
 

 

 

 

 

Multi-Criteria Decision-Making in Whole Process Design 

 

 

 

 

A thesis submitted by 

Richard Edgar Hodgett 

 

For the degree of Doctor of Philosophy 

 

 

 

 

 

School of Chemical Engineering and Advanced Materials 

Newcastle University 

 

January 2013 

http://www.kvisoft.com/pdf-merger/


 

 i 

Abstract 

In recent years, the chemical and pharmaceutical industries have faced increased 

development times and costs with fewer novel chemicals being discovered. This has 

resulted in many companies focusing on innovative research and development as 

they consider this key to business success. In particular, a number of leading 

industrial organisations have adopted the principles of Whole Process Design 

(WPD). WPD considers the optimisation of the entire product development process, 

from raw materials to end product, rather than focusing on each individual unit 

operation. The complexity involved in the implementation of WPD requires 

rationalised decision-making, often with limited or uncertain information. 
 

This thesis assesses the most widely applied methods in Multi-Criteria Decision 

Analysis (MCDA) in conjunction with the results of two interviews and two 

questionnaires that identified the industrial requirements for decision-making during 

WPD. From the findings of this work, a novel decision-making methodology was 

proposed, the outcome of which allows a decision-maker to visually interpret their 

decision results with associated levels of uncertainty. To validate the proposed 

methodology, a software framework was developed that incorporates two other 

decision-making approaches, the Analytical Hierarchy Process (AHP) and 

ELimination Et Choix Traduisant la REalité trois (ELECTRE III). The framework 

was then applied to a number of industrial case studies to validate the application of 

the proposed methodology. 

 

 

Keywords: Multi-Criteria Decision Analysis (MCDA); Multi-Attribute Range 

Evaluations (MARE); Whole Process Design (WPD); Uncertainty. 
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Terminology 

Alternative: The term is used to define an action, option, scenario or 

potential outcome from a feasible set among which a choice 

has to be made. There can either be a finite number of 

explicitly defined discrete alternatives or implicitly defined 

continuous alternatives.  

Criterion:  An attribute which is used to evaluate a decision problem. A 

criterion is either quantitative (measured on a clear defined 

numerical scale) or qualitative (immeasurable on a numerical 

scale, instead defined by subjective preferences).  

Criterion Weight:  The measure that reflects the relative importance of a given 

criterion.  

Decision-Maker:  The person who is responsible for solving a decision problem. 

Decision Variable:  A quantitative or qualitative measure of performance set by a 

decision-maker to evaluate an alternative with respect to a 

criterion.  

Objective:  An aim in terms of mathematical programming. 

Risk: Uncertainty where alternatives can have an undesired loss.  

Stakeholder: A person, group or organisation that can be affected by the 

outcome of a decision.  

Uncertainty: The lack of certainty. A state of having limited knowledge in 

regards to a selection. 

 

 

 



Thesis Introduction and Overview 

1 

“If I had one wish, it is to see organizations dedicating some effort to study their own 

decision processes and their own mistakes, and to keep track so as to learn from 

those mistakes.”  Nobel Prize Winner, Daniel Kahneman (2003) 

 

1 Thesis Introduction and Overview 

1.1 Thesis Motivation 

Research has shown that between 1999 and 2009, pharmaceutical sales have steadily 

increased (Figure 1-1). However, this has to be placed in the context that 

pharmaceutical development can take up to 15 years (Figure 1-2) and it is likely the 

sales figures in Figure 1-1 were influenced by products/processes developed prior to 

the start of the study. Figure 1-1 also shows that the cost of research and 

development (R&D) and development times (time to market) have also increased 

between 1999 and 2009. This occurred during a period where fewer novel drugs have 

been discovered. Considering over 14 million different molecular compounds have 

been synthesised and less than 1% (100,000) of these are on the market (Charpentier, 

2007), the probability of discovering a new drug with commercial potential is very 

low.  

 

 

Figure 1-1  Industrial overview from 1999 to 2009 (Federsel, 2010) 

 

The fine chemical industry is also facing challenges with Cassidy et al. (2011) stating 

“instability and uncertainty bedevil the chemical industry - chiefly, in demand 

Sales 

R&D expenditure 

Development times 

New molecular entities 
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growth”. According to Diercks (2012), the recent reduction in chemical demand is a 

consequence of a tightened monetary policy in China and the debt crisis in Southern 

Europe. Cassidy et al. (2011) suggests that “chemical companies must develop well 

thought out strategies and skills to deal with the changing dynamics”. 

 

 

Figure 1-2  Drug Development Time (PhRMA, 2007) 

 

One such strategy is the Stage Gate
TM

 framework (Cooper, 2001) which divides 

product development into a series of consecutive stages and gates (Figure 1-3). 

Unlike traditional project milestones that are controlled by deadlines, gates provide 

greater flexibility with regards to time.  

 

Gate

1

Gate

2

Gate

3

Gate

4

Gate

5

Stage

1

Stage

2

Stage

3

Stage

4

Stage

5

Discovery Scoping Business Case Development Validation Launch Success

Idea Screen Second Screen To Development To Testing To Launch  

Figure 1-3  Stage Gate
TM

 Framework 

 

According to Cooper (2001), the advantages of the Stage Gate
TM

 framework are 

early detection of failure, higher success rates, improved teamwork and reduced time 

to market. However, Sethi and Iqbal (2008) stated that when a gate system is 

rigourusly followed, the development flexibility required for product innovation is 

greatly reduced as companies assign project paramaters that are rigid and 

unchangeable when the project is approved at the initial gates. As a consequence, 
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companies are forced to overlook changes that have occurred to business drivers 

such as costs, resources and time as well as factors such as health, safety and the 

environment. 

Britest Limited, a not-for-profit organisation that correlates ideas and tools between 

industry and academia, identified that industry needs flexible product innovation to 

meet business needs. They consequently developed the concept of Whole Process 

Understanding (WPU) which ensures companies consider the whole process at every 

stage of product/process development (Figure 1-4). 

 

Discovery Develop Make Formulate Launch

Chemical 

Entity

Finished 

Product
Whole Process Understanding

 

Figure 1-4  Whole Process Understanding 

 

Between 2001 and 2012, it is estimated that industrial members of Britest Limited 

have saved in excess of £600 million by applying innovative tools and 

methodologies that utilise WPU (Britest Ltd, 2012). One such method is Whole 

Process Design (WPD) which considers the improvement of a whole process, from 

raw materials to end product, rather than the more traditional approach of enhancing 

a process in sequential steps. Britest acknowledged that WPD can be used to achieve 

rapid reactions, sustainable chemical processing and more flexible plant designs 

(Reay, et al., 2008). Examples of WPD include (Double, 2010): 

 Determining the order of process operations. 

 Optimising the stages of a multi-stage process. 

 Selecting components such as reagents and solvents. 

 Choosing the number of phases present in different parts of a process. 

 Optimising the reaction conversion to reduce impurity formation, so that the 

separations become much easier. 

To achieve these objectives, WPD considers process and product design 

simultaneously (Figure 1-5). Process design involves managing activities that 

produce a product while product design determines the strategic development of a 

product that has value (by being competitive or novel in the marketplace).  
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Discovery Develop
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Product

Whole Process Design

Product Design

 

Figure 1-5  Whole Process Design 

 

Figure 1-6 illustrates that both development functions are closely linked with some 

factors (in blue) already considered concurrently, such as manufacturing and quality 

control. However, the independent factors (in orange and green) also must be 

considered when implementing WPD. 

 

Process DesignProcess Design Product DesignProduct Design

?

Customer Needs

Product Legislation 

and IP

Product 

Specification

Prototype design

Market Analysis

Supply Chain 

Management

Manufacturing

Life Cycle 

Management

Product 

Formulation

Product Quality 

Management

?

Resource 

Management

Equipment Design

Process Control

Chemical Reaction 

Engineering

?

 

Figure 1-6  Whole Process Design tasks, adapted from Manipura (2012) 

 

Sharratt (2011) discussed WPD in detail, explaining that there are many different 

decisions that must be considered when developing an effective product. These 

decisions impact on the product and process in multiple ways. For each decision 

there will be multiple criteria to consider and these will often be dissimilar or 

interdependent and hence represented by different measurement units. Furthermore, 

there will be gaps and uncertainties present in a company’s knowledge and 
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understanding about a process. This uncertainty will be more prevalent at the start of 

process development as less is known about the product and process.  

Sharratt (2011) recognised that specialised techniques may be required to make WPD 

decisions effectively and that larger organisations are likely to have systems in place. 

However, it is unknown how effective these solutions are for highly complex 

problems that involve multiple criteria and uncertainty. 

Considering that decision-making in industry is frequently overlooked and rarely 

assessed (Schrage, 2003) and that product development decisions can affect a 

company for up to a decade (Ng, 2004), it is essential to identify effective decision-

making solutions for use during WPD. 

 

1.2 Aims and Objectives 

The primary aim of this thesis is to develop an effective decision-making solution for 

application during WPD. Key objectives include: 

 Understanding the types of decision-making methods available in the 

scientific literature and the traditional methods used by the fine chemical and 

pharmaceutical industries. 

 Identifying the industrial requirements and constraints for an effective 

decision-making solution. 

 Understanding the different decision problems faced in the implementation of 

WPD. 

Given that a suitable decision-making method can be developed, prototype software 

requires to be written that can be used to evaluate the proposed solution alongside the 

requirements of industry. If the solution satisfies the requirements, it will be used by 

Britest Limited to address challenges in the area of decision-making raised by 

companies in the pharmaceutical, fine chemical, mining and fuel additive sectors.  

 

1.3 Research Questions 

The overarching research question that underpins this thesis is: 

RQ1:  What is the most effective way to support decision-making in whole process 

design? 
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The answer to this question is dependent on a number of factors which are addressed 

through the literature review, interviews, questionnaires, methodological 

development and industrial evaluation. A series of questions thus considered include: 

RQ2:  Which methods in the literature are the most commonly cited/applied for 

solving multi-criteria decision problems? Furthermore, which of these 

methods are most suitable for handling uncertainty? 

RQ3:  Which methods in the literature have been proposed or used for decision-

making in process design? 

RQ4:  What techniques are currently being used for decision-making in industry? 

RQ5:  What are the most common decisions made in WPD and in what stage of 

development are they considered?  

RQ6:  What does industry require from a decision-making framework? 

Further questions will be introduced throughout the thesis as the knowledge and 

understanding advances. 

 

1.4 Industrial Relationship 

The work presented in this thesis has been motivated by the needs of industrial 

practice through a unique collaboration with Britest Limited. Britest were conscious 

of the potential benefits to be gained from supporting the novel and industrially 

significant research covered in this thesis. Accordingly, access was given to their 

industrial membership which included Abbott Laboratories Ltd, Pfizer Ltd, AMRI 

Global, Fujifilm Colorants Ltd, Procter & Gamble, GlaxoSmithKline plc, Johnson 

Matthey, AstraZeneca, Robinson Brothers Ltd, Infineum and Shasun. The 

collaboration with the industrial members allowed for the requirements of a decision-

making framework to be identified and for the proposed solution to be evaluated. 

The advantages of working with the Britest members was that they are well-

acquainted with the concepts of WPD, hence they were in a position to provide 

insight and to critically evaluate a decision-making solution for WPD. Figure 1-7 

summaries the relationship between the industrial and academic research 

encapsulated with this thesis.  
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Evaluate Solution(s)

Conclusions

Chapter 1

Chapter 4

Chapter 3 Chapters 5 & 6

Chapter 7

Industry

Research Methods and 

Techniques

Chapter 2

 

Figure 1-7  Relationship between academic and industrial research 

 

1.5 Thesis Structure 

Chapter 2, methods and techniques, critically reviews literature pertaining to existing 

decision-making methodologies that are applied in the fields of operational research, 

engineering, management science and decision support systems. In addition, human 

personality characteristics are considered by examining the psychological aspects of 

decision-making in relation to behavioural sciences. The chapter concludes with a 

discussion of the key publications that demonstrate or discuss decision-making in the 

process industry.  

Chapter 3 identifies the industrial requirements for developing a decision-making 

framework for use during Whole Process Design (WPD). Following a discussion 

with industrial decision-makers, two questionnaires are circulated and the findings 

are evaluated with the aim of identifying the key characteristics of a decision-making 

methodology.  

The Multi-Attribute Range Evaluations (MARE) method is introduced in Chapter 4. 

The technique is described in detail along with an evaluation strategy which consists 

of developing a framework that utilises the MARE method along with two other 

decision analysis tools. The framework termed ChemDecide also includes a problem 

structuring software that is referred to as Decision Structure. 

Chapter 5 evaluates the ChemDecide framework through three industrial WPD 

decision-making case studies. The first case study focuses on a chemical route 

selection problem provided by Robinson Brothers Ltd. The second is based around 

the selection of degassing reagents in conjunction with GlaxoSmithKline (GSK). The 

third is undertaken with Fujifilm Imaging Colorants Ltd (FFIC) and aims to select 

the best equipment to mix a substance at the early stages of process development. 
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Chapter 6 presents a discussion based on the findings of the three case studies. 

Inconsistencies in the case studies are identified and assessed, the role of intuition is 

examined and future requirements are evaluated.  

Chapter 7 concludes the thesis by discussing the initial research question, 

summarising the conclusions and presenting further work.  
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"The world moves into the future as a result of decisions, not as a result of plans. 

Plans are significant only insofar as they affect decisions... if planning is not part of a 

decision making process, it is a bag of wind, a piece of paper, and worthless 

diagrams."      Kenneth E. Boulding (1974) 

 

2 Methods and Techniques 

2.1 Introduction 

This chapter aims to answer the following two research questions by critically 

reviewing the academic literature: 

RQ2:  Which methods in the literature are the most commonly cited/applied for 

solving multi-criteria decision problems? Furthermore, which of these 

methods are most suitable for handling uncertainty? 

RQ3:  Which methods in the literature have been proposed or used for decision-

making in process design? 

The first two sections aim to address RQ2 by reviewing the most commonly applied 

methods for Multi-Criteria Decision Analysis (MCDA). As MCDA is inherently 

linked to cognitive psychology, economics and various other disciplines, the third 

section reviews the implications of using these methods from a behavioural 

perspective. The section discusses how individuals and groups construct judgements 

and form choices whilst examining rational choice, irrational behaviour and 

uncertainty. The final section addresses RQ3 by reviewing the use of decision-

making methods in Whole Process Design (WPD).  

 

2.2 Decision-Making Techniques 

This section starts by discussing the history of decision-making methods and then 

introduces the theories behind a range of modern day decision-making techniques. 

The second section discusses the decision-making process, from identifying a 

decision problem through to presenting a solution. The remaining sections introduce 

and evaluate the most commonly applied decision-making methodologies discussed 

in the academic literature.  
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2.2.1 History of Decision-Making Techniques 

Decision-making has been discussed by many great ancient philosophers including 

Plato, Aristotle and Thomas Aquinas (Figueira, et al., 2005). However the first 

documented approach which led to the modelling of a decision problem originated 

from a discussion between Blaise Pascal and Pierre de Fermat in 1654. The 

discussion concerned a game of chance with two players who have equal opportunity 

to win a sum of money. The players contribute equal fees to play the game and agree 

to the winning terms. However, the mathematicians identified a problem which arises 

when considering the fair division of money if the players need to end the game 

early, before the winning terms have been met. Both Pascal and Fermat (1654-1660) 

independently devised a solution which was based on the same fundamental 

principle. They agreed that the division had to be proportional to each player’s 

chance of winning. This formed the basis of expected value theory which considers 

the probability of a win multiplied by its value: 

   ∑      

 

   

 2-1 

where EV is the expected value, i denotes each of the different consequences, Pi is the 

probability of the i
th
 choice and Vi is the value of the i

th
 outcome.   

 

However, it was identified that human behaviour can violate expected value theory 

as the theory infers a rational decision-maker will always desire the maximum 

expected value. Nicolas Bernoulli devised a problem to challenge expected value 

theory which is now commonly called the St. Petersburg paradox (Bernoulli & de 

Montmort, 1713). The paradox considers a game of chance where a coin with two 

sides, A and B, is tossed repeatedly until side B appears. A player pays a fixed fee to 

enter and receives a cash prize that is doubled every time side A appears. The 

fundamental problem associated with this paradox is assigning a fair fee to play the 

game. When considering this problem using expected value theory, the winning sum 

always converges to infinity. Therefore, by following expected value theory, a 

rational player should enter the game paying any finite amount as the outcome will 

be higher than any fixed fee. However, in reality, every rational person has a logical 

threshold which they consider a fair entry fee due to limitations in personal wealth 

and tolerance to risk. Thus, personal value of an outcome should be considered 
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differently from its objective monetary value. Bearing this in mind, Daniel Bernoulli, 

Nicolas Bernoulli’s cousin, presented a solution to the St Petersburg paradox in 

1738.  The solution (Bernoulli, 1738) was to use a logarithmic utility function to 

modify the expected value depending on the player’s wealth. This was the first 

systematic occurrence of expected utility theory (which is sometimes referred to as 

subjective probability). Expected utility theory in its modern form refers to a cardinal 

utility function which assigns a value of desirability to each alternative. This 

approach, as illustrated in equation 2-2, was derived largely from two game theorists; 

John Von Neumann and Oskar Morgenstern (Von Neumann & Morgenstern, 1947).  

 

   ∑         

 

   

 2-2 

where EU denotes the expected utility, i defines the different consequences, Pi is the 

probability of the i
th
 choice and U(a)i is the decision-maker’s utility of the i

th
 outcome.   

 

Expected utility theory has generally been accepted as the standard method to model 

rational choice. Nevertheless, there are a number of problems presented by 

Kahneman and Tversky (1979) which violate the axioms of expected utility. They 

proposed the use of non-expected utility theory which is discussed further in 

section 2.3.3. 

Constructing a utility function generally requires the consideration of two or more 

criteria. These criteria are often interdependent and/or conflict with one another. This 

concept started the discussions between Edgeworth (1881) and Pareto (1906) with 

regards to the analysis of a multi-criteria problem. Edgeworth proposed the term 

optimum to indicate the ideal point between a number of trade-offs for a multi-

criteria problem.  This point is referred to as the Edgeworth-Pareto optimal or more 

commonly, the Pareto optimal (as Pareto generalised the theory). A point is said to 

be Pareto optimal if there exists no feasible arrangement of decision variables that 

would decrease some criterion without causing an associated increase in at least one 

other criterion. Normally there is not a single Pareto optimal point but rather a set of 

solutions termed a Pareto optimal set. If the Pareto optimal set is drawn in a two or 

three dimensional objective space, the formulation is referred to as the Pareto frontier 

(Figure 2-1). A Pareto frontier is often used to illustrate a feasible set of alternatives 

which a decision-maker can evaluate rather than considering every possible solution.   
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Figure 2-1  Pareto frontier for a two dimensional problem 

 

Over the past fifty years a number of different decision-making techniques have 

emerged to sort, rank or quantify alternatives based upon Pareto optimal selection. 

These methods can be separated into three categories, Multi-Objective Optimisation 

(MOO), Multi-Attribute (MA) and Outranking methods. MOO algorithms are based 

on maximising or minimising certain objective functions to identify the optimum 

values that satisfy a number of requirements. Generally there is no attempt to capture 

the decision-maker’s utility functions mathematically in this approach. Instead MOO 

algorithms use implicit information about the decision-maker’s preferences to steer 

the algorithm’s search. Typically MOO methods are used when there are a large or 

infinite number of feasible solutions. MA methods and outranking approaches on the 

other hand are generally used in discrete decision problems with a small to moderate 

number of feasible solutions. Consequently, these methods are better suited to 

handling uncertainty (Wallenius, et al., 2008) and are computationally less intensive 

than MOO methods. Outranking approaches differ from MA methods as they accept 

that one alternative may have a degree of dominance over another. This is interpreted 

by a pairwise outranking relationship formed by aggregating each possible pair of 

alternatives. When this data is combined, a partial or complete ordinal ranking is 

determined. MA methods, in contrast, aggregate every criterion into a function which 

is maximised. Although MA and outranking approaches are often considered similar, 

MA methods produce numerical outputs while outranking methods produce an 

ordinal rank to infer the decision-maker’s preferences.  
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All three families of MCDA methods comprise of a number of approaches that have 

their own unique advantages and limitations. Figure 2-2 presents these approaches 

along with their respective interactions and relationships to previously reported 

theories and methodologies. The theories and methodologies are arranged in order of 

publication year, starting with expected value theory at the top to the most modern 

approaches at the bottom. 

 

Utility Theory
(Bernoulli, 1738)

MAVT/MAUT
(Keeney et al, 

1976)

AHP
(Saaty, 1972)

Outranking Theory
(Roy et al, 1968)

Game Theory and 
Economic Behaviour
(Neumann et al, 1947)

Fuzzy Sets
(Zadeh, 1965)

ELECTRE I
(Roy et al, 1968)

ELECTRE II
(Roy et al, 1973)

ELECTRE III
(Roy et al, 1978)

ELECTRE TRI
(Yu, 1992)

ELECTRE IS
(Roy et al, 1987)

PROMETHEE III, IV
(Brans et al, 1984)

TOPSIS
(Hwang et 
al, 1981)

Weighted Sum
(Zadeh, 1963)

ORESTE
(Roubens, 

1980)

GAIA
(Mareschal et al, 1988)

Expected Value Thoery
(Fermat & Pascal, 1654)

Bayesian 
Probability

(Laplace, 1814)

Pareto Frontier
(Pareto, 1906)

Goal Programming
(Charnes & Cooper, 1955)

PROMETHEE I, II
(Brans, 1982)

PROMETHEE V
(Brans et al, 1992)

Multi-Utility Problem
(Edgeworth, 1881)

Genetic 
Algorithm

(Holland, 1975)

Evolutionary 
Computation
(1960 - 1970)

Swarm 
Intelligence

(Beni et al, 1989)

Ant Colony 
Optimisation
(Dorigo, 1992)

Simulated Annealing
(Kirkpatrick et al, 1983)

Particle Swarm 
Optimisation
(Kennedy et al, 

1995)

Bees Algorithm
(Pham et al, 2005)

ANP
(Saaty, 1996)

  Multi-Objective Optimisation   Multi-Attribute Methods

  Associated Techniques

  Theoretical Milestone   Outranking Methods

Prospect 
Theory

(Kahneman 
et al, 1979)

VIKOR
(Opricovic, 

1998)

ELECTRE, IV
(Roy et al, 1982)

PROMETHEE VI
(Brans et al, 1995)

 

Figure 2-2  History of Decision-Making Techniques 

 

Figure 2-3 shows the number of publications relating to the methods within the field 

of MOO between 2003 and 2011. It can be observed that, Genetic Algorithms have 

received the largest level of interest with a steady increase from 2003 to 2011. 

Particle swarm optimisation has also shown a significant rise in publications. In 

contrast, goal programming, simulated annealing, ant colony systems and artificial 

bee colony have shown minor but steady growth.  
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Based upon a keyword 

bibliometric study using 

the SciVerse database. 

Data acquired 31/07/2012 

Search Terms 

Goal Programming: “Goal Programming” 

Genetic Algorithm: “Genetic Algorithm” 

Simulated Annealing: “Simulated Annealing” 

Ant Colony Optimisation: “Ant Colony Optimisation” OR “Ant Colony Optimization” 

Particle Swarm Optimisation: “Particle Swarm Optimisation” OR “Particle Swarm 

Optimization” 

Artificial Bee Colony: “Artificial Bee Colony” 

 

Figure 2-3  Publication history of Multi-Objective Optimisation Methods 

 

Figure 2-4 shows the number of publications relating to MA methods between 2003 

and 2011. It is evident that the Analytic Hierarchy Process (AHP) has received the 

greatest growth in interest during the last decade. Huang et al (2011) who also 

identified a significant growth in AHP related publications suggests “the wide use of 

AHP may be related to the availability of user-friendly and commercially supported 

software packages and enthusiastic and engaged user groups”. The Weighted Sum 

Method (WSM), Analytic Network Process (ANP) and Technique for Order 

Preference by Similarity to Ideal Solutions (TOPSIS) methods have also seen 

increased interest since 2007. The interest in Multi-Attribute Utility Theory (MAUT) 

and VIKOR has been relatively stable during this period.  
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Based upon a keyword 
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the SciVerse database. 

Data acquired 31/07/2012 

Search Terms 
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AHP: “Analytic Hierarchy Process” OR “AHP” 

ANP: “Analytic Network Process” OR “ANP” 

MAUT: “MAUT” OR “multi attribute utility theory” OR “multi-attribute utility theory” 

TOPSIS: “TOPSIS” 

VIKOR: “VIKOR” 

 

Figure 2-4  Publication history of Multi-Attribute Methods 

 

Figure 2-5 shows the number of publications relating to outranking methods between 

2003 and 2011. Outranking methods, which are generally regarded as the French or 

European school of thought, have recieved less acadmic interest. Huang et al (2011) 

suggest that the European methods have a “stronger theoretical school and a varied 

MCDA culture” which could account for the lesser interest. Another cause could be 

due to the language barrier, as the bulk of early outranking literature is written solely 

in the French language. It has only been in recent years that this literature has been 

translated and discussed by English speaking readers. Although the publication scale 

of the outranking approaches is insignificant in contrast to MOO and MA techniques, 

the ELECTRE and PROMETHEE methods have shown a steady growth of interest. 
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Figure 2-5  Publication history of Outranking Methods 
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2.2.2 Decision-Making Processes 

This section is divided into two parts. The first introduces the phases of a decision-

making process whilst the second discusses the stages of New Product Development 

(NPD). 

2.2.2.1 Decision-Making Process 

Decision-making literature has focused primarily on developing methods or applying 

pre-existing approaches to particular problems with little emphasis on the decision-

making process (Belton & Stewart, 2010). However, Belton & Stewart (2010) and 

Franco & Montibeller (2009) agree that the decision-making process consists of a 

number of phases (Figure 2-6) including problem structuring, decision analysis and 

post analysis.  

 

Identify Decision 

Problem
Problem Structuring Decision Analysis Post Analysis

Decision Problem 

Solved

· Identify Key 

Issues

· Specify 

Objectives / 

Criteria

· Specify 

Alternatives

· Identify 

Stakeholders

· Define Criteria 

Weights

· Elicit 

Quantitative and 

        Qualitative      

        Decision         

        variables

· Challenge 

intuition

· Sensitivity 

Analysis

 

Figure 2-6  Decision-Making Process, adapted from Belton & Stewart (2010); 

Franco & Montibeller (2009) 

 

Franco and Montibeller (2009) consider the problem structuring phase as the most 

neglected aspect of the decision-making process. They believe this is due to a 

common assumption that forming a well structured problem is a somewhat trivial 

task. Many decision-makers want to progress to the decision analysis quickly without 

considering that an erroneous decision model will most likely provide inaccurate 

results. However, problem structuring is a complex task that requires the decision-

maker to organise their thoughts with the aim of identifying objectives, criteria, 

alternatives, stakeholders and other key information about the problem. Belton & 

Stewart (2010) proposed the use of the acronmym “CAUSE” (Criteria, Alternatives, 

Uncertainties, Stakeholders and External/Environmental) to promote the key 

elements of the problem structuring phase. The problem structuring process is 

generally regarded as a cognitive task; however there are a few approaches that aim 
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to systematically guide the identification of effective criteria and alternatives. 

Keeney (1992) introduced the concept of value focused thinking which looks at 

identifying objectives and criteria to generate and evaluate alternatives. It was 

proposed after noting that the majority of decision-makers focus on establishing 

alternatives first rather than criteria (alterntive focused thinking). Keeney (1992) 

believed that “better alternatives” can be selected once the criteria are established.  

More recently, Corner, et al. (2001) proposed a different solution as they believed 

problem structring is an iterative process. Their method, dynamic decision problem 

structuring, cycles between value focused thinking and alternative focused thinking. 

The idea is that the consideration of criteria prompts creative thinking about the 

alternatives which in turn generates new criteria, and so on. Belton and Stewart 

(2010) stated “the iterative process [of dynamic decision problem structuring] 

encourages decision makers to reflect on and learn about their values and the 

problem context”. Nevertheless, Franco & Montibeller (2009) believe that there is 

still need for further work in this field. They suggest that structed tools are required 

for problem structuring which consider the psychological asepects (e.g. how to 

instigate creativity) and group dynamics (e.g. how to identify and display complex 

scenarios to a group of decision-makers). 

The next phase of the decision-making process is the analysis of the problem. This 

involves defining decision variables and criterion weights that represent the decision-

maker’s preferences. The ways in which these values are integrated into the 

algorithm depends on the methodology selected. The various methodologies 

available are discussed in detail in the subsequent sections.  

The final phase of the decision-making process is a post analysis study that 

challenges the results of the analysis. This is an important stage and allows a 

decision-maker to challenge their intuition and to check for any inaccuracies. 

 

2.2.2.2 Stages of New Product Development 

A number of frameworks exist that can be utilised for New Product Development 

(NPD) in engineering management. A popular framework that is widely cited 

throughout engineering literature is the Stage Gate framework which was discussed 

in section 1.1. The Stage Gate framework (Cooper, 2001) is considered as a linear 

NPD process as the various stages are completed in succession (Figure 1-3). A linear 
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system is well-structured, predicable and can help organise and comprehend the 

complexity of a NPD process. However, a linear framework is inflexible and as such 

means innovation is constrained (section 1.1).  

Other NPD processes known as recursive and chaotic frameworks overcome the 

limitations of inflexibility with linear frameworks. Recursive frameworks utilise 

feed-back and feed-forward loops to represent the dynamic and fluid nature of an 

innovative process. Such a framework allows for NPD stages to overlap and suggests 

that the process is less clear and rigid than a linear framework. A chaotic framework 

expands on this idea by depicting NPD processes with “random-like and nonlinear 

behaviour” (McCarthy et al., 2006). Chaotic frameworks are unpredictable, 

unstructured and disorganised at the initial stages of NPD with the final stages being 

relatively more ordered.   

McCarthy et al. (2006) stated that each individual framework “provides valuable 

insights and understanding about the behaviour and structure of NPD processes”. 

However, they proposed that a collective system that can “switch or toggle between 

behaviours that range from linear to chaotic” would have more value than an 

individual framework. They proposed a collective system termed Complex Adaptive 

System (CAS) which “is somewhere between a linear and chaotic system” (Figure 2-

7).  

 

Figure 2-7  A complex adaptive system (McCarthy et al., 2006) 

 

Figure 2-7 shows that a CAS system contains a number of partially connected agents 

(individuals, groups or organisations) whose interactions overlap NPD stages and 

decision levels. The aggregate view depicts agents as organised and structured while 

the disaggregate view illustrates that a single agent is composed of known and 
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unknown options that portray nonlinearity and unpredictability. A description along 

with the advantages and limitations of each of the four frameworks are presented in 

Table 2-1. 

 

Table 2-1 Benefits and Limitations of NPD Frameworks (McCarthy et al., 2006) 

NPD  Description Benefits Limitations 

Linear A process with relatively 

fixed, discrete and sequential 

stages. The connections, 

flows, and outcomes of the 

process are comparatively 

deterministic. 

Provides a simple and 

effective representation of the 

structural logic and flows. 

Suited to incremental 

innovation activity with 

relatively reliable market 

push or strong market pull 

forces. 

Does not consider the 

dynamic behaviours and 

relationships associated with 

agency, freedom, and 

resulting innovations. 

Recursive A process with concurrent 

and multiple feedback loops 

between stages that generate 

iterative behaviour and 

outcomes that are more 

difficult to predict. 

Represents the dynamic and 

fluid nature of the process. 

Suited to more radical 

innovations with push–pull 

market force combinations. 

 

Assumes similar behaviour 

across the whole process and 

does not represent the 

structural and behavioural 

instabilities of the process. 

Chaotic A process where the linkages 

and flows are greater during 

the initial stages, resulting in 

different degrees of feedback 

across the process. The initial 

stages exhibit chaotic 

dynamics and outcomes that 

appear to be random and 

unpredictable, whereas the 

latter stages are relatively 

stable and certain. 

Recognises different system 

behaviours across the process 

and acknowledges the effects 

of highly cumulative 

causation. Suited to the 

search and exploration 

aspects of very radical 

innovations or really new 

products. 

 

Focuses on differences 

between the stages and 

presupposes that the overall 

process configuration is fixed 

(i.e., does not consider 

process adaptability). 

 

Complex 

Adaptive 

System 

A process with partially 

connected agents whose 

interactions cross stages and 

decision levels. Collectively 

they are able to produce a 

process dynamic between 

order and chaos, which 

results in process adaptability 

and the potential to generate 

different behaviours and 

innovation outcomes 

Assumes that overall process 

configurations and behaviours 

are malleable. They can be 

internally changed to match 

push or pull market forces 

and innovation expectations 

that range from incremental 

to very radical. 

Semantic confusion 

concerning the terms complex 

and complexity. Challenges 

in framing and measuring the 

process constructs coupled 

with the misconception that 

process outcomes are random 

and therefore unpredictable. 
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One form of CAS is Whole Process Design (WPD) which combines linear, recursive 

and chaotic processes. As shown in Figure 1-5, the initial and final stages are linear 

with the intermediate stages representing a combination of recursive (linkages and 

flows between the stages) and chaotic (the consideration of multiple known and 

unknown factors within all stages) processes.  

