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Abstract 

 

Breast cancer is a complex set of diseases with different biological and clinical 

characteristics. An important contribution to this diversity is provided by germ-line 

genetic variations. The HER2-positive breast cancers have been extensively studied 

with particular regard to their biology and targeted treatments. However, the 

influence of pharmacogenetic (PG) factors on these aspects remains largely 

unexplored. This research focused on the possible effects of common single nucleotide 

polymorphisms (SNPs) on specific aspects of HER2-positive disease.  

Initially we analysed two coding SNPs in the HER2 gene (Ile655Val and Ala1170Pro) in 

breast cancer patients and evaluated their potential association with HER2 expression 

in tumour samples. The proline variant of the Ala1170Pro SNP was associated (odds 

ratio = 1.7, p = 0.01) with HER2 over-expression/amplification in over 360 breast 

cancer patients. In contrast, Ile655Val was not associated with HER2 over-

expression/amplification. Bioinformatics tools predict that Ala1170Pro might affect the 

structure or function of the HER2 protein. The same variants were explored in the 

context of DNA extracted from the patients’ primary tumours in 241 patients. We 

hypothesized that the proline allele of Ala1170Pro could undergo allele-specific 

amplification during the development of HER2-positive tumours. This hypothesis, 

however, was not confirmed. Although the association of the proline allele of 

Ala1170Pro with HER2 positivity is intriguing, the role of the two SNPs in HER2 over-

expression/amplification remains to be elucidated. 

Trastuzumab has radically changed the treatment of HER2-positive breast cancer. 

However, resistance to treatment and toxicity can limit its effectiveness. The second 

objective of this project was the analysis of PG, biomarker and pharmacokinetic (PK) 

parameters in trastuzumab-treated patients. Fc Gamma Receptors (FcRs) are key 

proteins in the trastuzumab-induced Antibody-Dependent Cell-Mediated Cytotoxicity 

(ADCC) and two coding SNPs in these genes (FCGR2A His131Arg and FCGR3A 

Phe158Val) were analysed. 

The measurement of trastuzumab in plasma was made possible by the development of 

a novel cell-based ELISA. 
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Only 28 patients with advanced disease treated with trastuzumab were recruited. 

However, we observed a possible association of the valine allele of the FCGR3A 

Phe158Val SNP with a longer time to progression (p = 0.03). Cardiac toxicity was 

assessed in a group of 139 patients treated with adjuvant trastuzumab. Although a role 

of germ-line genetic variants could not be demonstrated, the analysis highlighted the 

challenges and limitations encountered in the conduct of an observational 

pharmacogenetic study.  

This project leaves a legacy archive composed of germ-line DNA samples, tumour DNA 

samples, plasma samples and tumour FFPE blocks from over 360 breast cancer 

patients. These samples and data are available for the exploration of further potential 

factors which might influence the biology of the disease and/or its response to 

treatment. 
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Chapter 1. Introduction 
 

1.1 Breast cancer 

1.1.1 Epidemiology and risk factors 

Breast cancer is the second most common malignancy worldwide (the most common 

among women) after lung/bronchus neoplasms, with 1,383,500 estimated new cases 

in 2008 (Jemal et al., 2011). It caused 458,400 estimated deaths worldwide in 2008, 

being the fourth cause of death from cancer overall (after lung/bronchus, stomach and 

liver) and the first cause among women.  

While female gender is the strongest and most obvious risk factor, many other genetic 

and environmental elements interact and contribute to the development of this 

disease. On the one hand, besides the long-known mutations in genes such as BRCA1 

and BRCA2 which are associated with the occurrence of the relatively rare hereditary 

breast cancers (Hall et al., 1990), multiple more common low-penetrance genetic 

variations have been proposed as possible determinants of a small increase in risk in 

different populations (Zhang et al., 2011). On the other hand, well-established 

environmental risk factors include age, a long menstrual history, nulliparity or late age 

at first birth, use of postmenopausal hormone replacement therapy or oral 

contraceptives and alcohol consumption (Hulka and Moorman, 2008). The wide 

variation in the incidence rates seen among different world areas (highest in Western 

Europe and North America, lowest in sub-Saharian Africa and Asia) has been at least in 

part explained by differences in reproductive/hormonal factors and the availability of 

early detection services, but it could also be influenced by the different genetic 

predisposition of the various ethnicities.  

In the United Kingdom in 2008 48,034 new cases and 12,116 deaths were reported 

(CRUK, 2011). As in other Western countries the incidence rate of breast cancer has 

increased over the last 30-40 years due to the introduction of screening programmes. 

This implementation, together with the establishment of more effective treatment, 

also contributed to a significant reduction in the mortality rate (Figure 1.1). 
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Figure 1.1: Breast cancer incidence and mortality rates in GB, females, 1975 - 2008. 
From CRUK (2011) 

 

The same effect is also well illustrated by the rise in the ten-year survival rate from 

approximately 40 % to over 70 % over the last 30 years of the twentieth century 

(Figure 1.2). 

 

 

 

 

 

 

 

 

Figure 1.2: Ten-year relative survival rates, females breast cancer, England and Wales, 1971 - 2000. 
From CRUK (2011) 

 

1.1.2 Biology 

The most common histologic type of cancer of the breast is the carcinoma, which 

arises from the tubulo-alveolar unit of the mammary gland. “Breast cancer” and 



3 

 

“breast carcinoma” are often treated as synonyms in the literature and they are 

considered as such in this thesis. Like many other epithelial neoplasms, the 

development of breast carcinomas is characterized by a sequence of progressive steps 

which include flat epithelial atypia, atypical hyperplasia, in situ carcinoma and invasive 

carcinoma. This evolution is supported by a large amount of immunohistochemical, 

genomic and transcriptomic data (Bombonati and Sgroi, 2011). Once the tumour cells 

acquire the capacity to invade the basal membrane, they can enter the lymphatic 

system and the cardiovascular system.  Such cells can potentially give rise to 

metastases, initially to regional lymph nodes and subsequently to distant organs (more 

frequently bone, skin, liver and lungs).  

Within this common framework, however, breast cancer does not appear to be a 

homogenous disease.  Rather, from many perspectives, it emerges as a complex and 

numerous set of distinct entities. Firstly, many histopathologic subtypes have been 

described, of which the most frequent are the ductal and lobular types. In addition, 

there are several relatively rare variants which include tubular, cribriform, mucinous, 

neuroendocrine, papillary, apocrine, metaplastic and other even rarer forms. 

Furthermore, the grade of differentiation classifies the cancers as well, moderately and 

poorly differentiated on the basis of the microscopic similarity of the tumour cells to 

normal breast tissue, evaluated in terms of tubule formation, nuclear pleomorphism, 

and mitotic count (Elston and Ellis, 1991).  

Besides the different microscopic appearance of the tumours, another important 

discriminating factor is the presence of particular markers which are also fundamental 

therapeutic targets. The expression of oestrogen and/or progesterone receptors, 

which occurs in up to 80% of cases, is historically the first biologic factor which has 

been extensively evaluated and taken into account as a possible driver of treatment 

choice (Cleator et al., 2009). The expression of the Human Epidermal growth factor 

Receptor 2 (HER2) and its biological and pharmacological implications will be discussed 

in Sections 1.2, 1.3 and 1.4. 

More recently high-throughput technologies have allowed the emergence of different 

molecular classifications based on differential expression of sets of genes (Perou et al., 

2000) and investigations on the possible role of gene-silencing by epigenetic 

modifications are currently under way (Orlando and Brown, 2009). 

http://en.wikipedia.org/wiki/Papillary
http://en.wikipedia.org/wiki/Metaplasia
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The biologic heterogeneity of breast cancer, highlighted by all the scientific approaches 

included in this incomplete list, may at least in part explain the wide variation seen in 

the clinical behaviour of the disease. Indeed, the marked differences observed in terms 

of presence/absence of metastases, time required to metastasise, sites of metastases, 

time pattern of disease progression, responsiveness to different anti-cancer drugs etc. 

have been interpreted as resulting from tumour diversity. However, the diversity in the 

host’s biology and its interactions with the tumour are also of fundamental importance 

and constitute a major focus of this thesis. 

 

1.1.3 Overview of multi-modal treatment 

The possible therapeutic strategies for breast cancer are traditionally subdivided into 

the three broad categories of surgical, radiation and systemic approaches. The surgical 

treatment, essentially aimed at the removal of the primary tumour, has undergone an 

important process of refinement during recent decades, which has led to more 

effective and, when possible, less destructive operations (Luini et al., 2007). 

Radiotherapy is mainly based on the use of ionizing radiation, which causes damage to 

the DNA of the tumour cells and subsequent cellular death. As with surgery, the 

technique of radiotherapy has significantly improved over time, obtaining a more 

accurate targeting of the tumour areas, with a lower dose of radiation delivered to the 

normal tissues (Van Limbergen and Weltens, 2006). Finally, systemic treatment 

includes a wide range of anti-cancer drugs. Chemotherapy was first employed in the 

1950s and currently there are tens of agents approved for clinical use in the Western 

countries and thousands of new compounds under pre-clinical or clinical development 

worldwide. 

The choice among these different therapeutic strategies and their combination or 

sequence depends on many interacting factors which are schematically illustrated in 

Figure 1.3.     

The stage of the tumour, which discriminates between early disease (in which the 

spread of the tumour is confined to the breast and regional lymph nodes) and 

advanced disease (in which distant metastases are present) is a first fundamental 

determinant. In the case of early breast cancer the strategy has a curative intent and 

usually consists of a surgical operation which can be accompanied by radiotherapy 
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and/or systemic treatments which aim at reducing the risk of recurrence (adjuvant 

treatments). The efficacy and toxicity of adjuvant treatments have been demonstrated 

by countless studies over recent decades.  A quinquennial analysis is performed by the 

Early Breast Cancer Trialists' Collaborative Group (EBCTCG), based on updated data on 

individual patients randomised into the main trials of the treatment of early breast 

cancer (Clarke et al., 2005; EBCTCG, 2005; CTSU, 2011). In the case of advanced breast 

cancer the intent of the treatment is generally palliative, although it is possible in some 

cases to obtain a control of the disease which lasts for several years. In this setting 

systemic treatments usually play the main role, but radiation and surgical options can 

still be adopted in order to achieve a better palliation or prolong the patients’ survival 

in selected cases (Pockaj et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Factors influencing therapeutic choice in breast cancer 

 

A second factor influencing therapeutic choice is the presence of biologic targets on 

the tumour. One of the most important targets is the expression of hormone receptors 

(HR), which allows the use of a wide range of anti-hormonal agents, in both the 

adjuvant and the palliative settings (Pritchard, 2003; Cigler and Goss, 2007). A second 
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well-validated target is the HER2 receptor, which is the main focus of this thesis and 

will be discussed in detail in the next sections. There are also several potential 

biomarkers which have been recently described and are currently being validated in 

clinical trials. One of these is the presence of mutations in the BRCA genes (Tutt et al., 

2010), which is being evaluated as a potential indicator of sensitivity to approaches 

that target DNA repair deficiency, such as Poly (ADP-ribose) polymerase (PARP) inhibitors. 

Other important determinants of the therapeutic choice are listed in Figure 1.3. 

 

1.1.4 Individualization of treatment 

It has been clear for many years that not all breast cancer patients receiving the same 

treatment would respond in the same way, showing a wide variability in terms of both 

efficacy and side effects. The accumulation of a variety of therapeutic options, 

especially among systemic treatments, with different efficacy and toxicity spectra, has 

prompted efforts toward a better individualization of breast cancer therapy. Many 

studies have therefore been conducted in order to identify factors which could predict 

the different outcomes of patients treated with particular drugs. As exemplified in 

Figure 1.4, a predictive factor can influence the outcome of a group of patients who 

receive a given treatment, but it has no effect on patients who do not receive the same 

treatment (Figure 1.4b).  

 

 

 

 

 

 

 

Figure 1.4: Influence of a predictive or prognostic factor on outcome of patients receiving a given 
treatment. 
X-axis: time, Y-axis: probability of patients’ survival. a) Patients who receive an effective treatment have 
a longer survival compared to patients who don’t receive the treatment; b) If patients are stratified 
according to the presence of a predictive factor the group of treated patients is split  in a subgroup of 
patients who benefit more and a subgroup of patients who benefit less from the treatment, whereas 
the untreated patients have the same outcome irrespectively of the presence of the factor; c) If patients 
are stratified according to the presence of a prognostic factor both treated and untreated groups are 
split in subgroups of patients with better or worse prognosis 
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An analogous effect can be observed with regard to the toxicity profile of a therapeutic 

approach. In contrast, a prognostic factor can affect the survival of patients 

irrespective of their treatment (Figure 1.4c). 

The use of tamoxifen, a selective estrogen receptor modulator (SERM), can be 

regarded as an early example of treatment individualization. While this drug was 

initially prescribed to all postmenopausal breast cancer patients, it became gradually 

clear that only the patients whose tumour expressed hormone receptors would 

achieve a clinical benefit and tamoxifen use was restricted to HR-positive breast cancer 

patients, irrespective of their age (EBCTCG, 1998). The use of HER2-targeted therapies 

is also regarded as a successful strategy of treatment individualization and will be 

described in the next sections. 

Among the efforts towards a better personalization of anti-cancer therapy, 

pharmacogenetics (PG) could play a major role. Pharmacogenetic studies investigate 

the influence of heritable genetic factors on drug response and toxicity and could offer 

key benefits in the field of oncology, where commonly used therapeutics are often 

characterized by a narrow therapeutic window and a wide inter-individual variability in 

terms of both anti-tumour activity and side effects. Several well-known examples 

include the role of thiopurine methyltransferase (TPMT) polymorphisms in treatment 

with thiopurines (Wang and Weinshilboum, 2006), the effect of genetic variations of 

Uridine 5’-diphospho-glucoronosyltransferase (UGT1A1) on irinotecan toxicity 

(Innocenti and Ratain, 2006) and the influence of dihydropyrimidine dehydrogenase 

(DYPD) variants on 5-fluorouracil toxicity (van Kuilenburg, 2006). 

In breast cancer, the most extensively studied PG relationship is that between 

cytochrome P450 2D6 (CYP2D6) variations and tamoxifen activity and toxicity, whose 

clinical relevance and applicability is still under debate (Kelly and Pritchard, 2012; Rae 

et al., 2012; Regan et al., 2012). Other emerging potential determinants of response 

and/or toxicity are being evaluated with regard to several systemic treatments, 

including aromatase inhibitors, anthracyclines, taxanes, bevacizumab and, as detailed 

in the next chapters, trastuzumab (Marsh and Liu, 2009; Longo et al., 2010; Jamieson 

and Boddy, 2011).  
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1.2 HER2  

1.2.1 HER family and HER2 

The HER2 (Human Epidermal growth factor Receptor 2) protein is part of a family of 

four transmembrane growth factor receptors (ErbB protein family, or Epidermal 

Growth Factor Receptor - EGFR - family, or HER family) which function to activate 

intracellular signalling pathways in response to extracellular signals. HER proteins are 

widely expressed and important for the development and function of many organs and 

systems, including brain, skin, lung, gastrointestinal tract and heart.  

Their structure, illustrated in Figure 1.5, consists of an extracellular ligand-binding 

domain, a transmembrane domain and an intracellular tyrosine kinase domain.  

The binding of a ligand induces a conformational 

change in the extracellular domain of ErbB 

proteins that promotes their dimerization and 

consequent transphosphorylation.  

Unlike the other members of the family, the 

extracellular domain of HER2 exists in a 

constitutively active conformation.  HER2 in fact 

lacks ligand-binding activity and its signalling 

function is engaged by its ligand-bound 

heterodimeric partners HER1, HER3 and HER4 

(Moasser, 2007).  

HER2 plays a key role in many physiological 

processes such as cell growth, cell death, 

differentiation and tissue development, but it is 

also involved in carcinogenesis and metastasis.  

The transforming potential of the rodent cellular homologue of HER2 - neu - was first 

demonstrated in the 80s, when a point mutation - a valine residue to a glutamic acid 

residue at position 664 - in the transmembrane domain (Bargmann et al., 1986) was 

found to be essential for tumour formation. Subsequently, several other deletion 

mutations within the extracellular juxtamembrane region that promote dimerization 

and enhanced kinase activity (Siegel and Muller, 1996) were described.  

Figure 1.5: Structure of HER 
proteins. 
Modified from Moasser (2007) 
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Differently from mice, human tumours appear to show over-expression of the receptor 

as the main or the only tumorigenic mechanism. The diverse and interacting 

downstream pathways involved in HER2-induced tumorigenesis have been reviewed 

by Moasser (2007). 

 

1.2.2 HER2 and breast cancer 

HER2 is abnormal in approximately 20% of breast cancers (Owens et al., 2004; Yaziji et 

al., 2004; Choritz et al., 2011) and this abnormality consists in the amplification of the 

region where the gene is located (chromosome 17, long arm - 17q12-q21). In the vast 

majority of cases, amplification leads to an over-expression of the protein on the 

tumour cell membrane.  

A number of studies suggest that amplification of HER2 is a very early event in the 

development of invasive carcinomas and it is usually maintained throughout the 

natural history of the tumour (Liu et al., 1992; Park et al., 2006). Furthermore, gene-

expression analyses have shown that HER2-amplified breast cancers are likely to 

represent one of the four or five distinct molecular subtypes of the disease (Perou et 

al., 2000). 

These tumours have been clearly demonstrated to have an overall poorer prognosis in 

comparison with the HER2-negative group (Slamon et al., 1987; Andrulis et al., 1998). 

They also have particular biological and clinical characteristics, including poor 

differentiation, high histologic grade, high proliferation rate (Prati et al., 2005) and a 

typical pattern of metastases to the brain, as reviewed by Leyland-Jones (2009). 

The potential influence of HER2 status on the response to various anticancer agents - 

anthracyclines, taxanes, tamoxifen, aromatase inhibitors - has been extensively 

studied, but with mixed results (Pegram et al., 1997; Schiff et al., 2005; Pritchard et al., 

2006; Hayes et al., 2007; Rasmussen et al., 2008). In particular, the potential role of 

HER2 in sensitivity to anthracyclines has been attributed by several authors to the 

occurrence of co-amplification of the TOP2A gene (Di Leo et al., 2002; Press et al., 

2011). This gene, encoding for the topoisomerase IIα enzyme (target of anthracycline 

therapy), is also located on 17q12-q21 and genetic aberrations of this region were 

described in a significant proportion of HER2-amplified tumours (Jarvinen et al., 1999). 

However, data do not seem to be conclusive (Romero et al., 2012) and a recent meta-
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analysis of individual data conducted on more than 3,000 patients from five 

randomised adjuvant trials does not support the use of HER2 and TOP2A as molecular 

markers to predict anthracycline activity (Di Leo et al., 2011). 

HER2 is currently tested on all newly diagnosed breast cancers using Immuno-Histo-

Chemistry (IHC) and/or In Situ Hybridization (ISH), according to the recommendations 

issued by the American Society of Clinical Oncology  (ASCO) and the College of 

American Pathologists (CAP) (Wolff et al., 2007) (Figures 1.6 and 1.7). Although the 

ASCO/CAP guidelines certainly provided an important framework for the 

standardization of HER2 testing, a number of issues are currently being debated. These 

include, among others, the assessment and the potential role of the chromosome 

enumeration probe 17 (CEP17) and chromosome 17 polysomy (Moelans et al., 2011; 

Tse et al., 2011) and the evaluation of varying degrees of HER2 

amplification/overexpression within the same tumour (HER2 intra-tumoral 

heterogeneity) (Ohlschlegel et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Optimal algorithm for HER2 testing (IHC). 
From Wolff et al. (2007) 
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Figure 1.7: Optimal algorithm for HER2 testing (ISH). 
From Wolff et al. (2007) 

 

Most importantly, HER2 is the target of the monoclonal antibody trastuzumab 

(commercial name Herceptin™), which will be reviewed in Section 1.3. 

 

1.2.3 HER2 Extra-Cellular Domain  

The Extra-Cellular Domain (ECD) of HER2 can be cleaved from the surface of breast 

cancer cells by matrix metalloproteases and released into the circulation (Zabrecky et 

al., 1991; Leitzel et al., 1992), where it can be detected and measured by 

immunological techniques (Payne et al., 2000; Meenakshi et al., 2002). 

In a review of the literature published by Leary et al. (2009) HER2 ECD has been 

reported to be present in serum of 23% to 62% (median 36.5%) unselected (i.e. HER2-
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positive and HER2-negative) metastatic breast cancer patients and in 3.1% to 34% 

(median 11.4%) unselected early stage disease patients.  

HER2 ECD has been extensively evaluated over the last 20 years with regard to its 

potential use in many different clinical situations.  These include determination of 

HER2 status in unselected patients, estimation of prognosis, prediction of response to 

chemotherapy or hormonal therapy, trastuzumab and lapatinib, and follow-up of 

individual patients. Importantly, the absence of standardization in terms of assay 

techniques and cut-off (which is applied to distinguish between ‘normal’ and ‘raised’ 

concentrations) as well as the marked heterogeneity of the studies make the 

comparison of these results problematic and jeopardize the validity of any systematic 

review (Leyland-Jones and Smith, 2011).  

With this limitation in mind, the comprehensive literature review published by 

Leyland-Jones and Smith (2011) has recently confirmed the conclusions reported by 

Leary et al. (2009) and Lennon et al. (2009). In summary: 

- evidence so far does not support the use of HER2 ECD to determine the HER2 

status of a primary tumour or metastases; 

- high levels of HER2 ECD have been demonstrated to be an independent marker of 

poor prognosis in metastatic patients, but not in the early stage setting; 

- in terms of therapeutic outcome, results are inconsistent with regard to its 

potential role as a predictive marker of response to cytotoxic or endocrine 

treatments, and pre-treatment level does not seem to predict for outcome in 

trastuzumab treated patients; 

- a rise in HER2 ECD concentration during HER2-targeted treatments appears to be a 

marker of bad outcome, but its negative predictive value is generally low. 

In conclusion, current evidence is insufficient to support routine clinical use of HER2 

ECD outside of a clinical trial (Harris et al., 2007; Leary et al., 2009; Lennon et al., 2009; 

Leyland-Jones and Smith, 2011).  

 

1.2.4 Single Nucleotide Polymorphisms in HER2 

Although rare HER2 mutations have been reported in lung cancers, no mutations 

within the transmembrane domain or other regions of the receptor have ever been 
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described in naturally occurring breast cancers. However, sequence analysis of human 

cDNA clones has identified several Single Nucleotide Polymorphisms (SNPs) within the 

gene and some have been extensively studied in relation to breast cancer. 

The first one to be discovered is related to a residue in the transmembrane region at 

codon 655 (Papewalis et al., 1991) and encodes either isoleucine (Ile; ATC) or valine 

(Val; GTC).  Interestingly, this SNP occurs near the position where mutations are 

observed in the rat neu homologue (Val664Glu), within a consensus sequence that is 

known to induce transmembrane helix dimerization (N-terminal dimerization motif).  

Using computational methods Fleishman et al. (2002) have proposed a model in which 

the HER2 homodimer can switch from one ‘active’ conformation to an ‘inactive’ 

conformation without crossing exceedingly unfavourable states. This model may 

explain why the Ile655Val SNP may have a role in carcinogenesis: whereas activating 

Val664Glu mutation (in rat neu) would shift the equilibrium toward the active dimeric 

form, the substitution of Val for a bulkier Ile residue in this position would destabilize 

the formation of active dimers that are mediated by the N-terminal dimerization motif. 

Consequently, receptor activation will be reduced, even under conditions of HER2 

overexpression. 

Ile655Val (Reference SNP Cluster Report rs1136201 in the National Centre for 

Biotechnology Information - NCBI - SNP database) is a relatively common 

polymorphism, with a substantial variability of the Minor Allele Frequency (MAF) 

across different populations (from 2% to 50%). In particular the valine allele appears to 

be more frequent in Caucasians, less frequent in Asian populations and extremely rare 

in African groups (NCBI_a, 2009). These data have been confirmed by Kallel et al. 

(2010), who discussed their findings in a Tunisian population in the context of several 

previous reports from different ethnicities (Figure 1.8). 

Since a pivotal paper (Xie et al., 2000) suggested an increased risk of breast cancer 

among carriers of the Val allele in a Chinese case-control study, many epidemiological 

studies have evaluated this potential association in different populations, resulting in 

inconsistent or even contradictory data. 
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Figure 1.8: Allele frequencies of the Ile655Val polymorphism in controls. 
From Kallel et al. (2010) 

 

Several recent meta-analyses (Tao et al., 2009; Lu et al., 2010; Dahabreh and Murray, 

2011; Ma et al., 2011) have collected data from the numerous published reports 

(ranging from 20 to 33 reports per analysis), with total numbers ranging from 9,209 

cases and 10,132 controls in Ma et al. (2011) to 20,461 cases and 23,832 controls in 

Dahabreh and Murray (2011). Taken together, these analyses were not able to 

consistently demonstrate an association between the Ile655Val Val allele and an 

increased risk of breast cancer. 

A second common coding SNP (Reference SNP Cluster Report rs1058808) encodes 

either alanine (Ala; GCC) or proline (Pro; CCC) at residue 1170, within a C-terminal, 

intracellular regulatory domain (Xu et al., 2000). The frequency of the proline allele 

varies from more than 50% in European series to approximately 10-20% in African 

populations (NCBI_b, 2009).  This polymorphism has not been evaluated for its 

potential biologic function so far, but two studies have assessed its influence on breast 

cancer risk, both focusing on Caucasian cases of familial tumours. In particular, in the 

first paper (Frank et al., 2005) the authors did not find any association of the 

Ala1170Pro SNP with occurrence of familial breast cancer. Likewise, the second group 

(Tommasi et al., 2007) observed no difference in allele frequencies between cases and 

controls, but the proline variant was associated with the presence of oestrogen 

receptors and with two missense polymorphisms in the BRCA1 gene. These two SNPs 
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have been examined in several studies which reported inconclusive results on their 

role in breast or ovarian cancer risk (Dombernowsky et al., 2009). 

After the discovery of the ‘Haplotype Blocks’ structure of the human genome (Gabriel 

et al., 2002), a few groups have applied a ‘tagging SNP’ approach in order to study 

linkage disequilibrium and haplotype patterns of different HER2 genetic variants in 

relation to breast cancer risk (Han et al., 2005; Benusiglio et al., 2006; Einarsdottir et 

al., 2006). In particular, Han and co-workers (2005) showed that in a Korean 

population the two Ile655Val and Ala1170Pro SNPs could be used as haplotype-tagging 

variants and the three haplotypes defined by their combinations would account for 

94% of the total predicted haplotype variation (it should be noticed, however, that this 

finding is not generalizable to all ethnicities). None of these studies showed any 

significant association between HER2 haplotype patterns and risk of breast cancer.  

 

HER2 SNPs and HER2 expression 

Both SNPs have been evaluated by several authors for their potential role in HER2 

over-expression or amplification and the results of these analyses are summarized in 

Table 1.1. As described in the table, one major confounding factor can be that the 

methods used for assessing the HER2 status of tumours vary significantly across the 

studies, and the definitions of “HER2-positivity” are often much broader than the 

accepted standard definition illustrated in Figures 1.6 and 1.7.  Moreover, the numbers 

of patients in these studies are sometimes small and do not allow an adequately 

powered statistical analysis. 

With these caveats, inconsistent results seem to emerge from the synopsis, for both 

the Ile655Val and the Ala1170Pro SNP. In two of the papers listed in Table 1.1 (Benz et 

al., 2006; Puputti et al., 2006) the authors also considered the differences in genotype 

between germ-line DNA and tumour DNA. Both groups found that, in most cases of 

heterozygous germ-line genotype, only one of the two alternative alleles of the two 

SNPs was detectable in the context of the HER2-amplified breast tumours. These 

observations inspired the piece of research described in Chapter 5 and will be 

discussed in detail in Section 5.7. 

 

 



16 

 

  Ref 
Method for HER2 
expression 

Method for HER2 
amplification 

SNP 
Method 
for SNP 

Pts 
no. 

