

NEWCASTLE UNIVERSITY
SCHOOL OF COMPUTING SCIENCE

Exploiting the Architectural Characteristics of
Software Components to Improve Software Re-

use

by
Basem Yousef Alkazemi

PhD Thesis

January 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Newcastle University eTheses

https://core.ac.uk/display/153777572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
Software development is a costly process for all but the most trivial systems. One of the

commonly known ways of minimizing development costs is to re-use previously built

software components. However, a significant problem that source-code re-users encounter

is the difficulty of finding components that not only provide the functionality they need but

also conform to the architecture of the system they are building. To facilitate finding re-

usable components there is a need to establish an appropriate mechanism for matching the

key architectural characteristics of the available source-code components against the

characteristics of the system being built. This research develops a precise characterization

of the architectural characteristics of source-code components, and investigates a new way

to describe how appropriate components for re-use can be identified and categorized.

I

 II

Acknowledgment
I would like to express my gratitude to several people who have supported me over the

period of doing this work. Firstly my supervisor Professor Peter Lee, I would like to thank

him for his continual support and encouragement, and also for his effort in reviewing my

thesis. Thanks also to the supervisory committee members Dr Christina Cacek and Dr John

Fitzgerald for their constructive inputs and directions.

Secondly, I would like to thank all members of staff in the school of computing science.

To my internal examiner, Dr Neil Speirs, and my external examiner, Professor David

Budgen, for a fruitful viva session. To Shirley Craig, thank you for helping me finding

many relevant references in this thesis.

Thirdly, I would like to thank my friends Dr Saad Almajnoni, Mr Christiaan Lamprecht,

and Mr Carl Gamble for their encouragements and opinions.

Finally, I would like to thank my wife, Huda Alaama, for being patient and supportive

all along. To my brothers, Khalid and Majed, and to my sisters, Amel, Dalal, and Ghada

for calling me regularly every occasion from Saudi Arabia. To my respected mother in law,

Afaf Khayat, for the prayers. This thesis is for all of you. To may parents who passed away

years ago (may God be pleased with them), I hoped you were alive to witness this

achievement.

The work reported here would have not been possible without the grants from Umm Al-

Qura University.

Table of Content
Chapter 1 - Introduction .. 1

1.1 Vision of the Future... 1

1.2 Thesis Context.. 3

1.3 Software Re-use ... 4

1.4 Repository Systems.. 5

1.5 Re-usable Components.. 6

1.6 Software Component Repository Systems .. 7

1.7 Aim and Objectives ... 10

1.8 Thesis Outline .. 10

Chapter 2 - Background Research.. 12

2.1 The History of Re-use.. 12

2.2 Types of Re-usable Artefacts .. 13

2.3 Software Components ... 16

2.3.1 Component Interface ... 17

2.3.2 Component Categorization .. 19

2.4 Component-Based Software Development (CBSD).................................... 20

2.4.1 Identification.. 21

2.4.2 Validation .. 22

2.4.3 Integration.. 22

2.4.4 Evolution ... 23

2.4.5 Discussion.. 23

2.5 Software Architecture ... 25
2.5.1 Architectural Styles ... 27

2.5.2 Architectural Patterns .. 28

2.5.3 Architecture Description Languages (ADLs).. 29

2.6 The Development of Open-source Software.. 30

2.7 Setting the Context of the Thesis.. 31

2.8 Summary .. 35

Chapter 3 - Related Work.. 36

3.1 Overview... 36

3.2 Organizing Components ... 39
3.2.1 Classification Schemes .. 41

3.2.2 Indexing Schemes.. 53

3.2.3 Analysis of Related Work ... 58

3.2.4 Observation.. 62

III

3.3 Re-factoring Software Components... 63

3.4 Software Repository Systems ... 65
3.4.1 Overview ... 65

3.4.2 Analysis of Repository Systems.. 72

3.4.3 Observations .. 77

3.5 Summary .. 78

Chapter 4 - Characterizing Architectural Fit .. 80

4.1 Use-cases for the Ideal Repository System.. 80

4.2 System Model ... 83

4.3 Types of Interfaces .. 84

4.4 The Characteristics Defined by the External Interface of Software
Components.. 88

4.5 Setting the Context of Architectural Interface in the Scope of the Ideal
Repository System ... 89

4.6 The Characteristics Identified by the Architectural Interface.................. 91

4.7 Aspects of Checking for Architectural Fit .. 96

4.8 Checking Architectural Types in the Context of the Ideal Repository
System... 97

4.9 Summary .. 99

Chapter 5 - The Formalization of Architectural Interface..................................... 101

5.1 ArchInt Specification .. 101

5.2 Experimental Work for Evaluating Architectural Interface 106
5.2.1 Study 1: Describing Different Architectural Types............................... 107

5.2.2 Study 2: Identifying Re-usable Software Components 112

5.2.3 Study 3: Modifying an Existing Software System 120

5.2.4 Observation.. 126

5.3 Summary .. 126

Chapter 6 - Evaluating the Achievements of the Research..................................... 128

6.1 Evaluate ArchInt for Representing Precisely the Characteristics of
Source-Code Components... 129

6.2 Uncovering Architectural Characteristics with the Notion of
Architectural Interface.. 130

6.3 Characterizing Source-Code Components.. 131

6.4 Evaluating the Usefulness of ArchInt to Support the Basic Functionality
of a Repository System.. 132

6.4.1 Matching Component Characteristics to Meta-data 132

6.4.2 Automatic Identification of Software Components............................... 133

6.4.3 Support for Component Modification ... 134

IV

6.4.4 Delivering Fully Working Components .. 135

6.5 The Design of the Ideal Repository System... 136

6.6 Limitations of ArchInt .. 138

6.7 Lessons Learned about Architectural Interfaces 139

6.8 Summary .. 140

Chapter 7 - Conclusion... 142

7.1 Overview... 142

7.2 Results... 143

7.3 Future work ... 144

7.4 Achievement Against the Specified Aim of the Research 147

7.5 Closing Remarks.. 148

References.. 149

Appendix A- ArchInt representations of Architectural Types............................... 157

Appendix B- Source code of the ArchIntParse Tool ... 164

V

List of Figures
Figure 3.1: Design of Ideal Repository System.. 37

Figure 3.2: Partial listing of IBM facets [121] ... 43

Figure 3.3: Facets for describing a design mode [5] .. 45

Figure 3.4: Example of Classifying COTS Components [114]...................................... 53

Figure 3.5: Commands and their Feature Weights [155] ... 55

Figure 3.6: GHSOM Architecture [142]... 56

Figure 3.7: Generating Categories [82] .. 58

Figure 3.8: Krugle Search Engine .. 69

Figure 3.9: CRECOR Components Adaptor .. 71

Figure 3.10: CodeBroker System [157].. 72

Figure 4.1:Coarse-grained View of the Ideal Repository System 81

Figure 4.2 Ontology of the System Model ... 84

Figure 4.3: The Types of Interfaces.. 85

Figure 4.4: Using External/Internal Interfaces to Organize Components 87

Figure 4.5:Fine-grained View of the Ideal Repository System 90

Figure 4.6:Fine-grained Ontology of the System Model.. 92

Figure 5.1: Fine-grained View of the Ideal Repository System 102

Figure 5.2: Java Class Architectural Type Represented in ArchInt 103

Figure 5.3: An Extract of the Eclipse Plug-in Architectural Type 104

Figure 5.4: An Extract of the Eclipse XML Architectural Type 105

Figure 5.5: An Extract of the Applet Architectural Type ... 106

Figure 5.6: Applet Architectural Type Description.. 108

Figure 5.7: Eclipse Architecture [32] ... 109

Figure 5.8: Eclipse Plug-in Architectural Type.. 110

Figure 5.9: Eclipse XML Architectural Type... 111

Figure 5.10: Random Number Generator [2] ... 113

Figure 5.11: TestSuite Class ... 114

Figure 5.12: ArchIntParse Tool Output .. 115

Figure 5.13: Contact MVC System .. 123

Figure 5.14: Model ArchInt .. 124

Figure 6.1: System Model... 130

Figure 6.2: Design of Ideal Repository System.. 136

VI

List of Tables
Table 3.1: Analysis of Organization Schemes.. 60

Table 3.2: Taxonomy of the characteristics of the Repository Systems......................... 74

Table 5.1: Summary of the Results of the Second Study ... 120

VII

Chapter 1 - Introduction

1.1 Vision of the Future

Adam is a software engineer who works for the EasySoftMicrosystems company,

developing graphical environments for software development. He has been assigned a task

of building a new and novel integrated development environment (IDE) that helps software

developers to build their systems using graphical representations rather than pure source-

code writing. So, developers can construct their systems simply by selecting the right

components from a list, customizing as required, and dropping them into the system being

developed.

 Adam has gone through the necessary processes to build the system, starting from

collecting the requirements and writing the specification of the new system, to establishing

the overall design of the system intended to be built. The design identified the basic

building blocks of the system as being composed of several components such as editors,

source-code generator, compiler, builder and debugging tools, in addition to a shared

library (i.e. a repository system) that stores and organises re-usable components. After

Adam documented the design of the new system he decided to start implementing the real

working IDE system.

While Adam was programming the various parts of the system he came to a point at

which he needed to add a component to perform the parsing functionality to the system

being built, so he started looking for something to re-use in the hope of saving his time and

effort. He searched for some within his company’s repository system but couldn’t find

anything re-usable for his system. Then he started looking externally to find a repository

where the required component might be found.

 Adam searched several repositories that offer different kinds of components, some free

of charge while others were subject to some cost. Finally, he came across a repository

system called GeniusComponents that offered a wide range of components freely. He tried

the repository by providing some information to search for matching components. The

repository system started searching for the component that Adam was looking for and

returned some results. The repository listed a parser that provided the exact functionality

that Adam was looking for. Adam was very pleased that he managed to get the component

he needed.

1

However, there were two problems with the found component. Firstly, it was written in

FORTRAN but what Adam needed was a component written in Java. The second problem,

which seemed more challenging, was that the found component was a part of another

system, so it must be extracted from its original system before re-using it in Adam’s

system. Adam was very concerned about how the extracted component might impact on

his own system as his experience suggested that the component might cause system failure

if, for example, some of its required dependencies had been missed during extraction.

Adam also wondered how he could modify the component to fit into his system as there

was the major language dissimilarity. His frustration was rising as he started to believe that

building one’s own component is much easier than re-using one, as found components

often cannot be re-used without major modifications. What he got from the repository

demonstrated that. The modification itself was hard to achieve as it required a thorough

understanding of the component’s architectural aspects in addition to its functional aspects.

While Adam was looking sadly at the listed component wondering what to do, he

noticed something flashing in the top right corner on the screen where the component he

found was listed. It was a button labelled with the word “modify”. Adam clicked on that

button and what he got was an extensive list of automatic conversions that could be

applied. One option was to convert a component into a stand-alone application. Adam tried

that option hoping that it could extract the component he needed and the extracted

component would work satisfactorily when converted. The repository system advised that

the conversion was completed successfully. So, Adam obtained an application that

provided the functionality that his system required, however, the application was still

written in FORTRAN, hence still not re-usable in his system as the application must to be

connected to his system prior to being able to re-use it as a component. Adam found

another option in the list of possible conversions that converted FORTRAN applications to

Java applications, so without any further thinking, he clicked on that option. The result was

stunning; the application was converted, somehow, to Java.

The next step was to wrap the application to fit as a component into Adam’s system. An

option for accomplishing that conversion was also provided by the repository system, so

Adam simply selected that option and, somehow, the application was wrapped as a

component that satisfied his system’s requirements. Adam was happy that he had finally

got what he needed but he was worried that the modification might have broken the

component. Adam found another listed option in the repository to automatically check the

component to ensure its validity against some specified requirements. There were numbers

2

of pre-defined requirements of other systems recognized by the repository that he could

use if his system requirements were similar, but Adam’s system was novel, hence he

needed to supply his system’s requirements to the repository in order to be utilized by the

checking tool. The repository system assisted Adam in providing the required details of his

system’s requirements by asking him about the different characteristics of his system. So,

Adam specified his system’s requirements to check the component against and tried that

test. The result was positive indicating that the converted component was fine and it was

conforming to the requirements of his system. Adam then requested that the component be

delivered to him from the repository so that he could re-use it in his system, and the

repository system successfully delivered it. Adam noticed that the delivered component

also came with a help file describing everything he needed to know in order to utilize the

component.

 So finally Adam obtained the component that fitted perfectly into his system, provided

the required functionality and satisfied his system’s requirements. Adam was very pleased

that he found such a super repository system that assisted him to obtain re-usable

components and encouraged him to keep re-using components rather than building them

from scratch.

1.2 Thesis Context

It is obvious from the above “vision” story that a repository system called

GeniusComponents has helped Adam to build his intended system (i.e. the novel IDE).

Without such a repository system, re-use would have been very unlikely and Adam would

have been faced with writing a new component from scratch.

The above described repository system is an example of an ideal repository that every

software re-user is hoping to find. That repository would speed up the development

process, save time and effort, and encourage the software engineer to practice re-use.

However, the state of current repository systems is in reality far behind such an envisaged

level of support. Today’s repository systems have many limitations that, in one way or

another, discourage software development from re-use. Therefore this thesis is primarily

motivated by the fact that the current support provided by repository systems is not

sufficient and may hinder re-use, and the research to be described is a step towards

achieving the ideal case of software re-use described in the story above. Therefore, the

hypothesis of this research is that re-use would be highly advantageous for software

development, however the inadequate support for re-use is preventing these advantages

3

from being realised. The corresponding aim and objectives of the research to be described

in this thesis are listed in section 1.10.

1.3 Software Re-use

Software re-use is commonly described as the process of re-using previously built

components to drive the building of a new system. So a system might be built from re-

usable components instead of reinventing components every time a new system is needed.

Re-using previously generated components has the potential to significantly lower the cost

of developing new software systems, speed the development process, and improve the

quality of the final software product [138].

At a first glance, re-using components might seem a natural approach that software

developers should follow, comparable to the well-established practice of re-use when

building an electronic system. However, it seems that software developers usually prefer to

build their own components rather than harnessing ones generated previously. This

reluctance to re-use components is caused by many reasons, often based on the perspective

that the developer has. Software developers can be classed into three groups with respect to

re-using components:

i) those who would never re-use components;

ii) those who have never thought about re-use; and

iii) those who would exploit re-use if the process was better supported.

 The first group of developers may not trust components that were generated by others

as they believe those components are vulnerable to unauthorized access, or they might

think that the available components are inaccurate, or of inappropriate quality to re-use.

Others might prefer to take the intellectual challenge of solving the problem by themselves

rather than re-using existing solutions. The second group of developers may not be aware

of the availability of re-usable components, so they always work on generating their own

components without considering any re-use attempt. The third group of developers might

be aware that re-usable components are available somewhere, but the problem that

distracts them from re-use is the difficulty of obtaining them. The first group of developers

are not interested in re-use in the first place. The second group may or may not be

interested. However, the third group of developers are interested in practising re-use as

they are aware of its advantages, but they suffer from not being able to obtain the

4

components easily. This research is targeting primarily the third group of developers by

addressing the difficulties they currently encounter.

Obtaining re-usable components involves the activities of searching, finding, and

retrieving components from places where they are stored. Components stores are

commonly known as repositories. If components are not organized and represented in a

repository in a precise manner then obtaining them will not be trivial. Organizing

components for re-use is a significant feature that a repository system must exhibit to

support re-use.

1.4 Repository Systems

A repository system in very general terms is a place where data are stored and

maintained for subsequent access. In software development, a repository is a commonly

known place where re-usable components can be found. Practising re-use in software

development requires the availability of a repository system to help obtaining components

for re-use.

Deciding whether a repository system is really necessary or not is, primarily, based on

the number of components available for re-use [43]. Small numbers of components (e.g. 10

components) may not need a complex repository system, a shared folder could be

sufficient. However, if the number of components is large then a properly organized

repository system is essential.

Some repository systems are built privately within organizations and do not provide

external access; only employees within that organization can access the repository. Other

repository systems are in the public domain and open to more general access. Repository

systems may vary from one organization to another, based on the needs that organizations

want to fulfil. However, all repository systems must exhibit some common key

characteristics including:

• Organize components: if the number of components within a repository is large

then a mechanism to organize components systematically is required.

• Mechanisms to facilitate searching and browsing: a repository must employ a

mechanism to search for and locate components of interest. It is desirable also to

provide browsing mechanisms.

• Adding new components: a repository system must be able to accept and organize

new components.

5

• Provide descriptions for components: every component in a repository must be

described by some means (e.g. textual description) to reflect the main purpose of

generating them in the first place. The provided descriptions can be utilized to help

re-users search for their desired components.

• Provide a version control mechanism: components in a repository system may

differ in versions. So a mechanism to control versions and differences between

versions is useful in a repository system.

Before further details of software repository systems are examined, it is appropriate to

examine the nature of the re-usable software components that may be stored in repository

systems. Many types of components can be kept in a repository system; these are discussed

briefly in the next section.

1.5 Re-usable Components

Several types of components are produced throughout the process of software

development: from requirements documents, specification documents, designs, plans,

through to source code, binary libraries, and even test harnesses and test data. These types

of component can be classified as high-level and low-level. High-level components include

all components produced before the implementation stage of a software system (e.g.

requirements, specification, and design). The low-level components are those produced in

the implementation stage and in the stages thereafter (i.e. testing and maintenance).