 

Discovery Develop
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Formulate Launch

Chemical 

Entity

Finished 

Product

Whole Process Design

Product Design

 

Figure 1-5  Whole Process Design 

 

As discussed in section 1.1, WPD can be used to achieve rapid reactions, sustainable 

chemical processing and more flexible plant designs. The WPD framework has 

already been successfully adopted by the industrial members of Britest and is 

considered “as a clear and useful concept within the design of low tonnage chemicals 

processes” (Sharratt, 2011). However by adopting WPD, decision-making becomes 

more challenging as multiple factors must be considered throughout NPD. As a 

consequence, identifying the most effective way to support decision-making 

throughout WPD is the primary goal of this thesis.  

 

2.2.3 Multi-Objective Optimisation 

Multi-objective optimisation (MOO) methods are mathematical algorithms that 

search for values of decision variables. They aim to provide the optimum set of 

values for more than one objective function. Each additional objective function 

increases the complexity of the search space with the problem dimensionality 

increasing accordingly. For example, a problem with three objectives would be 

considered as a three dimensional problem. Multi-objective problems can be solved 

using an exhaustive search that checks every possible combination of decision 

variables. However, due to the size of the search space for even a simple multi-
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objective problem, the time required to conduct the search is extensive and 

impractical in the majority of cases. As a result of these challenges, MOO methods 

have received much academic interest in recent years. 

Decision problems almost always contain multiple objectives that conflict with one 

another. For example, minimising the cost of production while maximising profit or 

minimising a product’s weight while maximising its tensile strength. For these types 

of problems there will be a number of ideal solutions present in the n-dimensional 

search space. Furthermore, decision problems characteristically contain discrete 

decision variables. Optimisation problems incorporating such variables are defined 

as combinatorial problems and require MOO algorithms that deal with complex 

search spaces (Garey & Johnson, 1979). The following section presents and 

evaluates a number of key techniques reported in the literature that can be used to 

solve multi-objective combinatorial optimisation problems. 

 

2.2.3.1 Unclassified Algorithms 

a. Goal Programming 

Goal programming was introduced by Charnes et al. (1955). The method is regarded 

as an adaptation of linear programming (Jones & Tamiz, 2010) and is commonly 

referred to as multi-objective linear programming. A clearer definition of goal 

programming was provided in the book by Charnes & Cooper (1961). Since 

publication, there has been a small but steady increase of academic interest 

surrounding the method. 

In goal programming the objective or goal is defined by the term functional. 

Algebraically a functional can be modelled as: 

  ( )             2-3 

where tj denotes the numerical target level of the j
th

 objective (set by the decision-

maker),  dj  is the positive deviational variable of the j
th

 objective and ej is the 

negative deviational variable of the j
th

 objective. 

 

A positive deviational variable represents the position by which the target level is 

over achieved. A negative deviational variable represents the level by which the 

target is under achieved. For example, a goal involving profit would require any 
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negative deviation below the goal level to be penalised. An achievement function is 

then used to optimise the deviational variables to identify the best set of goals. The 

generic goal programming achievement function is presented in equation 2-4: 

                  

Subject to     ( )                                  

     

                                
 

2-4 

where n denotes the vector of j negative deviational variables, p denotes the vector of 

j positive deviational variables. F is the feasible region in the decision space that 

satisfies all constraints.  

 

There are a number of other commonly used variations of goal programming 

including weighted goal programming, lexicographic goal programming and fuzzy 

goal programming which all have different achievement functions. According to 

Romero (2004), 21% of all goal programming applications use the weighted 

algorithm and 65% use lexicographic approach.  

Weighted goal programming, also known as Archimedean goal programming, allows 

the decision-maker to attach weights of importance to each objective and minimise 

the sum of negative deviational variables. The standard approach is often criticised 

for its inability to handle criteria weights hence the popularity of weighted goal 

programming as it can overcome this limitation. However, a disadvantage of 

weighted goal programming is its inability to handle different measurement units.  

Tamiz et al. (1995) proposed a number of normalisation techniques to address this 

but there are few examples of these normalisation procedures being applied in 

practice. Lexicographic goal programming works differently by allowing the 

decision-maker to select a priority level (a rank) for each goal. 

Tamiz et al. (1998) suggests the best modelling practice for most real-life problems 

is not to rely on one single goal programming variant but instead to use several 

variants of goal programming. 

Goal programming can handle a large number of decision variables, objectives and 

constraints. However, the algorithm is sometimes incapable of finding solutions that 

are Pareto efficient, hence Tamiz et al. (1999) proposed a modification using integer 

goal programming analysis tools to ensure the achievable solutions are Pareto 
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efficient. However, this modification adds another layer of complexity to the goal 

programming technique and consequently is often ignored by decision analysis 

practitioners.  

Jones and Tamiz (2010) stated that goal programming can be “a valuable aid” for 

deicison-making in health care and portfolio selection.  

 

b. Simulated Annealing 

Simulated Annealing (SA) shares similarities with evolutionary optimisation (see 

section 2.2.3.2) but is not considered a direct form of the technique. The method was 

introduced by Kirkpatrick et al. (1983) and since the initial publication, interest has 

grown steadily. The method is stochastic in nature as it supports random search 

deviations, thereby theoretically escaping entrapment within local optima. The SA 

algorithm mimics the cooling of metallic solids from the liquid phase to increase the 

volume of crystals thereby reducing the number of defects. The initial heat applied to 

the material forces its atoms to freely move in random directions. As the cooling 

process occurs, the atom’s energy will slowly decrease resulting in the discovery of a 

new formation. This is modelled by defining a probability P, using Gibbs law: 

    
 
   2-5 

where E denotes energy, k is the Boltzmann constant and T is temperature.  

 

Gibbs law shows the probability of the formation change is directly related to the 

temperature and the energy of the system. This is mimicked in SA by replacing the 

energy function with an objective function made up of decision variables:  

( ( ) ( ))
kT

f y f x
P

e

 
  2-6 

where f(y)-f(x) is the difference between the new and old objective functions.  

 

The general procedure of SA is as follows: 

1. Define the cooling schedule (starting temperature, final temperature, 

temperature decrement and iterations at each temperature), objective function 

and initial starting point. Set frozen as false. 

2. While frozen is false: 

a. Randomly generate a neighbourhood point.  
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b. Calculate the energy (objective function) of the new solution. 

c. If the energy lowers, accept the new neighbourhood point. 

Else, 

i. Calculate probability of acceptance (equation 2-6). 

ii. If within probability, accept the new neighbourhood point. 

d. If frozen, set frozen as true. 

3. Return low energy solution. 

 

One major drawback of SA is that the computational time required to solve a 

problem can be proportional to its magnitude. For certain large and complex 

problems, SA may require a similar number of iterations to an exhaustive search.  

As a result of this, Triki, et al. (2005) believes SA lacks practical application. 

Furthermore, SA requires considerable understanding to gain meaningful results. In 

particular, it is problematic to select a suitable cooling schedule which will 

accurately reflect the problem’s search space. Often the cooling schedule is 

empirically adjusted during the algorithm’s evaluation. This means the algorithm is 

only practically applicable by practitioners who have an in depth knowledge and 

understanding of the algorithm.  

For SA to be more widely accepted, there is a need for real world case studies to be 

reported in the literature. These may provide the knowledge required to develop a 

dynamic cooling schedule that adapts to a multitude of problems. 

 

2.2.3.2 Evolutionary Algorithms 

Evolutionary optimisation replicates the concept of Darwinian selection 

computationally to identify the fittest or optimum solution. Branke et al. (2008) 

identified four researchers who established evolutionary optimisation between 1965-

1975: Schwefel (1974) and Rechenberg (1971) developed evolutionary strategies, 

Fogel et al. (1966) created evolutionary programming and Holland (1975) 

established genetic algorithms. 

a. Genetic Algorithm 

The genetic algorithm (GA) is by far the most popular MOO algorithm within the 

field of evolutionary computing. It works in a similar manner to all evolutionary 
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optimisation algorithms, by forming a population of solutions. This concept has a 

number of advantages for complex multi-objective problems as it can explore several 

parts of the search space simultaneously. The difference between GA and other 

evolutionary based algorithms is that GA is founded on the principle of genetics. 

Each solution in the population is represented by a chromosome. These 

chromosomes are altered throughout every generation (computer iteration) until a 

suitable solution is found.  

 

The general procedure of a GA is as follows: 

1. Define an end condition (time or number of iterations). 

2. Generate a random population of chromosomes. 

3. Evaluate fitness of each chromosome in the population. 

4. Create a new population by repeating the following steps until a new 

population is complete: 

a. Select two parent chromosomes from the population according to their 

fitness.  

b. Crossover the parents to form a new offspring.  

c. Randomly mutate the offspring. 

d. Place the offspring into the population. 

5. Evaluate fitness of each chromosome in the population. 

6. If the end condition is met, return the best solution in the current population. 

 

The crossover (4b) and mutation (4c) stages of the procedure are the main genetic 

operators. There are a number of techniques including permutation encoding, value 

encoding and tree encoding which handle the crossover stage separately. However, 

the most common method is binary encoding which selects a random cut off point 

and forms a new offspring by merging one side of the cut point of parent A to the 

other side of the cut point of parent B (for example, A:10001|011 and B:01101|110 

produces  10001110). Sometimes multiple cut points are used to ensure the greatest 

amount of variation. The mutation stage consists of a small alteration to the new 

offspring (for example: 10001110 mutates to 10101110). The probability of this 

occurring to each individual bit of the chromosome is set by the decision-maker. 

Generally this value is fixed to less than 0.1. The level of the mutation probability 

denotes the stochastic nature of the algorithm. 
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The GA is known for its ability to find suitable search regions rapidly. However, the 

algorithm is not effective in terms of rapidly locating the local optimum within a 

suitable region. This is partly because the algorithm’s population size is considered 

infinite when in practice the population size is finite (El-Mihoub, et al., 2006). Much 

work in the last decade has gone into developing hybrid or memetic GAs which can 

provide improved local search functions. This is discussed further in section 2.2.3.4. 

 

2.2.3.3 Swarm Algorithms 

Swarm intelligence was established by Beni and Wang (1989) for the application of 

artificial intelligence to cellular robotic systems. Swarm systems, similar to 

evolutionary optimisation, use populations of solutions to explore the local and 

global search spaces. The difference between them is that instead of mimicking 

Darwinian selection; swarm systems imitate colonies of insects or animals to gain 

collective intelligence.  

a. Ant Colony Optimisation 

Ant Colony Optimisation (ACO) was derived from the ant system which was 

conceptualised by Dorigo (1992) during his doctoral research. ACO is a class of 

swarm optimisation based on the movement of ants seeking a path between food and 

their colony. Ants initially wonder in random directions, avoiding obstacles, until 

they locate a food source. When a food source is found, the ants return to their 

colony releasing pheromones. Other ants that locate this pheromone trail follow it to 

the food source. Pheromone trails evaporate over time making shorter paths more 

attractive to the ants as they last longer and hence can be used more frequently. This 

process eventually results in the determination of the shortest path between the food 

source and the colony. In algorithmic terms, the artificial ants are a population of 

solutions that work in parallel to find an optimal solution. The algorithm functions as 

follows:  

1. Define an end condition (time or number of iterations). 

2. Define nodes (states), the attractiveness (artificial pheromones) between 

every node and the number of ants (population size). 

3. Randomly assign a node to each ant as a starting position. 

4. While end condition has not been met: 
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a. Move every ant to their next node using a probability function that 

considers the attractiveness of each ant’s connecting nodes.  

b. Update attractiveness between every node. 

c. If an ant’s solution is shorter (better) than the current best solution, 

save new solution as best solution. 

5.  Return the best solution. 

 

Gutjahr (2003) considers ACO particularly promising for three reasons: 

· The algorithm uses memory (via pheromone trails), similarly to evolutionary 

and other swarm algorithms but different from SA and goal programming. 

· Problems with a highly constrained solution space can be encoded in a 

natural way. 

· Knowledge that is specific to the problem (problem-specific heuristics) can 

be used to improve the performance of the optimisation.  

Gutjahr (2003) stated that the last two points give ACO a competitive advantage in  

addressing highly contrained combinatorial optimisation problems. Blum (2005) 

reviewed a number of applications of ACO, including data mining, timetabling, 

scheduling, vehicle routing and bioinformatics problems. Although he found many 

successful examples, he recommended utilising ACO with other algorithms as a 

hybrid search (Section 2.2.3.4). 

 

b. Particle Swarm Optimisation 

Particle Swarm Optimisation (PSO) is a class of swarm system that was initially 

inspired by flocks of birds and shoals of fish. The position of the particles represent 

solutions in the search space. The particles move through the search space tracking 

the current optimum particle. The method was conceptualised by Kennedy and 

Eberhart (1995) for the simulation of social behaviour. Only in a later publication 

was the algorithm recognised to serve as an optimisation algorithm (Kennedy, et al., 

2001).  

Throughout each iteration or timed step of the algorithm, the velocity of the particle 

is changed. This is achieved as follows:  

1. Define an end condition (time or number of iterations). 

2. Define maximum velocity, starting velocity and number of particles. 
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3. Randomly assign a starting position for each particle.  

4. While end condition has not been met: 

a. Calculate the fitness value for each particle. If a value is better than 

the current best solution, save the new solution as the best solution. 

b. Calculate the velocity for each particle. 

c. Update the position of each particle using the new velocities.  

5. Return the best solution. 

 

Poli (2008) identified approximately 650 publications relating to the application of 

PSO within 26 fields including electronics, biomedical, design, finances, scheduling, 

forecasting and signal processing. The conclusion was that PSO performed well in 

most fields besides combinatorial optimisation problems due to premature 

convergence. 

 

c. Artificial Bee Colony Optimisation 

Like ACO and PSO, Artificial Bee Colony (ABC) optimisation is a swarm based 

algorithm which derives its fundamental concept from biology. ABC was 

conceptualised relatively recently by Karaboga, (2005). The algorithm mimics honey 

bees in search of food. Bees seek flower patches with high amounts of food that can 

be collected with minimal effort. Bees initially wander randomly between flower 

patches and when they return to the hive they evaluate their findings and 

communicate this information to the other bees. A bee will face the direction of the 

flower patch it previously visited and dance for a set time which indicates the 

distance and at a speed which indicates the quality of the patch. Bees from the hive 

interpret this information and follow the original bee back to the patch location if 

deemed suitable. The bees communicate their findings to the hive on every return so 

that locations with depleted food sources can be disregarded. This system ensures 

that patches with high amounts of food will be visited by more bees. Algorithmically 

this works as illustrated in Figure 2-8.  

ABC has been successfully applied to a number of problems including software 

testing (Suri & Kalkal, 2011) and fault section estimation in power systems (Huang 

& Liu, 2013). Pham, et al. (2006) investigated 10 benchmark optimisation problems 

using ABC. They found that the method is comparable if not supperior to GA and 
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ACO in terms of speed and accuracy. For one particular test function, ABC 

converged to the same result 120 times faster than ACO and 207 times faster than 

GA. However, Huang and Liu (2013) stated “reliability and flexibility of [(ABC)] 

has become the major concern which will be reported in the near future”. 

 

Initial food source 

positions

Calculate the nectar amounts

Determine the new food positions 

for the employed bees

Calculate the nectar amounts

All onlookers 

distributed?
Select a food source for onlooker

Determine a neighbour food 

position for the onlookers

Memorise the position of best 

food source

Find abandoned food source

Produce new position for the 

exhausted food source

Are the termination 

criteria satisfied?

Final food positions

YES

YES

NONO

 

Figure 2-8  Flow chart of the ABC Algorithm (Karaboga, 2009) 

 

2.2.3.4 Hybrid approaches 

In recent years there has been much research conducted into combining MOO 

algorithms. Combining the advantages of two or more algorithms increases the 

chance of convergence to an optimum solution. Blum (2005) stated that hybrid 

algorithms typically provide better results than pure (singular) algorithms. 

Significant research has been undertaken with respect to combining algorithms that 

provide an extensive global search along with algorithms that perform an effective 

local search. From studying the work of Dawkins (1976), Moscato (1989) introduced 
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the term memetic to describe a hybrid algorithm which utilises an additional 

technique for a local search.  

As discussed in section 2.2.3.2, evolutionary algorithms are known to perform well 

for global searches but lack the ability of an extensive local search. With the 

combination of a gradient based local search technique, Moscato (1989) concluded a 

memetic approach has shown “extraordinary performance dealing with some of the 

biggest instances of certain combinatorial optimization problems”. The memetic 

approach has also been applied to swarm based techniques. Petalas et al. (2007) 

successfully developed and reviewed a memetic based PSO algorithm. They found 

that “in almost all problems the memetic approach proved to be superior, increasing 

both the efficiency and the effectiveness of the algorithm”. 

Neri and Cotta (2012) conducted a review of memetic based applications. From the 

analysis, the authors stated that pure algorithms should not be separated into different 

fields but instead regarded as a “combination of operators”. They proposed that the 

next step for memetic computing is to generate automatic combinations of 

optimisation algorithms.  

 

2.2.3.5 Comparison and Summary 

The MOO methods discussed have been used to address many different decision 

problems. There are a number of benchmark studies that evaluate the effectiveness of 

the various methods. However, these studies only demonstrate the algorithmic ability 

with a small number of specific problems. The best MOO results come from 

combining MOO methods. This has been confirmed for memetic type algorithms that 

use one MOO method for a global search and another for the local search.  

 

2.2.4 Multi-Attribute Methods 

Multi-attribute (MA) methods create a single numerical output to score each 

available alternative. This is achieved in two stages. Firstly, the decision-maker must 

identify and form sets of alternatives, criteria and decision variables which describe 

their decision problem. Secondly, a method which utilises a value or utility function 

is applied to aggregate this information into a final score. MA methods are generally 

categorised as either Multi-Attribute Value Theory (MAVT) or Multi-Attribute 
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Utility Theory (MAUT) approaches. Analytical Hierarchy Process (AHP) which 

works with pairwise comparisons is sometimes classified separately. However, Dyer 

et al. (1992) and a number of other publications classify AHP as a MAUT approach. 

Although a number of authors have laid claim to establishing the concepts of MAVT 

and MAUT, it is generally accepted that Keeney and Raïffa (1976) were the first to 

introduce the concepts. The main difference between MAVT and MAUT is that the 

former deals with problems under certainty while MAUT deals with problems under 

uncertainty. MAUT incorporates uncertainty through the use of utility functions as 

opposed to value functions. Both MAVT and MAUT only use criterion input on a 

common scale, consequently the functions which represent the decision problem 

must effectively normalise the decision variables (quantitative or qualitative) to a 

dimensionless common format. The way in which this is implemented for a 

particular method defines the method itself. The following section presents and 

explains the most commonly applied techniques that utilise MAVT or MAUT. 

 

2.2.4.1 Weighted Sum 

The Weighted Sum Method (WSM), also known as the Simple Additive Weight 

method, was introduced by Zadeh (1963). It is simple to understand and 

straightforward to apply, and has been evaluated in a range of fields hence it is one of 

the most widely applied MA methods (Chou, et al., 2008). 

The WSM allows the decision-maker to define criteria weights. Each weight 

signifies the importance of a function.  The total score of each alternative is equal to 

the sum of the product of the weights and decision variables: 

    ∑     

 

   

                     2-7 

where a decision problem has m fixed alternatives and n fixed criteria. wj denotes the 

weight of each criterion and aij is the decision variable for the i
th

 alternative with 

respect to the j
th

 criterion. 

 

Even though the WSM has been widely used, the method itself is incapable of 

handling problems with multiple scales (Pohekar & Ramachandran, 2004). One 

solution is the application of normalisation procedures prior to applying the WSM. 
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However, there is no version of the WSM which incorporates a normalisation 

procedure into a single mathematical framework.  

 

2.2.4.2 Pairwise Comparison Methods 

The Analytic Hierarchy Process (AHP) (Saaty 1972; 1980) was proposed as a 

method to solve decision problems using a hierarchical structure of criteria and 

alternatives.  AHP has become one of the most popular decision-making methods 

due to the use of pairwise comparisons to input qualitative information. Pairwise 

comparisons are required in the scale of 1-9. 1 infers equal importance, 3 for 

moderate importance, 5 for strong importance, 7 for very strong importance and 9 for 

extreme importance. The values of 2, 4, 6 and 8 are compromises between the 

previous definitions.  

Pairwise comparisons given by the decision-maker are placed into reciprocal 

matrices. For example, a reciprocal matrix with 4 alternatives (a1,..,a4) is as follows: 

 a1 a2 a3 a4 Priorities 

a1 1 1/4 4 1/6 0.112 

a2 4 1 4 1/4 0.248 

a3 1/4 1/4 1 1/5 0.059 

a4 6 4 5 1 0.581 

Figure 2-9  Example reciprocal matrix in AHP 

 

Values from the decision-maker for each pairwise selection are placed into the 

matrix and inverses are automatically added in the transpose position. The priorities 

are the principle eigenvectors of the matrix. Separate reciprocal matrices with 

alternative pairwise selections are required for each qualitative criterion. A score (in 

a numerical format) for each alternative is also required in respect to each 

quantitative criterion. The quantitative scores are normalised for the analysis. The 

priority values from the qualitative input and the normalised values from the 

quantitative input are used to form a score for each alternative by applying the WSM 

(equation 2-7). The criteria weights can either be collected as numerical values or 

from pairwise selections (in the same way as above).  

Saaty (1980) acknowledged that intransitivity can occur when providing pairwise 

comparisons. For instance, a decision-maker can be intransient when expressing A is 
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better than B, B is better than C and C is better than A. The decision-maker can also 

be numerically inconsistent by the decision-maker expressing A is better than B by 2, 

B is better than C by 2 and A is better than C by 6. Saaty (1980) consequently 

suggested the use of a Consistency Ratio (CR) to check that pairwise input is 

transitive. A CR works by quantifying how consistent the decision-maker’s 

judgements are in relation to a large sample of random judgements (discussed further 

in section 4.5.2.2). Saaty (1980) proposed that if the CR is larger than 0.1 then the 

decision-maker’s input is intransient and therefore unreliable. 

AHP has also been scrutinised for an inherent limitation termed rank reversal. Rank 

reversal occurs when a new alternative is added or removed from the decision model 

after preferences have been provided. If the alternative preferences are close in the 

newly formed model, the update can alter the results, sometimes reversing the order 

of preference. This occurs due to interdependencies within the eigenvector 

calculations. Saaty (1980) suggested a technique termed supermatrix to overcome 

rank reversals in AHP. This technique, now commonly referred to as the Analytical 

Network Process (ANP) (Saaty, 1996), differs from AHP as it uses a network 

structure of criteria and alternatives rather than a hierarchical structure. The idea was 

that ANP would consider the interdependence of each criterion thus making the rank 

reversal problem void. However, Salo and Hämäläinen (1997) stated “despite claims 

to the contrary, the supermatrix technuique [(ANP)] does not eliminate rank 

reversals”. The most sensible approach to ensure rank reversals do not occur is by 

ensuring the alternatives and criteria are correct before data entry (Saaty, 1994). This 

can be achieved by focussing on the problem structuring phase of the decision-

making process.  

There are a number of distinct differences between AHP and ANP which are shown 

in Table 2-1. As a consequence of the network structure of ANP, the decision-maker 

must input a much greater amount of information than when implementing AHP. 

This is potentially the reason why AHP has been applied and cited much more than 

ANP in recent years (Figure 2-4). The primary advantage of ANP over AHP is that 

“dependence and feedback” can be considered in the decision problem (Sipahi & 

Timor, 2010). Sipahi and Timor (2010), who discussed the recent developments of 

AHP and ANP, expect ANP to gain more popularity in the future. However, the AHP 

method is still the most cited method in the last decade out of all MCDA methods.  
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Table 2-2  Comparison between AHP and ANP 

 AHP ANP 

Structure: Hierarchy Network 

Pairwise Input required: Medium High 

Considers dependence or feedback 

between elements: 

No Yes 

Applications/citations: High Low/Medium 

 

2.2.4.3 Ideal point methods 

Ideal point methods assess alternatives on the basis of their separation from an ideal 

point. The two most prominent ideal point methods are Technique for Order 

Preference by Similarity to Ideal Solutions (TOPSIS) and VIKOR. TOPSIS was 

proposed by Hwang and Yoon (1981, 1995). The principle behind the method is that 

the optimal alternative should have the shortest distance from the positive ideal 

solution and the furthest distance from the negative ideal solution. The positive and 

negative ideal solutions are artificial alternatives which are hypothesised by the 

decision-maker, based on the ideal solution for all criteria and the worst solution 

which possesses the most inferior decision variables. For example, in terms of profit, 

a best solution could be £1 million and a worst solution could be £0. Assuming every 

criterion has an increasing or decreasing scale, TOPSIS calculates the results by 

comparing Euclidean distances between the actual alternatives and the hypothesised 

ones.  

VIKOR, which was independently developed by Opricovic (1998), is a similar 

method to TOPSIS. The acronym in Serbian translates to “Multi-criteria 

Optimisation and Compromise Solution”. Opricovic and Tzeng (2004) identified two 

differences between TOPSIS and VIKOR. They stated that “a comparative analysis 

shows that these two methods use different normalizations and that they introduce 

different aggregating functions for ranking”. In terms of normalisation, TOPSIS uses 

vector normalisation whilst VIKOR uses linear normalisation to eliminate criteria 

measurement units. In terms of aggregation, TOPSIS attempts to evaluate the 

alternative with the maximum distance to the negative ideal solution while VIKOR 

tries to evaluate the alternative closest to the positive ideal solution (Chauhan & 

Vaish, 2012).   
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Similarly to AHP and ANP, both VIKOR and TOPSIS suffer from rank reversals. 

Nevertheless, both TOPSIS and VIKOR have been applied to a number of 

engineering problems such as materials selection (Chauhan & Vaish, 2012) and 

vehicle fuel selection (Tzeng, et al., 2005). 

 

2.2.4.4 Comparison and Summary 

Very few studies exist that compare Multi-Attribute (MA) methods. This is due to 

the differences between the inputs required from the decision-maker for each 

approach (i.e. decision variables, pairwise comparisons and ideal points). Much of 

the literature surrounding the comparison of MA methods is based on biased 

arguments with no substantive evidence. For example, one discussion between Smith 

and Winterfeldt (2004) and Gass (2005) compared AHP to alternative MAUT 

methods. Smith and Winterfeldt (2004) described AHP as “fundamentally unsound” 

due to the issues assosiated with measurement scale and rank reversals. Gass (2005) 

responded by contending that there are many successful applications of AHP and he 

urged the decision-making community to consider the method as one of the founding 

MA approaches. The only consensus is that most MA methods tend to reach the 

same decision outcome under the same conditions (Huang et al., 2011). 

 

2.2.5 Outranking Methods 

Outranking methods are commonly referred to as methods from the French or 

European school of thought. This is a consequence of the theory being introduced by 

the French Professor, Bernard Roy (1968).  Accordingly, the literature regarding 

outranking methods is predominantly written in French. Recently due to the 

increased interest in decision-making, some of the original literature has been 

translated into English. This section introduces and reviews the most widely reported 

outranking approaches. 

 

2.2.5.1 ELECTRE Family 

ELECTRE stands for “ELimination Et Choix Traduisant la REalité” which in 

English means “Elimination and Choice Expressing Reality”. Since the initial 
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description of the technique in Roy (1968), seven further methods have been 

proposed, ELECTRE I, IS, Iv, II, III, IV and Tri.  

ELECTRE I (Roy, 1968) is the simplest form of ELECTRE. The method uses 

concordance and discordance indices which are calculated for every possible pair of 

alternatives. A concordance index expresses how many criteria are in favour of each 

alternative and a discordance index expresses how many criteria are not in favour of 

each alternative. Using threshold values provided by the decision-maker, it is 

possible to determine if each alternative pair is preferred, indifferent or 

incomparable. By evaluating which alternatives are preferred more than not being 

preferred, the most promising alternatives can be identified. ELECTRE IS (Roy & 

Skalka, 1984) is exactly the same as ELECTRE I but it introduces an indifference 

threshold (the value below which the decision-maker is indifferent between two 

alternatives). ELECTRE Iv (Maystre, et al., 1994) is also similar to ELECTRE I but 

introduces a veto threshold (the value at which the decision-maker ultimately prefers 

one alternative over another and wishes to select that alternative with total certainty). 

ELECTRE II was introduced by Roy and Bertier (1973) as the first modification of 

ELECTRE to deliver a full ranking of results. To achieve this, the concordance index 

was adapted to accept two levels of outranking relations, strong and weak, resulting 

in multiple threshold values being required. The complete rankings are calculated 

through two distillations procedures, one in descending order (finding the best to 

worst alternatives) and the other in ascending order (finding the worst to best 

alternatives). The final order is produced by taking an intersection of the descending 

and ascending orders (section 4.5.2.4).  

Unlike the previous versions of ELECTRE, ELECTRE III (Roy, 1978) uses pseudo 

criteria to derive the concordance and discordance indices. Pseudo criteria are a 

fuzzy (Zadeh, 1965) representation of each criterion thus the method is capable of 

dealing with uncertain and limited information. Pseudo criteria are incorporated 

through the use of indifference, preference and veto thresholds. The indifference 

threshold is a value below which the decision-maker is indifferent in terms of two 

alternatives whilst the preference threshold is a value above which the decision-

maker prefers one alternative to another. Finally, veto threshold is the value at which 

the decision-maker ultimately prefers one alternative over another and wishes to 

select that alternative with total certainty. The ranking of ELECTRE III is derived in 

the same way as ELECTRE II.  
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ELECTRE IV (Roy & Hugonnard, 1982) was proposed to simplify the procedure of 

ELECTRE III. In all of the aforementioned ELECTRE methods, the decision-maker 

assigns criteria weights. However, in ELECTRE IV, the threshold values are used to 

define a weighting scheme.  

The final ELECTRE method, ELECTRE Tri (Yu, 1992) is an adaptation of 

ELECTRE III. It was proposed to categorise alternatives rather than provide a 

ranking. Categories (also commonly referred to as groups or classes) are established 

by the decision-maker and are ordered, typically in the arrangement of worst to best. 

The outranking relation is formed by comparing the alternatives to thresholds which 

are equivalent to the boundaries of each group. This provides the necessary 

information to categorise the alternatives. 

The number of ELECTRE methods can be somewhat overwhelming. However, the 

methods can be categorised into three groups; choice (I, IS, Iv), ranking (II, III, IV) 

and sorting (Tri). In terms of modern decision support, the most useful group of 

methods is ranking. Within this group, Sayyadi & Makui (2012) recommend 

ELECTRE III as the most superior method as it can directly deal with uncertainty 

and gives the decision-maker the control to set criteria weights.  

 

2.2.5.2 PROMETHEE Family 

The Preference Ranking Organisation Method for Enrichment Evaluation 

(PROMETHEE) was introduced by Brans (1982). Like ELECTRE, the 

PROMETHEE family contains many versions which have evolved since the initial 

publication. The main difference between PROMETHEE and ELECTRE is that each 

independent criterion is associated with a preference function as opposed to a 

threshold value. Unlike a utility function in MA methods, the preference function is 

used to model the difference between each pair of alternatives. Six criterion types are 

defined as preference functions as shown in Figure 2-10, Usual Criterion (I), Quasi-

Criterion (II), Criterion with Linear Preference (III), Level Criterion (IV), Criterion 

with Linear Preference (V) and Gaussian Criterion (VI). For each criterion function, 

one or two parameters need to be defined by the decision-maker, indifference 

threshold (q), preference threshold (p) and/or an intermediate value between q and p 

(s).  PROMETHEE uses the preference functions to calculate positive and negative 

preference flows for each alternative, the positive flow expressing dominance and the 
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negative flow expressing the weakness of each alternative against all other 

alternatives.  

 

 

Figure 2-10  PROMETHEE Preference Functions (Dias, et al., 1998) 

 

One advantage of the PROMETHEE method is that the output can be represented 

graphically by a technique called Graphical Analysis for Interactive Assistance 

(GAIA) (Mareschal & Brans, 1988). In GAIA, alternatives are represented by points 

while the criteria are denoted by the axes of the chart as shown in Figure 2-11. 

 

 

Figure 2-11  Example of GAIA Plane (Brans & Mareschal, 2005) 

 

Criteria expressing similar preferences are represented by axes oriented in 

approximately the same direction (for example, in Figure 2-11, C4 and C6). Criteria 

expressing conflicting preferences are orientated in opposite directions (for example, 

in Figure 2-11, C1/C3 and C2/C4). Furthermore, alternatives that perform well with 
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certain criteria are represented by points located in the direction of those criteria (for 

example, in Figure 2-11, A1, A5 and A6 perform well in terms of C1, C3 and C5). 

PROMETHEE I and II were described in Brans (1982). Similar to ELECTRE I, 

PROMETHEE I can indicate the most promising alternatives while PROMETHEE II 

can provide a full ranking. The less cited methods of PROMETHEE III to VI, Tri 

and Cluster were proposed later. PROMETHEE III (Brans, et al., 1984) associates an 

interval with each action (rather than a preference flow) to highlight the notion of 

indifference. PROMETHEE IV (Brans, et al., 1984) provides a ranking when the set 

of viable solutions are continuous. PROMETHEE V (Mareschal & Brans, 1992) 

utilises constraints to maximise the total outranking flow of the alternatives in a 

continuous problem. PROMETHEE VI (Brans & Mareschal, 1995) allows for a 

range of variations in the criteria weights. PROMETHEE Tri (Figueira, et al., 2004), 

similarly to ELECTRE Tri, can be used to sort alternatives. PROMETHEE Cluster 

(Figueira, et al., 2004) can be used for nominal classification (sorting alternatives 

into groups).  

