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Abstract

One problem of special interest both in industry and the engineering community

is that of using the enormous amounts of data routinely generated and recorded in

efficient process monitoring and control strategies. In statistical terms this is related

to identifying those variables which exhibit unwanted or unusual process variability

so that remedial action can be taken. To this end, a common approach in the

literature is to reduce the problem dimensionality by using latent variable models.

Customarily, the latent variables are a function of all of the original variables and

monitoring is carried out in the reduced space.

Within this context, this thesis explores the development of models in which the

latent factors are a function of a subset, only, of the original observations. By doing

that, the advantages of monitoring in a reduced subspace are retained but there

there are also additional gains in model interpretability. The idea arises from the

sparse representation of the mapping matrix between latent and original variables in

a linear factor analysis (FA) model. An extension of principal component analysis

(PCA) to monitor nonlinear systems is proposed by using a a Gaussian Process

Latent Variable model [Lawrence, 2005], GPLVM, as a starting point. Its application

in a process control problem is also introduced. Using a Gaussian process, GP , as

the backbone, we define a Gaussian Process Functional Factor Analysis model which

maps subsets of the latent variables to the observed data-space; a study of the model

asymptotic properties is given. Several parameter inference methods as well as a

model selection procedure via penalty functions are also proposed.

There are several scientific disciplines involved in the problem at hand. Chemical

engineers refer to it as a sub-field of Process Control known asMultivariate Statistical

Process Control. It is also an area of tremendous success in process Chemometrics

where it has grown very rapidly over the last two decades. In Statistics, it touches

the topics of latent variable models and variable selection methods. And within the

Machine Learning community is classified as an Unsupervised Learning problem.
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Chapter 1

Introduction

Today’s process industries have at their disposal a wealth of data which is routinely

collected from online sensors every few seconds. All this information on dozens,

hundreds of variables is stored in large databases and, if properly interpreted, could

provide a detailed snapshot of the process behaviour over time. As Kourti [2002]

argues, these data sets are often very large in size and contain variables which are

generally highly correlated and with low signal-to-noise ratios (i.e. normally the

information included in any single variable is small). In the past, rarely would

anything be done with all this information due mainly to the intrinsic difficulty in

handling it; however, over the last two decades there has been a dramatic increase

and urge both in the scientific literature and industry to utilize these databases; the

idea is to build data-driven models which, by disregarding the noise in the system,

can handle the existing multicollinearity and extract the underlying latent variables

which drive the process.

A Statistical Process Control (SPC) strategy is concerned with the monitoring of

industrial processes over time with the aim to detect disturbances, special cause

variation, and remove them from the system. It is said that a process is a state

of statistical control when the only source of variability is common cause variation,

or, in other words, the sort of variability which is unavoidable, which intrinsically

affects the process all the time and cannot be removed [MacGregor and Kourti,

1995]. This variability reduction exercise differs from what is commonly referred to

1



Chapter 1. Introduction

as Engineering Process Control (EPC); the emphasis in EPC is on shifting variability

from parts of the process where it could harm product quality/plant performance to

those areas of the process where it can be tolerated [Montgomery and Keats, 1994].

These two strategies are not mutually exclusive; on the contrary, they complement

one another.

The work presented here concentrates on the SPC side of process control; more

specifically, it focuses on Multivariate Statistical Process Control (MSPC), where

the emphasis is on the monitoring of processes in which several variables are of

interest [Bersimis et al., 2006]. In the past, industries would make extensive use

of univariate control charts (also known as Shewhart charts) where each variable

of interest is monitored independently; there is, however, an inherent problem in

treating them as though they were independent when in reality that is not the case

and none of those variables define the process/product quality by itself. That not

only can lead to poor monitoring strategies but it does neither take advantage of all

the available information appropriately. The literature related to MSPC abounds

and has grown dramatically over the past two decades. There are many good review

papers which give an excellent introduction to the topic including those of Kourti

and MacGregor [1995], Qin [2003], Kourti [2003], Garćıa-Muñoz et al. [2003] and

MacGregor et al. [2005]. The text book by Chiang et al. [2001] offers an extensive

account of MSPC and its applications.

As previously stated, the correlation between the process variables is usually of such

a high degree that the resulting data matrices have a very low statistical rank. This

fact makes latent variable models one of the most appropriate tools to obtain useful

and simplified representations of the original data set. In this respect, MSPC not

only is a subdiscipline of process control within the Chemical Engineering field. It

is also an area of tremendous success in process Chemometrics1 where it has grown

very rapidly over the last two decades. In Statistics it touches the topics of latent

variable models and variable selection methods [Hastie et al., 2009]. And within the

Machine Learning community may be classified as an unsupervised learning problem

[Ghahramani, 2004].

1Defined by the International Chemometrics Society as the science of relating measurements
made on a chemical system or process to the state of the system via application of mathematical
or statistical methods. See also Hibbert et al. [2009].
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Chapter 1. Introduction

The theme of this thesis revolves around the idea that factor analysis approaches

[Tipping and Bishop, 1999] can both be used (1) to speed up process monitoring

schemes (fault detection) by constructing latent variables that are a subset of the

full original variable space and (2) to facilitate the fault identification phase of the

monitoring process. In this respect, the procedure is halfway between a principal

variables approach [McCabe, 1984], which selects individual variables according to

their relative importance and principal component analysis, PCA, based modelling

techniques, which builds latent variables as linear combinations of the full original

variable set.

In general terms, there is no simple procedure matching data generated in the pro-

cess industries with a particular model. Notwithstanding the fact that most indus-

trial systems behave non-linearly, linear models like PCA have continued to be used

heavily in the area. This not only related to their relative simplicity from an appli-

cation point of view but also from the pragmatism that arises from observing that

non-linearities can be explained by considering additional, minor principal compo-

nents[Kourti, 2002]. This approach, of course, sacrifices understanding of the data

generative process in favour of model applicability.

Both linear and non-linear models will be subject to analysis in subsequent chap-

ters. Non-linear systems will be modelled non-parametrically via a combination of

a Gaussian Process and factor analysis-type of model. As for the remaining part

of this chapter, it first introduces some notation and explains the workings of PCA

focusing on its application to process monitoring; and secondly, it also presents an

overview of Gaussian Processes, GPRs, as the backbone of the procedures which are

proposed in this thesis.

1.1 Notation

Let D be the dimension of the data space, Q the dimension of the latent space and

N the number of observations. The general (N × D) data matrix of observations

will be denoted by Y. The corresponding (N × Q) data matrix of latent variables

will be denoted as X. The ith observation for the jth variable will be written as yij

3



Chapter 1. Introduction

for i = 1, . . . , N and j = 1, . . . , D; thus, we can refer to the whole data matrix as

Y = (yij).

The rows of Y will be written as yᵀ
1,y

ᵀ
2, . . . ,y

ᵀ
N . Therefore, yi is the i

th observation

for all D-variables and it is written as a column. Likewise, the columns of Y will

be written with subscripts in parentheses as y(1),y(2), . . . ,y(D). To summarize:

Y =


y11 y12 · · · y1D

y21 y22 · · · y2D
...

...
. . .

...

yN1 yN2 · · · yND

 =


yᵀ
1

yᵀ
2
...

yᵀ
N

 = (y(1),y(2), . . . ,y(D))

where

yi =


yi1

yi2
...

yiD

 for (i = 1, . . . , N), and y(d) =


y1d

y2d
...

yNd

 for (d = 1, . . . , D).

The notation for X is defined similarly:

X =


x11 x12 · · · x1Q

x21 x22 · · · x2Q
...

...
. . .

...

xN1 xN2 · · · xNQ

 =


xᵀ
1

xᵀ
2
...

xᵀ
N

 = (x(1),x(2), . . . ,x(Q)).

The idea behind the latent variable models that we are seeking to build is that the

data we observe is simply the manifestation driven by a core subset Q of latent

variables, where Q� D.

Finally, note that if the observations have been mean-centered, the data covariance

matrix, S, can be written as N−1YᵀY or, more generally, as N−1YᵀHY, where

H = IN − 1
N
11ᵀ is the centering matrix. Note that IN is the (N × N) identity

matrix and 1 is a column vector of N ones, Mardia et al. [1979].

4



Chapter 1. Introduction

1.2 Process monitoring review

Approaches to process monitoring, key variables (or principal variables as known

in statistics), principal component analysis and performance monitoring charts are

introduced here. The section ends with an example which aims at explaining how

the process monitoring is carried out in practice in the latent variable space.

1.2.1 Mechanistic versus data-based modelling

There are two main approaches to process modelling. On the one hand, models

can be built based on the underlying physics and chemistry laws that govern the

behaviour of the process; this is referred to as mechanistic modelling and requires

a thorough and extensive knowledge about the system under study. Very often,

restrictions both in term of cost and time will simply prevent their development.

On the other hand, a viable alternative is to use the data that is routinely collected

from the process to build a data-based model. Whereas these models are much easier

to develop, it is also true that the information that can be extracted from them is

rather more limited. In many instances, the data-based methodology is used as a

black-box where the user expects to extract a reliable prediction of how the system

is behaving without having to worry about the inner workings of the true generative

process.

1.2.2 Key variables

It is undoubtedly very appealing to simply not build a model and monitor the pro-

cess variables individually. This is an ideal situation as fault detection is almost

instantaneous and fault diagnosis is direct in the sense that the variable moving

outside its confident limits is the variable developing a fault. But this situation is

not practical: today’s manufacturing processes measure and log hundreds of vari-

ables and therefore individual variable monitoring is unrealistic to say the least;

it also ignores the fact that the correct functioning of the process depends on the

joint behaviour of a set of variables and not on each variable individually [Kourti
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and MacGregor, 1995]. Attempts can be made to remove the inessential variables

and choose a subset of the original variables that contain, according to a specific

criterion, as much information as possible. This gives rise to the concept of princi-

pal variables as introduced by McCabe [1984]. Exploiting this idea, Srinivasan and

Qian [2007] have shown how a multi-state process could be monitored by just fo-

cusing on those variables whose behaviour is essential for the smooth running of the

process; the variables most important from a monitoring perspective were termed

as key variables by the authors. While the key-variable approach tackles the issue

of dimensionality reduction via variable selection, it does not consider the problem

of variable association that could lead to potential departures from normal plant

behaviour.

1.2.3 Principal component analysis (PCA)

PCA is arguably the simplest dimensionality-reduction technique that can be applied

to a set of correlated data; it is perhaps this simplicity which has contributed to

is wide application within the MSPC area. Broadly speaking, the aim of PCA is

to reduce the dimensionality of the process data by projecting it down to a latent

variable space of lower dimensionality; once this linear transformation has been

made, process monitoring is carried out in the reduced latent variable space. The

purpose of this section is only to introduce the topic; Wold et al. [1987] provides an

excellent explanation from a Chemometrics perspective. For further insights, the

interested reader can refer to the monograph by Jolliffe [2002].

Let y = (y1, y2, . . . , yD)
ᵀ be the D-dimensional original variables (of which there

are N observations) of process data and S the sample covariance matrix; let also

S = PΛPᵀ be its spectral-decomposition where P = (p1,p2, . . . ,pD) is the matrix

of eigenvectors and Λ = diag(λ1, ..., λD) the corresponding matrix of eigenvalues

ordered decreasingly, i.e. λ1 > λ2 > . . . > λD. The basic idea behind PCA is to find

a new set of variables x = (x1, x2, . . . , xD)
ᵀ such that the sample variances of the

transformation are in decreasing order of magnitude and the x-data are uncorrelated.

The first principal component of x is x1 = pᵀ
1y, which is the linear combination of

the y-variables that has maximal variance amongst all linear combinations subject

to the normalization constraint ‖p1‖ = 1. Likewise, the second principal component
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is given by x2 = pᵀ
2y and has maximal variance amongst all linear combinations

subject to the constraints that it is uncorrelated with x1 and ‖p2‖ = 1; additional

principal components up to D are defined similarly. Finally, it is easily shown that

the variance of the xthj principal component equals λj, i.e. the j
th largest eigenvalue

of S.

In reality, PCA decomposes the N ×D matrix Y as the sum of D outer products

Y =
D∑
i=1

x(i)p
ᵀ
i = XN×DP

ᵀ
,

where, as mentioned previously, the x(i),pi pairs (known as scores and loading

vectors respectively) are ordered by the amount of variance captured. One feature of

PCA is that, for linear systems, the less important components in terms of variance

are often related to noise in the data. Then, if the process variables are highly

correlated, Q principal components (Q� D) are enough to explain most of the data

variability. In those cases, the PCA transformation is truncated after Q components

and the remaining small variance factors are consolidated into a residual matrix, E

Y =

Q∑
i=1

x(i)p
ᵀ
i = XN×QP

ᵀ
Q + E,

where PQ is the D×Q matrix of loadings vectors retained in the PCA model. From

the previous equation, the fitted model values are given by

Ŷ = XN×QP
ᵀ
Q. (1.1)

A final important consideration that has to be taken into account is how to de-

termine Q, i.e. the number of principal components that the model is going to

include. There is a variety of procedures that could be applied in this respect [Valle

et al., 1999]. Very simple methods include the SCREE test (which selects k based

on what percentage of the total variation is accounted for) and the average eigen-

value approach (which takes all those principals components whose eigenvalues are

bigger than the average eigenvalue). There are also more complicated methods; for

instance, the number of principal components can be selected using other commonly

known model selection procedures like cross-validation as explained by Wold [1978];

see also Hastie et al. [2009, Chapter 7].

7



Chapter 1. Introduction

1.2.4 Fault detection: performance monitoring charts

The development of a process monitoring scheme using PCA begins by collecting

nominal process operational data, i.e. the data generated when it is known that the

process was behaving as expected. Once the nominal model has been constructed,

new multivariate observations can be projected onto the latent variable subspace

using Equation (1.1). Note that, in this respect, the eigenvector matrix PQ acts as

a linear map projecting the multivariate observations down from RD to RQ. The

new latent variables can then be monitored directly, in pairs or by using statistics

which are derived from them.

Principal component scores

The principal component scores, xi, are linear combinations of the measurement

variables, yi, and should be approximately normally distributed when the original

observations are normally distributed. Assuming that the data matrix Y has been

mean-centered, the scores from the PCA decomposition have mean zero with vari-

ance equal to their associated eigenvalue, λi. With this assumption of normality,

upper and lower confidence limits at a significance level α are straightforward and

can be calculated as follows

±zα/2 ·
√
λi,

where zα/2 is the critical value of the standard normal distribution at the α/2 signifi-

cance level. If no assumption is made about the distribution of the observations and

the sample size is sufficiently large, confidence limits can also be calculated using

the (α/2, 1 − α/2) quantiles of the nominal data or estimated via kernel density

methods.

Bivariate plots of the principal component scores

As derived previously, the first principal component is x(1) = Yp1 with variance λ1,

the second principal component is x(2) = Yp2 with variance λ2 and so on for the

kth principal component with variance λk. Restricting the analysis now to the first

two principal components, an ellipsoidal control limit can be constructed as follows

x2i1
λ1

+
x2i2
λ2

≤ χ2
2(α),
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which encloses all the pairs (yi1, yi2) whose statistical distance (Mahalanobis) from

the mean, 0, is less or equal than χ2
2(α) with a probability α of committing a type I

error [Johnson and Li, 2006]; χ2
2(α) is the upper critical value for a χ2-distribution

with two degrees of freedom at the α significance level.

Squared Prediction Error (SPE)

Once a PCA model is available, a future observation, y∗
i , can be referenced against it.

The jth new principal component score of y∗
i can be easily calculated as x∗ij = pᵀ

jy
∗
i .

In vector form, x∗
i = Pᵀ

Qy
∗
i which allows to determine the fitted value predicted by

the model as ŷ∗
i = PQx

∗
i . Hence, the model residuals are ei = y∗

i − ŷ∗
i . Statistically,

these errors are well approximated by a multivariate normal distribution N (0,Σe)

[Nomikos and MacGregor, 1995].

The SPE2 is the quadratic form of the error associated with the PCA model, i.e.

SPEi = e
ᵀ
i ei, (1.2)

and it is an indication of how well each sample conforms to the PCA model. Box

[1954] has shown that this quadratic statistic can be approximated by a weighted

chi-squared distribution

SPEα ∼ gχ2
h

where the weight (g) and the degrees of freedom (h) are both functions of the

eigenvalues of Σe. An approach to determine g and h is by matching the moments

between the gχ2
h distribution and the reference distribution of the SPE. The mean

and variance of the gχ2
h distribution (µ = gh, σ2 = 2g2h) are equated to the sample

mean (m) and variance (v) of the SPEi, i = 1, . . . , N ; this results in g = v/ (2m)

and h = 2m2/v. Therefore, the control limit for the SPE is given by

SPEα =
v

2m
χ2
(2m2/v),α

with χ2
2m2/v,α being the percentile of a chi-squared distribution with 2m2/v degrees of

freedom at the α significance level. This method of matching moments is susceptible

to error when there are outliers in the data or when the number of observations is

2also known as Q-statistic [Jackson, 1991].
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small; for those cases the approximation provided by Jackson and Mudholkar [1979]

has been shown to be more robust.

Hotelling’s statistic

The sum of normalized squared scores (Hotelling’s T 2-statistic) is a measure of the

variation in each sample within the PCA model. It is defined as

T 2
i =

Q∑
j=1

x2ij
λj
. (1.3)

The upper control limit for the Hotelling’s T 2-statistic can be obtained using the

empirical reference distribution of the training data or through its relationship with

the F-distribution [Jackson, 1991, p. 23], as follows

T 2
Q,N,α =

Q (N − 1)

N −Q
FQ,N−Q,α.

1.2.5 Fault diagnosis: contribution plots

In terms of process faults, there are two kind of abnormalities that can develop

in a chemical system, Zhang et al. [1997]. Firstly, the relationship between the

process variables could change. What it is expected in this situation is that the

difference between the original observations yd and the model prediction ŷd would

be large. These faults can be detected by monitoring the Squared Prediction Error.

And secondly, the basic relationship between the process variables could remain

unchanged but the process variables could present a variability higher than those in

the nominal data. This abnormality would be observable if we were to monitor the

latent variables directly. These faults can also be detected by using the Hotelling’s

T 2 Statistic. A very effective set of multivariate control charts uses therefore the T 2

chart in conjunction with the SPE plot [MacGregor and Kourti, 1995].

Any of the previously described charts can be used in the first stage of the moni-

toring procedure, fault detection. The second stage is related to identifying the root

cause responsible for the out-of-control signal; this is commonly referred to as fault

10
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identification or fault diagnosis. In this respect, the most popular approach is to

make of use contribution plots3 [MacGregor et al., 1994; Miller et al., 1998]. The

idea behind them is rather simplistic; it focuses on decomposing the signal which

is out of the control limits into its individual constituents so that the variable(s)

responsible for the unusual behaviour can be identified.

Let xij be the jth principal component score for an observation yi which is defined

as a linear combination of all the variables in yi

xij = p
ᵀ
jyi =

D∑
d=1

pdjyid =
D∑

d=1

contx(yd), (1.4)

where contx(yd) = pdjyid is the individual contribution of variable yd to the principal

component score x. If it turned out that xij was a signal out of control then the

contributions of each variable, contx(yd), could be plotted and compared with the

contributions for the same variable in the reference (nominal) data set. This com-

parison coupled with engineering knowledge should help in locating the root cause

of the problem. Alternatively, control limits for these contributions could also be

used [Conlin et al., 2000].

Similarly, let us assume that a fault is detected in the Q-statistic plot. In this case

SPEi = ‖ei‖2 =
D∑

d=1

(yid − ŷid)
2 =

D∑
d=1

[contQ(yd)]
2, (1.5)

where contQ(yd) = yid − ŷid are the individual contributions of variable yd to the Q-

statistic4. As before, plots of contQ(yd) can be used to establish a visual comparison

with the contribution of the variable in the reference data set to help determine the

source of the out-of-control signal.

Contributions to the T 2 are not clearly defined in the literature. Although several

definitions have been proposed [Qin, 2003] the idea remains the same, namely to

identify what variable(s) yd are responsible for the out-of-control signal.

3When a historical data base of common faults is available, an alternative to the contribution
plots is to use a reconstruction-based approach; for further details refer to Qin [2003].

4 Note that subscripts i and j have been omitted in the definitions of contx(yd) and contQ(yd)
for clarity and to emphasize the dependence of the latent variable with the original observations
yd.
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1.2.6 Case study

Let us consider the example proposed by Dong and McAvoy [1996] of a moder-

ately non-linear system with three variables, D = 3, but only one underlying latent

variable, Q = 1. The data is simulated by

y1 = x+ ε1,

y2 = x2 − 3x+ ε2,

y3 = −x3 + 3x2 + ε3. (1.6)

where x is generated from a uniform distribution U(1.01, 2); the independent noise

εd is generated from a Gaussian distribution N (0, 0.012) for d = 1, 2, 3.

−2
−1

0
1

2

−2
0

2
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

 

y
1

y
2

 

y 3

Nominal data
Fault in y

3

Figure 1.1: Data sets for normal condition (o) and fault condition (*)

The nominal data set (where the process is behaving as intended) is made of 100

observations generated with Equation (1.6). After the first 100 samples, let us

assume that a fault has developed in the process affecting only variable y3. A new

data set of 100 faulty data observations are simulated where y1 and y2 are obtained

as before but with y3 now given by

y3 = −1.1x3 + 3.2x2 + ε3. (1.7)

12



Chapter 1. Introduction

The set of faulty data will be used to determine how effective a PCA-based monitor-

ing approach is. All the data has been scaled to zero mean and unit variance as PCA

is not scale invariant. As it can be seen in Figure 1.1 there are mild non-linearities.

Additionally, the faulty data shows a positive displacement in the y3 direction but

this is not easily identifiable by visual inspection.

One principal component accounts for around 68% of the variance in the data; two

principal components account for more than 99% of the total variance, Figure 1.2

(left panel). By splitting the nominal observations into ten blocks and performing

cross-validation, a model with two principal components minimizes the root mean

square error (RMSE). A practitioner using other more simple methods like the

Average Eigenvalue approach would likely select only one principal component. In

the latter case, the model would simply fail to account for the non-linearities in the

data and would be unable to detect the problem that has developed in the variable

y3, Figure 1.2 (right panel).
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Figure 1.2: Left - cumulative percent variance explained as a function of Q. Right - SPE
plot for 1 pricinpal component with 95%,–, and 99%,–, control limits; vertical line at
sample 100 separates nominal from faulty observations.

As shown in Figure 1.3 (top panel), the selection of two latent variables renders

a model which is successful at detecting the problem in y3. The next step for

the process engineer, knowing that the system has developed a fault, is to find

the variable(s) responsible for the consistent out-of-control signals. As mentioned
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previously, a way of doing so is to use the variable contributions to the SPE. This is

shown in Figure 1.3 (bottom panel), where it can be seen that the contribution of

variable y3 is larger than we would normally expect. Unfortunately, this procedure

is not unambiguous and variable y1 also presents a variability larger than expected.

It is now the task of the process engineer, using this information and his knowledge

about the system, to carry on with the investigation to be able to discern what

variable is, in fact, behaving unexpectedly.

Final remarks

It is hoped that this simple case study both encapsulate the way latent variable

models are used in process monitoring and highlight the challenges that these sort

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

Sample

S
P

E
 (

2 
P

C
s)

 

 
 Nominal
 Faulty

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2

Sample

C
on

tr
ib

ut
io

n 
to

 S
P

E

 

 
 y

1

 y
2

 y
3

Figure 1.3: Fault identification by using variable contributions to the SPE. Top panel -
SPE for a model with two principal components. Bottom panel - variable contributions
to the SPE. In both panels, vertical line at sample 100 separates nominal from faulty
observations.
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of approaches face when they are used in statistical process control. As a way

of a summarizing the main ideas which have been and are to be introduced, it is

important to take into account the following:

1. The large majority of the data which is generated in the process industries is

non-linear; nevertheless, it is rather common for linear latent variable models

to be used to model these systems. Leaving aside the argument about the

appropriateness of this approach, it is argued that data manipulations such

as mean centering or simple transformations as the logarithm contribute to

moderate those non-linearities [Kourti, 2002]. Even in those cases, like in the

case study just shown, if linear PCA is used to model a non-linear system,

it will likely require more latent variables than the underlying dimensionality

of the system. That is simply a reflection of a non-parsimonious modelling

approach which is unable to reveal the true mechanism generating the data.

2. PCA and PCA-based models build latent variables which are a combination

of all of the original variables. The fundamental problem of this approach is

that redundant/confounding information is being included as it is rather likely

that these latent constructs are not a function of each one of the individual

variables that we are choosing to record. Furthermore, it would desirable to

have some form of variable selection selection procedure which allowed us to

build latent constructs which are only a function of a subset of the original

variables.

3. Many different procedures are proposed in the literature to select the required

number of principal components. There is no set rule as to which one is the

most appropriate and, obviously, different methods will lead to different re-

sults. This is rather important if a linear model is to be used to monitor a

non-linear process. In many cases the non-linearities will show in components

that, a priori, explain very little variance (see, for instance the industrial sys-

tem studied by Simoglou et al. [2000]); discarding them will simply ignore

information that is essential for the correct functioning of the process.
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1.3 The Gaussian process regression model

A Gaussian process regression model, GPR, can be used to approximate complex

non-linear functions with relative simplicity. Their regression performance is, at

least, comparable to that achieved via artificial neural networks (NN) and, in fact,

both methods are intrinsically related. They are both non-parametric and, as Neal

[1994] has shown, when the number of nodes in the hidden layer of a neural network

tends to infinity the NN converges to a Gaussian process.

Whitin the context of regression, Gaussian processes have been widely in use in the

field of geostatistics since the 1960’s. In this area they are commonly referred to as

kriging, a term coined by Matheron [1963] in honour of the pioneering work carried

out by D. G. Krige, a South African mining engineer; as it would be expected,

in spatial statistics the input to the Gaussian process is limited to two or three

dimensions.

It is not until the work of O’Hagan [1978] that GPRs were used in statistics to deal

more generally with multivariate input regression problems. It can be said, however,

that its uptake by the community was fairly slow in subsequent years. It is from the

mid-nineties, when Williams and Rasmussen [1996] introduced GPRs in a machine

learning context, when there has been a real surge in research activity.

This section intends to provide a short summary about the GPR model. The topic

is also discussed in great detail in Rasmussen and Williams [2006] and Shi and Choi

[2011].