Theoretically, many components produced in a software development process could be

re-used. Specification documents, for example, could be re-used in a development process

that intended to build a similar system with some added functionality. Design patterns

[55], for instance, are a type of component that can be re-used in software development

within a design stage. Design patterns describe solutions to recurrent problems at the

design level. So, one might re-use design patterns to help overcome system design

problems. Source code can also be re-used from an existing system that do similar

functionality as the one needed by re-users. Re-using source code can reduce the overhead

of building a system as re-users will not need to write source code from scratch, but re-use

the code that is already available to them.

Re-using any components produced during the software development process could be

beneficial, but the main focus in this research is in re-using source-code components. The

term software components will now be used to mean source-code components throughout

6

the thesis. The term artefact will be used to refer to the different types of components in

general (e.g. requirements, specification, design). The term component will be used to refer

conceptually to a part of a system (e.g. library of functions, web service, design element,

source-code component).

1.6 Software Component Repository Systems

Obtaining software components from a software repository system is one of the

obstacles encountered by re-users [138]. This problem is caused by the lack of sufficient

categorization for software components inside repository systems. Obviously, software

components cannot be re-used unless they can be obtained, and they need to be found with

less effort than it would take to implement the desired functionality from scratch.

Of course, currently available repositories employ some mechanisms to organize the

software components they contain. However, the categories used to organize software

components are very abstract in nature and can cause a large number of results to be listed

under a single category. For example, in sourceforge.net (one of the leading open-source

repositories) 3,351 open-source projects were listed on 12/2007 under the utilities

category. One obvious problem indicated by this example is that the number of potentially

re-usable candidates is large because the categorisation is too general, which would require

the re-user to spend extensive time in locating suitable components for re-use. Another

problem is that this category (i.e. utilities) is very abstract and may not reflect any useful

meaning to re-users. This indicates that unless re-users are aware of the specific categories

that classify software components, it can be extremely hard to locate re-usable source code,

especially given the limited searching support provided by the current open-source

repositories (usually limited to free-text searching and category browsing). The existence

of sufficient and effective ways to group and organize software components within

software repositories is a key aspect that eases finding source code, hence encouraging

their re-use.

Precise categorization of software components inside a repository system is necessary to

achieve logical structuring and organizing of source-code components within a repository

system, and hence to facilitate re-users in obtaining them. However, categorizing source-

code components is not always trivial in software because the discriminating

characteristics of source code identities are ill defined compared to other engineering

disciplines. For example, in electronics, a simple transistor can be identified by its I/O pins.

Whenever an electronic component is described as having an Emitter, a Collector, and a

7

Base pins then it can be categorized as a transistor. This degree of precision, that specifies

what a component “must have” to fit within a category, is not obvious in software, and

there appears to be no standard mechanism for describing their characteristics. For

example, what are the distinguishing characteristics by which components can be identified

as JavaBeans? Or what are the characteristics that a parser component must have to

achieve its parsing behaviour? Thus a means for identifying the characteristics that may

allow discrimination of components, and hence form the basis for a categorization

mechanism that a repository can use, is needed.

Prior work (which will be discussed in Chapter 3) has attempted to establish a

categorization for software components, although mostly based on trying to capture a

component’s functional characteristics. Categorizing components by their functional

characteristics is one of the obvious ways to organize software components in a repository,

as functionality is likely to be the characteristic that re-users consider first, when searching

for software components to re-use. Re-users might further apply filtering mechanisms to

identify the most relevant components, but their primary searching criteria are likely to be

based on functional characteristics. So, precise descriptions of component functionality are

desirable in order to establish an organizational basis for a repository’s categorization

mechanism.

However, capturing and understanding complex functionality of software components is

a significant challenging to software developers [48]. For high-level artefacts (e.g.

specification) there are several attempts to capture descriptions of functionality in a formal

manner, but they are not in widespread use. For source-code components, there is no

appropriate way of obtaining key functional characteristics from source code. In addition,

understanding the functionality of software components requires the presence of good

documentation, whereas having well-written documentation is not guaranteed all the time

especially in the case of software components in open-source repositories. Moreover,

finding components that provide the required functionality is not enough alone to re-use

the found components successfully as their architecture is also of importance.

One requirement of an ideal repository system is that it should depend primarily on

identifying components’ characteristics from the source code of the deposited components

to facilitate their easy finding and subsequent re-use. The characteristics that can be

identified from a component’s source code relate to the functionality that the component

provides and also the architecture it conforms to. While capturing key functionality from

8

the source code is not possible at the moment, a first step towards achieving the optimal

solution that the ideal repository system can provide, however, is trying to capture a

component’s architecture from its source code. This research assumed that software

components can be re-usable into a re-user’s system if they provide the required

functionality and also conform to the system’s architecture at hand. This assumption is

motivated by the fact that re-users might find, somehow, components that provide the right

functionality (fit at functional level) and re-use them in their system but soon they discover

that components raised compile-time, link-time, or run-time errors due to missing some

required methods, for instance, or being written in a different programming language than

the one required by a re-user, and hence caused an architectural mismatch (i.e. not fit at the

architectural level). Recall the “vision” story at the beginning, Adam had found the

required “parser” component but he could not re-use it directly as it needed some

modification in order to satisfy his system’s architectural requirements (e.g. converted

from FORTRAN to Java).

Satisfying the functional requirements of a system is named as functional fit while

satisfying the architectural requirements of a system is referred to as architectural fit.

Achieving both functional fit and architectural fit is referred to as the perfect fit.

Components can perfectly fit into a re-user’s system if they provide the required

functionality (i.e. functional fit) and also conform to system’s architecture (i.e.

architectural fit). This separation between functional fit and architectural fit can help the

more accurate understanding of a component’s re-usability and, as a result, allow re-users

to plan their modifications to components. For example, if developers are aware of what is

required to modify a component conforming to the “Net-Beans” architecture to an

“Eclipse” architecture then that would help re-using the component, as a result, the

component can be fit architecturally after applying the necessary modification, and

consequently is considered re-usable. An additional advantage of the separation between

functionality and architectural aspects is that a tool might be used to perform the

modification automatically either at the architectural level or at the functional level as both

levels of fit are described precisely. This is what has been described in the story at the

beginning when a FORTRAN component needed to be modified and converted to a

component written in Java instead, also converting a component into a stand alone

application.

While satisfying the functional fit is not possible at the moment, this research concerns

the characteristics of the architectural fit as the distinguishing characteristics that an ideal

9

repository system can utilize in order to identify and organize components automatically

for subsequent re-use. The research also concerns addressing the architectural fit of

software components as a starting point towards achieving the complete solution, in the

future, by which components can perfectly fit into systems where they are re-used. The

architecture that a component conforms to is named as its architectural type. The

architectural type defines the characteristics that a component must satisfy in order to fit

architecturally into a system. For example, one of the characteristics of a Java application

architectural type is that it must have a method called “public static void

main()”. The characteristics that are defined by an architectural type are distinct and

different from one architectural type to another. As a result, it is useful to exploit the

characteristics defined by an architectural type to build the basis for organizing software

components inside a repository system. Therefore, addressing the architectural fit was

considered as the topic in this research while the functional fit is left for future work.

1.7 Aim and Objectives

This research is aimed to address some of the problems that hinder components re-use,

and investigate potential solutions to optimise the support that can be provided to

components re-users. With that aim in mind the set of objectives for this research are:

1. To identify the design of an ideal repository system.

2. To investigate the possibility of characterizing components at the source-code level.

3. To uncover the architectural characteristics and dimensions that correspond to fitting

components architecturally into a system in order to address the use of these

characteristics within a repository.

4. To propose an approach, namely ArchInt, that formalizes the architectural interface in a

low level of abstraction that reflects the precise characteristics of software components.

5. To investigate the applicability of ArchInt in automating the process of categorizing and

modifying software components.

1.8 Thesis Outline

The remainder of this thesis is organized into six chapters as follows. Chapter 2 presents

the background work conducted in this research to set the context for the thesis. The

chapter describes the potential problems encountered by components re-users and the main

reason behind the presence of these problems and how they can be solved. The overall

context of the thesis is described towards the end of the chapter.

10

Chapter 3 presents a classification and analysis of the main characteristics of the

existing software repository systems – forming taxonomy of software repository systems.

Using the taxonomy, a survey of software repository systems is provided. Toward the end

of Chapter 3, an analysis of the current repository systems is presented which provides the

requirements and justification for proposing the approach of this research. Also a

discussion about the components categorizations available in the literature is given in

Chapter 3.

Chapter 4 draws upon related work into supporting software re-use, and describes a

number of use-cases to gather the requirements of the approach proposed in this research.

The chapter then proceeds and discusses concepts related to component fit and identifies

the characteristics of architectural types.

Chapter 5 introduces a prototype of a specification language namely ArchInt that

formalizes some of the characteristics of architectural interface. The chapter also presents

some studies for evaluating the generated ArchInt prototype and also to give a spin on the

overall value of architectural interface.

In Chapter 6, the overall notion of architectural interface is evaluated based on the

experience gained from the studies conducted in the previous chapter. Also, the chapter

presents the assessment of ArchInt prototype with a discussion of its observed limitations.

The conclusion of this research is given in Chapter 7, where the achievements,

contributions and problems are summarized. Additionally, the main research aim and

objectives are revised and the usefulness of architectural interface as a paradigm to support

software re-use is discussed and areas for future work are identified.

11

Chapter 2 - Background Research

The previous chapter set the scene of the research by establishing the importance of re-

use in general to enhance software development, and identified some of the obstacles

encountered by re-users that undermine the predicted advantages of re-use.

This chapter describes the background work to set the context for this research. The

chapter starts in Section 2.1 with a general discussion about the definition and history of

re-use. After that, Section 2.2 identifies various artefacts that could be re-used to build a

system. Section 2.3 describes the software components and identifies their characteristics.

Then, Section 2.4 discusses the notion of component-based software development (CBSD)

to identify the area that is the main focus of this thesis. Section 2.5 discusses the notion of

software architecture and describes the significant impact of such architecture in tackling

the problems encountered in the field of software re-use. After that, Section 2.6 describes

the notion of open-source software and identifies the current state of re-use in that area.

Finally, Section 2.7 sets the context for the research under consideration by identifying the

key points from the background work that has been discussed in this chapter and mapping

some of the terminology used in the literature to that which is used in this research.

2.1 The History of Re-use

Re-use is one of the old paradigms that were commonly practiced in many different

professions. In car assembly lines for example, motors, body parts and many other

components are re-used from one model to another. Rarely are new parts built from

scratch. Electronic engineers assemble their integrated circuits from resistors, transistors,

diodes and many other re-usable components. They simply search for the required

component on the corresponding data-sheets that explain the detailed specification of each

type of component so that they can re-use them.

In software, the concept of software re-use has existed since the beginning of

programming in that programmers were re-using algorithms, sub-routines and pieces of

code from previously created programs. The idea of re-use was firstly formalized by

McIlory [103] who emphasized the need to componentize software systems. So, applying

McIlory’s idea has led to us thinking about building software systems in a similar manner

to building hardware systems (e.g. electronic circuits). Later on, more advanced research

work emerged that discussed re-use and its possible directions, emphasising the

significance of re-use. Nowadays, re-use has become one of the standard paradigms that

12

most of the leading software development corporations such as HP [62], IBM [154] and

Motorola [79] have practiced in their software development processes while many others

have reported successful experience with practicing re-use in their software development

projects such as the examples provided in the C.R.U.I.S.E book [6].

The term, re-use, in its most basic meaning, indicates obtaining some of the already

built parts with the intention of using them in the building of a new product. A diversity of

descriptions are available in the literature about software re-use. Some of the commonly

known descriptions are:

Software re-use is a process by which organizations describe a set of systematic

operation to generate, organize, and locate re-usable components for future development

[111]. Sametinger [127] described software re-use as the process of re-using some already

built components to construct a new system. Software re-use has also been described by

Krueger [85] as the process of using existing components to build systems instead of

building them from scratch.

Software re-use is among the significant software attributes that permits software

artefacts to be taken from one project and incorporated into another that shares similar

characteristics [109]. Many types of artefacts can be re-used. The next section describes

the different types of artefacts that can result from a software development process.

2.2 Types of Re-usable Artefacts

Artefacts might be described as pieces of formalized knowledge that can contribute to

the software development process [33]. Artefacts might be a complete solution to a

problem (e.g. a whole system) or they might be part of a complete solution. While re-using

both might of interest to re-users, it is observed that re-using part of a system always raises

problems as will be see in the coming sections. Therefore, this thesis is concerned with

investigating the problems encountered when re-using parts of a system.

 Many artefacts are produced during the different developmental stages of a software

system. The following describes the different stages normally found in most development

processes (e.g. Waterfall [136]) and identifies the possible artefacts produced within these

stages:

Requirements & specification stage: the main objective of the requirement and

specification stage is to identify the problem to be solved and also to describe the possible

solution to that problem. Many artefacts might be produced during this stage including

13

analysis, data dictionaries, validation schedules, diagrams and a requirement and

specification document.

Design stage: the design stage is the stage in which the solution to the problem

described by the requirement and specification stage is analyzed. The design of a system

represents the blueprint of the overall system’s organization that describes the architecture

[14] of the system, its composing elements, and the way that these elements interact with

each other. Several artefacts might be produced during this stage including design patterns,

documents and diagrams.

This research refers to such artefacts as high-level artefacts as it is believed that they are

usually generated at a high level of abstraction. The artefacts generated during the

forthcoming stages are referred to as low-level artefacts.

Implementation stage: the main objective of the implementation stage is to write

source code that reflects the design of the system being built, according to specific syntax,

so that tools (e.g. the compiler and the linker) can parse the source code and interpret it

into executable form (i.e. into binary code) that provides the real working functionality of

the system. Several artefacts might be produced during this stage including components,

either in the form of source code or binary code, complete systems and documentation.

Test stage: the purpose of the test stage is to ensure that the code artefacts have passed

through a number of tests in order to confirm their suitability and correctness in terms of

working as expected. Several artefacts might result from this stage including a test suite,

unit test document, test plans, test practices and some code review techniques.

Theoretically, many artefacts produced in a software development process could be re-

used. Specification documents, for example, could be re-used in a development process

that intends to build a similar system with some added functionality. Design patterns [54],

for instance, are a type of artefact that can be re-used in software development within the

design stage. Design patterns describe solutions to recurrent problems at the design level.

So, one might re-use design patterns to help overcome system design problems. The tests

generated in the validation of the code of one project can be re-used in similar projects

[36]. Re-using tests can increase the maintainability of software systems [3].

Although re-using high-level artefacts might be beneficial, several problems might be

encountered by potential re-users. High-level components produced as part of the software

development process normally suffer from redundancy, errors, disagreements and

ambiguity [108]. This is mainly because they result from meetings, email discussions, or

14

interviews that are usually recorded in a natural language which is the primary form of

communication between the stakeholders or used in legacy documents [149]. An additional

problem that re-users of high-level artefacts may encounter is that one cannot guarantee the

availability or accuracy of such artefacts at the end of the development process, due to their

being lost or not appropriate for the system that is eventually produced. The only artefacts

that can be reliably found at the end of a development process are the source-code

components.

Re-using source-code components is a particularly important and growing area of

interest, especially with the pioneering developments of open-source software [20] that

gives access to huge collections of freely available source-code components. One

advantage of re-using source-code components is the possibility of re-users examining the

source code for “Trojan horses” which form a threat to their systems. Another advantage is

that the source code is a precise description of behaviour, unlike the natural language that

might be used to describe behaviour in the high-level artefacts. Moreover, source-code

components can be utilized by a repository system to be analyzed, checked, and organized

automatically. Therefore, this research is concerned with the re-using of source-code

components.

Practicing re-use involves examining which re-use approach suits the need of the

development process in terms of the ease of obtaining and customizing particular

components [121]. Two main approaches are commonly used in the field of re-use,

namely, white-box and black-box re-use [98]. White-box re-use involves re-using a

component that have its source code available, hence the component can be modified to

suite the needs of the developer. Black-box re-use involves re-using components as-is,

without modification as the source code is not available. In practice, components that

match the exact specifications of re-users are rarely available. Re-users need to modify or

customize a component to fit it into their system. In the case of white-box re-use,

modification can be done by modifying the source-code, while in black-box re-use the

modification is done by customizing components to match the desired specifications. Two

types of modification have been identified, contextual modification and domain

modification [121]. Contextual modification concerns modifying components to match the

environmental and programming language requirements of the system to be built. Domain

modification concerns modifying the functionality of a found component to satisfy the

required functionality to be incorporated into a system. One potential advantage of white-

box over black-box re-use components is that if a component that matches the functional

15

requirements is found then, in terms of white-box re-use, the source code can be modified

to match the new contextual requirements. This, however, is not possible in the case of

black-box components. Hence, re-using source-code components (white-box re-use) can be

advantageous over binary-code components (black-box re-use).

