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Abstract 

Micromixing phenomena (i.e. mixing at molecular level) play a very important role in 

the chemical industry when the time scale of the chemical reaction involved have the 

same magnitude or smaller than the time scale of mixing process. The study of 

micromixing is very critical to the understanding of important processes such as 

polymerization, precipitation, crystallization and competing fast chemical reactions. It 

has long been recognised that the intense mixing characteristics of thin films in the 

spinning disc reactor (SDR), play an important role in improving the selectivity, yield, 

and quality of final products of a chemical reaction. However, to date, there has been no 

systematic study of micro and macro mixing in SDR thin films.  

 

The first part of this study reports on the fundamental study undertaken to characterise 

micromixing in the thin films formed in 10 cm and 30 cm SDRs operating under a wide 

range of operating conditions. A well-established parallel-competitive reaction test 

scheme was adopted to quantify micromixing in terms of the segregation index (Xs) or 

micromixedness ratio (α), the power dissipation (ε) and micromixing time(tm). The 

micromixing data obtained from 10cm and 30cm SDRs were benchmarked against both 

a 1.37 l conventional semi-batch reactor (SBR) and continuous tubular flow reactors in 

the form of narrow channels (NCRs) of 1.0 mm diameter and three different lengths 

namely 5 cm, 10 cm and 15 cm (Y and T shape junctions). The effects of various 

operating parameters such as disc rotation rates, disc size, disc surface configurations, 

feed flowrates, feed distribution systems, liquid feed concentrations and viscosities were 

investigated. It was observed that, at an acid concentration of 1 M, the lowest 

segregation index of 0.05 was achieved for a feed of 0.001Ns/m
2
 viscosity at the highest 

flowrate of 5ml/s (corresponding to Refilm=72) and highest rotational speed of 2400 rpm 

in the 10cm diameter disc. Greatly improved micromixing was obtained on the larger 

disc of 30 cm diameter, especially at the lower Refilm of 15 and 42, in comparison to the 

smaller disc. Under optimised conditions, the micromixing time(tm) in the water-like 

film on the 30cm diameter disc was estimated to be as low as 0.3ms with corresponding 

power dissipation (ε) of 1025 W/kg. In contrast, the SBR could only achieve, under 

optimised conditions, segregation indices of no lower than 0.13 corresponding to a 

micromixing time of above 1ms with power dissipation of no more than about 21 W/kg.  

On the other hand, the NCRs could only achieve, under optimised conditions, a 
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micromixing time of about 19 ms corresponding to power dissipation (ε) of about 208 

W/kg.  Therefore, when compared with other mixing devices such as conventional 

SBRs or NCRs, the SDR is shown to give significantly better micromixing performance 

which highlights its potential as an alternative device for processes where a high degree 

of mixing is critically important.  

 

In the second part of this study, the residence time distribution (RTD) of the liquid flow 

in the 30 cm SDR was characterised for a range of operating conditions including disc 

rotational speeds, disc configuration (smooth vs. grooved), total flow rate of liquid and 

viscosity in order to determine the conditions for which plug flow profile became more 

prevalent in the SDR films. The dispersion number from the RTD results and Peclet 

number were also estimated for the purpose of further characterising the extent of axial 

dispersion in the thin film flow on the rotating disc. All the mentioned operating 

conditions were found to have a profound influence on the overall Mean Residence 

Time, (             ), variance,    , dispersion number and Peclet number, (Pe).  More 

specifically, the lowest value for the                of 10.1 s was achieved for a feed of 

0.001 Ns/m
2
 viscosity at the highest  flowrate of 15ml/s and highest rotational speed of 

1200 rpm on the smooth disc with corresponding     of 2.16. The dispersion number 

and Pe were 0.010 and 100 respectively, showing that the degree of axial dispersion was 

very small. A considerable reduction in the dispersion number and Pe was observed 

when the smooth disc was replaced by grooved disc. Thus, under the above mentioned 

hydrodynamic conditions, whilst the               was almost unchanged at 10.10 s on 

grooved disc, the  corresponding variance of 1.03 was significantly lower, indicating 

even more reduced axial dispersion in the film on the grooved disc. This is further 

substantiated by dispersion number and Pe of 0.005 and 200 respectively. In general the 

RTD curves become narrower and the values of                 and    decreased as the 

disc rotational speed and flowrates increased and as the feed viscosity decreased. For 

the given operating conditions used in this research, it was confirmed that the 30 cm 

SDR approaches plug-flow regime which had a positive influence on the micromixing 

intensity on the SDR.  

 

Key words:  Spinning disc reactor; micromixing; segregation index; micromixedness 

ratio; micromixing time; power dissipation; residence time distribution.  
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Symbol 

 
Description Units 

  Angular velocity of the disc s
-1

 

  liquid density  kg/m3 

  liquid viscosity  Ns/m
2
 

  Shear rate at given radial distance s
-1

 

σ Surface tension  kg/s
2
 

ν Kinematic viscosity m
2
/s 

ε Power dissipation  W/kg 

δ Film thickness m 

U 
Average radial velocity of the liquid solution on the disc 

m/s 

tres Residence time of the liquid solution on the disc () s 

Re Film Reynolds number  - 

r Radial distance from centre at the point of measurement m 

r   radial distance from the centre of the disc  m 

QL flow rate on the disc  m
3
/sec 

Q volumetric flow rate  m
3
/s 

D molecular diffusivity  m
2
s

-1
 

     average maximum shear rate s
-1

 

   Kolmogorov wavenumber (-) - 

     mean residence time s 

   Batchelor wavenumber  - 

   Weber number - 

   Radial velocity m/s 

   critical flow rate Kg/s
2
 

L liquid density  kg/m
3
 

L dynamic liquid Viscosity  Pa.s 

 angular velocity of the disc  s
-1

 

    Initial concentration of B M 

   Integral scale for concentration fluctuations - 

   Power number - 

    Characteristic wave number of large eddies - 

   Mesomixing time based on the turbulent diffusion/dispersion s 

    Micromixing time due to diffusion and shear  s 

   Micromixing time  by engulfment s 

   Reaction time s 

     Mean circulation time s 

    Macromixing time s 

   Mesomixing time constant by eddy disintegration  

      Average power  dissipation W/kg 

     Mean rate of energy dissipation  W/kg 

d   Impeller diameter  m 
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D Diffusion coefficient  m
2
/s 

D  Impeller diameter m 

G (k) Spectral density of concentration fluctuation  - 

k Wave number - 

k Reaction rate constant m
3
/mol

 
.s 

N   Stirring speed  s
-1

 

Ø  Relative power dissipation - 

P  Power consumption of the stirrer W 

Po  Power number - 

T  Tank diameter m 

tr Reaction time  s 

V  Liquid volume L 

V Liquid volume in the reactor,  l 

Xs Segregation index - 

ε  Local Power dissipation W/kg 

ν Kinematic viscosity  m
2
/s 

  Impeller pumping rate, m
3
/s 

   Schmidt number,           - 

  Liquid volume,  m
3
 

  Global kinetic order of the reaction - 

α, Micromixedness ratio - 

R Total flowrate ratio - 

RTD Residence time Distribution  - 

  
     Normalized variance of residence time distribution  - 

   Variance of residence time distribution  - 

   Experimental mean residence time  s 

D Longitudinal or axial dispersion coefficient  m
2
/s 

L Length of system  m 

U  Average fluid velocity  m/s 

 
 

  
  

Dispersion number  - 

NCR Narrow channel reactors - 

Pe Peclet number  - 

SBR Semi-batch reactor  - 

SDR Spinning disc reactor - 

λ Wavelength  nm 

D  absorbance - 

  Molar extinction coefficient (m
2
/mol) 

  Optical path length m 

   Striation thickness  m 

   Shear rate  s
-1

 

[H
+
] Acid ion concentration M 

     Reactants residence time in the channel s 

  length of the channel m 

  Mean velocity of the flow  m/s 

   Internal diameter of narrow channel reactor  m 

  Mean velocity of the flow m/s 

  Energetic efficiency of mixing  - 

   Peclet number = 
  

  
        - 
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   Reynolds number (-)  

   Schmidt number  - 

   Power input (power dissipation)  W/kg 

  Kinematic viscosity  m/s
2
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1. Introduction 

1.1 Process Intensification 

The term process intensification (PI) has been used to describe the strategy of making 

dramatic reductions in the plant volume in order to meet a given production objective. 

The concept was developed by Professor Colin Ramshaw when he was leading a 

research programme concerning the Process intensification at Imperial Chemical 

Industries (ICI) during the early 1980’s. The primary goal was to reduce the capital cost 

of a production system without affecting their production rate. While cost reduction was 

the original target for PI, it quickly became apparent that there were other important 

benefits, particularly in respect to improved energy efficiency and intrinsic safety, 

reduced environmental impact and energy consumption(Stankiewicz and Moulijn, 

2000a) (Stankiewicz and Moulijn, 2000b; Ramshaw, 2003). Process intensification is 

one of the new concepts that have recently been added to the field of chemical 

engineering. As mentioned above, the first target for process intensification was capital 

cost reduction. This could be achieved by minimising pipe works; civil engineering 

structures and instrumentation by influencing the way plant is organised. To be fully 

effective, process intensification must be applied across the whole plant range. The 

decrease in process equipment size will correspondingly result in increase in the heat 

and mass transfer rates thereby minimizing the undesirable by-products (Stankiewicz 

and Moulijn, 2004). The second target for process intensification is the improvement of 

intrinsic safety. If the volume of the process equipments (inventory) is reduced the 

hazard is correspondingly reduced. Process intensification is one of the important tools 

to achieve the sustainability in the chemical industry and could be achieved by many 

routes as summarised in (Akay et al., 1997) including the use of centrifugal forces, flow 

field/fluid microstructure interactions, periodic flow, high/ultra-high pressure, electric 

field, and diffusion/conduction path reduction. The main features of process 

intensification can be summed as follows: smaller, safer and cheaper processes 

compared with the current processes. In literature review Chapter, the process 

intensification advantages, barriers, methods and equipments will be discussed in 

details.  
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1.2 Spinning Disc Reactor 

The spinning disc reactor (SDR) technology offers the possibility of a step change in 

manufacturing operations, particularly with respect to the ability to cope with very fast 

chemical reactions such as combustion, polymerization, crystallization and competing 

fast chemical reactions. The SDR can be horizontally or vertically mounted on an axle. 

Liquid is fed near or at the centre and flows across the disc surface under the influence 

of the centrifugal force. The centrifugal force which stretches and contorts the film 

allows for high rates of heat/mass transfer properties. This type of reactor was 

successfully used at Newcastle University for industrial applications. Two  

distinguished examples of  these applications are: polystyrene production (Boodhoo, 

1999) and precipitation of barium sulphate from aqueous solutions (Cafiero et al., 2002). 

Results of these two applications showed promising results for the SDR when compared 

with the conventional batch reactor.  

 

As stated previously, the relevant area to this research is the spinning disc reactor 

technology which is an example of an intensified reactor.  This technology presents 

important opportunities due to the following attributes (Ramshaw, 2003) : 

 High level of heat and mass transfer rates in solid/liquid, liquid/liquid and 

liquid/vapour systems and has ability to cope with very fast exothermic reactions 

(corresponding to heat fluxes of up to 100 kW/m
2
). 

 Ideal for micromixing processes (mixing in molecular level) in the liquid film. 

 High selectivity in system which include parallel reactions and production of 

several products at the same time. 

 Low inventory/intrinsic safety (liquid film thickness is 50 – 200 μm). 

 Controllable and short time of reacting with fluid. Liquid residence times on the 

SDR disc are in the range of 1- 5 seconds compared with a few hours in a stirred 

tank reactor. Therefore, reactions with mixing times in the 0.1-1 s range most 

likely to be completed on the disc surface. 

 Easy operating (start up and showdown), repairing and cleaning. 

 Resistance to fouling or plugging technical problems during the ruining of the 

reactor.   

 Close control (due to short residence times). 
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 Possibility to introduce different rotation surface (smooth, grooved, meshed). 

 High shear rate crated between the disc surface and the liquid film flowing on 

the disc. Consequently, the micromixing for the reactants will be intensified than 

in the conventional reactors, i.e. stirred tank reactor even for high viscous 

liquids.  

 

From the above mentioned attributes, it can be concluded that the SDR is a reactor that 

can be considered as being opposite to the traditional reactors in carrying out some 

defined reactions or processes.  

 

1.3 Mixing and its effects on reactions 

Mixing is used to reduce the degree of non-uniformity or gradient of a property in a 

system.  The non-uniformity could be temperature, viscosity or concentration (Paul et 

al., 2004). Mixing can achieve a desired degree of homogeneity to the molecular scale, 

in addition to promoting both heat and mass transfer when a system is undergoing a 

chemical reaction.  Poor mixing  usually results from a combination of high viscosity 

and low diffusivity, typically found in polymerisations (Nauman and Buffham, 2003) . 

The quality of mixing of materials greatly determines the success and efficiency of 

many  industrial processes, especially where product quality is concerned. Mixing plays 

an important role in many industries such as automotive finishes and paints, 

biotechnology, cosmetics and consumer products, drinking and waste water treatment, 

fine chemicals and pharmaceuticals, food, petrochemicals, polymer processing, (Paul et 

al., 2004)  where chemical reactions such as combustion, biological growth, 

neutralization, precipitation and continuous polymerization take place. The quality of 

the output of these processes is highly depended on the mixing conditions. 

It is well known that problems in controlling the formation of by-products often result 

from an ineffective mixing process. The subsequent important economic and 

environmental impacts of this issue cannot be underestimated.  

Chemical reactions are not affected by the mixing process if the reagents are completely 

mixed down to the molecular scale (micromixing) before significant reaction takes 

place. This means that the time scale of the mixing process involved is less than the 

time constant of the reactions. On the other hand, if the time constants of the reactions 

are relatively close to or smaller than the time scale of the mixing process, the product 



   Chapter 1: Introduction 

 

Mr. Salah R. Al-Hengari  4 

distribution and the quality of the fast multiple reactions can be affected (Bourne, 1993). 

The relative values of reaction time,    , and the mixing time,       explain the 

competition between reaction and mixing, which direct to different product distributions 

and can be summarized  as shown below (Paul et al., 2004; Baldyga and Bourne, 1999):  

 

I.     <<   : slow regime, homogenization is fast and precedes reaction. The 

reaction rate controls the process and the product distribution is chemically 

controlled. 

 

II.     ≈    : fast regime , the reaction rate is influenced by both physical and 

chemical factors. In this regime, both the mixing and kinetics determine the 

product distribution. 

 

III.     >>   : instantaneous regime, reaction is extremely fast, the reaction rate is 

limited by the rate of mixing by diffusion and the  product distribution is 

controlled by the degree of mixing  

 

1.4 Motivation and Background 

It has long been recognised that the intense mixing characteristics and particularly the 

micromixing (i.e. mixing at the molecular scale) characteristics of the thin films in the 

SDR, play an important role in the improvements observed for the reactions carried out 

in the novel reactor. However, to date, there has been no systematic study undertaken to 

characterise the micromixing in the thin films. Also, there is no comprehensive study 

reported to date examining the flow behaviour of the SDR film i.e whether the film 

exhibits more plug flow or backmixed characteristics and, more specifically, assessing 

the hydrodynamic conditions which cause the flow to deviate from plug flow regime.  

Therefore, the purpose of this work is to fill this gap by studying (1) the fundamental 

science underlying the micromixing characteristics taking place within the thin films in 

the SDR and (2) the Residence Time Distribution of the film under a range of 

conditions.  
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1.5 Thesis Layout 

This thesis consists of seven Chapters. The introduction, motivation and background of 

the research are discussed in this Chapter (Chapter 1). A critical literature review is 

presented in Chapter 2 where the general aspects of the Process Intensification are  

covered followed by a review of the spinning disc reactor (SDR) technology, mixing 

principles and its mechanisms, the time constants of single-phase mixing, the chemical 

methods for mixing quality characterization, the Iodide-Iodates technique and its 

aspects were summarized. In addition, Chapter 2 concludes with the Residence time 

Distribution and its relevant aspects related to this research. Chapter 3 describes the 

aims and objectives of the current research whilst Chapter 4 describes the experimental 

facilities and procedures that were followed in carrying out the research. Chapter 5 

presents the results and discussion for the micromixing experiments that were 

conducted in four different reactors followed by the comparison of the reactors’ 

performance based on their micromixing efficiency. Chapter 6 presents the Residence 

Time Distribution experimental results for the 30cm SDR and the discussion on the 

findings. Chapter 7 presents the conclusions that were drawn from the research for both 

the micromixing and Residence Time Distribution experiments. The Recommendations 

for future work is also presented in this Chapter.  
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2.  Literature Review  

2.1 Introduction 

The aim of this Chapter is to, firstly, introduce the reader to Process Intensification and 

its benefits to the chemical industry. The principles of operation of the Spinning Disc 

Reactor (SDR) technology are then described in detail, followed by a review of previous 

work on heat/mass transfer and chemical reactions previously undertaken in the SDR.  

Secondly, the basic principles of mixing, the mixing mechanisms, time constants of 

single-phase mixing are reviewed. The physical and chemical methods for 

characterisation of the quality of mixing as well as the test reactions that have been 

developed over the years for characterising the intensity of micromixing in particular   

are discussed in detail.  

Finally, this Chapter concludes with a review of the Residence Time Distribution (RTD) 

concept, RTD measurement techniques  and last but not least, the dispersion models 

available for quantitative estimation of dispersion in a given reactor type.   

2.2 Process Intensification and its benefits 

As stated earlier in Chapter one, the term process intensification (PI) has been used to 

describe the strategy of making dramatic reductions in the plant volume i.e. remarkable 

reductions in physical size of process equipment in the chemical plants  in order to meet 

a given production objective  which means no impacting on  production capacity or 

quality of the products. Figure 2.1 shows the main benefits that process intensification 

could offer to the chemical industry (Stankiewicz and Moulijn, 2004; Ramshaw, 1999). 

These benefits may be categorized into four areas as discussed below:  

 

 Cost: This is one of the main benefits that process intensification offers. It is 

highly critical because reduction in cost directly affects the number of elements 

on a plant. An example of this is the reduction in the cost of land where the 

intensified unit would be located. The benefit of this could be achieved from 

having much higher production capacity and/or number of products per unit of 

manufacturing area. Another benefit is the reduction in the investment costs 

which may also be reduced as a result of cheaper, more compact equipment with 

reduced piping etc., fewer raw materials being needed due to higher 

yields/selectivities. The cost of utilities (electricity, steam, cooling water etc.) 
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may also be reduced due to higher energy efficiency. Another important aspect 

of the cost reduction is that there would be less waste generation from 

intensified plants so that the cost of waste processing and disposal may be 

significantly cut. 

 

 Safety: Since the size of process intensification unit is small, the plant volume is 

reduced. Hence, the toxic and flammable inventories of intensified plant are 

correspondingly reduced thereby making a major contribution to higher levels of 

intrinsic safety. 

 

 Time to market: An expected outcome of process intensification is that reactor 

residence times may be reduced significantly, probably from hours to seconds 

which means it that the products can be produced rapidly. This implies that the 

production rate would be increased to meet the rapidly changing demands in the 

markets.  

 

 Company image: Nowadays the chemical companies do recognise the 

importance of having good image because it plays a very significant role in the 

success of their business, especially where public perception is concerned.  

Process intensification provides safer and environmentally friendly processing. 

This is considered the key issue to the improved corporate integrity of the 

chemical plants. 
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2.2.1 Barriers of Process Intensification  

Ramshaw (2003) summarises the barriers that may affect the implementation of the 

process intensification in the chemical industry in seven points as follows: 

 

 Step changes in equipment design and operation is a required condition for 

implementing the PI in the chemical industry. This creates problems when there 

is already an established process investment, as it will be exceedingly difficult to 

justify a ‘’scrap and start again ‘’ policy. 

 

 Very wide range of technology must be developed, covering all the main unit 

operations, for PI to be fully effective. 

 

 Most plant managers ‘’rush to be second’’ and require full scale evidence of 

successful operation before they are prepared to take any risk. 

 

 Design codes are needed for new equipment. 

 

 There is need to distinguish between slow (> 5 sec) and fast (< 5 sec) reactions. 

Use different PI technology for each. 

Benefits from 

PI 

Cheaper process 

Smaller equipment / plant 

 

Safer process 

Less energy consumption 

Shorter time to the market 

Less waste / by-products 

Better company image 

Figure 2.1: Main benefits of the process intensification (Stankiewicz and Moulijn, 2004) 
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 Culture shock in batch – dominated industries. 

 

 Fouling may be a problem. 

 

2.2.2 Process Intensification Toolbox 

Stankiewicz and Moulijn (2004) divided the PI toolbox into two groups, namely the 

process intensification equipment (PI hardware) and the process intensification method 

(PI software). Figure 2.2 shows the toolbox for the process intensification according to 

Stankiewicz’s vision.   

2.2.3 Process intensifying methods 

Process intensifying methods were classified by Stankiewicz and Moulijn (Stankiewicz 

and Moulijn, 2004; 2000a) as multifunctional reactors, hybrid separations, alternative 

energy sources and other methods. These four main groups are discussed below in 

details. 

 

Process 

Intensification Multifunctional 

Reactors 

Reactors 

Equipment for non-

reactive operations 

Method 

(Software) 

Equipment 

(Hardware) 

Hybrid 

Separations 

Alternative Energy 

Sources 

Other  

Methods 

 

Figure 2.2: Process intensification toolbox  (Stankiewicz and Moulijn, 2004) 
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 Multifunctional reactors: This reactor combines at least two functions that 

conventionally would be performed in separate equipment in order to enhance 

chemical conversion and achieve a higher degree of integration. An example 

being the reverse – flow reactor which integrates reaction and heat transfer by 

periodic flow reversal. 

 
 

 Hybrid separations: in hybrid separations, the integration of membranes with 

another separation technique is involved. An example is in membrane absorption 

where membrane plays a role of permeable barriers between the gas and liquid 

phase. Compact equipment and great mass transfer area can be achieved by 

using hollow-fiber membrane modules. 

 

 Alternative energy sources: This type of source concerns the unconventional 

types of energy instead of the traditional sources. These sources include the use 

of centrifugal fields, ultrasound, solar energy, microwaves, electric fields, 

microwaves, and plasma technology. 

 

 Other methods: This group puts together all the other methods not involved in 

the previous groups. Supercritical fluids, dynamic/periodic reactor operation are 

example of these methods.  

2.2.4 Equipment for Process Intensification  

Process intensification equipment has been classified by Stankiewicz and Moulijn  

(2004) according to their application. The first group consists of equipment used for 

carrying out chemical reactions and the other one has put together equipment for unit 

operations where chemical reactions are not involved. Some examples of intensification 

equipment are discussed in details below.  

 

2.2.4.1 Equipment for carrying out chemical reactions 

2.2.4.1.1 Spinning disc reactor 

The spinning disk reactor (SDR) or more generally a rotating surface of revolution 

reactor (Stankiewicz and Moulijn, 2004) is designed to create highly sheared thin liquid 

films which have excellent heat/mass transfer properties. A schematic diagram of 
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spinning disk reactor is shown in Figure 2.3.  

 

 

Figure 2.3: Schematic diagram of spinning disk reactor. adopted from (Ramshaw, 2003) 

 

In SDR liquid is supplied to the disc at or near its centre and is flung outwards towards 

the disc periphery by the centrifugal acceleration. Depending upon the liquid viscosity 

and the disc speed, the film can be as thin as 25 µm or even less (Boodhoo et al., 2004). 

This short diffusion and conduction path length is the basis for the very high mass and 

heat transfer rates respectively which are generated between the gas phase and the 

liquid, and the liquid and the disc. As can be seen from the accompanying photo (Figure 

2.4) the liquid film is not smooth, except for a very limited set of conditions. It appears 

that any liquid film moving over a solid surface is intrinsically unsTable so that 

however uniform it may be initially, any tiny perturbations are ultimately amplified to 

visible waves. As the film proceeds, the initial spiral wave structure breaks down  until 

the waves pattern becomes utterly chaotic (Stankiewicz and Moulijn, 2004). The liquid 

viscosity is responsible for exerting a damping influence and it can be shown that the 

advent of ripples is delayed as the viscosity increases. This means that the simple 

calculations of the film thickness and velocity, based upon Nusselt’s approach, are more 

realistic for viscous liquids. 
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Figure 2.4: Thin film flows on smooth disc (adopted from (Vicevic, 2004)) 

 

Brauner and Maron (1982) studied the local instantaneous film thickness and mass 

transfer rate for a water film moving down a smooth inclined surface. They showed that 

there was a direct relationship between the intensity of the wavy films and the 

fluctuations in heat/mass transfer observed, as the larger waves could penetrate deeper 

into the liquid film. The passage of a ripple corresponded remarkably well with a 

marked instantaneous rise in the local heat and mass transfer coefficient.. Thus ripples 

are “a good thing” and are to be encouraged. 

 

The use of rotating surface has contributed to the development of the concept of thin 

film, as has been reported recently. This surface generates high centrifugal force which 

provides the driving force for the flow (F=rw
2
). The acceleration on the disc surface can 

be 100-1000 times the acceleration due to gravity. The use of the spinning disc for mass 

transfer operations can be traced to the NASA space research programme (Rahman and 

Faghri, 1993). In space conventional mass transfer, contacting devices are unsuiTable 

because the driving force of a liquid flowing under gravitational force cannot be 

performed in zero gravity conditions. NASA carried out a research to establish the use 

of such a device to generate centrifugal forces upon a liquid such that it generated a thin 

film for a mass transfer operation to occur. There is no doubt that the reason for the 

relatively poor performance of viscous systems is that ripples are effectively damped. 

This issue raises the prospect of modifying the disc surface in order to disturb the flow 

and enhance the disc performance. Intensive work on this subject has already been done 

with grooved disc (including some done by this author) and the results are encouraging 

(Boodhoo and Jachuck, 2000a). More attention will be paid later to further 

developments and application of the SDR technology in this Chapter. 



  Chapter 2: Literature Review 

 

Mr. Salah R. Al-Hengari  13 

 

A new configuration spinning disc reactor ( Figure 2.5) , i.e. Multiple Rotor – stator disc 

reactor has been modified at the Eindhoven University of Technology in the 

Netherlands (Meeuwse, 2011). One stage in this modified SDR consists of a rotator disc 

in a cylindrical housing. The distance between the rotor and wall (the stator) is order of 

1mm.  The Liquid is the first stream which is fed to the reactor from the top inlet, near 

the rotating axis. The gas is the second stream where injected through an orifice in the 

bottom stator; a large velocity gradient, and therefore a large shear force, is created due 

to the high rotational disc speed. Due to the high rotational disc speed, a large velocity 

gradient, and consequently a large shear force is created. This large shear force breaks 

up gas bubbles, in case of a gas-liquid systems, or liquid drops, in case of liquid-liquid 

systems, this consequential in a large two phase interfacial area. The high energy input 

per unit volume results a high degree of turbulence.  Consequently, the surface renewal 

rate is increases; this gives a high mass transfer coefficient. The combination of the 

large interfacial area and the high mass transfer coefficient leads to high volumetric 

mass transfer rates.  

 

Meeuwse et al.,(2010b; 2010a) carried out an experimental work considering the gas-

liquid mass transfer and Liquid – solid mass transfer in the rotor-stator spinning disc 

reactor. The results of these investigations prove that the rotor-stator spinning disc 

reactor shows high rates of mass transfer for both cases of gas-liquid / liquid- solid mass 

transfer in comparison to the conventional multiphase reactors. In the case of gas-liquid 

mass transfer, the volumetric gas– liquid mass transfer coefficient per unit volume of 

gas was much higher than for conventional reactors, 20.5    
   

      instead of 

0.5    
   

      for bubble columns. In the case of liquid- solid mass transfer, the values 

of the volumetric liquid-solid mass transfer coefficient vary from 0.02    
   

      at 

1560 rpm to 0.22    
   

       at 9420 rpm, which is higher than in conventional 

reactors such as a packed bed. The results show that the rotor stator spinning disc 

contactor is very appropriate for gas-liquid or liquid-solid processes. 
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Figure 2.5: Schematic diagram of the rotor-stator spinning disc reactor with a gas inlet in the 

bottom stator ( adopted from (Meeuwse, 2011)) 

 

2.2.4.1.2 Rotating packed bed reactors (RPBs) 

This type of reactors (HIGEE) uses rotational speeds which are typically in the range of 

500 rpm to 3000 rpm and high centrifugal accelerations that are in the range of 100 (g) 

to 500 (g). The Rotating packed bed reactors (RPBs) utilise this high centrifugal 

accelerations to intensify the mass transfer (Hassan-Beck, 1997; Bums, 1996; Ramshaw 

and Mallinson, 1981). Some key advantages of the RPBs are as follows: 

 

1.  It is less sensitive to external movement or vibration which makes it easier to 

operate offshore. 

2. It has a reduced size of equipment due to small heat transfer unit (HTU) and 

high throughput leading to lower inventories and improved plant safety. 

3. It has lower and more controllable residence times which allow RPB’s to work 

as precision fast reactors. 

4. It is capable of handling highly viscous liquids due to high driving acceleration 

(Burns et al., 2000). 

 

The RPB’s were  used in many chemical industry’s applications such as absorption, 

extraction and distillation as well as the counter-current gas/liquid mass transfer (Burns 

and Ramshaw, 1996). Figure 2.6 shows an RPB that was used in one of the studies 

carried at Newcastle University.  
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2.2.4.1.3 Oscillatory baffled reactors (OBR’s) 

The Oscillatory baffled reactor is one of the new designs of intensified reactors. The 

OBR is made of baffled tube. The oscillatory flow mixing is achieved in the oscillatory 

baffled reactor at a typical frequency of 0.5 to 15 Hz at the amplitude of typically 1 to 

100 mm (Harvey et al., 2001). The oscillating fluid motion combined with the baffles to 

form vortices. Consequently, the oscillating fluid motion provides excellent local and 

global mixing. This type of reactors has many advantages such as high heat/mass 

transfer, plug flow behaviour and it is easy to operate. The production of biodiesel was 

one of the OBR’s successful applications. It has been shown that the SBR  can be used 

for the production of biodiesel with accepTable conversions in times lower than in batch 

reactor (Harvey et al., 2003). Figure 2.7 illustrate the OSB arrangement. 

 

Figure 2.6: Rotating Packed Bed (adopted from (Burns, 1996)) 



  Chapter 2: Literature Review 

 

Mr. Salah R. Al-Hengari  16 

 

Figure 2.7: Oscillatory baffled reactor (http://pig.ncl.ac.uk/obrs.htm) accessed on 30/05/2011 

 

2.2.4.1.4 Microreactors / Narrow Channel Reactors  

The Microreactors (Figure 2.8) and Narrow Channel Reactors (Figure 2.9) are in the 

scale space of micrometers and millimetres respectively. The type of flow in these 

reactors is genially to be laminar with diffusion being the main controlling factor in heat 

and mass transfer. The advantage of using Microreactors/Narrow Channel Reactors in 

the high heat/mass transfer rates and effectual mixing due to the short diffusion path 

lengths is determined by the reactor diameter. Consequently, the molecular diffusion for 

the reactants could be improved. In addition, other advantages of using 

Microreactors/Narrow Channel Reactors is that their much higher surface area to 

volume ratio, when compared with stirred tank reactor geometries, provides a very high 

heat transfer per unit volume of the reactor. The flow rate in these channels is usually 

low. Scaling up of this kind of reactors requires the use of many channels in parallel and 

each channel can be considered as individual reactor which has identical conditions as 

all the other channels. The two sections below give more details on Microreactors / 

Narrow Channel Reactors technology.  

 

 

 

 

 

 

 

 

 

Mixing / reaction channel 

Reactants channels  Reactor chip 

Mixing junction 

Product stream  

 

Figure 2.8: Glass Microreactor, the channels of the chip are 150 µm wide and 150 µm 

deep (http://en.wikipedia.org/wiki/Microreactor) accessed on 31/05/2011 
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Figure 2.9: Glass narrow channel reactor made of  made of borosilicate with internal diameter of 

1.5 mm (Jachuck and Nekkanti, 2008) 

 

2.2.4.1.5 Microreactors 

Advances in micromachining have led to the development of microreactors that can be 

used for a wide range of continuous processing applications.  The manufacturing 

methods stem from established microelectronics techniques(Hessel and Lowe, 2003a). 

Microreactors for analytical purposes and synthesis applications have been designed.  

The channels typically have diameters of less than a millimetre.  They are machined in 

different materials including polymers, glass and metals.        

 

Microreactor processing is used to create products using continuous operation, with 

microchannels of diameters less than 1mm.  Microreactors have high surface to volume 

ratios, in the order of 10,000 – 50,000 m
2
/m

3
 compared with 100 m

2
/m

3
 in conventional 

reactors.  High surface to volume ratios, inherent in smaller volumes, are associated 

with the potential for high heat and mass transfer rates, which reduce temperature and 

concentration gradients (McCarthy et al., 2007). Microchannels can also be machined 

onto both sides of a plate which partially overlap, to further increase the contact area for 

heat transfer(Horstwood, 2009).   The high transfer rates give the potential for higher 

yields and better selectivity than in conventional reactors as more aggressive operating 

conditions can be achieved, due to the potential for homogeneity to be achieved within 

the reactor volume.  Within the majority of microreactors, low values for Reynolds 

number are observed and the flow regime is laminar and turbulence is hard to induce 

(Kockmann et al., 2006).  
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The characteristics of fluid flow within narrow channels differ to the fluid flow in 

microchannels.  Within a microchannel, the surface tension between the fluid and the 

pipe wall is more significant, as is the relative magnitude of the friction at the surface 

wall compared to the diameter of the channel (Hessel and Lowe, 2003a) .   

 

Microreactors also allow for improved safety, this is associated with a reduction in the 

waste produced and the employment of distributed processing of hazardous and toxic 

chemicals.  Due to the potential for small reaction channels, explosive mixtures such as 

hydrogen and oxygen can be mixed relatively safely (Hessel and Lowe, 2003a) . The 

selectivity and yield of the microreactor can be increased in comparison to conventional 

reactors due to the tight control of residence time(Yoshida et al., 2005). This increase in 

selectivity can lead to cost savings; costs savings can also be associated with a reduction 

in utilities, a reduction in size and the significantly smaller residence times required.   

 

Micromixers can be generally categorised into two groups: active and passive.  Active 

micromixers require an external disturbance and power input and are considered more 

complicated than passive micromixers (Hessel et al., 2005; Nguyen and Wu, 2005).
 

Active micromixers can be both expensive and challenging to integrate into a micro-

fluidic system in comparison to passive micromixers which are considered robust and 

sTable in operation.   

 

Microreactors allow for simpler optimisation, rapid design implementation and easier 

scale up than conventional reactors, as scale up can be achieved by simply numbering 

up. Microreactors can reduce the time to the start up of the plant; as in many 

circumstances the laboratory scale reactor may be the same size as the plant scale.  Due 

to the micro dimensions of the channels, diffusion path lengths are significantly shorter 

than in conventional reactor systems leading to decreased diffusion time and hence 

faster mixing of the reactants, as in laminar flow diffusion is the limiting mixing 

mechanism.  

 

A transparent microreactor may be beneficial for photochemical reactions where yields 

are low; an increase in yield could be achieved when a reactor is in close proximity to 

the radiation source(Hessel and Lowe, 2003b). 

 



  Chapter 2: Literature Review 

 

Mr. Salah R. Al-Hengari  19 

Studies on mixing performance in microreactors have shown  that the performance is 

affected by increasing the mean residence time (Adeosun and Lawal, 2005), which for a 

given channel diameter and fluid flowrate may be achieved by increasing the channel 

length (Schneider et al., 2004).   

 

Two barriers have been identified to the use of microreactors in industry.  The first 

barrier is the competition between a microreactor for existing production processes and 

a depreciated plant, which affects the overall economic attractiveness. Second barrier is 

the issue of fouling, for channels with small dimensions problems with fouling can 

occur.  

 

Axiva, Frankfurt (Germany) have found that less fouling occurs for the polymerisation 

of acrylates when using micromixers.  Merck Company, Darmstadt , (Germany) have 

also found industrial benefits to the use of micromixers: an organometallic reaction led 

to an increase in yield of 25% in comparison to batch processing (Hessel and Lowe, 

2003a). Micro packed bed reactors have also been developed, in the case of 

hydrogenation of conjugated olefins; yields of 100% were achieved. 

 

2.2.4.1.6 Narrow Channel Reactors  

As mentioned earlier in this Chapter, narrow channel reactors have larger dimensions 

than microreactors (millimetre scale rather than micrometer scale); with those used as 

part of this research having channel diameters of 1mm.  A narrow channel reactor can 

be considered to be made up of two sections.  The first section usually consists of a T or 

Y junction, which serves as a point of contact (mixing junction) for the fluids where 

vortices are induced.  The second section can consist of a straight channel or a 

meandering structure.  This allows further inline mixing and mixing enhancement, it 

also provides the residence time required for reactions to take place (Kockmann et al., 

2006).  Due to the small diameters in narrow channel reactors, the flow regime is 

usually laminar and the main mixing mechanisms present are diffusion and chaotic 

advection. Although a laminar flow regime is usually observed in narrow channel 

reactors, there can be considered to be three different laminar flow regimes, which 

affect the degree of mixing achieved (Engler et al., 2004) : 
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I. Stratified Laminar:  This regime is observed at low flowrates and Reynolds 

numbers.  The mixing occurs by diffusion only.  The streamlines are not bent 

and follow the channel walls. 

 

II. Vortex Flow:  The mixing mechanism observed is diffusion at the border faces 

of the streams as in stratified laminar flow, however there are vortices beginning 

to form.  The swirling vortices begin to mix the fluid layers from the middle of 

the channel to the walls of the channel, whilst axial symmetry is retained, 

leading to an improvement of mixing. 

 

III. Engulfment Flow: This laminar flow regime is observed with higher flowrates 

and Reynolds numbers.  The streamlines interweave and reach the opposite 

channel wall, leading to the termination of symmetry, and resulting in 

significantly improved mixing.     

 

2.2.4.1.7 Heat exchange (HEX) reactors (HEX-Reactors) 

The heat exchange (HEX) reactor is another type of intensified narrow channel reactors. 

The main characteristic of the HEX reactors is that it has large heat transfer area per unit 

volume. This leads to reduction in space, weight and cost when compared with the 

conventional heat exchangers. There are many types of HEX reactors that derive from 

the existing compact heat exchanger such as the printed circuit (PRC) reactor (which 

has the benefits of using fine channels in view of their short conduction path lengths) 

polymer film heat exchanger and plate-fin heat exchanger (Anxionnaz et al., 2008). The 

HEX-reactors can be used in many industries including nitration, polymerisations, 

hydrogenations, halogenations and aminations (Reay et al., 2008) .  Figure 2.9 shows an 

example of compact plate heat exchanger. 
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Figure 2.10: Schematic view of  compact plate heat exchanger (Anxionnaz et al., 2008) 

 

2.2.4.2 Equipment for operations not involving chemical reactions. 

The Rotating devices applied in physical operations (i.e. those that do not involve 

chemical reactions apart from those mentioned before such as rotating packed beds) 

include centrifugal adsorber, which is a new continuous device that has good 

characteristics for either ion-exchange or adsorption processes or both of them. The 

device is an extremely compact and effective separation equipment in which centrifugal 

field establishes counter-current flow between liquid phase and very small particles of 

adsorbent. Examples of intensified equipment that do not involve chemical reaction are: 

Static mixers, Compact heat exchangers, Micro-channel exchangers, Rotor/stator 

mixers, Rotation packed beds, Centrifugal adsorbers and Disc bowl centrifuge. 

The static mixers (the motional mixers) are equipments used for mixing two fluid 

materials. The static mixers used to mix the liquid and gas streams with liquids, i.e.  

Disperse gas into liquid or disperse immiscible liquids. The static mixers consist of 

mixer elements contained in a cylindrical (tube / pipe) or squared housing. These tubes / 

pipes are varying from about 6 mm to 6 meters diameter. Static mixer elements consist 

of a series of baffles made from metal or a variety of plastics it depends of application. 

The housing of mixer can be also made from metal or plastic. The static mixers are used 

for a wide range of different applications, for example, wastewater treatment, chemical 

processing, desalting of crude oil, the polymer production. The static mixers design 

incorporates a method for delivering two streams of fluids into the static mixer. As the 

streams move through the mixer, the non-moving elements (baffles) continuously mix 
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the fluids. A high degree of mixing is dependent on fluid properties, tube / pipe 

diameter, the number of baffles and their configuration. 

The Rotor-stator mixers are single-shaft mixers with an impeller rotating in close 

proximity to a stationary housing. The Rotor-stator mixers are used to rapidly break 

separately solid particles in a liquid phase, or to blend a liquid into another. The 

impeller (rotor) provides high-shear forces to the elements. Rotor-stator mixers have 

been used effectively in a number of applications, including emulsification and viscous 

blending (Sparks, 1996). Rotor-stator mixers looks like centrifugal pumps and some 

designs have significant pumping capacities. The main difference between centrifugal 

pumps and rotor-stator-mixers is the narrow gap between the rotor and stator, known as 

the shear gap in the rotor-stator mixer where high shear forces disperse and homogenise 

any fluid passing through it. In contrast, the impeller in a centrifugal pump rotates with 

a large clearance from the stationary pump housing. 

 

2.3 Spinning Disc Reactor (SDR) Technology  

The Spinning Disc Reactor (SDR) has already been introduced earlier in section 

2.4.2.1.1 of this Chapter. As the focus of the present research is on SDRs, it is 

appropriate to provide a detailed review of the hydrodynamics of thin film flow on a 

rotating disc, together with an analysis of the power dissipation on the spinning disc, 

and the previous work on heat/mass transfer and chemical reactions in the SDR.   

 

2.3.1 The Hydrodynamics of a Thin Film Flow on a Rotating Disc 

Over the past century there has been much interest in studying the flow of thin liquid 

films down a vertical or inclined surface under the effects of gravity (Andreev, 1964; 

Nusselt and Ver.Deut. Ingr. Z., 1916). These early investigations could be credited as 

being the lead investigations on this subject, which  have resulted in present studies of 

thin films generated by rotating surfaces. These studies found that it was quite clear that 

these films were characterised by superior rates of heat and mass transfer which were 

linked to the strong mixing characteristics of the surface waves generated  by  the 

gravitational field (Fulford, 1964; Kirkbride, 1934).  
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2.3.1.1 Flow Models of the Thin Films Flows on the Disc Surface 

In order to illustrate the flow of the thin liquid films on smooth horizontal rotating 

surface, the modified Navier-Stokes equation for conservation of momentum and the 

equation of continuity for the conservation of mass was used (Boodhoo, 1999) The 

simplified version of the Navier-Stoke equation can be used to derive the velocity 

distribution, film thickness and residence time on the surface of rotation. These versions 

of the equations are related to smooth, fully developed laminar flow which is only 

obtained for a certain range of operating conditions such as flowrates and disc rotational 

speeds.  

 

2.3.1.1.1 The Centrifugal Model 

This model is based on the assumptions that the liquid on the spinning surface flows 

radially and the motion is caused by the effect of centrifugal force on the liquid and it is 

balanced by the viscous drag. The flow on the disc in this type of model is steady and 

symmetrical around the axis of rotation which does not give any velocity variation in 

the angular direction. Another important consideration for the model is that the disc and 

the flow have similar velocity, i.e there is no slip. Other considerations are smaller 

thickness of the film when compared to the radius, surface tension and fraction with 

surrounding medium is negligible. Again, the simplified version of the Navier-Stoke 

equation which is a reduction and subsequent integration of the general Navier-Stoke 

equation, would give the equation for the radial velocity, film thickness, the shear rate at 

a given radial distance across the smooth disc surface and residence time on the surface 

disc for liquid flow between two radial points on the disc.   These equations are 

summarised below (Boodhoo, 1999; Wood and Watts, 1973). 

 

The radial velocity, (  ), is given by expression: 

 

   
   

 
     

  

 
                                                                                                                          

 

The shear rate at a given radial distance across the smooth disc surface can be calculated 

as:  
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It can be seen that the shear rate is zero when the Z=δ and the maximum value of the 

shear rate will be obtained at the fluid/disc interface where Z=0. Then the maximum 

shear rate at a given radial distance across the smooth disc surface is given by: 

 

     
   

 
                                                                                                                                      

 

The average maximum shear rate across the disc surface can be calculated as: 

 

      
 

 
    

 

   

                                                                                                                             

 

Where n is the number of shear rate measurements. For the 10 and 30 cm SDR, the 

average maximum shear rate on the disc surface was calculated on the basis of four 

shear rate values at four radial positions on the disc surface for each set of operating 

condition of the total flowrate and disc rotational speed.     

 

The film thickness at the specific radial position on the disc surface is given by: 

 

    
   

      
  

 
 
                                                                                                                            

 

Where the angular velocity, ω, is defined in terms of the disc rotational speed, N: 

 

  
     

  
                                                                                                                                      

 

The average value of the film thickness across the disc surface can be estimated as: 

 

     
 

 
    

 

   

                                                                                                                             

 

Where n is the number of the film thickness across the disc surface measurements. For 

the 10 and 30 cm SDR, the average film thickness on the disc surface was calculated on 
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the basis of four film thickness values at four radial positions on the disc surface for 

each set of operating condition of the total flowrate and disc rotational speed.     

 

The mean residence time of the fluid on the disc is another important parameter when 

considering reactions on the SDR. This can be expressed as:  

 

     
 

 
  

     

    
 

   

   
   

   
   

                                                                                          

 

Where    and    are radii of the distributor and the disc respectively as illustrated in 

Figure (2.11) below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1.1.2 The Coriolis Model 

This model was based on the consideration of the Coriolis force that acts in a 

circumferential direction opposite to the direction of rotation of the disc. The effect of 

this force causes the liquid film to move with a lower speed than the disc. Emslie et al 

(1958) have stated that the Coriolis effect can be ignored if the centrifugal force is much 

greater than the Coriolis force, i.e.           . 

r z 

Fluid film 

ω 

Rotating disc 

Direction of liquid flow 

ri 

Distributor 

  

 

Fluid feed point 

ro 

Figure 2.11: Thin film flow on spinning disc surface 
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2.3.1.1.3 The General Models 

Most studies in the recent past have come up with various models that take into account 

the effect of inertial and Coriolis force on the disc. Venkataramen et al (1966) found 

that the effects of the inertial and Coriolis forces are only significant at a small distance 

from the distributor. Hence, if the disc is rather large (condition        satisfied), the 

simple centrifugal model is sufficient to describe the flow. 

 

2.3.1.2 Flow regimes and transitions   

The type of flow on the surface of the rotating disc under given flow rate and disc 

rotational speed is one of the main characteristics which must be included in the study 

of the hydrodynamic of SDR because it directly affects the rate of mixing, mass and 

heat transfer rates in the fluid as it flows on the disc. The regimes can be predicted on 

the basis of the Reynolds number criteria that have been defined for thin film flows on 

the disc.   

 

2.3.1.2.1 Reynolds Number Criteria 

Reynolds number (Re) is the ratio of the inertial forces to the viscous forces of the fluid. 

As the velocity varies with the radial distance across disc surface (r), the Reynolds 

number becomes radius-dependent instead of rotational rate-dependent. The Reynolds 

number of the thin film flows on the smooth rotating disc can be evaluated as shown 

below (Vicevic, 2004): 

 

   
   

   
                                                                                                                                         

 

 

 

The criteria governing the type of flow regimes (smooth laminar, wavy laminar and 

turbulent) obtained on a plane vertical surface have been measured experimentally by 

various researchers (Fulford et al., 1964; Binnie, 1957; Friedman and Miller, 1941; 

Kirkbride, 1934). These criteria are: 
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Re < 16: smooth laminar flow (no surface waves) 

 

16   R e < 40: Undulations across the film (small amplitude waves) 

 

40   Re < 80: Sinusoidal waves gradually replaced by regular waves 

 

80  Re < 1000 - 2000: Random surface waves (wavy laminar flow) 

 

Re   1000 - 2000: Turbulent regime 

 

One important issue that needs to be mentioned, even though the above criteria have 

been defined on the basis of film flow under gravity, is the fact that the above criteria 

are also applicable to films formed by the action of high centrifugal fields. 

 

2.3.1.2.2 Flow Regimes 

Over the recent past, some researchers have carried out investigation on different types 

of flow regimes associated with thin films formed on rotating discs. Charwat et al 

(1972) have described the different types of flow regimes associated with thin films 

formed on smooth rotating discs with low flow rates and disc rotational speeds. Hence, 

his study was limited to smooth discs only. However, from the study, a plot of flowrate 

against rotational speed was generated for the ranges of 0 to 7 cm
3
/s and 6 to 75 

radians/s respectively. Distinct boundaries between the flows regimes were observed 

depending on the operating conditions as follows: smooth film, spiral waves and 

concentric waves as shown in Figure 2.12. At low disc rotational speeds and flowrates 

the film surface was smooth. With increase in the flowrate at a fixed speed, concentric 

waves were formed. These waves move in radial direction outward and then decompose 

while the outer part of the film surface remained smooth. Another type of waves, which 

are spiral in structure,  was developed at high disc rotational speed and low liquid flow 

rates. These waves were developed away from the centre of the disc, and decayed close 

to the disc edge but in most cases the waves first broke up into a very rough and non-

uniform pattern of disconnected wedge-like wavelets. The highly unsTable film was 

produced by a combination of very high liquid flow rate and disc rotational speeds.  
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Figure 2.12: Flow regimes on the rotating disc surface. (Adopted from (Charwat and Kelly, 1972)) 

 

The behaviour of flow on the smooth disc experiments have been intensely investigated 

by Bell (1975) for the liquid flowrates up to 300 cm
3
/s. Bell’s diagram reproduced in 

Figure 2.13 indicates that there are three new zones which were not present in 

Charwat’s flow diagram. At low flow rates, Bell observed that the film is broken and 

liquid flows in the form of rivulets.  

 

However, the diagram does not clearly show how the film breakdown varies with radius 

but it was assumed that at least part of the disc is wetted at all flowrates for the graph of 

Charwat to make sense. Increasing the flow rates above 100 cm
3
/s at disc rotational 

speeds below 20 radians/s caused jetting from the inlet nozzle. This was caused by  the 

inlet nozzle being too small, which resulted in  velocities in excess of the natural value 

at the exit of the nozzle. 

 

At high speeds and high flowrates, the film surface appears to be very agitated. Bell 

interpreted this phenomenon as a result of centrifugal action causing the crests of ripples 

or jets to break off and impact upon flowing fluid. This was referred by Bell as a gray 

film.  



  Chapter 2: Literature Review 

 

Mr. Salah R. Al-Hengari  29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1.3 Film breakdown  

The occurrence of the breakdown of the thin film formed on a smooth rotating surface 

has been extensively studied over the past years. A critical review of these studies 

revealed that incomplete films with dry spots were observed at certain conditions 

especially at a combination of high rotational speeds and low liquid flow rates. Charwat 

et al (1972) described the mechanism of the film breakdown in great detail. The authors 

suggested that two distinct mechanisms that could be responsible for this phenomenon. 

In very thin films, even particles that stick to the surface of the disc can cause 

breakdown when the thickness drops to 20    Also, in the case of the thicker films, the 

breakdown occurred naturally even without physical disturbance as the function of flow 

parameters, particularly the Weber number can be estimated as shown below: 

 

     
 

  

            
     

  

 
 
   

 
     

      
 

   

                                                                         

 

Where σ is the surface tension (kg/s
2
) 

 

Figure 2.13: Flow regimes on the rotating disc surface. (adopted from (Ball, 1975) 
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One other noTable study in  this area was carried out by Hartley and Murgatoyd (1964) 

in which the phenomenon of film breakdown investigated. They came up with a 

proposed model that was based on the assumption that film breakdown occurs when the 

sum of rates of surface and kinetic energy was at a minimum. Using the centrifugal 

velocity model profile and then differentiating it with respect to σ and summing it up to 

zero to obtain the minimum condition, the expression for the critical flow rate at which 

film breakdown would occur can be obtained using the equation given below: 

 

        
   

   

 

 
 
 

 
 

 

 
                                                                                                                    

 

Where σ is the surface tension (Kg/s
2
) 

 

The results of the Bell’s experiments (1975) have qualitatively proven these 

expectations. However, the results found that the experimental values for Qc was about 

30% lower than the predicted ones. This significantly affected the performance 

characteristics of the rotating disc by promoting the film breakdown which led to 

reduced available interfacial area across which mass or heat transfer occurs. 

Consequently, the film break down phenomenon negatively affected the intensity of 

mixing of the film on the disc due to the under utilisation of the complete disc surface in 

the process of mixing. Hence it is recommended that working below the critical flow 

rate should be avoided. 

 

2.3.2 Power Dissipation on the Spinning Disc Reactor 

It is very important to determine the amount of energy transferred into the fluid by the 

action of the disc rotation. The energy transferred to the fluid is an indication of the rate 

of mixing achieved in the SDR. This hydrodynamic characterisation is also important 

for comparison of the SDR mixing performance with other reactors.  Furthermore, the 

power dissipation values are needed for calculating the micromixing time on the disc 

(section 2.4.4.1). 

 

Khan (1986) proposed that the kinetic energy given to the liquid by the spinning disc 

was equal to the frictional power dissipated by the fluid; and it is expressed by: 
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It should be noted that there is no change in the fluid density when the fluid flows from 

the centre to the edge of the disc. The fluid temperature remained constant on the disc 

surface as the experiments were carried out at 20
o
C. Therefore, equation 2.12 can be 

written as shown in the 2.13 below. 

 

     
 

 
       

      
             

                                                                      

 

Where: 

    Volumetric flowrate (m
3
/s) 

    =   film density (Kg/m
3
) 

    =   radial distance from centre of disc (m) 

   = angular velocity (=2         rads
-1

) 

N   =   rotational speed (rpm) 

  
  = mean velocity of film on disc (m/s) 

 

The subscripts ‘i’ and ‘o’ indicate conditions at the inner and outer radius of the disc 

respectively and U is the average radial velocity of the liquid solution on the disc (m/s) 

is given by: 

 

   
     

  ω 

         
 

 
 

                                                                                                                        

 

Where   is dynamic viscosity (Ns/m2), hence the total power dissipation       can be 

estimated as: 
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Where   is the mass of the fluid, (kg), and total power dissipation,     ), equation could 

be written in as:  

 

  
    

 
   

 

 
   
  

 
           

             
                                                           

 

Where    is the mass flowrate (kg/s) and therefore, 

 

    
 

    
                                                                                                                                         

 

Therefore, the total power dissipation is directly proportional to the volumetric flowrate 

and the square of the disc speed. This finding has also corroborated the work of Cafiero 

et al., (2002) in which they described the total power dissipation given to the fluid by 

the action of disc rotation as: 

 

               
                                                                                           

 

Where       is in W/kg  

                                                  

2.3.3 Previous Work on Heat/Mass Transfer and Chemical Reactions in Spinning 

Disc Reactor 

As stated previously in the preceding sections, there has been an increasing interest in 

the technology of process intensification and specifically the spinning disc reactor. 

Alongside the studies on the hydrodynamic characteristics of the SDR as presented in 

the previous section, many other investigations have been undertaken to characterise the 

SDR in terms of its heat and mass transfer rates and its performance in a broad range of 

chemical reactions. These will be reviewed here.  

 

In the case of the heat/mass transfer, Wood and Watts (1973) investigated the heat 

transfer characteristics of water flowing over a 30cm diameter spinning disc. They 

reported that water flowing over a 30cm diameter spinning disc has a film velocities in 

the range of 3.3 to l0 m/s with a film thickness in the region of 25μm. This film 
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thickness is relatively very small and it has led to the formation of extraordinary heat 

transfer properties. The authors found that the overall heat transfer coefficients were  in 

the range of 5.7 to 11.4 kW/m
2
K. In this same study, Wood and Watts (1973) measured 

the absorption rates of  of CO2 in a film of water formed on a 30cm diameter rotating 

disc for  disc rotational speeds in range of 320 to 1100 rpm and flowrates in the range of 

31.6 to 252 m1/s. They found that the total absorbed CO2 was in the range of 0.27 - 1.08 

mol/s. These results were compared to the mass transfer model proposed by 

Vankataraman (1966) and it was found that over the range of the experiments, a good 

agreement between the model and the experimental results was obtained. On the other 

hand, the experimental results did not follow a mass transfer rate as proportional to a 

     relationship as Vankataraman’s model predicted. Wood and Watts concluded that 

the water was not behaving according to the Nusselt flow model (from which 

Vankataraman's model is derived) and for this reason the Nusselt flow model was 

deemed  not to completely describe the mass transfer characteristics of thin liquid film 

on the disc. 

 

Rahman and Faghri (1993) introduced an analytical and numerical solutionfor mass 

transfer to a thin liquid film on the spinning disc. They recognised that all transport 

phenomena were controlled by inertial and viscous resistance at smaller radii as well as 

the rotation at larger radii. It was proved that the spinning disc can offer large 

enhancement of mass transfer coefficient over the entire disc radius by increasing the 

disc rotational speed. On the other hand, the enhancement of mass transfer coefficient 

with increase in flowrate was limited to the inertia-dominated region. 

 

Woods (1995) carried out an experiment using a visual study of the waves produced by 

flow of a thin film over 0.3 m rotating glass spinning disc using an optical technique 

and obtained the detailed quantitative measurements by determining the reflection and 

absorption of light passing through the wavy film. The photographs of the flow showed 

details of the interfacial waves at various locations across the disc. It was recognized 

that an initially uniform film was broken down into well-defined spiral ripples, which 

later on broke down into more confused wavelets as the film progresses radially 

outward. This investigation has shown that the nature, frequency and location of the 

wave-fronts were controlled by rotational speed and flowrate. In this research, 
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measurements of the average film thickness were also attained at four radial points on 

the disc. 