Behzadian et al. (2010) reviewed over 200 publications relating to PROMETHEE. 

They noted that PROMETHEE has been applied to many business management, 

chemistry and manufacturing problems. However, no reference is made as to how 

PROMETHEE compares to other methodologies.  

 

2.2.5.3 ORESTE 

The “Organisation, Rangement Et Synthèse de données relaTionElles” (ORESTE) 

method was proposed by Rubens (1980) as an alternative to ELECTRE. The method 

works in the reverse manner to ELECTRE in that it forms a full order ranking of the 

alternatives then updates the order using threshold values. As a consequence, the 

ORESTE procedure requires only a weak order of alternatives and a ranking of the 

criteria in terms of importance from the decision-maker (Guitouni & Martel, 1998).  

The procedure works by forming preference structures in an incomparability and 

indifference analysis. More specifically, when (A, B) is almost equal to (B, A) for 

every criterion then the comparison is incomparable (R). When (A, B) is much better 

than (B, A) for some criteria and (B, A) is much better than (A, B) for the remaining 

criteria, the comparison is indifferent (I). To make a distinction between indifference, 

incomparability and preference, three thresholds are computed β, δ and γ. The 
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procedure for forming preference structures is summarised in the flowchart, Figure 

2-12.  

 Abs((A , B) – (B, A)) ≤ β 

(A, B) ≤ δ

and

(B, A) ≤ δ

(B, A)

Abs((A, B) – (B, A))  ≥ γ   

Yes

A I BYes

A R BNo Yes

No

(A, B) > (B ,A)A is preferred to B

B is preferred to A

No

No

Yes

 

Figure 2-12  ORESTE Preference Structures (Bourguignon & Massart, 1994) 

 

The main advantage of ORESTE over ELECTRE and PROMETHEE is that criteria 

weights are not required from the decision-maker as they are derived from the 

computed threshold values. 

 

2.2.5.4 Outranking Comparison and Summary 

Similar to MA methods, there are few comparative reviews or benchmark studies of 

outranking approaches. Only one review was located from an extensive literature 

search that recommended ELECTRE III over PROMETHEE II. Salminen et al. 

(1998) recommoned ELECTRE III since PROMETHEE II had “no superior features 

when compared to it”. They stated that “proportional thresholds for imprecise data 

of ELECTRE III were considered heavily in its favour”. 

 

2.2.6 Other Techniques 

The following section will discuss additional techniques that can potentially be used 

for decision-making. Firstly, two monetary based techniques are discussed, Cost-

Benefit Analysis (CBA) and Cost-Effectiveness Analysis (CEA). Secondly, Bayesian 

methods are discussed with regard to three practical applications: decision trees, 
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influence diagrams and belief nets. Lastly, game theory is introduced and discussed 

from a decision-making perspective.  

 

2.2.6.1 Monetary Based Techniques 

The following section introduces two techniques that can be used for economic 

evaluation; cost-benefit analysis and cost-effectiveness analysis.  

a. Cost-Benefit Analysis 

Cost-Benefit Analysis (CBA) evaluates the costs and benefits of alternatives using 

monetary values. Campbell and Brown (2003) described CBA as “a process of 

identifying, measuring and comparing the social benefits and costs of an investment 

project or program”. The technique has been used extensively for guiding public 

projects (Brent, 2006), for example building motorways or discontinuing railway 

lines. The aim of CBA is to maximise the difference between benefits and costs 

which are transformed into a single dimension, net present value. For example, if a 

project has a benefit of 90 and a cost of 75, it should be approved, while if the cost 

was 100, the project should be rejected. The values for both cost and benefit are 

calculated from the value of money and time assosiated with each particular 

alternative.  

CBA has also been used to evaluate environmental issues such as implementing 

policies to reduce pollution (Pearce, 1998). As a consequence, the United States 

Environmental Protection Agency released guidelines for economic analysis using 

CBA (US EPA, 2000). However, Pearce (1998) argues that CBA is not suitable for 

environmental decision-making. He stated that CBA “can, at best, inform decision-

making”. He also claims there are ethical implications as to whether all situations can 

be represented in monetary terms. 

b. Cost-Effectiveness Analysis 

Cost-Effectiveness Analysis (CEA) is a similar technique to CBA that does not 

simply assign a monetary value to an outcome. Instead a ratio is used of cost over 

effectiveness. Cost is represented again by net present value and the measurement for 

effectiveness is chosen by the decision-maker. The method is popular throughout the 

medical industry as patients’ health benefits are difficult to express as monetary 
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values (Donaldson, et al., 2002). The problem with CEA is that, similarly to costs, 

effectiveness must be utilised on a common scale. This greatly limits the use of the 

method as often effectiveness can be represented in a number of ways depending on 

the situation. 

 

2.2.6.2 Bayesian Techniques 

Bayesian techniques and the idea of conditional probability were conceptualised by 

Thomas Bayes (1763). If A and B are events, conditional probability relates to the 

parameter estimation of A given that event B occurs, written as P(A|B). The Bayesian 

approach has become a common technique for reasoning under uncertainty. This 

section will focus on three practical Bayesian applications related to decision 

analysis: decision trees, influence diagrams and Bayesian belief networks. 

a. Decision Trees 

Decision trees were proposed initially in Von Neumann and Morgenstern (1947) for 

modelling games. The idea is that controllable events (decisions, depicted by 

rectangles) and uncontrollable events (probabilities, depicted by circles) are 

connected by branches in successive order to a set of outcomes (Figure 2-13). The 

trees can either be drawn vertically (top to bottom) or horizontally (left to right). The 

example in Figure 2-13 illustrates a horizontal decision tree showing the various 

market outcomes from two controllable investment decisions (the first for an initial 

investment and the second for a commercialisation investment) and two 

uncontrollable events.   

Decision trees are particularly useful in working backwards to identify the expected 

value of certain scenarios. The only limitation of decision trees is that they can only 

be used with problems that are sequential in nature.  
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Figure 2-13  Investment Decision Tree Example (UCL, 2012) 

 

 

b. Influence Diagrams 

Influence diagrams expand on decision trees, with the aim being to formulate 

problems into a compact representation of information in a hierarchical structure. 

Similar to decision trees, there can be nodes that represent variable events in the form 

of controllable decisions (rectangle) or uncontrollable probabilities (circles). 

However, there also can be deterministic nodes (circle within another circle) and 

outcome nodes (octagons). Nodes are connected by a one directional arrow termed 

an arc which represents the “influence” between the two nodes. Figure 2-14 shows 

an influence diagram of an investment decision guided by a coin toss. As the 

decision does not directly influence the coin toss, there is no arc between the two 

nodes. However, since the uncertain coin toss is defined before the outcome, an arc 

from the coin toss connects to the payoff node.  

Decision

Coin 
Toss

Payoff
 

Figure 2-14  Example Influence Diagram (Marks, 2004) 
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c. Belief Networks 

Belief networks are commonly known as expert systems that have emerged from the 

field of artificial intelligence. Although the technique shares similarities with 

decision trees, the method is more advanced and computationally intensive. Kjærulff 

and Madsen (2008) define a belief net as a “Directed Acyclic Graph (DAG) which 

defines a factorisation of a joint probability distribution over the variables that are 

represented by the nodes of the DAG, where the factorisation is given by the directed 

links of the DAG”. In other words, a belief network contains a number of nodes 

which can vary in complexity from discrete variables to continuous multidimensional 

distributions. Nodes are connected (similarly to influence diagrams) by a one 

directional arrow called a link which implies a dependency relationship between two 

nodes. Figure 2-15 shows an example transport problem using a belief network with 

three uncertain criteria: journey time, waiting time and comfort. There are also five 

factors that influence the criteria, including: roadworks, train problems, start time, 

weather and transport type. The known factors can be used to calculate values for the 

uncertain criteria.  

A belief network is useful to calculate evidence of belief for occurrences of 

unobserved events. However, large networks become difficult to manage as the 

information required to infer the conditional probability of certain nodes becomes 

extensive.  

 

Figure 2-15  Bayesian Belief Network Example (Fenton & Neil, 1999) 

 

2.2.6.3 Game Theory 

The notion of game theory can be traced back to 1838 but only became popular 

within academia upon publication of Von Neumann and Morgenstern (1947) (Turocy 
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& Stengel, 2001). Much of the technical theory is closely linked to decision analysis, 

probability theory and Bayesian statistics. Game theory involves analysing strategies 

where one’s success is somewhat affected by the choices of others (for example 

poker or chess). Clearly, the complexity of the problem increases in the case of 

cooperative or multi-player games.  

Thomas J. Watson, the founder of IBM declared “Business is a game - the greatest 

game in the world if you know how to play it” (McMillan, 1996). Besides the ethical 

implications of this statement (considering games involve deceit, including bluffing 

or lying by omission), which are discussed by Koehn (1997), it is generally accepted 

that business decision-making is very similar to analysing alternatives in a game of 

strategy. Indeed, Von Neumann and Morgenstern (1947) stated “the typical problems 

of economic behaviour [are] strictly identical with the mathematiacal notions of 

suitable games of strategy”. 

Game theory research has not provided any tangible methodologies for application in 

decision support but rather a collection of beliefs or strategies that use the methods 

and techniques discussed in this chapter. The theories may potentially be useful in 

the identification of criterion, alternatives or decision variables from other peoples’ 

(or rival companies) perspectives to earn a strategic advantage. Nevertheless, French 

(2007) suggests game theory and negotiation theory are full of contradictions and 

counterexamples.  

 

2.3 Behavioural Decision-Making 

The following section discusses developments in cognitive decision-making, 

examines decision-making in groups and reviews the mathematical theories that deal 

with irrational behaviour.  

2.3.1 Intuition and Rational Thought 

A book by Gladwell (2005) recommends the use of intuition to make decisions. It 

reports some interesting accounts of unconscious decision-making which been 

successful in a range of fields such as science, medicine, advertising and the music 

industry. However, most of the technical evidence is presented by Gigerenzer (2007). 

Both authors argue that acknowledging gut feeling (intuition) is a more effective way 

to make decisions than using sophisticated and complex computational models. The 
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authors discuss the concept of unconscious intelligence which originates from ones 

previous experiences. This concept draws on the work of Simon (1992) who 

describes intuition as “nothing more and nothing less than recognition”. Gigerenzer 

(2007) introduces the notion of ‘rules of thumb’. A rule of thumb is described as a 

level of behaviour, reasoning or perception that is formed from conscious or 

unconscious understanding.  

A number of scientific studies have endeavoured to evaluate the aforementioned 

theories on intuition. Dijksterhuis et al. (2006) found that in a problem relating to car 

selection, volunteers select better vehicles (based on a number of criteria) using 

intuition over conscious thought. However, two research groups challenged these 

findings by conducting similar experiments. Lassiter et al. (2009) repeated the same 

experiment but prohibited the volunteers from making an immediate decision. The 

results revealed the participants made better choices when provided with time for 

conscious thought. Cleeremans et al. (2009) also presented work of a similar nature 

utilising the decision of selecting an appropriate apartment. His work, similar to 

Lassiter et al. (2009) found that conscious thought was more likely to select 

alternatives with higher numbers of positive attributes.   

Kahneman (2011) recently published his findings on thinking processes in decision-

making. His work describes intuitive and conscious thought as two systems. System 

1 is described as fast and effortless while system 2 is described as thinking slowly 

with high levels of contemplation. Kahneman (2011) acknowledges there are many 

problems associated with system 1 such as biases and overconfidence. He explains 

that people, especially experts, overestimate their understanding and underestimate 

the risk and uncertainty of complex decisions. Underestimating uncertainty is often 

fed by the certainty of hindsight rather than knowledge itself. Interestingly, he found 

the same people will also react differently to identical situations depending on what 

is on their mind. Nevertheless, Kahneman (2011) acknowledged system 1 for its 

ability to recognise patterns in a fraction of a second, for example reading an emotion 

from someone’s facial expression or knowing the answer of 2+2 (but not 17 x 24). 

He explained that system 1 is particularly valuable when people achieve the ability to 

perform “expert intuition”. This describes the phenomenon where experts have 

learned (from prolonged exposure to a particular situation) to train their subconscious 

pattern recognition mechanism to select the correct answer instantaneously, for 

example, doctors diagnosing a patient without any physical tests. Kahneman (2011) 
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concluded by saying “to block errors that originate in system 1 is simple in 

principle: recognize the signs that you are in a cognitive minefield, slow down, and 

ask for reinforcement from system 2”.  

In conclusion, intuition should not be ignored; neither should it be followed without 

rational contemplation. For complex decisions which are significant to a person or a 

business it is imperative to consider, compare and contrast both intuition and 

structured conscious thought to deliver a coherent and rational solution.  

 

2.3.2 Group Decision-Making 

Often when companies are faced with complex decisions, the problem will be 

addressed by a group of people rather than one individual. Generally one would 

assume a simple voting system would be sufficient in handling such a task. However, 

literature from the fields of decision support, economics and psychology demonstrate 

many paradoxes and inconsistencies that criticise the idea of a democracy in 

decision-making (French, 2009). The most well-known criticism of democracy is 

Arrow’s impossibility theorem (Arrow, 1963). Arrow’s theorem shows that all 

current voting systems are either dominated by a single distinguished member or the 

member group as a whole delivers intransitive preferences (section 2.2.4.2). French 

(2007) states that no foundation for group decision-making exists that satisfies the 

principles of rationality, unanimity and Pareto optimality without there being an 

explicit or implicit dictator.  

In terms of uncertainty, Kahneman stated that groups tend to be more overconfident 

and risk taking than individuals (Schrage, 2003). Stoner (1961) named this 

phenomenon “risky shift”. Kahneman offers the explanation that individual doubts 

are frequently suppressed within a group and that groups which are susceptible to 

similar biases tend to be more optimistic which together leads to extreme outcomes.  

Kahneman and French both suggest the practice of reflection within a group before 

implementing a decision outcome (Schrage, 2003, French, 2007). By doing this the 

decision attributes can be re-evaluated for inconsistences and some silent members of 

the group may voice their opposing opinion. French (2007) also suggests using an 

online individual voting system to collect information so single members are less 

likely to be influenced by a prominent or well-respected member. 
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2.3.3 Modelling Irrational Behaviour and Uncertainty 

As discussed in section 2.2.1, expected utility theory has generally been accepted as 

the fundamental approach to handle choice under uncertainty. However, there has 

been considerable debate in the fields of economics and psychology which have 

uncovered a number of systematic violations of the expected utility hypothesis. For 

example, the Allais paradox (Allais, 1953) indicates that human reasoning can 

systematically violate expected utility theory. Considering the two decisions in 

Figure 2-16, Allais (1953) found that the majority of people chose option one over 

option two in decision one and option one over option two in decision two. 

As the payoffs are dissimilar between these scenarios, Allais (1953) proves that 

people can be inconsistent (regardless of Utility, U): 

 

U(£1M) > 0.1*U(£5M) + 0.89*U(£1M) + 0.01*U(£0) 

0.1*U(£5M) + 0.9*U(£0) > 0.11*U(£1M) + 0.89*U(£0) 
2-8 

 

 

Decision 1  Option One:  Receive  £1M with a probability of 1 

Option Two:  Receive  £5M with a probability of 0.1 

£1M with a probability of 0.89  

£0 with a probability of 0.01 

Decision 2 Option One: Receive  £5M with a probability of 0.1 

£0 with a probability 0.9 

Option Two: Receive  £1M with a probability of 0.11 

£0 with a probability of 0.89 

Figure 2-16  Allais Paradox with a modified currency 

 

Kahneman and Tversky (1979) repeated the Allais experiment with modified values 

to provide moderate rather than extremely large gains. They too concluded that 

human decision-making did not conform to expected utility theory. Kahneman and 

Tversky (1979) believed that “decision making under risk can be viewed as a choice 

between prospects or gambles” and thus introduced prospect theory (a method of 

non-expected utility).  Prospect theory assigns values to gains and losses rather than 

to final assets. A reference point is used to define the value function to which gains 
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are concave to imply risk aversion and losses are convex to imply risk taking (Figure 

2-17). 

 

Figure 2-17  Illustration of a value function in Prospect Theory  

 

Machina (2008) reviewed a number of preference functions (such as prospect theory) 

that have been used to model non-expected utility. Each approach differs and 

describes a function which is purported to infer human selection. As it is not known 

how the human brain functions under uncertainty (Trepel, et al., 2005) it is difficult 

to identify if there is a function which would accurately mimic human choice. 

Furthermore, Binmore (2011) believes that the methods of non-expected utility are 

not suitable for predicting the outcome of peoples’ behaviour. He argues the theories 

have been calibrated based on hindsight (using experiments) thus they do not 

represent every situation. Additionally, he refers to two papers by Harless and 

Camerer (1994) and Hey and Orme (1994) which found that many of the non-

expected utility theories provide inferior predictions of behaviour compared to 

expected utility theory itself.  

It is clear from the aforementioned discussion that cognitive selection is not linear 

and a number of alternative methods, such as prospect theory, have been proposed 

which attempt to model human choice under uncertainty. However, these methods 

have been proven to be ineffective for certain problems and within certain contexts.  

One alternative technique for compensating for uncertain selections is the use of 

fuzzy set theory which was proposed by Zadeh (1965). Classically, logic has been 

defined by two values, 1 or 0 and is termed crisp logic with an object being an 
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element of a set or not. Fuzzy logic alternatively introduces the concept of 

membership. A fuzzy set in relation to a crisp set for the definition of “hot” is 

illustrated in Figure 2-18. As shown, in crisp logic, hot is defined between 20C and  

50C while the fuzzy set expresses a membership of hot between 10C and 60C with 

only 35C being at a membership of 1. 

 

 

 

 

 

 

 

 

 

 

Figure 2-18  Example of a Fuzzy Set for the definition of “hot” 

 

Fuzzy logic has been applied to a number of MOO, MA and outranking techniques to 

capture uncertainty. However, Stewart (2005) considers the fuzzy approach 

impractical for modelling human judgements. He states that “such models of 

imprecision add complexity to an already complex process, and the result may often 

be a loss of transparency to the decision maker, contrary to the ethos of Multi-

Criteria Decision Analysis”. Stewart (2005) suggests handling uncertainty by 

improved formulation of the decision problem and by conducting an appropriate 

sensitivity analysis. The most common form of sensitivity analysis in MCDA is to 

apply a local ‘one-at-a-time’ modification (Van Der Pas, et al., 2010). This involves 

changing one decision variable at a time to see how the output is affected and then 

returning the parameter to the decision-maker’s baseline value. 

 

2.4 Chemical Decision Literature 

Following an extensive literature search, there are very limited references to 

decision-making techniques utilised for Whole Process Design (WPD). This is 

potentially due to the concept being relatively new and has been the domain of 
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Britest members. Therefore this section will focus on literature which aims to address 

management decisions associated with product or process development. The section 

is split into two parts, the first assesses Multi-Objective Optimisation (MOO) based 

applications whilst the other evaluates Multi-Attribute (MA) and outranking 

applications. 

2.4.1 Multi-Objective Optimisation Applications 

Literature on chemical management decision-making is dominated by the use of 

MOO methods (Grossmann, 2005). This is potentially a consequence of optimisation 

techniques being familiar as they have been widely applied in process control. MOO 

methods have been applied extensively to areas including supply chain management 

(Shah, 2005) and abnormal event management (Venkatasubramanian, et al., 2003). 

However, fewer applications exist that address decisions throughout product and 

process development.  

The majority of the MOO based literature that covers decision-making within 

product and process development involves the inclusion of environment, health and 

safety (EHS) considerations. In the past, non-monetary issues of process design such 

as safety, worker’s health and environmental impact were either not a systematic part 

of the decision-making process or were only considered at the final development 

stage (Adu, et al., 2008). However, with the growing awareness of legislation 

associated with EHS, a number of methodologies have been applied, including 

hazard and operability analysis (HAZOP) (Kletz, 2006), fault tree analysis (FTA) 

(Watson, 1961), failure mode effect analysis (FMEA) (Anon., 1980) and life cycle 

assessment (LCA) (Klopffer, 1997). These methods, although valuable require 

significant amounts of data and an advanced level of process understanding. At the 

beginning of product and process development when little data is available these 

methods are not viable (Adu, et al., 2008). Consequently, researchers have developed 

methodologies to incorporate EHS factors in the early development decision-making 

process. 

Three independent research groups have developed methodologies linking EHS with 

product development decision-making utilising MOO methods. BASF (Saling, et al., 

2002) proposed an Eco-efficiency Analysis for comparing product or process 

alternatives in terms of environmental impacts and costs. The analysis was based on 

an extended LCA according to ISO14040ff (Environmental Management: LCA: 
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Principles and Framework). Data related to the economic and ecological aspects of a 

system featuring different alternatives was normalised and aggregated to produce an 

Environmental Fingerprint (Figure 2-19) and Eco-Efficiency Portfolio (Figure 2-20). 

 

 

Figure 2-19  BASF Environmental Fingerprint Example (Saling, et al., 2002) 

 

Figure 2-19 shows that the electrochemical option (5) is the most advantageous 

alternative in all categories except materials consumption and indigo powder from 

plants (2) is the least favourable alternative in all categories except toxicity potential. 

This can be seen in Figure 2-20 where the most favourable alternatives are located at 

the top right and the least favourable are located at the bottom left of the portfolio. 

The diagonal distance between the alternatives indicates the respective eco-

efficiency.  

 

 

Figure 2-20  BASF Eco-Efficiency plot (Saling, et al., 2002) 
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The second framework proposed by Chen and Shonnard (2004) combines and 

optimises an economic index (net present value) with an environmental index 

(process composite environmental index) to give an environmentally concious 

design. The system works by combining an environmental fate and risk assessment 

tool with AHP. The output from this is optimised using a GA to identify the “best” 

design.  

The final framework presented an early stage chemical process design assessment in 

relation to continuous processes (Sugiyama, et al., 2008) and later for batch 

processes (Albrecht, et al., 2010). Both systems work similarly by determining 

indicator values for the economic behaviour, environmental impacts and hazard 

potential for each alternative. The indicator values are aggregated into a single index 

value which is used to rank the alternatives.  

Although these three works contributed significantly to the development of this field, 

shortcomings remain: 

· Little or no reference is made with regard to the choice of a suitable MOO 

method. Chen and Shonnard (2004) proposed the use of GA because “it 

provides a flexible, relatively efficient, and effective method for handling the 

black box”. However, they fail to evaluate or consider other MOO 

techniques. The other two frameworks do not cite any particular MOO 

algorithm. 

· The frameworks proposed are well defined but require significant amounts of 

data and information that would be very timely to source and evaluate.  

· The majority of the criteria are defined in terms of costs. However for some 

criteria such as those relating to safety and the environment, it is difficult to 

quantify them in terms of a monetary value. 

· All three frameworks are difficult to modify. Every product and process 

development is different, hence flexibility is essential in terms of a 

framework that addresses these overarching challenges. 

 

2.4.2 Multi-Attribute and Outranking Applications 

The majority of the literature surrounding MA and outranking methods in chemical 

related journals are methodological reviews. Keller and Massart (1991) reviewed the 

Weighted Sum Method (WSM), Pareto Optimality, ELECTRE and PROMETHEE 
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methods. The evaluation centred on a case study concerning the selection of a 

formulation for a textile product. The review described PROMETHEE as a “more 

recent and more sophisticated solution” than other methods. However, the results 

from the benchmark study indicated that all of the methods attained a similar 

outcome.  Throughout the publication, the PROMETHEE method was endorsed 

without much support from the literature or the authors own results. The bias most 

likely was attributed to the third author being the creator of the PROMETHEE 

methodology. 

Pirdashti et al. (2009) provided a further more substantial review of MA and 

outranking methods. They discussed techniques from both the European and 

American schools of thought but chose to only evaluate five of these methods; AHP, 

MAUT, ELECTRE, PROMETHEE and TOPSIS. In line with the findings reported 

in Figure 2-4, they acknowledged that AHP is the most popular decision-making 

method. The review provided no justification for selecting a particular method. 

Instead, the authors state that relatively little research has been published on the 

decision-making techniques that are actually used in companies and propose that the 

methods need to be tested in industry. 

Pavan and Todeschini (2009) provided a further review of decision-making methods. 

Although the study covered many techniques including MAUT and outranking 

methods, the authors did not discuss AHP or ANP. Nor did they provide any 

justification for selecting a particular method.  

Although the three reviews proposed a range of decision-making methods, only three 

approaches have been repeatedly applied to problems in the chemical decision-

making literature, AHP, ANP and WSM. Terashi and Umeda (1991) presented a 

methodology for value system design where AHP was used to analyse design 

alternatives.  Xiaoping et al. (2006) used AHP to evaluate alternatives in the context 

of sustaining a chemical industrial park. Partovi (2007) proposed a method 

combining AHP, ANP and Quality Function Deployment (QFD) for selection 

between batch and continuous chemical processes. Likewise, Ridder et al. (2008) 

proposed a method utilising ANP and QFD for Research and Development (R&D) 

decisions, in particular equipment selection. Leng et al. (2012) discussed the use of 

WSM for selecting a synthetic route for a new organic molecule. Similarly, George 

et al. (2007) applied a modified version of the WSM to a hypothetical example that 

considered acquiring a commercial scale biomanufacturing facility. The adjustment 
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applied Monte Carlo simulations (Metropolis, 1987) to account for the uncertainty in 

the decision-maker’s decision variables. The rationale was that the random nature of 

Monte Carlo enabled the evaluation of many scenarios thereby providing an an 

overview of the uncertainty in each option.  

All the authors who used AHP and ANP concluded that the techniques are useful and 

straightforward to apply to many types of decisions but some of the authors stated 

that by using AHP, the analysis was time consuming due to having to evaluate a 

large number of pairwise comparisons. The authors who applied the WSM also 

found the technique useful due to the straightforward nature of the calculations. In all 

cases, none of the authors provided any justification for selecting a particular 

method. 
 

2.5 Conclusions 

It is clear from the literature that there are a range of methods available for decision 

support. However, there is no clear indication which methods would be the most 

effective for solving decision problems in the context of WPD. The overall aim of 

this chapter was to answer the following questions: 

RQ2:  Which methods in the literature are the most commonly cited/applied for 

solving multi-criteria decision problems? Furthermore, which of these 

methods are most suitable for handling uncertainty? 

RQ3:  Which methods in the literature have been proposed or used for decision-

making in process design? 

Therefore the conclusions are presented in two sections, addressing each question in 

sequence. 

 

2.5.1 Methods and Uncertainty 

The most commonly reported methods in the literature for multi-criteria decision 

support can be classified into three groups; MOO methods, MA methods and 

outranking methods. Each group has its own advantages and limitations. This section 

presents a benchmark study of these groups (Table 2-3). The benchmark was created 

using the literature discussed and the comparative studies of Malczewski (1999) and 

Linkov et al. (2006). 
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Table 2-3  Benchmark study of Decision-Making Methods Groups 

 MOO Methods MA Methods Outranking Methods 

Criteria defined by: Objectives Attributes Attributes 

No. of Alternatives:  Infinite Finite (1-15) Finite (1-15) 

Decision Variables: 
Quantitative only 

Quantitative & 

Qualitative 

Quantitative & 

Qualitative 

Results: Cardinal Value Cardinal Value Ordinal Rank 

Results accuracy: High Moderate Moderate 

Method 

Complexity: 
High Moderate High 

Modelling time: High Low Low 

Ease of modelling 

Uncertainty: 
Moderate High High 

Ease of group 

decision-making: 
Low Moderate Moderate 

Relevant to Search / Design Evaluation / Choice Evaluation / Choice 

 

The benchmark study shows that MOO methods differ from MA and Outranking 

methods in multiple ways. MOO methods utilise objective functions in search or 

design problems to explore a vast number of solutions. As a consequence, modelling 

is complex and demands time from the decision-maker. Furthermore, MOO methods 

are unable to handle qualitative information, this makes the modelling of uncertainty 

difficult, particularly when decision-makers have limited knowledge or 

understanding of a selection. Alternatively, MA and outranking methods utilise 

qualitative and quantitative attributes to evaluate decisions and recommend choices. 

Subsequently, they are more suited to handling uncertainty than MOO methods but 

their results accuracy is lower. The only difference between MA and outranking 

techniques in the benchmark study is that MA methods output numerical results 

while outranking methods output an ordinal rank.  

It is evident that there is no best MOO method despite the fact that an array different 

techniques have been proposed including goal programming, simulated annealing, 

evolutionary algorithms and swarm techniques. As of a result, memetic approaches 

which combine different algorithms for global and local searches have become 

popular. Similarly to MOO, the literature suggests there is no best MA method even 

though AHP has clearly received the most academic and industrial interest. However 

other methods such as WSM have become popular due its straightforward 
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implementation. MA methods cannot be easily combined unlike MOO methods as 

the inputs required for each method differ. For example AHP requires pairwise 

comparisons while WSM requires direct decision variables. Therefore evaluating a 

single decision utilising different MA methods requires extended time and effort by 

the decision-maker. Outranking methods are limited to three method families with 

ORESTE receiving little interest in the literature. Of the two most commonly cited 

outranking methods, ELECTRE and PROMETHEE, Salminen et al. (1998) stated 

that ELECTRE III is more superior to PROMETHEE II due to its ability to model 

inprecise data using threshold values. 

 

2.5.2 Methods used in Process Design 

A number of decision-making methods have been proposed for application during 

product and process design. Three research groups have developed frameworks 

utilising MOO algorithms for optimising process design with environment, health 

and safety considerations incorporated. These frameworks have been proven to be 

useful for the specific case studies reported. However, the frameworks are complex 

and inflexible which may deter industry users from adopting them.  

A number of researchers have reviewed and proposed the use of MA and outranking 

methods for management decision-making in the chemical-using industries. 

However, only three methods have been applied to real problems in the literature; 

Analytic Hierarchy Process (AHP), Analytic Network Process (ANP) and Weighted 

Sum Method (WSM). Potentially this is due to the fact that they are easy to 

implement and/or software is readily available (Huang et al., 2011).  

The following chapter identifies the industrial requirements for developing a 

decision-making framework for use during Whole Process Design (WPD). In the 

subsequent chapters, these requirements will be compared to the methods presented 

in this chapter to identify an effective solution for decision-making in WPD. 
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“Biology is now widely considered to be a foundation science of chemical 

engineering. Will management be next?”  Ka M. Ng (2004) 

 

3 Industrial Requirement 

3.1 Introduction 

The previous chapter critically reviewed the academic literature to identify and 

discuss a range of methods available for decision support. This chapter aims to 

identify the industrial requirements for developing a decision-making solution for 

use in Whole Process Design (WPD) by considering the following three research 

questions: 

RQ4:  What techniques are currently being used for decision-making in industry? 

RQ5:  What are the most common decisions made in WPD and in what stage of 

development are they considered?  

RQ6:  What does industry require from a decision-making framework? 

The approach adopted was to undertake a mixed methods practice. This involved 

carrying out two qualitative semi-structured interviews with senior industrial 

decision-makers. The goals of these interviews were to identify: 

 the company’s decision-making processes. 

 the company’s requirements for a decision-making framework. 

The outcomes of the interviews identified further questions which were addressed 

through the circulation of two questionnaires to professionals within the chemical-

using industries via Britest Ltd. The initial questionnaire focused on identifying the 

decision-making procedures used by professionals and determining the common 

problems faced in WPD. The goal of the second questionnaire was to identify the 

requirements for a decision-making framework. Together the data from the two 

methods generate complementary insights in accordance with the research questions. 

 

3.2 Interviews 

The two initial interviews were conducted with representatives from Robinson 

Brothers Ltd and British Petroleum plc (BP). Both interviews were semi-structured, 

allowing for flexibility with the questions and overall discussion. This encouraged 
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two way communication, ensuring the topics discussed were understood by both 

parties. The interview with Robinson Brothers was completed face-to-face, while the 

interview with BP was achieved via teleconference.  

Robinson Brothers is one of the UK’s largest independent manufacturers of 

speciality organic chemicals and BP is a leading international oil and gas company. 

Robinson Brothers is a member of Britest Ltd and consequently has adopted a Whole 

Process Design (WPD) philosophy. BP is not a member of Britest and consequently 

have their own strategies in place for product and process development. The benefit 

of assessing the industrial requirements of Robinson Brothers and BP is that both 

companies are not members of Britest. Therefore, two contrasting perspectives were 

attained and thus ensured the outcomes in terms of identifying requirements for a 

decision-making framework were more general than if only Britest members were 

considered. 

 

3.2.1 Robinson Brothers Limited 

The interviewee at Robinson Brothers was a business and technical development 

manager whose background was originally in chemistry but had gained significant 

experience in chemical engineering. His focus at the time of the interview (12
th

 

November 2009), was on acquiring business and increasing sales. 

3.2.1.1 Decision-Making Process 

The following information was articulated by the interviewee during a discussion on 

decision-making. Companies often approach Robinson Brothers to initiate a contract 

for the manufacture of chemical products. The interviewee draws on all the 

information available to him (chemical, engineering, business and previous 

experience) to reach a rational conclusion on whether to accept a contract and if so, 

to quote a price. Time is considered as an important aspect in the decision-making 

process as companies that require Robinson Brothers’ products and services expect 

efficient and rapid turnaround of contractual decisions.  