Despite the many advantages of re-use in general terms, it is not widely practiced due to

the difficulty of finding re-usable components [13]. The problem of finding them includes

locating a proper source of re-usable components and also the ability to find suitable

components that fit among the available ones. Another problem is related to quality

assurance issues in the sense that component quality cannot be certified [145]. So, many

aspects of software components need to be studied in depth in order to understand the

characteristics of software components and consequently to establish a solution that tackles

the problems encountered. It is appropriate now to present the different meanings of the

term “software component” in the literature before going further in discussing other

aspects of background work. Hence, the next section presents a number of definitions of

“software component”.

2.3 Software Components

A software component is defined variously in the literature, in that there is no single

accepted definition of the term yet available [19]. The following descriptions are the most

prominent ones within the software industry. Brown and Wallnau [22] described

components as a nearly independent and replaceable part of a system that satisfies some

functionality in the context of a well-defined architecture. The component can be bound

dynamically and accessed through a well-defined interface at run-time. Szyperski et al.

[139] described a software component as a unit of composition with a specified interface

and explicit context dependencies. The component can be deployed independently and

subject to composition by a third party. Meyer [107] described a software component as a

software element that can be used by other software elements (e.g. clients), possesses an

official usage description, and is not tied to any fixed set of clients. Heineman and Councill

[65] described a component as a software element that conforms to a component model

[87] and can be deployed independently and composed according to composition standards

without modifications. Yang and Ward [152] described a component as a coherent and

configurable package that is available independent of the application in which it has been

used with a well-defined interface that can be used in different contexts to interact and

communicate with other components to form a system. Brown and Short [21] characterized

16

a component as “…an independently deliverable set of reusable services”. Hopkins [70]

described a component as a physical package of executable code that exhibits a well-

defined interface.

The different interpretations of a component seem to agree with regard to the

description of the main characteristics of a component. All the descriptions agree that a

component is a packaged part of a system that conforms to specific characteristics and

provides some functionality. Moreover, the descriptions emphasise the necessity to have an

interface that can achieve interaction between components and also define explicitly the

dependencies of a component. The author’s understanding of a component, in a very

abstracted view, is that components are just parts that fit into a system. They must exhibit

characteristics through their interface to facilitate incorporation into a system and also for

identifying them for re-use.

2.3.1 Component Interface

A significant part of a component is its interface. An interface describes the

specifications of a component [139]. It separates the abstract specification of a component

from the underlying implementation that specifies how a component can provide certain

behaviour [21].

Design by contract (DbC) by Meyer [110] is mainly concerned with defining the formal

specifications of component’s interface in order ensure that the collaboration between the

components of a system is correct. The notion of DbC guides the design of the software

system by specifying a set of pre-conditions and post-conditions as part of the interface of

a component. Pre-conditions are the requirements that must be made available to a

component prior to be able to provide its services (e.g. “You need a debit card to withdraw

from a cash machine”). Post-conditions define what a component will provide once a

condition is satisfied (e.g. “withdrawing money”). Brown and Short [21] described an

interface as a way of summarizing the behaviour and the responsibility of the component.

They used an interface to capture all the semantics related to the collaboration between

components. The set of operations provided by a component is considered as part of the

exhibited interface that a client or a system can use to obtain the required functionality of

that component. Sametinger [127] described a component’s interface as a way to determine

how a component can be re-used and composed with other components in a system. An

interface defines the set of operations that characterizes the behaviour of a component.

Sametinger distinguished between three types of interface namely, data interface, user

17

interface, and programming interface. Data interface concerns the format and

transformation of the data between components. User interface captures the protocol of

interaction between a component and a user, for example through a simple command line

or a graphical user interface. Programming interface captures the possible interactions

between components and how they can be composed in a system. Arbab et al. [9]

described the interface as a definition of the observable behaviour of components that

contains five elements. These are a name, a channel signature, a blocking invariant, pre-

condition, and post-condition. The name of an interface is used to uniquely identify an

interface from other interfaces. The channel signature captures a set of parameters

representing the data input and output of a component. The blocking invariant specifies

special cases when a component needs to allow exceptions or perform a special action. The

pre-condition refers to the required set of inputs that must be supplied to the component in

order for it to operate. The post-condition refers to the set of values that are supplied by the

component. They considered the component interface as a way to reason about the

correctness of composition of a system from its components. Hondt et al. [69] described

the notion of a re-use contract that concerns capturing the requirements of a component

from other components in a system. They considered the interface as a way that not only

captures the operations responsible for providing functionality, but also document what a

component requires in order to work and what interaction structure is required in order to

obtain a correct collaboration between the components of a system. An interface of a

component captures the signature of operations without considering any semantics or type

of information. The key contribution of the notion of a re-use contract is to detect conflicts

in component interfaces, in that a conflict indicates that components cannot work together

in a system.

The author of this thesis describes the component interface abstractly as a contract of fit.

An interface is, in fact, a kind of contract of communication between a component and a

system. Both a component and a system must agree upon a defined contract in order to

allow for a component to be re-used in a system and also to allow a system to use the

component. The characteristics defined by an interface capture the functional and non-

functional aspects of software components. Based on the exhibited characteristics of a

component’s interface, a component can be identified and re-used. The component’s

interfaces can be represented directly in the code of the component (e.g. Java Interfaces) or

by using additional files (e.g. a textual file) that describes the interface of the component.

18

2.3.2 Component Categorization

In the literature, several works have provided a categorization of software components.

An early categorization was provided by Booch [18] that suggested that source codes have

categorized components into structure, tool, and subsystem. Structure denotes components

that are of an abstract data type (e.g. class). Tools are components that are denoted by an

algorithmic abstraction. The subsystems category refers to a logical structure of

cooperative components. Booch’s categorization seems concerned with identifying the

granularity of the software component. So, structure represents individual classes or

objects, hence can be considered as a fine-grained view of components. Tools represent a

collection of classes or objects that interact to perform certain functionalities, hence can be

considered as a medium-grained view of components. A subsystem represents a collection

of tools packaged together as a library, hence they can be considered as a coarse-grained

view of components. An interpretation different to Booch’s taxonomy could be that

components might be of a single class, an application, or a library. Kain [80] distinguished

between two types of components namely, specification and implementation. The major

motivation behind proposing this categorization seems to be that Kain wanted to separate

the interfaces of a component from its real implementation. So, specification captures the

description of the characteristics (e.g. Java interface) while implementation captures the

description of the technical details behind a component and the way that component

behaviour is implemented (e.g. Java class). Dusink and Katwijk distinguished between two

types of components based on thread of control as active and passive components. Active

components are those that originate a thread of control in a system. They could be the core

components that instantiate other components in a system (e.g. the framework). Passive

components are those that receive a thread of control to accomplish certain task such as

libraries or databases. Heineman and Councill [65] categorized components into GUI

components, service components, and domain components. Their categorization seems to

distinguish between components based on their cost and complexity. Heineman and

Councill suggested that re-using GUI components (e.g. buttons, forms) is the simplest ones

among the other types of components and their re-use might increase productivity by 40%.

Service components (e.g. database access) are more complex than GUI components, but

their re-use can increase productivity by 150%. Domain components (e.g. payroll, bill

calculation) are the most complex components among the other two. Their re-use can

increase productivity by 1000%. However, their development requires extensive work.

19

The author of this thesis has categorized components based on their interfaces into

single components, component structures (i.e. system) and applications. Detailed

discussion of the different interfaces is given in Chapter 4. In the meantime, two interfaces

are distinguished namely, external and internal interfaces. The single component category

specifies two interfaces; an external interface that a component must exhibit to fit into a

system, and an internal interface that specifies the dependencies of the components (i.e.

sub-components). The system category describes two interfaces - an external interface

which describes how a system can be used by a user, and an internal interface that

describes the specifications that components must conform to. The application category

describes only the external interface that describes how the application can be used by a

user.

Components are the cornerstone of the field of component-based software development

(CBSD) that addresses aspects relevant to putting the components together in order to form

a system. The next section describes the notion of CBSD.

2.4 Component-Based Software Development (CBSD)

The notion of CBSD is not new. It was firstly coined by McIlory [103] who established

the need to componentize software (i.e. building software from components) as a way of

resolving some issues identified by the software crisis that concerns the case of building

large and reliable software in a controlled way [148]. CBSD is concerned with the

assembly of software systems from pre-existing software components. One of the main

objectives of the CBSD approach is to promote the re-use of previously developed

components to allow the building of a new system. The notion of building a system from

components can reduce development costs and increase the quality of the final system

[139].

Building a software system from re-usable components requires a clear understanding

of the aspects related to the characteristics of the overall system, the characteristics of

software components, and aspects related to obtaining and integrating components [101].

A common model for CBSD is that a re-user who wants to add functionality to their

system might find a component repository to search for re-usable components. The re-user

then gathers their ideas about the characteristics of the component they are looking for.

After that, the re-user types a search query that formulates their thoughts about the

characteristics of the required component, either as free-text or in the form of a

specification model [21]. Alternatively, the re-user could browse the available categories in

20

case they are not fully aware of the representation method [49] used by the repository to

organize the component. In this way, browsing can build up their knowledge [93]. In

response, the repository may list a number of results that are relevant to what the re-user

needs. Consequently, the re-user can examine the characteristics of every component on

the list until they find a best match in terms of the required characteristics. Sometimes, the

re-user might need to modify the component they have found in order to exactly match the

requirements of the system to be built, so they might apply some adaptation techniques

[16] to accomplish the modification. Once the component matches the required

characteristics, it can be incorporated safely into the system.

The above model identifies a number of aspects with respect to development according

to the CBSD approach. The various aspects are discussed in the next sub-sections.

2.4.1 Identification

 Identifying components involves recognizing the potential of re-usable ones, based on

their exhibited characteristics from a list of components. This activity involves searching

and browsing software components. The selection of the appropriate component from a list

of components is done by matching the characteristics of the component to the

specifications of the system to be built. This requires a precise definition of the

components’ characteristics in order to facilitate an understanding of them by their users

and also to classify them for re-use [94]. The success and soundness of the identification of

the component is a major factor for the success of the CBSD approach as components

cannot be re-used unless they are found [7, 135]. The key element for the success of the

identification activity is the availability of an effective organizing scheme with regard to

the software component [101]. A detailed discussion about the available characterization

organization schemes (i.e. classification schemes and indexing schemes) is given in

Chapter 3.

The software components can be identified in various ways. Some of the common ways

of identifying components are based on matching their behaviour [117], their signature

[156] and their specifications [66, 77]. Behavioural matching identifies components based

on a set of predicates (i.e. pre- post-) that are used to execute components. The resulting

values of the execution are then used as representative “terms” to identify the

corresponding components. Signature matching identifies components based on the

signature of the functions within a component and the type of parameters. For example, in

ML a function “hd” can be identified by the type of its input and output parameters “a

21

list a”. A whole component that is composed of several functions can be identified

by the signature of the functions within the component. Specification matching is derived

from the behavioural matching approach. However, it relies on predicates of the entire

component’s operation. The set of predicates are written using formal specification

languages such as Z language [137] or OCL [46].

2.4.2 Validation

 Validation is a way of checking the characteristics of the component against a pre-

defined specification. Two kinds of validation are relevant to the CBSD paradigm - unit

test and integration test [123]. The unit test is done by a component developer to ensure

that the provided behaviour of the component is correct [35]. Testing a component’s

behaviour could either be done as black-box testing by providing a set of inputs and

examining the resulting output, or white-box testing by inspecting the source code [124].

The integration test is undertaken by a component re-user to determine whether or not the

component can interact with the other components in the system and is not going to raise

any structural problems [72]. In addition, integration tests can be done in some cases to

measure the quality of a component in order to decide whether or not the component can

be trusted for re-use [107].

2.4.3 Integration

 The activity of integrating a component can be seen as a mechanical activity involving

connecting components by means of matching their syntax and semantics to form a system

[27]. Part of the integration activity is related to checking the compatibility of the

components to match the characteristics of a system [38]. The main issue to address in this

activity is related to solving potential mismatches [52] between components. One reason

behind the occurrence of a mismatch in a component’s characteristics is due to the fact that

the component’s producers may be unaware of the potential usages (i.e. context) that their

component might be re-used in, hence their assumptions are different from the

assumptions considered by the components initial users [29]. Thus, it is extremely

important that the software components are produced with a well-defined interface in order

to understand the assumptions that components can match [65], and also can be connected

with at runtime [114].

In a system that is built locally, integrating heterogeneous component can be achieved

using a wrapper or glue code to bridge the differences between the components’ interfaces.

22

So, if a component that takes two parameters as an input is composed with a component

that provides three values as an output, then a glue code can be used to map the input and

the output of the components. In building a distributed system, the interaction between the

components can be addressed using the notion of middleware (e.g. CORBA [134]) that

unifies the components’ interfaces to enable their interaction across a network.

2.4.4 Evolution

This activity is concerned with replacing components from a system with other

components that conform to the same interface, so that we can substitute the replaced

component without affecting the other components of the system [10, 21]. The reasons for

replacing the components could be to fix bugs in the system or to extend the functionality

of the system by incorporating new components that provide the desired behaviour into it.

Consequently, this activity is important in the notion of CBSD.

2.4.5 Discussion

With regard to the above aspects, integrating components is a significant issue that

needs to be investigated in depth [142]. Addressing component integration is especially

important when dealing with heterogeneous components, as they might cause lots of

interoperability problems when re-users need to incorporate components into their systems.

Components can either be integrated statically or dynamically [25, 109]. Statically

integrated components are those that are bound by programming mechanisms (e.g. method

invocation) at compile time and usually conform to an architectural style [56] (described in

Section 2.6). The dynamically integrated components are those that are bound at run-time

and they are identified by the services (i.e. behaviour) they can provide.

Integrating components involves adapting components to resolve potential mismatches

in the characteristics of a component and the characteristics of the system to be built.

Adaptation refers to modifying the interface of the software components by means of using

a wrapper, glue code, or a translator to eliminate the unnecessary behaviour of a software

component and also to add additional characteristics to its current interface in order to meet

the requirements of a re-user [21]. Specifically, the adaptation of the component is mainly

concerned with solving potential interaction problems that are caused due to potential

architectural mismatches between components interfaces [57].

Several attempts have been made to try to tackle the problem of integrating components

in a system. Eclipse [31] has established a framework by means of plug-ins that

23

encapsulate components in order to unify their interfaces. So, different components that

conform to different assumptions can be incorporated into an Eclipse if they are wrapped

with the necessary plug-ins’ architectural characteristics. The Vienna Component

Framework (VCF) [115] has established a framework similar to that of Eclipse, but its

authors claim that it is has an advantage over Eclipse in the sense that it provides uniform

access through different component models. VCF has defined general characteristics for

software components that, they claim, are common among different types of components.

These characteristics are:

• Life-cycle: every component must implement a set of methods that allows a system

to control it when it must be initialized and destroyed.

• Persistence: this allows a component to be stored and retrieved from storage.

• Method: this characteristic gives a handle to the real methods provided by a

component that are responsible for functionality aspects.

• Property: this characteristic allows for the manipulation of the component’s state.

• Event: this characteristic allows components to be registered as listeners to be

notified about events.

Integration problems are experienced in various situations where the CBSD approach is

used to build a system. One of the prominent examples that demonstrates this problem is

the integration of Commercial Off the Shelf products (COTS) [26]. The problems

encountered at integration time are primarily due to potential mismatches in the

architectural assumptions between the components that are planned to be re-used and for

the system to be built [133][56]. One may find, somehow, a component that seems to

satisfy their functionality. However, that component does not fit into the system under

development due to an incompatibility in the programming language used to write the

component and that of the system, such as incompatibility in the operating system or the

database schemes [56]. These incompatibilities are additional difficulties that a re-user

might need to take into consideration when considering re-use. As a result, software

components must define their characteristics through their interfaces in order to make the

characteristics explicit for re-users wishing to identify a component from others [30].

The next section introduces the background work in the field of software architecture to

give the reader information about how software architecture might affect components’ re-

use and the role of software architecture in tackling the problem of integrating components.

24

2.5 Software Architecture

 People usually refer to the term ‘architecture’ to indicate the physical construction of a

building in terms of external shape, and also how rooms are structured within that building.

In software, the word ‘architecture’ is a term that is in general use, with a number of

different interpretations. However, as an analogy to its meaning in civil engineering, it

inspires the meaning of creating a product (software system in this case) from a number of

selected components rather than building a single monolithic one. So, the way components

must be incorporated, the order in which they must be placed, and the mechanism of

interaction between them, are parts of what system architecture describes.

Bas et al. [14] defined software architecture as the structure of a system that comprises

software elements, their external visible characteristics, and that defines the relationship

between them. IEEE 1471 [74] defines software architecture as “the fundamental

organization of a system embodied in its components, their relationship to each others and

the environment, and the principles guiding its design and evolution”. Jones [78] defined

architecture as the structure that is composed of components and rules that establish the

basis for the interaction between them. All the definitions have agreed upon the fact that

architecture is concerned with the constituting parts of a system and the relationship

between them.

In the literature, many of the available sources have explained the significance of

considering architecture in software development (especially in the CBSD paradigm). One

reason for considering software architecture is to help our understanding of complex

software systems [60]. Shaw and Garlan [133] suggested that architecture can be used to

define the overall design of a system. Garlan and Perry [59] identified the benefits of

considering software architecture in software development as providing support for re-

using, evolving, analysing, and managing software. Budged [24] considered software

architecture to be a way of describing the constructional aspects of a software system at a

high-level of abstraction (e.g. design stage). Allen [5] identified architecture as being the

vehicle to communicate between the requirement and the implementation stages. Szyperski

[139] suggested that architecture is important for establishing a context for software

systems representing standards and platform requirements.