 

Jachuck and Ramshaw (1994a) used a spinning disc reactor with a 0.36 m diameter 

brass disc that had a grooved disc surface, which were used as an intensified heat 

transfer device, in order to increase the heat transfer rates. They studied the heat transfer 

of water flowing on the surface of a spinning disc which was operated in a rotational 

disc speed ranged 250 – 890 rpm. They reported average heat transfer coefficients of up 

to  16 kW/m
2
K. One important finding from this work was that the heat transfer 

performance was significantly improved when mechanically machined grooves were 

employed on the disc surface compared to a smooth disc surface. This behaviour can be 

attributed to a large number ripples that were created within the thin film when the 

grooved disc was used and these large number of ripples had significant effect upon 

heat transfer performance when compared with the smooth surface disc 

 

(Aoune and Ramshaw, 1999) investigated the heat and mass transfer performance on a 

0.5cm diameter smooth spinning disc made of brass. They reported that very high heat 

transfer rates were attained on the disc for water system. In the case of mass transfer 

study of the absorption of oxygen in de-aerated water, they found that the mass transfer 

rates were governed by disc speed. On the other hand, the liquid flowrate and disc 

radius were not as influential parameters as the disc speed.  In this study, the local mass 

transfer coefficients were reported in the range of 2 to 10 x 10
4
 m/s at the liquid 

flowrate of 80 cm
3
/s. They compared their experimental results with the Higbie 

penetration model of mass transfer and found that the experimental values were over 5 

times higher than those predicted by the Higbie’s model. The authors attributed this 

finding to a transit time of a surface element used in the Higbie model prediction of 

mass transfer coefficient which is determined by the derived residence time of the 

velocity of the film on the surface. However, the authors assumed in their experiments 

that the exposure time of a fluid element is that of the residence time of the fluid 

flowing on the surface predicted in the Nusselt model that describes the flow. This 

would be reliable when compared with the work carried out by Moore (1986) in which 

he suggested that the film instabilities and the propagation of the ripples and the 

instabilities of the film cause exposure times far less than the liquid surface residence 

time on the disc surface. 
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Polymerisation experiments were performed on a grooved SDR with 0.36m diameter 

disc by Boodhoo and  Jachuck (2000a; 1999). As mentioned earlier, the grooves in the 

disc surface of the disc acted to create and introduce a large number of surface waves 

within the film. Accordingly, the heat and mass transfer for the film should be  

enhanced. The results of the polymerization of styrene obtained from the SDR were 

compared with the results from a stirred tank reactor. The results show that the use of a 

SDR gives rise to larger reaction rates and improved the product quality by producing a 

product with a tighter molecular weight distribution than those obtained using a 

standard stirred tank batch reactor. In addition, processing time for the completion of 

the process was reduced. Similar enhancements in reaction rates and product quality 

were obtained when the SDR was used for the continuous condensation polymerization 

to produce polyesters (Boodhoo and Jachuck (2000b)). It is also  found that when the 

styrene polymerization experiments were performed on a grooved SDR, the rate of 

styrene polymerization is significantly increased (Boodhoo et al., 2002). Moreover, the 

molecular weight and the molecular weight distribution at a conversions of up to 80% in 

the SDR was found to be very close to those attained for the polymer at 60% 

conversions in the STR. The researchers attributed their findings as follows: the results 

indicated that the increase in polymerization rate is not the result of the Trommsdorff-

Norrish effect, which would have resulted in an increase in the poly-dispersity. The 

shear rate experienced by the thin film provides intense mixing which is responsible for 

the above mentioned findings.  

Also, Boodhoo et al. (2004; 2003) investigated the use of SDRs in the photo-

polymerization reactions and they found that the SDRs can be applied successfully in 

this kind of processes due to high degree of mixing intensity achieved on the surface of 

the SDRs giving rise to fast rates of polymerization and tight molecular weight 

distributions at high molecular weights for the product.  

In the case of cationic polymerization reaction, Boodhoo et al. (2006) studied the 

cationic polymerization of  a styrene using SDR with silica-supported boron trifluoride 

(BF3/SiO2) catalyst in slurry form. Their study proves that the use of stirred batch 

reactor led to thermal runaway (uncontrollable)  for monomer concentrations above 

25% by weight and initial temperatures between 20-25 
o
C. In contrast, the use of SDR 

allowed controllable, essentially isothermal polymerization for monomer concentrations 
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as high as 75% by weight at 40 °C.  In addition, the results of the study shows that a 

conversion increase of about 10% was achieved at 4100 s
-1

 average of shear rate, using 

a 200 mm diameter smooth disk with disc rotational speed of 400 rpm corresponding to 

mean residence times of approximately 1.0 s. These results proved that the use of SDR 

has the ability to enhance the heat and mass transfer rates associated with thin film 

which is driven by centrifugal forces on the surface of the spinning disc.       

 

Cafiero et al. (2002) used the SDR with a 0.5 m diameter of smooth disc as intensifying 

reactor for investigating the precipitation process. The study was carried out to 

determine the precipitation of barium sulphate from aqueous solutions at 25 
o
C. The 

disc rotational speed was in the range of 900-1000 rpm. The article found that the SDR 

experimental results obtained were in good agreement with those found in the literature 

when a rapid T-mixer was used and the SDR was able to produce a very high specific 

number of crystals in the size range of 0.5-1    with a power dispersed of 115 W/kg. 

The study shows that the comparison of the induction and mixing time confirmed that at 

the adopted operating conditions homogeneous nucleation may occur. Accordingly, the 

spinning disc reactors appear to be an alternative to a reactor for carrying out a 

precipitation processes. 

 

2.4 Mixing  

2.4.1 General definition of Mixing 

Mixing is defined as any process which can be used to reduce the inhomogeneity in 

order to achieve a desired process result. This inhomogeneity could be phase, 

concentration, temperature or pressure, etc. Mixing can reduce the scales of 

inhomogeneity down to molecular dimensions. The degree of mixing could affect mass 

transfer, reaction rate, and product properties, e.g. molecular weight and particle size 

distribution (Paul et al., 2004). Mixing operations are carried out in order to achieve the 

following objectives: accelerating and enhance the rate of heat and mass transfer for the 

system, distribution of immiscible materials and distributing one material in another to 

achieve uniform properties for the product. When the mixing process is occurring 

between two miscible liquids, two important factors for the mixer /reactors should be 

considered. These are: 
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I. No stagnant regions should exist within the mixer/reactor, i.e. the mixing must 

form an overall bulk or convective flow in the device.  

 

II. High shear mixing must be offered by the mixing device. This will make the 

device capable of providing the reduction in system inhomogeneity or enhancing 

rate of heat / mass transfer that is required by the process duty. 

 

During  turbulent mixing  in continuous or semi-continuous reactor, the kinetic energy 

input into the system is dissipated by viscous deformation during the following cascade 

of mechanisms (levels of mixing): macromixing, mesomixing and micromixing 

(Baldyga and Pohorecki, 1995b) which will be discussed in the following section The 

micromixing aspect of the mixing process is the key focus of this research. 

 

2.4.2 Levels of mixing 

The levels of mixing encountered in the mixing process for miscible fluids can be 

classified by three length scales, as depicted by (Johnson and Prud'homme, 2003) in 

Figure 2.14. These levels are:  macromixing, mesomixing and micromixing. 

 

I. Macromixing:  is the mixing on a scale greater than the minimum eddy size. 

Macromixing is also the process of blending on the scale of the whole vessel 

(mixing at the macroscopic scale) which determines the environment 

concentrations for both mesomixing and micromixing. Macromixing is 

characterized by the blend time in a batch system or the residence time 

distribution in continuous systems. At this level of mixing, the fluid distribution 

throughout the vessel is by the bulk convection. 

 

II. Mesomixing: is the mixing at intermediate level, which describes the mixing on 

an intermediate scale and, particularly, characterizes the inertial-convective 

mixing of a fresh feed stream. In other word, mesomixing is the formation of 

daughter vortices which grow by turbulent diffusion or inertial-convective 

mixing and engulf new fluid. In fact, the mesomixing level is referring to the 

dispersion of fresh feed stream shortly after it enters the reactor. At this level the 

mixing is at a scale roughly comparable with the size of the reactant feed pipe 
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and  corresponding to mixing phenomena which occur on a scale smaller than 

macromixing and larger than micromixing (Baldyga and Bourne, 1992). 

 

III. Micromixing: is the mixing on a scale smaller than the minimum eddy size (the 

last mixing stage). Micromixing is the mixing on the molecular scale, which is 

important for fast competitive chemical reactions. In micromixing scale, a 

further deformation of daughter vortices ultimately resulting in a lamellar 

structure (momentum diffusion) where molecular diffusion can eliminate regions 

of segregation in a local flow that is laminar (Johnson and Prud'homme, 2003; 

Baldyga and Bourne, 1984a). 

 

The mixing phenomena at macromixing and mesomixing levels scales are better known 

and understood than micro-scale phenomena. 

 

 

 

Figure 2.14: Turbulent mixing mechanisms through the three scales (adapted from Johnson and 

Prud'homme (2003)) 

 

2.4.3 Mixing Mechanisms  

For miscible systems, mixing of two liquids can occur in three consecutive or 

sometimes parallel steps (Edward et al., 2004) and it can be summarised as follows:  

a) At the beginning of the mixing process, one fluid is spreading in another 

(Dispersion step) so as to achieve a uniform average composition. On the 

microscale, however, the mixing consists of entirely segregated parts of the two 
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liquids and therefore the local concentration differences correspond to the 

difference of concentrations of non-mixed liquids.  

b) The size of the segregated regions of the uniform composition increases and the 

contact area between the regions of different composition grows. 

c) Mixing by molecular diffusion takes place to such an extent that segregated area 

disappears; the mixture reaches total homogeneity on the molecular level.      

 

The first of these three stages represent the macromixing step while the other two stages 

are termed micromixing step. Thus micromixing is the process by which liquids contact 

and mixing process take place at the molecular scale.   

 

Baldyga and Pohorecki (1995a) characterized mesomixing and micromixing processes 

by the spectral density function E(k) for turbulent kinetic energy and G(k) of the 

concentration fluctuations in the bulk liquid phase. The spectral densities are 

demonstrated in Figure 2.15 as a function of the wave number,    , which is 

proportional to the reciprocal of the eddy size λ (λ   1/k). The      is the wavenumber 

of large eddies,    is Kolmogorov wavenumber and     Batchelor wavenumber. Here 

the Kolmogorov micromixing (λk) can be defined as: 

 

     
 

  
   

  

 
 

 
 

                                                                                                                   

 

 

For the power dissipation of 1W/kg in water, the Kolmogorov microscale      

     . 
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Figure 2.15: Kinetic energy spectrum E(k) and concentration spectrum G(k) for liquid mixture 

with Sc >> 1,log-log scale (adapted from (Baldyga and Pohorecki, 1995a) 

The Batchelor micromixing length scale is defined as: 

 

   
 

  
  

   

 
 

 
 

                                                                                                        

 

 

For the power dissipation of 1 W/kg in water, the Batchelor microscale (   ) ≈     . 

The integral scale for concentration fluctuations (    is given as: 

 

 

    
 

   
  

    

 
                                                                                                                 

 

 Where     is the characteristic wave number of large eddies. For liquids, the spectral 

density of concentration fluctuation G (k) can be divided into three sub-ranges:  

 

I. The inertial-convective sub-range; 

II. The viscous-convective; 

III. The viscous-diffusive sub-range.  

Inertial subrange  

Viscous-

diffusive 

subrange 

Inertial-

convective 

subrange 
 

Viscous-convective- subrange 
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The condition under which the inertial-convective sub-range occurs is given as:  ( λk < l 

< Lc and koc< k < kk), where l is the size of fluid elements. The deformation of the large 

blobs of fluid and their subsequent breaking up is cause by the fluid motion, which 

results in their scales being further reduced by viscous deformation, while their 

molecular diffusion becomes slowly active. This process can be identified within the 

process of the inertial-convective mesomixing. 

 

 The second sub-range of spectral density of concentration fluctuation occurs when the 

viscous-convective sub-range is the within the range of (λB < l < λk and kK < k< kB), in 

which eddies are subjected to laminar strain that is depended on the viscosity. 

Consequently, the scales of eddies are further reduced by the effect of viscous 

deformation while molecular diffusion becomes slowly active.  

 

The third sub-range of spectral density of concentration fluctuation is the viscous-

diffusion sub-range which occurs within these conditions: (λB > l and k > kB). This 

begins when the laminar strain and molecular diffusion are of equal importance for even 

smaller eddies. The molecular diffusion of this smaller eddies rapidly dissipates the 

concentration variance. The spectral density of kinetic energy becomes negligible for 

eddies smaller than the Kolmogorov scale, hence the molecular diffusion becomes 

affected by the effect of viscous deformation only.  

 

Baldyga and Bourne (1999) described visually the three sub-ranges discussed above.  

Figure 2.16 illustrates the development of small fluid element through the various 

mixing steps identified into the three sub-ranges and in particular the micromixing of 

solutions containing the reactants A and B. 

  

Parts (a) and (b) (shown in Figure 2.16 below) represent the deformation of the large 

blobs of fluid B. This is because of the action of velocity fluctuations and their 

consequent reduction in size occurring in the inertial-convective sub-range. At this point, 

the micromixing will not occur but the structures formed will participate in the 

micromixing process. Part (c) describes the laminar deformation occurring at a finer 

scale recognized as the viscous-convective sub-range while part (d) concentrates on a 

small region and represents the action of vortices of the order of     at the various times 
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  . This occurs in the inertial-convective sub-range. At this stage, mixing due to 

molecular diffusion occurs within the laminae formed because of the acting of vortex 

and their consequential stretching.  

 

In conclusion, the micromixing process of solutions of A and B can be summarized as 

follows: 

 

 First, an initial formation of fluid aggregates that are reduced to a scale on the 

order of the Kolmogorov scale         with no micromixing occurring.  

 

 The above step is followed by the action of vortices that incorporated the fluids 

A and B of initial scale equal to    which are then subjected to deformation and 

stretching. This allows the molecular diffusion within the laminae inside the 

vortex to be formed. 
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In summary, the initial macromixing step is very important because it defines the 

environment in which concentrations for mesomixing and micromixing occurs. The 

macromixing step also provides a medium through which the fluid elements in meso- 

and micromixing experience different turbulence properties. Mesomixing is a reflection 

of the coarse-scale turbulent dispersion between the fresh feed and its surroundings. A 

fast chemical reaction in mesomixing process is usually localized near the feed point 

and the plume of fresh feed. The plume is very large relative to micromixing scales but 

smaller than the scale of the system. Another aspect of meso-mixing is related to the 

Figure 2.16: (a,b): Deformation of large blobs of fluid to a smaller scale in inertial-convective 

sub-range; (c): laminar deformation of the aggregates occurring in viscous-convective sub-

range; (d): vortex action on small scale fluids elements forming laminae followed by molecular 

diffusion within the laminae. adopted from Baldyga and Bourne,(1999) 
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inertial-convective process of breaking down of large eddies. The effect of the 

breakdown of the large eddies on the mixing by the inertial-convective occurs without 

having any significant impact on molecular mixing. However, it is the erosive shrinking 

of the blobs of fresh feed; this means that it is the large eddies of the inertial-convective 

sub-range that determines the environment for micromixing. Micromixing is last step of 

turbulent mixing process which consists of the viscous-convective deformation of the 

fluid elements followed by molecular diffusion. The acceleration of the molecular 

diffusion by viscous-convective process is considered to be the most important 

characteristic of micromixing process.   

 

2.4.4 Time constants of Single-phase mixing  

2.4.4.1 Time constant for chemical reaction 

The characteristic reaction time for second order reaction is given by: 

 

 

 

   
 

    
                                                                                                                                    

 

 

 

Fast reactions are defined as the ones whose characteristic time of reaction    is of the 

same order or smaller than the micromixing time   . 

 

2.4.4.2 Time constant for macromixing 

As previously explained in section (2.6.2), macromixing is the mixing process that 

occurs at the scale of the vessel. It is the process that determines the global environment 

in which other two scales i.e. meso- and micro-mixing may be involved and it consists 

of the fluid that consequently undergoes meso- and micromixing processes.  

 

Harnby et al., (1992 ) reported that when a non-reactive material or tracer is entering the 

stirred tank, it joins the circulating flow and then it is dispersed by turbulence so that it 
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finally reaches all parts of the vessel. This bulk blending is followed experimentally by 

injecting a pulse of non reactive tracer at a particular position and its concentration (e.g., 

by electrical conductivity) is a function of time at one or several positions. The signal 

oscillates with a period of oscillation called the mean circulation time (   ). the mean 

circulation time  can be defined as (Nienow, 1997): 

 

    
 

 
                                                                                                                                        

 

 

Nienow (1997) found that for a number of mixers, the macromixing time is often a 

small multiple of                      . 

 

 

Tracer injection finally changes the concentration by   , and a possible definition of the 

macromixing (or bulk blending) time is the time following the injection when the 

concentration change at the measuring point becomes equal to 0.95  . This is called the 

95% mixing time. When the liquid depth in a baffled stirred tank is approximately equal 

to the tank diameter (T), good estimation of macromixing  for a range of impeller types 

was estimated by  Nienow  (1997) as follows:  
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2.4.4.3 Time Constant for Mesomixing 

2.4.4.3.1 Time Constant of Mesomixing by Eddy Disintegration 

The first mechanism proposed by Baldyga and Bourne (1999) considers the 

disintegration of a fresh stream or a large spot entering a turbulent environment (e.g., in 

a stirred tank), from a scale as an initial scale (∧c) towards the Kolmogorov microscale 

     where micromixing can occur. This break-up can be shown schematically in 

Figure 2.17. The mesomixing time constant by eddy disintegration,    
 
  is given by: 

      
∧ 

 

  
 

 
 

                                                                                                                             

 

 

Figure 2.17: Disintegration of fluid element to scale where micromixing occurs (adopted from 

Baldyga and Bourne (1999)) 

 

For  estimating the initial scale of “unmixdness”,(∧c), Baldyga and Bourne (1999) have 

taken into account the different ways that the fluid has to enter the turbulent 

environment. One way was the fluid being fed to the environment through a small pipe 

into a large turbulent environment so that the momentum of the feed stream is not 

significant relative to that of the turbulent surrounding flow (velocity    ). The ∧  is 

given by: 

 

∧   
  

  
 
   

                                                                                                                               

 

Where    is the feed flow rate 
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Conversely to the previous case, the feed enters with much higher velocity than the 

surrounding flow (higher than velocity) and a jet will be formed. In this case, ∧  could 

be defined as equal to the radius of the feed pipe. Subsequently, the local power 

dissipation,   , will be enhanced by the action of this jet (Bourne, 2003). 

 

2.4.4.3.2 Time Constant of Mesomixing by turbulent diffusion/dispersion 

The turbulent diffusion and turbulent dispersion are both used to indicate the spreading 

of the fresh feed into the surrounding fluid. The central point being that the mechanism 

is turbulent, not molecular (Bourne, 2003). 

 

Figure 2.18 illustrates the initial spreading of a plume of fresh fluid injected into the 

system with flow rate of    in the direction normal to its flow and the local volume 

fraction of feed material denoted as          

 

 

Figure 2.18: Turbulent dispersion of feed giving Gaussian concentration distribution normal to 

flow direction. adopted from Baldyga and Bourne (1999) 

 

If the turbulent diffusivity      and local velocity     are constant during the feed 

dispersion, The Gaussian concentration distribution forms with a time constant     ,i.e., 

the characteristic time for mesomixing based on the turbulent diffusion/dispersion is 

given by: 
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the mesomixing time depends on the feed rate and the turbulence characteristics near 

the feed pip’s outlet (Baldyga and Bourne, 1999).   

 

2.4.4.4 Time Constant for Micromixing 

2.4.4.4.1 Time Constant for Micromixing by Molecular Diffusion and Shear Force, 

      

Baldyga and Pohorecki (1995a) reported the micromixing time constant related to the 

processes of molecular diffusion (molecular diffusion within the laminae). As 

previously explained, during mixing process, the layers (laminae or thin film) of 

different composition come close to each other and the molecular diffusion occurs by 

homogenising the mixture at the molecular scale. In addition, during the  diffusion step, 

the laminae or layers are deformed and the characteristic micromixing time for 

molecular diffusion and shear was defined by Baldyga and Pohorecki (1995a) as the 

time to decrease the thickness of the layer (laminae / thin film) from the Kolmogorov 

scale,   , to the Batchelor scale,    which is defined as follows: 

 

 

       
 

 
 
   

            
 

 
                                                                                           

 

 

 

As mentioned earlier in section 2.3.3 , the film flows on the disc of SDR can be as thin 

as 25 µm or even less and also a high shear rate could be created between the thin film 

and the disc surface due to the centrifugal force. This physical property makes the 

Baldyga and Pohorecki model an important tool for calculating the micromixing time 

on the SDR due to the molecular diffusion and the shear force. Mixing down to 

molecular scale can often be achieved in the range of   0.1-1 s (Bourne, 2003). 
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2.4.4.4.2 Time Constant for Micromixing by Engulfment  

Turbulent flow in micromixing is characterised by its vorticity and transitory vortex 

tubes.  It can be deduced that small, energetic vortices acting near the Kolmogorov scale 

can be drawn (or engulfed) in the surrounding fluid to form a short-lived laminated 

structure within the vortex tube. Figure (2.19) illustrates the Vortex stretching causes by 

the engulfment of the fluid from the environment to form laminated structure. 

 

 

 

Figure 2.19: Vortex stretching which causes engulfment of fluid from the environment to form 

laminated structure (Adopted  from (Baldyga and Bourne, 1999)) 

 

When a small amount of initially B-rich solution engulfs an A-rich surroundings, the 

rate of growth of the engulfed volume (VE) is given by: 

 

 
   

  
                                                                                                                                  

 

Where the engulfment rate coefficient (E) can be defined as: 
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 The time constant for micromixing by engulfment is the inverse of E, which is given 

as:  

 

        
 

 
                                                                                                                             

 

 

 

The power dissipation , (ε), has received considerable attention in both experiments and 

simulations. The total power input into a tank depends on the impeller diameter, 

impeller speed and the liquid volume to be stirred. The local power dissipation rate per 

unit mass of fluid can be specified as: 

 

    
     

       
 

                                                                                                                   

 

 

 

The total power dissipation is not distributed homogeneously in the whole tank. The 

local power dissipation rate per unit volume of the fluid and local flow velocities in the 

tank depends strongly on the position in the tank. The greatest values are measured at 

the impeller discharge stream and specifically near the impeller tip where the 

engulfment rate has the highest value. The relative power dissipation (   is expressed 

by: 

 

 

  
 

  
                                                                                                                                            

 

 

Ø depends on the position and the geometry of the reactor. For example, assuming the 

values of the kinematic viscosity is ν=       m
2
/s, diffusion coefficient,   =    

  m
2
/s 

and the local power dissipation, ε = 1 W/kg; using equations (2.29) and (2.32), the 

values of     and    obtained are given as 9 ms and 17 ms respectively. Consequently, 

for low viscosity solutions, the engulfment mechanism is usually slower than the 
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diffusion one determining the micromixing rate. This can be concluded that the fast 

micromixing is due to low viscosity fluids and high values of local specific energy 

dissipation. 

 

The time constants for micromixing are likely to fall in the range of 0.1-100 ms with 

existing sufficient intensive turbulence (Bourne, 2003). 

 

2.4.5 Chemical Methods for Mixing Quality Characterization  

These methods use test reactions called reactive tracers or more frequently test 

reactions, which are dependent on the reagent mixing state. This dependency is shown 

by their product distribution i.e. the segregation index, (Xs), since they are considered 

as molecular probes (Fournier et al., 1996a; Bourne et al., 1992). The technique consists 

in the injection of the feed of reagents into the mixing reactor, and after spontaneous 

reactions, the product distribution is determined by sampling the fluid at the outlet of 

reactor if the system is continuous, or from the mixture in the reactor if the reactor is 

semi-batch system.  

 

2.4.5.1 Test Reactions for Micromixing Measurements 

The chemical methods are test reactions which can be employed in experiments 

designed to evaluate the quantitative predictions of models claiming to describe the 

coupling between the mixing and reaction (quantifying the influence of the mixing 

process on reaction).  

 

The following characteristics should be fulfilled by a set of test reactions and should be 

considered when the test reaction is chosen for testing the intensity of mixing (Baldyga 

and Bourne, 1999; Fournier et al., 1996a; Bourne et al., 1992; Bourne et al., 1977b);  

 

 Reactions should be fast relative to mixing so that product distribution strongly 

depends on mixing and the time constants of these steps are of comparable 

magnitude. However, in those situations where a single reaction can be employed, it 

can also be instantaneously related to the mixing. 
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 Reactions should be irreversible so that the product distribution responds to the state 

of mixing in the reaction zone, but does not change during the rest of the residence 

time in the reactor and the period of chemical analysis. 

 

 Unequivocal knowledge of all reactions and their kinetics is essential. The 

dependence of the reaction rates on all concentrations, ionic strength, pH, solvent, 

temperature and homogenous catalysts (e.g. acids and bases) should be clear. 

Substantial effort is necessary to attain this level of detail, especially for Fast 

reactions. 

 

 All the reactants should be miscible because mass transfer between different phases 

could have a slower rate than mixing, which would make it difficult or impossible to 

characterize mixing. 

 

 A simple, fast and accurate quantitative analysis method must be available to 

determine the product distribution. 

 

 For general convenience and safety as well as ease of application at industrial scale, 

the reagents and products are inexpensive and non-toxic. 

 

It is difficult for test reactions to satisfy all the above requirements strictly. in the 

literature (Baldyga and Bourne, 1999; Fournier et al., 1996a).These reactions can be 

grouped in three main stoichiometric types:   

 

1) Single reaction: A+B→R;  

2) Consecutive competing reactions: A+B→R, R+B→S;  

3) Parallel competing reactions: A+B→R, C+B→S. 

 

2.4.5.1.1 Single fast reactions 

The single fast reactions generally involve the neutralization of a strong mineral acid 

with a base represented by the following scheme:  

 

   
  
                                                                                                                                                                                    



  Chapter 2: Literature Review 

 

Mr. Salah R. Al-Hengari  53 

 

This type of reactions is instantaneous or very fast reactions with a characteristic 

reaction time (tr) shorter than the mixing characteristic time (tm). They are suiTable for 

turbulent tubular reactors where reagent conversions as function of distance and hence 

also of time can be followed (Baldyga and Bourne, 1999). However, in a stirred tank 

reactor the local conversion in the moving fluid cannot usually be followed as a 

function of time.  

 

The rate of mixing has a very important influence on the course of reaction. Insufficient 

mixing can limit the reaction rate. Thus the dependence of reaction rate on mixing can 

be used to evaluate the competition between turbulent mixing and reaction.  Table 2.1 

show some examples of single test reactions reported in the literature. 
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Table 2.1: Test reactions of type A + B → R ( Single reaction)(Fournier et al., 1996a) 

Reference Reagent A Reagent B Rate of constant 

(25
o
C) 

[m
3
.mol

-1
.s

-1
] 

(Worrell and Eagleton, 1964) 

 

(Keairns and Manning, 1969) 

 

 

 

Sodium thiosulphate  

 

Hydrogen 

peroxide 

 

 

 

 

k1=2.83x10
-4

 

(Keeler et al., 1965) 

(Torrest and Ranz, 1969) 

(Miyairi et al., 1971) 

 

 

Ammonium hydroxide  

 

Acetic acid 

 

 

 

 

 

 

 

 

 

(Mao and Toor, 1971) 

 

 

 

Hydrochloric acid 

 

Sodium 

hydroxide 

 

   k1=1.4x10
8
   

       at 25
o
c 

 

 

Maleic acid 

 

Sodium 

hydroxide 

 

     k1= 3x10
5
   

 

 

Nitrilotriacetic  acid 

Sodium 

hydroxide 

 

     k1=1.4x10
4
   

 

Carbon dioxide 

 

Sodium 

hydroxide 

     k1= 8.32   

(Méthot and Roy, 1973) Sodium thiosulphate Sodium 

bromoacetate 

     k1= 10
-4

   

      At 20
o
c 

(Larosa and Manning, 1964) 

 

(Zoulalian and Villermaux, 1970) 

 

(Goto and Matsubara, 1975) 

 

(Lintz et al., 1975) 

 

(Makataka and Kobayashi, 1976) 

 

 

 

 

 

Ethyl acetate 

 

Sodium 

hydroxide 

  k1=1.34x10
4
   

      At 20
o
c 

 

 

(Aubry, 1972) 

 

(Klein et al., 1980) 

Nitromethane Sodium 

hydroxide 

    k1=2x10
-2

   

      At 20
o
c 
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2.4.5.1.2 Multi-Step Fast Reactions  

Fast reactions whose product distribution is dependent on the mixing quality require 

competitive steps. These may occur in a competitive-consecutive scheme or in a 

competitive- parallel scheme as explained below. 

 

I. Competitive-consecutive scheme 

 

Equations (2.36) and (2.37) shows the general Competitive-consecutive scheme where 

reagent A reacts with B, added as a limiting reagent, gives the primary product R in 

reaction (2.36) and then R further reacts with B to give the final product S in reaction 

(2.37). Reaction (2.36) is quasi-instantaneous and reaction (2.37) is fast and having a 

reaction time (tm) of the same order as the micromixing time. 

 

   
  
                                                                                                                       

                                                                                                                    

      
  
                                                                                                                                                                                  

 

Under good conditions of mixing (        - slow regime) where kinetic process is the 

controlled regime and the mixing process has no any influence, it can be shown that the 

yield of the products R and S are only dependent on the stoichiometric ratio and on the 

rate constants ratio (  /   ). When (       ).  This means the reaction is slower when 

compared with the mixing process, so that mixing process will be completed before the 

reactions occur and there will be no mixing influence on the product distribution which 

depends on the initial stoichiometric reagents ratio and the ratio of the rate constants. By 

measuring the amount of products after total consumption of the reagent B, the  

segregation index, Xs, can be calculated as the fraction of the limiting reagent B present 

in the secondary unwanted product S, Xs where ; 

 

    
   

      
                                                                                                                              

 

Contrary to the previous case where (        - instantaneous regime) and the mixing 

process is the controlled regime or intermediate regime, in this case the product R 

formed in reaction (2.36) will instantaneously react with reagent B in reaction (2.37) 
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which then gives the final product S. The amount of reagent R will be completely 

consumed and the segregation index, Xs, will be reached to the maximum value i.e. 1.0, 

where the total segregation state is present in the mixture.  

 

The intermediate regime (the reaction is fast but not instantaneous i.e. (          - fast 

regime) is the third case where the product distribution will be dependent on both the 

kinetics and rate of mixing. 

 

In the early 80s,  Baldyga and Bourne (Bourne et al., 1981) developed the first reaction 

schemes that showed the sensitivity to the maxing process. This set of reaction consists 

of the azo-coupling of 1-naphthol, A, with diazotized sulphanilic acid, B, having two 

products (R = monoazo and S= bisazo), which are dyes. This scheme was at the 

beginning simplified as a parallel-consecutive reaction system according to equations 

(2.36) and (2.37). In fact, the reaction produces two isomers of monoazo dye, the para 

and the ortho form. However, at the beginning(Bourne et al., 1981) the reactions 

involving the ortho product were not taken into account. Afterwards, the composition of 

o-R and p -R formed were determined and the new reaction scheme which now consists 

of four reactions (Bourne and Hilber, 1990b).  

 

This type of test reaction has been successfully used on micromixing studies in several 

types of reactors e.g. (Bourne and Maire, 1991; Baldyga and Bourne, 1989b; Baldyga 

and Bourne, 1989a; Kusch et al., 1989). However, some disadvantages, regarding to this 

particular set of reaction is the degradation of the product (the temperature sensitivity of 

the products) not being straight forward in terms of preparation of the reactants and the 

difficulty to obtain the spectrum of product S (Wenger et al., 1992). The analytical 

errors and the risk of involving the product S (unwanted product) limit the application 

of this test system to reactors whose energy dissipation is less than 200 -400 W.kg
-1

 

(Bourne et al., 1992). 

 

Villermaux and his collaborators (Detrez et al., 1988; David et al., 1985; Barthole et al., 

1982) developed another set of reaction which follows the competitive-consecutive 

scheme, equations (2.36) and (2.37). The test reaction is based on the precipitation of 

barium sulphate from the alkaline barium-EDTA complex under the influence of acid 

addition. Following this, it was found out that the reactions were not fast enough to 
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study performance of mixers/reactors. In addition, under certain circumstances, re-

dissolution of the precipitate has been observed  (Meyer et al., 1992). Table 2.3 show 

some examples of Competitive-consecutive scheme reactions reported in the literature. 

  

II. Competitive-parallel scheme: 

Equations (2.39) and (2.40) show the general competitive-parallel scheme. The common 

limiting reagent B reacts with A and C giving as products R and S. As for the prior case, 

reaction (2.39) is faster than the second reaction (2.40). When a small quantity of 

reagent B is added to an excess of reagent A and C, the quantity of product R and S will 

depend on the intensity of mixing and therefore the micromixing. Reaction (2.39) is 

quasi-instantaneous and the rate of reaction (2.40) is comparable to that of micromixing 

process. 

 

   
  
                                                                                                                                                                               

 

   
  
                                                                                                                                                                                    

 

As explained in competitive-consecutive scheme, in conditions where mixing does not 

have any influence, it can be shown that the yields of the products R and S are 

dependent only on the stoichiometric ratio and on the rate constants ratio (  /   ). This 

can occur when the reaction is slow i.e. (       ) and the product distribution i.e. 

segregation index, Xs, can be measured as the fraction of the limiting reagent B present 

in the secondary unwanted product S. 

 

On the other hand, a mixing process controlled regime or an intermediate regime where 

(        - instantaneous or mixing controlled regime) could alter the expected results 

of the kinetic controlled regime. In this case, the competition of reactant A and reactant 

C for reactant B will be controlled by the concentration of the reactants and not by the 

reaction rates. 

 

The third case is the intermediate regime where the reaction is fast but not instantaneous 

i.e. (         - fast regime). The product distribution will be dependent on both the 

kinetics and the rate of mixing. 
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For both competitive-consecutive and competitive-parallel schemes, there will be only 

the formation of product R and the segregation index, Xs, reaches 0 in the case of a 

perfectly micromixing system. Alternatively, the formation of product S will indicate a 

partial segregation of the mixture and the segregation index, Xs, will be in the range of 

0 to 1.  

 

These two kinds of reaction schemes have the advantage of keeping the memory of 

mixing efficiency through the distribution of products (Fournier et al., 1996a), i.e., the 

product distribution is limited by the consumption of the limiting reagent which is the 

reagent B. This makes two reactions well suited for studying the micromixing efficiency 

in different type of reactors. Therefore, a limited amount (lower than that given by 

stoichiometry) of B must be added to A (NA0 > NB0 or FA0 > FB0 , where N is the number 

of moles in the case of semi-batch reactor systems and F is the volumetric flowrate in 

the case of continuous reactor systems) in the case of a competitive-consecutive reaction 

scheme or to the mixture of A and C (NC0 > NB0 or FA0+FC0 > FB0 ); in the case of a 

competitive parallel reaction scheme, so that both reactions stop by total consumption of 

limiting reagent B.  

 

Some examples of the consecutive and parallel reaction schemes are presented in the 

literature. Tables 2.2 and 2.3 show some of these examples for competitive-consecutive 

reaction scheme and competitive- parallel reaction scheme respectively as reported in 

the literature. 
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Table 2.2: Test reactions of type A + B → R, R + B→ S (Competitive- consecutive reaction) adapted 

from Fournier et al. (1996b) 

Reference Reagent A Reagent B Rate of constant 

(25
o
C) 

[m
3
.mol

-1
.s

-1
] 

(Paul and Treybal, 1971) 

(Bourne and Rohani, 1983) 

1-Tyrosine Iodine 

 

k1=3.5x10
-2 

      k1/k2=9.2 

 

(Zoulalian and Villermaux, 1974) p-Cresol 

 

 

Iodine 

 

 

k1=3.25
 

 

    k2=1.28 (pH=11)
 

 

(Zoulalian, 1973. ) 

 

(Truong and Methot, 1976) 

 

 

Glycol diacetate 

Sodium hydroxide k1=5.14x10
8
 

 

k2= 2.27x10
-4

 

(Bourne et al., 1977) Resorcinol Bromine K2= 10
2
 

 

 

(Nabholz and Rys, 1977) 

Prehnitene 

 

Isodurene 

 

Durene 

 

 

 

Nitronium salt 

k2=3x10
-1

 

 

k2=4x10
-2 

 

k2=10
-1 

 

k1/k2>100 

 

(Bourne and Kozicki, 1977) 1,3,5- 

Trimetoxybenzene 

Bromine k1/k2≈27 

(Bourne et al., 1990) 1-Naphthol Diazotized sulfanilic 

acid 

k2=1.3x10
4
 

 

k2=2.7
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Table 2.3: Test reactions of type A + B → R, C + B→ S (Parallel competing reaction), Adapted 

from Fournier et al.(1996b) 

Reference Reagent A Reagent B Reagent C 

 

 

Rate of constant 

(25
o
C) 

[m
3
.mol

-1
.s

-1
] 

 

(Treleaven and Tobgy, 

1973) 

 

1- Naphthol-6- 

sulphonic acid 

4-sulphophenyl 

diazonium 

chloride 

4-Toluene 

diazonium 

chloride 

k1 18.3x10
1
 

k2 2.46x 10 

(Miyawaki et al., 1975) 

 

Ammonia Carbon dioxide Sodium 

hydroxide 

k1 4x10
1   

at 25oc 

 k2=9.3
 

(Phelan and Stedman, 

1981) 

 

Hydrazine Nitrous acid Hydrogen 

azide 

k1 6.67 

 

(Paul et al., 1992) 

 

Hydrochloric acid Sodium hydroxide Organic 

solvent 

 

(Bourne and Yu, 1994) 

 

 

Hydrochloric acid Sodium hydroxide Ethyl 

chloroacetate 

 

(Bourne and Yu, 1994) 

 

 

Hydrochloric acid Sodium hydroxide Methyl 

chloroacetate 

k1 1.3x10
8
 

k2 3.10x 10 

(Guichardon and Falk, 

2000; Fournier et al., 

1996a) 

 

 

Borate ion Sulphuric acid 

 

Iodide and 

iodate 

k1 10
8
 

k2 f (I ) 

 

 

(Baldyga et al., 1998) 

 

 

Hydrochloric acid Sodium hydroxide 2,2- 

dimethoxypro

pane 

 

k1 0.6 
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Bourne et al., (Baldyga and Bourne, 1999; Bourne and Yu, 1994) investigated a set of 

reaction which follows the equations (2.39) and (2.40) for competitive- parallel scheme. 

The set of reaction was a neutralization of hydrochloric acid and alkaline hydrolysis of 

monochloroacetate (methyl or ethyl) esters with sodium hydroxide as follows: 

HCl +NaOH
  
   H2O+NaCl                                                                                         (2.41) 

 

CH2CLCOOC2H5+NaOH 
  
  C2H5OH + CH2ClCOONa                                           (2.42) 

 

The limitation in this set of reactions was the weaker flow fields (e.g. stirred tanks) 

where the energy dissipation should not be more than 1W/kg and 10 W/kg for ethyl 

ester and methyl ester system, respectively (Baldyga and Bourne, 1999). In addition, the 

authors found that this set of reaction requires a rapid gas chromatography analysis of 

the products because of the volatility of the components.  

 

Another set of reaction that follows equation (2.39) and (2.40) is the iodide-iodate 

reaction which was first developed by Villermaux and his co-workers (Villermaux et al., 

1993; Villermaux et al., 1992). This set of reaction was then further studied by 

(Guichardon and Falk, 2000; Fournier et al., 1996a; Falk et al., 1994) as an alternative 

system to assess the intensity of micromixing in the mixers/reactors. More details about 

this set of reaction are in the section below.  

 

2.4.6 The Iodide- Iodate Technique  

This set of reaction involves acid-base neutralization, (2.43), and an oxidation reaction, 

(2.44), called the Dushman reaction. The iodide-iodate reaction system (coupling acid-

base neutralization with Dushman reaction) which belongs to the parallel competitive 

reaction scheme was implemented in this research as a model reaction to characterise 

the micromixing phenomena in intensified reactor systems, i.e. spinning disc reactors 

and microchannel reactors. The data were benchmarked against conventional semi-

batch reactor using Rushton turbine impeller. The decision was taken after a very wide 

and careful screening of various reaction schemes that have been used as chemical 

probes to characterise the micromixing phenomena. The selection of the iodide-iodate 

reaction scheme has been made primarily on the basis of it being a well established and 
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well studied reaction system for micromixing characterisation. Also the chemicals 

involved in the system are not characterized by a high level of toxicity. Furthermore, the 

iodide-iodate reaction system fulfilled all the characteristics required when the test 

reaction was chosen for testing the intensity of mixing as discussed in section 2.7.1. In 

addition, the number of advantages associated with this reaction scheme as highlighted 

by Fournier et al. (1996a) are given as follows: 

 

 Simple reaction schemes in order to avoid analysis of many products. 

 Easy analysis of reaction products, i.e. spectrophotometeric technique. 

 Known reaction kinetics, faster than mixing rate. 

 Good sensitivity and reproducibility. 

 Efficiency in stirred reactors, even in the case of fast mixing devices, i.e. 

rotating backed beds and spinning disc reactors. 

 

These advantages encouraged the choice of the iodide-iodate reaction system as model 

reaction in this research to characterise the micromixing phenomena in intensified 

reactor systems. The iodide-iodate reaction system can be described in three steps as 

follows: 

 

     
 

          
                                 Acid-base neutralization                        (2.43) 

                                                                          Quasi-instantaneous                     

 

 

            
 

          
                           Dushman reaction                 (2.44) 

                                                                                                                           Fast 

 

           
 

                                                                    Equilibrium                      (2.45) 

                                                                                                           Quasi-instantaneous 

 

The second reaction (2.44) which is a Redox reaction is fast being in the same time 

range as the micromixing process, but much slower than the acid-base neutralisation 

reaction (2.43). The iodine formed reacts further with iodide ions 
I  

to yield 3
I  

according to the quasi-instantaneous equilibrium (2.45). The degree of micromixing has 

a direct influence on reaction (2.44) and subsequently on reaction (2.45). The 
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measurement of 3
I  by spectrophotometric absorption can therefore provide a good 

indication of the level of micromixing achieved in any given system. The lower the 3
I  

concentration, the lower is the segregation index, Xs, which means better micromixing. 

It should be noted that for perfect micromixing Xs = 0, the total segregation index is Xs 

= 1 and for partial segregation Xs varies between 0 and 1. This test system has been 

validated by different researchers including (Guichardon et al., 1997) for viscous media 

system, (Lin and Lee, 1997) for gas-liquid phase system,(Guichardon et al., 1995) for 

solid-liquid phase.  

 

Recently, the iodide-iodate reaction system was the most used set of reaction for 

investigating the intensity of micromixing in different mixers/reactors by several 

research teams e.g.  (Assirelli et al., 2008; Chu et al., 2007; Ferrouillat et al., 2006; 

Yang et al., 2006; Hai-Jian Yang, 2005). 

 

2.4.6.1 Parameters to Characterise the Intensity of Micromixing 

2.4.6.1.1 Segregation Index, Xs 

The segregation index XS, sometimes called product distribution, is defined as the value 

representing the actual yield of the undesired product (Y), compared with the maximum 

yield of undesired product      , i.e. when the micromixing is infinitely slow and the 

total segregation occurs (Guichardon et al., 2000b; Guichardon and Falk, 2000; 

Fournier et al., 1996a). The segregation index is calculated by the following equation:  

 

   
 

   
                                                                                                                                          

 

 

The segregation index, Xs, is a quantitative indicator of the degree of segregation in the 

reaction mixture. Its value is zero (0) in a homogeneous mixture and it increases as 

segregation appears. Its maximum value depends upon the initial composition of the 

reaction mixture, which is always less than 1. The value of XS should be between 0 < XS 

< 1, XS = 0 and XS = 1, which indicates the maximum micromixing and segregation 

respectively: 
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Perfect micromixing: XS = 0, 

Total segregation:     XS = 1, 

Partial segregation:      = Y/Yst. 

                                            

The segregation index, XS (product distribution), defined in that way shows the 

advantage to be easily measured experimentally. No measurement is necessary during 

the reaction. Only analysis of the initial and final reaction mixtures is required. 

 

2.4.6.1.2 Micromixedness ratio,   

The micromixedness ratio, α, is another indicator that is used to measure the 

micromixing quality. The higher the value of micromixedness ratio, the lower the 

degree of segregation in the reaction mixture. The micromixedness ratio α can be 

defined as the fraction of a perfectly micro-mixed volume divided by the fraction of the 

volume remaining segregated and can be estimated as: 

 

  
    

  
                                                                                                                                     

 

The significance of   is that it is closely related to the ratio of two characteristic times: 

that is, the reaction time and the micromixed time (Fournier et al., 1996a; Villermaux et 

al., 1992). Micromixedness ratio is derived from the segregation index, Xs, and is 

considered to describe the degree of segregation of the fluid. Guichardon and Falk 

(Guichardon et al., 2000b) 

earlier ideas  developed by Villermaux(Villermaux, 1986). They assumed that the real 

fluid is composed of two typical fluids, one which is perfectly micromixing of volume 

     and the other fluid is totally segregated of volume     This can be written  as 

follows: 

 

                                                                                   

 

Where: 

 

  = 0 for the perfect micromixing and   = 1 for the total segregation, then the 

micromixedness ratio α can be described by the following expression: 
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The complete procedure for the of segregation index (Xs) calculation (Guichardon et al., 

2000b; Fournier et al., 1996a) is presented in Chapter 4, section 4.5 for both semi-batch 

and continues processes.  

 

2.4.6.2 Considerations for Operating Conditions  

2.4.6.2.1 Reactants Feed System Configuration in Semibatch Reactor  

As reported in (section 2.6.4), the coupling of acid-base neutralization with Dushman 

reaction was chosen as a model reaction in this research in order to characterise the 

micromixing performance in four different types of reactors. In the first part of the 

research, the experiments were carried out in a Semibatch reactor (SBR) with two feed 

points where one of the reactants, i.e. sulphuric acid was added to a solution containing 

the others, i.e. H3BO3 , NaOH, KI and KIO3. As Baldyga and Bourne (1999) suggested, 

there are three different possible feed strategies that can be implemented to carry out the 

iodide-iodate reaction. The reactants can be added using three different possible options: 

 

I. Concentrated H2SO4 is added slowly to a pre-mixture of H3BO3, KI and KIO3. 

 

II.  Concentrated H3BO3 and H2SO4 can be added slowly in separate streams to a 

more diluted solution of KI and KIO3. 

 

III. A concentrated pre-mixture of H3BO3 and KI and KIO3 is slowly added to the 

diluted   H2SO4. 

 

For simplicity and practicality, all the SBR experiments were carried out based on  the 

first option.  
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2.4.6.2.2 Influence of pH on the segregation index, Xs  

As mentioned above in section (2.4.51.2), Villermaux et al. have developed and 

extensively studied the iodide-iodate system and have established the operating 

parameters that allow a correct application of this reaction scheme in relation to both the 

chemistry of the system and the type of measuring instruments. Originally, the iodide-

iodate method was developed to characterize mixing efficiency in stirred tanks 

(Villermaux et al., 1992).  

 

The application of the iodide-iodate reaction system requires that the hydrogen ions are 

in less than stoichiometric amount in respect to the borate ions. In addition to this, the 

spontaneous formation of iodine before the reactions take place must be prevented by 

controlling the pH (the initial pH) of the reactive mixture. To fulfil this condition, a 

sequence was followed for the preparation of the whole reactive mixture. First, the 

Sodium hydroxide is added to the solution containing borate ions to form a buffer 

solution. Then the iodide and iodate ions are added to this solution. The pH of  buffer 

solution must be between 8.5 and 9.5 (Guichardon and Falk, 2000) . In the iodide-iodate 

reaction system, the borate ions play two roles. Firstly, they are reactants in the 

neutralisation reaction (2.39) and secondly, they had a role as buffer thus keeping the 

pH of the reactive mixture consonant.  

 

Another consideration that was taken into account was the formation of iodine does not 

to occur spontaneously in order for the final concentration of iodine to reflect only the 

mixing conditions in the reaction environment. This means that the final pH (the pH of 

the product) does not have to be below the critical value of pH*, i.e. the value of pH 

from which iodine does not thermodynamically appear. pH* can be determined from the 

electric potential-pH diagram, depending on the total iodine concentration. When the 

final pH values become lower than the critical value (pH*), the formation of iodine 

from iodide and iodate ions becomes possible thermodynamically and therefore 

operating conditions with pH values lower than pH* must be adjusted .Conversely, if 

the final pH is too high, the iodine formed is unsTable and no tri-iodide ion can be 

detected by UV-vis spectrophotometer. It can be concluded that if the initial and the 

final values of pH are higher than pH*, the solution containing KI and KIO3 is sTable 

and no iodine would thermodynamically appear. Hence, the measured tri-iodide can 
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only be formed due to the segregation of the fluid and wholly associated with the 

micromixing efficiency of the reactor.  

 

 As it is recommended by Guichardon and Falk (2000), the micromixing experiments 

must be carried out at pH values higher than pH*. The reactant concentrations in this 

micromixing experiments were chosen in order to fix the pH at 9.45 for the reactive 

mixture on an average and the pH for the buffer solution, i.e. H3BO3 and NaOH was in 

the range of 9.0 - 9.5. The pH value after finishing each experiment was measured and 

found to be always higher than the critical value (pH*) i.e., pH >7. 

 

2.4.6.2.3 Influence of acid feed rate on the segregation index, Xs 

Many researchers have invested a great deal of effort in studying the influence of the 

acid feed rate on the segregation index, Xs (Assirelli et al., 2002; Guichardon and Falk, 

2000; Baldyga and Bourne, 1999; Fournier et al., 1996a; Bourne and Thoma, 1991). It 

has been observed that the segregation index can be strongly influenced by the acid feed 

rate if reaction is carried out in a semi-batch reactor (SBR). The feed time used in the 

experiments must exceed a critical time (tc) in order to make sure that experiments are 

carried out in the micromixing-controlled regime.  

 

In some more details, the critical injection time (tc) is the time which the segregation 

index reaches a constant value at different injection time with constant hydrodynamic 

and concentration parameters, after which macromixing does not play any role during 

injection and segregation index reaches asymptotic values. 

 

 In addition, to only quantify the effect of micromixing in a semi-batch reactor, it is 

necessary to work in a medium where perfect macro-mixing conditions are fulfilled 

(Guichardon and Falk, 2000). When the reactor is perfectly macro-mixed and the state 

of segregation is uniform within the reactor volume, the extent of an instantaneous 

reaction with unmixed reactants is directly related to the strength of micro-mixing 

which controls the contact between reactants. Bourne and Thoma (1991) reported that 

for rapid acid injection conditions, i.e. changing in the feed time from low to high flow 

rates and keeping all the chemical and hydrodynamic conditions constant, the plume is 

not well dispersed in the tank and macroscopic concentration gradients may influence 
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the results by yielding high quantity of unwanted product, i.e., high value of the 

segregation index and for our particular case the segregation index,(  ), becomes a 

function of the feeding rate. 

 

In contrast, when acid injection rate is very low, macromixing effects are eliminated and 

the results which are given by chemical test reactions are only micromixing relevant. 

 

In fact, critical injection time (tc) should be determined for each new set of experimental 

conditions. This is however not practical. One solution to this problem is the 

determination of (tc) under the worst experimental conditions, for instance, the lowest 

impeller rotational speed, the highest acid concentration and the nearest acid injection 

point to the fluid surface. Such tc is then the longest tc of all the experiments.  If this tc is 

used as the feed time, it is certain that all experiments are carried out in the 

micromixing-controlled regime. Figure (2.19) shows the influence of the feed rate on 

the Segregation Index (  ) for a semi-batch stirred tank reactor (SBR). 

 

In this research (section 5.2.1 in Chapter 5), the influence of acid feed rate in SBR 

system has been checked for the worst micromixing operating conditions for both water 

system and 75 wt% glycerol system.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20: Segregation Index (X_s) as a function of feed time (t_f) for a semi-batch stirred tank 

reactor Adopted from (Baldyga and Bourne, 1992) 
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2.4.6.2.4 Feed pipe diameter effect on the segregation index,(Xs) in Semibatch 

reactor (SBR) 

Fournier et. al. (1996a) studied the effect of feed pipe diameter on the segregation 

index. A pipe with diameters of 1 and 2 mm were used in the experiments for one litre 

SBR. The pipe diameter is an important parameter because it controls the size and the 

kinetic energy of initial acid eddies at the pipe outlet. The results confirmed at the 

impeller speed equals 7.5 s
-1

 the segregation index was found to increase with an 

increase in the pipe diameter. This confirmed that the larger the pipe diameter, the 

bigger eddy will be produced.  

 

Guichardon and Falk (2000) characterised the micromixing efficiency  by the iodide-

iodate reaction system in a 1L stirred tank equipped with a Rushton turbine. The acid 

injection was done with a 2 mm diameter pipe. In the current work, acid was injected 

through a 1.78 mm diameter pipe made of stainless steel. 

 

2.4.6.2.5 Influence of acid concentration and total flowrate ratio,     

The sulphuric acid must be in stoichiometric default in the reactor with respect to all 

borate ions,(     
 ) (Monnier et al., 1999a)  because there must remain iodide ions 

(  ) to react with (  ) form tri-iodide (  
 ), the concentration of   

 
 characterizes the 

micromixing. If the concentration of the sulphuric acid is improperly selected, the 

amount of the tri-iodide (  
 ) formed from reaction (2.45) is too high or too small and 

the optical density may not be in the range of the spectrophotometer scale.  

 

To choose the proper flow rate ratios of the reactants, the following considerations need 

to be applied:   

 

 The molar flow of acid ions (  )
 
must be smaller than the molar flow 

of       
  , (  )

 
and (   

  
)because the acid must be in stoichiometric 

default. 

 

 The residence time must be greater than the micromixing time. 
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 If    
   is high then the spectrophotometer can be saturated. If the 

absorbance value (D) is too high. However it is necessary that locally 

[  ] is large. 

 

 In this research, we decide to start with flows rate ratio R (ratio of the volumetric 

iodide-iodate-borate flow rate, QI, and the acid flow rate, QH, where R= QI/QH) ) equal 

to 7 as starting point (Yu-Shao CHEN, 2004; Monnier et al., 2000; Monnier et al., 

1999a) .   

 

2.5 Residence time Distribution (RTD) 

2.5.1 Introduction 

The residence time distribution (RTD) is a chemical engineering concept that was 

introduced by (Fogler, 2006; Cozewith and Squire, 2000; Levenspiel, 1972; 

Danckwerts, 1953), as a useful tool to investigate the mixing performance in the reactor 

at the level of macromixing, that is spatial distribution of materials on the macroscopic 

scale. The residence time distribution can also be described as the time history of a fluid 

inside a reactor. It is the probability distribution function that describes the amount of 

time a fluid element could spend inside the reactor. The residence time distribution has 

a direct influence on the yield and the selectivity of reactions, especially those that 

involve competitive reaction steps.  

 

Ideal reactors are generally classified as having either plug-flow or perfectly-mixed 

characteristics depending on the RTD  of material in the system. The RTD function can 

thus be used to compare the behaviour of real reactors to the ideal models. 

 

2.5.2 The Residence Time Distribution Development History and Its Applications 

It is a common knowledge that the mixing regime within a system does not instantly 

conform to the two theoretical mixing regimes of plug-flow or complete mixing which 

are universally, though incorrect, assumed in the design process (Danckwerts, 1953). 

This discrepancy can be investigated using the RTD, which describes the macromixing 

patterns within a mixing device.  
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Characterisation of the mixing regime using the RTD originated from the theoretical 

studies on laminar flow reactors (Bosworth, 1948) and the experimental measurements 

on fluidised beds (Gilliland and Mason, 1952). The generality of this method was due to 

the original work done by Danckwerts, (1953) and Zwietering (1959) in the 1950s. 

These researchers presented the general mathematical properties of residence time 

theory, with specific consideration to packed beds, blenders, reactors and tubular 

devices. Following this work, several publications have presented both detailed and 

summary of the developments in the RTD experimental and data analysis techniques 

that are currently available for use (Fogler, 1992; Nauman and Buf ham, 1983; 

Levenspiel, 1972).The concept RTD was first applied in the field of chemical 

engineering. Subsequently chemical reactors on which RTD studies have been 

conducted include the following:  

 

I. tubular reactors (Danckwerts, 1953);  

II. Fluidised beds (Levenspiel, 1972; Danckwerts et al., 1954); 

III. Screw extruders (Wolf and White, 1976); 

IV. Packed columns (Oliveros and Smith, 1982); 

V. Bubble columns (Deckwer and Schumpe, 1993); 

VI. Pulsed baffle bubble columns (Ni, 1994) both of varying operating i.e. co-

current and counter-current 

 

Due to the multiphase nature of some of these systems , investigation using the RTD is 

sometimes performed on the basis of the gas and solid phases. The RTD also has been 

utilized in a wide range of scientific fields including petroleum engineering (Hall and 

Hughes, 1993), medical (Lee et al., 1997) and geophysics (Robinson and Tester, 1984). 

  

The RTD has been significantly gaining recognition in the most of chemical industries 

due to the emphasis being placed on design engineers to produce good and accounTable 

design for the process equipments. Knowledge of RTD would therefore be very helpful 

for the following reasons:  

 

 Avoidance of any problems in the existing CSTR such as by-passing channelling 

and stagnates in packed-bed reactor (PBR). 
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 Prediction of the conversation or product distribution for new reaction in an 

existing reactor. 

 Avoidance of stagnant regions and short-circuiting or bypass in plug-flow 

reactor (PFR).  

   

2.5.3 Methods for RTD Measurement  

The RTD can be obtained by stimulus-response technique. In this technique the inert 

chemical called a tracer is injected into the reactor (in the feed stream) at t=0 and then 

the tracer concentration(C) is measured in the effluent stream as a function of time.  

There two types of tracers i.e. coloured and radioactive materials.  Besides being inert, 

the tracer needs to be soluble in the reactants  and not be adsorbed on the walls of the 

reactor (where, for example, catalysed walls are employed). The most used injection 

methods are: 

I.  Pulse input 

II. Step input  

 

2.5.3.1 Pulse input injection method 

In this method an amount of tracer is suddenly injected in one shot into the feed stream 

entering the reactor in as short time as possible. The effluent concentration is then measured 

as a function of time. The principal difficulties with the pulse technique lie in the problems 

connected with obtaining a reasonable pulse at reactor’s entrance. The injection must take 

place over a period which is very short compared with residence the times in various 

segments of the reactor or reactor system, and there must be a negligible amount of dispersion 

between the point of injection and the entrance to the reactor system. If these conditions can 

be fulfilled, this technique represents a simple and direct way of obtaining the RTD (Fogler, 

1992). 

 

2.5.3.2 Step input injection method 

In the step input method, a constant flow rate of tracer is added to the feed stream at 

time t=0. The concentration of tracer in the feed of the reactor is kept at this level until 

the concentration in the effluent is identical with the feed concentration.  
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The step input technique is usually easier to carry out experimentally than the pulse test. 

Its additional advantage over the pulse input technique is that the total amount of tracer 

in the feed over the period of the test does not have to be known as it does in the pulse 

test. One possible drawback of this technique is that it is sometimes difficult to maintain 

a constant tracer concentration in the feed. Obtaining the RTD from this test involves 

the differentiation of the data which presents an additional, and probably more serious, 

drawback to the technique. This is because the differentiation of data can guide to large 

errors. A third problem lies with the large amount of tracer needed for this test. If the 

tracer is very expensive, a pulse test is advised to use for minimizing the cost. Figure 

(2.21) shows the concentration curves that can be produced from pulse and step tracer 

injection method. 