1.3.1 Gaussian process priors

Let us consider the data set D = {(xi, yi)|Ni=1, xi ∈ RQ, yi ∈ R}, i.e. it comprises

N pairs of observations each consisting of a Q-dimensional input5 vector xi and a

scalar output yi. Let also X = (x1,x2, . . . ,xN)
ᵀ
be the N × Q design matrix with

all the input vectors and y = (y1, y2, . . . , yN)
ᵀ the corresponding output vector. The

5Note that in the case of Gaussian process regression Q is the dimension of the input variables
and it can be high-dimensional.
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GPR regression model is defined as follows

yi = f(xi) + εi, (1.8)

εi ∼ N (0, σ2) i.i.d. and

f(·) ∼ GP(0, k(·, ·)),

where GP(0, k(·, ·)) denotes a Gaussian process prior distribution with zero mean

and covariance function or kernel k(·, ·). In other words, we are assuming that yi

is related to xi non-linearly through an unknown function f , which, in turn, is

approximated by a GPR. And by saying that the function f follows a GP it is

meant that, over the finite range of input observations (x1,x2, . . . ,xN), the vec-

tor f = (f(x1), f(x2), . . . , f(xN))
ᵀ follows a multivariate normal prior distribution.

This distribution is commonly specified as having mean zero and an N ×N covari-

ance matrix generated via k(·, ·), where the covariance between f(xi) and f(xj) is

given by k(xi,xj).

1.3.2 Covariance functions

The covariance function (or covariance kernel) allows to write the covariance between

the noise-free output, f(xi), as a function of the input vectors, xi. It is a key part

of the GPR as it will govern the properties of the regressed function; it must always

generate a positive semi-definite covariance matrix. Throughout this thesis, the

squared exponential kernel (also known as Radial Basis Function, RBF, or Gaussian

kernel) will be used extensively due to its flexibility:

kij = k(xi,xj;θ) = cov (f(xi), f(xj))

= bo + υo exp

{
−1

2

Q∑
q=1

wd (xiq − xjq)
2

}
. (1.9)

Let us also define K as the covariance or kernel matrix evaluated at all pairs of the

N training observations, i.e. K = (kij).

The squared exponential term in the previous equation captures the idea that vec-

tors close in the input space should give rise to highly correlated outputs. The
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term bo represents a bias controlling the vertical offset of the GPR; υo controls the

vertical scale of the process. Finally, wd is a weighting on the distance measure for

each dimension; hence, if a wd was to be small, then the ith dimension would be

downweighted and would have little effect on the output. Yi et al. [2011] have re-

cently used this idea successfully for variable selection. Note also that these weights

are inversely related with the length-scale parameters used to implement automatic

relevance determination [Neal, 1996] to filter irrelevant inputs out. The effect of all

these parameters6 is best seen by generating sample functions from the prior defined

by this kernel, Figure 1.4. Sampling from a GPR is no different from sampling from

a multivariate normal distribution as shown in Appendix A.1.
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Figure 1.4: Five samples from a GP with the RBF covariance function and only one
input. The GPR parameters, log θ = (log υo, logwo, log bo) have the following values: top-
left (0, 4,−3), top-right (1, 4,−3), bottom-left (1, 8,−3), bottom-right (1, 4, 3)

Furthermore, as it has been mentioned, all the parameters in the model must be

positive and therefore it is convenient to reparameterize and consider the parameter

6Also known as hyperparameters to emphasize that the parameters arise from a prior distribu-
tion in Bayesian analysis.
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vector in the log-space as explained in Appendix B. That turns the optimisation

into an unconstrained problem.

MacKay [1999] provides a comprehensive discussion about what considerations need

to be taken into account when choosing a covariance function. Further details about

covariance functions properties and how to construct them can also be found in

Shawe-Taylor and Cristianini [2004, Chapters 3 and 9].

1.3.3 Posterior distribution

Let the values of the latent function be fi = f(xi) and f = [f1, . . . , fN ]
ᵀ. From the

model structure defined by Equation (1.8), the conditional distribution of y|f , σ2 is

multivariate normal

y|f , σ2 ∼ N (f , σ2I).

Now, using Bayes’ rule, the posterior over the latent function values f is given by

p(f |D,θ) = p(y|f , σ2)p(f |θ)∫
p(y|f , σ2)p(f |θ)df

∝ ϕ(y|f , σ2I)ϕ(f |0,K), (1.10)

where ϕ(·|µ,Σ) represents the density function of a multivariate normal distribution

with mean vector µ and covariance matrix Σ. This analytically tractable posterior

density is also multivariate normal [Lindley and Smith, 1972] as follows

p(f |D,θ) ∼ N
(
KK−1

y y, σ2KK−1
y

)
,

where Ky = K + σ2I. In other words, Ky is the N × N covariance matrix whose

(i, j)th element is defined as

(Ky)ij = cov(yi, yj) = k(xi,xj) + σ2δij, (1.11)

with δij being the Kronecker delta. Notice the subtle but important difference be-

tween K, the noise-free covariance matrix, and Ky which incorporates the functional

noise along its diagonal.

GPRs provide a straightforward framework to predict the output f(x∗) for a new

19



Chapter 1. Introduction

input vector x∗. The joint distribution of the new enlarged vector of outputs

(y1, . . . , yN , f(x
∗))ᵀ will still be multivariate normal; the prediction, i.e. ŷ∗, of

f(x∗)|D is a normal distribution whose mean and variance are given as

E(f(x∗)|D) = k∗ᵀK−1
y y, (1.12)

Var (f(x∗)|D) = k(x∗,x∗)− k∗ᵀK−1
y k∗,

where k∗ = (k(x∗,x1), . . . , k(x
∗,xN))

ᵀ is the vector of covariances between the new

input point, x∗, and the training data xi, i = 1, . . . , N .

1.3.4 Marginal distribution

The marginal distribution of y can be calculated by integrating out the latent vari-

ables from the joint density p(y,f), that is

p(y|θ) =
∫
p(y|f , σ2)p(f |θ)df . (1.13)

This integral is also analytically tractable. Furthermore, as shown in Appendix A.2,

it is multivariate normal with the following mean and covariance matrix

y|θ ∼ NN(0,Ky). (1.14)

For notational simplicity, in subsequent sections the hyperparameter vector θ may be

loosely overloaded in order to include both the kernel parameters and the functional

noise, i.e. θ = (w1, . . . , wQ, υo, bo, σ
2).

1.3.5 Empirical Bayes estimation

As Figure 1.4 reveals, what the final regression function looks like is going to be

highly dependent on the value of the model hyperparameters θ. A prior distribution

could be allocated to each of these hyperparameters and then compute its Bayesian

posterior p(θ|D); this, however, will require a detailed specific knowledge about the

system under study which, in most practical circumstances, the modeller will be
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lacking. In this case, it is best to use an empirical Bayes estimate [Carlin and Louis,

2000, Chapter 3] of the hyperparameters; in other words, the observed data will

determine what the most appropriate value should be. Overfitting tends not to be

a problem as there are only a small number of unknown parameters governing the

final shape of the fitted function.

With the distribution of the training data known as given by Equation (1.14), the

log-likelihood function can be easily written as

`(θ|D) = −N
2
log(2π)− 1

2
log|Ky| −

1

2
y
ᵀ
(Ky)

−1 y. (1.15)

Training of a Gaussian process involves determining the values of the unknown pa-

rameter vector θ which maximizes the previous cost function7. This optimisation is

a non-convex optimisation problem and is best carried out using conjugate gradients

(CG) minimisers. Full implementation details are given in Appendix B.

As already stated, a full Bayesian approach is also possible but that approach is not

pursued in this thesis. Further details are given by Shi and Choi [2011, Chapter 3].

1.4 Contents of this thesis

This chapter has laid the foundations for both the problem and the topic which are

to be investigated in the remaining of the thesis; an example using PCA has been

given to show how the process monitoring approach is meant to be used.

Keeping on with linear models, Chapter 2 covers the Factor Analysis (FA) model

(commonly used in social sciences disciplines) and its applicability in monitoring

industrial systems. Our interest in the FA methodology arises from the fact that

this model maps subsets of the full covariate space into the observations (also known

as indicators following FA terminology); by doing that the resulting model gains in

interpretability. How such an approach can be used for process monitoring is further

highlighted by using simulated data.

7This is an example where θ is overloaded and contains both the kernel hyperparameters and
also the functional noise parameter, σ2.
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Chapter 3 commences with the coverage of non-linear models; more specifically,

the chapter is concerned with the Gaussian process latent variable model, GPLV,

as introduced by Lawrence [2004] and its applicability to fault detection; several

examples as to how this methodology can be applied to the monitoring of industrial

processes are shown and a new process monitoring approach is also given [Serradilla

et al., 2011]. Mirroring the advantages in interpretability which can be attained

using a FA approach instead of a PCA model, we introduce in Chapter 4 a new

class of models under the name of Gaussian process functional factor analysis model,

GPFFA. The idea is to selectively map subsets of the full input space into the

observations in a non-linear way taking advantage of the flexibility of Gaussian

process priors; full implementation details are given along with worked examples.

Moreover, asymptotic properties are discussed at length.

Model selection issues are discussed in Chapter 5; this is an extensive area of research

which increases in difficulty due to the latency of the model covariates. We have

tackled this by (1) using a Laplace approximation to integrate the latent variables

out of the parameters joint density and (2) penalizing the resulting density func-

tion in order to carry out simultaneous model selection and parameter estimation.

Finally, we conclude in Chapter 6 considering areas of further research.
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Process monitoring using latent

factor scores

The aim of this chapter is to introduce the factor analysis (FA) approach to process

monitoring in order to tackle the issues of dimensionality reduction and explain

variable correlation. FA models are widely in use in the social and behavioural

sciences and have been around for a long time [Cudeck and MacCallum, 2007].

There are, however, two main issues that have probably restricted its applicability

in other disciplines: namely, the model identification ambiguity and, above all, its

limitation to linear systems.

From a monitoring perspective, the procedure is halfway between the key variables

approach and the PCA-based modelling technique. It has two main advantages aris-

ing from the fact that each latent variable or factor is a linear combination of just a

subset of the original variables. Therefore fault detection is faster as the confound-

ing effect of redundant variables is eliminated and fault diagnosis becomes easier;

in the latter case, if a fault developed in one of the factors, fault diagnosis would

become easier as there will be a smaller set of variables which may be responsible

for the out-of-control signal.

In the next section a review of the standard linear FA algorithms is made explaining

what the differences are between exploratory factor analysis (EFA) and confirmatory
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factor analysis (CFA). In Section 2.2, I proceed to discuss those important aspects of

how to determine the number of factors and the factor scores. In terms of monitoring

statistics, those introduced in Section 1.2.4 can still be used to monitor the new

latent variables derived from FA. Finally, two toy models are used to show how this

model can be applied in practice.

2.1 Factor analysis models

There is an extensive literature covering the topic of factor analysis. An introduction

to the topic can be found in the classic book of Mardia et al. [1979, Chapter 9].

Harman [1976] is wholly devoted to the subject matter; more recent developments

and current research topics can be found in Cudeck and MacCallum [2007].

2.1.1 General factor analysis model

Given a set of centered response (or manifest) variables, {yi, i = 1, . . . , n}, where
yi = (yi1, . . . , yiD)

ᵀ, the basic idea behind factor analysis is relate them to a cor-

responding set of underlying latent (or unobserved) variables, xi = (xi1, . . . , xiQ)
ᵀ.

Ideally Q � D and therefore the latent variables will offer a more parsimonious

explanation of the dependences between the observations. The latent variables ac-

count for the correlation of the response variables or, in other words, given the value

of the hidden factors the response variables would be uncorrelated.

In a general form, the linear FA model could also be extended to include non-linear

systems [Yalcin and Amemiya, 2001] and expressed as

y = g(x,β) + ε, (2.1)

where ε is a D×1 unobservable vector of errors; g(x,β) is a D-variate function of x

and the unknown parameter vector, β, which maps, either linearly or non-linearly,

the Q-variate latent vector into the D-variate observation vector. The linear factor

analysis model is a special case of Equation (2.1) in which the the function g(·) is
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linear, that is

g(x,β) = Λx, (2.2)

where Λ is a D × Q parameter matrix of linear mappings normally referred to as

factor loadings. In what follows of this chapter we will be restricting the attention

to these linear models1.

2.1.2 Linear Factor Analysis model

The (linear) factor analysis model is defined as

yi = Λxi + εi, for i = 1, . . . , N, (2.3)

where Λ ∈ RD×Q is a loading or mapping matrix. Normally, it is further assumed

that xi ∼ N (0, IQ), i.e. the latent variables are normally distributed, independent

and with unit variance; likewise, the error term is also assumed independent and

normally distributed as εi ∼ N (0,Ψ) where Ψ = diag(ψ1, . . . , ψD) is a D-diagonal

matrix. And finally, the latent variables, xi, and the error, εi, are assumed to be

uncorrelated, that is cov(xi, εi) = 0.

Note that by constraining the error variance to be a diagonal matrix, the FA model

implies that the observed variables yi are conditionally independent given the latent

variables, i.e.

yi|Λ,xi ∼ N (Λxi,Ψ).

This conditional distribution is meant to show that the correlation between the

observations is explained by the common latent factors while the error term, εid,

should explain that variability which is unique to a particular observation yid.

For generality, let us denote the model parameters by θ = (Λ,Ψ) and drop the sub-

script from the variables. The marginal distribution of y can now then be calculated

1Traditionally in the behavioural sciences, when references are made to factor analysis, the
relationship between latent and response variables is assumed to be linear.
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by integrating out the latent variables from the joint density

p(y|θ) =
∫
p(y|θ,x)p(x|θ)dx, (2.4)

which can be readily worked out as shown in Appendix A.2; hence, the marginal

distribution of y is

y|θ ∼ N (0,ΛΛ
ᵀ
+Ψ). (2.5)

Within a more general framework, Equation (2.3) can also be thought of as the

measurement submodel of a bigger class of models known as structural equation

models [Bollen, 1989].

Finally, it is worth noting that principal component analysis (PCA) can be thought

of as a special case of the FA model defined in Equation (2.3) by further assuming

that the noise is isotropic; or, in other words, assuming that each element of ε

has equal variance, i.e. εi ∼ N (0, ψID). This induces the following conditional

distribution

yi|Λ,xi ∼ N (Λxi, ψID),

from which the marginal distribution of yi follows by integrating out the latent

variables

yi|Λ ∼ N (0,ΛΛ
ᵀ
+ ψI) iid for i = 1, . . . , N.

Tipping and Bishop [1999] named this model probabilistic PCA.

2.1.3 Exploratory Factor Analysis (EFA)

It is common to refer to the FA model of Equation (2.3) as EFA when no further

assumptions about the structure of Λ are made. Let us explicitly write down the

relationship between yj, where y = (y1, . . . , yj, . . . , yD)
ᵀ, and the latent variables

yj = λj1x1 + λj2x2 + . . .+ λjkxk + εj, (2.6)

which, when written for j = 1, . . . , D, clearly shows a link between every latent

variable and every one of the variables in y; what this implies is that an EFA

model without further modification will not offer much advantage in terms of process
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monitoring over and above what is achieved by constructing a PCA model.

The FA model assumptions need not be as stated previously either. However, from

a monitoring perspective, they are the most appropriate as allow for each of the

factors to be monitored independently; this is similar to monitoring the principal

components which are always built as independent variables. From the marginal

distribution of y, Equation (2.4), the population covariance matrix is

cov(y) = Σ = ΛΛ
ᵀ
+Ψ. (2.7)

Hence, if the model holds, Σ can be written as a function of the model parameters,

that is Σ(θ), where θ = (Λ,Ψ). Once the model has been formulated, the main

objective in factor analysis is to determine the number of factors Q and the elements

of Λ and Ψ given a sample estimate S of Σ.

The model as defined by Equation (2.3) is not identified. The latent factors can be

transformed via a non-singular orthogonal matrix Q such that z = Qx. Then z

will still be standard normal and Equations (2.3) and (2.7) would then become

x = ΛQ
ᵀ
z + e

Σ = ΛQ
ᵀ
QΛ

ᵀ
+Ψ = ΛΛ

ᵀ
+Ψ (2.8)

which shows that the latent variables x estimated via the linear factor model are

indeterminate up to an orthogonal rotation. From a practical point of view, this

indeterminacy in the definition of the factor loadings is resolved by imposing addi-

tional constraints to the rotation of the factors loadings [Krzanowski and Marriott,

1995, p. 132]. The rotations need not be restricted to be orthogonal; they can also

be oblique rotations. The latter, however, will lead to factors which are no longer

independent which is not desirable from a process monitoring perspective.

Let us now assume that we have found an initial D×Q loading matrix Λ by solving

Equation (2.3) with the necessary constraints. The rotation problem involves finding

the Q×Q matrix T, which produces the following rotated factor matrix

∆ = (δij) = ΛT (2.9)
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by minimizing a continuous function f(∆) of the factor loadings. The orthogonal

rotation will satisfy the constraints

Φ = TT
ᵀ
= I, (2.10)

where Φ is the covariance matrix of the latent variables; hence, this rotation pro-

duces latent variables which are uncorrelated and have unit variances. Note how

this rotation imposes imposes 1
2
Q(Q− 1) constraints. There are a myriad of rota-

tion criteria in the literature; Browne [2001] provides an excellent review of these.

However one of the most used criteria is the varimax rotation which belongs to

a more general class of methods known as the Crawford-Ferguson [Crawford and

Ferguson, 1970] family of rotation criteria.

The emphasis of the varimax method [Kaiser, 1958] is on simplifying the columns of

the factor loadings matrix Λ. The rationale behind the method is to find columns

with a few large loadings and as many near-zero loadings as possible. In that sense,

Kaiser states that the greatest interpretability will be achieved when the simplicity

of a factor j, sj, is defined as the variance of its squared loadings

sj =
1

D

D∑
i=1

(δ2ij)
2 − 1

D2

(
D∑
i=1

δ2ij

)2

for j = 1, . . . , Q. (2.11)

For the complete factor matrix ∆, the varimax criterion is given as the sum of the

simplicities for each individual factor, i.e.

f(∆) =

Q∑
j=1

 1

D

D∑
i=1

(δij/hi)
4 − 1

D2

(
D∑
i=1

(δij/hi)
2

)2
 (2.12)

where hi =
∑Q

j=1 δ
2
ij is used to normalise each row of the loading matrix. This

function weights each variable equally and is normally referred to as the varimax

criterion.

Both, EFA and a rotation factor transformation like the varimax can be used to-

gether in a process monitoring setting of a linear system; an example is shown in

subsequent sections.
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2.1.4 Confirmatory Factor Analysis (CFA)

When no prior knowledge about the model underlying a data set is available we

are proposing to use exploratory factor analysis. EFA will answer the question of

how many factors are needed to account for the correlation in the observations;

once the number of factors has been determined, factor interpretation is achieved

by rotating the initial solution. A graphical representation of a the process is shown

in Figure 2.1 (these diagrams are normally referred to as path diagrams following

structural equation model terminology):

y1

x1

x2

y3

y2

y4

y6

y5

y1

x1

x2

y3

y2

y4

y6

y5

Figure 2.1: Left: EFA solution (also PCA representation). Right: EFA rotated solu-
tion.(CFA hypothesised model).

The plot shows 6 observed variables y1, . . . , y6 (enclosed in squares) and two latent

variables x1, x2 (enclosed in circles); the horizontal arrows pointing to the squares

represent variable error terms, ε1, . . . , ε6. Likewise, the arrows pointing to the vari-

ables from the factors are intending to show how each variable loads on each factor.

The factor correlation is Φ = I, which is represented by the absence of a link be-

tween both latent factors. On the left panel, the initial EFA solution is shown; note

how every latent construct is related to all of the original variables (this could also

be a scaled principal component analysis solution). Once the factors are rotated

(right panel) a much simpler structure can be found; note how some of the arrows

linking variables with factors do no longer exist. Initially Λ is a full 6 × 2 matrix

with 12 parameters that need determining. Upon rotation, some of the loadings will
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no longer be significant which will simplify the ulterior analysis. Mathematically,

the gain arises when the full initial loading matrix, Λinitial, is transformed into a

sparse matrix Λrotated:

Λinitial =



λ11 λ12

λ21 λ22

λ31 λ32

λ41 λ42

λ51 λ52

λ61 λ62


=⇒ Λrotated =



λ11 0

λ21 0

λ31 0

λ41 λ42

0 λ52

0 λ62



On the other hand, when considerable knowledge about the system is available a

confirmatory factor analysis, CFA, would be more appropriate. In that case, a num-

ber of factors is hypothesised. Each factor would then be linked to a subset of the

original variables with an association only established if there is a significant corre-

lation between the variables. With reference to Figure 2.1 (right panel), variables

y1, y2, y3 load on the first factor, x1, while variables y5, y6 load on x2. According to

the model, variable y4 is an indicator for both x1 and x2. As before, the two factors

are assumed to be independent. It is the theoretical knowledge about the system

what allows us to remove some model parameters by fixing them to zero. Also it is

important to realise firstly that no factor rotation is possible, as the only rotation

matrix that would retain the zeros in Λ is the identity matrix. And secondly, that

rotated factor analysis solution is not necessarily the same as a CFA solution (as

implied in Figure 2.1). Confirmatory factor analysis models are treated extensively

by Bollen [1989, Chapter 7].

2.2 Model considerations

Before using this new methodology for process monitoring problems there are a few

issues remaining, namely (1) how to estimate the model parameters using maximum

likelihood; (2) answer the question as to how much variability each factor accounts

for; (3) selecting the appropriate number of latent variables, Q; (4) once the model

parameters have been estimated, a procedure is needed to determine the factor
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scores; (5) how to calculate the standard errors of the model parameters and (6)

what statistics can be used for process monitoring of the resulting factor scores. All

these topics are treated in the following subsections.

2.2.1 Maximum likelihood estimation

There are several methods available in the literature that can be used to estimate

the model parameters in Equation (2.3); see for example [Rencher, 2002, Chapter 5].

However, the usual approach is to proceed by using maximum likelihood. Assuming

that y1, . . . ,yN are a random sample of size N such that yi ∼ ND(µ,Σ = ΛΛᵀ+Ψ)

then the likelihood is given by

L(µ,Λ,Ψ) = (2π)−
ND
2 |Σ|−

N
2 exp

(
−1

2

N∑
i=1

(yi − µ)
ᵀ
Σ−1 (yi − µ)

)

Now, by replacing µ by its maximum likelihood estimate µ̂ = ȳ, taking natural

logarithms and further standard manipulation, leads to following fitting function

`(Λ,Ψ) = constant− N

2
log|Σ| − N

2
tr(Σ−1S∗)

where S∗ = 1
N

∑N
i=1 (yi − ȳ)ᵀ(yi − ȳ) is the sample-biased maximum likelihood es-

timator of the covariance matrix and Σ(θ) the model-implied covariance matrix.

Normally, for computational purposes, a slight modification of the previous objective

function is optimised

FML(Λ,Ψ) = log|Σ|+ tr(Σ−1S)− log|S| −D, (2.13)

which aims to find the maximum likelihood estimates Σ̂ by minimising the discrep-

ancy between the model-implied covariance matrix and the sample covariance; see,

for example, Bollen [1989, Chapter 4]. When the two covariance matrices are equal,

both log|Σ̂| and log|S| will be the same whereas tr(Σ̂−1S) will equal D; hence, the

discrepancy function FML becomes zero. Note also that S∗ = (N−1)
N

S and S will

essentially be the same for large samples.
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The maximum likelihood fit function belongs to a general family of fit functions

known as weighted least squares family. Other members of this family that could be

used to fit EFA or CFA models are the unweighted least squares and the generalized

least squares fit functions. For these and yet more additional procedures refer to

Jöreskog [2007]. In practice, maximum likelihood is the preferred and most used

method. Even though in many occasions the assumption of multivariate normality

tends not to hold, the maximum likelihood parameter estimates have been found to

be very robust to departures from normality [Boomsma and Hoogland, 2001].

2.2.2 Percentage of total variance explained

The more latent factors included in the model the more will the variance of the

original observations be accounted for. This is similar to the idea in principal com-

ponent analysis where normally a number of principal components are selected such

that a given percentage of the original variability is accounted for.

The variance of each response variable yd is partitioned by the model in equation

(2.3) into a part due to the common factors (also known as communality or h2) and

a part due uniquely to the variable (error)

Var(yi) =
∑Q

j=1
λ2ij + ψi = h2i + ψi. (2.14)

Therefore, the jth factor contributes λ2ij to the total variance of yi. The total con-

tribution of the jth factor to the sample variance given by tr(S) is∑D
i=1 λ

2
ij

tr(S)
(2.15)

and this result can be used to compare a linear FA model with a PCA model. In

general, given a number of principal components (or factors), the total variance

accounted for the principal components will be bigger than the variance accounted

for the same number of factors; this is to be expected and it is due to some of the

factor loadings being zero.
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2.2.3 Selecting the number of factors

There are several criteria available to select the number of factors, most of them

similar to those used for choosing the number of principal components, [Rencher,

2002, Section 13.4].

(i) Choose Q equal to the number of factors necessary for the variance accounted

for to achieve a predetermined percentage, say 80%, of the total variance tr(S)

or tr(R).

(ii) Choose Q equal to the number of eigenvalues greater than the average eigen-

value.

(iii) Use a scree plot test of the eigenvalues of S or R.

(iv) Test the hypothesis thatm is the correct number of factors, H0 : Σ = ΛΛᵀ+Ψ,

where Λ is p×m.

Methods (i)-(iii) have their counterpart in PCA. Method (iv) arises when the multi-

normal distributional assumptions are made about the data.

2.2.4 Factor scores

Once the factor loading matrix have been determined, the objective is to estimate

the unobserved factor scores, xi = (xi1, xi2, . . . , xiQ)
ᵀ, i = 1, . . . , N . This is impor-

tant as monitoring will be based on these estimates or other statistics derived from

them. There are several methods available, namely Thompson’s regression method,

Bartlett’s weighted least squares method and Anderson-Rubin’s method [Harman,

1976]. Thompson’s method is the most popular approach [Rencher, 2002, p. 439].

For completeness, when Thompson’s method the factor scores can be found with

the following equations

X̂ = YcS
−1Λ̂Q (2.16)
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where Yc is the N × D matrix of centred observations. If R is used instead of S,

then

X̂ = YsR
−1Λ̂Q (2.17)

where Ys is the N ×D matrix of standardized observations.

2.2.5 Standard errors of the EFA maximum likelihood esti-

mates

Formulae for the asymptotic standard errors of unrotated EFA loading estimates

were originally and systematically developed by Lawley and Maxwell [1971]; these

formulae have a slight error subsequently corrected by Jennrich and Thayer [1973].

