condensate density becomes zero:

µ− V (z) = ~ω⊥[
√

1 + 8asn′(z)− 1]. (3.39)

Near the centre of the trap the left hand side (LHS) in the above equation is greater

than the right hand side (RHS), as V (z) and n′(z) are small. Towards the outer

region of the trap however the LHS (RHS) tends to smaller (higher) values, as

V (z) and n′(z) increase with increasing z. Given the discrete nature of the spatial

grid in a typical numerical simulation, it is unlikely that there exists a spatial point

z atwhich Eq. (3.39) is precisely fulfilled. We therefore numerically implement the

criterion to find RTF(T ) by seeking for the largest value of z within our simulated

grid, at which the LHS in Eq. (3.39) is greater than or equal to the RHS:

RTF(T ) = max{z, µ− V (z) ≥ ~ω⊥[
√

1 + 8asn′(z)− 1]}, (3.40)

where µ3d = µ + ~ω⊥ (with µ denoting the effective one-dimensional chemical

potential).

In order to extend and apply the criterion of Eq. (3.40) within the SGPEmodel,

we approximate the quasi-condensate depletion (n′) within the modified Popov

theory, with the density of the thermal atoms (below the energy cut-off) in the

SGPE:

n′ ≈ 〈|ψ(z)|2〉 − nqc(z). (3.41)

The condition to find the Thomas-Fermi radius within the SGPE model then

reads:

RTF(T ) = max{z, µ− V (z) ≥ ~ω⊥[
√

1 + 8as(〈|ψ|2〉 − nqc)− 1]}. (3.42)

The above criterion will be used in Chapters 5-6, in which we investigate the

experiments by Richard et al. [54] and Hugbart et al. [95].
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3.7.3 Penrose-Onsagermode and approximate determination via

correlation functions

We identify the ‘true’ (phase) coherent part of the field ψ by adopting the Penrose-

Onsager (PO) criterion [135] (see also e.g. Refs. [187, 188]), which states that Bose-

Einstein condensation occurs when an eigenvalue of the one-body density matrix

takes on a macroscopic value (of the order of the total number of particles in the

system).
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Figure 3.8: Density profiles from SGPE numerical simulations, for two experimental cases
(corresponding to points with error bars in Figure 6.4). Black, solid line: total trans-
versely integrated density profile (Eq. 3.32). Dashed, orange: quasi-condensate. Blue,
solid: Penrose-Onsager density. Red, dot-dashed: condensate density from Eq. (3.43). Pa-
rameters are taken from experiment of Hugbart et al. [95]: (top) ωz = 2π × 8.67Hz, ω⊥ =
2π × 395Hz, lz = 3.7µm, µ = 241 ~ωz ; (bottom) ωz = 2π × 6.55Hz, ω⊥ = 2π × 655Hz,
lz = 4.2µm, µ = 393 ~ωz

In the SGPE model we extract the Penrose-Onsager mode by numerically

diagonalizing the one-body density matrix ρ(z, z′) = 〈ψ∗(z)ψ(z′)〉, and identi-

fying the condensate mode as the one corresponding to the largest eigenvalue

[135, 187, 188]. An alternative way to obtain an estimate of the phase coherent

part of ψ is to combine the notion of first and second order correlation functions

as follows [167]:
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nc(z) = 〈|ψ|2〉
√

2− g(2)(z) g(1)(0, z). (3.43)

This expression was found to agree well with the PO condensate at large |z|
in Cockburn et al. [167] for a range of temperatures. Notice that the Penrose-

Onsager criterion is strictly valid in the limit |z − z′| → ∞. Eq. (3.43) arises as

an adaptation to the trapped case, of the definition given for an homogeneous

system by Al Khawaja et al. [90]. We believe that Eq. (3.43) provides also a useful

experimental tool to extract the coherent part from the density profile, as it only

requires the simultaneous knowledge of first- and second- order correlation func-

tions (in addition to density profiles), all of which are experimentally accessible.

Figure 3.8 shows density profiles obtained within the SGPEmodel, for two ex-

perimental data sets from the experiment of Hugbart et al. [95]. It is worth to high-

light the clear distinction between the quasi-condensate (orange, dashed) and PO

condensate (blue, solid); the difference is already noticeable at low temperature

(T = 1.22Tφ), and becomes bigger at relatively high temperature (T = 5.73Tφ),

where the phase coherence is much more reduced compared to the density co-

herence.

We also notice the excellent agreement (in particular at large |z|) between the

PO density (blue, solid) calculated via diagonalisation of the one-body density

matrix, and Eq. (3.43) (red, dot-dashed). In the central region of the trap in-

stead, the density distribution of the condensate (calculated via Eq. (3.43)) shows

a ‘spike’, due to the fact that at z = 0, one has necessarily g(1)(0) = 1 and as a con-

sequence n′
c(0) = nqc(0), whereas by diagonalising the one-body density matrix,

one finds that nPO(0) < nqc(0). In the numerical simulations this can be theoret-

ically cured (see Ref. [167]), but such modification cannot be directly related to

experimental observables and will thus not be considered any further here.

3.8 Chapter summary

In this chapter we have initially summarised key considerations in the deriva-

tion of the stochastic Gross-Pitaevskii equation (SGPE), through a mapping of

the Fokker-Planck equation onto a non-linear stochastic differential equation. By

showing how to obtain an effective 1D mean-field equation, suitable for the dy-

namics of cigar-shaped condensate at T = 0, in the regime µ ∼ ~ω⊥, we subse-

quently extended this result to the SGPE; this led, in a somewhat heuristical man-
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ner to the quasi-one-dimensional SGPE, which is suitable to describe the highly

populated low-lying axial modes, while also self-consistently incorporating the

contribution from transverse degrees of freedom. The transverse excited modes

with thermal energy kBT & ~ω⊥ are instead treated in a static manner, as 1D inde-

pendent Bose gases. The quasi-one-dimensional SGPE and the equation for the

transverse excited modes provide a self-consistent ab initio model for reproduc-

ing physical observables of quasi-one-dimensional experiments. We have then

explained the detailed numerical approach we undertake when comparing our

model to the experiments, and given some example of observables calculated at

equilibrium, such as density profiles and correlation functions up to the second

order, and how such observables may be observed. Importantly, the parameters

used for these calculations are taken from the experiments we model in Part III.

We have finally discussed how to extract the quasi-condensate (i.e. density co-

herent part) and the ‘pure’ condensate (based on the Penrose-Onsager criterion)

from the total density distribution in our simulations, also proposing an alterna-

tive approximate form for obtaining the Penrose-Onsager condensate mode.
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Part III

Quantitative ab initio comparison to

quasi-1d experiments
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Part III is divided into three chapters, discussing the main achievements of our work.

In the first chapter we reproduce the in situ density profiles obtained in the experi-

ments of Trebbia et al. [Phys. Rev. Lett. 97, 250403 (2006)] and van Amerongen et

al. [Phys. Rev. Lett. 100, 090402 (2008)], and the density fluctuation data reported by

Armijo et al. [Phys. Rev. Lett. 105, 230402 (2010)]. The above results are presented in

the joint work by S. P. Cockburn, D. Gallucci and N. P. Proukakis [Phys. Rev. A 84 ,

023613 (2011)], with numerical simulations undertaken by S. P. Cockburn.

In the second and third chapter we perform an ab initio analysis of the temperature de-

pendence of the phase coherence length of finite temperature quasi-one-dimensional Bose

gases measured in the experiments of Richard et al. [Phys. Rev. Lett. 91, 010405 (2003)]

and Hugbart et al. [Eur. Phys. J. D 35, 155 (2005)] respectively. The above results are

presented in the work by D. Gallucci, S. P. Cockburn and N. P. Proukakis [Phys. Rev. A

86, 013627 (2012)].
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Chapter 4

In situ density profiles and density

fluctuations: Ab initio experimental

modelling

In this chapter, we show that the model described in Part II provides an accurate

ab initio prediction of the in situ density profiles and density fluctuations mea-

sured in the weakly-interacting, elongated Bose gas experiments of Trebbia et

al. [59], van Amerongen et al. [60], and Armijo et al. [61]. For each of these exper-

iments we initially give a general description of the experimental procedure and

the theory used to analyse the experimental findings, before comparing these to

our numerical results.

We begin with a quantitative comparison between our method and the exper-

iments by Trebbia et al. [59] and van Amerongen et al. [60] in Section 4.1.1 and

4.1.2 respectively; in these experiments several measurements of density profiles

of finite-temperature quasi-1D Bose gases realised on atom chips, were obtained

by in situ absorption imaging. We further test our model in Section 4.2, by di-

rectly comparing to the density fluctuations measurements from the experiment

of Armijo et al. [61].

We emphasise that in order to reproduce the experimental results, the only

experimental parameters used as input to the theory are the temperature of the

gas at equilibrium, the atomic species and the trap configuration, whereas every

other physical observable is calculated ab initio in our model.
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4.1 Density profiles: comparison to experiments

We briefly review the numerical approach we use to match to the experimental

density profiles in the works of Trebbia et al. [59] and van Amerongen et al. [60].

Our method is based on solving the quasi-1D form of the SGPE (Eq. 3.28) together

with the equation for the tranverse thermal modes (Eq. 3.29). Importantly, as the

parameter regime of these two experiments is such that µ < ~ω⊥ (see Figure 1.1),

we treat the transverse excited thermal modes with kBT > ~ω⊥ as independent

ideal 1D Bose gases, thereby using Eq. (3.30).

For a direct comparison to the density profiles, we take here the approach of

varying the numerical value of the chemical potential in our model, until the total

density from Eq. (3.32) matches the experimental profile at the trap centre. The

values of temperature and chemical potential are obtained in the experiment by

fitting the wings of the atomic density profile with the ideal Bose gas distribution.

In our method we choose to fix the temperature to that reported in the exper-

imental papers, whereas the chemical potential is used as a free parameter in our

model. A comparison between the value for the numerical chemical potential

and the one extracted from the experiment is also reported in each case.

A further interesting point to highlight is a common feature shared between

the experimental density profiles obtainedwith absorption imaging, and the ones

obtained with our stochastic model: namely both density distributions require

further analysis to extract the phase coherent (i.e. ‘true’ condensate) and density

coherent (i.e. quasi-condensate) fractions. This is because the SGPE, as well as the

experimental measurements, provides with an atomic density distribution which

includes both coherent and incoherent atoms. In particular, while in the exper-

iment the identification of quasi-condensate is obtained by performing bimodal

fits on the total density profile, in the case of SGPE, knowledge of the second-

order correlation function is sufficient to extract this component, as previously

discussed in Section 3.7.1. We emphasise that all total densities presented in this

chapter correspond to transversely integrated densities in the trap.

4.1.1 Comparison to work of Trebbia et al. [Phys. Rev. Lett. 97,

250403 (2006)]

In the experiment by Trebbia et al. [59] an atom chip was used to confine a finite-

temperature weakly-interacting Bose gas, in a quasi-one-dimensional geometry,

with trap frequencies ωz = 2π × 15.7Hz and ω⊥ = 2π × 2.75kHz. Atomic

density distributions were measured in situ, by means of absorption imaging, at
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Figure 4.1: Total density profiles from the quasi-1D SGPE model (Eq. 3.32; black solid
line) versus data from the experiment of Trebbia et al. [59] (red circles), at T = 302nK (a),
T = 362nK (b), T = 434 nK (c), T = 759nK (d).

four different values for the temperature (red circles, Figure 4.1).

The gas was shown to undergo a smooth crossover between the classical and

the quasi-condensate regime. The published theoretical analysis to interpret the

results was based on a 3D Hartree-Fock approach, which failed to explain the

formation of quasi-condensate in the centre of the trap. It was concluded that

the reason for this failure is linked to the too large density fluctuations that the

Hartree-Fock approach predicts in a quasi-one-dimensional gas; the spatial corre-

lations induced by interactions between particles are not properly accounted for

in this model. These density correlations [156, 189–191] are key to correctly pre-

dicting the onset of quasi-condensation and the associated reduction in density

fluctuations.