 

 

Figure 2.21: The C curve from Pulse and Step methods (adopted from Fogler (2006)) 

 

2.5.4 RTD Characterisation 

To obtain the RTD, tracer concentration data collected from the reactor need to be 

analysed and manipulated so that functions E(t) and F(t) can be generated.  
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2.5.4.1 RTD Function E(t) 

The function E(t) is called the residence time distribution function. It is a function that 

shows, in a quantitative manner, how much time different fluid elements have spent in 

the reactor. It is expressed as: 

 

     
    

       
 

 

                                                                                                                     

 

Where: 

C (t) is the concentration of the tracer in the outlet stream at time t after injection 

 

        
 

 

                                                                                                

 

E(t) represents the fraction of the tracer with a residence time between t and t+dt which 

can tell us how long different molecules have been in the reactor. The RTD function 

E(t) can be determined directly from a pulse input technique. Figure (2.22) shows the 

shape of E (t) function.  Figure 2.23 shows the shapes of RTD for the different types of 

reactors that usually observed. 

 

Figure 2.22: The residence time distribution function curve, E(t).  adopted from Fogler (2006)) 
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Figure 2.23: Typical E(t) curves for the different types of reactors that are commonly observed (a) 

near plug-flow reactor; (b)near perfectly mixed CSTR (c) packed-bed reactor with dead zones and 

channelling; (d)E(t) curve for packed-bed reactor in (c); (e) tank reactor with short-circuiting flow 

(by-bass); (f) E(t) for tank reactor with channelling (by-passing or short circuiting) and a dead zone 

in which the tracer slowly diffused in and out (adopted from Fogler (2006)) 

 

2.5.4.2 Cumulative RTD function F(t) 

The Cumulative RTD Function F(t) can be determined directly from a step input 

technique. It is defined as the fraction of molecules exiting the reactor that have spent a 

time t or less in the reactor. The Cumulative RTD function F (t) can be derived as: 

 

                
 

 

                                                                                                                

 

 

Dividing by C0 yields 
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Differentiating the above expression to obtain the RTD function E (t), the RTD function 

E (t) can be defined as: 

 

     
 

  
 
    

  
 
    

 
  

  
   

           
     

                                                                  

 

Numerically, the Cumulative RTD function F (t) can be determined from the area under 

the curve of the F (t) vs t. Figure 2.24 shows the shape of the F-curve produced from the 

step input technique.    

 

Figure 2.24: Cumulative distribution curve, F(t).adopted from Fogler(2006) 

 

2.5.4.3 The Moments of the RTD (Mean residence Time and Variance)  

It is common to characterize a distribution by some numerical values. For this purpose 

the most import measure is the location of the distribution (Fogler, 2006; Levenspiel, 

1999; Levenspiel, 1972). This is called the mean value or the centroid of the distribution 

i.e. the mean residence time which is the measure of the average time spent by the 

molecules in the reactor.  Thus mean residence time is given by: 
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 The value of the mean residence time (tm) can be determined from the area under the 

curve of the t E(t) vs. t, as illustrated in Figure 2.25.  

 

 

 

 

 

 

 

The second important descriptive quantity is the variance which is defined as the square 

of standard deviation and which represents the the spread of the distribution. It has units 

of        ; the greater the value of this factor, the greater the distribution spread will 

be. This can be calculated by the equation 2.57 given below. 

 

          

 

 

                                                                                                              

 

The value of the mean residence time (tm) can be determined from the area under the 

curve of the         E(t) vs. t, as shown in Figure 2.26.   

 

 

 

 

 

 

 

 

Figure 2.25: Calculating the mean residence time 

Figure 2.26: Calculating the variance. (Adopted from Fogler (2006)) 
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2.5.5 Flow Models in the Reactors 

The determination of the flow pattern is important for the prediction of the performance 

or diagnosis of the weakness of the reactor. The most two common flow models 

encountered in practice are dispersed plug flow model and back mixed 

model(Levenspiel and Bischoff, 1959).  

 

2.5.5.1 Dispersed plug flow model 

In dispersed plug flow (piston flow) model the flow rate and velocity profile are 

uniform over any cross section normal to the direction to fluid motion. Also there is 

negligible axial mixing due to either diffusion or convection. When carrying out 

competitive chemical reaction, plug flow is normally desirable so that products are 

removed quickly from any fresh reaction(Sparks, 1996; Ekpo, 1972). 

 

2.5.5.2 Back-mixed flow model 

This is usually applied for the stirrer tanks reactors where the concentration profile is 

similar at any point of the reactor. In this flow model, the products of the reaction will 

re-circulate back into the reaction zone to combine with the fresh reagents consequently 

the more undesirable products will be produced. This type of pattern is not preferred if 

the reaction is a competitive chemical reaction(Sparks, 1996). 

 

2.5.6 The dispersion models  

The dispersion model is a helpful tool used for demonstrating the flow in the real 

reactors for the purpose of analysing poor flow (poor mixing) and reactor scale up. 

There are different types of dispersion models which depends on the type of flow, 

whether the flow is close to plug, mixed, or somewhere in between the two. In the case 

of small deviation from plug flow, there are two types of models for this, namely, the 

tanks-in series model and axial dispersion model. These types of models may be applied 

to the following types of flow conditions: turbulent flow in pipes, laminar flow in very 

long tubes, flow in packed beds, shaft kilns, long channels,  screw conveyers, 

etc(Levenspiel, 1999). 
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2.5.6.1 Tanks-in-Series Model 

The tanks-in series model is simple and can be used with any kinetics. It can be 

extended without too much difficulty to any arrangement of compartments, with or 

without recycle. It demonstrates the effect of backmixing when setting up a series of N 

ideal stirred tanks along the reactor such that the outlet concentration of the (i-1th) tank 

is the inlet concentration for the ith tank. The flow pattern is quantified by estimating an 

appropriate N to represent the RTD data. Plug flow is approached when N=  , and it is 

mixed flow when N=1. This model can always be used along with the dispersion model 

for a not very large deviation from the plug flow(Levenspiel, 1999; Ekpo, 1972). 

 

 Both models give identical results for all practical purposes. The type of model used 

depends on the choice of the researcher. 

 

The number of tanks in series is given as: 

 

  
 

  
                                                                                                                                         

 

Where   
   is the normalized variance of residence time distribution (-) which can be 

estimated as: 

 

 

  
  

  

   
                                                                                                                                       

 

 

 

The number of tanks in series expression represents the number of tanks necessary to 

model the real reactor as N ideal tanks in series. As the number of tanks increases, the 

variance decreases. 
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Figure 2.27: The RTD curves for the tanks-in-series model, ( adopted from (Levenspiel, 1999)) 

 

2.5.6.2  Axial dispersion model 

The main advantage of axial dispersion model is that all correlations for flow in real 

reactors are always based on this model. When a plug flow of a fluid is considered with 

some degree of back-mixing placed on top of it, its magnitude is independent of its 

position within the vessel. This condition implies that there exist no stagnant pockets 

and no gross bypassing or short-circuiting of fluid in the vessel. Thus, this flow model is 

called the axial dispersed plug flow model. Figure 2.28 illustrates the visualized 

conditions for the plug and dispersed flows. The velocity profile in the ideal plug flow 

is flat while it fluctuates in dispersed plug flow due to different flow velocities and due 

to molecular and turbulent diffusion (Levenspiel, 1999).  
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Figure 2.28: Illustration of the dispersion i.e. dispersed plug flow model (adopted from Levenspiel 

(1999)) 

 

In order to estimate the extent of deviation from ideal-plug flow conditions, a dispersion 

number is needed to be calculated. The dispersion number is a measure of the ratio of 

the rate of transport by diffusion and the ratio of transport by convection and it 

describes the non-ideal reactors, where the axial dispersion is applied to the plug flow of 

a fluid. The dispersion number can be defined as: 

 

 

                  
 

  
                                                                                                    

 

 

 

The axial dispersion coefficient (D) uniquely characterizes the degree of back mixing 

during flow. If the dispersion number approaches zero, dispersion is considered to be 

negligible and the behaviour of the reactor is approaching that of a PFR. If the 

dispersion number approaches infinity, there is a large degree of dispersion, and the 

behaviour of the reactor approaches mixed flow as in a STR. Thus, 

 

D / UL → 0 the dispersion is negligible, hence plug flow  

D / UL → ∞ means large dispersion, hence mixed flow. 

 

Figure 2.29 illustrates the shape of Residence Time Distribution curves i.e. E (t) curve   

for dispersed plug flow and mixed flow. 
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Figure 2.29: Residence Time Distribution curves for dispersed plug flow and mixed flow (adopted 

from Levenspiel (1972)) 

 

2.5.6.2.1 The Dispersion Model for Small Extents of Dispersion, 
 

  
      

As mentioned earlier, the dimensionless group D/UL is called the axial dispersion 

number. If the idealised pulse has been introduced to the flow, the flowing fluid then 

dispersion modifies this pulse as illustrated in Figure 2.30.  

 

D/uL=   

Distorted bell shaped curve  
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Figure 2.30: The spreading of tracer according to the dispersion model (adopted from Levenspiel 

(1999)) 

 

When D/UL, is small  
 

  
      , the extent of axial dispersion is very small, thus the 

spreading tracer curve does not considerably change in shape as it passes the measuring 

point (during the time it is being measured) and the E curve is a symmetrical Gaussian 

curve. There are a number of methods to calculate the axial dispersion number D/UL 

from the experimental curve which are given by the following:  

 

I. by calculating its variance 

II. by measuring its maximum height 

III. by measuring its width at the point of inflection 

IV. by finding the width which includes 68% of the area 

 

The first method was considered in this research, Aris (1958) has shown, for small 

extents of dispersion i.e.           , as 

 

  
    

 

  
                                                                                                                               

 

and 
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Where: 

 

  
    =   normalized variance of residence time distribution (-) 

 

     The variance of residence time distribution (-) 

 

     The experimental mean residence time (sec) 

 

 
 

  
  = dispersion number (-) 

 

2.5.6.2.2 The Dispersion Model for Large Extents of Dispersion, 
 

  
      

(Levenspiel, 1999) 

For large deviation from plug flow i.e.  
 

  
      , the pulse of response is broad and 

it passes the measurement point slowly enough that it changes shape, which gives a 

non-symmetrical E curve. In this case,  
 

  
 is usually evaluated according to the 

corresponding boundary conditions. Two types of boundary conditions are considered. 

These are: (i) the flow is undisturbed as it passes the entrance and exit boundaries (this 

is called the open B.C.), (ii) plug flow outside the vessel up to the boundaries (this is 

called the closed B.C.). This leads to four combinations of boundary conditions namely, 

(1) closed-closed, (2) open-open, (3) open-closed, (4) closed-open. These four 

boundaries are discussed in detail below: 

 

I. The closed vessel can be defined as one in which fluid movement is by bulk 

flow only, and there is plug flow entering and leaving the streams. Diffusion and 

dispersion are absent at the entrance and exit and there is no movement of 

material upstream and out of the vessel by eddies. 

 

II. The open vessel is one where neither the entering nor leaving fluid streams 

satisfies the plug flow requirements of the closed vessel.  

 

When only the input or the output fluid stream satisfies the closed vessel requirements, 

the system can be considered as a closed-open or open-closed vessel. Figure 2.30 



  Chapter 2: Literature Review 

 

Mr. Salah R. Al-Hengari  85 

illustrates the various boundary conditions used with the dispersion model for open and 

close vessels. 

 

 

 

 

 

 

 

 

 

Levenspiel (1999) gives the mathematical  expression for the axial dispersion number 

(D/UL) for the case when  the Deviation from plug flow is large as follow: 

 

I. For large Deviation from plug flow and open-open reactor boundary condition, 

D/UL       (Levenspiel, 1999) 

 

      
    

 

  
    

 

  
 
 

                                                                                                        

 

II. For large Deviation from plug flow and close-close reactor boundary condition, 

D/UL       (Levenspiel, 1999) 

 

      
    

 

  
    

 

  
 
 

                                                                                           

 

2.5.6.3 The Peclet Number,(Pe) 

The degree of dispersion in the axial direction can be also presented in terms of Peclet 

number (Pe). The Peclet number (Pe) is the inverse of the dispersion number (Pe = UL 

/D). The Peclet number (Pe) can be defined as:  

 

Figure 2.31: Various boundary conditions used with the dispersion model (adopted from Levenspiel 

(1999)) 
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The following Peclet number (Pe) values are used to categorize the degree of dispersion 

(Higgins, 2000; Levenspiel, 1972) 

 

 Pe = <10  → large amount of  dispersion; 

 Pe = 10 -100 → Intermediate amount of  dispersion; 

 Pe = >100 → small amount of dispersion. 
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3. Aims and Objectives of the Present Investigation 

The main aim of this research is to study the fundamental science underlying the 

micromixing characteristics taking place within the thin films flowing on the surface of 

rotating disc reactors.  The research involves the use of a parallel competing reaction 

scheme namely the acid-base neutralization coupled with the Dushman reaction. This 

reaction scheme was chosen because most of the available literature on the experimental 

procedure and techniques for quantitative micromixing measurements in conventional 

semi-batch reactors (SBRs) is based on this particular reaction.  

 

The research intends to quantify the micromixing in terms of the segregation index, 

(Xs), micromixedness ratio, (α), power dissipation (ε), micromixing time(tm). It is also 

intended that the effects of various parameters as listed below will be investigated.  

I. Disc rotation rates 

II. Feed flow rates 

III. Disc diameter 

IV. Disc surface configurations (smooth, grooved, etc.) 

V. liquids of varying concentration, and viscosities 

VI. Various feed systems (i.e. single-point feed system/multi-point distributor) and 

locations. 

 

The data obtained from 10 and 30cm SDRs micromixing experiments in terms of the 

segregation index,(Xs), micromixedness ratio, (α), power dissipation (ε), micromixing 

time (tm) will be benchmarked against a 1.37 l conventional semi-batch reactor (SBR) 

using a conventional Rushton turbine impeller. . It is also intended as part of this study 

to compare the degree of micromixing  in SDRs with that in continuous tubular flow 

reactors in the form of narrow channels (NCR) of 1.0mm diameter and three different 

lengths namely 5, 10 and 15 cm (Y and T shapes).  

 

The characteristic segregation index, (Xs), will be obtained under a range of operating 

conditions of angular velocity of the disc, (  , total flow rate and liquid, (  ) and 

viscosity, ( ), enabling the best micromixing conditions to be selected for a given 

reaction system in the SDR. To this end, a micromixing model linking these parameters 
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will be developed by regression analysis using Minitab software (Version 15.0) for the 

10 and 30cm SDR on the basis of the data collected. 

 

Another objective of this investigation is to experimentally determine the   Residence 

Time Distribution (RTD) of the liquid flow in the 30cm SDR for a range of operating 

conditions including disc rotational speeds, (  , total flow rate of liquid, (  ) and 

viscosity, ( ), in order to predict the macromixing behaviour of the thin film flows on 

SDR i.e. either a plug flow or a back-mixed profile. The RTD study will be based on 

mixing an inert dye (methylene blue) into the liquid film and using offline UV-Vis 

spectroscopy to assess the level of dye in samples collected at various time intervals 

after the dye injection. It is also intended to estimate the Dispersion number from the 

RTD results for the purpose of characterising the extent of dispersion in the thin film 

flow on the rotating disc. 

 

  



                                 Chapter 4: Experimental Facilities and Procedures 

 

Mr. Salah R. Al-Hengari  89 

4. Experimental Facilities and Procedures 

4.1 Introduction  

This Chapter describes the experimental and analytical facilities and procedures used in 

the micromixing studies and the Residence Time Distribution (RTD) experiments. 

Four different reactors rigs were used in the micromixing aspect of the study. The first 

rig is the semi-batch rig (SBR) which is used to characterise the micromixing 

performance for benchmarking purposes. The second and third rigs were the 10cm and 

30cm SDRs. The fourth rig consisted of the Y and T- junction narrow channel reactors 

rig (NCRs) having varying lengths.  

 

In order to compare the performance of the 10 and 30 cm SDRs in terms of the intensity 

of micromixing with the results obtained from the SBR as well as the Y and T- junction 

NCRs, a large number of micromixing experiments were performed. In addition, 

macromixing experiments were performed to predict the Residence Time Distribution 

(RTD) for the 30cm spinning disc reactor for the purpose of predicting the type of flow 

pattern on the rotating disc and to determine whether the spinning disc reactor behaves 

as plug-flow or a backmixed reactor. 
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4.2 Micromixing Reactor Facilities 

4.2.1 Semi-Batch Reactor (SBR) Experimental Rig  

Figure 4.1 shows the general view of the experimental rig setup used in performing  

the SBR experiments.  

 

 

 

4.2.1.1 The Semi-Batch Reactor (SBR) 

At this stage of the research, a Semi-batch reactor (SBR) made of borosilicate was used. 

Figure 4.2 shows the SBR connected with the instruments and ancillary equipment that 

were employed to carry out the experiments. 

 

The SBR had provision for a water jacket connected to a water bath in order to keep the 

temperature of the reacting liquid inside the vessel constant at 20 
O
C. The vessel shown 

in Figure 4.2 and Figure 4.3 was equipped with four fixed baffles (width B=12.3 mm), 

made of stainless steel. The dimensions of the vessel are given in Table 4.2 together 

with the clearance off the bottom of the reactor, C (mm), at which the Rushton turbine 

was placed. The four stainless steel baffles used in SBR are shown in Figure 4.4. 
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Figure 4.1: The set up for SBR Experimental Rig 



                                 Chapter 4: Experimental Facilities and Procedures 

 

Mr. Salah R. Al-Hengari  91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1: Reactor sizing - the geometric parameters for the SBR 

Parameter Size,(mm) 

Liquid height, H 110.2 mm 

Tank diameter, T 110.2 mm 

Impeller diameter, D 44.0 mm 

Impeller clearance, C 36.7 mm 

Impeller Blade width, a 17.4 mm 

Impeller Blade height, b 12.3 mm 

Wall baffled width, B 15.9 mm 

 

 

 

 

 

 

 

Semi-batch 
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Sample collecting tap  Inlet cooling 

water 

Outlet 

cooling 

water 

 

Two Acid 
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Figure 4.2: Semi-batch reactor (SBR) used in this work 
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Figure 4.3: Geometry of SBR Showing Feed Locations, Agitator, Baffles and Rushton 
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Figure 4.4: The four stainless steel baffles used in SBR 

 

The design and the geometry of the reactor and its dimension ratios were adopted from 

(Tatterson, 1994) as a rule of thumb. The volume of the solution which comprises 

iodide, iodate, and borate solution, i.e. H3BO3, NaOH, KI and KIO3 was 1.37 L for each 

experimental run.. The experiments were carried out with an aspect ratio H/T equal to 

1.0. The clearance ratio, C/T=0.33. The impeller diameter Dwas set at 0.40T. The 

impeller speeds were 300, 600, 900 and 1200 rpm; the acid concentrations were 0.25, 

0.5 and 1.0 M; the acid feed rate was 3.6 ml/min. Two acid feeding point positions were 

investigated. The first point < 1 >, was located at a distance of 2 mm (Assirelli et al., 

2002) from the edge of the impeller blade in the same horizontal plane whilst the second 

point < 2 > was located directly above the first injection point, at a vertical distance of 

35 mm. The two feed points were located at the vertical axis of symmetry of the reactor. 

In order to control the feed to these two points, two ball valves were used. These two 

feed points lie on a vertical line at 0.1 T from the wall of the reactor, where T is the 

diameter of the reactor. The reactor is equipped with an acid feed stainless steel tube of 

1.78 mm internal diameter, which is connected to a syringe pump. 
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4.2.1.2 Ancillary Equipment Set-up 

4.2.1.2.1 The syringe pump 

Figure 4.5 shows the syringe pump (model 353, Sage Instruments) that was used to 

deliver the sulphuric acid to the SBR. The pumping rate at which the pump operates is 

measured in terms of percentage of flow (% flow). It was necessary to calibrate this 

pump in order that values for flowrate in terms of ml/min could be obtained. This 

calibration was made by using de-ionised water as the properties (the density and 

viscosity ) are not far from highest concentration of sulphuric acid used in this work i.e. 

1.0M. The         and                  at 25 
0
C are 999 kg/   and 1070 kg/   (Green 

and Perry, 2008)respectively. The         and.                   
 at 25 

0
C are 

1.003x           and 1.05x           (Rhodes and Barbour, 1923) respectively. 

Comparing the         vs.                   at 25
0
C differ not more than     and 

the        vs.                   
 at 25

0
C differ not more than       . The pump was 

therefore allowed to run at various percentage of flow and the volume of de-ionised 

water collected in 1 minute was measured. In order to allow for the greatest degree of 

accuracy, the pump was operated as it would be when running a test, with the correct 

lengths of tubing and the feed and outlet maintained at the appropriate height. Figures 

A1 and A2 in appendix A show the calibration curves for the syringe pump equipped 

with one and two syringes respectively.   
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Figure 4.5: Syringe pump (model 353, Sage instruments) 
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4.2.1.2.2 Impeller System 

In this part of the research, a Rushton Turbine which was manufactured at the school’s 

workshop was used as the agitator. It was chosen because most of the relevant fluid 

dynamic and micromixing studies carried out in the stirred tank reactors  were obtained 

with this type of impeller (Assirelli et al., 2002; Guichardon and Falk, 2000; Fournier et 

al., 1996a), thus making comparison of the data from the present study with the 

previous studies possible. Figure 4.6 shows the Rushton Turbine used in the SBR 

micromixing experiments 

  

4.2.1.2.3 pH meter  

The pH values for the chemical solutions used in the experiments as well as the 

reactants when the reaction was progressed were monitored by pH meter type of 

HANNA INSTRUMENTS HI 8424 microcomputer pH meter. The meter used was a 

digital type. The pH meter/probe was calibrated on daily basis before beginning the 

experimental work using standard buffer solution of pH 7 and then 4. The tip of the 

probe was washed with de-ionised water to remove any build up of impurities on the 

glass before immersing it into the buffer.  

 

4.2.1.2.4 SBR Micromixing Experimental Procedure  

All the experiments were performed with reaction volume of 1.37 litres of the solution 

which consists of Iodide, Iodate and Borate solution. The volumes of the sulphuric acid 

for injection into the SBR were calculated as shown in appendix B and its dependence 

on the acid concentration was used in the run.  

 

44.0 mm 

12.34 mm 

Figure 4.6: The Rushton Turbine used as agitator in the SBR 

17.44mm 
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As mentioned earlier in Chapter 2 section 8, the iodide-iodate reaction system belongs 

to the parallel competitive reaction scheme were implemented in this research as a 

model reaction to characterise the micromixing phenomena in intensified reactor 

systems, i.e. SDRs and NCRs. The data were benchmarked against conventional 

Semibatch reactor using Rushton turbine impeller. This set of reaction involves acid-

base neutralization, (4.1), and an oxidation reaction, (4.2), called the Dushman reaction 

according to the following steps: 

 

     
 

          
                                 Acid-base neutralization                           (4.1) 

                                                                          Quasi-instantaneous                     

 

 

            
 

          
                          Dushman reaction                     (4.2) 

                                                                                                                           Fast 

 

 

           
 

                                                                    Equilibrium                        (4.3) 

                                                                                                           Quasi-instantaneous 

 

The second reaction (4.2) which is Dushman reaction is fast being in the same time range 

as the micromixing process, but much slower than the acid-base neutralisation reaction 

(4.1). The iodine formed reacts further with iodide ions 
I  

to yield 3
I  according to the 

quasi-instantaneous equilibrium (4.3). The degree of micromixing has a direct influence 

on reaction (4.2) and subsequently on reaction (4.3). The measurement of 3
I  by 

spectrophotometric absorption can therefore provide a good indication of the degree of 

micromixing achieved in any given reactor. 

 

The micromixing experiments were carried out using the reactant concentrations listed 

in Table 4.2  which was adopted from the work of Guichardon and Falk (2000). The 

work is regarded as the leading “state of the art” approach for using the iodide- iodate 

technique for characterisation of the micromixing reactor performance. This choice of 

concentrations allowed for a comparison of this research’s results with those reported in 

the literature. 
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Table 4.2: the initial concentration of the reactants used in this work 

Reactants Concentration used (M) 

[H3BO3] 0.1818 for water system and 0.0909 for 50 and 

75wt% glycerol systems 

[NaOH] 0.0909 

[KI] 0.01167 

[KIO3] 0.00233 

[H
+
] 0.1,0.25,0.5,1.0M 

 

The concentration of potassium iodide and potassium iodate were chosen to give a 

potential concentration of iodine as follows: 

                    
    

 

 
                                                                                  

 

Where  
potential

I 2
is the potential concentration of iodine which can be defined as the 

maximum total concentration of iodine that can be obtained at a complete conversion of 

the reaction (4.2). It is also the concentrations of the iodide and iodate ions which 

follow the stoichiometry of Dushman reaction.  

 

Therefore, after mixing sodium hydroxide and boric acid, the initial concentration of the 

sodium borate is       
                        , forming a buffer solution at 

14.91  pKapH  that corresponds to the first acidity equilibrium constant of the boric 

acid (Fournier et al., 1996a). 

 

One of the restrictions that needed to be taken into account when carrying out a 

comparison between the performance of the various types of reactors studied is the ratio 

of the molar quantities of acid and the borate ions contacting each other. This parameter 

has to be maintained at a constant ratio in the continuous reactors i.e. NCRs and SDRs, 

as well as in the SBR for a valid comparison (Guichardon and Falk, 2000). The injected 

number of moles of hydrogen ions in the SBR was 0.020 moles for all experiments.  

 

To utilise the above conditions for continuous reactor systems and to make a possible 

comparison between the micromixing performance of various reactor types (semi-batch 

reactor systems vs. continuous reactor systems), the ratio of the molar quantities of acid 

and the borate ions that are in contact with each other has to be considered. This ratio 
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has to be maintained constant in the continuous reactors as well as in the semi-batch for 

a valid comparison (Guichardon and Falk, 2000): 

 

 
              

 
   

 
 

     

         
              

                     

 
   

        
 

          

                                 (4.5) 

 

and  

 

 
      

 

     
 

     

         
        

          
   

    
        

 

          

                                                      

 

where         
  and         are the Borate-Iodide and Iodate solution and the acid 

volumetric flow rate respectively.  

 

Complete calculations of the sulphuric acid volumes which were injected into the SBR 

and also the ratios (R) of the solution of Iodide-Iodide-Borate ions and the acid 

volumetric flow rates were adopted in the SDR and NCR reactors which are shown in 

appendix B. The reactants concentrations shown in Table 4.2 in this section were used 

in the micromixing experiments performed in this research. Table 4.3 shows the initial 

concentrations for I and H solutions and the molar numbers ratio used in SBR. Table 4.4 

shows the initial concentrations for I, i.e., the iodide-iodate-borate solution   and H, i.e., 

the hydrogen ions solution and the molar numbers ratio used in SDRs and NCRs. 

 

Table 4.3: The initial concentrations for I and H solutions and its molar numbers ratio of Reactants 

the used in SBR 

Solution I Solution H  

 
      

 

    
 

 

   

 
CIO3

-
,0 CI

-
,0 

 

CH2BO3
-
,0 CH

+
,0(mol/l) 

2.3X10
-3

 1.16X10
-2

 0.09 0.25 6.363 

2.3X10
-3

 1.16X10
-2

 0.09 0.5 6.363 

2.3X10
-3

 1.16X10
-2

 0.09 1.0 6.363 
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Table 4.4: The initial concentrations for I and H solutions   and its flow rate ratios used in SDRs 

and NCRs 

Solution I Solution H  

R=QI/QH 

 

 
      

         

   
      

 

         

 

      
        CH2BO3

-
,0 CH

+
,0(mol/l) 

2.3X10
-3

* 1.16X10
-2 

* 0.09 * 0.1 * 7 * 6.363 

2.3X10
-3

 1.16X10
-2

 0.09 0.25 17.5 6.363 

2.3X10
-3

 1.16X10
-2

 0.09 0.5 35 6.363 

2.3X10
-3

 1.16X10
-2

 0.09 1.0 70 6.363 

*Same as monnier et al. (2000) 

 

10 l of Borate-Iodide-Iodate solution (solution H) was prepared every day to keep it 

fresh by dissolving the following amounts of solid reagents in de-ionised water in the 

case of water system experiments: 

 

I. Water system  

 112.407 g of H3BO3  dissolved in 3000x10
-3

 l de-ionised water; 

 

 36.364 g of  NaOH  dissolved in  1000x10
-3

 l de-ionised water; 

 

 4.993 g of  KIO3 dissolve in 1000x10
-3

 l de-ionised water; and  

 

 19.367 g of KI dissolve in 100 x10
-3

 l de-ionised water. 

 

It is well known that addition of glycerol has influence on the redox potential of the 

Iodine/water couple (Guichardon et al., 1997) (Guichardon et al., 1997)(Guichardon et 

al., 1997)(Guichardon et al., 1997)(Guichardon et al., 1997)(Guichardon et al., 

1997)(Guichardon et al., 1997)(Guichardon et al., 1997)(Guichardon et al., 

1997)(Guichardon et al., 1997)(Guichardon et al., 1997)(Guichardon et al., 

1997)(Guichardon et al., 1997)which  will reduce the value of the pH to less than 7. To 

prove this, an Iodide/Iodate solution containing 50 wt% of glycerol in water was tested. 

The pH and the absorbance values were measured before adding any sulphuric acid and 

the results were 5.17 and 0.095 respectively at 20.7 
o
C which was evidence of  the 

presence of    
    in the solution. To sort this matter out requires increasing the pH value 

for the water/glycerol system. The concentration of H3BO3 was reduced to 50% of the 
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that  used in the water system. The number of H3BO3 moles was adjusted to 0.0909 for 

the 50 and 75 wt% glycerol system. The pH and the absorbance values were measured 

after this adjustment before adding any sulphuric acid and were measured as 11.0 and 

0.000 at 20.1 
o
C respectively. This confirmed that the initial formation of iodine has 

diminished and becomes inexistent at pH = 11.0.  The amounts of solid reagents used in 

the case of 50 and 75 wt%   water / glycerol system   are shown below:  

 

II. 50 and 75 wt% water /glycerol system 

 56.205 g of H3BO3  dissolved in 3000x10
-3

 l de-ionised water; 

 

 36.364 g of  NaOH  dissolved in  1000x10
-3

 l de-ionised water; 

 

 4.993 g of  KIO3 dissolve in 1000x10
-3

 l de-ionised water; and  

 

 19.367 g of KI dissolve in 100 x10
-3

 l de-ionised water. 

 

The first step in the preparation of the solutions for these experiments was the weighing 

of the chemicals. This was followed by their dissolution in de-ionised water in the 

beakers. In order to obtain the volumes of the solutions, the volumetric flasks were used 

and the solutions were homogenised in a 10 l aspirator before each experiment. The 

solution of up to 10 l was made by addition of de-ionised water in the case of water 

system experiments or de-ionised water and glycerol in the case of 50 and 75wt% 

glycerol experiments.   

 

The sequence that was followed for the preparation of the whole reactive mixture is 

very critical to the results of the experiments. First, the boric acid and the sodium 

hydroxide were added into the aspirator to obtain the buffer solution followed by KI and 

KIO3. This procedure was important in order to avoid contact between KI and KIO3 in 

the acid solution and the subsequent thermodynamic formation of I2 (Guichardon and 

Falk, 2000). 

 

For every batch of solution, the pH values for the buffer solution and final solution were 

checked to ensure that they meet the following rules: 

 Buffer solution : 8.5< pH  < 9.5; 
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 pH*   must be close to 7.  

 

where pH* is the average working pH from which iodine does not thermodynamically 

appear. All the solutions prepared in this study satisfied the  above criteria. 

 

The sulphuric acid was delivered to the SBR by the syringe pump (Model 353, Sage 

Instruments) using stainless steel tube of 1.78 mm internal diameter.  The 60ml syringe 

was loaded with the desired concentration of sulphuric acid and inserted in its slot on 

the syringe driver. The sulphuric acid flowrate was 3.6 ml/min for all the experiments 

(water system; 50 wt% and 75 wt% water/ glycerol system )  and  set by selecting the % 

of the flow set point from the flow controller corresponding to the this flowrate 

according to the calibration curves as shown in AA-1 and AA-2 in appendix. The feed 

point needs to be selected by opening its ball valve and closing the other feed point’s 

valve. After that, the pump was switched on to fill the feeding system up to the delivery 

point at the end of the tube. This was to ensure that the correct   amount of sulphuric 

acid was injected in the SBR over a given time period as well as to ensure that the tube 

was free of air bubbles. Once the sulphuric acid appeared from the discharge of the 

feeding system, the pump was switched off and the tip of the tube was cleaned by 

wiper. The syringe was loaded again with the required volume of sulphuric acid that 

was needed for the given experiment and was inserted in its slot on the syringe driver. 

By this time, the SBR was located in its position having taken into consideration the 

impeller clearance, (C = 36.73 mm), as well as the location of the impeller shaft. This 

was done by manipulating the height of support jack. The SBR was located in a place 

on the support jack to ensure that the impeller is in the centre of the SBR and meet the 

dimensions shown in Figure 4.3 and Table 4.1. The SBR was filled with 1.37 l of 

Iodide, Iodate and Borate solution. In order to keep the temperature of the reacting 

liquid inside the vessel constant at 20 
o
C, the water bath temperature was set on 20

o
C 

then switched on to deliver the cooling water to SBR water jacket.  The pH and 

temperature values for the reaction were monitored by a microcomputer pH and 

temperature meter (HANNA INSTRUMENTS HI 8424) by means of a pH probe and 

thermocouple clamped to their supports and  immersed in the solution. . Once the 

temperature reactants in SBR reached 20 
o
C, the impeller speed was measured using 

digital LED laser tachometer (CEM DT-6234B). At this stage the system was ready for 

the experiment to be performed by injecting the sulphuric acid in the SBR. The syringe 

http://www.virtualvillage.co.uk/Items/001480-150
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pump was switched on to deliver the required volume of sulphuric acid to the SBR. The 

syringe pump was switched off after finishing the injection of the acid into the SBR. 

Two minutes later, three samples were collected in three sample bottles from the sample 

collecting tap located at the bottom of the SBR for the absorbance analysis. The agitator 

was switched off and the waste was disposed. The SBR was flushed with de-ionised 

water and then dried by a paper towel. The system was readied for  the next experiment. 

 

4.2.1.2.5 Analysis of Experimental Product 

The analysis of tri-Iodide (  
 )

 
has been carried out as recommended by (Guichardon 

and Falk, 2000; Fournier et al., 1996a). In order to ensure a high level of accuracy in the 

measurements and to avoid disproportionation and iodine losses, the samples were 

analysed within five minutes of collection from the SBR (Yu-Shao CHEN, 2004; 

Guichardon and Falk, 2000). The collected product was analyzed in an off-line 

UNICAM 8700 UV-vis spectrophotometer. The wavelength used was λ = 353 nm 

(Guichardon and Falk, 2000).The samples were placed within a 10mm pathlenght 

cuvettes made of semi-optical polystyrene with a volume of 2.5 ml supplied by Fisher 

Scientific, UK except in a particular situation where the recorded absorbance was 

greater than 2.00, when the samples were transferred to Quartz 1mm pathlenght cuvettes 

with volume of 1.0 ml supplied by UNISPEC. Prior to the measurement of each 

absorbance of the sample, the spectrophotometer was set to zero using a cuvette 

containing the iodide, iodate and borate solution to act as  calibrating solution  for the 

measured absorbance of the sample. Thorough cleaning of the cuvette was done using 

de-ionised water and air for drying to ensure that no traces of previous samples were left 

in them or that marks affected the measured absorbance. Following the analysis of the 

absorbance of the experimental products, the pH and the temperature of the sample 

collected were recorded.  These values were taken in order to ensure that the pH was 

above 7 as recommended by (Guichardon and Falk, 2000), which means that 

thermodynamically Iodine cannot be formed and the observed formation of tri-iodide 

can only occur due to segregation of the fluid and the temperature was valid for the rate 

constant used.      
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4.2.2 10cm spinning disc reactor (SDR) Experimental Rig 

The second rig employed for the micromixing experiments was the 10cm SDR (the 

small SDR). Figure 4.7 shows the general layout for the 10cm SDR and the auxiliary 

equipments used in the micromixing experiments. The disc was driven by 125 W 

electric motor supplied by Parvalux Electric Motors. The rotational speed was 

controlled by a digital speed controller in the speed range of 300-4000 rpm. Cooling 

water was supplied through the sealed rotary union and the shaft allowed for cooling of 

the bearings and the internal machinery parts as well as the disc surface. A cooling 

circuit was also available for the reactor shell. The reactor shell and the rotary union 

were connected to a water bath (HAAKE circulators N4-B ) in order to keep the 

temperature of the reacting liquid on the disc surface constant at 20 
o
C. In addition, a 

thermocouple was connected to the bottom side of the disc; digital thermometer was 

used to measure the temperature of the disc. The disc and the shell were constructed 

from stainless steel. The disc surface was a stainless steel plate attached by eight slotted 

stainless steel screws.  

 

Figure 4.7: 10cm SDR Rig experimental set-up 
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4.2.2.1 The Mechanical Design of Spinning Disc Reactor  

The spinning disc reactor consist of a disc surface (1), which is supported by a channel 

plate (2), through which disc service fluid is pumped up through the rotary union (8) 

then to the shaft for the control of the temperature reaction on the disc surface. It also 

consist of the reactor housing with water jacket for the purpose fluid circulation (7); the 

base plate (6) on the supporting frame; drive shaft with attached motor pulley (5) and 

bearing housing (4). The spinning disc reactor also has two product outlets (9) located at 

the bottom of the reactor base. The 10cm SDR rig was made of stainless steel and the 

rubber ring-seals were used as gaskets between the reactor plate and the reactor shell 

and also between the SDR polycarbonate lid and the external reactor jacket. The main 

parts of the spinning disc reactor of the 10cm SDR are shown in Figure 4.8.  Figure 4.9 

and 4.10 show the side aerial views of the 10cm SDR respectively. Figure 4.11 shows 

side view for 10cm SDR without side plate cover showing drive motor, rotary union, 

bearing, and connecting pulley.  

 

Figure 4.8: The mechanical Design of spinning disc reactor ( adopted from McCarthy (2006) 
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Figure 4.9: Side view of 10cm SDR 

 

 

  

 

SDR shell  

SDR Lid  

Digital 

thermometer  

Sulphuric acid feed 

pipe  

iodide, iodate, and 

Borate solution- feed 

pipe  

Feed system  

Water cooling in 

 

Water cooling out 

 

SDR shell  

 

iodide, iodate, and 

Borate solution- feed 

pipe  Sulphuric acid feed 

pipe  

SDR Lid  

10 cm disc 

Water 

cooling inlet 

 

Water cooling 

outlet 

 

Feed system  

Figure 4.10: Two Aerial views of 10cm SDR, with (left) and without (right) lid 
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Figure 4.11: Side view for 10cm SDR without side plate cover 

 

4.2.2.2 Liquid Feed Distributor (Single-Point Distributor) 

The reactants were fed onto the spinning disc reactor surface through a feed distributor. 

The distributor consists of two pipes made of stainless steel: one for delivering the 

iodide, iodate and borate solution and the other for delivering the sulphuric acid as 

shown in Figure 4.12. Two feed distributors have been used with this rig, its usage 

depends on the total flow rate needs to be delivered to the disc. For example, at the total 

flowrate of 1 ml/s, a 0.65 mm pipe diameter was used for delivering the sulphuric acid 

while 1.65 mm pipe was used for delivering the iodide, iodate and borate solution. For 

the remaining total flowrates (3 and 5 ml/s), the two tubes have a 1.65 mm diameter. 

The choice of the feed tube diameters were carefully selected in order to achieved 

consistency in the introduction of the flow of reactants on the disc. The feed distributor 

was fixed on the lid so that it was located at the centre of the disc surface and was 

placed at 2.00 mm above the surface. This height could easily be adjusted by using a 

shim. The lid and feed systems for the 10cm SDR were in Figure 4.12 below. 
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Figure 4.12: The lid and feed systems for the 10cm SDR 

 

4.2.2.3 The Product Collector 

The product was thrown off the edge of the disc which then hit the inner wall of the 

reactor housing and flowed down on the housing base. For the purpose of collecting the 

samples, there were two holes on the base of the reactor through which product 

continued to flow down through two pipes. These two pipes were combined to one pipe 

by a piece Y adaptor made of plastic to obtain a single outlet.  From this pipe, the 

samples were collected for the purpose of analysis as shown in Figure 4.13.    
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Figure 4.13: 10cm SDR product collector 

 

4.2.2.4 Reactants pumping system for 10cm SDR  

Two pumps were connected to the 10cm SDR to pump the reactants to the centre of the 

disc.  The iodide, iodate and borate solution was delivered from Borosilicate 5 L 

reservoir by means of a peristaltic pump (Watson Marlow pump 505S) using  4.8 mm 

internal diameter Masterflex platinum cured silicone tubing as shown in Figure 4.14. 

Sample collecting point  

Syringe pump for 

sulphuric acid   (model 

353, Sage instruments) 

 

Digital speed controller 

Digital 

thermometer  

SDR 



                                 Chapter 4: Experimental Facilities and Procedures 

 

Mr. Salah R. Al-Hengari  109 

 

Figure 4.14: Peristaltic pump used for delivering of iodide, iodate, and Borate solution to 10cm 

SDR 

 

Before the commencement of the experiments, the pump was calibrated so that the 

values for flowrate in terms of ml/min could be obtained. The pump was therefore 

allowed to run at various revolutions per minute (rpm) and the volume of de-ionised 

water collected in 1 minute was measured. The pump was operated as it would be when 

running a test, with the correct lengths of tubing for the feed and outlet maintained at 

the appropriate height. The pump calibration was performed with water system, 50 and 

75 wt% glycerol systems. Figure C1 in appendix C show the calibration curve for the 

Watson Marlow pump505S with 4.8 mm internal diameter tubing feed pipe.  

 

The sulphuric acid was delivered from two 60 ml syringes to the centre of the SDR disc 

by the syringe pump that was used in the SBR micromixing experiments which was 

shown previously in Figure 4.5. The calibration curves for the syringe pump (Model 

353 Sage Instruments), are shown in Figure C2 to Figure C6 in appendix C.  

 

 

Borosilicate 5L reservoir 

Peristaltic pump (Watson Marlow pump 505S) 

Pulse dampener to 
ensure steady flow 

at  low flow Rates  
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4.2.2.5 10cm Micromixing Experimental Procedure    

The flowrate of the borate/iodide/iodate solution was set by selecting the pump speed 

point (rpm) from the pump speed controller corresponding to the desired flowrate. The 

sulphuric acid flowrate was set by selecting the % of the flow set point from the flow 

controller that corresponds to the desired flowrate. The water bath temperature was set 

at 20 
o
C from the water bath temperature controller then switched on to deliver the 

cooling water to SDR through the sealed rotary union for the cooling of the bearing and 

the internal machinery parts as well as the disc surface and the reactor shell in order to 

keep the temperature of the reacting liquid on the disc surface constant at 20 
o
C 

(Guichardon and Falk, 2000). The samples bottles were cleaned using de-ionised water 

and then dried by the air and placed on the Table which is located close to the sample 

tube collector. When the reactor disc surface temperature reached to 20 
o
C (steady state 

condition), the syringe pump and the peristaltic pump were switched on to deliver the 

reactants to the centre of disc surface through the single single-point distributor. In the 

mean time the desired disc rotational speed was set from the digital disc speed 

controller and the disc started to rotate. To ensure the system is maintained in a total 

steady state condition, i.e. tubing and feeding system were air bubbles-free and reactants 

temperature on the disc surface reached the 20 
o
C, the disc was run for 5 minutes before 

taking any sample from the sample collector. After that, three samples were collected in 

the sample glass bottles at a time interval of 2 minutes from samples collector as shown 

in Figure 4.14. The disc and the both pumps were then stopped. The pH of the sample 

was measured and recorded to ensure that it was not lower than 7. This means 

thermodynamically iodine cannot form and the observed formation of tri-iodide can 

only be due to the segregation of the fluid. The samples were analysed for their 

absorbance values (D) within five minutes of the collection from the SDR sample 

collector using UNICAM 8700 UV-vis spectrophotometer. The samples were analysed 

using the same manner of the analytical procedure followed in the SBR experiments 

with the wavelength of λ = 353 nm (section 4.2.1.5). Upon completion of the 

experimental run, the disc lid was removed and the reactor was flushed with de-ionised 

water repeatedly then dried by using a paper towel. The lid was fixed back to its 

position by tightening the lid bolts. At this stage the SDR Rig became ready for 

performing the next experiment. 
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4.2.3 30cm Spinning Disc Reactor (SDR) Experimental Rig  

The third rig employed in the micromixing experiments was 30cm SDR. Figures 4.15 

and 4.16  show the aerial views of 30 cm SDR with and without the lid.  In general, the 

mechanical design and construction for the 30 cm SDR are very much similar to the 10 

cm SDR except for the difference in disc size. The disc was driven by a 0.37 kW motor 

type (ABB motors) attached with a toothed drive belt to prevent slippage of the belt. 

The designed maximum motor speed was 2870 rpm. From safety point of view, the 

maximum speed at which the reactor could be safely operated was 1200 rpm. The 

rotational disc speed was controlled by digital speed controller type (Varispeed 606 

PC3) supplied by (YASKAWA). The disc speed was obtained from the speed controller 

as a unit of frequency (Hz). To determine the disc speed in terms of revolution per 

minute (rpm), a laser tachometer was used to measure the disc rotational speed in rpm 

and then speed calibration curve (Hz vs. rpm) for the 30 cm SDR was performed. Figure 

D-1 in appendix D shows the calibration curve for the 30 cm SDR speed.   

 

The rig was made of stainless steel material. The disc (smooth/grooved) plate was also 

made from a stainless steel material which is attached to the circular rotating frame by 

eight slotted stainless steel screws. The SDR was covered by polycarbonate lid which 

was attached by twelve hex cap screws. Disc surfaces (smooth and grooved discs) were 

interchangeably used using counter sink screws through the surface disc into the main 

rotor sealed with a Viton ‘O’ ring. The rotor, shaft and reactor shell were supported on 

an angle iron framework with bearing supports using a self aligning bearing. 

 

In order to keep the temperature of the reacting liquid on the disc surface constant at 

20OC as well as to avoid any mechanical damage that could occur to the bearing and 

other mechanical parts of the reactor due to the running of the reactor without a cooling 

system, cooling water was fed into the reactor through a central pipe co-axial with the 

main drive shaft connected to the 40 L feed tank via a rotary union supplied by Deublin 

UK. This cooling water makes contact with the bottom of the disc surface which 

centrally flows out to the periphery over a channel plate which then returns toward the 

centre until it makes contact with the annular pipe (formed by the feed drive shaft 

arrangement) where it flows down to the drain holed that is then discharged into the 

return fluid skirt and then to the tank again. The cooling water flow circulation was 

achieved partly by disc centrifugal force and water feed pump pressure. Figure 4.17 
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shows the cooling system for the 30cm SDR. Figure 4.18 shows the upper part of 

cooling system and driving system for 30 cm SDR. 

 

To maintain the desired temperature for the SDR, two heaters were immersed in the 

tank. One end of a thermocouple was immersed in the tank and the other was connected 

to the digital temperature controller. 

 

Figure 4.15: The Aerial view of 30cm SDR with the lid 
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Figure 4.16: The Aerial view of 30cm SDR without the lid 

 

 

Figure 4.17: Cooling system for 30cm SDR 
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Figure 4.18: The upper part of cooling system and driving system for 30 cm SDR 

 

4.2.3.1 Reactants Pumping System and Liquid Feed Distributor (Single-Point 

Distributor for 30 cm SDR    

Two pumps were connected to the 30cm SDR to pump the reactants to the centre of the 

disc.  The Iodide, Iodate and Borate solution was delivered from 10 L aspirator by 

means of the peristaltic pump that was used with 10cm SDR. The sulphuric acid was 

injected into the centre of the disc using the Syringe Pump type (NE-1000, New Era 

Syringe). The reactants were pumped into the disc through a Single-Point Distributor 

with a diameter of 3.0 mm for iodide, iodate and Borate solution stream and 1.65 mm 

for the sulphuric acid stream. The two pumps were calibrated with similar procedure 

that has been used for the pumps with the 10cm SDR. Figure 4.19 shows the pumping 

and feed system used with the 30 cm SDR. The feed system (the Single-Point 

Distributor) used with the 30 cm SDR was similar constriction to one was used with the 

10 cm SDR. The distributor consists of two pipes made of stainless steel: one pipe of a 

3.0 mm diameter for delivering the iodide, iodate and borate solution and the other pipe 

of a 1.7 mm diameter was used for delivering the sulphuric acid. The diameters of these 

feed tubes were carefully selected in order to achieve consistency in the introduction of 
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the flow of reactants on the disc. Similar to one used with 10 cm SDR, The feed 

distributor was fixed on the lid so that it was located at the centre of the disc surface and 

was placed at 2.00 mm above the surface. This height could easily be adjusted by using 

a shim. Figure AE-1 and Figure AE-2 in appendix E show the calibration curve for the 

Watson Marlow pump505S which was made by using de-ionised water. The calibration 

curve for the syringe pump, model NE-1000, New Era Syringe is also shown in Figure 

AE-3 in appendix E. 
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Figure 4.19: The pumping and feed systems for 30 cm SDR 
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4.2.3.2 Sulphuric Acid Multi-Point Distributor for 30 cm SDR Rig    

The multi-point distributor was designed and constructed to give a high level 

distribution of the sulphuric acid with the Iodate-Iodate-Borate ions solution on the disc 

surface. This would enhance the quality of micromixing on the disc surface as shown in 

the results of the 30 cm SDR micromixing experiments (See Chapter 5 for the results). 

The multi-point distributor was manufactured by the in-house workshop except for the 

0.2 mm holes (jets) that were drilled by Drill Service (Horley) Ltd. 

 

The multi point distributor is a way of delivering two discrete streams of reactants on to 

a rotating surface at a known radius of contact without any prior mixing. This is done by 

using a central feed tube with the ability to change the feed tube diameter and height 

from the disc surface. This supports a 70.0 mm circular distributor block which has an 

annular groove machined in it. A feed tube was attached to this to provide the reactant. 

This annulus was then covered and sealed in place.  The cover was made with a 1.5 mm 

stainless steel and it has four 0.2 mm feed holes (jets) machined in it. The diameters of 

the holes were very carefully chosen by carrying out pressure drop calculations due to 

frictional loses in the acid feed tube and the distributor holes.  

 

The multi point distributor was used as a means of introducing reactant (1) one (the 

Iodide, Iodate and Borate solution stream) to the centre of the disc through a pipe of 3.5 

mm diameter in order to couple it with the disc which allows it to form a rotating thin 

film. When the sulphuric acid was fed into the annulus, it first has to fill this and then 

build sufficient pressure to exit via the jets.  The lower part of the distributor (the base 

plate) has four 0.2 mm diameter holes that was used to deliver reactant (2) two (The 

Sulphuric acid) onto the film surface as evenly as possible at a known discrete radius 

without significantly disrupting the film whilst still allowing good mixing to occur. 

Figures 4.20 and 4.21 show the multi-point distributor before and after assemble. Figure 

4.22 shows the multi-point distributor’s operational set-up in the 30 cm SDR.  

 

Before commissioning the experiment, a flow test on the multi-point distributor was 

carried out using the lowest flowrate (3 ml/s). It was confirmed that there was flow 

through all the four holes. 
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4.2.3.3 30 cm SDR Micromixing Experimental Procedure  

The procedure for the 30 cm SDR micromixing experiments was very much similar to 

the one followed in the 10 cm SDR. A syringe pump type of (NE-1000, New Era 

Syringe Pump) was used for the delivering of the sulphuric acid into the centre of the 

disc surface using 4.8mm Masterflex platinum cured silicone tubing connected to a 

single or multi point-distributor which depends on the experimental mode. The iodide, 

iodate and borate solution was delivered by the peristaltic pump type of Watson Marlow 

pump 505S from a 10 L aspirator to the centre of the disc surface along with a 4.8 mm 

Masterflex platinum cured silicone tubing connected to a single point distributor or to 

the central pipe in the case of multi point distributor. 

 

The 60 ml syringe was filled with sulphuric acid and was inserted in its slot on a syringe 

driver. The 10 L aspirator was filled with the Iodide, Iodate and Borate solution and was 

iodide, iodate, and borate solution- feed pipe  

 

Sulphuric acid feed pipe  

 

window for viewing the sample 

 

SDR Lid  

 

Multi-point distributor 

Grooved disc 

 

Figure 4.22: Multi-point distributor operational set-up 
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connected to the peristaltic pump using 4.8mm silicone tubing. The water bath 

temperature was set at 20 
o
C from the water bath temperature controller. 

 

The two electric immersion heaters were switched on followed by the centrifugal pump 

being switched on to deliver the cooling water from the water bath through the rotary 

union connected to the shaft. Before the commencement of the experiments, it was 

ensured that the reactor system temperature becomes constant and equals to the set point 

of 20 
o
C. 

 

The iodide, iodate and borate solution and the sulphuric acid pumps were set at the 

desired flowrates and were turned on to fill the tubing system and the single-point / 

multi-point distributor. This was to ensure that tubing and feeding systems were 

completely full and air bubbles-free. Once the fluids appeared on the centre of the disc, 

the pumps were turned off and the disc was cleaned by a wiper; and at this time the 

system became ready for performing the experiments.  

 

When the reactor disc surface temperature reached 20 
o
C (steady state condition), the 

desired disc rotational speed was set from the digital disc speed controller and the disc 

started to rotate. In the meantime, the samples bottles were cleaned by de-ionised water 

and were dried by the air and placed on the Table which was located close to where the 

sample tube collector were located at the bottom of the reactor. At this time, the iodide, 

iodate and borate solution and sulphuric acid pumps were turned on in order to 

introduce the two fluids to the centre of the disc through the single / multi -point 

distributor. To ensure that the system is maintained at a total steady state condition i.e. 

tubing and feeding system were air bubbles-free and reactants temperature on the disc 

surface reached the 20 
o
C, the disc was run for 5min before taking any sample from the 

sample collector. After that, three samples were collected in the sample glass bottles at a 

time interval of 2 minutes for the purpose of absorbance (D) analysis using (UNICAM 

8700 UV/Vis) spectrophotometer. The disc and both of the pumps were then stopped. 

Before analysing the samples, the pH for the samples were measured and recorded to 

ensure that it was not lower than 7. The samples were analysed within five minutes of 

the collection from the SDR sample collector. The samples were analysed using the 

same manner of the analytical procedure followed in the SBR and 10cm SDR 

experiments with a wavelength of λ = 353 nm. After the experimental run, the disc lid 



                                 Chapter 4: Experimental Facilities and Procedures 

 

Mr. Salah R. Al-Hengari  120 

was removed and the reactor was flushed with de-ionised water and then dried by wiper 

and the lid was fixed back to its original position by tightening the lid bolts. At this 

stage the system was ready to perform the next experiment. 

 

4.2.4 Narrow Channel Reactor (NCR) Experimental Rig 

The fourth rig employed for the micromixing experiments was the Narrow Channel 

Reactors Rig (NCRs). Figure 4.23 shows the general layout of the NCRs rig and its 

auxiliary equipment. The narrow channel reactors used for the experimental runs were 

made of borosilicate glass and were fabricated at the Glass Blower Workshop in the 

Department of Chemistry – Newcastle University.  

 

 

Figure 4.23: Set up of the NCR Rig 
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micromixing. Three channel lengths were considered for each of the junction type, 5 

cm, 10 cm and 15 cm, in order to determine whether the micromixing continues along 

the length of the channel. Figures 4.25 and 4.26 show the Y and T- junction Narrow 

Channel Reactors used in this part of the research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: Y-junction Narrow Channel Reactors 
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Figure 4.24: Schematic flow diagram for the mixing process carried out Y and T Junction NCR’s 
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Figure 4.26: T-junction Narrow Channel Reactors 

The narrow channel reactors were immersed in a water bath (HAAKE circulators N4-B)  

in order to keep the temperature of the reacting liquid in the narrow channel reactors 

constant at 20 
O
C. as mentioned earlier, this temperature is required in order to satisfy 

the validity of the rate constant used in the calculation of the iodine concentration, as 

determined by Guichardon et al. (2000) where it was found that the constant 

experiences no change between 20 
O
C and 35 

O
C . In addition, the narrow channel 

reactors were kept flat in the water bath to ensure that no back flow was allowed into 

the feed channels.  Figure 4.27 shows an aerial view of 5cm Y- junction Narrow 

Channel Reactor in the water bath. 
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Figure 4.27: Aerial View of Y-junction 5cm NCR in water bath 
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The Y-junction narrow channel reactors used had a 90° angle between the two feed 

streams with 1mm diameter each.  Both the feed channels (3 cm in length each) were 

followed by the mixing channel which has a diameter of 1mm.  Y-Junction reactors 

were used with a mixing channel length following the mixing junction of 15 cm, 10 cm 

and 5 cm. Additionally, T-junction narrow channel reactors were used to aid the 

comparison of junction types with an angle of 180° between the two feed streams (1mm 

diameter each).  The T-junction narrow channel reactors used as part of this research 

had a feed channels length of 3 cm each and followed by a mixing channel with a 

diameter of 1 mm and lengths of 5 cm, 10 cm and 15 cm, to allow for the direct 

comparison with the Y-junction reactors. 

 

The tubing following the narrow channel reactor had an internal diameter ( ID=4.8 mm) 

which is four times higher than that of the narrow channel reactor to prevent further 

micromixing following the narrow channel reactor (SCHNEIDER, 2004).    

    

4.2.4.1 Reactants Pumping System for the NCR Experimental Rig   

The syringe pump used for feeding the Iodide, Iodate solution (Model 353, Sage 

Instruments, shown in Figure 2) consist of two syringes with 60 ml capacity.  The pump 

flowrates were varied by a percentage flow controller located within the pump.  

Calibration of the pump was achieved by altering the percentage flow and measuring 

the volume collected over a time period of one minute, thus allowing the determination 

of a flowrate in terms of ml/min.  To ensure the accuracy of the calibration, the pump 

was operated with the piping and the narrow channel reactor in the positions to be used 

for the experimental runs.  The pump was recalibrated for each narrow channel reactor 

and with both the water and viscous solutions.  The calibration charts obtained can be 

seen in Appendix F.    

 

A NE-1000, New Era programmable syringe pump was used to pump the sulphuric acid 

contained within the 60ml syringe.  The flowrates can be specified on the pump in terms 

of ml/min.  Calibration of the pumping speeds was completed to verify the pump 

flowrates by measurement of the volume of fluid collected over a period of a minute. As 

with the calibrations procedure of previous pump, the calibration for this pump was 
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completed with the piping and reactor in the same position as for the experimental runs.  

The calibration chart obtained can be found in Appendix F. 

 

4.2.4.2 Micromixing Experimental Procedure for the NCR Rig   

The continuous mixing of the Iodide, Iodate and Borate solution and the Sulphuric acid 

was carried out in a narrow channel reactor.  The two feeds met at a junction with the 

mixing continuing along the length of the narrow channel reactor.  The feed streams 

were pumped to the narrow channel reactor using syringe pumps The syringe pump type 

of (NE-1000, New Era Syringe Pump) equipped with one 60 ml syringe was used for 

the delivery of the sulphuric acid to the feed channel of the acid  using 4.8 mm 

Masterflex platinum cured silicone tubing. The 60 ml syringes were loaded with 

sulphuric acid for a desired concentration and inserted in its slot on the syringe driver.  