The first stage of the decision-making process is to perform a series of checks on a 

new proposal to identify potential issues. The basis of the checklist is a document 

that covers health and safety, known literature and government regulations. Any one 

of these could be a show stopper and result in the contract being turned down. The 
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next stage is to determine if there are any other reasons why the product should not 

be produced by Robinson Brothers. The interviewee uses “MSLE” (Materials, 

Service, Labour and Effluent) to prompt his thought process. Finally, other factors 

are considered such as the market, potential competition and who the customer is.  

On deciding to make a bid for a contract, the interviewee considered the previous 

criteria and further quantitative criteria (such as material costs, labour costs and 

manufacturing time) to determine a price. This is challenging as under-pricing results 

in loss of profit and overpricing will result in the customers accepting a competitor’s 

offer, meaning Robinson Brothers will lose business. 

3.2.1.2 Requirements for a Decision-Making Framework 

Whether deciding to make an offer for a proposed contract or when deciding on a 

production price, many different criteria need to be considered including production 

time, government regulations, material costs, safety implications, product yield, 

market size, resource management, process knowledge and the customer’s 

geographic location. The challenge is that many of the criteria are in conflict. For 

example, safety implications could affect the lead time which in turn affects the price 

offered to the customer. The interviewee explained that he finds decision-making 

challenging and a tool that would allow him to organise his thoughts and ensure that 

all the various criteria are considered when reaching the final decision would be 

valuable. He also said that generating an exact recommendation is not important, 

however a decision-making tool that formulates his criteria and visualises the 

differences between his alternatives would be of benefit. He used the analogy that 

business is not “black and white” but ensuring his decisions are well thought through 

and based on all the information available would make his business decision-making 

“less grey”. 

 

3.2.2 BP 

The interviewee at BP was the Technology Vice President who has a professional 

Masters degree from Harvard Business School. His background at the time of 

interview (1
st
 December 2009) was in chemical engineering, management and 

business. He was responsible for the development of a portfolio of technologies to 

create synthesis gas from a range of primary fuels. His role included applied 
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research, pilot plant design/operation, technology licencing and project development 

leading to commercialisation. 

3.2.2.1 Decision-Making Process 

BP operates their product and process development decision-making processes under 

the Stage Gate
TM

 framework (discussed in section 1.1). There are four major 

milestones in BP’s adaptation of the Stage Gate
TM

 process; appraise, select, develop 

and financial memorandum. At each gate, the decision-maker(s) can choose to stop, 

continue or recycle a project. Stopping a project means that it will be terminated 

completely, while recycling a project means it may be considered again at a later 

date. 

At the first gate (appraise) the stop, continue or recycle decision is made considering 

only six criteria: time, cost, value, capability, risk and opportunities. At the second 

gate (select), the stop, continue or recycle decision is considered in greater detail by 

introducing further criteria related to financial, social and environmental aspects. To 

make this decision, a detailed report is created outlining the risks and includes a cost 

benefit analysis (discussed in section 2.2.6.1). At the third gate (develop), marketing 

plans are introduced, surveys are conducted and people are selected to manage the 

project. The final gate (financial memorandum) is where a project requires its final 

approval. As projects can cost anywhere from £10 million to billions, the decision 

made at the fourth gate is crucial. 

3.2.2.2 Requirements for a Decision-Making Framework 

The interviewee explained that the Stage Gate
TM

 framework works well for BP but 

he admits that due to the flexibility the system does have a tendency to increase 

development times contrary to what Cooper (2001) claimed (section 1.1). He 

explained that BP does not have any tools in place for analysing decisions however 

some employees use their own report checklists and/or spreadsheets to assist them.  

When asked what requirements he would have for a decision support system, he 

requested the functionality to utilise past decision knowledge in future decisions. 
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3.2.3 Interview Outcomes 

The interviews revealed that both companies deal with complex decision problems 

by taking into consideration multiple criteria and their interactions. The decision 

problems described are complex as they adapt to the interactions of various business 

and technical events, data and the collective subjective behaviour of the decision-

maker(s) (Johnson, 2011). Both companies considered memory/feedback from 

previous decisions/events and consider the uncertainties from lack of knowledge and 

unknown present/future decisions/events. The companies have similarly developed 

procedures to review their decision problems. However, neither of the companies 

have any tools in place to help with addressing these complex decisions. On 

questioning, both companies revealed their requirements for a decision-making 

framework. These requirements can be summarised by the following five points: 

 Both companies require a framework that will assist the decision-maker(s) in 

identifying the criteria that are relevant to their problem.   

 Both companies require a framework that can be implemented rapidly. 

Robinson Brothers stated that turnaround in terms of whether to bid for a 

contract is crucial to their organisation while BP perceived that their Stage 

Gate
TM

 system resulted in increased development times.  

 Both companies require a framework that can handle decision problems with 

a small number of alternatives. Robinson Brother’s primary decision is to 

determine when to bid for a contract or not (2 alternatives) while BP’s gate 

decisions are to select either stop, continue or recycle (3 alternatives). 

 Both of the companies require a framework that can retrieve and reuse past 

decision knowledge. 

 Robinson Brothers requested a framework that can formulate their criteria 

and visualise their alternatives rather than one that provides exact 

recommendations. 

The above requirements indicate the relevance of a MA or outranking based 

decision-making framework as qualitative criteria are considered and the problems 

described consider only a few alternatives (section 2.2.3). However, identifying the 

requirements of only two companies is not sufficient to reach a consensus that is 

reflective of the entire process industry, especially in light of the fact that BP has not 

formally adopted the WPD philosophy. Therefore, further investigation is required to 
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consider the applicability of the requirements identified above in the context of 

WPD. 

 

3.3 Questionnaires 

To increase the validity of the aforementioned research, two questionnaires were 

formulated to extend on the findings of the interviews. The results presented in this 

section were acquired from compiling the outcomes of two questionnaires that are 

presented in Appendix A. The first questionnaire (25
th

 January 2010 – 19
th

 February 

2010) focused on identifying the decision-making procedures used by professionals 

and determining the common problems faced in WPD. The second questionnaire (8
th

 

August 2010 – 27
th

 August 2010) concentrated on identifying the requirements for a 

decision-making framework. The questions in the first questionnaire were similar to 

those in the interviews while the questions in the second questionnaire were highly 

influenced from the interview and initial questionnaire’s responses. Both 

questionnaires were conducted online and the responses were received in various 

formats. In the first questionnaire, questions required either/or answers, selection of 

an answers from a list and selection of importance using a 1-10 scale. A small 

number of open ended questions were used to gain a deeper understanding of the 

respondents’ opinions. The second questionnaire was more straightforward with the 

majority responses requiring either/or answers with a few open ended questions.  The 

broad range of formats used to collect answers in the two questionnaires gathered 

mainly definitive responses making the results quantifiable with only a small number 

of sensitizing responses leading to a deeper understanding.  

The questionnaires were circulated to industrial decision-makers within Britest’s 

membership who were employed at managerial level and made decisions pertaining 

to WPD. All of the respondents held postgraduate qualifications in either chemistry 

or chemical engineering. The preliminary ethical assessment form provided by 

Newcastle University specified that an ethical approval of the questionnaires was not 

required. 

Twelve companies including Infineum, Fujifilm, Johnson Matthey, Robinson 

Brothers, Abbot, AMRI Global, Pfizer and Uetikon GmbH contributed to the studies. 

The remaining four companies requested to remain anonymous. In total, nineteen 

responses were received for the first questionnaire and fifteen responses for the 



Industrial Requirement 

65 

second questionnaire with nine respondents providing answers to both (Table 3-1). 

The primary Standard Industrial Classification (SIC) code for each company has 

been included in Table 3-1 to give an appreciation of the domain area. Noticeably, 

there was an even distribution of businesses across the chemical and pharmaceutical 

sectors. Only two companies shared the same SIC code, Infinium and Robinson 

Brothers Ltd, who are manufacturers of other organic based chemicals.  

 

Table 3-1  Companies who responded to each questionnaire 

Company Primary SIC Code Questionnaire1 Questionnaire2 

Infineum Manufacture of other organic based 

chemicals (2414) 

2 2 

Fujifilm Colorants Ltd Manufacture of other chemical 

products (2466) 

4 1 

Johnson Matthey Plc Other business activities (7487) 3 2 

Robinson Brothers Ltd Manufacture of other organic based 

chemicals (2414) 

3 1 

Abbott Laboratories Ltd Wholesale of pharmaceutical goods 

(5146) 

1 2 

AMRI Global Commercial physical and biological 

research (8731) 

0 1 

Pfizer Ltd Pharmaceutical preparations (2834) 0 2 

Uetikon GmbH Engineering activities and related 

technical consultancy (7420) 

0 1 

Anonymous N/A 6 3 

 

The results of the questionnaires have been separated into three sections, one for 

each of the research questions addressed in this chapter. 

 

3.3.1 Techniques currently used for decision-making in industry 

The respondents were asked to identify and explain the methods they currently utilise 

in decision-making. More specifically, two questions were asked, one relating to 

methods completed by hand and the other concerning the use of computational 

approaches.  

3.3.1.1 Handwritten Decision-Making Methods 

Seventy eight percent (78%) of the respondents reported that they use handwritten 

decision-making methods. A total of eleven approaches were cited (Table 3-2). A 
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feature common to all the methods is that they can be used to graphically or 

pictorially brainstorm a decision problem. A number of them can also be used to 

identify suitable criteria and alternatives. A limitation of the methods is that none of 

them provide a means to provide a solution to a decision problem.  

 

Table 3-2  Handwritten decision-making methods identified from the questionnaires 

Method Description 

Mind Mapping Visual brainstorming technique which creates a map like diagram. (Buzan & Buzan, 1996) 

SWOT Analysis Technique to identify strengths, weaknesses, opportunities and threats. (Fine, 2009) 

Traffic Light 

System 

Method to group information into level of difficulty: high (red), medium (amber) and low 

(green). 

Scenario Analysis Method to identify, implement, prioritize, and adapt market-driven business strategies. 

(Aaker, 2001) 

Flowchart Diagram that represents a process, displaying steps as shapes connected by arrows.  

Kepner Tregoe 

Analysis 

Management method for troubleshooting problems in four stages: situation analysis, 

problem analysis, decision analysis and problem/opportunity analysis. The decision 

analysis uses the needs and wants method for evaluation. 

Decision Trees Diagram that shows connected binary decisions and their outcomes. 

Criteria 

Matrix/List 

Brainstorming of decision criteria into either a list or matrix (table). 

Pros, Cons and 

Uncertainties 

Chart identifying advantages, disadvantages and the uncertainties present.  

Risk, Rewards 

and Resources 

Chart identifying uncertainties, outcomes and resource allocation. 

Needs and Wants Chart identifying the needs and wants of a company or individual. 

 

3.3.1.2 Computational Decision-Making Methods 

The respondents were asked about their use of computational decision-making 

methods. Thirty seven percent (37%) stated they did not use computer aided 

approaches, 21% use commercial software packages and 42% used Microsoft Excel. 

When asked to provide the names of the commercial software, the respondents cited 

Aspen HYSYS
TM

 (http://www.aspentech.com), SciFinder
TM

 (http://www.cas.org), 

HTRI
TM

 Xchanger Suite (http://www.htri.net), STARLIMS
TM

 

(http://www.starlims.com) and Palisade @Risk (http://www.palisade.com). 

The first four tools are able to locate physicochemical data which can represent 

decision variables but cannot be used to review and select decision alternatives. 

http://www.starlims.com/
http://www.palisade.com/
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Palisade @Risk, which was mentioned by one individual, has the capability to model 

risk and uncertainty within Microsoft Excel through the use of probability 

distributions. The respondents who used Microsoft Excel were asked in the 

questionnaire to describe how they utilised it. The majority used it to apply a simple 

additive approach (adding scores) or one of the simplest MCDA techniques, the 

Weighted Sum Method (WSM) (section 2.2.3.1). One of the respondents who 

described using the WSM in Excel said that the method was beneficial due to the 

straightforward nature of the calculations but they stated that the technique lacked 

support for modelling uncertainty. 

 

3.3.2 Decisions made throughout WPD 

While WPD considers the improvement of a whole process, from raw materials to 

end product, certain tasks in process design need to be considered in sequence. 

Sharratt (2011) proposed five stages for WPD (Table 3-3).  

 

Table 3-3  Typical stages and decisions in Whole Process Design 

Stage Decisions at Stage 

Route Selection  Choice of chemical reactions for synthetic route.  

 Raw materials selection. 

Process Concept  Business needs and costing.  

 Batch or continuous.  

 Manufacture or acquisition. 

Process Development  Solvent selection. 

 Separation techniques. 

 Equipment requirements. 

 Compositions. 

 Conditions. 

Flow Sheet Design  Resource allocation. 

 Equipment selection. 

Detailed Design  Vessel and pipe selection.  

 Control method. 

 

Generally the five stages are completed in succession. However, this will be project 

dependant as certain decisions may have to be fixed a-priori due to existing 

processing/product constraints. Nevertheless, at each WPD stage, Sharratt (2011) 
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stated that a project “might be terminated with a go/no go decision” to essentially 

reduce costs by failing early. It was identified that 87.5% of the respondents use a 

gate system or project milestones to assess the proficiency of projects at each stage 

of process design. 

The respondents were also asked to identify the decision problems that they regularly 

face. The most common decisions faced were associated with route selection (Figure 

3-1). It is hypothesised that this may be due to projects being withdrawn before they 

reach the later stages of design or that decision-making in the later design stages is 

deemed to be less important with early stage decision-making being significant, in 

terms of the definition of the final process. 

 

 

Figure 3-1  The percentage of respondents who face decisions at each stage of WPD 

 

3.3.3 Requirements for a Decision-Making Framework 

One question considered whether there was a need for a decision support tool to 

assist in the implementation of WPD. Ninety-five percent (95%) of the respondents 

confirmed that they would find a decision-making framework useful. 

The remaining results in regard to the requirements for a decision-making framework 

are subdivided into sections relating to each phase of the decision-making process 

(see section 2.2.2.1). The first section investigates the industrial requirement for 

problem structuring. The second section investigates the requirement for a structured 

decision analysis. The final section addresses the responses related to the need for a 
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42.1% 

73.7% 

0% 20% 40% 60% 80% 100%

Detailed design

Flowsheet design

Process development

Process concept

Route selection



Industrial Requirement 

69 

post analysis study and issues pertaining to the design of a decision-making 

framework. 

 

3.3.3.1 Problem Structuring 

As discussed in section 2.2.2.1, the basis of problem structuring is to identify suitable 

criteria and alternatives for a decision problem. Only a quarter (26%) of the 

respondents said that they find it difficult to provide appropriate names for their 

criteria (i.e. to describe a measure that can be perceived by everyone in the 

company). However, over half (53%) of the respondents find it difficult to select a 

source to measure their criteria (for example, using the LD50 index to measure 

“Chemical Toxicity”). This could be due to the nature of the data available as all of 

the respondents said that their decisions were influenced by both qualitative and 

quantitative information.  

With regards to identifying suitable alternatives (for example, chemical routes for a 

route selection problem), the respondents were asked if their decision problems 

comprised of a fixed number of alternatives or an infinite number of solutions. All 

respondents stated that they selected from a fixed number of alternatives with the 

majority (93%) selecting a small number of viable options from a larger collection of 

conceivable solutions. The remaining 7% of the respondents said they always make 

decisions from a small finite number of alternatives.  

In terms of identifying criteria and alternatives, the respondents were asked if they 

preferred brainstorming by the use of a mind map or a list (e.g. pros and cons). 

Eighty six percent (86%) of the respondents favoured brainstorming via a list.  

 

3.3.3.2 Decision Analysis 

The need for a guidance tool as proposed by Robinon Brothers was investigated by 

asking whether the respondents would have favoured a system that produces exact 

results with a lengthy data entry procedure, or a system that guides the user in the 

right direction quickly. Eighty nine percent (89%) opted for the latter. This result 

clearly indicates the preference for a Multi-Attribute (MA) or outranking based 

approach as opposed to a Multi-Objective Optimisation (MOO) procedure.   
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The issue of the maximum time the respondents typically have available to analyse 

an important decision problem was considered. From Figure 3-2, 69% of the 

respondents would spend one hour or less analysing a decision problem. This renders 

a number of Multi-Criteria Decision Analysis (MCDA) techniques infeasible. For 

example, Doumpos and Zopounidis (2004) found that MCDA methods that require 

threshold values, such as ELECTRE and PROMETHEE, to be exceptionally time 

consuming to the extent of inhibiting real-world application. Likewise, Lootsma 

(1999) found MCDA methods which utilise pairwise comparisons, such as the 

Analytic Hierarchy Process, “complicated and time-consuming”.  
 

 

Figure 3-2  Maximum time the respondents have to solve a decision problem 

 

Some MCDA methods require criteria to be represented by distributions, such as 

PROMETHEE. The respondents were asked if they would be comfortable selecting 

an appropriate distribution shape to define each of their criteria. As illustrated in 

Figure 3-3, the majority (67%) of the respondents indicated that they would only be 

able to select distributions under much guidance. 

The respondents were also questioned regarding the inputs and outputs of a decision 

analysis. With regard to input, the respondents were asked which qualitative 

selection scale they would prefer from three options: small scale (1-5), medium scale 

(1-9) or large scale (1-100). Fifty three percent (53%) preferred small scale, 47% 

medium scale and 0% large scale. 

With regard to output, the respondents were asked if they would prefer their results 

in the form of numerical values or a ranking. The results were inconclusive with 47% 

preferring numerical values and the remaining asking for a ranking. 
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Figure 3-3  Percentage of respondents who feel comfortable using utility functions 

 

3.3.3.3 Post Analysis and Design Features 

The remaining series of questions focused on identifying the importance of design 

features, including the requirements for a post analysis study (see section 2.2.2.1). 

The respondents were asked to weight the importance of seven features on a scale of 

1-10 (1 being extremely unimportant and 10 being extremely important). The results 

of the study are summarised in Figure 3-4. Five values can be identified from each 

plot, the lowest score, lower quartile (bottom of the red box), median (where red and 

blue meet), upper quartile (top of blue box) and the highest score. An asterisk 

represents an outlying score. 
 

 

C1 Intuitive user interface C5 Functionality for a sensitivity analysis 

C2 Speed of operation and user input C6 Support for group decision-making 

C3 Influence from past decision-making or knowledge C7 Functionality to record justification behind selections 

C4 Compatibility with different operating systems   

Figure 3-4  Box plot of the importance of certain design features 
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C1 Intuitive user interface scored highly as the ease of operation is 

essential to ensure that the framework can be used rapidly and 

appropriately. 

C2 Speed of operation and user input scored highly. This correlates with 

the responses shown in Figure 3-2.  

C3 The high score for influence from past decision knowledge correlates 

with the results of the two interviews (section 3.2.3). 

C4 The requirement for compatibility with different operating systems 

received a varied response. Compared to the other design features, C4 

was the least preferred design feature by the respondents.  

C5 Besides one outlier, the majority of the respondents favoured the 

capability of a sensitivity study in the post analysis phase of the 

decision process. 

C6 Besides two outliers, the most sought after design feature was the 

ability to perform group decision-making. To confirm this, the 

respondents were also asked if they make decisions face-to-face in a 

group and/or need to consider external stakeholders (e.g. 

shareholders). Eighty seven percent (87%) of the respondents make 

decisions in a group environment and 80% need to consider external 

stakeholders. 

C7 Functionality to record justification for each selection in a decision 

analysis scored highly. This feature allows for decision data to be 

stored for future decision-making. Therefore, this high score 

correlates with the requirement identified in the interviews to retrieve 

and reuse past decision knowledge. 

 

3.4 Conclusions 

The aim of this chapter was to address the following three research questions: 

RQ4:  What techniques are currently being used for decision-making in industry? 

RQ5:  What are the most common decisions made in WPD and in what stage of 

development are they considered?  

RQ6:  What does industry require from a decision-making framework? 
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Therefore the conclusions are presented in three sections, addressing each question in 

sequence. 

 

3.4.1 Decision-making Techniques 

From the mixed methods research conducted it is evident that few methods are 

utilised for a structured decision analysis in industry. Seventy eight percent (78%) of 

the respondents indicated that they use handwritten methods for decision-making. 

The majority of these methods are used to brainstorm a decision problem to identify 

suitable criteria and alternatives. None of the handwritten methods can be used to 

provide a solution for a decision problem. Twenty one percent (21%) of the 

respondents indicated that they use commercial software packages for decision-

making. However, from asking the respondents to name the software tools, it was 

identified that none of them can be used to provide a solution for a decision problem. 

One package, @Risk, which was cited by one respondent, could be used to assist the 

modelling of uncertainty in a decision analysis using Microsoft Excel. Forty two 

percent (42%) of the respondents indicated that they use Microsoft Excel for 

decision-making. From further questioning it was identified that the two methods 

applied in Microsoft Excel were additive sum (adding weights) and the Weighted 

Sum Method (WSM). No other methods discussed in Chapter 2 were applied by the 

industrial members questioned. 

 

3.4.2 Whole Process Design Decisions 

From the WPD stages proposed by Sharratt (2011), the most cited decision problem 

was route selection. Route selection occurs predominently at the start of process 

design when there are high levels of uncertainty since there is limited understanding 

about the product and process.  It can thus be concluded that industrial members 

require a decision-making tool that can handle uncertain information. 

 

3.4.3 Framework Requirements 

The work in this chapter has identified a number of industrial requirements for a 

decision-making framework. These are summarised in Table 3-4 as operational, 
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design and functional specifications. Along with each specification a rationale is 

provided which describes or cites the justification for the specification.  

In terms of operational requirements, professionals in the chemical-using industries 

require a system for rapidly making complex decisions with limited/uncertain 

information. Both quantitative and qualitative information must be considered to 

select between a finite numbers of alternatives. In terms of the design specification, 

the framework must be easy to use with at least one operating system. Users must be 

able to brainstorm their criteria and alternatives using lists and input their decision 

variables using a small to medium scale. 

 

Table 3-4  Industrial Specification 

Operational Specification Rationale 
Result Accuracy Moderate or better. 89% of the respondents favoured a system 

that guides the user in the right direction 

quickly over a system that produces exact 

results with a lengthy data entry 

procedure.   

Modelling Time 1 hour or under. 69% of the respondents would spend one 

hour or less analysing a decision problem 

Types of Input Quantitative and Qualitative. 100% of the respondents said that their 

decisions were influenced by both 

qualitative and quantitative information.  

Number of 

Alternatives 

Finite 100% of the respondents said that they can 

identify a fixed number of alternatives to 

select from. 

Uncertainty Must handle Uncertainty. See section 3.4.2. 

Design Specification Rationale 

Interface Must be intuitive and easy to use. See C1 in Figure 3-4. 

Operating System One or more platforms required. See C4 in Figure 3-4. 

Brainstorming 

Problem Input 

List. 86% of the respondents favoured 

brainstorming via a list. 

Analysis 

Input Scale 

Small to Medium. 53% preferred a small input scale, 47% 

preferred a medium scale and 0% 

preferred a large scale. 

Functional Specification Rationale 

Required 

Functions 

Ability to model Stage Gate
TM

 

decisions. 

87.5% of the respondents use a gate 

system or project milestones. 

Recycle past decision knowledge. Both interviewees require a framework 

that can retrieve and reuse past decision 

knowledge (see section 3.2.3). 

Problem Structuring Process. See section 2.2.2.1. 

Sensitivity Analysis. See C5 in Figure 3-4. 

Group Decision-Making. 87% of the respondents make decisions in 

a group environment. 

Stakeholder Analysis. 80% of the respondents need to consider 

external stakeholders. 

Record Justification/Rationality. See C7 in Figure 3-4. 
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The framework must support stage gate decisions, sensitivity studies, group decision-

making and stakeholder analyses. Furthermore, the framework must incorporate a 

problem structuring process, be able to utilise past decision knowledge and record 

rationality for each of the users’ selections. 

The following chapter uses the information presented in this chapter and chapter 2 to 

addresses the overarching research question of this thesis: 

RQ1:  What is the most effective way to support decision-making in whole process 

design? 

Following this, a methodology is proposed along with a decision-making framework 

to validate the proposed methodology. 
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“A picture is worth a thousand words. An interface is worth a thousand pictures.” 

           Ben Shneiderman (2003) 

 

4 Materials and Methods 

4.1 Introduction 

The review of decision-making methods in chapter 2 and the identification of 

industrial requirements in chapter 3 enable RQ1 to be addressed: 

RQ1:  What is the most effective way to support decision-making in whole process 

design? 

A solution to RQ1 is proposed at the start of this chapter along with a methodology.  

To validate the proposed methodology, the proceeding section introduces a decision-

making framework that incorporates two other commonly applied decision-making 

methods.  

 

4.2 Decision-Making in Whole Process Design 

It was identified in Table 3-4 that professionals in the chemical-using industries 

require a solution for rapidly making complex decisions with limited/uncertain 

information. Additionally, the solution must consider both quantitative and 

qualitative information to select between a small/finite number of alternatives. The 

benchmark study of decision-making methods in Table 2-1 shows that Multi-

Objective Optimisation (MOO) methods use quantitative information to search an 

infinite number of alternatives. They have a high modelling time and cannot handle 

uncertainty as well as MA and outranking methods. MA and outranking methods on 

the other hand use both qualitative and quantitative information to evaluate a finite 

number of alternatives. They also have a low modelling time in comparison to MOO 

methods. Therefore, the attributes of MA and outranking methods outperform MOO 

methods in respect to the requirements of the industrial professionals (Table 3-4). 

However, there are a range of techniques that are available within these two method 

families (section 2.2.4 and 2.2.5).   

The literature review focusing on chemical engineering (section 2.4.2) identified 

three MA methods that have previously been applied to decision-making within 
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product and process design; Analytic Hierarchy Process (AHP), Analytic Network 

Process (ANP) and Weighted Sum Method (WSM). The questionnaires (section 

3.3.1) revealed that out of these three methods, the industrial members of Britest only 

utilised WSM using Microsoft Excel. 

The main issue with applying WSM to assist in the decision-making process in 

Whole Process Design (WPD) is that the method is unable to handle uncertain 

information. Section 2.3.3 summarised a range of methods to account for uncertainty 

in MA and outranking methods. One approach proposed was through the application 

of a sensitivity analysis. George et al. (2007) proposed a variation of the WSM that 

incorporates a global sensitivity analysis using Monte Carlo simulation. A global 

sensitivity analysis differs from a ‘one-at-a-time’ sensitivity study with all the 

decision variables being changed. George et al. (2007) stated that “the WSM proved 

to be highly suitable for data handling and for the analysis of results”. However, the 

Monte Carlo simulations require many iterations to understand the sensitivity of a 

model and due to the different starting values of the algorithm, the results are not 

repeatable. 

Multi-Attribute Range Evaluations (MARE) is proposed as a novel approach to the 

WSM that uses one iteration to visually convey the decision results with associated 

levels of uncertainty. 

 

4.3 Multi-Attribute Range Evaluations 

Multi-Attribute Range Evaluations (MARE) is a novel approach that utilises the 

Weighted Sum Method (WSM). The WSM calculates a score for each alternative, Ai 

by summing the products of each decision variable (aij) and its corresponding 

criterion weight (wj), as given in equation 2-7: 

    ∑     

 

   

                     2-7 

where a decision problem has m fixed alternatives and n fixed criteria. aij is the 

decision variable for the i
th

 alternative with respect to the j
th

 criterion. 

 

The decision-maker can provide values (  ) for the importance of each criterion or 

directly provide criteria weights (wj) that sum to one. If values are provided, the 
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summation ratio normalisation method (equation 4-1) is used to convert the values 

into weights: 

   
  

∑    
 
   

  4-1 

where a decision problem has n fixed criteria, bj denotes the criterion value of the j
th

 

criterion and wj denotes the criterion weight of the j
th

 criterion. 

 

The MARE methodology supports both limited knowledge and uncertain selections 

by allowing more than one value to be allocated to each decision variable (aij). The 

decision-maker can assign up to three values for each alternative (Aj) in terms of each 

criterion (Cj). These values represent the most likely value (aij), the minimum 

possible value (aij
min

) and the maximum possible value (aij
max

). If the decision 

variable is certain and no values are provided for aij
min 

or aij
max

, aij is used for all three 

values.  

Quantitative information is required in the form of numerical values. Qualitative 

information must be provided as subjective scores within a comparable range: for 

example, 1-10. If MARE is applied as a software tool, slider bars (Figure 4-1a) can 

be utilised for qualitative input rather than numerical entry as they provide the 

decision-maker with a visual representation of their selections. Furthermore, a range 

slider bar can allow for rapid entry of three inputs with no data validation required 

(i.e. aij
min

 ≤ aij ≤ aij
max

). Figure 4-1b illustrates a range slider bar where the slider for 

aij is positioned within a darkened range. The starting position (at the left) of the 

darkened range represents the value of aij
min

 and the end position (at the right) 

represents the value of aij
max

. As presented, qualitative word models can be used to 

describe the position of aij within a selection panel (for example: poor, average, good 

etc.). 

 

 

Figure 4-1  Qualitative input for the MARE Method 

 

The WSM is currently incapable of combining multidimensional data and 

consequently different measurement units (Pohekar & Ramachandran, 2004). A 

(a) 

(b) 
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proposed solution is to normalise the decision variables (aij). As the transformation 

needs to have an equal scale length for the minimum, likely and maximum values, a 

normalisation procedure that divides by the sum of all the decision variables cannot 

be applied. Therefore, the max scale normalisation procedure (Chakraborty & Yeh, 

2007) that utilises the largest decision variable (  
   ) for normalisation is used: 

    
   

  
       

    
   

   

  
       

    
   

   

  
    

 
4-2 

 

This procedure is applied to all the decision variables resulting in a value between 0 

and 1. Equation 2-7 is then used to calculate the scores for each of the alternatives 

with respect to the minimum, most likely and maximum. The scores are represented 

by a value between 0 and 1, with the scores closer to 1 being superior alternatives. 

The results can be visualised by plotting the most likely score with high/low lines, as 

shown in Figure 4-2. The length of the high/low lines represents the uncertainty 

associated with a particular alternative, i.e. a short high/low line represents a greater 

level of certainty than one with a long high/low line.  

Considering the example in Figure 4-2, it can be seen that Alternative 2 is marginally 

better than Alternative 1 and Alternative 4 in terms of the most likely value. 

However, the decision-maker may wish to select Alternative 4 as there is less 

uncertainty associated with this option.   

 

 

Figure 4-2  A hypothetical output of the MARE methodology 

Maximum 

 

Most likely 

 

Minimum 
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4.4 Evaluation Strategy 

The MARE methodology was proposed to extend the WSM approach that industry 

had previously applied. MARE takes into account imprecise and uncertain 

preferences that are typically present at the early stages of WPD. The ability to 

visualise uncertainty provides the MARE approach with a number of advantages 

over other MCDA methods. However, other MA and outranking approaches also 

have unique advantages. Therefore, this chapter will present a framework, 

ChemDecide, that incorporates MARE and two other decision analysis methods to be 

compared. The two methods selected were Analytic Hierarchy Process (AHP) and 

ELECTRE III as the literature suggests that these are the best approaches from the 

methodological fields of MA (see section 2.2.4.4) and outranking (see section 

2.2.5.4) respectively. Table 4-1 shows a comparison of the three methods including 

the advantages and limitations of each. 

As discussed in section 2.2.1, Huang et al (2011) believes that the widespread use of 

AHP is related to the availability of user-friendly and commercially supported 

software packages. To remove any biases in the study, the three analysis tools were 

developed utilising identical controls (e.g. text boxes, slider bars and click buttons) 

and forms (application windows) where possible. The Graphical User Interface 

(GUI) is presented and discussed in Appendix B. 

The three analysis tools were evaluated using real-world industrial case studies 

carried out by professionals working in the chemical-using industries. Three 

independent decision case studies are discussed in Chapter 5, with the aim of 

identifying the capability of each analysis tool for addressing WPD decision 

problems.  

 

4.5 ChemDecide Framework 

The following section provides an overview of the ChemDecide Framework 

followed by a more detailed description of each tool incorporated within the 

framework. An implementation plan is finally discussed relating to the interface 

design that is presented in Appendix B. 
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Table 4-1  Comparison of the analysis methods in the ChemDecide Framework 

 AHP MARE ELECTRE III (RANK) 

Method 

Summary 

1. Decision problem 

modelled in a hierarchy.  

2. Pairwise 

comparisons are used 

for qualitative 

measurement. 

3. Scores are provided 

by eigenvector 

calculations. 

1. Minimum, most 

likely and maximum 

scores can be used for 

measurement. 

2. Scores aggregated 

using weighted sum 

method. 

3. Uncertainty can be 

visualised. 

1. Thresholds used to 

calculate pairwise 

comparisons of 

alternatives. 

2. Positive and negative 

aspects of each 

alternative creates 

credibility index. 

3. Ranking calculated. 

Input 
Quantitative scores, 

pairwise comparisons. 

Qualitative and 

Quantitative scores, 

weights. 

Qualitative and 

Quantitative scores, 

thresholds, weights. 

Output Cardinal scores Cardinal scores Ordinal rank 

Decision-

Maker 

Interaction
a
 

High Moderate Moderate 

Uncertainty Not considered directly
b
 Visualised in output Fuzzy (pseudo-criteria) 

Strengths 1. Pairwise 

comparisons provide an 

uncomplicated way to 

enter qualitative 

preferences.  