Figure 4.1 shows that our numerical prediction for the density profile (black

solid lines) provide instead excellent agreement with the experimental density

profiles, across the entire range of temperatures considered. In particular while

the Hartree-Fock approach was shown to provide good matching with the exper-

imental atomic density profile at the highest temperature considered (see Fig.1(a)

in [59] ), but found to have a lower peak than the experimental data at the crossover

temperature (see Fig.1(c) in [59]), the total density profile calculatedwith Eq. (3.32)

in our model instead accurately reproduces the experimental profile even at the

76



Chapter 4. In situ density profiles and density fluctuations: Ab initio
experimental modelling

-200 -100 0 100 200
0

200

400

600

800

-200 -100 0 100 200
0

200

400

600

800

-200 -100 0 100 200
z[µm]

0

200

400

600

800

n(
z)

 [
at

om
s 

pe
r 

pi
xe

l]

-200 -100 0 100 200
0

200

400

600

800

(a) (b)

(c) (d) quasi-1D SGPE
plus tranverse

quasi-1D SGPE

Figure 4.2: Quasi-1D SGPE contribution (Eq. (3.28); green dashed shaded region) to the
total density profiles (Eq. (3.32); black solid line). Parameters as in Figure 4.1.

crossover between classical and quasicondensate regime (Fig. 4.1(c)). The break-

down of the Hartree-Fock approach in this regime is due to the absence of a

well defined mean-field, caused by the enhanced fluctuations, that are instead

retained within the stochastic wavefunction in the quasi-1D SGPE.

The total density profiles reported in Figure 4.1 (black solid lines) are due to

two contributions, namely the axial density 〈|ψ(z)|2〉 obtained from the solution

of the stochastic quasi-1D SGPE (Eq. 3.28), and the density of transverse thermal

atoms, n⊥, with energy kBT > ~ω⊥ (Eq. 3.29). It is then interesting to see the

individual effect due to each density, on the total density profile; this is done by

isolating the contribution due the axial quasi-1D SGPE density (green dashed,

shaded region in Figure 4.2), from the total density (black solid line, Figure 4.2).

We notice that the density due to the atoms in the axial modes decreases

with increasing temperature, and in the highest temperature case (Figure 4.2(d)),

where µ < 0, we have essentially a thermal gas, as the total density is due only to

the atoms in the transverse excited modes.

We have previously mentioned that in our numerical approach we fix the tem-

perature to the experimentally measured value, and use the chemical potential

as a free parameter. Table 4.1 reports a comparison between the calculated val-

ues for µ in our model, and the ones obtained from the published Hartree-Fock
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µ/~ω⊥

Fig. kBT/~ω⊥
Analysis of [59] Current SGPE analysis
3D Hartree-Fock Quasi-1D

4.1a 2.3 0.40 0.58
4.1b 3.0 0.65 0.49
4.1c 3.3 0.60 0.26
4.1d 5.8 -6.78 -6.78

Table 4.1: Chemical potentials obtained from the current quasi-1D SGPE model versus
the Hartree-Fock analysis of [59] for the density profiles of Fig.4.1. These parameters are
for 87Rb atoms and trap frequencies ω⊥ = 2π × 2750Hz and ωz = 2π × 15.7Hz.

analysis: we observe a slight variation in the three lowest temperature cases con-

sidered. The chemical potential is somewhat dependent on the model used; this

is because theories approximate the full quantum Hamiltonian of the interacting

system to different orders (see e.g. [120]), therefore the chemical potential which

appears in the model, and compared to experiment, represents an approxima-

tion to the underlying, true value. In making different approximations, different

theories capture the true chemical potential to differing degrees of accuracy.

4.1.2 Comparison to work of van Amerongen et al. [Phys. Rev.

Lett. 100, 090402 (2008)]

In this section we further probe our model, by investigating the measurements of

van Amerongen et al. [60]. As in the experiment by Trebbia et al. [59], previously

discussed, a quasi-1D weakly-interacting degenerate Bose gas is realised on an

atom chip, whose confining magnetic trap has frequencies ωz = 2π × 8.5Hz and

ω⊥ = 2π × 3.28kHz. We notice that the confinement in this case is tighter than

the previous experiment since the aspect ratio, ω⊥/ωz, is more than twice as big

as the one in Trebbia et al. [59]: this implies that the gas in this case is closer to a

pure one-dimensional configuration. The density distributions were measured in

situ, at four different values of the temperature (red circles, Figure 4.3), and the

formation of a quasi-condensate was observed (red circles, Figure 4.3)(d)). The

experimental results were analyzed via a model based on the Yang-Yang ther-

modynamic formalism [192], a method also referred to as the thermodynamic

Bethe ansatz. This was the first experimental comparison to the exact Yang-Yang

thermodynamic solution to the finite temperature 1D Bose gas problem. In par-

ticular, the solution to the one-dimensional Yang-Yang thermodynamics corre-

sponds to the density given by the atoms in the axial modes, while the transverse

excited modes with energy kBT > ~ω⊥ are also accounted for with the method
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adopted here, i.e. Eqs.(3.29)–(3.30). The density profiles resulting from this ap-

proach showed very good agreement with the experimental findings (see Fig.1 in

[60] ).

In order to reproduce the experimental results, we apply the same approach

adopted in Section 4.1.1, i.e. we use the quasi-1D SGPE (Eq. 3.28) for the axial

modes, and Eqs. (3.29)–(3.30) for the tranverse excited modes. It is interesting to

notice that the SGPE contribution, 〈|ψ(z)|2〉, here plays the same role as the 1D

Yang-Yang prediction of the published theoretical analysis in [60]. As a conse-

quence, by modeling the experimental density distributions, we also (indirectly)

obtain information on how good is the matching between the SGPE model pre-

dictions and those obtained with the Yang-Yang thermodynamics.

Figure. 4.3 shows that the agreement between the experimental data and the

proposed quasi-1D SGPE approach is again very good across the entire tempera-

ture range probed, including the crossover from quasi-condensate to degenerate

thermal gas (Figure. 4.3(c)).

We now want to test the importance of the quasi-1D character of the SGPE

in the physical regime considered in the experiment. In order to do so we sim-

ply replace the quasi-1D SGPE (Eq. 3.28) with the pure one-dimensional SGPE

(Eq. 3.14). This essentially amounts to substituting the quasi-1D non-linearity,
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Figure 4.3: Total density profiles from the quasi-1D SGPEmodel (Eq. 3.32; black solid line)
versus the experimental data of van Amerongen et al.[60] (red circles), at T = 620nK (a),
T = 440nK (b), T = 380 nK (c), T = 140nK (d).
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~ω⊥

[
√

1 + 4|ψ|2as−1
]

, with the usual 1D form, g1d|ψ(z, t)|2 (where g1d = 2~ω⊥as).

The transverse thermal atoms are however still accounted for via Eqs. (3.29)–

(3.30). In Figure 4.4 we compare the total density profiles obtained by treating

the axial modes with the pure 1D SGPE (brown solid line) against the quasi-1D

SGPE (black solid line), at each temperature investigated. The results obtained

by using the pure 1D SGPE essentially recover the predictions derived by using

the quasi-1D SGPE, and consequently also provide an excellent agreement with

the experimental findings. While adopting the 1D SGPE or the quasi-1D SGPE

equally recovers the experimental atomic density distributions at each tempera-

ture, the numerical values for the chemical potential differ slightly between the

two approaches. This suggests that if we are to match the experimental density

profile at each experimental T , different values of µ are required. This is shown

in Table 4.2, where the parameters predicted by the quasi-1D SGPE, 1D SGPE and

modified Yang-Yang models are reported. However we find a remarkable result:

the values of the chemical potential used to obtain the 1D SGPE results are iden-

tical to those obtained from fits of the modified Yang-Yang model to the density

data in [60]. These predictions have also been found to arise in the context of the

1D stochastic projected Gross-Pitaevskii equation (SPGPE) in the work of Davis et

al. [193]; as a consequence we have indirectly gained an insight on the agreement
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Figure 4.4: Quasi-1D SGPE (thick black line) versus 1D SGPE (thin brown line) density
profiles. Each equation is supported by a static treatment of the transverse modes via
Eqs.(3.29)–(3.30). Parameters as in Figure 4.3.
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between 1D SGPE, the 1D SPGPE and Yang-Yang thermodynamics.

µ/~ω⊥

Fig. kBT/~ω⊥
Analysis of [60] Current SGPE analysis

modified Yang-Yang 1D Quasi-1D

4.4a 4.0 -2.74 -2.74 -2.74
4.4b 2.8 -0.38 -0.38 -0.38
4.4c 2.4 0 0 0.03
4.4d 0.89 0.45 0.45 0.39

Table 4.2: Chemical potentials obtained from the current quasi-1D SGPEmodel versus the
Yang-Yang analysis of [60] for the density profiles of Figures 4.3-4.4. These parameters
are for 87Rb atoms and trap frequencies ω⊥ = 2π × 3280Hz and ωz = 2π × 8.5Hz.

While in the regime analyzed in the work by van Amerongen [60] , there is

no significative difference between the 1D SGPE and its quasi-1D form, in the

next section we will demonstrate that the quasi-1D SGPE is crucial for accurately

matching the density fluctuations in the experiment by Armijo et al. [61].

4.2 Density fluctuations: comparison towork of Armijo

et al. [Phys. Rev. Lett. 105, 230402 (2010)]

In a recent work (Ref. [61]), Armijo et al. measured the second and third moments

of the density fluctuations of a harmonically trapped, finite temperature weakly-

interacting Bose gas, comparing these to theoretical predictions from ideal Bose

gas and quasi-condensate mean-field models, and also the modified Yang-Yang

model of Ref. [60], mentioned in Section 4.1.2. The measure of density fluctua-

tions was performed in situ, analysing the absorption images of the longitudinal

density profiles, obtained by probing the gas via a CCD camera with pixel size

∆ = 4.5 µm. Hundreds of images were taken under the same experimental condi-

tions, and a statistical analysis was performed. For each experimental realisation,

the number of atoms within each pixel, N , was measured as well as the average

number per pixel, 〈N〉. This allowed to calculate the quantity δN = N − 〈N〉,
and consequently the pth moment of the density fluctuations could be evaluated

as 〈δNp〉 = 〈(N − 〈N〉)p〉.
Both the second (p = 2) and third (p = 3) order of the density fluctuations were

then plotted as functions of the average number of atoms, 〈N〉, at two values

of the temperature. These findings are reported here in Figure 4.5 (red circles),

where the top row shows the second moment while the bottom row shows the
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third moment, each versus 〈N〉 for two temperatures: T = 376nK (left) and T =

96nK (right).
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Figure 4.5: Second ((a)-(b)) and third ((c)-(d)) moments of the atom number fluctuations
from the quasi-1D SGPE data (filled black diamonds) and experimental data from the
paper of Armijo et al. [61] (hollow red circles). Temperatures are T = 376nK ((a)-(b)) and
T = 96nK ((c)-(d)). Also shown in (b) are mean field results for an ideal Bose gas (green
solid line), 1D quasi-condensate (dotted blue, horizontal) and quasi-1D quasi-condensate
(dot-dashed orange); the thin, vertical dashed lines indicate the ‘crossover’ region where
the interaction and thermal energies become comparable. Inset to (a): SGPE result with
(filled black diamonds) and without (light blue crosses) transverse contributions to the
number fluctuations vs. the ideal gas result (solid green line).

The possibility to span the reported range of 〈N〉 is allowed by the harmonic

potential, that leads to an inhomogeneous density distribution where the number

of particles varies spatially. At the edge of the trap, the gas in nondegenerate and

is still effectively non-interacting; the low-density wings of the distribution can

be therefore considered as an ideal Bose gas. Close to the trap center where the

density is higher, the presence of a quasicondensate suggests a high-level of de-

generacy. While density fluctuations are enhanced within an ideal Bose gas, due

to an effect of quantum statistics that causes atomic bunching, in a quasiconden-

sate instead, spatial correlations induced by interactions lead to a suppression of

density fluctuations relative to those expected in an ideal gas. Thus, at a single

temperature, by scanning the spatial extent of the trapped gas it is possible to

observe both the enhancement of density fluctuations, due to quantum statistics

(low density, ideal Bose gas), and their subsequent suppression, due to particle

interactions (higher density, quasi-condensate regime) [61–63].

The experimental results for the second moment show that density fluctua-
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tions increase with increasing 〈N〉, and then saturate in the lower temperature

case, T = 96nK [Fig. 4.5(b)], at high value of the average atom number. The

reason why density fluctuations do not saturate in the higher temperature case

[Fig. 4.5(a)], is due to the presence of a smaller quasicondensate.