The desired flowrate was set from the pump flowrate controller. The Syringe pump type 

(Model 353, Sage instruments) was used for delivering the Iodide, Iodate and Borate 

solution to the feed channel  along with 4.8 mm Masterflex platinum cured silicone 

tubing; two 60 ml syringes were loaded with the Iodide, Iodate and Borate solution and 

were inserted in their slots on the syringe driver. The Iodide, Iodate and Borate solution 

flowrate was set by selecting the % of the flow set point from the flow controller that 

corresponds to the desired flowrate. The characterised narrow channel reactor was 

connected to the two feed tubing then immersed in the water bath. As mentioned earlier, 

the narrow channel reactor was kept flat in the water bath to ensure that no backflow 

was allowed into the feed channels. The water bath temperature was set at 20 
o
C from 

the water bath temperature controller. The samples bottles were cleaned using de-

ionised water and then dried by the air and placed close to the rig. When the rig 

temperature reached 20 
o
C (steady state condition), the syringe pump and the peristaltic 

pump were switched on to deliver the reactants to the NCR. To ensure that the system is 

maintained in a total steady state condition i.e. tubing and feeding system were air 

bubbles-free and reactants temperature in NCR reached 20 
o
C, the reactants pumps were 

run for 5 min before taking any sample from the NCR outlet through sampling tubing. 

After that, three samples were collected in the sample glass bottles at a time interval of 

2 min. Both of the pumps were then stopped. The pH for the sample was measured and 

recorded to ensure that it was not lower than 7. The absorbance (D) values of the 

samples were analysed within five minutes of the collection from the NCR outlet 

through sampling tubing using (UNICAM 8700 UV-vis) spectrophotometer. The 
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samples were analysed using the same manner of the analytical procedure followed in 

the SBR, 10 cm SDR and 30 cm SDR micromixing experiments with the wavelength of 

λ = 353 nm. Upon completion of the experimental run, the NCR was disconnected from 

the feed tubing and was flushed with de-ionised water repeatedly then dried by using a 

wiper. The NCR was fixed back to its position in the water bath and connected to the 

feed tubing. At this stage the NCR became ready for performing the next experiment. 

 

4.3 Calculation Procedure for Tri-Iodide Concentration   

The quantitative analysis of   
  

was carried out as suggested by Fournier et al. (1996a). 

The product was analysed by UV/Vis Spectrophotometer at a wavelength of λ = 353 

nm. The concentration of Tri-Iodide was therefore carried out on the basis that the 

Lambert-Beer law is valid which means that the absorbance, D , is less than 2.0 at the 

particular wavelength and also it is directly proportional to the concentration of Tri-

Iodide as follow: 

 

        
                                                                                                                   (4.7) 

 

From the absorbance, D , calculation of the concentration of Tri-Iodide became 

possible knowing that the molar extinction coefficient, 

l  as : 

 

   
    

  

        
                                                                                                                                  

 

Table 4.5 shows the values of molar extinction coefficient which are given in the 

literature. 
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Table 4.5: List of extinction molar coefficient determined in literature and respective wavelengths 

References Wavelengths, 

λ ( nm) 

Extinction molar coefficient,

 (m
2
/mol) 

(Custer, 1949) 352 2590 

(Awtrey and Connick, 1951) 353 2640 

(Palmer et al., 1984) 350 2575 

(Guichardon and Falk, 2000)(SB*) 353 2395.9 

(Guichardon and Falk, 2000)(DB**) 353 2606 

(Assirelli et al., 2002) (DB) 353 2541.2 

(SB*)= single beam 

(DB**)= Double beam 

 

For this research, the spectrometer used was a single beam system (SB) and the value of 

extinction molar coefficient was 2395.9 m
2
/mol.  

4.4 Calculation Procedure for Xs using a single Injection method  

The procedure of determining the quantity of the micromixing efficiency which is 

expressed by the segregation index, Xs, requires the determination of the concentration 

of Tri-Iodide (  
 ) using Spectrophotometric analysis. The concentration of    

   was 

achieved by measuring the optical density of   
   and the subsequent application of the 

Beer-Lambert law (equation 4.7). 

 

The segregation index, Xs, relating the actual yield of the undesired product, Y, to the 

maximum yield,    , as defined by Fournier et al.(1996a) and given as follows: 
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Where 

 

I. For the Semibatch process   

 

     
         

  

   
 

  
               

   

               
                                                                          

 

II- For the continuous  process   

 

  
         

  

       
 

         
    

          
                                                                                       

 

And  

 

        
    

   
     

           
   

                                                                                               

 

Where             represents the total liquid flowrate of the two solutions i.e. the 

iodide, iodate, and Borate solution and the sulphuric acid solution respectively 

introduced into the system, and the subscript 0 denotes the inlet conditions.  

 

Y is considered to be the ratio of moles of acid consumed by Dushman reaction to 

produce 2I  , which then produced   
 , over the total moles of acid injected to the system 

based on the measured values of 


3I . YST is the product of the reaction due to the total 

segregation conditions in which the quantity of iodine formed is mainly due to the 

stoichiometric ratio of the reactants. Consequently, the calculated segregation index, 

   , ranged between 0 and 1 in which   = 0, gives a perfect micromixing and   =1, 

gives total segregation. In general, 0 <    < 1, i.e., there is partial segregation.  

 

In conclusion, for any given pair of competing parallel reaction, the lower the value 

of    , gives better micromixing. In order to determine the amount of 2I  produced, the 

mass balance on the iodine can be considered based on the given equation as follows: 
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KB = the equilibrium constant of reaction (4.3), which is defined by the equation below: 

 

        
   

 
                                                                                                    

 

At 20
o
C,      for the water system equal 788.89. Guichardon et al. (1997) studied the  

effect the glycerol mass fraction on the      and  it was found that the    equals 2250 

for the 50 wt% water/glycerol system and 6250 for the 75 wt% water/glycerol system.  

 

 The combination of Equations (4.13) and (4.14) gives a second order algebraic 

equation which can be solved to give the iodine concentration as follows: 

 

    
 

 
    

         
 

 
    

          
   

  

  
                                                                    

 

In determining the values of Xs using single injection method, for a given operating 

conditions, for four different reactants, a Microsoft Excel spreadsheet was developed.  

 

4.5 Residence time Distribution (RTD) Experimental Facilities and 

Procedure 

RTD experiments were performed on the 30cm SDR Rig that was employed in the 

micromixing experiments and which has been described in detail in section 4.3.3. To 

make this rig applicable for the RTD experiments, some technical modifications have 

been carried concerning the sampling system.   
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4.5.1 Technical modifications for the RTD Rig 

4.5.1.1 Sampling probe (scooper) 

The sampling probe (scooper) was designed and constructed for the purpose of 

collecting the samples from the edge of the disc. This will help to get the overall 

experimental mean resident time (   ) on the disc itself. Figure 4.28 shows the set up of 

the sampling probe (scooper). The sampling probe was designed with some 

considerations for the vertical movement of probe, the angle of the pickup probe and the 

rotational disc speed in order to orientate the probe in the direction of the film on the 

disc so that bending to the probe can be avoided and also to minimise the disturbance of 

the film on the disc. 

 

The scooper was a flexible device brought into contact with a rotating surface in an 

attempt to sample the film at a given radius. This was a Tygon tube with ID=1.6mm and 

it was flexible so as not to damage disc surface or disrupt the film unduly. The end tube 

was cut at an angle of 30
0
 so as to build a pool within the tube which could then be 

drawn up via a syringe for later analysis. The scooper device was set to the position 

allocated for sampling but not in contact with the disc surface. The disc speed was set 

and disc stared.  

 

The respective flow rate was set from the pumps before switching them on. When the 

steady conditions were observed for the liquid film on the disc, then the fine vertical 

adjustment was wound down to bring the flexible scooper tube in to contact with the 

liquid film on the rotating disc surface. The sampling syringe was then extended to 

attempt to draw up fluid from the surface. Unfortunately, due to the thinner film of the 

disc, it was not possible to collect the samples by the scooper. To address  this technical 

problem, the scooper was replaced by shoe collector which is described  in next section.   
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Figure 4.28: The set up of the sampling probe (scooper) 

4.5.1.2 Sampling shoe  

The shoe collector is a small box with the dimensions of 6.0 cm length x 2.0 cm width x 

2.0 cm height arranged by welding together stainless steel plates. One side of the 

sampling shoe was left half enclosed on the side closer to the SDR (2.0 mm away from 

the edge of the disc) to provide an entrance for reactants to be collected and retained, if 

necessary, in a small reservoir. The shoe collector outlet size was engineered to provide 

minimal residence time in the shoe. The shoe is supported in the main collector by a 

heavy base annulus with a sturdy rod and an adjusTable setting mechanism to stop 

device to ensure accurate, repeaTable placement after removal. The shoe was tilted 

slightly to create a fall towards the outlet pipe thus reducing hold up further. This is then 

connected to small flexible pipe for sampling purposes. This sample pipe exits the 

reactor coaxially via the main drain pipe until and then through a small hole in the wall 

of the pipe enabling sample collection as close to the SDR surface as possible. Figures 

4.29 and 4.30 showed the sample shoe set up before the assembly. Figures 4.31 and 

4.32 show the sample shoe set up after the assembly and the Shoe operational set-up 

within the 30 cm SDR .  

 

Shotgun feed tube 

Settings stop for 

repeaTable contact 

Locking screw 

Disc surface 

5ml sampling syringe 

Radial adjustment support 

(movable and indexable  

Radial (fixed adjustment 

bar) 

Support and 

adjustment 

mechanism 

Scooper (flexible) 

RotaTable stop device for 

tangential orientation  

Fine vertical adjustment 

(Rack and pinion  

Adjustment point 

Direction of rotation 



                                 Chapter 4: Experimental Facilities and Procedures 

 

Mr. Salah R. Al-Hengari  131 

The methylene blue was delivered by syringe pump and the de-ionised water was 

delivered by the peristaltic pump. Both fluids were fed to the central disc surface via 

single feed-distributor (shotgun) that was used with the micromixing experiments using 

30 cm SDR Rig. Before starting the RTD experiments, some considerations were taken 

into account. This was to ensure that the shoe meet its objectives. To confirm this, some 

trials were carried out with the shoe modified. The trials showed that the modified shoe 

performed very well in collecting the low flowrate sample but at the higher flowrates 

the shoe overflowed which caused problems in collecting fresh samples with short time 

intervals of 10 s. This problem occurred because of the small diameter of outlet pipe of 

1.25 mm. This was addressed by increasing the outlet pipe diameter to 2.9 mm , which 

allowed the product to flow out of the tube more rapidly.  

  

 

 

Figure 4.29:  Sample shoe set up (before assembly) 
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Figure 4.30:  Sample shoe set up (before assembly) 
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4.5.2 Residence time distribution:  Experimental procedure  

Methylene blue was used as a step-input tracer in the residence time distribution 

experiments. In order to ensure that accurate flow rates with no pulsation was achieved, 

a syringe pump type of (NE-1000, New Era Syringe Pump) was used for the delivering 

of the methylene blue into the centre of the disc surface using 4.8 mm Masterflex 

platinum cured silicone tubing connected to a single point distributor. The syringe pump 

was equipped with one 60 ml syringe. The working fluid (de-ionised water for water 

system  or  50 wt% glycerol/water system) was fed  from a 10 L aspirator to the centre 

of the disc surface using peristaltic pump type of Watson Marlow pump 505S  supplied 

by Cole-Pamer-UK along with a 4.8 mm Masterflex platinum cured silicone  tubing 

connected to a single point distributor. The desired flowrate was set from the pump 

speed controller that corresponds to the desired flowrate. The 10 L aspirator was filled 

with the de-ionised water and connected to the peristaltic pump using 4.8mm silicone 

tubing.  
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Figure 4.32: Shoe operational set-up 
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The 60 ml syringe was filled with methylene blue of 0.5 g/l concentration and was 

inserted in its slot on a syringe driver. The volumetric flowrate of methylene blue tracer 

was set from the pump flowrate controller and kept 5 ml/min for the entire course of 

experiments. 

 

The water bath temperature was set at 25 
o
C (ambient temperature) from the water bath 

temperature controller. The two electric heaters were switched on and then the 

centrifugal pump was switched on to deliver the cooling water from the water bath 

through the rotary union connected to the shaft to allow for the cooling of the bearing 

and internal machinery parts as well as the disc surface. Before the commencement of 

the experiments, it was ensured that the reactor system temperature becomes constant 

and equals to the set point i.e. 25 
o
C to avoid any mechanical damage that could occur 

to the bearing and other mechanical parts of the reactor due to the running of the reactor 

without a cooling system. After that, the working fluid and methylene blue pumps were 

set at the desired flowrates and were turned on to fill the tubing system and the single-

point distributor. This was to ensure that tubing and feeding systems were completely 

full and air bubbles-free. Once the fluids appeared on the centre of the disc, the pumps 

were turned off and the disc was wiped clean using a paper towel, at this stage the 

system was ready for performing the experiments. The desired disc rotational speed was 

set from the digital disc speed controller and the disc started to rotate. In the meantime, 

the samples bottles were cleaned by de-ionised water and were dried by the air and 

placed on the Table which was located close to the sample tube collector. The working 

fluid and methylene blue pumps were turned on in order to introduce the two fluids to 

the centre of the disc while the stop watch was turned on. The product, after being 

thrown off the edge of the disc, entered the sampling shoe and then flowed down 

through the 2.9 mm sample tubing. Twelve samples were collected with the time 

interval (    of 10 s for the purpose of absorbance (D) analysis using UNICAM 8700 

UV/Vis spectrophotometer. The samples were analysed using the same manner of the 

analytical procedure followed in micromixing experiments with the wavelength 

(         ranged 662.7- 664.8 nm for both systems water and 50 wt% glycerol. After 

finishing the experimental run, the disc lid was removed and the reactor was flushed 

with de-ionised water, wiped clean and the lid was fixed back to its position by 

tightening the lid bolts. At this stage the system was ready to perform the next 

experiment.
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5. Experimental Results and Discussion: Micromixing Studies 

5.1 Semi-batch reactor (SBR) 

The main objective of this set of experiments is to characterise the micromixing process 

in Semibatch reactor (SBR) and to compare its micromixing performance in terms of 

the segregation index (Xs), power dissipation (ε) and micromixing time(tm) with results 

obtained from micromixing experiments using two different spinning discs of 10 and 30 

cm in diameter and six different Narrow Channel Reactors (Y and T shape junctions, 

each of three different length; 5, 10 and 15 cm and 1 cm in diameter). This set of 

experiments has been carried out in a 1.37 L flat semi-batch reactor,(SBR), made of 

borosilicate glass, equipped with four baffles and an impeller of Rushton turbine-type 

with four flat blades, as described previously in Chapter 4.  

 

As mentioned in Chapter 2, section 2.8, the iodide-iodate reaction system was 

implemented in this research as a model reaction to characterise the micromixing 

phenomena in intensified reactor systems. The iodide-iodate reaction system can be 

described in three steps as follows: 

 

     
 

          
                         Acid-base neutralization                                    (5.1) 

                                                                  Quasi-instantaneous                     
 

 

            
 

          
                               Dushman reaction                (5.2)  

                                                                                                                            Fast 

 

           
 

                                                             Equilibrium                               (5.3) 

 

5.1.1 SBR Experimental design 

MINITAB 15 software programme was utilized in order to generate an appropriate 

general full factorial experimental design for both water and 50 and 75w% glycerol 

systems (Table G1 in Appendix G). The variables incorporated into experimental design 

were: 

 Impeller Agitation speed: 300,600,900 and 1200 rpm 

 Acid concentration: 0.25,0.50,1.0 M 
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 Acid feed injection location: Middle of Reactor and Close to the Impeller 

 Viscosity: water system(  =1.005 mPa.s at 20 oC), 50wt% glycerol system (  = 

6.0 mPa.s at 20 oC)  and 75 wt% glycerol system( =35.5 mPa.s at 20 oC)  

 

72 experiments for three systems, i.e. water system, 50 wt% Glycerol system and 75 

wt% glycerol system were carried out. Each experiment was repeated three times. The 

mean value of segregation index, Xs (mean), the standard deviation (σ), standard error 

(S) and relative error were estimated. The maximum relative error of experiments was 

only (7.2 %) and the results were satisfactorily reproducible. Calculation Procedure for 

the error analysis is shown in appendix H.  

 

The acid ion concentrations and its injected volumes in the 2.0l SBR, containing 1.37 L 

of iodate and iodide ions in basic medium are shown in Table 5.1 below. The 

calculation of the sulphuric acid volumes which needs to be injected in the SBR is 

shown in appendix B. The acid injection rate was 3.6 ml/min (see section 5.1.2 for 

details). 

 

Table   5.1: The acid ion concentrations and its injected volumes in the 2.0l SBR, containing 1.37 L 

of iodate and iodide ions in basic medium 

Acid concentration,[H
+
] 

mol 

Volume of acid ion ,     

(ml) 

Injection time,(min) 

0.25 80 22.22 

0.5 40 11.11 

1.0 20 5.60 

 

5.1.2 Influence of acid feed rate on the segregation index, Xs    

As discussed previously in the literature review (Section 2.4.6.2.3 in Chapter 2), the 

segregation index can be strongly influenced by the acid feed rate if reaction is carried 

out in a semi-batch reactor. The feed time used in the experiments must exceed a critical 

time (tc) in order to make sure that experiments are carried out in the micromixing-

controlled regime. 

 The critical injection time was determined for the worst operating conditions used in 

the semi-batch experiments (i.e N=300 rpm, [H+] =1.0 M and acid injection point at the 

middle of the reactor) as shown in Figures 5.1 and 5.2 for water and 
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25%water/75%glycerol mixture respectively. The acid flowrates corresponding to each 

data point in Figures 5.1 and 5.2 are presented in Tables (G2) and (G3) in Appendix 

(G).  The critical feed time was found to be 34 sec and 54 sec, for water system and 

75wt%glycerol system respectively. A value of 335 sec, corresponding to an acid 

injection rate of 3.6 ml/min, was subsequently used for all experiments which was well 

above the critical injection time. Therefore, at such low acid injection rate used in semi-

batch experiments, it is ensured that macromixing effects are eliminated and the results 

given by chemical test reactions are only micromixing relevant. 

 

Figure 5.1: Influence of acid injection time on segregation index (Xs) using [H+]=1.0 M injected in 

water in the batch reactor with stirrer speed N of 300 rpm and feed point located in the middle of 

the reactor 
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Figure  5.2: Influence of the acid feed rate on segregation index, (Xs) using [H+]=1.0 M injected in 

25% water/75wt% glycerol mixture the batch reactor with stirrer speed N of 300 rpm and feed 

point located in the middle of the reactor 

 

5.1.3 Influence of acid concentration and impeller rotational speed on segregation 

index, (Xs) 

Figure 5.3 shows the effect of acid concentration on the segregation index (Xs) using 

three different acid concentrations in the range 0.25 to 1.0 M injected at position 2 

(corresponding to the middle of the reactor, as shown in schematic diagram of the SBR, 

Figure 4.3 with four different stirrer speeds (300, 600, 900 and 1200 rpm). It is seen that 

the higher the concentration of acid, the higher the value of XS at any rotational speed of 

the impeller. Similar trends have previously been reported for iodide-iodate reaction 

scheme as shown in Figure 5.4 (Fournier et al., 1996a).  This behaviour is explained by 

considering the kinetics of the neutralization and of the Dushman reactions involved in 

this process. With a decrease of the acid concentration, the rates of the neutralization 

reaction and of the Dushman reaction are slowed down but the rate of the Dushman 
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The effect of impeller rotational speed on the segregation index is also shown in Figure 

5.3. It is observed that the segregation index Xs consistently decreases with increasing 

impeller rotational speed for all acid concentrations used in this study. In fact, an 

increase of the rotational speed corresponds to increasing the mean specific energy 

dissipation rate and consequently the local specific energy dissipation rate and 

engulfment rate also increases. Thus, as expected the intensity of micromixing is 

enhanced and Xs decreases. This is in agreement with the findings in other studies as 

shown in Figure 5.4. 

 

Figure   5.3: Influence of the acid concentration and stirrer speed on segregation Index (Xs) with 

feed point located at the middle of the reactor – water system 
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5.1.4 Influence of viscosity on segregation index,(Xs) 

Glycerol-water mixtures of two different concentrations (50 and 75wt % of Glycerol) 

were used in this task to obtain viscosities of 6 and 35.5 mPa.s at 20 
O
C . From Figure 

5.5 and 5.6, the influence of viscosity on the segregation index can be seen for acid 

concentrations of 0.25 M and 1.0 M respectively. As viscosity increases from µ= 1.005 

mPa.s to µ= 6 mPa.s and 35.3 mPa.s, Xs increases for all agitator speeds tested. This is 

most evident at the highest viscosity system used. 

 

Clearly, the increase of viscosity slows down the micromixing rate and consequently, 

increases the micromixing time (tm). Furthermore, it alters the intrinsic kinetics of the 

reaction. In fact, it could slow down the overall reaction rate, and this will result to shift 

of Xs to a higher value at high liquid viscosities  (Guichardon et al., 1997).  

 

 

Figure   5.5: Dependence of the segregation Index, (Xs) on the liquid viscosity with [H+] =0.25 M 

and acid feed location close to impeller 
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Figure    5.6: Dependence of the segregation Index, (Xs) on the liquid viscosity with [H+] =1.0 M 

and acid feed location close to impeller 

 

5.1.5 Influence of feed location on segregation index,(Xs) 

From the results displayed in Figure 5.7, it can be clearly seen that acid injection 

position has a remarkable effect on the values of segregation index, Xs. Thus for each 
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injection position <1> (impeller discharge stream). This effect is attributed to the local 

power dissipation  in the SBR i.e. from position of low to high local power dissipation, 

which is also reported by Geisler et al. (1994). The highest value of local power 

dissipation (ε) has been reached at the impeller discharge stream was 21.2 W/kg. 

Nevertheless, only 8.5 W/kg has been reached at the injection position < 2 >, i.e. the 

middle of the reactor and this confirmed the findings of LDV studies (Geisler et al., 

1994). The effect of power dissipation on Xs is discussed in more detail in the following 

section. 
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Figure   5.7: Influence of Acid feed location on segregation Index, (Xs) - water system 

 

5.1.6 Estimation of Power dissipation,   ), and its effect on Xs 
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The greatest values are measured at the impeller discharge stream and specifically near 

the impeller tip where the engulfment rate has the highest value. The relative power 

dissipation (   is expressed by:  
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2000b).  Ø at the region of axial flow along the wall <2> has been calculated from the 

following empirical correlation (Baldyga and Bourne, 1999) : 

 

                                                                                                                                    

 

Where z* is the height of the injection point from the centre of the impeller which is 

0.0252m. Then the value of Ø is 1.6. The power number is in the range of 3.5 – 5 and is 

dependent on the Reynolds number  (Holland and Bragg, 1995).   

 

 The local power dissipation,    ), in SBR was estimated by equation (2.33) given in 

Chapter 2 and reproduced here: 

 

    
     

       
 

                                                                                                                        

 

Figure 5.8 shows the effect of the impeller rotational speed on the power dissipation, the 

higher the impeller rotational speed, the higher the power dissipation introduced to the 

fluid by the impeller. It can see from equation (5.6) the power dissipation is 

proportional, to   .  

 

Figure 5.9 and Figure 5.10 show the segregation index, (Xs) as function of  local power 

dissipation (ε) for three different acid concentrations and two different acid injection 

points. It is clear that from Figure 5.9 and Figure 5.10 the higher value of power  

dissipation leads to lower value of segregation index, (Xs). This is because a high 

impeller rotational speed corresponds to high energy input and therefore, to large 

engulfment rate, which enhances the micromixing process. 

 

In Figure 5.9, the acid was injected close to the impeller, the local power dissipation (ε) 

values varied from 0.331 to 21.2 W/kg depending on the impeller rotational speed used. 

Alternatively in Figure 6.10, the acid was injected at middle of reactor, the local power 

dissipation (ε) values varied from 0.132 to 8.5 W/kg. At an impeller rotational speed of 

1200 rpm and acid concentration of 1.0M injected in the middle of the reactor (Figure 

5.10), the local power dissipation (ε) and Segregation index; (Xs) equalled 8.475W/kg 
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and 0.138 respectively.  Under the same operating conditions with implementation of 

acid injection point close to the impeller, (Figure 5.9), the local power dissipation (ε) 

and segregation index, (Xs) equalled 21W/kg and 0.125 respectively. From Figure 5.9 

and Figure 5.10, two facts can be confirmed. Firstly, the highest value of local power 

dissipation (ε) can be achieved at the impeller discharge stream and the lowest value 

will be at the acid injection point close to the liquid surface. Secondly, the segregation 

index (Xs) is inversely proportional to the local power dissipation (ε) and it is evident 

that the mixing intensity  depends upon the mixing power input to the system, with 

higher power input increasing the intensity of mixing. Fournier et al. (1996a) use 

micromixedness ratio (  
    

  
 ) instead of segregation index, (Xs) in characterising 

micromixing efficiency. They found that micromixedness ratio is directly proportional 

to the local power dissipation (ε).   

 

 

 

 

Figure 5.8: Dependence of the Power dissipation, (ε) on the impeller rotational speed,(N)- Water 

system  
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Figure 5.9:Dependence of the segregation Index, (Xs) on the Power dissipation: Water system - acid 

feed location is closed to impeller 

 

 

Figure 5.10: Dependence of the segregation Index, (Xs) on the Power  dissipation: Water system - 

acid feed location at the middle of reactor 
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So far, the maps of Ø are well known for non-viscous media (Wu and Patterson, 1989; 

Costes and Couderc, 1988; Laufhuette and Mersmann, 1987; Okamoto et al., 1981). Up 

to date the  published experimental data are available for the SBRs with capacity of 5 l. 

Guichardon  (1995) confirmed that the maps of  Ø are still valid in smaller SBRs, i.e. 1 

l, as used in this study. Therefore, in this study     for the injection point <1> 

(corresponding to a location close to the impeller) and 1.6 for injection point <2> 

(corresponding to a location away from the impeller). 

 

Guichardon el al.(1997) studied the effect of viscosity, up to 89 wt% Glycerol on the 

micromixing process. They assumed for moderately viscous solutions, that the power 

dissipation at a given location in the SBR and a given impeller rotational speed is the 

same as in water system. This is on the basis of Ø is proportional to 1/NP and 

independent of viscosity.  

 

On the basis of the above-mentioned assumptions, the values of power rate dissipation 

for 50 and 75 wt% Glycerol systems for this study at given a location in the SBR and a 

given impeller rotational speed  are assumed to be as the values obtained for the water 

system.  

 

5.1.7 Estimation of Micromixing time, (tE) for SBR  

The micromixing time is the time required to achieve complete mixing on molecular 

scale; in other words, the time required for the reagents to diffuse to one another. The 

degree of mixing can control the selectivity, quality or distribution of the final product 

only if micromixing time (tE) is larger than the reaction time, (tr).  

 

To choose the proper model for estimating the micromixing time in the SBR, the flow 

regime in the system needs to be characterised by calculating the impeller Reynolds 

number at the given operating conditions. The impeller Reynolds number can be 

specified as:  
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The flow is normally laminar if Re   10, and turbulent for Re > 10000 the transition 

region between laminar and turbulent flow occurs over the range 10 <  Re > 10000 

(Cheremisinoff, 2000). The impeller Reynolds number is dependent on impeller 

rotational speed and its value was estimated for all three liquid systems studied, as 

follows:   

Water system: 9680    Re   38720. 

 50wt% glycerol system: 7710    Re   1928 . 

 75wt% glycerol: 326    Re   1308 .   

 

It is noted from these results that not all the experimental runs were carried out under 

turbulent conditions, i.e. Re  10000.  This is because of the increased viscosity at 

higher glycerol concentrations: at 50 wt% and 75 wt% glycerol, operation was in the 

transition region.  

 

Micromixing times for the SBR system were estimated for water system based on  

turbulence theory and the model proposed by Baldyga and Bourne (1999),i.e. equation 

(2.32). On the other hand, for non-turbulent flows, i.e. when the 

 
50 and 75wt% 

glycerol system were used, the micromixing time or diffusion and deformation time 

model were applied (Baldyga and Bourne, 1984b), which is given as: 

 

     
 

   
        

        
 

 
                                                                                                      

 

The above form of the micromixing time model is recommended by Baldyga and 

Bourne (1984b) for calculating the micromixing time (tE) when the micromixing 

process occurring by engulfment of the fluid from the environment to form laminated 

structure within the vortex tube in the SBR and the flow regime in the system is non-

turbulent flow. 

 

Striation thickness       
   is not equal to feeding pipe radius in the SBR (can be for fast 

feeding). Instead it depends on the feeding rate, ( ) and local fluid velocity close to the 

pipe and also is proportional to impeller speed (N) and impeller diameter (  ). Hence, 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  148 

from the material balance       
        . In this work the 50 and 75wt% glycerol 

system were injected close to the impeller (injection point < 2 >). In our work, the local 

velocity           is the fluid velocity at the impeller suction     . Bhattacharya and 

Kresta (2002) carried on a CFD simulations to estimated the fluid velocity at the 

impeller suction as :  

 

                                                                                                                                          

 

The shear rate at the impeller suction is the maximum shear rate in the SBR. Sanchez 

Perez et al.(2006) estimated the maximum shear rate in the stirred tank reactors as:  

 

                
 

 
 
   

                                                                                                            

 

Where    is the diameter of the impeller (m). 

 

As mentioned above, the micromixing time for the water system was estimated from the 

turbulence theory model, equation (2.32). Figure 5.11 shows in logarithmic plot the 

estimation of micromixing time as function of local power dissipation  for water system 

with two different acid injection locations and  stirrer speed ranging  300 -1200 rpm. 

From Figure 5.11, it is clearly observed that the micromixing time is inversely 

proportional to the local power dissipation. As the power input increases, the 

micromixing time decreases.    

 

The points lie on a straight line, in agreement with the findings of Fournier et al. 

(1996a)  and Guichardon et al. (2000a). The micromixing time varies from 0.006 to 

0.05 s at the injection point in the middle of reactor. At the injection point close to 

impeller it lies between 0.004 to 0.030 s. At the acid injection point close to impeller, 

the smallest value of micromixing time is achieved at 0.004 sec with the local power 

rate dissipation of 21.2 W/kg. On the other hand, at the injection point in middle of 

reactor, a micromixing time of 0.006 sec is achieved under similar operating conditions 

with a corresponding power rate dissipation of 8.5 W/kg.  
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Figures 5.12 and 5.13 demonstrate the relationship between the calculated micromixing 

time and the experimentally determined segregation index, (Xs), for the water system 

using [H
+
] =0.25, 0.5 and 1.0 M injected from both injection points (close to the 

impeller and the middle of reactor).  From these two Figures, it is obvious that the 

shorter the micromixing time, the lower the value of segregation index achieved. This 

trend applies to any acid concentration used in this study.  

 

 

Figure 5.11: Micromixing time against Local Power Dissipation for two injection points- water 

system 
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Figure  5.12: Dependence of the segregation Index, (Xs) on the Micromixing time for water system, 

the acid feed location is closed to impeller 

 

 

 

Figure 5.13: Dependence of the segregation Index, (Xs) on the Micromixing time for Water system, 

the acid feed location at the middle of reactor 
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Figures 5.14 and 5.15 demonstrate the relationship between the calculated micromixing 

time and the experimentally determined segregation index, (Xs), at the three different 

total flowrates for the water system, 50 wt% glycerol system and 75 wt%  using 

[H
+
]=0.5 and 1.0 M which injected from the injection point close to the impeller. From 

both Figures, it is obvious that the shorter the micromixing time, the lower the value of 

segregation index achieved.  

 

From the findings above, it can be concluded that the impeller rotational speed play an 

important role in increasing the intensity of mixing in the SBR whereby the higher the 

impeller rotational speed, the higher the power dissipation. This in turn leads to shorter 

micro-mixing time between reacting molecules. Furthermore, at given impeller 

rotational speed, higher values of micromixing time were attained in the SBR by 

increasing the reactant viscosity. This is attributed to the fact that increasing the 

dynamic liquid viscosity () results in a reduction in the maximum shear rate of the 

liquid solution in the SBR. Accordingly, the power dissipation to the fluid by the action 

of impeller rotation is reduced in higher viscosity media. In addition, the diffusivity, 

(D), is naturally slower when the feed viscosity increases and given that the 

micromixing time is inversely proportional to the diffusivity coefficient value (equation 

(5.8), micromixing time is higher. 

 

Other factor resulting in the increase of segregation index, (xs), is the change of 

reaction rate for the Dushman reaction (5.2) due to the present of glycerol in the reactant 

solution. Guichardon et al. (1997) found out that there is an inverse relationship 

between the glycerol mass fraction added to the reactant solution and  rate constant of 

Dushman reaction . Consequently, the rate of reaction will be reduced and as result of 

that, the reaction is slowed down. Therefore, higher iodine is produced and Xs 

increases.  
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Figure  5.14: Dependence of the segregation Index, (Xs) on the Micromixing time for  water, 50 and 

75wt% Glycerol system with acid concentration of  0.25M injected closed to the impeller 

 

 

Figure  5.15: Dependence of the segregation Index, (Xs) on the Micromixing time for water, 50 and 

75wt% Glycerol system with acid concentration of  1.0M injected close to the impeller 
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5.2 Micromixing Experimental Results: 10cm Spinning Disc Reactor  

Micromixing intensity on the spinning disc is affected by many variables such as acid 

concentration, total feed flow rate (Qt), disc rotational speed, feed ratio R (ratio of the 

volumetric iodide-iodate-borate flow rate and the acid flow rate) and viscosity. In this 

part of the research all of the above mentioned variables were implemented to 

characterise the micromixing process within a thin film flowing in a 10cm diameter 

spinning disc reactor (SDR). These variables are presented in the next following 

section. 

5.2.1 10cm SDR Experimental design 

Randomized general full factorial experimental designs DOE for water, 50 wt% and 

75wt% glycerol systems were performed using Minitab 15 (Table AI1 appendix I). For 

the 30 cm SDR experiments, the variables incorporated into the experimental design 

were:  

 

 Disc rotational speed: 300 rpm, 800 rpm, and 1200 rpm,1600 rpm,2000 rpm  and 

2400 prm (2400 rpm was the maximum speed at which the reactor could be 

safely operated)  

 Acid ion concentration: 0.1,0.25,0.5 and 1.0 M 

 Total flowrate: 1, 3 and  5 ml/s 

 Viscosity: water system(  =1.005 mPa.s at 20 OC), 50 wt% glycerol system (  

= 6.0 mPa.s at 20 OC)  and 75wt% glycerol system( =35.5 mPa.s at 20 OC)  

 

The individual flowrates of the iodide-iodate-borate ions stream, (QI), and the acid ions 

stream, (QH), corresponding to each total flowrate indicated above are given in Tables 

5.2 to 5.5  for acid concentrations of  0.1, 0.25,  0.5 and 1.0 M corresponding to the 

volumetric flowrate ratio,(R), of 7, 17.5, 35 and 70  respectively. The procedure of 

calculating the volumetric flowrate ratio (R), QI   and   QH are shown in appendix B. 

 

Table 5.2: the individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.1M and volumetric flowrate ratio of 7, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

1.0 0.875 0.125 

3.0 2.625 0.375 

5.0 4.375 0.625 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  154 

 

Table 5.3: the individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.25M and volumetric flowrate ratio of 17.5, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

1.0 0.946 0.054 

3.0 2.838 0.162 

5.0 4.730 0.270 

 

Table 5.4: the individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.5M and volumetric flowrate ratio of 35, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

1.0 0.972 0.027 

3.0 2.916 0.083 

5.0 4.86 0.138 

 

Table 5.5: the individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 1.0 M and volumetric flowrate ratio of 70, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

1.0 0.986 0.014 

3.0 2.958 0.042 

5.0 4.929 0.070 

 

5.2.2 10cm Spinning Disc Reactor (SDR) water System Results  

Seventy two water system experiments were carried out using the 10 cm SDR i.e. 

eighteen experiments for each sulphuric acid concentration. Each experiment was 

repeated three times (three replicates). The mean value of absorbance Dλ (mean), the 

standard deviation (σ) and standard error (S) and relative error were estimated. The 

maximum relative error of experiments was only (4.23 %) and the results were 

satisfactorily reproducible. Calculation Procedure for the error analysis is shown in 

appendix H. 

  

5.2.3 Effects of disc rotational speed and flowrate on Xs. 

The effect of the disc rotational speed and total feed flowrate on the segregation index is 

shown in Figure 5.16 and Figure 5.17. The flow rate, Qt, is the total flow rate of the two 

liquid streams, i.e. the volumetric iodide – iodate – borate flow rate QI and the acid flow 

rate QH. Two different flow rate ratios R (where R=QI/QH) were implemented (i.e. R= 7 
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and 70 corresponding to the acid ion concentration of [H
+
] = 0.1M and 1.0M and 

Concentration of H2SO4 of 0.05 and 0.5M respectively).  With the total flow rate Qt = 1 

ml/s, it is evident that the segregation index (Xs) decreases consistently with increasing 

rotational speed. At [H+]=0.1 M and Qt= 1ml/s (Figure 5.16), Xs was reduced from 

0.073 at 300 rpm to its lowest value of 0.017 at 2100 rpm, representing a 77% drop in 

Xs.   

 

On the other hand, at Qt at 3 and 5 ml/sec for two acid concentrations tested, the 

rotational disc speed seems to have no strong influence on the segregation index. This is 

more clearly observed in Figure 5.17 This would seem to suggest that the higher 

flowrates of 3 ml/s and 5 ml/s are sufficient to ensure a high degree of mixing intensity 

is achieved even when the disc speed was relatively low. 

 

High degree of micro-mixing in terms of (Xs) can be achieved at high disc speeds and 

high feed flow rates. Under such conditions, higher shear forces are created between 

liquid film and the disc surface and thinner liquid film are formed. The higher shear 

rates and thinner films will cause the rate of mass transfer to be enhanced. Consequently 

the rate of reaction for the reaction (2.43) will be enhanced and most of sulphuric acid 

will be reacted and reaction (2.44) will not be involved. 

 

 

Figure 5.16: Effect of rotational speed and total flowrate on the segregation index at  [H+] = 0.1 M 

and R=7 
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Figure 5.17: Effect of rotational speed and total flowrate on the segregation index at [H+] =1.0 M  

and R=70 

 

Increasing the disc rotational speed affect both the maximum film shear rate, (γmax) ,  

and mean disc residence time, (tres), as seen from eq. (2.3) and (2.8) which are 

reproduced here: 

 

     
   

 
                                                                                                                                  

 

     
 

 
  

     

    
 

   

   
   

   
   

                                                                                            

 

 It can be observed from Eq. (2.3) and (2.8) the residence time, tres is proportional to 

      
while the maximum shear rate (γmax ), which  characterizes the intensity of mixing 

with the thin film, is proportional to the flow rate  2
.  
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Similar observations with regards to the effect of the disc rotational speed and total feed 

flowrate on the segregation index, (Xs), in Figures  5.16 and 5.17 were obtained in 

Figures AI1 and AI2 in appendix I at all total flowrates for  [H
+
]=0.25 M and 0.5 M. 

 

What can be concluded from the above findings is that micromixing depends strongly 

on the liquid flow rate in reactors utilising the centrifugal forces for enhancing heat and 

mass transfer of the reactants (Yang et al., 2006; Hai-Jian Yang, 2005; Yu-Shao CHEN, 

2004; Lin et al., 2003; Chia-Chang and Hwai-Shen, 2000; Liu et al., 1996). In addition, 

the shear rate generated at the disc/liquid interface by liquid flowrate and disc rotational 

speed has an effect on the segregation index (Xs), the higher sheer rate the lower 

segregation index (Xs).  The effect of the average maximum film shear rate (γmax) and 

the mean disc residence time, (tres), of the reactants on the intensity of the mixing on the 

disc will discussed in details in below. 

 

As mentioned in section 2.3.1.1.1, the average maximum shear rate across the disc 

surface for the smooth disc was calculated on the basis of four shear rate values at four 

radial positions on the disc surface for each set of operating condition of total flowrate 

and disc rotational speed. The average maximum shear rate across the disc surface was 

estimated from equations (2.3) and (2.4). Figures 5.18 to 5.21 show the effect of 

average maximum shear rate across the disc surface on the segregation index, (Xs), for 

water system at three total flowrates and acid concentrations of [H
+
]=0.1 M, 0.25 M, 

0.50 M and 1.0 M. It is clear from the Figures that at the lower total flowrate Qt=1 ml/s, 

the intensity of mixing on the 10 cm SDR in terms of segregation index, (Xs), is 

strongly affected by the shear rate generated at the disc/liquid interface. The higher 

shear rate the lower segregation index, (Xs).On the other hand, at the highest  flowrates 

Qt=3 and 5 ml/s, the intensity of mixing on the 10 cm SDR is not affected by the shear 

rate generated at the disc/liquid interface. This could be attributed to the limitation of 

mass transfer and the kinetics for the system at these operating parameters. In addition, 

the results in figure 5.16 and 5.17 show that the higher flowrates of 3 ml/s and 5 ml/s 

are sufficient to ensure a high degree of mixing intensity is achieved even when the 

shear rate was relatively low. 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  158 

 

 

Figure 5.18: Effect of Average Shear Rate on segregation Index (Xs) in SDR at  Various Total 

flowrate and [H+] =0.1 M and R=7 

 

 

Figure 5.19: Effect of Average Shear Rate on segregation Index (Xs) in SDR at various total 

flowrate and [H+] =0.25 M 
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Figure 5.20: Effect of Average Shear Rate on segregation Index (Xs) in SDR at various total 

flowrate and [H+] =0.50 M and R=35 

 

 

Figure  5.21: Effect of Average Shear Rate on segregation Index (Xs) in SDR at Various Total 

flowrate and [H+] =1.0 M and R=70 
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Another important parameter which needs to be considered when micromixing is taking 

place on the surface disc of the SDR is the residence time of the fluid on the disc. The 

liquid residence time on the disc needs to be greater than the required micro-mixing 

time; therefore it is possible for the micromixing taken place on the disc. Tables 5.6 to 

5.8 show the predicted values of the residence (obtained from equation 2.8) and the 

micromixing times (estimated from equation 2.29) for the 10 cm SDR experiments at 

the given disc rotational speed and water, 50 wt% Glycerol and 75 wt% systems. It is 

clear that the residence times are much higher than the mixing times.  

 

Table  5.6: Residence time and mixing time on 10cmSDR for water System 

Disc rotational 

speed,(rpm) 

Liquid total flowrate 

Qt, (ml/sec) 

Residence time tres, 

(sec) 

Micromixing time 

tmix, (sec) 

300  

 

 

1 

 

0.6500 0.0067 

800 0.3380 0.0018 

1200 0.2580 0.0011 

1600 0.2129 0.0007 

2000 0.1835 0.0005 

2400 0.1625 0.0004 

300  

 

 

3 

 

0.3125 0.0047 

800 0.1625 0.0013 

1200 0.1240 0.0007 

1600 0.1024 0.0005 

2000 0.0882 0.0004 

2400 0.0781 0.0003 

300  

 

 

5 

 

0.2223 0.0040 

800 0.1156 0.0011 

1200 0.0882 0.0006 

1600 0.0728 0.0004 

2000 0.0628 0.0003 

2400 0.0556 0.0002 
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Table 5.7: Residence time and mixing time on 10cmSDR for 50 wt% Glycerol System 

 

 

 

 

 

 

 

Disc rotational 

speed,(rpm) 

 

 

Liquid total 

flowrate 

Qt, (ml/sec) 

Residence time 

tres, (sec) 

Micromixing time 

tmix, (sec) 

300  

 

 

                 1 

 

0.1184 0.0309 

800 0.2276 0.0084 

1200 0.2983 0.0049 

1600 0.3613 0.0033 

2000 0.4193 0.0025 

300 0.4735 0.0019 

800  

 

 

3 

 

0.2462 0.0215 

1200 0.4735 0.0058 

1600 0.6204 0.0034 

2000 0.7516 0.0023 

2400 0.8721 0.0017 

300 0.9848 0.0013 

300  

 

 

5 

 

0.3461 0.0182 

800 0.6656 0.0049 

1200 0.8721 0.0028 

1600 1.0565 0.0019 

2000 1.2260 0.0014 

2400 1.3844 0.0011 
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Table 5.8: Residence time and mixing time on 10cmSDR for 75 wt% Glycerol System 

 

Figure 5.22 and Figure 5.23 show the effect of residence time on the segregation index, 

(Xs), at the three different total flowrates and disc rotational speed ranged 300-2400 

rpm. From these two plots it is clear that the increase in residence time results in an 

increase in the segregation index, (Xs), for example from Figure 5.22 and Table 5.6, the 

residence time, (tres) in longest (0.65 sec) for the lowest flowrate (1 ml/sec) and disc 

rotational speed of 300 rpm. As mentioned in the earliest of this section, when the liquid 

flow rate and disc rotational speed decrease, the average velocity of the reactants on the 

disc is also decreased, resulting in higher residence time and smaller power dissipation 

Disc rotational 

speed,(rpm) 

 

 

Liquid total 

flowrate 

Qt, (ml/sec) 

Residence time 

tres, (sec) 

Micromixing time 

tmix, (sec) 

300  

 

 

                 1 

 

2.012 0.1407 

800 1.046 0.0381 

1200 0.798 0.0222 

1600 0.659 0.0151 

2000 0.568 0.0112 

2400 0.503 0.0088 

300  

 

 

3 

 

0.967 0.0977 

800 0.503 0.0264 

1200 0.384 0.0154 

1600 0.317 0.0105 

2000 0.273 0.0078 

2400 0.242 0.0061 

300  

 

 

5 

 

0.688 0.0825 

800 0.358 0.0223 

1200 0.273 0.0130 

1600 0.225 0.0088 

2000 0.194 0.0066 

2400 0.172 0.0051 
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generated at the disc/liquid interface. This causes poor micromixing which is reflected 

in higher segregation index.  The residence time itself has no direct repercussion on the 

micromixing process but the power dissipation has a major influence on the intensity of 

the micromixing intensity. Nevertheless, for the other the flowrates of 3 ml/s and 5 ml/s, 

the residence time has no influence of segregation index. This could be attributed to that 

the higher flowrates of 3 ml/s and 5 ml/s are sufficient to ensure a high degree of mixing 

intensity is achieved even when the disc speed was relatively low. 

 

From the above findings, it can be conclude that the segregation index (Xs) can be 

decreased when the liquid flow rate increased. as the  liquid flow rate increased, the  

average radial velocity ( ) of the reactants flow on the disc are increased results in 

decreasing residence time, (tres) and increasing power dissipation, (ε). Although, the first 

phenomenon (i.e. the residence time) does not give any direct advantage to the 

micromixing, the second phenomenon (i.e. the power dissipation), however, is of 

considerable benefit to micromixing process. Consequently, the segregation index, (Xs) 

decreased. 

 

 

Figure 5.22: Effect of Residence time on segregation Index (Xs) in SDR at Various Total   Flowrate 

and [H+] =0.1 M and R=7 

 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
,X

s
(-

) 

Residence Time,tres(sec) 

10cm SDR- water system,Qt=1ml/sec,[H+]+0.1M 

10cm SDR- water system, Qt=3ml/sec,[H+]=0.1M 

10cm SDR - water system,Qt=5ml/sec,[H+]=0.1M 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  164 

 

Figure 5.23: Effect of Residence time on segregation Index (Xs) in SDR at Various Total   Flowrate 

and [H+] =1.0 M and R=70 

 

It should be kept in mind that only micromixing rate depends on reactants total flowrate. 

Whereas intrinsic reaction rate is fixed once reagents concentration and temperature are 

fixed. When total flowrate increased further, the micromixing rate of SDR increased 

significantly because of higher shear rate between liquid film and the disc surface. 

Furthermore, the power dissipation provided by the disc to the reactants is increased. 

When the micromixing rate is much larger than reaction rate, the reactants can be 

homogeneously mixed before the reaction taken place. In this case the reaction will 

occur in a perfect uniform environment and controlled by reaction kinetics.  

 

5.2.4 Effect of acid concentration on Xs 

Figures 5.24 to 5.26 show the effect of acid concentration on the segregation index (Xs), 

with the operating conditions of three different acid concentrations (0.1 M, 0.25 M, and 

0.5 M). The disc speed ranged from 300 to 2400 rpm and the flow rate was set at 1, 3 or 
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5 ml/s. From the experimental results it can observed that XS is sensitive to the acid 

concentration.  

 

At various flowrates, a decrease in XS was observed as the acid concentration was 

decreased and this was obtained in all the experiments except with the flow rate 5ml/sec 

and the acid concentrations 0.1 and 0.25 M. Under the latter conditions, it is observed 

that there is no effect on the mixing intensity and the segregation index remains almost 

constant at all the rotational speeds in the range 800 rpm to 2400 rpm.  

 

The increase of segregation index with increasing acid concentration could be 

interpreted by studying the iodide-iodate reaction scheme involved in this process. 

Since the rate of Dushman reaction, i.e. reaction (2.44) is more sensitive to acid 

concentration than that of reaction (2.43) because its reaction order with respect to acid 

is higher, reaction (2.44) increases at a faster rate than reaction (2.43) when the acid 

concentration is increased. Consequently more iodine and therefore more tri-iodide is 

formed. This causes segregation index (XS) to be increased.  

 

Similar effects of higher acid concentration on segregation index,(Xs), have been 

observed in previous micromixing studies carried on the intensifying reactors  (Yang et 

al., 2009a; Chu et al., 2007; Yang et al., 2006; Hai-Jian Yang, 2005). 

 

One important issue needs to be mentioned, it has been tried to investigate the effect of 

the effect of [H
+
] =1.0 M. The samples from these runs had pH values less that 7 and the 

absorbance values were higher than 2.0. For these reason, the results of this set of 

experiments has been rejected. 
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Figure 5.24: Acid Concentration Effect on Segregation Index, (Xs) at flow rate Q=1 ml/s, R=7 - 

Water System  

 

 

Figure 5.25: Acid Concentration Effect on Segregation Index, (Xs) at total flow rate Qt=3ml/sec, 

R=7 - Water System 
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Figure 5.26: Acid Concentration Effect on Segregation Index, (Xs) at flow rate Q=5/sec, R=7 - 

Water System 
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The effect of the flow rate ratio R (ratio of the volumetric iodide-iodate-borate flow 

rate, QI, and the acid flow rate, QH, where R= QI/QH) on the Xs was also investigated. 
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rates were 1, 3 and 5 ml/sec. From the Figures it can be observed that the segregation 
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+
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bulk of the solution will be increased. Although the acid reacts in reactions (2.43) and 
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reaction (reaction 2.44) faster remarkably and more iodine is formed, meaning an 

increasing of segregation index, (XS).  

 

Thus, as seen in Figures 5.27 to 5.29 below with condition of Qt =1, 3 and 5 ml/s with 

constant acid concentration of [H
+
] = 0.1 M,  a lower value of R=3 results in a higher 

molar flow of (H
+
) ions being introduced to the rotating disc. The relatively poor mixing 

at low rotational speeds combined with the larger amount of (H
+
) ions in solution gives 

higher values of segregation index (Xs) at R=3 compared with R=7. The sulphuric acid 

must be in stoichiometric default in the reactor with respect to the borate ions because 

there must remain ions    to react with    : the concentration of    characterizes the 

micromixing. If the acid is not in stoichiometric default, the [  ] would be always the 

same one for all characteristic time of micromixing. If the concentration of the sulphuric 

acid is improperly selected, the amount of the iodine formed from the Dushman reaction 

(reaction 2.44) is too high or too small and the optical density may not be in the range of 

the spectrophotometer scale.  

 

 

Figure 5.27: Effect of liquid feed ratios (R) on segregation Index (Xs) at a total flow rate  Qt=1 

ml/sec And various disc rotational disc speed 
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Figure 5.28: Effect of liquid feed ratios (R )  on  segregation Index (Xs at a total  Flowrate Qt =3 

ml/sec And various disc rotational disc speed 

 

 

Figure 5.29: Effect of liquid feed ratios (R) on segregation Index (Xs) at a total Flowrate Qt=5 

ml/sec and various disc rotational disc speed 
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5.2.6 Effect of feed Viscosity on Xs  

In order to investigate the influence of viscosity on the micromixing intensity in terms 

of segregation index (Xs), glycerol was used to increase the viscosity of the aqueous 

reaction solution. Two different concentrations were used (50 and 75 wt% Glycerol-

water mixture) corresponding to viscosity values of 6 and 35.5 mPa.s at 20 
O
C

 

respectively. The iodide – iodate - borate solution was maintained close to pH value of 

11.0 for all viscous media experiments to prevent the initial formation of iodine in the 

solution before any addition of the sulphuric acid (Guichardon et al., 1997). This was 

achieved by reducing the concentration of H2BO
-
3 to 50% of the concentration of the 

aqueous reaction solution (water system), i.e. 0.0909M. The maximum relative error of 

experiments was only (9.14 %) and the results were satisfactorily reproducible.  

  

 

The effect of feed viscosity on segregation index (Xs) in 10 cm SDR at different total 

flowrates and different acid concentrations are shown in Figure 5.30 and Figure 5.31.  

Figures 5.30 and 5.31 show the effect of viscosity on segregation index (Xs) at total 

flowrates of 1 and 3 ml/s respectively with acid concentration of [H+] =0.1 M.  

 

From Figure 5.30, it is clearly that the segregation index is affected by the increasing 

the viscosity of the feed. At 1ml/sec and 300 rpm of disc rotational speed, the 

segregation index, (Xs) increased from 0.073 for the least viscous system (aqueous 

reaction solution) to 0.145 for most viscous solution (75 wt% glycerol-water solution of 

35.5 mPa.s viscosity).  This effect may be explained in terms of increased viscous shear 

forces acting against centrifugal forces on the surfaces of the disc, causing the flow to 

be retarded.  Furthermore, as explained previously in section 5.1.4, the viscous media 

will slow down the micromixing rate and alter the intrinsic kinetics of the reaction (Yu-

Shao CHEN, 2004; Guichardon et al., 1997). Interestingly, beyond a disc rotational 

speed of 1200 rpm, there is almost no viscosity effect (water system vs.  50 wt% 

glycerol system) on the segregation index as seen by the curves converging to similar 

values of Xs beyond 1200 rpm on Figure 5.31 when the total flowrate,(Qt) was 3ml/s. 

This is attributed to shear rate being greatly increased at the higher disc rotational 

speeds, resulting in more intimate contact between the layers in the liquid film. Under 

these high shear rate conditions, the viscosity effects can be overcome to a large extent 
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and the micromixing intensity is significantly improved even in the highly viscous 

solution.   

 

It is to be noted that even at the higher viscosities, the centrifugal force created by the 

SDR still has positive influence on micromixing. For example, at the total flowrate of 

1ml/s, an 81% reduction of Xs was obtained at 6 mPa.s as the rotational speed increased 

from 300 to 2400 rpm and a 75% reduction in Xs was obtained at 35.5 mPa.s.  

  

Similar trends with regards to the effects of viscosity on the segregation index, (Xs), as 

highlighted in Figure 5.30 and Figure 5.31 were obtained in Figures AI3 to AI12 in the 

Appendix I for all the total flow rates and the acid concentration was 0.1 M, 0.25 M, 0.5 

M   and 1.0 M. 

   

 

Figure 5.30: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=1ml/sec  Total flowrate 

and [H+] =0.1 M and R=7 
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Figure 5.31: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=3ml/sec total flow rates 

and [H+] =0.1 M and R=7 

 

5.2.7 Effect of Power dissipation, (ε) on segregation index, Xs (-) 

The Power dissipation, (ε) transferred into the fluid by action of disc rotation is another 

indication of the rate of the mixing achieved in the SDR. In addition, the Power 

dissipation, (ε) is also important character for the comparison the SDR micromixing 

performance with the other type of reactors. The power dissipation , (ε) was calculated 

by equation (2.18). 

 

Figure 5.32 demonstrate the effect of disc rotational speed on power dissipation, at three 

total flowrates (1, 3 and 5 ml/sec) and disc rotational speeds in the range 300 to 2400 

rpm, corresponding to power dissipation ranging 0.6-1392 W/kg. Three systems were 

used (water, 50 and 75 wt% glycerol systems).  From Figure 5.37 certain facts were 

confirmed, notably the higher power dissipation could be achieved on the 10 cm SDR 

by the higher reactant total flowrate, higher disc rotational speeds and lower reactants 

viscosity. In addition, the higher the power dissipation given to the fluid by the action of 

disc rotation and higher total flowrates, the higher intensity of micromixing achieved on 

the disc. This can be seen clearly later in Figures 5.33  and 5.34. 
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Figure 5.32: Effect of Disc Rotational speed on the power dissipation at different liquid total 

flowrates in 10cm SDR-water, 50 and 75wt% glycerol systems 

   

Figure 5.33 and Figure 5.34 demonstrates the effect the Power dissipation on the 

segregation index, (Xs), at two flowrates of 1 and 5ml/s and six disc rotational speeds. 

The performance of 10cm SDR has been investigated using water, 50 and 57 wt% 
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o
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Monnier et al., 1999b). The higher power rate dissipation provided to the fluid, the 

higher rate of mixing can be achieved.  

 

From Figure 5.33, it is evident that the segregation index decreases consistently with 

increase in power dissipation. At the total flowrate of 1ml/s and water system using 

[H+] =0.1 M, the power dissipation increased from 1.9 W/kg at 300rpm to its highest 

value of 480 W/kg at 2400 rpm.  This represents an increase of 99% in the power 

dissipation, corresponding to a reduction in Xs from 0.073 at 300 rpm to its lowest 

value of 0.018 at 2400 rpm thereby representing a 75% drop in Xs. Alternatively, at the 

same operating condition but with a replacement of the water system by 50 wt% 

glycerol system, the power dissipation increased from 1.1 W/kg at 300rpm to its highest 

value of 281W/kg  at 2400 rpm which is an  increase of 100% over this range of disc 

speed. As a result of that, the segregation index reduced from 0.107 at 300 rpm to its 

lowest value of 0.020 at 2400 rpm representing a 81% drop in Xs. Similar trends were 

observed at flowrate of 5 ml/s.  In Figure 5.34 where [H+] =1.0 M, similar trends with 

regards to the effects of power dissipation on Xs as described above were obtained at all 

flowrates and for  water system (=1 mPa.s); 50wt% glycerol system (=6 mPa.s)  and 

75wt% glycerol  system (=35.5 mPa.s). 