The initial loading estimates, Λ̂, of the EFA solution are commonly referred to as

unrotated loadings although they are in reality the solution of maximum-likelihood

problem where the loadings are orthogonally rotated2 to satisfy the 1
2
Q(Q − 1)

constraints

Λ
ᵀ
Ψ−1Λ is diagonal. (2.18)

These constraints are necessary so that an unique EFA solution can be found as

explained in Section (2.1.3).

The standard errors for the MLE’s of the factor loadings can also be expressed in

terms of the inverse of an augmented information matrix which takes into account

the constraints used in the factor rotation [Jennrich, 1974]. Formulae developed this

way, although rotation-specific, are easier to handle.

However, it has been known for a long time that solutions where some of the MLE’s

of the unique variances, Ψ̂, are zero (Heywood case) or near zero [Jöreskog, 1967] are

very common. These improper solutions pose a problem for both procedures above

as Jennrich and Lawley’s formulae involve the reciprocal of the unique variances.

That may cause the formulae for the unrotated loadings to break down. Based on a

augmented information matrix approach, Hayashi and Bentler [2000] have proposed

a modification of Lawley’s and Jennrich methods which is based on the following

2This rotation is also known as canonical rotation.
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alternative rotation constraints

Λ
ᵀ
Σ−1Λ is diagonal, (2.19)

where cov(y) = Σ. Both set of constraints, Eq. (2.18) and (2.19), are equivalent but

Hayashi’s formulation will have the added advantage that can be used regardless of

whether or not any element of the unique variances is nearly zero.

2.2.6 Monitoring statistics and fault diagnosis

The monitoring charts proposed in Section 1.2.4 can also be used when the latent

variables are estimated using a FA model instead of PCA. To be more specific,

monitoring can be done using:

− individual factor scores, xq for q = 1, . . . , Q, with control limits worked out

either theoretically, using the normal distribution, or empirically.

− the squared prediction error.

− Hotelling’s statistic.

For the latter two cases, the control limits are the same as those given in Sec-

tion 1.2.4. The contribution plots introduced in Section 1.2.5 are also applicable for

fault identification when a FA model is fitted. Note that there will be a substantial

gain when a linear system is modelled using a FA approach, namely that the latent

variables will be related only to specific subsets of the observations yd.

2.3 Numerical examples

In order to show how a linear factor analysis approach can be applied to process

monitoring two examples with simulated data are shown. The first example simu-

lates a process where a sudden mean change in one of the process variables develops.

In the second one, the same fault arises but develops gradually with time.
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2.3.1 Simulation study

Let us assume that we have a 6-variate observation vector yi = (yi1, . . . , yi6) which

is generated from 2 underlying factors xi = (xi1, xi2), according to the linear factor

model yi = Λxi + εi, i = 1, . . . , 100. The sparse loading matrix mapping the 2-

variate factor vector into the 6-variate observation vector is

Λ
ᵀ
=

(
1 2 1 0 0 0

0 0 0 1 3 1

)
. (2.20)

The model assumptions are x ∼ N (0, I), ε ∼ N (0,Ψ), where Ψ = diag(v1, . . . , v6)

with vi ∼ U [0, 0.5). The path diagram underlying this system is shown in Figure 2.2.

If our knowledge about the system under study is good enough we should be able

to hypothesise relationships of this kind.

y1

x1 x2

y2 y3 y4 y5 y6

Figure 2.2: Path diagram for the simulated example

Sudden mean change

Normal data are generated following the previous model. Faulty data (N = 150) are

produced with the same model with the exception of y5; this variable is generated

as y5 = (0.3x2 + ε5) + h, where h ∼ N (7.5, 1) models the process disturbance.
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CFA solution

A CFA model can be fitted by minimising Equation (2.13), making provisions for the

elements ofΨ to remain positive; good initial values for the model parameters can be

chosen by following the procedure of McDonald and Hartmann [1992]. Alternatively,

the sem package [Fox, 2006] in R [R Development Core Team, 2009] can also be used.

The variable relationships needed to specify the model are as defined in Figure 2.2.

Additionally, for comparison, a 2-principal component model has also been fitted;

all the results are shown in Table 2.1; both sets of loadings are based in the sample

correlation matrix.

PC scores CFA scores

variable PC1 PC2 F1 F2

y1 -0.487 0.295 0.895 0.000

y2 -0.502 0.306 0.990 0.000

y3 -0.482 0.311 0.911 0.000

y4 0.286 0.497 0.000 0.854

y5 0.307 0.513 0.000 0.987

y6 0.320 0.462 0.000 0.822

% var 0.474 0.411 0.435 0.397

cum var 0.474 0.885 0.435 0.832

Table 2.1: PCA and CFA fitted parameters.

There are several important points to take into account in light of the results in

Table 2.1:

(a) Principal component analysis is the most efficient way to compress the informa-

tion of a high-dimensional space [McCabe, 1984]. And this is always the case.

As it can be seen in Table 2.1, 2-principal components account for 89% of the

information in the original system. However, in this example, it is clear that

PCA has been ’too efficient’ at doing this and has not only been able to account

for the variability in the underlying variables but has also modelled part of the

noise built into the system (as the true underlying model is a 2-linear factor

model which cannot account for as much variability).
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(b) It is worth noting that although the PCA model captures the system variability

it does so by sacrificing interpretability. The first principal component contrasts

the first 3 variables with the last 3 variables. And the second principal com-

ponent is simply an average of all the original observations. In other words,

all principal component loadings seem to be significant which does not clearly

represent the sparse system in Figure 2.2.

(c) Two linear factors account for 83% of the total variation in the system. The

original loadings in Equation (2.20) can be recovered by using the fact that the

factor analysis model is scale invariant.

(d) As N increases, the CFA scores tend towards the true values in Equation (2.20)

with decreasing variance (i.e. as all maximum likelihood estimators, they are

asymptotically unbiased and consistent). Regardless of the sample size, the

principal components will describe the major direction of variability within the

sample. However, as N increases the sample correlation (covariance) matrix

becomes more representative of the population correlation matrix. As such, and

given the simulated data, the PC loading estimates will gain in interpretability

for very large sample sizes (for this particular example N is in the order of 104).

Advantages both in terms of fault detection and diagnosis are also to be expected.

Any of the monitoring statistics discussed in the introductory chapter, Section 1.2.4,

could be used. For the sake of clarity, I am focusing on monitoring the principal

component and factor scores. The results are displayed in Figure 2.3.

(a) On the left panel, the scores for the first principal component are plotted. The

first 100 samples, in black, correspond to the nominal data. The remaining 150

observations in red, from sample 101 onwards, correspond to faulty data. The

best principal component score plot, in terms of detecting samples out of the

confidence limits, is principal component 2 due to the fact that the factor loading

on x5 is higher on this component than on principal component 1; however, only

8% of the samples are out of the 99% confidence limit.

(b) On the right panels, factor scores are monitored. Note that the sudden mean

change was introduced in x5. In relation to Figure 2.2, x5 is only related to the

second factor; therefore, we expect that the fault manifest itself in that second
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Figure 2.3: Latent factor scores monitoring. Left panel: principal component scores. Right
panel: factor scores. Dashed blue line is the 95% confidence limit. Dashed red line is the
99% confidence limit.

factor score. In fact, more than 39% of the samples are out of the 99% confidence

limit in the second factor score. The mean change is also very conspicuous from

sample 101 onwards.

(c) Fault diagnosis could now be carried out by using contribution plots [Miller

et al., 1998] on the second factor score as explained in Section 1.2.5. Note that

as that factor is only related to variables y4, y5, and y6 finding the root cause of

the problem becomes much simpler.
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EFA solution

It is also interesting to compare the results obtained in Table 2.1 by using CFA

with the results that would be obtained when our knowledge about the system

under study is limited or non-existent. In that case, the approach is first to extract

the maximum likelihood factors; subsequently, they can be rotated by using the

varimax criterion, Equation (2.12). Having determined the rotated factor loadings,

one can calculate asymptotic standard errors [Archer and Jennrich, 1973] and test

the hypothesis H0 : λij = 0 for each coefficient (i refers to variable and j to factor).

As, asymptotically, λ̂ij ∼ N
(
λij, SE

2(λ̂ij)
)
, the null hypothesis H0 can be evaluated

by using the test statistic

Z =
λ̂ij

SE(λ̂ij)
,

where SE is the asymptotic standard error of the parameter. Then, for a significance

level α, one rejects H0 when |Z| ≥ Zα; in this case Zα is the 100(1− 1
2
α)% quantile

of the standard normal distribution. Confidence intervals for λ̂ij can be constructed

in a similar fashion.

Table 2.2: EFA-varimax fitted parameters.

EFA extraction EFA-varimax

Variable F1 F2 F1 SE Z-stat. F2 SE Z-stat.

x1 0.889 0.100 0.893* 0.023 38.82 -0.061 0.059 -1.04
x2 0.983 0.118 0.988* 0.012 82.35 -0.060 0.051 -1.18
x3 0.904 0.121 0.911* 0.020 45.33 -0.044 0.058 -0.76
x4 -0.147 0.842 0.007 0.065 0.11 0.854* 0.033 25.89
x5 -0.166 0.972 0.012 0.055 0.22 0.986* 0.022 44.84
x6 -0.196 0.800 0.048 0.067 -0.72 0.823* 0.037 22.23

Note. Estimates significant at α = 0.05, (Zα = 1.96) are marked with an asterisk.

Results of this EFA-varimax solution are shown in Table 2.2. There are two points

worth noting regarding them. Firstly, the rotation algorithm has worked by increas-

ing those loadings that were originally closer to one and decreasing the ones closer to

zero. And, secondly, the EFA-varimax solution is able to recover a similar solution

as the CFA approach with the added advantage that no knowledge about the system

was used to model the data.
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Gradual mean change

Normal data, as before, is generated following the model in Section 2.3.1. 150

observations of faulty data are also generated with the previous model where, now,

the fault in y5 is introduced as a gradual mean change; it is assumed that at each

time unit t, the mean of the variable, ȳ5, changes by t/20 units. Therefore every 20

sample points, x̄5 will have change by 1 unit. Mathematically:

y5 = (0.3x2 + e5) + h

where h ∼ N (t/20, 1). Hence, at t = 0, ȳ5 = 0 and at t = 150, ȳ5 = 7.5 as in the

previous simulation.
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Figure 2.4: Latent variable monitoring. Left panel: principal component 1 score. Right
panel: factor 1 score. Dashed blue line is the 95% confidence limit. Dashed red line is the
99% confidence limit.

The results of monitoring the second principal and factor scores are shown in Fig-

ure 2.4. Although the procedure is not as effective as before due to the slow change

in the mean, it still outperforms a PCA approach. Only 3% of the faulty data

points are out of the 99% confidence interval for principal component 2, whereas

13% are out of control in the case of the factor analysis model. Additionally, the
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gradual mean change in the monitoring graph can be readily spotted in the case of

the second factor score.

2.4 Chapter summary

Factor analysis is a well known statistical technique widely used in the social sciences.

The technique has been introduced in this chapter as an alternative to PCA when

modelling linear systems. This could be done in two different ways:

− When there is enough knowledge about the industrial system, a theoretical

model may be hypothesized and then a CFA could be fitted.

− In case of limited knowledge, EFA can be used be to extract the factors; then

an orthogonal rotation can be applied to the extracted factors in order to

simplify the model structure.

There are gains in interpretability when a FA model can be fitted in lieu of PCA.

Parameter fitting, however, requires constrained non-linear optimization routines

which are very sensitive to the initial values; as a result, blindly trying to use the

model for non-linear data is not as straightforward as PCA and may not be always

possible.

Implicitly, both FA and PCA are best suited for linear processes in steady state,

i.e. such that the observations are independent from one another. Additionally, FA

requires the observations to be identically distributed. Whereas there are no explicit

distributional assumptions with PCA, there is a requirement in the monitoring stage

for the residuals to be independent and normally distributed; in turn, for these latter

assumptions to be met, both independence and some degree of normality will be

needed in the original observations 3.

In dynamic processes, the current values of the variables will depend on the past

values and, therefore, observations will no longer be independent. Neither of the

models discussed so far are able to account for this time-dependency and, if applied

3This is related to the Central Value Theorem. Linear combinations of variables which are not
normally distributed will tend towards a normal distribution.
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to dynamic systems, they will result in residuals with structure. There exist variants

of PCA which are able to account for this time-dependency; the idea is to expand,

column-wise, the observations matrix by appending time-shifted versions of itself at

different lags; this approach that has referred to as Dynamic PCA in the literature

[Ku et al., 1995]. In the remaining chapters emphasis is shifted towards models

which can handle both observational-dependency and non-linearities. Much of the

data generated in industrial systems are characterized by these two features.
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Process monitoring with Gaussian

process latent variable models

Part of Chapter 1 has devoted its attention to look at linear latent variable models

in the context of process monitoring. Linear PCA models are extensively used,

regardless of whether the process is linear or not; they have the advantage that

models can be fitted straightforwardly but also the dangers of failing to capture the

underlying process non-linearities. As an alternative to that approach we proposed

in Chapter 2 that, as long as the the process under study is reasonably linear, a factor

analysis model could also be fitted. While fitting this model is not as effortless, the

FA approach brings about advantages of being able to relate the latent variables

with a subset of the original variables by exploiting their correlation.

With the majority of industrial processes behaving non-linearly, the question that

arises at this stage is about whether feasible non-linear alternatives can be devel-

oped; those procedures should also retain the advantages of dimensionality reduction

achieved both with PCA and FA but also the partial variable selection gain attained

when fitting a FA model. And, above all, they should target at finding the under-

lying latent variables which are driving the observations.

There exist several PCA extensions to non-linear systems in the literature; a brief

summary is given in the next section. The focus on this chapter is, by building
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on the Gaussian Process Latent Variable (GPLV) model developed by Lawrence

[2004, 2005], to develop yet another one. As the name implies, the backbone of the

procedure is a Gaussian process regression, GPR, model. The most usual setting

under which Gaussian processes are used, as introduced in Section 1.3, is to map a

multivariate input into a univariate response. If, given the inputs, the multivariate

outputs can be assumed independent, Lawrence’s approach relies on combining sev-

eral GPRs so that multivariate responses can be jointly modelled. This idea is very

powerful as it allows GPRs to approximate complex multivariate non-linear systems

with relative simplicity.

The regression performance of GPRs is, at least, comparable to that achieved via

artificial neural networks (NN) and, in fact, both methods are intrinsically related.

As Neal [1994] has shown, when the number of nodes in the hidden layer of a

neural network tends to infinity the NN converges to a Gaussian process. There

exist applications of neural networks to fault detection and diagnosis as shown by

Tan and Mavrovouniotis [1995] which are successful at modelling non-linear systems

within a process monitoring scheme. This chapter aims to show how GPRs can also

be used for the same purpose; the advantage being that a lesser number of model

parameters are needed to build the nonlinear map between the process inputs and

outputs.

There are some recent applications of the GPLV model to process monitoring in

chemical engineering [Ge and Song, 2010]. We review that existing approach, high-

light its limitations and compare the procedure performance against other well used

nonparametric methods. In addition, we propose a new procedure to the way in

which new observations are mapped into the non-linear latent space determined by

the GPLV model; this whole chapter is based on the work of Serradilla et al. [2011].

3.1 Nonparametric approaches to process moni-

toring

The fact that PCA has been widely used to model non-linear systems is perhaps

related to is intrinsic simplicity. Implicitly, in doing so, the PCA model is used
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as a black-box or dimensionality-reduction artefact where the number of principal

components retained has no resemblance with the real underlying dimensionality

of the problem. A very clear example of this is given by Simoglou et al. [2000],

who managed to identify a problem in an industrial system by looking at principal

components that were explaining very little of the total variance in the system

covariance matrix.

If we are to capture process non-linearities efficiently more complex models are

needed. A way of doing so, while still using PCA, is through what Gnanadesikan

[1977] defines as generalized PCA. The idea is to extend the Q-dimensional vector

x into a new input vector x′ which, while still containing the original variables in

x, is enlarged by using non-linear functions of those variables. Subsequently, linear

PCA is performed in the augmented input space. The key to this approach is to

decide on the appropriate dimensionality of x′ as well as the non-linear relationships

between the original variables needed to describe the system. This drawback can be

removed by using a function Φ : x ∈ RQ 7→ x′ ∈ RF which automatically carries out

the non-linear mapping of the input space into an arbitrarily high-dimensional space

(or feature space, as known in the machine learning community), where F � Q. It

turns out that this mapping can be performed implicitly by using kernel covariance

functions and therefore Φ does not need to be specified [Schölkopf et al., 1998]; this

approach is known as kernel PCA and has been shown to have an excellent per-

formance in the monitoring of non-linear systems [Choi et al., 2005]. Nevertheless,

there is a cost incurred in achieving such performance and that comes in terms of

the lack in model interpretability.

It is possible to achieve performances similar to those of kernel PCA algorithms by

using GPLVM-based approaches. Briefly, the idea is to consider a set of GPRs to

map the input space variables, x ∈ RQ, into the observational space, y ∈ RD. Note

that a priori the input positions x are unknown and therefore need to be determined.

In a second step, when new observations become available, we first project them

onto the latent space and subsequently onto the original observational space. This

approach shares similarities to the non-linear principal component analysis based

on principal curves, NLPCA, developed by Dong and McAvoy [1996]. Let Y ∈
RN×D be our original observations and X ∈ RN×Q the corresponding latent variable
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representation. Dong and McAvoy’s approach relies on an additive model, i.e.

Y =

Q∑
i=1

fi(xi) + E

where E is a matrix of model errors and fi a non-linear function of the input vari-

ables. This model assumes that the original observations are generated as a linear

combination of Q−univariate non-linear functions; the latent variables must there-

fore be determined one at a time. The GPLV model, on the other hand, is not

restricted to additive models and can account for multiplicative effects as all the

latent variables are determined simultaneously. The GPLV model is also closely

related to the concept of Input-Training neural network, IT-net, proposed by Tan

and Mavrovouniotis [1995]. The idea is that the net input variables are not fixed

but adjusted along with internal network parameters so that it can reproduce the

net output more efficiently. Jia et al. [1998] have shown how a process fault can

successfully be detected using the IT-net to map the latent variables into the obser-

vations that have been compressed via PCA. For a given prediction performance,

an advantage of using the GPLV model over the IT-net is that it requires a sub-

stantially lower number of parameters; it is also a full probabilistic model where

prediction uncertainty and hypothesis testing can be carried out if necessary.

The GPLVM is first described in next section. We then describe what approaches

could be taken to project new observations onto the model space, Section 3.3; this is

a crucial step in a process monitoring and control scheme. Finally, both a simulation

example and a real application are given in Section 3.5..

3.2 Gaussian process latent variable models

There are two main differences between a normal GPR and a GPLV model. Firstly,

in the latter, the input positions, x, are not given; and, secondly, it can also be used

to model a multivariate output. Therefore, when working with GPLV models, the

purpose of the inference procedure is not only to determine the best value of θ, the

covariance function hyper-parameters, but also the best value of the latent input

positions, X.
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Let us consider a new dataset D = {yi|Ni=1, yi ∈ RD}, which is made of N D-

dimensional observations. Instead of a collection of N -observations, the dataset

can also be thought of a collection of D-variables, i.e. D = {y(d)|Dd=1, y(d) =

(y1d, . . . , yNd) ∈ RN}. A Gaussian process latent variable model [Lawrence, 2005] is

defined as

ydn = fd(xn) + εdn, (3.1)

fd(x)|x ∼ GPd(0, k(θd);x),

εdn ∼ N (0, σ2
d)

for d = 1, . . . , D and and n = 1, . . . , N . Here, θd are the parameters involved in

the dth GP for yd; in this chapter we are assuming that they are all the same, i.e.

θ = θ1 = . . . = θd. Therefore, the model is simply a stochastic mapping, using the

same GPR, between x, the Q-dimensional latent space, and each output dimension

yd. It is relatively straightforward to extend the model to the case in which the

GPR parameters, θd, are not the same.

In the context of a monitoring scheme, we observe D and aim to build a map to

the unobserved X in the Q-dimensional latent space (Q � D); this latent space is

subsequently used for fault detection and diagnosis.

3.2.1 GPLV model inference

Training of the GPLV model is the procedure whereby both the latent variables, X,

and the GPR parameters, θ, are determined. In order to do that, firstly, the joint

marginal distribution for Y, the N ×D matrix of observations, can be written as

p(Y|X,θ) ∼
D∏

d=1

ϕ(y(d);0,Ky)

where p(·) denotes the probability density function and ϕ(·;0,Ky) is the Gaussian

density with its corresponding mean and covariance matrix. The associated log-
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likelihood can then be expressed as

`(X,θ;Y) = −D
2
log|Ky| −

1

2
tr(K−1

y YY
ᵀ
) (3.2)

where the constant terms have been omitted. Maximization of the previous func-

tion is, however, not possible without additional identifiability constraints. By

giving a Gaussian prior distribution to each latent variable, xi ∼ N (0, IQ), then

X ∼
∏N

i=1 N (0, IQ). Hence

p(X) ∝ exp

{
−1

2
tr(XX

ᵀ
)

}
and the posterior distribution is given by:

p(X,θ|Y) ∝ p(Y|X,θ)p(X)p(θ). (3.3)

We can then calculate the maximum a posteriori (MAP) solution with respect to

the latent factor scores, X, and the unknown parameters, θ, by maximizing the

following log-likelihood

`(X,θ;Y)MAP = `(X,θ;Y)− 1

2
tr(XX

ᵀ
) (3.4)

where constant terms have been omitted and a non-informative prior for θ has been

used.

The empirical Bayes estimate solution for the GPLV model can be found by jointly

maximizing Equation (3.4) with respect to X and θ. The model log-likelihood is

both non-linear and non-convex. Due to the high-dimensionality of the problem, a

global solution cannot be guaranteed and multiple local maxima may occur. Further

details about the solution procedure of the model are given in Appendix B.2.1.

3.2.2 GPLV model prediction

The GPLV model prediction for a new but known input vector x∗ is an exten-

sion of Equation (1.12) to every output variable y(d). Let us define fM(x∗) =

(f1(x
∗), . . . , fD(x

∗))
ᵀ
. The joint distribution of the new enlarged matrix of out-
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puts (y1, . . . ,yN , fM(x∗))ᵀ will still be multivariate normal; the prediction, ŷ∗, of

fM(x∗)|D is also a multivariate normal distribution whose mean and common vari-

ance are given as

E(fM(x∗)|D) = Y
ᵀ
K−1

y k∗, (3.5)

Var (fM(x∗)|D) =
(
k(x∗,x∗)− k∗ᵀK−1

y k∗) ID
where, as before, k∗ = (k(x∗,x1), . . . , k(x

∗,xN))
ᵀ is the vector of covariances be-

tween the new input point, x∗, and the training data xi, i = 1, . . . , N ; ID is the

D-dimensional identity matrix.

3.2.3 Big sample sizes: the active set

Numerically, irrespective of whether a full or an empirical Bayes approach is used

to obtain the model estimates X̂ and θ̂, the inverse of the covariance matrix, K−1
y ,

is involved in Equation (3.4). The cost of the log-likelihood evaluations is, hence, of

order O(N3), where N is the sample size. As N increases, model training slows down

as a result of the cost of the calculations but also due to the increased dimensionality

of the problem. This, in turn, may render the algorithm impractical for many of the

data sets available in industry.

As it is the case with a GPR, the model hyper-parameters must be positive. Further-

more, there is an identifiability problem in the model log-likelihood which is further

explained in Section 4.5. This makes necessary to introduce additional numerical

constraints to prevent the kernel hyper-parameters from becoming excessively large;

otherwise the optimization becomes unstable. Alternatively, an informative prior for

θ can be introduced in Equation (3.4) which has a penalty-like effect, discouraging

large values.

For those cases where the nominal data set is substantially large1 , training of the

GPLV model can be sped up by selecting a subset I of size m, with m � N , from

the original data set D. Let us denote the remaining (unselected observations) as

1What is meant by large depends on the computing power available. As a practical rule, samples
where N ' 2 · 102 may start slowing the optimization down considerably.
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J . By replacing D with I, computational efficiencies are gained as the cost of the

likelihood calculation will be of order O(m3) rather than O(N3). I is normally

referred to as the active set and, obviously, its selection causes a reduction in the

information available for inference [Shi and Choi, 2011, Section 3.3]. What it is

expected is that, if a good subset selection is made, most of the information will

be kept. There are several criteria that can be used to partition D into I and

J . The most popular ones are probably based on the Kullback-Leibler divergence

criterion and the process entropy. The latter criterion is used by the Informative

Vector Machine, IVM, algorithm [Lawrence et al., 2003] which sequentially selects

the points in I according to the reduction in the process’ entropy that they cause.

An IVM implementation of the GPLV model can be found in Lawrence [2005].

3.3 Projecting new observations onto the latent

space

Given a training (nominal) set of D-dimensional observations Y = (y1, . . . ,yN)
ᵀ,

their representation in the latent space can be found by maximizing Equation (3.4).

In other words, both the latent variables X = (x1, . . . ,xN)
ᵀ and θ, the GPR pa-

rameters, can be considered known once the optimization is completed. The model

prediction, Ŷ, can then be easily found by applying Equation (3.5).

Let us now say that a new observation yj = (yj1, . . . , yjD)
ᵀ becomes available (for

notational convenience, we use yj instead of y∗). The problem of projecting that

observation onto the latent space is concerned with finding xj, its associated latent

variable representation. We provide two possible ways of doing so.

3.3.1 MAP projection

Equation (1.12) is a standard result from nonparametric Gaussian process regression.

For clarity, it can also be expressed as

yj|xj,X,θ ∼ ND(ŷj, s
2
jID) (3.6)
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where

ŷj = Y
ᵀ
K−1

y kj, (3.7)

s2j = k(xj,xj)− k
ᵀ
jK

−1
y kj + σ2

and kj = (k(xj,x1), . . . , k(xj,xN))
ᵀ. Note that, as we observe yj and not f(xj),

the uncertainty is higher and reflected via σ2.

In Equation (3.6), X and θ are treated as given and evaluated at their MAPs as

discussed in previous sections. Thus, the log-likelihood in terms of xj can be written

as

`(xj;yj,X,θ) =− D

2
log(2π)− D

2
log(s2j)

− 1

2(s2j)
(yj − ŷj)

ᵀ
(yj − ŷj). (3.8)

Additionally, by giving a Gaussian prior distribution to the latent variable xj, that

is xj ∼ N (0, IQ), then

p(xj) ∝ exp

(
−1

2
x
ᵀ
jxj

)
.

The MAP can therefore be found by maximizing the following log-likelihood function

`MAP (xj;yj,X,θ) = `(xj;yj,X,θ)−
1

2
x
ᵀ
jxj (3.9)

where constant terms have been omitted.