1. Algorithm is 

relatively 

straightforward to use. 

2. Output provides high 

amounts of information. 

1. Very poor 

performance on a single 

criterion may eliminate 

an alternative from 

consideration
c
.  

Limitations 1. Possibility for 

intransitive preferences. 

2. High number of 

pairwise comparisons 

required for large scale 

problems. 

1. Further decisions 

may have to be 

considered upon 

reviewing the output. 

 

1. Algorithm used is 

relatively complex and 

may not be understood 

by the decision-maker. 

2. A complete ranking 

of the alternatives may 

not be achieved.  

a
 from Malczewski (1999) 

b
 from Millet & Wedley (2003) 

c
 from Linkov et al. (2006) 
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4.5.1 Framework Overview 

The ChemDecide framework consists of four modules, one related to problem 

structuring and the other three are associated with the analysis (Figure 4-3). The 

problem structuring tool is termed Decision Structure. The analysis tools AHP and 

MARE are known by their respective methodological names while ELECTRE III has 

been shortened to RANK. The rationale for developing an independent problem 

structuring tool was a consequence of the following: 

 Problem structuring is often overlooked in a decision-making process (section 

2.2.2.1) and by having a separate tool to guide the user through this phase 

forces them to consider their selections in a detailed yet structured manor.   

 As discussed in section 2.2.4.2, AHP suffers from rank reversals. Prohibiting 

the user from adding or removing alternatives and criteria from the decision 

model ensures rank reversals cannot occur.  

 Separating the problem structuring phase from the decision-making 

procedure will ensure the decision problem remains consistent throughout all 

three analyses. Hence, comparative results will be attained from the industrial 

evaluations and the conclusions drawn. 

 

Input Analysis Output

Goal

Group / Stakeholders

Criteria
Qualitative / Quantitative

Minimising / Maximising

Alternatives

Criteria Weights

Decision Structure

Decision Variables

AHP

MARE

RANK

Sensitivity Analysis

Decision Model

Decision Report

 

Figure 4-3  Overview of the ChemDecide Framework 

 

As shown in Figure 4-3, the problem structuring tool requires the decision-maker(s) 

to define a goal, a set of alternatives and a defined set of criteria (including if each 

criterion is qualitative/quantitative and minimising/maximising). Decision Structure 

compiles this information into a single file which can be accessed by any of the three 

analysis tools. The analysis tools, which calculate a decision result, require the 

decision-maker(s) to input criteria weights and decision variables along with the 
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rationale for each selection. These inputs can be altered to investigate the sensitivity 

of the results. Once a decision outcome is accepted, the analysis tools can compile all 

of the decision information into a single file (model) or generate a report containing 

the results. 

The ChemDecide framework was developed using C# in Microsoft Visual Studio 

2010 and .NET Framework 4.0. This approach was adopted for the following 

reasons: 

 The ChemDecide framework can be installed and executed as a standalone 

software without the requirement for external software packages, thereby 

encouraging industrial members to evaluate the software. 

 The .NET framework provides a range of libraries for input/output controls 

and data visualisation charts which could be incorporated into the 

ChemDecide GUI. 

 There are many external libraries available online that have free licences for 

mathematical and algorithmic support. 

The only limitation of C# and .NET is that the ChemDecide framework can only be 

compiled for use on a Windows based operating system. 

 

4.5.2 Logical Overview 

This section presents a more detailed discussion of each of the four tools in the 

ChemDecide Framework. 

4.5.2.1 Decision Structure 

Decision Structure is the tool that helps the decision-maker to structure their 

problem. The goal is to guide the user through the selection and verification of a 

feasible set of alternatives and criteria. The whole process should be sufficiently 

flexible to allow for changes as the decision-maker becomes more immersed in the 

problem (see section 2.2.2.1). Figure 4-4 provides a flow diagram of the process 

utilised in Decision Structure and the iterative procedure that is built-in to ensure that 

the decision-maker identifies appropriate criteria and alternative sets.  

Firstly, the decision-maker must identify the decision goal, record the team 

membership and schedule a deadline for the completion of the analysis. The 

decision-makers can then brainstorm whist considering external stakeholders to 
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attain a perspective of the views and objectives of thedecision problem. Although 

this information is not used directly in the analysis, the procedure focuses the users 

thought process on the problem and potential associated issues. The next stage is to 

determine the decision alternatives followed by their related criteria. To aid in the 

selection of the criteria, the values and objectives discussed during the brainstorming 

section can be reviewed. Along with a criterion name, the decision-maker must 

identify if it is qualitative or quantitative (criteria source) and whether it is to be 

minimising or maximising (aim). The team can then define the criteria in more detail 

by recording a description of why each criterion is essential and provide a data 

source. This information is useful if the decision-maker wants to return to the 

decision analysis in the future or generate an analysis report.  

 

Start

Define Problem

1. Identify Decision Goal.

2. Identify Team.

3. Set Decision Deadline.

Is information 

available for each 

alternative with respect 

to each criterion?

Brainstorm Objectives

Identify views and 

objectives of decision-

maker(s) and stakeholders.

Set Alternatives

Identify the possible 

solutions (alternatives) for 

the decision problem.

Set Criterion

Using the brainstormed 

objectives, set:

1. Criterion Name.

2. Quantitative/Qualitative.

3. Aim: Min/Max.

Are all Alternatives 

Identified?
YES

NO

Are all Criteria 

Identified?

NO

Define Criteria

1. Describe each criterion.

2. Identify criterion need.

3. Describe criterion source.

YES

YES

Update

Remove unwanted 

criteria or alternatives.

NO

Create Decision File

Formulate and export data 

in a single file.

End
Identify Intuition

Define gut feeling. 

 

Figure 4-4  Decision Structure Logical Overview 
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The final task, which is critical to the analysis, requires the team to review the 

criteria and alternatives to ensure that it is possible to represent each decision 

variable by a numerical value or a subjective score. If the team cannot source 

representation, the decision-maker can return to a previous part of the procedure to 

update the criteria and alternative sets. If the review is successful, the team can 

identify an alternative to represent their intuition (gut feeling) and complete the 

decision structuring process.  

The Decision Structure module can create a decision file which contains all of the 

information collated during the problem structuring process and is available for 

analysis by each of the decision analysis modules. 

 

4.5.2.2 Analytic Hierarchy Process (AHP) 

The AHP module guides the decision-maker through the Analytical Hierarchy 

Process (Saaty, 1972, 1980). The workflow for this process is given in Figure 4-5. 

Firstly the decision-maker opens a file created in Decision Structure which contains 

the criteria and alternatives for the decision problem. The user then pairwise 

compares the criteria and the values are placed into a reciprocal matrix (section 

2.2.4.2). The matrix is used to calculate the principle eigenvectors which represent 

the criteria weights. The method selected to calculate the principle eigenvectors was 

the technique utilised by Saaty (1980) as shown in the three steps below: 

1. Multiply the elements within each row of a matrix. 

 a1 a2 a3 a4 Multiplied Rows 

a1 1 1/4 4 1/6 = 0.1666 

a2 4 1 4 1/4 = 4 

a3 1/4 1/4 1 1/5 = 0.0125 

a4 6 4 5 1 = 120 

 

2. For each row, take the n
th

 root of the multiplied product. 

Multiplied Rows Nth Root 

0.1666 
(1/4)

 = 0.638943 

4
(1/4)

 = 1.414214 

0.0125
(1/4)

 = 0.33437 

120
(1/4)

 = 3.309751 

Sum: = 5.697278 
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Start

Open Decision File

Use decision file to populate 

the tools interface.

Define Criteria Weights

Complete pairwise 

comparisons of criteria 

importance. 

Provide rationality for 

selections.

Form Criteria Matrix

Display Pie Chart

Calculate eigenvectors of 

criteria matrix.

Use these values to make a 

pie chart of criteria weights.

Are the criteria 

weights accurate?

12 1

12 2

1 2

1

1/ 1

1/ 1/ 1

n

n

n n

w w

w w

w w

 
 
 
 
 
 

Consistency Check

Use:

Define consistency ratio 

using CR = CI / CV  
CV values found in Table 4-1

max( ) / ( 1)CI n n  
where γ are the eiganvalues of the 

criteria matrix

NO

Define Decision Variables

For Each Criterion:

if Qualitative Criterion

Complete pairwise 

comparisons of alternative 

importance in respect to 

criterion.

Provide rationality for 

selections.

if Quantitative Criterion

Define quantitative source 

and units. 

For each alternative define 

a quantitative value.

YES

Normalise Quantitative Variables

Q
u
an

ti
ta

ti
v
e

1

ij

ij n

jj

q
a

q






where qj is the quantitative 

value for each alternative for 

attribute Cj (j=1,2,…,n).

Form Alternative Matrices

For each qualitative criterion:

12 1

12 2

1 2

1

1/ 1

1/ 1/ 1

m

m

m m

p p

p p

p p

 
 
 
 
 
 Q

u
al

it
at

iv
e

Where pmm is the qualitative preference of each 

alternative against each alternative.

Display Results Chart

Output bar chart showing the 

calculated scores. 

Display Analysis Chart

Output a spider chart 

showing each of the criterion 

scores against each 

alternative.  

Generate Report

Save output in the form of a 

PDF or Word Document.  

Create Decision File

Formulate and export data 

in a single file.

End

Consistency Checks

Use:

Define consistency 

ratio using: 

CR = CI / CV  
CV values found in Table 4-1

max( ) / ( 1)CI n n  
where γ are the eiganvalues of 

the criteria matrix

Calculate Scores

Using:

Calculate alternative 

scores for min, likely 

and max.

1

n

i j ij

j

A w a




Are the decision 

variables accurate?

NO

YES

 

Figure 4-5  AHP Logical Overview 
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3. Normalise the nth root values by dividing by the sum. 

Nth Root Priorities 

0.638943 = 0.112149 

1.414214 = 0.248226 

0.33437 = 0.058689 

3.309751 = 0.580936 

 

A consistency check is used to ensure the decision-maker has not violated transitivity 

(section 2.2.4). The consistency check uses Consistency Values (CV) derived from 

random judgements (Table 4-2) in a four step process outlined below. 

 

Table 4-2  Consistency Values (Saaty, 1980) 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

CV 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

 

 

1. Sum the elements in each column and multiply by the principle eigenvectors. 

 a1 a2 a3 a4 Priorities 

a1 1 1/4 4 1/6 0.112149 

a2 4 1 4 1/4 0.248226 

a3 1/4 1/4 1 1/5 0.058689 

a4 6 4 5 1 0.580936 

Sum: 11.25 5.5 14 1.616667  

Sum*Priority: 1.261676 1.365243 0.821646 0.93918  

 

2. Calculate max by summing the calculated values. 

 

max  

Sum*Priority: 1.261676 1.365243 0.821646 0.93918 = 4.387745 

 

3. Calculate the Consistency Index using: max( ) / ( 1)CI n n    

(4.387745 – 4) / (4 – 1) = 0.129248 

 

4. Calculate the Consistency Ratio using: CR = CI / CV 

0.129248 / 0.9 (taken from Table 4-2) = 0.143609 

 This value suggests that the pairwise comparisons are inconsistent. 
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Saaty (1980) suggested that a CR of 0 infers perfect consistency while a CR above 

0.1 is considered inconsistent. Bearing in mind the values in Table 4-2 are derived 

from randomly generated judgements, the 0.1 threshold for inconsistency is 

considered very strict and impractical. Therefore, the AHP tool notifies the decision-

maker for borderline inconsistency when CR is between 0.8 and 0.125 and caution 

for absolute inconsistency when CR is above 0.125. When warned, the decision-

maker can examine their pairwise comparisons for errors and amend their selections. 

After the criteria weights are established, the decision-maker needs to define 

appropriate decision variables. The decision variables in respect to the qualitative 

criterion are provided as pairwise comparisons and are calculated in the same way as 

the criteria weights. The decision variables in respect to the quantitative criteria are 

provided as numerical scores and are normalised using the equation in Figure 4-5.  

Final scores are calculated using the WSM, given in equation 2-7. The results are 

shown along with an analysis chart that presents the decision variables on a spider 

diagram (see Appendix B). The user can conduct a sensitivity analysis by modifying 

the criteria weights and/or decision variables. On completion, a report can be 

generated or a decision file containing all the decision-makers’ preferences can be 

exported.  

 

4.5.2.3 MARE 

The MARE tool guides the decision-maker through the process explained in section 

4.3. The relevant workflow is shown in Figure 4-6. Initially, the decision-maker 

opens a file created in Decision Structure which contains the criteria and alternatives 

for the decision problem. Subsequently, the decision-maker must define the criteria 

weights using a slider bar for each criterion. These weights are normalised using 

equation 4-1. The decision-maker must then define the decision variables. For 

decision variables in respect to qualitative criterion, slider bars (single selection) are 

used for input that is certain and range slider bars (three selections) are used for 

uncertain input. For decision variables in respect to quantitative criterion, numerical 

values are required, one if certain and three if uncertain. Final scores are calculated 

using equation 2-7 and the decision results are shown along with an analysis chart 

that shows the most likely decision variables. A sensitivity study can be conducted, a 

report can be generated or a file containing the decision information can be saved. 
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Start

Open Decision File

Use decision file to populate 

the tools interface.

Define Criteria Weights

Define the importance of 

each criterion using Slider 

Bars. 

Provide rationality for 

selections.

Normalise Weights
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Where bj are the 

values from the 

slider bars.

Display Pie Chart

Display percentage pie chart 

of the normalised weights. Are the criteria 

weights accurate?

NO
Define Decision Variables

For Each Criterion:

if Qualitative Criterion

For each alternative:

If certain:

  Use SliderBar to select   

  most likely value.

If uncertain:

  User SliderRangeBar to 

  select minimum, most  

  likely and maximum.

Provide rationality for 

selections.

if Quantitative Criterion

Define quantitative source 

and units. 

For each alternative:
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Figure 4-6  MARE Logical Overview 

 

4.5.2.4 RANK 

The RANK tool guides the decision-maker through the ELECTRE III method 

(section 2.2.5.1). The workflow of the RANK tool is shown in Figure 4-7. After the 

criteria and alternatives are extracted from the Decision Structure file, the decision-

maker must define the criteria weights. This is accomplished in an identical way to 

the MARE module by using slider bars and the normalisation procedure in equation 

4-1. 
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Figure 4-7  RANK Logical Overview 
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The decision-maker must then define decision variables and threshold values. 

Decision variables in respect to qualitative criteria are input with slider bars and 

decision variables in respect to quantitative criteria are input as numerical values. 

Similarly, threshold values in respect to qualitative criteria are input with a threshold 

selection slider bar (section 4.5.3) and threshold values in respect to quantitative 

criteria are input as numerical values. Three threshold values are required for each 

criterion: indifference (qj), preference (pj) and veto (vj). The threshold values are 

used to build concordance and discordance indices using equations 4-3 and 4-4 

respectively.  
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4-3 

where A and B are decision variables, n is the number of criteria, wj is the weight of 

criterion j, qj is the indifference threshold for the criterion j and pj is the preference 

threshold for the criterion j. 
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4-4 

where A and B are decision variables, n is the number of criteria, wj is the weight of 

criterion j, pj is the preference threshold for the criterion j and vj is the veto threshold 

for the criterion j. 

 

A worked example, adapted from Buchanan et al. (1999), showing the calculations to 

form a concordance and discordance index is shown below. 
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 Considering a 5 criteria (c1,c2,..,c5) and 5 alternative (a1,a2,..,a5) problem: 

 c1 c2 c3 c4 c5 

a1 -14 90 0 40 100 

a2 129 100 0 0 0 

a3 -10 50 0 10 100 

a4 44 90 0 5 20 

a5 -14 100 0 20 40 

indifference (qj) 25 16 0 12 10 

preference (pj) 50 24 1 24 20 

veto (vj) 100 60 2 48 90 

weight (wj) 1 1 1 1 1 

 

The concordance calculations for alternatives a1 and a5 are: 

   c1(a2,a5) = 1,    as -14-129 ≤ 25 

   c2(a2,a5) = 1,    as 100-100 ≤ 16 

   c3(a2,a5) = 1,    as 0-0 ≤ 0 

   c4(a2,a5) = 
       

     
 = 0.333,  as 12 < 20-0 < 24 

   c5(a2,a5) = 0,    as 40-0 ≥ 20 

Therefore, C(a2,a5) = 
                                      

         
 = 0.66667 

  

 The discordance index for alternative a1 and a2 is: 

   D(a1,a2) = 1,  as in terms of c1: 129 – (-14) ≥ 100 

 

The calculations are performed on every pair of alternatives to build a concordance 

matrix and discordance matrix. These matrices are used to calculate a credibility 

index using: 

( , ) ( , ) ( , )

( , ) { (1 ( , ))
( , ) ( , )

(1 ( , ))

C A B if D A B C A B j

S A B D A B
C A B j J A B else

C A B

 

 





 4-5 

where J(A,B) is the set of criteria for which  ( ,  ) >  ( ,  ) 

 

The calculation assumes that if the strength of the concordance index exceeds that of 

the discordance index then the concordance value should not be altered. If the 

discordance index exceeds that of the concordance index, the value needs to be 

modified.  
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The credibility matrix assesses the strength of the assertion that A is at least as good 

as B and is used to determine a ranking of the alternatives. The ranking is calculated 

through two distillations, a descending distillation (Z1) and an ascending distillation 

(Z2) shown in Figure 4-8. The 0.3 and 0.15 values used in step 2 were recommended 

by Roy and Bouyssou (1993). 

 

Descending Distillation 

Repeat until all alternatives have been classified 

in Z1: 

1. Find maximum value of S(A,B) using: 

   max max ( , )S A B   

2. Find λ using: 

   max max(0.3 0.15 )      

3. For each alternative, find λ-strength using: 

   ( , )S A B   

4. For each alternative, find λ-Weakness using: 

   (1 (0.3 0.15 ))* ( , ) ( , )S A B S B A    

5. Determine qualification for each alternative   

    (strength – weakness).  

6. If only one alternative is highest: 

    Classify alternative and remove from set. 

    Else: repeat process, using λ as λmax. 

Ascending Distillation 

Repeat until all alternatives have been classified 

in Z2: 

1. Find maximum value of S(A,B) using:  

   max max ( , )S A B   

2. Find λ using: 

   max max(0.3 0.15 )      

3. For each alternative, find λ-strength using: 

   ( , )S A B   

4. For each alternative, find λ-Weakness using: 

   (1 (0.3 0.15 ))* ( , ) ( , )S A B S B A    

5. Determine qualification for each alternative   

    (strength – weakness).  

6. If only one alternative is lowest: 

    Classify alternative and remove from set. 

    Else: repeat process, using λ as λmax. 

Figure 4-8  Descending and Ascending Distillation Algorithms 

 

The descending distillation classifies the alternatives with the highest qualification 

first while the ascending distillation classifies the alternatives with the lowest 

qualification first. The final order (Z) is obtained through combining Z1 and Z2. This 

is achieved by aggregating the two distillations into a ranking matrix. If A is ranked 

higher than B in both distillations, or A is better than B in one distillation and has the 

same ranking in the other distillation Z(A,B) = 1, otherwise Z(A,B) = 0. Summing the 

rows of the ranking matrix gives scores for each alternative. The alternative with the 

highest score is ranked first and the alternative with the lowest score receives the 

worst rank. If two or more alternatives have the same score then then they are 

classified in the same rank position. A worked example, modified from Giannoulis 

and Ishizaka (2010), is presented below using the following Z1 and Z2 distillations: 

RANK: 1 2 3 4 5 6 

Z1: a5 a1, a3  a2 a6 a4 

Z2: a2, a5  a1, a3  a6 a4 
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The ranking matrix for the 6 alternatives (a1,a2,..,a6) is: 

 a1 a2 a3 a4 a5 a6 Sum 

a1  0 0 1 0 1 2 

a2 0  0 1 0 1 2 

a3 0 0  1 0 1 2 

a4 0 0 0  0 0 0 

a5 1 1 1 1  1 5 

a6 0 0 0 1 0  1 

 

 This produces the following final rank (Z): 

 1 2 3 4 5 6 

Z: a5 a1, a2, a3   a6 a4 

 

The final ranking is presented to the decision-maker along with the credibility index 

which shows the outranking relation between every pair of alternatives. A sensitivity 

study can be conducted to investigate changes to the ranking order when the criteria 

weights, decision variables and thresholds are altered. Finally, a report can be 

generated or a file containing the decision information can be saved. 

 

4.5.3 Implementation Overview 

The flow diagrams in Figures 4-4, 4-5, 4-6 and 4-7 show that there are a range of 

controls and libraries needed to implement the ChemDecide framework. Some of 

these controls and libraries already exist in the .NET framework and external 

libraries but a number of these elements are required to be developed. Figure 4-9 

shows the key algorithms and controls required for each of the four tools. A number 

of these are discussed in the subsequent sections. 

 

a. Normalisation and Calculations 

A function was developed to normalise values using the summation ratio 

normalisation method (equation 4-1) and the max scale normalisation procedure 

(equation 4-2). Similarly, mathematical calculations were developed as functions so 

that code is not repeated and the programming structure is straightforward and 

modular to follow.  
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Figure 4-9  ChemDecide Implementation Overview 

 

b. Slider, Range Slider and Threshold Selection Controls 

The range slider control (Figure 4-1b) and the threshold selection control both 

require three moving bars. In the range slider, the three bars account for the 

minimum, most likely and maximum preference values whilst for threshold 

selection, the three bars represent the indifference, preference and veto thresholds. A 

slider bar control exists within the .NET Framework but it only allows for one 

moving bar. Therefore, a control needed to be built to handle the increased number 

of inputs. This was accomplished by forming rectangular boxes within a defined 

space and creating an event which is triggered when the user clicks the mouse button 
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and the pointer is within the control. The event selects the nearest bar to the pointer 

and when the pointer is moved the bar follows the pointer until the mouse button has 

been released. Constraints were implemented to ensure that the bars cannot cross, 

meaning that the value of bar 1 is always less than bar 2 and the value of bar 2 is 

always less than bar 3. 

 

c. Rank Chart 

The RANK module produces three ranks, a descending rank, an ascending rank and a 

final rank. To display these, a control was developed that outputs the ranks as 

coloured textboxes. Often there are alternatives that receive a joint rank thus the 

control had to support multiple rows and columns of alternative boxes on three 

separate forms as illustrated in Figure 4-10. 

 

 

Figure 4-10  Example Chart in the RANK module  

 

4.6 Conclusions 

A methodology, Multi-Attribute Range Evaluations (MARE), was proposed for 

assisting in the decision-making process associated with the challenges arising in the 

implementation of Whole Process Design (WPD). The method, which is based on 

Example of a joint rank 

 

Three forms 
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Weighted Sum Method (WSM), allows a decision-maker to provide three values for 

each decision variable that captures the associated levels of uncertainty. To 

investigate the effectiveness of the MARE methodology, a framework has been 

developed that incorporates MARE and two other widely applied decision-making 

methods; Analytic Hierarchy Process (AHP) and ELECTRE III (RANK). The 

framework, ChemDecide, has been developed as a software package that can be 

distributed to industrial members for evaluation. The three methods are incorporated 

into the software as standalone tools that share similar interfaces and controls to 

ensure there is no bias between the methods. The aims are to compare the methods 

through the application of WPD decision-making case studies and to identify if the 

industrial requirements identified in Chapter 3 have been met through an industrial 

evaluation of the tools.  The next chapter presents three WPD decision case studies 

along with a user evaluation of the ChemDecide framework.  
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“A good decision is based on knowledge and not on numbers”   

             Plato (380 B.C.) 

 

5 Case Studies 

5.1 Introduction 

The previous chapter presented the Multi-Attribute Range Evaluations (MARE) 

methodology, the outcome of which allows a decision-maker to visually interpret 

their decision results with associated levels of uncertainty. To investigate the 

effectiveness of the MARE methodology, the ChemDecide framework was 

developed to incorporate MARE and two other widely applied decision-making 

methods; Analytic Hierarchy Process (AHP) and ELECTRE III (RANK). This 

chapter presents three industrial decision-making case studies that have been 

analysed using the three decision analysis modules in the ChemDecide framework. 

The underlying objectives of the case studies are to: 

 Identify the effectiveness of each module for each decision-making case 

study by comparing the results, checking for inconsistences and assessing the 

decision-makers feedback. 

 Validate the results of each analysis against the company’s decision outcome.  

 Identify which analysis method the decision-maker prefers in terms of input, 

output and in the handling of uncertainty. 

These objectives will be considered in reaching a conclusion with regard to the 

overall aim of the case studies which is to identify which, if any of the tools, is most 

effective for decision-making in the implementation of Whole Process Design 

(WPD).  

The first case study was provided by Robinson Brothers Ltd, the largest independent 

manufacturer of speciality organic chemicals in the United Kingdom. The goal of the 

study was to provide recommendations with regards to the selection of the best route 

to synthesise an undisclosed chemical. As identified from the analysis of the 

questionnaires (section 3.3.2), the route selection stage is one of the most common 

decision problems faced by managers when implementing WPD. The criteria weights 
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and decision variables for this case study were generated during an interview with a 

business and technical development manager (section 3.2.1).  

The second case study was the responsibility of a process engineering manager at 

GlaxoSmithKline (GSK). GSK is a pharmaceutical, biologics, vaccines and 

consumer healthcare company that operates globally. The goal of the study was to 

select an appropriate degasification technology for a new process. The final case 

study considered was overseen by a technology manager at Fujifilm Imaging 

Colorants Ltd, a global leader in innovative, high performance colorants for print and 

speciality applications. The objective of the study was to select the most appropriate 

combination of equipment to mix a substance in the early stages of process 

development. An interview transcript concerning the Robinson Brothers case study 

along with the data for all three case studies is included in Appendix C. 

 

5.2 Route Selection (Robinson Brothers) 

The objective of this case study was to provide recommendations with regard to 

selecting the best route to synthesise a chemical from three viable alternatives. The 

chemical name and chemistry is withheld for confidentiality reasons and hence the 

alternatives discussed below are referred to as routes one, two and three.  

Five criteria (c1,c2,..,c5) were identified on which to base the decision (Table 5-1). 

The decision-maker could only quantify values for Product Yield (c1) in respect to 

each alternative. Therefore, the remaining four criteria were qualitative and measured 

by subjective preferences. 

 

Table 5-1 Criteria for Robinson Brothers decision problem 

  Source Aim Rationale 

c1 
Product 

Yield 
Quantitative Maximise Maximising product yield maximises profit. 

c2 Toxicity Qualitative Minimise For safety and environmental concerns. 

c3 Cost Qualitative Minimise Minimising costs maximises profit. 

c4 
Ease of 

Separation 
Qualitative Minimise 

Problems with separation could incur 

additional costs and time. 

c5 
Odour 

expulsion 
Qualitative Minimise 

Robinson Brothers specialises in high odour 

containment but may still be a concern. 
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The underlying philosophy was to achieve the maximum amount of product at the 

lowest production cost. Ease of separation, levels of toxicity and odour expulsion 

were also included in the decision-making process as the decision-maker wished to 

minimise the complexity of the process and ensure compliance to external 

regulations. Route one provides substantial product yield at a low cost but issues 

could arise in terms of separation and excessive emissions of odour. Route two was 

much easier to develop but proved costly and provided the lowest amount of product 

yield. For route three, the product was easily separated, yield was reasonable and it 

was moderately expensive. However, it required highly toxic reagents for the 

synthesis.  

 

5.3.1 AHP Analysis 

The AHP module requires the input of pairwise comparisons to calculate criteria 

weights (section 2.2.4.2). The procedure for this is presented in section 4.5.2.2. Due 

to the nature of pairwise comparisons, requiring a selection for every possible pair of 

criteria rather than a single selection for each criterion, the analysis required ten 

pairwise comparisons to determine the criteria weights. The pairwise comparisons 

provided were valid in terms of transitivity (section 2.2.4.2) as the consistency 

checker indicated that the Consistency Ratio (CR) was below 0.8 (section 4.5.2.2). 

The criteria weights, which sum to 1, are shown as percentage values in Figure 5-1. 

 

 

Figure 5-1  AHP criteria weights for the Robinson Brothers case study 

 

From Figure 5-1, it can be concluded that c1 (‘product yield’) was prioritised, 

followed by c3 (‘cost’) and c2 (‘toxicity’). The remaining two criteria, c4 (‘ease of 
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separation’) and c5 (‘odour expulsion’) were deemed to be much less important in 

this analysis.  

AHP also determines the decision variables in respect to the qualitative criteria by 

using pairwise comparisons. This was achieved by every possible pair of alternatives 

being compared four times, once for each of the four qualitative criteria. As there are 

three alternatives, only three pairwise comparisons are required with respect to each 

criterion. Similarly to the criteria weights, the pairwise selections were determined as 

valid in terms of transitivity as each consistency check indicated that the CR was 

below 0.8. To determine the decision variables with respect to the one quantitative 

criterion, a value is required for each alternative. Thus, for c1 (‘product yield’), three 

estimated percentage values were given, one for each of the three alternatives.  

The software tool calculated the results (section 4.5.2.2) and presented them in a 

chart (Figure 5-2) along with a graphical representation of the decision variables 

(Figure 5-3). 

 

 

Figure 5-2  Final scores of the AHP analysis for the Robinson Brothers case study 

 

Figure 5-2 shows that route one achieved the highest overall score and it was double 

that of the other two possible routes. This was due to c1 (‘product yield’), c2 

(‘toxicity’) and c3 (‘purchase price’) being the most influential criteria and as shown 

in Figure 5-3, route one scored the highest in all three categories. Route two 

performed well in terms of c2 (‘toxicity’), c4 (‘ease of separation’) and c5 (‘odour 

expulsion’) while route three performed well in terms of c1 (‘product yield’) and c4 
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(‘ease of separation’). Both routes achieved similar scores as the criteria weightings 

balanced the impact of the decision variables. 

 

 

Figure 5-3  AHP decision variables for the Robinson Brothers case study 

 

5.3.2 MARE Analysis 

Unlike AHP, the MARE and RANK modules require a selection for each criterion to 

determine the criteria weights. Therefore, in the MARE and RANK analyses, five 

selections were required to determine the criteria weights. These values are 

normalised to sum to 1 as shown in section 4.3. As the values for this case study 

were generated from an interview (Appendix C), the criteria weights for the MARE 

and RANK analyses were adjusted to correspond with the AHP analysis. This 

ensured the values remained consistent throughout the three analyses. The MARE 

and RANK criteria weights are shown in Figure 5-4 as percentage values. 

 

 

Figure 5-4  MARE and RANK criteria weights for the Robinson Brothers case study 
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In terms of decision variables, the MARE module requires one selection (most likely 

value) if the decision-maker is certain and three selections (minimum, most likely 

and maximum) if the decision-maker is uncertain about a particular selection. To 

keep the decision variables consistent to the AHP analysis, the likely values for the 

MARE analysis were based on the eigenvector outputs from the AHP analysis. 

Uncertainty ranges (minimum and maximum values) were applied to all of the 

decision variables with the maximum set at 2% more than the likely values and the 

minimum being set at 2% less. The MARE tool calculated the results, as shown in 

section 4.3, and output a results chart (Figure 5-5) along with a graphical 

representation of the most likely decision variables (Figure 5-6).  

Figure 5-5 shows that route one was the best alternative as the entire range 

(minimum to maximum) had higher preference scores than the most likely values of 

routes two and three. This is a consequence of route one performing well in terms of 

c1 (‘product yield’), c2 (‘toxicity’) and c3 (‘purchase price’) which are the most 

influential criteria as shown in Figure 5-4. The most likely value of route two scored 

marginally better than route three. Figure 5-6 shows this is because route two 

performed better in terms of c2 (‘toxicity’), c4 (‘ease of separation’) and c5 (‘odour 

expulsion’) while route three only outperformed route two in terms of c1 (‘product 

yield’) and c4 (‘ease of separation’). 
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Figure 5-5  Final scores of the MARE analysis for the Robinson Brothers case study 
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Figure 5-6  MARE likely decision variables for the Robinson Brothers case study 

 

5.3.3 RANK Analysis 

As explained in the previous section, the RANK analysis utilised the same criteria 

weights as the MARE analysis, thus the RANK criteria weights are shown in Figure 

5-4. In terms of decision variables, the RANK module required the input of a single 

score for each alternative with respect to each criterion. For consistency, these values 

were chosen to directly correspond to the most likely values in the MARE analysis. 

The only dissimilarity between the RANK and MARE analyses was that three 

threshold values (indifference, preference and veto) were required for each criterion 

(section 4.5.2.4). These values were selected depending upon the variation of the 

decision variables. The RANK tool calculated the results as shown in section 4.5.2.4 

and three rank orders were output, one for the descending distillation, one for the 

ascending distillation and another one for the final rank (Figure 5-7). Additionally, 

the credibility matrix was displayed to show the outranking relationship for every 

pair of alternatives (Figure 5-8).  

 

Descending Rank Ascending Rank Final Rank 

 

 

 

 Figure 5-7  Results of the RANK analysis for the Robinson Brothers case study 
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Figure 5-8  RANK Credibility index for the Robinson Brothers case study 

 

Similar to the AHP and MARE analyses, Figure 5-7 shows that route one 

outperformed routes two and three for the descending and final rank. However, in the 

ascending distillation, route one and route two jointly achieved first rank. Figure 5-8 

shows that this occurred due to routes one and two attaining an identical outranking 

relationship (0.000). 