Garlan et al. [56] identified a number of architectural characteristics that might cause a

mismatch to occur in terms of component interaction within a system. These characteristics

are:

25

• The infrastructure that a component is primarily built on.

• Control issues of whether a component can generate a control signal or not.

• The data type manipulated by a system and the way it is transferred between

components.

• The pattern of interaction between components.

• The sequence that components must be instantiated and invoked with.

From the re-users point of view, these characteristics are significant in order to identify

whether or not a component can be re-used within their system and is based on an

understanding of the different characteristics of the architecture to hand. Consequently, a

component that supports a single thread of control will not be suitable for re-use in a

system that assumes its components must be thread-safe. Also, a component that

communicates through RPC will not be re-usable in a system that uses message passing to

transfer data [37], hence a mismatch might occur.

Yakimovitch et al. [151] refined the work of Garlan [56] and identified five variables

that describe assumptions about components’ interactions, namely packaging, control,

information flow, synchronization, and binding. Their main motivation was to establish a

mapping between certain architectural assumptions and some real problems. They

demonstrated that the defined variables can be used to classify different software

architectures.

Software architecture seems to consider another view of a system that is not tightly

relevant to functionality. This view examines the structure of a system and tries to identify

components and define the possible interaction that a component can have in order to avoid

the occurrence of fault [90] due to a potential mismatch between components in a system.

The development of the AESOP system [56] from large-scale components demonstrated

the difficulty of incorporating components, and emphasised that the main reason for the

observed difficulty is due to architectural mismatch between the various components. Even

though the various components of the AESOP system were providing the required

functionality as the developers needed, the integration of the various components to form a

complete system was impossible without major modifications. The problems encountered

by the AESOP developers was in favour of the assertion by Shaw [130] that considering

functionality alone is not enough to successfully re-use components.

26

The core elements of software architecture are architectural styles and architectural

patterns [25]. These two elements of software architecture are discussed in next sub-

sections.

2.5.1 Architectural Styles

The basic element of software architecture is represented by the notion of architectural

styles that define a family of structures for software components to guide the design of a

system. Garlan and Shaw [60] defined the vocabulary for architectural styles in order to

understand the construction of a system. They defined the notion of components (e.g.

COTS [26]) to capture functionality, connectors (e.g. shared memory, RPC, Network

protocol [133]) to capture interactions among components, and constraints to define how

components and connectors can be combined. Later on, Shaw and Clements [131] defined

architectural style as set of design rules that identify components and connectors that make

up a system, together with constraints that govern its composition. They characterized

architectural styles based on:

• The kind of constituting parts (components and connectors)

• How control is transferred among components

• Issues of how data is passed through the system

• How control data interacts

• What type of reasoning is compatible with a selected style

 Their characterization is based on the coarse-grained description of properties and

motivated by the need to discriminate between the organizational structure of software

systems (i.e. styles) in order to help the software designer to identify a suitable style for the

system that they intend to build. Moreover, their characterization is aimed at establishing

uniform descriptive standards for architectural styles so they can be publicised among

software architects.

Mehta et al. [105] established a taxonomy for software connectors in order to

understand the building blocks of the main constitution of component interaction (i.e.

connectors) as this is a significant aspect to consider for accomplishing the successful

integration of software components. They identified the major connector types as:

procedure calls, data access, linkages, streams, events, arbitrators, adaptors, and

distributors. The main motivation for their work was to define precisely the high-level

27

terms used to refer to connectors in a more meaningful way that can be physically

observed. They have identified that one problem with the current approach with regard to

software architecture is in representing the interaction of software components.

Interactions are always represented at a high-level of abstraction at the design stage.

However, interaction is hidden at the source-code level and one may not able to identify

what part of a source code is concerned with the interaction with the other parts that are

responsible for providing functionality.

DeLine [37] identified two parts of a component; the functionality that can be provided

by a component (named as ware) and the packaging that indicates the way that it can

interact with other software components (named as packager). The two parts, when

combined, form a complete software component. DeLine has established a method known

as Flexible Packaging, that takes the decisions about the components’ interaction out of the

provider’s hand and places them into the hands of the component’s re-users. An

assumption is made in their work that in using Flexible Packaging, the components’ seller

needs only to concern themselves about the functionality of the software component; the

packaging will be selected by the re-users when they acquire components. The main

motivation for their separation is to reduce the difficulty of writing the packaging source

code by a component developer. As a result, a developer will focus only on the

functionality aspects of the component they are building, while the packaging is addressed

based upon the request of the integrator.

When a component is integrated into a system it must match the characteristics defined

by the architectural style of the system to be built [151]. The characteristics include the

type of the component and the way that the system expects the components to interact. If a

component conforms to different architectural styles than the one required by a system,

then developers need to use techniques such as wrapping the component or writing a glue

code in order to exhibit the characteristics that allow for its integration within a system.

The availability of source-code is the prime factor in deciding upon the technique used to

integrate components [130].

2.5.2 Architectural Patterns

The notion of an architectural pattern is derived from the notion of design patterns [54]

that are concerned with defining the organizational structure of a system. The architectural

pattern follows a more precise path to define the structure of a system. It captures the

recurrent form of the interaction between components and also the types of the components

28

selected in every pattern. Buchman et al. [129] defined architectural patterns as a way to

express the fundamental structural organization of a system by identifying the set of

components, specifying their responsibility, and laying down the rules that govern their

relationship with one another. The architectural pattern helps software builders to

understand how they need to organize their systems. A prominent example of an

architectural pattern is the Model-View-Controller (MVC) architectural pattern that

separates the presentation of data and its computational aspects. One significant motivation

behind developing the notion of an architectural pattern is to support the inter-

changeability of the components of a system. The architectural pattern defines the

components’ characteristics that distinguish it from other components in a system. The

definition of the components’ characteristics is advantageous for supporting the mix-and-

matching of the components of a system in the sense that one component can be identified

and extracted from a system and replaced with another that fits into its place without

affecting the other components in the system.

However, architectural patterns suffer from the ambiguity of what they really represent

[11]. In addition, there is no single way to define an architectural pattern as every designer

can define a pattern based on their perspective with regard to the construction of a software

system. This results in having a different view or examples of a single pattern. One

potential reason that can cause the ambiguity in defining architectural patterns is caused by

the fact that they are represented at a high-level of abstraction without considering any

concrete representations of such patterns at the implementation level. Thus, various

implementations might be available for the same architectural pattern.

2.5.3 Architecture Description Languages (ADLs)

ADLs are specification languages for defining the structure of software systems at a

high level of abstraction by identifying elements and the relationship between them [32,

55]. ADLs provide a description of the conceptual architecture of a system [104]. A

general characterization of ADLs’ capability was given in [61]. ADLs aim to support

architecture-based software development by establishing notations that are appropriate for

defining system architecture and its constituting elements. They formalize the definition of

a system at the architectural level in a graphical way that can be communicated to humans.

Moreover, instead of drawing boxes and lines that may not involve rules that govern

connections between them (i.e. boxes and lines), ADLs provide a semantic check of

29

whether two elements can be linked together and what the requirements are that need to be

satisfied in order to successfully create the links between these elements.

ADLs are built on the notion of components, connectors and constraints that have been

described in the software architecture field. They provide a basis for analyzing and

verifying the design of a software system [61]. There are many ADLs available nowadays

such as ACME [58], that can be used to represent the architecture of the system to be built

(Darwin [34], Rapide [97] and many others). ADLs possess several characteristics that are

relevant to the CBSD field as many of them facilitate the automatic generation of glue

codes to form a system [76]. Despite the variety of ADLs, they are not widely adopted by

the software industry, because they are not general enough as they only support specific

architectural styles [17].

2.6 The Development of Open-source Software

Open-source software [147] represents one of the most interesting and influential trends

in the software industry over the past decade. The notion of open-source software

development was firstly coined by the GNU project at MIT in the early 1980s. Their main

intention was to encourage freedom in producing software systems [88], and also to

compete with commercial software products [122]. In fact, commercial software

organizations could not function without using open-source software as part of their

products [20]. Today, many organizations are looking towards open-source software as a

way of providing greater savings in their development costs, and many software systems

such as Linux, Apache, Mozilla and Openoffice have been developed in this way. The term

‘open-source’ refers to software in which the source code is freely available for others to

view, use, execute, amend and adapt [88]. The open-source definition proposed by the

Open Source Initiative (OSI) can be used to determine whether or not software can be

considered as being open source. With regard to the definition of open-source, a software

must satisfy a number of criteria including [44]:

• It can be freely re-distributed.

• The source code must either be included with the component or freely obtainable.

• Re-distribution of modifications to the source code must not be restricted to usages

or applications [51].

Many open-source software hosting environments (i.e. repositories) exists on the

Internet. These include Sourceforge, Freshmeat, Apache, CPAN, RpmForge and many

30

others. These environments are places were software project developments are launched

and contributors from all around the word participate in building software products within

these environments. Contributors can communicate with each other by e-mail to exchange

ideas, decisions and design documentation [20]. However, these open-source environments

are not limited to the contributors who participate in building systems, but are freely open

to anyone who might be interested in observing, learning, and re-using some of the

available source codes. In this sense, these environments can be considered as repositories

of source code products. So, open-source repository systems represent a rich resource that

can be utilized by re-users to obtain re-usable source code due to the huge amount of

source code available at no cost within these repositories.

Based on the author’s practical experience of re-using open-source software, current

open-source repository systems facilitate finding software components using free-text

searching mechanisms based on matching words or phrases to the descriptions of software

components or their corresponding source code. Many search engines such as Koders,

GoogleCode, Krugle and many others can be used to facilitate searching through the

source codes of open-source software in order to help find re-usable possibilities.

Alternatively, a re-user could browse through a number of categories that organize

software components until they find a potential candidate for re-use. These are the two

methods used to acquire components in almost all the open-source repository systems.

Further characteristics of open-source repository systems are given in Chapter 3 when

discussing the characteristics of the Sourceforge.net repository system.

In the literature, the major concern with regard to discussing the re-use of open-source

software, focuses on the security and licensing aspects [20]. Addressing aspects such as the

effective re-use of open-source software to improve software development is not

considered in depth. As a result, research in this area is still needed when it comes to

utilizing open-source products for software development.

2.7 Setting the Context of the Thesis

The main theme of this research is a desire to utilize the architectural characteristics of

source-code components in order to support the finding of re-usable candidates that can fit

into the re-users’ system that is under development. Based on the work reviewed in this

background chapter, the following key aspects are the main forces and motivations that

drive this research:

31

1. The free availability of rich source-code components that resulted from the open-

source software movement.

2. The support provided by open source software repositories is limited to string

matching which is not very effective when it comes to obtaining re-usable

components.

3. The major problems that hinder re-use are related to identifying and integrating

components into a system due to the potential mismatches between their

characteristics and the characteristics expected by a system.

4. The architectural characteristics are defined abstractly in the design stage and are

not reflected precisely in the source code.

So, this section draws on the different work discussed earlier as a context for this thesis.

A problem encountered with component re-use is related to identifying the standards

that components have to be conformed to, and also the dependency issue that is related to

specific models [115]. Moreover, source-code components obtained from open-source

repositories usually suffer from the absence of documentation that a re-user can examine in

order to identify whether or not a component can fit into the system under consideration

[121]. Furthermore, the developers of open-source software components are not normally

available. The only thing that can be examined is pure source code. The current support

provided by the open-source repository system is restricted to sting matching that may

result in listing a large number of irrelevant results. As a result, an effective

characterisation of source-code components is needed in order to refine the re-user’s search

and to generate a list of more focused results.

The approach adopted in this research is to characterize software components based on

their architectural characteristics. The motivation for this selection is based on the author’s

experience in finding components that have the required functionality but never work in

the system to be built. This decision to consider architectural characteristics is motivated

by Shaw’s argument that stated functionality alone is not enough and that packaging

should also be considered [130].

The value of considering architectural characteristics appears at the time of integrating

components to the system under development. Integrating components, as described

earlier, involves an understanding the architectural characteristics of the software

components, in order to identify whether or not a component can be re-used in a system

32

and is not going to cause a mismatch. However, architectural characteristics are always

defined at the early stages of a development process (e.g. the design stage). Not many

details of the architectural characteristics are reflected in the actual implementation of a

software system. The work by Shaw and Clements [131] identified the notion of

components and connectors to classify different architectural styles. However, these

terminologies (i.e. components and connectors) are very abstract and can only be used to

define a system at the design stage. The work by Mehta et al. [105] identified a fine-

grained view of component interaction (i.e. connectors) in an attempt to reflect the high-

level principle of connectors with a physical meaning that can be observed during

implementation. However, at the source-code level, one may not be able to tell whether a

method in the source code is responsible for interaction (i.e. for the connector) or whether

it provides functionality [37]. For example, if an interaction is defined between two

components as a “method invocation”, then knowing this will not be of significance to a

re-user who wants a precise specification in terms of how the interaction has been

accomplished. Thorough characterization of components’ interaction is required in order to

identify them in the source code [99].

The problem that high-level architectural decisions are not reflected precisely on the

source code was addressed partly by DeLine [37] who established a distinction between

the functional concern and the architectural concern of software components. However,

DeLine’s approach focused more on addressing the problems of interaction between the

source code responsible for providing functionality and that of the architecture. Moreover,

DeLine assumed that the component should be made available to a repository as a source

code that purely defines functionality. The source code responsible for capturing the

architectural characteristics are left unspecified until a re-user describes the required

architectural characteristics. Based on the provided characteristics, the component is then

wrapped as necessary to match the characteristics of the architectural style of the re-user.

Once a suitable wrapper has been generated, then both the functional and the architectural

source codes are combined to form a complete component. Although the work of DeLine

is closely related to the work presented in this thesis, it may not be applicable in the case of

open-source software components where all the source codes that are relevant to

functionality and architecture are mixed together. A provider might provide a component

that is composed of functional and architectural source code, hence violating the

assumption made by DeLine that a component should only be provided as a “ware”. In

addition, open-source software components usually lack any form of documentation that a

33

packaging specialist might use to identify the architectural source code from the functional

one. Even though the specialist was able to use their expertise to identify the architectural

characteristics and split them from the functional characteristics, it would be very difficult

and time consuming.

So, based on the above identified problems, an approach is needed to identify the

architectural characteristics of source-code components, based on nothing but the source

code itself. Currently, open-source software components are characterized by textual

descriptions that reflect the behaviour of the software components. Very little effort has

been made with regard to characterizing components based on their architectural

characteristics. Even the available architectural characterizations are restricted to

programming languages. The major aspects discussed in the literature regarding the re-use

of open-source software tends to focus on the security and licensing aspects [20].

Addressing aspects such as effective re-use of open-source software to improve software

development has not been considered in depth. Therefore, this research is concerned with

identifying the architectural characteristics at the source-code level in order to solve the

problem of architectural mismatch, hence encouraging re-use. This research proposes a

particular approach, namely Architectural Interface, that is dedicated to addressing the

problem as will be seen in Chapter 4. However, it is appropriate to mention abstractly that

the nature of the architectural characteristics considered in this thesis is derived from the

previous work in the field of software architecture that concerns how to avoid architectural

mismatch between components. This research aims to represent some of the key high-level

architectural characteristics in a way that can be examined in the source code in order to

avoid potential mismatch. Considering source-code components to capture some of the

architectural characteristics is useful, as the source code is a precise representation of the

system’s design. Garlan et al. [56] suggested that a way to avoid architectural mismatch is

by explicitly defining the architectural assumptions of the software components, hence

identifying the architectural characteristics at the source code level is in line with their

assertion.

 With respect to the terminologies used in the field of software architecture, two terms

(i.e. architectural styles and architectural patterns) are discussed and linked in this thesis.

The author understands architectural style to be a representation of a systems view in the

sense that it defines the architectural characteristics that a system requires, while

architectural pattern represents components’ view, as it defines the architectural

characteristics of the components and their relationship. One architectural style can be

34

composed of a number of architectural patterns but not vice versa. As a result, architectural

patterns can be considered as instances of an architectural style. Although the definitions of

architectural styles and architectural patterns in the literature might seem similar, the

author of this thesis observes that the architectural pattern identifies the characteristics that

define the type of components at a high-level of abstraction. For example, architectural

patterns define how a component can be a “Model” or a “Filter”. This characterization of

component characteristics is not within the scope of architectural styles.

This research has adopted a similar term with regard to the two terminologies. The term

architectural interface is used to represent architectural style and the term architectural

type is used to refer to architectural pattern. These two terms are identified because the

high-level views established in the field of software architecture are not commonly used at

the source-code level, hence avoiding possible confusion in terms of terminologies.

However, the identified terminologies for this research fall in the same context as those

identified by the field of software architecture (i.e. to define the architectural

characteristics).