 

From Figures 5.33 to Figure 5.34, two observations can be made. Firstly, the higher 

value of power dissipation rate (ε) could be achieved on the 10cm SDR by the higher 

reactant total flowrate and higher disc rotational speeds. Secondary, at given disc 

rotational speed and reactant total flowrate the lower values of power dissipation could 

be attained on the disc by increasing in reactant viscosity. This could be attributed to the 

fact that, increasing in dynamic liquid viscosity (  ) results in decreasing in the average 

velocity of the liquid solution on the disc. Thus, the power dissipation given to the fluid 

by the action of disc rotation decreased and the kinetic energy given to the liquid will be 

reduced as well. Consequently, poor micromixing will occur, giving rise to higher 

segregation index.  
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Figure 5.33: Effect of Power dissipation on Segregation Index, (-) at different liquid total flowrates 

– 10cm SDR –water, 50 and 75wt% glycerol systems,[H+]=0.1 M and R=7 

 

 

Figure 5.34: Effect of Power dissipation on Segregation Index, (-) at different liquid total flowrates 

– 10 cm SDR –water, 50 and 75wt% glycerol systems,[H+]=1.0 M and R=70 
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5.2.8 10cm SDR Micromixing time,( tDS), and its Relationship with Segregation Index, 

(Xs), for water, 50 and 75 wt% Glycerol systems 

As mentioned earlier in section 5.1.7, the micromixing time is the time required to 

achieve complete mixing on molecular scale; in other words, the time required for the 

reagents to diffuse to one another. The micromixing time of the reactant solution 

flowing on the rotating disc was calculated on the basis on the hydrodynamic properties 

of the fluid and the power dissipation, ε referring to the whole disc surface. The degree 

of mixing can control the selectivity, quality or distribution of the final product only if 

micromixing time is longer than the reaction time tr   ( tm >> tr ) which is equivalent to 

the residence time of the reactants on the disc. The micromixing on the disc are 

controlled by deformation and molecular diffusion (molecular diffusion and shear 

force). The micro-mixing times on the disc were given by equation (2.29). 

 

Figure 5.35 below shows the effect of disc rotational speed and total feed flowrate on 

the estimated micromixing time in the 10 cm SDR. It is seen that higher disc speeds and 

higher flowrates result in shorter micromixing time. The lowest value of micromixing 

achieved on the 10 cm SDR was 0.0002 s at the disc rotational speed of 2400 rpm with 

a total flowrate of 5 ml/s when the water system was used. Moreover, at given disc 

rotational speed and reactant total flowrate, higher values of micromixing time were 

attained on the disc by increasing the reactant viscosity. This is attributed to the fact that 

increasing the dynamic liquid viscosity (L) results in a reduction in the average radial 

velocity of the liquid solution on the disc. Accordingly, the power dissipation to the 

fluid by the action of disc rotation is reduced in higher viscosity media. In addition, as 

mentioned earlier, the diffusivity, (D), is naturally slower when the feed viscosity 

increases and given that the micromixing time is inversely proportional to the 

diffusivity coefficient value (equation 2.29), micromixing time is higher. 

 

The combined effects of disc rotation speed and feed flowrate on micromixing time can 

be more clearly understood by analysing the effect of power dissipation on micromixing 

time. Figure 5.36 represent a logarithmic plot of the estimation of micromixing time for  

water ,50 wt% and 75 wt% glycerol systems as a function of power dissipation, 

calculated using equation (2.18)  for three different total flow rates (1, 3 and 5 ml/s) and 

disc rotational speeds ranging between 300-2400 rpm. 
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The graph clearly shows that the micromixing time is inversely proportional to the 

power dissipation. As the power input increases, the time, required for the molecules to 

diffuse to one another and make contact (i.e. the micro-mixing time, tDS) decreases. 

Accordingly, the micromixing intensity is improved.  This also supports the explanation 

on the increases in the mixing efficiency with increased flowrates and rotational speed, 

which resulted in the power input increase. It is interesting to note that the data points 

for the higher viscosity systems are shifted upwards on Figure 5.36. 

 

In conclusion, the lower value of micromixing time, tDS, was achieved on the 10cm 

SDR by using higher values of power dissipation generated by a combination of higher 

reactant total flowrate, higher disc rotational speeds and lower reactants viscosity as 

shown in Figure 5.36 . 

 

Figures 5.37  and 5.38  show the relationship between the calculated micromixing time 

and the experimentally determined segregation index, (Xs), at the three different total 

flowrates for  water ,50 wt% and 75 wt% glycerol  systems using  [H
+
]=0.1 and 1.0 M. 

From both Figures, it is evident that the shorter the micromixing time, the lower the 

value of segregation index achieved. For example at the total flowrate 1ml/s using water 

system and [H+] =0.1 M, the micromixing time lies between 0.0067- 0.0004 s 

corresponding to a segregation index of 0.073 and 0.018 respectively, depending on the 

disc rotational speed. The reduction of segregation index value of 75% was reached at 

the micromixing time of 0.0004s relative to the initial value of 0.0067 s. Similar trends 

were observed at flowrates of 3 ml/s and 5 ml/s. Similar trends with regards to the 

relationship between the micromixing time and segregation index as highlighted in 

Figure 5.37 were obtained for the higher acid ion concentration of 1.0 M (shown in 

Figure  5.38)  at all flow rates for  water system,50 wt% and 75 wt% glycerol  systems . 

 

According to the findings above, it can be concluded that flowrate plays an important 

role in increasing the intensity of mixing on the rotating disc surface whereby the higher 

flow rate,   the higher power rate dissipation. This is in turn leads to shorter micro-

mixing time between reacting molecules.  
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Figure 5.35: Micromixing time against disc rotational speed for 10 cm SDR at different Total 

flowrate and different viscosities (water, 50 and 75 wt% glycerol systems) 

 

 

 

 

 

 

 

 

 

 

0.000 
0.010 
0.020 
0.030 
0.040 
0.050 
0.060 
0.070 
0.080 
0.090 
0.100 
0.110 
0.120 
0.130 
0.140 
0.150 

0.000 500.000 1000.000 1500.000 2000.000 2500.000 

M
ic

ro
m

ix
in

g
 t

im
e

,t
m

(s
e

c
) 

Disc rotational speed, (rpm) 

10cmSDR,water system, Qt=1ml/sec 10cmSDR,water system,Qt=3mil/sec 

10cm SDR,water system,Qt=5ml/sec 10cm SDR,50wt glycerol system,Qt=1ml/sec 

10cm SDR, 50WT% glycerol sysem,Qt=3ml/sec 10cm SDR, 50wt% glycerol system,Qt=5ml/sec 

10cm SDR,75wt% glycerol system,Qt=1ml/sec 10cm SDR,75wt% glycerol system,Qt=3ml/sec 

10cm SDR,75% glycerol system,Qt=5ml/sec 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  179 

 

 

 

 

Figure  5.36: Micromixing time against power rate dissipation for 10 cm SDR at different Total 

flowrate and different viscosities (water, 50 and 75 wt% glycerol systems) 
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Figure 5.37: Relationship between Micromixing time and segregation at different total Flowrates 

and different viscosities (water, 50 wt% glycerol and 75 wt% glycerol systems) - [H+] =0.1 M and 

R=70 
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Figure 5.38: Relationship between Micromixing time and segregation at different total Flowrates 

and different viscosities (water, 50 wt% glycerol and 75 wt% glycerol systems) - [H+] =1.0 M and 

R=70 
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 For the regression analyses it was assumed that the segregation index, (Xs), could be 

represented by: 

 

          
                                                                                                                           

 

Where A, B, C, D are regression parameters in the equation. Equation (5.13) can be 

written in a more appropriate form:  

 

                                                                                               

 

Table (5.9) represent the calculated values of the parameters and R
2
 for the segregation 

index models  

 

Table 5.9: Segregation index Regression analysis results for 10 cm SDR 

 

 

[H+],M 

 

 

A 

 

 

B 

 

C 

 

D 

 

R
2
( Adj) 

 

0.1 

 

 

+0.235 

 

-0.453 

 

-0.752 

 

+0.293 

 

0.749 

 

0.25 

 

 

+0.352 

 

-0.287 

 

-0.704 

 

+0.343 

 

0.769 

 

0.50 

 

 

 

+0.419 

 

-0.266 

 

-0.463 

 

+0.266 

 

0.770 

 

1.0 

 

 

+0.451 

 

-0.222 

 

-0.284 

 

+0.183 

 

0.681 
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Therefore following model equations which describe the segregation index in a 10 cm 

SDR can be written as:  

    

                                               
                                                   

   

     

                                           
                                                                

          

    

                                           
                                                    

            

  

        

                                          
                                                                 

 

From the 10cm SDR model equations that have been produced, it can be seen clearly 

that increases in angular velocity of the disc and liquid total flowrate cause significant 

decreases in segregation index, (Xs). While increases in the dynamic liquid viscosity 

cause an increase in segregation index, Xs. Moreover, increases in,     and    as the 

acid concentration cause increases in the segregation index.  This corresponds well with 

what was observed in the experimentally observed data.  

 

As seen in Table 5.1 R
2
 values for the three correlations between 0.68 and 0.77 suggest 

a reasonably good fit of the regression to the data. P-values were obtained 

corresponding to the significance of each parameter with the regression. With assuming 

a significance level of 0.05 (i.e. 95% confidence interval) the p-values was zero to three 

decimal places (0.000) indication each parameter to be of significance within the 

regression. 

 

In order to check the validity of the model equations, segregation index values were 

calculated using the regression models (equations 5.15 to 5.18) and compared to real 

(experimental) values by plotting the experimental values against predicted data.  
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If the experimental values and predicted data were in good agreement, the best linear fit 

would be y = x. It will be more realistic to expect that y = M x, where constant is close 

to 1. Figures 5.39 to 5.42 illustrate a good degree of correlation between the predicted 

and experimental results. One noTable issue about Figures 5.39 to 5.42, there is some 

scatter occurring at the higher Xs values.   

 

For the regressions, the model equations are applicable within the following range of 

operation parameters:  

31.4 s
-1 

≤  ≤ 251.2 s
-1 

5 ml/s        1 ml/s 

1.005 mPa.s ≤   ≤ 35.5 mPa.s 

 

 

Figure 5.39: Experimental segregation index data against segregation index as predicted by   

Empirical model for [H+] = 0.1 M 
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Figure 5.40: Experimental segregation index data against segregation index as predicted by  

Empirical model for [H+] = 0.25 M 

 

 

Figure 5.41: Experimental segregation index data against segregation index as predicted by  

Empirical model for [H+] = 0.50 M 
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Figure 5.42: Experimental segregation index data against segregation index as predicted by  

Empirical model for [H+] = 1.0 M 

 

5.3 Micromixing Experimental Results: 30cm Spinning Disc Reactor  

The characterisation of micromixing on the 30 cm SDR adopted much the same 

procedure as used for the 10 cm SDR experiments.  The 10 cm and 30 cm SDRs are 

identical in all aspects except for their rotating disc size. For a direct comparison of their 

micromixing performance under different operating conditions, the Reynolds number 

has been selected as a constant parameter in both reactors. The total flowrates used in 

the large SDR (30 cm) have therefore been calculated based on the Reynolds numbers 

employed in the 10 cm SDR (Table 5.10).   

 

Table 5.10: the total flowrates used in 30 cm SDR based on the Reynolds numbers employed in the 

10 cm SDR 
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5.3.1 30cm SDR Experimental design  

Randomized general full factorial experimental designs DOE for both water and 50 wt% 

water/50wt% glycerol systems were performed using Minitab 15 (AJ1). In this part of 

the research, ninety six experiments were carried out i.e. forty eight experiments for 

each liquid medium used (water and 50 wt% water/50wt % glycerol) using two different 

types of discs (stainless steel smooth disc and grooved disc). Three replicates of each 

experiment were carried out for data accuracy. The mean value of absorbance Dλ (-), the 

average segregation index Xs (-), the standard deviation (σ) and standard error (S) as 

well as the relative error were estimated. The maximum relative error of experiments 

was only (4.60%) and the results were satisfactorily reproducible.  

 

For the 30 cm SDR experiments, the variables incorporated into the experimental design 

were:  

 

 Disc rotational speed: 300 rpm, 500 rpm, 800 rpm and 1200 rpm (1200 rpm was 

the maximum speed at which the reactor could be safely be operated)  

 Acid ion concentration: 0.5 and 1.0M 

 Total flowrate: 3, 9 and 15 ml/s 

 Viscosity: water system (  =1.005 mP.s at 20 oC), 50wt% glycerol system (  = 

6.0 mPa.s at 20 oC)  . 

 Disc surface configuration: smooth and grooved disc. 

 

5.3.2 30cm Smooth stainless steel disc results  

5.3.2.1 Effects of rotational disc speed and total flowrate on Xs 

The influence of the smooth 30cm disc rotational speed and reactants total flowrates on 

the segregation index is shown in Figures 5.43 to 5.46.  Figure 5.43 and Figure 5.44 

shows the influence of disc rotational speed on the segregation index (Xs) at three 

different total flowrates in the range 3 to 15 ml/s, with two different acid concentrations 

of 1.0 and 0.5 M respectively and the disc rotational speed ranged 300-1200 rpm.   

 

The individual flowrates of the iodide-iodate-borate ions stream, (QI), and the acid ions 

stream, (QH), corresponding to each total flowrate indicated above are given in Tables 
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(5.11) and (5.12) for acid concentrations 1.0 M and 0.5 M respectively. Sample 

calculation  of the volumetric flowrate ratio (R), QI   and   QH is shown in appendix (B). 

 

Table 5.11: The individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 1.0 M and volumetric flowrate ratio of 70 , (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

3 2.957 0.042 

9 8.873 0.1267 

15 14.788 0.211 

 
Table 5.12: The individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.5 M and volumetric flowrate ratio of 35 (R= QI / QH) 

Qt (ml/s) QI,(ml/s) QH,(ml/s) 

3 2.92 0.0833 

9 8.75 0.250 

15 14.58 0.416 

 

It is observed that for each of the total flowrates employed, the segregation index,(Xs), 

decreases with increasing the disc rotational speed. As mentioned earlier in section 

5.2.3, an increase of the disc rotational speed corresponds to an increase in shear rate 

generated at the disc/liquid interface. Consequently, the intensity of micromixing 

increases. At [H
+
] =1.0 M and total flowrate of 3ml/sec (Figure 4.43), the segregation 

index varied from 0.163 to 0.0062 depending on the disc rotational speed. The reduction 

in segregation index of 96% was attained at the disc rotational speed of 1200 rpm 

relative to starting disc rotational speed of 300 rpm. Similar observations with regards 

to the effect of disc rotational speed on the segregation index, (Xs), were obtained at the 

total flowrates of 9 ml/s and 15 ml/s over the entire range of disc rotational speeds 

tested. 
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Figure 5.43: Effect of Disc Rotational Disc on segregation Index, Xs at Various total Flow rates - 

water system with [H+] =1.0 M 
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lowest values of segregation index at a given disc rotational speed.  This phenomenon is 

further studied and discussed in detail below. 
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Figure 5.44: Effect of Disc Rotational Disc on Segregation Index, Xs at Various Total Flow Rates - 

Water System with [H+] =0.50 M 

 

It  can be concluded from the above Figures ( 5.43 and 5.44 ) is that micromixing in the 
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Figure 5.45: Effect of Average Shear Rate on segregation Index (Xs) in 30cmSDR at Various Total 

flowrate- smooth disc –water system, [H+] =1.0 M 

 

 

Figure 5.46: Effect of Average Shear Rate on segregation Index (Xs) in 30cmSDR at Various Total 

flowrate- smooth disc -water system, [H+] =0.5 M 
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concentration was 0.5M in Figure 5.44. The influence of total flowrate on the 

segregation index can be more clearly demonstrated in Figures 5.47 and 5.48 for the 

two different acid concentrations used in this study.  

 

Figure 5.47: Effect total flowrate on the segregation index at Various Disc rotational Speed and 

[H+] =0.5 M 

 

Figure 5.48: Effect total flowrate on the segregation index at Various Disc rotational speed and 

[H+] =1.0 M 
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between the total flowrates of 3ml/s and 9 ml/sec, the segregation index decreases with 

increase in the total flowrate in the entire range of disc rotation speed studied. Beyond 9 

ml/s total flowrate, the segregation index appears to increase up until the maximum 

flowrate of 15 ml/s, indicating that an optimum flowrate for best micromixing 

performance exists in the range between 3 ml/s to 9 ml/s using an acid ion concentration 

of 0.5 M.  In contrast, no optimum flowrate in the range tested in this study was 

apparent for 1.0 M acid ion concentration as seen in Figure 5.48 where a consistent 

decrease in segregation index was observed as total flowrate increased from 3 ml/s to 15 

ml/s. From these findings it is clear that the intensity of micromixing on the 30cm SDR 

depends strongly on the liquid flow rate. Besides, the shear rate generated at the 

disc/liquid interface will increase as the total flowrate increases. The higher the shear 

rate the lower segregation index (Xs). From Figure 5.47, at total flow rate of 3ml/s and 

disc rotational speed of 300 rpm, the average shear rate on the disc has reached the 

highest value of 4943.5 sec
-1

.On the other hand, with the total flowrate of 15 ml/s, the 

average shear rate was 9052 sec
-1

 at the similar disc rotational speed.  

 

To interpret the observation of an optimum flowrate at acid ion concentration of 0.5 M, 

a simple SDR flow visualisation study was carried on. The canon camera model of 

(DIGITAL IXUS 70) was used for this purpose. Four photographs have been captured 

through the window of the SDR lid and presented in Figures 5.49 to 5.52 The 

observation of the four photographs allow the visualization of the different flow patterns 

that possibly occurred on the disc during experiments at a total flowrate of 15 ml/sec 

and different disc rotational speeds together with the effect of these parameters on the 

mixing intensity.  

 

Figure 5.49, Photo 1 shows the flow pattern on the disc at the disc rotational speed of 

300 rpm.  The total flowrate of 15 ml/s combined with low disc rotational speed of 300 

rpm results in a spiral flow path of the liquid stream close to the centre of the disc 

indicating that, on contact with the disc, the liquid does not instantly couple with the 

disc surface. This results in the liquid having an angular velocity lower than the disc 

itself. The spiral profile gradually disappears as the film thins at the periphery of the 

disc.  The spiral flow behaviour is typical under conditions where the film thickness is 

high (i.e. closer to the disc centre, low disc speed, high flowrate) whereby the retarding 

Coriolis force becomes significant.  Under such conditions, mixing between the two 
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liquid streams injected onto the disc is expected to be quite poor. Consequently, a 

substantial amount of tri-iodide would be expected in this inner region as evidenced by 

the yellow coloured area seen on the disc surface which appears to cover approximately 

25% of the total disc area. Also, when examining the individual flowrate conditions for 

each of the borate ions and the H+ ions at 0.5 M and 1.0 M under identical total 

flowrates (see Table 5.11 and 5.12), it is clear that the flowrate of the sulphuric acid 

stream at 0.5 M is twice as high as that at 1.0 M. It is therefore reasonable to expect that 

it would be more challenging to completely integrate a higher flowrate of the acid into 

the borate ion stream to achieve good micromixing under identical disc rotation speeds.  

Instead, some of the sulphuric acid may flows on the surface of iodide-iodate-borate 

ions solution. 

 

In Figure 5.50 - Photo 2, the disc rotational speed was 500 rpm, the phenomenon of 

poor integration of the sulphuric acid stream still occurred. Based on visual observation, 

the poor micromixing state was similar to the one at disc rotational speed of 300 rpm. 

 

In Figure 5.51 (Photo 3) and Figure 5.52 (Photo 4), the disc rotational speed was 800 

rpm and 1200 rpm respectively. It appears that the poor mixing of the sulphuric acid 

within the borate ion stream is limited to a region very close to the centre of the disc.  

The picture shows no obvious evidence of extensive spiral profile which means that the 

whole film coupled with the disc surface more effectively and closer to the centre. The 

film thickness would be much thinner at such high rotational speeds and would be 

expected to give better micromixing.  This was reflected in the lower segregation index 

values at 800 and 1200 rpm of 0.103 and 0.079 respectively, as seen in Figure 5.44. 

However, the micromixing intensity was still not encouraging when compared with the 

intensity of micromixing at the total flowrate of 3ml/s and 9 ml/s (Figure 5.44). 

  

 Overall, two conclusions can be drawn from Figures 5.44, 5.47 and 5.48 and Figures 

5.49 to 5.52. Firstly,  the optimum total flowrate that  gave  the lowest values of 

segregation index with [H+] of 0.5 M  is 9 ml/sc. Secondly, bad distribution of 

sulphuric acid with the iodide-iodate-borate ions solution occurred at the higher total 

flow rate of 15 ml/sc. Accordingly, the 30cm SDR failed to show superior performance 

at this higher total flowrate.  
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To eliminate the bad distribution of sulphuric acid with the iodide-iodate-borate ions 

solution, a multi -point distributor was introduced to the 30 cm SDR and was used in 

the course of micromixing experiments. The results for the micromixing experiments 

using the multi -point distributor are presented in section (5.3.4).  

 

 

Figure 5.49: Water system- Smooth disc Single - Point distributor at N=300 rpm- Qt=15 ml/sec 

,QI=875 ml/min, QH=25 ml/min, [H+]=0.5 M 

                    

The area where the Sulphuric acid start 

to flow on the surface of the boric acid 

(Sulphuric acid is immiscible with boric 

acid) rather than communicate 

completely with each other and both in 

contact with the surface of the disc.  

Shotgun feed tubes 

Ripples spiralling outwards 

30cm Stainless steel Smooth Disc 

3mm feed tubes supplied H2SO4 and H3BO3 to 

the disc  
SDR lid 
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Figure 5.50: Water system- Smooth disc Single - Point distributor at N= 500 rpm- Qt=15 ml/sec, 

QI=875 ml//min,QH=25 ml/min,  [H+]=0.5 M 

 

 

Figure 5.51: Water system- Smooth disc Single - Point distributor at N=800 rpm- Qt=15 ml/sec, 

QI=875 ml//min,QH=25 ml/min,  [H+]=0.5 M 
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Figure 5.52: Water system- Smooth disc Single - Point  distributor at N=1200 rpm - Qt=15 ml/sec, 

QI=875 ml//min,QH=25 ml/min,  [H+]=0.5 M 

 

5.3.2.2 Effect of feed viscosity on segregation Index (Xs)  

 The effect of feed viscosity on the segregation index in the 30 cm SDR was 

investigated by performing a set of micromixing experiments using a higher viscosity 

liquid medium consisting of a mixture of water and glycerol (50wt% of each 

component). The standard errors of the segregation index for all the experimental runs 

were calculated and plotted as standard error bars on the graphical plots. The relative 

experimental errors, based on three experiments for each set of conditions studied, were 

also estimated showing a maximum relative error of (5%), indicating that good 

reproducibility was achieved. The effect of feed viscosity on segregation index (Xs) in 

30 cm SDR at three different total flowrates and different acid concentrations are shown 

in Figures 5.53 and 5.54 below.  
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Figure 5.53: Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR with Smooth disc at Qt 

=3, 9 and 15 ml/sec and [H+] =0.5 M 

 

Figure 5.54: Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR with Smooth disc at Qt 

=3, 9 and 15 ml/sec and [H+] =1.0 M 
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It is clear from Figure 5.54 which shows data for [H
+
] = 0.5 M that the segregation 

index increases as feed viscosity increases at any given disc rotational speed and total 

flowrate.  For instance, at the 3 ml/s and disc rotational speed of 300rpm, the 

segregation index was increased by 50% for the 50wt% Glycerol solution (6 mPa.s) 

when compared with the segregation index of  aqueous reaction solution (water system, 

1 mPa.s). On the other hand, when the disc rotational speed was increased to 1200 rpm, 

the segregation index was increased by 71%. Similar trends were also observed at 

flowrates of 9 ml/s and 15 ml/s. 

 

As demonstrated earlier in section 5.2.6 in 10 cm SDR experiments, this effect may be 

explained in terms of increased viscous shear forces acting against centrifugal forces on 

the surface of the disc, causing the flow to be retarded. Under such conditions, the shear 

rate, which is a measure of the mixing intensity within the film, is decreased. Therefore, 

as explained previously in section 5.2.6, the more viscous media has the effect of 

slowing down the micromixing rate and altering the intrinsic kinetics of the competitive 

reaction steps. Similar effects of viscosity on micromixing have been reported by 

several researchers in different reactor configurations (Yu-Shao CHEN, 2004; 

Guichardon et al., 1997) . 

 

In addition, the diffusivity would naturally be slower in case of increase in the feed 

viscosity; this will result in reduction in the rate of mass transfer. Consequently, the rate 

of reaction in neutralization reaction will be reduced causing local accumulation of 

[H+] ions in solution. Under such conditions, the  Dushman reaction is enhanced, 

producing a higher concentration of iodine and consequently  tri-iodide whereby 

segregation index has a tendency to increase. 

 

 Besides, at a given total flowrate and disc rotational speed, increasing the feed viscosity 

will increase the average film thickness flowing on the disc. For example, at the total 

flowrate equal 3 ml/s and disc rotational speed of 300 rpm, the average film thickness 

across the whole disc surface for the water and 50 wt% Glycerol system equalled 

36.611 and 108.933       p       y    p             -fold increase in the average 

film thickness.  Such an increase in film thickness will lead to an increase in the 

diffusion/conduction path length. Consequently, the mass and momentum transfer will 

be reduced and the rate of mixing will decrease. 
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The findings in Figure 5.54 where the acid ions concentration was 1.0 M were similar to 

the ones in Figure 5.53, in that the segregation index increases as feed viscosity 

increases at a given total flowrate. These findings were in agreement with the results 

that have been achieved in 10cm SDR experiments (section 5.2.6) and also with the 

works of previous researchers (Yu-Shao CHEN, 2004; Monnier et al., 1999a; 

Guichardon et al., 1997). 

 

From Figure 5.53 and 5.54, one can note that even at the higher viscosities, the 

centrifugal force created by the 30cm SDR still has superior influence on micromixing, 

even at the higher viscosity. For example, at [H+] =0.5 M and Qt=15 ml/sec a 52% 

reduction of Xs was obtained at 6 mPa.s as the rotational speed increased from 300 to 

1200 rpm. Similarly, a 38% reduction of Xs was obtained at [H+] =1.0 M as the 

rotational speed increased from 300 to 1200 rpm. 

 

5.3.2.3 Effects of acid concentration on Xs 

The effect of acid concentration at different disc rotational speeds and total flow rate of 

3 ml/s on segregation index is shown in Figure 5.55 below. The acid ion concentrations 

were 0.5 and 1.0 M, the total volumetric flow rate ration,(R),was kept constant for the 

two concentrations (i.e. R = 35) for the purpose of demonstrating the acid concentration 

effect. 

 

From the experimental results, it can be observed that the segregation index is sensitive 

to the acid concentration. In the disc rotational speed range between 300 and 1200 rpm, 

an increase of segregation index was observed as the acid concentration was increased. 

Over the entire range of disc rotational speed, the segregation index increased from 27.0 

to 47.0% when the concentration acid ion was increased from 0.5 M to 1.0 M, 

depending on the disc rotational speed. These findings support the results that have been 

achieved in 10 cm SDR experiments (section 5.2.4). The reason behind the increase in 

segregation index with the increase in acid concentration can be explained by the 

studying the rate equations of the reactions taking place in this particular system.  

 

The kinetics of  second reaction (5.2) has been experimentally determined by 

(Guichardon et al., (2000b) as: 
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            [   
                                                                                                                       

 

Where the Kinetic constant     depends on the ionic strength, ( ), and given as: 

 

For   < 0.166M:                                                                                        

 

For   > 0.166M:                                                                          

 

As shown in equations 5.1 and 5.2 above, the acid reacts in neutralization reaction and 

Dushman reaction.  The rate of Dushman reaction is more sensitive to acid 

concentration than the neutralization reaction because the reaction order with respect to 

acid is higher. When the acid concentration is increased, the Dushman reaction becomes 

faster and consequently more iodine is produced. As a result, segregation index (XS) 

increases. Similar effects of higher acid concentration on segregation index have been 

observed in previous micromixing studies (Yang et al., 2009a; Chu et al., 2007; Yang et 

al., 2006; Hai-Jian Yang, 2005). 

 

Figure 5.55: Effect of acid concentration on the segregation index at Various Disc  Rotational Speed 

and Qt=3 ml/sec -water system flows on Smooth Disc, The total volumetric flow rate ratio, (R=35), 

[H+] = 0.5 and 1.0 M 
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5.3.2.4 Effect of power dissipation, (ε) on segregation index, (-) 

Figures 5.56 show the effect of power dissipation on the segregation index for both 

water and 50 wt% glycerol system with an acid ion concentration of 0.5 M. The total 

flowrates were 3 ml/s, 9 ml/s and 15 ml/s and the disc rotational speed range was 

between 300 and 1200 rpm.  

 

The power dissipation was the range of 5.1-1025 W/kg. These values depend on the 

total flow rate, water system or 50 wt% glycerol system and the disc rotational speed. 

This clearly indicates that the increase in power dissipation results in decrease in the 

segregation index at a given disc rotational speed and total flowrate (Monnier et al., 

2000; Monnier et al., 1999b). The higher the power rate dissipation provided to the 

fluid, the higher rate of mixing that can be achieved.  

 

From Figure 5.56, it is evident that the segregation index decreases consistently with 

increase in power dissipation. At the total flowrate of 3ml/s and water system using 

[H+] =0.5 M, the power dissipation increased from 9.0 W/kg at 300rpm to its highest 

value of 351 W/kg at 1200 rpm.  This represents an increase of 98% in the power 

dissipation, corresponding to a reduction in Xs from 0.123 at 300 rpm to its lowest 

value of 0.043 at 1200 rpm thereby representing a 65% drop in Xs. Alternatively, at the 

same operating condition but with a replacement of the water system by 50 wt% 

glycerol system, the power dissipation increased from 5.1 W/kg at 300rpm to its highest 

value of 205 W/kg at 1200 rpm which is an  increase of 98% over this range of disc 

speed. As a result of that, the segregation index reduced from 0.244 at 300 rpm to its 

lowest value of 0.147 at 1200 rpm representing a 40% drop in Xs. Similar trends were 

observed at flowrate of 9 ml/s and 15 ml/s.  In Figure 5.57 where [H
+
] =1.0 M, similar 

trends with regards to the effects of power dissipation on Xs as described above were 

obtained at all flowrates and for both water system and 50 wt% glycerol system.  

 

From Figure 5.58 and Figure 5.59 certain facts were confirmed. Firstly, the higher value 

of power dissipation could be achieved on the 30 cm SDR by the higher reactant total 

flowrate and higher disc rotational speeds as shown in Figure 5.58. Secondly, at a given 

disc rotational speed and reactant total flowrate, the lower values of power dissipation 

could be attained on the disc by increasing the reactant viscosity. This could be 

attributed to the fact that increasing the dynamic liquid Viscosity ( L) results in decrease 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  203 

in the average velocity of the liquid solution on the disc. Therefore, the average shear 

rate generated at the disc/liquid interface at a given disc rotational speed 

decreases with increasing viscosity as shown in Figure 5.59. Accordingly, the power 

dissipation given to the fluid by the action of disc rotation decreased and the kinetic 

energy given to the liquid was reduced as well. For that reason, the intensity of 

micromixing also decreased. 

 

 

Figure 5.56: Effect of Power dissipation on Segregation Index, (-) at different liquid total Flowrates- 

30cm SDR smooth disc -water system and 50 wt% Glycerol system, [H+] =0.5 M 
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Figure 5.57: Effect of Power dissipation on Segregation Index, (-) at different liquid  Total 

Flowrates- 30 cm SDR smooth disc -water system and 50 wt%  Glycerol, [H+] =1.0 M 
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Figure 5.58: The effect of disc rotational speed on the power dissipation at Different total flowrates- 

30 cm SDR smooth disc -water system and 50 wt glycerol system 

 

Figure 5.59: The effect of disc rotational speed on the average shear rate at different Liquid Total 

Flowrates- 30 cm SDR smooth disc -water system and 50  wt% glycerol system 
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5.3.2.5 30cm SDR Micromixing Time, (tDS), and its Relationship with Segregation 

Index for Water and 50wt% Glycerol Systems 

As mentioned earlier in section 5.2.8, the micromixing time on the disc is controlled by 

deformation and molecular diffusion. It has been calculated using equation (2.29) on the 

basis of the hydrodynamic properties of the fluid and the specific power dissipation 

across the whole disc surface. It is important to bear in mind that the micromixing time 

is a key parameter in determining the selectivity, quality or distribution of the final 

product if tm value is less or close to reaction time, (      which is equivalent to the 

residence time of the reactants on the disc. 

 

As mentioned earlier in section 5.2.3, one important parameter needs to be considered 

when the micromixing taking place on the surface disc of the SDR is the residence time 

of the fluid on the disc. The liquid residence time on the disc needs to be greater than 

the required micro-mixing time; therefore it is possible for the micromixing taken place 

on the disc. Table AJ2 and Table AJ3 in appendix J show the predicted values of the 

residence (obtained from equation 2.8) and the micromixing times (estimated from 

equation 2.29) for the 30cm SDR experiments at the given disc rotational speed and 

water, 50 wt% Glycerol. It is clear that the residence times are much higher than the 

mixing times.  

 

Figure 5.60 below shows the effect of disc rotational speed and total feed flowrate on 

the estimated micromixing time in the 30 cm SDR. It is seen that higher disc speeds and 

higher flowrates result in shorter micromixing time. The lowest value of micromixing 

achieved on the 30 cm SDR was 0.0003 s at the disc rotational speed of 1200 rpm with 

a total flowrate of 15 ml/s when the water system was used. Furthermore, at given disc 

rotational speed and reactant total flowrate, higher values of micromixing time were 

attained on the disc by increasing the reactant viscosity. This is attributed to the fact that 

increasing the dynamic liquid viscosity (L) results in a reduction in the average velocity 

of the liquid solution on the disc. The average shear rate generated at the disc/liquid 

interface at a given disc rotational speed is consequently decreased as was shown in the 

above Figure (Figure 5.59). Accordingly, the power dissipation to the fluid by the action 

of disc rotation is reduced in higher viscosity media, as shown in Figure 5.61. In 

addition, as mentioned earlier, the diffusivity D is naturally slower when the feed 
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viscosity increases and given that the micromixing time is inversely proportional to the 

diffusivity coefficient value (equation (5.29), micromixing time is higher.   

 

 

Figure 5.60: Micromixing time against disc rotational speed for 30 cm SDR-smooth disc 

 

The combined effects of disc rotation speed and feed flowrate on micromixing time can 

be more clearly understood by analysing the effect of power dissipation on micromixing 

time. Figure 5.61 depicts a logarithmic plot of the estimation of micromixing time for 

both the water system and 50 wt% glycerol system as a function of power dissipation, 

calculated using equation (2.18) for three different total flow rates (3, 9 and 15 ml/s) 

and disc rotational speeds ranging between 300-1200 rpm. 
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Figure 5.61: Micromixing time against power dissipation for 30 cm SDR-smooth disc at different 

total flowrate-water and 50 wt%Glycerol system 

 

The graph clearly shows that the micromixing time is inversely proportional to the 

power dissipation. As the power input increases, the time, required for the molecules to 

diffuse to one another and make contact (i.e the micro-mixing time, tm) decreases. 

Accordingly, the micromixing intensity is improved.  This also supports the explanation 

on the increases in the mixing efficiency with increased flowrates and rotational speed, 

which resulted in the power input increase.  

 

In conclusion, the lower value of micromixing time, tm, was achieved on the 30 cm SDR 

by using higher values of power dissipation generated by a combination of higher 

reactant total flowrate and  higher disc rotational speeds as shown in Figure 5.61.  

 

Figures 5.62 and 5.63 demonstrate the relationship between the calculated micromixing 

time and the experimentally determined segregation index, (Xs), at the three different 

total flowrates for both water system and 50 wt% glycerol system using [H
+
]=0.5 and 

1.0 M. From both Figures, it is obvious that the shorter the micromixing time, the lower 
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the value of segregation index achieved. For example at the total flowrate 3 ml/s using 

water system and [H
+
] =0.5 M, the micromixing time lies between 0.0031 – 0.0005 s 

corresponding to a segregation index of 0.123 and 0.043 respectively, depending on the 

disc rotational speed. The reduction of segregation index value of 65% was reached at 

the micromixing time of 0.0005 s relative to the initial value of 0.0031s. Similar trends 

were observed at flowrates of 9 ml/s and 15 ml/s. Similar trends with regards to the 

relationship between the micromixing time and segregation index as highlighted in 

Figure 5.62  were obtained for the higher acid ion concentration of 1.0 M (shown in 

Figure  5.63)  at all flow rates for both water system and 50wt% glycerol . 

 

From the findings above, it can be concluded that the total flowrate and disc rotational 

speed play an important role in increasing the intensity of mixing on the rotating disc 

surface whereby the higher the flow rate and the disc speed, the higher the power 

dissipation. This in turn leads to shorter micro-mixing time between reacting molecules. 

These findings were in agreement with the findings made from 10cm SDR experiments 

(see section 5.2.8). 

 

 

Figure 5.62: Relationship between Micromixing time and segregation index, (Xs) – 30 cm SDR- 

smooth disc at different Total Flowrate and [H+] =0.5 M for water and 50 wt% Glycerol system 
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Figure 5.63: Relationship between Micromixing time and segregation index,   (Xs) – 30 cm SDR-

smooth at different Total Flowrate and [H+] =1.0 M for water and 50 wt% Glycerol system 

 

5.3.3 30cm Grooved Stainless Steel Disc Results and its Comparison with Smooth Disc 

Results using 3.0mm Single-Point Distributor  

 

As pointed out earlier in section (2.3.3), it has been recognised that the presence of 

grooves on the disc surface helps to enhance the heat and mass transfer performance by 

creating more waves of small amplitude and short wavelength at the film surface than 

the smooth disc (Jachuck and Ramshaw, 1994b). These waves have been shown to 

create increased instabilities in the film and also to increase the surface area available 

for heat and mass transfer. These features could lead to the improvement of the intensity 

of micromixing.   

 

In view of this, micromixing experiments using 30 cm grooved stainless steel disc were 

performed to find out if the presence of grooves on the disc surface helps to enhance 

micromixing performance when compared with the smooth disc. 
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5.3.3.1 Effect of Disc Rotational Speed and Total Flowrate on Segregation Index 

(Grooved vs. Smooth Disc using 3.0 mm Single-Point Distributor) 

Figures 5.64 and 5.65 show the performance of the 30cm SDR in terms of segregation 

index for both the grooved and smooth disc surfaces for the purpose of comparison. 

Three different total flow rates have been used in this set of experiments (3 ml/s, 9 ml/s 

and 15 ml/s). The disc rotational speed range was 300-1200rpm. The total flowrate 

ratios were, R= 35 and 70 with two different concentrations of H2SO4 of 0.25M and 

0.5M corresponding to acid ion concentration of ([H+] =0.5 and 1.0 M) respectively.   

 

 

Figure 5.64: Effect of Disc Rotational Disc on segregation Index, Xs at Various total  Flow Rates - 

water system with [H+] =0.5 M (Smooth disc Vs. Grooved Disc) 
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segregation index was increased by 23% when the smooth disc was replaced by the 
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Xs was 0.043 and 0.062 for smooth and grooved disc respectively. The segregation 

index was increased by 31% when smooth disc was replaced by grooved disc. At this 

relatively low total flowrate, the grooved disc failed to perform better than the smooth 

disc. This could be attributed to the fact that when using grooved disc at low flowrates 

all grooves may not give good micromixing results if there is not sufficient reactants to 

wet the surface fully. In the presence of grooves, the valley or the lower section of the 

groove has to fill before passing on to the next groove with a tendency to create rivulets 

at low flowrates with increase in the radius of the groove. On visual inspection using a 

stroboscope, these rivulets formation was observed from about 3
th

 groove onwards for 

entire range of the disc rotational speed (300-1200 rpm). If a thin turbulent film does 

not form then good mixing will not occur. If the disc surface is not completely wetted, 

the formation of a uniform, sTable thin film is very unlikely. Low rotational speed with 

high flowrates tends to promote these conditions. Also high speed and very low 

flowrates can also produce similar effects.  

 

In contrast to the low flowrate of 3 ml/s, at Qt= 9 ml/s and rotational speed of 300 rpm, 

Xs was observed to be 0.077 and 0.044 for smooth and grooved disc respectively. The 

segregation index was reduced by 43 % when smooth disc was replaced by grooved 

disc. A consistent decrease in Xs on the grooved disc was apparent when flowrates of 9 

ml/s and 15 ml/s were employed at all disc speeds tested in this study.  

 

After carrying out a visual inspection using a stroboscope at the Qt=9 ml/s and 15 

ml/sec and the entire range of disc rotational speed, the rivulets totally disappeared and 

it became evident that there were sufficient reactants to wet the surface fully. This 

explains the improved micromixing achieved on the grooved disc compared to the 

smooth disc at the higher flowrates.  

 

Another very important observation from Figure 5.64 is that when smooth disc was 

replaced by a grooved one and with conditions of Qt=15 ml/sec and [H
+
] =0.5 M, the 

phenomenon of bad distribution of sulphuric acid which was experienced with using 

smooth disc with the same operating conditions (see section 5.3.2.1) completely 

disappeared as shown in Figure 5.65. This is a strong indication that the grooved disc 

gives a superior degree of mixing than the smooth disc.  
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Figure 5.65: Photo of 30 cm SDR using Single- point Distributor with Grooved disc - Water System, 

Qt=15 ml/sec, QI=875 ml//min, QH=25 ml/min, [H+] =0.5 M- N=300 rpm 

 

Similar trends with regards to the performance of grooved disc were compared with 

smooth disc as highlighted in Figure 5.64 were obtained in Figure 5.66 at all flow rates 

for [H
+
] =1.0 M. 
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Figure 5.66: Effect of Disc Rotational Disc on segregation Index, Xs at Various total  Flow Rates - 

water system with [H+] =1.0 M (Smooth disc Vs. Grooved Disc) 

 

5.3.3.2 Effect of Feed Viscosity on Segregation Index (Grooved Vs. Smooth Disc) 

Using 3.0 mm Single-Point Distributor 

 

In order to investigate the performance of 30 cm SDR using the grooved disc with the 

presence of viscous media, a 50 wt % glycerol system was employed to compare with 

the water medium. Similar conditions of flowrate, disc speed and acid concentration as 

described in section 5.3.2.2 were employed. Figures 5.67 to 5.69 show the 30 cm SDR 

micromixing performance in terms of segregation index using 50 wt% glycerol with 

grooved disc in comparison to the micromixing performance with a smooth disc.  
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Figure 5.67: Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR at Qt =3 ml/s and [H+] 

=0.5 M (Smooth disc Vs. Grooved Disc) 

 

Figure 5.68: Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR  at Qt =9 ml/sec and 

[H+] =0.5 M (Smooth disc Vs. Grooved Disc) 
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Figure 5.69: Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR at Qt =15 ml/sec and 

[H+] =0.5 M (Smooth disc Vs. Grooved Disc) 

 

It is clear from Figures 5.67 to 5.69 that the segregation index increases as feed 

viscosity increases for all the total flowrates at given disc rotational speed for both 

smooth disc and grooved disc. The effect of viscosity on the segregation index for the 

grooved disc can be said to be similar to what was explained earlier in section 5.3.2.2. 

 

It is worth highlighting that at the lowest flowrate of 3ml/s (Figure 5.67), the smooth 

disc showed better performance than the grooved disc even with the higher viscosity 

medium, the reasons for which have already been discussed in terms of poor wetting at 

the such low flowrates in section 5.3.3.1 in relation to the water system In the presence 

of a more viscous fluids, the formation of a thin, sTable film would be even harder to 

achieve, which in turn prevents good micromixing. A stroboscope was used for the 

purpose of visual inspection of the film at the total flowrate of 3 ml/s which revealed the 

formation of the rivulets as observed from about 4
th 

groove onwards for the entire range 

of the disc rotational speed (300-1200 rpm).  In contrast, at the Qt=9 ml/s and 15ml/sec 

for the 50 wt% glycerol system within the disc rotational speed range of 300-1200 rpm, 

the rivulets were minimised  and there were sufficient reactants to wet the surface fully. 

Consequently, all the grooves contributed to give good micromixing. 
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Similar observations with regards to the performance of grooved disc compared with 

smooth disc as highlighted in Figures 5.67 to 5.69 were obtained in Figures  AJ1  to  

AJ3 in appendix J  at all flow rates and [H+]=1.0 M . 

 

5.3.4 30cm SDR Results using a Multi-Point Distributor 

During the course of the micromixing experiments on the 30cm SDR, one of the 

research targets was to improve the intensity of micromixing by introducing different 

modifications to the reactor. One of options of meeting this target was the introduction 

of a grooved disc to the 30 cm SDR which was mentioned in section 5.3.3. When the 

smooth disc was replaced by the grooved disc, the micromixing was enhanced and the 

results were promising.  Another modification that was introduced to the 30 cm SDR 

was a 70 mm diameter multi-point distributor for the sulphuric acid feed stream which 

consisted of four feed holes, each having a diameter of 0.2 mm. The main reason behind 

the use of this multi-point distributor was to eliminate the problems related to the bad 

distribution  of sulphuric acid within the boric acid stream that was experienced when 

using the  smooth disc at an operating conditions of Qt=15 ml/s and [H+]=0.5 M for 

water system with single point distributor (see section 5.3.2.1). Another reason was that 

a good distribution of sulphuric acid on both the smooth and the grooved discs may be 

achieved with the use of a wider range of  operating conditions (in terms of flowrate 

mainly) for both water system and 50 wt% glycerol system, giving the potential of 

further enhancing the micromixing intensity.  

Three different total flow rates of water system have been used in these sets of 

experiments (3 ml/s, 9 ml/s and 15 ml/sec). The disc rotational speed range of 300-1200 

rpm for these three total flowrates was equally used. The total flowrate ratios was R= 35 

with the concentrations of H2SO4 (The acid concentration was of 0.25 M ) 

corresponding to acid ion concentration of [H+] =0.5 M.  The mean value of absorbance 

Dλ (-), the average segregation index Xs (-), the standard deviation (σ) and standard 

error (S) as well as the relative error were estimated. The maximum relative error of 

experiments was only (3.0%) which therefore indicates that a good reproducibility of 

the experiment was achieved. 
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5.3.4.1 Effects of Rotational Disc Speed and feed flowrate on Xs using 70mm 

Multi-Point Distributor 

Figure 5.70 demonstrates the 30 cm SDR micromixing performance in terms of 

segregation index using the 70 mm diameter multi-point distributor and smooth disc.  

 

 

Figure 5.70: Effect of Disc Rotational Disc on Segregation Index, Xs at Various Total Flow Rates 

using 70 mm Multi-Point Distributor - Water System with [H+] = 0.5 M- (Smooth Disc) 

 

It was noticeable from Figure 5.70 that for all the three total flowrates along with their 

disc rotation speed range, the segregation index decreases consistently with the increase 

in the total flowrate. This result confirmed the strong influence that flowrate has on the 

intensity of micromixing in the SDR, whereby the higher shear rate generated at the 

disc/liquid interface at higher flowrates causes intimate mixing between the two reactant 

streams. It is worth noting here that these trends are in sharp contrast to what was 

observed when using the single point distributor as will be examined in more detail 

below.  

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

0.350 

0.400 

0.450 

0.500 

0 200 400 600 800 1000 1200 1400 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
,(

X
s
) 

Disc rotational speed,(rpm) 

30cm SDR-Smooth Disc with Multi Point Distributer- Water system,Qt=3ml/sc and [H+]=0.5M 

30cm SDR-Smooth Disc with  Multi Point Distributer- Water System, Qt=9ml/sec and [H+]=0.5M 

30cm SDR-Smooth Disc with  Multi Point Distributer - Water System, Qt=15ml/sec and [H+]=0.5M 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  219 

5.3.4.2 30cm SDR Performance (70mm Multi Point Distributor VS.  3.0mm Single 

Point Distributor with using Smooth and Grooved Discs) 

Figures 5.71 to 5.75 demonstrate the performance of 30 cm SDR under a range of 

operating conditions in terms of segregation index using the 70 mm Multi Point 

Distributor and 3 mm Single Point Distributor for the purpose of disc performance 

comparison.  From Figure 5.71 below it can be concluded that at the total flowrate of 

15ml/sec, the micromixing has been improved by using the 70 mm Multi Point 

Distributor instead of the 3 mm Single Point Distributor as discussed in detailed in 

section 5.3.2.1. This is evident that a good distribution of sulphuric acid on the disc was 

achieved. Consequently, the contact between the sulphuric acid and other reactants was 

enhanced thereby yielding good micromixing.  

 

Figure 5.72 shows a photo of flow pattern on the smooth disc using the 70 mm Multi - 

Point Distributor at rotational speed of 300 rpm using water system with total flowrate 

15 ml/sec and [H
+
]=0.5 M. It can be seen that the phenomenon of poor distribution of 

sulphuric acid on the disc has disappeared. This led to the improvement of the intensity 

of micromixing which evidently show that the 70 mm Multi-Point Distributor has 

improved the micromixing on 30 cm smooth disc.  

 

 

Figure 5.71: Effect of Disc Rotational Disc on segregation Index, Xs at Qt=3,9 and 15 ml/sec, Single- 

point   distributor   VS.   Multi-point distributor - water system with [H+] =0.5 M- (Smooth Disc) 
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From Figure 5.71, the influence of the distributor system employed using the water 

system with [H+]=0.5 M flowing on a smooth disc can be summarised as follows: 

 At   Qt= 3 ml/sec which corresponded to a flowrate of 0.042 ml/s for the 

sulphuric acid stream, the 70 mm Multi-Point Distributor gave the worst mixing 

conditions, as evidenced by the highest segregation indices under these 

conditions. It is envisaged that this was as a result of unsteady flow and/or bad 

distribution of the sulphuric acid on the disc surface. It was noted in the course 

of performing the experiments that only two feed holes of the multi-point 

distributor were able to deliver sulphuric acid on the disc. Also, the very low 

flow rate of acid stream did not give continuous flow through each hole; instead 

droplets of sulphuric acid of unknown volume were formed intermittently (see 

Figure 5.73), which caused the rate of contact between the acid stream and the 

other reactants to be variable over the course of the run. The introduction of the 

sulphuric acid stream at such low flowrates can be more easily controlled in the 

3mm diameter single point distributor, whereby careful selection of the delivery 

tube lengths  can give sufficient holdup in the tube to assist in producing a more 

even flow and uniform delivery of the acid stream onto the disc.  

70mm Multi - Point 

Disrupter 

Central feed tube for 

H3BO3, NaOH,  KI and 

KIO3 stream 

 

 

Radial feed tube 

for H2SO4 stream 

 

H2SO4 stream Stream of H3BO3, NaOH, 

KI, KIO3 mixture 

 

        Figure 5.72: Water  system- smooth disc Multi - Point Distributor at N=300 rpm- 

Qt=15ml/sec, QI=875ml//min, QH=25ml/min, [H+]=0.5 M 
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 At Qt= 9 ml/sec, the single point distributor again performed better than the 

multi-point Distributor, although the differences in segregation index were no 

more than 56% and 30% at the disc rotational speeds of 300rpm and 1200 rpm 

respectively which were significantly lower than the differences in Xs between 

the two distributors at 3 ml/s. In effect, the micromixing intensity at 9 ml/s with 

the multi-point distributor was almost similar to that at Qt= 15 ml/sec and for the 

disc rotational speed ranged 500-1200 rpm using the same type of distributor.  

 At Qt=15 ml/sec with the multi-point distributor, the micromixing was 

marginally better than that at the same flowrate using the single-point distributor 

at all disc speeds. For instance, at a disc speed of 300 rpm, the Xs was 0.128 and 

0.146 for  multi-point distributor and single-point distributor respectively whilst 

when the disc rotational speed was 1200 rpm, the Xs achieved was 0.053 and 

0.079 for  multi-point distributor and the single-point distributor respectively..  

 It is interesting to note that at Qt=15 ml/sec, the 30 cm SDR equipped with the 

multi-point distributor gave a lower micromixing performance when compared 

with Qt=9 ml/sec for the Single-Point Distributor. 

H2SO4 stream 

H2SO4 flows as droplets 

Stream of H3BO3, NaOH, KI, 

KIO3 mixture 

 

                  Figure 5.73: Water system smooth discs Multi - Point Distributor At N=300 rpm- Qt=3 ml/sec, 

QI=177.42 ml//min, QH=2.52 ml/min, [H+]=0.5 M 
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different  trends with regards to the effect of using 70mm Multi-Point Distributor with 

the smooth disc  at total flowrate 15 ml/sec and [H+]=0.5 M which was described above 

in Figure  5.71  were obtained  with [H
+
]=1.0 as highlighted in  Figure 5.74. It is clear 

from Figure 5.74 that at Qt=15 ml/sec and [H
+
] =1.0 M, the smooth disc with Multi-

point distributor gives a lower micromixing performance when compared with the 

performance of smooth disc with single-point distributor at similar operation conditions 

of total flowrate and acid ion concentration. This was as resolute of the very low flow 

rate of acid stream, i.e.  QH= 0.211 ml/s when [H
+
] = 0.1 M was used, instead the flow 

rate of acid stream was almost double when the [H
+
] =0.5 M). The very low rate of acid 

stream did not give continuous flow through each hole; instead droplets of sulphuric 

acid of unknown volume were formed intermittently, which caused the rate of contact 

between the acid stream and the other reactants to be variable over the course of the run. 

Again needs to be mentioned that the delivery of the sulphuric acid stream at low 

flowrates can be more easily controlled in the 3mm diameter single point distributor 

than the Multi-point distributor. 

      

 

Figure 5.74: Effect of Disc Rotational Disc on segregation Index, Xs at Qt=15 ml/sec, Single- point 

distributor VS.  Multi-point distributor - water   system with 1.0 M- (Smooth Disc) 
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Figure 5.75 demonstrates the influence of total flowrate on the segregation index at four 

disc rotational speeds in the presence of 50 wt% glycerol flows on smooth disc. The 

acid ion concentration was 0.5 M.  It was obvious that for the total flowrate of 15ml/sec 

using the using 70 mm Multi-Point Distributor, the micromixing was remarkably  

improved compared with the Qt= 15 ml/sec with Single-Point  Distributor. For example 

at disc speed of 300 rpm the   reduction in Xs was 31.0 %. On the other hand, at the disc 

speed of 1200 prm, the reduction in Xs was 28 %. From these results, it is evident that 

the 30 cm SDR perform better when the Single Point Distributor was replaced by 70 

mm Multi-Point Distributor. This may be explained in terms of the improved 

distribution of sulphuric acid on the disc which has been achieved. Therefore, as good 

contact between the sulphuric acid and other reactants was achieved, high degree of 

micromixing was also achieved. 

 

 

Figure 5.75: Effect of Disc Rotational Disc on segregation Index, (Xs) at Qt= 15 ml/sec, single-   

point distributor VS. Multi-point distributor – 50 wt% glycerol system with [H+] =0.5 M- (Smooth 

Disc) 
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Figure 5.76 below shows the influence of total flowrate on the segregation index using 

the water system flows on grooved disc. The acid ion concentration was 0.5 M.  It is  

evident from the result that at the total flowrate of 15 ml/s with 70 mm Multi-Point 

Distributor, the Xs values were higher those with the Single-Point Distributor at the 

same flowrate which was not expected. This proved that the grooved disc failed to 

improve the micromixing despite the use of 70 mm Multi-Point Distributor. This could 

be attributed to the individual location of the injection points of each of the two reactant 

streams. Firstly, the H2BO3
- 
solution is fed at a radial position of 20 mm from the centre 

of the disc, beyond which it produces an even film before it enters the first groove 

located at a radial position of 25 mm. On the other hand, the H2SO4feed stream is 

injected at a radial position of 25 mm from the disc centre through the multi-point 

distributor. The two phases then stay in the first groove until sufficient thickness causes 

the film to climb out of the groove. Consequence, more tri-iodide produced in the first 

grove before the reactants entering to the next grove. This is as result of bad design of 

70 mm Multi-Point Distributor.  

 

 

Figure 5.76: Effect of Disc Rotational Disc on segregation Index, (Xs) at Qt= 15 ml/sec, single-   

point distributor VS. Multi-point distributor – water system with [H+] =0.5 M- (Grooved Disc) 
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Similar trends with regards to the 30 cm performance  using 70 mm Multi-Point 

Distribution  and  grooved  disc  as described above in Figure  5.76  were obtained  

when water system was replaced by 50 wt% glycerol as highlighted in  Figure 5.77  for 

the disc speed range of 300-800 rpm. At the disc speed of 1200 rpm, the reactor started 

to show better performance. It seems to be that at this higher disc speed, the contact 

with the reactant has been improved even though rather poor distribution of sulphuric 

acid on the disc was still occurring. 

 

 

Figure 5.77: Effect of Disc Rotational Disc on segregation Index, (Xs) at Qt= 15 ml/sec, Single- 

Point Distributor VS. Multi-Point Distributor – 50 wt% glycerol system with [H+] =0.5 M- 

(Grooved Disc) 
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distributor did not perform as well as expected in the range of flowrates tested (3 ml/s to 

15 ml/s).  It may well be that to obtain a more even jet flow of acid especially under 

conditions of very low flowrates, it may be necessary to have 4 holes of a much smaller 

diameter such as 0.05 mm so that increased liquid hold-up may prevail to give a 

uniform and continuous jet of acid at the injection point for improved acid distribution 

and micromixing.  

 

5.3.5 Regression Analysis on Segregation index, (Xs), for 30cm SDR  

Regression analyses were performed for all the 30 cm  SDR smooth disc data (i.e. 

aqueous solution, 50 wt% Glycerol) using the regression tool in the Minitab 15 

software. Two Empirical models between Segregation index, (Xs) and the three 

variables (angular velocity of the disc, , total flowrate, Q, and dynamic liquid 

Viscosity,  ) investigated at [H
+
] = 0.5 and 1.0 M.  

 

 For the regression analyses it was assumed that the segregation index, (Xs), could be 

represented by equation (5.13) which can written in a more appropriate form similar to 

equation (5.14).Table (5.13) represent the calculated values of the parameters and R
2
 for 

    models  

 

Table 5.13: Segregation index Regression analysis results for 30 cm SDR smooth disc 

 

Therefore following model equations which describe the segregation index in a 30 cm 

SDR smooth disc could be written as:  

 

                                             
                                                   

 

                                               
                                                

 

[H+],M A B C D R
2
( Adj) 

0.50 +0.454 -0.327 -0.285 +0.543 79.5% 

1.0 +0.778 -0.454 -0.160 +0.491 96.3% 
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From the 30 cm SDR smooth disc model equations that have been produced, it can be 

seen clearly that increases in angular velocity of the disc and liquid total flowrate cause 

significant decreases in     . While increases in dynamic liquid viscosity cause an 

increasein   . Furthermore, increases in acid concentration cause increases in   .  This 

corresponds well with what was observed in the experimental data. 

  

As indicated in Table (5.9) R
2
 values for the three correlations were between 79.5 and 

96.3 suggest a good fit of the regression line to the data. P-values were obtained 

corresponding to the significance of each parameter with the regression. With assuming 

a significance level of 0.05 (i.e. 95 % confidence interval) the p-values was 0 to three 

decimal places indication each parameter to be of significance within the regression. 