 

5.3.4 Evaluation 

All three analyses were provided with similar data with the only variations being the 

threshold values in RANK, the uncertainty ranges in MARE and the slight 

differences in the decision variables in AHP due to the eigenvector calculations. The 

results from all three analyses were identical on an ordinal scale (Route 1 > Route 2 

> Route 3). However, the RANK tool positioned route two as a close second to route 

one while AHP and MARE gave route two and three similar scores, far below what 

route one attained.  

From conducting a sensitivity analysis on the RANK tool, it was identified that this 

situation occurred due to the veto thresholds (a threshold at which the decision-

maker ultimately prefers one alternative over another and wishes to select that 

alternative with total certainty). If all of the veto thresholds were set to their 

maximum (100) which effectively removes them from the analysis (Sayyadi & 

Makui, 2012), the outranking relationship between route one and route two 

significantly changes, positioning route two as a much less attractive alternative.  

This can be seen in the credibility index in Figure 5-9 where route one outranks route 

two by 0.910 and route two outranks route one by 0.025. However, this change 

impacted on the order of results in the RANK analysis, effectively placing route 

three as a more attractive alternative to route two as shown in Figure 5-10. 
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Figure 5-9  RANK Credibility index after removing the veto thresholds 

 

Figure 5-9 shows that this is a consequence of route three outranking route two by 

0.830 and route two outranking route three by only 0.440. 

 

Descending Rank Ascending Rank Final Rank 

   

Figure 5-10  Result of RANK after removing the veto thresholds 

 

5.3.5 Conclusions 

The aim of this case study was to recommend the best route to synthesise a chemical 

from three viable alternative routes. There were no inconsistencies between the three 

methods as the criteria weights and decision variables were adjusted to correspond to 

the AHP analysis. In general, all approaches recommended the same results. This 

supported the claims of Huang et al. (2011) who stated “an important observation ... 

is that all [MCDA methods] tend to favour the same alternatives”. However, it was 

identified that the results of the RANK analysis were strongly dependent on the 

given thresholds. When using veto thresholds, route two performed similarly to route 

one. With the veto thresholds removed, route two performed similarly to route three 

which is more comparable to the AHP and MARE analyses.  

Robinson Brothers, who also evaluated the decision using their techniques (described 

in section 3.2.1), revealed the following: “With all things considered we evaluated 

only route one and the separation of the required product from the by-products 

(mostly inorganic) proved insurmountable and the project was discontinued”. This 

outcome validates the recommendations provided by the three analysis methods. 
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5.3 Degassing Methodology Selection (GSK) 

The goal of this case study was to select an appropriate degasification technology for 

a new chemical development process. The study was the responsibility of a process 

engineering manager for GlaxoSmithKline (GSK). Along with the decision-maker, 

one other person was present during the analysis. Details of the product and process 

are withheld for reasons of confidentiality. The decision-makers initially identified 

five alternatives (Table 5-2) and five criteria (Table 5-3) on which to base the 

decision.  

 

Table 5-2  Alternatives for GSK case study 

a1 Packed Column 

a2 Membrane 

a3 Duty Standby CSTR - Vacuum 

a4 Duty Standby CSTR with Sparge 

a5 Ultrasonic 

 

Table 5-3  Criteria for GSK case study 

  Source Aim Rationale (from the decision-makers) 

c1 
Minimises 

Hold Up 
Qualitative Minimise 

“Supports the economics of the process and 

ease of operation.” 

c2 
Simple to 

Build 
Qualitative Minimise 

“Simplicity in build will speed up 

development. Must increase robustness of the 

solution and make the equipment easier to 

clean. This will contribute to a lower cost.” 

c3 
Technically 

Possible 
Quantitative Maximise 

“The solution has to be capable of removing 

the gas from the solution to a low enough 

level.” 

c4 
Available 

Now 
Qualitative Maximise 

“Need to test and place orders now, solutions 

not off the shelf need to be excluded.” 

c5 Low Cost Qualitative Minimise 
“Lower the cost, the better the project 

payback.” 

 

As shown in Table 5-3, the underlying philosophy for the company was to select a 

technology that was inexpensive, available and straightforward to implement. From 

the five alternatives in Table 5-2, only four were technically viable. Ultrasonic (a5) 
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was not capable of removing enough gas from the solution but was included in the 

analyses as it could be a viable alternative in the future if advances are made in the 

technology. The least expensive alternatives were Packed Column (a1) and 

Membrane (a2). However, these options were not readily available to implement 

quickly within GSK. The best options in terms of availability were the two Duty 

Standby CSTR alternatives (a3 and a4). 

 

5.3.1 AHP Analysis 

As there are five criteria, the AHP module required ten pairwise comparisons to 

determine the criteria weights (section 2.2.4.2). These are shown as percentage 

values in Figure 5-11. The consistency check (section 4.5.2.2) determined that the 

CR was below 0.8, indicating that the pairwise comparisons were transitive and 

therefore consistent. 

 

 

Figure 5-11  AHP criteria weights for the GSK case study 

 

Figure 5-11 shows that the only quantitative criterion, c3 (‘technically possible’), 

achieved the most influential weight accounting for over two thirds of the entire 

criteria weighting. The decision-makers chose to use binary logic to define the 

alternative values with respect to this criterion. The binary logic associated 1 with a 

positive, i.e. technically feasible and 0 as unfeasible. As Ultrasonic (a5) was the only 

technically unfeasible alternative, this criteria weighting scheme prevented this 

option from scoring highly.  

As there are five alternatives, ten pairwise comparisons were required to define the 

decision variables for each the four qualitative criteria. In addition, a numerical value 

was required for each of the five alternatives with respect to the one quantitative 
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criterion. Each of the pairwise comparison sets in respect to the decision variables 

had a CR below 0.8 indicating that they were transitive / consistent.  The AHP 

module calculated the results (section 4.5.2.2) and presented them in a chart (Figure 

5-12) along with a graphical representation of the decision variables (Figure 5-13). 

 

 

Figure 5-12  Final scores of the AHP analysis for the GSK case study 

 

 

Figure 5-13  AHP decision variables for the GSK case study 
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Figure 5-13 shows that Membrane (a2), which was the highest scoring alternative 

(Figure 5-12), performed well in terms of c1 (‘minimises hold up’) and c2 (‘simple to 

build’). The second best alternative Packed Column (a1) performed well in terms of 

c4 (‘available now’) and c5 (‘low cost’).  

The alternatives related to Duty Standby CSTR (a3 and a4) achieved similar but 

lower scores than the two best alternatives (Figure 5-12). Ultrasonic (a5), attained the 

lowest score as it was the only alternative to be set as infeasible (0) in terms of c3 

(‘technically possible’), the most influential criterion with respect to weight. 

 

5.3.2 MARE Analysis 

The MARE module required five slider bar selections from the decision-makers to 

determine the criteria weights (Figure 5-14). Similar to the AHP analysis, the most 

influential criterion was c3 (‘technically possible’). However, this criterion attained a 

much lower weight of less than a third in comparison to over two thirds in the AHP 

analysis. This meant that the other four criteria attained higher weights, resulting in 

them having more impact on the analysis.  

 

 

Figure 5-14  MARE criteria weights for the GSK case study 

 

The decision-makers used the same binary logic as for the AHP analysis to define the 

decision variables for c3 (‘technically possible’). Consequently, minimum and 

maximum values were not utilised. However, minimum and maximum selections 

were given for all of the alternatives with respect to the qualitative criteria. 

The MARE module calculated the results (section 4.3) and output a results chart 

(Figure 5-15) along with a graphical representation of the most likely decision 

variables (Figure 5-16).  
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Figure 5-15  Final scores of the MARE analysis for the GSK case study 

 

Figure 5-15 shows that Membrane (a2) scored marginally better than Packed Column 

(a1) in terms of the most likely score but it has a larger uncertainty range. 

Consequently, Packed Column (a1) may be a more attractive alternative as it is more 

certain to perform within a higher range. Membrane (a2) could, in a worst case 

scenario, be inferior to Packed Column (a1) and the alternatives related to Duty 

Standby CSTR (a3 and a4). The uncertainty associated with the Membrane (a2) 

option cannot be seen in the AHP analysis, thus the AHP result could be very 

misleading.   

The most likely decision variables (Figure 5-16) show that Membrane (a2) scored 

higher than Packed Column (a1) due to performing well in terms of c1 (‘minimise 

hold up’) and c2 (‘simple to build’). Nevertheless, Packed Column (a1) outperformed 

Membrane (a2) in terms of c4 (‘available now’) and scored highly in terms of c5 

(‘low cost’). Ultrasonic (a5), similarly to the AHP analysis, achieved the lowest 

overall score. The two Duty Standby CSTR options (a3 and a4) achieved similar 

results with Duty Standby CSTR with Sparge (a4) only marginally outperforming 

Duty Standby CSTR - Vacuum (a3) in terms of most likely value. Considering the 

uncertainty in Duty Standby CSTR with Sparge (a4) is higher than Duty Standby 

CSTR - Vacuum (a3), the latter option may be a better choice. However, in the 

results of AHP (Figure 5-12) the difference between the two alternatives is much 

larger, indicating that Duty Standby CSTR with Sparge (a4) is a better choice.  
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Figure 5-16  MARE most likely decision variables for the GSK case study 

 

5.3.3 RANK Analysis 

As for the MARE module, the RANK module required five slider bar selections from 

the decision-makers to determine the criteria weights (Figure 5-17). Similarly, the 

most influential criterion was c3 (‘technically possible’) followed by c1 (‘minimise 

hold up’) and c4 (‘available now’). However, the percentage weights in RANK 

where different to MARE, with c2 (‘simple to build’) scoring higher and c5 (‘low 

cost’) scoring lower than the MARE analysis. This will be discussed in section 5.3.4.  

 

 

Figure 5-17  RANK criteria weights for the GSK case study 

The decision-makers used the same binary logic to determine the decision variables 

with respect to c3 (‘technically possible’) and provided slider bar selections for each 
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alternative in respect to each qualitative criterion. They also provided indifference, 

preference and veto thresholds for each criterion.  

The RANK tool calculated the results and displayed three rankings as shown in 

Figure 5-18. Additionally, the credibility matrix was displayed which shows the 

outranking relationship for every pair of alternatives (Figure 5-19).  

 

Descending Rank Ascending Rank Final Rank 

 

 

 

Figure 5-18  RANK Results Chart for the GSK decision problem 

 

The ascending distillation placed Membrane (a2) and Packed Column (a1) as joint 

best alternatives while the descending distillation placed Packed Column (a1) as the 

single best alternative. As a consequence, the final order classification (discussed in 

section 4.5.2.4), placed Packed Column (a1) as the best alternative in the final rank. 

The rank order of the remaining three alternatives (a4, a3 and a5) was identical to 

that of the AHP and MARE analyses. 

 

 

 

Figure 5-19  RANK Credibility index for the GSK case study 

 

The credibility matrix (Figure 5-19) shows that Packed Column (a1) outranked 

Membrane (a2) by 0.780 while Membrane (a2) outranked Packed Column (a1) by 
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0.696 resulting in Packed Column (a1) achieving a better rank in the descending 

distillation and subsequently, the final rank.  

 

5.3.4 Evaluation 

By comparing the criteria weights (Figure 5-20) and decision variables (Figure 5-21) 

for the three analyses, it is evident that there are a number of inconsistencies. The 

most noticeable discrepancy was the weighting that AHP placed on the decision-

makers’ weights and scores. Figure 5-20 shows that c3 (‘technically possible’) was 

the most important criterion for all three analyses but that AHP weighted this 

criterion much more highly than MARE and RANK. As a result, the remaining four 

criteria in the AHP analysis received much lower weights than MARE and RANK.  

 

 

Figure 5-20  Comparison of the criteria weights for the GSK case study 

 

From studying Figure 5-21, it is clear that AHP has also exaggerated the decision-

maker’s preferences with regard to the decision variables. The decision variables for 

the four qualitative criteria (c1, c2, c4, c5) show that AHP has increased scores for 

the better alternatives (a2 in respect to c1, a2/a5 in respect to c2, a1 in respect to c4 

and a1 in respect to c5) and decreased scores for the inferior alternatives (a3/a4 in 

respect to c1/c2, a2 in respect to c4 and a4/a5 in respect to c5) in relation to the 

MARE and RANK analyses.  
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Figure 5-21  Comparison of the decision variables for the GSK case study 

 

As MARE and RANK share identical inputs for expressing criteria weights and 

decision variables in relation to the qualitative criteria (slider bars), their criteria 

weights and decision variables should be similar. However, Figure 5-20 and Figure 

5-21 show a number of inconsistencies within these selections.  

The criteria weights, c2 (‘simple to build’) and c5 (‘low cost’) showed the greatest 

dissimilarities whilst for the decision variables, a2 and a5 for c1 (‘minimises hold 

up’) and a2 for c5 (‘low cost’) showed the greatest variation. The causes of these 

inconsistencies will be investigated and discussed in the subsequent chapter. 

However, two questions arise from these inconsistencies: 

 Have the three analyses recommend the same results despite the 

inconsistencies? 

 Which weighting scheme correctly represents the decision-makers’ 

preferences?  

Considering question one, the RANK tool provides results in the form of an ordinal 

ranking, thus the outputs of the three analyses were not comparable on a numerical 

scale. Therefore, the results of the analyses were evaluated by means of an ordinal 

scale. Table 5-4 shows that the three analyses attained similar results except for the 

RANK analysis which recommended a1 ahead of a2.  
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Table 5-4  Comparison of the three analyses results in the form of an ordinal rank 

 1st 2nd 3rd 4th 5th 

AHP a2 a1 a4 a3 a5 

MARE  

(Most Likely value) 
a2 a1 a4 a3 a5 

RANK a1 a2 a4 a3 a5 

 

Although the MARE and AHP analyses had significantly different criteria weights, 

their results in the form of an ordinal ranking were identical. This would indicate that 

the results are not strongly dependent on the criteria weights. To test this hypothesis, 

a sensitivity study was performed on the RANK criteria weights to see if the 

application of the AHP, MARE or the average weights of all three analyses would 

change the order of the results to match the AHP and MARE analyses. As shown in 

Table 5-5, the MARE and average weighting schemes did not affect the order.  

However, the application of the AHP weights resulted in a1 and a2 becoming joint 

best alternatives and a3 and a4 becoming joint second best alternatives. 

 

Table 5-5  Sensitivity study of the RANK criteria weights 

RANK using: 1st 2nd 3rd 4th 5th 

AHP weights a1, a2  a3, a4  a5 

MARE weights a1 a2 a4 a3 a5 

Average weights a1 a2 a4 a3 a5 

 

To assess if the variations in the decision variables affected the result of the RANK 

analyses, the most likely decision variables for MARE were applied to the RANK 

decision variables and the RANK decision variables were applied to the most likely 

decision variables in the MARE analysis. The criteria weights and threshold values 

(in RANK) remained constant. Table 5-6 shows that by applying the decision 

variables of MARE to the RANK analysis, the best alternative changes from a1 to 

a2, placing a1 as the second best alternative. Similarly, by applying the decision 

variables of RANK to the MARE analysis, the best alternative changes from a2 to 

a1, placing a2 as second best. Therefore, the inconsistencies in the decision variables 

are responsible for a1 being preferred over a2 in the RANK results.  
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Table 5-6  Sensitivity study of the RANK and MARE decision variables 

 1st 2nd 3rd 4th 5th 

RANK  

(using MARE most likely values 

as the decision variables) 

a2 a1 a3, a4  a5 

MARE  

(using RANK decision variables 

as the most likely values) 

a1 a2 a4 a3 a5 

 

5.3.5 Post Analyses Interview 

After conducting the three analyses, the decision-maker made time to review his 

experiences and to discuss the results. Overall, the decision-maker’s preferred tool 

was MARE as it allowed the user to “spread their answers” and “it was much more 

useful in terms of seeing the uncertainty behind the membrane option”. He explained 

that Membrane (a2) would have been the favoured alternative internally within the 

company if it had been possible to reduce the uncertainty associated with it. 

However, post analysis, he favoured Packed Column (a1), as that alternative was 

more certain to perform well (section 5.3.2). This option was selected as the best 

alternative based on the team’s intuition prior to the analysis. 

In terms of data entry, the decision-maker preferred MARE and RANK as the AHP 

consistency check was “somewhat disconcerting” and he stated that straight data 

entry was faster in contrast to pairwise comparisons. Nevertheless, when asked about 

the differences in the criteria weights, the decision-maker said the weights produced 

by AHP were more representative. His reasoning was that c3 (‘technically possible’) 

was a “veto type attribute” and AHP weighted this criterion much higher.  

Considering the analysis output, the decision-maker preferred MARE to AHP and 

AHP to RANK. He explained that the RANK credibility index (Figure 5-19) was 

“confusing” and that he disliked output in the form of an ordinal ranking as the 

differences between the alternatives were not clear. 

When considering the framework as a whole, the decision-maker liked how the three 

analyses tools forced a structured discussion about a decision problem and how they 

produced documentation for future reference. He said overall that the tools were easy 

to use and that the framework “with a bit of discipline, might be a standard tool we 

could use”. 



Case Studies 

118 

5.3.6 Conclusions 

The aim of this particular case study was to identify an appropriate degasification 

methodology for a new chemical development process. The AHP and MARE 

analyses recommended the same results on an ordinal scale. The RANK analysis 

delivered a slightly different ordering, placing Packed Column (a1) ahead of 

Membrane (a2). It was identified that the contrasting result was a result of the 

inconsistencies in the qualitative decision variables provided by the decision-maker. 

These inconsistencies are investigated and discussed further in Chapter 6.  

Post analyses, the decision-maker selected Packed Column (a1) as this option 

performed well in all three analyses and there was less uncertainty associated with it 

in comparison to Membrane (a2). The larger uncertainty linked to the Membrane (a2) 

option compared with Packed Column (a1) was only identified by the MARE 

analysis. In summary, the MARE module was favoured for this particular decision 

problem.  

 

5.4 Premix Equipment Selection (FFIC) 

The decision analysis was the responsibility of a technology manager at Fujifilm 

Imaging Colorants Ltd (FFIC). Along with the technology manager, eight other 

people were present during the analysis. The decision was to select the optimum 

equipment to mix a substance in the early stages of process development (a process 

which the decision-maker refers to as premixing). The product and different 

equipment options were not disclosed for confidentiality reasons hence the four 

alternatives are referred to as method 1, 2, 3 and 4. The decision-maker and team 

identified ten criteria on which to base their decision (Table 5-7). 

The requirement was to select an equipment option which is inexpensive, 

straightforward and reliable to operate. Of the ten criteria chosen to model the 

decision, two were quantitative and represented by estimated values of capital 

expenditure for producing different capacities of product. Criterion c1 (‘capital cost 

at 50’) referred to the initial design capacity and c2 (‘capital cost at 100’) is the 

capacity if future expansion is required. The eight qualitative criteria were related to 

the ease and reliability of production and thus, as no quantitative data was available, 

they were represented by the decision-makers’ subjective preferences. 
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Table 5-7  Criteria for FFIC premix equipment selection problem 

  Source Aim Rationale (from the decision-maker) 

c1 Capital cost at 50 Quantitative Minimise “Capital expenditure is 

limited.” c2 Capital cost at 100 Quantitative Minimise 

c3 Ease of clean down Qualitative Maximise “Multi-product plant.” 

c4 Complexity of 

solids feeding 

required 

Qualitative Minimise 

“Different options may place 

different demands on solids 

feeding equipment.” 

c5 
Ease of operation Qualitative Maximise 

“Multiple concurrent 

operations on plant.” 

c6 Mechanical 

reliability 
Qualitative Maximise 

“Impact of outage 

significant.” 

c7 Material losses Qualitative Minimise “Material is of high value.” 

c8 Ease of modelling 

at laboratory scale 
Qualitative Maximise “Lab tests may be required.” 

c9 Quality of vendor 

support 
Qualitative Maximise “Rapid support is necessary.” 

c10 Power 

requirements 
Qualitative Minimise 

“Power needs kept to a 

minimum.” 

 

Of the four equipment options, method 4 was the least expensive in terms of running 

costs. However, this equipment option was difficult to clean, had poor vendor 

support, would lose considerable amounts of valuable material during operation and 

was challenging to model at a laboratory scale. Methods 1 and 2 would have the 

lowest running costs at the current rate of production but would become more 

expensive if expansion was required. The running costs of implementing method 3 

would remain constant if expansion was required but this method would lose the 

highest amount of valuable material, had the highest power consumption and would 

be difficult to clean. 

5.4.1 AHP Analysis 

Due to the large number of criteria in this analysis, AHP required 35 pairwise 

comparisons to calculate the criteria weights. Although this necessitated significant 
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levels of input, the resulting pairwise comparisons were consistent (with a CR below 

0.8) and the weights as percentage values are shown in Figure 5-22. 

 

 

Figure 5-22  AHP criteria weights for the FFIC case study 

 

Figure 5-22 shows that the most influential criteria in order of importance were c5 

(‘ease of separation’), c3 (‘ease of cleandown’), c4 (‘complexity of solids feeding 

required’) and c6 (‘mechanical reliability’).  

With four alternatives, the decision-maker was required to select six pairwise 

comparisons for each qualitative criterion and enter four numerical values for each 

quantitative criterion. The consistency checks determined that each pairwise 

comparison set had a CR below 0.8 indicating that the selections were transitive and 

consistent. 

The AHP module calculated the results (Figure 5-23) and presented a graphical 

representation of the decision variables (Figure 5-24). Figure 5-24 shows that method 

4, which was the highest scoring alternative (Figure 5-23), performed well in terms 

of c1 (‘capital cost at 50’), c4 (‘complexity of solids feeding required’) and c6 

(‘mechanical reliability’). Methods 1 and 3 attained similar scores (Figure 5-23), 

with method 1 performing well in terms of c3 (‘ease of cleandown’), c8 (‘ease of 

modelling at lab scale’) and c10 (‘power requirements’) and method 3 performing 

well in terms of c4 (‘complexity of solids feeding required’) and c5 (‘ease of 

operation’). Method 2 achieved the lowest overall score but performed well in terms 

of c7 (‘material losses’). 
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Figure 5-23  Final scores of the AHP analysis for the FFIC case study 

 

 

Figure 5-24  AHP decision variables for the FFIC case study 

 

5.4.2 MARE Analysis 

The MARE analysis required ten slider bar selections to determine the criteria 

weights (Figure 5-25). From comparing the AHP weights (Figure 5-22) and the 

MARE weights (Figure 5-25) it is clear that the AHP analysis had larger weights for 

a number of criteria including c3 (‘ease of cleandown’), c4 (‘complexity of solids 

feeding required’) and c5 (‘ease of operation’). In addition, the order of importance 

of the criteria differed, in AHP the ranking of the most influential criteria was as c5 

(‘ease of operation’) > c3 (‘ease of cleandown’) > c4 (‘complexity of solids feeding 

required’)  > c6 (‘mechanical reliability’) while for MARE it was c1 (‘capital cost at 
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50’)  > c5 (‘ease of operation’) > c3 (‘ease of cleandown’)  > c2 (‘capital cost at 

100’). 

 

Figure 5-25  MARE criteria weights for the FFIC case study 

 

The decision-makers chose to apply minimum and maximum values to define the 

uncertainty for all of the decision variables in respect to the quantitative criteria but 

chose only to apply one minimum and maximum selection to the decision variables 

for the qualitative criteria. This one selection was for method 2 in terms of c5 (‘ease 

of operation’) as shown in Figure 5-26. 

 

 

Figure 5-26  Minimum/Maximum selection for c5 (‘ease of operation’) 

 

From Figure 5-26 it is clear that the most likely value of method 2 outperforms the 

other alternatives, however the minimum value selected is similar to the most likely 

values of the other alternatives, meaning in a worst case scenario, method 2 could 

perform similarly to methods 1, 3 and 4.  

The results of the MARE analysis (Figure 5-27) indicated that method 1 was the 

preferred alternative due to the uncertainty range being tighter than methods 3 and 4 

and the most likely value being greater in magnitude.  Figure 5-28 shows that method 

1 performed well in terms of c3 (‘ease of cleandown’), c6 (‘mechanical reliability’), 
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c7 (‘material losses’), c8 (‘ease of modelling at a lab scale’), c9 (quality of vendor 

support’) and c10 (‘power requirements’). 

The second best alternative in terms of most likely value was method 4. However, 

method 4 had a significant amount of uncertainty associated with it. In a worst case 

scenario, it could be the lowest performing method out of the four options. The high 

uncertainty in this option was a consequence of the minimum and maximum values 

provided for c1 (‘capital cost at 50’) and c2 (‘capital cost at 100’) as shown: 

 

Table 5-8  Minimum and maximum values for criteria c1 and c2 

  Minimum Most Likely Maximum 

C1 Method 1 -12.5% (£350,000) £400,000 +25% (£500,000) 

Method 2 -20% (£400,000) £500,000 +20% (£600,000) 

Method 3 -20% (£300,000) £375,000 +20% (£450,000) 

Method 4 -20% (£160,000) £200,000 +75% (£350,000) 

C2 Method 1 -10% (£450,000) £500,000 +20% (£600,000) 

Method 2 -20% (£400,000) £500,000 +20% (£600,000) 

Method 3 -33.3% (£500,000) £750,000 +20% (£900,000) 

Method 4 -25% (£300,000) £400,000 +75% (£700,000) 

 

Nevertheless, as c1 (‘capital cost at 50’) and c2 (‘capital cost at 100’) are minimising 

criteria, desiring the lowest cost, method 4 outperformed the other methods in terms 

of most likely values. Method 4 also performed well in terms of c4 (‘complexity of 

solids feeding required’) and c6 (‘mechanical reliability’).  

Method 2 had the smallest uncertainty range but was the third best alternative in 

terms of the most likely value. It performed well in terms of c5 (‘ease of operation’), 

c6 (‘mechanical reliability’), c9 (‘quality of vendor support’) and c10 (‘power 

requirements’). The worst performing alternative in terms of most likely value was 

method 3 as it performed the worst in terms of c2 (‘capital cost at 100tepa’), c3 

(‘ease of cleandown’) and c7 (‘material losses’). However, method 3 did perform 

well in terms of c4 (‘complexity of solids feeding required’), c6 (‘mechanical 

reliability’) and c9 (‘quality of vendor support’). 
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Figure 5-27  Final scores of the MARE analysis for the FFIC case study 

 

 

Figure 5-28  MARE likely decision variables for the FFIC case study 

 

5.4.3 RANK Analysis 

As for the MARE module, the RANK analysis required ten slider bar selections from 

the decision-makers to determine the criteria weights (Figure 5-29). Figure 5-29 

shows that the order of the most influential criteria weights for the RANK analysis 

differed from that of AHP (Figure 5-22) and MARE (Figure 5-25). The four most 

influential criteria were the same as for MARE but in a different order as shown in 

Table 5-9. In AHP, c4 (‘complexity of solids feeding required’) and c6 (‘mechanical 
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reliability’) were considered more important than c1 (‘capital cost at 50’) and c2 

(‘capital cost at 100’). This discrepancy will be discussed further in Chapters 6. 

 

Table 5-9  Four most influential criteria in AHP, MARE and RANK (FFIC) 

Importance AHP MARE RANK 

1
st
 c5 (‘ease of separation’) c1 (‘capital cost at 50’) c1 (‘capital cost at 50’) 

2
nd

 c3 (‘ease of cleandown’) c5 (‘ease of operation’) c2 (‘capital cost at 100’) 

3
rd

 
c4 (‘complexity of solids 

feeding required’) 

c3 (‘ease of cleandown’) c3 (‘ease of cleandown’) 

4
th

 c6 (‘mechanical reliability’) c2 (‘capital cost at 100’) c5 (‘ease of operation’) 

 

 

Figure 5-29  RANK criteria weights for the FFIC case study 

 

The decision-makers used the same numerical values to determine the decision 

variables with respect to c1 (‘capital cost at 50’) and c2 (‘capital cost at 100’), the 

two quantitative based criteria. However, the decision variables for the qualitative 

based criteria differed from the AHP and MARE analyses. This is discussed in the 

proceeding section.  

The RANK tool calculated the results and displayed three rankings as shown in 

Figure 5-30 along with the credibility matrix in Figure 5-31.  

 

Descending Rank Ascending Rank Final Rank 

 
 

 

Figure 5-30  Results of the RANK analysis for the FFIC case study 
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The final rank shows that methods 1 and 4 are joint best alternatives. This occurred 

as the descending rank placed method 1 higher than method 4 while the ascending 

rank placed method 4 higher than method 1 making the alternative pair incomparable 

as shown in the credibility matrix (Figure 5-31). 

 

 

 

Figure 5-31  RANK Credibility index for the FFIC case study 

 

5.4.4 Evaluation 

From studying the comparisons of the criteria weights (Figure 5-32) and decision 

variables (Figure 5-33) it is apparent that AHP, as for the GSK case study, has 

emphasised a number of the decision-makers’ criteria weights and qualitative 

decision variables.  

 

 

Figure 5-32  Comparison of the three analyses criteria weights (FFIC) 

 

Figure 5-32 shows that AHP has placed greater emphasis on the weights of c3 (‘ease 

of cleandown’), c4 (‘complexity of solids feeding required’), c5 (‘ease of operation’) 
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and c6 (‘mechanical reliability’) whilst placing less weight on the remaining criteria. 

However, unlike the GSK case study, the exaggerated AHP weights do not correlate 

to the higher weights in the MARE and RANK analyses. c1(‘capital cost at 50’) 

scored the highest in terms of MARE and RANK but the same criterion was not 

selected as the highest weight for AHP. The main inconsistencies between MARE 

and RANK in terms criterion weights were in respect to c7 (‘material losses’), c6 

(‘mechanical reliability’) and c10 (‘power requirements’).  

Figure 5-33 shows that the decision variables in relation to the two quantitative 

criteria (c1 and c2) were the same for the three analyses. However, inconsistencies 

were observed in the decision variables in relation to the eight qualitative criteria. 

The majority of the AHP scores differed to those for the MARE and RANK analyses. 

The main difference between MARE and RANK was in relation to c10 (‘power 

requirements’) but it was the least important criterion (in terms of criteria weight), so 

the variation in this criterion’s decision variables did not have a significant impact on 

the results. The inconsistencies will be investigated and discussed in Chapter 6. 

 

 

Figure 5-33  Comparison of the three analyses decision variables (FFIC) 

 

The results of the three analyses on an ordinal scale are shown in Table 5-10. The 

results show that all three analyses recommended a1 and a4 over a2 and a3. 

However, the order of the results for the three analyses clearly differ.  
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Table 5-10  Comparison of the three analyses (FFIC) 

 1st 2nd 3rd 4th 

AHP a4 a1 a3 a2 

MARE  

(Most Likely value) 
a1 a4 a2 a3 

RANK a1, a4  a2 a3 

 

Table 5-11 shows the results of a sensitivity study where the specific criteria 

weightings for AHP, MARE and RANK have been applied to the other two methods. 

The results indicate that the weighting schemes have little impact on the overall 

results as none of the rankings have been affected by the switching of the criteria 

weights. 

 

Table 5-11  Sensitivity of the criteria weights for the FFIC case study 

 Weighting Scheme 1st 2nd 3rd 4th 

AHP AHP a4 a1 a3 a2 

MARE  AHP a1 a4 a2 a3 

RANK AHP a1, a4  a2 a3 

AHP MARE a4 a1 a3 a2 

MARE  MARE a1 a4 a2 a3 

RANK MARE a1, a4  a2 a3 

AHP RANK a4 a1 a3 a2 

MARE  RANK a1 a4 a2 a3 

RANK RANK a1, a4  a2 a3 

 

Table 5-12 shows the results of a sensitivity study where the decision variables for 

AHP, MARE and RANK have been switched to the other two methods. The results 

show that the changes in the decision variables have a significant impact on the 

ordering of the alternatives. 

The application of the AHP decision variables to RANK resulted in a2 becoming the 

worst alternative. This was a consequence of a2 scoring much lower in terms of c3, 

c4, c5, c6, c8, c9 and c10 in AHP (Figure 5-33). The sensitivity study (Table 5-12) 

also showed that the AHP decision variables placed a4 as the best alternative in all 
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three analyses. This was due to AHP scoring a4 higher than MARE and RANK in 

terms of c4, c5, c6 and c9 (Figure 5-33). 

 

Table 5-12  Sensitivity of the decision variables for the FFIC case study 

 Decision Variables 1st 2nd 3rd 4th 

AHP AHP a4 a1 a3 a2 

MARE  AHP a4 a1 a2 a3 

RANK AHP a4 a1 a3 a2 

AHP MARE a1 a4 a2 a3 

MARE  MARE a1 a4 a2 a3 

RANK MARE a1, a4  a2 a3 

AHP RANK a1 a4 a2 a3 

MARE  RANK a1 a4 a2 a3 

RANK RANK a1, a4  a2 a3 

 

The application of both MARE and RANK decision variables for the three analyses 

resulted in a similar order with the only variation being RANK placing a1 and a4 as 

joint best alternatives. This was caused by a1 and a4 being incomparable, as shown 

in RANK analysis (Figure 5-31). 

The results of the sensitivity studies show that the differences in the decision 

variables are the cause of the differences in the orderings of the three analyses (Table 

5-10). 

 

5.4.5 Post Analyses Interview 

Post analyses, the decision-maker reviewed his experiences and discussed the results. 