Findings 

Zheng 
et al. 
(2001) 

 

FISH 
(amplification 

ratio  2.0 for 
HER2 gene over 
chromosome 17 
centromere) 

Ile655Val RFLP based 134 
Border-line association between 
HER2 amplification and Val allele. 
(P=0.095) 

Millikan 
et al. 
(2003) 

IHC ("unambiguous 
membrane staining in 
at least 10% inv cells 
showing a weak, 
moderate or strong 
staining intensity”) 

 Ile655Val 

TaqMan 
based 

611 
Non-significant trend for 
association between HER2 
positivity and Val allele. (P=0.17) 

 Differential PCR Ile655Val 506 
No association between HER2 
amplification and Val allele. 
(P=0.96) 

An et 
al. 
(2005) 

IHC (3 classes: +3 / +2 
/ 0-1) 

 Ile655Val RFLP based 169 
Non-significant trend for 
association between HER2 
negativity and Ile allele. (P=0.11) 

Puputti 
et al. 
(2006) 

IHC (+3 = positive) CISH Ile655Val sequencing 27 

No test performed 

No obvious influence of SNP on 
HER2 amplification or expression 

Kallel et 
al. 
(2010) 

IHC (“at least 5% of 
tumour cells stained”) 

 Ile655Val RFLP based 89 
Border-line association between 
HER2 positivity and Ile allele. 
(P=0.091) 

Benz et 
al. 
(2006) 

 CGH and qRT-PCR A1170Pro 

Single base 
primer 
extension 
method 

673 

No test performed 

HER2-pos and HER2-neg from two 
different populations 

No obvious difference in 
distribution of genotypes 
between HER2-pos and HER2-neg 

Han et 
al. 
(2005) 

IHC (2 classes: +0-1 / 
+2-3) 

 
Haplotype 
analysis 

Single base 
primer 
extension 
method 

1094 

Found 7 haplotypes, using 6 SNPs 
in HER2 

3 of these 7 haplotypes had 
frequency > 5% and comprise 
93.8% of the total variation 

These 3 haplotypes were 
distinguishable with only two 
SNPs: Ile655Val  and A1170Pro 

Haplo I:  Ile655Val A A1170Pro C  

Haplo II:  Ile655Val A A1170Pro G 

Haplo III:  Ile655Val G A1170Pro G  

In Haplo I patients (both homo 
and heterozygous) HER2 protein 
overexpression (2+ and 3+) in 
tumours was 1.5 times higher 
than others (P=0.009); excluding 
HER2 2+ cases OR increased to 1.8 
(P=0.004) 

 

Table 1.1: HER2 SNPs and expression of HER2 in primary tumours. 
Legend: RFLP (Restriction-Fragment Length Polymorphism), CISH (Chromogenic in situ hybridization), 
CGH (Comparative Genomic Hybridization), qRT-PCR (Quantitative Real Time Polymerase Chain 
Reaction) 
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1.3 Trastuzumab 

1.3.1 Introduction and mechanisms of action 

Trastuzumab (Herceptin™ - Roche) is a humanised Monoclonal Antibody (mAb) of the 

immunoglobulin G1 type directed against the extracellular juxtamembrane portion of 

HER2. It can be administered alone or in combination with different chemotherapeutic 

agents, showing a remarkable synergistic effect. Trastuzumab is the first mAb which 

has been shown to prolong life in patients with an epithelial tumour and is currently 

approved by the American and European regulatory authorities for both advanced and 

early stage HER2-positive breast cancers. A comprehensive review of its pharmacology 

and its use in breast cancer was prepared and published during the conduct of this 

project and is presented in Appendix 1 (Cresti and Jamieson, 2010).  

Various mechanisms of action have been described, including: 

- inhibition of signal transduction pathways (e.g. the RAS-MAPK pathway and the 

PI3K-AKT-mTOR pathway); 

- blocking of cleavage of the extracellular domain;  

- endocytosis and degradation of the receptor; 

- inhibition of angiogenesis; 

- inhibition of DNA damage repair; 

- immune-mediated response. 

The large volume of laboratory data on trastuzumab mechanism of action has been 

recently reviewed (Hudis, 2007; Valabrega et al., 2007; Spector and Blackwell, 2009). 

Although the discussion on the relative contribution to the efficacy of trastuzumab is 

still open, these different mechanisms are currently being further evaluated and 

exploited by many groups, with the aim of improving trastuzumab efficacy. A partial 

list of these strategies includes conjugation of the antibody with cytotoxic agents, co-

administration with ‘biologic’ agents (such as anti-angiogenic agents, immunologic 

agents, inhibitors of different epitopes of HER2 or other ErbB receptors, inhibitors of 

other signal transduction pathways) and construction of trastuzumab mutants with 

greater immunological activity (Pegram et al., 2006; Karagiannis et al., 2009; Blackwell 

et al., 2010; Burris et al., 2011; Baselga et al., 2012).  
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1.3.2 Clinical Development 

The early clinical development of trastuzumab, unlike most anti-cancer agents, was 

characterized by an exclusive focus on a particular subset of patients, i.e. the HER2-

positive breast cancer patients. This pioneering effort towards treatment 

personalization may at least in part explain the outstanding successes achieved by the 

drug during its clinical development. After three Phase I (Shak, 1999) and four 

subsequent Phase II trials (Baselga et al., 1996; Pegram et al., 1998; Cobleigh et al., 

1999; Vogel et al., 2002) which showed that trastuzumab was safe and had interesting 

activity in pre-treated and untreated patients, a randomized clinical trial was 

conducted in patients with previously untreated, HER2-positive, metastatic breast 

cancer (Slamon et al., 2001). Patients received chemotherapy (either anthracyclines or 

paclitaxel) alone or in combination with the antibody.  The addition of trastuzumab 

conferred to patients a clinically-significant increase in time to disease progression (4.6 

vs 7.4 months), objective response rate (50% vs 32%), duration of response (9.1 vs 6.1 

months) and median survival (25.1 vs 20.3 months). A second randomized trial of 

docetaxel alone or with trastuzumab achieved similar results (Marty et al., 2005) and 

various uncontrolled and controlled trials have recently shown the efficacy and relative 

safety of trastuzumab either alone or in combination with many other 

chemotherapeutic and biologic agents. 

When used as adjuvant treatment of early stage HER2-positive breast cancers, 

trastuzumab reduces the risk of recurrence by approximately 40 to 50% (Piccart-

Gebhart et al., 2005; Romond et al., 2005; Slamon et al., 2006; Smith et al., 2007; 

Joensuu et al., 2009). Results were consistent across four major trials and several 

smaller studies, in spite of the differences among the studies; these differences 

included duration of treatment (one year, two years, nine weeks), type of associated 

adjuvant chemotherapy (anthracycline-containing, anthracycline-free, taxane-

containing, not protocol-defined), and timing of administration (start concomitant to 

chemotherapy or after chemotherapy). A recent update of one of these large studies 

(HERA trial) (Goldhirsch et al., 2012) has demonstrated that two years of treatment do 

not provide any additional benefit compared to the current standard duration of one 

year for adjuvant trastuzumab. With a relatively short follow-up in all these studies, a 
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significant advantage in terms of overall survival is already clearly measurable (Figure 

1.9). 

In the pre-operative setting, trastuzumab has also been shown to be extremely active 

in combination with chemotherapy and targeted agents (Buzdar et al., 2005; Gianni et 

al., 2010; Baselga et al., 2012). Interestingly, this setting has proved extremely useful 

for the evaluation of early biological and clinical end-points as part of the development 

of novel HER2-targeted combinations.       

 

 

 

 

 
Figure 1.9: Kaplan-Meier estimates of disease-free survival and overall survival with a median follow-up 
of 2 years in the HERA study. 
From Smith et al. (2007)  
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Although some questions are not entirely resolved (e.g. mono-therapy versus 

combination, use beyond progression of disease, association with hormone 

treatments, optimal use in the neo-adjuvant setting, role in patients with brain 

metastases) trastuzumab has become a mainstay of treatment in many countries.  

 

1.3.3 Safety 

Trastuzumab is generally well tolerated and the most frequent acute adverse event is a 

hypersensitivity-like infusion reaction (EMA, 2012). However, the occurrence of cardiac 

dysfunction can be a major concern in a minority of patients and early treatment 

discontinuation might favour disease recurrence or progression. Clinically, 

trastuzumab-related cardiotoxicity can span a range of clinical situations, from 

asymptomatic variations in heart contractility (measured as left ventricular Ejection 

Fraction - LVEF) to severe and sometimes fatal cardiac failure.  Unusual features of 

trastuzumab cardiotoxicity include the absence of ultrastructural changes in the heart 

muscle and a general tendency to reversibility. Furthermore, trastuzumab-induced 

heart dysfunction is not always easy to diagnose in metastatic cancer patients, because 

concurrent factors can contribute to generate dyspnoea, oedemas and fatigue, which 

constitute the main clinical symptoms.  

In the pivotal registration trial (Slamon et al., 2001), congestive heart failure (CHF) was 

reported in an unexpectedly high proportion of patient: its incidence in the paclitaxel 

plus trastuzumab and the anthracycline plus trastuzumab arms was respectively 13% 

and 27%. In the four large adjuvant trials (Piccart-Gebhart et al., 2005; Romond et al., 

2005; Slamon et al., 2006), where cardiac eligibility criteria were stringent and 

trastuzumab was interrupted or discontinued in response to the development of 

cardiac dysfunction, the incidence of CHF ranged from 1 to 4%.  

Exhaustive analyses of large clinical trials both in the advanced and early settings have 

shown that older age, pre-existing cardiac diseases or risk factors and use of 

anthracyclines can all contribute to an increased likelihood of developing trastuzumab-

related cardiotoxicity (Perik et al., 2007). 

The potential mechanistic explanations of this significant side effect have been 

recently studied by different research groups. There is abundant laboratory evidence 

that HER2 has an important role in cardiomyocyte development and function (Fuller et 
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al., 2008). HER2 in fact functions as a co-receptor for two other ErbB receptor tyrosine 

kinase family members, HER3 and HER4, and their peptide ligands, the neuregulins, all 

of which are expressed in cardiac tissue (Fuller et al., 2008). According to one of the 

most widely-accepted models, the inhibition of HER2 signalling would lead to 

mitochondrial dysfunction and ATP depletion and, in turn, to reduced contractility of 

the cardiomyocyte (Force et al., 2007; Fuller et al., 2008). 

 

1.3.4 Resistance 

Only 20 to 30% of patients with HER2-positive metastatic breast cancer respond to 

trastuzumab administered as a single agent, whereas the response rate when used in 

combination with taxanes is approximately 60 to 70%. This suggests that a proportion 

of patients are primarily resistant to trastuzumab. Moreover, virtually all treated 

patients with advanced disease will eventually face a progression of their disease, 

developing an acquired resistance. In the adjuvant setting, there is also a significant 

proportion of patients who experience a recurrence of their breast cancer despite 

having received trastuzumab.   

These clinical observations have prompted several researchers to examine in depth the 

biological mechanisms of trastuzumab resistance (Nahta et al., 2006).  

Increased signalling from other HER family receptors and from Insulin-like Growth 

Factor Type 1 Receptor (IGF-1R) has been observed by Motoyama et al. (2002) and 

Nahta et al. (2005) in the context of trastuzumab-resistant cells. Activation of the PI3K 

pathway has been shown to be important in trastuzumab downstream effects and can 

be regulated by Phosphatase and Tensin homolog (PTEN). In vitro and clinical studies 

suggest that activation of this pathway and loss of PTEN function may contribute to 

trastuzumab unresponsiveness (Nagata et al., 2004). The membrane-associated 

glycoprotein MUC4, which may hinder trastuzumab binding to its epitope on HER2, has 

also been proposed as an additional marker of resistance (Nagy et al., 2005). Some of 

these pathways and mechanisms are currently being evaluated as potential 

therapeutic targets in pre-clinical and clinical studies (Jones and Buzdar, 2009; Tsang 

and Finn, 2012). While lapatinib in combination with capecitabine (a HER2/EGFR dual 

tyrosine kinase inhibitor) is the only approved drug in trastuzumab-resistant patients 
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(Geyer et al., 2006; Cameron et al., 2010), many other therapeutic strategies are 

currently under investigation for HER2-positive breast cancer. They include: 

- targeting of HER receptors with different monoclonal antibodies, antibodies 

conjugated with cytotoxic drugs or small molecules (Burstein et al., 2010; Burris et 

al., 2011; Baselga et al., 2012); 

- targeting of angiogenesis (Pegram et al., 2006; Hurvitz et al., 2009b); 

- targeting of the heat-shock protein molecular chaperones (Modi et al., 2011); 

- modulation of the PI3K/AKT/mTOR pathway (Andre et al., 2010; Jerusalem et al., 

2011); 

- targeting of IGF-1R (Tsang and Finn, 2012). 

 

1.3.5 Schedule and pharmacokinetics 

Trastuzumab is generally administered either weekly (4 mg/kg loading dose followed 

by 2 mg/kg) or every three weeks (8 mg/kg loading dose followed by 6 mg/kg). The 

pharmacokinetics of weekly trastuzumab were investigated in phase I, II and III studies 

(Baselga et al., 1996; Pegram et al., 1998; Cobleigh et al., 1999; Slamon et al., 2001) as 

part of the clinical development program, and then re-analysed using a population-

based approach by Bruno et al. (2005). In the final model, the long-term accumulation 

of trastuzumab is described by a linear two-compartment pharmacokinetic model with 

clearance of 0.225 l/d, volume of distribution of 2.95 l and a terminal half-life of 28.5 

days. The steady-state predicted peak and trough plasma concentrations were 

respectively 110 and 66 g/ml, well above the suggested therapeutic threshold 

concentration of 20 g/ml. Both the pharmacokinetics and the observed variability are 

typical of the IgG1 immunoglobulins (Bruno et al., 2005).  

Cobleigh et al. (1999) observed that tumour response was associated with a 1.6-fold 

higher mean trough trastuzumab concentration (at weeks 7 and 8 of a weekly 

regimen) than that seen in non-responders. 

Two studies have directly evaluated the pharmacokinetics of three-weekly 

trastuzumab, either in combination with paclitaxel (Leyland-Jones et al., 2003) or as a 

single agent (Baselga et al., 2005). They show that the pharmacokinetics of three-

weekly trastuzumab is similar to that of the weekly schedule: in particular terminal 

half-life was found to range between 16 and 27 days, mean Cmax and trough 
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concentration at the steady state were respectively up to 70% higher and 20% lower 

than the same parameters in the weekly regimen. With both the weekly and the three-

weekly schedule trastuzumab has been shown to reach steady-state concentrations 

after approximately 20 weeks (EMA, 2012).  A recent study by Leyland-Jones et al. 

(2010) successfully evaluated the use of an intensive loading regimen (6 mg/kg 

intravenously on days 1, 8 and 15 followed by 6 mg/kg every 3 weeks from day 22), 

with the intent of reaching higher serum concentrations during cycle 1. 

Many studies have investigated whether trastuzumab could potentially affect the 

kinetics of other anticancer drugs (paclitaxel, cyclophosphamide, cisplatin, gemcitabine 

and lapatinib) administered concurrently, and vice versa. No drug-drug interactions 

have been reported, in line with the characteristics of other mAbs currently used in 

clinical practice (Shak, 1999; Leyland-Jones et al., 2003; Lunardi et al., 2003; Zinner et 

al., 2004; Bruno et al., 2005; Storniolo et al., 2008). Analysis of combination treatment 

with a different mAb such as bevacizumab (Pegram et al., 2004) showed no alteration 

in the pharmacokinetic profile of either drug.  

Interestingly, several studies have reported that trastuzumab low trough 

concentrations, faster clearance or shorter half-life may be associated with high 

circulating HER2 ECD in plasma (Baselga et al., 1996; Pegram et al., 1998; Baselga et al., 

2005; Bruno et al., 2005). Several hypotheses were formulated by the authors to 

explain these findings: 

- an interference between the trastuzumab and HER2 ECD assays (both Enzyme-

Linked ImmunoSorbent Assay - ELISAs) could be responsible for artifactually low 

trastuzumab levels; 

- the higher concentration of HER2 ECD could favour the formation of more antigen-

antibody complexes in serum, resulting in a more rapid clearance from the 

circulation; 

- the higher concentration of HER2 ECD might simply reflect a higher disease burden, 

which would result in an increased trastuzumab binding by tumour cells and, in 

turn, in a shortened trastuzumab half-life. 
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1.4 Antibody Dependent Cell-mediated Cytotoxicity 

1.4.1 Overiew 

Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) is an immune response 

mechanism in which antigen-specific antibodies direct immune effector cells of the 

innate immunity to the killing of the antigen-expressing target cells.  It requires three 

components: 1) target cells expressing  antigens on the surface; 2) antibodies of the 

IgG isotype to the target antigen, and 3) effector cells bearing Fc gamma receptor 

(FcR). The antibodies bind to the antigen on the target cell, the effector cells then 

bind to the antibody-coated target cells through the FcR and this triggers the toxic 

process (Iannello and Ahmad, 2005) (Figure 1.10).  

Besides having a role in many in vivo responses against infections, ADCC has been 

recognized as one of the main immune-mediated responses for anticancer monoclonal 

antibodies (Wang and Weiner, 2008; Weiner et al., 2009).  

 

 

 

 

 

 

 

 

 

 

Figure 1.10: Mechanism of ADCC. 

From Janeway et al. (2005) 

In particular, trastuzumab and rituximab (a chimeric IgG1 monoclonal antibody 

targeting the B-cell differentiation antigen CD20 used in therapy of B-cell lymphomas) 

have been shown to work, at least in part, through ADCC.  

 

1.4.2 ADCC and Trastuzumab 

Many experimental and translational publications have evaluated and clarified the role 

of ADCC in trastuzumab therapy. First, Tokuda et al. (1996) showed that cytotoxicity of 

human peripheral blood mononucleated cells against a variety of HER2-positive human 
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tumour cell lines was significantly augmented in the presence of rhu4D5 

(trastuzumab). Then Cooley et al. (1999) confirmed that trastuzumab is able to 

mediate potent ADCC in vitro and that this process is FcR-dependent. Clynes et al. 

(2000) demonstrated the same dependence in syngeneic and xenograft models. 

Subsequent investigations documented this process in primary operable breast 

cancers (Gennari et al., 2004; Arnould et al., 2006; Varchetta et al., 2007) and 

correlated ADCC intensity and trastuzumab efficacy (Figure 1.11). 

 

 

Figure 1.11: ADCC activity and trastuzumab efficacy in primary operable breast cancers. 
From Gennari et al. (2004)  

 

A recent study has evaluated the role of natural killer mediated cytotoxicity in 

metastatic patients (Beano et al., 2008). Taken together, all these data support the 

position of ADCC as one of the contributory mechanisms of action of trastuzumab. 

 

1.4.3 Fc Gamma Receptors 

Fc Gamma Receptors (FcR) are a family of receptors for the Fc region of IgG. They 

belong to the Ig-super family and are present on most cells of the immune system, 

including lymphocytes, dendritic cells, macrophages, monocytes, natural killer (NK) 

cells, neutrophils and mast cells (Cohen-Solal et al., 2004).  
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Figure 1.12: Family of FcR. 
From Cohen-Solal et al. (2004). ITAM: immunoreceptor tyrosine-based activation motif. ITIM: 
immunoreceptor tyrosine-based inhibition motif. 

 

Three classes of receptors have been described and different members of the family 

can have opposite effects (activating or inhibitory) in the immune response, depending 

on differences in their cytoplasmic region (Figure 1.12). 

FcRs also differ in terms of their affinity for monomeric IgG (FcRI Kd is 10−8M, 

whereas FcRII and FcRIII Kds range from 10−5 to 10−7 M) (Cohen-Solal et al., 2004). 

Most cell types express both activating and inhibitory receptors, so that the cellular 

response depends on the relative expression, which is in turn finely modulated by the 

cytokine environment.  

FcRs are thought to control the balance between autoimmunity and peripheral 

tolerance (Cohen-Solal et al., 2004). In addition, because of their absolute requirement 

for antibody-dependent effector cell responses, they play a major role in the 

therapeutic effect of monoclonal antibodies. 

 

1.4.4 SNPs in Fc Gamma Receptor genes 

Two common functional SNPs have been described in two of the Fc Gamma Receptor 

genes. Their related proteins (FcRIIa, encoded by FCGR2A and FcRIIIa, encoded by 

FCGR3A) are low-affinity, activating receptors and differ in their pattern of expression 

on immune cells (Cohen-Solal et al., 2004). In particular, FcRIIIa is expressed 

predominantly on the surface of macrophages and NK cells, whereas FcRIIa is the 

most widespread Fc Gamma Receptor. 
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A functional polymorphism in FCGR2A was initially described by Anderson et al. (1987), 

who classified 27 healthy individuals as ‘responders’ or ‘non-responders’ on the basis 

of the capacity of their mononuclear cells to respond to murine IgG1. They showed 

that the 40 kD receptor responsible for this binding was equally expressed in 

‘responders’ and ‘non-responders’ and had the same electrophoretic mobility, but the 

isoelectric focusing (IEF) patterns of the two classes were different, suggesting the 

existence of two allelic forms of the receptor. Subsequently Warmerdam et al. (1990; 

1991) demonstrated that these two variants are due to a genetic polymorphism which 

encodes either arginine (R; CGT) or histidine (H; CAT) at residue 131, within the 

extracellular region of FcRIIa, specifically in the second Ig-like domain (Reference SNP 

Cluster Report rs1801274) (NCBI_c, 2009). This change alters the ability of the receptor 

to bind different human IgG subclasses (Parren et al., 1992), as the histidine allele is 

associated with a higher affinity for IgG2 than the arginine allele. A very recent study 

evaluating the three-dimensional structure of the receptor has supported these early 

observations (Ramsland et al., 2011). Interestingly, Shashidharamurthy et al. (2009) 

suggested that the His variant might also have higher binding affinity for human IgG1 

and IgG3, although this finding is in apparent contrast with previous reports (Bredius et 

al., 1994; Bruhns et al., 2009).     

A functional polymorphism in FCGR3A was observed by Ravetch and Perussia (1989) 

and then attributed to a SNP in the membrane-proximal, IgG-binding domain of the 

receptor: phenylalanine (F; TTT) or valine (V; GTT) at amino acid position 158 

(Reference SNP Cluster Report rs396991) (NCBI_d, 2009) (Koene et al., 1997). In IgG 

binding experiments the valine allele was associated with a higher affinity than the 

phenylalanine allele for human IgG1 and IgG3, and a gene dosage effect was present. 

For the sake of clarity, it should be specified that FCGR2A His131Arg and FCGR3A 

Phe158Val are in some studies referred to as, respectively, FCGR2A His166Arg and 

FCGR3A Phe176Val, in accordance with the most recent versions of the Genome 

Reference Consortium human genome assembly (GRC, 2012). 

The clinical implications of these two SNPs have been analyzed with special regard to 

inflammatory response to infections and autoimmune diseases, such as Systemic 

Lupus Erythematosus, Rheumatoid Arthritis and Guillain-Barré syndrome (Bournazos et 

al., 2009).  
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Furthermore, many authors have considered the role of these genetic variants in the 

response to monoclonal antibody therapies. In a pivotal study Cartron et al. (2002) 

found a significant association between the valine allele of the FCGR3A Phe158Val SNP 

and better clinical and molecular responses to rituximab in 49 non-Hodgkins 

lymphoma patients (Figure 1.13). Many subsequent papers have examined the 

potential effect of both SNPs on rituximab treatment in different clinical settings, 

sometimes obtaining apparently contradictory results (Weng and Levy, 2003; Farag et 

al., 2004; Carlotti et al., 2007; Galimberti et al., 2007; Mitrovic et al., 2007; Ahlgrimm 

et al., 2011; Fabisiewicz et al., 2011). 

 

 

 

 

 
Figure 1.13: Progression-free survival after rituximab treatment by FCGR3A Phe158Val genotype. 
From Cartron et al. (2002) 

 

Other recent works have also looked at the potential role of these variants in several 

cancers including colorectal carcinoma treated with cetuximab, a chimeric IgG1 

monoclonal antibody directed against EGFR (Zhang et al., 2007; Bibeau et al., 2009; 

Etienne-Grimaldi et al., 2012) and neuroblastoma treated with hu14.18-IL2 IC, a 

humanized anti-GD2 monoclonal antibody linked to human interleukin-2 (Delgado et 

al., 2010). 
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1.5 Aims of the research 

Taken together, the literature data reviewed in this chapter show how breast cancer is 

increasingly being studied as a complex set of diseases with different biological and 

clinical characteristics. An important contribution to this diversity is provided by germ-

line genetic variations, which may play a role, not only in the pathogenesis and natural 

history of the tumours, but also in their varying response to different treatments. 

The HER2-positive breast cancers certainly constitute a unique subset of tumours and 

have been extensively and successfully studied with particular regard to their biology 

and possible targeted treatments. However, the influence of pharmacogenetic (PG) 

factors on these aspects remains by and large unexplored.  

Therefore, the general aim of this research is to focus on the possible effects of several 

common single nucleotide polymorphisms (SNPs) on specific aspects of HER2-positive 

disease. 

A prospective observational pharmacogenetic study was designed in order to address 

two main issues: 

 

1. In the overall population of breast cancer patients the objective of the study was to 

determine the frequency of SNPs in HER2 gene (reviewed in Section 1.2.4) and 

evaluate their potential association with HER2 expression in tumour samples in 

both early and advanced disease patients.  

 

2. In a subset of HER2-positive breast cancer patients receiving trastuzumab, the 

objective was to determine the influence of four common coding SNPs in Fc 

Gamma Receptor genes (reviewed in Section 1.4.4) and in the HER2 gene on:  

- the outcome of patients in the advanced setting; 

- the reduction of risk of recurrence in the adjuvant setting; 

- the occurrence of side effects in both settings; 

- the potential pharmacokinetic and pharmacodynamic parameters related to 

trastuzumab treatment (reviewed in Sections 1.2.3 and 1.3.5).  

 

In order to meet these objectives we identified a list of key parameters which would 

be determined and analysed as part of the study. They included:   
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a) frequency of genotypes for HER2 and Fc Gamma Receptor SNPs in patient blood 

samples; 

b) frequency of genotypes for HER2 and Fc Gamma Receptor SNPs in breast cancer 

tissue samples; 

c) HER2 expression in breast tumours; 

d) response to trastuzumab therapy, in terms of objective radiological variation, 

symptoms relief, time to progression, overall survival, toxicity in patients with 

advanced disease; time to recurrence and toxicity in early-stage patients;  

e) trough trastuzumab and HER2 ECD concentrations in plasma of patients receiving 

trastuzumab treatment. 

 

The following chapters describe in detail the methods used for the determination and 

the evaluation of these parameters (Chapters 2 and 3). The results of the research are 

presented as well as their interpretation in the context of the current literature 

(Chapters 4, 5 and 6). Finally a concluding chapter (Chapter 7) will summarize the key 

findings of the whole study and suggest potential future directions for research in this 

promising field.      
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Chapter 2. Methods 

 

2.1 Approval and sponsorship 

The project, entitled ‘Pharmacogenetic study of Fc Gamma Receptor and HER2 genes 

in relation to treatment of breast cancer’ was approved in 2007 by both the Newcastle 

& North Tyneside 2 Research Ethics Committee (REC number 06/Q0906/155) and the 

Medicines & Healthcare products Regulatory Agency (EudraCT number 2006-002532-

24). The study was approved and sponsored by the Newcastle upon Tyne Hospitals 

NHS Foundation Trust through its Research & Development Department (Trust 

reference number 3737).  

 

2.2 Patients and samples 

The target population of this trial was composed of breast cancer patients attending 

the Breast Out-Patient Clinic and the Chemotherapy Day Unit of the Northern Centre 

for Cancer Care in Newcastle (Newcastle upon Tyne Hospitals NHS Foundation Trust). 

Key inclusion criteria for the study were: 

- Age ≥ 18 years; 

- Histological confirmation of primary breast cancer with HER2 testing; 

- Written voluntary informed consent. 

Only patients who had been tested for HER2 over-expression/amplification on their 

tumour were offered study participation (HER2 has been routinely tested on every 

newly diagnosed breast tumour since 2005).  

 

HER2 testing 

The testing of HER2 on tumour samples was performed by the Department of Cellular 

Pathology of the Newcastle upon Tyne Hospitals NHS Foundation Trust according to 

the recommendations issued by the American Society of Clinical Oncology  and the 

College of American Pathologists (Wolff et al., 2007), as mentioned in Section 1.2.2. 

The expression of HER2 was initially scored using IHC. Score 0 and 1 tumours were 

considered ‘negative’ and score 3 tumours were considered ‘positive’ on the basis of 
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protein expression only. Score 2 samples were further investigated using ISH. The 

classical Fluorescent In Situ Hybridization (FISH) was the method of choice in the 

laboratory until 2009. FISH is a robust and standardized technique which uses 

fluorescent DNA probes to detect the HER2 gene and chromosome 17 centromere. 

However, it requires specialised fluorescence microscopy equipment and is 

characterized by fading of fluorochromes, which limits long-term stability. In addition, 

this method has a long learning curve and is subject to significant inter-observer 

variability, mainly due to the difficult signal-to-noise interpretation. In order to 

overcome these disadvantages in 2009 the Silver-enhanced In Situ Hybridisation (SISH) 

method was introduced (Dietel et al., 2007). SISH is an automated method which uses 

dinitrophenol (DNP) labelled probes, a rabbit anti-DNP primary antibody and a goat 

anti-rabbit secondary antibody conjugated to horseradish peroxidase (HRP) as the 

chromogenic enzyme. The chemistry of the chromogenic reaction is driven by the 

sequential addition of silver acetate, hydroquinone and H2O2. The reduction of silver 

ions (Ag+) to metallic silver atoms (Ag) by hydroquinone is fuelled by the substrate for 

HRP, H2O2. The silver precipitation is deposited in the nuclei and a single copy of the 

HER2 gene is visualised as a black dot. The specimen is then counterstained with 

hematoxilin for interpretation by light microscopy. This method showed high 

concordance with FISH and low inter-observer variability even among pathologists who 

were interpreting SISH results for the first time (Dietel et al., 2007). 