The same scaled conjugate gradient optimiser described in Appendix B.2.1 can be

employed to determine xj; now the objective function to maximize is given by Equa-

tion (3.9) and the gradients thereof with respect to xj are given in Appendix B.2.3.

This is the method used both by Lawrence [2005] and Ge and Song [2010]; we should,

however, be cautious when using it as the objective function given by Equation (3.9)

is non-convex. A procedure must be put in place to make sure that the global max-

imum is chosen when projecting every new observation. While this is relatively

simple when the underlying dimensionality of the latent space is low, the problem

is far from trivial when this is not the case. Likewise, this approach becomes more
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uncertain when applied to fault detection since new observations may come from a

(faulty) system which might be different from the system we used to train the model.

This problem will be further explained in Section 3.5 via a simulation example; refer

also to Figure 3.4.

3.3.2 Neural Network (NN) projection

The procedure we prefer to follow in order to use the GPLV model for process

monitoring is to build two neural network models; a similar idea has been used by

Dong and McAvoy [1996] who based their method on the principal curves algorithm

proposed by Hastie and Stuetzle [1989]. By doing this we avoid dealing with the

non-convexity problem altogether.

The first NN, Net 1 as shown schematically in Figure 3.1, is used to map the

standardized D-dimensional input observations onto the underlying Q-dimensional

latent variables as determined by the GPLV model. The second NN, referred to as

Net 2 in Figure 3.1, maps the Q-dimensional latent variables onto the D-dimensional

GPLV model prediction, ŷ, as given by Equation (3.5). Hence, model learning in

both neural networks is based on the observed data, D, and the related latent

variables, X, estimated as described in Section 3.2.

y1

yD

y2

bias

Input 

layer
Output

layer
Hidden 

layer

Net 1 Net 2

1
ŷ

Dŷ

2
ŷ

x

Latent Space

Figure 3.1: Architecture of the neural networks needed for process monitoring; only 1
latent variable.
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Feed-forward neural networks architectures [Bishop, 2006, Section 5.1] with one hid-

den layer in both networks are appropriate to carry out the mappings. Hyperbolic

tangent sigmoid transfer functions were used as activation functions in the hid-

den layer and the identity transfer function was chosen for the output layer in the

examples that follow. Network training was carried out using a scaled conjugate gra-

dient backpropagation algorithm implemented in MATLAB [2010]. Once the GPLV

model has been fitted and both networks trained, the only remaining unknown in

the training process is M, the number of nodes in the hidden layers. This parameter

is adjusted in order to achieve the best predictive performance; it controls the total

number of network parameters (model complexity) so we can expect an optimum

value to exist giving the best generalisation performance.

Bishop [2006, Section 5.5] cites different procedures that could be used for this

purpose. The method we have followed to control network complexity is early-

stopping. The available data is divided into three subsets. The first subset is the

training set, used to compute gradients and the network parameters. The second

subset is the validation set whose error is monitored during the training process.

The training set error is a non-increasing function of the iteration index. On the

other hand, the validation set error normally decreases during the initial phase of

training; however, as the network begins to overfit the training data, the error of

the validation data set will typically begin to rise. When this latter error increases

during six consecutive iterations, training is stopped and the network parameters at

the minimum of the validation error are adopted. The third subset is the test set,

which it is only used to assess the generalization performance of the network.

Prediction is straightforward once both networks have been fully trained. For a new

observation yj, Net 1 will output the corresponding latent variable xj; this will then

be used as the input for Net 2 which will, in turn, output the model prediction ŷj.

In fact, projections between the original, the latent spaces and vice versa need not

be restricted to neural networks. Other nonparametric approaches would also be

suitable to build the links; in this case, Gaussian processes do provide an excellent

alternative as it can be seen in Figure 3.6.
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3.4 Monitoring strategy

In the examples that follow a comparison will be made between GPLV-based models

and kernel PCA. It is relevant to emphasize what the main difference between these

nonparametric methods are. In that respect, the idea behind kernel PCA is similar

to that of a generalized linear model which uses a nonparametric link function: an

appropriate kernel function needs to be chosen so that the process can be properly

modelled. By contrast, the GPLV-based model aims at describing the non-linear

relationships directly; and, it does so by seeking the process underlying dimension-

ality. As a monitoring method it should, therefore, be more flexible and suitable in

modelling any type of non-linear stochastic system.

The monitoring statistics that will be used to monitor the process were described

in Section 1.2.4; in particular, we will be using plots of the squared prediction error

(SPE) as the fault introduced in the simulated case study changes the (non-linear)

relationship between the process variables following the fault classification made by

Zhang et al. [1997].

The monitoring strategy can be summarized as follows:

A.- Nominal model

i. Select the nominal data Y = (y1, . . . ,yN)
ᵀ from observations where the

process is known to be behaving as intended.

ii. Select the number of latent variables Q. This value could be set using

the user’s theoretical knowledge of the system under study if available.

Alternatively, it could be based on a desired percentage of the variance

explained (see e.g. Table 3.2).

iii. Build the GPLV model. The outputs from this model will be the latent

variables, X, as well as the GPR model parameters, θ.

iv. Use the fitted model to find the confidence limits for the SPE or any other

statistics used.

B.- New Observations
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Once new observations become available they can be projected onto the reduced

subspace by any of the following methods:

i. Method 1: MAP projection. Caution must be exercised before using this

procedure following the discussion given at the end of Section 3.3.1.

ii. Method 2: NN projection. This requires the construction of two auxiliary

neural network models. The mappings are as follows:

Net-1: Y ∈ RD 7→ X ∈ RQ

Net-2: X ∈ RQ 7→ Ŷ ∈ RD

iii. For every new observation j, calculate SPEj or any other statistic that is

being used to monitor the process.
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3.5 Case studies

The performance of the GPLV-based model is analysed in this section with two

examples. The first looks at simulated data that have appeared in the literature

and will be used to compare the method with some of its nonparametric peers. The

second example refers to data coming from a continuous stirred tank reactor (CSTR)

that has also been widely used in the chemical engineering literature.

3.5.1 Simulation example

This first example refers to the system presented by Choi et al. [2005]. There are

three variables, D = 3, but only one underlying latent variable, Q = 1. The data is

simulated by

y1 = x+ ε1,

y2 = x2 − 3x+ ε2,

y3 = −x3 + 3x2 + ε3. (3.10)

where x is generated from a uniform distribution U(0.01, 1); the independent noise

εd is generated from a Gaussian distribution N (0, 0.012) for d = 1, 2, 3.

The nominal data set is made of 100 observations generated with Equation (3.10).

As an independent data set to test type I errors (false alarms) 100 additional ob-

servations (samples 101-200) of normal operating data are also generated from the

same equations. A final data set of 100 faulty data observations (samples 201-300)

is also simulated where y1 and y2 are obtained as before but with y3 now given by

y3 = −1.1x3 + 3.2x2 + ε3. (3.11)

The set of faulty data will be used to determine type II errors (missing alarms). For

analysis purposes, we consider that an alarm is triggered when the SPE statistic has

a value higher than the 99% control limit. Figure 3.2, panels (a)-(c), shows the data

sets for both, the normal and fault conditions as 2-D plots for every combination of

the dependent variables and from one realization of this system. Notice the similarity
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Figure 3.2: Data sets for normal condition (o) and fault condition (+): (a) y1 vs. y2, (b)
y1 vs. y2 and (c) y2 vs. y3. Panel (d) represents the cumulative variance accounted for
the linear principal components.

between them; likewise, the fault in the y3 direction is not easily identifiable by visual

inspection. Within the range for the independent variable, data have also low noise

and mild non-linearities which explains why one principal component accounts for

more than 98% of the total variance, Figure 3.2, panel (d). All the data has been

scaled to zero mean and unit variance.

Firstly, we show how to train the GPLV model for one simulation and highlight the

problem that arises when projecting new observations using the MAP projection

method. Then a graphical comparison based on this unique simulation is made

among the non-linear GPLV model, with both MAP and NN projections, and lin-

ear PCA. Secondly, a more complete analysis of robustness (false alarm rate) and

sensitivity (missing alarm rate) is carried out by looking at type I and type II er-

rors respectively based on 200 simulations; a comparison with kernel PCA is also

performed.
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Figure 3.3: Normalized nominal data and the GPLV model prediction.

Model training

The objective is to model the nominal data in the previous system by using the non-

linear GPLV model defined in Section 3.2. Latent positions were initialized using

linear PCA while the GPR parameters were given random positive values. The

prediction for the training data, as given by Equation (3.5), is shown in Figure 3.3.

As it can be seen the GPRs do provide an excellent and smooth approximation to

the data.

One of the advantages of using this simulation is that the generating latent variable,

x, is fully known. It can therefore be compared with its estimate, x̂, obtained by

fitting the GPLV model. The correlation coefficient is cor(x, x̂) = 0.999, thus also

showing the suitability of the proposed model for this non-linear system. Due to the

low levels of noise in the system, this latent variable represents 99.9% of the total

variance (as opposed to the 98.3% variance accounted for one principal component).
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New observations: MAP and NN projections

We have generated 100 samples of independent data and 100 samples with a known

fault in y3. Before projecting every observation onto the latent space, let us focus on

any single one of the independent samples, which we denote as yj. The aim of the

MAP projection is to determine the latent variable xj associated with the available

observation. As previously explained, this can be done by maximizing Equation (3.9)

with respect to xj. In this case, as the latent space is mono-dimensional, the log-

likelihood can also be visualized for different values of xj as shown in Figure 3.4,

left panel. What the plot highlights is that the objective function is not convex and,

for this particular case, three maxima occur. Although not shown, the shape of this

log-likelihood function is very sensitive to the value of yj to the point that for some

faulty observations it occurs that the global maximum switches between the middle

and the left/right side maxima.

Figure 3.4, right panel, shows the result obtained for xj by carrying out a blind

optimization where the initial values of the latent variable xj were set randomly by

using a standard normal distribution. As it can be seen, the blind optimization leads

to projections clustered in three groups which depend on the starting point chosen to

initiate the algorithm; that, in turn, leads to an unacceptable number of type I errors

(and to a spurious increase in type II errors); refer to the MAP-1 model in Figure 3.5

for further details. For an one-dimensional problem there is no complication in

finding the global maximum; we simply choose several random starting points and

select the one with the highest value of the target function. However, it is important

to notice that for multivariate optimization problems, where very little information

is available about the shape of the log-likelihood function, we will not be able to

guarantee the fact that the global maximum is chosen systematically at all times.

In this sense, caution must be exercised if the monitoring method proposed by Ge

and Song [2010] was to be used.

For comparison purposes, Figure 3.5 shows the SPE for a linear PCA model (1 latent

variable), GPLV-based models with MAP projections where either the optimization

has been carried out blindly (MAP-1) or the global maximum has been chosen

(MAP-2) and a GPLV model with a NN projection. In the case of PCA, there are

no false alarms in the independent data and the number of missing alarms for faulty
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Figure 3.4: Left panel: log-likelihood (projection of an independent observation). Global
maximum located at xj = 0.0347; red vertical lines indicate the location of the maxima.
Right panel: blind optimization (where no attempt to find the global maximum has been
made) results of the independent samples.

data is 97. Visually, all the three regions (nominal, independent and faulty) are

very similar clearly indicating that a linear PCA model would not be appropriate

for a system of these characteristics. Note how a blind optimization leads to a

MAP projection where the number of type I faults is inadmissibly high (74) for the

method to be used. For the MAP-2 model, the number of false alarms is 1 and the

number of missing alarms is 80; finally, for the NN projection the number of type I

errors is 1 and the number of type II errors is 72. The fact that the percentage of

missing alarms is relatively high in the last two cases is related to the fault being

somewhat subtle as shown in Figure 3.2. However, a visual inspection of the SPE

plots clearly reveals that the ‘faulty’ region is different from the rest which should

help identify the problem in the plant; the SPE with a NN projection is clearly the

best performer.

Note also the that fault does not show in the corresponding T 2 plots (not shown).

That is related to the type of fault being analysed; the fault represented in Equa-

tion (3.11) has changed the relationship between the process variables and therefore

it is expected that deviations from the model be mostly detected by the SPE statistic

[Zhang et al., 1996].
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Figure 3.5: SPE for nominal, independent and faulty observations: 1st panel - PCA model
(1 PC), 2nd panel - GPLV model with an MAP projection (MAP-1, blind optimization),
3rd panel - GPLV model with an MAP projection (MAP-2, global maximum found) and
4th panel - GPLV model with a NN projection. Dashed horizontal lines are the 95% and
99% confidence intervals.
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Full simulation

In order to perform a full robustness and sensitivity study, 200 runs were carried

out. GPLV models with MAP and NN projections are considered. Additionally,

their performance is compared with that of kernel PCA. Full results are given in

Table 3.1 and Figure 3.6. The results are quite similar to those given in the previous

section. PCA hardly raises any alarm for faulty data. By contrast, kernel PCA gives

the smallest type II error for faulty data; however, it also produces the highest type

I error, 16.3%, for the independent data which is not acceptable in practice. This is

evidence that kernel PCA is failing to properly model the non-linear relationships

between the observed variables. The GPLV method with MAP and NN projections

performs very well in terms of both types of error.

Method
Type I error (%) Type II error (%)

IQR Median Mean IQR Median Mean

LPCA 3.0 3.0 3.3 5.0 94.0 93.4

MAP proj. 4.0 3.0 3.4 13.0 64.0 65.4

GP proj. 4.0 3.0 3.3 13.0 64.0 65.8

NN proj. 4.0 4.0 4.2 7.0 81.0 79.3

KPCA 8.0 16.0 16.3 12.0 57.0 57.2

Table 3.1: Type I and type II error rates

Results presented in Table 3.1 and Figure 3.6 for the GPLV model with the MAP

projection are based on the ones where the global maximum has been chosen sys-

tematically; these are achieved by using different starting values and by checking

the values of the objective function. When a global maximum cannot be found (this

would be the usual case when two or more latent variables are used), the MAP

method will lead to an unreasonably high number of type I faults and then a NN

projection should be the preferred method.

As discussed in Section 3.3.2, other non-linear methods could be used to map the

real observations with the latent variables. Results in Table 3.1 and Figure 3.6

also include those in which the mapping has been carried out with GPR models;

its performance is rather similar to that of the GPLV model with MAP and NN

projections.

63



Chapter 3. Process monitoring with Gaussian process latent variable models

0

5

10

15

20

25

30

PCA MAP GP NN KPCA

%

False alarms

40

50

60

70

80

90

100

PCA MAP GP NN KPCA
%

Missing alarms

Figure 3.6: Full simulation results based on 200 runs. The numerical results are presented
in Table 3.1. 1 PC selected in LPCA and 23 PC’s for KPCA.

3.5.2 CSTR process

In this example, data is generated using the model for a non-isothermal continuous

stirred tank reactor (CSTR); full details for it are provided in Appendix E. This

example has been widely used in the literature to test other nonparametric methods;

see for example, Lee et al. [2004], Yoon and MacGregor [2004], Choi et al. [2008]

and Alcala and Qin [2010] amongst others.

Complex fault generation

Yoon and MacGregor [2001] categorize abnormal operating conditions as either sim-

ple or complex faults; in the former case, a fault occurring in one variable does not

propagate into other variables whereas in the latter situation, the effect of the fault

is seen by other process variables. To clarify this, let us generate 100 observations

from the CSTR process and introduce a complex fault at t = 50 minutes; the fault

is simply a bias of 1◦C in the outlet temperature sensor. A time series plot of both

64



Chapter 3. Process monitoring with Gaussian process latent variable models

T and Fc is given in Figure 3.7. Note that as the outlet temperature is the con-

trolled variable, the feedback controller will act to remove this bias at the expense

of increasing the cooling water flow rate.
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Figure 3.7: Bias fault of 1◦C in the outlet temperature sensor occurring at t = 50 min.;
controller set point at 368◦C.

Complex fault detection

The training data is obtained by simulating the CSTR process for 200 minutes. A

further 100 observations are generated containing the 1◦C permanent bias in the

outlet temperature sensor. The data has been mean centered and scaled to unit

variance.

Two GPLV models, each one with the 200 observations from the training data, with

one (Q = 1) and two latent variables (Q = 2) respectively, have also been built. To

monitor the process, we have then used two feed-forward neural network models.

The first network builds the map from Y 7→ X̂, with 20 nodes in the hidden layer,

while the second network takes back the observations from the latent space into

their original dimensionality, i.e. X̂ 7→ Ŷ (25 nodes in the hidden layer).
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Latent variables
Explained variance (%)

PCA GPLV model

1 35.6 84.8

2 55.3 96.0

3 71.4 -

Table 3.2: Results for PCA and GPLV models
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Figure 3.8: Panels (a): SPE for a linear PCA model with 3 PCs; (b) log-likelihood for
a faulty observation (1 LV); (c) SPE for a GPLV-NN model with 1 LV; (d) SPE for a
GPLV-NN model with 2 LVs. Horizontal dashed lines correspond to the 95% and 99%
confidence limits.

Let us first consider the case with only one underlying dimension. As shown in

Table 3.2, this latent variable is able to account for around 85% of the original

variance. Figure 3.8, panel (c), shows the SPE for the GPLV model with a NN

projection when Q = 1. As it can be seen, shortly after sample 200, the SPE

starts moving pretty abruptly outside the confidence limits as a result of the bias
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fault being introduced. To give some perspective into the problem of using the

MAP projection, the log-likelihood given by Equation (3.9) for one of the faulty

observations has been plotted in Figure 3.8, panel (b). If we were to use the MAP

method, we would be dealing with the maximization of a similar-shaped function

for every new sample that we wanted to project into the latent space.

The second GPLV model, with Q = 2, is able to explain about 96% of the variation

in the original data; it, therefore, seems that Q = 2 should be very close to the true

dimensionality of this non-linear system. As before, the SPE has been calculated and

plotted in Figure 3.8, panel (d). It is very obvious, even by a visual comparison, that

this latter model is far more sensitive than the model with only one latent variable.

Not only the magnitude of the SPE for the training data reduces as a result of

having an improved model but also the range in the faulty data SPE increases quite

dramatically.

As a comparison, a linear PCA model with three principal components was selected

by using 10-fold cross-validation. The percentage of variance explained as a function

of the number of principal components kept in the model is given in Table 3.2. A

linear model built this way would be able to detect the bias fault as seen in the

SPE plot of Figure 3.8, panel (a), which is similar to the GPLVM with one latent

variable. This shows clearly that a non-linear model should be used in this example.
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3.6 Chapter summary

Ge and Song [2010] have proposed a GPLV-based model using a MAP projection as

a way to monitor industrial processes. That approach, however, when used on fault

detection tasks, is prone to the potentially serious pitfall of having to determine

the global maximum of a likelihood function which is nonconvex (e.g. Figures 3.4

and 3.8, panel (b)). As the dimensionality of the latent space becomes larger,

that problem becomes less and less trivial due to the non-convexity problem of the

likelihood function when projecting new observations into the latent space.

To deal with the aforementioned problem, the key step in fault detection, we pro-

pose the use of two additional nonparametric models. Figure 3.1 displays this idea

by using two NN models; this is in line with previous approaches that have been

successfully applied. Other nonparametric projection methods such as a Gaussian

process regression could also be employed in that step. The modelling of non-linear

relationships between process variables is still a challenging problem when we have

very little prior knowledge. There exist some non-linear methods, for example kernel

PCA [Lee et al., 2004] and NLPCA [Dong and McAvoy, 1996]; or, alternatively, as

we are proposing in this thesis, a GPLV-based model. By using simulated data we

have shown how this class of models can unravel complicated non-linear relation-

ships and find the underlying latent variables driving the process; the models have

also shown high robustness and a good balance between robustness and sensitivity.

Stationary processes are characterized by observations which are independent from

one another. That feature, however, is lost in dynamic systems. GP-based models

are able to account for variable dependency in a natural fashion; further ability to

model time dependency could be explicitly incorporated into the model via kernel

parameters which depend on time, i.e. θ(t), or through a mixture model type of

formulation. The latter avenue has not been pursued in this thesis. Likewise, only

Gaussian-noise distributions have been covered. It could be argued that, from a

process monitoring perspective, this is a requirement so that the proposed residual

and model-based statistics can be used. But the Gaussian process latent variable

model need not be restricted to Gaussian noise and could be extended to account for

other non-Gaussian distributions. Similar extensions have already been proposed in

the literature for Gaussian process regression models [Wang and Shi, 2011].
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The pairing of the GPLVM/Projection algorithms can be seen as an extension to

non-linear systems of the PCA idea for linear systems: we now have latent variables

which are non-linear combinations of all of the original observations. Although

these new latent variables could be representative of the underlying dimensionality

of the system, they however lack physical interpretation which simply makes the

problem of fault diagnosis more demanding. Or, in other words, we are able to

non-linearly model the industrial system but still have an unresolved problem with

variable selection. Regarding the latter, the idea that we are to develop in the next

chapter is that of portraying the GPLV model as the building block of a bigger class

of models denoted as Gaussian process functional factor analysis models, GPFFA.

As the name implies, what we are looking to achieve non-linearly is to retain the

interpretability advantages produced in linear systems when a FA model is used

against a PCA approach.
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Gaussian Process Functional

Factor Analysis model

The previous two chapters have set out the framework for a hybrid model which

will borrow ideas from both, factor analysis- and GPLV-based models. The aim in

this chapter is to develop such a model. The two main properties sought are that

the model must be able to handle non-linear systems and, at the same time, able to

establish relationships only between those observations which are somehow related;

we explain futher what we mean by somehow.

The conventional FA approach relies on variable correlation to answer the question of

how the original variables are linked with one another; subsequently, it builds latent

variables (also known as common factors) which are a function only of those original

variables amongst which there is a relationship. Once in the territory of non-linear

systems, variable correlation loses its meaning; in other words, there does not exist

a non-linear surrogate for linear correlation. One potential way to counteract that

fact would be to use engineering knowledge about the process to propose a model

from which the latent variables could be derived (in a similar fashion as confirma-

tory factor analysis). Or, alternatively, the analyst could resort to implementing

automatic variable selection techniques (e.g. penalty functions). Combining those

ideas with the capabilities of a GPLV model to build a nonparametric and non-linear

map between the latent and observational spaces results in a model which is more
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meaningful from a process monitoring perspective.

The GPLV model is defined by Equation (3.1). To put the model into perspective,

its structure assumes a relationship between x ∈ RQ and all of the variables in

y ∈ RD (refer to the left panel of Figure 4.1); hopefully, Q� D and then the anal-

ysis will render a more parsimonious representation of the data. In doing so, the

latent variables are able to keep most of the information included in y. But, is there

a significant cost building a model this way? In short, the answer is yes; whereas it

is highly advantageous representing the observations in a lower dimensional space,

the price to pay is that the latent variables will lack physical interpretation. In this

regard, and leaving the model structure aside, PCA, generalised PCA [Gnanade-

sikan, 1977] and kernel PCA [Schölkopf et al., 1998] all share a similar principle.

The latent variables in PCA are a linear combination of all of the original obser-

vations; in generalised PCA, the latent variables are still a linear combination of a

finitely-enlarged dimensional space which hopefully is able to capture non-linearities

in the system; and finally, in KPCA, the latent variables are a linear combination of

a infinitely-enlarged dimension which is conceptually archived via kernel functions.

y1

x1

x2

y3

y2

y4

y6

y5

y1

x1

x2

y3

y2

y4

y6

y5

Figure 4.1: Model dependencies. Left: GP latent variable model. Right: GP functional
factor analysis model.
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4.1 The model

A way to strike a balance between representativeness and physical interpretability

is to extend to non-linear systems the idea of factor analysis. It is desirable that the

derived latent variables still keep as much as possible of the information in y while,

at the same time, irrelevant relationships are removed. This is shown in the right

panel of Figure 4.1 where the latent variable x1 is the common factor associated

with variables y1, y2, y3 and y4; likewise, x2 is the common factor associated with

variables y4, y5, y6. Being able to remove associations (pictorially represented with

an arrow) which are not significant should bring about physical interpretability to

the latent constructs. That, in turn, is key in process monitoring applications.

Mathematically, we define the Gaussian Process Functional Factor Analysis model,

GPFFA, as follows

ydn = fd(x
(d)
n ) + εdn; εdn ∼ N (0, σ2

d), (4.1)

fd(x
(d))|x ∼ GPd(0, k(θd);x

(d)),

xn ∼ N (0, IQ)

for d = 1, . . . , D and n = 1, . . . , N . Likewise x
(d)
n is a subset of xn and includes only

those covariates which are associated with a given yd; for example, with reference

to the right panel of Figure 4.1, these D subsets are as follows

x(1) = x(2) = x(3) = x1, x(4) = (x1, x2)
ᵀ
, x(5) = x(6) = x2.

In order to account for this characteristic of the model, we introduce indicator

variables. Let us define

id = (id1, . . . , idQ)
ᵀ

(4.2)

as the indicator vector for variable yd such that idq = 1 iff xq is included in x(d) and

idq = 0 otherwise. Therefore, we can write

x(d) = (id1x1, . . . , idQxQ)
ᵀ
= id � x.

With this in mind, GPd(0, k(θd);x
(d)) represents a Gaussian process regression
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model whose kernel covariance function can be written as

kd(x
(d)
i ,x

(d)
j ;θd) = υd0 exp

{
−1

2

Q∑
q=1

idqwdq (xiq − xjq)
2

}
, (4.3)

where θd = (υd0, wd1, . . . , wdq)
ᵀ is the vector of hyper-parameters related to the dth

Gaussian process1. Note that the inverse of the weight parameters, (wd1, . . . , wdq)
−1

are the characteristic length-scales of the squared exponential covariance function as

defined by Rasmussen and Williams [2006, p.106]; finally, i, j = 1, . . . , N .

The main features of the above model are:

(a) In a similar fashion to defining the structure of the loading matrix Λ in the

linear FA model, Equation (2.3), we can define the relationship between latent

and original observations in the GPFFA model. By using Equation (4.1) in

conjunction with Equation (4.3), each output variable yd can be linked with

specific latent variables xq. Or, leaving aside causality, each latent variable will

be a non-linear combination of a subset of the observed variables.

(b) The model offers similar advantages to that of the linear factor model in terms

of interpretability, as each latent variable is a combination of a subset of the

original variables. Similarly, the model will offer improvements in fault detection

and diagnosis as the confounding effect of unrelated variables is removed. More

generally, the model can also be thought as being a part of a structural equation

model [Bollen, 1989] and hence, extended in a similar manner.

(c) It is a nonparametric model that can model complex non-linear relationships

via a GP prior with a relatively small number of parameters in comparison to

other existent nonparametric models.