2.8 Summary

This chapter has reviewed the different work in the literature that forms the basis for

this research. The chapter has defined the term ‘re-use’ and has identified the various re-

usable artefacts. The chapter then listed the different descriptions of software components

and provides the description of components adopted in this research. After that, discussion

about the notion of CBSD was undertaken and the different key activities that can be

conducted in a CBSD were reviewed. Then, there was a discussion with regard to the field

of software architecture to indicate the kind of characteristics that are of importance when

considering the re-user. Finally, a number of key points were identified from the

background work to describe a context for this thesis.

The next chapter discusses related work in the literature with respect to the

characteristics of the ideal repository system (as described in Chapter 1) over three

dimensions, namely organizing scheme, re-factorization and the overall characteristics of

repository systems.

35

Chapter 3 - Related Work

The previous chapter discussed the background work conducted in this research to set

the context for this thesis. It discussed the notion of CBSD and software architecture

mapped the terminologies used in the literature to the ones presented in this thesis.

This chapter discusses the related work in the context of the ideal repository system in

order to identify the characteristics that are of importance to a repository system to support

component re-use. This chapter starts by an overview in Section 3.1 that describes the

characteristics of the ideal repository system and its potential users in order to set the

framework for the conducted surveys in this chapter. After that, section 3.2 surveys the

available organizing schemes of software components in the literature and analyzes them

in the scope of the characteristics, described in section 3.1, of the organizing scheme of the

ideal repository system. Section 3.3 discusses the available work in the literature regarding

components re-factorization. Section 3.4 describes the survey of a number of key

repository systems and analyzes their capability to support re-use as compared to the

characteristics of the ideal repository system. Finally, section 3.5 draws the chapter to a

conclusion and establishes the necessary link to Chapter 4.

3.1 Overview

Pohthong and Budgen [120] identified two strategies for re-use that a re-user might

practice; one strategy is that a re-user searches for re-usable artefacts first to derive their

decisions for developing a system and then based on what is found the re-user start the

building of the system. The second strategy is that a re-user might establish a framework

(e.g. Java abstract classes) of the system to be built first and then starts searching for

artefacts that fit with the requirements of the system to be built. This research adopted the

second strategy that assumes a re-user is going to establish a framework first and then

search for artefacts in the light of the specifications defined by the framework.

The vision story at the beginning of Chapter 1 described the support provided by the

ideal repository system for re-use. As a way to express the various parts that are going to

be introduced in this chapter in a precise manner, this section was intended to set the scene

for the background work by illustrating the design of an ideal repository system. The

envisaged design of the repository system that provides complete support for re-use is

illustrated in Figure 3.1.

36

Matching
Tool

Re-factoring

M
od

ify
\

E
xt

ra
ct

Send Data

DB

St
or

e

Provider

Matching
Tool

Re-user

Send Data

Deliver

Classify

Doc

Doc

Doc

Organizing
Scheme

Find

Deposit

Retrieve

Engineer

Maintain

Figure 3.1: Design of Ideal Repository System
The illustrated repository system is composed of several components such as,

organizing scheme, re-factoring tools, search engine, analyzing tool, matching tools, and

database storage. The core elements of the repository system are the organizing scheme,

matching tool, and the re-factoring tool, whereas the other elements are, somewhat,

supporting tools. The main purpose of having a repository system is to establish an

environment for supporting components re-use. The environment addresses human aspects

and technical aspects. The human aspects concern the actors of the repository system,

while the technical aspects concern the processes to be done inside the repository system to

promote re-use.

Brereton and Budgen [20] have identified two actors as a part for establishing a

framework for component-based software development, namely, provider and integrator.

The component’s provider addresses the aspects to ensure that the provided component is

usable by a tool and can be easily understood by a component’s integrator. The component

integrator concerns with aspects of finding re-usable components and solving potential

functional or not-functional dissimilarity to the needed specification. The framework

seems to establish a channel of communication between the provider and the integrator in

order to facilitate better support for re-use. Vitharana [146] identified three actors for a

CBSD environment, namely; component developers, application assembler, and customer.

The component developers are those who build components and make them available for

re-use. Application assemblers re-use components and integrate them into their system that

is being built. Customers are those who only use the application as a whole to serve their

purposes. DeLine [38] identified three actors for a CBSD, namely provider, integrator, and

packaging specialist. The provider is the developer of a software component. The

37

integrator is the one who re-uses a component. The packaging specialist is an expert who is

aware of a given packaging technology.

Component’s integrator in Brereton and Budgen [20] terminology is nothing more than

a re-user who is trying to find some functionality to re-use into the system under

development. This research adopted partly the two views identified by Brereton and

Budgen [20] and Vitharana [146] (i.e. provider and re-user) in a more general manner. In a

large development environment the separation between integrator and packaging specialist

described by DeLine [38] might make sense, however, from a general point of view both

actors (i.e. integrator and packaging specialist) are simply represented as playing the role

of a re-user. So, this research identified three actors for the ideal repository system:

• The component provider: component providers could be the developer of the

component being deposited or could be another repository system, for example

linked to one of the open-source repository systems (e.g. Sourceforge.net).

Considering component providers in a repository design is essential in order to

understand the possible mechanisms by which components are going to be

processed after being deposited inside the repository. For example, if components

are supplied from another repository system or component providers were persons

other than their developers, then there must be an automated mechanism employed

in the repository design to extract the required details by the repository system from

the deposited component for re-use. Whereas, if the providers were component

developers then there might be a need to specify a set of questions that they could

answer prior to being able to deposit the components into the repository.

• The component re-user: this user is concerned with obtaining components for re-

use. The activities that a re-user performs in order to obtain components include

searching, selecting, verifying, and re-using. The searching is done by providing the

criteria that reflect the specification of the system to be build to a repository system.

Selecting components concerns finding parts to fit into a construct of a jigsaw

puzzle [66]. The re-user needs to verify that a component that is found in the

repository satisfies the specification of the system to be developed in order to be

able to re-use it [108]. After a component is verified as matches the desired

specification, the re-user can then re-use that component by integrate it into the

system under development. From the perspective of a repository system, a re-user’s

view concerns the process of mapping, through re-factoring, what is inside the

38

repository to match their requirements and also delivering fully working

components to a re-user. Mapping components to the re-user’s requirements is

important to ensure that components conform to all the requirements of re-users.

Delivering fully working components is important to re-users as components that do

not compile, for instance, are of no value.

• The repository engineer: this user is responsible for preserving the repository

system in terms of maintaining the organizing scheme by allowing new classifiers to

be added to the organizing scheme in order to ensure its flexibility. Also the

repository engineer is responsible for ensuring the extendibility of the repository

system by allowing new tools (e.g. re-factoring tool, compilers) to be added into the

repository to extend its functionality.

The technical aspects that relate to the internal processes (e.g. identification,

modification, classification) within the repository system are discussed in detail in the

remaining of this chapter.

The work presented in this chapter concerned surveying the literature that corresponds

to the identified characteristics of the ideal repository system to denote the extent to which

current work achieved these characteristics. So, part of the surveyed work was considering

the different characterization of software components in the literature in order to identify

whether there is proper characterization that suits the need of the organizing scheme of the

ideal repository system. The characteristics of an organizing scheme will be described in

the next section and will form the basis for analyzing the surveyed work.

3.2 Organizing Components

The act of organizing components, in its very natural interpretation, is the process of

grouping together components that share similar characteristics. The main purpose of

organizing components is to explore and understand the various characteristics of

components that re-users can utilize to filter their searching criteria to assist finding them.

Organizing components is potentially useful in cases where the number of components is

large in order to decrease the difficulty of finding a suitable one among a number of

components.

Observing examples of organizing components in the literature suggested categorizing

the available approaches into two general types based on the way that classifiers are

generated for organizing components: classification schemes and indexing schemes.

39

Classification schemes define classifiers through number of categories defined by human,

usually referred to as facets [72] in the literature. The defined categories are resulted from

thorough analysis by experts to an application domain to capture all the relevant

characteristics of components. Components can then be organized based on similarity in

their exhibited characteristics. Indexing schemes are built on generating classifiers based

on recording occurrence of words or phrases in software components or their

corresponding documentation and analyzing their semantical meaning to identify possible

relationships between terms (e.g. using Visual Thesaurus [1]). Components are organized

using indexing schemes based on identifying similarity in the representative terms of

components.

In the literature, classifying and indexing schemes are mixed together. Some authors use

the term classification schemes to refer to what is described in the above paragraph as

indexing schemes and vice versa. According to the ISO/IEC 11179 Metadata Registry

(MDR) standard [74], classification schemes are categorized into: (i) keyword based, (ii)

thesauri based, (iii) taxonomy based, and (iv) ontology based. Ostertag et al [118]

categorized the different approaches of organizing components into: (i) free-text based, (ii)

facet based, and (iii) semantic-net based. Milli et al [113] categorized classification

schemes into: (i) keyword and string matching based, (ii) facet based, (iii) signature

matching based, and (iv) behavioural matching based. Frakes et al [50] categorized

organizing methods into: (i) free-text and keyword based, (ii) enumerated, (iii) facet based,

and (iv) attribute-value based. Cechich and Piattini [29] have categorizes classification

schemes into three types: (i) taxonomies and ontologies, (ii) semantic-net based, and (iii)

learning based. Interested readers can refer to the original references (i.e. [74] [118] [113]

[50] [29]) to find descriptions of the various types of classification schemes.

The above schemes can be mapped to the categorization proposed in this research as

follows:

• Classification schemes: taxonomy, facet based, enumerative, and attribute-value

based.

• Indexing schemes: keyword based, thesauri based, semantic-net based, ontology

based, signature matching, and behavioural matching.

There are some characteristics associated with both types of organizing schemes that

can be used to discriminate between classification and indexing schemes. Sections 3.2.1

40

and 3.2.2 (coming next) describe the characteristics of both types of organizing schemes

and present a number of examples corresponding to every type.

3.2.1 Classification Schemes

The key characteristics of classification schemes include:

• Identifying different interesting dimensions of software components that capture

distinct view points about the components. For example, a classification scheme

can define categories to capture functional characteristics, architectural

characteristics, and usage related characteristics.

• Adding new classifiers to a classification scheme can be simply achieved by

considering a new category for the scheme. This allows classification schemes to

work well in the case of classifying software as the variety of categories can help

to ensure that at least one of the available categories in a scheme may match that

of components re-users.

• Classification schemes make generating hierarchies of types -a type can be any

thing that has properties (e.g. human, car, system)- easier as it precisely describes

the characteristics of a type. So, a general type can be split into more specific sub-

types by identifying the specific characteristics that are not part of a parent type in

a hierarchy and also discriminate sub-types from each other. The tree of life is a

good example expressing the idea classification schemes. So, a main type is

Mammal that has, for instance, the characteristics: eat and drink. New sub-types

called Animal and Human can be defined as inherited from the Mammal type

which indicates that both Human and Animal can eat and drink. However, Human

can describe some distinguishing characteristics that discriminate its sub-type

from Animal; for example, one characteristic of Human being that Human can

think while Animal cannot. So, the ‘ability to think’ characteristic distinguishes

Human from Animal sub-types, and also indicates that Human is a new generation

of Mammal that exhibits new characteristics not satisfied by Mammal.

This section presents examples of a number of classification schemes identified in the

literature for organizing components.

3.2.1.1 Prieto-Diaz and Freeman Classification Scheme

Prieto-Diaz and Freeman [122] established a classification scheme for classifying

software components by means of identifying a set of facets to represent components. They

41

proposed six facets for the scheme, three facets for characterizing functionality and the

remainder for describing the environment where components were originally used.

The functional facets include:

• Function, describing what components do

• Object indicating object manipulations by functions

• Medium indicating the place where action is executed.

Whereas the environmental facets include:

• System type, indicating functional or application-independent area

• Functional area, indicating application dependant activities

• Setting, indicating where actions are performed and application used

Following this classification scheme, software components are classified based on

selected vocabularies that represent values of their corresponding facets. The scheme

allows re-users to provide a set of parameters to search through the classification scheme

and selects and recommends software components that match exactly or closely to the

provided parameters. The parameters are part of the interface used for the presented system

[140]. For example, a certain component might be classified according to the tuple

<compare, descriptors, stack, assembler, programming, software shop> that correspond to

the values of the facets <function, object, medium, type, functional area, setting>. A

controlled vocabulary is used to avoid the problem of synonyms that might cause different

descriptions to be produced for the same component. For example, the descriptors <move,

words, file> and <transfer, names, file> might be two different descriptors for the same

components in term of functional facets. So if a component was classified by the first set of

values of facets then the re-user who provided the second set of values may not able to find

that component. Therefore, a thesaurus is used to unify the description of components to

reflect the same meaning. So, if re-users type “move” it will reflect “transfer” and “copy”

as they are the potential synonyms in the sense that all of the terms describe movement

from one location to another. A weighted conceptual graph is used to measure closeness by

conceptual distance among terms that relate to a facet to determine similarity between a

query made by re-user and the actual descriptors for software components.

42

3.2.1.2 IBM Classification Scheme

IBM’s software development environment is a heterogeneous set of developers spread

all over the world. They develop systems ranging from operating systems to IDEs,

business and medical systems and each may be written in different programming

languages. Building software with re-use has become common practice in today’s IBM

software development [121]. Due to the diversity in nature of the development

environment the facet based classification scheme is selected to classify component for re-

use.

IBM adapted the facet approach proposed by Prieto-Diaz and added their own facets to

classify re-usable components. Components in IBM are packaged with all the required

information (e.g. integration instructions, documentation). The provided information can

assist re-users to evaluate and understand components. A partial list of the IBM facets is

displayed in Figure 3.2 [121].

A thesaurus is used to help unifying terms into consistent structures, so components are

identified by a single value of facet (referred to as key in IBM terminology), and the value

is used to identify a number of closely related terms that are marked as potential synonyms.

Figure 3.2: Partial listing of IBM facets [121]

43

3.2.1.3 Sametinger Classification Scheme

Sametinger [129] classified software components based on four facets: (i) programming

interface, (ii) user interface, (iii) data interface, (iv) and component platform. The

programming interface facet is concerned with the various forms of component

compositions, and is considered to be one of the most significant aspects for component re-

use. Sametinger identified eight types of component composition:

1. external/internal

2. textual

3. functional

4. modular

5. object-oriented

6. sub-system

7. specific platform, and

8. open platform composition

Each form of composition addresses some aspects that concern re-using software

components.

The user interface facet addresses the interactivity between software components and

their end-users. Two types of user interface are distinguished: command-line; and

graphical user interface. Sametinger claimed that components with command-line user

interfaces are easier to re-use than components with graphical user interfaces. A possible

justification of that might be that command line user-interfaces do not usually require

special implementation of the protocols of interaction with users as opposed to graphical

user-interfaces where a complex mechanism of interaction must be established.

The Data Interface facet categorises the format and structure of the data that

components take as input and provide as output. Data formats and structure are important

as far as re-use is concerned. Components with different assumption about their data

formats and structure might raise run-time errors indicating data mismatch.

All the previous characteristics were considered by Sametinger as specific to

components. Sametinger emphasized that matching a component’s specific characteristics

is not enough to re-use components successfully in a system as they need to conform

number of characteristics that are required by the system (e.g. different run-time

44

environment) in which components can work. So, established capturing the characteristics

of the system where components can be re-used by the platform facet. The Component

platform facet gives an indication of the kind of architecture that components were

originally worked in. Five values are identified: hardware, operating system, programming

language, frameworks, and programming environment. Identifying these values is essential

in a classification schemes to support component re-use.

3.2.1.4 Ali and Du Classification scheme

Ali and Du [5] established a mechanism to classify software design artefacts, namely

object-oriented design models, hence facilitating their re-use. Ali and Du considered

design models as an abstract representation of software system at the design level – the

design models are primarily created to help in understanding system structure and

operations from the design point of view. The model captures the design of components in

the blueprint of the system to be built, the services they provide, and the relationship

between them.

They proposed six facets to represent and classify design models for re-use, they are

summarized in Figure 3.3 as appeared in the original reference [5].

Figure 3.3: Facets for describing a design mode [5]
The description of the six facets is as follows:

• Domain: this facet captures the problem space in general that is addressed by a

design model. For example, the possible values for this facet could be “Banking”,

“Industry”, “Hospitals” and so on.

• Abstraction: this facet lists potential domain-specific terms that capture the possible

key functional aspects of design models within different domains. For example, the

terms “account”, “deposit” and “transfer” could be used to represent a design model

in a banking domain.

45

• Responsibilities: responsibilities indicate the functional requirements of the system

as whole. For example, the responsibilities of an ATM system can be described by

the type of transactions a user can perform (e.g. deposit, withdraw, and check

balance). This facet describes terms associated with actions that capture the

functional characteristics of a design model.

• Collaboration: every object model, that represents components in a system, must

interact with other objects in a system. The interaction represents the contract

between two objects. At the design level, collaboration between object models is

captured by design patterns. Therefore, this facet captures the design patterns [55] of

design models.

• Design view: this facet captures the analysis and design decisions of classes of a

system and their collaborations. For example, possible values of the design view

facet can be class diagram, object diagram, sequence diagram, activity diagram,

collaboration diagram, and stat-chart diagram.

• Asset type: the type of software design artefacts is indicated in terms of their

variability and granularity. This facet contains terms that reveal the type of software

design models, and lists design models in terms of their size and complexity.

Possible values for this facet could be system, framework, and template.