 

The vast majority of HER2-positive patients went on to receive trastuzumab as either 

adjuvant or palliative treatment. They were tested for genetic polymorphisms in germ-

line DNA from peripheral nucleated blood cells and were investigated for 

pharmacokinetic and pharmacodynamic parameters on plasma samples. HER2-

negative patients and HER2-positive patients who were not to receive trastuzumab 

were tested only for HER2 polymorphisms in blood cells (Figure 2.1). 

For patients who were not to receive trastuzumab, one 10 ml blood sample was taken 

following consent to the study, when most convenient for the patient. For patients 

who were receiving trastuzumab, the initial design of the study planned a single on-

treatment ‘trough’ sample to be preferably drawn immediately before the 4th cycle in a 

3-weekly schedule (or 10th cycle in a weekly schedule); if this timing was unfeasible 

(dose already given or patient unlikely to continue treatment up to this time), the 
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sample was drawn immediately before the next administration was due. After an 

amendment approved in June 2010 a pre-treatment sample to be drawn immediately 

before commencing trastuzumab was added to the sampling schedule. 

For all patients (HER2-positive and HER2-negative) who gave their specific consent to 

genetic analyses being performed on their archived tumour samples, a Formalin-Fixed 

Paraffin-Embedded (FFPE) block was requested from the Pathology Department 

(Figure 2.1). 

 

 

 

 

Figure 2.1: Flow-chart summarizing recruitment of patients and collection/analysis of samples   

 

All samples were collected, transferred, stored and analysed according to the 

regulations of the Human Tissue Act (HTA, 2004) and entered into the Northern 

Institute for Cancer Research Central Tissue Resource. All laboratory work was 

performed in keeping with the principles of the International Conference on 

Harmonisation’s Good Clinical Practice (ICH, 2011). 

This prospective observational cohort study did not alter the treatment of the patients 

recruited, nor were the results of the study used to determine any subsequent 

treatment of patients in the study.  
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Patients with metastatic disease were to be followed up indefinitely and those who 

received adjuvant therapy were to be followed up for a minimum of five years in the 

Breast Out-Patient Clinic. Demographic data and pathological characteristics of the 

tumours were collected from clinical notes on all patients. Data on all surgical, 

radiation and systemic therapies received, objective responses, toxicities, dates of 

disease recurrence, disease progression and death were collected from clinical notes 

on patients treated with trastuzumab only. 

 

2.3 Materials 

2.3.1 Equipment 

- Gilson pipettes models P10, P20, P100, P200, P1000, P5000, Microman M10, M100 

and M1000 and disposable pipette tips (supplied by Anachem, Luton, UK). The 

Microman pipettes and tips were used only for PCR preparation in order to limit 

potential DNA cross-contamination; 

- NucleoClean decontamination wipes (Chemicon International, Temecula, USA) 

were used to clean surfaces and instruments during PCR preparation; 

- 7 ml Sterilin bijous (Fisher Scientific UK, Loughborough, UK); 

- 0.5 ml Flat Cap Microcentrifuge tubes (Starlab UK, Milton Keynes, UK); 

- 1.5 ml Flat Cap Microcentrifuge tubes (Sarstedt, Leicester, UK); 

- 50ml CellStar conical centrifuge tubes (Greiner Bio-One, Stonehouse, UK); 

- Clifton Cyclone Vortex Mixer (Scientific Laboratory Supplies, Hessle, East Riding of 

Yorkshire, UK); 

- Grant Water bath OLS200 (Fisher Scientific UK, Loughborough, UK); 

- Eppendorf microcentrifuge Model 5415 D (Eppendorf AG, Hamburg, Germany) 

- Centrifuge Falcon 6/300 (Fisons, Crawley, UK); 

- ELGA PURELAB Ultra machine (Elgastat, High Wycombe, UK) was used to produce 

Ultra-High Purity (UHP) water; 

- Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies, Wilmington, 

USA); 

- Applied Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems, Foster 

City, CA, USA); 
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- Sigma 4K15C Laboratory Centrifuge (DJB Labcare, Newport Pagnell, UK);  

- Glass slides covered with polyethylene naphthalate (PEN) membrane for LCM: 

MembraneSlide 1.0 PEN (D) (Carl Zeiss Ltd., Welwyn Garden City, UK); 

- PALM Microbeam System, Version – 1206; Microscope stage PALM ROBOstage II; 

PALM CapMover II (P.A.L.M. Microlaser Technologies GmbH, Bernried, Germany); 

- Hitachi CCD Color Camera, Model: HV-D30P (Hitachi Kokusai Electric Europe GmbH, 

Erkrath, Germany); 

- Zeiss Axio Observer inverted microscope (Carl Zeiss Ltd., Welwyn Garden City, UK); 

- 0.5 ml PCR tubes, cap filled with opaque adhesive material for buffer-free sample 

capture: AdhesiveCap 500 opaque (D) (Carl Zeiss Ltd., Welwyn Garden City, UK); 

- M4000-D light microscope (Swift. Optical Instruments, San Antonio, TX, USA); 

- UV sterilisation PCR cabinet (Wolf Laboratories Limited, York, UK); 

- Fisherbrand Twin Frosted Microscope Slides and Slide coverslips (Fisherbrand 

Fisher Scientific UK, Loughborough, UK); 

- Thermo Scientific Richard-Allan MICROM HM 315 Rotary Microtome (Fisher 

Scientific UK, Loughborough, UK); 

- Section Dryer: Thermo Scientific Raymond A Lamb Drying Hotplate (Fisher Scientific 

UK, Loughborough, UK)  

 

2.3.2 Reagents 

- Phosphate buffered saline (PBS) solution was prepared by dissolution of PBS 

tablets (Sigma-Aldrich, Poole, Dorset, UK); 

- Ethanol, absolute (Fisher Scientific UK, Loughborough, UK); 

- Reagents and other consumables used in the DNA extraction protocols were part 

of the QIAamp DNA Micro Kit (QIAamp_Micro, 2010) and the QIAamp DNA Blood 

Maxi Kit (QIAamp_Midi/Maxi, 2010); 

- TaqMan Genotyping PCR Master Mix, TaqMan Genotyping Assay Mix, MicroAmp 

Fast Optical 0.1ml PCR plates and MicroAmp Optical adhesive films (Applied 

Biosystems, Foster City, CA, USA). 

- Xylene (Fisher Scientific UK, Loughborough, UK); 

- Eosin Y Solution, Aqueous (Sigma-Aldrich, Poole, Dorset, UK); 

- Hematoxylin Solution, Mayer’s (Sigma-Aldrich, Poole, Dorset, UK) 
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2.4 Blood cells and plasma separation 

In case of pre-treatment samples and on-treatment ‘trough’ samples obtained from 

patients treated with trastuzumab, blood cells and plasma were separated from whole 

blood samples by centrifugation at 2000 g for 10 minutes and then stored at -20°C.   

 

2.5 DNA extraction from blood cells  

Extraction of DNA from peripheral nucleated blood cells was performed using the 

QIAGEN® QIAamp DNA Blood Maxi Kit, which provide silica-membrane-based DNA 

purification. The detailed procedure is described in the QIAmp DNA blood midi/maxi 

kit handbook (QIAamp_Midi/Maxi, 2010). Briefly, whole blood samples or blood cell 

samples after separation from plasma (4 - 10 ml) were brought to room temperature 

and made up to either 5 ml or 10 ml, as appropriate, using PBS. Five hundred 

microliters of protease K was firstly mixed with the blood sample, before the addition 

of 6 ml (or 12 ml in case of initial volume > 5 ml) lysis buffer.  The resulting solution 

was incubated in a 70°C water bath for at least 10 minutes before 5 ml (or 10 ml in 

case of initial volume > 5 ml) 96-100% ethanol was thoroughly mixed in.  This solution 

was spun through a QIAamp Maxi Spin Column at 1850 g for 5 minutes, followed by 

two 4500 g wash spins with two different 5 ml buffers (AW1 and AW2), the first for 3 

minutes and the second for 15 minutes. DNA was then eluted in 600 µl (or 1 ml) Buffer 

AE at 4500 g for 5 minutes. The concentration of the eluted DNA (ng/µl) was 

determined using the Nanodrop Spectrophotometer running Nanodrop 3.0.1 software. 

DNA aliquots were stored at -20°C. 

 

2.6 DNA extraction from cell lines  

The DNA from four established human cancer cell lines (CCRF-CEM: T-cell acute 

lymphoblastic leukaemia; K562: chronic myeloid leukaemia; SKBR3 and MCF7: both 

breast cancer) was used as control for the genotyping experiments. Extraction of DNA 

was performed using the QIAGEN® QIAamp DNA Mini Kit, whose principle is analogous 

to the one of the Blood Maxi Kit. The detailed procedure is described in the QIAamp 
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DNA Mini and Blood Mini Handbook (QIAamp_Mini, 2010). Briefly, cell pellets in a 1.5 

ml microcentrifuge tube (approximately 106 cells) were brought to room temperature 

and re-suspended in 200 l PBS. Twenty microliters of protease K was firstly mixed 

with the blood sample, before the addition of 200 l lysis buffer. After mixing by pulse-

vortexing the resulting solution was incubated in a 56°C water bath for 10 minutes, 

before 200 l 96-100% ethanol was thoroughly mixed in.  This solution was spun 

through a QIAamp Mini Spin Column at 6000 g for 1 minute, followed by one 6000 g 

wash spin with 500 l AW1 buffer for 1 minute and one 20000 g wash spin with 500 l 

AW2 buffer for 3 minutes. DNA was then eluted in 200 µl AE buffer at 6000 g for 1 

minute. The concentration of the eluted DNA (ng/µl) was determined using the 

Nanodrop Spectrophotometer and DNA aliquots were stored at -20°C. 

 

2.7 Laser Capture Microdissection  

A comprehensive review of this methodology accompanied by a detailed reference 

protocol was published by Espina et al. (2006). All the LCM-related procedures were 

performed by Dr Despina Televantou, pathologist at the Northern Institute for Cancer 

Research. 

 

2.7.1 Histological evaluation 

An initial histological evaluation on Hematoxylin & Eosin (H&E) sections received from 

the available FFPE blocks was performed. Sections (one from each block) were 

received using the microtome at 4 µm depth, mounted on twin frosted slides and 

stained for H&E. Mayer’s Hematoxylin and Eosin Aqueous Solutions were applied for 2 

min and 20 sec, respectively. Hematoxylin staining was preceded by section 

deparaffinization in xylene, followed by tissue hydration, using ethanol of gradually 

decreasing grade (100%, 95% and 70%). Staining was followed by tissue dehydration, 

using ethanol of progressively increasing grade (70%, 95% and 100%) and final xylene 

application, before covering the section. H&E sections were evaluated using light 

microscope. 
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2.7.2 Preparation of sections for LCM 

PEN-membrane slides were UV-treated in the PCR cabinet for 30 min, prior to 

sectioning, as proposed by the manufacturer. Sections of 6 μm in thickness were cut 

from FFPE blocks using the microtome and mounted on PEN-membrane slides. 

For most blocks, only one section was cut; for a limited number of blocks  2 or 3 

sections were cut, according to the number of tumour cells on the section as 

previously assessed (>1000 cells: 1 section, 500-1000 cells: 2 sections, 300-500 cells: 3 

sections). Slides were incubated at 56°C for 3-6 hours in the section dryer before 

staining in order to obtain deparaffinization and better adhesion of the section to the 

slide. Slides were then stained according to the above H&E protocol. After section 

dehydration (final step), the sections were not covered but air-dried instead and 

submitted for LCM as quickly as possible (better results were obtained when sections 

were stained on the same day of LCM). Every effort was made during this process to 

avoid contamination. 

 

2.7.3 LCM procedure 

Invasive tumour tissue, non-invasive components and normal tissue (in selected cases) 

were collected using the PALM Microbeam System in conjunction with the Zeiss Axio 

Observer inverted microscope. The microscope was also fitted with a PALM RoboStage 

II and PALM CapMover for precise movement of the specimen and collection vessel 

respectively. All components were controlled using the PALM RoboSoftware (version 

4.0.0.10). The tissue of interest was identified under the microscope and then 

circumscribed using the PALM RoboSoftware. The circumscribed area was then 

automatically cut and catapulted by the laser into an AdhesiveCap 500 opaque. The 

tube was mounted on the CapMover such that the inside of the cap could be 

positioned directly above the tissue to be catapulted. When the catapulted tissue 

came into contact with the inside of the cap, it adhered to it. Multiple pieces of 

microdissected tissue could be captured in one cap. 

The area of tissue captured for each sample was between 1 mm2 and 3 mm2. The 

dimensions of the individual elements to be dissected were based on the size of 

tumour aggregates and on the number of inflammatory or other normal cell 
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admixtures. Their area varied from 300 to 200,000 µm2. Magnification used for LCM 

was X50 for elements > 40,000 m2 and X200 for smaller elements. 

 

2.8 DNA extraction from Laser Microdissected tissue  

Extraction of DNA from microdissected tissue was performed using the QIAGEN® 

QIAamp DNA Micro Kit. The procedure described in the QIAmp DNA Micro handbook 

(QIAamp_Micro, 2010) at pages 28 - 30 was followed with minor modifications. Briefly, 

after equilibration of samples and reagents to room temperature, a mixture of 15 l 

Buffer ATL and 10 l protease K was prepared for each sample. Fifteen microliters of 

this solution was dispensed into the AdhesiveCap 500 opaque tube cap. The tissue was 

carefully dislodged from the adherent cap surface with the tip of the pipette and the 

tube was briefly centrifuged to collect tissue and liquid in the bottom. The step was 

then repeated with the remaining 10 l of the solution. After addition of 25 μl Buffer 

ATL a mixture of 50 μl Buffer AL and 1l RNA (prepared in advance and mixed gently to 

avoid bubbling) was added to each sample and the tube was vortexed for 15 sec, 

ensuring that a homogeneous solution was obtained. After addition of 50 l 96-100% 

ethanol the tube was vortexed for 15 sec, incubated for 5 min at room temperature 

and then briefly centrifuged to remove drops from the lid. The entire lysate was spun 

through the QIAamp MinElute column at 6000 g  for 1 minute, followed by two 6000 g 

wash spins with two different 500 μl buffers (AW1 and AW2), both for 1 minute. The 

column was then centrifuged at 20,000 g for 3 min to dry the membrane completely.  

The column was placed in a clean 1.5 ml microcentrifuge tube, 25 μl pure water was 

applied to the centre of the membrane and, after incubation at room temperature for 

1 min, DNA was eluted at 20,000 g for 1 min. After measurement of DNA concentration 

with Nanodrop the aliquot was stored at -20°C. 

 

2.9 Genotyping  

A Fluorogenic 5’ nuclease assay (TaqMan assay) was used in order to detect SNPs in 

DNA extracted from both peripheral nucleated blood cells and breast cancer samples.  

 

 



40 

 

Principle of the assay 

This assay exploits the 5' to 3' exonuclease activity of Taq DNA polymerase. Each 

reaction contains a gene-specific primer and uses two allele-specific oligonucleotides 

(fluorogenic probes) to which a 5’ reporter (R) dye and a 3’ quencher (Q) dye are 

attached; two different reporter dyes (VIC and FAM) are attached to the two probes 

(Figure 2.2).  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Chemistry of TaqMan assay.  
From TaqMan® SNP Genotyping Assays Protocol (TaqMan_SNP_Assays_protocol, 2010) 
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The 3’-end is also blocked to prevent extension during PCR. The probe with complete 

homology anneals to the target of interest, whereas the other probe doesn’t. When 

both dyes are attached to the probe, the reporter dye emission is quenched. If 

hybridization occurs, the probe is displaced and then cleaved by the 5’ nuclease 

activity of the Taq polymerase. This separates the reporter dye from the quencher dye, 

generating a fluorescent signal. During each extension cycle, the Taq DNA polymerase 

cleaves the reporter dye from the probe if there is complete homology between the 

probe and the template, resulting in an increase in fluorescence (Figure 2.3). 

 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 2.3: Model of a single-sample amplification plot from the Real-Time PCR Systems Chemistry 
Guide. 
From PCR_Chemistry (2005). Baseline = initial cycles of PCR, in which there is little change in 
fluorescence signal; Rn (Normalized reporter) = ratio of the fluorescence emission intensity of the 
reporter dye to the fluorescence emission intensity of the passive reference dye; ΔRn = magnitude of 
the signal generated by the given set of PCR conditions (ΔRn = Rn - baseline); Threshold = arbitrary level 
of fluorescence chosen on the basis of the baseline variability. A signal that is detected above the 
threshold is considered a real signal that can be used to define the threshold cycle (CT) for a sample; CT 
(Threshold cycle) = cycle number at which the fluorescence passes the threshold. 

 

If a DNA sample is homozygous for one of the two alleles only the fluorescence signal 

generated by that allele-specific reporter dye will be detected, whereas in a 

heterozygous sample both VIC and FAM signals will be detected (Figure 2.4). 

At the end of the amplification process an allelic discrimination plot is obtained, in 

which X allele-homozygous, Y allele-homozygous and heterozygous samples can be 

clearly distinguished (Figure 2.5) (PCR_Chemistry, 2005). 

 



42 

 

Allele Y 

Rn 

Heterozygous 

Allele Y 

homozygous 

Allele X 

homozygous NTC 

Allele X Rn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
Figure 2.4: Example of amplification plot from the Sequence Detection System (SDS) Software version 
1.4.  
Three samples are shown: one NTC, one heterozygous, 1 Y homozygous. Red line = Allele Y; Blue line = 
Allele X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Example of Allelic Discrimination Plot from the Sequence Detection System (SDS) Software 
version 1.4 
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The procedure was performed using the Applied Biosystems® 7500 Fast Real-Time PCR 

System operated through the Sequence Detection System (SDS) Software version 1.4 

according to the manufacturer instructions (TaqMan_SNP_Assays_AD_Guide, 2010; 

TaqMan_SNP_Assays_protocol, 2010). 

Each polymerase chain reaction contained 5 - 20 ng of purified DNA, 1X TaqMan 

Genotyping PCR Master Mix and 1X SNP Genotyping Assay Mix made up to 25 µl 

volume with sterile UHP water.  Reactions were run on 96-well MicroAmp Fast Optical 

0.1 ml PCR plates covered in MicroAmp Optical adhesive film which were centrifuged 

at 1500 g for 1 minute prior to placing on the real-time PCR machine. Each plate 

contained 2 No Template Controls (NTCs) plus known genotype controls where 

available.   

The default conditions on the ‘Absolute Quantitation’ plate documents were used for 

all TaqMan real-time PCRs runs (initial hold at 95°C for 10minutes, then a total of 40 

cycles between 92°C for 15 seconds and 60°C for 1 minute). 

Specific primers and probes for the TaqMan genotyping method were available from 

Applied Biosystems for all the four SNPs (Table 2.1). 

 

 

Gene SNP Assay ID Context sequence 

HER2 

Ile655Val 

rs1136201 
C___7452451_1_ 

Forward: 

CGCCCCCAGCCCTCTGACGTCCATC[A/G]TCTCTGCGGT

GGTTGGCATTCTGCT 

Ala1170Pro 

rs1058808 
C___1551672_20 

Reverse: 

ACCTGCTGGTGCCACTCTGGAAAGG[C/G]CCAAGACTC

TCTCCCCAGGGAAGAA 

FCGR2A 
His131Arg 

rs1801274 
C___9077561_20 

Forward: 

AATGGAAAATCCCAGAAATTCTCCC[A/G]TTTGGATCC

CACCTTCTCCATCCCA 

FCGR3A 
Val158Phe 

rs396991 
C__25815666_10 

Forward: 

TCTGAAGACACATTTTTACTCCCAA[C/A]AAGCCCCCTG

CAGAAGTAGGAGCCG 

 

Table 2.1: TaqMan® genotyping assays 
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2.10 Measurement of trastuzumab and circulating HER2 in plasma 

The quantification of trastuzumab and circulating HER2 in plasma samples was 

performed by means of two different Enzyme-Linked ImmunoSorbent Assays (ELISAs). 

A detailed description of these two assays, including the equipment and reagents 

employed and the results of the validation experiments, is presented in Chapter 3. 

 

2.11 Statistics 

Statistical analyses were performed using SPSS software, version 17.0.  Details 

regarding the types of statistical testing performed are included where relevant in the 

results chapters. 

The initial power calculations for the study were divided into two parts. 

The first part was relative to the first aim of the research, focusing on HER2 status of 

breast tumours and HER2 SNPs (Section 1.5). The whole sample size was calculated 

based on these assumptions: 

- 20% of patients were expected to be HER2-positive (Section 1.2.2); 

- the frequency of the Ile/Val plus Val/Val allele for the HER2 Ile655Val SNP was 

expected to be between 25% and 50% (Section 1.2.4). 

In order to achieve a 90% power at the 5% significance level, a cohort of between of 

500 and 700 patients was required to demonstrate a two-fold increase in the presence 

of the Val allele of Ile655Val for patients with HER2-positive tumour relative to those 

with HER2-negative tumours. 

The second part was relative to the subgroup of HER2-positive advanced patients 

treated with trastuzumab. The relevant assumptions were: 

- study duration = 2 years, with constant accrual; 

- Progression-Free Survival (PFS) rate at 2 years = 35%, based on survival curves of a 

metastatic breast cancer study which was open in the NCCC at that time (Verrill et 

al., 2007); 

- 5% of patients lost to follow-up; 

- Frequency of Val/Val plus Phe/Val allele for the FCGR3A Phe158Val SNP = 46% 

(Cartron et al., 2002); 
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The hazard function was empirically generated so that the survival function matched 

that of similar groups of breast cancer patients. In order to achieve a 90% power at the 

5% significance level, a cohort of 140 - 150 patients was required to demonstrate a 

two-fold decreased risk (hazard ratio) for carriers of the Val allele relative to the Phe 

homozygous patients. 
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Chapter 3. Results I: Measurement of trastuzumab and HER2 in plasma 

 

3.1 Introduction 

One of the objectives of this project was to obtain pharmacokinetic (PK) and 

pharmacodynamic (PD) information from the subset of patients treated with 

trastuzumab. The measurement of trastuzumab in patient plasma, previously included 

in a limited number of published clinical trials (reviewed in Section 1.3.5), was chosen 

as a reasonable PK parameter. Using the same samples it was planned to evaluate the 

concentration of circulating HER2, which had been suggested by many research groups 

as a potential biomarker and could be linked to PK and HER2 pharmacogenetics 

(Section 1.2.3). 

As both analytes were macromolecules, the most appropriate method for their 

quantification was a ligand-binding assay (or immuno-assay), which is based on the 

capacity of an antibody to bind selectively to one specific molecule (antigen). For 

circulating HER2 one among the several commercially available Enzyme-Linked 

ImmunoSorbent Assays (ELISA) was chosen. For trastuzumab a novel method was 

developed, validated and published (Appendix 2) (Jamieson et al., 2009). 

For both PK and PD assays the method validation is an essential step in order to 

confirm reliability for the intended application (ICH, 2005). Therefore standard 

guidelines and recommendations were followed for both the HER2 and trastuzumab 

assays (DeSilva et al., 2003; Kelley and DeSilva, 2007), taking into account the potential 

differences in the validation variables to be considered between bioanalytic assays and 

biomarker assays (Chau et al., 2008). In our case, given the analogies between these 

methods, the two validation processes were carried out in parallel, as described in the 

following sections. 

 

3.2 Cell-based ELISA for the measurement of trastuzumab in plasma  

3.2.1 Background  

The majority of the early published studies on the pharmacokinetics of trastuzumab 

(Baselga et al., 1996; Cobleigh et al., 1999; Tokuda et al., 1999) refer to a single ELISA 

method carried out by Genentech®, but do not provide sufficient information to allow 
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independent researchers to reproduce the assay. In one clinical trial (Pegram et al., 

1998) the procedure of this test was described, but the capture antigen employed was 

a purified HER2 protein provided by the manufacturer that is not commercially 

available. Even in more recent works (Leyland-Jones et al., 2003; Baselga et al., 2005) 

on the three-weekly trastuzumab schedule the authors adopted the same Genentech® 

ELISA. Maple et al. (2004) published a detailed description of a different trastuzumab 

immunoassay using a cell lysate HER2 ELISA standard purchased from Oncogene 

Research Products® as the capture antigen. Unfortunately this reagent can be supplied 

only as part of a commercially-available HER2 ELISA kit and the quantities required for 

the assay allow the analysis of only a limited number of samples for each kit 

purchased, contributing to an unreasonable total cost. 

The lack of commercially available and affordable methods led to the development of 

a novel immuno-assay in which the capture antigen would be provided by the widely 

used HER2 overexpressing SKBR3 cell line. The development and validation of this cell-

based ELISA method are described in the next sections. 

 

3.2.1 Reagents and equipment 

Trastuzumab (Herceptin™) was purchased from Roche (Welwyn Garden City, UK). TMB 

(3,3′,5,5′-tetramethylbenzidine) substrate kit was purchased from Pierce (Cramlington, 

UK). Foetal calf serum (FCS), HRP conjugated goat anti-human antibody and Alexa 

fluor488 conjugated goat anti human antibody were purchased from Invitrogen 

(Paisley, UK). Goat serum was purchased from Millipore (Herts, UK). Human plasma 

from nine individuals was purchased from the Blood Transfusion Service (Newcastle 

upon Tyne, UK). Phosphate buffered saline, Tris base, sodium chloride, concentrated 

hydrochloric acid, Tween 20, sodium azide, poly-D-lysine, Hoescht 33342, RPMI 1640, 

Formalin and Costar 96 well tissue culture plates were all purchased from Sigma 

(Poole, Dorset, UK). Sterile μ-clear black-walled optical 96 well plates were purchased 

from Greiner (Gloucestershire, UK). SKBR3 breast adenocarcinoma cells and MDA 

MB231 breast adenocarcinoma cells were gifts from Dr. Felicity May at the NICR, UK. 

The pieces of equipment employed included: Pathway HT Inverted fluorescent 

microscope (BD, Oxford, UK), Coulter Z1 cell counter (BD, Oxford, UK), Centaur 2 bench 

top centrifuge (MSE, London, UK), Gyro rocker STR9 (Bibby Scientific, Stone, UK), DSG 
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Titertek titer plate shaker (Flow Laboratories, Hertfordshire, UK), Spectramax 250 plate 

reader (Molecular Devices, Sunnyvale, CA, USA). 

 

3.2.2 Development of the assay 

The scheme in Figure 3.1 shows the steps of the assay, which is similar to the vast 

majority of the published cell-based ELISAs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Steps of the cell-based trastuzumab ELISA. 

 

 

The preliminary stage of the development was aimed to visualize the specificity of the 

interaction between HER2 overexpressed on the surface of the SKBR3 cells and 

trastuzumab at pharmacological concentrations in a plasma matrix. In order to achieve 

this objective an immunocytochemistry experiment was set up using the SKBR3 cell 

line and the HER2-negative MDA MB 231 cell line as antigens. The two cell lines were 

plated at 5000 cells per well in two separate optical 96 well plates and allowed to 

adhere for 24 h at 37 °C and 5% CO2. After washing with PBS, cells were fixed with 10% 

formalin for 20 min. The plates were blocked for 1 h with 20% goat serum in Tris 

buffered saline (TBS) with 0.1% Tween 20 for 1 h at room temperature and 

subsequently incubated with human plasma spiked with trastuzumab and diluted 

1/4000 in wash buffer (TBS with 0.1% Tween 20 and 1% goat serum).  
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Each well was washed 3 times with wash buffer, then incubated for 1 h at room 

temperature with an Alexafluor 488 tagged goat antihuman antibody diluted 1/500 in 

wash buffer with 10 μg/ml Hoescht 33342. Wells were washed 3 times with PBS and 

imaged with a ×20 objective on the fluorescent microscope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Immunocytochemistry detection of trastuzumab in human plasma.  
Trastuzumab in human plasma was used as the primary antibody at 120 μg/ml (a and d), 10 μg/ml (b) or 
0 (unspiked human plasma, c) with formalin fixed HER2+ SKBR3 cells (a, b, c) or HER2- MDA MB 231 cells 
(d) as the capture antigen.  

 

When SKBR3 breast carcinoma cells, which over-express HER2, was used as the antigen 

a strong fluorescent signal was observed when the cells were incubated with 120 

μg/ml trastuzumab in human plasma diluted 1/4000 in wash buffer (Figure 3.2a), and a 

signal above background detected when 10 μg/ml trastuzumab in human plasma 

diluted 1/4000 in wash buffer was used as the primary antibody (Figure 3.2b). No 

signal was detected when SKBR3 cells were incubated with unspiked human plasma 

diluted 1/4000 (Figure 3.2c). When MDA MB 231 cells, which do not over-express 

HER2, were incubated with 120 μg/ml trastuzumab no fluorescence above background 

was observed (Figure 3.2d). 
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During the development process a series of factors which could potentially affect the 

reliability of the ELISA were identified and several solutions were suggested. 