In Figure 4.5(b) we also report mean-field results for density fluctuations,

valid in the appropriate limits. Mean-field results for the density fluctuations

can be derived from the thermodynamic relation 〈δN2〉 = kBT∆(∂n/∂µ)T [194].

The ideal gas result, which should be valid in the case of small 〈N〉, i.e. at the trap
edges [solid green line in Figs. 4.5(a)-(b)], thus becomes [62]:

〈δN2〉 = ∆

λdB

∞
∑

j=1

√

j
ej(µ−V (z))/kBT

(1− e−j~ω⊥/kBT )
2 . (4.1)

The quasi-condensate equation of state, valid at large 〈N〉, i.e. the central trap

region, yields instead 〈δN2〉quasi−1D = 〈δN2〉1D [1 + (µ− V (z))/~ω⊥] [dot-dashed

orange line in Fig. 4.5(b)], where 〈δN2〉1D = kBT∆/g is the result for a purely 1D

equation of state (µ[n] = gn) [63] (horizontal dotted blue line).

The theoretical analysis reported in Armijo et al. [61] to model the experimen-

tal results was based on the modified Yang-Yang approach [60]. This provided

good agreement in the regime where the gas is nondegenerate (low values of

〈N〉), but it failed to describe the observed behaviour in the quasi-condensate

regime [corresponding to 〈N〉 & 70 in Fig. 4.5(b)]. In this regime the modified

Yang-Yang model predicted too great a reduction in density fluctuations, relative

to the observed experimental behaviour, and recovered the 1D mean-field result

(horizontal dotted blue line).

While the mean-field result based on the ideal gas equation of state [solid

green line in Figs. 4.5(a)-(b)] is valid only for small densities, and that from the

quasi-1D equation of state [dot-dashed orange line in Fig. 4.5(b)] holds at high

densities, the quasi-1D SGPE [filled black diamonds Fig. 4.5(a)-(b)], like the ex-

perimental data, provides a smooth crossover between each of these regimes.

The predictions of the quasi-1D SGPE capture the experimental behaviour very

well at both temperatures, and are also in good agreement with the quasi-1D

mean field expression [dot-dashed orange line in Fig. 4.5(b)]. We also find that

using the 1D SGPE [filled brown squares of Fig. 4.5(b)] leads to a good match-

ing with the 1D mean-field results [horizontal dotted blue line of Fig. 4.5(b)], and

consequently with the modified Yang-Yang prediction of Ref. [61], hinting once

again to good agreement between 1D SGPE and Yang-Yang. Physically, this sug-

gests that the effect of the transverse swelling of the quasi-condensate near the

83



Chapter 4. In situ density profiles and density fluctuations: Ab initio
experimental modelling

centre of the trap cannot be ignored for these parameters, and that the quasi-1D

extension to the SGPE is therefore essential here. Importantly, our numerical re-

sults for the quasi-1D SGPE [filled black diamonds of Fig. 4.5(b)] show that this

model captures the experimental data across the entire parameter regime very

well, thereby improving on the theoretical analysis reported in Armijo et al. [61].

Finally we also notice the good agreement (within experimental error bar) be-

tween the predictions of the quasi-1D SGPE and the experimental results for the

third moment of density fluctuations, as shown in Figure 4.5(c)-(d). A description

of the methodology undertaken to reproduce the experimental findings follows.

4.2.1 Numerical SGPE procedure

Wenow describe the procedure we adopted to reproduce the experimental results

on density fluctuations of Armijo et al. [61]. In our stochastic treatment, every run

of the SGPE can be loosely associated to an experimental realisation. We per-

form around 1000 numerical simulations, in each temperature case investigated.

Each numerical realisation of the noise in the SGPE provides with a fluctuating

density profile, |ψ(z)|2, given by Eq. (3.28); in order to mimic the experimental

procedure, we also perform the spatial binning, which effectively divides the nu-

merical data into ∆-sized regions (where ∆ is the spatial resolution of the CCD

camera). The same procedure is applied to the average, 〈|ψ(z)|2〉, performed over

the several numerical noise realisations, and also to the transverse density profile

n⊥ of Eq. (3.29). The axial contribution, Nz, to the total atom number within a

pixel is then given by the integral of |ψ(z)|2 over that pixel, as well as the trans-

verse contribution, N⊥ is instead given by the integral of the transverse profile

over the same pixel. The total atom number within the pixel is therefore given by

N = Nz +N⊥. Figure 4.6 shows a comparison between the single run (black) and

average (red solid line) profiles, after spatial binning; we notice the qualitative

agreement with the experimental binned data, reported in Fig.1(c) of Ref. [61].

The inset of Fig. 4.6 shows instead single run and averaged density profiles prior

to spatial binning. As we treat the atoms in the transverse modes in a static way,

they give a non-zero contribution only to average properties, and so do not con-

tribute to moments of the density fluctuations directly. However these atoms

are treated as 1D ideal Bose gases, and therefore the following approximation

〈δN2〉⊥ ≃ 〈δN3〉⊥ ≃ 〈N〉⊥ [61] holds at small densities. We then assume the

atoms in the excited transverse modes give a contribution 〈N〉⊥ to the second
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Figure 4.6: SGPE density following spatial binning for single realisation (noisy black line)
and average data (dashed red line); the inset shows the raw data prior to binning.

and third moment of the atom number fluctuations, yielding:

〈δNp〉 = 〈(Nz − 〈Nz〉)p〉+ 〈N〉⊥. (4.2)

The role of the atoms in the transverse modes is particularly important for the

high temperature case, and its role was crucial to accurately match the experi-

mental values for the second moment of fluctuations. This is shown in the inset

of Fig. 4.5(a), where we compare the SGPE results for density fluctuations with

(black diamonds) and without (light blue crosses) contribution from the atoms in

the transverse modes, N⊥. The inclusion of N⊥ results in a noticeable shift up-

ward in the SGPE data, leading to a very good agreement with the experimental

results (red circles). The corresponding comparison for the lower temperature

case is not reported, as the difference between the two approaches is negligible.

Finally, we mention that in order to reproduce the experimental results, we

take into account systematic effects reported in [61], that lead to a factor κp re-

lating the experimentally measured moments, 〈δN〉exp, to the true values, via

〈δNp〉exp = κp〈δNp〉. The factor κp arises due to the finite spatial resolution of the

experiment and therefore we also scale our theoretical findings by the published

values of κp [61], in order to account for this experimental issue.
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4.3 Chapter summary

The quasi-1D SGPE (Eq. 3.28) supported by Eq. (3.29) for the transverse excited

modes was shown to provide excellent ab initio predictions for both in situ exper-

imental density profiles obtained by Trebbia et al. [59] and van Amerongen et al.

[60], and in situ density fluctuation data from the experiment of Armijo et al. [61].

This was achieved by matching peak densities (equivalent to total atom number).

The study of density fluctuations showed that our combined approach cap-

tures all experimental regimes studied in a unified manner, smoothly interpolat-

ing between mean field models, whose individual validity is restricted to either

the low density or high density regimes. Importantly, it was found that analyz-

ing individual stochastic realisations in the same way as individual experimental

runs (once experimental resolution issues are properly accounted for), led to good

agreement between the density statistics in each case.

Reducing our stochastic model to the previously tested one-dimensional stochas-

tic Gross-Pitaevskii equation showed that: (i) the latter model is consistent with

Yang-Yang predictions (in the weakly-interacting regime probed here); (ii) while

both one-dimensional and quasi-one-dimensional approaches accurately repro-

duce equilibrium density profiles, they do so with slightly different chemical po-

tentials.
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Phase coherence I : Ab initio

modelling of experiment by Richard

et al. [Phys. Rev. Lett. 91, 010405

(2003)]

In this chapter we undertake an ab initio analysis of the experimental findings

by Richard et al. [54], using the Stochastic Gross-Pitaevskii model described in

Chapter 3. The experimental investigation aimed to extract the phase coherence

properties of weakly interacting, quasi-1D Bose gases in the ‘strong’ phase fluc-

tuation regime for which T ≫ Tφ, namely here 6 < T/Tφ < 28; we will mainly

focus on the modelling of the temperature dependence of the coherence length,

Lc. In Section 5.1 we provide a brief description of this experiment. In Section 5.2

we explain the methodology we adopt to reproduce the experimental findings

and in Section 5.3 we compare our results to the experimental ones.

5.1 Description of the experiment

In the experiment by Richard et al. [54], carried out in the group of A. Aspect in

Orsay (Paris), the phase coherence properties of quasi-condensates in elongated

harmonic traps were investigated. The experimental sequence consisted of load-

ing a beam of 87Rb atoms in a magneto-optical trap (MOT) and optically pump-

ing the atoms into the F=1 state, before transferring them to an anisotropic Ioffe-

Pritchard trap [94]. The aspect ratio of the trap was λ = 152, the frequencies being

ω⊥ = 2π × 760 Hz and ωz = 2π × 5 Hz. In this way, they managed to produce

cigar-shaped quasi-condensates with atom numbers in the range 0.25×105−0.65×
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105 and typical half-length L(axial size) ∼ 130 µm and R⊥(radial size) ∼ 0.8 µm.

These parameters enabled the ‘strong’ phase fluctuation regime 6 < T/Tφ < 28 to

be probed: in this range of temperatures, fluctuations in the phase play a domi-

nant role in the behaviour of the system, whereas density fluctuations, although

still present, are relatively suppressed compared to phase fluctuations.

In order to investigate the phase coherence properties of the gas, the axial

momentum distribution was measured by means of Bragg spectroscopy [54, 94].

Two counterpropagating laser beams formed a standing wave, which was moved

over the condensate so that the atoms were diffracted out of the condensate by in-

teraction with the wave. By measuring the fraction of atoms scattered out of the

condensate as a function of the detuning between the two counterpropagating

laser beams, the momentum profile was extracted along the axial direction of the

sample. Several spectra were measured at different temperatures varying from

85 ≤ T ≤ 350 nK, in the regime 0.3 ≤ T/Tc ≤ 0.9. The momentum distributions

were found to have Lorentzian shapes, resulting in an exponential decay of the

correlation function in space, typical of large phase fluctuations [53, 54, 58, 64].

The coherence length Lc was then extracted from the measure of the half width

at half maximum (HWHM) of the momentum profile, which was found to be-

come smaller for decreasing temperatures. They found values of the coherence

length in the range 5.9 ≤ Lc ≤ 39µm; these values, scaled to the half-length of

the quasi-condensate, were found to be in the regime 0.05 ≤ Lc/L ≤ 0.28. Since

the coherence length, Lc, is smaller than the axial size, L, for all cases the co-

herence does not extend over the whole system size, and the system is thus a

quasi-condensate.

It is interesting to study how the coherence length, Lc, varies with tempera-

ture, T , for a weakly-interacting Bose gas confined in harmonic trap. Such be-

haviour should best be characterised in a universal manner, i.e. by eliminating

any dependence on the system parameters, such as trap frequencies, atom num-

ber and length. For example, investigating the absolute value of the coherence

length with two different experimental configurations, characterised by different

trap aspect ratios, system atom numbers, and system sizes, may lead to different

results; however this does not indicate that one system is more phase coherent

than another. For this reason it is convenient to scale the coherence length to the

axial half-length of the system, L, and investigate the behaviour of this quantity

against a reduced temperature, T/Tφ, where Tφ is the characteristic temperature

associated with the onset of phase fluctuations [31]. In Ref. [54] Tφ was defined in

terms of the 1D axial quasi-condensate peak density, nqc(0), rather than in terms
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of total atom number and chemical potential, as already introduced in Eq. (1.13).

The corresponding expression was defined as [54]:

Tφ[nqc(0)] =
~
2nqc(0)

mkBL
. (5.1)

This is the most general expression for Tφ, and only requires the Local Density

Approximation to hold, as demonstrated in [101]; for details of how this expres-

sion relates to the one used in the experiment of Ref. [95], analysed in Chapter 6,

see also Appendix B.

The experimental values of the coherence length Lc, scaled to the half-length

of the condensate L, are shown plotted against the reduced temperature T/Tφ

in Figure 5.4 . Such a graph may be generated by extracting L from Figure 3 of

Ref. [54], and the remaining data from Figure 3 of Ref. [94].