Design models are classified based on terms identified from their design

documentations that include the analysis and requirement specifications document. For

example, the terms that represent the facet abstraction can be extracted from the class

diagram. Also, the terms that represent the responsibilities facet can be obtained from

different sources, such as important class methods, scenarios, sequence diagrams and use-

cases that represent the functional requirements of a design model. One significant

advantage of Ali and Du’s classification scheme is its ability to capture the relationship

between design models, so during retrieval of one design model from a repository, other

design models that have some similar values of facets are retrieved for re-users as well.

3.2.1.5 Ugurel Classification Scheme

Ugurel et al [145] developed an approach for automatic classification of software

components based on extracting characteristics related to programming languages and

application domain facets. Their approach is centred on the Support Vector Machine

46

(SVM) [16] developed for automatic text classification. The characteristics are selected

using the notion of expected entropy loss [3].

The characteristics correspond to programming language facet extracted to tokens in the

source code and specific words in the comments. Tokens are defined to be any alphabetical

sequence of characters separated by non-alphabetical characters. Numerical values and

operators are not considered as tokens. Based on the assumption that every programming

language has some reserved words exclusively related to it, the programming language of

components is identified by applying keywords matching against the list of keywords

corresponding to the programming language facet. For example, the words struct, void,

sizeof, include, unsigned were extracted from C/C++ components, so they were used to

programming language identification.

The related characteristics of the application domain facet are extracted from words and

lexical phrases from comments, README files in addition to the source code’s header file

name. For example, Ugurel et al identified the occurrence of the word “calculator” for

mathematics related applications, “high score” for games related applications and

“database” for database related applications.

3.2.1.6 Yacoub, Ammar, and Mili Classification Scheme

Yacoub et al [152] classified characteristics of the components according to three main

dimensions: (i) human-related characteristics, (ii) external characteristics, and (iii) internal

characteristics.

The human related dimension is informal description of components that concerns the

following categories (i.e. facets):

1. Age: this facet is to reflect the status of a component, whether it is newly

generated or mature. Re-using newly generated components might involve some

risk as there is no recorded re-use history, whereas mature components that have

been re-used extensively are more desirable.

2. Source: this category indicates the producer who developed a component, for

example, IBM or HP. This characteristic is useful to re-users who are keen to re-

use components from selected suppliers.

3. Level of re-use: this category specifies the type of component that can be re-used,

for example, requirement & specification, design, code, and tests.

47

4. Context: describes the domain and applications in which components can be used.

5. Intent: this facet describes the main purpose of generating components by stating

the set of problems they solve.

6. Related components: this facet lists components that solve similar problems to the

one described.

The second dimension that Yacoub et al considered in their classification scheme

concerns the external dimension of software components that describes their interactions

with other components and the underlying platform where components reside. The set of

facets are as follows:

1. Interoperability: this facet identifies the mechanism of interaction with other

components in a system, and determines how to call/invoke a component (e.g.

RMI, or RPC) and the interaction direction (e.g. from client to server).

2. Portability: this facet describes the mechanism by which components can interact

with their underlying platform (e.g. hardware, operating system, sub-systems). It

is a property of components that specifies what kind of systems components could

work in.

3. Role: the role of components specifies their actions within a system. So

components could be either active, i.e. affect other components, or passive, i.e.

affected by other components in a system.

4. Integration phase: this facet specifies the time of integration to a system as either

development-time where components are compiled in a system or at run-time

where components can be dynamically loaded-to and unloaded-from a system.

5. Integration framework: components are integrated together to form a complete

system, however, sometimes components cannot interact directly with each other,

but through an underlying framework that virtually connects components with

each other to form a system. This facet identifies the underlying framework that a

component uses to interact with other components in a system. Some examples of

frameworks are: CORBA [136], EJB [9], or web services [64].

6. Technology: there was not enough information explaining what this facet means,

however it is inferred that it relates to some aspects about the architecture of the

system where components are used, for example, object-oriented system.

48

7. Non-functional features: this facet describes aspects other than functional

characteristics of software components such as a component’s security,

performance and reliability issues.

The third dimension that is considered in the Yacoub et al classification scheme is

components internal which describes the sub-components of components.

1. Nature: this facet describes where components can be used in a development

process. For example, specification components, design components, source-code

components, or executable-code components. It seems that this facet is similar to

the level of re-use facet identified in the human related facets as it discusses the

type of components again.

2. Granularity: this facet describes whether components are coarse-grained or fine-

grained based on their sizes (e.g. LOC) or based on component type as design

artefact is considered as coarse-grained while source-code components are fine-

grained. Yacoub et al referred to the work done by Digre [40] who classifies

components from their business perspectives into enterprise, domain subsystem,

domain object, and semantic primitives.

3. Encapsulation: describes the decision hidden inside components such as

specification decision, design decision, or implementation decision.

4. Structural aspects: this facet describes the internal participating sub-components

of certain software components. For example, a component in object-oriented

programming might have the structure of collaborating sub-components

represented as the number of classes structured according to the specific order

required by the component.

5. Behavioural aspects: Yacoub et al specified two values for this facet, stateless

behaviour and retrospective behaviour. The stateless behaviour describes a

component’s responses to specific set of inputs, while retrospective behaviour

describes a component’s responses to a sequence of actions.

6. Accessibility to source code: this facet makes the assumption that components are

binary code that may or may not be attached to a source-code component. So if the

source code was available with a binary-code component then this indicates the

possibility of modifying the component.

49

3.2.1.7 Kienle and Muller Classification Scheme

Kienle and Muller [83] established a classification scheme for characterizing software

components. They assumed that components can be IDEs, domain-specific tools,

application generators, compound documents, frameworks, and libraries. The Kienle and

Muller classification scheme is composed of six main facets as follows:

1. Origin: this facet identifies the original supplier of components; the supplier can

be either internal or external. ‘Internal supplier’ indicates that the supplier of

components is the same as the one building the complete system. External

indicates that components are obtained from a third party.

2. Distribution Form: this facet describes whether components are modifiable or not.

The availability of source code was assumed as a factor to enable modification. So

the possible values for this facet are black box, white box, or glass box. Black-box

components indicate that source code is not available, while white-box

components denote that the source code is available and also modifiable. Glass-

box components, however, indicate that the source code is available but it is not

modifiable.

3. Customization Mechanisms: this facet implies the possible customization that re-

users might apply to components. Two possible values are identified for this facet,

non-programmatic and programmatic. Some examples of non-programmatic

customization are editing parameters in start up and configuration files, or with

direct manipulation at the GUI level. Programmatic customization involves

mechanisms to extend the behaviour of components, for example, via API in Java.

Programmatic customizations vary from black-box and white-box components, as

in the former customizations could be done via API or scripting, whereas in white-

box components customizations can be simply done via source code modification.

4. Interoperability Mechanisms: this facet describes whether components interact

with other components or not. The possible values for this facet are: no

interoperability and interface interoperability. No interoperability indicates that

components do not interact with any other components, they might only interact

with the end-user. Interface interoperability indicates that components offer some

interface for other components to establish interaction. Three types of interfaces

are distinguished: data, control, and presentation.

50

5. Packaging: this facet denotes how components can be used. Two possible values

are identified, stand alone component and non-stand alone component. ‘Stand

alone component’ indicates that a component is an application; further refinement

to this value can be whether the stand alone component is interactive or batch.

Interactive means it interacts with users while batch indicates that there is no user

interface for the stand alone component. The non-stand alone component value of

the facet indicates that a component must be integrated, and might need to be

customized, in a system to work.

6. Numbers of Components: this facet identifies the number of components in a

system. The possible values of this facet are: single or multiple. The value ‘single’

indicates that a system is composed of one important component; single

component often referred to as a stand alone application. The value ‘multiple’

indicates that a system is built from several components. Components in a system

can be either homogeneous, meaning that all components in a system conform to a

single interaction standard, or heterogeneous indicating that components in a

system conform to different interaction standards or architectures.

3.2.1.8 Morision and Torchiano Classification Scheme

Morision and Torchiano [114] have established a classification scheme for COTS

products. They classify the characteristics of COTS components according to four

dimensions: (i) Source, (ii) Customization, (iii) Bundle, and (iv) Role.

The first dimension (i.e. source) concerns defining where the components come from

and the implication of obtaining that component from its supplier. This dimension involves

the following facets:

1. Origin: this facet identifies how components are developed by their vendors.

Possible values for this facet are: in house, existing external, externally developed,

special version of commercial, and independent commercial.

2. Cost and property: this facet describes whether a component is obtained subject to a

cost or free of charge. Also, the facet defines the form of the obtained component

whether it is in source code or in binary code format. The possible values of this

facet are: acquisition, licensed, and free.

51

The second dimension (i.e. customization) specifies how much a component can be

modified and how much work is needed to modify the component. This dimension defines

the following facets:

1. Required modification: this facet describes whether a component can be modified

or not. The possible values for this facet are: extensive reworking, internal code

revision, customization, parameterization, and minimal.

2. Possible modification: this facet refers to the possible internal customization to a

component. The possible values of this facet are: none or minimal,

parameterization, customization, programming, and source code.

3. Interface: the facet the ways that a component’s interfaces are defined. Te possible

values for this of this facet are: none, documentation, API, Object-oriented

interface, and contract with protocol.

The third dimension (i.e. bundle) specifies the form in which component are delivered

to re-users. This dimension defines the following facets:

1. Packaging: this facet defines the architecture of the component. the possible values

of this facet are: source-code component, static library, dynamic library, binary

component, and stand alone application.

2. Delivered: this facet defines whether a component should be delivered or not. For

instance, a Java compiler is not a component that needs to be delivered with a Java

class. Possible values of this facet are: non-delivered, partly, completely.

3. Size: developers who are concerned about the performance of their system’s

execution might need to consider this facet. Possible values are: small that is less

than 0.5 MB, medium that is between 0.5 MB and 2 MB, large that is of size 2 MB,

and huge that is more that 20 MB.

The last dimension (i.e. role) defines the characteristics that a component assumes about

the system in which it is going to be re-used. This dimension defines the following facets:

1. Type of functionality: this facet specifies whether the functionality provided by a

component is general over multiple application domains (e.g. spell checker, web

browser) or it is specific to a single domain (e.g. banking). Possible values of this

facet are: vertical and horizontal.

52

2. Architectural level: this facet identifies type of a component from the architectural

perspective. Possible values of this facet are: operating system, middleware, core,

UI, and support.

Figure 3.4 illustrates an example of classifying three COTS components using the

proposed classification scheme as depicted in the original reference [114].

Figure 3.4: Example of Classifying COTS Components [114]

3.2.2 Indexing Schemes

The key characteristics of indexing schemes include:

• Easily automatable as it is purely based on extracting terms and phrases and

analyzing their semantic meaning.

• Flexible in nature as there is no fixed set of pre-defined categories required to

organize components. New indices are generated automatically whenever new

ways of organizing components are needed.

• Can describe complex relationships between indices which can be beneficial in

finding more potential re-usable components.

• Precise as they work at the source code level.

This section presents examples of number of the indexing schemes identified in the

literature for organizing software components.

3.2.2.1 Maarek, Berry and Kaiser Indexing Scheme

Maarek et al [101] proposed a mechanism to identify indices automatically by analyzing

natural-language documentation, represented in the form of manual pages or comments

usually attached with the software components, and using them to build free-text indices to

characterize software components. Maarek’s approach is not concerned with extracting

53

indices from the source code itself (e.g. syntax of programming languages, method names)

but depends primarily on the attached documentation.

Maarek et al have built a tool, GURU, that extracts indices from the documentation

associated with the software components to be organized utilizing information retrieval

technique (i.e. free-text searching) based on the notion of lexical analysis that is primarily

based on Latent Semantic Analysis (LSA) [87] that describes the relationships between

words. The frequency of appearance of words or phrases is considered as a measuring

criterion to identify significant terms that might be useful for use as representative indices.

Maarek also provided a mechanism to facilitate browsing components by clustering

them in a hierarchy based on the identified indices resulting from document analysis. The

similarity between components in the hierarchy is identified using a numerical measure

called a dissimilarity index [101]. There is no category established by Maarek’s approach

for browsing as the browsing is assumed to be done in a bottom-up fashion. Re-users are

assumed to use the searching facility provided by the GURU tool to search components

based on some criteria at first, if they do not find relevant results then they can browse

through a component hierarchy starting from a component retrieved from the previous

search that they believe has some relation to what they need and moving up towards the

top of the hierarchy. For example, suppose that a re-user wants a component that performs

the functionality “identify a process in UNIX”. Imagine that one of the retrieved results

was “kill”, then the re-user can exploit that result as a starting point for browsing the

hierarchy and explore components that are classified relevant to the “kill” component in

order to find an exact or nearest match to the required functionality.

3.2.2.2 Ye and Lo Indexing Scheme

Ye and Lo [155] have developed an approach to index and organize software

components automatically. They utilized the free-text indexing mechanism and the self-

organizing map (SOM) [85] technology, a mechanism used for organizing documents, for

building their indexing scheme.

The proposed approach is centred on extracting significant features (i.e. keywords) that

reflect functionality from component descriptions and not from the components themselves

(i.e. source code). They require that the descriptions attached to software components must

be accurate in order for their approach to be effective.

54

Documents are indexed using free-text indexing mechanisms, and then vectors

describing components are generated for each component. Elements within vectors

represent the extracted features from component descriptions. Some features are

significantly related to component functionality while others are less significant, and

weighted input vector mechanism is used to specify the most relevant features that

represent components functionality from those that are less relevant based on their

significance to components. The significance of features is measured by counting the

number of occurrences in the documentation attached to the components. Figure 3.5

illustrates an example of feature weights in different UNIX commands using the weighted

input vector mechanism is appeared in the original reference [155]. From that figure, it is

observed that the most relevant functionality for the command sed is edit, cp is copy,

whatis is manual, ex is edit, and vi is edit.

Figure 3.5: Commands and their Feature Weights [155]
After all features have been weighted, the generated vectors for various software

components are deposited into the SOM as multi-dimensional vectors. SOM is capable of

mapping multi-dimensional input vectors into a two-dimensional grid. So, similar features

are organized close to each other on a grid after comparing the input of a vector’s features

against a specific cell on a grid that is associated with n-dimensional reference vectors.

Ye and Lo claimed that their approach supports flexibility, extensibility, and

visualizability as follows:

• Flexible as software components are not grouped and organized based on fixed

categories, instead components can be grouped in different ways depending on their

classifier’s perspective.

• Extensible as it can add new classifiers to organize software components whenever

new generations of components not belonging to any classifiers from the available

ones in the scheme appeared.

55

• Visualizable as the resulting map and the semantic relationships amongst

components can be clearly identified and illustrated.

3.2.2.3 Tangsipairoj and Samadzadeh Indexing Scheme

Tangsipairoj and Samadzadeh [142] have adapted the SOM technology and extended it

to include hierarchal representations of data. GHSOM is a further enhancement over SOM

as it concerns dynamic SOM modelling that can build a hierarchy of multiple layers of

several SOMs. The depth of the hierarchy is determined based on the level of refinement

that might be required by features of nodes in the first SOM. So the top level SOM is

composed of coarse-grained features (i.e. keywords) while the low level SOM in the

hierarchy captures more fine-grained features that are refinements of the top SOM. Figure

3.6 illustrates the architecture of GHSOM as appeared in the original reference [142].

Figure 3.6: GHSOM Architecture [142]
For example, the SOM at layer 0 can be used to organize components based on their

subject areas (e.g. domain information). Every index of the SOM at layer 0 might be

refined to another SOM at a lower level. So, if an index in the SOM at layer 0 is about

banking systems then indices of the refinement SOMs at lower levels can represent

information about types of accounts, names of branches, interest rates and so on. Each

index then can be refined to a set of SOMs at a lower level as necessary.

The refinement of features can help to capture more focused keywords to represent

software components accurately, in addition, the hierarchical nature of GHSOM can help

in relating components that belong to same domain.

3.2.2.4 Lin, Amor and Tempero Indexing Scheme

Lin et al [96] established an automated indexing mechanism for organizing Java API

classes in order to ease finding them for re-use. The main intention behind developing the

56

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Amor:Robert.html

indexing mechanism for Java APIs was based on their belief that the numerous numbers of

APIs available nowadays might hinder re-using them. As a result, Lin’s main contribution

was to improve the efficiency of finding classes in the Java API as compared to browsing

through the API’s documentations manually.

Lin’s approach is mainly based on the Latent Semantic Indexing (LSI) approach [87]

and provided as tool, Prophecy, designed to work as a plug-in for Eclipse IDE. Prophecy

extracts details about APIs from their corresponding JavaDocs, in fact, Prophecy indexes

API classes based on indexing their respective JavaDocs. The process of generating indices

is as follows. A term representing a general concept that is identified as semantically

common through different documents, after applying latent semantic analysis, is selected.

After that, a number of representative terms are identified from the documents that are

believed to be addressing different dimensions of the identified concept, these terms are

not necessarily synonyms. Some of the representative terms could be the important terms

appeared frequently in various documents. In fact, a key feature of the Prophecy indexing

mechanism to identify relationships between indices is the consideration of words that

appear frequently together in a document as a way to relate documents together. For

example, if the words “String”, “Append”, and “Stringbuffer” appeared together

continuously in several documents, then if a searching query containing the words

“Append String” is provided then the set of documents containing these two terms, as well

as documents that contain just the word “Stringbuffer”, will be retrieved to the re-user.