 

In order to check the validity of the model equations,     values were calculated using 

the regression models (equation 5.19 and 5.20) and compared to experimental values by 

plotting the experimental values against Predicted data.  

 

If the experimental values and Predicted data were in good agreement, the best linear fit 

would be y = x. It will be more realistic to expect that y = M x, where constant is close 

to 1.  

Figures (5.78 and 5.79) demonstrate a good degree of correlation between the predicted 

and experimental results.  

 

For the regressions, the model equations are applicable within the following rage of 

operation parameters:  

 

52.3 sec
-1 

≤   ≤ 83.7 sec
-1 

 

             9 ml/sec 

 

1.005  mPa.s ≤   ≤ 6.0 mPa.s 
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Figure 5.78: 30 cm SDR with smooth disc- Experimental segregation index data against segregation 

index as predicted by Empirical model for [H+] = 0.5 M 

 

 

Figure 5.79: 30 cm SDR with smooth disc- Experimental segregation index data against  

segregation index as predicted by Empirical model for [H+] = 1.0 M 
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5.4 Micromixing Experimental Results: Narrow channel Reactors 

(NCRs) 

As stated earlier, one of the objectives aimed in this research is to compare the 

efficiency of micromixing in SDR in terms of segregation index, (Xs), with that in 

continuous tubular flow reactors in the form of narrow channels. In this context, the 

degree of mixing was assessed in six different designs of narrow channel reactors 

(NCRs) in order to evaluate the influence of the length and of the junction type (Y and 

T-shape on the quality of mixing.  For this purpose, six different narrow channel 

reactors made of borosilicate glass were utilised. Table (5.14) demonstrate the junction 

type the dimensions of the NCRs were utilised in this work. 

 

Table 5.14: The NCRs dimensions 

junction type,(-) Channel Length,(mm) Channel diameter,(mm) 

T 5 1 

T 10 1 

T 15 1 

Y 5 1 

Y 10 1 

Y 15 1 

 

The effects of variables such as total feed flow rate (Qt), acid ion concentration,([H+]), 

feed viscosity,(   ), channel length and junction type were studied on the micromixing 

process in the NCRs, with the range of operating conditions as shown in section 5.4.1 

below The characterisation of micromixing in the NCR’S adopted much the same 

procedure  as for the SBR and SDRs, three replicates were carried out for each 

experiment, the mean value of absorbance Dλ (mean), the average segregation index Xs 

(-), the standard deviation (σ) and standard error (S) and relative error were estimated. 

The relative maximum relative error of experiments was only (3.0 %) and the results 

were satisfactorily reproducible.  
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5.4.1 NCR Experimental design  

Minitab 15 was utilized in order to generate an appropriate randomized general full 

factorial experimental design for both water and 50wt% Glycerol systems (see Table 

AK1 in appendix K). The variables incorporated into the experimental design were:  

 

 Total flowrate : 0.25, 0.5,1.0 and 2 ml/s ; 

 Acid ion concentration: 0.1, 0.25, 0.5 and 1.0 M; 

 Viscosity: water system (  =1.005 mP.s at 20oC), 50 wt% glycerol system (  = 

6.0  mPa.s at 20 oC)  ; 

 Channel length:  5 cm, 10 cm and 15 cm ;  

 Junction Type:   Y- Junction (90
o
) and T- Junction (180

o
). 

 

The individual flowrates of the iodide-iodate-borate ions stream, (QI), and the acid ions 

stream, (QH), corresponding to each total flowrate indicated above are given in Tables 

5.15 to 5.18  for acid ion concentrations of  0.1, 0.2, 0.5 and 1.0 M corresponding to the 

volumetric flowrate ratio,(R), of 7, 17.5, 35 and 70  respectively.  

 

Table 5.15: The individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.1 M and volumetric flowrate ratio of 7, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

0.25 0.219 0.031 

0.5 0.437 0.063 

1.0 0.875 0.125 

2.0 1.750 0.250 

 

Table 5.16: The individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.25 M and volumetric flowrate ratio of 17.5, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

0.25 0.236 0.014 

0.5 0.473 0.027 

1.0 0.946 0.054 

2.0 1.892 0.108 
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Table 5.17: The individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 0.5 M and volumetric flowrate ratio of 35, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

0.25 0.243 0.007 

0.5 0.486 0.0138 

1.0 0.973 0.027 

2.0 1.945 0.055 

 

Table 5.18: The individual flowrates of (QI) and (QH) corresponding to each total flowrate for acid 

concentrations 1.0 M and volumetric flowrate ratio of 70, (R= QI / QH) 

Qt,(ml/s) QI,(ml/s) QH,(ml/s) 

0.25 0.246 0.004 

0.5 0.493 0.007 

1.0 0.986 0.014 

2.0 1.972 0.028 

 

5.4.2 Effect of total flow rate on segregation index, (Xs) 

The typical effect of total flowrate on the segregation index (XS) of the mixed fluid in 

the channel is illustrated in Figures 5.80 and 5.81 which depict the trends obtained using 

water medium and 50 wt% glycerol system respectively in the 5 cm long NCR with the 

Y-junction. Table 5.19 below shows the total flow rates and the Reynolds numbers are 

implemented with for water system and 50 wt% glycerol system, are implemented and 

the flow in the outlet channel is laminar in most cases. 

 

Table 5.19: The total flowrates and the Reynolds numbers employed in the in NCRs 

 

Total flowrates in NCRs 

(ml/sec) 
Reynolds number, Re (-) 

for water system 

Reynolds number, Re (-) for 

50 wt% glycerol system 

0.25 318 60 

0.5 637 120 

1.0 1273 239 

2 2547 478 
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 The acid ion concentration was 0.1 M, 0.25 M, 0.5 M and 1.0 M.  It can be seen from 

Figures 5.80 and 5.81 that segregation index, XS, decreased and therefore micromixing 

intensity was enhanced as the total flowrate increased. Similar trends for the effect of 

flowrate are observed for all   junction channel lengths, junction type studied (as shown 

in Figures AK1 to AK5 Appendix K) 

 

Figure 5.80: Effect of total flowrate on segregation index, Xs (-) for 5 cm Y junction NCR- Water 

system with different acid ion concentrations 
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Figure 5.81: Effect of total flowrate on segregation index, Xs (-) for 5 cm Y junction NCR- 50 wt% 

glycerol system with different acid ion concentrations 

 

With the increase in total flowrate, the mean velocity of the reactants in the channel 

increases.  Consequently, three effects will occur in the reactor which, when combined, 

will have a significant impact on the mixing intensity.  Firstly, more aggressive 

impinging will occur between the iodide-iodate-borate ions solution stream and the 

sulphuric acid stream at the junction area (the meeting point of two streams). Secondly, 

with increasing flow velocity, the mean shear rate between the fluid layers and the 

channel wall along the length of the channel will increase as shown in Figure 5.82. 

Subsequently, the rate of mass transfer for the system is increased via reorientation and 

stretching of fluid interfaces (Adeosun and Lawal, 2005). This leading to a reduction in 

segregation indexes (i.e. enhancing the intensity of micro-mixing efficiency) and this 

can be observed in Figure 5.83 For the three Y-junction NCRs with channel length of 5, 

10, 15cm using both water and 50wt% glycerol system and [H
+
] =0.25 M. The wall 

shear rate for the NCRs was simply calculated from the equation below (Leveson et al., 

2004): 
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Where   is the shear rate (s
-1

),   is the bulk velocity (m/s), and d is the channel diameter 

(m). Thirdly, with increasing flow velocity, the laminar flow starts to form symmetrical 

vortices. Therefore, the diffusive mixing is assisted by these vortices and intensity of 

micro-mixing is enhanced (Mansur et al., 2008; Engler et al., 2004). 

 

These three effects arising from increased flowrates contribute to the enhancement of 

micromixing  in narrow channel. 

 

 

Figure 5.82: Effect of the mean velocity on the mean shear rate in the NCRs at different total 

flowrates 

 

0.00E+00 

5.00E+03 

1.00E+04 

1.50E+04 

2.00E+04 

2.50E+04 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 

m
e

a
n

 s
h

e
a

r 
ra

te
,𝛾

(s
-1

) 

Mean velocity,V (m/s) 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  235 

 

 

Figure 5.83: Effect of total mean shear rate on segregation index, Xs (-) for 5cm, 10cm and 15 cm Y 

Junction NCR-Water and 50 wt% glycerol systems with [H+]=0.25 M 

 

The decrease in the segregation index with increasing flowrate has also been observed 

by (Ehrfeld et al., 1999)  within a mixer array, whilst the inverse trend was observed by 

(Schneider et al., 2004). In the latter work, the flowrates considered only covered a 

range to 40 μl/min (6.6 x10
-4

 ml/s), in comparison to 120 ml/min (2 ml/s) used in our 

experiments.  The segregation index decreases significantly between a total flowrate of 

0.25 ml/s and 1.0 ml/s, whereas between 1.0 ml/s and 2.0 ml/s only a slight decrease in 

the segregation index is observed. This would seem to suggest that at given acid ion 

concentration, the intensity of mixing reach the maximum degree and there is no much 

benefit from increasing the total flowrate beyond 1ml/s.    

 

In order to have a complete characterization of the mixing intensity in the NCRs, the 

variation of the segregation index as a function of parameters that depend on total flow 

rate and channel length was examined. In particular, the mean velocity of the mixed 

streams, the mean residence time and the Peclet number, Pe (-) in NCRs were 

considered.    

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0 5000 10000 15000 20000 25000 

S
e

g
re

g
a

ti
o

n
 i
n
d

e
x
,X

s
(-

) 

Mean shear rate,𝜸(s-1) 

5cm Y junction NCR-water system with [H+]=0.25M 

10cm Y junction NCR-water system wih [H+]=0.25M 

15cm Y junction NCR-water system with [H+]0.25M 

5cm Y junction NCR-50wt% glycerol system with [H+]=0.25M 

10cm Y junction NCR- 50wt% glycerol system with [H+]=0.25M 

15cm Y junction NCR-50wt% glycerol system with [H+]=0.25M 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  236 

 

The mean velocity is given by the ratio of total flowrate Qt (m
3
/s) and the cross section 

area of NCR channel A (m
2
) as shown below.    

 

  
  

 
                                                                                                                                           

 

For the circular channel, the Reynolds number is calculated from equation (5.23) as 

reproduced below (Holland and Bragg, 1995).  

 

     
    

 
                                                                                                                                    

 

 

The residence time in the channel is given by the ratio of channel length (m) and the 

fluid velocity (m/s) equation (5.24). 

 

     
 

 
                                                                                                                                         

 

 

 

Figure 5.84 shows how the segregation index varies with changing fluid mean velocity 

in  15 cm Y-NCR using water system and [H+]=0.1 M,0.25 M,0.5 M and 1.0 M. As 

mentioned earlier, when total flowrate rate increased the reactants mean velocity in the 

channel will increased. Thus, the segregation index in narrow channel decreased 

considerably because of the mean shear rate between the fluid layers and the channel 

wall increased also vigorous impinging between two streams at the junction area will 

occur which therefore results in the increase of the micromixing intensity.  
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Figure 5.84: Effect of reactants mean velocity on segregation index, Xs (-) for 15 cm Y 

 

 With considering the acid concentration of [H
+
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reduction in segregation index of 72.4 % was reached. Similar trends are observed when 

the acid concentration of 0.25 M and 0.5 M are used. 

 

One important parameter needs to be considered when the micromixing taking place in 

the NCRs is the residence time of the fluid in the channel. The liquid residence time in 

the channel needs to be greater than the required micromixing time for the micromixing 

process to take place in the channel. The liquid residence time in the channels was 

calculated from equation (5.24), while the micromixing time ( micromixing due to 

diffusion and shear force)  in the NCRs was estimated by equation (5.25) proposed by 

Falk and Commenge (2010) as shown below : 
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It is well known that the flow field and the concentration field do not match in the 

NCRs. In addition, the mechanical energy is used to achieve the flow in the NCRs, but 

in zones of pure component A with no interface with other component B, this 

mechanical energy does not contribute to mixing(Falk and Commenge, 2010). Due to 

only a part of the consumed mechanical energy is used for mixing, the energetic 

efficiency,(  ), was considered as only 3.0% in this work as approximation(Falk and 

Commenge, 2010). 

 

Table 5.20 shows the predicted values of the residence and the micromixing times for 

the NCR’S experiments (water and 50 wt% Glycerol systems). It is clear that the 

residence times are higher than the mixing times.  

 

 

 

Table 5.20: Residence time and mixing time in NCR’s for water and 50 wt% glycerol Systems 

 

 

Total Flowrate (ml/s) 

Residence  time ,(s) Mixing 

time for 

water 

system,(s) 

Mixing time 

for 50 wt% 

glycerol 

system,(s) 

5 cm 

Channel 

Length 

10 cm 

Channel 

Length 

15 cm 

Channel 

Length 

 

0.25 

 

0.157 

 

0.314 

 

0.471 0.125 0.138 

 

0.50 

 

0.079 

 

0.157 

 

0.236 0.067 0.073 

 

1.00 

 

0.039 

 

0.079 

 

0.118 0.035 0.039 

 

2.00 

 

0.020 

 

0.039 

 

0.059 0.0190 0.020 
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Figure 5.85: Effect of reactants mean velocity on residence time, tres (s) for Y and T NCRs 

junctions 

 

Figure 5.85 illustrates the effect of the mean fluid velocity in the NCRs, an increase in 

residence time in a given channel results in decreases in residence time. In our 

experiments, the residence time was varied by changing the channel length and total 

flow rate in each channel. Therefore, when considering one length of NCR, the 

residence time varied only by changes in fluid velocity. For this case therefore the 

variation of segregation index with residence time can be related directly to the effect of 

velocity on the mixing intensity.  

 

Figure 5.86 shows the effect of residence time of the fluid in the 5cm, 10cm and 15cm 

channel lengths with the total flowrates of 0.25 ml/s, 0.5 ml/s, 1 ml/s and 2 ml/s. This 

plot indicates that an increase in residence time in a given channel results in an increase 

in the segregation index, (Xs), where the residence time was 0.471 s in the longest 

channel (15 cm) for the lowest flowrate (0.25 ml/sec). This trend is opposite to that of 

Figure 5.83, depicting the effect of shear rate on Xs. As mentioned earlier, increased 

residence time in a fixed length channel occurs when the total flowrate in the channel is 

lowered. This causes the reduction in the mean velocity of the reactants and 

consequently the shear rate to be decreased. Higher residence time in a given channel is 
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therefore synonymous to lower shear rate, which accounts for the trend seen in Figure 

5.86. 

 

 

Figure 5.86: Effect of reactants residence time, tres.(s)  on segregation index, Xs in individual Y-

junction  channels with water  and 50 wt% glycerol systems at [H+]=0.25 M 

 

 

When analysing the effect of flowrate on the performance of the NCRs, it is important 

to consider the  mechanisms of mass transfer that are possible in the main channel 

section, namely convective mass transfer in the axial direction and diffusive mass 

transfer in the radial direction. Axial diffusion is considered to be negligible since 

longitudinal movement in the channel is controlled  by convection (McCarthy et al., 

2007). In order to assess the relative importance of each mechanism on the micromixing 

process in the NCR, the effect of Peclet number,(Pe), on Xs has been analysed and 

shown in Figure 5.87. 
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Figure 5.87: Effect of Peclet number, Pe (-) on segregation index, Xs (-) for 15cm Y Junction NCR-

Water system with different acid ion concentrations 

 

The plot shows the segregation index values as a function of the Peclet number, (Pe), in 

15 cm Y junction NCR. It is noTable that the segregation index decreases with 

increasing Peclet number indicating that mixing efficiency is not mainly controlled by 

diffusion processes. In fact, if only diffusive mass transfer in the radial direction was 

responsible for the mixing of the two solutions, then the mixing efficiency would 

depend only on the diffusion path length, which is a function of channel diameter 

(McCarthy et al., 2007; Ehrfeld et al., 1999). If this was the case, then increasing the 

fluid velocity by increasing the total flowrate in the channel should not lead to a 

decrease in segregation index, as observed in this study.  
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 Barresi et al., 1999 and McCarthy et al., 2007 have determined the relative 

contributions of the convective and diffusive mass transfer to the total mass transfer to 

characterise mixing for a barium sulphate precipitation in a Couette reactor and narrow 

channel reactor respectively by use of the Peclet number (Pe). The Peclet number (Pe) 

can be defined as the ratio of mass transfer occurring by convection in a system to that 

occurring by diffusion  (Tilton, 1997) . The Peclet number (Pe) could be given as 

(Tilton et al., 1998): 

 

 

        
   

 
                                                                                                                        

 

 

 

The convective mass transfer has a dominant influence on the overall mass transfer 

process if  Pe >> 1. If Pe << 1 then diffusion dominates the mixing process.  An 

analysis based on Pe has been adopted in this study following the previous work by 

McCarthy et al. (2007) and Baresi et al. (1999). The range of Pe applicable in the 

present work is between 3.186×10
5
 < Pe < 2.546×10

6
 for the water system and 8.585 

x10
5
 < Pe < 6.868 x10

6
 for the 50 wt% glycerol system, values indicating the 

dominance of convection over diffusion under the flow regime attained in the NCRs 

studied. The calculations have been based on diffusion coefficient of 10
-9  

m
2
/sec for the 

water  system (Guichardon et al., 1997) and 3.708×10
-10  

m
2
/sec  for the 50 wt% system. 

The calculation of the diffusion coefficient for the 50 wt% glycerol system was based 

on the Diffusivity correlation (Reid et al., 1977) as shown in appendix M.  

 

5.4.3 Effect of viscosity on segregation Index, (Xs) 

In order to investigate the influence of viscosity on the micromixing intensity in terms 

of segregation index, glycerol was used to increase the viscosity of the aqueous reaction 

solution. A liquid mixture consisting of 50 wt% glycerol and 50 wt% water was used, 

which had a  viscosity of 6 mPa.s at 20 
o
C (Dow Chemical Company), which is 6 times 

higher than the viscosity of the water medium. The pH of  iodide – iodate - borate 

solution was maintained close to 11.0 for all viscous media experiments to prevent the 
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initial formation of iodine in the solution before any addition of the sulphuric acid is 

added (Guichardon et al., 1997). This was achieved by reducing the concentration of 

H2BO
-
3 to 50% of its corresponding concentration in the in the aqueous reaction 

solution (water system), i.e. 0.0909 M. Selected experimental results for the viscosity 

effect on the segregation index in the NCRs are presented in this section whilst a 

complete set of results can be found in Figures AK6 to AK8 in Appendix K.  

 

Figure 5.88 shows the effect of viscosity on segregation index (Xs) in 5cm Y junction 

NCR at different total flowrates with four acid concentrations. From Figure 5.88, it is 

clear that the segregation index is increased by the increasing the viscosity of the feed at 

given total flowrate and acid ion concentration. A similar effect was observed by (Yang 

et al., 2009b). For example, at 0.25 ml/sec and [H
+
] =0.1 M, the segregation index, (Xs) 

increased from 0.049 for the aqueous reaction solution to 0.432 for more viscous 

solution of 50 wt% glycerol-50 wt% water solution. , representing an increase of 89% in 

Xs. Similar trends were obtained at acid concentration of 0.25 M, 0.5 M and 1.0 M at all 

flowrates and all three channel lengths studied. 

 

 

Figure 5.88: Effect of feed viscosity on segregation Index, (Xs) in 5 cm Y-Junction with different 

total flowrates and acid ion concentrations 
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Similar trends  as described above were obtained for 10 cm and 15 cm length Y junction 

at all flowrates and acid concentrations as highlighted in Figure 5.89 and Figure 5.90  in 

this section and also  for the three lengths of T junction as shown  in  Figures  (AK6 to 

AK8  to in the Appendix  K . 

 

 

 

Figure  5.89: Effect of feed viscosity on segregation Index, (Xs) in 10 cm Y-Junction with different 

total flowrates and acid ion concentrations 
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Figure 5.90: Effect of feed viscosity on segregation Index, (Xs) in 15 cm Y-Junction with different 

total flowrates and acid ion concentrations 

 

The effect of viscosity on the segregation index, (Xs), can be related to a decrease in 

convective mass transfer based on Reynolds Number, (Re), as shown in Figure 5.91. 

Consequently, the rate of reaction in neutralization reaction will be reduced. Therefore, 

the Dushman reaction will tend to occur to a larger extent in the presence of an excess 

of localised acid ion concentration and iodine/tri-iodide will be produced, giving higher 

Xs. In general and as explained previously in SBR and SDRs experimental results 

(sections 5.1.4, 5.2.6 and 5.3.2.2), the viscous media will slow down the micromixing 

rate and alter the intrinsic kinetics of the reaction (Yang et al., 2009b; Yu-Shao CHEN, 

2004; Guichardon et al., 1997) .  It is to be noted that even at the higher viscosities, the 

NCRs still has positive influence on micromixing. For example when the [H
+
] =0.1 M 

was used, a 55% reduction of Xs was obtained at 6 mPa.s as the total flowrate increased 

from 0.25 to 1 ml/s. When [H
+
] =1.0 M, a 57% reduction of Xs was obtained over the 

same flowrate range. 
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Figure 5.91: Effect of Reynolds Number, Re(-) on segregation Index, (Xs) in 15 cm Y Junction using 

water and 50 wt% glycerol system with different total flowrates and acid ion concentrations 

 

5.4.3.1 Effect of acid concentration on segregation Index, (Xs) 

The effect of acid concentration on segregation index in T and Y Junctions 10cm length 

NCR at different total flow rate is illustrated in Figures 5.92 and 5.93 below. The acid 

ion concentrations were 0.1, 0.25 and 0.5 M. In order to test the effect the acid 

concentration on the segregation index, (Xs), the total volumetric flow rate ratio was 

kept at R=7 with all the implemented acid concentrations. 

 

One important issue need to be mentioned, it has been tried to investigate the effect of 

acid concentration on segregation Index, (Xs) with 1.0 M.The samples from these runs 

had pH values less that 7 and the absorbance values were higher than 2.0. For these 

reason, the results of this set of experiments has been rejected. 
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Figure  5.92: Effect of acid concentration on the segregation index in 10 cm Y-   junction with 

different total flowrates -water system , The total volumetric flow rate ratio, (R=7),  [H+] = 0.1,0.25, 

and 0.5 M 

 

 

 

Figure 5.93: Effect of acid concentration on the segregation index in 10cm T- junction with 

different total flowrates  -water system , The total volumetric flow rate ratio, (R=7), [H+] = 0.1,0.25, 

and 0.5 M 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
, 
X

s
(-

) 

Total Flowrate,Qt (ml/s) 

10cm Y junction NCR-water system with [H+]=0.1M and R=7 

10cm Y junction NCR-water system with [H+]=0.25M and R=7 

10cm Y junction NCR-water system with [H+]=0.5M and R=7 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0 0.5 1 1.5 2 2.5 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
,X

s
(-

) 

Total flowrate,Qt(ml/sec) 

10cm T junction NCR- water system with [H+]=0.1M and R=7 

10cm T junction NCR- water system with [H+]=0.25M and R=7 

10cm T junction NCR- water system with [H+]=0.5M and R=7 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  248 

 

From the experimental results for the two NCR with different junction configurations, it 

can be observed that the segregation index is sensitive to the acid concentration. At the 

total flowrate in the range 0.25 ml/s to 2 ml/s, an increase of segregation index was 

observed as the acid concentration was increased. For instance, from Figure 5.92 using 

the Y-junction, at the total flowrate of 0.25 ml/s, the segregation index increased from 

0.025 to 0.728 as acid concentration was raised from 0.1 M to 0.5 M, representing an 

increment in segregation index of 97%.  Similar effects were observed at all flowrates 

tested. Also similar trends with regards to the increase of segregation index with 

increasing acid ion concentration as highlighted in Figure 5.92 were obtained when 

10cm T junction NCR was tested, as seen in Figure 5.93 These findings support the 

results that have been achieved in 10cm and 30 cm SDR’s experiments (sections 5.2.4 

and 5.3.2.3). In addition, these findings were in agreement with other micromixing 

efficiency studies carried in rotating packed bed reactors (Yang et al., 2009a; Chu et al., 

2007; Yang et al., 2006; Hai-Jian Yang, 2005) .The reason behind the increase in 

segregation index with the increase in acid concentration can be explained in the same 

manner as stated previously in small and large SDRs results section (sections 5.2.4 and 

5.3.2.3) In brief, it is because of  the rate of Dushman reaction, i.e. reaction (5.2) is 

more sensitive to acid concentration than that of reaction (5.1) as its reaction order with 

respect to acid is higher, reaction (5.2) increases at a faster rate than reaction (5.1) when 

the acid concentration is increased. Consequently more iodine and therefore more tri-

iodide is formed. This causes segregation index (XS) to be increased.  

 

5.4.4 Effect of channel length and junction type on segregation Index, (Xs) 

The degree of mixing was assessed in three different lengths and two different junctions 

(Y and T junctions) in order to evaluate the influence of the length and of the geometry of 

the channel on the quality of mixing. The channel lengths used were 5 cm, 10 cm and 15 

cm and experimental runs were completed with the varying lengths using the acid 

concentrations and total flowrates as mentioned in the previous section 5.4.1. Figures 5.94 

and 5.95 demonstrate the effect of increasing the channel length for both Y and T-junction 

narrow channel reactors with using water system and acid concentration of 1.0 M.  
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Figure 5.94: Effect of channel length on segregation Index, (Xs) for 5,10 and 15 cm Y junction-

water system with [H+] =1.0 M 

 

 

Figure 5.95: Effect of channel length on segregation Index, (Xs) for 5,10 and 15 cm T junction-

water system with [H+] =1.0 M 
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total flowrate of 2 ml/s. unfortunately, the back pressure has been experienced with the  

pumping system. For these reason, the total flowrate of 2 ml/s has been ignored. 

 

The Figures clearly demonstrate that at given total flowrate, increasing the length of the 

reactor leads to a decrease in the segregation index. This behaviour is expected since the 

reactants residence time in the NCRs is also longer. This trend was also observed by 

Schneider et al. (2004) when the intensity  of mixing in three different channel deigns 

with the internal diameter of 0.25 mm and lengths of 2.85 mm, 11.30 mm and 18.75 

mm was assessed by the iodide-iodate reaction system in order to evaluate the influence 

of the  length and shape of the channel.  This phenomenon therefore suggests that the 

mixing does not only occur at the meeting of the two streams, but continues along the 

length of the reactor which is expected due to the increased residence time.  

 

Similar trends with regards to the decrease in segregation index with increase in the 

channel length as highlighted in Figures 5.94 and 5.95 were obtained in Figures ( AK9 

and  AK10 ) in appendix K when the water system replaced by 50 wt% glycerol system.  

 

 

The effect of the junction angle between the two feeds was considered and its effect on 

the segregation index.  For this work two junction types were considered for 

comparison, Y and T, with the angle between the feed streams 90° and 180° 

respectively.  The graph below, Figure 5.96, shows a comparison of segregation index 

values for both the Y and T junctions with channel length 5cm over the acid 

concentration range studied.   
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Figure 5.96: Effect of junction type on segregation Index, (Xs) for 5cm length -water system 

 

It is observed that the use of the Y-junction results in higher values of the segregation 

index throughout the acid ion concentration range.  This means that superior 

micromixing is achieved with the T-junction. Additionally, the same trend is observed 

for the reactors with 10 cm and 15 cm channel lengths as shown in Figures AK11 and 

AK12 in appendix K. 

 

The explanation for the difference in micromixing performance with different junction 

types is necessarily related to the way the individual streams make contact with each 

other at the junction. For the T-junction narrow channel reactors, the two streams meet 

in a direct collision, whereas for the Y-junction the meeting of the streams is more 

graduated where not all layers of the feed streams make contact on initial impact, i.e. the 

border face surface area is larger for the T-junction than the Y-junction. This 

mechanism is demonstrated in Figure 97.   
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Theoretical simulations completed by Gigras and Pushpavanam (2008) have compared 

the mixing in three junctions in terms of percentage mixing quality.  The junctions 

considered are Y, T and U.  Differences in the simulations and this project included a Y-

junction angle of 60°, a T-junction angle of 90°, a square channel with a width of 300 

μm, and Reynolds numbers between 30 and 210.  However, the simulation predicted 

that the T-junction would achieve increased mixing quality over the Y-junction across 

the range, i.e. an increase in the junction angle leads to an increase in the mixing 

intensity, as has been found experimentally in the present study. It was found that the U 

junction outperforms both the T and the Y-junction reactors.  This superior mixing was 

explained in terms of the faster induction of secondary vortices at the U-junction  

 

In addition, Aoki and Mae (2006) carried out an intensive experimental work 

considering the effects of channel geometry on mixing performance of micromixing 

using collision of fluid segments. They applied T- and Y- shape microchannnel mixers 

made of glass to the study on effects of the collision zone diameter on mixing 

performance. Two fluid streams collide at the angle of 90
o
 in Y junction and 180

o
 in T 

junction. In the whole of the channels of both mixers, the channel width and depth are 

0.5 mm, and the channel length after collision of two fluid streams is 5 cm. 

Villermaux/Dushman reaction adopted to evaluate mixing performances of T- and Y- 
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Figure 5.97: The contact mechanism of Fluid elements in the Y and T junctions 
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junction microchannnel. The total flow rate has been increased to reduce the absorbance 

at 352 nm less than 0.05. The results shows that the mixer Y- junction microchannnel 

needs much higher total flowrate to reach this criterion than T- junction microchannnel. 

The researchers discuss this difference using shear rate applied to fluid segments at the 

collision zone. Though the Reynolds numbers of the two mixers are the same at the 

same total flow rate, the shear rate at the collision zone in the width direction of T-

junction was    times larger than that of Y junction. The difference in mixing 

performance between the two microchannels was large in the high Re range, where a 

high shear rate is applied to fluid segments. The results also confirm that shear rate 

affects mixing performance in the high Re range. These findings support the results that 

have been achieved in this work with regards to the effect of junction type on mixing 

performance. 

 

5.4.5 Effect of Power input (power dissipation) on segregation index, (Xs) 

The Power input (power dissipation) in the NCRs was estimated according to the 

equation below (Falk and Commenge, 2010): 

 

 

  
       

  
                                                                                                                                   

 

 

 

Figure 5.98 show the effect of power rate dissipation on the segregation index  in 10cm 

T junction NCR using both water and 50 wt% glycerol system. The acid ion 

concentrations were 0.1 and 1.0M. The total flowrates were 0.25 ml/s, 0.5ml/s, 1ml/s 

and 2ml/s. The power dissipation was in the range of 3.2 - 1105.4 W/kg. These values 

depend on the total flow rate, water system or 50wt% glycerol system as shown in 

Figure 5.99. 
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Figure 5.98: Effect of Power dissipation on Segregation Index, (-) - T junction -water system and 50 

wt% Glycerol, [H+] =0.1 and 1.0 M 

 

 

Figure 5.99: Effect of Total flowrate on Specific power input (Power dissipation) in NCR’s for 

water system and 50 wt% Glycerol 
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From Figure 5.98, it is evident that the segregation index in 10cm NCR decreases 

consistently with increase in power dissipation. Considering water system with an acid 

ion concentration of 0.1 M, the specific power input increased from 3.2 W/kg at the 

total flowrate of 0.25 ml/s to its highest value of 208 W/kg at the total flowrate of 2 

ml/s. This represents an increase of 98% in the power dissipation which results in a 

corresponding reduction of segregation index from 0.018 at total flowrate of 0.25 ml/s 

to its lowest value of 0.007 at total flowrate of 2 ml/s thereby representing a 61% drop 

in Xs. Similar trends were observed at all acid ion concentrations studied  as well as 

when 50 wt% glycerol system was used. 

 

From Figure 5.98 and Figure 5.99, certain facts were confirmed. At constant fluid 

kinematic viscosity (ν), the higher values of specific power input (ε) could be attained in 

the NCR channel by increasing the reactants total flowrate (Qt). This could be attributed 

to the fact that increasing the total flowrate results in increase in the mean velocity, ( m) 

of the fluid in the NCR channel. Accordingly, the mean shear rate (  ) in the channel 

increased and the kinetic energy given to the liquid increased as well. For that reason, 

the intensity of micromixing in terms of segregation index was improved. 

 

5.4.6 Effect of mixing time on segregation index, (Xs) 

Figure 5.100 below shows a logarithmic plot of the estimation of theoretical 

micromixing time from equation (5.25) for both the water system and 50 wt% glycerol 

system as function of specific power input for four different total flow rates namely, 

0.25, 0.5,1 and 2 ml/s as shown in Figures 2.101 and 5.102 for 15 cm Y junction NCR 

and for 5 cm T junction NCR respectively. The energetic efficiency, (   ), was 

considered as only 3.0%. As stated in section (5.4.2), the micromixing time in NCR’s  is 

controlled by molecular diffusion and shear rate which was calculated on the basis of 

the hydrodynamic properties of the fluid, channel size and the specific power input in 

the channel. The selectivity, quality or distribution of the final product could be 

controlled by degree of mixing if   tm >> tr  and in this case the mixing process is the 

controlled step .  
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Figure 5.100: Theoretical mixing time versus Specific Power input in NCR’s of 1 mm diameter for 

water and 50 wt% glycerol systems 

 

It can be noticed that the mixing time is inversely proportional to the specific power 

input. As the specific power input increases, the micro-mixing time required for the 

molecules to contact and diffuse to one another decreases. Accordingly, the 

micromixing intensity will be improved.  This also supports the explanation for the 

increases in the mixing efficiency in NCR’s with increased total flowrates, which 

resulted in power input increase.  

 

Figures 5.101 and 5.102 display the relationship between the micromixing time and the 

segregation index, (Xs), for 15 cm Y junction NCR and 5 cm T-junction NCR 

respectively under various operating conditions.  From both Figures, it is clear that the 

shorter the micromixing time, the lower the value of segregation index achieved. Using 

the 15 cm Y-junction (Figure 5.101), for example the lowest Xs and therefore best 

mixing performance is achieved with the  water system and  [H+] =0.1 M  at the lowest 
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highest power input. The effect of acid ion concentration on Xs at a fixed micromixing 

time is also clearly apparent from these plots.  

 

Figure 5.101: Relationship between Theoretical mixing time and segregation index for 15 cm Y 

junction NCR- water and 50 wt% glycerol systems 
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Figure 5.102: Relationship between Theoretical mixing time and segregation index for 5 cm T 

junction NCR- water and 50 wt% glycerol systems 

 

Similar trends with regards to the relationship between the micromixing time and 

segregation index as highlighted in Figure 5.101 were obtained in Figure 5.102 when 

5cm T junction NCR was tested with both water system and 50wt% glycerol. 

 

From the findings above, it can be concluded that at given kinematic viscosity (ν) and 

NCR channel size, the higher values of specific power input (ε) could be attained in the 

NCR channel by increasing the reactants total flowrate (Qt). This in turn leads to shorter 

micro-mixing time between reacting molecules. These findings were in agreement with 

the findings made from the previous two intensified reactors (10 cm and 30 cm SDR 

experiments) as part of this present research and also in agreement with the findings in 

NCRs (Falk and Commenge, 2010; Yang et al., 2009b).  
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5.5 Reactor performance comparison by micromixing efficiency  

One of the main objectives in this research project is to compare the SDR micromixing 

efficiency with the performance of other types of reactor i.e. semi-batch reactor (SBR) 

and narrow channel reactor (NCR). The reactors are in different operating modes i.e. 

semibatch in SBR and continuous flow in SDRs and NCRs. This makes the direct 

comparison between segregation index or micromixedness ratio as function of impeller 

rotational speed and disc rotational speed for SBR and SDR respectively or total flow 

rate in the three different reactors not possible. Instead, the mixing time, the segregation 

index or micromixedness ratio as function of the power dissipation in each of the 

reactors at given operating parameters was  adopted for comparison between the three 

different reactors.  

 

One of the important parameters which needs to be considered when drawing a 

comparison between the performance of the various reactor types studied is the ratio of 

the molar quantities of acid and the borate ions contacting each other. This parameter 

has to be maintained constant in the continuous reactors NCRs and SDRs as well as in 

the SBR for a valid comparison (Guichardon and Falk, 2000), as discussed in detail  in 

Chapter 4. Sample calculation of the sulphuric acid volumes which needs to be injected 

in the SBR and also the ratios (R) of the solution of iodide-iodide-borate ions and the 

acid volumetric flow rates in the continuous reactors i.e. SDR and NCR is shown in 

appendix B. 

 

 

5.5.1 Water system 

The 10cm and 30 cm SDRs are identical except they are different in the size. The 

Reynolds number in both SDRs were kept constant by varying the total flow rate of the 

reactant streams (as shown in Table 5.21) for the purpose of a direct comparison of 

micromixing efficiency between two SDRs  on the basis of  disc rotational speed.  
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Table 5.21: Reynolds numbers values for both SDR are at given total flowrates implemented in the 

10cm and 30 cm SDR’s experiments 

 

Figure 5.103 below shows the effect of disc rotational speed on the segergation index 

for 10 cm and 30 cm SDRs. All the experiments were carried out with water system and 

at the same reactants concentration. The two SDR reactors operated at different total 

flow rates and with constant Reynolds number in both SDRs for the purpose of a direct 

comparison of micromixing efficiency  between the two SDRs on the basis of disc 

rotational speed as mentioned above  .  

 

Figure 5.103: Effect of disc rotational speed,(rpm) on the segregation index ,(Xs), at various liquid 

total flowrates for 10 cm SDR and 30 cm SDR-Smooth Discs – water system with [H+]=1.0 M 

Figure  5.103 shows the micromixing performance of the 10 cm SDR and  30 cm SDR 

in terms of segergation index using water system with acid ion concentration of 1.0 M 

corresponding to the flow rate ratios R=70  (where R=QI/QH). The total flow rates for 
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the 10 cm SDR were 1,3 and 5ml/s. On the other hand, the total flowrate were 5,9 and 

15ml/s  for the 30 cm SDR. From figure 5.103  , it could be concluded that at a given 

disc rotational speed, the highest micromixing performance (i.e. the lowest segergation 

index) has been achieved by the 30 cm SDR. This was  at  all the  implemented  total 

flowrates. From Figure 5.103, under optimised conditions in the 10 cm SDR 

corresponding to a rotational speed of 2400 rpm, 1.0 M acid ion concentration and total 

flowrate of 5.0 ml/s, the segergation index,(xs), was estimated to be about 0.056. Using 

30 cm SDR with disc rotational speed of 1200 rpm and total flowrate of 15 ml/s, the 

corresponding value for xs, was estimated to be about 0.050. At the mentioned 

operating conditions, it is clear that the 30 cm SDR performs better than the 10cm SDR. 

The results from the 30 cm SDR were even higher than those from the 10 cm SDR at 

their respective maximum disc rotational speeds. In fact, the maximum disc rotational 

speed of the 10cm SDR was twice higher  than the maxmum disc rotational speed in 

30cm SDR. This is attributed to  a larger disc surface area available within the 30cm 

SDR compared with the surface area of  10cm SDR (the surface area avilable at the 30 

cm SDR is almost nine times higher than the surface area avilable at the 10 cm SDR). 

Consequently, more surface disc is available for contacting with the reactants and as 

result of that, the 30 cm SDR has the highest shear forces created between liquid film 

and the disc surface and more thinner liquid film are formed. The higher shear rates and 

the thinner films will cause the lower segregation index, ( Xs). In addition, the larger the 

disc available, the longer the residence time for the reactants on the disc surface and 

thus higher the chance of micromixing process to occur.  

 

Figure 5.104 below shows a logarithmic plot of the estimation of theoretical 

micromixing time received from the four different reactors as function of power 

dissipation. All the experiments were carried out with water system and at the same 

reactants concentration i.e [H2BO
-
3] = 0.0909 M; [NaOH] = 0.0909 M; [KI] =0.01167 

M; [KIO3] =0.00233 M; [I2] potential =7 10
-3 

M; [H
+
] =1.0 M .The reactors operated with 

water system and different total flow rates. The correlations between micromixing time 

   and power dissipation  developed on the basis of the plots shown in Figure 5.104 

are given in Table 5.22. 

 



                                 Chapter 5: Experimental Results and Discussion: Micromixing Studies 

 

Mr. Salah R. Al-Hengari  262 

 

 

Figure 5.104: Evolution of the mixing time, (tm), versus the power dissipation for SBR, Semi-batch 

reactor reactor ; 10 and 30 cm SDR- smooth discs, spinning disc reactor, NCRs; narrow channel 

reactors – water system 

 

Table 5.22: Correlations for theoretical mixing time with respect to the power dissipation for SDRs-

smooth discs, SBR and NCR-water system 

Reactor type Correlation R
2
 

10 and  30 cmSDR tm = 0.0092 ε
-0.5

 1.0 

SBR : acid feed location close to impeller  tm = 0.0176 ε
-0.486

 0.99 

SBR : acid feed location: middle of the reactor  tm = 0.0173 ε
-0.497

  0.99 

NCR’s                        tm = 0.2141 ε
-0.453

 1.0 

 

From Figure 5.104 and Table 5.22, it is clear that the theoretical mixing times behave as 

a power-law function of the power dissipation with an order of -0.5,-0.486 and -0.453 

for SDRs, SBR and NCRs respectively. The order value for the  NCRs is similar  to the 

value that Falk and Commenge  (2010) achieved which was -0.5 for different designs of 

NCRs.  
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From both Figure 5.104 and Table 5.22, it is evident that the highest values of power 

dissipation corresponding to the lowest values of mixing time have been achieved by 

the SDRs. Achieving high power dissipation and lower mixing times are dependent on 

the total flowrate and disc rotational speed. The worst case of micromixing efficiency 

was achieved by using NCRs whilst intermediate performance was achieved in the SBR. 

It is noted that, for the same value of the power dissipation, the theoretical micromixing 

time remains largely lower in the SDRs than the semi-batch reactor (SBR) and narrow 

channel reactor (NCRs). This confirms that the micromixing efficiency in SDRs at a 

given power dissipation is better than in SBR and NCRs.  

 

Other criteria of comparative analysis of the micromixedness ratio, (α) is also carried 

out on the basis of the power dissipation.  Figure 5.105  show the effect of power 

dissipation on the micromixedness ratio (α),  for SBR, semi-batch reactor; 10 and 30cm 

SDR, spinning disc reactor, NCR’S; narrow channel reactors - water system with 

[H
+
]=1.0M.  

 

From Figures 5.104 and 5.105, under optimised conditions in the 10 cm SDR 

corresponding to a rotational speed of 2400 rpm, 1.0 M acid ion concentration and total 

flowrate of 5.0 ml/s, the micromixing time (tm), power dissipation (ε) in the film on the 

disc and micromixedness ratio (α) were estimated to be about 0.25 ms, and 1392 W/kg 

and 16.9 respectively. Using 30 cm SDR with disc rotational speed of 1200 rpm and 

total flowrate of 15 ml/s, the corresponding values for tm, ε,  and α were estimated to be 

about 0.3 ms, and 1025 W/kg and 19.0 respectively. At the mentioned operating 

conditions, it is clear that the 30 cm SDR performs better than the 10 cm SDR as a 

result of a larger disc surface area available within the 30cm SDR comparing with the 

surface area of  10 cm SDR. Consequently, more surface disc is available for contacting 

with the reactants. The larger the disc available, the longer the residence time for the 

reactants on the disc surface and thus higher the chance of micromixing process to 

occur. Alternatively, using a semi-batch Reactor (SBR) with an impeller rotational 

speed of 1200 rpm and acid concentration of 1.0 M injected close to the impeller, the 

micromixing time(tm) was 4.0 ms, the power dissipation (ε) equalled   only 21 W/kg and 

micromixedness ratio (α) was 7. On the other hand, using 15 cm Y junction narrow 

channel reactor (NCR) with total flow rate of 2 ml/s and acid concentration of 1.0 M, 
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the micromixing time(tm) was 19.1 ms, the power dissipation (ε) equalled 207.506  

W/kg and micromixedness ratio (α) was 15.21.  

 

Figure 5.105: Effect of power dissipation on the micromixedness ratio ,(α),  for SBR, semibach 

reactor; 10 and 30 cm SDRs-smooth discs, spinning disc reactor, NCRs; narrow channel reactors – 

water system with [H+]=1.0 M 

Table 5.23 shows the performance of the 10 cm SDR, 30 cm SDR, SBR and NCRS in 

order from the highest to lowest using water system with acid ion concentration of 1.0 

M and its micromixedness ratio correlations as function of power dissipation 

correlations. From Table 5.23 there some conclusions can be drawn, firstly, at a given 

power dissipation, the highest performance has been achieved by the SDRs particularly 

at higher total flowrates. Secondary, the SBR was the second performed reactor in terms 

of the intensity of the mixing when the acid ejection was close to impeller. The worst 

micromixing performance was achieved by the NCRs particularly for Y junction type 

with the 5cm length. In general, the NCRs did not show good performance when 
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compared with the other two types of reactors as their power range was small compared 

with the power dissipation range for the other two reactors. 

 

Table 5.23: the performance of the reactors in order from the highest to lowest at the acid ion 

concentration of 1.0 M and its micromixedness ratio correlations as function of power dissipation 

correlations 

Order 

NO. 

Reactor type Operating condition Correlation R
2
 

1 10 cm SDR-

smooth disc 

Q=5 ml/s, N=300 rpm-2400 rpm α = 14.56 ε
0.0124

 0.300 

2 30 cm SDR-

smooth disc 

Q=15 ml/s ,N=300 rpm-1200 rpm α= 11.745 ε
0.0585

 0.607 

3 SBR acid feed location: close to 

impeller, N=300-1200 rpm 

α = 6.2086 ε
0.0508

 0.771 

4 30 cm SDR-

smooth disc 

Q=9 ml/s, N=300-1200 rpm α = 5.653 ε
0.1412

 0.972 

5 10 cm SDR Q=3 ml/s, N=300-2400 rpm α = 5.6492 ε
0.0387

 0.419 

6 NCR T junction- 15 cm length, Qt=0.25-

2 ml/s 

α = 3.9803 ε
0.2595

 0.933 

7 SBR acid feed location: middle of the 

reactor, N=300-1200 rpm 

α= 4.1187 ε
0.1527

 0.914 

8 NCR T junction- 10 cm length, Qt=0.25-

2 ml/s 

α= 3.507 ε
0.2717

 0.974 

9 30 cm SDR-

smooth disc 

Q=3 ml/s, ,N=300 rpm-1200 rpm α = 2.8401 ε
0.2813

 0.990 

10 NCR Y junction- 15 cm length, Qt=0.25-

2 ml/s 

α = 2.3743 ε
0.3793

 0.932 

11 NCR T junction- 5 cm length, Qt=0.25-2 

ml/s 

α= 2.463 ε
0.3107

 0.926 

12 10 cm SDR-

smooth disc 

Q=1 ml/s, N=300 rpm-2400 rpm α= 2.0958 ε
0.1743

 0.990 

13 NCR Y junction- 10 cm length, Qt=0.25-

2 ml/s 

α = 1.7528 ε
0.3677

 0.985 

14 NCR Y junction- 5 cm length, Qt=0.25-2 

ml/s 

α = 1.7528 ε
0.3677

 0.954 

 

It is worth comparing the micromixing efficiency of spinning disc reactors with the 

other intensified reactors. (Rousseaux et al., 1999), (Chu et al., 2007) and (Nouri et al., 

2008) have characterised the micromixing efficiency in a novel sliding-surface mixing 

device (S-S-M), a rotor–stator reactor (R-S-R) and torus reactor(T-R) respectively, by 

use of iodide-iodate reaction test. The reactants concentrations including the acid ions 

concentration were similar to the concentration of the reactants  used in this work. The 

local energy dissipation rate was correlated in the S-S-M, , the R-S-R and the T-R  as 

shown in equations 5.28, 5.29 and 5.30 respectively: 
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Comparing with the correlations for the 10 cm SDR and 30 cm SDR with the total 

flowrate of 5 ml/sec and 15 ml/s respectively (as shown in Table 5.23), it can be noted 

that for the same value of power dissipation, (ε), the micromixedness ratio in the 

spinning disc reactors remains largely higher than in the sliding-surface mixing device, 

the rotor–stator reactor and torus reactor. Table 5.24 shows the values of the 

micromixedness ratio at the power dissipation, (ε ), of  1 W/kg using equations in Table 

5.23 and equations 5.28 to 5.30. The results from Table 5.24 clearly show that the 10 

and 30 cm SDR give significantly better micromixing performance which highlights its 

potential as an alternative device for processes where a high degree of mixing is 

critically important.  

 

Table 5.24: The performance of the reactors in order from the highest to lowest at the acid ion 

concentration of 1.0 M and its micromixedness ratio correlations as function of power dissipation 

correlations 

Reactor type and reactor speed 

 

Total flowrate, Qt  micromixedness 

ratio,α (-) 

10 cm spinning disc reactor,(SDR) 

with Rotating disc speed ranged of 

300-2400 rpm 

1 ml/s 2.096 

3 ml/s 5.649 

5 ml/s 14.560 

30 cm spinning disc reactor,(SDR) 

with Rotating disc speed ranged of 

300-1200  rpm 

3 ml/s 2.840 

9 ml/s 5.653 

15 ml/s 11.745 

Sliding-surface mixing device, 

(S-S-M) with Rotating disk speed 

up to 50  rps 

Recirculation flow rate up to 500 

ml/min 

3.3 

Rotor–stator reactor,(R-S-R) with 

reactor speed ranged of 300-2400 

rpm 

Total flowrate of 340 l/h 0.079 

torus reactor(T-R) with Stirring 

speed ranged of 100 -1300 rpm 

N/A 5.1 
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5.5.2 50% water/50% glycerol system 

The reactor comparison also has been performed using 50wt% glycerol system 

corresponding to viscosity of 6.0x10
-3  

Pa.s. From Figure 5.106 and Table 5.25, the 

theoretical mixing time for each reactor type is influenced by the power dissipation into 

the fluid, according to a power-law correlation similar to the one observed previously 

for the water system. 

 

 

Figure 5.106: Evolution of the mixing time, (tm), versus the power dissipation for SBR, semibach 

reactor; 10 and 30 cm SDRs-smooth discs, spinning disc reactor, NCR’s; narrow channel reactors – 

50wt% glycerol  system 
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Table 5.25: Shows the correlations for theoretical mixing time with respect to the power dissipation 

for SDRs-smooth discs, SBR and NCR in order of from the lowest to the highest mixing time for 

50wt% glycerol system 

Reactor type Correlation R
2
 

10 cm and 30 cm SDRs tm = 0.033 ε
-0.5

 0.99 

SBR : acid feed location close to 

impeller 

tm= 0.0467 ε
-0.464

 0.99 

NCR’s tm= 0.5097 ε
-0.456

 1 

 

From both Figure 5.106 and Table 5.25 and similar to the water system experiments 

results, it is clear that the highest values of power dissipation corresponding to the 

lowest values of mixing time have been achieved by both SDRs. It is again evident from 

these data that the lowest micromixing efficiency was achieved by NCRs, as observed 

with the water system. 

 

At a given value of power dissipation, the theoretical micromixing time still remains 

largely lower in the SDRs than the other two types of reactors. Figure 5.107 show the 

effect of power dissipation on the micromixedness ratio, (α),  for SBR, Semibatch 

reactor; 10 and 30 cm SDR, spinning disc reactor, NCR’S; narrow channel reactors – 

50wt% glycerol  system with [H
+
]=1.0M. From Figures 5.105 and 5.106 with 

considering the optimised conditions in the 10cm SDR corresponding to a rotational 

speed of 2400 rpm, 1.0M acid ion concentration and total flowrate of 5.0 ml/s, the 

micromixing time(tm), Power dissipation (ε) of the film on the disc and micromixedness 

ratio (α) were estimated to be about 1.1ms, and 818 W/kg and 5.2 respectively. Using 

30 cm SDR with disc rotational speed of 1200 rpm and total flowrate of 15 ml/s, the 

corresponding values for   ,  ε  and α  were estimated to be about 1.3 ms, and 599 

W/kg and 3.8 respectively. similar observations with regarding to the tm, ε and  α of the 

SDRs using water system as highlighted in Figures 5.104 and  5.105 were obtained in 

Figures 5.106 and 5.107. Even with using 50wt%. 

 

Instead, using a semi-batch reactor (SBR) with an impeller rotational speed of 1200rpm 

and acid concentration of 1.0 M injected close to the impeller, the micromixing time(tm) 

was 12.0 ms, the power dissipation (ε) equalled only 19 W/kg and micromixedness ratio 

(α) was 6.752. On the other hand, using 15 cm Y junction narrow channel reactor 

(NCR) with total flow rate of 1ml/s and acid concentration of 1.0 M, the micromixing 
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time(tm) was 39.1 ms, the power dissipation (ε) equalled 276.3 W/kg and 

micromixedness ratio (α) was 4.85.  

 

 

 

Figure 5.107: Effect of power dissipation on the micromixedness ratio ,(α), for SBR, semibach 

reactor; 10 and 30 cm SDRs-smooth discs, spinning disc reactor, NCR’S; narrow channel reactors 

– 50wt% glycerol system with [H+]=1.0 M 

 

Table 5.26 shows the performance of the 10 SDR, 30cm SDR, SBR and NCR’S in order 

from the highest to lowest using 50 wt% glycerol system with acid ion concentration of 

1.0 M and its micromixedness ratio correlations as function of power dissipation.  From 

the correlations shown in Table 5.26, it is clear that the 10 and 30 cm SDRs show less 

mixing performance that the SBR with injecting the acid close to the impeller. The 
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NCR’s shows the lowest mixing performance comparing with the SDR’s and SBR. 

Although the SDRs shows better mixing performance in terms of mixing time as shown 

in Table 5.25, the SDRs fails to show high mixing intensity in terms of micromixedness 

ratio when the 50 wt% glycerol was used. Viscous materials are usually harder to mix in 

the reactors and consequentially require longer resentence time in the reactors to reach a 

high degree of mixing. Obviously the reactants have shorter resentence time in SDRs 

comparing with the ones in the SBR. The resentence time of the reactants in SBR is in 

the range of 22.2 min - 5.6 min, on the other hand the resentence time of the reactants in 

SDR is in the range of (0.1-2.0 s) it depends on the disc size, disc rotational speed and 

the total flowrate. It is clearly the reactants resentence time in SBR is much longer in 

the SDR and this will help the reactants to be longer in the mixing environment. 

Consequently, higher intensity of mixing may be achieved. Viscous materials would 

benefit from multi-pass SDRs (stacked Disc or series set ups) this would increase the 

reactants resentence time on the SDRs.  Consequently, higher intensity of mixing may 

be achieved. 

 

In this work when the 50 wt% glycerol was used, the Acid ions were injected to SBR by 

injection point close to impeller i.e. only 2.0 mm away from the edge of the impeller tip 

and this is an ideal situation. Usually in the industry the injection points are typically 

near the top of the vessel as it is favoured because of its convenience. In this work, if the 

micromixing intensity comparison between SDRs and SBR using injection point  

located in middle of reactor  or higher which is not available, possibly the SDRs will 

show better micromixing performance than the SBR.  

 

As will be recommended in this work, it would be important to estimate the 

micromixing in the SDRs by determination of the micromixing time and theoretical 

segregation index by using a simple mixing model, i.e., the incorporation model 

(Fournier et al., 1996b) which describes the coupling between mixing and chemical 

reaction in order to obtain the best agreement between theoretical predictions and 

experimental data over a wide range of operating conditions which was adopted in this 

research. 
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Table 5.26: The performance of the reactors in order from the highest to lowest using acid ion 

concentration of 1.0 M and 50 wt% glycerol system 

Order 

NO. 

Reactor type Operating condition Correlation 

1 SBR acid feed location: close to impeller α = 4.0476 ε
0.1904

 

2 10 cm SDR-

smooth discs 

Q=5 ml/s α= 3.387 ε
0.0705

 

3 10 cm SDR-

smooth disc 

Q=3 ml/s α = 2.5549 ε
0.1075

 

4 10 cm SDR-

smooth disc 

Q=1 ml/s α = 2.0036 ε
0.1703

 

5 30 cm SDR-

smooth disc 

Q=3 ml/s α = 1.9996 ε
0.1363

 

6 30 cm SDR-

smooth disc 

Q=9 ml/s α = 1.3631 ε
0.2476

 

7 30 cm SDR 

smooth disc 

Q=15 ml/s α = 1.22 ε
0.1924

 

8 NCR T junction- 15 cm length α= 0.6736 ε
0.3242

 

9 NCR T junction- 10 cm length α= 0.5158 ε
0.2845

 

10 NCR Y junction- 15 cm length α = 0.4111 ε
0.4491

 

11 NCR T junction- 5 cm length α = 0.3283 ε
0.4585

 

12 NCR Y junction- 10 cm length α = 0.0552 ε
0.68

 

13 NCR Y junction- 5 cm length α = 0.0457 ε
0.67

 

 

Currently there is no data available in the literature with regards to the intensified 

reactors using high viscosity systems. So at the moment the comparison of the 

micromixing efficiency of spinning disc reactors with the other intensified reactors is 

not possible.  
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6. Experimental Results and Discussion: Residence time 

Distribution (RTD) Studies 

The main objectives of this part of research project is to predict experimentally the 

conditions under which the flow of the thin film on the 30 cm rotating disc 

approaches either a plug flow or a backmixed profile. These objectives could be 

achieved by implementing the Residence Time Distribution (RTD) concept. The 

variance and mean residence time were used to calculate the dispersion number of the 

fluid in the spinning disc reactor under different operating conditions. As mentioned 

in Chapter 2, the significance of the dispersion number is that it characterizes the 

degree of back mixing during flow. If the dispersion number approaches zero, 

backmixing is considered to be negligible and the behaviour of the reactor approaches 

that of a plug-flow reactor, (PFR). If the dispersion number approaches infinity, there 

is a large degree of dispersion, and the behaviour of the reactor approaches mixed 

flow as in a stirred tank reactor (STR).  

 

Determination of the mean residence time (tmean) and variance (square of the standard 

deviation,    ) by the method of moments are implemented for analysing the RTD 

curves that are obtained from the step injection technique, following the method 

presented  in the existing chemical engineering literature (Fogler, 2006; Levenspiel, 

1999). The effects of disc rotational speed, the total flow rate, fluid viscosity, and the 

use of smooth and grooved discs on the RTD curves have been examined. 

 

The values of the residence time distribution E (t) and the mean residence time, 

(tmean), as defined by the integrals in equations (2.50) and (2.56), were evaluated 

numerically using techniques such as the Simpson’s rule in the case of even number 

of samples and the trapezoidol rule in the case of an odd numbers of samples 

(Interactive Mathematics, 2009; Fogler, 1992) . It should be emphasised that the time 

interval (    between each sample collected should be the same for the above rules to 

apply. In the present work, the time interval (    is ten seconds.  