The measured values of the axial length in the experiment were found to be

systematically lower than the Thomas-Fermi prediction. This difference resulted

from radial quantum pressure (zero point oscillation in the tight trapping po-

tential), and the compressing effect of the thermal cloud (particles with energy

ǫ ≫ ~ω⊥) [94]. The model used to calculate the axial length includes the above

effects: i) the role of radial quantum pressure was taken into account by find-

ing the optimal ground state energy (see details in [195]), while ii) the effect of

the thermal cloud was taken into account within a Hartree-Fock-like approach

[33, 196, 197]. In particular the effect deriving from the compression exerted by

the thermal cloud onto the condensate is calculated via [198]:

L2 =
2g3d
mω2

z

{

n0(0) +
2

λ3dB
[g3/2(e

−βgn0(0))− g3/2(1)]

}

, (5.2)

where g3/2(x) =
∑∞

n=1 x
n/n3/2 and n0(0) denotes here the quasi-condensate peak

density. The density distribution for the thermal component is calculatedwithin a

self-consistent Hartree-Fock model as [198] nth(r) = λ−3
dB g3/2(e

−β(µ−Veff (r))), where

Veff = Vext+2g3d(n0+nth). We notice that if the thermal cloud did not play role in

the determination of the half-length of the quasi-condensate, then Eq. (5.2) would

simply reduce to the usual Thomas-Fermi radius L2 = 2µ/mω2
z .

5.2 Methodology

In this section we describe themethodology followed in our SGPE numerical sim-

ulations to extract the coherence properties of quasi-1D Bose gases, such that we
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reproduce the experimental findings of Richard et al. [54]. In Ref. [54] measure-
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Figure 5.1: SGPE axial density profiles, 〈|ψ|2〉 (solid black) with corresponding quasi-
condensate density (solid red), for five temperatures cases: (from top to bottom)
T/Tφ[nqc(0)] = 4.5, 6.9, 12.9, 16.6, 24.9 (T = 87.5, 122.5, 215, 260, 345nK). The parameters
used for the trap are ωz = 2π × 5Hz and ω⊥ = 2π × 760Hz as in [54].

ments of the coherence length were taken for seven different systems, i.e. char-

acterized by different temperatures and atom number, but same trap configura-

tion and atomic species. These experimental data are reported in Figures 5.4 and

5.5 (hollow red triangles). Our aim is to reproduce each of these seven experi-

mental measurements within our model and thus determine from a fully ab initio

perspective the temperature dependence of the coherence length in the ‘strong’

phase fluctuation regime 6 < T/Tφ < 28. The experimental information avail-

able to us from this experiment was the quasi-condensate atom number and the

values of the temperatures at equilibrium (as reported in Figure 3 of [54]), to-

gether with trap frequencies and atomic species properties. Since we did not have

access to the total atom number in each experimental realization, we decided

to match the experimental quasi-condensate atom number with our numerical

quasi-condensate one, extracted via Eq. (3.35).

For this reasonwe find it convenient to consider only the quasi-one-dimensional

SGPE (Eq. (3.28)) within the model described in Part II, without explicitly consid-

ering the contribution of the transverse thermal atoms given by Eq. (3.29) (which
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would of course be needed if comparing total atom number between simulations

and experiment). This is because the quasi-condensate density in our numerical

simulations is calculated via Equation (3.35), which does not require a solution

to the equation for the transverse excited modes (Eq. (3.29)). Therefore, for ev-
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Figure 5.2: Symmetrical correlation functions normalized to the center, at T/Tφ[nqc(0)] =
4.5 (black), 6.9 (red), 12.9 (green), 16.6 (blue), 24.9 (yellow). Parameters from Ref. [54], as
in Figure 5.1.

ery data point considered, we match the temperature with the experimental one,

and set the chemical potential in our simulations to a suitable value such that the

quasi-condensate number, extracted with Eq. (3.35), matches the values quoted

in [54]. In each case we generate a large number of stochastic realizations (typ-

ically ∼ 1000), which allows to obtain very smooth density profiles. Figure 5.1

shows SGPE averaged density profiles (solid black) for five temperature cases

(from top to bottom T/Tφ[nqc(0)] = 4.5, 6.9, 12.9, 16.6, 24.9), with corresponding

quasi-condensate densities (solid red) extracted via Eq. (3.35). We notice that in

each temperature case, the difference between the SGPE density distribution and

the corresponding quasi-condensate profile is very small, even at the highest

temperatures probed, even though this difference increases at higher tempera-

ture. This suggests that at such temperatures, almost the entire system is a quasi-

condensate, i.e. the gas is practically fully density coherent. In order to access
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the information about phase coherence, we compute the first order symmetrical

correlation function (normalized to the central peak density) for each individual

realization of the noise: Figure 5.2 shows g(1)(−z/2, z/2) for the same temperature

cases discussed above. We notice that these functions have an exponential-like

behaviour, as also found in the experiment, and that at higher temperature they

decay faster to zero since T ≫ Tφ.

The coherence length, Lc , is usually determined as the 1/e value of the cor-

relation function, because of its exponential behaviour; however, this is not ap-

propriate for T ∼ Tφ, where the correlation function tends to a Gaussian-like

behaviour, as previously shown in Part II. In order to have a consistent measure

throughout the entire regime of T/Tφ and to be able to compare directly to the

experimental findings, we adopt the method used in the experiment: we com-

pute the axial momentum distribution by taking the average (over the number of

noise realizations) of the Fourier transforms of each individual spatial correlation

function. This is denoted by C(1) and takes the form:

C(1) = 〈F
[

ψ∗(−z/2)ψ(z/2)
|ψ(0)|2

]

〉, (5.3)

where F [· · ·] denotes the Fourier transform.

Figure 5.3 shows a comparison between C(1) corresponding to the extreme

temperature cases in the experimental data set, T/Tφ = 4.5 ( solid red) and T/Tφ =

24.9 (solid orange). The profile associated with the highest temperature case is

broader, compared to the lower temperature case where a much narrower peak

occurs. A Lorentzian fit in both cases highlights that, as in the experiment, we

also find in our simulations a Lorentzian like profile of the momentum distribu-

tions, characteristic of an exponential decay of the spatial correlation function.

Finally, we measure the half-width at half maximum (HWHM), ∆k, of C(1),

and the coherence length Lc is then determined by taking the inverse of ∆k. We

strictly follow this approach for the entire data set, and the results we obtain are

compared to the experimental ones, and discussed in the following section.

5.3 Results

We compare the SGPE predictions to the results obtained in the experiment, by

plotting the reduced coherence length Lc/L (where L denotes the half-length of

the quasi-condensate) against the reduced temperature T/Tφ. We use our sim-

ulated data to find the value for Tφ[nqc(0)] (Eq. (5.1)), with the required inputs
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Figure 5.3: |C(1)| (Eq. (5.3)) corresponding to the extreme temperature cases analysed in
[54]: T/Tφ[nqc(0)] = 4.5 (solid black) and T/Tφ[nqc(0)] = 24.9 (solid violet). Correspond-
ing Lorentzian fits for T/Tφ[nqc(0)] = 4.5 (dashed red) and T/Tφ[nqc(0)] = 24.9 (dashed
orange) are also shown.

being the quasi-condensate peak density and the spatial extent of the gas, each

of which we obtain ab initio, as described in the previous section. Specifically, the

half-length of the quasi-condensate in our simulations is given by the tempera-

ture dependent Thomas-Fermi radius RTF(T ), as defined in Section 3.7.2. The re-

sults are presented in Figure 5.4 which shows excellent agreement between SGPE

theory (filled black triangles up) and experimental results (hollow red triangles)

in this strong phase fluctuation regime.

An indicative error bar has been calculated for the highest temperature case.

For the experimental point we have used a typical 10% uncertainty [54], whereas

for the numerical point we have considered a 15% variation in the quasi-condensate

atom number and 5% in temperature. We have implemented the above variations

in a numerical simulation, and looked at the change in the coherence length Lc,

and in the inputs parameters to Tφ[nqc(0)], i.e. the quasi-condensate peak density,

nqc(0), and the Thomas-Fermi radius, RTF(T ). By assuming the errors in each pa-

rameter (Lc, T , nqc(0),RTF(T )) to be independent, the total error is then calculated
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Figure 5.4: Coherence length Lc scaled to the half length of the quasi-condensate L vs.
reduced temperature T/Tφ. Comparison of experimental data [54] spanning the range
T/Tφ > 6 (hollow red triangles) to the SGPE model (filled black triangles up). The hori-
zontal experimental error bar is taken as 10% [54], based on typical experimental uncer-
tainties, while the corresponding error in the simulated point arises from a typical 15%
variation in the quasi-condensate atom number and 5% variation in temperature [54]; in
both cases the vertical error bars fall within the symbol size. The definition used for the
critical temperature Tφ is the same for both experimental data and theory and is given
by Tφ[nqc(0)] = ~

2nqc(0)/mkBL, with nqc(0) being the peak quasi-condensate density.
The spatial extent of the quasi-condensate in the SGPE model is obtained ab initio as the
temperature dependent Thomas-Fermi radius RTF(T ) (see text).

by considering the individual errors in each parameter, as follows:

δT/Tφ
T/Tφ

=

√

(

δnqc(0)

nqc(0)

)2

+

(

δT

T

)2

+

(

δRTF

RTF

)2

δLc/L

Lc/L
=

√

(

δLc

Lc

)2

+

(

δRTF

RTF

)2

.

(5.4)

Since an increase of 15% in the quasi-condensate atom number does not produce

the same effect as a decrease of 15%, the error bar calculated in this manner is

not symmetrical. In the temperature range investigated, the coherence length is
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smaller than the quasi-condensate extent (Lc/L < 1), illustrating the fundamental

role of phase fluctuations in such an elongated geometry.
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Figure 5.5: Coherence length Lc scaled to the half length of the quasi-condensate L vs.
reduced temperature T/Tφ. Comparison of the SGPE model predictions (upward filled
black triangles) to experimental data [54, 94] spanning the range T/Tφ > 6 (hollow red
triangles). Additional numerical results generated with the SGPE model for lower tem-
peratures T/Tφ < 6 are also shown (downward filled black triangles), together with the
best fit of the SGPE results (dot-dashed black line).

For values of T/Tφ < 6, we expect the coherence length to increase, since in the

limit T . Tφ the phase fluctuations are reduced, to the point that the coherence

extends over a size comparable to the length of the system. In order to verify this,

we generate a further set of numerical points for T/Tφ < 6; specifically, we pro-

duce 5 additional numerical results, obtained for values of the temperature which

are systematically lower. This enables us to span the temperature regime down to

values of T/Tφ = 0.8. We then apply the same procedure used before to extract the

relevant parameters (i.e. Lc, RTF(T ), Tφ); the results are shown in Figure 5.5 (filled

black triangles down), together with the set of values shown in Figure 5.4. The

new set of numerical results (filled black triangles down) indeed confirms that the

reduced values of the coherence length Lc/L increase with decreasing tempera-

ture. Moreover these additional points (filled black triangles down) together with

the numerical results from the previous analysis (filled black triangles up) lie on
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a unified curve; this is obtained by fitting the numerical results with a function

of the form Ae−Bx−Cx
2

, and fitting parameters A = 0.69, B = 0.169, C = 0.003.

We will discuss further about this unified graph, and the ‘universal nature’ of

such a scaled diagram, in the next chapter, where we analyse the related exper-

iment by Hugbart et al. [95], investigating the phase properties in the regime

0.8 < T/Tφ < 8.

5.4 Chapter summary

In this chapter we have compared our model (for details see Chapter 3) to the ex-

periment of Richard et al. [54], which considered the regime of relatively strong

phase fluctuations T/Tφ > 6. We have found excellent agreement between SGPE

numerical results and experiment, when comparing the temperature dependence

of the coherence length in a weakly-interacting elongated Bose gas. In particular

the coherence length in our simulations was extracted from the average of the

Fourier transform of the first-order correlation function, and was then scaled to

the half-length of the quasi-condensate, which is given in our model by the tem-

perature dependent Thomas-Fermi radius. The scaled coherence length was then

reported against the reduced temperature, given by the ratio of the absolute value

of the temperature to the critical temperature Tφ, which sets the onset for phase

fluctuations. Importantly, our analysis is totally ab initio, thus meaning it is based

solely on using the experimental parameters (i.e. trap configuration, atom num-

ber, temperature) as inputs for the theory.