(d) The observed variables yd can be thought of as functional or longitudinal, yd(t),

data and the observations at every time point ti, ydi = yd(ti) for i = 1, . . . , N

could be dependent. The independence assumption for different observations

is essential in the conventional factor analysis model, Equation (2.2.1); in this

respect, the GPFFA model clearly differs from the FA approach.

1Generally the vector x(d) will no longer be Q−dimensional; we represent this by writing wdq

instead of wdQ.
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(e) In the particular case where x
(1)
n = x

(2)
n = . . . = x

(D)
n = xn in Equation (4.3)

the GPFFA model simplifies to the general GPLVM made up of D independent

GPRs as described in Chapter 3. Furthermore, if additionally k1(·, ·;θ1) = . . . =

kD(·, ·;θD) = k(·, ·;θ) the model will simplify to the GPLVM extensively de-

scribed by Lawrence [2005] formed by D independent and identically distributed

GPRs.

4.2 Inference

The building block of a GPLVM is a GPR model. In a similar way, a GPLVM is

the building block of the GPFFA model, which, sitting at the top of the hierarchy,

is the most general and flexible of the three models.

In a GPFFA model, for every yd, the model parameters involved from the kernel

function are θd = (υd0, wd1, . . . , wdq)
ᵀ. As we have done in previous chapters, for

notational simplicity θd may also loosely include σ2
d, the variance of the independent

errors; the context of the problem will determine whether that is the case. Addi-

tionally, the dimensionality of the latent variables associated with each yd will vary

and therefore the vectors θd, for each d, may not all have the same dimension (i.e.

the vector of weight parameters linked to the latent variables will differ). Let us also

define θ = {θ1, . . . ,θD} as the vector containing all the hyperparamenters of the D

covariance functions. In terms of dimensionality, θ ∈ Rh where h ≤ D(Q + 2); the

equality only holds when a Gaussian process latent variable model is considered.

4.2.1 Estimation of model hyperparameters

From Equation (4.1) and the definition of a GP prior, we have that

p(y(d)|X,θd) =

∫
p(y(d)|f ,X,θd)p(f |X,θd)df .
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This equation is analytically tractable (Appendix A.2) and hence the marginal den-

sity of y(d)|X,θd is given by

y(d)|X,θd ∼ NN(0,Kd) (4.4)

where

Kd = Kd,f + σ2
dIN (4.5)

and Kd,f is the noise-free covariance matrix whose (i, j)th element can be calcu-

lated according to Equation (4.3). The assumption of the GPFFA model is that

there are D-independent multivariate normal observations distributed according to

Equation (4.4). Then, the joint marginal density for Y = (y(1), . . . ,y(D)) follows as

p(Y|X,θ) =
D∏

d=1

NN(0,Kd)

=
D∏

d=1

[
(2π)−

N
2 |Kd|−

1
2 exp

(
−1

2
y(d)

ᵀ
K−1

d y(d)

)]
. (4.6)

Hence, the associated log-likelihood can be written as

`(X,θ;Y) =
D∑

d=1

`d =
D∑

d=1

[
−N

2
log(2π)− 1

2
log|Kd| −

1

2
tr
(
K−1

d y(d)y(d)
ᵀ)]

. (4.7)

Note that the dimensions of the latent variables X = (x1, . . . ,xN)
ᵀ are N×Q which

is very large. They can, however, be integrated out of the joint density in order to

obtain the marginal density for the observations as follows

p(Y|θ) =
∫
p(Y|X,θ)p(X)dX

=

∫ D∏
d=1

p(y(d)|X,θd)
N∏

n=1

p(xn)dX. (4.8)

The empirical Bayes estimates of θ could then be found by maximizing the log-

likelihood function, `(θ|Y), related to this density. Unfortunately, the calculation

of the above integral is not analytically tractable and approximation methods will

have to be used; Laplace and profile log-likelihood approximations will be discussed

in the next chapter.
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4.2.2 Joint estimation of model hyperparameters and latent

variables

An alternative to integrating out the latent variables X and then estimate θ is to

infer both set of parameters jointly. The joint posterior distribution of (X,θ) is

given by

p(X,θ|Y) ∝ p(Y|X,θ)p(X)p(θ).

Maximum a posteriori (MAP) parameter estimates can be obtained by finding the

mode of this posterior density. The log-likelihood of the model parameters is given

by Equation (4.7). The prior for X is normal as for the model specification, Equa-

tion (4.1). The corresponding log-likelihood function of this posterior density can

then be expressed as

`MAP (X,θ) =
D∑

d=1

log p(Y|X,θ) +
N∑

n=1

log p(xn) (4.9)

=
D∑

d=1

[
−N

2
log(2π)− 1

2
log|Kd| −

1

2
tr
(
K−1

d y(d)y(d)
ᵀ)]− 1

2
tr(XX

ᵀ
),

where a non-informative prior has been allocated to θ. The joint maximisation

of this target function with respect X and θ will produce the estimates X̂ and θ̂

sought. This joint estimate is similar to the MAP solution for the GPLVM proposed

by Lawrence [2005].

When Equation (4.8) is used to find the estimates for θ, the factor scores X can

still be calculated by using the MAP procedure. In those circumstances, the log-

likelihood would be given by

`(X;Y) =
D∑

d=1

log p(Y|X) +
N∑

n=1

log p(xn), (4.10)

which, upon maximisation, will produce an estimate for X. Once the estimates

of (X,θ) are available, the unknown function values fd(·) can also be estimated

following the usual procedure in a GP regression model; refer to Section 1.3.3.

There are cases where, numerically, it is advantageous to further penalize the log-
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likelihood as follows

`MAP (X,θ) = `(X,θ;Y)− 1

2
tr(XX

ᵀ
)−

D∑
d=1

h∑
j=1

log θdj. (4.11)

If we were to minimize the negative form of the previous equation2, it is clear that

the term
∑D

d=1

∑h
j=1 log θdj acts as a penalty or regularizer which discourages large

values of θdj. Numerically, this has been implemented by Lawrence [2004] for a

GPLV model.

4.2.3 Model simplifications: grouping iid GPRs

The general GPFFA model given by Equation (4.1) assumes that the joint density

of Y is generated by D independent GPRs; each GPR is parametrized by θd in

the kernel covariance function which, in turn, increases the dimensionality of the

problem.

While possible, in general such complexity is not required; in other words, we can

assume that some of the observations are generated by the same GPR (one could

say that they belong to the same group, g) and are therefore identically distributed.

In such case, the model log-likelihood simplifies slightly as

`(X,θ;Y) =
G∑

g=1

[
−NDg

2
log(2π)− Dg

2
log|Kg| −

1

2
tr
(
K−1

g Y(g)Y(g)ᵀ)], (4.12)

where Dg is the number of variables in group g; all variables within each group

are generated by independent, identically distributed GPRs with g = 1, ..., G. Y(g)

represents the N ×Dg matrix grouping all these variables column-wise.

Now it is easier to see the GPLV model as the limiting case of the more general

GPFFA model when G = 1, i.e. Dg = D and xd
i = xi (i.e. all the latent variables

are assumed to be linked to each one of the observations). Then, the log-likelihood

2The numerical advantage is related to the underspecification of the model as discussed in a
subsequent section. This log-likelihood equation could be thought of as the MAP solution where
each hyperparameter is given an uniform distribution i.e. θdj = U [0, θdj ]. Then p(θdj) =

1
θdj

and,

upon taking the natural logarithm, Equation (4.11) is produced.
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simplifies as

`(X,θ;Y) =

[
−ND

2
log(2π)− D

2
log|K| − 1

2
tr
(
K−1YY

ᵀ)]
,

which is the same as Equation (3.2).

4.3 Numerical implementation

This implementation refers to the joint estimation of the model hyperparameters and

the latent variables (MAP solution) as discussed in Section 4.2.2. Details about the

Laplace approximation to Equation (4.8) are given in the next chapter. Firstly, the

mathematical formulation of the problem is presented; this can can be tackled either

as a constrained optimisation problem or can be reformulated as an unconstrained

problem.

Secondly, the algorithm followed to solve the GPFFA model is summarised. The

algorithm makes use of a non-linear optimiser which only requires of the analytical

gradients of the negative log-likelihood. These gradients will be briefly introduced

in the last section and expanded in Appendix B.2.2.

4.3.1 Problem formulation

In order to find a solution to the GPFFAmodel, Equation (4.9) need to be maximised

with respect to the model parameters. Note that this is equivalent to minimising

the negative log-likelihood.

Let xv = vec (X) be the vector containing all the latent variables. The optimisation

problem can be stated as follows:

(x̂v, θ̂) = arg min
(xv ,θ)

[−`(xv,θ;Y)MAP ] subject to θ > 0

where the constraints in the hyperparameters are imposed in order to make sure
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that the kernel covariance function, Equation (4.3), generates a positive definite

matrix. For numerical stability, additional constraints may also be needed in order

to ensure the kernel function parameters do not become arbitrarily large3.We are

therefore dealing with a constrained optimisation problem. The objective function

can be reformulated in terms of the hyperparameters in the logarithmic space so

that the problem becomes an unconstrained optimisation:

(x̂v, log θ̂) = arg min
(xv ,logθ)

[−`(xv, log θ;Y)MAP ] (4.13)

which is the route followed in this thesis.

4.3.2 Optimising

The optimization of the GPFFA model requires of the first derivatives of the objec-

tive function with respect to the unknown parameters. The derivation is related to

that given in Appendix B.2 for the GPLV model with two important caveats: firstly,

the assumption of identically distributed GPRs has been dropped. And, secondly,

the indicator variables defining the latent variable subsets need to be taken into

consideration. Full details are provided in Appendix C.1.

The log-likelihood is a non-linear function of xv and θ and suffers from the same

non-convexity problems associated with the GPLV model. The scaled conjugate

gradient algorithm described in Appendix B.2.1 is used to find the MAP estimate

of the model parameters. A high-level summary of the algorithm that is followed in

subsequent sections is presented in Algorithm 1.

3This is related to the problem needing further identifiability constraints.
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Algorithm 1: GPFFA model optimiser

1. Define model structure. Input:

− G, number of independent GPRs.

− Dg, number of identically distributed GPRs for each g.

− Q, number of latent variables.

− ig in Equation (4.2), which define latent variable subsets.

2. Generate data following the model structure.

3. Initialise X and θ; let x0 = {xv0,θ0}

− X0, initialised with PCA; add random noise N (0, 0.0052).

− θ0 is initialised randomly.

4. Optimisation step

− Set maximum number of iterations and termination criteria.

− Run optimizer until convergence. Terminate if

(a) Maximum number of iterations is reached or,

(b) Distance moved in search direction/change in function value is less
than tolerance, i.e.

‖x(t+1)
v − x(t)

v ‖+ ‖θ(t+1) − θ(t)‖ ≤ 10−4 and

|`(t+1)
MAP − `

(t)
MAP | ≤ 10−4

5. Repeat steps 3 and 4, each for different starting value of x0.

6. Final solution is the one with the smallest value of −`MAP .
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4.4 Numerical examples

Four different examples are reported. In all, the idea is first to generate the data,

Y, given the latent variables X and by assuming that Y and X are non-linearly

related. Then, Gaussian process priors are allocated to these non-linear functions

and inference is carried out using a GPFFA model. As a measure of goodness of fit,

the correlation between the generating latent variables, X, and the model estimates,

X̂, is used.

Example 1

The system under consideration has eight variables, D = 8, and two underlying

latent variables, i.e. Q = 2. The relationship between the latent and original space

is as shown in the path diagram in Figure 4.2

y1 y2 y3 y6 y7y5

x1 x2

y4 y8

Figure 4.2: Relationship between the latent and original spaces (example 1).

The data is generated as follows:

1. The mathematical representation of the model in Figure 4.2 is as follows

yd = fd(x1) + ed, d = 1, . . . , 4;

yd = fd(x2) + ed, d = 5, . . . , 8 (4.14)
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where fd, for d = 1, . . . , 8, are a mix of linear/non-linear functions, x1 ∼
N (0, 1) and x2 ∼ N (5, 9).

2. Generate errors are ed ∼ N (0, σ2
d) such that σd ∼ U [0, 1] for d = 1, . . . , 8.

3. Generate N = 100 observations of y1, . . . , y8 with the following equations

y1 = x1 + e1 y5 = sin(x2) + e5

y2 = x21 + e2 y6 = cos(x2) + e6

y3 = 3 + x31 + e3 y7 = 0.5x2 + e7

y4 = e(0.7x1) + e4 y8 = 0.5x22 + e8 (4.15)

The aim is to model the data produced with Equation (4.15) and which have the

functional structure defined by Equation (4.14); there are 8 non-linear functions

which are to be approximated with two different GPR models.

Run −`MAP corr(x1, x̂1) corr(x2, x̂2) Iterations

1 57.14 0.9018 0.9261 629

2 59.24 0.8944 0.9260 644

3 57.13 0.9018 0.9261 592

4 57.14 0.9019 0.9261 592

5 57.11 0.9016 0.9260 598

6 40.96 0.9008 0.9952 559

Table 4.1: Example 1: minimisation results using Equation (4.11).

Note the following:

(a) The two GPRs in this system use the same form of the covariance function,

Equation (4.3), but different hyperparameters θd. The first four variables,

y1, . . . , y4, are mapped by four i.i.d GPR1’s with covariance function k1(θ1;x1).

Likewise, variables y5, . . . , y8 are mapped by four i.i.d GPR2’s with covariance

function k2(θ2;x2).

(b) For comparison purposes, both Equation (4.9) and Equation (4.11) will be min-

imised; the only difference between both equations is that the latter has the
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extra term
∑h

j=1 log θ
(d)
j . The effect of this term (or penalty) is in discouraging

large values of the hyperparameters in both Gaussian processes.

The results shown in Tables (4.1) and (4.2) refer to the minimisation carried out

using Equation (4.11). The algorithm was run 6 times (for different seeds) with run

number 6 being the case where the latent variables are initialised with their true

values instead of using PCA.

GPR1 GPR2

Run w1 υ0 σ2 w2 υ0 σ2

1 14.79 92.65 0.27 26.31 201.05 0.25

2 15.84 94.13 0.27 26.66 218.40 0.25

3 15.06 94.48 0.27 26.47 207.01 0.25

4 14.82 93.59 0.27 26.14 205.24 0.25

5 15.55 92.18 0.26 27.04 207.16 0.25

6 17.67 99.86 0.27 22.78 228.41 0.24

Table 4.2: Example 1: MAP estimates using Equation (4.11).

The best solution achieved in this case corresponds to run number 6. In all of the

cases, however, the correlation between the MAP estimates of the latent variables

and the true values are very high; this is to be expected due to relative simplicity of

the model structure. The estimated values of the model hyperparameters for both

GPR models are shown in Table 4.2.

In order to establish a comparison, the data have also been fitted by using Equa-

tion (4.9) as the objective function. The minimisation results are displayed in Ta-

ble 4.3. The first conclusion that can be drawn from it is that the algorithm takes

longer to converge. This can be understood by the fact that the search space for

each of the GPR hyperparameters is unrestricted in the range (0,+∞) as opposed

to the minimisation carried out using Equation (4.11) where the hyperparameters

have been given an uniform prior.

And secondly, the effect of removing the extra term,
∑h

j=1 log θ
(d)
j , from the objec-

tive function is in eliminating the constraints that were shrinking the GPR hyper-

parameters in the previous simulation. Generally, as shown in Table 4.4, the model
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Run −`MAP corr(x1, x̂1) corr(x2, x̂2) Iterations

1 41.99 0.9005 0.9264 1025

2 42.65 0.7915 0.9262 1067

3 42.07 0.9008 0.9262 833

4 42.00 0.9012 0.9263 857

5 42.11 0.9004 0.9262 1025

6 23.17 0.9001 0.9951 831

Table 4.3: Example 1: minimisation results using Equation (4.9).

hyperparameter estimates are now sensibly larger than before.

GPR1 GPR2

Run w1 υ0 σ2 w2 υ0 σ2

1 55.19 107.11 0.27 97.80 243.31 0.25

2 103.24 88.16 0.26 91.95 225.90 0.25

3 50.00 104.69 0.27 88.85 249.91 0.25

4 54.37 105.55 0.27 97.03 242.88 0.25

5 46.16 108.37 0.27 84.53 243.60 0.25

6 66.72 96.60 0.27 83.55 280.56 0.24

Table 4.4: Example 1: MAP estimates using Equation (4.9).

As in the previous example, the best result is achieved when the latent variables

are initialised with their true values (lowest log-likelihood). Again, the correlation

between true latent variables and their estimates are very high. Figure 4.3 is a plot

of the standardised original variables versus their standardised estimates for run

number 1. The standardisation is necessary as the scales of the variables will differ;

as the problem has been set up, not enough identifiability constraints have been

imposed. This issue will be further discussed in a subsequent section.
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Figure 4.3: Example 1: original latent variables (standardised) versus their estimates
(standardised) for run 1 in Table 4.3. Dashed line (−−) is a 45◦ reference line.

Example 2

The system under consideration has eight variables, D = 8, and two underlying

latent variables, i.e. Q = 2. The relationship between the latent and original space

is as shown in the path diagram in Figure 4.4; in this case, the relationship between

the variables is more complex than in the previous example, namely due to the

dependencies of variables y4, y5 on both x1 and x2.

The data is generated according to the following steps:

1. The relationship between latent and manifest variables in the path diagram of
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y1 y2 y3 y6 y7y5

x1 x2

y4 y8

Figure 4.4: Relationship between the latent and original space (example 2).

Figure 4.4 is as follows

yd = fd(x1) + ed, d = 1, . . . , 3;

yd = fd(x1, x2) + ed, d = 4, 5;

yd = fd(x2) + ed, d = 6, . . . , 8 (4.16)

where x1 ∼ N (0, 1) and x2 ∼ N (5, 9) and fd (d = 1, . . . , 8) are non-linear

functions which will be approximated with Gaussian process priors having the

following structure

yd
ind∼GPR(0, k(θ1)|x1), d = 1, . . . , 3;

yd
ind∼GPR(0, k(θ2)|x1, x2), d = 4, 5;

yd
ind∼GPR(0, k(θ3)|x2), d = 6, . . . , 8. (4.17)

2. Generate errors ed ∼ N (0, σ2
d) such that σd ∼ U [0, 1] for d = 1, . . . , 8.

3. Generate N = 100 observations of the data y1, . . . , y8 such that

y1 = x1 + e1 y5 = x1 + sin(x2) + e5

y2 = x21 + e2 y6 = cos(x2) + e6

y3 = 3 + x31 + e3 y7 = 0.5x2 + e7

y4 = e(0.7x1) + x2 + e4 y8 = 0.5x22 + e8 (4.18)

The N = 100 observations of data are then fitted by using a GPFFA model with
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the GP priors structure defined in Equation (4.17). The model hyperparameters are

given non-informative priors and therefore Equation (4.9) is minimised.

Run −`MAP corr(x1, x̂1) corr(x2, x̂2) Iterations

1 112.44 0.7267 0.7440 2284

2 62.99 0.9097 0.7510 3152

3 108.47 0.7075 0.7324 3638

4 125.14 0.7271 0.7035 2740

5 138.40 0.7719 0.7063 2953

6 43.37 0.9291 0.9911 1052

Table 4.5: Example 2: minimisation results using Equation (4.9).

GPR1 GPR2 GPR3

Run w1 υ0 σ2 w1 w2 υ0 σ2 w2 υ0 σ2

1 236.79 52.37 0.18 2.88 26.21 45.41 0.46 69.41 263.29 0.22

2 26.39 104.99 0.16 3.33 37.84 44.29 0.62 69.18 268.66 0.22

3 111.18 69.18 0.17 5.25 47.90 38.98 0.48 93.86 244.01 0.24

4 630.19 39.20 0.14 2.82 5.00 81.74 0.33 66.88 307.84 0.29

5 268.54 51.07 0.18 5.43 6.16 57.43 0.52 86.91 266.75 0.24

6 40.78 99.22 0.17 2.82 53.40 51.21 0.58 40.58 376.56 0.23

Table 4.6: Example 2: MAP estimates using Equation (4.9).

The results are shown in Table 4.5. Note the following

(a) The algorithm was run 6 times with the last run corresponding to the case

where the latent variables were initialised with their true values; in that case,

the algorithm converges quicker and achieves the higher correlations as it would

intuitively be expected.

(b) In general, when comparing these results with those in Table 4.3, the correlations

in the current example are lower. The functional relationships are the same for

variables y1, y2, y3 which provide information to determine x1; likewise y6, y7, y8

provide information about the parameter x2. However, y4, y5 provide informa-

tion both about x1 and x2 at the same time; this can be interpreted as not being

as informative as having both y4 and y5 provide information individually about

the latent variables.
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(c) The convergence times (see number of iterations) are also higher. This is due

to both, having additional model parameters as well as having assumed a more

intricate model.

The MAP estimates of the parameters are shown in Table 4.6. This model is more

complex and has four parameters more than the corresponding model in example 1.

Example 3

In this example the structure of the previous simulation is maintained while increas-

ing the number of variables providing information about the latent constructs; the

idea is that these additional variables will add extra information from which the

latent variables can be learnt. Let us consider a system with ten variables, D = 10,

and two underlying latent variables, i.e. Q = 2. The relationship between the latent

and original space is as shown in the path diagram of Figure 4.5

x1 x2

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Figure 4.5: Example 3: relationship between the latent and original space.

The data is generated as follows:

(a) The relationship between latent and manifest variables in the model in Figure 4.5

is of the form:

yd = fd(x1) + ed, d = 1, . . . , 4;

yd = fd(x1, x2) + ed, d = 5, 6;

yd = fd(x2) + ed, d = 7, . . . , 10, (4.19)
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where x1 ∼ N (0, 1) and x2 ∼ N (5, 9) and fd (d = 1, . . . , 10) are non-linear

functions that we will be approximated with ten GPR models. These GP priors

have the following structure:

yd
ind∼GPR(0, k(θ1)|x1), d = 1, . . . , 4;

yd
ind∼GPR(0, k(θ2)|x1, x2), d = 5, 6;

yd
ind∼GPR(0, k(θ3)|x2), d = 7, . . . , 10. (4.20)

(b) Errors are generated as in example 2. N = 100 observations of data are produced

with the following equations (yd’s have been renumbered to account for the extra

two variables)

y1 = x1 + e1 y6 = x1 + sin(x2) + e6

y2 = x21 + e2 y7 = sin(x2) + e7

y3 = 3 + x31 + e3 y8 = cos(x2) + e8

y4 = e(0.7x1) + e4 y9 = 0.5x2 + e9

y5 = e(0.7x1) + x2 + e5 y10 = 0.5x22 + e10 (4.21)

As in the previous examples, the algorithm was run 6 times; the last run corresponds

to the case where the latent variables are initialised with the true values which, again,

results in the best model (lowest negative log-likelihood). The results of the runs,

where Equation (4.9) is minimised, are shown in Table 4.7.

Run −`MAP corr(x1, x̂1) corr(x2, x̂2) Iterations

1 265.85 0.9204 0.7007 1695

2 223.27 0.9375 0.7444 2111

3 221.91 0.9357 0.7378 2338

4 241.99 0.8807 0.6720 1898

5 238.94 0.8998 0.6969 2321

6 155.55 0.9305 0.9936 1682

Table 4.7: Example 3: minimisation results using Equation (4.9).

By comparing the results in Table 4.7 with those in Table 4.5 it can be seen that

correlations between the latent and the true generating variables have, generally,
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increased. That is expected as there is an additional variable for each latent variable

from which information can be learnt.

Point-estimates of the model hyperparameters are shown in Table 4.8.

GPR1 GPR2 GPR3

Run w1 υ0 σ2 w1 w2 υ0 σ2 w2 υ0 σ2

1 27.54 78.81 0.28 1.67 66.62 31.43 0.79 103.65 142.18 0.34

2 22.54 116.90 0.29 1.36 122.99 32.01 0.48 80.18 148.32 0.33

3 19.64 115.37 0.29 1.17 120.11 31.13 0.48 89.53 139.39 0.33

4 31.87 90.22 0.29 3.86 86.54 27.04 0.56 128.71 132.06 0.32

5 28.50 89.54 0.29 3.25 101.36 26.97 0.54 138.78 136.09 0.32

6 40.08 95.97 0.28 2.48 60.07 39.20 0.52 59.83 287.55 0.31

Table 4.8: Example 3: MAP estimates using Equation (4.9).

Example 4

The system under consideration has twelve variables, D = 12, and three underlying

latent variables, i.e. Q = 3. Note that by adding an additional latent variable

to the problem the number of unknown parameters in the model increase quite

dramatically by N , the sample size; additionally, further hyperparameters will be

needed to model the bigger problem complexity. The relationship between the latent

and original space is as shown in the path diagram in Figure 4.6.

y1 y2 y3 y6 y7y5

x1 x3

y4 y8

x2

y9 y10 y11 y12

Figure 4.6: Example 4: relationship between the latent and original space.

90



Chapter 4. Gaussian Process Functional Factor Analysis model

The data is generated as follows:

(a) The relationship between latent and manifest variables in the model in Figure 4.6

of the following form

yd = fd(x1) + ed, d = 1, . . . , 4;

y5 = f5(x1, x2) + ed,

yd = fd(x2) + ed, d = 6, . . . , 8;

y9 = f9(x2, x3) + ed,

yd = fd(x3) + ed, d = 10, . . . , 12, (4.22)

where x1 ∼ N (0, 1), x2 ∼ N (5, 9) and x3 ∼ N (2, 4); fd (d = 1, . . . , 12) are

non-linear functions. These are to be approximated by a GPFFA model with

12 GPR models having priors defined according the following structure:

yd
ind∼GPR(0, k(θ1)|x1), d = 1, . . . , 4;

y5 ∼GPR(0, k(θ2)|x1, x2),

yd
ind∼GPR(0, k(θ1)|x2), d = 6, . . . , 8;

y9 ∼GPR(0, k(θ4)|x2, x3),

yd
ind∼GPR(0, k(θ5)|x3), d = 10, . . . , 12. (4.23)

(b) Generate errors ed ∼ N (0, σ2
d) such that σd ∼ U [0, 1] for i = 1, . . . , 12.