On reflection, the decision-maker preferred the MARE tool for its ability to handle 

uncertainty, for the unique way it supports minimum and maximum values in the 

quantitative input and for the visualisation of the output. In particular he liked how 

MARE returned “confidence intervals” as an output. He explained that “the output 

represents reality and therefore I think MARE is good for displaying the real 

situation”. He also stated that “the catch is [with MARE that] you might end up with 

multiple potential decisions still”. This statement refers to the fact that a choice still 

needs to be made in terms of which alternative to select as at times there are overlaps 
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between the uncertainty ranges whilst in comparison, AHP and RANK provide a 

definitive result. 

Considering AHP and RANK, the decision-maker favoured AHP due to “forcing 

direct comparisons” in terms of qualitative input. Furthermore, AHP is potentially 

the tool that can be implemented most quickly but “for a small number of parameters 

only”. In terms of RANK, the decision-maker said he lacked confidence in the tool as 

he was “more nervous of the outputs as AHP and MARE was more clear”. 

Reflecting on the inconsistencies in the three analyses, the decision-maker observed 

how AHP placed considerable emphasis on a number of criteria weights and 

qualitative decision variables. After analysing the input in Figure 5-32 and Figure 

5-33, the decision-maker stated “MARE and RANK are pretty consistent and are 

probably more representative and accurate”. 

From the outputs of the analyses, the decision-maker further evaluated method 4 as it 

had been highly ranked even though from the results of MARE, it showed much 

greater uncertainty. The work undertaken was unable to reveal how achievable 

method 4 was so in the end Fujifilm Imaging Colorants Ltd went with method 1. 

 

5.4.6 Conclusions 

The aim of this case study was to identify the best equipment option to mix a 

substance in the early stages of a development process. The results of MARE and 

RANK were similar in terms of ranking but AHP recommended a completely 

different order. It was recognised that AHP emphasised the decision-makers’ 

preferences with regard to the criteria weights and decision variables. From further 

investigation, it was identified that the variations in the AHP decision variables were 

the cause of AHP providing significantly different results. Post analyses, the 

decision-maker selected method 1 due to the high uncertainty associated with method 

4. Only the MARE method showed the uncertainty associated with method 4 and as a 

result, it was the favoured method for analysing this particular decision problem.  

 

5.5 User Evaluation of the Framework 

Further to the case studies, this section explores the thoughts of professionals from 

the chemistry-using industries that have used the ChemDecide framework. The 
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evaluations of the users were collected in two forms, structured questionnaires and 

semi-structured interviews. In order to reference the views of each individual user, 

the users have been briefly described and numbered from 1 to 5 in Table 5-13. It 

should be noted that user 1 was the decision-maker of the second case study and user 

2 was the decision-maker of the third case study. 

 

Table 5-13  Industrial users who evaluated the framework 

User 

Number 
Company Job title 

Makes WPD 

Decisions 

1 GlaxoSmithKline Processing Engineering Manager Yes 

2 
Fujifilm Imaging 

Colorants Ltd 
Technology Manager Yes 

3 Robinson Brothers Ltd Senior Chemical Engineer Yes 

4 Infineum 
Manufacturing Technology Leader in 

Process Development 
Yes 

5 Proctor and Gamble Senior Process Development Engineer Yes 

 

The conclusions of the three case studies indicated an industrial preference for the 

MARE methodology. However, this section will explore the particular industrial 

preferences in terms of the three tools’ inputs, outputs, ability to handle uncertainty 

and analysis time. Additionally, the users’ opinions regarding the ChemDecide 

package as a whole is explored along with proposals for future work.  

5.5.1 Inputs 

The favoured methods in terms of user input were AHP and MARE. None of the 

users opted for the qualitative or quantitative input of the RANK method. User 5 

stated that he favoured AHP because “of the feedback it provides when ranking the 

different options in terms of the consistency check”. He believed that the consistency 

check helped validate data entry in a group decision-making environment. Users 2 

and 3 also preferred AHP in terms of its qualitative input. User 3 stated “In AHP I 

like the comparison of individual criteria against each other, it makes you think 

about what criteria are really the most important”. However, in terms of quantitative 

input, users 2 and 3 preferred the MARE tool. Both users liked the consideration of 

uncertainty in the inputs which the MARE tool permitted. User 4 preferred the 

MARE method for both qualitative and quantitative input as it “best allows for 
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independent importance and uncertainties”. He also thought that “AHP would be too 

difficult to keep track of [in terms of] the consistency when given a large number of 

criteria”. It was clear user 1 also preferred the MARE tool for both qualitative and 

quantitative input as it allowed “the ability to add uncertainty”.  

5.5.2 Outputs 

All but one of the users favoured the MARE method in terms of output. User 3 

preferred the output of AHP as it was “clear and accurate”. The remaining users 

preferred the MARE tool for its ability to visualise uncertainty. User 4 described the 

visualisation of uncertainty as the “uncertainty impact” while user 2 described it as 

“confidence intervals”. 

5.5.3 Uncertainty 

All of the users preferred the MARE tool for handling uncertainty. Both users 2 and 

4 said that MARE outperformed AHP and RANK as it can display the impact of 

uncertainties rather than just including them in the calculations. 

5.5.4 Analysis Time 

The methods selected as the preferred options for conducting an analysis in terms of 

time were AHP and RANK. Users 2 and 3 selected AHP as the method which was 

quickest to implement, however, user 2 said this would only be applicable for 

problems with “a small number of parameters only”. User 4 considered RANK to be 

the quickest method since it is “the simplest method in terms of keeping consistency 

among inputs”. He explained that ensuring a level of consistency ensures meaningful 

results and it “is the most time consuming step”. User 1 believed that all of the 

analysis methods took a similar time to conduct an analysis.   

5.5.5 Overall Evaluation 

All except user 4 stated that they will use the ChemDecide decision tools again for 

future problems. User 4 explained “for most of the decisions that we need to make we 

would use a simple spread sheet for the decision making process and something 

more complex for understanding and prioritizing the activities to work in each of the 

options - ChemDecide seems to sit in between these two needs”. 
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In contrast, user 1 stated “with a bit of discipline, [ChemDecide] might be a standard 

tool we could use”. Further to this, user 1 explained that he had uniquely benefited 

from the software’s decision recommendations while also finding value in: 

1. “The way [the tools] led you though a structured discussion [(in a group 

decision-making context)], it was very logical”. 

2. “The way [the tools] got you to document what you were doing… it was nice 

to get a report out at the end”.  

User 5 agreed with the first point, stating “I appreciate the tools as they try to make 

the discussion amongst the team less driven on opinion … [the tools] force the team 

to justify their opinions using data”. 

Users 3 and 4 also agreed with the second point with user 3 stating “[the tools] could 

be invaluable when reviewing a process 5 or 10 years later when corporate memory 

is hazy”. 

5.5.6 Future Requirements 

Only two users provided suggestions for further requirements to the ChemDecide 

tools: 

1. User 1 requested the capability to record decision solutions at certain times 

throughout product and process development so a history of solutions can be 

collated and used in subsequent studies. This would be of benefit to corporate 

memory. 

2. User 2 requested that the tools be developed as one software programme. 

This would involve merging the common inputs for all three decision analysis 

modules and providing multiple outputs in a singular software interface. 

5.5.7 Conclusions of the User Evaluation 

It is evident that the MARE method has been favoured over AHP and RANK by the 

industrial users for a number of its features including the ability to visualise 

uncertainty and handle multiple quantitative inputs. However, the users’ are not in 

agreement that MARE is the best method in all the categories discussed. In 

particular, MARE was not recognised for performing well in terms of analysis time. 

The implications of the users’ evaluations on the ChemDecide framework will be 

discussed in Chapters 6 and 7. 

 



Case Studies 

134 

5.6 Conclusions 

This chapter presented three industrial decision-making case studies as well as five 

user evaluations of the framework. Each of three case studies considered a decision 

problem at different stages in the Whole Process Design (WPD) activity (see section 

3.3.2). The goal of the initial case study was to recommend a route to synthesise a 

chemical (route selection stage), case study two’s objective was to propose a 

degasification methodology for a new process (process development stage) and the 

final case study was to select the preferred equipment to mix a substance (flow sheet 

design stage). 

A number of outcomes were identified from analysing the case studies and users’ 

evaluations: 

1. The Robinson Brothers case study demonstrated that with identical data, the 

three analysis methods recommended the same order of results. This 

supported the claims of Huang et al. (2011). 

2. The GSK and FFIC case studies revealed that AHP emphasised a number of 

criteria weights and qualitative decision variables. All pairwise comparisons 

input by the decision-making team were mathematically consistent. 

Therefore, the emphasised scores, in relation to MARE and RANK, were a 

consequence of the unique way AHP calculated the scores. The decision-

maker from GSK stated that the scores highlighted in AHP represented his 

preferences while the decision-maker from FFIC stated the similar scores of 

MARE and RANK represented his preferences.  

3. Although the qualitative input methods for MARE and RANK are identical, 

the GSK and FFIC case studies revealed differences in the criteria weights 

and qualitative decision variables.  

4. In the GSK and FFIC case studies, the ability to visualise the uncertainty of 

the different alternatives by applying the MARE method guided the decision-

makers’ choice. 

5. The recommended alternative for all three case studies matched the 

alternative that had been selected a priori based on intuition. This indicates 

that for the three case studies discussed, system 2 (a structured decision 

analysis) has corresponded to the gut feeling of system 1 (section 2.3.1). 
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6. AHP and MARE were the recommended tools for the Robinson Brothers case 

study while MARE was the favoured tool for the GSK and FFIC case studies. 

7. The MARE method was favoured by the industrial users for a number of its 

features including the ability to visualise uncertainty and handle multiple 

quantitative inputs. However, The MARE method was not recognised for 

performing well in terms of analysis time. 

These outcomes yield a number of questions that will be examined in the subsequent 

chapter: 

RQ7:  What is the source of the inconsistencies in the GSK and FFIC case studies? 

RQ8:  Could the decision-makers’ intuition have influenced the final decision 

results? 

RQ9:  Would the employment of the users’ further requirements in section 5.5.6 

instigate any theoretical or implementation challenges?  

 

By addressing these questions, RQ1 can be re-examined in Chapter 7: 

RQ1:  What is the most effective way to support decision-making in whole process 

design? 
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“Sometimes, in order to make a decision, you need to decide on what is good enough 

rather than necessarily what is best”   Camilla Toulmin (2010) 

 

6 Case Study Discussion 

6.1 Introduction 

This chapter presents a discussion centred on three questions that arose from the 

conclusions of Chapter 5: 

RQ7:  What is the source of the inconsistencies in the GSK and FFIC case studies? 

RQ8:  Could the decision-makers’ intuition have influenced the final decision 

results? 

RQ9:  Would the employment of the users’ further requirements in section 5.5.6 

instigate any theoretical or implementation challenges?  

Each of the three questions will be evaluated independently using the findings from 

the previous chapters in relation to proposed theories and to the scientific literature 

considered. 

 

6.2 Source of the inconsistencies in the case studies 

Chapter 5 presented industrial decision case studies from GlaxoSmithKline (GSK) 

and Fujifilm Imaging Colorants Ltd (FFIC) that were conducted by teams internal to 

each of the organisations. Each case study presented one decision problem that was 

evaluated using three analysis tools (AHP, MARE and RANK) introduced in section 

4.4. An evaluation of the results for each of the analyses with respect to the two case 

studies identified a number of inconsistencies in the criteria weights and in the 

qualitative decision variables. The quantitative decision variables remained constant 

and thus consistent for all of the analyses. The results and inconsistencies for both 

the GSK and FFIC case studies are shown in Figures 6-1 and 6-2 respectively. Both 

figures clearly show that the qualitative weights and scores for the AHP analyses 

were significantly different to the MARE and RANK analyses. The dissimilar input 

(pairwise comparisons) of AHP could account for this. However, the significant 

variation in AHP in comparison to using the MARE and RANK tools may be due to 

the scale of the pairwise selections, this concept is discussed in section 6.2.1.  
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Figure 6-1  Results and inconsistencies in the GSK case study 
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Exaggerated AHP Score       Inconsistent selection between MARE and RANK 
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Figure 6-2  Results and inconsistencies in the FFIC case study 
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As previously discussed, the MARE and RANK analyses shared identical input 

controls for qualitative data entry, thus their selections should have been comparable. 

However, Figures 6-1 and 6-2 show a number of inconsistencies between each of 

these analyses. Two different interpretations of how this could have occurred are 

discussed in sections 6.2.2 and 6.2.3. 

 

6.2.1 Pairwise selection scale 

The results of the GSK case study (Figure 6-1) clearly showed that the AHP method 

has placed greater emphasis on all of the better performing criteria weights and 

qualitative decision variables with respect to the MARE and RANK tools. This 

resulted in the average and lower performing criteria weights and decision variables 

receiving lower preferences with respect to MARE and RANK. The results of the 

FFIC case study (Figure 6-2) also showed a number of similar “exaggerated” 

qualitative decision variables using the AHP method. However, some of the 

preferences that dominated did not correlate to the highest performing criteria 

weights and decision variables in the MARE and RANK analyses.  

The emphasis on the criteria weights and decision variables which were highly 

weighted occurred despite the fact that all of the decision-makers’ pairwise 

comparisons were mathematically consistent. This was confirmed by the consistency 

ratio (CR) being below 0.8 in all of the pairwise comparison sets in both case studies 

(CR is discussed in Chapter 4). Therefore, either the decision-makers’ knowingly 

placed emphasis on their preferences or there are inaccuracies in the 1-9 scale and 

definitions proposed by Saaty (1980): 

 

Table 6-1  Scale of the AHP Method (Saaty, 1980; Saaty & Vargas, 2012) 

Scale Verbal Expression Explanation 

1 Equal importance Two activities contribute equally to the objective. 

3 Moderate importance Experience and judgment slightly favour one activity over 

another. 

5 Strong importance Experience and judgment strongly favour one activity 

over another. 

7 Very strong importance An activity is favoured very strongly over another. 

9 Extreme importance The evidence favouring one activity over another is of the 

highest possible order of affirmation. 

The values of 2, 4, 6 and 8 are compromises between the previous definitions. 
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The 1-9 scale and verbal expressions proposed by Saaty (1980) in Table 6-1 suggests 

a relationship with equal dispersion between the scale values. Consequently, the 

control developed for pairwise comparison input in the AHP tool was a slider bar 

with equal distances between each scale selection as shown in Figure 6-3 and 

Appendix B. However, Salo and Hämäläinen (1997) identified that there is an 

uneven dispersion of values in the AHP selection scale proposed by Saaty (1980). 

 

 

 

Figure 6-3  Input of pairwise comparisons in the AHP tool 

 

They concluded that the difference in selecting between the scale of 1 and 2 is 15 

times greater than the difference in selecting between the scale of 8 and 9 (Figure 

6-4). This indicates that Saaty’s scale (Saaty, 1980) is accountable for the 

overemphasised criteria weights and decision variables in the GSK and FFIC case 

studies. 

 

 

Figure 6-4  Dispersion of preferences in Satay’s scale (Salo & Hämäläinen, 1997) 

 

One solutuion to correct the slider bar in Figure 6-3 would be to modify the spread of 

selections to match the actual range of preferences in AHP (Figure 6-4). Another 

Method 1 

Method 2 

9      8      7      6       5      4      3      2      1      2      3      4       5      6      7       8      9 
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solution, proposed by Salo and Hämäläinen (1997), is to use balanced scales (Figure 

6-5). For example, in Figure 6-5, the scale of 1, 1.22, 1.5, 1.86, 2.33, 3, 4, 5.67, 9 

provides the balanced over [0.1, 0.9] preferences while a scale of 1, 1.27, 1.62, 2.09, 

2.78, 3.86, 5.8, 10.3, 33.3 achieves the balanced over [0.0, 1.0] preferences. These 

scales would ensure an even dispersion of preferences that will subsequently provide 

uniform selections. However, Salo and Hämäläinen (1997) recognised that if a 

balanced scale is utilised, the consistency values which are derived from random 

judgements (section 4.5.2.2), would need to be recalculated in the same way as Saaty 

(1980) to allow for an accurate representation of the consistency ratios.  

 

 

Figure 6-5  Dispersion of preferences in balanced scales (Salo & Hämäläinen, 1997) 

 

Through an experiment investigating the interpretation of verbal statements, Salo and 

Hämäläinen (1997) identified that the balanced scales in Figure 6-5 outperform the 

scale proposed by Saaty (1980) in respect to “capturing the subject’s understanding 

of verbal expressions”. However, it is difficult to set a value which relates to the 

general interpretation of a verbal expression. For example, one person may consider 

‘moderately more important’ as 2.5 or a 4 in a scale between 1 and 9 while Saaty’s 

interpretation is a 3. Such differences make achieving a set of consistent selections 

using a pairwise scale very challenging. 

It is evident therefore from the work of Salo and Hämäläinen (1997) that Saaty’s 

scale (Saaty, 1980) in the AHP method is the primary cause for the inconsistency 

with regard to the over and under emphasis of the criteria weights and decision 

variables in terms of the MARE and RANK analyses. Nevertheless, further work is 

needed to understand and develop a numerical and verbal scale to accurately define 

selections of pairwise comparisons which will satisfactorily represent the majority of 

users’ preferences.  
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6.2.2 Importance and Uncertainty 

Although the input controls for MARE and RANK are identical, in both the GSK and 

FFIC case studies there were a number of inconsistences between the two analyses. 

These are shown in Figure 6-1 and Figure 6-2 respectively. In the GSK case study, it 

was clear that c2 (‘simple to build’) and c5 (‘low cost’) had the most significant 

variation in terms of the criteria weights. These criteria were also the least important 

for all three analyses. Correspondingly in the FFIC case study, the least important 

criterion c10 (‘power requirements’) also showed significant variation. However, in 

the FFIC case study, there was also an average performing criterion c7 (‘material 

losses’) that showed a high amount of variation between the MARE and RANK 

analyses. 

For the decision variables in the GSK case study, three major inconsistencies were 

identified between the MARE and RANK analyses. These were the alternatives a2 

(membrane) and a5 (ultrasonic) with respect to c1 (‘minimise hold up’) and a2 

(membrane) in terms of c5 (‘low cost’). Coincidentally, a2 (membrane) and a5 

(ultrasonic) were the alternatives with the largest uncertainty ranges as shown in 

Figure 5-15. In terms of the decision variables in the FFIC case study, the four major 

inconsistencies between MARE and RANK were for all four of the alternatives with 

respect to c10 (‘power requirements’). As mentioned previously, c10 was the least 

important criterion.  

Together these findings indicate that the inconsistency of a qualitative selection 

between decision analyses is linked to the importance and uncertainty of that 

selection. In terms of uncertainty it is understandable that a decision-maker may 

provide inconsistent selections between analyses as they have limited information to 

define their preference. Furthermore, it is plausible to comprehend that a decision-

maker has provided an inconsistent selection as they perceive the selection to have 

little impact on the decision itself. However, to gather accurate recommendations 

from a structured decision analysis, it is vital that decision-makers select all their 

preferences carefully. 
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6.2.3 Attention and Effort 

The FFIC case study demonstrated a large scale decision problem with a significant 

number of criteria involved in making the decision. The size of the problem 

necessitated the decision-makers to consider a number of qualitative preferences 

which required a significant amount of time and effort. Figure 6-2 shows that the 

majority of the inconsistencies in this case study occurred at the end of the decision-

modelling process, i.e. the decision variables in respect to c10 (‘power 

requirements’). These inconsistencies could be due to the tiredness and lower mental 

acuity of the decision-maker causing a lower level of attention due to the intricacies 

of the decision problem itself. Vohs et al. (2005) refers to this condition as decision 

fatigue. 

Vohs et al. (2005) stated that “choice, to the extent that it requires greater decision-

making among options, can become burdensome and ultimately counterproductive”. 

They argue that making multiple choices requires effort, exhausts self resources and 

thus impairs self-regulation. They also stated that “the most advanced form of 

[decision-making] involves weighing information about currently available options 

to select the option that seems most promising”. This statement clearly describes the 

task of conducting a structured decision analysis. Through a series of experiments 

with undergraduate students, Vohs et al. (2005) found that “self-regulation was 

poorer among those who had made choices than among those who had not”. 

Therefore it is plausible that in a larger decision problem (such as the FFIC case 

study) inconsistencies could occur at the end of the analysis due to prolonged 

attention and mental effort causing decision fatigue. 

 

6.3 Impact of Intuition on the decision results 

In section 2.3.1, the ideas of Kahneman (2011) regarding system 1 (intuition / gut 

instinct which is automatic) and system 2 (deep thought / contemplation that requires 

time and effort) thinking were introduced. The structured decision analyses in the 

ChemDecide software accounts for system 2 thinking by requiring the decision-

makers to deeply evaluate their problem by expressing qualitative and quantitative 

information. The decision structuring tool records the decision-makers instinctive 

choice prior to each analysis which accounts for system 1 thinking. In both the GSK 
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and FFIC case studies, the alternative chosen based on intuition was the same as the 

recommendations given from the structured decision analyses. This section examines 

whether the intuition option selected in the problem structuring phase of the 

decision-making process impacted on the choices made in the structured decision 

analysis phase.  

Potentially by asking the decision-makers to indicate their intuition before the 

analysis, one alternative will be more prominent in the decision-makers’ cognitive 

thought process during the analysis. This could potentially create bias for when the 

decision-makers provide their qualitative (subjective) preferences. However, 

Gigerenzer (2007) stated that “Gut feelings … appear quickly in conciousness, we do 

not fully understand why we have them”. This statement suggests that intuition is 

instinctive and involuntary and thus would most likely be considered in the decision-

making process. 

For example, if asked to research how many miles are between London and Paris, 

instinctively one will (without knowing the answer) estimate a value or at least 

define a range of values cognitively before investigating the answer.  

It can thus be stated that intuition and a structured decision analysis should not be 

considered as two competing tasks. Instead, a decision analysis should be considered 

as an extension of intuition. Indeed, Kahneman (2011) stated that “System 2 [(a 

structured decision analysis)] articulates judgements and makes choices, but it often 

endorses or rationalizes ideas and feelings that were generated by system 1 

[(intuition)]”.  

An explanation as to why the decision-makers’ intuition in the two case studies 

matched the recommendations of the structured decision analysis may be that the 

decision-makers were experienced professionals who used their expert intuition to 

guide their intuitive selection. Nevertheless, as identified in the example of judging 

the distance between London and Paris, intuition (including expert intuition) fails to 

consider quantitative or statistical data (Kahneman, 2011). This information has to be 

collected and analysed, typically after one makes an intuitive selection in terms of 

the decision. Therefore, with regard to the case studies, the selections made using 

intuition are based solely on previous experiences and knowledge, ignoring precise 

data in terms of cost, time, and resources for example. Furthermore, the intuitive 

choices provided no justification for selecting a particular alternative. In contrast, the 

structured decision analysis in the ChemDecide framework allows the decision-
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makers to record and explain the rational basis behind each of their selections. This 

can be used for future reference or for corporate memory.  

In conclusion, the intuitive recommendation provided in the problem structuring 

phase could have influenced the results of the analyses. However, intuition is 

considered as instinctive and involuntary. Without requesting an intuitive response, 

the decision-makers will still consciously or subconsciously have a favoured 

alternative. This should not be considered as a limitation but instead as an advantage 

as expanding on and/or challenging intuition should deliver a more structured and 

explicable decision.  

 

6.4 Theoretical and implementation challenges from the users 

requirements 

The ChemDecide framework was initially developed with the purpose of identifying 

which analysis tools were the most effective for decision-making in WPD. This 

constrained the framework design with each individual software tool sharing similar 

interfaces. This section explores the theoretical and implementation challenges of 

fulfilling two recommendations from industrial users as discussed in section 5.5.6: 

6.4.1 Recommendation 1: Records of solutions at different times 

throughout product and process development 

A user requested the ability to record decision solutions at different points 

throughout product and process development so that an event history could be 

compared and contrasted. This would benefit decision-makers by allowing them to 

accumulate corporate memory that could be used to evaluate future projects at 

particular stages or gates. At present the tools allow for a sensitivity analysis which 

permits the decision-makers to modify their previous input to evaluate a new 

scenario. The new scenarios can be saved for review or future evaluation but it is not 

possible to compare more than one model at any one time.  

There are two implications in adopting the proposal. Firstly, decision files that 

incorporate multiple decision models will need to store more data. Secondly, it will 

be challenging to develop an interface that can handle and present multiple decision 

outcomes. Clearly, the number of decision outcomes considered corresponds to the 

complexity of the interface. If 10 models are considered, then the outcome of 10 
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decisions needs to be displayed simultaneously within the confinements of the user’s 

screen resolution.  

A solution to this problem may be to develop a standalone tool that can be used to 

load a number of past decision models for comparison. The advantage of a 

standalone tool is that the interface can be designed solely for the task of decision 

model comparison instead of combining the interface with the structured decision 

analysis. 

6.4.2 Recommendation 2: Combine the four tools into a single 

software application 

A second recommendation was for the the tools in the ChemDecide framework to be 

built into one single software solution. The advantage of this is that the common 

inputs of the three analysis tools would be merged. This would save the decision-

maker from re-entering information while making it easier to compare the results of 

the three analyses as the recommendations would be displayed in a single software 

interface. Limitations are also associated with this proposal. Firstly, integrating the 

problem structuring tool with the decision analysis tools may result in the rank 

reversal fault in AHP to occur. Segregating the problem structuring from the analysis 

ensures the decision model is not modified after preferences are added which is the 

cause of rank reversal in AHP (section 4.5.1). Furthermore, the input of criteria 

weights and decision variables with respect to the qualitative criteria in AHP is 

different to the MARE and RANK analyses. Therefore, the decision-maker will still 

need to provide pairwise comparisons for AHP alongside the direct slider bar input 

of MARE and RANK.  

Another limitation of a single software framework is that some decisions are better 

solved with specific analysis methods. For example, AHP does not have the 

capability to represent uncertainty, so for problems with high levels of uncertainty, 

MARE or RANK should be utilised as opposed to AHP. Likewise, for smaller 

problems, a number of decision-makers preferred the subjective pairwise input of 

AHP over MARE and RANK (section 5.5.1). Further advantages and limitations of 

each method will be discussed in section 7.2. However, supposing that one method is 

best for addressing a particular problem, requiring the decision-maker to input 

method specific inputs such as pairwise comparisons for AHP, minimum and 
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maximum values for MARE and threshold values for RANK, may consequently be 

more time consuming than using separate software tools.   

Advantages and limitations aside, the main challenge with developing a single 

software solution instead of separate tools is the interface design. Not only are 

multiple inputs required to satisfy the input requirements of the three analysis tools 

but three contrasting outputs also need to be conveyed to the user. With the space 

restrictions of a singlescreen at a standard resolution, designing an intuitive interface 

that will support multiple inputs and outputs is challenging.  

 

6.5 Conclusions 

This chapter identified that inconsistencies occurred in the case studies as a result of 

the input scale of the AHP tool and the importance/uncertainty of independent 

selections. Furthermore, evidence suggests that decision fatigue can account for 

inconsistencies in a large scale decision problem with a high number of criteria and 

alternatives.  

This chapter also revealed that an analysis influenced by intuition is advantageous, as 

expanding on and/or challenging intuition can deliver a more structured and coherent 

decision result.  

Lastly, the chapter discussed two recommendations from industrial users. Both 

amendments would benefit the end user.  However, both ideas require further work 

as the implementation of both concepts would be challenging in terms of the user 

interface design.  

The following chapter concludes the thesis by re-examining RQ1: 

RQ1:  What is the most effective way to support decision-making in whole process 

design? 
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“An organization is a factory that manufactures judgements and decisions. Every 

factory must have ways to ensure the quality of its products in the initial design, in 

fabrication and in final inspections.”  

Nobel Prize Winner, Daniel Kahneman (2011) 

 

7 Conclusions 

7.1 Introduction 

This chapter concludes the thesis by returning to the initial research question: 

RQ1:  What is the most effective way to support decision-making in whole process 

design? 

Subsequently, the thesis contributions, publications, theoretical contributions and 

conclusions are summarised, followed by a description of future work.  

 

7.2 Discussion 

The overarching aim of this thesis was to identify the most effective way to support 

decision-making in Whole Process Design (WPD). Chapter 3 identified through 

interviews and questionnaires that industry requires a decision-making solution for 

WPD that can be used rapidly for complex decisions using a mix of qualitative and 

quantitative data under uncertainty.  

It was identified from the questionnaires that professionals from the chemical-using 

industries have applied the Weighted Sum Method (WSM) in Microsoft Excel for 

structured decision-making. However, the WSM is incapable of handling problems 

with multiple scales and cannot directly account for uncertainty. Consequently, the 

Multi-Attribute Range Evaluations (MARE) technique was proposed in Chapter 4. 

This approach applies a global sensitivity analysis to the WSM to quantify the 

uncertainty present during particular selections. The output of MARE provides a 

solution which allows the user to visualise uncertainty by displaying the most likely 

value, maximum value and minimum value for each alternative.  

Chapter 2 discussed a number of alternative techniques that can be utilised for 

decision-making, with the most widely applied methods being Multi-Criteria 

Decision-Making (MCDA) methods. Within this group of methods, it was identified 
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that Multi-Attribute (MA) and Outranking methods would be the most appropriate 

for solving WPD decisions. This was a consequence of the MA and outranking 

methods being capable of handling qualitative and quantitative information and 

uncertain selections. Within the group of MA methods, the Analytic Hierarchy 

Process (AHP) was identified as the most commonly applied technique in the 

literature. Within a select group of outranking methods, Salminen et al. (1998) 

identified ELECTRE III (RANK) as the best method as it can directly model 

uncertainty using threshold values. 

The performance of the MARE method was evaluated by developing a framework 

that utilised AHP, MARE and RANK. The framework, ChemDecide, comprises of 

four software tools, three relating to the analysis methods and the forth for problem 

structuring. Each analysis tool has its own advantages and limitations. AHP utilises 

pairwise comparisons for qualitaive data input but does not handle uncertainty 

directly. RANK handles uncertainty through the use of pseudo criteria (section 

2.2.5.1) but is a relatively complex method and may not provide results in the form 

of a complete ranking (section 4.5.2.4). MARE visualises the impact of uncertainty 

with uncertainty ranges and is relatively uncomplicated however, the output may 

require further deliberation from the decision-maker (section 5.4.5). 

The output of MARE can be considered as a limitation if the decision-maker wants 

an unambiguous single numerical result (in contrast to AHP and RANK). However, 

MARE is able to present the uncertainty associated with each option. This represents 

the true situation of each alternative and consequently MARE could be considered to 

provide a more informative result than AHP and RANK.  

In the GlaxoSmithKline (GSK) and Fujifilm Imaging Colorants Ltd (FFIC) case 

studies (Chapter 5), the output of the MARE tool directly influenced the company’s 

choices. In the GSK study, the decision-makers selected Packed Column (a1) as their 

degasification methodology over the alternative Membrane (a2) as MARE identified 

Membrane (a2) as having greater uncertainty even though its likely value was greater 

than Packed Column (a1).  Similarly, in the FFIC case study, the decision-makers 

selected Method 1 over Method 4 to mix a substance in the early stages of a 

development process as Method 4 exhibited greater uncertainty when the MARE tool 

was utilised. 

The user evaluation of the analysis tools showed that all but one person preferred the 

MARE method in terms of output due to the visualisation of uncertainty. The user 
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who did not prefer MARE selected AHP as they considered the result “clear and 

accurate”. This indicates that this particular user preferred an unambiguous result 

with a single numerical output provided for each option. 

The user evaluation also showed that all of the users preferred the MARE tool for 

handling uncertainty. However, the MARE tool was not the favoured method for 

some aspects. In terms of the time required to conduct an analysis, the users 

preferred AHP and RANK. This was a consequence of MARE requiring the input of 

three values for each alternative with respect to each criterion. The MARE approach 

necessitates only three values for uncertain selections and with the range slider bar, 

the input for qualitative selections is rapid and automatically valid in terms of 

minimum > most likely > maximum. The time required to provide qualitative input 

for the AHP tool is dependent on the size of the decision problem. For example, if a 

problem considers three alternatives, only three pairwise comparisons are required 

for each qualitative criterion. However, if a decision problem considers ten 

alternatives, thirty-five pairwise comparisons are required. The RANK tool requires 

one score for each alternative along with three threshold values for each criterion. 

Therefore, for larger problems with significant uncertainty, RANK would require the 

lowest number of input selections from the user. It can be stated that the number of 

input selections required for each analysis tool is dependent on the size of the 

problem and the uncertainty present. This was identified by the decision-makers of 

the FFIC case study (section 5.5.4). 

In terms of selecting between AHP, MARE and RANK for decision-making in 

WPD, the choice is not straightforward. From reviewing the three WPD case studies 

discussed in Chapter 5, both the AHP and MARE methods were able to recommend 

a single best alternative. RANK failed to provide a complete ranking in the FFIC 

case study as it recommended two alternatives as joint best. As discussed, the MARE 

method, unlike AHP and RANK provides additional information regarding the 

uncertainty of each option along with the most likely values for each alternative. Due 

to the nature of WPD decisions where uncertainty is present, understanding the true 

situation (in regards to uncertainty) behind each decision outcome is crucial to the 

success of decision-making in WPD. Therefore, with the visual interpretation of 

uncertainty in terms of the output of MARE, it is proposed as the most effective way 

to support decision-making throughout WPD. Nevertheless, further investigations are 

still required and are discussed in section 7.5. 
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7.3 Thesis Contribution 

In summary the main contributions of this thesis are as follows: 

 An extensive literature review identified and described the most commonly 

applied decision-making techniques for Multi-Criteria Decision Analysis. 