Finally we have undertaken further simulations to probe the regime T/Tφ < 6:

we have found that our results lie on a unified curve with an exponential-like

behaviour, spanning the whole regime of T/Tφ. This was also done to set the

stage for the task we undertake in the next chapter, where we compare our model

to the experiment by Hugbart et al., where the regime of relative weak phase

fluctuations (0.8 < T/Tφ < 8) was investigated.
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In this chapter we compare our model to the experimental findings of Hugbart

et al. [95]; this experiment investigated the coherence properties of quasi-one-

dimensional Bose gases in the ‘weak’ phase fluctuation regime where T ∼ Tφ,

namely here 0.8 < T/Tφ < 8. Phase fluctuations in this regime still play a funda-

mental role but they are reduced with respect to the experiment in [54] analysed

in the previous chapter.

In Section 6.1 we describe the experiment of Ref. [95], in which an experimen-

tal technique based on interferometry (unlike the Bragg spectroscopy used in

Richard et al. [54]), was implemented to investigate the phase coherence prop-

erties of the system. In Section 6.2 we show that by using the methodology de-

scribed in the previous chapter to extract the coherence length, we reconcile the

experimental findings from the two experiments in [54, 95]. However this pro-

cedure turns out to be inadequate to match the experimental data of Ref. [95].

Hence we attempt in Section 6.3 to more closely mimic the procedure followed

in [95], finding optimum agreement with the experimental results. Nonetheless

there still remains a small issue with the range of T/Tφ spanned in our numerics.

To address this, we discuss in Section 6.4 two alternative approaches, which lead

to an improved agreement with the experimental findings.

In order to compare and contrast the two experiments discussed in the pre-

ceeding and in this chapter, details of the experiment by Richard et al. [54] (anal-

ysed in the previous chapter), and the one by Hugbart et al. [95] (analysed in this

chapter) are summarised in Table 6.1.
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6.1 Description of the experiment

The Bragg spectroscopy method used in the previous experiment limited accu-

rate investigations of the coherence properties of the gas to T/Tφ > 6, as at lower

temperatures the width of the momentum distribution of the gas was no longer

easily resolved [94]. In the experiment described in [95], an alternative interfer-

ometry technique (see also Ref. [53]) was used to measure the spatial correlation

function in the ‘weak’ phase fluctuation regime 0.8 < T/Tφ < 8.

In particular, after the condensate was released from the trap, two Bragg pulses

were applied, playing the role of matter-wave beam splitters. The contrast of the

resulting interference fringes was then extracted from the modulus of the Fourier

transform of the interference pattern, and the coherence length obtained from the

decrease of the contrast as a function of the distance between the two interfering

condensates. While in the experiment of Ref. [54] (Chapter 5), it was necessary to

measure the axial momentum distribution (by means of Bragg spectroscopy) to

access the correlation function, this is instead given in the experiment of Ref. [95]

by the contrast of the interference fringes as a function of the distance between

the two interfering condensates. The experimental data (hollow red circles of Fig-

ure 6.1), show that, in the regime T ≃ Tφ, the coherence extends over more than

half of the system size.

In order to access such low values of T/Tφ, it was technically easier to use

slightly less elongated traps than in [54]. In fact, two different trap configurations

were used (first: ω⊥ = 2π × 395 Hz and ωz = 2π × 8.67 Hz; second: ω⊥ =

2π × 655Hz and ωz = 2π × 6.55Hz); the data obtained with the second trap were

subdivided into two different blocks, characterised by two different values of

the evaporation parameter, which proved necessary in order to vary T/Tφ, while

keeping the condensed fraction fairly constant within each data block [199]. The

total atom numbers measured in this experiment were found to lie in the range

0.8 × 105 − 3 × 105 (corresponding quasi-condensate atom numbers: 0.5 × 105 −
2.5× 105), within a temperature region of 100− 230 nK.

Although it is theoretically anticipated (for a homogeneous gas [200]), that the

coherence length, scaled to the experimental half-length of the system L, should

yield a universal curve when plotted against the reduced temperature T/Tφ, it

would not actually be appropriate to incorporate the data from [95] with the ones

from [54] into a single graph; this is because the two experiments used different

techniques to measure the coherence length and so their corresponding results

should not be directly compared, a point that we discuss further in the next sec-

tions.
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Table 6.1: Comparison between key points of the two experiments by Hugbart et al. [95] and Richard et al. [54].

Experiment by Hugbart et al. [95] Experiment by Richard et al. [54]
Chapter 6 Chapter 5

Parameters known from experiments: T,Ntot, Nqc, ωz, ω⊥ T,Nqc, ωz, ω⊥

Parameters calculated: ab initio L, Lc, Tφ[Nqc] L, Lc, Tφ[nqc(0)]

Numerical Procedure: Vary µ to match Ntot via Eqs. (3.28) and (3.29) Vary µ to match Nqc via Eqs. (3.28) and (3.35)

Trap Configurations: 1)ωz = 2π × 8.67Hz, ω⊥ = 2π × 395Hz ωz = 2π × 5Hz, ω⊥ = 2π × 760Hz
2)ωz = 2π × 6.55Hz, ω⊥ = 2π × 655Hz

Number of data points: 22 7

Expression for Tφ: Tφ[Nqc] = 15~2Nqc/16mkBL
2 Tφ[nqc(0)] = ~

2nqc(0)/mkBL

Method to measure Lc: C(1,mod) = 〈
∣

∣

∣

∣

F

[

ψ∗(−z/2)ψ(z/2)
|ψ(0)|2

]
∣

∣

∣

∣

〉 C(1) = 〈F
[

ψ∗(−z/2)ψ(z/2)
|ψ(0)|2

]

〉

Experimental Technique to extract Lc: Interferometric Method Momentum spectroscopy

Temperature regime: 0.8 < T/Tφ < 8 (90nK ≤ T ≤ 350nK) 6 < T/Tφ < 28 (100nK ≤ T ≤ 230nK)

Atom number range: Ntot : 0.8× 105 − 3× 105 Nqc : 0.25× 105 − 0.65× 105
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The model used in [95] to predict the experimental findings follows the theory

by Petrov et al. [32], which should be equivalent to the low temperature limit of

the modified Popov theory [87]. It was found that the theoretical prediction for

the coherence length was shifted with respect to the experimental one by about

25% for T/Tφ = 1 [95]. This is clearly shown in Figure 6.1, where the theoreti-

cal prediction (solid red line) is found to lie above the experimental data points

(hollow red circles).

6.2 Modelling of the experiment: Analysis via C(1)

The procedure we adopt to model the experimental results of Ref. [95] differs

slightly from the one used to reproduce the experiment of Ref. [54] in the previous

chapter. This is so because for the experiment in [95], we have also access to the

experimental data for the total atom number, and therefore we can closely follow

the methodology described in Section 3.3, based on both Eq. (3.28) and Eq. (3.29)

to account for the axial dynamics and the tranverse modes respectively, and solve

Eq. (3.32). In particular, as the condition µ > ~ω⊥ is fulfilled in Ref. [95] (unlike

the experiments investigated in Chapter 4 for which µ < ~ω⊥), we must also con-

sider the effect of the mean-field potential experienced by the transverse thermal

atoms (i.e. use Eq. (3.31), as explained in Section 3.3). We also remind the reader

that the half-size of the quasi-condensate, L, is in our simulations the tempera-

ture dependent Thomas-Fermi radius, RTF(T ), calculated ab initio, as explained

in Section 3.7.2.

In our simulations, rather than reproducing the experimental procedure, for

which non-equilibrium expansion dynamics would need to be accounted for, we

initially instead extract the corresponding in situ coherence length by adopting

the same methodology described in Section 5.2, and applied to the experiment in

[54]. This is done here in order to firstly explore whether our numerical results

for the system of Ref. [95] also lie on the same ‘universal’ curve of Ref. [54] (dot-

dashed black of Figure 5.5).

We indeed find that the new numerical points generated in this regime T ∼
few Tφ (filled black squares, Figure 6.1) lie on the same (dot-dashed black) curve

provided by the fit in Figure 5.5, hence demonstrating the universal character

of the coherence properties as numerical results obtained with different sets of

trap configurations, temperatures and atom number yield the same behaviour.

However, while our methodology led to a unified theoretical graph over both

the ‘weak’ and ‘strong’ phase fluctuation regime, which also provides excellent
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Figure 6.1: Scaled coherence length Lc/L vs. reduced temperature T/Tφ. Comparison
of experimental data [95] (hollow red circles) to the SGPE model (filled black squares).
The theory used in [95] to interpret the experimental data is also shown (solid red line),
together with the reported experimental best fit (dashed red line). The fit from Figure 5.5
(dot-dashed black line) is also reported. Typical error bars are shown for corresponding
data points in both experiment and SGPE model; in the latter case, they are based on a
20% variation on total atom number (note that the error bars to the point with T/Tφ ≈ 1.2
lies within the point size and are barely visible). The SGPE data are scaled to Tφ[nqc(0)]
for consistency with the discussion of Figure 5.5.

agreement with the experiment [54] for T > 6Tφ, the corresponding SGPE results

for the experiment of Ref. [95] differ from the experimentally-reported ones. The

reason for this discrepancy is twofold: firstly, in [95] it is an ‘effective’ correlation

function that is evaluated, which leads to a different definition of the coherence

length ( Section 6.3); secondly, the theoretical values of T/Tφ do not span the same

range as in the experiment (Section 6.3.2).

6.3 Effective correlation function

The main source of the observed discrepancy should be related to the experimen-

tal measurement of an ‘effective’ correlation function (see Eq. (9) in [95]), instead
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of the correlation C(1) measured in [54] and discussed thus far. In the experi-

ment of Ref. [95], this effective correlation was introduced in order to eliminate

the random phase caused by the shot to shot fluctuations of the global position

of the contrast fringes; it was found that taking the absolute value of the Fourier

transform of the fringe pattern before averaging achieved this aim (for a more de-

tailed explanation see Section 4.2 in Ref.[95]), but modified the coherence length

relative to that of C(1). For this reason, we should not expect the measurements

from the two experiments to lie on the same curve, as they measure two different

quantities.

In analogy to the method used in the experiment to extract the coherence

length, we implement this feature by similarly taking the absolute value of the

Fourier transform of g(1) from each individual run, before averaging over the dif-

ferent realizations of the noise; our effective correlation function, which we here

call C(1,mod), takes the form:

C(1,mod) = 〈
∣

∣

∣

∣

F

[

ψ∗(−z/2)ψ(z/2)
|ψ(0)|2

]
∣

∣

∣

∣

〉. (6.1)

The effective correlation function is found to have similar behaviour to C(1), but

it decays faster for values of momentum k near the half-width at half maximum

(HWHM), thus resulting in larger values of the coherence length.

Figure 6.2 shows a comparison between C(1) (black) and C(1,mod) (red) for the

case of T/Tφ = 2.2. In the inset of Figure 6.2 we focus on the region around the

HWHM, and notice that C(1,mod) indeed decays faster than C(1).

6.3.1 Results

We now discuss the effects of using C(1,mod) in order to extract the coherence

length from the system. As already shown in Figure 6.2, the values of the co-

herence lengths are slightly higher if extracted with this methodology. This is

shown in Figure 6.3, which compares the theoretical results to the experimental

measurements using C(1) (black filled squares) and C(1,mod) (blue filled circles).

Although we consciously do not exactly reproduce the experimental technique,

the results obtained from the SGPE analysis of the ‘effective’ correlation function

clearly show a very similar trend to the experimental findings over the probed

regime; in particular, they tend to lie on the reported line of best fit of the ex-

perimental data (dashed-red line of Figure 6.1). We note that our calculation of

C(1,mod) leads to a much improved agreement with the experimental data than

the original theoretical analysis reported in [95] (solid red line, Figure 6.1), which
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Figure 6.2: Comparison between C(1) (solid black) and C(1,mod) (dashed red) at T =
2.2Tφ. Inset: focus on the region around the half width at half maximum.

largely overestimates the amount of coherence in the system.

Although the experimental results and our simulated data (extracted viaC(1,mod))

lie in the same region, the temperature regime spanned is still somewhat dif-

ferent: the experimental findings extend over slightly larger values of T/Tφ, as

shown in Figure 6.3. This is motivated by the fact that we have used the defini-

tion for Tφ given in Ref. [54], which we have here labelled Tφ[nqc(0)], in order to

isolate the effect due solely to the extraction of the coherence length via C(1,mod)

instead of C(1); however in Ref. [95], the expression adopted for Tφ is different,

and we address this issue in the next section with the intention to rule this out as

the main source of the discrepancy.