(c) Generate N = 100 observations of the data (y1, . . . , y12) with the following

functional form

y1 = x1 + e1 y5 = x1 + cos(x2) + e5 y9 = sin(x2) + 0.5x3 + e9

y2 = x21 + e2 y6 = x22 + e6 y10 = cos(x3) + e10

y3 = x31 + e3 y7 = 2 + x2 + e7 y11 = 0.5x3 + e11

y4 = e0.7x1 + e4 y8 = cos(x2) + e8 y12 = x23 + e12 (4.24)

As in the previous examples, the algorithm was run for 6 times with the last run

corresponding to the case where the latent variables were initialised using the true

values. The number of model parameters that need determining is 3N + h(Q+ 2);
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in this example h = 5 as there are 5 different GP priors in Equation (4.23). Full

results are given in Table 4.9.

Run −`MAP corr(x1, x̂1) corr(x2, x̂2) corr(x3, x̂3) Iterations

1 563.25 -0.9543 0.8147 -0.5125 2128

2 236.43 -0.8308 0.9235 -0.5054 7001

3 598.52 -0.9572 0.8053 -0.5341 7001

4 574.95 -0.9613 0.6991 -0.5236 4478

5 220.56 -0.9541 0.9508 -0.5579 7001

6 -165.95 0.9015 0.9925 0.9773 7001

Table 4.9: Example 4: minimisation results using Equation (4.9).

The best result is achieved when the algorithm is started with the true values for

the latent variables, run number 6, as it could be expected. The solution seems to

get trapped in local minima much more easily than in the previous cases; that, in

turn, translates into more variable results. The computation burden increases also

substantially as the as the joint parameter space is rather large.

4.5 Identifiability considerations

While a joint estimate of (X,θ) may be found using an unconstrained optimiser

when the problem is formulated in terms of the likelihood function given in Equa-

tion (4.6), the model is underspecified. Generally, the problem arises as not enough

identifiability constraints to define the model parameters uniquely have been im-

posed. For two latent variables, the kernel covariance function is given by

υ0 exp

{
−1

2

[
w1 (xi1 − xj1)

2 + w2 (xi2 − xj2)
2]} (4.25)

where it can be seen that without ‘fixing’ any of the (υ0, wq, xiq) there will many

combinations leading to the same solution.

In the general context of structural equation models, necessary and sufficient identi-

fication rules are provided by Bollen [1989, Table 4.1]; the (linear) Factor Analysis
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model can be seen as a submodel within the structural equation models architec-

ture. Specifically, in relation to the FA submodel, underspecification problems have

been widely documented in the literature. For instance, Jöreskog and Sörbom [1997,

p.133] propose two different ways of dealing with this when handling the linear model

yi = Λxi + εi. In short, both solutions are as follows:

(a) Reference variables solution. In this case, a value of λij is fixed to 1 for every

column of Λ. In turn, this places the unknown latent variables xi in the same

scale of measurement as the observations yi.

(b) standardized solution. Here, the scale of the latent variables is standardized by

fixing the diagonal elements of the latent variables covariance matrix to one.

In the framework of GPLV models, the solution adopted by Lawrence [2005] is to

give a prior to the latent variables resulting in a log-likelihood function which is

comparable to the MAP solution of Equation (4.9). Adding −1
2
tr(XXᵀ) to the

target function prevents the latent variables from becoming excessively large when

optimising. Likewise, further adding a penalty (which, equivalently, can be seen as

allocating a prior) to the kernel hyperparameters discourages solutions where the

estimated values of θ are very large. This is the effect achieved using Equation (4.11)

and can be seen by comparing the results in Table 4.2 with those in Table 4.4. A

similar approach has been taken in this chapter to deal with this identifiability issue.

4.6 Posterior consistency

The majority of the discussion offered in this section is not intended to present rigor-

ous demonstrations; the exception is the first case, where the asymptotic properties

of θ are discussed. The main purpose is to provide an indication as to where and

how the model unknowns obtain information from the observations when both, the

sample size, N , and the dimensionality of the problem, D, increase.

Ideally, as more data become available, what we are expecting is for the posterior

distribution of the model unknowns to concentrate around their true distribution;

in broad terms, this is what is meant by posterior consistency.
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4.6.1 Consistency of model hyperparameters

θ contains all the GPFFA model hyperparameters and the corresponding functional

noise; that is θ = {θ1, . . . ,θd, . . . ,θD, σ
2
1, . . . , σ

2
D} where θd is defined in Equa-

tion (4.3) and σ2
d is given by Equation (4.1). The marginal density for each variable

yd is given by Equation (4.4) which states that y(d) ∼ N (0,Kd), with Kd given in

Equation (4.5). Likewise, the joint marginal likelihood for all the observations, Y,

once all the latent variables have been integrated out, is that given in Equation (4.8).

The MLE estimates of θ are based on maximizing this likelihood.

Posterior consistency for θ is achieved based both in Equations (4.4) and (4.8) when

N is sufficiently large. Detailed proofs are given in Appendix D.

4.6.2 Consistency of X

The information for each xqn is mainly provided by those ydn for d = 1, . . . , D which

are associated with xqn. For example, in relation to the right panel in Figure 4.1,

x1n is associated with y1n to y4n and x2n is associated with y4n to y6n. Additionally,

the observations in the neighbourhood of the nth observation may also provide some

information due to the dependency of observations.

Let us only consider the special case where θ is given and xn = (x1n, . . . , xQn) is

estimated merely4 from yn = (y1n, . . . , yDn) by maximizing the following likelihood

l(xn) =
D∑

d=1

[log p(ydn|xn)] + log p(xn), (4.26)

where p(xn) ∼ NQ(0, IQ) and p(ydn|xn) is a univariate normal distribution derived

from Equation (4.4) (i.e. its nth element). The first part of Equation (4.26) is the

log-likelihood of the data whereas the second term is related to the prior of the

latent variables. The asymptotic properties of x̂n do not depend on the prior; that

is, as D increases the role of the log-likelihood becomes more dominant over the role

4This will provide a conservative result; as it has been mentioned, xqn could get additional
information for from observations ydn∗ where n∗ are observations in the neighbourhood of n.
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of the prior.

When D is sufficiently large, (y1n, . . . , ydn, . . . , yDn)|xn for d = 1, . . . , D are indepen-

dent observations (although not identically distributed). General regularity condi-

tions from independent observations (see, for example, Lehmann and Casella [1998])

could then be applied in order to study the consistency of x̂n given θ. Asymptoti-

cally, the variance of x̂n will be given by the inverse of the second derivatives, that

is

Var(x̂n) = −
(
∂2l(xn)

∂xnx
ᵀ
n

)−1

= −

(
D∑

d=1

∂2ld(xn)

∂xnx
ᵀ
n

)−1

,

As D → ∞ then Var(x̂n) → 0. In a practical problem, D is limited and therefore

the accuracy of the estimate of x̂n will be approximately determined by the value

of this second order derivative.

In a more general case, given θ, X will be estimated by maximizing Equation (4.10).

As mentioned previously, the accuracy of the estimates will be given by the inverse

of the second derivative of Equation (4.10) with respect to X. These derivatives are

provided in Appendix C.2.

4.6.3 Consistency of the regression function given X

What does it mean that the GPFFA model leads to consistent estimates of the

regression function, fd? Loosely answered, the concept relates to how fd updates as

the sample size increases; if its posterior distribution is consistent then the regression

function will concentrate around its true value, fd,0.

Shi and Choi [2011] discuss this problem widely in the context of the GPR model

when the value of the covariates, xn, is fixed and known. The authors’ Theo-

rem 2.1 provides a proof that almost sure consistency can be achieved for the true

regression function when Q, the dimensionality of the latent variables, is 1; the

consistency achieved for unidimensional covariates can also be achieved for multidi-

mensional cases but further considerations need to be made in order to deal with the

dimensionality problem: (i) either bigger sample sizes are needed (which is not de-

sirable from a practical point of view) or (ii) stronger assumptions for the regression
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function need to be made; for further details see also Choi and Schervish [2007].

In the case of the GPFFA model, a similar proof can be develop by imposing the

additional assumption that x̂n be good estimator of xn. Then, given x̂n

fd(x
(d)
n )|xn ∼ GPRd(0, k(θd);x

(d)
n ),

and hence, a similar outcome in terms of consistency can be achieved for the GPPFA

model when Shi and Choi’s Theorem 2.1 is applied to fd for d = 1, . . . , D.

4.6.4 General consistency theory

In general terms, the problem needs to consider the consistency of fd(·), θ and

X simultaneously. Whereas this is an interesting problem it is considerably more

demanding and will require further development.

4.7 Chapter summary

Current non-linear models dealing with latent variables tend to focus primarily on

prediction while sidestepping model interpretability; while this may be appropriate

in those applications where the latent embedding of the data is not of interest,

in applications of process control it is of particular importance. With physical

interpretability in mind, in this chapter we have introduced and defined a new class

of nonparametric models, the Gaussian process functional factor analysis model. Its

main characteristic is that it allows maps to be built between subsets of the latent

variables and the dependent observations. We have further proposed a method of

estimation for the unknown parameters and also discussed the model asymptotic

properties.

The next natural step is towards model selection. In relation to the right panel of

Figure 4.1, model selection is related to establishing the links (represented pictorially

by arrows) between latent variables and what is observed. In (linear) factor analysis
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a model is normally hypothesized based on theoretical knowledge; then it is all left

to the data to further support (or not) the initial theory. In an engineering setting,

while that approach is still possible, it is generally harder to pursue and a different

methodology will be needed. These and other aspects will be discussed further in

the next chapter.
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Model Selection

In so far as model selection is concerned, there are two main questions that need to

be taken into account:

(i) How many different Gaussian process priors are needed to model the data

appropriately? This is related to the way the output dimensions are grouped

together as briefly discussed in Section 4.2.3. One potential way of doing this

is to use any knowledge that we may have about the system. For instance, if

we had temperatures in a distillation tower or other related equipment, there

are explicit relationships amongst them all arising from physical/chemical laws

and therefore they should all probably be modelled together.

(ii) Once a decision has been made as to how the observations should be grouped,

the second question we face is related to the way the latent variables and their

indicators y(d) are linked together.

This chapter assumes that a decision has been made about (i). Then, an automated

way of letting the data decide about (ii) is sought.

The parameter vector θ is key to any proposal for model selection. In this respect,

two approaches are considered. Firstly, a profile log likelihood can be written by

considering that θ is the vector of parameters of interest and X is a matrix of

nuisance parameters. And, secondly, the latent variables X are to be integrated out

of the joint density of Y and X. Under any of these two scenarios, the resulting
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profile/marginal density will allow the associated likelihood function to be written

as a function of the kernel hyperparameters only, `(θ). If that is feasible, θ can then

be penalized using an appropriate penalty function and both, variable selection and

model parameter estimation could be carried out simultaneously; in this regard,

the theory developed by Yi et al. [2011] for penalized Gaussian processes can be

extended and adapted for the problem at hand.

Before providing any more details, it is worth highlighting what it is required in

order to integrate the latent variables out of the joint density. The starting point is

the marginal distribution of Y given by

p(Y |θ) =
∫
p(Y|X,θ)p(X|θ)dX =

∫
p(Y|X,θ)p(X)dX. (5.1)

Unfortunately the N × Q dimension of X is very large and the calculation of this

integral is not tractable. This problem has similarities to that arising in binary

Gaussian process classification where the latent function needs to be integrated out.

In that specific case several approximations have been provided in the literature;

Kuss and Rasmussen [2005] review and compare the results using a Laplace’s ap-

proximation (LA) with an Expectation-Propagation (EP) algorithm. Their work has

been subsequently extended by Nickisch and Rasmussen [2008] who provide a very

comprehensive review including additional approximations like the Kullback-Leibler

(KL) divergence minimization and Variational Bayes(VB) approaches; all those re-

sults are compared against a gold standard based on a Markov chain Monte Carlo

(MCMC) sampling procedure.

In this chapter, the following three ideas will be developed:

(a) Can a profile log likelihood approach be used to estimate the model parameters

and carry out model selection?

(b) How feasible it is to use a Laplace approximation to solve the numerical inte-

gration problem posed in Equation (5.1).

(c) Can the resulting profile/marginal likelihood be penalized in order to automate

the variable selection problem?
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5.1 Profile log likelihood

As it has been introduced, from a model selection perspective the parameters vector

θ is of central interest whereas the matrix X plays a secondary role; this matrix is

more like a nuisance term. In this respect, the profile log likelihood [Davison, 2003,

chapter 4] for the GPFFA model can be expressed as

`prof(θ) = max
X

`MAP (X,θ) = g(X̂θ,θ), (5.2)

where X̂θ is the maximum likelihood estimate for a known θ and `MAP (X,θ) is

given by Equation (4.9), that is1

g(X,θ) = log p(Y|X,θ) + log p(X|θ). (5.3)

Let us now define x = vec(X) and n∗ = N · Q. The function `prof(θ) can now

be optimized w.r.t the hyperparameters, θ. In order to do that, the derivatives of

`prof(θ) are needed. On the one hand, the derivatives can be obtained numerically;

this is a quick but computationally intensive process as for every hyperparameter,

θj, a numerical optimization must be carried out in order to find the maximum of

g(X,θ).

Alternatively, the derivatives can be worked out analytically. The covariance matrix

K is an explicit function of the hyperparameters but also, implicitly, X̂ is a function

of θ, as when the hyperparameters change, the optimum of g(X,θ) also changes

(see also Rasmussen and Williams [2006, p. 125] for a similar problem). Hence

∂`prof(θ)

∂θj
=
∂g(X,θ)

∂θj

∣∣∣∣
explicit,X̂θ

+

(
∂g(X,θ)

∂x

)ᵀ
∂x

∂θj

∣∣∣∣
implicit,X̂θ

(5.4)

Note that ∂g(X,θ)
∂θj

is given in Appendix C.1 whereas the second term in the previous

expression vanishes as ∂g(X,θ)
∂x = 0 at x = x̂θ.

Finally, by further penalizing `prof(θ), a model selection approach could subsequently

be implemented.

1The change from `MAP to g is only for notational convenience.
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5.2 Laplace approximation

The idea behind the Laplace Approximation is to approximate the non-Gaussian

posterior distribution with a Gaussian approximation which is tractable. Williams

and Barber [1998] and Rasmussen and Williams [2006, Section 3.4] provide further

details as to how the approximation works in a binary Gaussian process classification

problem. In the case of the Gaussian process factor analysis model, we have

p(Y|X,θ) =
D∏

d=1

ϕ(y(d);0,Kd)

being ϕ(y(d);0,Kd) a Gaussian density. Also

p(X) =
N∏
i=1

N (xi|0, IQ) ∝ exp

(
−1

2
trXX

ᵀ
)
.

Now, taking logarithms

`(θ) = log (p(Y |θ)) = log

∫
elog(p(Y|X,θ)p(X|θ))dX = log

∫
elog g(X,θ)dX,

The Laplace approximation requires the first two derivatives of g(X,θ) with respect

to x. The first derivative is given as follows:

∇g(x)n∗×1 =
∂ log (p(Y |X,θ))

∂x
+
∂ log p(X|θ)

∂x
=
∂ log (p(Y |X,θ))

∂x
− x (5.5)

where the elements of the vector
∂ log(p(Y |X,θ))

∂x are as given by Equation (C.6).

Likewise, the n∗ × n∗ Hessian or matrix of second derivatives is given by

∇2g(x)n∗×n∗ =
∂2 log (p(Y |X,θ))

∂x∂xᵀ +
∂2 log p(X|θ)

∂x∂xᵀ

=
∂2 log (p(Y |X,θ))

∂x∂xᵀ − In∗×n∗ . (5.6)

where an element-wise calculation of
∂2 log(p(Y |X,θ))

∂x∂xᵀ can be obtained using Equa-

tion (C.9).
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Therefore, by using the Laplace method the log-likelihood of the marginal distribu-

tion can be approximated as

`(θ) = h(X̂θ,θ) = log

∫
eg(X,θ)dX ≈ N

2
log(2π) + g(X̂θ,θ)−

1

2
log|H| (5.7)

where H = −∇2g(x) and X̂θ is the maximizer of g(X,θ) for a given θ. As g(X,θ)

also depends on θ, in order to compute the previous log-likelihood a two-stage

algorithm is needed:

1. For a given θ, find X̂θ by maximizing g(X,θ), the unnormalized posterior

density of the latent variables.

2. Update θ by maximizing Equation (5.7) given X̂θ.

5.3 Approximation for big sample sizes

For big samples, computation of Equation (5.7) slows considerably not only due

to the increased number of parameters in the model but mainly to the problem of

having to compute the Hessian matrix H and the corresponding determinant. As

discussed in Section 3.2.3 when dealing with the GPLV model, a possible solution

to treat big sample sizes is to use the active set approach; this works by selecting

a subset of the original observations containing as much information as possible in

some statistical sense.

Taking into consideration the discussion in Section 4.6 about posterior consistency,

however, a different approach can also be tried. For a given observation i, the

latent variables xi obtain most of the information from the associated indicators yi.

Therefore, a way of speeding up the calculation would be to partition the available

data set into J smaller subsets, that is

{Y} = {{Y1}, . . . , {Yj}, . . . , {YJ}}

with corresponding latent variables

{X} = {{X1}, . . . , {Xj}, . . . , {XJ}}.
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If we further assume that the subsets {Yj} are independent, then the log marginal

likelihood in Equation (5.7) can be written as

`(θ) =
J∑

j=1

h(X̂j,θ)

≈
J∑

j=1

{
g(X̂j,θ)−

1

2
log|H|

X̂j ,θ

}
. (5.8)

This equation can be used as an alternative to Equation (5.7) to deal with big sample

sizes in order to speed up the calculations.

The model parameters can also be found by using Equation (5.2) directly. As

argued previously, for bigger sample sizes the profile log likelihood calculation can

be rewritten as

`prof(θ) = g(X̂θ,θ) ≈
J∑

j=1

{
g(X̂j,θ)

}
, (5.9)

which will speed up the calculations. While the loss of information is minimal as

shown in Table 5.1, it will be bigger for those observations closer to the end of the

intervals which have been chosen to partition the original sample. Additionally,

note that Equation (5.9) is easier to compute as, unlike Equation (5.7), it does not

require the Hessian.

Finally, as proposed in the previous chapter, X and θ can be estimated jointly. If

the original sample was to be split, the resulting likelihood function could then be

expressed as

`MAP (X,θ) = log p(Y|X,θ) + log p(X|θ)

≈
J∑

j=1

(log p(Yj|Xj,θ) + log p(Xj|θ)) . (5.10)

5.4 Numerical example

The purpose of this example is to compare the parameter estimates (θ and X )

using the following 4 scenarios:
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1. Joint estimation (JL) using Equation (4.9).

2. Estimation using the profile log likelihood (PL), Equation (5.2).

3. Estimation using the profile log likelihood and splitting the sample (PL/split),

Equation (5.9).

4. Estimation using a Laplace approximation where the sample size has been

split (LA/split), Equation (5.8).

Run
Initial solution

Method
Final correlation

corr(x1, x̂1) corr(x2, x̂2) corr(x1, x̂1) corr(x2, x̂2)

1 0.5704 0.5141

JL 0.7267 0.7440

PL 0.8580 0.6980

PL/split 0.7818 0.7574

LA/split 0.5449 0.4826

2 0.6996 0.6462

JL 0.9184 0.7738

PL 0.9922 0.7940

PL/split 0.8208 0.9347

LA/split 0.5781 0.6995

3 0.5459 0.4631

JL 0.7683 0.8290

PL 0.9243 0.9019

PL/split 0.6624 0.8655

LA/split 0.5858 0.4722

4 0.6510 0.5902

JL 0.7362 0.7978

PL 0.7608 0.6850

PL/split 0.7257 0.9793

LA/split 0.4763 0.6492

5 0.5668 0.6072

JL 0.6842 0.9336

PL 0.8785 0.9790

PL/split 0.8866 0.7040

LA/split 0.5036 0.5341

Table 5.1: Comparison of results using 4 different methods to estimate the latent variables.
Method refers to: (JL) - joint estimation, (PL) - profile log likelihood, (PL/split) - profile
log likelihood with split sample and (LA/split) - Laplace approximation with split sample.
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In all cases, the relationship between the latent and their indicator variables is that

portrayed in Figure 4.4, with data generated using Equation (4.18). The sample

size is N = 100 with subsamples of 20 observations for those cases where the sample

size has been split. The results are shown in Table 5.1. As in the previous chapter,

the correlation between the true latent variables and their estimates is reported

as an empirical measure of goodness of fit. Five different data samples have been

generated (runs). The Initial solution refers to the correlation between the true

latent variables and their initial estimates using PCA. Likewise, final correlation

refers to the correlation between the true latent variables and their estimates, once

the optimization procedure converges.

Although this example is limited, the results in Table 5.1 point towards the follow-

ing findings: (1) the final correlations are generally the highest when the profile log

likelihood (PL) is used to make parameter inference; (2) when the profile log likeli-

hood is used but the sample size is partitioned (PL/split), the correlations generally

decrease in relation to the PL method but are comparable to those obtained when

both θ and X are estimated jointly (JL); (3) the final correlations obtained using

the Laplace approximation are the lowest of the four methods.

5.5 Variable selection via penalty functions

Let us assume we have D observations yn = (yn1, . . . , ynD)
ᵀ, for n = 1, . . . , N , and

that each observation yn has been generated by, at most, Q (Q < D) latent variables

xn = (xn1, . . . , xnQ)
ᵀ. If we have an extensive knowledge about the system under

investigation, for instance via a deterministic model, we might be able to establish

the theoretical relationship between the latent and the observational variables; in

other words, we may be able to write ydn = fd(x
(d)
n ), where fd is the unknown

function we are trying to estimate and x
(d)
n is a subset of xn, i.e. x

(d)
n ⊆ xn. We

could then proceed to fit a GPFFA model directly as indicated in Chapter 4.

However, in most of the cases, the physical relationship will be unclear or simply

unknown, and a different procedure is needed in order to establish the link between

the response variables ydn and the latent factors x
(d)
n . In statistical terms, this is a
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variable selection problem.

5.5.1 The base model

The starting point for the model selection problem is a general Gaussian process

latent variable model made up of D-independent Gaussian processes. Implicitly, we

are assuming that that the latent variable dimensionality, Q, is known although it

can be considered a part of the problem. Let us rewrite it as follows

ydn = fd(xn) + εdn, with εdn ∼ N (0, σ2
d) and

fd(x)|x ∼ GPd(0, k(θd);x). (5.11)

θd = [wd1, . . . , wdQ, υ0d, σ
2
d] are the hyperparameters of the covariance function. Let

us also recall k(θd), the covariance function of the Gaussian process prior

cov(yid, yjd) = kd(xi,xj;θd)

= υ0d exp

{
−1

2

Q∑
q=1

wdq (xiq − xjq)
2

}
+ σ2

dδij (5.12)

The key to variable selection, according to this covariance function, are the regression

coefficients wdq; they determine how relevant an input is. The larger the value of wdq

the more relevant the corresponding xiq input is in predicting yid. And conversely,

the smaller the value the more irrelevant the input variable will be [Neal, 1994].

Taking this to the limit, if wdq = 0 simply indicates that xiq and yid are independent.

This is the kind of selective relationship suitable for process monitoring; by setting

to zero some of the regression coefficients, unrelated input variables are eliminated

resulting in an improved model both in terms of interpretability and prediction

accuracy.

The log-likelihood associated with this base model, Equation (5.11), is

`MAP (X,θ;Y) =
D∑

d=1

[
−1

2
log|Kd| −

1

2
tr
(
K−1

d y(d)y(d)
ᵀ)]− 1

2
tr(XX

ᵀ
), (5.13)

and the total number of hyperparameters wdq which are directly related to the latent
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variables is p = D ·Q (excluding σ2
d and υ0d for d = 1, . . . , D). Let us now define A

as the subset of those parameters which are different from zero in the true model,

that is A = {wdq 6= 0}. By defining a GPFFA model, what we are assuming is that

the cardinality of A is |A| = p0 < p. In other words, the true model depends only

on a subset of the predictors.

5.5.2 Penalized GP latent variable model(p-GPLV)

Yi [2009] and Yi et al. [2011] have carried out extensive and successful variable se-

lection studies with GPR models. A similar approach can be applied to the GPLV

model; there is, however, an added complexity in terms of the problem dimensional-

ity as the latent variables are unknown. The idea is to introduce a suitable penalty

in the log likelihood in order to selectively remove those predictors which are ir-

relevant to the response variables. In general terms, the penalized log-likelihood is

defined as [Fan and Li, 2001]

`p = −`(θ;Y) +N
∑
q,d

pλ(wdq) (5.14)

where pλ(wdq) is the penalty term which is allowed to depend on λ, the regularization

or tuning parameter; this, in turn, controls the size of the penalty. N is the sample

size and `(θ;Y) can be the log likelihood derived from the profile/marginal densities.

In recent years, there has been an enormous amount of research activity devoted to

regularization methods and, therefore, quite a large selection of penalty functions

have been proposed. A summary of the most well known penalties is given in

Table 5.2; namely, the Bridge penalty [Frank and Friedman, 1993], the LASSO or

’least absolute shrinkage and selection operator’ [Tibshirani, 1996], the Elastic-net

[Zou and Hastie, 2005], the Ridge [Hoerl and Kennard, 1970], the Adaptive LASSO

[Zou, 2006] and the SCAD or Smoothly Clipped Absolute Deviation Penalty [Fan

and Li, 2001].

The weight parameters associated with the latent variables are non-negative and

therefore |wdq| in any of the penalty functions of Table 5.2 can simply be expressed

as wdq. The column labelled as Singular indicates whether the penalty function
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Name pλ(wdq) Parameters Singular

Bridge λ|wdq|γ λ, 0 < γ < 1 Yes

LASSO λ|wdq| λn Yes

Elastic-net λ
(
(1− α)w2

dq + α|wdq|
)

λ, 0 ≤ α ≤ 1 Yes

Ridge λw2
dq λ No

Adaptive LASSO λβdq|wdq| λ, βdq Yes

SCAD


λwdq if 0 ≤ wdq ≤ λ

−w2
dq−2aλwdq+λ2

2(a−1) if λ < wdq ≤ aλ
(a+1)λ2

2 if wdq > aλ

λ, a Yes

Table 5.2: Penalty functions

can be used as a variable selection tool. The only penalty unsuitable for variable

selection is the Ridge penalty as, although it shrinks the regression coefficients, it is

unable to set them to zero regardless of the value of λ.