 

SKBR3 cells as a reagent 

Firstly, the use of cultured breast cancer cells as capture antigen was seen as a 

potential obstacle to the reproducibility of the assay. To overcome this problem it was 

decided to prepare single-use aliquots of SKBR3 cells. SKBR3 cells were propagated in 

RPMI 1640 with 10% FCS at 37 °C and 5% CO2, maintained and trypsinised at 

approximately 90% confluence, and split 1 in 2 successively until thirty two 175 cm2 

tissue culture flasks were obtained with cells at approximately 90% confluence. The 

cells were trypsinised, pooled and counted on the cell counter. The resuspended cells 

were centrifuged at 1000 rpm, the medium was aspirated and the pellet resuspended 

in RPMI 1640 with 10% FCS and 10% DMSO at a concentration of 2.6×107 cells ml−1. 

This suspension was stored at -80 °C in 0.5 ml aliquots until needed for the assay. 

The final concentration of cells in wells had also to be fixed in order to get uniform 

results. It was decided to employ the cell density which would result in a confluent 

mono-layer 24 hours after the seeding from -80 °C storage (1×105 cells per well).  

 

Background absorbance and signal-to-noise ratio 

One of the major problems in the development of a ligand-binding assay is the 

occurrence of non-specific secondary antibody interactions, which can be a source of 

high absorbance background and poor signal-to-noise ratio.  

In order to assess this issue the effect of different blocking agents was firstly 

investigated. Twenty four hours after seeding at 1×105 cells per well, SKBR3 cells were 

fixed and then incubated overnight at 4 °C under four different conditions (Figure 3.3). 

Plates were flicked dry and trastuzumab 100 g/ml in human plasma (or unspiked 

human plasma) diluted 1/2000 in wash buffer was added. The plate was incubated for 

1 h at room temperature on the Gyro rocker at 20 rpm. After washing three times with 

wash buffer, 100 μl per well HRP goat anti-human antibody diluted 1/1000 in wash 

buffer was added and the plate was incubated for 1 h at room temperature on the 

Gyro rocker at 20 rpm. Each well was then washed 3 times with 300 μl wash buffer. 

HRP activity remaining was detected with TMB Substrate Kit (described in the protocol 
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sub-section). The absorbance at 450 nm of each well was read on the plate reader. The 

results showed that 20% goat serum had the best blocking effect, with a signal-to-

noise ratio of 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Effect of four different blocking agents on signal-to-noise ratio in the trastuzumab cell-based 
ELISA 
 

 

A second experiment was set up in order to assess the effect of different number of 

washes and different washing procedures.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4: Effect of different number of washes and washing procedure on background absorbance 
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The results in Figure 3.4 show that at least three washes after the primary incubation 

and the use of the aspirator after the secondary incubation were able to reduce 

background absorbance. The results of further experiments suggested that the use of 

the aspirator had to be extended to both wash cycles and the best number of washes 

after the secondary incubation was five.  

 

Early assessment of the concentration-absorbance response 

The effect of different dilutions of the secondary antibody was evaluated within the 

same experiment described in the previous section. Figure 3.5 shows that 1/1000 

dilution of the HRP goat anti-human antibody resulted in the best concentration-signal 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Effect of different dilutions of secondary antibody 

 

 

A good correlation was observed except for the absorbance values at 100 g/ml 

trastuzumab. This was attributed to the detachment of cells caused by the aspiration 

which led to a lower number of HER2 receptors available on the plate and, 

consequently, to a saturation of the receptors by trastuzumab. An effective solution to 

the problem was the use of poly-D-lysine as a pre-coating agent in order to improve 

the adhesion of SKBR3 cells to the plate. This led not only to a better linearity of the 

assay, but also reduced the intra-assay variability resulting from lack of uniform cell 

density across the wells. 



53 

 

The effects of different dilutions of the analyte in wash buffer and different enzymatic 

reaction times on the assay concentration-absorbance response were also investigated 

(Figure 3.6). One in four thousand dilution of the analyte and 20 minutes of incubation 

with the TMB substrate achieved the best outcome. 

 

 

 

 

 

 

 

 

 

Figure 3.6: Effect of different dilutions of analyte and different enzymatic reaction times 

 

Description of the protocol  

The results of the previous optimization experiments allowed the generation of a 

protocol which was used for the validation experiments and for the measurement of 

clinical samples. The assay was carried out over three days. On day one, the inner 60 

wells of two 96 well tissue culture plates were incubated with 100 μl per well of 100 

μg/ml 70,000–150,000 kDa poly-D-lysine for 5 min at room temperature under sterile 

conditions. The poly-D-lysine was aspirated and each well was washed with sterile 

deionised water and the plates were allowed to dry under sterile conditions. Once dry, 

a single-use aliquot of SKRB3 cells was thawed and re-suspended to a total volume of 

13 ml in RPMI 1640 with 20% FCS and a concentration of 1×106 ml−1. This cell 

suspension was distributed into the poly-D-lysine coated wells of the previously-coated 

plates at a density of 1×105 cells per well in 100 μl volumes. The plates were incubated 

for exactly 24 h at 37 °C and 5% CO2 to allow the cells to recover and adhere to the 

poly-D-lysine coated substrate. On day two of the assay the medium was gently 

aspirated by vacuum and the cells were washed with cold PBS and fixed with 100 μl 

per well 10% formalin for 20 min. The formalin was aspirated and the cells were 
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washed 3 times with 100 μl PBS per well. Following washing, the fixed cells were 

incubated overnight at 4 °C in 100 μl blocking buffer (Tris buffered saline with 0.1% 

Tween 20, 20% goat serum and 0.2% sodium azide). On day 3 of the assay all samples, 

standards and QCs were diluted 1/4000 in wash buffer (TBS with 0.1% Tween 20 and 

1% goat serum). The block buffer was aspirated from the plate, replaced with 100 μl 

per well of the diluted samples, standards and QCs in replicates and incubated for 1 h 

at room temperature on the Gyro rocker at 20 rpm. Following the primary incubation 

the samples were removed by aspiration and each well was washed 3 times with 100 

μl wash buffer. The final wash was replaced with 100 μl per well HRP goat anti-human 

antibody diluted 1/1000 in wash buffer and the plate was incubated for 1 h at room 

temperature on the Gyro rocker at 20 rpm. Each well was then washed 5 times with 

300 μl wash buffer. HRP activity remaining was detected with TMB Substrate Kit as per 

manufacturer's instruction. Briefly 100 μl of the combined TMB substrate and H2O2 

solution was added to each well and was incubated in darkness at room temperature 

for 20 min on the Titertek plate shaker on setting 6. After 20 min the reaction was 

stopped with the addition of 100 μl per well 180 mM sulphuric acid and agitation for 

10 s on the plate shaker on setting 6. The absorbance at 450 nm of each well was read 

on the plate reader. Sample and QC values were interpolated from the standard curve 

using a Power equation in Excel (Microsoft Office Excel version 2010) (y=cxb).  

 

Dynamic range 

A 150 mg vial of trastuzumab was dissolved in 2 ml sterile deionised water and aliquots 

stored at −80 °C. The 75 mg/ml solution was diluted to 1 mg/ml solutions in human 

plasma from one individual. For the initial determination of a dynamic range, 

trastuzumab at 1 mg/ml was diluted in human plasma by serial 1 in 2 dilutions to give a 

range of concentrations from 1 mg/ml to 60 ng/ml. These solutions were further 

diluted 1/4000 in wash buffer. A set of three experiments identified a dynamic range 

for the assay of between 8 and 125 μg/ml when samples had been diluted 1/4000 in 

wash buffer (Figure 3.7). 
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Figure 3.7: Representative experiment showing the dynamic range of the cell-based trastuzumab ELISA. 

 

3.2.3 Validation of the assay 

Seven trastuzumab concentrations within the dynamic range (120, 100, 80, 60, 40, 20 

and 10 μg/ml) were used to generate standards and these concentrations were used in 

all subsequent validation experiments. The plot of signal versus concentration was best 

fitted by a power curve (y=cxb) with an R2 value of 0.996 (Figure 3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Standard curve of human plasma spiked with trastuzumab as determined by cell-based ELISA. 
The insert table shows the mean, standard deviation and CV of the constants from a power equation 
(y=cx

b
). Figure represents mean and SD of 13 independent experiments. 
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Concentrations of 100 and 25 μg/ml were used for quality control samples. Standard 

curves were made up fresh for each experiment. Quality control samples were made 

as single use aliquots and were stored at −80 °C. These samples were used to validate 

the assay as described below. The disposition of standards, quality controls, samples 

and blanks in replicate wells is described in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Costar 96-well plate showing the disposition of standards, quality controls, blanks and 
samples for the cell-based trastuzumab ELISA 

 

Intra and Inter assay variability 

Intra assay variability was determined by running 15 replicates of the low and high QC. 

This was repeated twice, for a total of 3 independent experiments, and the mean 

values were used to contribute towards the acquisition of data to determine inter 

assay variability. The mean intra assay variability was 9% and on one occasion out of 

six was above 15% (16% for the low QC) (Table 3.1). Inter assay variability was assessed 

over 11 independent experiments performed as part of the validation. Mean inter-

assay variability was 12% for the low QC and 11% for the high QC. The variability of the 

back-calculated concentrations of trastuzumab from the standard curve were between 

5 and 12% and all calculated values of the standards were within ± 8% of the intended 
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value (Table 3.1). The mean percentage recovery for the low and high QC samples was 

98% and 95% respectively. 

 

Intra-assay variability 

 
Low 
QC 1 

Low 
QC 2 

Low 
QC 3 

Mean 
Low QC 

 
High 
QC 1 

High 
QC 2 

High 
QC 3 

Mean 
High QC 

Mean trastuzumab 

(g/ml) 
23 28 29 27  84 96 106 95 

N 15 15 15   14 15 15  

SD  (g/ml) 4 2 2   8 6 10  

CV (%) 16 8 6   9 6 10  

Inter-assay variability 

 Low High std10 std20 std40 std60 std80 std 100 std 120 

Mean trastuzumab 

(g/ml) 
25 95 11 19 39 56 87 101 121 

N 11 11 13 13 13 13 13 13 13 

SD  (g/ml) 3 11 1 2 5 4 7 5 7 

CV (%) 12 11 11 12 12 8 8 5 6 

 

Table 3.1: Cell-based trastuzumab ELISA intra- and inter-assay variability  
(n = intra-assay replicates in individual experiments for the intra-assay variability determination and 
number of independent experiments for the inter-assay experiments) 

 

Stability of trastuzumab QC samples in different storage conditions 

The stability of trastuzumab under numerous storage conditions was determined. Both 

the high and low QCs were stable over 72 h at -20 °C (CV = 5 and 4% respectively) and 

4 °C (CV = 4 and 5% respectively) (Figure 3.10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Stability of trastuzumab QCs at -20 °C and at -4 °C for 24, 48 and 72 h.  
Error bars represent SD (intra-assay variability). 
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QCs were also stable for up to 10 weeks at −20 °C (CV = 4 and 9% respectively) (Figure 

3.11) with no downward trend and for at least 6 months at −80 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Stability of trastuzumab QCs at -20 °C for 2, 4, 6, 8 and 10 weeks. 
Error bars represent SD (intra-assay variability) 

 

There was no loss of signal over 4 freeze/thaw cycles from -80 °C to RT (Figure 3.12). 

 

 

 

Figure 3.12: Stability of trastuzumab QCs over up to 4 freeze/thaw cycles.  

Error bars represent SD (intra-assay variability). 
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There was a slight downward trend in the absorbance values of the QC samples over 

the period of the validation, but this had no effect on the calculated QC concentrations 

and was attributed to a decrease in the HRP activity of the secondary antibody. 

Absorbance values returned to those seen at the beginning of the method 

development when new secondary antibody was purchased. 

 

Limit of quantification 

The lower limit of quantification was determined by analysing the plasma of eight 

individuals who had not received trastuzumab. The apparent plasma concentration 

was 5.6 ± 1.1 μg/ml (Mean and SD). Therefore a concentration of 9 μg/ml trastuzumab 

(Mean + 3 SD) was established as the lower limit of detection and at this value it is 

predicted that less than 1 in 200 positive values will be false. 

 

Dilutional linearity and parallelism 

Dilutional linearity was demonstrated by spiking matrix with 1 mg/ml trastuzumab and 

serially diluting the spiked sample 1 in 2 followed by a 1/4000 dilution in wash buffer.  

No high dose ‘hook effect’ was observed up to 1 mg/ml (Figure 3.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Absorbance of 1 in 2 Serial dilutions of 1 mg/ml trastuzumab (circles).  
Squares represents standards. Red dotted line shows a possible trend in the absorbance values if a 
“hook” effect were present. The high dose ‘hook effect’ refers to measured levels of analyte displaying a 
significantly lower absorbance than the actual level present in a sample. It occurs when the assay is 
saturated by a very high concentration of analyte binding to all available sites on both the capture 
antigen as well as the detection antibody and thereby preventing the sandwich-formation. The analyte-
saturated detection antibodies in solution are washed off giving a falsely low signal. A “hook” is 
observed in the curve when data is plotted as a signal versus analyte concentration (Rodbard et al., 
1978). 
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Dilutions between 1/16 and 1/64 had predicted and measured results within the 

dynamic range of the assay and the trastuzumab concentrations corrected for dilution 

of these samples were within 20% of the predicted concentration (Figure 3.14).  

 

 

Figure 3.14: Back-calculated concentration of serial dilutions of 1 mg/ml trastuzumab.  
The graph shows that there is parallelism in the concentrations that are diluted to be within the 
standard curve values (between 1/16 and 1/64). 

 

Three patient samples with measured concentrations above the dynamic range of the 

assay were used to determine parallelism. The samples were serially diluted in matrix 1 

in 2, followed by a 1/4000 dilution in wash buffer. For each sample the lowest dilution 

that resulted in a measured concentration within the dynamic range of the assay and a 

calculated concentration less than 20% different from the preceding concentration 

was reported as the determined concentration. In two of the patients the minimum 

required dilution was 1/4 and in one patient a 1/16 dilution was required.  

 

3.2.4 Discussion 

The data presented in the previous sections show that the cell-based trastuzumab 

ELISA was specific for the interaction between trastuzumab and HER2, as illustrated by 

the immunofluorescence experiments. No fluorescence signal was observed when a 1 

in 4000 dilution of human plasma without trastuzumab was used as the primary 

antibody on the HER2-positive SKBR3 cells, nor when a 1 in 4000 dilution of human 
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plasma spiked with 120 μg/ml trastuzumab was used on the HER2-negative cell line 

MDA MB 231. The sensitivity of the assay was sufficient to discriminate plasma 

concentrations lower than the pharmacological target of a trough trastuzumab 

concentration of 20 μg/ml (Leyland-Jones et al., 2003). The assay was comparable in 

terms of performance with the sandwich ELISA described by Maple et al. (2004), 

showing similar precision, dynamic range and accuracy, but was simpler to execute and 

is not limited by access to reagents of restricted availability. 

The dynamic range of the assay of 10 to 120 μg/ml encompassed the expected mean 

trough trastuzumab concentration, as determined by previously published 

trastuzumab pharmacokinetic studies (Bruno et al., 2005). The stability experiments 

show that trastuzumab in human plasma was stable over a range of conditions and 

manipulations. Finally, the results of the dilutional linearity and parallelism 

experiments implied that a patient sample that was above the upper limit of 

quantification could be diluted into the dynamic range of the assay and the calculated 

value was reliable. All these characteristics make the assay suitable for the purpose of 

measuring trough plasma concentrations in trastuzumab treated patients. 

 

3.3 HER2 ELISA 

3.3.1 Introduction 

The measurement of plasma HER2 concentration was performed using a commercial 

kit which is based on the principles of a normal sandwich ELISA. Briefly the microwells 

of a 96-well plate had been previously coated with an anti-human HER2 antibody. The 

human HER2 present in the sample or standard bound to the antibodies adsorbed to 

the microwells. A HRP-conjugated anti-human HER2 antibody was added and bound to 

human HER-2 captured by the first antibody. Following incubation the unbound HRP-

conjugated anti-human HER2 was removed during a wash step, and substrate solution 

reactive with HRP was added to the wells. A coloured product was formed in 

proportion to the amount of human HER2 present in the sample or standard. The 

reaction was terminated by addition of acid and absorbance was measured at 450 nm. 

A standard curve was prepared from seven human HER2 standard dilutions and human 

HER2 concentration was determined. The detailed procedures and the reagents and 
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equipment needed for the assay are described in the ‘product information and 

manual’ (Bender_Medsystems®, 2011). Although this assay had been validated by the 

manufacturer it appeared appropriate to conduct a series of further validation 

experiments before moving to the measurement of HER2 in patient samples.   

 

3.3.2 Validation 

The dynamic range of the assay was confirmed by preparing two-fold serial dilutions of 

the HER2 standard (10 - 5 - 2.5 - 1.25 - 0.63 - 0.31 - 0.16 - 0.16 ng/ml) as described in 

the product information and manual. 10 ng/ml and 0.16 ng/ml are the upper and 

lower limits of quantitation as described in the product information and manual. The 

average cumulative standard curve, obtained from 14 independent experiments (5 of 

them performed using a first batch of the assay, 9 using a second batch), was best 

fitted by a power curve (y=cxb) (Figure 3.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 3.15: Standard curve of HER2 ELISA.  
Graph a represents mean and SD of 14 independent experiments. Graphs b and c represents mean and 
SD of, respectively, 5 and 9 independent experiments using two different batches of the assay.  
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Preparation of Quality Controls 

The high concentration and low concentration quality controls (high QCs and low QCs) 

were supplied by the manufacturer in the form of vials of lyophilised HER2 protein 

(one vial per plate), to be reconstituted in 100 μl distilled water in order to achieve a 

concentration range of 50 - 300 ng/ml and 5 - 30 ng/ml, respectively. Using the QCs as 

suggested by the product information and manual, however, would have resulted in 

the availability of a low number of QC samples at not exactly the same concentration 

and this would not have allowed the execution of the planned validation experiments 

and the necessary reproducibility. To overcome this issue, twenty vials of lyophilised 

low QC and twenty vials of high QC (from two 10-pack batches of the kit) were 

reconstituted in 100 l of human plasma (per vial). These two sets of solutions were 

then mixed together in two separate tubes (one for low QC, one for high QC) and 

divided into multiple single-use aliquots, which were stored at -20°C.    

 

Intra-assay, Inter-assay, Inter-batch variability 

Intra assay variability was determined by running 16 replicates of the low and high QC, 

and this was performed three times for the first batch of the kit and three times for 

the second batch. The mean values were also used to contribute towards the 

acquisition of data to determine inter assay variability (Table 3.2).  

 

  Intra-assay variability  Inter-assay variability 

 QC 
Mean [HER2] 

(ng/ml) 
n 

Mean CV 
(%) 

 
Mean [HER2] 

(ng/ml) 
n 

Mean CV 
(%) 

Both batches 
(cumulative) 

High 113.6 16x6 13.5  108.4 14 13.8 

Low 9.8 16x6 8.2  9.6 14 15.0 

1
st

 batch 

High 122.1 16x3 13.3  124.7 5 7.0 

Low 10.4 16x3 7.9  11.0 5 9.3 

2
nd

 batch 

High 105.1 16x3 13.8  99.3 9 8.3 

Low 9.1 16x3 8.5  8.7 9 9.6 

 

Table 3.2: HER2 ELISA intra- and inter-assay variability 
(n = intra-assay replicates per individual experiment for the intra-assay variability determination and 
number of independent experiments for the inter-assay experiments) 
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The mean intra assay variability was 13.5% for the high QC and 8.2 for the low QC. 

Inter assay variability was assessed over 14 independent experiments. Mean inter-

assay variability was 13.8% for the high QC and 15% for the low QC. However, within 

the same batch the inter-assay variability was significantly lower (ranging from 7 to 

9.6%).  

 

Stability of HER2 QC samples in different storage conditions 

Both high and low QCs were stable for up to 6 months at -20 °C with no downward 

trend and over 72 h at 4 °C (CV = 9 and 6% respectively) (Figure 3.16). The QCs were 

also stable over up to 5 freeze/thaw cycles from -20 °C to RT (Figure 3.17). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Stability of HER2 QCs at -4 °C for 24, 48 and 72 h.  
Error bars represent SD (intra-assay variability) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Stability of HER2 QCs over up to 5 freeze/thaw cycles.  
Error bars represent SD (intra-assay variability). 
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Limit of detection 

The limit of detection of the assay (0.13 ng/ml) was calculated as the mean plus 3 

standard deviations of calculated values from blank wells of 14 different experiments. 

 

Dilutional linearity 

QCs and patient samples had to be diluted 1:20 in assay buffer as per the product 

information and manual. In order to assess dilutional linearity of the assay high and 

low QCs were serially diluted in assay buffer in order to obtain concentrations which 

would give absorbance signals within the dynamic range of the assay.  Linearity was 

demonstrated in the case of the high QCs, where the HER2 concentrations corrected 

for the dilution were within 20% of the predicted concentration. However, this was not 

observed in the case of the low QCs, where dilution factors that were different from 

the recommended 1:20 gave unreliable results (Figure 3.18).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Back-calculated concentration of serial dilutions of HER2 high QCs and low QCs in assay 
buffer.  
The graphs show that there is linearity with the high QC but not with low QC. Error bars represent SD 
(intra-assay variability). 

 

Effect of haemolysis 

In order to assess the potential effect of haemolysis on the quantification of HER2 two 

5 ml blood samples in EDTA tubes were collected from a healthy volunteer. Haemolysis 

in one of the two samples was achieved by vigorous shaking and plasma from both 
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samples was prepared. An aliquot of high QC was diluted 3:4, 1:2 and 1:4 with either 

haemolysed or non-haemolysed plasma and HER2 concentrations were determined 

(Figure 3.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.19: Concentration of HER2 high QCs diluted with either haemolysed or non-haemolysed 
plasma.  
Error bars represent SD (intra-assay variability). 

 

Effect of trastuzumab 

Given that the molarity of trastuzumab in plasma of treated patients can range from 1 

to 4 orders of magnitude higher than the HER2 plasma molarities reported in the 

literature, an experiment was set up in order to assess the potential interference of 

trastuzumab on the HER2 ELISA. Eight patient samples were spiked with either 10% 

water or 10% trastuzumab (concentrations 1000, 500, 250 and 125 g/ml in water) to 

give final trastuzumab concentrations of 100, 50, 25 and 12.5 g/ml. The 

concentration of HER2 were then determined (Figures 3.20 and 3.21). 
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Figure 3.20: Concentration of HER2 in two patient samples spiked with trastuzumab at different 
concentrations.  
X axis shows final concentration of trastuzumab in the sample. Error bars represent SD (intra-assay 
variability). 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.21: Concentration of HER2 in six patient samples spiked with trastuzumab at different 
concentrations.  
X axis shows final concentration of trastuzumab in the sample. Error bars represent SD (intra-assay 
variability). 

 

3.3.4 Discussion 

The data presented in the previous sections confirm that the Bender-Medsystems® 

HER2 ELISA can detect HER2 plasma concentrations within the range reported in 

previously-published studies (Fornier et al., 2005; Ludovini et al., 2008). The intra 

assay, inter assay and inter batch variability experiments confirm an acceptable 

precision of the assay, with the only concern being the difference in the calculated 
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concentrations observed between the two batches. The stability experiments show 

that HER2 in human plasma is stable over a range of conditions and manipulations. 

Importantly, sample haemolysis does not seem to interfere with the assay. 

Pharmacological concentrations of trastuzumab in the sample had only a moderate 

effect on the measurement of values close to the lower limit of quantification of the 

assay, whereas higher HER2 values do not seem to be influenced. The results of the 

dilutional linearity experiments show that loss of parallelism can alter the 

measurement of low values as well. These two latter observations indicate that low 

patient values should be treated with caution. 

 

3.4 Conclusion 

The development and validation of a cell-based ELISA for the measurement of 

trastuzumab in plasma have been described. The performance of a similar assay for 

the measurement of HER2 in plasma samples has been evaluated by an analoguous 

validation process. Both the ELISAs have been shown to be suitable for the purpose of 

collecting pharmacokinetic and biomarker data from the HER2-positive breast cancer 

patients treated with trastuzumab in this study.  
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Chapter 4. Results II: HER2 SNPs in the whole population 
 

4.1 Overview 

This chapter initially discusses the process of patient recruitment, the characteristics of 

the whole study population and the clinical samples obtained. In the following sections 

the characteristics of the tumours are analysed, with a particular attention on the 

assessment of HER2 expression. The final sections of the chapter present the results of 

the HER2 SNPs genotyping in genomic DNA, their association with the tumour 

characteristics and the potential implications of these observations in the context of 

the relevant scientific literature. 

 

4.2 Study population 

4.2.1 Recruitment 

From August 2007 to July 2011 a total of 367 patients from the medical oncology 

clinics of the Northern Centre for Cancer Care (NCCC) were recruited. Figure 4.1 shows 

the enrolment of patients over time. Since the final ethical approval was granted 

(August 2007) the recruitment process underwent two major delays, which coincided 

with the bureaucratic procedures necessary to obtain a first authorization to patient 

recruitment and a second, more comprehensive, honorary contract from the NHS 

Trust. The overall recruitment rate was 7.6 patients/month but, if the two periods of 

delay are excluded, the actual recruitment rate was 10.9 patients/month.  

It is also evident from Figure 1 that the recruitment rate was faster in the period 

covered by the first NHS authorization than it was during the months following the 

grant of the honorary contract. This is because in this latter period a greater 

proportion of time was spent in the laboratory and time was also devoted to clinical 

duties within the breast cancer clinics at the NCCC. This led to a relative decrease in 

the time available for informing and consenting patients. 

The allocation of patients to the categories of HER2-positive, HER2-negative and HER2 

equivocal/discordant will be explained in detail in Section 4.3.1.  
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Figure 4.1: Patient recruitment over time 
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4.2.2 Characteristics of patients and samples collected 

The demographic characteristics of the study population and the characteristics of 

samples collected are described in Tables 4.1 and 4.2, respectively. It is important to 

note that the vast majority of the patients were Caucasian and only one patient was 

male. With regard to the sample collection, blood drawing was not feasible in only six 

cases due to poor venous access. The analyses of tumour samples and plasma samples 

from trastuzumab treated patients are presented in Chapters Five and Six, 

respectively. 

 

 

Total consented (number) 367  

Ethnicity 
Caucasian (%) 97.5 

Non Caucasian (%) 2.5 
   

Gender 
Female (%) 99.7 

Male (%) 0.3 * 
   

Age at date of consent 
Median (years) 57 

Range (years) 29 - 82 

Table 4.1: Demographic characteristics of study population 
* 1 male patient 

 

Total consented 367    

Blood sample collected 361    

     

Tumour sample collected 241    
     

Treated with trastuzumab 
Yes  168 Plasma sample collected 138 

No 199   

Table 4.2: Characteristics of samples collected  
(figures represent number of patients) 

 

4.3 Characteristics of tumours 

The histo-pathologic data of all tumours collected from pathology reports available in 

the patients’ clinical notes and in the Trust laboratory and Patient Administration 

Service databases are presented in Table 4.3.  
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  number % 

Total  367 100 

 
Histologic subtype 

Ductal NST 299 81.5 

Lobular 24 6.5 

Carcinoma NOS 9 2.5 

Apocrine 4 1.1 

Mucinous 3 0.8 

Micropapillary 1 0.3 

Mixed or multiple histology 27 7.4 
 

 

Histologic grade 

1 12 3.3 

2 135 36.8 

3 193 52.6 

Discordant determinations 13 3.5 

Not assessed 14 3.8 
 

Primary tumour 

One 
Unifocal 284 77.4 

Multifocal 63 17.2 

Bilateral (synchronous) 4 1.1 

Multiple diachronous 16 4.4 
 

Diameter of major tumour 

Occult 6 1.6 

≤ 2 cm 136 37.1 

2 - 5 cm 164 44.7 

≥ 5 cm 31 8.4 

Neo-adjuvant chemo* 18 4.9 

Unknown 12 3.3 
 

Staging at date of first diagnosis 

Early 

Node-negative 139 37.9 

Node-positive 193 52.6 

Not assessed 20 5.4 

Distant metastases 13 3.5 

Suspicious distant metastases 2 0.5 
 

Staging at date of consent 

Early (no recurrence) 301 82 

Regional recurrence 13 3.5 

Distant metastases 51 13.9 

Suspicious distant metastases 2 0.5 
 

Expression of hormone receptors 

Positive (Quick score 4 - 8) 240 65.4 

Negative (Quick score 0) 97 26.4 

Low (Quick score 2-3) 18 4.9 

Discordant determinations 12 3.3 

Table 4.3: Characteristics of tumours.  
No. represents number of patients. * patient undergoing neo-adjuvant chemotherapy had tumours ≥ 5 
cm by clinical measurement (calliper and/or ultrasound and/or mammogram)  
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As expected, the ductal histologic subtype represented the vast majority of the cancers 

(81.5%), with the lobular subtype being the second most frequent. As explained in 

Section 2.2, the patients recruited were not necessarily newly-diagnosed. In fact a 

significant proportion of patients had been diagnosed with more than one primary 

tumour and about 17% of patients had suffered from a regional or distant recurrence 

since their first diagnosis. 