 

The experimental programme produced a large number of concentration curves, the 

cumulative distribution curves F(t), the residence time distribution curves E (t). This 
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Chapter will focus on the residence time distribution curves E (t) for 30cm smooth 

and grooved disc using water and 50wt% water -50 wt% glycerol system.  

 

6.1 Experimental design  

Randomized general full factorial experimental designs DOE for both water and 

50wt% Glycerol systems were performed using Minitab 15 (Table AL1, appendix L) 

For the residence time distribution experiments in 30 cm SDR, the variables 

incorporated into the experimental design were:  

 

 Disc rotational speed, N: 300 rpm, 500 rpm, 800 rpm and 1200 rpm (A disc 

speed of 1200 rpm was the maximum speed at which the reactor could be 

safely operated) 

 Total flowrate, Qt: 3, 6, 9 and 15 ml/s; 

 Working fluid: water and 50 wt% Glycerol systems; 

 Disc surface: stainless steel smooth disc and grooved disc. 

 

The total number of experiments carried out in this part of the research were sixty 

four experiments i.e. sixteen experiments for each system (water and 50wt % 

Glycerol system) using two different types of discs (Stainless steel smooth disc and 

Grooved disc).  

 

6.2 Methylene blue spectra and molar extinction coefficient, (  ), 

measurements  

The molar extinction coefficient, (  ), was determined by measuring the absorbance 

of different samples of methylene blue of known concentration. A calibration curve 

of absorbance vs. concentration enabled the value of the molar extinction coefficient 

to be calculated.  

 

According to the spectra of methylene blue for all the measured samples, the peak of 

interest was observed at wavelength (         in the range 662.7-664.8 nm for both 

water and 50 wt% glycerol liquid media. These findings were in agreement with 

spectral data of methylene blue obtained from the literature (Genina et al., 2008; 
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Khalid, 2001; Gorman and Shnider, 1988). Figures 6.1 and 6.2 show the spectra of   

methylene blue in  water and 50wt% glycerol/water system respectively. 

 

 

Figure 6.1: Absorbance spectra of methylene blue in water system using a single-beam 

spectrophotometer (UNICAM UV- PU8750) 

 

 

Figure 6.2: Absorbance spectra at different concentration of methylene blue in 50wt% 

glycerol/water system using a single-beam spectrophotometer (shimadsu UV- mini 1240) 
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Figure 6.3 shows the calibration plots for water and water/glycerol (50 wt% of 

component) obtained with a single-beam spectrophotometer of type (PU8750- 

UNICAM). The straight lines obtained confirm the validity of the Beer- Lambert law 

at the methylene blue concentrations used. The slope of the linear calibration profile 

is used in the calculation of the molar extinction coefficient, (  ) as follows:  
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Figure 6.3: Calibration plot for the determination of molal absorption coefficient for methylene 

blue - water and 50wt% glycerol systems 
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6.3 Kinetics measurements of methylene blue / 50wt% glycerol-water 

mixture  

As mentioned in Chapter 2, one of characteristics that the selection of tracer should 

be based on is that the tracer should not be reactive species with the working fluid, 

here in our case the methylene blue should not react with water or glycerol. To ensure 

this criterion is satisfied in our system, a kinetic test has been implemented on the 

0.005 g/l of methylene blue in 50 wt% glycerol-water system, in terms of absorbance 

changes with time. The test has been run for 900 s at wavelengths of 664.8 nm with 

0.1 ml of 0.05 g/l methylene blue added to 2 ml of 50 wt% glycerol-water system. 

Figure 6.4 show the absorbance values for the methylene blue in 50 wt% glycerol-

water system within 15 min at wavelength of 664.8 nm. The plot was generated using 

a single-beam spectrophotometer (shimadsu UV- mini 1240). From Figure 6.4 it is 

clear that there is no change in the absorbance values and therefore concentration 

with time. Therefore, there is no reaction occurring between the tracer and the 

components in the liquid medium, confirming that methylene blue is a suiTable tracer 

for the liquid media used in this study.  

 

 

Figure  6.4: UV-Vis spectrophotometer Kinetics test at the wavelengths of 664.8nm for 0.005 g/l 

of methylene blue in 50 wt% glycerol-water system 

1.1 

1.15 

1.2 

1.25 

1.3 

1.35 

1.4 

1.45 

1.5 

0 100 200 300 400 500 600 700 800 900 1000 

A
b

s
o

rb
a

n
c
e

,D
 (

-)
 

Time,t (s) 

 wavelength at 664.8 nm 



                Chapter 6: Experimental Results and Discussion: RTD Studies 

 

Mr. Salah R. Al-Hengari  277 

6.4 Construction  of Concentration C(t), Cumulative function F(t), 

and residence time distribution function E(t) curves 

 
In order to construct the residence time distribution function E(t) curves using a step 

input technique for the SDR at different operating conditions, three steps are typically 

followed: 

 

I. The outlet concentration is measured in terms of absorbance for the methylene 

blue/water or water-glycerol mixture flowing off the edge of the SDR surface. 

The measurements were taken from time, t = 0, until a constant reading is 

obtained i.e. steady state. In this work twelve samples were collected from the 

bottom of the shoe collector every ten seconds and absorbance were 

measured. The absorbance values allowed us to determine the concentration 

of methylene blue sample at a given time. The samples concentration were 

measured by using UV/VIS spectrophotometer based upon the Beer-Lambert 

absorption law as follows:  

 

                                                                                                                                             

 

   
  

  
                                                                                                                                         

 

Where: 

 D = absorbance, (-) 

 C   = concentration, (mol/l) 

 l   = cell length, (0.1cm) 

  = the molar extinction coefficient, (       l/mol cm) 

 

II. The second step involves calculating the cumulative function F (t); this is 

done by dividing the sample concentration at a given time (Cout) by the known 

inlet sample concentration (C0), the latter being equivalent to the final steady-

state concentration at the end of the step-input test. This yields the cumulative 

function (equation 2.50). 



                Chapter 6: Experimental Results and Discussion: RTD Studies 

 

Mr. Salah R. Al-Hengari  278 

 

III. The third step is differentiate the F(t) to obtain the RTD function E(t) ( 

equation 2.51). 

 

Example calculations for C (t), F (t) and E (t): 

 

A sample of computed results for the cumulative function F (t) and  the residence 

time distribution function E (t) are displayed in  Table (6.1) for the 30 cm smooth 

disc with water system, Qt=3 ml/s and N=300 rpm. The concentration C(t) for each 

sample collected is first determined from the corresponding absorbance value using 

equation (6.2): 

 

   
  

  
                                                                                                                                         

 

Using the absorbance of 0.112 for sample 1 as an example, the concentration is 

calculated as:  

 

  
     

          
                  



Similarly the final steady state concentration (  ) is computed as 3.661x10
-5

 mol/l, 

based on an absorbance value of 0.232.The cumulative function F (t) value for 

sample 1 can then be calculated from equation (2.50): 

 

      
    

  
 
    

 
          

          
        

 

Finally, the RTD can be calculated from equation (2.51): 
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Table 6.1: Calculating  the cumulative function F (t), the residence time distribution function E 

(t) for the 30 cm using smooth disc with water system, Qt=3 ml/s and N=300 rpm 

 

Sample  

no. 

 

Time 

t(sec) 

 

absorbance 

D(-) 

Concentration 

C( mol /l) 

 

F(t) = [Ct/C0] E(t)=d/dt [Ct/C0]step 

0 0 0.000 0.000E+00 0.000 0.0000E+00 

1 10 0.112 1.767E-05 0.483 4.8270E-02 

2 20 0.200 3.156E-05 0.862 3.7926E-02 

3 30 0.215 3.392E-05 0.927 6.4647E-03 

4 40 0.225 3.550E-05 0.970 4.3098E-03 

5 50 0.231 3.645E-05 0.996 2.5859E-03 

6 60 0.232 3.661E-05 1.000 4.3098E-04 

7 70 0.232 3.661E-05 1.000 0.0000E+00 

8 80 0.232 3.661E-05 1.000 0.0000E+00 

9 90 0.232 3.661E-05 1.000 0.0000E+00 

10 100 0.232 3.661E-05 1.000 0.0000E+00 

11 110 0.232 3.661E-05 1.000 0.0000E+00 

12 120 0.232 3.661E-05 1.000 0.0000E+00 

 

By plotting the concentration values (C) as function of time, using the data in Table 

(6.1), the curve shown in Figure (6.5) is obtained. Figure (6.6) and Figure (6.7) are 

the Cumulative distribution curve F(t) and the RTD function E(t) respectively. 
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Figure 6.5: The concentration curve for 30cm SDR using smooth disc with water system, Qt=3 

ml/s, N=300 rpm 

 

 

Figure 6.6: The cumulative distribution curve, F (t) for 30 cm SDR using smooth disc with water 

system, Qt=3 ml/s, N=300 rpm 
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Figure 6.7: Calculating the residence time distribution function, E(t) for 30 cm SDR using 

smooth disc with water system, Qt=3 ml/s, N=300 rpm 

 

One important point needs to be mentioned about Figure 6.6; it is well known that for 

systems approaching plug flow behaviour, an S-shaped curve is usually expected. If 

we had more data points at time intervals between 0 and 10 s and even 10 and 20 s, it 

may have seen this S-shape. In the present work, due to the limitation of the system 

measurement, the maximum time interval (    between each sample collected was 

ten seconds.  

 

Other important issue was noticed in Figure 6.7, a long tail appeared within the E (t) 

curve at the Qt=3 and N=300 rpm. Usually the long tail  indicative of stagnant 

backwaters existing on the disc (Levenspiel, 1999). This abnormal behaviour  

negatively affects the intensity of mixing on the SDR disc surface. This kind of 

behaviour disappeared at the higher disc rotational speed and high flowrates i.e. 

N=1200 rpm and Qt=15 ml/s (Figure 6.13). From Figure 6.7, the tail is that portion of 

curve between 30-60 s.  
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6.5 Mean residence Time and Variance calculations 

Other important values needed to be calculated are the first and the second moments 

of the RTD, namely is the experimental mean residence time (Exp. tmean ) and the 

Variance, or square of the standard deviation. The variance characterizes the width of 

the distribution of the RTD function and its spread around the average. The RTD of 

ideal plug flow reactors has a variance of zero. Real reactors, on the other hand, 

always show a deviation from ideal plug flow behaviour due to the  axial dispersion,  

resulting in value of variance (   )  > 0.0. However, the smaller the value variance 

(   ), the narrower is the RTD and the lower is the axial dispersion.   

 

The purpose for calculating theses two moments is to analyse and compare the RTDs 

produced by the 30cm SDR at different operating condition i.e. total flowrates, disc 

rotational speeds, disc configuration and feed viscosity. The mean residence time can 

be calculated  as follows:  

 

                                                                                                                                  
 

 

 

 

The second moment of the RTD can be evaluated as follows: 

 

          
 

 
                                                                                                                                                                                

 

To calculate the mean residence time (tm) and the variance (   ), Table (6.3) was 

constructed from the data given and interpreted in Table (6.2). Using the data in 

Table (6.1), the tE(t), (t-tm) and (t-tm)
2 

E(t) can be calculated as shown in Table (6.2) 
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Table 6.2: Calculating the experimental mean residence time (Exp. tm), the variance (σ2) for the 30cm using smooth disc with water system, Qt=3ml/s and N=300rpm 

Run 

no. 

 

 

t,(sec) 

 

       

C,(mo l /l) E(t)=d/dt[Ct/C0]step 

 

 

t*E(t) (t-tm) (t-tm)
2
 (t-tm)

2
*E(t) 

0 0 0.000E+00        0.0000E+00 0.000 -17.038 290.293 0.000 

1 10 1.767E-05        4.8270E-02 0.483 -7.038 49.533 2.391 

2 20 3.156E-05        3.7926E-02 0.759 2.962 8.773 0.333 

3 30 3.392E-05        6.4647E-03 0.194 12.962 168.013 1.086 

4 40 3.550E-05        4.3098E-03 0.172 22.962 527.253 2.272 

5 50 3.645E-05        2.5859E-03 0.129 32.962 1086.493 2.810 

6 60 3.661E-05        4.3098E-04 0.026 42.962 1845.733 0.795 

7 70 3.661E-05        0.0000E+00 0.000 52.962 2804.973 0.000 

8 80 3.661E-05        0.0000E+00 0.000 62.962 3964.213 0.000 

9 90 3.661E-05        0.0000E+00 0.000 72.962 5323.453 0.000 

10 100 3.661E-05        0.0000E+00 0.000 82.962 6882.693 0.000 

11 110 3.661E-05        0.0000E+00 0.000 92.962 8641.933 0.000 

12 120         3.661E-05        0.0000E+00 0.000 102.962 10601.173          0.000 
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Example for calculating tm and   , : 

 

With adopting the data in Table (6.2), the mean residence time can be determined by 

using the Simpson’s rule with even number of samples to evaluate the integral using the 

data in columns two and five as follows:   

 

           
 

 

 
  

 
                             

=
  

 
                                                    

 2 0.172+ 4 0.129+1 0.026 

 17.04 s 

 

Where                 are the values of t*E(t) for each sample number, the area under 

the curve of a plot of tE(t) as function of time (t) will also yield tm as shown in Figure 

(6.8). The area under the curve should be approximately equal to the value obtained by 

Simpson’s rule above.  

 

It is to be noted that the value of the reactants  mean residence time obtained by the 

RTD concept using step input injection method in this study is not, strictly speaking, the 

actual disc residence time. Rather, since the samples were collected not from the edge of 

the disc but from the bottom of the reactor through the sampling shoe, the value of 

17.04 s represents the overall reactants residence time which is the time of the reactants 

residence time on the disc plus the time taken by the reactants to flow from the entrance 

of sampling shoe to the sampling collecting point at the bottom of the reactor.  

 

Recalling equation 2.8 for the mean residence time of the reactants on the 30 cm SDR 

disc at the operating conditions of  Qt=3 ml/s , N=300 rpm and water system, the value 

of exact mean residence was predicted to be only 1.2 s. Although it would have been 

better to collect samples right after the fluid comes off the discthis option was 

unfortunately not possible in this present work due to difficult mechanical modification 

issues. Nevertheless, in spite of the residence time measurements not being 

representative of the disc residence time, it is expected that residence time distributions 
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estimated in this study should not be significantly affected by the sample collection 

technique if steady flow of the stream to the outlet tube can be maintained.  

 

By finding the mean residence time, the variance can be determined using the 

Simpson’s rule with even number of samples to evaluate the integral using the data 

columns (two and seven) as following:  

 

           
 

 
         

  

 
                             

 
  

 
                                                        

                                              

 

As mentioned earlier in Chapter 2, the variance represents the spread of the distribution, 

the greater the value of this factor, the greater the distribution spread existing. The 

variance calculated above is an estimation of the area under the curve of a plot of (t-

tm)
2
E(t) as a function of time (t) as shown in Figure (6.9).  

 

 

Figure 6.8: Graphical method for calculating the mean residence time for 30 cm SDR using smooth 

disc with water system, Qt=3 ml/s, N=300 rpm 
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Figure 6.9: Graphical method for calculating the variance for 30 cm SDR using smooth disc with 

water system, Qt=3 ml/s, N=300 rpm 

 

The above plots for F(t) and E(t) as well as calculations for mean residence time and 

variance were generated for each set of data collected for a given set of operating 

conditions in the SDR to assess the effect of a range of SDR parameters on the RTD. 

These will be analysed and discussed below.  

 

6.6 30cm smooth stainless steel disc RTD results 

6.6.1 Influence of disc rotational speed on RTD  

The influence of the smooth 30cm disc rotational speed on RTD characteristics is 

shown in Figure 6.10 and Figure 6.11. The disc rotational speed was 300, 500, 800 and 

1200 rpm. Four different total flow rates have been implemented in this set of 

experiments (3, 6,9 and 15 ml/s). The total flowrate ratio was, R=Qm.b / Qw= 0.028. The 

flowrate of and the initial concentration of methylene blue were 5ml/s and 0.5 g/l 
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Figure 6.10 shows the influence of disc rotational speed at total flowrates of 3ml/s on 

the RTD. There is an indication that, at the higher disc rotational speeds, the RTD 

curves become narrower. As underlined by Todd and Irving (Todd and Irving, 1969), 

the width of the RTD spread, (or equivalently the RTD variance) can be considered as a 

measure of the axial mixing which makes the reactor deviate from the ideal plug-flow 

model. The RTD dimensionless variance    
   or the normalized variance of residence 

time distribution value (the ratio of the variance to the square of the mean residence 

time) is zero for the ideal plug-flow reactor where as real reactors tend to give values of 

                         
   > zero. The smaller the value of    

 , the narrower the 

RTD and the lower the axial dispersion. Therefore, the analysis of the variance of RTDs 

is essential for investigating the flow and mixing in reactors. 

 

From the data plotted in Figure 6.10, the area under the E (t) vs. t curve was evaluated. 

It was found that the fraction of material leaving the reactor, which spent 10 s in the 

reactor, was 24% and 26% at the disc rotational speed of 300 and 500 rpm respectively. 

This was numerically estimated by using the Trapezoidal rule (two-point). On the other 

hand, at both disc rotational speeds of 800 and 1200 rpm, the fraction of material 

leaving the reactor, which spent 10 s in the reactor, was 38%. 

 

According to the experimental mean residence time values or the centroid of the 

distribution, which has been calculated at mentioned disc rotational speeds as shown in 

Table 6.3, it can be seen that when the disc rotational speed increases from the 300 to 

1200 rpm, the experimental mean residence time, (MRTExp. i.e. the reactants residence 

time on the disc plus the time taken by the fluid  to flow to the sampling collecting), 

decreased from 17.04 to 13.92 s with the percent of reduction of 18.35%..  In addition, 

as shown in Table 6.3, at the total flowrate of 3ml/s, the corresponding experimental 

variance is 103.8, 71.2, 64.9 and 63.1 for the disc rotational speed of 300, 500, 800 and 

1200 rpm, respectively. The reduction of variance reached up to 39.27% when the disc 

speed increased from 300 to 1200 rpm. It is clear that at the higher disc speed, a lower 

variance is obtained. Therefore, the flow behaviour in the spinning disc reactor 

approaches plug-flow regime at higher disc rotational speeds, whereby RTD curves at 

these speeds become closer to the distorted bell shaped (Fogler, 2006). Consequently, 

more uniformity in the fluid properties can be expected e.g. composition across the 

surface of the disc, which makes the SDR closer to the near plug-flow reactor and this 
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will have positive influence on the yield and selectivity of reactions. These finding are 

in agreement with the results has been achieved for micromixing experiments (Chapter 

5).  

 

Another very important observation from Figure 6.10, the RTD curves almost coincide 

together and are not differentiable at the disc rotational speed of 800 and 1200 rpm. This 

could be attributed to the fact that, the mixing intensity has attained its maximum level 

at 800 rpm and increasing the disc rotational speed will not add any benefit to the 

mixing process.  

 

 

Figure 6.10: Effect of disc rotational speed on RTD at total flowrate of (Qt=3 ml/s)-smooth disc 

with water system 

 

Table 6.3: Experimental mean residence time and the variance for the 30cm SDR using water 

system with smooth disc, Qt=3 ml/s 

N, rpm overall mean residence time, tm ( s) Variance,  (sec
2
) 

300 17.04 103.840 

500 14.37 71.247 

800 14.24 64.929 

1200 13.92 62.061 
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Figure 6.11 shows the influence of disc rotational speed at total flowrates of 6 ml/s on 

the RTD. Similar trends have been achieved at this total flowrate when compared with 

the RTD curves shown in Figure (6.10) for the lower flowrate Qt=3 ml/s i.e. the higher 

disc rotational speed, the narrower the RTD curves.  

 

From the data plotted in Figure 6.11, the area under the E (t) vs. t curve was evaluated. 

It was found that the fraction of material leaving the reactor, which spent 10 s in the 

reactor, was 27% and 47 % at the disc rotational speed of 300 and 500 rpm respectively. 

In contrast, at the higher disc rotational speeds i.e. 800 and 1200 rpm, the fraction of 

material leaving the reactor, which spent 10 s in the reactor, was 48% and 49% 

respectively. As mentioned earlier, this was numerically estimated by using the 

Trapezoidal rule (two-point).  

 

Based on the above findings, it can be concluded that at the highest disc rotational speed 

(1200 rpm), more percentage of materials is leaving the reactor within 10 s. This means 

that the flow is approaching plug flow behaviour at the higher speed when compared to 

the lower disc rotational speed (300 rpm). 

 

The mean residence time and the variance values at the total flowrate of 6ml/s and the 

disc rotational speed in the range 300 to 1200 rpm are also shown in Table 6.4. It can be 

seen that when the disc rotational speed increases from the 300 to 1200 rpm, the mean 

resident time which is the measure of the average time spent by the molecules in the 

reactor,(MRTExp.), decreased from 13.991 to 10.190 s with the percent of reduction of 

27.16%. Moreover, at the Qt=6 ml/s, the reduction of variance reached up to 91.81% 

when the disc speed increased from 300 to 1200 rpm. The smaller the value of variance 

(   ), the narrower the RTD and the lower the axial dispersion occurring in the SDR. 

 

The findings in Figure 6.11 were similar to the ones in Figure 6.10, in that the RTD 

curves become narrower and the values of mean residence time and the variance 

decreased as the disc rotational speed increased at a given total flowrate.  
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Figure  6.11: Effect of disc rotational speed on RTD at total flowrate of (Qt=6 ml/s)-smooth disc 

with water system 

 
Table  6.4: Experimental mean residence time and the variance for the 30 cm SDR, using water 

system with smooth disc, Qt= 6ml/s 

N, rpm Mean resident time, tm (s) Variance,  (sec
2
) 

300 13.991 36.407 

500 13.740 5.642 

800 13.640 5.127 

1200 10.190 2.9802 

 

The effect of the disc rotational on the RTD and its variance were also examined   with 

the total flowrate of 9 and 15 ml/s.  Similar trends and observations with regards to the 

decreasing in mean residence time and the variance with increasing the disc rotational 

speed as highlighted in Figures 6.10 and 6.11 were obtained in Figures (AL1 and AL2) 

and Tables AL2 and AL3 in appendix L.  

6.6.2 Influence of total feed flowrate on RTD  

The effect of the total feed flowrate on the RTD curves is shown in Figures 6.12, 6.13 

and Tables 6.5, 6.6 for the disc rotational speed of 800 and 1200 rpm respectively. 

Figures AL3 and AL4 and Tables AL4 and AL5 in appendix L are shown the effect of 

total feed flowrate on the RTD curves at disc rotational speed of 300 and 500 rpm. 
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Figure 6.12 indicates that, at the lower total feed flowrate i.e. Qt=3 ml/s, the RTD curve 

becomes much broader compared with the other higher flowrates, Qt= 6, 9 and 15 ml/s. 

This leads to an increase in mean residence time and the variance as shown in Tables 

6.5.  From these findings it is clear that the intensity of macromixing on the 30 cm SDR 

depends on the total feed flowrate. In addition, the higher the total feed flowrate, the 

more uniformity of mass flow rate and fluid composition is obtained across the surface 

of the disc, which results in the  SDR behaving more like a plug flow reactor with 

improved the intensity of  macromixing.    

 

Figure 6.13 show the influence of total flow feed flowrate at the disc rotational speed of 

1200rpm.The findings in Figure 6.13 were similar to the ones in Figure 6.12, in that the 

RTD curves become more narrower and the values of mean residence time and the 

variance decreased as the total flowrate increased from 3 ml/s to 6 ml/s.  The curve at 6 

ml/s is narrower than 3 ml/s but not so if compared 6 ml/s with 9 ml/s or 15 ml/s. In 

addition, the mean residence time and the variance values decreased as total feed 

flowrate increased from 3 ml/s to 6ml/s at disc rotational speed of 1200 rpm. At the total 

flowrate of 9 ml/s and 15 ml/s and disc rotational speed of 1200 rpm, the mean 

residence time and the variance values are almost unchanged as shown in Table 6.6.  

 

One interesting observation from both Figures 6.12 and 6.13 is that at the Qt=6 ml/s, the 

RTD curve coincide with the other two RTD curves at the Qt=9 and 15ml/s. This means 

that beyond the total feed flowrate of 6 ml/s, the mixing intensity has reached the 

maximum level and increasing the total feed flowrate will not add much benefit to the 

intensity of macromixing.   

   

Similar trends with regards to the effect of total feed flowrate on the RTD and its 

moments in Figures 6.12 and 6.13 and Tables 6.5 and 6.6 were obtained in Figures 

(AL3 and AL4) and Tables AL4 and AL5 in the appendix L at the total flowrate of 3 

and 6 ml/s.   
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Figure 6.12: Effect of liquid total flowrate on the RTD in 30 cm SDR at disc rotational speed of 800 

rpm –smooth disc with water system 

 

Table 6.5: Experimental mean residence time and the variance for the 30cm SDR at different total 

flowrates and N=800 rpm using water system with smooth disc 

Total flowrate, Qt 
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Mean resident time, tm (s) Variance,  (sec
2
) 

3 14.24 64.929 

6 13.64 5.127 
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15 10.18 2.618 
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Figure 6.13: Effect of liquid total flowrate on the RTD in 30cm SDR at disc rotational speed of 1200 

rpm –smooth disc with water system 

 

Table 6.6: Experimental mean residence time and the variance for the 30cm SDR at different total 

flowrates and N=1200 rpm using water system with smooth disc 

Total flowrate, Qt 

(ml/s) 

Mean resident time, tm (s) Variance,  (sec
2
) 

3 13.92 63.061 

6 10.190 2.9802 

9 10.130 2.620 

15 10.130 2.618 
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LDPE. Digital image processing (DIP) method was used to measure the RTD. The 
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screw speed. Other important fact confirmed in this particular study is that when the 

screw speed increased, the mean residence time and the variance of distribution 

decreases and vice versa. These findings support the results that have been achieved in 

our work with regards to the effect of feed flow and disc rotational speed on the RTD 

produced by 30 cm SDR.      

 

6.6.3 Influence of feed viscosity on RTD  

In order to investigate the effect of the feed viscosity on the mean residence time and 

the variance, glycerol was used to increase the viscosity of the working fluid (deionised 

water). A liquid mixture consisting of 50 wt% glycerol and 50 wt% deionised water was 

used, which had a viscosity of 6 mPa.s at 20 OC. The effect of feed viscosity on the RTD 

and its first and second moments in 30 cm SDR at four different total flowrates are 

shown in Figures 6.14 and 6.15 and Tables 6.7 and 6.8 below.   

 

 

Figure 6.14: Effect of viscosity on the RTD in 30 cm SDR at total flowrate 9 ml/s and different disc 

rotational speeds –smooth disc with 50 wt% glycerol system 
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Figure 6.15: Effect of viscosity on the RTD in 30 cm SDR at total flowrate 15 ml/s and different disc 

rotational speeds –smooth disc with 50 wt% glycerol system 

 

 

 

Table 6.7: Experimental mean residence time and the variance for the 30cmSDR using water 

system and 50 wt% glycerol system with smooth disc, Qt=9 ml/s 

N, 

rpm 

Water system  Water/glycerol system 

Mean resident time , 

tm (s) 

Variance,  (sec
2
) Mean resident time, 

tm (s) 

Variance,  (sec
2
) 

300 13.47 5.000 14.780 7.272 

500 10.27 2.837 12.890 5.015 

800 10.25 2.620 12.080 4.917 

1200 10.130 2.507 11.96 3.802 

 

 

 

 

0.000 

0.020 

0.040 

0.060 

0.080 

0.100 

0.120 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 

E
(t

),
(s

e
c

-1
) 

Time,t (sec) 

N=300 rpm, Qt=15ml/s- smooth disc with water system 

N=500 rpm, Qt=15 ml/s- smooth disc with water system 

N=800 rpm, Qt=15 ml/s- smooth disc with water system 

N=1200rpm, Qt=15 ml/s- smooth disc with water system 

N=300rpm,Qt=15ml/s- smooth disc with 50wt% glycerol system 

N=500rpm, Qt=15ml/s- smooth disc with 50wt% glycerol system 

N=800rpm, Qt=15ml/s- smooth disc with 50wt% glycerol system 

N=1200rpm, Qt=15ml/s- smooth disc with 50wt% glycerol system 



                Chapter 6: Experimental Results and Discussion: RTD Studies 

 

Mr. Salah R. Al-Hengari  296 

 

Table 6.8: Experimental mean residence time and the variance for the 30cmSDR using water 

system and 50wt% glycerol system with smooth disc, Qt=15 ml/s 

N, 

rpm 

Water system  Water/glycerol system 

Mean resident time , 

tm (s) 

Variance,  (sec
2
) Mean resident time, 

tm (s) 

Variance,  (sec
2
) 

300 13.390 4.978 14.180 6.316 

500 10.260 2.815 12.100 4.203 

800 10.180 2.618 11.550 3.017 

1200 10.130 2.500 10.760 2.573 

 

It is clear from Figures 6.14, 6.15  and Tables 6.7, 6.8 which show the data for Qt=9 and 

15 ml/s and disc rotational speed ranging between 300-1200 rpm, that the shape of the 

determined RTD becomes significantly influenced by the viscosity at a given flowrate. 

More specifically, it is noticeable that the RTD curves become broader with an increase 

of the feed viscosity from 1 to 6 mPa.s at any given disc rotational speed, this leading to 

increasing in mean residence time and the variance values as well.   

 

From fig 6.14, when a water system (1 mPa.s) was used for the operating conditions of 

total flowrate of 9ml/s and the disc rotational speed of 300rpm, the material leaving the 

reactor (which spent 10s in the reactor) was 48%. In contrast, at similar operating 

condition, by replacing the water system with 50wt% glycerol system, the material 

leaving the reactor, which spent 10 s in the reactor, was only 41%. On the other hand, 

when the disc rotational speed increased to 1200rpm, the material leaving the reactor, 

which spent 10 s in the reactor, was 49% for both water system and 50 wt% glycerol 

system. It can be seen that viscosity had little or no effect on the RTD at the highest disc 

rotational speed (1200 rpm).   

 

Again from Figure 6.14, It is evident that at Qt=9 ml/s and the disc rotational speed 

ranged 800-1200 rpm, the viscosity dependence nearly disappeared. This may be proves 

that the performance of the 30 cm can be enhanced by increasing the total flowrates 

which makes the larger area of disc were covered by liquid. Subsequently, greater 

uniformity of mass flow rate and fluid composition is taking place across the surface of 
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the disc. This results in the RTD curves resembling distorted bell shaped curves and the 

behaviour of SDR becoming more like a plug-flow reactor, with improved macromixing.   

 

The findings in Figure 6.14 and Table 6.7 were similar to the ones in Figure 6.15 and 

Table 6.8 where the Qt=15 ml/s, in that the RTD curves become narrower and the 

values of mean residence time and the variance increased as the feed viscosity increased 

at a given disc rotational speed and total flow rate. A similar effect was observed by 

(Gao et al., 2011; Köhler et al., 2010) in their respective studies.  

 

Similar trends with regards to the effect of feed viscosity on the RTD and its moments 

in Figures 6.14 and 6.15 and Tables 6.7 and 6.8 were obtained in Figures AL5 and AL6 

and Tables AL6 and AL7 in the appendix L  at given disc rotational speed and  the total 

flowrate of 3 and 6 ml/s.   

 

In general, the effect of viscosity on the RTD may be explained in terms of increased 

viscous shear forces acting against centrifugal forces on the surfaces of the disc, causing 

the flow to be retarded. Consequently, the percentage of material leaving the reactor at a 

given time and operating conditions is lower than that of water system within the same 

conditions. This makes the behaviour of the SDR to deviate from the plug flow 

behaviour especially at lower disc rotational speeds and lower flow rates. 

 

6.7 30cm Grooved stainless steel disc RTD results and its Comparison 

with Smooth Disc Results  

Referring to the micromixing results discussed in Chapter 5, the 30 cm SDR Grooved 

stainless steel disc showed strong indications of superior degree of mixing compared to 

the the smooth disc. To extend this comparative analysis between the smooth and the 

grooved discs further, an RTD study was performed to assess the macromixing intensity 

on the grooved stainless steel disc and to verify whether backmixing could be occurring 

due to the presence of grooves. If the backmixing was shown to occur to a significant 

extent, this would result in some of the products from the mixing process being 

transferred to the inner sections of the disc to combine with the fresh reagents being fed 

to the reactor. This could result in decreased efficiency of the overall mixing process 

which may not be reflected in the results of the micromixing experiments.  
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 To verify all the issues mentioned above, sixteen experiments for each system (water 

and 50 wt% Glycerol system) were carried out using the grooved disc. The effects of 

disc rotational speed, total flowrate and feed viscosity on RTD were studied and 

compared with those from the smooth disc.  

 

6.7.1 Effect of disc rotational speed on the RTD (Smooth Disc vs. Grooved Disc) 

Figures 6.16 and 6.17 show the influence of the disc rotational speed on the RTD 

characteristics for both the grooved and smooth disc surfaces for the purpose of 

comparison. Four different total flow rates have been implemented in this set of 

experiments (3, 6, 9 and 15 ml/s). The disc rotational speed was 300, 500, 800 and 1200 

rpm. The total flowrate ratio was, R=Qm.b / Qw= 0.028. The total flowrate and the initial 

concentration of methylene blue were 5ml/min and 0.5 g/l respectively.  

 

 

Figure 6.16: Effect of Disc Rotational speed on RTD at total flowrate of 3 ml/sec – water system 

(Smooth disc Vs. Grooved Disc) 
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N=300rpm, Qt=3 ml/s - smooth disc with water system 

N=500rpm, Qt=3 ml/s -  smooth disc with water system 

N=800rpm, Qt=3ml/s - smooth disc with water system  

N=1200rpm,Qt=3ml/s- smooth disc with water system 

N=300rpm, Qt=3ml/s- grooved disc with water system 

N=500rpm, Qt=3ml/s- grooved disc with water system 

N=800rpm, Qt=3ml/s - grooved disc with water system 

N=1200rpm, Qt=3rpm - grooved disc with water system 
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Table 6.9: Experimental mean resident time and the variance for the 30 cmSDR using water system 

with grooved and smooth discs, Qt=3 ml/s and water system 

N, 

rpm 

Water system with using Grooved disc   Water system with Smooth disc 

Mean residence time , 

tm (s) 

Variance,  (sec
2
) Mean residence time, 

tm (s) 

Variance,  (sec
2
) 

300 15.252 5.571 17.04 103.840 

500 13.360 5.133 14.37 71.247 

800 12.920 3.071 14.24 64.929 

1200 15.252 5.571 13.92 63.061 

 

From Figure 6.16, it is apparent at Qt=3 ml/s and the disc rotational speed of 300 rpm, 

the materials leaving the reactor, which spent 10 s in the reactor, were 24% and   38% 

for the smooth disc  and grooved disc respectively with increment of 14% when the 

smooth disc was replaced by the grooved disc. From Figure 6.16 and at the mentioned 

speed and total feed flowrate, it is evident that the RTD curve produced by using 

grooved disc becomes narrower compared with curve produced by smooth disc. This 

leads to lower mean residence time and variance values on the grooved disc at identical 

operating conditions of disc speed and feed flowrate (Table 6.9). Accordingly, RTD 

curves for the grooved disc become closer to the distorted bell shaped curve described 

by Fogler (2006) for near plug-flow behaviour.  

 

On the other hand, at the maximum disc rotational speed of 1200 rpm, the materials 

leaving the reactor, which spent 10s in the reactor, were 49% and 88% for the smooth 

disc and grooved disc respectively with an increment of 39% when the smooth disc was 

replaced by the grooved disc. Hence, with the grooved disc, the behaviour of the SDR 

becomes more like plug flow reactor with improvement in the intensity of the 

macromixing when compare with the smooth disc operating at the same conditions. 

 

It is obvious from Figure 6.16 that the RTD curves become narrower for both smooth 

disc and grooved disc with increasing of the disc rotational speed from 300 rpm to 1200 

rpm but the grooved disc shows better performance comparing with the smooth disc 

performance in terms of Mean residence time and Variance,    as shown in Table 9.6. 
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Similar trends with regards to the effect of rotational disc speed as described above were 

obtained at the total feed flow rate of 6 ml/sec and entire disc rotational speed range as 

highlighted in Figure 6.17 and Table 6.10.  

 

 

 

Figure 6.17: Effect of Disc Rotational speed on RTD at total flowrate of 6ml/sec – water system 

(Smooth disc Vs. Grooved Disc) 

 

Table 6.10: Experimental mean resident time and the variance for the 30 cmSDR using water 

system with grooved and smooth discs, Qt=6 ml/s and water system 

N, rpm Water system with using Grooved disc   Water system with Smooth disc 

Mean residence time , 

tm (s) 
Variance,  (sec

2
) Mean residence time, 

tm (s) 
Variance,  (sec

2
) 

300 12.20 3.271 13.991 36.407 

500 11.70 2.513 13.740 5.642 

800 10.20 1.740 13.640 5.127 

1200 10.18 1.530 10.190 2.980 

 

Figure 6.18 and 6.19 and Tables 11 and 12 show the effect of total feed flowrate of 9 

and 15 ml/s and entire range of disc rotational speed ranged of 300-1200 rpm on RTD 

and the associated variance of the curves. From these two Figures, it can be concluded 

that the RTD curves for both smooth and grooved disc start to be almost coincide and 

the SDR exhibits similar behaviour for both smooth and grooved discs. 
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Figure 6.18: Effect of Disc Rotational speed on RTD at total flowrate of 9 ml/sec – water system 

(Smooth disc Vs. Grooved Disc) 

 

 

Table 6.11: Experimental mean resident time and the variance for the 30 cmSDR using water 

system with grooved and smooth discs, Qt=9 ml/s and water system 

N, 

rpm 

Water system with using Grooved disc   Water system with Smooth disc 

Mean residence time , 

tm (s) 
Variance,  (sec

2
) Mean residence time, 

tm (s) 
Variance,  (sec

2
) 

300 10.72 1.936 13.47 5.000 

500 10.26 1.437 10.27 2.837 

800 10.24 1.227 10.25 2.620 

1200 10.10 1.033 10.13 2.507 
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N=300 rpm, Qt=9 ml/sec - smooth disc with water system 

N=500 rpm, Qt=9 ml/sec - smooth disc with water system 

N=800 rpm, Qt=9 ml/sec - smooth disc with water system 

N=1200 rpm, Qt=9 ml/sec- smooth disc with water system 

N=300rpm, Qt=9ml/sec - grooved disc with water system 

N=500rpm, Qt=9ml/sec - grooved disc with water system 

N=800rpm, Qt=9ml/sec - grooved disc with water system 

N=1200 rpm, Qt=9ml/sec - grooved disc with watr system 
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Figure 6.19: Effect of Disc Rotational speed on RTD at total flowrate of 15 ml/sec – water system 

(Smooth disc Vs. Grooved Disc) 

 

Table 6.12: Experimental mean resident time and the variance for the 30cmSDR using water 

system with grooved and smooth discs, Qt=15 ml/s and water system 

N, 

rpm 

Water system with using Grooved disc   Water system with Smooth disc 

Mean resident time , 

tm (s) 
Variance,  (sec

2
) Mean resident time, 

tm (s) 
Variance,  (sec

2
) 

300 10.69 1.739 13.390 4.978 

500 10.27 1.373 10.260 2.815 

800 10.14 1.201 10.180 2.618 

1200 10.10 1.007 10.130 2.500 

 

According to the mean residence times and the variance values which have been 

calculated for both smooth disc and grooved disc at the total feed flowrate of 3, 6, 9 and 

15ml/s and disc rotational speeds ranged of 300-1200 rpm as shown in Tables 6.9 -6.12, 

It is clear that at the total flow rates of 9 ml/s and 15 ml/s and the entire range of disc 

rotational speed, a lower variance is obtained for both the smooth and grooved discs. As 

a result, more uniformity in the fluid properties such as composition across the surface 

of the disc is expected at higher rotational speeds for both disc surface configurations, 
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N=300rpm, Qt=15ml/sec - grooved disc with water system 
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                Chapter 6: Experimental Results and Discussion: RTD Studies 

 

Mr. Salah R. Al-Hengari  303 

whereby near plug-flow profile is achieved. As mentioned earlier this will have intense 

positive influence on the yield and selectivity of certain types of reactions. 

  

Referring to the mean residence time and variance values that has been calculated for 

both smooth disc and grooved discs, in general it is noticeable that at low to moderate 

total flowrates (i.e 3 to 15 ml/s in this study) and at a given disc rotational speed, the 

shortest mean residence time and the lowest variance values are achieved by grooved 

disc with comparing with the corresponding values obtained on the smooth disc. This 

could be attributed to the fact that, at low to moderate flowrates on a grooved disc only 

some of the grooves will perform as they are supposed to i.e. fill up then overflow 

radially. At larger radial positions, a continuous film may not form due to the larger 

surface area of the disc. Instead, the liquid may flow in the form of rivulets which may 

be characterised by separate jets flowing along radial paths to the periphery of the disc, 

thus reducing the mean residence time. On the smooth disc, this can still happen but 

usually happens at a greater radius. Hence, greater surface area is evenly covered per 

unit volume on the smooth disc. Smooth discs form uniform thin films more readily at a 

given flow conditions where as grooves discs tend to change from thin film to 

circumferential reservoirs with each radial groove, with more potential to form rivulets 

from the grooves. Higher flowrates will allow better use of available surface area of 

grooved discs as more grooves are able to be filled before rivulets form, this could 

increase the velocity of any rivulet could form and also result in better mixing. Flowrate 

which are so small as to not have enough volume to create a uniform film over the total 

surface area of a disc will eventually break up and form rivulets. Grooved discs tend to 

do this at smaller radii.  

 

6.7.2 Effect of total flow rate on the RTD (Smooth Disc VS. Grooved Disc) 

The influence of the total feed flowrate on the RTD characteristics is shown in Figures 

6.20 and 6.21 for the 30 cm grooved and smooth disc for the purpose of comparison. 

Four different total feed flow rates have been used in this set of experiments (3, 6, 9 and 

15 ml/s). The disc rotational speed range was 300-1200 rpm. 

 

Figure 6.20 and Table 6.13 show the influence of the total feed flow rate at the disc 

rotational speed of 300rpm on the RTD curves for both smooth and grooved disc. 
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 It indicates that, at Qt=3 ml/s and 6ml/s, the materials leaving the reactor, which spent 

10 s in the reactor, were 24% and   27% for the smooth disc  and grooved disc 

respectively with increment of 3% when the smooth disc was replaced by the grooved 

disc.  

 

From the Figure 6.20 and at disc rotational speed of 300 rpm and given total feed 

flowrate, it is evident that the RTD curve produced by using grooved disc becomes 

narrower compared with curve produced by smooth disc. This leads to lower mean 

residence time and variance values on the grooved disc than the ones attained by the 

smooth disc at identical operating conditions of disc speed and feed flowrate (Table 

6.13). On the other hand, at the other two total feed flowrate Qt=9 and 15 ml/s, the 

materials leaving the reactor, which spent 10 s in the reactor, were 48% and   49% for 

the smooth disc and grooved disc respectively with increment of 1% when the smooth 

disc was replaced by the grooved disc, so no significant improvement at these two 

higher total flowrates.   

 

 

Figure 6.20: Effect of total flowrate on RTD at disc rotational speed 300 rpm – water system 

(Smooth disc Vs. Grooved Disc) 
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Qt=6ml/sec, N=300rpm - grooved dsic with water system  

Qt=9ml/sec, N=300rpm - grooved disc with water system  

Qt=15ml/sec, N=300rpm - grooved disc with water system  
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Table 6.13: Experimental mean resident time and the variance for the 30 cmSDR at different total 

flowrates, (Qt), using water system with grooved and smooth discs, N=300 rpm 

 

Qt,ml/s 

Water system with using Grooved disc   Water system with Smooth disc 

Mean residence time , 

tm (s) 

Variance,  (sec
2
) Mean residence time, 

tm (s) 

Variance,  (sec
2
) 

3 15.252 5.571 17.04 103.840 

6 13.360 5.133 13.991 36.407 

9 12.920 3.071 13.47 5.000 

15 12.230 2.030 13.390 4.978 

 

Figure 6.21 and Table 6.14 show the influence of the total feed flow rate at the disc 

rotational speed of 500 rpm on the RTD curves for both smooth and grooved disc. At 

the Qt=3 ml/s, the RTD curve generated from flow on the grooved disc become 

narrower compared with the curve produced by smooth disc. Interestingly, at Qt=6, 9 

and 15 ml/s, the RTD curves for both smooth and grooved disc are remarkably similar. 

This means the flow characteristic of the smooth disc approaches that of the grooved 

disc at these higher flowrates.  Similar trends with regards to the effect of total feed 

flowrate as described above were obtained at the disc rotational speeds 800 and 1200 

rpm as highlighted in Figures  AL7, AL8 and  Tables  AL8, AL9) in the appendix L.    
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Figure 6.21: Effect of total flowrate on RTD at disc rotational speed 500 rpm – water system 

(Smooth disc Vs. Grooved Disc) 

 
Table 6.14: Experimental mean resident time and the variance for the 30 cm SDR at different total 

flowrates, (Qt), using water system with grooved and smooth discs, N=500 rpm 

 

Qt,ml/s 

Water system with using Grooved disc   Water system with Smooth disc 

Mean residence time , 

tm (s) 
Variance,  (sec

2
) Mean residence time, 

tm (s) 
Variance,  (sec

2
) 

3 13.360 5.133 14.370 71.247 

6 11.70 2.513 13.740 5.642 

9 10.27 1.437 10.270 2.837 

15 10.27 1.373 10.260 2.815 

 

6.7.3 Effect of feed viscosity on the RTD (Smooth Disc VS. Grooved Disc) 

In order to investigate the RTD characteristics of the grooved disc in the presence of 

viscous media, a 50 wt% water / 50wt% glycerol system was employed to compare with 

the water medium. Similar conditions of the flow rate, disc rotational speed as described 

in previous sections in this Chapter were employed.  Figures 6.22 and 6.23 show a 

comparison of the relevant RTD characteristics under selected operating conditions. 

Tables 6.15 and 6.16 lists the calculated values of the experimental mean residence time 

(MRTexp.) and the variance for the smooth disc  and grooved disc with for  water 
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system and 50 wt% glycerol system at a given disc rotational speed and total feed 

flowrate of 3 ml/s and 6 ml/s.  

 

 

Figure  6.22: Effect of disc rotational speed on RTD at total flowrate of (Qt=3 ml/s) and disc 

rotational speeds of 300 and 1200 rpm -smooth disc vs. grooved disc with water and 50 wt% 

glycerol system 
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Table 6.15: Experimental mean resident time and the variance for the 30 cm SDR at disc rotational 

speeds of 300 and 1200 rpm using water system  and 50 wt% glycerol system with grooved and 

smooth discs, Qt=3 ml/s 

 

 

Disc type 

 

 

 

Disc speed, N(rpm) 

Water system Glycerol system 

Mean 

residence 

time , 

tm (s) 

 

Variance,  (sec
2
) 

Mean 

residence 

time, 

tm (s) 

 

Variance,  (sec
2
) 

Smooth 300 17.04 103.840 20.166 153.375 

Smooth 1200 13.92 63.061 14.610 73.291 

Grooved 300 15.252 5.571 16.167 85.615 

Grooved 1200 12.230 2.030 13.030 9.724 

 

 

Figure 6.23: Effect of disc rotational speed on RTD at total flowrate of (Qt=6 ml/s) - smooth disc vs. 

grooved disc with water and 50 wt% glycerol system 
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N=300rpm, Qt=6ml/sec - smooth disc with 50wt% glycerol system 
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N=1200rpm, Qt=6ml/sec - smooth disc with water system 

N=300rpm, Qt=6ml/sec - grooved disc with water system 

N=1200rpm, Qt=6ml/sec - grooved disc with water system 
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Table 6.16: Experimental mean resident time and the variance for the 30 cm SDR at disc rotational 

speeds of 300 and 1200 rpm using water system  and 50 wt% glycerol system with grooved and 

smooth discs, Qt=6 ml/s 

 

 

Disc type 

 

 

 

Disc speed, N(rpm) 

Water system Glycerol system 

Mean 

residence 

time , 

tm (s) 

 

Variance,  (sec
2
) 

Mean 

residence 

time, 

tm (s) 

 

Variance,  (sec
2
) 

Smooth 300 13.991 36.407 16.408 93.566 

Smooth 1200 10.190 2.9802 13.400 30.027 

Grooved 300 12.20 3.271 14.97 17.814 

Grooved 1200 10.18 1.530 10.74 3.847 

 

It is clear from Figures 6.22 and 6.23 that the shape of the determined RTD curves 

becomes significantly influenced by the viscosity for both smooth and grooved disc.  It 

is apparent that when the 50 wt% glycerol was used, the RTD curves become narrower 

for the grooved disc in comparison to the to the RTD characteristics with a smooth disc. 

It is clear from Figures 6.22, 6.23  and Tables 6.15, 6.16 which show the data for Qt=3 

and 6 ml/s and disc rotational speeds of 300 and 1200 rpm, that the shape of the 

determined RTD become significantly influenced by the viscosity at a given flowrate 

for both smooth and grooved discs. More specifically, for both smooth and grooved 

discs, it is noticeable that the RTD curves become broader with an increase of the feed 

viscosity from 1 to 6 mPa.s at the higher disc rotational speed, this leading to increasing 

in mean residence time and the variance values as well.   

 

From Figure 6.22 using smooth disc with water system (1 mPa.s) and operating 

conditions of total flowrate of 3ml/s, the disc rotational speed of 300 rpm, the material 

leaving the reactor, which spent 10 s in the reactor, was 24%. In contrast, at similar 

operating condition, by replacing the water system with 50wt% glycerol system, the 

material leaving the reactor, which spent 10 s in the reactor, was only 16%. On the other 

hand, when the disc rotational speed increased to 1200 rpm, the material leaving the 

reactor, which spent 10 s in the reactor, was 38% for water system and 28% for 50 wt% 

glycerol system.  

 

On the other hand, when the smooth disc was replaced by grooved disc, the material 

leaving the reactor, which spent 10 s in the reactor, was 38%. When the water system 

was used with operating conditions of Qt=3 ml/s and N=300 rpm. In contrast, at similar 

operating condition, by replacing the water system with 50 wt% glycerol system, the 
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material leaving the reactor, which spent 10 s in the reactor, was only 29%. On the other 

hand, when the disc rotational speed increased to 1200rpm, the material leaving the 

reactor, which spent 10 s in the reactor, was 88% for water system and 42% for 50 wt% 

glycerol system.  

 

The findings in Figure 6.22 and Table 6.15 were similar to the ones in Figure 6.23 and 

Table 6.16 where the Qt=6 ml/s, in that the RTD curves become more broader and the 

values of mean residence time and the variance increased as the feed viscosity increased 

at a given disc rotational speed and total flow rate for both smooth and grooved discs. In 

addition, it is noticeable that at total flowrates of 3 ml/s and 6 ml/s at a given disc 

rotational speed, the shortest mean residence time and the lowest variance values are 

achieved by grooved disc with comparing with the corresponding values obtained on 

the smooth disc for both water system and 50 wt% glycerol system (see the 

interpretation in section 6.7.1). Similar trends with regards to the effect of feed viscosity 

on the RTD and its moments in Figures 6.22 and 6.23 and Tables 6.15 and 6.16 were 

obtained in Figures (AL9) and (AL10) and Tables (AL10) and (AL11) in the appendix ( 

L ) at the disc rotational speed speeds of 500 and 800rpm and  the total flowrate of 3 

and 6 ml/s. 

 

Similar observations with regards to the RTD characteristics of the grooved disc 

compared with smooth disc as highlighted in Figures 6.22 and 6.23 at the total feed 

flowrate Qt=3 and 6 ml/s and the disc rotational speeds of 300 and 1200 rpm were 

obtained in Figures AL11, AL12 and Tables AL12, AL13 in appendix (L) when the 

total feed flowrate are Qt=9 and 15 ml/s and disc rotational speed ranged of 300 -1200 

rpm. 

 

 From Figures AL11 and AL12, It is evidence that at Qt=9 ml/s and 15 ml/s with the 

disc rotational speed ranged 800-1200 rpm, the viscosity dependence nearly disappears. 

As mentioned earlier, this may be evidence that the performance of the 30 cm can be 

enhanced by increasing the total flowrates which makes the larger area of disc were 

covered by liquid. Subsequently, greater uniformity of mass flow rate and fluid 

composition is taking place across the surface of the disc. This resulting to the RTD 

curves to resemble distorted bell shaped curves and the behaviour of SDR becoming 

more like a plug-flow reactor and macromixing is improved. 
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In general, the effect of viscosity on the RTD may be explained in terms of increased 

viscous shear forces acting against centrifugal forces on the surfaces of the disc, causing 

the flow to be retarded. Moreover, the mean residence time and variance values were 

decreased when the smooth disc replaced with the grooved disc as shown in Table 6.15 

and 6.16. These findings prove that the intensity of mixing was reduced by increasing 

the feed viscosity. On the other hand, the intensity of mixing was enhanced when the 

smooth disc replaced by grooved disc and there is no evidence of backmixing as was 

expected.  

 

6.8 The Dispersion number and Peclet number for the 30cm smooth 

and grooved disc 

 
It has been shown in the previous sections of this Chapter that the RTD curves for the 

SDR for water and glycerol systems using both smooth and grooved discs give a more 

or less distorted bell shaped curves whose spread depends on the flow conditions. In 

general, the flow profile in the SDR approaches  plug flow conditions reactor under the 

implemented operating conditions.    

 

In order to estimate the extent of deviation from ideal plug flow conditions, the variance 

has been estimated, presented and discussed in earlier sections. A more established way 

of characterising the extent of deviation from ideal plug flow involves determination of 

the degree of dispersion in the thin film flow on the rotating disc.  This can be achieved 

by calculating the dipersion number and the Peclet number (Rivera et al., 2010; Fogler, 

2006; Apruzzese et al., 2003; Philipossian and Mitchell, 2003).  

 

As mentioned earlier in section 2.5.6.2, the dispersion number is a measure of the ratio 

of the rate of transport by radial diffusion in the case of fluid flows on the SDR disc to 

the rate of transport by convection and cloud estimated by equation 2.56. The dispersion 

number is uniquely used to describe non-ideal reactors, where the axial dispersion is 

superimposed on the plug flow of a fluid and the radial dispersion is not  considered. If 

the dispersion number approaches zero, the dispersion is considered to be negligible and 

the behaviour of the reactor is approaches  that of a plug flow reactor . If the dispersion 

number approaches infinity, there is a large degree of dispersion, and the behaviour of 
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the reactor approaches mixed flow as in a continuance stirred tank reactor (CSTR). In 

addition, the degree of dispersion in the radial direction in the case of SDR can be also 

presented in terms of Peclet number (Pe) which is the inverse of the dispersion number, 

i.e., Pe = UL/ D. As stated in section 2.95.2.2,   Higgins,(2000) and Levenspiel,(1972) 

categorize the degree of dispersion depending on the Peclet number (Pe) values as 

below: 

 

 Pe = <10  → large amount of  dispersion; 

 Pe = 10 -100 → Intermediate amount of  dispersion; 

 Pe = >100 → small amount of dispersion. 

 

Assumptions: 

 

 The flow on the disc assumed to be flow in pipe, with the length of the pipe 

replaced by the radius of the disc and the diameter of the pipe replaced by the 

thickness of the film flowing on the disc.  

 

 At the centre of the disc where the water stream and the methylene blue just 

start to contact each other and there is no diffusion, no dispersion, no mixing 

process occur and at this section, the SDR can be considered as closed system.  

On the other hand, when the fluid is ejected from the edge of the disc into the 

shoe collector with significant velocity, the mixing process may still continue 

and at this section, the SDR is considered to be an open system. With 

considering to this situation, the SDR is close- open system. For simplicity and 

as an approximation, the SDR was considered as an open-open system. As 

shown in Chapter 2, Figure 2.31 illustrates the various boundary conditions 

used with the dispersion model for open and close vessels.  

 

For small extents of dispersion, (D/UL< 0.01), the normalized variance of residence 

time distribution for the SDR can be estimated by equation 2.57 (Levenspiel, 1999). For 

large Deviation from plug flow, (D/UL      ), the normalized variance of residence 

time distribution can be estimated by equation 2.59  (Levenspiel, 1999). 
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Example for calculating    
  and (D/UL): 

 

With adopting the run performed with 30cm grooved disc at N=1200rpm with the total 

feed flowrate of 15ml/s, water system  in Table 6.12 showed  the mean resident time 

and the variance are  10.10s and 1.007s
2
  respectively.  

 

First we need to calculate the dimensionless variance (  
  ) as follows: 

 

  
  

  

  
 

 
     

        
       

 

As first approximation, a small extents of dispersion, D/UL < 0.01 was assumed,  

 

  
    

 

  
  

 

        
 

  
  

 

 
 

  
  

     

 
                    

 

The original guess was correct: The (D/UL) value is well below 0.01, where this first  

approximation should be used. 

 

The Peclet number is obtained as:  

 

Pe = UL/ D = 1/0.005= 200   (small amount of dispersion) 

 

The dispersion number and Peclet number has been calculated for smooth and grooved 

disc using water and 50wt% glycerol system with the total flowrates  of 3,6,9 and 

15ml/s and disc rotational speeds ranged 300-1200rpm that has been implemented in 

RTD experiments. As example, Table 6.17 and 6.18 show the values of the dispersion 



                Chapter 6: Experimental Results and Discussion: RTD Studies 

 

Mr. Salah R. Al-Hengari  314 

number and Peclet number using water system at total flowrate 15ml/sec for both 

smooth and grooved disc at  disc rotational speeds range  of 300 -1200rpm. 

 

Table 6.17: The Dispersion number (D/UL) and Peclet number, Pe (-) for the 30cmSDR using 

smooth disc with water system, Qt=15ml/s 

Disc rotational speed,N (rpm) Dispersion number,D/UL,(-) Peclet number,  

Pe= UL/ D (-) 

300 0.013 76.923 

500 0.013 76.923 

800 0.012 83.333 

1200 0.012 83.333 

 
Table 6.18: The Dispersion number (D/UL) and Peclet number, Pe (-) for the 30 cm SDR using 

grooved disc with water system, Qt=15 ml/s 

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number 

Pe,(-) 

300 0.007 142.857 

500 0.006 166.666 

800 0.005 200.000 

1200 0.005 200.000 

 

Tables (AL14) to (AL27) in appendix (L) display the dispersion number and Peclet 

number for the remaining operating conditions. The lowest  value of the dispersion 

number and the highest value of Peclet number were 0.005 and 200 respectively  that  

has been achieved on  grooved disc using  water system and Qt=15 ml/s and N=1200 

rpm. The highest value of the dispersion number and the lowest value of  Peclet number 

were 0.126 and 7.936 respectively  that  has been achieved on  smooth disc using  50 

wt% glycerol system and Qt=3 ml/s and N=300 rpm.  