6.3.2 Identification of Tφ

So far in our analysis we have always scaled our numerical results to Tφ[nqc(0)],

given by Eq. (5.1), which was correct when we compared to the experiment of

Ref. [54].

However we note that the analysis of Ref. [95] was actually based on a slightly
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Figure 6.3: Scaled coherence length Lc/L vs. reduced temperature T/Tφ. Comparison of
numerical SGPE data extracted via C(1,mod) (filled blue circles) and via C(1) (filled black
squares) against experimental points of Ref. [95] (hollow red circles). The theory used in
[95] is also shown (solid red line) togetherwith the experimental best fit (dashed red line).
SGPE data are scaled to Tφ[nqc(0)], and respective error bars account for 20% variation in
total atom number and a further 5% variation in temperature.

modified definition for Tφ compared to that used in Ref. [54] (see Appendix B

for details), thus making the comparison in Figures 6.1 and 6.3 not appropriate

for the purpose of direct investigation of the experimental findings in Ref. [95].

Nonetheless we remark that this was done primarily to investigate whether our

numerical results from the two different experiments lie on the same universal

curve (Figure 6.1) and to isolate the effect due solely to the use of C(1,mod) instead

of C(1) (Figure 6.3).

For a direct quantitative comparison to the experimental results, we should

therefore scale our numerical results to the Tφ used in Ref. [95], which we here

call Tφ[Nqc]:

Tφ[Nqc] =
15~2Nqc

16mkBL2
. (6.2)

There are two main features to underline with regard to the above expression.

Firstly, Tφ[Nqc] is defined in terms of the number of quasi-condensate atoms Nqc
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(and not on the peak quasi-condensate density). This is in fact a simplified form

of Eq. (5.1), valid for 3D condensates (i.e. condensates where the transverse den-

sity profiles can be well approximated by a Thomas-Fermi profile). A discussion

about the relation between the two expressions for Tφ, and how it is possible to

reconcile them is presented in Appendix B. Secondly, the half-size of the quasi-

condensate L (appearing in Eq. (6.2)) has been approximated in Ref. [95](Figure 5)

with the Thomas-Fermi expression L =
√

(2µTF/mω2
z), rather than the actual

value measured in the experiments. The chemical potential µTF is defined as

µTF =
~ω

2

(

15Nqcas
√

~/(mω)

)2/5

and ω = (ωz ω
2
⊥)

1/3. (6.3)

With that in mind, we have thus repeated our numerical analysis using as

closely related a procedure as possible: in particular, to obtain Tφ in our simula-

tions, we also used L =
√

(2µTF/mω2
z) in Eq. (6.2), with Nqc, appearing in both

Eqs. (6.2)–(6.3), obtained directly from our simulations via the equation to extract

the quasi-condensate density (Eq. (3.35)). However, we point out that the half-

size of the condensate L, to which the experimental coherence length Lc is scaled

to, is indeed the one measured experimentally.

Our numerical results are shown in Figure 6.4, and reveal an improved agree-

ment with the experimental data (with respect to Figure 6.3), as the temperature

regime spanned is now closer to the experimental one.

Although the experimental results and our simulated points (extracted via

C(1,mod)) demonstrate very good agreement when accounting for their respective

error bars, the experimental data still appear to systematically extend to slightly

larger values of T/Tφ, as visible in Figure 6.4. This could be attributed either to a

systematic shift in the experimental determination of T (e.g. arising in expansion

imaging), which however increases with increasing T/Tφ ratio, or to the method

by which the inputs to Tφ (e.g. Nqc and L) are extracted in the analysis. In the rest

of the chapter we assume that this shift arises solely from the latter and attempt

to further improve on the spanned range of T/Tφ.

6.4 Alternative approaches

6.4.1 Tφ extracted from the phase distribution

In this section we investigate an alternative method of reproducing the experi-

mental results of Ref. [95] from an SGPE analysis. This method aims to improve

105



Chapter 6. Phase coherence II : Ab initio modelling of experiment by Hugbart
et al. [Eur. Phys. J. D 35, 155 (2005)]

0 1 2 3 4 5 6 7
T/Tφ

0.3

0.4

0.5

0.6

0.7

0.8

L
c/L

Experimental data
Best fit to data
Theory 

0 2 4 6
T/Tφ

0.3

0.4

0.5

0.6

0.7

0.8

L
c/L

C
(1,mod)

, match N
tot

Ref. [95 ] SGPE analysis, Tφ[N
qc

]

Figure 6.4: Scaled coherence length Lc/L vs. reduced temperature T/Tφ. Numerical
SGPE findings extracted via C(1,mod) (filled blue circles) against experimental data points
of Ref. [95] (hollow red circles). The theory used in [95] is also shown (solid line) together
with the experimental best fit (dashed red line). SGPE numerical points are scaled to
Tφ[Nqc], and respective error bars account for 20% variation in total atom number and
a further 5% variation in temperature. SGPE results are obtained by matching the total
number of atoms.

on the spanned regime of T/Tφ in our numerical simulations, but does not lead to

any variation in the values of the reduced coherence length, Lc/L. Our approach

is motivated from footnote 47 of Ref. [95], which mentioned that Tφ could be ob-

tained from the relation Lφ/L = Tφ/T [32] with Lφ identified as the characteristic

separation over which the phase fluctuates by 1 radian at the trap centre. This

is directly related to the definition of Tφ given in Petrov et al. [32], where this is

defined as the characteristic temperature at which δ2L ≈ 1, with δ2L representing

the phase fluctuations on a distance scale |z − z′| ∼ L.

The parameters we need to extract to obtain the values for T/Tφ, according to

the relation described above, are the half-size of the quasi-condensate L, which

is still given by the temperature dependent Thomas-Fermi radius, and Lφ. To

calculate the latter, we take here the approach of systematically analysing the

phase distributions of the ensemble of stochastic fields ψ at several distances from
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Figure 6.5: Distributions of the phase of a∗cψ(z)/|ac| (where ac is the amplitude of the
Penrose-Onsagermode), corresponding to the left data point with error bar in Figures 6.1
and 6.6, at different locations from the trap centre. Shown are the distributions at the
condensate edge (left plot), at the point z = Lφ (central plot) where the distribution is
fitted by a Gaussian (illustrated by the red solid curve) of standard deviation σ = 0.65
(which for the particular numerical point considered occurs at z ≃ 0.5RTF(T )) and at
the trap centre z = 0 (right plot). The distributions are centered and normalised, and the
phase θ is scaled to π.

the trap centre. Within the Thomas-Fermi radius, we find these distributions to

be well fitted with Gaussian functions, whose standard deviation, σ, increases

with increasing distance from the trap centre, due to the enhanced role of thermal

fluctuations (see Figure 6.5 and related work in [92]).

In Figure 6.5 we report phase histograms of the stochastic field ψ(z), locked

to the phase of the Penrose-Onsager mode φPO [167, 201], at three values of the

distance from the trap centre. These phase distributions correspond to the left

data point with error bar in Figures 6.1 and 6.6, for which T = 2.2 Tφ[Nqc].

To be more specific, we plot the phase, θ, of a∗cψ(z)/|ac|:

θ = arctan

(

Im[a∗cψ(z)/|ac|]
Re[a∗cψ(z)/|ac|

)

, (6.4)
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where ac is the amplitude of the Penrose-Onsager mode, given by ac = ∆z
∑

zi
φ∗
PO(zi)ψ(zi),

and∆z is the grid spacing (see [167, 201] for further details and implementation).

For each spatial point, z, there as many values of θ as number of stochastic real-

izations of ψ (i.e. 1200). In Figure 6.5 we show how these values are distributed

at three different spatial points in the gas: z = 0 (right plot), z ≈ RTF/2 (central

plot), z = RTF (left plot). We note that in the central region of the trap (z = 0),

where the gas is more coherent, the phase θ takes on fewer values compared to

the distribution at the edge of the trap (z = RTF), where θ is instead randomly

distributed. This is shown by the plot of the histogram of the phase, that results in

a narrow distribution at the center (z = 0), while a flat one at the edge (z = RTF).

The broadness of the generated distributions is an indication of the amount of

coherence at a specific spatial point in the system: we expect the distribution to

become broader with increasing distance from the trap centre, and be almost flat

at the edge, where the system becomes purely thermal (Figure 6.5).

In this analysis, Lφ can be identified as the distance from the centre where the

standard deviation of the Gaussian fit to the phase distribution reaches a particu-

lar value. Our analysis indicates that when the standard deviation takes the value

of σ = 0.65, then the corresponding value of Lφ leads to optimum agreement with

the experimental findings regarding the spanned range of T/Tφ. For the specific

data point considered in Figure 6.5, this occurs at z ≈ RTF/2, so in this case we

define Lφ = RTF/2. It should be noted that the standard deviation, σ, in this ap-

proach plays the role of a free parameter, i.e. we choose the optimum value for it,

which leads to best agreement with reported experimental data

The results of this approach are shown in Figure 6.6, where we show the sim-

ulated data scaled to the values of T/Tφ extracted as described above (blue stars)

together with the experimental findings (hollow red circles). We also include here

error bars for the previously considered indicative data points (as in Ref. [95]). In

obtaining these we consider two sources of error: a variation in total atom num-

ber of 20% [202] and also a variation in the standard deviation σ of ±0.05, to

additionally indicate the sensitivity on this parameter. The individual error due

to each of these contributions is shown by the solid and dashed portions of the

error bars, respectively. Considering just the variation in atom number (solid por-

tion of error bar), yields an error range which is very similar to the experimental

range.

Overall, it is clear that the general trend in the theoretical values for Tφ is sim-

ilar to the experimental values, suggesting that probing the phase distribution

of the SGPE ensemble indeed captures, at least qualitatively, the temperature de-
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Figure 6.6: Scaled coherence length vs. reduced temperature. Experimental data [95]
(hollow red circles) against SGPE numerical results extracted via C(1,mod) (blue stars)
scaled to Tφ extracted from the phase distribution. The theory used in [95] is also shown
(solid line) together with the best fit (dashed-red line). Error bars account for 20% varia-
tion on total atom number (solid line) and 8% variation on the standard deviation (dashed
line).

pendent phase coherence observed in the experiment. Taking account of the error

bounds suggests even quantitative agreement, since the experimental values of

T/Tφ are within range of the theoretical values. We however stress further that

this optimum agreement is the result of choosing an ad hoc value for the standard

deviation (i.e.σ = 0.65), which is a free parameter in this approach.

6.4.2 Match quasi-condensate

The theoretical analysis discussed so far is based on matching the experimen-

tal total atom number, using both Eq. (3.28) and Eq. (3.29). However, the quasi-

condensate atom number resulting from this approach and calculated as usual

via Eq. (3.35), is systematically higher than the one extracted experimentally via

bimodal fits.
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Figure 6.7: Scaled coherence length Lc/L vs. reduced temperature T/Tφ. Numerical
SGPE data extracted via C(1,mod) (filled blue circles) against experimental points of Ref.
[95] (hollow red circles). The theory used in [95] is also shown (solid red line) together
with the experimental best fit (dashed red line). SGPE data are scaled to Tφ[Nqc], and
respective error bars account for 20% variation on total atom number. SGPE data shown
here are obtained by matching the experimental quasi-condensate atom number.

For this reason we have performed a separate analysis, where we now match

our numerically extracted quasi-condensate number to the corresponding experi-

mentally extracted one. This is achieved by using only Eq. (3.28) (disregarding

the contribution from the thermal atoms given by Eq. (3.29)), and extracting the

quasi-condensate with Eq. (3.35). We remind that it was necessary to adopt such

a method for the experiment in [54] discussed in Chapter 5, as in that case we had

access only to the experimental quasi-condensate atom number.

Themeasurements of the coherence length are still performed via C(1,mod), and

these are shown in Figure 6.7 (green crosses); we find very good overall agree-

ment (except for the point with the highest T/Tφ), with the experimental findings

(hollow red circles). We also notice that the regime of T/Tφ spanned by the SGPE

numerical results matches the experimental one; this is what we would expect

given that both the quasi-condensate number Nqc is the same between theory

110



Chapter 6. Phase coherence II : Ab initio modelling of experiment by Hugbart
et al. [Eur. Phys. J. D 35, 155 (2005)]

and experiment.