As described in the table, our sample is characterized by a relative enrichment in the 

expression of negative prognostic factors compared with large breast cancer databases 

(SEER, 2011). This may be due to the fact that most of the patients recruited were 

referred to the medical oncology breast clinic from the surgical department after 

surgery.  The patients were to be considered for adjuvant chemotherapy, which is 

usually offered to patients with medium to high risk of recurrence (Goldhirsch et al., 

2009). Therefore most low-risk patients were not referred and could not be included in 

the study. 

This selection effect can explain the fact that most tumours had a histologic grade of 2 

or 3 (89.4%) and the proportion of grade 1 tumours (3.3%) was very low compared 

with large published series (Rakha et al., 2008). In the same way, the relatively low 

proportion of small size (37.1% ≤ 2 cm) and node-negative (37.9%) tumours at first 

diagnosis is in apparent contrast with earlier detection of breast tumours facilitated by 

the screening policies implemented in the United Kingdom in recent years. 

With regard to the expression of hormone receptors, this was determined in the vast 

majority of the cases using the ‘Quick’ scoring system, which ranges from 0 to 8 

(excluding 1) (Leake et al., 2000). The ‘low’ score reported for 4.9% of patients refers 

to a Quick score of 2 or 3. In 3.3% of patients hormone receptors assessed on multiple 

occasions (from multiple primary tumours and/or in primary and recurrent tumours) 

gave conflicting results and this subgroup was therefore isolated from the rest of the 

sample. 

 

4.3.1 Determination of HER2 status 

As pointed out in Section 2.2, the HER2 status in tumour samples was assessed using 

IHC and/or ISH.   
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IHC 

The number of HER2 determinations using IHC and their results are shown in Table 4.4. 

  

 no.  no. % 

IHC determinations 397 

score 0 69 17.4 

score 1 66 16.6 

score 2 96 24.2 

score 3 142 35.8 

score not available 25 6.3 

Table 4.4: HER2 determinations with IHC  
(no. represents number of determinations) 

 

As seen in the table, the total number of HER2 determinations exceeds the number of 

patients because several patients had more than one determination (in multiple 

primary tumours or in case of matched assessment in primary and recurrence). In 6.3% 

of cases the HER2 status was reported simply as ‘positive’ or ‘negative’ and it was not 

possible to retrieve the IHC score. Data on uniformity and intensity of membrane 

staining, as well as percentage of tumour cells stained were not available in pathology 

reports. 

 

ISH 

HER2 amplification using ISH was assessed in 110 cases (Table 4.5), the vast majority of 

which were subsequent to IHC score 2 determinations (96 cases, as shown in Table 

4.4).  

 

 no.  no. % 

ISH determinations 110 
FISH 77 70 

SISH 33 30 

ISH status 
Amplified 50 45.5 

Not amplified 60 55.5 

Chromosome 17 copy number/cell available 39 

HER2 copy number/cell available 98 

HER2/chromosome 17 ratio available 41 

Table 4.5: HER2 determinations with ISH 
(no. represents number of determinations) 
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The 14 extra cases are accounted for as follows: 

- multiple ISH determinations on the same tumour sample (IHC score 2); 

- ISH determinations to confirm IHC negative or positive (0, 1 or 3) cases in single 

sample or in multiple samples in the same patient. 

Two different methods (FISH and SISH in 70% and 30% of cases, respectively) were 

adopted for the HER2 amplification, reflecting a shift in the Pathology Laboratory 

procedures implemented over recent years (Section 2.2).  

Detailed data on chromosome 17 and HER2 copy number were not always present in 

the pathology reports, as shown in Table 4.5. Figure 4.2 shows the distribution of the 

ISH results in the available cases. In only 39 cases were both chromosome 17 and HER2 

copy number/cell available (Figure 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: a) Chromosome 17 copy number/cell in 39 determinations; b) HER2/chromosome 17 ratio in 
41 determinations; c) HER2 copy number/cell in 98 determinations 
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Figure 4.3: Matched chromosome 17 copy number/cell and HER2 copy number/cell in 39 
determinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: HER2 copy number/cell plotted against chromosome 17 copy number/cell in 39 
determinations.  
The two red dotted lines refer to HER2/chromosome 17 ratio cut-offs of 2 - adopted in this study - and 
2.2 – as per Wolff et al. (2007)  
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As mentioned in Section 1.2.2, ISH standard cut-offs for HER2 amplification have been 

modified by recent guidelines and the currently accepted values are  2.2 for the 

HER2/chromosome 17 ratio and 6 for HER2 gene copy number/cell count (Wolff et al., 

2007). In this population, however, ISH ratio between 2 and 2.2 and HER2/cell count 

between 4 and 6 (which would have been regarded as ‘equivocal’ by current 

guidelines) were considered sufficient to define HER2 amplification. This was the case 

for six determinations when HER2/cell was chosen as the assay end-point (values 

ranging from 4.8 to 5.9) and for three determinations when the HER2/chromosome 17 

ratio was considered (Figure 4.4). 

 

HER2 determinations and patients  

The number and sites (primary tumours or recurrences) of all HER2 determinations in 

the whole study population are reported in Table 4.6. Cases of patients with multiple 

determinations in the same sample or in different samples are included along with 

their matched results (concordant HER2-positive, concordant HER2-negative or 

discordant). Two cases in which the determination was performed more than once on 

a same tumour sample and gave discordant results are also reported (highlighted in 

red). This situation might have several possible explanations, including an error in 

HER2 determination, the effect of tumour heterogeneity and a change in HER2 status 

of the tumour due to anticancer treatments.  

Categories 1, 2 and 3 describe different subsets of patients which take into account the 

presence of discordant determinations, the lack of HER2 determination in some 

samples and the sites of HER2 determination. Category 2, which include patients who 

had only one HER2 determination or multiple concordant determinations, was used to 

draw the graph in Figure 4.1 and was considered the most appropriate for the 

assessment of the potential effect of a SNP in the HER2 gene (see next sections). 

 

Taken together, the data on HER2 determinations shown in Figure 4.1, Tables 4.4 and 

4.5 show that there is a very high proportion of HER2-positive tumours in our 

population (slightly below 50%) compared with literature data (Slamon et al., 1987). 

This enrichment in HER2-positive cases can be explained by the fact that part of the 

recruitment was conducted in a trastuzumab-dedicated clinic within the NCCC.  
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   Category 1 Category 2 Category 3 

Number and site of HER2 
determinations 

No of 
patients 

Notes 
All pts with 
unequivocal 
assessments 

Pts with single or 
concordant 
determinations 

Pts with single or concordant 
determinations (excluding pts 
with missing HER2 in one or more 
Ps) 

1 on P 310   310 310 310 

1 on R 18   18 18 18 

2 on same P 4 

4 pts concordant (3 HER2 neg, 1 HER2 pos); for 2 
pts 1

st
 determination pre-treatment, 2

nd
 

determination post neo-adjuvant treatment not 
including trastuzumab) 

4 4 4 

1 on axillary LN (occult P) 1   1 1 1 

1 on R (or new P - uncertain) 1   1 1 1 

2 on 2 Ps (synchronous) 11 
7 pt concordant HER2 neg, 2 pt concordant HER2 
pos, 2 pt discordant determinations 

11 9 9 

0 on 1
st 

P, 1 on 2
nd

 P 
(diachronous) 

8   8 8   

1 on 1
st 

P, 1 on 2
nd

 P 
(diachronous) 

3 
1 pt concordant HER2 neg, 1 pt concordant HER2 
pos, 1 pt discordant determinations 

3 2 2 

3 on 3 Ps (2
nd

 and 3
rd

 
synchronous) 

1 1
st

 HER2 pos, 2
nd

 HER2 neg, 3
rd

 HER2 pos 1     

2 on 1
st

 and 2
nd

 P, 0 on 3
rd

 
(synchronous) 

1 
1

st
 and 2

nd
 concordant HER2 pos, 3

rd
 HER2 not 

done 
1 1   

      

Table 4.6 (continued on next page)     
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1 on 1
st

 P, 1 on 2
nd

 P 
(synchronous); 1 on 2

nd
 P 

(repeated later) 
1 

both Ps concordant HER2 pos, later determination 
on 2

nd
 P repeated after multiple treatments 

including trastuzumab: discordant with 1
st

 
determination (HER2 neg) 

      

0 on 1
st

 P, 1 on 2
nd

 P 
(synchronous) (performed 
later) 

1 
HER2 determined on one of the two Ps after 
failure of primary endocrine treatment 

1 1   

0 on 1
st

 P, 0 on 2
nd

 P 
(diachronous), 1 on R 

1   1 1   

0 on 1
st

 P, 0 on 2
nd

 P (or 1
st

 R - 
uncertain determination), 0 
on 2

nd
 R, 2 on 3

rd
 R 

1 
concordant HER2 pos (1

st
 det pre-treatment, 2

nd
 

det post "neo-adjuvant" treatment including 
trastuzumab) 

1 1   

0 on 1
st

 P, 1 on 1
st

 R, 1 on 2
nd

 
R 

1 
2 diachronous Rs, concordant determinations: 
HER2 neg 

1 1   

1 on 1
st

 P, 1 on R, 1 on 2
nd

 P 
(diachronous) 

1 
two Ps and R, determinations all concordant: 
HER2 pos 

1 1 1 

1 on 1
st

 P, 0 on 1
st

 R, 1 on 2
nd

 
R 

1 P and R, concordant determinations: HER2 pos 1 1 1 

1 on P, 1 on R 1 
discordant determinations: HER2 neg on P, HER2 
pos on R 

1     

1 on P, 3 on 1
st

 R, 1 on 2
nd

 R 1 
P HER2 neg; 1

st
 R: 1 determination HER2 pos, 2 

determinations HER2 neg (tumour 
heterogeneity?); 2

nd
 R HER2 neg 

      

Total 367   365 360 347 

Table 4.6: HER2 determinations on patients.  
The number and site of HER2 determinations, the presence of discordant determinations and the lack of HER2 determination in some samples were considered. 
Legend: P = primary tumour; R = recurrence (loco-regional or distant); pt = patient 
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4.4 DNA extraction and quantification 

The extraction of DNA from peripheral nucleated blood cells, performed as described 

in Section 2.5, was successful in all of the 361 patients with available blood samples. 

For each blood sample two different elution stocks of purified DNA were obtained 

(Table 4.7). The median concentrations were 197 ng/l and 59 ng/l, respectively. 

 

 Eluate 1 Eluate 2 

Total DNA samples (no.) 361 361 

Concentration 

Median (ng/l) 197 59 

Mean (ng/l) 199 69 

Range (ng/l) 24 - 826 13 – 568 

CV (%) 44 62 

 

260/280 ratio 

Median 1.90 1.89 

Mean 1.90 1.89 

Range 1.77 - 2.04 1.62 - 2.06 

CV (%) 1.49 2.78 

 

260/230 ratio 

Median 2.32 2.14 

Mean 2.30 2.09 

Range 1.37 - 3.36 0.88 - 2.79 

CV (%) 8.78 14.16 

 

Table 4.7: Characteristics of genomic DNA samples 

 

With regard to DNA purity, the median ratio of absorbances at 260 nm vs 280 nm, 

which can be used to assess protein contamination (although with low sensitivity), was 

above the recommended cut-off of ~ 1.8. The 260/230 ratio, which may indicate 

contamination by polysaccharides, phenolate ions or thiocyanates, was also in the vast 

majority of cases above the 1.8 cut off. The 1st eluate stock showed the best purity 

ratios and was therefore used for the genotyping. 

DNA was also successfully extracted according to the procedure described in Section 

2.6 from the four cell lines (CCRF-CEM, K562, SKBR3 and MCF7) which were used as 

controls for the genotyping experiments. 
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4.5 Genotyping of HER2 SNPs in genomic DNA 

The genotyping of the two SNPs in the HER2 gene, namely Ile655Val (rs1136201) and 

Ala1170Pro (rs1058808), was performed according to the method described in Section 

2.9. It was always possible to allocate each individual patient sample to its distinct 

genotype by visual assessment. Two examples of allele discrimination plots from two 

representative experiments are reported in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Allelic discrimination plots from two representative genotyping experiments; 
a) Ile655Val: A=Ile, G=Val; b) Ala1170Pro: C=Pro, G=Ala 

a 

b

a 
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Ile655Val Ala1170Pro 

Figure 4.6 shows the results of the genotyping of CCRF-CEM, K562, SKBR3 and MCF7 

cell lines along with the ‘no template control’ values over ten consecutive experiments.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Genotyping of four cell lines for Ile655Val and Ala1170Pro across ten consecutive 
experiments 
 
 

 Ile655Val 

 Mean (Rn) SD (Rn) CV (%) Genotype 

 Ile Val Ile Val Ile Val  

ccrf-cem 1.29 2.70 0.32 0.65 25 24 Ile/Val 

k562 1.81 0.49 0.38 0.33 21 68 Ile/Ile 

skbr3 2.05 0.56 0.42 0.37 21 66 Ile/Ile 

mcf7 0.01 0.84 0.04 0.42 633 50 Undetermined (Val/Val?) 
  

 Ala1170Pro 

 Mean (Rn) SD (Rn) CV (%) Genotype 

 Pro Ala Pro Ala Pro Ala  

ccrf-cem 1.49 1.08 0.26 0.22 17 20 Ala/Pro 

k562 2.01 0.09 0.40 0.06 20 61 Pro/Pro 

skbr3 2.19 0.10 0.42 0.05 19 55 Pro/Pro 

mcf7 0.21 1.57 0.05 0.30 25 19 Ala/Ala 

Table 4.8: Ile655Val and Ala1170Pro genotype. 
Mean, standard deviation (SD) and coefficient of variation (CV) of Rn values after normalization to no 
template control of four cell lines across ten consecutive experiments 
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There was a degree of variation in the absolute Rn values across different experiments. 

These data were normalized to the ntc and the average values are shown in Table 4.8 

along with standard deviation and coefficient of variation. 

For some of the cell lines used as controls published genotypes for the two SNPs were 

available. The genotypes of SKBR3 for the Ile655Val SNP and of CCRF-CEM for both the 

HER2 SNPs were in accordance with published data (Tommasi et al., 2004; Milani et al., 

2007). The genotyping of Ile655Val SNP in MCF7 cells showed no signal for the Ile allele 

and very low signal for the Val allele (Figure 4.6, Table 4.8), which caused an 

“undetermined” genotype call on the discrimination plot (Figure 4.5a). This 

phenomenon had been described and explained by Tommasi et al. (2004), who 

sequenced the region corresponding to the transmembrane portion of the receptor 

and observed that this cell line is Val homozygous for the Ile655Val SNP, but it also 

carries the extremely rare Val/Val variant of the adjacent Ile654Val SNP (rs1801201in 

the NCBI - SNP database) (NCBI_e, 2009), which may affect the alignment of the probe 

to the DNA sample and impair the PCR amplification.    

The results of the genotyping experiments for the 361 patient genomic DNA samples 

were pooled after normalization to the ntc values and are shown in Figure 4.7. The 

genotyping of the four cell lines after normalization are also plotted in order to show 

that the dispersion of the results within the three genotype groups was comparable 

with the inter-assay variation. The distribution of genotypes for the two SNPs is shown 

in Table 4.9.  

 

 

   No. % MAF (%) p for H-W 

 Ile/Ile 223 61.8   

Ile655Val Ile/Val 124 34.3 21 0.21 

 Val/Val 11 3.9   

      

 Ala/Ala 184 51   

Ala1170Pro Ala/Pro 147 40.7 29 0.93 

 Pro/Pro 30 8.3   

Tot  361 100   

 

Table 4.9: Distribution of genotypes for Ile655Val and Ala1170Pro SNPs in 361 patients. 

H-W = Hardy-Weinberg equilibrium (p value for 
2
 test); MAF = minor allele frequency 
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Figure 4.7: Pooled results of Ile655Val and Ala1170Pro genotyping experiments  
after normalization to ntc for 361 patients’ genomic DNA samples; a) Ile655Val; b) Ala1170Pro 

a 

b

a 
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There was no significant deviation from Hardy-Weinberg equilibrium for both SNPs. 

The minor allele frequencies for Ile655Val and Ala1170Pro (respectively 21% and 29%) 

were comparable with published data in Caucasian populations (NCBI_a, 2009; 

NCBI_b, 2009). 

The estimated haplotype frequencies and the linkage disequilibrium measures of the 

two SNPs were calculated using the exact solution to the cubic equation (CubeX) 

described by Gaunt et al. (2007) and the Multiallelic Interallelic Disequilibrium 

Analysis Software (MIDAS) (Gaunt et al., 2006) and are shown in Table 4.10. The two 

parameters |D'| (linkage disequilibrium coefficient) and r2 (correlation coefficient) are 

both commonly used measures of Linkage Disequilibrium adjusted for the allele 

frequencies. Whiles |D'| can range from 0 to 1 the upper limit of r2 depends on the 

allele frequencies and is maximum (1) when alleles frequencies are equal. The lower 

these parameters the lower the likelihood of a non-random association of the alleles 

(Lewontin, 1964; Hill and Robertson, 1968). 

The very low |D'| and r2 values, together with the results of a classical 2 statistics 

comparing the observed and expected (according to the genotype frequencies in the 

whole population) diplotype frequencies (Table 4.11) suggest that the probability of a 

non-random associations of the alleles at the two loci is very low.  

 

 

LD statistics according to MIDAS and CubeX 

Haplotypes estimated frequency (%) |D'| r2 
2 p 

655Ile/1170Ala 56 0.072 0.0006 0.2 ns 

655Ile/1170Pro 23     

655Val/1170Ala 15     

655Val/1170Pro 6     

 

Table 4.10: Linkage disequilibrium statistics for Ile655Val and Ala1170Pro SNPs in 361 patients  

|D'| = Linkage disequilibrium coefficient; r
2 

= correlation coefficient. 
2
 and p values represent the 

significance of linkage disequilibrium; ns = not statistically significant. All values were calculated using 
MIDAS (Gaunt et al., 2006) and Cubex (Gaunt et al., 2007). 
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   Ala1170Pro 
Total 

   Ala/Ala Pro/Ala Pro/Pro 

Ile655Val 

Ile/Ile 
Count 112 91 20 

223 
Expected Count 113.7 90.8 18.5 

Ile/Val 
Count 66 48 10 

124 
Expected Count 63.2 50.5 10.3 

Val/Val 
Count 6 8 0 

14 
Expected Count 7.1 5.7 1.2 

Total  184 147 30 361 

p = 0.615 

 

Table 4.11: 
2
 statistics comparing HER2 SNPs observed diplotype frequencies with expected 

frequencies calculated according to the observed genotypes in the whole population 

 

4.6 HER2 SNPs and tumour characteristics 

4.6.1 HER2 SNPs and HER2 expression 

The set of patients with only one HER2 determination or with multiple (on different 

primaries or on primary and recurrence) and concordant (all HER2-positive or all HER2-

negative) determinations (category 2 in Table 4.6) were evaluated with regard to the 

potential association between the HER2 SNPs and HER2 expression in tumours. The 

distribution of Ile655Val and Ala1170Pro genotypes are shown in Figure 4.8.  

While the distributions of Ile655Val genotypes among HER2-positive patients and 

HER2-negative patients were very similar (Figure 4.8a), the distributions of Ala1170Pro 

genotypes stratified by HER2 status appeared to be different (Figure 4.8b). 
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Figure 4.8: Distribution of Ile655Val genotypes (a) and Ala1170Pro genotypes (b) in the entire 
population and among HER2-positive and HER2-negative patients 

 

 

When the carriers of minor allele and heterozygous patients were grouped together 

the proportions of HER2-positive tumours between Ile655Val Ile homozygous patients 

and carriers of the Val allele were exactly the same (49%, 2 statistics p value = 0.938) 

(Figure 4.9). In contrast, for the Ala1170Pro SNP the proportion of HER2-positive 

tumours was significantly higher among carriers of the Pro allele than it was among Ala 

homozygous patients (56% vs 43%, p = 0.015) (Figure 4.10). 
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Figure 4.10: Distribution of HER2 status among Ala1170Pro Pro carriers and among Ala/Ala patients 

 

 

 

 

 

 

 

 

 

Figure 4.9: Distribution of HER2 status among Ile655Val Ile/Ile patients and among carriers of Val allele 

 

 

The same statistical tests were repeated considering the other subsets of patients 

defined in Table 4.6 and the results are shown in Table 4.12.  

As detailed in Table 4.6, for the HER2 status category 1, a patient was considered 

HER2-positive if she had at least one HER2-positive determination and was otherwise 

negative. For the HER2 status category 3, only patients with single or concordant 

determinations were included in the analysis and patients with missing HER2 in one or 

more primary tumours were excluded. 

 

 



89 

 

 HER2 status 1 HER2 status 2 HER2 status 3 

 Neg Pos Total Neg Pos Total Neg Pos Total 

Total sample 

no. 180 179 359 180 174 354 173 168 341 

% 50 50 100 51 49 100 51 49 100 

    

Ile655Val 

Ile/Ile 

no. 111 112 223 111 108 219 105 104 209 

% 50 50 100 51 49 100 50 50 100 

Val 

no. 69 67 136 69 66 135 68 64 132 

% 51 49 100 51 49 100 51 49 100 


2
 significance - p 0.860 0.938 0.818 

Odds Ratio (95% CI) 0.962 (0.628 – 1.474) 0.938 (0.640 - 1.510) 0.950 (0.614 - 1.469) 

    

Ala1170Pro 

Ala/Ala 

no. 104 78 182 104 78 182 100 76 176 

% 57 43 100 57 43 100 57 43 100 

Pro 

no. 76 101 177 76 96 172 73 92 165 

% 43 57 100 44 56 100 44 56 100 


2
 significance - p 0.007 0.015 0.020 

Odds Ratio (95% CI) 1.772 (1.167 - 2.2692) 1.684 (1.106 - 2.564) 1.658 (1.081 - 2.545) 

 

Table 4.12: HER2 status in the whole population and stratified according to HER2 SNPs 
HER2 status 1, 2 and 3 describe different, although widely overlapping, subsets of patients. This 
grouping takes into account the presence of discordant determinations, the lack of HER2 determination 
in some samples and the sites of HER2 determination (as explained in Section 4.3.1 and Table 4.6). 

 

These data suggest that the Proline allele of the Ala1170Pro SNP in the HER2 gene 

(either in homozygous or heterozygous genotype) is associated with over-expression of 

HER2 in breast tumours. 

 

Haplotype analysis  

The distribution of the haplotypes within the HER2-positive and the HER2-negative 

subgroups was then estimated using Gaunt’s model (2007). Although a global 2 test 

comparing the two distributions did not reach statistical significance, the 

655Ile/1170Pro haplotype was more common in HER2-positive patients, whereas the 

655Ile/1170Ala haplotype was more common in HER2-negative patients (Table 4.13).  
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 HER2 Status 2  

 Pos (%) Neg (%) p* 

655Ile/1170Ala 52.3 59.9 0.039 

655Ile/1170Pro 26.2 19.6 0.028 

655Val/1170Ala 15.5 15.1 0.638 

655Val/1170Pro 6 5.4 0.575 

 

 
 

 p** = 0.128  

 

Table 4.13: Distribution of haplotypes within HER2-positive and HER2-negative subgroups.  

The presence of a possible unbalance in the distribution was tested with two 
2
 tests. The first test 

compared the prevalence of individual haplotypes within HER2-positive and HER2-negative groups (p*). 
The second test compares the overall distribution of the haplotypes within HER2-positive and HER2-
negative groups (p**). 

 

4.6.2 Other tumour characteristics and HER2 SNPs 

The evaluation of other tumour characteristics (expression of hormone receptors and 

stage of the cancer at the date of consent) and their potential association with the 

HER2 SNPs are presented in the next three tables (4.14, 4.15 and 4.16). It must be 

highlighted that the total numbers of patients included in these analyses are variable 

and slightly lower compared to the analysis presented in the previous section. This is 

explained by the fact that patients with discordant hormone receptor assessment or 

‘weak’ score (Table 4.3) were excluded, as well as patients with regional recurrence 

(but not distant recurrence) and patients with suspicion (but not definite diagnosis) of 

distant metastases.  

Firstly the expression of hormone receptor was evaluated among HER2-negative and 

HER2-positive subgroups. The proportion of HR-positive patients among the HER2-

positive subset was significantly lower (63.9%) than it was among HER2-negative 

patients (76.6%)(Table 4.14). This observation is in accordance with literature data (Lal 

et al., 2005). 

 

 

 



91 

 

 Hormone Receptors * 

 Neg Pos Total 

HER2 status 2 

Neg 
no. 41 134 175 

% 23.4 76.6 100 

Pos 
no. 57 101 158 

% 36.1 63.9 100 

Total  no. 98 235 333 


2 significance – p 0.011 

Odds Ratio (95% CI) 0.542 (0.336 - 1.874) 

 

Table 4.14: Hormone Receptor status stratified according to HER2 status.  
* after exclusion of patients with discordant HR determinations and weak HR score 

 

Secondly the tumour stage (early or advanced) of patients at date of consent was 

evaluated according to hormone receptor status and HER2 status (Table 4.15).  

 

Table 4.15: Stage at date of consent stratified according to hormone receptor status and HER2 status.  
* after exclusion of patients with discordant HR determinations and weak HR score 
** after exclusion of patients with regional recurrence and suspicion of distant metastases 

 

 
Metastatic at date 

of consent ** 

 No Yes Total 

Hormone 
Receptors * 

Neg 
no. 89 5 94 

% 94.7 5.3 100 

Pos 
no. 189 43 232 

% 81.5 18.5 100 

Total no. 278 48 326 


2 significance – p 0.002 

Odds Ratio (95% CI) 4.050 (1.551 - 10.574) 
  

HER2 status 2 

Neg 
no. 159 22 181 

% 87.8 12.2 100 

Pos 
no. 138 26 164 

% 84.1 15.9 100 

Total no. 297 48 345 


2 significance – p 0.321 

Odds Ratio (95% CI) 1.326 (0.738 - 2.511) 
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While advanced and early stage patients were well balanced for HER2 status, the 

proportion of advanced patients among HR-negative patients was significantly lower 

than it was among HR-positive patients. The relatively low proportion of HR-negative 

advanced stage patients may be at least in part explained by the fact that the study 

screening strategy included not only newly-diagnosed patients but also all patients 

with known HER2 status on follow-up in the breast clinic. This implies that the HR-

negative advanced stage patients, who are known to have much worse prognosis 

compared with the HR-positive advanced stage patients, had much fewer follow-up 

visits, hence fewer opportunities to be offered study participation. 

When hormone receptor status and stage at date of consent were stratified according 

to the two HER2 SNPs, no significant association emerged (Table 4.16). 

 

 
Hormone  

Receptors * 
Metastatic at date  

of consent ** 

 Neg Pos Total No Yes Total 

Total sample 
no. 98 233 331 296 50 346 

% 29.6 70.4 100 85.5 14.5 100 

   

Ile655Val 

Ile/Ile 
no. 54 146 200 182 33 215 

% 27 73 100 84.7 15.3 100 

Val 
no. 44 87 131 114 17 131 

% 33.6 66.4 100 87 13 100 


2
 significance – p 0.199 0.543 

Odds Ratio (95% CI) 0.731 (0.453 - 1.180) 0.822 (0.438 - 1.545) 

   

Ala1170Pro 

Ala/Ala 
no. 49 118 167 144 25 169 

% 29.3 70.7 100 85.2 14.8 100 

Pro 
no. 49 115 164 152 25 177 

% 29.9 70.1 100 85.9 14.1 100 


2
 significance – p 0.915 0.860 

Odds Ratio (95% CI) 0.975 (0.608 - 1.562) 0.947 (0.520 - 1.725) 

 

Table 4.16: Hormone Receptor status and stage at date of consent stratified according to the HER2 SNPs  
* after exclusion of patients with discordant HR determinations and weak HR score 
** after exclusion of patients with regional recurrence and suspicion of distant metastases 
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4.7 Discussion 

The aim of this investigation was to evaluate the potential influence of two common 

coding SNPs on HER2 expression in breast tumours. The target sample size of 500 - 700 

patients, calculated on the basis of an expected HER2-positivity rate of 20% (Section 

2.11), was not achieved. However, the observed significant enrichment in HER2-

positive cases made possible the planned analyses in a substantially less numerous 

population (367 patients) with a similar statistical power.  