To test this numerically, a LASSO-penalized GPLV log-likelihood will be imple-

mented. This function, using the profile log likelihood and the lasso penalty can be

written as follows

`p = −`MAP (θ, X̂θ) +Nλ
∑
q,d

wdq, (5.15)

with λ ≥ 0 being the tuning parameter. As its value increases, the values of wdq will

start shrinking towards zero. As it carries on increasing it will progressively set the

values of those wdq unrelated to the response as zero. In the limit, when λ dominates

the log-likelihood, all the weight parameters will be set to zero. The value of λ is

critical and will need to be chosen adaptively. There is a further complication here

in that conventional approaches (e.g. cross-validation) will not be applicable due

to the latency of the covariates. The emphasis in process monitoring is in having a

good representation of the latent variables. In that respect, the correlation between

the true generating latent variables, x, and those given by the model parameters,

x̂, are a way of choosing λ; how that would work in practice will be shown with a

numerical example.
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5.6 Numerical example

Figure 5.1 shows the path diagram for the true model (in solid black arrows) that

we are considering. There are four variables, D = 4, and two underlying latent

variables, Q = 2.

x1

y2y1

x2

y4y3

W11=1 W21

W41W31W22W12

W42W32=1

Figure 5.1: True model (solid black arrows) and inexistent functional relationships (red
and blue dashed arrows).

The data, N = 100, has been generated with the following equations

y1 = x1 + e1 y3 = x2 + e3

y2 = e(0.7x1) + e2 y4 = 0.7x22 + e4 (5.16)

where x1 ∼ N (0, 1) and x2 ∼ N (3, 2) and the error terms are ed ∼ N (0, σ2
d) such

that σd ∼ U [0, 1] for d = 1, . . . , 4. Note that the mathematical representation of the

true model is

yd = fd(x1) + ed, d = 1, 2;

yd = fd(x2) + ed, d = 3, 4 (5.17)

Hence, in relation to Figure 5.1, both the red and blue dashed arrows are spurious

relationships which we would expect to be removed by penalizing the profile log

likelihood. To model the functional relationships in Equation (5.16) four different

Gaussian process priors have been chosen, one for each output variable.

Parameter identifiability has a bigger impact when a penalty is imposed on the log
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likelihood and some of the model parameters need to be kept fixed2 in order for a

suitable solution to be found. Numerically, a constraint optimization problem is set

up by fixing the values of the parameters governing the variance of the unknown

functions, υ0d, as υ01 = 23.28, υ02 = 1.27, υ03 = 25.01, υ04 = 40.04 as well as setting

w11 = w32 = 1. The values of υ0d were chosen by optimizing first the true model.

λ w12 w21 w22 w31 w41 w42 cor(x1, x̂1) cor(x2, x̂2)

0.00 0.0000 1.6181 0.0068 0.0001 0.0291 0.7183 0.734 0.720

0.05 0.0000 0.5936 0.1761 0.0000 0.0048 0.2461 0.676 0.813

0.10 0.0000 0.3110 0.0058 0.0000 0.0410 0.1724 0.724 0.803

0.50 0.0000 0.1469 0.0000 0.0000 0.0015 0.0893 0.730 0.867

1.00 0.0000 0.0863 0.0000 0.0000 0.0006 0.0571 0.725 0.866

2.00 0.0000 0.0595 0.0000 0.0000 0.0005 0.0344 0.717 0.865

3.00 0.0000 0.0453 0.0000 0.0000 0.0004 0.0252 0.722 0.865

4.00 0.0000 0.0377 0.0000 0.0000 0.0003 0.0200 0.721 0.865

Table 5.3: Penalized profile log likelihood estimates of the weight parameters.

There are two main conclusions that can be drawn in light of the results shown in

Table 5.3:

− As λ increases, all the parameters shrink as expected (apart from σ2
d d =

1, . . . , 4 which have not been penalized - not shown.). As represented in Fig-

ure 5.1, in the true model w12, w22, w31 and w41 are all zero. Note how the

penalty imposed on the log likelihood is successful at detecting those. It is,

however, worth realising that w22 and w41 start with relatively high values and

then shrink towards zero rather quickly. The situation with w12 and w31 is dif-

ferent in the sense that their starting values are very low; this is related both

to Equation (5.16) used to generate the data and the conditions set initially

to solve the constraint optimization. These latter two parameters may need

to be set to zero in other problems for a feasible solution to be found.

− Pragmatically, by looking at the correlations, cor(x1, x̂1) and cor(x2, x̂2), the

most suitable model would be one where λ is between 0.50 and 1.00 as those

values render the bigger correlations. In both cases, as shown in Table 5.3, the

estimates of w12, w22, w31 and w41 are shrunk to zero.

2 This is very much related to the problem discussed in Section 4.5.
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5.7 Chapter summary

Model selection is a complex problem but a very important one for a GPFFA model

to be implemented successfully. Joint inference ofX and θ, as proposed in Chapter 4,

is not suitable for the implementation of a penalized model selection approach.

This chapter has discussed two possible alternatives where the likelihood function

is written as a function of the model hyperparameters only; namely (1) a profile log

likelihood implementation and (2) a Laplace approximation. Whereas parameter

estimation via the profile log likelihood produces results at least comparable to

those obtained with a joint estimation, the results from a Laplace approximation

are rather unsatisfactory and computationally highly demanding (to a large extent,

this is related to the calculation of a Hessian matrix).

Building on the previous findings, the weight parameters (wdq, d = 1, . . . , D and

q = 1, . . . , Q) in the profile log likelihood can be penalized with relative ease. A

LASSO penalty has been used in this thesis, but there are several others that could

also be implemented (see Table 5.2). Numerical results with a relatively simple

example have been produced and appear to be promising despite the latency of the

model covariates. A suitable solution, however, requires of a well defined constrained

optimization problem.

There are several issues that have arisen during the course of the chapter, which

remain open and where further research work should be directed in the future.

These will be further discussed in the following and last chapter which will also

provide a final overview of the work presented in this thesis.
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Conclusions and further work

The main idea behind this thesis was to propose a model which can be used for fault

detection in industrial systems while retaining as much physical interpretability as

possible. In the area of Multivariate Statistical Process Control (MSPC), inter-

pretability not only translates generally into a more parsimonious model but also

into a model where fault diagnosis is easier to perform. Generally, the bigger the

industrial process the bigger the number of variables which need to be considered

from a monitoring perspective. To the limit, when all of the variables in the system

are considered and monitored simultaneously and individually, there are no inter-

pretability issues. This, however, might not be practical for two reasons; namely (1)

there may be far too many variables in the process to take account of and, more im-

portantly, (2) many of those variables will either be duplicated (correlated) or might

simply be irrelevant to our purpose (nuisance variables). An early strategy to deal

with this problem has been to select only those variables which are relevant to the

control purpose, the Principal variables [McCabe, 1984], using statistical principles.

No further issues about fault diagnosis remain as the monitoring is still carried out

on individual variables. On the opposite limit, on the other side of the spectrum,

latent variable models have also been developed in order to construct new variables

which could summarize the variability of the process. The most remarkable cases

are those models built using principal component analysis (PCA). Such has been

their success, that the methodology has not only been used to model linear sys-

tems but also the more predominant non-linear processes. It is in these cases where

112



Chapter 6. Conclusions and further work

fault diagnosis, or interpretability, is the most difficult: each principal component

is a a linear combination of every observation in the system which compounds the

problem of identifying what individual variable(s) are responsible for any potential

departures from expected behaviour.

Halfway between the previous two approaches, this thesis proposes and defines what

we have named as the Gaussian process functional factor analysis (GPFFA) model.

If factor analysis builds linear latent variables which are a combination of a subset

of the variables in the system, the GPFFA model aims to achieve the same goal

while capturing complex non-linear relationships. Fault diagnosis then reduces to

a subset of the original variables which brings, as a result, important interpretabil-

ity gains. This is an unsupervised learning problem in a high dimensional space:

parameters are not only the sought latent variables, the target from a process mon-

itoring perspective, but also the hyperparameters of the Gaussian processes that we

have chosen to model the unknown functional relationships between the latent and

response variables.

6.1 Summary of thesis and main contributions

A summary of what it has been covered in this thesis as well as the main contribu-

tions are better highlighted chapter by chapter:

Chapter 1 provides a review to the topic of fault detection and diagnosis in indus-

trial systems. An outline is also provided as to what statistics are more useful for

monitoring purposes. An example is shown in which a latent variable model is built

using PCA; this is subsequently used in a toy problem. The chapter also illustrates

how Gaussian processes are used in regression problems. Together, the review of

this two areas serves as a platform motivating the rest of the thesis.

Factor analysis (FA) is a model that is heavily used in social sciences disciplines.

Unlike PCA, FA constructs latent variables which are linear combinations of a subset

of the full variable space; this is highly appealing from a process monitoring point

of view. In fact, there is a close relationship between FA and PCA as shown by

Tipping and Bishop [1999]. Chapter 2 proposes two different approaches whereby
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this model can be used as an alternative to PCA in linear systems; namely (1)

combining exploratory factor analysis (EFA) with an orthogonal rotation such as

VARIMAX in order to produce a simpler structure in the loading matrix; and (2)

using confirmatory factor analysis (CFA) directly. This second alternative requires

more theoretical knowledge about the system under investigation which might not

be the case when a decision has been made to use a data-based approach to monitor

the process. An example is also provided showing how this methodology could be

used in practice. FA is a linear model-based approach: an iterative optimization

must be carried out in order to minimize a target function which is based on the

assumed model for the data. This is important because any non-linear relationships

between the variables will not be reflected in the sample covariance matrix and

therefore will not be modelled correctly.

The Gaussian process latent variable (GPLV) model [Lawrence, 2005] is discussed in

Chapter 3. PCA is to linear systems as the GPLV model is to non-linear processes.

This thesis argues that if the model is to be used successfully to monitor industrial

systems, it will require two auxiliary models: firstly, a model is needed to map

the observations into the latent space; and, secondly, an additional model is then

required to map the scores back from the latent space into the original space. We

propose this in Serradilla et al. [2011] where examples of the methodology applied

to real data are also provided.

A natural extension of the linear FA approach and the GPLV methodology leads,

in Chapter 4, to the Gaussian process functional factor analysis (GPFFA) model.

A full model description is provided and inference, based on a joint optimization of

the model parameters, is discussed at length. Several examples, building in com-

plexity, are also explored; given the high dimensionality of the problem1, the model

does remarkably well in uncovering the hidden latent variables in our simulations.

Conditions for asymptotic posterior consistency of the model parameters are also

examined in this chapter.

Finally, in Chapter 5, the focus is turned towards model selection. This topic is

complex in nature; more so in the case of the GPFFA model where the latency

of the input variables makes the process computationally expensive as discussed in

1The total number of model parameters is D(Q+ 2) +NQ where D is the number of observed
variables, Q the number of latent variables and N the sample size.
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Section 5.3. Expressions are given both, for a marginal likelihood where the latent

variables are integrated out using a Laplace approximation and for a profile log

likelihood; both could be used as a alternative to the joint estimation of the model

parameters proposed in Chapter 3. An approximation for big sample sizes is also

developed. Based on the successful implementation of Yi et al. [2011] with Gaussian

process regression problems, a penalized approach for the profile log likelihood is

proposed as a way to carry out model selection.

6.2 Future research work

The introduction of the GPFFA model is a wholly new research area both in Statis-

tics and Machine Learning. As such, there are several topics where further research

should be warranted and where more results would help with model consolidation.

Algorithm speed is an important consideration with GPR models, where speed and

efficiency are dictated by the need to invert a large sample covariance matrix. This

is even more important with the GPFFA model, where several Gaussian process pri-

ors are combined together and where the input variables are latent. While several

inference procedures have been proposed in this thesis, further work should include

investigating other methods. For instance, in binary Gaussian process classifica-

tion Nickisch and Rasmussen [2008] argue that the Expectation-Propagation (EP)

algorithm is almost always the method of preference to determine the marginal log

likelihood. It would be of interest to use the EP algorithm in the context of the

GPFFA model.

Further research into the topics of asymptotic theory and model identifiability is also

of interest. More specifically, this should result in a general consistency theory for

the unknown regression function, fd(·), θ and X as well as a formal set of conditions

to ensure that model parameters are identifiable under any set of circumstances.

Finally, from a model selection perspective, bigger and more complex simulations

studies will help harness the applicability of the model not only in the field of process

monitoring but also into other areas of science.
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Mathematical miscellanea

A.1 Simulation from a multivariate normal dis-

tribution

Simulation of a full realisation of a GP is not possible. We can, however, sample

the GP at a finite set of points where the function is defined. It suffices that we are

able to sample from a multivariate normal distribution:

1. Set n, the number of points where the function is defined. Then

f(X) ∼ N n(µ,Σ = k(X,X)).

2. Calculate the n× n covariance matrix, Σ = k(X,X).

3. Compute the square root of Σ, for instance, by computing the Cholesky de-

composition 1:

R
ᵀ
R = Σ, where R is an upper triangular matrix

1Or, alternatively, we could use the spectral decomposition, i.e. Σ
1
2 = UΛ

1
2Uᵀ, where U

is an orthogonal matrix with the eigenvectors of Σ and Λ is a diagonal matrix with its leading
eigenvalues. However, the Cholesky factor should be used when possible as it is numerically very
stable and faster than alternative methods [Press et al., 2007, Section 2.9].
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4. Then f(X) = Rᵀz + µ, z ∼ N n(0, I).

5. This works as f(X) is a linear combination of normal variables and

E[f(X)] = E[R
ᵀ
z + µ] = µ,

Var[f(X)] = Var[R
ᵀ
z + µ] = R

ᵀ
IR = Σ.

A.2 Gaussian identities

When working out the marginal distribution involving Gaussian distributions only,

the following result is useful. Given the following conditional distribution

p(y|f , σ2) = N (A1f ,C1),

such that the prior distribution of f is

p(f |θ) = N (0,C2).

Then, as shown by Lindley and Smith [1972], the marginal density of y is given by

p(y) =

∫
p(y|f , σ2)p(f |θ) df = N

(
0,C1 +A1C2A

ᵀ
1

)
. (A.1)

A.3 Matrix derivatives

Suppose that K is a N×N matrix whose elements are a function of θ. The following

derivatives are useful and are used throughout this thesis [Rasmussen and Williams,

2006, p. 202]
∂

∂θ
K−1 = −K−1∂K

∂θ
K−1, (A.2)

and if K is a positive definite symmetric matrix (like a variance-covariance matrix)

then the derivative of the log determinant is given by

∂

∂θ
log|K| = tr

(
K−1∂K

∂θ

)
. (A.3)
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Optimisation miscellanea

B.1 Optimising a Gaussian process

To re-state the result given in Equation (1.15), the marginal log-likelihood of the

Gaussian process regression model is given by

`(θ|D) = −N
2
log(2π)− 1

2
log|Ky| −

1

2
y
ᵀ
K−1

y y, (B.1)

where Ky = K + σ2I is the covariance matrix for the noisy observations, y. Using

the matrix identities in Appendix A.3, the gradient of the marginal log-likelihood

w.r.t. the hyperparameters are

∂`(θ)

∂θj
= −1

2
tr

(
K−1

y

∂Ky

∂θj

)
+

1

2

(
y
ᵀ
K−1

y

∂Ky

∂θj
K−1

y y

)
=

1

2
tr

(
(αα

ᵀ −K−1
y )

∂Ky

∂θj

)
where α = K−1

y y. (B.2)

The maximum a posteriori (MAP) of the parameters, θ̂, can be calculated as

θ̂ : argmin
θ

−`(θ|D). (B.3)
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Optimisation can be carried out by evaluating Equations (B.2), (B.1) and (B.6)

in conjunction with a non-linear minimiser. The main burden in computing the

expressions above is dominated by the need to invert Ky and therefore gradient

based optimisers are preferred as argued by Rasmussen and Williams [2006, Section

5.4].

B.1.1 Kernel derivatives

The central calculation in Equation (B.2) is the derivative of the kernel with respect

to each hyperparameter i.e., ∂Ky

∂θj
. Let us now assume that the bias term bo in the

covariance function, Equation (1.9), is zero1 and re-write it as

k(xi,xj;θ) = υo exp

{
−1

2

Q∑
q=1

wq(xiq − xjq)
2

}

= υo exp

{
−1

2

Q∑
q=1

wqd
2
q,jq

}
, (B.4)

where d2q,ij = (xiq − xjq)
2 is simply the squared euclidean distance between xi and

xj along the q dimension. Let us also define Dq =
(
d2q,ij

)
, i.e. the N ×N matrix of

squared euclidean distances only along the q dimension.

Now, every
(

∂Ky

∂θj

)
is an N ×N matrix given as follows:

(
∂Ky

∂υo

)
=

1

υo
K,(

∂Ky

∂wq

)
=

(
−1

2

)
Dq �K, (B.5)(

∂Ky

∂σ2

)
= I.

In the previous expressions I is the N -dimensional identity matrix, � represents

the Hadamard (element-wise) product and K represents the noise-free covariance

matrix.

1This is only done for clarity as it simplifies the final form of the gradients.
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A further constraint in the GPR model is that all the elements of θ must be positive.

In order to achieve that, it is better to reparametrize and carry out the optimization

in the log-space, i.e.

log θ = (logw1, . . . , logwd, log υo, log σ
2).

That can be easily achieved combining the gradients in Equation (B.5) with the

chain rule, that is
∂Ky

∂ log θj
=
∂Ky

∂θj

∂ e(log θj)

∂ log θj
=
∂Ky

∂θj
θj. (B.6)

B.1.2 Second derivatives

The second partial derivative of the marginal log-likelihood, Equation (B.1), w.r.t.

the hyperparameters is given as

∂

∂θi

[
∂`(θ)

∂θj

]
=

1

2
tr

[(
αα

ᵀ −K−1
)( ∂2K

∂θiθj
−Aij

)
−αα

ᵀ
Aji

]
, (B.7)

where Aij =
∂K
∂θi

K−1 ∂K
∂θj

and α = K−1y.
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The proof is rather lengthy but it is shown below for completeness

∂

∂θi

[
∂`(θ)

∂θj

]
= −1

2
tr

(
∂K−1

y

∂θi

∂Ky

∂θj
+K−1

y

∂2Ky

∂θiθj

)
+

1

2

(
y
ᵀ∂K

−1
y

∂θi

∂Ky

∂θj
K−1

y y

)
+

1

2

(
y
ᵀ
K−1

y

∂2Ky

∂θiθj
K−1

y y + y
ᵀ
K−1

y

∂Ky

∂θj

∂K−1
y

∂θi
y

)
=

1

2
tr

(
K−1

y

∂Ky

∂θi
K−1

y

∂Ky

∂θj
−K−1

y

∂2Ky

∂θiθj

)
− 1

2

(
y
ᵀ
K−1

y

∂Ky

∂θi
K−1

y

∂Ky

∂θj
K−1

y y

)
+

1

2

(
y
ᵀ
K−1

y

∂2Ky

∂θiθj
K−1

y y − y
ᵀ
K−1

y

∂Ky

∂θj
K−1

y

∂Ky

∂θi
K−1

y y

)
=

1

2
tr

(
K−1

y

∂Ky

∂θi
K−1

y

∂Ky

∂θj
−K−1

y

∂2Ky

∂θiθj

)
− 1

2

(
α

ᵀ∂Ky

∂θi
K−1

y

∂Ky

∂θj
α−α

ᵀ∂
2Ky

∂θiθj
α+α

ᵀ∂Ky

∂θj
K−1

y

∂Ky

∂θi
α

)
=

1

2
tr

(
K−1

y

∂Ky

∂θi
K−1

y

∂Ky

∂θj
−K−1

y

∂2Ky

∂θiθj

)
− 1

2

(
α

ᵀ
[
∂Ky

∂θi
K−1

y

∂Ky

∂θj
− ∂2Ky

∂θiθj
+
∂Ky

∂θj
K−1

y

∂Ky

∂θi

]
α

)
=

1

2
tr

(
K−1

y Aij −K−1
y

∂2Ky

∂θiθj

)
− 1

2
tr

(
αα

ᵀ
[
Aij +Aji −

∂2Ky

∂θiθj

])
=

1

2
tr

[(
K−1

y −αα
ᵀ)(

Aij −
∂2Ky

∂θiθj

)
−αα

ᵀ
Aji

]
.
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B.2 Optimising the GPLV model

B.2.1 Learning algorithm

The log-likelihood of the GPLVM, Equation (3.4), is the product of D-independent

GPR models. Model fitting or learning is carried out by maximizing that cost

function with respect to X and θ. This optimisation will produce the Empirical

Bayes estimate of the parameters; however, due to the log-likelihood being non-

convex, the algorithm suffers from local optima. As it is common in those cases,

we randomly start the algorithm at different points and select the solution with the

highest likelihood.

Among the array of non-linear optimisers that can be used, conjugate gradient meth-

ods [Nocedal and Wright, 2006, Section 5.2] have been the suggested choice in the

numerical analysis community when dealing with these specific problems. In broad

terms, the conjugate gradient method with line search (CGL) works by iteratively

computing search directions which are conjugate with respect the Hessian matrix

(or an approximation thereof). Once the search direction has been found, a unidi-

mensional line search with respect to the step size is carried out along the conjugate

direction in order to determine a new approximation to the local minimum of the

objective function. Note that conjugate gradient methods avoid having to calculate

the Hessian matrix. Rasmussen [1996] uses the Polak and Ribière [1969] version of

the CGL in the context of neural networks training and Gaussian process regression.

Yi [2009] uses the same procedure in the context of penalised Gaussian processes.

In the specific area of Gaussian process latent variable models, Lawrence [2005] uses

the scaled conjugate gradient (SCG) method proposed by Møller [1993]. This is also

the optimiser used in this thesis for both the GPLV and GPFFA models. Without

trying to offer a rigorous analysis of the performance of the different optimisation

procedures, Møller’s method presents several advantages over the CGL, namely

(a) It does not require of any user-dependent parameters which are critical for the

method successful performance.

(b) It avoids the line search step altogether by computing a finite differences ap-
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proximation to the Hessian matrix. It is worth noting that line searches will be

costly as they will require possibly several function evaluations each of which

makes use of the inverse of the kernel matrix.

(c) The positive-definiteness of the Hessian is controlled by using a scale parameter

at each point. Both, the approximate Hessian and the scale parameter are sub-

sequently used to compute the step size. The scale parameter is approximately

inversely proportional to the step size so large scale parameters will correspond

to small step sizes.

(d) I use the SCG implementation of Nabney [2002] which uses the Polak and Ribière

[1969] formulae to update the search direction at every iteration.

An alternative solution to the Empirical Bayes estimate can be found by using a

Markov Chain Monte Carlo algorithm. Full implementation details are given by Shi

and Choi [2011, Section 8.2].

B.2.2 GPLV model derivatives

Training of the GPLV model requires the maximization of the log-likelihood function

given by Equation (3.4). The analytical derivatives of this function with respect to

the latent positions, X, and the GP regression model parameters, θ, are also needed

for the SCG optimizer. Note that we refer to every element of θ as θj.

These gradients can be calculated using the chain rule as follows

∂`(X,θ; Y)

∂xiq
= tr

[(
∂`

∂Ky

)ᵀ(
∂Ky

∂xiq

)]
∂`(X,θ; Y)

∂θj
= tr

[(
∂`

∂Ky

)ᵀ(
∂Ky

∂θj

)]
(B.8)

The common derivative, i.e. the N ×N gradient of the log-likelihood with respect

to the kernel matrix, is independent of the chosen covariance function and is given

by (
∂`

∂Ky

)
= −D

2
K−1

y +
1

2
K−1

y YY
ᵀ
K−1

y (B.9)
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Hyperparameters derivatives

The kernel matrix Ky is a function of θ as shown by Equation (1.11). Simula-

tions using the GPLVM use a simplified version of the covariance function given by

Equation (1.9) in which all of the variable weights are assumed to be equal, that is

w1 = . . . = wD = γ. With this in mind, the kernel function can be written as

k(xi,xj;θ) = υo exp

{
−1

2

Q∑
q=1

γ(xiq − xjq)
2

}

= υo exp

{
−1

2
γd2ij

}
(B.10)

where d2ij =
∑Q

q=1 (xiq − xjq)
2 is simply the squared euclidean distance between xi

and xj. Let us also define D =
(
d2ij
)
, i.e. the N × N matrix of squared euclidean

distances.

Every
(

∂Ky

∂θj

)
is an N ×N matrix given as follows:

(
∂Ky

∂υo

)
=

1

ν0
K(

∂Ky

∂γ

)
=

(
−1

2

)
D�K(

∂Ky

∂σ2

)
= I (B.11)

where I is the N -dimensional identity matrix and � represents the Hadamard

(element-wise) product.

As it is the case with GPR models, a further constraint in the GPLV model is that

all the elements of θ must be positive and therefore optimisation is best done in the

log-space, Equation (B.6).
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Latent positions derivatives

Finally
(

∂Ky

∂xiq

)
is a N × N symmetric matrix of all zeros but the ith row/column.

The elements of this row/column are given by

(
∂Ky

∂xiq

)
i

= −γ


(xiq − x1q)k(x1,xi)

(xiq − x2q)k(x2,xi)
...

(xiq − xNq)k(xN ,xi)


where, notationally, the subscript i in the right hand-side of the equation is included

to refer only to the elements in the ith row/column of the gradient matrix.

Furthermore, there is an extra term in Equation (3.4) which is independent of the

kernel matrix, 1
2
tr(XXᵀ). As

(
∂
∂X

tr(XᵀX)
)
= 2X it finally follows that(

∂`(X,θ; Y)

∂X

)
MAP

=

(
∂`(X,θ; Y)

∂X

)
−X (B.12)
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B.2.3 MAP projection gradients

The first derivatives of the log-likelihood, Equation (3.8), with respect the new latent

variables can be found by applying the chain rule as

∂`(xj;yj,X,θ)

∂xjq
=

[(
∂`

∂kj

)ᵀ(
∂kj

∂xjq

)]
.

(B.13)

Let us first re-express the log-likelihood as

`(xj;yj,X,θ) = −D
2
log(s2j)

− 1

2(s2j)
(yj − ŷj)

ᵀ
(yj − ŷj)

= −D
2
log(s2j)−

1

2(s2j)
e
ᵀ
jej.

where ej = yj − ŷj. Therefore(
∂`

∂kj

)
=

(
D

2

)
1

(s2j)

(
2K−1

y kj

)
− 1

2(s2j)
2

[
−2K−1

y Yej(s
2
j)− e

ᵀ
jej(−2K−1

y kj)
]

=
DK−1

y kj

s2j
+

K−1
y Yej

s2j
−

eᵀ
jejK

−1
y kj

(s2j)
2

and (
∂`

∂kj

)ᵀ

=
Dk

ᵀ
jK

−1 + eᵀ
jY

ᵀK−1

s2j
−

eᵀ
jejk

ᵀ
jK

−1

(s2j)
2

.

Finally
(

∂kj

∂xjq

)
is the following N × 1 vector

(
∂kj

∂xjq

)
= −γ


(xjq − x1q)k(x1,xj)

(xjq − x2q)k(x2,xj)
...