6.5 Chapter summary

In this chapter we have compared the SGPE theory to the findings of Hugbart

et al., Ref. [95] for the low temperature regime T . few Tφ, which is more chal-

lenging to probe in experiments. While the SGPE analysis gave a temperature

dependence of the coherence length in quantitative agreement with the exper-

imental trend (within error bars), undertaking a point-by-point analysis of the

experimental data was found to span a slightly narrower range of T/Tφ than the

experimentally-reported curve, indicating a systematic deviation. We argued that

this discrepancy may arise as a result of the different identifications of Tφ be-

tween theory and experiment, possibly due to the different means of processing

the ‘raw’ experimental data and stochastic numerical results, e.g. due to differ-

ences in extracting the quasi-condensate atom number which then feeds into the

expression for Tφ.

We have partially examined this issue by using instead a phase sensitive means

of extracting Tφ from characterisation of the ensemble phase distribution in SGPE

simulations. In particular, motivated by footnote 47 of Ref. [95], we identified Tφ

through the relation Tφ = T (Lφ/RTF(T )) where Lφ was chosen as the character-

istic separation from the trap centre at which the phase distribution is fitted by

a Gaussian with a particular value for the standard deviation. In our treatment

however this value is a free parameter chosen here so as to match the experimen-

tal range of T/Tφ.
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Conclusions and future work

In this thesis we have demonstrated that the stochastic Gross-Pitaevskii equa-

tion (SGPE) is an excellent tool for ab initio modeling of equilibrium properties

in weakly-interacting finite-temperature Bose gas experiments. The SGPE corre-

sponds to a stochastic nonlinear Langevin equation which is essentially a dissipa-

tive Gross-Pitaevskii equation with an additional noise term. Unlike the Gross-

Pitaevskii equation, where the wavefunction represents the condensate, in the

SGPE the wavefunction can be thought of as the classical field associated with a

set of highly populated low-lying modes in the gas (often referred to also as an

‘order parameter’); these are in contact with the high-lying modes (i.e. thermal

cloud), assumed to be at static equilibrium and to act as a particle reservoir (or

‘heat bath’). The SGPE classical field therefore contains the condensate plus low-

lying excitations on top of it; the damping term accounts for particle exchange

between the two subsytems (i.e. low-lying modes and high-lying purely ther-

mal cloud), while the noise term accounts instead for fluctuations due to such

ongoing particle exchange; the latter is assumed to be Gaussian correlated. The

damping term and the noise term, describe respectively, the coherent and inco-

herent scattering processes that occur between the low-lying modes, treated dy-

namically via the SGPE, and the high-lying modes, assumed to be close to equi-

librium. Unlike the mean-field theories, reviewed at the start of Chapter 2, in

which the existence of a well defined mean-field quantity is assumed at the start,

the SGPE can describe spontaneous initiation, i.e. the growth of a condensate

from a purely thermal cloud with a fixed chemical potential and temperature.

The equilibrium state is reached in a dynamical manner: the growth is initiated

by the noise term via spontaneous scattering, and then stimulated processes, due

to bosonic enhancement, lead to the correct equilibrium configuration, ensured

by the fluctuation-dissipation relation, which provides a precise relation between
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the dissipation and the fluctuations at equilibrium.

An interesting aspect of the SGPE is that is shares, in some sense, two fea-

tures with the procedure adopted in the experiments. In a typical experiment,

repeated tests are performed, with related shot-to-shot variations in the experi-

mental realisations, over which the physical observables are finally averaged. In

the same way, each stochastic run of the SGPE can be loosely associated to an

independent experimental measurement, and the process of averaging over the

several realisations of the noise finally leads to a physical observable that can be

directly compared to the averaged experimental result. Furthermore, the atomic

density distributions measured in the experiments, as well as the density profiles

resulting from the solution of the SGPE, require additional analysis to identify

the phase coherent (‘pure’ condensate) and density coherent (quasi-condensate)

fraction from the total density. While in the experiments this is usually performed

via bimodal fits (something which could also be imposed on the SGPE averaged

results), we showed in Chapter 3 that knowledge of first- and second- order cor-

relation functions are sufficient to extract these components from the total density

profile.

7.1 Quasi-one-dimensional systems

The SGPE is particularly suitable for modelling weakly-interacting Bose gases in

elongated geometries. In low-dimensional systems in fact, fluctuations play a

major role, due to long-wavelength excitations in the harmonic trap, that tend to

prevent the onset of off-diagonal long-range order in the gas. Amean-fieldmodel

would not be adequate to describe the system, in this physical regime, due to the

lack of a well-defined mean-field quantity. The ‘order parameter’ in the SGPE

instead explicitly retains fluctuations around the mean-field, thus giving access

to information on coherence, through calculations of correlation functions.

In order to best consider actual experimental data for quasi-1D systems, we

have adopted an effective one-dimensional model which consists of a quasi-one-

dimensional form of the SGPE, that further accounts for the transverse swelling

of the gas due to repulsive interactions. The physical regime of the experimental

data investigated in this thesis are in fact characterised by the conditions µ, kBT .

few ~ω⊥, where µ is the chemical potential, kBT is the thermal energy, and ~ω⊥ is

the tranvserse excitation energy. In addition to the quasi-1D SGPE, that describes

the dynamics of the axial modes in the system, we also accounted in our model

for the fact that the transverse excited modes are also populated:
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• In the regime µ < ~ω⊥, characteristic of the experiments analysed in Chap-

ter 4, this is attained by treating each transverse mode as 1D independent

ideal Bose gas at equilibrium.

• In the regime µ ∼ few ~ω⊥, characteristic of the experiments discussed in

Chapters 5-6, we also accounted for themean-field experienced by the trans-

verse thermal atoms.

We now summarise the main results achieved in Part III of this thesis.

7.1.1 µ . ~ω⊥ and kBT ∼ few ~ω⊥

Density profiles

In Chapter 4 we compared our model to the experiments by Trebbia et al. [59]

and van Amerongen et al. [60], in the groups of I. Bouchoule and N. J. van Druten

respectively. These experiments studied a quasi-one-dimensional Bose gas real-

ized on atom chips, at the crossover between the classical and quasi-condensate

regime (with µ < 0 or µ < ~ω⊥ throughout all data considered for both experi-

ments, see Fig. 1.1).

The work of Trebbia et al. [59] was the first experimental evidence of the

breakdown of the Hartee-Fock (mean-field) approach in an elongated weakly-

interacting Bose gas, as this approach cannot correctly predict the arising quasi-

condensate due to its built-in inadequate handling of density fluctuations. The

quasi-1D SGPE equation, supported by a static treatment of the transverse modes,

was instead demonstrated to provide excellent agreement with the atomic den-

sity profiles at all temperatures, even at the critical crossover regime, wheremean-

field models are inadequate.

The work by van Amerongen et al. [60] provided the first comparison of the

exact Yang-Yang thermodynamic solution to the one-dimensional Bose gas to ex-

periments. The experimental in situ density profiles were found to be fully recon-

structed by the modified Yang-Yang model (which also accounts for static trans-

verse excited thermal modes). We probed the validity of our stochastic model

against such results and found that our results accurately matched the experi-

mental findings. This also allowed us to indirectly claim a favourable (practically

exact) comparison between our model and the exact Yang-Yang thermodynamics.
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Density fluctuations

In Chapter 4 we also showed that the quasi-1D SGPE model is an excellent tool

for ab initio reproduction of density fluctuations in the work by Armijo et al. [61]

(in the regime µ < ~ω⊥). This was achieved by mimicking the experimental pro-

cedure as closely as possible, exploiting the analogy between a single numerical

run in the SGPE and a single experimental realization (under the general under-

standing that results in both cases are then to be averaged over an ensemble of

different ‘runs’). The SGPE predictions were found to match pretty well the ex-

perimental results, and also improved on the theory reported in Armijo et al. [61],

which had only actually been applied for the purely 1D equation of state. More-

over, the SGPE results provided a smooth crossover between the ideal Bose gas

and the quasicondensate regimes, showing very good agreement with the mean-

field results valid in the appropriate limits.

7.1.2 µ, kBT ∼ few ~ω⊥

Phase fluctuations

In Chapters 5 and 6we have investigated the independent experiments by Richard

et al. [54] and Hugbart et al. [95] which studied the phase properties of a weakly-

interacting Bose gas in 3D elongated geometry, in the ‘strong’ and ‘weak’ phase

fluctuating regime.

While in Richard et al. [54], an experimental technique based on Bragg spec-

troscopy was used to measure the axial momentum distribution of the gas, in

the experiment by Hugbart et al. [95], they looked at the contrast of intereference

fringes after the condensate had initially split. The use of two different exper-

imental techniques led to a slight different definition for the coherence length,

an issue that we had to take into account when we modelled the experimental

results.

Our ab initio study of these two experiments aimed to investigate the reduced

coherence length as a function of the temperature. The coherence length was

extracted from the average of the Fourier transform of the correlation function

in the experiment by Richard et al. [54]. We then used a different approach, in

analogy to the procedure adopted in the experiment by Hugbart et al. [95], and

accessed the information about coherence length by averaging over the absolute

values of the correlation functions. The size of the quasi-condensate in our model

is calculated ab initio, by extending, in a somewhat heuristic manner, the criterion

adopted in the modified Popov theory, to the context of SGPE. We undertook a
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point by point analysis, and found our predictions to be in excellent agreement

with the experiment by Richard et al. [54]. The prediction of our model were also

in very good overall quantitative agreement with the experimental findings in

Hugbart et al. [95]; however our numerical results were found to span a sligthly

smaller regime in T/Tφ. This issue was further discussed and an alternative ap-

proach, based on examining the phase distributions in our stochastic treatment,

was put forward and shown to further improve the agreement with the experi-

mental regime of T/Tφ (but now at the expense of introducing a free parameter

into the system).

7.2 Final comments

The detailed study of these 5 experiments within a completely ab initio model

proposed in this thesis confirms the excellent predictive power of the SGPE, at

least for equilibrium results for weakly-interacting elongated Bose gases in the

1D and quasi-1D regime. In addition to reproducing the experimental results

within a completely new model, which also enables the dynamical study of such

properties, we also:

• improved on the values of the chemical potentials in the experiment of Treb-

bia et al. [59], by using an improved model to extract these compared to that

used in the original publication;

• showed (indirectly) the consistency of the model presented in this thesis

(upon replacing the quasi-1D SGPE with the simpler 1D SGPE) to the mod-

ified 1D Yang-Yang model used to interprete the results in the experiment

by van Amerongen et al. [60] and Armijo et al. [61];

• showed that we can fully recover the entire crossover between different

mean-field results (ideal gas, quasi-condensate) in the context of density

fluctuations in the experiment by Armijo et al. [61], done only partially in

the original publication;

• demonstrated for the first time the temperature dependence of the scaled

coherence length from fully ab initio considerations for the experiment of

Richard et al. [54] conducted in the ‘strong’ phase fluctuation regime (pre-

vious successful analysis relied actually on partial experimental input into

the corresponding zero-temperature theory);
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• provided the first ever quantitatively correct analysis of the corresponding

experiment by Hugbart et al. [95] in the ‘weak’ phase fluctuation regime

(previously semi-phenomenological analysis had significantly overestimated

the actual value of the coherence despite correctly reproducing the overall

trend);

• demonstrated the full consistency of the results in the two latter experi-

ments by carefully reanalysing them theoretically in an identical manner

(as the experiments actually used slightly different techniques to extract the

coherence length) and showing how they can coexist on a single universal

curve (the latter point is best visualized in Figure 7.1).
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Figure 7.1: Scaled coherence length vs. reduced temperature for the experiments by
Richard et al. [54] (triangles) and Hugbart et al. [95] (squares) when reanalysed in an ab
initio manner by the quasi-1D SGPE based on an identical analysis corresponding to the
one used in Richard et al. [54], namely extracting the coherence length via C(1) (Eq. (5.3)),
and using the expression Tφ[nqc(0)] of Eq. (5.1). Shown is also the theoretical fit from
Figure 5.5.
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7.3 Future work

7.3.1 System of coupled equations

The ab initio investigation of five experiments discussed in Part III, is based on the

self-consistent model explained in Section 3.3. This model consists of an equation

(i.e. quasi-1D SGPE) that solves the dynamics of the axial modes of the system,

whereas the transverse excited modes are treated statically, as independent Bose

gases. While in the regime µ < ~ω⊥ we treat the transverse excited modes as

ideal Bose gases, in the regime where µ > ~ω⊥ (occurring in the experiments by

Richard et al. [54] and Hugbart et al. [95]), we have also accounted for the effect

of the mean-field potential experienced by the transverse thermal atoms. How-

ever, given that the contribution from the density of transverse thermal atoms is

relative low (compared to the axial density), we do not include the mean-field

contribution due to these atoms within the non-linearity in the SGPE.