While several studies (summarised in Section 1.2.4) reported conflicting data on the 

possible role of the Ile655Val SNP, one publication (Han et al., 2005) showed that in 

Korean women carrying the 655Ile/1170Pro haplotype (the most common 

combination in that population) the likelihood of HER2 overexpression was 1.5 to 1.8 

times higher than it was in the rest of the patients. These authors, taking into account 

the results of the previous publications, suggested that polymorphisms other than 

Ile655Val (including Ala1170Pro) “may be associated with HER2 protein expression and 

breast cancer progression”. Our analysis in a population composed of almost only 

Caucasian individuals seems to be in accordance with these observations, showing that 

carriers of the Pro allele in the Ala1170Pro SNP have ~ 1.7 times higher likelihood of 

having a HER2-positive tumour. 

Our haplotype analysis showed that the two SNPs are not likely to be in linkage 

disequilibrium, consistent with previous studies (Benusiglio et al., 2005; Han et al., 

2005) and confirms a possible role for the Pro allele of the Ala1170Pro SNP or for other 

variants not considered in the study which may be associated with this SNP. 

These results are reinforced by the fact that the SNP genotypes were well balanced for 

stage at date of consent and hormone receptor status of patients, suggesting that the 

potential effect of the SNPs on HER2 expression was not confounded by these two 

fundamental clinical/biological factors.  

However, our study, does present several limitations. Firstly, our study population has 

a relatively low proportion of HR-negative advanced patients (Section 4.6.2) and this 

might limit the generalizability of the results to all breast cancer patients. 

Another caveat come from the absence of a matched control population of women 

without breast cancer. However, the distribution of genotypes for the Ile655Val SNP 

was comparable with published data in the NCBI database and with the abundant 
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literature data in Caucasian populations (NCBI_a, 2009; Tao et al., 2009; Lu et al., 2010; 

Dahabreh and Murray, 2011; Ma et al., 2011). For the Ala1170Pro SNP a more limited 

amount of data is available (Benusiglio et al., 2005; Benz et al., 2006; Tommasi et al., 

2007; NCBI_b, 2009), but the published genotype frequencies appear similar to the 

ones observed in our population (Table 4.17). 

 

  % no. From 

  Pro/Pro Ala/Pro Ala/Ala   

HER2PG study 

Whole pop of breast 
cancer patients 

8 40 51 361 

UK (Caucasian 
97.5%) 

 

HER2 neg 8 34 58 180 

HER2 pos 9 46 45 174 

Benusiglio et al. 
(2005) 

Cases (breast cancer 
pts) 

12 43 45 2014 
UK 

 
Controls 11 45 44 2181 

Benz et al. (2006) 

Cases (breast cancer 
pts) (HER2 neg?) 

11 42 47 625 Italy 

 
Cases (breast cancer 

pts) (HER2 pos) 
14 47 39 48 

USA 
(Caucasian) 

 

Controls 17 48 35 46 
USA 

(Caucasian) 
 

Controls 6 22 72 30 
USA (African-

American) 

Tommasi et al. 
(2007) 

Cases (breast cancer 
pts) 

11 42 47 628 
Italy 

 
Controls 13 48 39 169 

NCBI 

Pop 1 8 54 38 24 
European 
descent 

 

Pop 2 5 48 47 60 
European 
descent 

 

Table 4.17: HER2 Ala1170Pro SNP genotype frequencies in the current study (HER2 PG) compared with 
published available data 

 

 

Finally, as mentioned in Section 4.3.1, the cut-offs for ISH and IHC determination of 

HER2 status in tumours were not always the ones adopted in the current guidelines 
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and possibly varied over the time-course of the study. Moreover, HER2 status was 

determined by a number of different pathologists over time, the details of both IHC 

and ISH assessments were not always available in the pathology reports and the 

determinations of HER2 amplification status in tumours was performed using different 

methods over time (FISH and SISH). This lack of uniformity may diminish the validity of 

our analysis, although there was no obvious indication that it might have biased the 

genotype effects observed. 

The potential effects of SNPs on the pathogenesis of breast cancer have been 

extensively evaluated by many cooperative research groups using both candidate gene 

approaches and genome-wide association studies (GWAS). The most recent 

investigations, however, aim to ascertain the differential effect of genetic variants on 

the risk of developing particular types of breast cancer, such as the ‘triple-negative’ 

subset or the HR-positive and the HR-negative subsets (Broeks et al., 2011; Figueroa et 

al., 2011; Stevens et al., 2011). Our findings seem to be consistent with the 

heterogeneous biological origin of the different breast cancer subtypes. 

The biological explanation of the effect of the Ala1170Pro SNP observed in this 

population remains unclear. One possible mechanism which could explain the different 

distribution of the genotypes within HER2-positive and HER2-negative tumours is the 

selection of one of the two alleles which may bear a higher oncogenic potential (‘allele 

specific amplification’) (LaFramboise et al., 2005). This issue, together with the 

hypotheses on the potential role of the 1170 residue in the HER2 protein, will be 

discussed in Chapter Five. 
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Chapter 5. Results III: Evaluation of breast tumour samples 
 

5.1 Overview 

The observation that the Pro allele of the HER2 Ala1170Pro SNP might be associated 

with HER2 amplification/overexpression in breast cancer (Chapter 4) prompted us to 

evaluate the HER2 SNPs in tumour DNA. After describing the rationale behind this 

investigation, this chapter presents the results of the tumour collection process, 

including the pathological features of the samples collected. The findings of Laser 

Capture Microdissection (LCM) and DNA extraction are described in the following 

sections. The final part of the chapter illustrates the results and possible limitations of 

the tumour DNA genotyping, followed by the interpretation of these findings in the 

context of the relevant literature. 

 

5.2 Hypothesis 

In order to investigate the potential role of the Ala1170Pro SNP in the development of 

HER2-positive breast cancers, the role of ‘preferential allelic amplification’ (or ‘allele-

specific amplification’) was evaluated.  

This phenomenon, consisting in the amplification in the tumour of only one of two 

possible alleles of a particular locus present in the germ-line DNA, has been described 

in the context of several cancers. It is proposed that one allele (the ‘pathogenic’ 

variant) can undergo a positive selection through the copy number gain process 

associated with tumour evolution (LaFramboise et al., 2010). 

Therefore, in a setting of patients with HER2-amplified breast cancer who are 

heterozygous for one HER2 SNP we could hypothesize that if the SNP has no influence 

on the development of the tumour, the two alleles will have the same chance of being 

amplified, so that 50% of the tumours will have one allele amplified and 50% of the 

tumours will have the other allele (Figure 5.1a). On the contrary, if there is a selective 

pressure on one of the two alleles, the majority of the tumours will have this allele 

amplified (Figure 5.1b). 
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In order to test this initial hypothesis a set of experiments aiming at the assessment of 

the HER2 SNPs in tumour samples was planned. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Rationale for allele-specific amplification in tumours. 
a) When there is no selection the two alleles are equally represented among the tumours; b) when one 
of the alleles (‘+’, in red) is pathogenic it undergoes selective pressure and will be preferentially 
amplified in the tumours. Modified from LaFramboise et al. (2010). 

 

5.3 Tumour samples collected 

All the 367 patients enrolled in the study consented to the genetic analysis of the 

breast cancer samples taken at the time of their diagnosis or surgery. These 

specimens, in the form of FFPE blocks, were therefore requested from the Hospital 

Pathology Department of the Newcastle upon Tyne Hospitals NHS Foundation Trust. 

Two hundred forty nine tumour samples from 241 patients (2/3 of total) were made 

available to our laboratory (in 8 cases two blocks per patient were received). In the 

remaining one third of cases the tumour block was not available either because the 

patient had surgery in a different hospital or the block was prepared more than 10 

years previously and/or was not easily accessible in the Pathology archive (Table 5.1).  

The pathological characteristics of the collected tumour samples from which it was 

possible to extract DNA (see Section 5.4) are also shown in Table 5.1. They were very 

comparable with the characteristics of the tumours in the whole population of 367 

a b

a 
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patients (presented in Section 4.3) in terms of HER2-status, hormone receptor 

expression, histologic grade, histologic subtype and lymph node involvement.     

 

 

Breast cancer samples Number % 

Total number of blocks received 249  
 Number of patients 241  
  Double Blocks 8  
  Inadequate tumour material on histological evaluation 7  
  Poorly processed blocks (LCM not performed or unsuccessful) 11  
   
Microdissected invasive tumour samples available for DNA extraction 223 100 

Block from primary tumour 206 92 
Block from lymph node metastasis 18 * 8 

     
HER2-positive 109 49 
HER2-negative 114 51 
   
Hormone Receptors Positive 147 66 
Hormone Receptors Negative 66 30 
Hormone Receptors Low 10 4 
   
Ductal Invasive 181 81 
Lobular Invasive 14 6 
Mixed or others 28 13 
   
Lymph node negative 93 42 
Lymph node positive 121 54 
Distant metastases 9 4 
   
Histologic grade 1 7 3 
Histologic grade 2 80 36 
Histologic grade 3 131 59 
Not assessable 5 2 

     
Microdissected normal breast tissue samples 23  

matched tumour sample 23  
HER2-positive 13  
HER2-negative 10  
 Homozygous for both HER2 SNPs in germ-line DNA 4  
 Heterozygous for at least one HER2 SNP in germ-line DNA 19  

     
Microdissected In Situ tumour samples 9  

matched tumour sample 9  
matched normal and tumour sample 4  

HER2-positive 4  
HER2-negative 5  
 Homozygous for both HER2 SNPs in germ-line DNA 2 **  
 Heterozygous for at least one HER2 SNP in germ-line DNA 6 **  

     

 
Table 5.1: Characteristics of breast cancer samples received from the Pathology Department  
*: for one patient, two samples were isolated, one from primary and one from metastatic tumour 
**: for one sample germ-line DNA was not available 
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5.4 Laser Capture Microdissection 

In order to isolate only tumour cells for the genetic analysis the Laser Capture 

Microdissection (LCM) method was used (Section 2.7). An initial histological evaluation 

on Hematoxylin and Eosin (H&E) stained sections prepared from the available blocks 

was performed as described in Section 2.7.1 in order to exclude those samples with 

inadequate material which were unsuitable for further processing.  

Out of the 241 blocks, 234 cases were considered to have adequate material for 

tumour sample isolation. Seven blocks were excluded due to inadequate invasive 

tumour area (number of tumour cells on examined section < 300) (Table 5.1).  

LCM was then conducted according to the procedures described in Sections 2.7.2 and 

2.7.3. The tumour cell density in captured fragments was > 90% in most samples. 

Inflammatory cells, collagen and other admixtures (i.e. mucin), were avoided wherever 

possible (Figures 5.2, 5.3 and 5.4).  

 

 

 

 

Figure 5.2: Ductal invasive carcinoma with heavy lymphocytic infiltrations 
(Marked areas: captured elements) 

 

 

. 
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Figure 5.3: Ductal invasive carcinoma with abundant collagen. 
Collagen could be avoided by LCM (green circles: captured elements). a): before LCM; b): after LCM 

 

 

 

 

 

 

 

a 

b

a 
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Figure 5.4: Well differentiated mucinous adenocarcinoma.  
Mucus was not included in the extracted sample. 

 

 

When it was difficult to completely avoid inflammatory cells due to heavy infiltrations, 

this was stated and taken into account (8 cases) (Figure 5.5).  

 

 

 

Figure 5.5: Ductal invasive carcinoma, metastatic to lymph node.  
In this case, lymphocytes could not be completely avoided (marked area). 
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Since DNA samples were generated from a limited number of cells in each tumour, 

every effort was made to obtain captured elements as representative of the whole 

tumour sections as possible on a morphological level, in order to minimize the effect of 

tumour heterogeneity. The selection of elements was based on the initial histological 

evaluation of the available blocks and on whole section scanning during the LCM 

procedure. 

In lobular carcinomas the dissection was conducted when there were areas that 

included at least 40 - 50% of tumour cells or when cell aggregates of considerable size 

(> 100 µm2) were recognized (Figures 5.6 and 5.7).  Collagen was avoided wherever 

possible. The percentage of tumour cells in the captured area was documented for 

each case.  

 

 

 

 

Figure 5.6: Lobular invasive carcinoma.  
Areas with relatively high tumour cell density (in this case 50-60%) were selected for dissection. 
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Figure 5.7: Lobular carcinoma with very scarce tumour cells (circle), inadequate for LCM. 

 

 

In addition to invasive tumour samples, 23 normal samples were isolated from areas 

adjacent to the invasive component. These included whole breast lobules (epithelial 

cells of acini and terminal ducts, myoepithelial cells) and epithelial cells of larger ducts, 

wherever possible (Figure 5.8). Lesions with epithelial hyperplasia were not included in 

normal samples.  

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

 

 

 

Figure 5.8: a) Normal ducts, surrounded by invasive ductal carcinoma. 
Normal elements were collected in a separate sample. 

 

 

 
Figure 5.8: b) Normal breast lobules.  

 

 

Nine separate In Situ samples were also isolated. In all cases they were Ductal 

Carcinomas In Situ (DCIS) of low, intermediate or high grade and included exclusively 

a 

b

a 
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epithelial cells. Necrosis, in case of high-grade DCIS, was dissected and removed from 

the section prior to the capture of the desired area (Figure 5.9). 

 

 

 

Figure 5.9: High grade Ductal Carcinoma In Situ. 
The area to be captured is marked in yellow. Central necrotic area has been removed in advance. 

 

 

Normal and In Situ samples were selected preferentially in patients that were 

heterozygous for one or both SNPs investigated (Table 5.1).  

Furthermore, one lymph node metastasis sample was extracted separately from the 

primary tumour.  

Eleven of all the submitted blocks with available material were poorly processed 

during slide preparation (tumour area missing from slide) and/or the LCM procedure 

(tumour area detached) and a DNA sample could not be extracted. 

The numbers of invasive tumour, normal and In Situ samples dissected are 

summarized in Table 5.1. 

 

5.5 DNA extraction 

The extraction of DNA from microdissected tissue was performed as described in 

Section 2.8. The median DNA concentration (21.9 ng/l) was, as expected, significantly 
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lower than the concentrations obtained from peripheral nucleated blood cells (Section 

4.4), reflecting the lower number of cells in the samples (Table 5.2). This fact, together 

with the small elution volume (20 - 25 l) obtained, is an obvious limitation to the 

number of genetic analyses that can be performed with the same DNA sample. 

 

Total DNA samples (number) 223 

Concentration (ng/l) 
Median 21.9 

Range 1.2 - 82.7 

260/280 ratio 
Median 3.18 

Range 0.67 - 6.27 

260/230 ratio 
Median 1.01 

Range 0.18 - 2.69 
 

Table 5.2: Characteristics of DNA samples extracted from microdissected tissue 

 

The individual Nanodrop measurements, however, were interpreted with caution, as 

the DNA purity data (260/280 and 260/230 ratios median and range values shown in 

Table 5.2) suggested poorer quality compared with the extracted germ-line DNA 

(Section 4.4).  

The concentration and purity measures did not seem to correlate with the numbers of 

dissected cells in each sample. These data might be attributed, at least in part, to 

interference from the PEN membrane that is captured together with the tumour 

fragments during the LCM procedure.  

 

5.6 Genotyping 

Similarly to the genotyping of the germ-line DNA samples, the genotyping of the HER2 

Ile655Val and Ala1170Pro SNPs in DNA extracted from microdissected tissue was 

performed using the TaqMan assay described in Section 2.9. Samples were pre-diluted 

to the concentration of 10 ng/l in order to achieve maximum uniformity. Samples at 

concentrations below 10 ng/l were used undiluted. 
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Unlike the genomic DNA genotyping, the allocation of the tumour DNA samples to 

their distinct genotype by visual assessment was not always immediately feasible 

(Figure 5.10). This was due to a combination of different causes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Allelic discrimination plot from one representative genotyping experiment for the HER2 

Ile655Val SNP. 

A=Ile, G=Val. 

 

 

Firstly, a peculiar amplification pattern was expected in the case of HER2-amplified 

tumours arising in a heterozygous germ-line background. Given that one of the two 

alleles is present in a higher copy number in these samples, it was expected to observe 

a higher fluorescence signal for the amplified allele and a lower signal generated by 

the non-amplified allele. This situation would in turn result in a point in the allelic 

discrimination plot which would be closer to the homozygous X or Y clusters the higher 

the copy number of the amplified HER2 allele (black spots in Figure 5.11). It was 

therefore necessary to establish an appropriate cut-off which would allow definition of 

the sample as homozygous or heterozygous.  
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XY 

YY 
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Figure 5.11: Example of Allelic Discrimination Plot. 
The black spots represent hypothetical DNA samples from HER2-amplified tumours arising in a 
heterozygous germ-line background. The spots will be closer to the homozygous clusters the higher the 
copy number of the amplified HER2 allele. 

 

 

Additionally, technical issues could affect the results of the PCR reaction. In particular, 

the DNA purity values of these samples were overall significantly lower and more 

variable than they were among the genomic samples, leading to a lower reliability of 

the concentration measurements and, in turn, to varying amounts of DNA in the 

individual PCR reactions. This resulted in lower and more variable fluorescent signal 

intensity at the end of the reaction. 

Furthermore, a contamination of the invasive tumour components by infiltrating 

lymphocytes and the effect of intra-tumour genetic heterogeneity could not be 

excluded in all cases, as previously mentioned.  

In order to overcome these obstacles a combination of two solutions was adopted.  

· 
· 
 

· 
 

· 
 

· 
 · 
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Figure 5.12: Representative screenshot from the SNPman program.  
Details are provided in the text as well as in Konopac et al. (2011) and SNPman (2011).
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The first was the use of the ‘SNPman’ program (Konopac et al., 2011; SNPman, 2011), 

which utilizes the fluorescence data collected over the whole PCR run, rather than 

relying on the end-point fluorescence measurements only, as in the TaqMan SDS 

software. The SNPman software significantly facilitated genotype calls by the 

inspection of run data. The amplification graph, the fluorescence graph (allelic 

discrimination plot) and the threshold cycle graph were displayed simultaneously, and 

it was possible to visualize the amplification signal of each sample and allele at any 

given cycle and to set the most appropriate fluorescence threshold.  

Figure 5.12 is a screenshot representative of a single PCR run. The disposition of DNA 

samples in the 96-well plate is shown in the ‘sample layout’ panel. Panel A shows the 

amplification curve of each individual sample (sample in well A12 is highlighted in the 

figure) in the context of all other samples in the plate. The amplification curve can be 

represented in either normal or logarithmic scale. The vertical black bar can be moved 

along the X-axis in order to look at the amplification signal at each amplification cycle, 

whereas the horizontal bar can be shifted to select the most appropriate amplification 

threshold. Panel B shows the allelic discrimination plot (see Section 2.9) of each 

individual sample at a given amplification cycle (selected through panel A). Panels C 

and D show the threshold cycle for both alleles (C) and their difference (D) at a given 

amplification cycle and threshold (selected through panel A).   

The second solution aimed at identifying appropriate cut-offs which would 

discriminate heterozygous from homozygous samples in case of uncertain ‘visual’ 

allocation. Two sets of DNA mixtures were prepared using the genomic DNA of 

patients homozygous for the two alleles of the HER2 SNPs, according to the following 

proportions: 1:0, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4 and 0:1. An example of the results of 

this ‘semi-quantitative’ approach is shown in Figure 5.12, Graph B (blue dotted line). 

The use of these control samples and the SNPman software allowed the setting of 

three angle sectors, one for the heterozygous call and two for the homozygous calls. 

The cut-offs were arbitrarily set between the 4:1 and 3:1 mixtures and between the 

1:3 and 1:4 mixtures. 
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5.6.1 Invasive component 

The results of the genotyping of the DNA samples extracted from the invasive 

components of the tumours are summarized in Table 5.3.  

 

 Ile655Val   Ala1170Pro 

               

  Genomic DNA  Tumour DNA   Genomic DNA  Tumour DNA  

               

HER2-negative  
Tumours 

 
Ile/Ile 65 

 Ile 62   Ala/Ala 65  Ala 65  

  undet 3         

        

Ala/Pro 39 

 Ala 15  

 

Ile/Val 44 

 Ile 11    Ala/Pro 16  

  Ile/Val 19    Pro 6  

  Val 11    undet 2  

  undet 3         

        Pro/Pro 8  Pro 8  

 Val/Val 3  Val 3         

        
NA 2 

 Ala 1  

 NA 2  Ile 2    Pro 1  

               

               

HER2-positive 
Tumours 

 
Ile/Ile 69 

 Ile 67   Ala/Ala 48  Ala 48  

  undet 2         

        

Ala/Pro 49 

 Ala 21  

 

Ile/Val 34 

 Ile 10    Ala/Pro 9  

  Ile/Val 5    Pro 19  

  Val 19         

        Pro/Pro 11  Pro 11  

 Val/Val 5  Val 5         

        NA 1  Pro 1  

 NA 1  Val 1         

               

               

Tot  223   223  

 

Table 5.3: Genotyping results of DNA samples from invasive tumour components compared with results 
from genomic DNA. 
NA = genomic DNA sample not available. Undet = genotyping of tumour DNA sample unsuccessful. 
Figures represent numbers of samples. Tumour genotype is presented with one allele only instead of a 
couple of alleles in case of homozygousity. This indicates that the allele detected by the PCR is not 
necessarily present in two copies but it might be the only one allele present in the tumour (in case of 
loss of the other allele) or the ‘predominant’ allele in the tumour (in case of mono-allelic amplification), 
as explained in Section 5.6. 

 



112 

 

There was complete correspondence between the genotyping of homozygous samples 

in germ-line DNA and in tumour DNA for both the SNPs, except for only 5 cases in 

which the genotyping of tumour DNA was unsuccessful. This is reassuring in terms of 

reliability of both the genomic and tumour DNA genotyping results. The genotyping 

calls of the tumour DNA samples from a germ-line heterozygous background are the 

most informative and are also shown in Figure 5.13, after exclusion of the unsuccessful 

genotyping cases.  

These figures show that in HER2-positive tumours heterozygosity was maintained in a 

lower proportion of cases (15% and 18% for the Ile655Val and the Ala1170Pro SNPs, 

respectively) compared to HER2-negative tumours (46% and 43%). An exploratory 

statistical analysis (2 test) comparing the allelic ratio in the apparent homozygous 

tumour samples against the null hypothesis of equal representation, did not show any 

significant difference in the distribution of the alleles in tumours, except for a possible 

imbalance of the Pro and Ala allele (15 vs 6) of the Ala1170Pro SNP in the HER2-

negative group (p = 0.05) (Table 5.3 and Figure 5.13).   

 

 

 Ile655Val heterozygous Ala1170Pro heterozygous 

HER2-neg 

 

 
* p = 1 

 

 
* p = 0.05 

HER2-pos 

 

 

 
* p = 0.09 

 

 

 
* p = 0.75 

Figure 5.13: Genotyping results of tumour DNA samples from a germ-line heterozygous background. 

P-values represent level of significance of 
2
 tests comparing the allelic ratio in the apparent 

homozygous tumour samples against the null hypothesis of equal representation) 

* 
* * 

* 

* 

* 
* * 
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In 27 patients with germ-line genotype heterozygous for both SNPs the genotyping of 

tumour DNA showed that heterozygosity was maintained or lost concordantly in the 

two SNPs, except for one case only (4% of total) (highlighted in yellow in Table 5.4). 

This finding can be regarded as a good internal confirmation of the validity of the 

genotyping calling method adopted. The evaluation of apparent homozygous cases 

also shows that all the four possible haplotype combinations are represented in this 

limited group, thus confirming the very low likelihood of linkage disequilibrium 

between the SNPs, as discussed in Section 4.5. 

 

HER2 Status HER2 Ile655Val HER2 Ala1170Pro 
   

Negative Ile Ala 
Negative Ile Ala 
Negative Ile Ala 

Positive Ile Ala 
Positive Ile Ala 

Negative Val Ala 
Negative Val Ala 

Positive Val Ala 
Positive Val Ala 

Negative Ile Pro 
Negative Ile Pro 
Negative Ile Pro 

Positive Ile Pro 
Positive Ile Pro 
Positive Ile Pro 
Positive Ile Pro 
Positive Ile Pro 

Negative Val Pro 
Negative Val Pro 

Positive Val Pro 

Negative Ile/Val Ala/Pro 
Negative Ile/Val Ala/Pro 
Negative Ile/Val Ala/Pro 
Negative Ile/Val Ala/Pro 
Negative Ile/Val Ala/Pro 

Positive Ile/Val Ala/Pro 

Positive Ile/Val Ala 
 

Table 5.4: Genotyping results of tumour DNA samples in 27 cases with germ-line ‘double heterozygous’ 
background 
(genomic DNA heterozygous for both SNPs) 
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5.6.2 In Situ component and normal breast tissue 

DNA extracted from the microdissected normal breast tissue was genotyped in 23 

cases (Table 5.5). In only one case there was a lack of correspondence between the 

breast tissue and the genomic DNA (highlighted in pink in Table 5.5). This was a sample 

from a germ-line heterozygous Ala1170Pro patient where the genotyping of the 

normal breast DNA by visual estimation was uncertain (between Ala/Pro and Ala) and 

the genotype allocation according to the criteria described above assigned the Ala 

genotype. These data provide a further estimation of the reliability of the genotyping 

process. 

 

 Ile655Val Ala1170Pro 

concordant with genomic  DNA 20 20 

discordant with genomic DNA 0 1 

undetermined 2 1 

genomic DNA not available 1 1 

Tot 23 23 

 
Table 5.5: Genotyping results of DNA samples extracted from normal breast tissue 

 

The genotyping of DNA from the In Situ component was performed in 9 cases (Table 

5.6). In all occasions in which the genotyping was successful the genotype of the In Situ 

component was the same as the one of the invasive component.  

 

  Ile655Val Ala1170Pro 

  
genomic DNA 
homozygous 

genomic DNA 
heterozygous 

genomic DNA 
homozygous 

genomic DNA  
heterozygous 

concordant with 
invasive component 

6 2 2 4 

discordant with 
invasive component 

0 0 0 0 

undetermined 0 0 0 2 

genomic DNA not 
available 

1 1 

Tot 9 9 

Table 5.6: Genotyping results of DNA samples extracted from In Situ component 
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5.7 Discussion 

The experiments presented in this chapter were conducted in order to further 

investigate the role of the two HER2 SNPs in over-expression/amplification of HER2 in 

breast cancers.  These investigations were prompted by the observation, discussed in 

Chapter 4, of an association between the Pro allele of the HER2 Ala1170Pro SNP and 

HER2 amplification/overexpression in our population.  

Two publications investigated the differences in the two SNPs’ genotype between 

genomic DNA and tumour DNA. Puputti et al. (2006) using an automated sequencing 

method, observed a switch in the genotype for the Ile655Val SNP from Ile/Val in 

normal tissue to the Val/Val genotype in cancer tissue in three cases out of four HER2-

positive ductal invasive carcinomas. Conversely, no loss of heterozygosity was 

observed among five HER2-negative tumours. The authors hypothesised that a loss of 

the Ile allele in the HER2-positive cancers might be due to a variety of different 

mechanisms (chromosomal non-disjunction, mitotic recombination, gene conversion, 

physical deletions or chromosome breakage) and speculated that the Val allele could 

give a proliferative advantage to cancer cells. 

A second paper (Benz et al., 2006), adopting a single base primer extension method, 

investigated a series of 29 patients with the Ala1170Pro heterozygous genotype 

(assessed in DNA from peripheral nucleated blood cells). One allele only (Ala allele in 7 

cases and Pro allele in 5 cases) was detectable in all the 12 HER2-positive tumours, 

whereas in all the 17 HER2-negative cancers the heterozygosity was maintained. The 

authors speculated that the apparent loss of heterozygosity in the HER2-positive 

tumours was due to mono-allelic amplification and confirmed this hypothesis by 

showing that all the informative HER2-positive cases displayed transcriptional 

overexpression of their amplified allele compared to the non-amplified allele. 

Our data regarding both SNPs in a larger group of informative (heterozygous) women 

did not confirm the initial hypothesis of allele-specific amplification for the Ala1170Pro 

SNP, neither was there any clear indication of preferential amplification of one of the 

Ile655Val alleles (Table 5.3 and Figure 5.13). A modest proportion (15 and 18%) of the 

HER2-positive cases in our population retained their heterozygosity for the two 

variants. This is in accordance with the observation of Puputti et al. (2006) regarding 

the Ile655Val SNP, but in contrast with the findings of Benz et al. (2006) who did not 
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observe any Ala1170Pro heterozygous HER2-positive tumours. Such a discrepancy 

might be explained by a number of potential factors. Firstly, the genotyping methods 

were different between Benz’s study and ours, as was the choice of cut-offs for 

discriminating homozygous and heterozygous samples. Moreover, in our population 

the HER2 status was assessed by IHC in the vast majority of the cases, hence one might 

hypothesise that a limited proportion of the HER2 overexpressing tumours had low or 

no amplification of the gene, as described in the literature (Ellis et al., 2005), leading in 

turn to the detection of both alleles with the TaqMan method. Finally, a minor 

contamination by infiltrating normal lymphocytes could not be excluded in all cases, as 

mentioned earlier. 