(xjq − xNq)k(xN ,xj)


.

And, as ∂
∂xj

(
1
2
xᵀ
jxj

)
= xj, we finally have the gradient of Equation (3.9) with
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respect to xj as(
∂`(xj;yj,X,θ)

∂xj

)
MAP

=

(
∂`(xj;yj,X,θ)

∂xj

)
− xj.
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GPFFA model gradients

The covariance matrix of the GPFFA model is given by

(Kd)ij = cov(yid, yjd) = (Kd,f )ij + σ2
d = kd(x

(d)
i ,x

(d)
j ;θd) + σ2

d (C.1)

where kd(x
(d)
i ,x

(d)
j ;θd) is given by Equation (4.3) and written as a function of the

indicator variable vector, id. While the derivatives of this kernel matrix with respect

to the model hyperparameters and the latent variables are related to those developed

for the GPLVM in Appendix B.2, there are some important differences.

C.1 GPFFA model: first derivatives

Let θkj denote any of the model hyperparameters (for k = 1, . . . , D and j =

1, . . . , Q + 2). The gradients of the log-likelihood in the log-space can be calcu-
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lated by applying the chain rule as follows

∂

∂ log θkj
`MAP (X,θ; Y) =

D∑
d=1

{
∂

∂ log θkj
`d(X,θd;y(d))

}

= tr

[
D∑

d=1

{(
∂`d
∂Kd

)ᵀ(
∂Kd

∂θkj

)
θkj

}]

= tr

[(
∂`k
∂Kk

)ᵀ(
∂Kk

∂θkj

)
θkj

]
, (C.2)

as
(

∂Kd

∂θkj

)
= 0 for all d 6= k and

(
∂Kd

∂ log θdj

)
=
(

∂Kd

∂θdj

)
θdj.

Whereas the derivative of the log-likelihood with respect to the kernel matrix, which

is kernel-independent, is given by(
∂`d
∂Kd

)
= −1

2

∂

∂Kd

log|Kd| −
1

2

∂

∂Kd

tr(K−1
d y(d)y

ᵀ
(d))

= −1

2

(
K−1

d

)ᵀ
+

1

2

(
K−1

d y(d)y
ᵀ
(d)K

−1
d

)ᵀ
. (C.3)

In the case where we have G groups (G < D), that is some of the yd’s are assumed

to be generated by independent and identically distributed GPR models, the log-

likelihood will be given by Equation (4.12) and hence(
∂`g
∂Kg

)
= −ng

2

(
K−1

g

)ᵀ
+

1

2

(
K−1

g Y(g)Y(g)ᵀK−1
g

)ᵀ
. (C.4)

In contrast with the derivatives with respect to the hyperparameters, the latent

variables xij enter the log-likelihood through severalKd and therefore, the derivative

will still be the sum of D terms, that is

∂`MAP (X,θ; Y)

∂xij
=

D∑
d=1

{
∂

∂xij
`d(X,θd;y(d))

}

= tr

[
D∑

d=1

{(
∂`d
∂Kd

)ᵀ(
∂Kd

∂xij

)}]
− xij. (C.5)
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Combining the previous result with Equation (C.3) leads to

∂`MAP (X,θ; Y)

∂xij
= tr

[
D∑

d=1

{(
∂`d
∂Kd

)ᵀ(
∂Kd

∂xij

)}]
− xij

= tr

[
D∑

d=1

{
1

2

(
K−1

d y(d)y
ᵀ
(d)K

−1
d −K−1

d

)(∂Kd

∂xij

)}]
− xij

=
D∑

d=1

[
1

2
tr

((
αdα

ᵀ
d −K−1

d

) ∂Kd

∂xij

)]
− xij (C.6)

where αd = K−1
d y(d). To complete the calculation, both the derivatives

(
∂Kd

∂θdj

)
and(

∂Kd

∂xij

)
are also needed. Their calculation is shown in the next subsections.

Hyperparameters derivatives

The hyperparameters enter the log-likelihood function, Equation (4.9), through the

kernel covariance matrix as θd = [υd0, wd1, . . . , wdQ, σ
2
d].

The derivatives
(

∂Kd

∂θdj

)
are N ×N dimensional and are as follows

(
∂Kd

∂υd0

)
=

1

υd0
Kd,f(

∂Kd

∂σ2
d

)
= IN(

∂Kd

∂wdq

)
= −1

2
Ddq �Kd,f (C.7)

where � represents the Hadamard (element-wise) product and Ddq is also an N×N
matrix whose ijth element is given by idq(xiq − xjq)

2.
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Latent variables derivatives

(
∂Kd

∂xiq

)
is an N ×N sparse matrix of all zeros but the ith row and column; the (i, i)th

position is also zero, that is

(
∂Kd

∂xiq

)
=



· · · ∗ · · ·
cit

0 ∗ 0
∗ cit 0 ∗ ∗ ∗

∗

0 ∗ 0


(C.8)

The elements cit of the i
th row/column are given by

cit =

(
∂Kd(i, t)

∂xiq

)
= −idqwdq(xiq − xtq)kd,f (x

(d)
i ,x

(d)
t )

where kd,f (x
(d)
i ,x

(d)
t ) = υ

(d)
0 exp

{
−1

2

∑Q
q=1 idqwdq (xiq − xtq)

2
}
is the functional part

of the kernel covariance function.

Given the special structure of
(

∂Kd

∂xiq

)
, the trace calculation in Equation (C.6) simpli-

fies somewhat. Let us see that with a specific example how to calculate tr(AB). The

matrices A and B are symmetric and the latter is also sparse as already discussed.

Then,

tr





a11 a12 a13 · · · a1N

a21 a22 a23 · · · a2N

a31 a32 a33 · · · a3N
...

...
...

aN1 aN2 aN3 · · · aNN





0 0 b1 · · · 0

0 0 b2 · · · 0

b1 b2 0 · · · bN
...

...
...

0 0 bN · · · 0




= a13b1 + a23b2 + (a31b1 + a32b2 + 0 + . . .+ a3NbN) + . . .+ aN3bN

= (a13 + a31)b1 + (a23 + a32)b2 + 0 + . . .+ (a3N + aN3)bN

= 2(a13b1 + a23b2 + 0 + . . .+ a3NbN)
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C.2 GPFFA model: second derivatives

The second derivatives are considerably more involved. The calculations are as

follows

∂2`MAP

∂xjk∂xiq
=

D∑
d=1

[
1

2
tr

((
αdα

ᵀ
d −K−1

d

)( ∂2Kd

∂xjkxiq
−A

(d)
jk,iq

)
−αdα

ᵀ
dA

(d)
iq,jk

)]
− δijδqk (C.9)

where A
(d)
jk,iq =

∂Kd

∂xjk
K−1

d
∂Kd

∂xiq
. Note that i, j = 1, . . . , N and q, k = 1, . . . , Q.

Calculation of tr
(
1
2

(
αdα

ᵀ
d −K−1

d

) (
∂2Kd

∂xjkxiq

))
For i = j and for the cases where q = k or q 6= k (i.e main and minor diagonal ele-

ments), note that the matrix ∂2Kd

∂xjkxiq
has the same special structure as Equation (C.8)

and therefore the calculation simplifies in the same way.

For i 6= j and for the cases where q = k or q 6= k (i.e off-diagonal elements), note that

the matrix ∂2Kd

∂xjkxiq
has the same special structure as Equation (C.8) and therefore

the calculation simplifies in the same way.

Kernel matrix second derivatives

For the case of the second derivatives of the kernel there are 4 possible situations to

consider

q = k q 6= k

i = j
(

∂2Kd(i,j)

∂xiq
2

)
∂

∂xik

(
∂Kd(i,j)

∂xiq

)
i 6= j ∂

∂xjq

(
∂Kd(i,j)

∂xiq

)
∂

∂xjk

(
∂Kd(i,j)

∂xiq

)
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When i = j and q = k (DIAGONAL ELEMENTS)

The matrix of second derivates has the same form as Equation (C.8) but with

elements given by

∂

∂xiq
cit =

∂

∂xiq

(
∂Kd(i, j)

∂xiq

)
=



· · · ∗ · · ·
∂

∂xiq
cit

0 ∗ 0
∗ ∂

∂xiq
cit 0 ∗ ∗ ∗

∗

0 ∗ 0


where the non-zero elements of the matrix are given by

∂

∂xiq
cit = −idqwdqkd,f (x

(d)
i ,x

(d)
t )
(
1− idqwdq(xiq − xtq)

2
)

When i = j and q 6= k (MINOR DIAGONAL)

As before, the matrix of second derivates has the same form as Equation (C.8) but

with elements given by

∂

∂xik
cit =

∂

∂xik

(
∂Kd(i, j)

∂xiq

)
=



· · · ∗ · · ·
∂

∂xik
cit

0 ∗ 0
∗ ∂

∂xik
cit 0 ∗ ∗ ∗

∗

0 ∗ 0


where the non-zero elements of the matrix are given by

∂

∂xik
cit =

[
idqwdq(xiq − xtq)kd,f (x

(d)
i ,x

(d)
t )
]
[idkwdk(xik − xtk)]
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When i 6= j and q = k

The matrix of second derivates only has the (i, j)th and (j, i)th positions different

from zero (i.e. only the ith element in both the jth row/column are non-zero)

∂

∂xjk

(
∂Kd(i, j)

∂xiq

)
=



· · · 0 · · ·
∗

0 0 0
0 ∗ 0 0 0 0

0

0 0 0


where the non-zero elements of the matrix are given by(

∂Kd(i, j)

∂xjq∂xiq

)
= idqwdqkd,f (x

(d)
i ,x

(d)
j )− i2dqw

2
dq(xiq − xjq)

2kd,f (x
(d)
i ,x

(d)
j )

= idqwdqkd,f (x
(d)
i ,x

(d)
j )
(
1− idqwdq(xiq − xjq)

2
)

Note that the difference with the case where i = j is a minus sign.

When i 6= j and q 6= k

As before, there only two elements that are non-zeros and are given by(
∂Kd(i, j)

∂xjk∂xiq

)
= −

[
idqwdq(xiq − xjq)kd,f (x

(d)
i ,x

(d)
j )
]
[idkwdk(xik − xjk)]

where, again, there is a minus sign difference with regards to the case i = j.

Notes about computation

1. The derivatives of the kernel Kd with respect to the latent variables are all

N × N matrices; in total there are n∗ = N · Q of them. They all are sparse
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matrices made up by only one non-zero vector (either the row or the column

- they are the same). Therefore all these derivates can be stored in an n∗ ×N

super-matrix where each row is the non-zero vector of derivatives extracted

from
(

∂Kd(i,j)
∂xiq

)
.

2. The Hessian has N(N+1)
2

distinct elements and N(N−1)
2

non-distinct elements.

The distinct elements can be stored in an upper (-lower) triangular matrix, L,

and the symmetric Hessian can then be returned as B = L+ Lᵀ − diag(L).

3. When computing the trace, there is a considerable difference in speed if

(a) tr(A ·B) - not very efficient calculation.

(b) sum(sum(Aᵀ ·B), 2) - efficient.

(c) vec(Aᵀ)ᵀ · vec(B) - efficient.
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Asymptotic results

The observations (yd1, . . . , ydN) of the GPFFA model are neither independent nor

identically distributed. Regularity conditions for cases covering independent obser-

vations (see, e.g., Lehmann and Casella [1998]) are therefore not applicable here.

D.1 Posterior consistency

Firstly, regularity conditions and the resulting consistency theorems of the maximum

likelihood estimator when the likelihood is based on dependent observations, as

formulated in Basawa and Prakasa Rao [1980], are discussed. This derivation also

builds on that given by Shi and Choi [2011, App. (A.6)].

Let Y n = (Y1, . . . , Yn), n ≥ 1 be a sequence of random samples with density

p(yn; θ) = p(y1, . . . , yn; θ). Also let θ0 be the true value of θ. Let us define the

conditional density

pk(θ) = p(yk; θ)/p(yk−1; θ)

for every k ≥ 1. Assume that the function pk(θ) is twice differentiable with respect

to θ for all θ in a neighbourhood I of θ0 and all yk. Further assume that the support

of p(yn; θ) is independent of θ ∈ I. Define φk(θ) = log pk(θ) and let φ̇k(θ) be the p×1

vector whose ith component is φ̇k,i =
∂
∂θi
φk(θ) and φ̈k(θ) be the p× p matrix whose

136



Appendix D. Asymptotic results

(ij)th component is φ̈k,i,j = ∂2

∂θi∂θj
φk(θ). For simplicity, we formulate the regularity

conditions for the one-dimensional case. Denote

Uk(θ) = φ̇k(θ), Vk(θ) = φ̈k, Uk = Uk(θ0), Vk = Vk(θ0).

Let Ln(θ) = log p(yn; θ). Let Fn be the σ-field generated by Yj, 1 ≤ j ≤ n and F0

be the trivial σ-field. Assume that the following conditions are satisfied:

(C1) φk(θ) is thrice differentiable with respect to θ for all θ ∈ I. LetWk(θ) =
...
φ k(θ)

be the third derivative of φk(θ) with respect to θ.

(C2) Double differentiation of p(yn; θ) with respect to θ under the integral sign is

permitted for θ ∈ I in
∫
p(yn; θ)dµn(yn).

(C3) E|Vk| <∞, E|Zk| <∞ where Zk = Vk + U2
k .

Let us define the random variables ik(θ0) = Var[Uk|Fk−1] = E[U2
k |Fk−1] and In(θ0) =∑n

k=1 ik(θ0). Let Sn =
∑n

i=1 Uk and S∗
n =

∑n
i=1 Vk + In(θ0).

In addition to (C1)–(C3), assume that the following condition holds.

(C4) There exists a sequence of constants K(n) → ∞ as n→ ∞ such that

(i) {K(n)}−1Sn
p→ 0.

(ii) {K(n)}−1S∗
n

p→ 0.

(iii) There exists a(θ0) > 0 such that for every ε > 0 P [{K(n)}−1In(θ0) ≥
2a(θ0)] ≥ 1− ε for all n ≥ N(ε), and

(iv) {K(n)}−1
∑n

k=1 E|Wk(θ)| < M <∞ for all θ ∈ I and for all n.

Lemma 1. Basawa and Prakasa Rao [1980, Theorem 2.1, p. 121] Under regularity

conditions (C1)–(C4) in this section, the likelihood equation has a root θ̂n with Pθ0-

probability1 approaching 1 that is consistent for θ0 as n→ ∞.

Assume now that we have observed a set of data yi, i = 1, . . . , N . The Gaussian

process regression model has been defined in Equation (1.8); let us recall it (with a

1In other words, this is convergence in probability : limn→∞ P (|θ̂n − θ0| ≤ ε) → 1 ∀ ε > 0.
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slight change of notation)

yi|fi ∼ g(fi) independently, and (D.1)

f = (f1, . . . , fn)
ᵀ ∼ GP(0, k(·, ·;θ)) or f ∼ N(0,K), (D.2)

where the (i, j)th element ofK is given by the covariance kernel k(xi,xj;θ). When yi

is assumed to have a normal distribution, g(fi) is the density of a normal distribution.

For the above GPR model, the marginal distribution of y is still normal

y|θ ∼ NN(0,C
θ
N×N). (D.3)

where C = K + σ2I and the marginal log-likelihood of the hyperparameters, θ, is

given by

ln(θ) = log p(D|θ) = −1

2
log |CN×N(θ)| −

1

2
y
ᵀ
CN×N(θ)

−1y − N

2
log 2π. (D.4)

The empirical Bayesian approach chooses the value of θ which maximises the above

marginal log-likelihood.

Corollary 1. Under regularity conditions (C1)–(C4) in this section, the likelihood

equation in (D.4) has a root θ̂n with Pθ0-probability approaching 1 which is consistent

for θ0 as n→ ∞. In addition, there exists a sequence rn such that rn → ∞ as n→ ∞
and

r−1
n l′n(θ) = Op(1) and ‖θ̂n − θ0‖ = Op(r

−1
n ). (D.5)

Proof of Lemma 1. Notice that as in Equation (D.3), the marginal distribution of

Y n = (Y1, . . . , Yn)
T , n ≥ 1 has a multivariate normal distribution N n(0n,C

θ
n×n).

Additionally, also note that Yk has a non-singular N k(0k,C
θ
k×k) distribution. Thus,

from the standard theory of multivariate normal distribution, pk(θ), the conditional

probability density of Yk given Yk−1 is also a normal density with mean mk(θ) and

variance vk(θ), where mk(θ) and vk(θ) are some functions of θ, determined by the

linear combination of the matrices of Cθ
k×k and its inverse.

Thus, without loss of generality, assuming that θ is a scalar, φk(θ) and its derivatives
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are given by

φk(θ) = − log(
√

2πmk(θ))−
{

1

2vk(θ)
(yk −mk(θ))

2

}
φ̇k(θ) = −m

′
k(θ)

mk(θ)
+

v′k(θ)

2vk(θ)2
(yk −mk(θ))

2 − (yk −mk(θ))

vk(θ)
m′

k(θ)

φ̈k(θ) = Ak(θ)(yk −mk(θ))
2 +Bk(θ)(yk −mk(θ)) + Ck(θ),

where Ak(θ), Bk(θ), Ck(θ) are some functions of θ which are based on the first two

derivatives of mk(θ) and vk(θ).

Notice that zk = (yk −mk(θ))/
√
vk(θ) has a standard normal distribution and its

square has a χ2 distribution, given yk−1. Therefore, it follows that (C1)–(C3) hold

under the non-singular normal distribution with suitable mean and variance, thrice

differentiable with respect to θ. In addition, since the conditional distribution of zk is

a non degenerate normal distribution, there exist constantsM1 > 0 andm1 > 0 such

that ik(θ0) = m1 ≤ Var[Uk|Fk−1] < M1. Since the distribution of zk is determined

independently of k, the constants M1 and m1 are achieved uniformly on k.

Let us now define K(n) = In(θ0). Then, it follows that K(n) = O(n) which satisfies

(i)− (iii) in (C4). In addition, the third derivative of φk,
...
φ k(θ) is also given based

on the first, the second and the third derivatives of mk(θ) and vk(θ). Note that as

mk(θ) and vk(θ) are thrice differentiable with respect to θ for all θ ∈ I, it is clear

that the condition (iv) of (C4) also holds. Therefore, the solution of the likelihood

equation θ̂n is consistent for θ0 by Lemma 1.

In order to check the asymptotic normality, additional conditions for asymptotic

normality given by Basawa and Prakasa Rao [1980] need to be verified. However,

since convergence in probability implies convergence in distribution, it is certain

that there exists a sequence rn such that

r−1
n l′n(θ) = Op(1) and ‖θ̂n − θ0‖ = Op(r

−1
n ).

The proof for the posterior consistency of the empirical Bayes estimates of the GPR

model is completed.
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We recall Equation (4.8). There exists X∗ such that 2

p(Y |θ) =

∫
p(Y |X,θ)p(X)dX

∝ p(Y |X∗,θ)p(X∗)

=
D∏

d=1

p(y(d)|X∗,θ)
N∏

n=1

p(x∗
n).

Let us consider the special case

p(Y |X∗,θ) =
D∏

d=1

p(y(d)|X∗,θd),

where all the elements in θd are distinct for different d. Thus, Lemma 1 and Corollary

1 can be used to

ld,n = log p(y(d)|X∗,θd) (D.6)

for d = 1, . . . , D. This leads to the following theorem.

Theorem 1. Under regularity conditions (C1)–(C4), the likelihood equation in (D.6)

has a root θ̂d,n with Pθ0-probability approaching one which is consistent for θd,0 as

n→ ∞, where θd,0 is the true value.

Furthermore, we can define

ln =
d∑

i=1

log p(y(d)|X∗,θd). (D.7)

We have the following result:

Corollary 2. Under regularity conditions (C1)–(C4), the likelihood equation in

(D.7) has a root θ̂n with Pθ0-probability approaching one which is consistent for

θ0 as n→ ∞. In addition, there exists a sequence γn such that γn → ∞ as n→ ∞
and

γ−1
n l′n(θ) = Op(1) and ‖θ̂n − θ0‖ = Op(γ

−1
n ). (D.8)

2This is related to the Mean value theorem for definite integrals. Note that despite the fact
the integral is indefinite, the function will be p(Y ,X|θ) will be zero when X takes extreme values
(either positive or negative); therefore the indefinite integral can be subdivided and thought of as
a definite integral where the mean value theorem applies.

140



Appendix D. Asymptotic results

The proof is similar to Corollary 1.
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Continuous stirred tank reactor

(CSTR) model

The process flow is depicted in Figure E.1. The reaction, A→ B, is irreversible,

exothermic and takes place in liquid phase. A feed stream of reactant A with flow

rate Fa is premixed with a solvent stream flowing at a rate Fs; the concentration

of reactant A in both streams is Caa and Cas respectively. This premixed stream,

with reactant concentration Ci and flow rate F , is then fed into the jacketed reactor

where the reaction takes place.

A summary of the process variables and simulation parameters is given in Table E.1;

note that variables a1 and a2 are used to simulate degradation in the reaction rate

due to impurities and fouling of the water-cooled heat exchanger respectively.

Variable type

Controlled variable: T

Manipulated variable: Fc

Disturbances: Caa, Cas, Fs, Ti, Tci, a1, a2
Measured variables: Tci, Ti, Caa, Cas, Fs, Fc, C, T

Table E.1: CSTR process variables summary

The system has only a PI control loop whose aim is to maintain the outlet temper-
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Fs, Cas

Fa, Caa

F, Ci, Ti

TC

Fc, Tci Fc, Tc

F, C, T

C, T

A → B

Figure E.1: Process flow diagram of the non-isothermal CSTR system; Ci and C refer to
the concentration of reactant A.

ature T at a set value. This is done by controlling the flow of cooling water, Fc,

which enters the reactor jacket at a temperature Tci and leaves at a temperature

Tc. The model assumes perfect mixing, constant physical properties and negligible

shaft work. The dynamic behaviour of this process is governed by two ordinary

differential equations(ODE). Firstly, the mass balance for reactant A

V
dC

dt
= F (C − Ci)− V r (E.1)

where V is the volume of reacting liquid; r is an Arrhenius-type reaction rate given

as r = k0e
−E/RTC with k0 being the pre-exponential factor and R the gas constant.

The second ODE is the global energy balance written as follows:

V ρcp
dT

dt
= ρcpF (Ti − T )− aF b+1

c

Fc + F b
c /2ρccpc

(T − Tci)

+ (−∆Hr)V r (E.2)

where ρ and ρc are the densities of the reacting mixture and the cooling water,

respectively, whereas cp and cpc as their specific heat capacities; ∆Hr is the heat of

the reaction.
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Simulation parameters

V = 1m3; ρ = 106g/m3; ρc = 106g/m3; E
R
= 8330.1K; cp = 1cal/(g ·K);

cpc = 1cal/(g ·K); k0 = 1010(m3/kmol min); a = 1.678 · 106(cal/min K);

b = 0.5;∆Hr = −1.3 · 107cal/kmol

Initial conditions

Ti = 370K;Tci = 365K;T = 368.25K;Fc = 15m3/min;Fs = 0.9m3/min;

Fa = 0.1m3/min;Ci = 0.8Kmol/m3;Cas = 0.1Kmol/m3;Caa = 19.1Kmol/m3

PI controller

Kc = −1.5;TI = 5.0

Table E.2: CSTR simulation parameters

All process disturbances are simulated as first order autoregressive processes with

the following equation:

xt = φxt−1 + et,

where et ∼ N (0, σ2
e) and xt refer to process disturbances as shown in Table E.1;

allocated values of σ2
e are given in Table E.3. Finally, this table also shows the

measurement noise, eM ∼ N (0, σ2
M), that is added to all measured variables.

Variable Measurement noise, σ2
M Process noise, σ2

e AR coefficients, φ

T 4 · 10−4 - -

C 2.5 · 10−5 - -

Fc 1.0 · 10−2 - -

Tci 2.5 · 10−3 0.475 · 10−1 0.9

Ti 2.5 · 10−3 0.475 · 10−1 0.9

Caa 1.0 · 10−2 0.475 · 10−1 0.9

Fa 2.5 · 10−3 - -

Cas 2.5 · 10−5 1.875 · 10−3 0.5

Fs 4.0 · 10−6 0.19 · 10−2 0.9

a1 - 0.19 · 10−2 0.9

a2 - 0.0975 · 10−2 0.95

Table E.3: CSTR measurement and process noise
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The model was originally proposed by Yoon and MacGregor [2001]; this is a slight

modification from the original which does not have the outlet concentration con-

troller.
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Mémoires du Bureau de recherches géologiques et minières. Ed. B.R.G.M., Paris.

Cited on page 16.

MATLAB (2010). Neural Network Toolbox, version 6.0.4 (Matlab R2010a). The

MathWorks Inc., Natick, Massachusetts. Cited on page 54.

McCabe, G. P. (1984). Principal variables. Technometrics, 26(2):137–144. Cited

on pages 3, 6, 37, and 112.

McDonald, R. and Hartmann, W. (1992). A procedure of obtaining initial values

of parameters in the ram model. Multivariate Behavioral Research, 27(1):57–76.

Cited on page 37.

151



Bibliography

Miller, P., Swanson, R., and Heckler, C. (1998). Contribution plots: a missing link in

multivariate quality control. Int. J. Appl. Math. Comput. Sci., 8:775–792. Cited

on pages 11 and 39.

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised

learning. Neural Networks, 6(4):525–533. Cited on page 122.

Montgomery, D. and Keats, J. (1994). Integrating statistical process control and

engineering process control. Journal of Quality Technology, 26:79–87. Cited on

page 2.

Nabney, I. (2002). NETLAB: algorithms for pattern recognition. Advances in pattern

recognition. Springer-Verlag, London, Berlin, Heidelberg. Cited on page 123.

Neal, R. M. (1994). Bayesian Learning for Neural Networks. PhD thesis, Dept. of

Computer Science, University of Toronto. Cited on pages 16, 45, and 106.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in

Statistics No. 118. Springer-Verlag, New York. Cited on page 18.

Nickisch, H. and Rasmussen, C. (2008). Approximations for binary Gaussian process

classification. Journal of Machine Learning Research, 9:2035–2078. Cited on

pages 99 and 115.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer, 2nd edition.

Cited on page 122.

Nomikos, P. and MacGregor, J. F. (1995). Multivariate spc charts for monitoring

batch processes. Technometrics, 37(1):41–59. Cited on page 9.

O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the

Royal Statistical Society B, 40:1–42. Cited on page 16.

Polak, E. and Ribière, G. (1969). Note sur la convergence de méthodes de direc-
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