 A further literature review identified techniques proposed for decision-

making in chemical product and process development. 

 Two semi-structured interviews and two structured questionnaires identified 

the industrial requirements for decision-making in whole process design. 

 A novel methodology, Multi-Attribute Range Evaluations (MARE), was 

proposed as a solution for decision-making in whole process design. 

 A novel two-phase system (problem structuring then analysis) for decision-

making was proposed to prevent rank reversals, ensure consistency 

throughout multiple analyses and to encourage the decision-maker to focus 

on the problem structuring process. 

 A software framework (ChemDecide) was developed which contains four 

tools, one for problem structuring and three for analysis.  

 Three industrial whole process design decision-making case studies were 

developed in collaboration with Robinson Brothers, GlaxoSmithKline and 

Fujifilm Imaging Colorants Ltd. 

 Structured questionnaires and semi-structured interviews identified the 

thoughts of five professionals who used the ChemDecide framework. 

 Inconsistencies that arose in the three industrial case studies were analysed 

and discussed. 

 Behavioural decision-making was introduced and the idea that intuition 

affects a structured decision analysis was discussed. 

 

7.4 Publications 

Hodgett, R. E., Martin, E., Montague, G., Talford, M., 2012. Handling uncertain  

decisions in Whole Process Design. Production Planning & Control. Under Review. 

 

Hodgett, R. E., Manipura, A., Martin, E., Montague, G., 2013. Comparison of AHP, 

MARE and ELECTRE III for Equipment Selection. European Journal of Operational 

Research. Expected Submission.  
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7.5 Theoretical Contributions 

This thesis introduces a number of theoretical contributions and assumptions. The 

following of which have been discussed in detail: 

 A number of theories were proposed for how the inconsistencies occurred in 

the industrial decision case studies presented in Chapter 5. In particular, the 

importance and uncertainty of independent selections, the input scale of AHP 

and decision fatigue are thought to be accountable for the inconsistencies 

identified (section 6.2). 

 A theory was proposed that considers intuition to be beneficial to the 

decision-making process as expanding on and/or challenging intuition should 

deliver a more structured/coherent decision result (section 6.3). 

 The majority (87%) of the industrial members questioned (section 3.3.3.3) 

required support for group decision-making. However, all group decision-

making models suffer from intransitivity and bias from dominant members 

(section 2.3.2). Various theories are proposed to tackle these issues: 

o Ensuring decision-makers collectively reflect on their findings and 

carry out a sensitivity study will encourage silent members to voice 

their opinion. 

o Justifying (discussing and clarifying) each selection in the decision-

making process will also encourage silent members to voice their 

opinion. 

o Checking for mathematical consistency in the decision-making 

process will insure transitivity of the decision-makers selections.  

All of the above techniques have been incorporated (where possible) into the 

ChemDecide framework. 

One theoretical contribution relating to dynamic alternative/value focused thinking 

was given less coverage in the earlier chapters. This theory will be clarified and 

elucidated in the proceeding section. 

7.5.1 Dynamic problem structuring with values and objectives 

As discussed in section 2.2.2.1, various theories have been proposed to 

systematically guide the identification of criteria and alternatives in the decision 

structuring process. Alternative focused thinking refers to the process of identifying 
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alternatives then identifying criteria. Keeney (1992) instead proposed value focused 

thinking which refers to the process of identifying criteria then identfying 

alternatives. More recently, Corner, et al. (2001) proposed dynamic decision problem 

structuring which is a process that cycles between value focused thinking and 

alternative focused thinking (Figure 7-1). The idea is that the consideration of criteria 

prompts creative thinking about the alternatives which in turn generates new criteria, 

and so on. 

Alternatives

(Alternative Focused Thinking)

Criteria

(Value Focused Thinking)

 

Figure 7-1  Dynamic Decision Problem Structuring (Corner, et al., 2001) 

 

Although the dynamic decision problem structuring process “encourages decision 

makers to reflect on and learn about their values and the problem context” (Belton & 

Stewart, 2010), Franco & Montibeller (2009) believe that the theory lacks 

psychological asepects (e.g. how to instigate creativity) and group dynamics (e.g. 

how to identify and display complex scenarios to a group of decision-makers). 

Therefore, the dynamic decision problem structuring model was adapted to include 

two preceding steps, definition of the problem and brainstorm objectives (Figure 7-

2). This model was incorperated into the decision structing software 

(DecisionStructure) of the ChemDecide framework (Figure 4-4). 

 

Alternatives

(Alternative Focused Thinking)

Criteria

(Value Focused Thinking)

Brainstorm Values/ 

Objectives

Define Problem

 

Figure 7-2  Dynamic Decision Problem Structuring with Values and Objectives 
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There are two advantages to the amended problem structuring model. Firstly, the 

define problem stage insures that the decision-makers collectively understand the 

problem they are trying to solve. Secondly, the brainstorm objectives and values 

stage permits the decision-makers to gather and discuss goals and outlooks which 

can be used to identify suitable alternatives and criteria. Although this model was 

evaluated empirically by the three industrial case studies discussed in chapter 5, it is 

difficult to measure the proficiency of the theory without directly comparing it to 

other problem structuring models.  

 

7.6 Conclusions 

In summary the main conclusions of this thesis are as follows: 

 Professionals in the chemical-using industries require a system for rapidly 

making complex decisions with limited/uncertain information in whole 

process design. 

 A number of techniques have been proposed for decision-making in the 

chemical-using industries but only three methods have been considered to 

address real-world problems in the literature; Analytic Hierarchy Process 

(AHP), Analytic Network Process (ANP) and Weighted Sum Method 

(WSM). 

 Many professionals in the chemical-using industries use techniques for 

brainstorming but very few utilise methods for a structured decision analysis. 

 From the WPD stages defined by Sharratt (2011), members of Britest Ltd 

indicated that the most commonly faced decision problem was chemical route 

selection. 

 A newly proposed methodology, Multi-Attribute Range Evaluations 

(MARE), outperformed the Analytical Hierarchy Process (AHP) and 

ELECTRE III (RANK) in terms of handling and visualising uncertainty. 

 A case study with Robinson Brothers Ltd demonstrated that with identical 

criteria weights and decision variables, multiple analysis methods recommend 

the same order of results supporting the claims of Huang et al. (2011). 

 An evaluation of the inconsistencies in the GlaxoSmithKline and Fujifilm 

Imaging Colorants Ltd case studies identified that: 
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o There is an uneven dispersion of scale values in the Analytical 

Hierarchy Process. 

o Decision-makers are more likely to make inconsistent qualitative 

selections when the choice has little impact on the decision itself or is 

associated with high amounts of uncertainty. 

o Decision-makers who evaluate large decision problems with many 

alternatives and criteria (such as the Fujifilm Imaging Colorants Ltd 

case study) may suffer from “decision fatigue”. 

 Intuition is valuable in guiding a structured decision-analysis as expanding on 

and/or challenging intuition can deliver a more structured and coherent 

decision recommendation.  

 

7.7 Future Work 

This section addresses particular areas where further research is required. 

7.7.1 Further case studies 

Britest Ltd intend to add the ChemDecide software framework to their collection of 

tools and methodologies. As a consequence of this, further case studies will be 

developed with the industrial members of Britest. These case studies will be used to 

validate the findings in Chapter 5 and assess the proposed theories in Chapter 6. 

7.7.2 Guidelines for method selection 

Although this thesis proposes the use of Multi-Attribute Range Evaluations (MARE) 

for whole process design decisions (where uncertainty is high), it is evident from the 

user evaluations in section 5.5 that MARE is not necessarily the best method for all 

decision problems. The nature of the problem, i.e. the complexity, uncertainty 

present, number of alternatives/criteria etc., may be used to select a particular MCDA 

method. This concept needs to be investigated further to see if a selection algorithm 

or procedure can be added after the problem structuring process and before the 

structured decision analysis. 
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7.7.3 Group decision-making 

The respondents of the questionnaires in Chapter 3 acknowledged that group 

decision-making was a highly sought after feature in a decision-making framework 

for use in whole process design. The GlaxoSmithKline and Fujifilm Imaging 

Colorants Ltd case studies demonstrated that the ChemDecide framework can 

successfully be used in a group decision-making environment by one person 

undertaking the analysis. However, as discussed in section 2.3.2, French (2007) 

suggested the use of an online individual voting system in group decision-making to 

overcome biases. This idea needs to be investigated further and possibly 

implemented into the ChemDecide framework.  

7.7.4 Customise the software framework 

Two users requested modifications to the interface of the ChemDecide framework. 

These were to develop all of the four tools into a single software solution and to 

implement the ability to record decision solutions at different times throughout 

product and process development. Both of these requirements need to be investigated 

further to see if the amendments are possible and if they will add value to the 

framework. 

7.7.5 AHP Scales 

In section 6.2.1 it was identified that the pairwise selection scale in AHP (Saaty, 

1980) was accountable for the overemphasised criteria weights and decision 

variables in the GSK and FFIC case studies. Salo and Hämäläinen (1997) proposed 

two balanced scales, balanced over [0.1, 0.9] and balanced over [0.0, 1.0], to achieve 

an even dispersion of preferences in the AHP method. To investigate the 

effectiveness of the balanced scales, the values in  

 

Table 7-1 for balanced over [0.1, 0.9] and balanced over [0.0, 1.0] can be used 

instead of the values proposed by Saaty (1980) in the ChemDecide framework.  

The GSK and FFIC case studies can then be re-evaluated to see if the criteria weights 

and decision variables of AHP (using the amended scale values) are more consistent 

with the criteria weights and decision variables of the MARE and RANK analyses.  
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Table 7-1  AHP Scale values 

Saaty (1980) Scale: 1 2 3 4 5 6 7 8 9 

Balanced Over [0.1, 0.9]: 1 1.22 1.5 1.86 2.33 3 4 5.67 9 

Balanced Over [0.0, 1.0]: 1 1.27 1.62 2.09 2.78 3.86 5.8 10.3 33.3 

 

7.7.6 Commercialisation 

In 2011, the author of this thesis was awarded with a £3,000 enterprise grant to 

commercialise the ChemDecide software for use in other industries. The grant was 

awarded by the EPSRC and Newcastle University’s Medical School.  The plan is to 

rebrand the tools as generic decision-making solutions and licence them to 

companies in industries that deal with finance, consultancy and engineering. 
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Appendix A 

This appendix contains the two structured questionnaires that are discussed in 

section 3.3. The options for the drop down boxes have been superimposed. 

Questionnaire One (25/01/2010 – 19/02/2010) 

 

Options: Male | Female 

Options: Yes | No 
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Options: Yes | No 

Options: Yes | No 

Options: a system that only guides the user in the right direction quickly | a 

system that produces precise results for decisions with a lengthy entry procedure 

Options: 5minutes | 15minutes | 30minutes | 1 hour | under 24 hours | 2-3 days | under a week | unlimited time 
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Questionnaire Two (08/08/2010 – 27/08/2010) 

 

Options: Male | Female 
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Appendix B 

This appendix presents the Graphical User Interfaces (GUIs) of the ChemDecide 

framework. The GUIs must guide industrial users to structure their decision problem 

and evaluate three decision analysis methods. The analysis methods were developed 

with similar interfaces, utilising identical controls and forms where possible. As the 

industrial users may have little understanding of the decision-making processes, the 

GUIs need to be intuitive to lead the users through the process of building and 

evaluating a decision using each analysis tool. The GUIs of Decision Structure (the 

problem structuring tool) and the three analysis methods (AHP, MARE and RANK) 

are discussed independently followed by a section describing the contents of each 

decision file output. 

 

Decision Structure 

After executing the decision structure program, a screen appears which allows the 

user to define their goal, team and decision timeframe: 

 

 

 

A tabular menu at the top allows progression through the various forms of the 

interface. The primary advantage of the tabular menu is that the user can return and 

advance to any section that needs adjustment. The second menu screen allows the 

Define timeline 
(for decision report) 

List of people present 

Progress menu 

Goal 

Add people present 
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user to brainstorm objectives and values. These will be used later to define 

appropriate criteria. The user can add and remove objectives/values from a list, there 

are no validation checks made on the information entered.  

 

 

 

The third screen allows the user to define their decision alternatives. Similarly to the 

previous screen, the form permits the user to add and remove items from a list. As 

each alternative needs to be unique, a validation check is made when adding a new 

item to ensure there are no duplicates in the list.   

 

 

 

Add objectives/values 

List of values  

and objectives 

Add alternative 

List of alternatives 
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The next two screens require the user to define and explain their criteria. The 

previous list of values and objectives are shown to stimulate the user’s thought 

process. Similarly to the alternative input, validation checks are made to ensure every 

criterion is unique.  

 

 

 

 

 

Once a set of criteria are established, the user must provide justification, a detailed 

description and a designated source for each criterion. This information is collected 

for the concluding analysis reports.  

Set criterion source 

Set criterion aim 

Add criterion name 

List of values  

and objectives 

Describe criterion 

source 
 

Describe why 

criterion is essential 
 

Add criterion 

description 
 

List of criteria 
(select to define) 
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The final screen requires the user to validate their input by ensuring they have data 

for each alternative in respect to each criterion. The user can then select an 

alternative which they intuitively consider best and then save the decision file. 

 

 

 

 

 

  

List of criteria and 

alternatives for 

review 
 

Set Intuition 
(select gut feeling) 
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Analysis Tools 

The initial screens of the analysis tools are shown below. The interfaces are identical 

besides individual icons which identify each method. 

 

 

AHP  

MARE  

RANK  

 

The user can load data from a Decision Structure file by accessing the selection 

menu at the top and selecting Open from the File menu. Once a file is opened, a 

Selection Menu 

RANK Icon 
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tabular menu is generated with the first screen requiring the user to define their 

criteria weights using slider bars. 

 

 

AHP  

MARE  

RANK  

 

As the sliding bars are repositioned: 

 The weights are calculated and displayed as normalised percentage values on 

a pie chart.  

Consistency Checker 

Pie chart showing 

normalised weights 

(%) 

Area to write justification 

for selection 

Pie chart updates as 

SliderBars are altered Word model description 
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 A word model description of the selection is updated, for example: Average, 

Good, Very Good and Excellent. 

 In AHP, the consistency checker is updated. 

 

 

AHP  

MARE  

RANK  

 

After the user is satisfied with their criteria weightings, they can progress through the 

tabular menu which contains a tab for each criterion. The screens for qualitative and 

quantitative criterion are different as they require different inputs. The qualitative 

Description of selection 

Updated consistency 

checker 

Description of selection 

Updated Pie Chart 
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data entry screens for each tool are shown below. In AHP, the user defines their 

pairwise comparisons using slider bars. A consistency checker is located at the 

bottom of the screen. As the slider bars are repositioned the Consistency Ratio (CR) 

is calculated and the status of the consistency check is updated.  

 

 

AHP  

MARE  

RANK  

 

In the MARE tool the user also defines each alternative with a slider bar but instead 

of using pairwise comparisons, the user positions the bar depending on preference 

Description of selection 

 

Rationality for selection 

Updated consistency 

checker 

Range Slider Bar 

Threshold selection control 
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with the far left being a low preference and the far right being a high preference. If 

the user is uncertain about a selection, they can enable the range slider bar by ticking 

the uncertainty range box. The range slider bar operates similarly to the previous 

slider bar but allows for the input of minimum, most likely and maximum values.  

The RANK tool requires the user to define each alternative with a slider bar and 

select threshold values using the threshold selection control.  

The quantitative data entry screens for each of the analysis tools are shown below. 

 

 

AHP  

MARE  

RANK  

Uncertainty 

range selection 

Threshold selections 
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All three tools require the input of a source and measurement unit along with 

numerical scores for each alternative. The MARE method also allows the user to 

enter minimum and maximum values whilst the RANK method requires threshold 

values. 

The final two screens in the tabular menu contain results and decision data: 

 

 

AHP  

MARE  

RANK  

 

View different distillations 
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The results chart for AHP (shown above) provides numerical values in the form of a 

bar chart, MARE presents the minimum, most likely and maximum values for each 

alternative and RANK presents three rankings, descending, ascending and final. 

The analysis charts for AHP and MARE show a spider diagram of the decision 

variables while the analysis chart for RANK shows the credibility matrix: 

 

 

AHP  

MARE  

RANK  

 

Key which updates when 

particular values are selected 
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Post analysis, the user can choose to save a decision file or generate a report (in 

Word or PDF format) from the selection menu.   

 

Decision File Output 

Each of the four modules provides an output as an independent decision file. The 

data stored in each file is shown below: 

 

Decision File Outputs 

 DecisionStructure AHP MARE RANK 

File extension *.ds *.cdf *.cdfm *.cdr 

Data Stored Number of criteria, 

Number of alternatives, 

Goal, Decision-Makers, 

Alternative names, 

Criteria 

names/aim/source, 

criteria definitions,  

gut instinct selection.  

All data in *.ds with: 

SliderBar values with 

rationality for criteria 

weights. SliderBar 

values with rationality 

for qualitative criteria. 

Data source, units and 

alternative values for 

quantitative criteria.   

All data in *.ds with: 

SliderBar values with 

rationality for criteria 

weights. SliderBar 

and RangeSliderBar 

values with rationality 

for qualitative criteria. 

Data source, units and 

alternative values 

(min, likely and max) 

for quantitative 

criteria.   

All data in *.ds with: 

SliderBar values with 

rationality for criteria 

weights. SliderBar 

and Threshold 

Selection Control 

values with rationality 

for qualitative criteria. 

Data source, units, 

alternative and 

threshold values for 

quantitative criteria.   

 

Each algorithm stores every data element on a separate line within each decision file. 

Currently the data is not encrypted but the code was written such that an encryption 

algorithm could be implemented to secure the data. This will be necessary if 

companies wish to keep their decision-making information secure.  
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Appendix C 

This appendix contains the decision data for the four analyses presented in Chapter 5. 

 

Route Selection Problem (Robinson Brothers) 

Interview transcript 

The following information allowed the criteria weights and decision variables to be 

generated for this case study: 

 

Route one: 

“We would guess the overall non-isolated yield from this route to be ~80%. There 

are no toxic reagents and it would have been comfortably within the price target. The 

problem with this route is the isolation of the final product, which is highly water-

soluble, and getting it away from the inorganic by-products would be a major 

problem. The chemistry involved was well known and would not have taken 

significant development time. Handling highly odorous material would be a major 

problem (show-stopper?) for many chemical manufacturers but high odour 

containment is a speciality for Robinson Brothers (RBL).” 

 

Route two: 

“We would have guessed an overall yield of ~70% from this route non-isolated. 

Separation of the final product from inorganics would be far less of a problem and 

we have carried out the chemistry on an analogue so know it well. The problem with 

this route is that the high cost of the starting material put us out of the park on 

overall economics.” 

 

Route three: 

“We would have postulated an overall yield of ~75% from this route with less 

problems associated with separations of the required product from the probable by-

products. Use of highly odorous material would again be an issue but not for RBL. 

The chemistry is solid and we would fully expect it to be successful. Problem with 

this route is that the starting material is moderately expensive and highly toxic.” 
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AHP Analysis (Robinson Brothers) 

The criteria matrix below shows the pairwise comparisons for the criteria weights: 

1 2 3 4 5

1 1 3 2 6 9

2 0.3333 1 0.5 8 7

3 0.5 2 1 5 8

4 0.1666 0.125 0.2 1 5

5 0.1111 0.1429 0.125 0.2 1

c c c c c

c

c

c

c

c

 

 

The table below shows the decision variables for the quantitative criterion:  

 Source Units Route 1 Route 2 Route 3 

c1. Yield Estimated Values % 80 70 75 

 

The matrices below show the pairwise comparisons for the decision variables in 

respect to each criterion: 

 

c2. Toxicity 

1 2 3

1 1 4 8

2 0.25 1 4

3 0.125 0.25 1

route route route

route

route

route

 

 

c3. Cost 

1 2 3

1 1 8 6

2 0.125 1 0.3333

3 0.1667 3 1

route route route

route

route

route

 

 

 

c4. Ease of Separation 

1 2 3

1 1 0.1429 0.1429

2 7 1 1

3 7 1 1

route route route

route

route

route
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c5. Odour Expulsion 

1 2 3

1 1 0.2 0.5

2 5 1 6

3 2 0.1667 1

route route route

route

route

route

 

 

MARE Analysis (Robinson Brothers) 

The table below shows the weight for each criterion: 

 Score (/100) 

c1. Yield 84 

c2. Toxicity 42 

c3. Price 56 

c4. Separation 12 

c5. Odour 6 

 

The table below shows the decision variables in respect to each criterion: 

  a1 a2 a3 

c1. Yield 

Estimated Value (%) 

Minimum 78 68 73 

Likely 80 70 75 

Maximum 82 72 77 

c2. Toxicity 

Score (/100) 

Minimum 69 20 5 

Likely 71 22 07 

Maximum 73 25 9 

c3. Price 

Score (/100) 

Minimum 74 5 15 

Likely 76 07 17 

Maximum 78 9 19 

c4. Separation 

Score (/100) 

Minimum 10 92 92 

Likely 12 94 94 

Maximum 14 96 96 

c5. Odour 

Score (/100) 

Minimum 9 71 14 

Likely 11 73 16 

Maximum 13 75 18 
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RANK Analysis (Robinson Brothers) 

The criteria weights for RANK are identical to the MARE analysis. 

 

The table below shows the decision variables in respect to each criterion: 

 Thresholds a1 a2 a3 

c1. Yield 

Estimated Value (%) 

Indifference: 1 

80 70 75 Preference: 5 

Veto: 10 

c2. Toxicity 

Score (/100) 

Indifference: 5 

71 22 07 Preference: 20 

Veto: 50 

c3. Price 

Score (/100) 

Indifference: 5 

76 07 17 Preference: 15 

Veto: 65 

c4. Separation 

Score (/100) 

Indifference: 5 

12 94 94 Preference: 20 

Veto: 90 

c5. Odour 

Score (/100) 

Indifference: 5 

11 73 16 Preference: 20 

Veto: 55 
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Degassing Methodology Selection (GSK) 

AHP Analysis (GSK) 

The matrix below shows the pairwise comparisons for the criteria weights: 

1 2 3 4 5

1 1 4 0.1111 1 3

2 0.25 1 0.1111 0.3333 1

3 9 9 1 9 9

4 1 3 0.1111 1 2

5 0.3333 1 0.1111 0.5 1

c c c c c

c

c

c

c

c

 

 

The table below shows the decision variables for the quantitative criterion: 

 c3. Technically 

Possible Selection 

Source Experience 

Units Yes=1 and No=0 

a1 1 

a2 1 

a3 1 

a4 1 

a5 0 

 

The matrices below show the pairwise comparisons for the decision variables in 

respect to each qualitative criterion: 

 

c1. Minimises Hold Up 

1 2 3 4 5

1 1 0.25 3 4 0.5

2 4 1 6 5 2

3 0.3333 0.1666 1 1 0.5

4 0.25 0.2 1 1 0.5

5 2 0.5 2 2 1

a a a a a

a

a

a

a

a
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c2. Simple to Build 

1 2 3 4 5

1 1 0.3333 3 3 0.3333

2 3 1 6 6 2

3 0.3333 0.1666 1 1 0.3333

4 0.3333 0.1666 1 1 0.3333

5 3 0.5 3 3 1

a a a a a

a

a

a

a

a

 

 

c4. Available Now 

1 2 3 4 5

1 1 5 2 2 5

2 0.2 1 0.25 0.25 3

3 0.5 4 1 0.5 4

4 0.5 4 2 1 4

5 0.2 0.3333 0.25 0.25 1

a a a a a

a

a

a

a

a

 

 

c5. Low Cost 

1 2 3 4 5

1 1 1 3 3 5

2 1 1 1 1 1

3 0.3333 1 1 1 1

4 0.3333 1 1 1 1

5 0.2 1 1 1 1

a a a a a

a

a

a

a

a

 

 

 

MARE Analysis (GSK) 

The table below shows the scores provided for the criteria weights: 

 Score (/100) 

c1. Minimises Hold Up 71 

c2. Simple to Build 26 

c3. Technically Possible 96 

c4. Available Now 61 

c5. Low Cost 50 
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The table below shows the decision variables for each criterion: 

  a1 a2 a3 a4 a5 

c1. Minimises Hold Up 

Score (/100) 

Minimum 49 56 25 6 45 

Likely 61 88 40 40 50 

Maximum 75 97 48 48 60 

c2. Simple to Build 

Score (/100) 

Minimum 58 58 29 29 4 

Likely 62 70 35 36 50 

Maximum 66 75 51 52 93 

c3. Technically Possible 

No=0 / Yes=1 

Minimum 1 1 1 1 0 

Likely 1 1 1 1 0 

Maximum 1 1 1 1 0 

c4. Available Now 

Score (/100) 

Minimum 87 25 74 74 0 

Likely 91 76 85 85 17 

Maximum 100 83 97 97 39 

c5. Low Cost 

Score (/100) 

Minimum 69 25 34 28 3 

Likely 80 80 50 50 50 

Maximum 91 91 59 59 75 

 

 

 

 

RANK Analysis (GSK) 

The table below shows the scores provided for the criteria weights: 

 Score (/100) 

c1. Minimises Hold Up 72 

c2. Simple to Build 39 

c3. Technically Possible 94 

c4. Available Now 64 

c5. Low Cost 36 
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The table below shows the decision variables in respect to each criterion: 

 Thresholds a1 a2 a3 a4 a5 

c1. Minimises Hold Up 

Score (/100) 

Indifference: 5 

60 79 34 50 74 Preference: 20 

Veto: 80 

c2. Simple to Build 

Score (/100) 

Indifference: 5 

62 62 39 38 50 Preference: 20 

Veto: 80 

c3. Technically Possible 

No=0 / Yes=1 

Indifference: 0.1 

1 1 1 1 0 Preference: 1 

Veto: 0 

c4. Available Now 

Score (/100) 

Indifference: 5 

82 51 70 70 8 Preference: 20 

Veto: 80 

c5. Low Cost 

Score (/100) 

Indifference: 5 

67 50 45 45 50 Preference: 20 

Veto: 80 
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Premix Equipment Selection (FFIC) 

AHP Analysis (FFIC) 

The criteria matrix below shows the pairwise comparisons for the criteria weights: 

1 2 3 4 5 6 7 8 9 10

1 5 0.25 0.3333 0.25 0.5 5 3 2 8

2 0.2 1 0.25 0.3333 0.25 0.5 4 2 2 7

3 4 4 1 2 1 1 5 6 5 9

4 3 3 0.5 1 0.5 3 5 5 4 8

5 4 4 1 2 1 3 5 6 5 9

6 2 2 1 0.3333 0.3333 1 4 5 2 6

7 0.2 0.25 0.2 0.2 0.2 0.25 1 2 1 4

8 0.3333 0.5 0.1667 0.2 0.1667 0.2 0.5 1 1 3

9 0.

1

c c c c c c c c c c

c

c

c

c

c

c

c

c

c

5 0.5 0.2 0.25 0.2 0.5 1 1 1 4

10 0.1250 0.1429 0.1111 0.125 0.1111 0.1667 0.25 0.3333 0.25 1c

 

The table below shows the decision variables for the quantitative criterion: 

 c1. Capital cost at 50 c2. Capital cost at 100 

Source Estimated Figures Estimated Figures 

Units Capital Expenditure 

(£ * 1000) 

Capital Expenditure 

(£ * 1000) 

a1 400 500 

a2 500 500 

a3 375 750 

a4 200 400 

 

The matrices below show the pairwise comparisons for the decision variables in 

respect to each criterion: 

c3. Ease of cleandown 

1 2 3 4

1 1 3 3 2

2 0.3333 1 1 1

3 0.3333 1 1 1

4 0.5 1 1 1

a a a a

a

a

a

a
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c4. Complexity of solids feeding required 

1 2 3 4

1 1 1 0.25 0.25

2 1 1 0.25 0.25

3 4 4 1 1

4 4 4 1 1

a a a a

a

a

a

a

 

 

c5. Ease of operation 

1 2 3 4

1 1 0.5 0.5 0.5

2 2 1 0.5 0.5

3 2 2 1 1

4 2 2 1 1

a a a a

a

a

a

a

 

 

c6. Mechanical reliability 

1 2 3 4

1 1 1 1 0.5

2 1 1 1 0.5

3 1 1 1 0.5

4 2 2 2 1

a a a a

a

a

a

a

 

 

c7. Material losses 

1 2 3 4

1 1 1 3 3

2 1 1 3 3

3 0.3333 0.3333 1 1

4 0.3333 0.3333 1 1

a a a a

a

a

a

a

 

 

c8. Ease of modelling at lab scale 

1 2 3 4

1 1 6 6 3

2 0.1666 1 1 0.25

3 0.1666 1 1 0.25

4 0.3333 4 4 1

a a a a

a

a

a

a
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c9. Quality of vendor support 

1 2 3 4

1 1 2 1 1

2 0.5 1 0.5 0.5

3 1 2 1 0.5

4 1 2 2 1

a a a a

a

a

a

a

 

 

c10. Power requirements 

1 2 3 4

1 1 3 4 3

2 0.3333 1 2 1

3 0.25 0.5 1 0.5

4 0.3333 1 2 1

a a a a

a

a

a

a

 

 

 

 

 

MARE Analysis (FFIC) 

The table below shows the scores provided for the criteria weights: 

 Score (/100) 

c1. Capital cost at 50 88 

c2. Capital cost at 100 71 

c3. Ease of cleandown 74 

c4. Complexity of solids feeding required 63 

c5. Ease of operation 76 

c6. Mechanical reliability 58 

c7. Material losses 50 

c8. Ease of modelling 

at lab scale 
42 

c9. Quality of vendor support 50 

c10. Power requirements 22 
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The table below shows the decision variables in respect to each criterion: 

 

 

 

 

  a1 a2 a3 a4 

c1. Capital cost at 50 

£ * 1000 

Minimum 350 400 300 160 

Likely 400 500 375 200 

Maximum 500 600 450 350 

c2. Capital cost at 100 

£ * 1000 

Minimum 450 400 500 300 

Likely 500 500 750 400 

Maximum 600 600 900 700 

c3. Ease of cleandown 

Score (/100) 

Minimum 80 66 26 33 

Likely 80 66 26 33 

Maximum 80 66 26 33 

c4. Complexity of solids 

feeding required 

Score (/100) 

Minimum 28 32 61 61 

Likely 28 32 61 61 

Maximum 28 32 61 61 

c5. Ease of operation 

Score (/100) 

Minimum 66 65 64 65 

Likely 66 75 64 65 

Maximum 66 80 64 65 

c6. Mechanical 

reliability 

Score (/100) 

Minimum 50 50 50 50 

Likely 50 50 50 50 

Maximum 50 50 50 50 

c7. Material losses 

Score (/100) 

Minimum 72 56 33 44 

Likely 72 56 33 44 

Maximum 72 56 33 44 

c8. Ease of modelling 

at lab scale 

Score (/100) 

Minimum 75 24 23 28 

Likely 75 24 23 28 

Maximum 75 24 23 28 

c9. Quality of vendor 

support 

Score (/100) 

Minimum 50 48 50 18 

Likely 50 48 50 18 

Maximum 50 48 50 18 

c10. Power 

requirements 

Score (/100) 

Minimum 57 56 38 46 

Likely 57 56 38 46 

Maximum 57 56 38 46 
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RANK Analysis (FFIC) 

The table below shows the scores provided for the criteria weights: 

 Score (/100) 

c1. Capital cost at 50 88 

c2. Capital cost at 100 77 

c3. Ease of cleandown 74 

c4. Complexity of solids feeding required 62 

c5. Ease of operation 73 

c6. Mechanical reliability 50 

c7. Material losses 68 

c8. Ease of modelling 

at lab scale 
44 

c9. Quality of vendor support 50 

c10. Power requirements 14 
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The table below shows the decision variables in respect to each criterion: 

 Thresholds a1 a2 a3 a4 

c1. Capital cost at 50 

£ * 1000 

Indifference: 50 

400 500 375 200 Preference: 100 

Veto: 200 

c2. Capital cost at 100 

£ * 1000 

Indifference: 100 

500 500 750 400 Preference: 200 

Veto: 300 

c3. Ease of cleandown 

Score (/100) 

Indifference: 5 

75 62 32 39 Preference: 20 

Veto: 80 

c4. Complexity of solids 

feeding required 

Score (/100) 

Indifference: 5 

29 35 62 63 Preference: 20 

Veto: 80 

c5. Ease of operation 

Score (/100) 

Indifference: 5 

70 76 70 69 Preference: 20 

Veto: 80 

c6. Mechanical reliability 

Score (/100) 

Indifference: 5 

50 50 50 50 Preference: 20 

Veto: 80 

c7. Material losses 

Score (/100) 

Indifference: 5 

81 65 35 45 Preference: 20 

Veto: 80 

c8. Ease of modelling 

at lab scale 

Score (/100) 

Indifference: 5 

73 19 20 31 Preference: 20 

Veto: 80 

c9. Quality of vendor support 

Score (/100) 

Indifference: 5 

50 50 50 14 Preference: 20 

Veto: 80 

c10. Power requirements 

Score (/100) 

Indifference: 5 

72 62 19 30 Preference: 20 

Veto: 80 

 