With regard to the HER2-negative cancers, our observation of an apparent loss of 

heterozygosity (LOH) for the two variants in a significant proportion of cases (54% and 

57%) seems to contrast with both Benz’s and Puputti’s works. However, a vast amount 

of literature data confirms that LOH in chromosome 17 is among the most common 

genetic alterations in breast cancer (Niederacher et al., 1997; Orsetti et al., 2004). In 

particular, Niederacher et al. (1997) showed a LOH in two microsatellites 

polymorphisms located on 17q close to the HER2 gene in over 40% of cases (among 49 

and 87 informative samples), consistent with our findings.  

The conventional view of LOH in cancer has been as a mechanism of inactivation of 

tumour suppressor genes.  This view is not in keeping with our observation of the 

apparent preferential loss of the Ala1170Pro Pro allele of the HER2 oncogene among 

HER2-negative cancers. In order to account for this observation, it might be 

hypothesised that other known or putative tumour suppressor genes targeted by 

genetic rearrangements of 17q play a causative role in the development of HER2-

negative tumours.   

From a mechanistic point of view, while a published computational model (Fleishman 

et al., 2002) suggested an explanation for the potential role of the Ile655Val SNP in 

carcinogenesis, the Ala1170Pro SNP has not been evaluated for its potential biologic 

function so far (Section 1.2.4). However, the position of the latter variant within the 

carboxyl-terminal tail, which is the main substrate of activation-dependent 

tyrosine phosphorylation and subsequent recruitment of adapter proteins, could 

suggest that the SNP may be involved in a phosphorylation regulatory function. 
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Several bioinformatics tools have been developed aiming at predicting the effect of 

coding SNPs on protein function and/or structure. Table 5.7 shows the predicted effect 

of the two HER2 SNPs according to five different published algorithms which are 

available online. It must be acknowledged that these tools use different combinations 

of methods based on sequence homology, protein structure information and 

physicochemical properties of the amino acids, and this might explain the apparently 

contradictory results shown in the table.  

 

SNP Software Direction Predicted effect of SNP 

Ile
6

5
5

V
al

 

SIFT (2011) Ile→Val & Val→Ile Tolerated 

Align-GVGD (2011) Ile→Val & Val→Ile Intermediate-low likelihood of being deleterious  

PolyPhen (2011) Ile→Val & Val→Ile Benign 

PMut (2011) Ile→Val & Val→Ile Neutral 

SNPs3D (2011) only Ile→Val assessable Non-deleterious 

A
la

1
1

7
P

ro
 

SIFT (2011) Ala→Pro & Pro→Ala Tolerated 

Align-GVGD (2011) Ala→Pro & Pro→Ala Intermediate-low likelihood of being deleterious  

PolyPhen (2011) Ala→Pro & Pro→Ala Probably damaging 

PMut (2011) Ala→Pro & Pro→Ala Pathological 

SNPs3D (2011) only Pro→Ala assessable Slightly deleterious 

 

Table 5.7: Predicted of effect of HER2 Ile655Val and Ala1170Pro SNPs on protein structure/function 
according to five different bioinformatics programs  
 

 

With this caveat, the Ala1170Pro SNP is predicted to affect the structure or function of 

the HER2 protein by three of the five methodologies, whereas the Ile655Val SNP seems 

to be neutral according to all the programs.  

In conclusion, this investigation could not support the potential causative effect of the 

HER2 Ala1170 Pro SNP in the development of HER2-positive breast cancers. The role of 

the two HER2 SNPs in over/expression amplification of HER2 remains to be elucidated. 
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Chapter 6. Results IV: Patients treated with trastuzumab 
 

6.1 Overview 

This chapter focuses on a subgroup of the whole study population, which is composed 

of the patients who were treated with trastuzumab, as either palliative treatment of 

advanced stage disease or as adjuvant treatment of early stage disease. The results of 

the genotyping of the HER2 and Fc Gamma Receptor SNPs in the genomic DNA of 

these patients and the pharmacokinetic and biomarker data obtained through the 

measurement of trastuzumab and circulating HER2 in their plasma samples (according 

to the methods described in Chapter 3) constitute the main object of the first sections. 

The second part of the chapter illustrates the clinical and biological characteristics of 

these patients, the analysis of disease outcome as well as toxicity and the potential 

role of the SNPs considered. All the results of this chapter are then critically discussed 

in the context of the relevant scientific literature. 

 

6.2 Patients recruited 

A total of 167 patients treated with trastuzumab in the Northern Centre for Cancer 

Care (NCCC) were recruited. One hundred thirty nine patients received this treatment 

with the aim of reducing their risk of recurrence (adjuvant trastuzumab). Within this 

latter group, in 129 cases trastuzumab was administered for primary early breast 

cancer (adjuvant treatment stricto sensu), after surgery and adjuvant chemotherapy. In 

the remaining 10 patients trastuzumab was given either after a recurrence or in cases 

when imaging could neither confirm nor exclude the presence of metastases at first 

diagnosis. While all 139 patients were included in the toxicity analysis, only the first 

group of 129 patients was considered in the analysis of disease outcome (Figure 6.1). 

Twenty eight women who received trastuzumab for the first time as treatment of 

advanced stage disease were enrolled in the study. A further six patients received 

palliative trastuzumab after having been previously exposed to the drug as adjuvant 

treatment. These latter patients contributed to the analysis of the early stage group, 

but were excluded from the analysis of the advanced stage patients (Figure 6.1). 
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Figure 6.1: Number of patients treated with trastuzumab included in the study  

 

 

These figures are comparable with the results of a recent analysis performed by 

Garrison and Veenstra (2009) on the current trend in numbers of patients treated with 

trastuzumab for early breast cancer and metastatic breast cancer. Although that study 

refers to trastuzumab prescriptions in the United States of America, it is reasonable to 

assume that the authors’ projection is applicable to most Western countries. 

 

6.3 Genotyping of the four SNPs in genomic DNA 

The results of the genotyping of the two SNPs in the HER2 gene in the trastuzumab 

treated patients are a subset of the genotyping results in the whole population, which 

have already been described in Chapter 4. The genotyping of the two SNPs in the Fc 

Gamma Receptor Genes, namely FCGR2A His131Arg (rs1801274) and FCGR3A 

Phe158Val (rs396991), was performed according to the same method in all 167 

patients treated with trastuzumab. As with the HER2 SNPs, it was always possible to 

allocate each individual patient sample to its distinct genotype by visual assessment. 

Two examples of allele discrimination plots from two representative experiments are 

shown in Figure 6.2. 
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Figure 6.2: Allelic discrimination plots from two representative genotyping experiments.  
a) FCGR2A His131Arg: A=His, G=Arg; b) FCGR3A Phe158Val: T=Phe, G=Val 

 

The same four cell lines (CCRF-CEM, K562, SKBR3 and MCF7) mentioned in Chapter 4 

were used as controls for the genotyping experiments. A published genotype for the 

a 

b

a 
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FCGR2A SNP was available only for K562 (Warmerdam et al., 1990). This was 

heterozygous (His/Arg) and is in accordance with our determination. 

The results of all the genotyping experiments for the two Fc Gamma Receptor SNPs 

were pooled after normalization to the ntc values and are shown in Figure 6.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Pooled results of FCGR2A His131Arg and FCGR3A Phe158Val genotyping experiments after 
normalization to ntc. 
a) FCGR2A His131Val; b) FCGR3A Phe158Val 

a 

b

a 
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The distribution of genotypes for the four SNPs in the trastuzumab treated population 

is shown in Table 6.1.  

 

  No. % MAF (%) p for H-W 

  Ile/Ile 103 61.7   

HER2 Ile655Val Ile/Val 55 32.9 22 0.64 

  Val/Val 9 5.4   

  Ala/Ala 73 43.7   

HER2 Ala1170Pro Ala/Pro 79 47.3 33 0.33 

  Pro/Pro 15 9.0   

  His/His 37 22.2   

FCGR2A His131Arg His/Arg 80 47.9 46 0.64 

  Arg/Arg 50 29.9   

  Phe/Phe 83 49.7   

FCGR3A Phe158Val Phe/Val 66 39.5 31 0.38 

  Val/Val 18 10.8   

Total  167 100   

 

Table 6.1: Distribution of genotypes for all four SNPs in the trastuzumab treated population. 

H-W = Hardy-Weinberg equilibrium (p value for 
2
 test); MAF = minor allele frequency 

 

There was no significant deviation from Hardy-Weinberg equilibrium for all SNPs. The 

minor allele frequencies for FCGR2A His131Arg and FCGR3A Phe158Val (respectively 

46% and 31%) were comparable with published data in Caucasian populations (NCBI_c, 

2009; NCBI_d, 2009).  

The estimated haplotype frequencies and the linkage disequilibrium measures of the 

two HER2 SNPs have already been shown in Chapter 4. The same analysis for the Fc 

Gamma Receptor SNPs, limited to the trastuzumab-treated group, is shown in Table 

6.2. The |D'| and r2 values displayed in the table, together with the results of a classical 


2 statistics comparing the observed and expected diplotype frequencies (Table 6.3), 

suggest that a non-random associations of the alleles at the two loci is likely, but the 

strength of this association is moderate. In particular, the minor allele of the FCGR2A 
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His131Arg SNP (His) seems to be weakly associated with the minor allele of the 

FCGR3A Phe158Val SNP (Val). 

 

LD statistics according to MIDAS and CubeX 

Haplotypes estimated frequency (%) |D'| r2 
2 p 

FCGR2A_Arg/FCGR3A_Phe 42 0.296 0.0449 7.5 <0.01 

FCGR2A_His/FCGR3A_Phe 27     

FCGR2A_His/FCGR3A_Val 19     

FCGR2A_Arg/FCGR3A_Val 12     

Table 6.2: Linkage disequilibrium statistics for the FCGR2A His131Arg and FCGR3A Phe158Val SNPs in 
167 patients. 
|D'| = Linkage disequilibrium coefficient; r

2 
= correlation coefficient. Values were calculated using 

MIDAS (Gaunt et al., 2006) and Cubex (Gaunt et al., 2007). 

 

   FCGR3A Phe158Val 
Total 

   Val/Val Phe/Val Phe/Phe 

FCGR2A His131Arg 

His/His 
Count 10 13 14 

37 
Expected Count 4 14.6 18.4 

His/Arg 
Count 3 38 39 

80 
Expected Count 8.6 31.6 39.8 

Arg/Arg 
Count 5 15 30 

50 
Expected Count 5.4 19.8 24.9 

Total  18 66 83 167 

p = 0.002 

 

Table 6.3: 
2
 statistics comparing FCGR2A and FCGR3A observed diplotype frequencies with expected 

frequencies calculated according to the observed genotypes in the trastuzumab treated patients. 

 

6.4 Trastuzumab and HER2 in plasma 

A total of 163 plasma samples from 138 patients were collected with the aim of 

obtaining pharmacodynamic and pharmacokinetic information from the trastuzumab-

treated population. In 29 patients (out of 167) plasma was not collected because these 

women had already completed their treatment at the date of consent. 
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Paired plasma samples (pre-trastuzumab and on-trastuzumab) were collected in 24 

cases, as a result of the approval of a specific amendment to the protocol (Section 2.2) 

(Figure 6.4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Plasma samples collected in trastuzumab-treated patients  
(numbers refer to number of patients)  

 

 

Trastuzumab 

Trastuzumab concentration was measured in all available ‘on-treatment’ samples.  

The results of the cell-based ELISA in the advanced patients are shown in Figure 6.5. In 

this limited (26 patients) and heterogeneous subgroup (see Section 6.5.2) mean and 

median trough values were 53 μg/ml and 71 μg/ml respectively, with a high coefficient 

of variation (124%).  

The patients treated in the adjuvant setting formed a more homogenous group in 

terms of treatment schedule and constitute the majority of the treated population. 

Figure 6.6 and 6.7 show the results of the trastuzumab ELISA in 106 patients treated in 

the adjuvant setting. The on-treatment samples were collected, as explained in Section 

2.2, immediately before drug administration in order to obtain ‘trough’ trastuzumab 

concentration. This meant 3 weeks after previous administration in the vast majority of 

cases. In the remaining nine cases the administration was delayed by one to three 

weeks so that the samples were drawn after 4 to 6 weeks since the previous cycle.  
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Figure 6.5: Trastuzumab trough concentrations in 26 patients in the palliative setting.  
Red line refers to median value. LLQ = lower limit of quantification 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Trastuzumab trough concentrations in 106 patients in the adjuvant setting plotted against 
number of weeks since previous administration.  
Red lines refer to median values. LLQ = lower limit of quantification 
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Figure 6.7: Trastuzumab trough concentrations in 106 patients in the adjuvant setting plotted against 
cycle number. 
Red lines refer to median values. LLQ = lower limit of quantification 

 

Due to its prolonged terminal half-life, trastuzumab concentrations tended to remain 

above the assumed therapeutic threshold (10-20 g/ml) for up to 6 weeks (Figure 6.6). 

Mean and median trough concentrations (54 μg/ml and 49 μg/ml, respectively) were 

consistent with previously-published studies, with a coefficient of variation of 68%.  

Only three patients had very high (> 200 μg/ml) plasma concentrations (Figures 6.6 

and 6.7). The majority of samples were collected at cycles four to seven (Figure 6.8). 

The distribution of trastuzumab plasma concentrations against cycle number 

illustrated in Figure 6.6 looks consistent with the reported ‘time to steady-state’ of 

approximately 20 weeks (Bruno et al., 2005). 

 

Circulating HER2 

Circulating HER2 Extra-Cellular Domain (ECD) was measured in all available plasma 

samples and the results are shown in Figure 6.8. Sixty four per cent of the 

measurements were below the lower limit of quantification for the assay. Only in a 

limited number of cases was HER2 concentration above 15 ng/ml, the value identified 
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by previous studies as the cut-off discriminating ‘positive’ from ‘negative’ 

determinations. An exploratory statistical analysis (Mann-Whitney U test) comparing 

pre-treatment versus post-treatment values in the adjuvant setting and on-treatment 

values in adjuvant versus advanced setting did not show any significant difference in 

either case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Circulating HER2 in the trastuzumab-treated population.  
Red lines refer to median values. LLQ = lower limit of quantification. ‘HER2 literature cut-off’ (15 ng/ml) 
refers to the conventional level which discriminates ‘positive’ and ‘negative’ values in published studies 

 

 

The potential effect of the SNPs in the HER2 gene on the level of circulating HER2 was 

also assessed (Figure 6.9). In order to achieve a better uniformity of the data only on-

treatment samples were included. Analysis of variance showed no significant 

association between the genotypes and circulating HER2. This was also the case when 

samples from advanced and early stage patients were considered separately. 
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Figure 6.9: Circulating HER2 in the trastuzumab-treated population grouped according to the HER2 
Ile655Val and Ala1170Pro genotypes. 
Red lines refer to median values 

 

 

Biomarker analysis 

When circulating HER2 was plotted against trastuzumab concentration in the whole 

population (Figure 6.10a) and in the adjuvant (Figure 6.10b) and advanced setting 

(Figure 6.10c) no significant correlation between the two parameters emerged. 

The results of the biomarker analysis in the limited group of patients in which paired 

plasma samples (pre-trastuzumab and on-trastuzumab) were available are shown in 

Figure 6.11. 
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Figure 6.10: Circulating HER2 plotted against trastuzumab concentration in the whole population (a) 
and in adjuvant (b) and advanced (c) settings 
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Figure 6.11: Circulating HER2 in paired (pre-treatment and on-treatment) plasma samples from 22 early stage and two advanced stage patients treated with trastuzumab.  
Each pair of columns represents one patient. Patients have been sorted according to the trastuzumab concentration (from lowest to highest).   
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As can be seen in the graph, in all patients with very low circulating HER2 there was an 

apparent decrease in HER2 concentration when trastuzumab was administered. This 

effect is likely to be artifactual due to the interference of trastuzumab on the HER2 

ELISA, which has been observed and described during the validation process (Section 

3.3.2). In patients with higher HER2 concentration the administration of trastuzumab 

led to non-significant variations of HER2 levels in ‘adjuvant’ patients, with exception of 

one case. This patient (highlighted in Figure 6.10) received trastuzumab as ‘adjuvant’ 

treatment after excision of loco-regional recurrence, but post-surgical residual disease 

could not be ruled out. Her pre-trastuzumab HER2 level was below the literature cut-

off and rose to 55 ng/ml after four trastuzumab administrations. Two months after the 

‘on-treatment’ HER2 measurement the patient was diagnosed with distant metastases.  

In only two advanced stage patients were paired plasma samples available. In both 

cases there was a drop in circulating HER2, although not below the normal literature 

cut-off. The two patients had a partial remission and disease stabilization and were 

both still on treatment at the date of the analysis. With this limited number of patients 

no obvious interaction of trastuzumab trough concentration with circulating HER2 was 

apparent. 

 

6.5 Characteristics of patients 

6.5.1 Patients treated with adjuvant trastuzumab 

The demographic and clinical characteristics of patients treated with adjuvant 

trastuzumab are shown in Table 6.4, whereas Table 6.5 illustrates the characteristics of 

their tumours. All patients received a loading dose of 8 mg/m2 followed by seventeen 

3-weekly 6 mg/m2 doses for a total treatment duration of one year, as per the ‘HERA’ 

trial protocol (Piccart-Gebhart et al., 2005). Trastuzumab was administered after 

adjuvant chemotherapy, with the exception of seven cases in which it was started 

concomitantly with the second part of the chemotherapy, composed of taxanes in 6 

cases and vinorelbine in one case. In one patient trastuzumab was given concomitantly 

with lapatinib as part of the ‘ALTTO’ trial (ALTTO, 2011).  In no case was trastuzumab 

administered concomitantly with anthracyclines. 
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Total (number)  139 

Ethnicity 
Caucasian (%) 95 

Non Caucasian (%) 5 

Gender 
Female (%) 100 

Male (%) 0 

Age at date of start trastuzumab 
Median (years) 54 

Range (years) 27 - 77 

Year start trastuzumab 
2006-2008 (%) 45 

2009-2011 (%) 55 

Pre-existing cardiovascular risk factors * 
Yes (%) 26 

No (%) 74 

Pre-trastuzumab Left Ventricle Ejection Fraction (LVEF)** 
Median (%) 57 

Range (%) 49 - 81 

LVEF variation with chemotherapy *** 
Median (%) - 3.5 

Range (%) - 22 ↔ +13 

Previous anthracyclines 
Yes (%) 98.5 

No (%) 1.5 

Previous anthracyclines 
cumulative dose (mg/m

2
) 

Doxorubicin (48 pts) 
Median (mg/m

2
) 240 

Range (mg/m
2
) 210 - 375 

Epirubicin (89 pts) 
Median (mg/m

2
) 300 

Range (mg/m
2
) 90 - 625 

 

Table 6.4: Characteristics of 139 patients who received adjuvant trastuzumab 
*      including hypertension, diabetes, coronary disease, valvular heart disease, atrial fibrillation, 

idiopathic cardiomyopathy 
** pre-trastuzumab LVEF measured with MUGA scan was available in 111 patients 
*** variation of LVEF between pre-chemotherapy and post-chemotherapy (pre-trastuzumab) 

measurements was available in 76 patients 
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 No. % 

Total 139  

Trastuzumab administered after  
diagnosis of primary early breast cancer 

129 100 

Histologic subtype 
Ductal NST 114 88.4 

others 15 11.6 

Focality 

Unifocal 101 78.3 

Multifocal 24 18.6 

Occult 4 3.1 

Maximum tumour diameter 

< 1 cm 12 9.3 

1 - 2 cm 41 31.8 

2 - 5 cm 68 52.7 

> 5 cm 8 6.2 

Number of positive lymph 
nodes 

0 59 45.7 

1 - 3 35 27.1 

≥ 4 35 27.1 

Histologic grade 

1 1 0.8 

2 41 31.8 

3 83 64.3 

Not applicable 4 3.1 

Hormone Receptors 

Negative 47 36.4 

Weak 73 56.6 

Positive 9 6.9 

HER2 (IHC) 

1 * 1 0.8 

2 * 31 24.0 

3 97 75.2 

 

Table 6.5: Characteristics of tumours in patients who received adjuvant trastuzumab 
% is relative to the patients treated after diagnosis of primary early breast cancer) 
* all patients with HER2 IHC status = 1 or 2 had positive ISH determination 

 

 

6.5.2 Advanced stage patients 

Twenty eight advanced stage patients were treated with trastuzumab with the aims of 

disease control, symptom palliation and potential prolongation of survival. As shown in 
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Table 6.6, this limited group of patients was heterogeneous with regard to several 

aspects, including previous treatments and drugs co-administered with trastuzumab.    

 

 

Total (number)  28 

Ethnicity/Gender Caucasian/Female (%) 100 

Age at date of start trastuzumab 
Median (years) 60 

Range (years) 38 - 73 

Pre-existing cardiovascular risk factors 
Yes (%) 32 

No (%) 68 

Previous anthracyclines 
Yes (%) 61 

No (%) 39 

Previous anthracyclines 
cumulative dose (mg/m

2
) 

Doxorubicin (11 pts) 
Median (mg/m

2
) 240 

Range (mg/m
2
) 60 - 400 

Epirubicin (6 pts) 
Median (mg/m

2
) 360 

Range (mg/m
2
) 210 - 690 

Previous chemotherapy treatments for advanced disease  
0 (%) 68 

1 (%) 32 

Previous hormonal treatments for advanced disease 
0 (%) 57 

1 - 3 (%) 43 

Sites of disease 

Bone only (%) 11 

Breast/soft tissues (%) * 18 

Viscera (%) ** 71 

Drugs associated with trastuzumab Taxanes (%) *** 64 

 Vinorelbine/capecitabine (%) 18 

 Hormonal treatments (%) 7 

 None (%) 11 

Trastuzumab schedule 
Weekly (%) **** 11 

3-weekly (%) 89 

 
Table 6.6: Characteristics of 28 advanced stage patients treated with trastuzumab 
*          with or without bone metastases 
**        with or without bone metastases and breast/soft tissues 
***      in one case paclitaxel was replaced by vinorelbine due to neurotoxicity 
****    in all three cases schedule was changed to 3-weekly after, respectively, 62, 4 and 1 months 
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6.6 Disease outcome 

The analysis of recurrences and deaths in the ‘adjuvant’ group was limited to the 129 

patients who received trastuzumab after surgery and adjuvant chemotherapy for a 

primary early breast cancer. In this population the median follow-up (calculated from 

the date of first trastuzumab administration to the date of last contact or death) was 

26 months (range, 1 - 67). Only seven patients (5% of the total) experienced a 

recurrence of their disease and three of them (2% of the total) died from advanced 

disease. These small numbers do not currently permit any statistical analysis.  

The numbers of breast cancer-related events were expectedly very different in the 

palliative setting. With a median follow-up of 23 months (range 4 - 106), 25 out 28 

patients (89% of total) experienced a progression of their disease and twelve patients 

(43% of total) died from advanced disease. The outcomes of patients in terms of best 

objective response according to RECIST criteria (Eisenhauer et al., 2009) are reported 

in Table 6.7.  

 

 Number % 

Complete response 2 7 

Partial response 14 50 

Stable disease 5 18 

Progression of disease 1 4 

Not evaluable 6 21 

Total 28 100 

 

Table 6.7: Objective response in 28 advanced stage patients treated with trastuzumab 

 

Notably, a significant proportion (20%) of patients had no evaluable disease and only 

one patient had progressive disease as best response. As mentioned in Section 6.2, six 

further advanced-stage patients who received trastuzumab having previously been 

exposed to the drug in the adjuvant setting were not included in this analysis.  

With the caveats of the small sample size and the heterogeneity of the patient 

characteristics described earlier, an exploratory analysis was conducted in order to 

evaluate the potential association of the four SNPs with disease outcome. Besides time 

to disease progression (TTP, calculated from the date of first trastuzumab dose to the 
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date of disease progression) and overall survival (OS, calculated from the date of first 

trastuzumab dose to patient’s death) a third parameter of treatment outcome was 

introduced. This was ‘time on trastuzumab’ (TOT, calculated from the date of first 

trastuzumab dose to the date of trastuzumab definitive discontinuation) and was 

introduced in order to account for those cases in which a slight radiological 

progression was observed, but the clinical benefit of trastuzumab (in terms of 

symptom relief or long-term overall disease control) led to the decision of continuing 

the treatment beyond progression. When the TTP and TOT survival curves of the 

advanced stage patients grouped according to the different genotypes were 

compared, the FCGR3A Phe158Val SNP gave a statistically significant result (Figure 

6.12a and 6.12b), in that the Val allele was associated with longer TTP and TOT, but not 

OS. The other three SNPs were not associated with these two survival parameters and 

the analysis of best objective responses did not show any association with the four 

SNPs considered (Table 6.8).  

 

  No. 
Median  

TTP (m) 
p * 

Median  

TOT (m) 
p * No. *** 

ORR 

(%)  
p ** 

HER2  

Ile655Val 

Ile/Ile 16 11 
0.606 

14 
0.441 

11 64 
0.318 

Val carriers 12 10 13 11 82 

Ile carriers 26 11 
0.283 

15 
0.051 

20 70 
0.519 

Val/Val 2 9 5 2 100 

HER2  

Ala1170Pro 

Ala/Ala 14 11 
0.876 

14 
0.949 

11 82 
0.318 

Pro carrier 14 10 12 11 64 

Ala carriers  26 10 
0.616 

14 
0.830 

20 70 
0.519 

Pro/Pro 2 9 9 2 100 

FCGR2A  

His131Arg  

His/His 5 15 
0.361 

17 
0.570 

5 80 
0.581 

Arg carriers 23 10 13 17 71 

His carriers 20 10 
0.610 

16 
0.384 

19 74 
0.636 

Arg/Arg 8 10 9 3 67 

FCGR3A  

Phe158Val 

Val/Val 5 15 
0.228 

17 
0.414 

4 75 
0.708 

Phe carriers 23 10 13 18 72 

Val carriers 10 15 
0.030 

31 
0.011 

8 75 
0.631 

Phe/Phe 18 10 9 14 71 

 

Table 6.8: Parameters of disease outcome according to the four SNPs in 26 advanced patients. 
No. = number of patients; TTP = Time to progression; TOT = Time on trastuzumab; ORR = objective 
response rate 
*       p = significance level of log-rank test  
**     p = significance level of Fisher’s exact test 
***   in 6 patients objective response was not evaluable (no measurable lesions) 
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Figure 6.12: Influence of FCGR3A SNP on parameters of treatment outcome in advanced patients 
treated with trastuzumab. 
a) time to progression (TTP); b) time on trastuzumab (TOT); c) overall survival (OS). P-values refer to 
significance levels of log-rank tests. 

 

 

6.7 Toxicity 

As described in Section 1.3.3, cardiotoxicity is the most clinically significant among the 

side effects attributed to trastuzumab. It was decided to limit the analysis of 

cardiotoxicity to the ‘adjuvant’ population (Table 6.4), since this group was more 

homogenous than the ‘advanced’ group in terms of previous treatments, concomitant 

anti-cancer medications and other potentially confounding factors including disease-

a p = 0.030 

p = 0.011 p = 0.193 
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related symptoms. Such analysis, in the context of an observational study, entailed a 

series of potential obstacles which are described in the next sections. 

 

6.7.1 Choice of cardiac end-points 

Potential symptoms of cardiac dysfunction (including fatigue, breathlessness, and 

peripheral oedema) were collected at every visit, but were not included in the analysis 

for the following reasons: 

- they were in the vast majority of cases mild or moderate; 

- it was often difficult to discriminate whether they were due to trastuzumab, to 

other concomitant medications or to the previous chemotherapy treatment; 

- they were not always uniformly reported and graded in the clinical notes. 

An objective measure of cardiac function is the ejection fraction of the left ventricle 

(LVEF), which is the fraction of blood pumped out of the left ventricle with each heart 

beat and is measured either with a radioisotope scan (MUGA) or with 

echocardiography. The normal values in the general adult population have been 

reported to range widely between 50 and 80%. An absolute LVEF drop of more than 

10% and an LVEF drop to below 45% have often been included in the evaluation of 

cardiotoxicity in trastuzumab-treated patients (Suter et al., 2007).  

In the ‘adjuvant’ population LVEF was generally measured before adjuvant 

chemotherapy, after adjuvant chemotherapy (before start of trastuzumab) and then 

regularly (every 3 or 4 months) during trastuzumab treatment. These variations were 

included as meaningful end-points in the analysis, although some caveats must be 

taken into account:  

- Pre-adjuvant chemotherapy LVEF was not always available; 

- The same timing of LVEF measurement was not always followed in this population, 

so that some patients had more scans than others;   

- LVEF measured by MUGA and by echocardiography were in some cases not easily 

comparable;   

- The timing of LVEF measurements was also affected by the implementation of new 

guidelines (Jones et al., 2009), recommending less frequent monitoring compared 

to the previous guidelines (Suter et al., 2007) derived from the HERA clinical trial 

protocol (Piccart-Gebhart et al., 2005). 
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When a significant drop in LVEF was observed (accompanied or not by symptoms) one 

or more of the following actions was taken: 

- Trastuzumab was temporarily suspended; 

- Cardiac medication was introduced; 

- Trastuzumab was definitively suspended. 