3.2.2.5 Kawaguchi, Garg, Matsushita, and Inoue Indexing Scheme

Kawaguchi et al [82] established a mechanism for organizing open-source software

components automatically. Kawaguchi’s approach is one of originating categories and

assigning a number of representative terms to every category. The approach generated is an

attempt to generate a classification scheme automatically, however, due to the operational

nature of generating categories the approach is nothing more than an indexing scheme.

Kawaguchi’s approach is based on the following assumptions:

• Categories generation is based on processing only source code.

• Allow components to be categorized by multiple categories.

• Categorizing terms are not pre-defined as they are generated automatically.

Kawaguchi has built a tool, MUDABlue, that performs the generation of categories for

organizing components. The tool is based on Latent Semantic Analysis (LSA) [87] to

57

identify relationships between terms. The MUDABlue tool targets variable names and

methods names, referred to as identifiers, assuming that names of variables and methods

should reflect the behaviour of source code. MUDABlue works as follows:

1. The tool extracts all the identifiers from the source code.

2. Count the occurrence of the extracted identifiers in all the available software

components.

3. Remove the identifiers that recorded the least number of occurrences from any

further analysis.

4. Apply LSA to identify the semantic meaning and relationships between identifiers.

5. Generate categories based on the result of the LSA of identifiers, considering

identifiers that recorded the maximum numbers of occurrence. Similar identifiers

are then grouped under the newly defined categories. For example, the terms

“gtk_window”, “gtk_menu” might indicate that both terms can be grouped by GTK

as a category.

6. Organize software components based on the identified categories.

7. Generate a titled description for every category derived from the indices that

recorded maximum occurrence.

Figure 3.7 illustrates the steps followed by the MUDABlue tool to generate categories

for components organization as illustrated in the original reference [82].

Figure 3.7: Generating Categories [82]

3.2.3 Analysis of Related Work

In the scope of the ideal repository system, the organizing scheme for software

components should satisfy to the following characteristics:

58

• Automatable: the organizing scheme should allow classifiers to be generated

automatically. Being automatable is important to make the organizing scheme self-

maintainable in the sense that changing (i.e. adding or removing) classifiers can be

generated automatically; also automatability allows components to be identified and

organized automatically.

• Extensible: new classifiers can be added to the organizing scheme whenever new

components that cannot be organized using the available classifiers in a scheme

appear, so the scheme can support evolution.

• Flexible: it is essential that the set of classifiers (e.g. attributes in classification

schemes and terms in indexing schemes) are not fixed and vary amongst

components belonging to different requirements. This makes room for an organizing

scheme to organize components that are of different types and levels of abstractions

(e.g. high abstraction such as design artefacts and low abstraction such as source-

code components).

• Re-usable: new classifiers can be defined by re-using old ones and adding the

necessary characteristics to them in order to reduce the effort of defining new

classifiers. For example, if one wants to describe new classifiers that capture sets of

characteristics that had only been defined partly by a classifier in a given scheme,

then being able to add new classifiers to a scheme building on the ones already

available is a desirable feature in the ideal repository system.

• Describe relationships: it is a desirable feature that the organizing scheme of the

ideal repository system can define the relationship between classifiers. One

advantage of this is to retrieve potential components that re-users might also be

interested in. For example, if a component has a design artefact that is organized

under a design classifier then retrieving the component can also result in retrieving

its corresponding design.

• Consider Architecture: in some cases, a component re-user might find a component

that seems to be re-usable into their system as the component they found in a

repository provides similar functionality as they need. However the re-user

discovers later, when integrate the component into their system, that the component

does not fit into their system due to architectural mismatch as discussed in Chapter

2. As a result, considering the architectural characteristics of software component is

59

important aspect to identify in an organizing scheme in order to understand the re-

usability of software components.

• Source code availability: there might be cases where a re-user may find a

component that satisfy their functional requirement but conform to different

architectural requirement that they need. If the component can be modified to satisfy

the architectural requirements of the re-user then it will be a perfect fit. The

modification cannot be applied unless the source code is available. So, considering

the availability of source code in an organizing scheme is useful to inform the re-

user if the component can be modified before extracting the component from a

repository and try to find out whether it is modifiable or not themselves.

Table 3.1 describes a summary of analyzing the examples of classification and indexing

schemes against the characteristics required for organizing components in the ideal

repository system.

Table 3.1: Analysis of Organization Schemes

Automation

 Satisfied

 X Unsatisfied

 ? No enough details

G
enerate

classifiers

O
rganize

com
ponents

Extensibility

Flexibility

R
e-usability

R
elationships

A
rchitecture

Source code

Prieto-Diaz & Freeman X X X ?

IMB X X X ?

Sametinger X X X X X ?

Ali & Lu X X X X X X

Ugurel X X X X X

Yacoub et al X X X X X X

Kienle and Muller X X X X X X

C
lassification

Morision and Torchiano X X X X X X

Maarek et al X ? X

Ye and Lo X X X

Tangsipairoj & Samadzadeh X X X

Lin et al X X

Indexing

Kawaguchi et al X X

Table 3.1 shows that the classification schemes generated by Prieto-Diaze & Freeman,

and the one generated by IBM can organize components automatically while the other

classification schemes cannot. The reason for that is that both classification schemes are

60

implementable while the other classification schemes are merely abstract and not

implementable. The Prieto-Diaze & Freeman and IBM classification schemes identified

categories in which their characteristics can be identified from the source code; the other

classification schemes, however, lack precise characterization that can reflect the

characteristics of concrete components. In contrast, all indexing schemes are

implementable and can organize software components automatically.

With respect to the extensibility characteristic, classification schemes are useful to

classify new evolutions of software component as classification schemes are built on

selecting independent categories, hence new categories can be added to classify new

generation of components. Indexing schemes are extensible as well, as new representative

terms can be generated whenever there is a need to index a new generation of components

that cannot be indexed using the current indices in a scheme.

The table denotes that classification schemes are not flexible; all schemes must be

associated with a fixed set of categories for classifying components. The set of categories

might also require a fixed set of values in some cases but it is not necessary. Indexing

schemes are, however, flexible. There are no categories to use for indexing components as

components are organized on the basis of some keywords that are selected based on

monitoring their significance in a certain domain. The selected indices can be changed as

necessary.

Regarding the support for re-use, none of the identified classification schemes support

this characteristic. Classification schemes define facets that are distinct from each other

and never define any relationship between them. Indexing schemes do not support re-

usability as they do not define categories in the first place. Some indexing schemes might

involve hierarchical structure of terms; however, the relationships between terms are based

on lexical meaning of terms which may differ from one lexical analyzer to another.

With respect to the support for capturing relationships between classifiers, it is not clear

whether the classification schemes developed by Prieto-Diaze & Freeman and the one

developed by IBM support this characteristic. Both classification schemes employ LSA

which describes relationships between terms, but it is not obvious whether these

relationships are utilized to draw links between categories or not. None of the other

described classification schemes support capturing relationships between categories as

categories are completely independent of each other. Indexing schemes vary, some

indexing schemes do not support this characteristic, such as the work by Ye & Lo, and

61

Tangsipairoj & Samadzadeh. The work by Maarek neither explains this feature nor

provides enough information to indicate whether the approach can support capturing

relationships between indices or not. The work by Lin et al and also the work by

Kawaguchi et al describes explicitly that their approach is capable of capturing

relationships between classifiers by identifying terms that appear together in different

documents.

With respect to considering the architectural characteristics, all the classification

schemes consider abstractly some architectural characteristics that relate to the system in

which a component was developed to work in. In contrast, none of the available indexing

schemes have considered any architectural characteristics. A possible reason for not

considering architectural characteristics by any of the indexing schemes seems to be

caused as architectural characteristics can not be represented using simple keywords.

Keywords are used by the various indexing schemes manly to represent functionality.

With respect to the availability of the source code, the indexing schemes are fully

automatable and identify precise set of terms that can be checked in the source code of a

component. As a result, all the indexing schemes assume the availability of source code in

order to organize components. In the contrary, not all the classification schemes require the

availability of source code as they characterize components abstractly that only human can

read and understand. However, the classification schemes by Prieto-Diaze & Freeman,

IBM, and Ugurel have defined some representative terms that can be checked in a

component’s source-code to identify and classify components. So, their approaches

required the availability of source code in order to organize components.

3.2.4 Observation

Classification schemes are useful to capture different interesting dimensions about

software components in order to allow for understanding of components by re-users and

also to facilitate their re-use. However, classification schemes lack the tool support to

achieve automatic generation of classifiers for software components, which is one the

desirable features for the ideal repository system. Most of the work presented in the

classification scheme section showed the necessity of involving experts to do extensive

domain analysis for the purpose of generating classifiers for component classification. In

contrast, indexing schemes are fully automatable; human involvement is not necessary in

the process of generating classifiers for software components. The examples presented in

the section on indexing schemes expressed the feasibility of automating the process of

62

generating classifiers for components. However, all the generated classifiers are semantic-

oriented which is primarily based on extracting terms and identifying their semantic

meaning and relationship with others potential terms. A problem with this approach (i.e.

indexing scheme) is that it cannot capture other aspects about components other than what

is implied by the semantic meaning of terms. For instance, one example of classification

schemes described a category to capture the possible interaction between components;

interaction types cannot be identified using regular semantic analysis employed by most of

the available indexing schemes. As a result, indexing schemes may not be sufficient for

general component organization.

In general, the characteristics of classification schemes imply analytical perception

while indexing schemes imply easiness. So, what is needed to achieve an adequate

components organization in the ideal repository system is a scheme that captures the

capability of both organizing schemes (i.e. classification and indexing schemes).

Another interesting observation with respect to the characteristics considered in the

different classification schemes is that the characteristics are not solely functional based

but there are also non-functional characteristics (e.g. architecture, performance, human

related) that have been considered. Many of the classification schemes have defined some

architectural characteristics to classify software components. For example, the

classification by Sametinger defined different types of component interfaces that are not

relevant to any functional aspects. Also, IBM used operating systems as a distinguishing

architectural characteristic to classify software components. Observing the consideration of

many architectural characteristics in the available classification schemes indicates the

importance of defining the architectural characteristics of software components in order to

support obtaining them; hence the observation is a valuable justification for the

significance of the approach of this research (to be described in Chapter 4).

3.3 Re-factoring Software Components

A desirable feature that the ideal repository system ought to support is to allow mapping

what is deposited (e.g. software components) into the repository system by providers (i.e.

provider’s view) to what re-users actually need (i.e. re-user’s view). The mapping between

provider’s view and re-user’s view concerns two dimensions:

• Modifying the component deposited by a provider to match the requirements needed

by a re-user.

63

• Extracting a component from a standalone application with all its necessary

dependencies.

 Apparently, the mapping should consider the non-functional characteristics of a

software component and not the functional characteristics, because if a component’s

functionality was not the one required by a re-user then there is no point in applying any

modification to the component in order to reduce the gap between the provider’s view and

that of the re-user. So, if a provider supplied a component that matched the functionality

that a re-user needed but was different in some non-functional characteristics, then

applying modifications to the component to bridge the gap between the provider’s view

and the re-user’s view, attempting to match the non-functional characteristics, can increase

the re-usability of the supplied component. This mapping between the provided view and

required view can be achieved by employing an advanced re-factoring mechanism.

Re-factoring is commonly known as the process of changing the internal structure of

components without affecting their external behaviour [49]. Re-factoring is applied

primarily for the purpose of optimizing components by removing unnecessary code (e.g.

duplicated or dead code) [49] or re-structuring the code of software components [44]. It is

been claimed that optimizing components can improve their quality (e.g. extensibility,

modularity, re-usability, complexity) and also reduces maintenance cost [107]. One

example of a kind of re-factoring is changing a variable name into something more

meaningful, another example could be to turn the code within an “IF” block into a method

or a function or even replacing the whole “IF” block with polymorphism (specific to

object-oriented programming) [49].

A survey [107] of component re-factoring has captured various re-factoring

mechanisms aimed at optimizing components. Beck and Fowler [49] defined re-factoring

as the process of removing “bad smells” (e.g. duplicated source code) from software

components. They described bad smells as “structures in the code that suggest (sometimes

scream for) the possibility of re-factoring”. They established 22 re-factoring mechanisms

for overcoming bad smells. Balazinska et al [13] used a clone analysis tool to identify

duplicated code that indicates re-factoring candidates. Ducasse et al [41] established an

approach to detect duplicated code within software components by employing a language

independent and visual approach.

Other work [148] [97] has established re-factoring mechanisms to generalize

components in order to make them re-usable by tackling the problem of coupling between

64

software components. A number of studies [103] [24] [69] [46] have established re-

factoring mechanisms to assist in the identification of design patterns from software

components as a way of identifying design decisions from components and mapping them

to the design stage.

The intended meaning of re-factoring in the ideal repository system has commonalities

and slight differences to the more general perspective of re-factoring identified in the

literature. The commonality is that both perspectives (i.e. the ideal repository system and

the work identified in the literature) propose that component functionality is unaffected by

any re-factorization. However, the difference is in the purpose of re-factorization. As stated

at the beginning of this section, the ideal repository system employs a re-factoring

mechanism to enhance re-usability of a component by bridging the gap between the

provider’s view and the re-user’s view, whereas the purpose of re-factoring in the literature

is primarily to optimize the performance and maintainability of a component [49]. The

few works (e.g. [148] [97]) that consider increasing component re-usability by re-factoring

components are concerned with re-use in general term and not similar to the view adopted

by the ideal repository system. The intended meaning of re-factorization is in line with the

notion of “packaging specialist” proposed by DeLine [38], but re-factoring is intended to

automatically provide the necessary characteristics for fitting components into a system.

Therefore, there is a need to establish a new re-factoring mechanism that satisfies the

requirement of the ideal repository system. As a result, establishing a mechanism to

support the requirement of re-factorization in the ideal repository system constitutes part of

the investigation in this research.

3.4 Software Repository Systems

This section surveys the related work in the literature that concerns establishing

repository systems to support re-use, and also compare the characteristics of the developed

repositories in the literature against the characteristics of the ideal repository system to

evaluate the extent to which they achieve the ideal characteristics.

3.4.1 Overview

The term “repository” is sometimes used to mean a search engine. Although repositories

usually have their own search engines, it is a place where data can be deposited, organized,

and retrieved, whereas a search engine is nothing more than a mechanism to identify,

according to certain criteria, items stored inside a repository.

65

Many repository systems are available. Some are in the public domain, such as open-

source repository systems, while others are private to an organization. A number of key

repository systems are discussed in the next sections.

3.4.1.1 +1Reuse Repository System

The +1Reuse repository system was developed by the +1 Software Engineering

Corporation [65]. It supports re-using several types of artefacts such as designs,

documentation, code, header files, test cases, test scripts, test results, and modelling

information. +1Reuse repository stores and organizes projects corresponding to building

systems. Every project is considered as a library of re-usable artefacts. +1Reuse repository

supports re-using sub-modules (e.g. components from a system) of projects. Re-users can

select an artefact from a project within the +1Reuse repository and the repository will

download the selected artefact and all its associated files to their directory, which is a

useful characteristic for re-users as it saves them the effort of figuring out dependencies

manually, and resolves any name duplication problems. The references for this repository

provide little details about the mechanisms used to organize projects and how re-users can

search or browse projects to find re-usable artefacts.

3.4.1.2 CodeFinder-PEEL Repository System

CodeFinder-PEEL [68] is a repository system for organizing source code components

written in the Lisp programming language. The designers of the CodeFinder-PEEL

repository system identified three key characteristics that they believe must be supported

by a repository system:

1. Utilize a tool to generate initial indices for organizing components starting with a

number of randomly selected components.

2. Provide flexible mechanisms to search and browse the repository.

3. Tools to refine and adapt indices as re-users work with the repository.

The repository system organizes components by applying an automatic indexing

mechanism, using a tool called PEEL [68] that performs the necessary latent semantic

analysis (LSA). The PEEL extracts terms from definitions of functions, variables,

constants, and macros of the source code and analyzes the extracted information to

generate representative terms (i.e. indices) and identifies the possible relationships between

the indices. The resulting indexing scheme is not final as the repository supports the

facility to allow re-users to refine indices as they search for re-usable components, and thus

66

organizes components differently based on the refined terms. So, re-users are able to add

new terms and remove terms that they think are not relevant for representing components.

The repository builders claimed that a major advantage of employing such an adaptive

indexing mechanism [143] is to avoid the cost of building complex organizing mechanism

at the beginning of building the repository system, also to allow the repository to support

evolution.

The CodeFinder-PEEL repository system assists re-users in selecting terms that are

semantically near to what they typed in the search query. This feature is useful to teach re-

users about the vocabulary used in the repository system to represent components and also

to reformulate their search queries to specify precisely the required component.

3.4.1.3 The WebComposition Repository System

The WebComposition repository [54] system is aimed at supporting re-use of

components for building web application systems based on the Components-Based

Software Engineering (CBSE) approach [141]. The repository is composed of three main

elements:

• Components store.

• Metadata store.

• Searching and browsing tools.