Such a contribution has already been explicitly included in the context of two-

dimensional SGPE in the work of Cockburn et al. [164], where it was found to

have a negligible effect. Although we do not anticipate a noticeable discrepancy,

we aim to investigate the effect arising by solving the two equations of the model

presented here in a coupled manner, whereby one also includes the contribution

of the density due to the thermal atoms, into the non-linearity of the SGPE. This

should amount to perform the following replacement in the quasi-1D SGPE:

~ω⊥

[

√

1 + 4|ψ|2as − 1
]

→ ~ω⊥

[

√

1 + 4(|ψ|2 + n⊥)as − 1
]

(7.1)

The quasi-1D SGPE, upon making this replacement, would then be coupled

to the equation for the transverse excited modes, which we report here:

n⊥(z;µ, T ) =
1

λdB

∞
∑

j=1

(j + 1)g1/2(e
µ−V (z)−j~ω⊥−2g1d(|ψ|

2+n⊥)/kBT ) (7.2)

While we do not expect the equilibrium properties calculated in this work to be

affected by such replacement, we believe this could provide further consistency

to the model.

7.3.2 Temperature dependent Thomas-Fermi radius

One of the novel features of the model introduced in this thesis is the possibility

to calculate a parameter referred to as the temperature-dependent Thomas-Fermi
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radius, RTF(T ), which roughly speaking gives the size of the quasi-condensate
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Figure 7.2: Relative difference between the values of the temperature dependent Thomas-
Fermi radius calculated within SGPE, Rsgpe

TF (T ), and those obtained via modified Popov

theoryRmodpopov
TF (T ) for the same set of parameters, taken from the experiment of Richard

et al. [54] (brown stars) and Hugbart et al. [95] (violet triangles).

at finite temperature. This was achieved by extending, in a somewhat heuristi-

cal manner, the criterion to establish the size of the quasi-condensate within the

modified Popov theory, to the SGPE case (see Section 3.7.2 for details). This relies

on the agreement between the density profiles calculated via the SGPE and the

modifed Popov method, that has been demonstrated in Refs. [90, 167].

Figure 7.2 shows the relative difference between the values of RTF(T ) calcu-

lated within SGPE and those obtained via modified Popov theory for the same set

of parameters. The values of RTF(T ), obtained via the SGPE method, show good

agreement with those extracted via the modified Popov theory, up to a ∼ 10 per-

centage error for most of the data considered (see Fig. 7.2). However this is true

for the data of the experiments by Richard et al. [54] (brown stars, Fig. 7.2) and

Hugbart et al. [95] (violet triangles, Fig. 7.2), in which specific values for temper-

atures, atom number and trap geometry have been used. It would be interesting

however to further probe this agreement, by performing a systematic check, in

order to investigate the regime of validity of this criterion within the SGPE the-
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ory. Furthermore, an a priori derivation of such a criterion within the SGPE theory

is also the aim of our future work.

7.3.3 Investigating the limits of validity of the quasi-1D SGPE

Experiments with very elongated geometries (i.e. the system is transversely in the

ground state), and appropriately engineered densities and temperatures to be in

the weakly-interacting regime, may be well described by the 1D Stochastic Gross-

Pitaevskii equation (SGPE) [116, 117, 139], since transverse thermalmodes remain

sparsely occupied for µ, kBT ≪ ~ω⊥ (although recent experiments suggest that

quasi-1D effects play a role even for quite low densities [91]). The method ap-

plied here provides a novel means to self-consistently model experiments which

fall within the intermediate regime, where µ, kBT . few ~ω⊥. In particular, the

role of the quasi-1D non-linearity introduced in the SGPE was motivated by the

condition that µ is not much smaller than ~ω⊥, and consequently it is necessary

to use a model able to capture the effect of swelling of the system over the trans-

verse direction, which is due to the increasing interactions in the centre of the

cloud. This equation was then applied in this work in a regime where µ never

takes values larger than 7~ω⊥ (see Figure 1.1). However we also wish to probe

the quasi-1D SGPEmodel in systems where µ becomes bigger than 7~ω⊥, in order

to investigate the regime where this model eventually breaks down.

However we anticipate that the regime of validity is however limited by the

assumption that the transverse profile is a Gaussian distributionwith width equiv-

alent to σ2 = l2⊥
√

1 + 4asN |f |2. This suggests that when the system enter the

Thomas-Fermi regime transversally, this assumption is no longer correct, and one

has to resort to a full three-dimensional model.

7.4 Dynamical study

The work undertaken throughout this thesis is based on modelling equilibrium

properties measured in quasi-one-dimensional Bose gas experiments. This al-

lowed to establish that the SGPE is an excellent model for reproducing experi-

mentally measured observables, such as density profiles, density and phase fluc-

tuations.

Once this model has been tested at equilibrium, it is desirable to probe it for

studying dynamics that perturb the system about equilibrium. One of the first

interesting test is to study the expansion dynamics over the axial direction: es-
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sentially once the system has relaxed to equilibrium, one removes the potential

along the axial direction, leading the system to expand along the axial direction.

It is interesting to notice that, for the typical trap configuration of the experi-

ments modelled in this thesis, the axial potential is quite shallow, thus implying

that the cloud hardly expands axially beyond its initial length. An experimental

technique, referred to as condensate focusing, is used as an expedient to solve this

problem; this consists in applying a short strong axial harmonic potential which

practically induces the atoms to expand over the axial direction. Such a technique

has been already implemented within the SPGPE formalism in [193], and we also

aim to realise this within the SGPE model too.

However, in order to study expansion dynamics, it would also be necessary

to amend the static treatment of the transverse excited modes, by adopting a ki-

netic approach to describe the dynamics of the high-lying modes (with energy

kBT > ~ω⊥).

Prethermalization in 1D Bose gas

In Chapter 6 we have described and used a method, which is based on the anal-

ysis of phase histograms in our stochastic treatment, to partially resolve an issue

related to the spanned range of the values of T/Tφ, when modelling the experi-

ment of Hugbart et al. [95]. In particular, the phase histograms calculated with

this method contain informations about the coherence properties of the system.

Motivated by the experiment of Gring et al. [203], in which a one-dimensional

condensate was initially coherently split and its relaxation dynamics studied by

means of matter-wave interferometry, we believe that the possibility to compute

phase histograms in our model could be adopted when studying such physical

systems. In particular, by investigating the contrast of the fringes formed after

the two copies of the initial condensate overlap, one could gain information on

the state of the system. In [203] it was found that the gas relaxed to a steady state

which did not correspond to the thermal equilibrium.
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Appendix A

Quantum-Boltzmann equation

The evolution of the high-lying modes (i.e thermal cloud) in the system is de-

scribed by the following Quantum-Boltzmann equation [116]:

∂N

∂t
+ (∇p ǫ) · (∇rN)− (∇r ǫ) · (∇pN) = C12[N ] + C22[N ], (A.1)

where N = N(p, r, t) denote the thermal population in each mode.

The collisional integrals are given by:

C12[N ] =
4π

~
g23d|ψ|2

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3δ(p2 − p3 − p4)× δ(ǫc + ǫ2 − ǫ3 − ǫ4)

× (2π~)3[δ(p− p2)− δ(p− p3)− δ(p− p4)]

× [(N2 + 1)N3N4 −N2(N3 + 1)(N4 + 1)]

(A.2)

and

C22[N ] =
4π

~
g23d

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4

(2π~)3

× (2π~)3δ(p+ p2 − p3 − p4)× δ(ǫ+ ǫ2 − ǫ3 − ǫ4)

× [(N + 1)(N2 + 1)N3N4 −NN2(N3 + 1)(N4 + 1)].

(A.3)

The term C12 describes the exchange of atoms between the low-lying modes

and the high-energy part (i.e. thermal cloud). In particular C12 accounts for col-

lisional processes describing the transfer of a thermal atom into the low-lying

modes of the system ((N2+1)N3N4) and its inverse process, involving the scatter-

ing of an atom from the low-energy part into the thermal cloud (N2(N3 +1)(N4 +
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1)). The term C22 accounts instead for collisional processes between two thermal

atoms, which lead to a redistribution of the thermal population in the thermal

modes. The presence of the delta functions ensures the momentum and energy

conservation, hence the collisional processes are elastic.

The above collisional terms have a very similar, but distinct form, to those

used in the Zaremba-Nikuni-Griffin approach discussed in Section 2.3.1. How-

ever we point out that a crucial difference between the two approaches is that

while in the ZNG approach the wavefunction φ is associated to the condensate

only, here the field ψ describes a set of highly populated low-lying modes.
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Comparison of expressions for Tφ

In the experiment by Richard et al. of Ref. [54] the expression used for Tφ is:

Tφ[nqc(0)] =
~
2nqc(0)

mkBL
, (B.1)

where nqc(0) is the quasicondensate peak density and L the half-size of the qua-

sicondensate. This corresponds to the most general expression, and only requires

the Local Density Approximation to hold, as demonstrated in [101].

However numerous different, practically equivalent, definitions of Tφ have

been put forward in the literature (e.g. [31, 32]). In particular the experiment by

Hugbart et al. [95] uses an alternative definition of Tφ, based on the number of

quasicondensate1 atoms Nqc (and not on the peak quasicondensate density). In [95],

the expression used is

Tφ[Nqc] =
15~2Nqc

16mkBL2
. (B.2)

The expression for Tφ[Nqc] is derived by assuming a 3D density profile in har-

monic trap at T = 0 (i.e. Thomas-Fermi approximation).

The two above expressions are identical in the region where Eq. (B.2) is sup-

posed to be used [204]. To demonstrate this, we consider the density profile of a

3D Bose gas confined in an elongated cylindrical harmonic trap, at T=0 (within

the Thomas-Fermi approximation) [32]:

n(r, z) =
µ

g3D

(

1− z2

L2
− r2

R2

)

. (B.3)

Here z and r are the axial and radial coordinate, while L =
√

(2µ/mω2
z) and

1We should clarify that here we use the term ‘quasicondensate’ to refer to the ‘condensate’
component described in [95].
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R =
√

(2µ/mω2
r) represent the half-size of the condensate in the axial and radial

direction respectively. By integrating transversally over the radial coordinate and

evaluating the density profile at z = 0, we obtain:

nqc(z)|z=0 =

∫ R

0

d2r n(r, z) =
µπR2

2g3D
. (B.4)

By replacing the above result (B.4) in the formula for the number of condensed

atoms Nqc = 8πµR2L/15g3D [32, 127], we obtain an expression which relates the

central peak density nqc(0), the axial half-length L and the number of condensed

atoms N0, given by:

nqc(0) =
15

16

Nqc

L
. (B.5)

The above relation shows that in the T = 0 limit, under the Thomas-Fermi ap-

proximation, the two definitions for Tφ are equivalent.

This similarity is explicitly demonstrated in Figure B.1, where scaling our nu-

merical results extracted viaC(1), to T/Tφ[nqc(0)] (filled black squares) or T/Tφ[Nqc]

(filled brown squares) leads to very little difference in our theoretical results.

However we note there is no exact agreement between the numerical results ob-

tained by using the two definitions of Tφ, because of deviations from the Thomas-

Fermi approximation, in particular at relatively high T/Tφ [204].

Note that the consistency of these two different definitions in the regime of

the experiment of Hugbart et al. [95] rules out the possibility that the difference

in values of T/Tφ in Section 6.3.1 are due to this.
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circles), the theory to interpret the experimental data in [95] (solid red line) and the re-
ported experimental best fit (dashed red line) are also shown.
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[65] S. Manz, R. Bücker, T. Betz, C. Koller, S. Hofferberth, I. E. Mazets, A. Imam-

bekov, E. Demler, A. Perrin, J. Schmiedmayer, et al., Phys. Rev. A 81, 031610

(2010).

[66] T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046

(1997).

[67] E. A. Hinds, C. J. Vale, and M. G. Boshier, Phys. Rev. Lett. 86, 1462 (2001).

[68] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth,

I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nature Physics 1, 57 (2005).
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