These medical decisions were included as additional end-points of cardiac toxicity, 

taking into consideration that they can be influenced by the following elements: 

- Severity of the LVEF drop; 

- Presence/absence of symptoms; 

- Pre-existing cardiovascular risk; 

- Age of the patient; 

- Risk of recurrence of the tumour; 

- Implementation of the aforementioned cardiac monitoring guidelines (Jones et al., 

2009), which recommended simplified criteria regarding trastuzumab interruption, 

restarting and introduction of cardiac medications. 

All end-points (summarized in Table 6.9) were included in the analysis, with the 

general caveat that there is a partial overlap among them and they can reflect slightly 

different clinical aspects of the trastuzumab-induced cardiotoxicity. 

 

End-points    
Cases 
(no.)  

Event 
(no.) 

Censored 
(no.) 

A LVEF drop ≥ 10%    127 37 90 

B LVEF drop below 45%    137 24 113 

C A and B     134 17 117 

D Cardiac medication introduced   138 44 94 

E Trastuzumab temporarily or definitively stopped for cardiac reasons  139 31 108 

F Trastuzumab definitively stopped for cardiac reasons 139 18 121 

G A and B and F    139 12 127 

Table 6.9: Cardiotoxicity end-points 

 

 
 

6.7.2 Choice of factors potentially impacting cardiotoxicity 

A list of potential factors which might influence the occurrence of trastuzumab-

induced cardiotoxicity was considered (Table 6.10).  
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Factors     
Cases 
(no.) 

1 
(no.) 

2 
(no.) 

3 
(no.) 

1 Age groups (years) (1= <50, 2 = 50-60, 3 = >60)    139 49 42 48 

2 Pre-existing cardio-vascular risk factors (1 = yes, 2 = no)  139 36 103  

3 Adjuvant radiotherapy to left chest wall (1 = yes, 2 = no)  139 32 107  

4 BMI groups (kg/m
2
) (1 = <25, 2 = 25-30, 3 = >30)   137 41 60 36 

5 Baseline LVEF (1 = above median, 2 = below median)  106 51 55  

6 LVEF drop ≥ 7% due to adjuvant chemo (1 = yes, 2 = no)   76 28 48  

7 Cardiac medication before start trastuzumab (1 = yes, 2 = no) 139 22 117  

8 Trough [trastuzumab] (1 = above median, 2 = below median)  106 53 53  

9 Year start trastuzumab (1 = 2006-2008, 2 = 2009-2011) 139 62 77  

10 HER2 Ile655Val (1 = Ile/Ile, 2 = Val carriers)    139 87 52  

11 HER2 Ile655Val (1 = Ile carriers,  2 =Val/Val)   139 132 7  

12 HER2 Ala1170Pro (1 = Ala/Ala, 2 = Pro carriers)   139 59 80  

13 HER2 Ala1170Pro (1 = Ala carriers, 2 = Pro/Pro)   139 126 13  

14 FCGR2A His131Arg (1 = His/His, 2 = Arg carriers)   139 32 107  

15 FCGR2A His131Arg (1 = His carriers, 2 = Arg/Arg)  139 97 42  

16 FCGR3A Phe158Val (1 = Val/Val, 2 = Phe carriers)  139 13 126  

17 FCGR3A Phe158Val (1 = Phe/Phe, 2 = Val carriers)  139 65 79  

 

Table 6.10: Parameters evaluated as potentially influencing the occurrence of trastuzumab-induced 
cardiotoxicity. 
‘1’, ‘2’ and ‘3’ refer to groups defined in the table for each parameter   

 

This included several elements which had previously been described in the literature 

as potential risk factors, such as age, pre-existing cardio-vascular risk factors (including 

hypertension, diabetes, coronary disease, valvular heart disease, atrial fibrillation, 

idiopathic cardiomyopathy) and adjuvant radiotherapy to the left chest wall. The 

prescription of cardiac medications before the start of trastuzumab was regarded as an 

additional indicator of cardiac risk assessed by the physician. Pre-trastuzumab LVEF 

and a decrease in LVEF between pre-chemotherapy and post-chemotherapy (pre-

trastuzumab) measurements were considered as parameters potentially influencing 

the LVEF variation during trastuzumab treatment. 

Further factors included body mass index, trastuzumab trough plasma concentration 

and the year in which trastuzumab was commenced (grouped in 2006 - 2008 and 2009 

- 2011), which was able to discriminate with good approximation between patients 

who were affected by the introduction of the new cardiac monitoring guidelines and 

those who were not. 
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The effect of the four SNPs (in HER2 and FCGR genes) was accounted for according to 

both the recessive (i.e. only having two copies of the causal allele affects the 

phenotype) and dominant model (i.e. having one or two copies of the causal allele has 

the same effect). 

Similarly to the cardiac end-points, it should be considered that some of the putative 

factors are inter-related. For instance, a potential cumulative effect can be 

hypothesized for some factors (e.g. age and pre-existing cardiovascular risk), as well as 

a potential causal effect of some factors on others (e.g. baseline LVEF, LVEF drop with 

chemotherapy, cardiac medication prescribed before start of trastuzumab). 

 

6.7.3 Analysis 

Since 26 of the 139 patients (19%) were still on treatment at the time of the analysis, it 

was decided to treat the end-points listed in Table 6.9 as time variables, with ‘event 

time’ being the time from the day of first trastuzumab administration to the day of the 

event and ‘censoring time’ being the time from the day of first trastuzumab 

administration to the day of last trastuzumab administration.  

An exploratory series of log-rank tests were then performed in order to compare these 

variables in patients grouped according to the factors listed in Table 6.10.  

As can be seen in Tables 6.9 and 6.10, end-points and factors were not always available 

in all of the 139 treated patients. The significance levels (p-values) of these tests are 

summarized in Table 6.11. Given the high number (119) of statistical tests performed, 

and the consequent high likelihood of getting a significant result by chance, these 

figures must be interpreted with extreme caution and with a descriptive intent. 

Firstly, the year of start of trastuzumab (row 9 in Table 6.11) showed a trend towards 

an association with several cardiac end-points. In particular, the patients who started 

trastuzumab in years 2006 - 2008 had a higher likelihood of having their treatment 

temporarily or definitively interrupted due to heart-related side effects compared with 

patients who started in years 2009 - 2011 (Figure 6.13). The p-value here (< 0.0005) 

was close to the threshold defined using the Bonferroni correction for multiple 

comparisons (0.00042 for a target alpha level of 0.05). This effect is plausible and 
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might be explained by the implementation of the aforementioned new cardiac 

monitoring guidelines. 

 
 A B C D E F G 

1 0.178 0.162 0.046 0.770 0.045 0.063 0.121 

2 0.500 0.232 0.470 0.500 0.656 0.411 0.524 

3 0.256 0.143 0.145 0.386 0.978 0.478 0.296 

4 0.870 0.415 0.626 0.801 0.835 0.984 0.917 

5 0.000 0.438 0.563 0.618 0.952 0.726 0.712 

6 0.052 0.137 0.044 0.308 0.676 0.095 0.026 

7 0.938 0.003 0.003 0.622 0.019 0.143 0.012 

8 0.573 0.206 0.489 0.916 0.733 0.272 0.254 

9 0.102 0.061 0.082 0.002 0.000 0.008 0.152 

10 0.898 0.855 0.989 0.745 0.782 0.164 0.360 

11 0.723 0.248 0.483 0.736 0.603 0.311 0.419 

12 0.062 0.307 0.905 0.791 0.377 0.814 0.533 

13 0.110 0.248 0.067 0.830 0.581 0.047 0.004 

14 0.557 0.870 0.659 0.728 0.163 0.105 0.392 

15 0.162 0.718 0.971 0.512 0.702 0.892 0.735 

16 0.521 0.350 0.527 0.995 0.862 0.291 0.888 

17 0.072 0.086 0.069 0.235 0.658 0.108 0.133 

 

Table 6.11: Significance levels (p-values) of multiple logrank tests comparing the time variables listed in 
Table 6.9 in patients grouped according to the factors listed in Table 6.10.  
Letters (A to G) and numbers (1 to 17) refer, respectively, to end-points listed in Table 6.9 and factors 
listed in Table 6.10. 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 6.13: Influence of year of trastuzumab start on time to trastuzumab temporary or definitive 
suspension for cardiotoxicity 

 

p = 0.000 
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A second significant association is shown between baseline LVEF (row 5 in Table 6.11) 

and time to LVEF drop ≥ 10%. The logrank test, conducted only in a proportion of 

patients (76 out 139) in which baseline LVEF measurements were comparable 

(because all performed by MUGA scan), showed that patients with higher baseline 

LVEF had a higher likelihood of experiencing a LVEF drop ≥ 10% (Figure 6.14). This 

might be at least in part explained by the statistical phenomenon of the ‘regression to 

the mean’, which describes the natural variation in repeated data due to random 

measurement errors  (Barnett et al., 2005). 

 

 

 

 

 

 

 

 

 

Figure 6.14: Influence of basal LVEF on time to absolute LVEF drop ≥ 10% 

 

 

A third consideration concerns the potential effect of the prescription of cardiac 

medications before the start of trastuzumab (row 7 in Table 6.11). Although the p-

values are not near the adjusted threshold, the presence of a trend towards an 

association with different cardiac end-points suggests that this parameter, which 

reflects an overall pre-existing cardiovascular risk assessed by the physician, might be 

associated with the occurrence of trastuzumab-induced heart toxicity.  

It is impossible to draw any conclusion with regard to the possible effect of the four 

SNPs and trastuzumab trough concentration in plasma on cardiotoxicity from these 

data (rows 8 and 10 - 17 in Table 6.11). Even the association of the HER2 Ala1170Pro 

p = 0.000 
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Pro/Pro genotype with end-point E (LVEF drop ≥ 10% and below 45% and trastuzumab 

definitively stopped), with a p-value of 0.004 and not accompanied by significant hits 

for other cardiac end-points (row 13 in Table 6.11), is not sufficient to generate any 

hypothesis on a potential causative role of this SNP. 

Of note, in only two cases was an extreme decrease in LVEF (down to 15% and 10%) 

observed in this population. This was accompanied by symptoms of severe congestive 

heart failure which required admission and intensive treatment in the Cardiology 

Department. In both cases trastuzumab was definitively discontinued and the patients 

recovered in terms of performance status and LVEF, although a return to the baseline 

values was obtained only after 6 and 10 months. One of the two patients experienced 

disease recurrence after 17 months since the start of trastuzumab treatment. Table 

6.12 describes the clinical characteristics of these two cases, including their germ-line 

genotype for all the four SNPs considered. The very low number of congestive heart 

failure events does not allow any further statistical analysis. 
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 Patient # 172 Patient # 232 

Ethnic Group Caucasian Caucasian 

follow-up (months) 29 26 

Year start trastuzumab 2008 2009 

Age start trastuzumab (years) 68 51 

Tot number of cycles received 7 9 

BMI (kg/m
2
) 26.7 24.8 

Cardiovascular co-morbidities hypertension No 

LVEF pre-chemotherapy (%) 55 47 

LVEF pre-trastuzumab (%) 62 52 

Minimum LVEF during trastuzumab (%) 10-15 <10 

Cardiac medication prescribed before start of 
trastuzumab 

No Yes (ACE-inhibitor) 

Type of adjuvant chemotherapy 
Epirubicin x 4 → 
Capecitabine x 4 

FEC x 3 → Docetaxel x 3 

Epirubicin cumulative dose (mg) 400 300 

Adjuvant radiotherapy  Yes Yes 

Dose and site of radiotherapty 
45 Gy to left chest wall, 
axilla  

50 Gy to right axilla + 
supraclavicular fossa; 40 
Gy to right chest wall 

HER2 Ile655Val Ile/Ile Ile/Ile 

HER2 Ala1170Pro Pro/Pro Pro/Pro 

FCGR2A His131Arg His/His His/His 

FCGR3A Val158Phe Phe/Phe Phe/Val 

[trastuzumab] above/below median Below Below 

Tumour histologic type Ductal Ductal 

Diameter (mm) 29 25 

Focality Unifocal Unifocal 

Lymph nodes involved 5 out of 15 10 out of 10 

Grade 3 3 

Hormone Receptors Positive Negative 

HER2 IHC score 2 + 3 + 

ISH performed 
Yes (FISH: 6.2 HER2 
copies/cell) 

No 

Recurrence No yes 

Time to recurrence (months) 29 + 17 

Death No no 

Table 6.12: Characteristics of two patients who experienced severe congestive heart failure during 
trastuzumab 
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6.8 Discussion 

The original design of this section of the project was mainly oriented towards the 

evaluation of advanced stage patients treated with trastuzumab and the role of 

pharmacogenetic, pharmacokinetic, and biomarker factors in this context. Indeed, part 

of the initial power calculations (Section 2.11) for the study was based on this 

subgroup of patients. However, the rapidly increasing use of the drug in the ‘adjuvant’ 

setting made the early stage population the major subgroup in the study (Figure 6.1), 

offering both the opportunities and the challenges of examining different aspects of 

trastuzumab treatment.  

In the limited group of advanced stage patients we observed a possible positive effect 

of the FCGR3A Phe158Val Val allele (in the dominant model) in delaying tumour 

progression. This observation, limited by the small number and heterogeneity of 

patients as well as the exploratory nature of the simple logrank test, must be put in the 

context of several papers published after this project was initiated.  

Table 6.13 shows the findings of a list of studies which explored the potential effect of 

the FCGR SNPs on trastuzumab treatment. Although these studies are not directly 

comparable in terms of samples size, disease setting and methodology, their results 

appear inconsistent, with two works (not published in extenso) (Foster et al., 2002; 

Hurvitz et al., 2009a) showing no significant association with the SNPs and two full 

publications (Musolino et al., 2008; Tamura et al., 2011) suggesting a role for the FCGR 

variations. Of note, the only study which had the opportunity of evaluating this issue 

as part of a randomized controlled trial (Hurvitz et al., 2009a) did not report any data 

for the control arm and, maybe more importantly, did not explore the possible ability 

of the two SNPs to predict a differential benefit of trastuzumab (for instance in terms 

of disease-free survival hazard ratio). 
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Ref SNP analysed 
Genotyping 
method 

H-W equilibrium LD Setting 
Number  of 
patients 

Regimen Control Arm Variables Associations 

Foster et 
al. (2002) 

FCG3A 158 
F/V 

PCR No (p=0.016) NA 
Metastatic, 
2nd or 3rd 
line * 

63 
trastuzumab 
single agent 
weekly 

No ORR No association 

Musolino 
et al. 
(2008) 

FCGR3A 158 
F/V, FCGR2A 
131 H/R, 
FCGR2B 232 
I/T 

PCR & direct 
sequencing 

Yes, except for 
FCGR2B in 
trastuzumab 
treated patients 

No 
LD 

Metastatic, 
1st line 

54 

trastuzumab 
weekly plus 
paclitaxel or 
docetaxel 

Concomitant, no 
randomization, 34 
Her2-neg metastatic 
treated with 
taxanes 

ORR, PFS, 
ex vivo 
ADCC  

FCGR3A 158 V/V: higher ORR, longer PFS, better ADCC. 
FCGR2A 131 H/H: ‘trend’ for higher ORR, longer PFS and 
better ADCC. Patients with 158 V/V and/or 131 H/H: 
higher ORR and longer PFS (only independent predictive 
factor) and better ADCC. No association for FCGR2B. No 
association in control arm 

Hurvitz et 
al. (2009a) 

FCGR3A 158 
F/V, FCGR2A 
131 H/R  

Sanger 
sequencing and 
Sequenom mass 
spectrometry 

NR NR 

Adjuvant ** 
~ 1200 
(including 
controls) 

ACTH or TCH  
Randomized, ~ 400 
Her2-pos patients 
treated with ACT  

DFS 

No association of SNPs with DFS of trastuzumab treated 
patients.  
Data not reported for control arm. Not explored benefit 
derived from trastuzumab (DFS HR) stratified by SNP 
genotype 

Metastatic, 
1st or 2nd 
line 

43 
"trastuzumab
-based" 

No TTP No association of SNPs with TTP 

Tamura et 
al. (2011) 

384 SNPs of 
different 
FCGR loci 

GOLDENGATE 
beads array 
(illumina Co.) 

NR NR 

Neoadjuvant 15 
FEC followed 
by weekly 
trastuzumab 

No pCR FCGR2A 131H/H: higher pCR rate 

Metastatic 
(1st line?) 

36 
 weekly 
trastuzumab 

No 
ORR and 
PFS 

FCGR2A 131H/H: higher ORR and longer PFS. 
FCGR3A 158V/V: ‘trend’ for higher ORR 

 

Table 6.13: Trastuzumab and FCGR SNPs in clinical trials 
* = subset of H0649G trial (Cobleigh et al., 1999); ** = subset of BCIRG 006 trial (Slamon et al., 2011);  PCR = polymerase chain reaction; ORR = Overall Response Rate; DFS = 
Disease-Free Survival; PFS = Progression-Free Survival; TTP = Time To Progression; LD = Linkage Disequilibrium analysis; ADCC = Antibody-dependent cell-mediated cytotoxicity; 
pCR = pathological Complete Response; NA = not applicable; NR = not reported; FEC = fluorouracil, epirubicin, cyclophosphamide; ACTH =  Adriamycin + Cyclophosphamide 
followed by paclitaxel: trastuzumab  weekly with T, then 3-weekly, total 1 year; TCH = Docetaxel plus carboplatin: trastuzumab  weekly with TC, then 3-weekly, total 1 year, ACT = 
Adriamycin + Cyclophosphamide followed by paclitaxel; HR = hazard ratio
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Another important issue closely connected with the putative role of the two SNPs is 

the potential influence of linkage disequilibrium on the analysis. Both FCGR2A and 

FCGR3A genes (like the rest of the classical low-affinity FCGR genes) are located on 

chromosome 1 long arm (1q23) and FCGR2A His131Arg and FCGR3A Phe158Val are 

separated by approximately 35 kb. Our observation of a moderate LD between the 

FCGR SNPs is in accordance with the majority  of literature data (van der Pol et al., 

2003; Lejeune et al., 2008), although some early papers presented different results 

(Lehrnbecher et al., 1999). A non-random association of alleles at these two loci might 

in fact potentially lead to the attribution of a causative role to a SNP which is only 

associated with the ‘true’ causative genetic variation (Lejeune et al., 2008). In terms of 

mechanism it is important to highlight that the affinity profiles of the various Fc 

Gamma Receptor genes for the different Ig subclasses are different, as is the effect of 

the SNPs on differential binding affinity (as described in Section 1.4.4). In particular, 

while a different affinity of the two FCGR3A allelic forms for human IgG1 (like 

trastuzumab) has been described (Wu et al., 1997), for the FCGR2A SNP a difference 

was initially demonstrated only for human IgG2 (Parren et al., 1992). However, as 

mentioned in Section 1.4.4, a recent paper (Shashidharamurthy et al., 2009) suggested 

that the His variant might also have higher binding affinity for human IgG1 and IgG3. 

Taking all of the available data together, the role of the FCGR SNPs on the outcome of 

patients treated with trastuzumab still needs to be elucidated.   

This is the first study, to the best of our knowledge, looking at the PK and biomarker 

aspects of a population mainly composed of early stage patients treated with three-

weekly adjuvant trastuzumab. While the PK data seem in accordance with the previous 

literature, the inverse relationship between trastuzumab trough concentration and 

circulating HER2 concentration reported in the setting of metastatic disease (Pegram 

et al., 1998) was not observed in our ‘adjuvant’ setting. The vast majority of the HER2 

measurements were below the lower limit of quantification of the assay and this is 

plausible in patients with no macroscopic evidence of disease. Whether high 

circulating HER2 levels in these patients might predict a recurrence of the disease or a 

rise between pre-trastuzumab and on-trastuzumab determination might suggest lack 

of trastuzumab benefit will be assessed with longer follow-up and more disease-

progression events. The use of circulating HER2 testing in the management of 

advanced patients has been a matter of discussion for a long time, as discussed in 
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Section 1.2.3 (Leyland-Jones and Smith, 2011). Our very limited data in the advanced 

stage group cannot provide any significant contribution to this debate.  

The analysis of cardiotoxicity in the ‘adjuvant’ group entailed many challenges and 

limitations, as detailed in Section 6.7. They included, in the first place, the general 

effect of changes in clinical practice on the choice of the appropriate end-points in an 

observational trial. Other specific limitations were given by the intrinsic value of the 

ejection fraction variation as an objective measure of the heart-related effects of 

trastuzumab. In fact, asymptomatic or mildly symptomatic LVEF drops (the majority of 

the events in our population) might not be the optimal clinical end-point. Furthermore, 

this parameter has been shown to be influenced by many factors (including pre-

existing cardiac risk, previous anthracyclines administration and baseline LVEF value) in 

several publications (as discussed in Section 1.3.3) and some of these effects seem to 

be confirmed by our observations. It might be argued that the potential effect of 

genetic variations can be masked by these clinical parameters in a sample of limited 

size.  

Congestive heart failure is a very rare event in this setting and this was confirmed by 

our data, with only two events observed. The evaluation of the influence of genetic 

determinants on this clinically significant side effect would require larger cohorts of 

patients and/or different research approaches, such as genome-wide association 

studies.  

With the limitations mentioned above, our study in a homogenous and adequately 

characterized group of patients does not confirm the role of the HER2 Ille655Val SNP in 

the risk of trastuzumab-related cardiotoxicity, as suggested by Beauclair et al. (2007). It 

must be taken into account, however, that Beauclair’s publication was based on a 

smaller and more heterogeneous sample of advanced stage patients. 

The FCGR2A receptor is expressed in human ventricular cardiomyocytes, where it 

might contribute to the development of dilated cardiomyopathy (Staudt et al., 2007). 

Moreover, a recent paper suggested that the FCGR2A His131Arg SNP might influence 

the efficacy of immuno-modulatory therapy involving immunoadsorption and 

subsequent IgG substitution in patients with this disease (Staudt et al., 2010). This 

prompted us to investigate the role of the FCGR SNPs in the adjuvant trastuzumab 

setting, but an analogous effect of these SNPs on trastuzumab-induced cardiotoxicity 

could not be demonstrated. However, it is interesting to notice that both patients who 
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experienced severe congestive heart failure were His homozygous for the FCGR2A 

His131Arg SNP. 

In conclusion, our data contribute to the published and currently active trials which 

aim to better elucidate the pharmacogenetics of trastuzumab treatment in breast 

cancer. This research area, given the emergence of other effective HER2-targeted 

drugs (such as lapatinib, pertuzumab and trastuzumab-DM1) which offer diversified 

therapeutic options to patients and clinicians, will become more and more important if 

we are to achieve a better individualization of the treatment of patients with HER2-

positive tumours. 
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Chapter 7. Conclusion 
 

The evaluation of biological and clinical diversity in breast cancer has emerged as one 

of the most promising areas in oncology research over the last decades, as described in 

Sections 1.1.2 through 1.2.4 (Bertos and Park, 2011). While the biology of the tumour 

(including the study of oncogenes and tumour-suppressor genes, signalling pathways, 

epigenetic changes etc.) has been the most extensively studied aspect of this diversity, 

the host’s genetic background has also been regarded as a potential factor influencing 

the natural history of the disease and the impact of different therapeutic approaches.  

The main aim of the study described in this thesis was in fact to investigate different 

aspects of the possible role of germ-line genetic variations in this complex disease. 

Single nucleotide polymorphisms (SNPs) have been investigated as potential risk 

factors for the development of breast cancer using different research strategies, 

including candidate gene approach and genome-wide association studies (GWAS) 

(Peng et al., 2011; Zhang et al., 2011). However, given the biological heterogeneity of 

this neoplasm, one might hypothesize that different SNPs can play a role in the biology 

of different subtypes of breast cancer, rather than in the development of the disease 

as a whole.  

The HER2-positive tumours, which account for up to 20% of all cases, certainly form 

one of the most widely studied breast cancer subtypes and constitute the main focus 

of this thesis. Our study showed that the less frequent variant (proline) of a SNP 

(Ala1170Pro) occurring in the HER2 gene itself is associated with HER2 over-

expression/amplification in a population of over 360 breast cancer patients (Chapter 4). 

This coding SNP is related to an amino-acid located in the C-terminal intracellular 

regulatory domain of the receptor, but its potential mechanistic role has not been 

examined. Several bioinformatics tools (described in Section 5.7) predict that 

Ala1170Pro might affect the structure or function of the HER2 protein.  

In contrast, another extensively studied SNP affecting a residue located in the trans-

membrane domain of the receptor (Ile655Val) was not associated with HER2 over-

expression/amplification in our cohort (Chapter 4). 

In order to investigate further the role of these SNPs, the same genetic variants were 

explored in the context of DNA extracted from the patients’ primary tumours. This 
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analysis was performed in a significant fraction of the whole breast cancer population 

(2/3 of total) which was also representative of the total sample in terms of tumour 

characteristics (Section 5.3). In particular, we hypothesized that the proline allele of 

the Ala1170Pro could be more ‘pathogenic’ than the alanine allele and, therefore, 

undergo a positive selection through allele-specific amplification during the 

development of HER2-positive tumours (Section 5.2). This hypothesis, however, was 

not confirmed by our observation on the distribution of the alleles. In conclusion, 

although the observation of an association of the proline allele of Ala1170Pro with 

HER2 positivity is intriguing, the role of the two HER2 SNPs in HER2 over-

expression/amplification remains to be elucidated. 

The natural history and prognosis of HER2-positive breast cancer patients has radically 

changed since trastuzumab, the first HER2-targeted treatment,  was developed, 

approved and introduced in clinical practice (Sections 1.3.1 through 1.3.5) (Dawood et 

al., 2010). However, resistance to treatment (primary and acquired) and the toxicity 

profile of the drug can limit the effectiveness of trastuzumab-based therapy. The 

second main object of this project was the investigation of a group of trastuzumab-

treated patients in terms of disease outcome and side effects. The analysis of the 

influence of pharmacogenetic (PG), biomarker and pharmacokinetic (PK) parameters 

on these clinical aspects was presented in Chapter 6. 

Of note, while the evaluation of circulating HER2 was conducted using a commercially 

available ELISA kit, the measurement of trastuzumab in plasma samples (PK) was made 

possible by the development and validation of a novel cell-based ELISA (Chapter 3). 

The evaluation of patients with advanced disease treated with trastuzumab was 

limited by the small available patient population and the heterogeneity of the 

combination treatments (Section 6.5.2 and 6.6). However, the observation of a 

possible association of the valine allele of the FCGR3A Phe158Val SNP with a better 

outcome is in accordance with two studies published while this project was in progress 

(Musolino et al., 2008; Tamura et al., 2011) (discussed in Section 6.8).  

A particular section of the thesis was dedicated to the evaluation of cardiac toxicity in 

a group of 139 patients treated with adjuvant trastuzumab (Sections 6.7.1 through 

6.8). Although a role of germ-line genetic variants (either in the HER2 gene or in Fc 

Gamma Receptor genes) could not be demonstrated, this analysis highlighted the 

challenges and limitations which can be encountered in the conduct of an 
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observational pharmacogenetic study. As discussed in Sections 6.7.3 and 6.8, these 

included the number of clinical parameters potentially influencing trastuzumab-related 

cardiotoxicity, the choice of the appropriate end-points, the intrinsic value of the 

ejection fraction variations and the rarity of severe congestive heart failure events. 

Further to the results presented in this thesis and summarized above, this project 

made possible the construction of an archive composed of germ-line DNA samples, 

tumour DNA samples, plasma samples and tumour FFPE blocks from a population of 

over 360 breast cancer patients (enriched in HER2-positive cases, as discussed in 

Chapter 4). These biological samples, collected, transferred, stored and analysed 

according to the Human Tissue Act (HTA, 2004), are matched with individual patients’ 

anonymised data (including tumour pathology, medical history, outcome and side 

effects of treatments).  

All these samples and data are available for the exploration of further potential factors 

which might influence the biology of the disease and/or its response to treatment. 

Current plans include the identification and evaluation of other relevant SNPs and the 

construction of tissue microarrays (TMAs) which would allow multiple IHC analyses. 

This future work will hopefully contribute to the increasing amount of research aimed 

at a better understanding of the biology of breast tumours and at a better 

individualization of anti-cancer treatments. 
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Appendix 1.  Trastuzumab review 

  

This article was prepared and published in 2010 and constitutes part of the literature 

review which was conducted for this research project.  
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Appendix 2.  Trastuzumab cell-based ELISA paper 

  

This article was submitted and published in 2009 and presents one of the methods 

employed in this research project (more details are presented in Chapter 3). 
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