 

 

 

The Dispersion number and Peclet number for the 30cmSDR using smooth and grooved 

discs with water system and 50 wt% glycerol system, Qt= 3,6 and 9 and 15 ml/s where 

displayed in Tables AL14 to AL27 in appendix L. The degree of dispersion in the SDR 

can be summarised in Table 6.19 below. 
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Table 6.19: The degree of dispersion for the smooth and grooved disc at different 

 

Disc type and 

fluid system type 

Disc rotational 

speed,(prm) 

Total 

flowrate,(Qt) 

 

 

The degree of dispersion,(-) 

Smooth disc/ water 

system 

 

300/500/800/1200 

Qt=3 ml/s Larger amount of  

dispersion 

Qt=6,9 and 

15 ml/s 

Intermediate amount of  

dispersion 

 

 

 

 

Smooth 

disc/50wt% 

glycerol system 

300/500/800/1200 Qt=3 ml/s Larger amount of  

dispersion 

300 and 500 Qt=6 ml/s Larger amount of  

dispersion 

800 and 1200 Qt=6 ml/s Intermediate amount of  

dispersion 

300/500/800/1200 Qt=9 and 15 

ml/s 

Intermediate amount of  

dispersion 

 

 

Grooved disc/ 

water system 

300 Qt=3 and 6 

ml/s 

Intermediate amount of 

dispersion 

500/800/1200 Qt=3 and 

6ml/s 

small amount of  dispersion 

300/500/800/1200 

 

Qt=9 and 

15ml/s 

small amount of  dispersion 

 

 

 

 

Grooved disc/ 

50wt% glycerol 

system 

300 and 500 Qt=3 ml/s Larger amount of  

dispersion 

800 and 1200 Qt=3 ml/s Intermediate amount of 

dispersion 

300/500/800/1200 

 

Qt=6 and 9 

ml/s 

Intermediate amount of 

dispersion 

300 Qt=15 ml/s Intermediate amount of 

dispersion 

500/800/1200 Qt=15 ml/s small amount of  dispersion 
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From Table 6.19 it can be concluded that at a given operating conditions, the grooved 

disc shows less degree of dispersion comparing with the smooth disc under the same 

operating conditions. Thus, greater uniformity of mass flow rate and fluid composition 

is taking place across the surface of the disc. This leads to the RTD curves to resemble 

distorted bell shaped curves and the behaviour of the spinning disc reactor becoming 

more like a plug-flow reactor than a smooth disc. These features enable the grooved 

disc to give a superior degree of mixing compared to the smooth disc, with little 

evidence of backmixing on the groove disc, contrary to what was expected. 

 

It is essential to compare the degree of dispersion in the SDR with the other intensified 

devices. Higgins (2000) have used the RTD analysis to characterise the mixing regime 

within a model and a prototype hydrodynamic vortex separator, (HDVS). The 

hydrodynamic vortex separator was operated with and without a base flow component 

and with and without the sludge hopper for a range of inlet flow rates. The RTD was 

obtained using a pulse tracer injection method. One of the analysis techniques which 

was employed in RTD analysis is the axial dispersion model (ADM). In this study, at 

the flow rate of 15-480 ml/min (250-8000 ml/s), the prototype HDVS- NO Baseflow 

has a Peclet number, (Pe), ranges from less that 1-4.42 depending on the flow rate. On 

the other hand, at the flow rate of 4-90 ml/min (66.6-1500 ml/s), the model HDVS-NO 

Baseflow has the Peclet number, (Pe), ranges between 1-3.48 depending on the flow 

rate. The results show that the HDVS has a complex imperfect plug-flow mixing regime 

(non-ideal flow behaviour) and high dispersion. In our study, the highest Peclet 

numbers for the 30 cm SDR using  water system with grooved disc was found to be 200 

at the Qt=15 ml/s and N=1200 rpm. This is an evidence of the 30 cm SDR giving 

significantly better macromixing performance than the other devices.  
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7. CONCLUSION AND RECOMMENDATIONS 

The aim of this Chapter is to present the conclusions of the findings that have been 

made in the light of this research. In addition, a section of this Chapter has been 

dedicated to recommendations for future work to be carried out in the field of 

micromixing using spinning disc reactor (SDR). 

 

7.1 CONCLUSION 

7.1.1 Micromixing in 10cm and 30cm Spinning Disc Reactor (SDR) 

 

I. The influence of disc rotational speed, feed flowrate, disc size and disc surface 

configuration, feed viscosity, feed distributor system have all been shown to be 

important parameters in assessing the micromixing characteristics in SDRs.  

 

II. The individual contributions of the film thickness and residence time parameters 

as well as the film surface instabilities to the performance of the SDRs have all 

been extensively discussed in relation to the micromixing strength on the disc 

surface. These hydrodynamic factors were shown to be functions of total flow 

rate, disc rotational speed, feed viscosity, radial position and disc size.  

 

III. The best micromixing conditions in the SDRs were generally achieved at high 

disc rotational speeds, high feed flowrates and on the large rotating discs. These 

parameters provided the conditions for the thinnest, highly sheared films, with a 

large number of surface ripples to be formed thereby enhancing molecular 

diffusion. It was observed that, at an acid concentration of 1M, the lowest 

segregation index of 0.05 was achieved for a feed of 0.001Ns/m
2
 viscosity at the 

highest flowrate of 5ml/s (corresponding to Refilm=72) and highest rotational 

speed of 2400rpm on the 10cm diameter disc. On the other hand, a significantly 

improved micromixing was obtained on the larger disc of 30cm diameter, 

especially at the lower total flowrate of 3ml/sec and 9ml/s (lower Refilm of 15 

and 42) , in comparison to the smaller disc of 10cm diameter.  
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IV. The SDRs micromixing intensity in high viscosity feeds was lower than in 

water-like fluids. This could be explained in terms of shear forces acting against 

centrifugal forces on the disc surface, causing the flow to be retarded. 

Furthermore, the viscous media will slow down the micromixing rate and alter 

the intrinsic kinetics of the reaction. Higher disc rotation speeds and high 

flowrates can nevertheless improve the micromixing significantly. 

 

V. Based on the Baldyga and Pohorecki  (1995a) model, the micromixing time for 

10cm and 30cm SDRs was estimated for the given operating conditions and the 

relationship between the    and the power dissipation was reported. At the 

optimum conditions using water system, the micromixing time and the power 

dissipation values for the 10cm were 0.2 ms and 1390 W/kg respectively. In 

contrast, the micromixing time and power dissipation values for the 30 cm were 

0.3 ms and 1025 W/kg respectively. These findings proved that the SDRs have 

excellent micromixing efficiency. 

 

VI. Using a grooved disc with low flowrates can reduce the SDRs micromixing 

efficiency due to rivulet flow resulting from insufficient wetting of the larger 

surface area. Therefore, the grooved surfaces were better suited to high 

throughputs flowrates. 

 

VII. A multi-point distributor was introduced to the 30 cm SDR in order to  eliminate 

the bad distribution of sulphuric acid with the iodide-iodate-borate ions solution 

that occurred when the single-point distributor was used with the highest total 

flowrate of 15 ml/sec and the acid concentration was [H+]=0.5 M. The results 

show that at Qt=15 ml/s with the multi-point distributor, the micromixing was 

slightly better than that of the single-point distributor at the same flowrate for all 

disc speeds. For example, at a disc speed of 300 rpm, the Xs was 0.128 and 

0.146 for multi-point distributor and single-point distributor respectively whilst 

when the disc rotational speed was 1200 rpm, the Xs achieved was 0.053 and 

0.079 for multi-point distributor and single-point distributor respectively.  
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VIII. It was concluded that to achieve the highest degree of micromixing using multi-

point distributor, some considerations were needed to be taken into account (as 

discussed in detail in the recommendation section of this Chapter). In general, 

the feeding mechanism can have a dramatic influence on the micromixing in the 

SDRs. Multipoint distributors are more effective than single point distributors at 

high feed flowrates, giving enhanced liquid distribution as one stream feeds into 

another.   

 

7.1.2 Reactor Performance Comparison  

 

1. In order to compare the SDR micromixing efficiency with the performance of 

other types of reactor i.e. semi-batch reactor (SBR) and narrow channel reactors 

(NCRs), correlations between micromixing time    and power dissipation  

using water system and 50 wt% glycerol system corresponding to viscosity of 

1.01x    and 6.0x      
Pa.s respectively have been developed for these four 

different reactors under different operating conditions. From these correlations, 

it has been shown that with the water system the theoretical mixing times behave 

as a power-law function of the power dissipation with an order of -0.5,-0.486 

and -0.453 for SDRs, SBR and NCRs respectively. When the 50wt% glycerol 

system was used, the theoretical mixing time for each reactor type is also 

influenced by the power dissipation into the fluid, according to a power-law 

correlation similar to the ones observed previously for the water system with an 

order of -0.50,-0.464 and -0.456 for SDRs, SBR and NCRs respectively. Similar 

behaviour for the SDRs was achieved even when the feed viscosity was 

increased to 6.0x10
-3 

Pa.s. From the correlations, it was concluded that the 

highest values of power dissipation corresponding to the lowest values of mixing 

time were attained by the SDRs when both water system and 50 wt% glycerol 

system were used. The worst case of micromixing efficiency was achieved by 

using NCRs whilst intermediate performance was achieved in the SBR. It was 

confirmed that, for the same value of the power dissipation, the theoretical 

micromixing time remains largely lower in the SDR’s than the SBR and NCRs. 

From these experimental observations, it can be concluded that even when the 

SDRs operated with the higher feed viscosities (the severe conditions) the 
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intensity of the micromixing in SDRs at a given power dissipation would still be 

better than in SBR and NCRs.  

 

2. Correlations between micromixing efficiency in terms of micromixedness ratio, 

(),   and power dissipation  have also been developed for these four different 

reactors with feed viscosity of 1.0x10
-3 

Pa.s ,i.e. water system and at a given 

operating conditions. These correlations clearly show that the 10cm and 30cm 

SDR give significantly better micromixing performance compared with the 

NCRs and SBR particularly at higher total flowrates. The micromixedness ratio, 

(), of well above 15 for the 10 cm and 30 cm SDRs, which is more than double 

that achieved in the STR or  NCRs under similar power dissipation. In addition, 

the micromixing efficiency of the SDRs was also compared with the 

micromixing efficiency of the other intensified reactors such as the sliding-

surface,(S-SM), mixing device, the rotor–stator reactor,(R-S-R), and torus 

reactor,(T-R). At the same value of power dissipation, (ε), the micromixedness 

ratio,(), in the spinning disc reactors remains largely higher than in the sliding-

surface mixing device (S-SM), the rotor–stator reactor (R-S-R), and torus reactor 

(T-R) which proved that the 10cm and 30cm SDR give significantly better 

micromixing performance than the above mentioned intensified reactors. 

Correlations between the micromixedness ratio, (), and power dissipation   

were also developed for the four different reactors used in this study with feed 

viscosity of 6.0x10
-3  

Pa.s.   It was clear from these correlations that the 10 cm 

and 30 cm SDRs show lower  mixing performance than the SBR when the acid 

was injected close to the impeller in the latter. Although the correlations between 

the  theoretical micromixing time    and the power dissipation   show better 

SDRs performance, the micromixedness ratio correlations shows the opposite. 

This effects need to be investigated by using the incorporation model as will be 

recommended later in the section below. The NCRs shows the lowest mixing 

performance compared with the SDRs and SBR.  

 

3. The comparison of micromixing performance in various reactors using water 

systems show that, under conditions of high feed flowrates, the 10 cm and 30 cm 

SDR give significantly better micromixing performance than the SBR and NCRs 
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under similar power dissipation. This highlights the potential of the SDR as an 

alternative device for processes where a high degree of mixing is critically 

important. 

 

 

7.1.3 Residence Time Distribution for 30cm Spinning Disc Reactor 

 

1. The influence of disc rotational speeds, total flow rates, the feed viscosity and 

the disc configuration (smooth vs grooved) on RTD and its moments have been 

investigated and the findings are summarised below: 

 

I. The RTD results collected from both the smooth and grooved discs show 

that at the higher disc rotational speeds and higher total flowrates, the RTD 

curves become narrower and the overall mean residence time                 

is also lower The lowest value for the                  of 10.1 s was achieved 

for a feed of 0.001 Ns/m
2
 viscosity at the highest flowrate of 15ml/s and 

highest rotational speed of 1200 rpm on the smooth disc with corresponding 

variance,   , of 2.16. With the grooved disc under the above mentioned 

operating conditions the                was unchanged at 10.10 s with 

corresponding     of 1.03, indicating a narrower RTD profile. 

 

II. The increase of the feed viscosity also affected the RTD and its moments. 

The RTD curves become broader with an increase of the feed viscosity from 

1 to 6 mPa.s at identical disc rotational speed and feed flowrate, leading to 

increased               and     values.  The lowest value for the 

               of 10.76 s was achieved for a feed of 6mPa.s viscosity at the 

highest flowrate of 15 ml/s and highest rotational speed of 1200 rpm on the 

smooth disc with corresponding     of 2.57. When the smooth disc was 

replaced by the grooved disc, the                was almost unchanged at 

10.22 s with corresponding     of 2.01. 
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III. With reference to the data shown above for both the smooth and grooved 

discs, it was clear that the grooved disc showed better performance than the 

smooth disc in terms of                and   . These findings proved that the 

intensity of mixing was enhanced when the smooth disc replaced by grooved 

disc and there was no evidence of backmixing as was expected. 

 

 

2. The dispersion number and Peclet number for the 30cm smooth and grooved 

disc were estimated at a given operating conditions to characterise the extent of 

deviation from ideal plug flow i.e. determination of the degree of dispersion in 

the thin film flow on the rotating disc. The results show that the grooved disc 

shows less degree of dispersion compared with the smooth disc under the same 

operating conditions. The lowest value for the dispersion number was 0.012 

achieved for a feed of 1 mPa.s viscosity at the highest flowrate of 15 ml/s and 

highest rotational speed of 1200 rpm on the smooth disc with corresponding 

Peclet number of 83.3. When the smooth disc replaced by the grooved disc, the 

dispersion number was 0.005 with corresponding Peclet number of 200. These 

characteristics allow the grooved disc to give a superior degree of mixing 

compared to the smooth disc, with little evidence of backmixing on the groove 

disc, contrary to what was expected. 

 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

This study has confirmed that SDRs give significantly better micromixing performance 

which highlights its potential as an alternative device for processes where a high degree 

of mixing is critically important. However, a number of issues still remained to be 

explored before a complete and thorough understanding of the principles behind the 

spinning disc technology as an alternative device for processes where a high degree of 

mixing is critically needed. 

 

It is hoped that the following recommendations would give a valuable suggestions in the 

future exploration of Spinning Disc Reactors for micromixing characteristics. 
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I. The use of Computational Fluid Dynamics (CFD) to model the behaviour of liquid 

flow and intensity of micromixing on the SDR is a very challenging area of 

investigation but should be investigated. It is recommended that the behaviour of 

the thin film flows on SDR discs operating under different operating conditions be 

modelled for different types of discs, feeding system and feed locations in order to 

make it more attractive. In addition, the use of more advanced CFD code such as 

Fluent software which would enable the prediction of the flow and concentration 

field on the SDR disc and the local power dissipation at a given radius can be used 

to validate the micromixing results obtained from this study.   

 

II. It is recommended that a comprehensive film flow visualization study on rotating 

disc be performed in order to investigate the thin film behaviour on disc surface 

under the effect of the operating parameters  that has been implemented in this 

study i.e. disc rotation rates, total feed flowrates, disc surface configurations 

(stainless steel smooth and grooved) and liquid viscosity. This can be used to relate 

the behaviour of the thin film flows on the disc surface with the SDR micromixing 

results collected from this investigation which will give a clearer picture and better 

explanation for the micromixing and RTD results achieved by the SDR. It is 

important to mention that one of the objectives of this research was to carry out 

flow film visualization study on 30cm rotating disc; a phantom V7 camera 

supplied by EPSRC (Engineering Instrument Pool) was used for this purpose. 

Unfortunately, the captured photos were not clear and efficient enough to serve the 

purpose of the interpretation. Hence it is recommended that selection of the proper 

camera for the visualization purpose needs to be carried out in future works on 

SDR.  

 

III. It would be valuable to assess the micromixing in the SDR by determination of the 

micromixing time and theoretical segregation index by using a simple mixing 

model, i.e., the incorporation model which describes the coupling between mixing 

and chemical reaction in order to obtain the best agreement between theoretical 

predictions and experimental data over a wide range of operating conditions which 

was adopted in this research. 
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IV. Investigation into the distribution of    at different radial positions on the disc 

surface, i.e., the effect of radial positions on    by collecting the samples at the 

various radius of the SDR disc surface. This was not possible to carry it out in this 

study.  The sampling probe (scooper) was designed and constructed for this 

purpose. As was mentioned in the Chapter 4, due to the thinner film of the disc, it 

was not possible to collect the samples by this scooper. So it is recommended to 

run the micromixing and experiments at higher flowrates that has been adopted in 

this investigation (higher then 15ml/s) by using larger pump capacity than was 

used in this research. This can help to increase the film thickness and build a pool 

within the probe tube which could then be drawn up the samples via a syringe for 

later analysis. Subsequently, the target can be achieved. 

 

V. Regarding the RTD Experiments, it is recommended to collect samples at the edge 

of the disc, i.e. the samples will be collected right after it comes off the disc, rather 

than collected from the end of the tubing attached to the sampling system, which 

was extending the residence time. In addition, in this work an offline sample 

analysis method was used, it will be more accurate to take online measurements by 

using a different tracer/analytical system, e.g.  using a solution of potassium 

chloride (KCl) or Sodium hydroxide (NaOH) as tracer and the tracer concentration 

can be measured by its electrical conductivity  . 

 

VI. This study involved the use of a normal grooved rotating disc whose 

hydrodynamic measurements are yet to be determined. Hence there is need to for 

carrying out tests to measure the film thickness and the velocity at various radial 

positions and the residence times for different geometry and types of grooves like 

the normal and re-entry. There is also the need to develop the empirical 

correlations and models that are similar to the centrifugal model for smooth discs 

in order to establish the dependencies of film thickness, velocity distribution and 

residence time on the different operating variables such as disc speed and liquid 

flowrate and viscosity. 
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VII. Suggestions related to SDR design:  

The present investigation proves that the disc surface area of the SDR was one of 

the factors affecting the intensity of the micromixing. For the purpose of increasing 

the surface area of the surface disc of the SDR, it is suggested to use a multi SDRs 

in series where the product from one SDR is fed onto next one and so on, or 

stacking of the discs in one SDR (one disc above the other) and then feeding the 

product onto lower discs from the above and so on. 

 

VIII. Suggestions related to SDR surface design:  

 It is recommended that investigation of the micromixing performance of 

the SDR using the roughened disc surface that could be produced 

mechanically be perfomed. These kinds of surfaces could be in the shape 

of reverse spirals of varying depth or metal sprayed rough surface. The 

experimental results collected from these kinds of surfaces can be 

compared with the results achieved in this investigation.  

 

 Combinations of grooves with the incorporation of the above 

modifications, on the whole groove surfaces or just only on the flat areas 

should be carried out.  

 

IX. Suggestions related to Multi-Point Distributor design: 

In the present design of the multipoint distributor with 4 holes of 0.2 mm diameter 

each, it was clear that the distributor did not perform as well as expected in the 

range of flowrates tested (3 ml/s to 15 ml/s).  It may well be that to obtain a more 

even jet flow of acid especially under conditions of very low flowrates, it is 

recommended to have 4 holes of a much smaller diameter such as 0.05 mm so that 

increased liquid hold-up may prevail to give a uniform and continuous jet of acid 

at the injection point for improved acid distribution and micromixing. To further 

improve the intensity of micromixing, it may be more advantageous to change the 

location of the distributor itself in terms of the radial position of the outlet holes 

from the centre and their vertical distance from the disc surface. This may be 

especially relevant when grooved discs are used so that the jet is introduced before 

the first groove position. 
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X.  Suggestions related to the initial concentration of the reactants: 

The reactant concentrations implemented in this work ware adopted from the 

work of Guichardon and Falk (2000a). There is a lot of work can be done to 

expand the knowledge of the effect of the reactant concentrations and the value of 

the flow rate ratios,( R), on the  SDRs micromixing performance. It is suggested 

to implement a different set of reactants concentration as well as use the value of 

the flow rate ratio R=1, (where R=QI/QH) and to find out how the values of Xs is 

effected.   
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Appendix A: Calibration carves for SBR   pumping system 

 

 

Figure AA-1: Calibration curve for syringe pump, model 353 sage instruments (one 

syringe of 60 ml) 

 

 

Figure AA-2:  Calibration curve for syringe pump, model 353 sage instruments (Two 

syringes of 60 ml each) 
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Appendix B: Calculations the feed ratios, QH and QI for SDRs 

and NCRs and the sulphuric acid volumes which were 

injected into the SBR 

 

 

Calculation of the Feed Ratios, (R), and QH & QI 

 

The feed ratio, R, was calculated for each of the acid concentrations.  The ratio ensures 

that the sulphuric acid is the limiting reagent.  Once this had been found, the flowrate of 

both the feed streams could be found for the all the flowrates. 

 

The following outlines the procedure for calculating the ratio and the flowrates, for 

0.1M acid concentration and a total flowrate of 0.5ml/s.   

 

  
  

  
                                                                                                                                            

 

Where : 

 

  = the feed ratio 

   = the iodide, iodate, borate solution volumetric flowrate 

   = the acid volumetric flowrate 

 

The concentrations known:       = 0.1M and           0.0909 M. 

 

From section 4.2.1.2.4 it is known that: 
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Therefore R can be found from:          
      

   
         

 

Once R has been calculated, it is used to find the required flowrates. For a total feed of 

0.5ml/s: 

 

                                                                                                                                      

 

  
  

  
  

 

       

 

          

 

           

 

   
  

   
 

 

   
 

   
 

         

 
 

       

   
 

 

                     
         

 
              

 

Calculation of the injected sulphuric acid volumes into the SBR: 

As mentioned in Chapter 4. One of the restrictions that needed to be taken into account 

when carrying out a comparison between the performance of the various types of 

reactors studied is the ratio of the molar quantities of acid and the borate ions contacting 

each other. This parameter has to be maintained at a constant ratio in the NCRs and 

SDRs, as well as in the SBR for a valid comparison.  
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To utilise the above conditions for continuous reactor systems and to make a possible 

comparison between the micromixing performance of various reactor types (SBR vs. 

SDRs and NCRs), the ratio of the molar quantities of acid and the borate ions that are in 

contact with each other has to be considered. This ratio has to be maintained constant in 

the continuous reactors as well as in SBR for a valid comparison. Recalling equation 

AB.2: 
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Appendix C: Calibration carves for 10cm SDR pumping 

system  
 

 

Figure AC-1: Calibration curve for Watson Marlow pump505S with 4.8 mm diameter 

tubing feed pipe.  

 

 

Figure AC-2: Calibration curve for syringe pump, model 353 sage instruments (two 

syringes of 60ml) with 4.8 mm of tubing pipe, 1.65mm diameter of feed system and 1.0 

of pumping range 
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Figure AC-3: Calibration curve for syringe pump, model 353 sage instruments (two 

syringes of 60 ml) with 4.8 mm of tubing pipe, 1.65mm diameter of feed system and 0.1 

of pumping range 

 

 

 

 

 Figure AC-4: Calibration curve for syringe pump, model 353 sage instruments (one 

syringe of 60 ml) with 4.8 mm of tubing pipe, 1.65 mm diameter of feed system and 0.1 

of pumping range 
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Figure AC-5: Calibration curve for syringe pump, model 353 sage instruments (one 

syringe of 60 ml) with 4.8 mm of tubing pipe, 0.65 mm diameter of feed system and 0.1 

of pumping range 

 

 

Figure AC -6: Calibration curve for syringe pump, model 353 sage instruments (two 

syringes of 60 ml) with 4.8 mm of tubing pipe, 0.65 mm diameter of feed system and 

0.1 of pumping range 
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Appendix D: Calibration carves for 30 cm SDR disc speed 

 

Figure AD-1: Calibration carve for 30 cm SDR disc speed 
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Appendix E: Calibration Carves for the Pumping system of 

30 cm SDR Rig  
 

 

Figure AE-1: Calibration curve for Watson Marlow pump505S with 6.4 mm diameter 

tubing feed pipe and 3 mm diameter of H3BO3   solution-water system stream (water 

system) – 30 cm SDR 

 

Figure AE-2: Calibration curve for Watson Marlow pump505S with 6.4 mm diameter 

tubing feed pipe and 3 mm diameter of H3BO3   solution system  stream ( 50 wt% 

glycerol system ) – 30 cm SDR 
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Figure AE-3:  Calibration curve for syringe pump, model (NE-1000, New Era Syringe) 

for pumping   H2SO4 , (One syringes of 60 ml with 6.4 mm of tubing pipe and 1.7 mm 

diameter of feed system). 30 cm SDR Rig  
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Appendix F: Calibration Carves for the Pumping system of 

NCRs Rig 

 

Figure AF-1: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 15 cm Y junction NCR- Water System  

 

 

Figure AF-2: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 10 cm Y junction NCR- Water System  
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Figure AF-3: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 5 cm Y junction NCR- Water System  

 

Figure AF-4: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 15 cm T junction NCR- Water System  
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Calibration of Syringe Pump, Model 353 for NCR6: T Junction & 10cm Channel Length
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Figure AF-5: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 10 cm T junction NCR- Water System 

 

 

Figure AF-6: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 5 cm T junction NCR- Water System  

 

Calibration of Syringe Pump, Model 353 for NCR5: T Junction & Channel Length 5cm

y = 1.7733x

R
2
 = 0.9962

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Percentage Flow

E
x

p
e

ri
m

e
n

ta
l 
R

a
te

 (
m

l/
m

in
)



  Appendices 

 

Mr. Salah R. Al-Hengari  355 

 

Figure AF-7: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 15 cm Y junction NCR- 50 wt% Viscous System 

 

 

 

Figure AF-8: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 10 cm Y junction NCR- 50 wt% Viscous System 
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Figure AF-9: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 5 cm Y junction NCR- 50 wt% Viscous System 

 

 

 

Figure AF-10: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 15 cm Y junction NCR- 50 wt% Viscous System 
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Figure AF-11: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 10 cm Y junction NCR- 50 wt% Viscous System 

 

 

Figure AF-12: Calibration of Syringe Pump, Model 353: Iodide, Iodate, Borate Solution 

for 5 cm Y junction NCR- 50 wt% Viscous System 
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Figure AF-13: Calibration of Syringe Pump, Model NE-1000 for pumping sulphuric 

acid  
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Appendix G: Semi-Batch Reactor (SBR) Experiments 

Table AG1: Factorial Experimental Design – SBR Experiments 

Run 

Order 

Acid Concentration,    M Agitation 

Speed, rpm 

Acid Feed Injection  location 

1 1.00 1200 middle point 

2 1.00 1200 close 

3 1.00 600 middle point 

4 0.50 1200 close 

5 0.50 600 middle point 

6 1.00 900 close 

7 0.25 600 middle point 

8 0.50 900 close 

9 0.50 900 middle point 

10 0.50 1200 middle point 

11 0.25 900 close 

12 1.00 900 middle point 

13 0.50 300 middle point 

14 1.00 300 middle point 

15 0.25 1200 close 

16 0.25 300 close 

17 0.50 300 close 

18 0.25 600 close 

19 1.00 600 close 

20 0.50 600 close 

21 0.25 300 middle point 

22 0.25 1200 middle point 

23 1.00 300 close 

24 0.25 900 middle point 

 

Table AG2: Influence of the acid feed rate on segregation index, (Xs) at N=300 rpm; 

Acid n Injection point located at the Middle of the reactor; [H
+
] =1.0 M – Water system 

Run Order Flow rate 

(ml/min) 

Average Xs 

(-) 

Relative error  

(%) 

1 3.6 0.217 2.093 

2 5.4 0.221 1.290 

3 7.2 0.230 0.580 

4 8.9 0.232 1.231 

5 10.7 0.221 0.877 

6 12.5 0.224 0.756 

7 17.9 0.228 1.596 

8 35.8 0.227 0.881 

9 53.7 0.245 2.080 

10 71.6 0.274 0.777 

11 89.5 0.302 0.626 
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Table AG3: Influence of the acid feed rate on segregation index, (Xs) at N=300 rpm; 

Acid n Injection point located at the Middle of the reactor; [H+] =1.0 M – 75 wt% 

Glycerol system 

 

  

Run Order  Flow rate, (ml/min) Average Xs, (-) Relative error, (%) 

1 3.6 0.360 2.081 

2 5.4 0.360 1.929 

3 7.2 0.361 1.755 

4 8.9 0.362 2.068 

5 10.7 0.360 2.005 

6 12.5 0.362 1.737 

7 17.9 0.361 1.542 

8 22.4 0.362 0.198 

9 26.8 0.368 1.169 

10 35.8 0.371 2.079 

11 44.7 0.373 1.980 

12 53.7 0.380 1.738 

13 67.1 0.383 1.843 

14 71.6 0.387 1.823 

15 89.5 0.391 1.648 



  Appendices 

 

Mr. Salah R. Al-Hengari  361 

Appendix H: Error analysis 

 

Every experimental determination carries a certain amount of uncertainty. Uncertainty 

can be defined as the possible value the error may have. When determining the results, 

the investigator must provide an estimate of their uncertainty in order to draw 

significant conclusions from the data. 

 

The Errors in individual results are a combination of: 

 Systematic - random scatter around the true value; 

 Instrument errors; 

 Personal errors - depending on personal reaction. 

 

Statistical analysis was used in this research as tool to predict the Error analysis using 

the standard deviation (σ), standard error (S) and relative error formulas. In the 

micromixing part, each experiment was repeated three times.  

 

If a number   of measurements of the same variables are taken the arithmetic mean or 

Average can be calculated from the expression: 

 

   
 

 
                                                                                                                                  

 

   

 

 

The deviation for    for each reading is defined by: 

 

                                                                                                                                          

 

 And the Standard deviation (σ) can be estimated by the equation: 

 

                          
      

 
 
       

 
 
           

 
 

   
                 

 

  

Where          are n results and    is their mean 
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From the                         the standard error can be estimated by dividing the 

standard deviation by the square root of the number of measurements.  

 

                    
                      

  
                                                                   

 

And the % of relative error is defined by: 
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Appendix I: 10 cm SDR Experiments 

 

Table AI1: Factorial Experimental Design - 10 cm SDR for each acid concentration 

Run Order Total flow rate, (ml/sec) Disc rotational speed, (rpm) 

1 1 300 

2 5 1200 

3 3 1200 

4 1 600 

5 1 1200 

6 5 600 

7 3 900 

8 5 600 

9 3 600 

10 1 900 

11 3 1200 

12 5 900 

13 5 1200 

14 1 900 

15 5 1200 

16 3 900 

17 3 900 

18 1 300 

 

 

Figure AI1: Effect of rotational speed and total flowrate on the segregation index at 

[H+] =0.25 M 
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Figure AI2:   Effect of rotational speed and total flowrate on the segregation index at    

 [H+] =0.50 M 

 

 

Figure AI3: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=5 ml/sec, 

Total Flow rates and [H+] =0.1 M  
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Figure AI4: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=1 ml/sec, 

Total flowrate and [H+] =0.25 M 

 

 

Figure AI5: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=3 ml/sec, 

Total flowrate and [H+] =0.25 M 
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Figure AI6: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=5 ml/sec, 

Total flowrate and [H+] =0.25 M 

 

 

 

Figure AI7: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=1 ml/sec, 

Total flowrate and [H+] =0.50 M 
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Figure AI8: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=3 ml/sec, 

Total flowrate and [H+] =0.50 M 
 

 

 

Figure AI9: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=5 ml/sec, 

Total flowrate and [H+] =0.50 M 
 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

0.350 

0.400 

0.450 

0.500 

0 300 600 900 1200 1500 1800 2100 2400 2700 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
, 
(X

s
) 

 

Disc Rotational Speed 

10cm SDR-Water system,Q=3ml/sec,[H+]=0.50M 

10cm SDR-50wt% Glycerol system,Q=3ml/sec,[H+]=0.50M 

10cm SDR-75wt% Glycerol system, Q=3ml/sec,[H+]=0.50M 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

0 300 600 900 1200 1500 1800 2100 2400 2700 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
,(

-)
 

Disc Rotational Speed,(RPM) 

10cm SDR-Water system,Q=5ml/sec,[H+]=0.50M 

10cm SDR- 50wt%Glycerol system,Q=5ml/sec,[H+]=0.50M 

10cm SDR-75wt% Glycerol system,Q=1ml/sec,[H+]=0.50M 



  Appendices 

 

Mr. Salah R. Al-Hengari  368 

 

Figure AI10: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=1 ml/sec, 

Total flowrate and [H+] =1.0 M 

 

 

 

Figure AI11: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=3 ml/s, 

Total flowrate and [H+] =1.0 M 
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Figure AI12: Effect of feed viscosity on segregation Index (Xs) in SDR at Q=5 ml/s, 

Total flowrate and [H+] =1.0 M 
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Appendix J: 30 cm SDR Experiments 

Table AJ1: Factorial Experimental Design – 30 cm SDR for each acid concentration 

Run Order Total flow rate, (ml/sec) Disc rotational speed, (rpm) 
1 9 500 

2 15 800 

3 3 300 

4 15 500 

5 3 1200 

6 15 1200 

7 15 300 

8 3 500 

9 3 800 

10 9 1200 

11 9 300 

12 9 800 

 

Table AJ2: Residence time and mixing time on 30 cmSDR for water System 

Disc rotational 

speed,(rpm) 

Liquid total flowrate 

Qt, (ml/sec) 

Residence time tres, 

(sec) 

Micromixing time 

tmix, (sec) 

300  

3 

 

1.195 0.0031 

500 0.849 0.0016 

800 0.621 0.0008 

1200 0.474 0.0005 

300  

 

9 

 

0.574 0.0022 

500 0.408 0.0011 

800 0.298 0.0006 

1200 0.227 0.0003 

300  

 

15 

 

0.408 0.0018 

500 0.291 0.0009 

800 0.212 0.0005 

1200 0.162 0.0003 

 

Table AJ3: Residence time and mixing time on 10cmSDR for 50 wt% Glycerol System 

Disc rotational 

speed,(rpm) 

Liquid total flowrate 

Qt, (ml/sec) 

Residence time tres, 

(sec) 

Micromixing time 

tmix, (sec) 

300  

3 

 

2.045 0.0143 

500 1.45 0.0073 

800 1.06 0.0039 

1200 0.811 0.0023 

300  

 

9 

 

0.983 0.0099 

500 0.699 0.0050 

800 0.511 0.0027 

1200 0.390 0.0016 

300  

 

15 

 

0.699 0.0084 

500 0.497 0.0042 

800 0.363 0.0023 

1200 0.277 0.0013 
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Figure AJ1:  Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR   At Qt 

=3 ml/sec and [H+] =1.0 M (Smooth disc Vs. Grooved Disc) 

Figure AJ2:  Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR at 

Qt =9  ml/sec and [H+] =1.0 M (Smooth disc Vs. Grooved Disc) 
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Figure AJ3: Effect of feed viscosity on segregation Index (Xs) in 30 cm SDR    At Qt 

=15 ml/sec and [H+] =1.0 M (Smooth disc Vs. Grooved Disc) 
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Appendix K: NCR Experiments 

 

Table AK1: Factorial Experimental Design – for each NCR 

Run Order Total flow rate, (ml/sec) Acid concentration [H
+
], M 

1 0.50 0.25 

2 1.00 1.00 

3 0.50 0.50 

4 0.25 0.10 

5 0.50 0.10 

6 0.25 0.50 

7 0.50 1.00 

8 1.00 0.10 

9 2.00 0.10 

10 2.00 0.25 

11 1.00 0.25 

12 0.25 1.00 

13 2.00 1.00 

14 1.00 0.50 

15 2.00 0.50 

16 0.25 0.25 
 

 

Figure AK1: Effect of total flowrate on segregation index, Xs (-) for 10 cm Y junction 

NCR-Water system with different acid ion concentrations  
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Figure AK2: Effect of total flowrate on segregation index, Xs (-) for 15 cm Y Junction 

NCR-Water system with different acid ion concentrations  

 

Figure AK3: Effect of total flowrate on segregation index, Xs (-) for 5 cm T Junction 

NCR-Water system with different acid ion concentrations  

 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0 0.5 1 1.5 2 2.5 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
, 
X

s
(-

) 

Total Flowrate,Qt (ml/s) 

15cm Y junction NCR-water system with [H+]=0.1M 

15cm Y junction NCR-water system with [H+]=0.25M 

15cm Y junction NCR-water system with [H+]=0.5M 

15cm Y junction NCR-water system with [H+]=1.0M 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0 0.5 1 1.5 2 2.5 

S
e

g
re

g
a

ti
o

n
 I
n

d
e

x
, 
X

s
(-

) 

Total Flowrate,Qt (ml/s) 

5cm T junction NCR-water system with [H+]=0.1M 

5cm T juction NCR-water system with [H+]=0.25M 

5cm T juction NCR-water system with [H+]=0.5M 

5cm T juction NCR-water system with [H+]=1.0M 



  Appendices 

 

Mr. Salah R. Al-Hengari  375 

Figure AK4: Effect of total flowrate on segregation index, Xs (-) for 10 cm T Junction    

NCR-Water system with different acid ion concentrations  

 

 

 

 

 

Figure AK5: Effect of total flowrate on segregation index, Xs (-) for 15 cm T Junction 

NCR-Water system with different acid ion concentrations  
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Figure AK6: Effect of feed viscosity on segregation Index, (Xs) in 5 cm T-Junction with 

different total flowrates and acid ion concentrations 

 

Figure AK7: Effect of feed viscosity on segregation Index, (Xs) in 10 cm T-Junction 

with different total flowrates and acid ion concentrations.  
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Figure AK8: Effect of feed viscosity on segregation Index, (Xs) in 15 cm T-Junction 

with different total flowrates and acid ion concentrations 

 

Figure AK9: Effect of channel length on segregation Index, (Xs) for 5,10 and 15 cm Y 

junction-50wt%  system with [H
+
] =1.0 M 
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Figure AK10: Effect of channel length on segregation Index, (Xs) for 5,10 and 15 cm T 

junction- 50 wt% system with [H
+
] =1.0 M 

 

Figure AK11: Effect of junction type on segregation Index, (Xs) for 10 cm length -

water system  
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Figure AK12: Effect of junction type on segregation Index, (Xs) for 15 cm length -

water system  
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Appendix L: Residence time distribution (RTD) Experiments 

 

Table Al1: Factorial Experimental Design – RTD Experiments on 30 cm SDR disc. 32 

runs  for each type of disc surface 

Run 

Order 

Total flow rate, 

Qt(ml/sec) 

Disc rotational speed ,(rpm) Feed 

viscosity, 

( ) mPa.s 

1 6 800 1.005 

2 9 300 1.005 

3 6 1200 6.000 

4 9 300 6.000 

5 15 300 6.000 

6 15 500 1.005 

7 9 800 1.005 

8 6 300 1.005 

9 9 800 6.000 

10 15 1200 6.000 

11 9 500 6.000 

12 6 500 6.000 

13 3 300 6.000 

14 15 300 1.005 

15 15 1200 1.005 

16 3 500 6.000 

17 6 1200 1.005 

18 6 300 6.000 

19 9 500 1.005 

20 15 800 6.000 

21 9 1200 1.005 

22 3 300 1.005 

23 15 500 6.000 

23 3 800 1.005 

24 3 500 1.005 

25 15 800 1.005 

26 3 1200 1.005 

27 6 800 6.000 

29 3 800 6.000 

30 6 500 1.005 

31 3 1200 6.000 

32 9 1200 6.000 
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Figure AL1: Effect of disc rotational speed on RTD at total flowrate of (Qt=9 ml/s)-

smooth disc with water system 

 

Table AL2: the experimental mean resident time and the variance for the 30 cmSDR, 

Using smooth disc with water system, Qt=9 ml/s and disc rotational speeds of 

300,500,800 and 1200 rpm. 

N, rpm Mean resident time, tm (s) Variance,  (sec
2
) 

300 13.55 5.000 

500 13.50 2.837 

800 13.22 2.620 

1200 10.13 2.507 
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Figure AL2: Effect of disc rotational speed on RTD at total flowrate of (Qt=15 ml/s)-

smooth disc with water system  

 

 

 

 

 

 

 

Table AL3: the experimental mean resident time and the variance for the 30 cmSDR 

using smooth disc with water system ,Qt=15 ml/s and disc rotational speeds of 

300,500,800 and 1200 rpm. 

N, rpm Mean resident time, tm (s) Variance,  (sec
2
) 

300 13.40 4.978 

500 10.26 2.815 

800 10.20 2.618 

1200 10.13 2.155 
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Figure AL3: Effect of liquid total flowrate on the RTD in 30 cm SDR at disc rotational 

speed of 300 rpm –smooth disc with water system  
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Figure AL4: Effect of liquid total flowrate on the RTD in 30cm SDR at disc rotational 

speed of 500 rpm –smooth disc with water system  
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Figure AL5: Effect of viscosity on the RTD in 30 cm SDR at total flowrate 3ml/s and 

different disc rotational speeds –smooth disc with 50 wt% glycerol system 
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2
) Mean resident time, 

tm (s) 

Variance,  (sec
2
) 

300 17.04 103.840 20.166 153.375 

500 14.37 71.247 16.250 95.615 

800 14.24 64.929 15.060 80.810 

1200 13.92 63.061 14.610 73.291 

 

 

 

 

 

 

0.000 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.080 

0.090 

0.100 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 

E
(t

),
(s

e
c

-1
) 

Time,t (s) 

N=300rpm, Qt=3 ml/s - smooth disc with water system 

N=500rpm, Qt=3 ml/s-  smooth disc with water system 

N=800rpm, Qt=3ml/s - smooth disc with water system  

N=1200rpm,Qt=3ml/s- smooth disc with water system 

N=300rpm, Qt=3ml/s- smooth disc with 50wt% glycerol system 

N=500rpm, Qt=3 ml/s-  smooth disc with 50wt% glycerol system 

N=800rpm, Qt=3ml/s- smooth disc with 50wt% glycerol system 

N=1200rpm,Qt=3ml/s- smooth disc with 50wt% glycerol system 



  Appendices 

 

Mr. Salah R. Al-Hengari  386 

 

Figure AL6: Effect of viscosity on the RTD in 30 cm SDR at total flowrate 6ml/s and 

different disc rotational speeds –smooth disc with 50 wt% glycerol system 
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2
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2
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 Figure AL7:  Effect of total flowrate on RTD at disc rotational speed 800 rpm – water 

system (Smooth disc Vs. Grooved Disc)  
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different total flowrates, (Qt), using water system with grooved and smooth discs, 
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2
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2
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Figure AL8: Effect of total flowrate on RTD at disc rotational speed 1200 rpm – water 

system (Smooth disc Vs. Grooved Disc)  
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Figure AL9: Effect of disc rotational speed on RTD at total flowrate of (Qt=3 ml/s) and 

disc rotational speeds of 500 and 800 rpm -smooth disc vs. grooved disc with water and 

50wt% glycerol system 
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Time,t (sec) N=500rpm, Qt=3 ml/sec -  smooth disc with 50wt% glycerol system 

N=800rpm, Qt=3ml/sec - smooth disc with 50wt% glycerol system 

N=500rpm, Qt=3ml/sec - grooved disc with 50wt% glycerol system 

N=800rpm, Qt=3ml/sec - grooved disc with 50wt% glycerol system 

N=500rpm, Qt=3ml/sec - smooth disc with water system 

N=800rpm, Qt=3ml/sec - smooth disc with Water system 

N=500rpm, Qt=3ml/sec - grooved disc with water system 

N=800rpm, Qt=3ml/sec - grooved disc with water system  
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Table AL10 : Experimental mean resident time and the variance for the 30 cmSDR at 

disc rotational speeds of 500 and 800 rpm using water system  and 50 wt% glycerol 

system with grooved and smooth discs, Qt=3ml/s 

 

 

Disc type 

 

 

 

Disc speed, 

N(rpm) 

Water system Glycerol system 

Mean 

residence 

time , 

tm (s) 

 

Variance,  (sec
2
) 

Mean 

residence 

time, 

tm (s) 

 

Variance,  (sec
2
) 

Smooth 500 14.370 71.247 16.250 95.615 

Smooth 800 14.240 64.929 15.060 80.810 

Grooved 500 13.360 3.071 15.950 73.284 

Grooved 800 12.920 2.030 13.220 22.016 

 

 

 

Figure AL10: Effect of disc rotational speed on RTD at total flowrate of (Qt=6 ml/s) 

and disc rotational speeds of 500 and 800 rpm -smooth disc vs. grooved disc with water 

and 50 wt% glycerol system 
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N=500rpm, Qt=6ml/sec - smooth disc with 50wt% glycerol system  

N=800rpm, Qt=6ml/sec - smooth disc with 50wt% glycerol system 

N=500rpm, Qt=6ml/sec - grooved disc with 50wt% glycerol system 

N=800rpm, Qt=6ml/sec - grooved disc with 50wt% glycerol system  

N=500rpm, Qt=6ml/sec - smooth disc with water system 

N=800rpm, Qt=6ml/sec - smooth dsic with water system 

N=500rpm, Qt=6ml/sec - grooved disc with water system 

N=800rpm, Qt=6ml/sec - grooved disc with water system 



  Appendices 

 

Mr. Salah R. Al-Hengari  391 

Table AL11: Experimental mean resident time and the variance for the 30 cm SDR at 

disc rotational speeds of 500 and 800 rpm using water system  and 50 wt% glycerol 

system with grooved and smooth discs, Qt=6 ml/s 

 

 

Disc type 

 

 

 

Disc speed, N(rpm) 

Water system Glycerol system 

Mean 

residence 

time , 

tm (s) 

 

Variance,  (sec
2
) 

Mean 

residence 

time, 

tm (s) 

 

Variance,  (sec
2
) 

Smooth 500 13.740 5.642 15.950 76.573 

Smooth 800 13.640 5.127 13.940 30.106 

Grooved 500 11.700 2.513 13.22 4.011 

Grooved 800 10.200 1.740 10.90 3.847 

 

Figure AL11: Effect of disc rotational speed on RTD at total flowrate of (Qt=9 ml/s)-

smooth disc vs. grooved disc with water and 50 wt% glycerol system 
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N=300rpm, Qt=9ml/sec - smooth disc with 50wt% glycerol system 

N=500rpm, Qt=9ml/sec  - smooth disc with 50wt%  glycerol system 

N=800rpm , Qt=9m/sec - smooth disc with 50wt% glycerol system 

N=1200rpm, Qt=9ml/sec - smooth disc with 50wt% glycerol system  

N=300rpm, Qt=9ml/sec  -grooved disc with 50wt% glycerol system 

N=500rpm, Qt=9ml/sec - grooved disc with 50wt% glycerol system 

N=800rpm, Qt=9ml/sec - grooved disc with 50wt% glycerol system 

N=1200rpm, Qt=9ml/sec - grooved disc with 50wt5 glycerol system 

N=300rpm, Qt=9ml/sec - smooth disc with water system 

N=500rpm, Qt=9ml/sec - smooth disc with water system 

N=800rpm, Qt=9ml/sec - smooth disc with water system 

N=1200rpm, Qt=9ml/sec - smooth dsic with water system 

N=300rpm, Qt=9ml/sec -  grooved disc with water system  

N=500rpm, Qt=9ml/sec - grooved disc with water system 

N=800rpm, Qt=9ml/sec - grooved disc with water system 

N=1200rpm, Qt=9ml/sec - grooved disc with water system 
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 Table AL12: Experimental mean resident time and the variance for the 30 cm SDR at 

disc rotational speeds of 500 and 800 rpm using water system  and 50 wt% glycerol 

system with grooved and smooth discs, Qt=9 ml/s 
 

 

Disc type 

 

 

 

Disc speed, N(rpm) 

Water system Glycerol system 

Mean 

residence 

time , 

tm (s) 

 

Variance,  (sec
2
) 

Mean 

residence 

time, 

tm (s) 

 

Variance,  (sec
2
) 

Smooth 500 10.270 2.837 12.890 5.015 

Smooth 800 10.250 2.620 12.080 4.917 

Grooved 500 10.240 1.437 12.160 4.699 

Grooved 800 10.240 1.227 10.82 3.648 

 

 

Figure AL12: Effect of disc rotational speed on RTD at total flowrate of (Qt=15 ml/s)-

smooth disc vs. grooved disc with water and 50 wt% glycerol 
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N=300rpm,Qt=15ml/sec - smooth disc with 50wt% glycerol system 

N=500rpm, Qt=15ml/sec - smooth disc with 50wt% glycerol system 

N=800rpm, Qt=15ml/sec - smooth disc with 50wt% glycerol system 

N=1200rpm, Qt=15ml/sec - smooth disc with 50wt% glycerol system 

N=300rpm, Qt=15ml/sec - grooved disc with 50wt% glycerol system 

N=500rpm, Qt=15ml/sec - grooved dsic with 50wt% glycerol system 

N=800rpm, Qt=15ml/sec - grooved disc with 50wt% glycerol system 

N=1200rpm, Qt=15ml/sec - grooved disc with 50wt% glycerol system 

N=300rpm, Qt=15ml/sec - smooth disc with water system  

N=500rpm, Qt=15ml/sec  - smooth disc with water system 

N=800rpm, Qt=15ml/sec - smooth disc with water system 

N=1200rpm, Qt=15ml/sec  - smooth disc with water system 

N=300rpm, Qt=15ml/sec - grooved disc with water system 

N=500rpm, Qt=15ml/sec - grooved disc with water system 

N=800rpm, Qt=15ml/sec - grooved disc with water system 

N=1200rpm, Qt=15ml/sec - grooved disc with water system 
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Table AL13: Experimental mean resident time and the variance for the 30 cm SDR at 

disc rotational speeds of 500 and 800 rpm using water system  and 50 wt% glycerol 

system with grooved and smooth discs, Qt=15 ml/s 

 

 

Disc type 

 

 

 

Disc speed, N(rpm) 

Water system Glycerol system 

Mean 

residence 

time , 

tm (s) 

 

Variance,  (sec
2
) 

Mean 

residence 

time, 

tm (s) 

 

Variance,  (sec
2
) 

Smooth 500 10.260 2.815 12.10 4.203 

Smooth 800 10.180 2.618 11.55 3.017 

Grooved 500 10.26 1.373 10.420 3.217 

Grooved 800 10.140 1.201 10.410 3.200 

 

Table AL14:The Dispersion number (D/UL) and Peclet number, Pe(-) for the 30 cm 

SDR using water system with smooth disc, Qt=3 ml/s . 

Disc rotational speed,N (rpm) Dispersion number (D/UL) Peclet number, Pe(-) 

300 0.121 8.264 

500 0.117 8.547 

800 0.112 8.928 

1200 0.112 8.928 

 

Table AL15: The Dispersion number (D/UL) and Peclet number, Pe(-) for the 30 cm 

SDR ,using water system with smooth disc, Qt=6 ml/s . 

Disc rotational speed,N 

(rpm) 

Dispersion number (D/UL) Peclet number, Pe(-) 

300 0.072 13.888 

500 0.014 71.428 

800 0.013 76.923 

1200 0.013 76.923 



Table AL16: The Dispersion number (D/UL) and Peclet number, Pe(-) the 30 cm SDR, 

Using smooth disc with water system, Qt=9 ml/s. 

Disc rotational speed,N (rpm) Dispersion number (D/UL) Peclet number, Pe(-) 

300 0.013 76.923 

500 0.013 76.923 

800 0.012 83.333 

1200 0.012 83.333 

 

 

 

 

 

 

 



  Appendices 

 

Mr. Salah R. Al-Hengari  394 

Table AL17: The Dispersion number (D/UL) and Peclet number, Pe (-) for the 30 cm 

SDR using 50 wt% glycerol system with smooth disc, Qt=3 ml/s.  

Disc rotational speed, N (rpm) Dispersion number, 

D/UL (-) 

Peclet number, 

Pe(-) 

300 0.126 7.936 

500 0.122 8.196 

800 0.120 8.333 

1200 0.117 8.547 

 

Table AL18:The Dispersion number (D/UL) and Peclet number, Pe (-)for the 30 cm 

SDR ,using 50 wt% glycerol system with smooth disc,Qt=6 ml/s . 

Disc rotational speed, 

N (rpm) 

Dispersion number, 

D/UL (-) 

Peclet number,  

Pe(-) 

300 0.118 8.474 

500 0.106 9.433 

800 0.098 10.204 

1200 0.065 15.384 

 

Table AL19:The Dispersion number (D/UL) and Peclet number, Pe (-)for the 30 cm 

SDR, using smooth disc with 50 wt% glycerol system, Qt=9 ml/s  

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number Pe,(-) 

300 0.015 66.66 

500 0.014 71.428 

800 0.013 76.923 

1200 0.012 83.333 

 

Table AL20: The Dispersion number (D/UL) and Peclet number, Pe (-) for the 30 cm 

SDR using smooth disc with 50 wt% glycerol system, Qt=15 ml/s 

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number 

 Pe,(-) 

300 0.014 71.428 

500 0.012 83.333 

800 0.010 100 

1200 0.010 100 

 

Table AL21: The experimental mean resident time and the variance for the 30 cm SDR 

using water system with grooved disc, Qt=3 ml/s 

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number 

Pe,(-) 

300 0.012 83.333 

500 0.010 100 

800 0.009 111.111 

1200 0.007 142.857 
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Table AL22: The experimental mean resident time and the variance for the 30 cm SDR 

,using water system with grooved disc, Qt=6 ml/s  

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number 

Pe,(-) 

300 0.011 90.90 

500 0.009 111.111 

800 0.008 125 

1200 0.007 142.857 

 

Table AL23: The experimental mean resident time and the variance for the 30 cm SDR, 

Using grooved disc with water system, Qt= 9 ml/s 

Disc rotational speed 

N,(rpm) 

Dispersion 

numberD/UL, (-) 

Peclet number,Pe(-) 

300 0.008 125 

500 0.007 142.857 

800 0.005 200 

1200 0.005 200 

 

Table AL24: The experimental mean resident time and the variance for the 30 cm SDR 

Using grooved disc with 50wt% glycerol system, Qt=3 ml/s  

Disc rotational 

speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number 

Pe,(-) 

300 0.113 8.849 

500 0.102 9.803 

800 0.052 19.230 

1200 0.026 38.46 

 

Table AL25: The experimental mean resident time and the variance for the 30 cm SDR, 

using grooved disc with 50wt% glycerol system, Qt= 6 ml/s. 

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number 

Pe,(-) 

300 0.034 29.412 

500 0.016 62.500 

800 0.015 66.666 

1200 0.015 66.666 

 

Table AL26: The experimental mean resident time and the variance for the 30 cm SDR, 

Using grooved disc with 50wt% glycerol system, Qt= 9 ml/s . 

Disc rotational speed 

  N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number  Pe,(-) 

300 0.014 71.428 

500 0.013 76.923 

800 0.012 83.333 

1200 0.011 90.909 
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Table AL27: The experimental mean resident time and the variance for the 30 cm SDR 

Using grooved disc with 50wt% glycerol system, Qt=15 ml/s.  

Disc rotational speed 

N,(rpm) 

Dispersion number 

D/UL, (-) 

Peclet number Pe,(-) 

300 0.013 76.923 

500 0.009 111.111 

800 0.009 111.111 

1200 0.009 111.111 
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Appendix M:  Calculations of the diffusion coefficient for the 

50 wt% and 75 wt% glycerol systems  

 
The Diffusion Coefficient for the glycerol-water system can be estimated from the  

empirical correlation below (Guichardon et al., 1997): 

 

 

        
  

    
 
   

      
  

    
 
   

                                                                           

 

Where: 

 

    = Diffusion coefficient for the mixture (m
2
/s) 

 

  = Diffusion coefficient for water (=10
-9

  m
2
/s) 

 

  = Diffusion coefficient for concentrated glycerol (=1.33*10
-11 

m
2
/s) 

 

  = Mole fraction of water in the mixture (-) 

 

  = Mole fraction of glycerol in the mixture (-) 

 

  = water dynamic viscosity at 20
O
C (=1.005 cp) 

 

  = glycerol dynamic viscosity at 20
O
C (=1410  cp) 

 

    = mixture dynamic viscosity at 20
O
C (50wt% = 6.00  cp) 

 

 Calculation of mole factions of water and glycerol in the 50wt% glycerol system: 

 

Data: 

 

Total volume of solution =10l 

Volume of water =5577 ml 

Volume of concentrated glycerol=4422.7 ml 

Wt. of water =? 

M. wt. of water=18 g/mol 

M. wt. of glycerol=92.09 gm/mol 

                  OC 

                  
O
C 
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Wt. of water =5577 gm 

Wt. of glycerol =5577.0247 gm 

Total wt. of solution=5577+5577.025=11154.025 gm 

 

Basis =11154.025gm 

Component Wt., gm Weight 

fraction,(-) 

Molecular  wt., 

gm/mol 

No. of 

moles,(gm 

mol) 

Mole 

fraction 

water 5577 0.50 18 309.833 0.836 

glycerol 5577.025 0.50 92.09 60.560 0.163 

Total 11154.025 1.00 - 370.393 1.00 

 

 

Mole fraction for water = 309.833/370.393=0.836 

Mole fraction for glycerol = 60.560/370.393=0.163 

 

Appling equation AM1, the Diffusion Coefficient for 50 wt% glycerol system equals 

3.708*10
-6

 cm
2
/s =3.708*10

-10 
m

2
/s 

 

 
Calculation of mole factions of water and glycerol in the 75 wt% glycerol system: 

 

Data: 

 

  = Diffusion coefficient for water =10
-9

  m
2
/s 

 

  = Diffusion coefficient for concentrated glycerol =1.33*10
-11 

m
2
/s 

 

  = water dynamic viscosity at 20 
O
C =1.005 cp 

 

  = glycerol dynamic viscosity at 20 
O
C =1410 cp 

 

    = mixture dynamic viscosity for 75 wt% glycerol system at 20 
O
C = 35.5 cp 

 

Total volume of solution =10l 

Volume of water =2959 ml 
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Volume of concentrated glycerol=7039 ml 

Wt. of water =? 

M. wt. of water=18 g/mol 

M. wt. of glycerol=92.09 gm/mol 

                 O
C 

                  
O
C 

  
 

 
  

Wt. of water =2959 gm 

Wt. of glycerol =8869.14 gm 

Total wt. of solution=8869.14+2959=11828.14 gm 

 

Basis=11828.14 

Component Wt., gm Weight 

fraction,(-) 

Molecular  wt., 

gm/mol 

No. of 

moles,(gm mol) 

Mole 

fraction 

water 2959 0.25 18 164.38 0.6305 

glycerol 8869.14 0.75 92.09 96.309 0.3694 

Total 11828.14 1.00 - 260.989 1.00 

 

 

Mole fraction for water = 164.38/260.689=0.6305 

Mole fraction for glycerol = 96.309/260.689=0.3694 

 

Appling equation AM1, the Diffusion Coefficient for 75wt% glycerol system equals 

1.264*10
-6

  cm
2
/s =1.264*10

-10 
m

2
/s 

 

 

 

 

 