The Components store is a persistent storage place (e.g. database) that is responsible for

storing and maintaining components. The Metadata store is responsible for storing data

about components that is used by the organizing scheme of the repository system for

organizing components. The searching and browsing tools are responsible for querying and

inspecting the repository in order to find components of interest.

Components within the repository can be organized in different ways based on the

Metadata store used for organizing schemes. One way of organizing components that a

Metadata store might describe could be by the kind of information available with

components such as their design, history, interactions with other components, semantic

information, and documentation. This type of organizing scheme takes the form of a

classification scheme in the sense that a number of categories should be defined by experts

to capture the different dimensions of components. Another way employed by the

repository is an adaptive indexing mechanism [143] that indexes components inside the

repository based on learning from the actions of re-users recorded against using the

67

searching or browsing tools. The repository system is extensible in the sense that it allows

new Metadata stores (i.e. classification and indexing schemes) to be added for classifying

or indexing components differently. In addition, new tools can be added to the repository

to help searching or browsing for components.

3.4.1.4 Sourceforge.net Repository System

Sourceforge.net is one of the largest open-source software development repositories. It

provides free hosting to open-source software systems. Some of the organized systems in

the repository are in beta versions and others in their final version. Sourceforge.net

employs a version control system to manage storing and tracking all changes applied to

source code by developers. The repository system established a classification and indexing

schemes for organizing software components.

Sourceforge.net classifies systems based on some facets including:

• Topics (e.g. security, games, Database).

• Operating systems.

• Programming languages.

• License.

• Intended audience.

• User interface; translations.

• Database environment.

• Development status.

 The values of these facets are provided by system developers at the time of initiating

projects or depositing systems into Sourceforge.net.

Re-users can browse directly through the facets of the classification scheme, for

example, all systems classified under Java programming language. Alternatively, re-users

can use the provided free-text search engine that searches for matching keywords against

the free-text descriptions of corresponding systems, and use facets for filtering results.

Sourceforge.net has recently established a searching mechanism powered by Krugle

Corporation [127] at the source code level. So, once a potential system is found in

Sourceforge.net then a re-user can use the source code search engine to search for

components within that system. The search engine is basically built on keyword matching;

68

the search can be filtered by specifying a value of the programming language used by a

project in addition to specifying the expected occurrence of the matching keyword from

within one of six options listed as, source code, comments, documents, function definition,

function call, or class definition. Figure 3.8 illustrates the user interface of Krugle, the

source code search engine in Sourceforge.net.

Figure 3.8: Krugle Search Engine

3.4.1.5 CompSrc Repository System

CompSrc [128] is a repository system supporting the re-use of source-code components

that were developed in different environments and by different development teams. The

repository employs a mechanism to represent components at a high level of abstraction

using a meta-language called VDM-SL [48]. One of the key aspects of the repository

system is to establish a uniform description of all the components in the repository.

The repository system is composed of four main components:

• Interface extractor tool.

• Components calculator tool.

• Indexing scheme for software components.

• Testing tool.

The interface extractor tool extracts details of the APIs associated with different

software components and generates new versions of the extracted APIs represented in

VDM-SL called abstract APIs. The generated abstract API is used then by the component

calculator tool to identify possible functional composition between components and the

order in which they need be composed. Two ways of component composition are

identified: (i) composition by aggregation, (ii) composition by wiring. Composition by

aggregation concerns combining the abstract APIs of the components to constitute a more

complicated component whose API is the aggregation of the APIs of its components.

Composition by wiring involves identifying data type similarities between different

methods within different components. For example, if the return type of one method in

component A is similar to the input parameter to another method in component B then the

two components might be wired together to compose a new component AB. The CompSrc

repository employs a testing tool, which is part of the component calculator tool, that

69

performs the compatibility check between the data type of methods within components.

The Indexing scheme is purely text-based and is built on the Latent Semantic Indexing

(LSI) mechanism [87] and it is responsible for organizing components by their

corresponding abstract APIs in a database.

3.4.1.6 CRECOR System

CRECOR [90] is a repository system to facilitate re-using Enterprise Java Beans (EJB)

[9] components. CRECOR provides the following support to components re-users:

• Browsing.

• Selecting;

• Analysing.

• Adapting.

• Deploying.

• Testing.

• Component Assembly.

 The repository system utilizes a graphical user interface to display components and

their relationships in the form of tree structures, so re-users can browse and select the

desired component graphically. The component analyzer analyzes the deployment

descriptors corresponding to Enterprise JavaBeans (EJB) [9] components that describe

their conformance to the EJB specification. There are some other details such as methods

signature and interface name extracted from components in the analysis process to support

identifying components behaviour. The structure of the analyzed components and the

signatures of their methods are used for identifying re-usable components and the context

in which they might be re-used.

The component adaptation process includes renaming attributes/interfaces, adding new

attributes/interfaces/methods, and replacing source code in methods. So, components might

be modified to resolve any mismatched interface between components, for example, by

modifying return type, parameter types, parameter order, and method name. The

repository’s adaptation mechanism allows extra attributes and methods to be added to

components in order to match new requirements. Figure 3.9 illustrates the GUI of the

adaptor utilized in the CRECOR system for the components adaptation process.

70

Figure 3.9: CRECOR Components Adaptor
The Component deployment process supports generating components deployment

descriptors, packaging of components with their constructing files, and installing

components in application servers (e.g. J2EE, JBOSS). The component testing process

generates a web-based client program for a selected EJB component that allows re-users to

test component functionality by supplying different parameter values and examine their

impact on components behaviour. The assembler tool, COBLAT [92], composes

components together to form a bigger composite component or a system. Re-users can

utilize the graphical representation of components in the repository to drag and drop

components in order to assemble a composite component.

3.4.1.7 CodeBroker repository system

Yunwen [157] has established a repository system called CodeBroker to support

component re-use written in Java. The repository system is considered active, as compared

to the other repository systems, in the sense that it works in the background of a

development environment and provides advice about the availability of components while

developers are busy writing code. The main objective that CodeBroker repository system

addresses is to inform developers about the availability of components they might be

interested in re-using without requiring them to search for components manually using the

traditional methods. The repository monitors a developer’s activities and provides possible

re-use advice. Figure 3.10 illustrates a snapshot from an environment with CodeBroker

taken from the original reference [157].

71

Figure 3.10: CodeBroker System [157]
The CodeBroker system is composed of an interface agent and a backend search engine

running in the background of the development environment. The interface agent infers and

forms searching queries automatically to supply to the CodeBroker repository by analyzing

partially written code typed in by developers. The inferred queries are then passed over to

the search engine which attempts to find components that match the supplied query.

CodeBroker indexes components based on their JavaDocs. The repository delivers

components whenever comments or source code written by developers are identified as

matching one in the repository. CodeBroker does not deliver all components it finds but it

uses a filtering mechanism to deliver the most relevant components. The filtering

mechanism used in CodeBroker is based on a discourse model that allows a developer to

specify components that are not of interest in a development session. The CodeBroker

system learns from a developer’s responses in a session and uses the information obtained

from a session in future component delivery.

3.4.2 Analysis of Repository Systems

The various repository systems described in the previous section indicated the kind of

support they provide to facilitate re-use, hence attempting to resolve some of the obstacles

hindering re-use. This section is going to analyze the identified repository systems against

the characteristics of the ideal repository system which are:

• Support organizing schemes that have the characteristics identified in section 3.2.

• Support re-factoring mechanisms that satisfy the characteristics identified in section

3.3.

• Support testing components against defined requirements. So, re-users can provide

their requirements to the testing tool of the repository and the tool can check

72

whether a component matches these requirements or not prior to delivering it. Also,

the testing tool can be utilized to search for components inside the repository. Re-

users can provide the characteristics of the components they need to the testing tool,

and the tool can examine the available components in the repository against the

provided characteristics.

• Support delivering components with all their associated dependencies.

• Support evolution by allowing new tools to be added to the repository system to

enhance its functionality.

Table 3.2 illustrates a taxonomy matrix that analyzes the characteristics of every

repository system against the characteristics of the ideal repository system. The table

shows tradeoffs between the various repository systems in their capability to support re-

use.

73

Satisfied
X Unsatisfied

? No enough details

+1R
euse

W
ebC

om
position

Sourceforge.net

C
om

pSrc

C
R

EC
O

R

C
odeFinder-PEEL

C
odeB

roker

Classification Scheme ? ? X ? X X O
rganizing schem

e

Indexing Scheme ?

Support components modification X X X X X R
e-factoring

Support extracting components

from a system

 X X X X X ?

E

r

r

nsure components conform to

equirements prior to delivering to

e-users

X X X X X Test harness
Support filtering the search for

components

? X X X
D

elivering

Deliver components with all

associated dependencies

 ?

Evolution

Support adding new tools to extend

the functionality of the repository

system

X X X ? X X

Table 3.2: Taxonomy of the characteristics of the Repository Systems

The +1Reuse repository system is described as able to extract modules from the

available projects in the repository and deliver them together with all their corresponding

files to a re-user’s system. Considering modules as an analogous to components, then

+1Reuse repository seems to support one of the significant characteristics of the ideal

repository system which is about extracting components from a system. Moreover, the

74

repository is able to deliver complete modules to re-users which is another important

feature of the ideal repository system. Due to the lack of enough details that describe the

+1Reuse repository system it was not possible to identify the organizing scheme,

refactoring, testing, and whether the repository supports evolution or not.

The WebComposition repository is another interesting repository system that is built to

address some of the re-use obstacles. One advantage of this repository system is that it is

able to organize components by different organizing schemes (e.g. classification and

indexing schemes). All the characteristics related to the organizing scheme of the ideal

repository system are satisfied by this repository apart from the characteristic concerning

the ability to define new classifiers by re-using old ones. The WebComposition repository

system provides a search engine that can be filtered by terms representing classifiers; as a

result, it is considered as supporting the feature of filtering the search for finding potential

re-usable components. The repository is also capable of delivering components with all

their necessary dependencies to re-users. The repository system is not closed as new meta-

data stores can be added to it indicating its ability to evolve.

Sourceforge.net is built based on a combination of defining a set of facets to categorise

software components and an indexing mechanism to support free-text searching for

projects within the repository. As a result, the repository can be considered to have

captured the required characteristics of the ideal classification scheme. However, the

classification scheme lacks the ability to re-use classifiers to generate new ones. Re-users

are able to filter their searching for re-usable components using some values of the

provided facets, for example by selecting Java as a programming language. Also,

Sourceforge.net is able to deliver components with all their required files and

dependencies, hence satisfies the delivery characteristic of the ideal repository system.

CompSrc employs an indexing scheme for organizing software components in the

repository. A desirable feature satisfied by the CompSrc repository is the ability to

compose larger components from smaller ones. This feature seems to fall within the kind

of support that the repository provides to the map provider’s view to the re-user’s view by

generating new components from the ones already available. This feature is considered to

be related to the characteristic of modifying components because, it is believed by the

author of this thesis, components must be modified, somehow, to successfully construct a

composite component. As a result, the CompSrc is considered as supporting mapping, by

modification, the provider’s view to the re-user’s view that the ideal repository system

75

need to satisfy. The repository system provides a number of test-suites that can be utilized

to check the I/O data type of components to ensure that two components can be composed

together. The developer of the CompSrc repository reported that components are self-

contained entities; this denoted that components are delivered with all their associated

dependencies to re-users.

The CRECOR repository system implements an indexing scheme for organizing

components in similar manner as the other repository systems identified earlier. The

repository supports re-factoring EJB components to match the requirements of re-users.

This characteristic indicates that the CRECOR repository system supports the

characteristic of mapping the provider’s view to the re-user’s view. The repository system

also provided a number of testing facilities to check the conformance of components to the

functional requirements of re-users. Components in the CRECOR repository are EJB that

are packaged in JAR files, this indicated that components are delivered in full to re-users

without missing their dependencies.

The CodeFinder-PEEL repository system indexes software components for re-use. An

interesting characteristic supported by the repository system is the ability to assist re-users

to formulate their searching queries to best match the terms used to represent components

in the repository. This feature is considered as a kind of filtering search query in the sense

that the mechanism used is advising re-users about the possible accurate terms that they

can use to find more relevant components. Although this mechanism may not sound like

filtering in the traditional interpretation of filtering, it is believed that it could relate to

filtering as the advising mechanism used by the repository can limit the number of

components found by putting more focus on the searching queries than the ones provided

by re-users.

Finally, CodeBroker established an indexing mechanism to organise software

components in the repository. The provider of the CodeBroker repository system claimed

that the repository is advantageous as it can find components and bring them to developers

without the distraction of switching from their working environment to search for software

components as such distraction might hinder re-use attempts. While this feature might

seem interesting, it was not obvious whether the ideal repository system really benefits

from this feature or not. The view adopted by CodeBroker concerns software developers

who are building their systems from scratch but may be interested in re-use, while the ideal

repository system assumes that developers will build their systems by re-using

76

components, hence developers are named as re-users. The diversion between the two

assumptions (i.e. CodeBroker’s view and the ideal repository system’s view) suggested

that the feature provided by CodeBroker may not be of interest to the ideal repository

system. With respect to delivering full components, CodeBroker is reported as supporting

this characteristic.

3.4.3 Observations
Apparently, numerous attempts by the different repository systems were established to

support re-using software components. However, it seems that the current state of the

repository systems is still behind achieving the optimal support as compared to the kind of

support that could be provided by the ideal repository system; hence more work is still

needed to improve the applicability of repository systems to facilitate re-use.

Specifically, it is observed that the surveyed repository systems are primarily concerned

with the functional aspects of software components. This is clearly indicated by the kind of

organizing schemes used in the various repository systems. All of the identified

repositories employ indexing schemes which attempt to capture component semantics to

reveal some of their functional characteristics, even though identifying key functionality

using the provided indexing schemes in the described repository systems is questionable as

capturing functionality requires a formalized approach to reflect precisely the key

functional characteristics [48]. Matching only the functional characteristics of software

components to the functional requirements of re-users is not enough to find potential re-

usable components [132]. It is essential to consider, in addition to the functional

characteristics, matching the non-functional characteristics [93] of software components to

ensure that the found component really matches all the re-user’s requirements to be re-used

successfully in the systems being built. Part of the non-functional characteristics that need

to be considered is the architectural characteristics in addition to the functional

characteristics to organize and find re-usable software components.

Capturing the architectural characteristics of software components cannot be

accomplished by the traditional Latent Semantic Analysis (LSA) mechanisms employed by

most of the indexing schemes due to the absence of precise characterization of

architectural characteristics. For example, the role of components can be active or passive

as described by Yacoub et al [152]. So, unless both roles are characterized in detail, no

indexing scheme can help to find active or passive components from a repository.

Although some of the classification schemes identified earlier in this chapter tried to

77

establish categories related to some architectural characteristics, the classifications are

either coarse-grained in the sense categories cannot be reflected on source-code

components or only capture few high level architectural characteristics such as

programming language name or platform name without going into any more depth.

Coarse-grained classification schemes were not practiced in many of the identified

repository systems due to the fact that the categories selected to classify components

cannot be reflected on real components. Although there are some repository systems that

apply coarse-grained classification schemes (e.g. Sourceforge.net and WebComposition)

leveraged by some indexing schemes to achieve mapping categories to concrete

components, the representative indices of architectural characteristics are still inappropriate

as they are purely lexical-dependant. This difficulty in linking high-level architectural

categories to concrete software components to assist finding them for re-use seems a

potential problem that can negatively affect finding re-usable components. Therefore, there

is a need of further research to investigate the possible benefits of considering the key

architectural characteristics of software components as a way to assist in finding re-usable

components that can fit with a re-user’s requirements and address the problem of mapping

high level categorization to concrete components.

3.5 Summary

This chapter introduces the background work that forms the basis for establishing this

research. The characteristics of the organizing scheme of the ideal repository system have

been identified and a survey of a number of organizing schemes has been presented based

on the identified characteristics. Also, this chapter presented some of the key related work

in the scope of re-factoring components and examined the extent to which the available

mechanisms suit the ideal repository needs. The chapter then ends by identifying the key

characteristics of the ideal repository system and surveyed a number of repository systems

based on the defined characteristics.

The summary of the outcome of the background work is as follows:

• Organizing components based on their functional characteristics is not enough to re-

use components successfully as key architectural characteristics must be considered

as well.

• Indexing schemes are not appropriate for organizing components in the ideal

repository system as they are based on lexical analysis of keywords even though

78

indexing schemes satisfy some of the characteristics required by the ideal repository

system.

• Current classification schemes use coarse-grained categories that cannot be mapped

to concrete components, and even the schemes that use less coarse-grained

categories are not appropriate as they are based on lexical analysis of keywords and

not on precise characterization of categories.

• Re-factorization is not concerned with mapping the views of component provider

and re-user.

Overall, current repository systems still cannot provide the optimal support for re-use.

Building on the background work developed in this chapter, the next chapter defines the

approach followed by this research to satisfy the characteristics of the ideal repository

system.

79

Chapter 4 - Characterizing Architectural Fit

The previous chapter established the basis for this research by identifying the gap in

prior work corresponding to the problem of finding re-usable components in a software

repository system. That prior work was concerned primarily with identifying and

characterizing the functionality of software components to facilitate finding re-usable

components; however, the architectural characteristics of software components were not

adequately defined and exploited. As a result, a re-user might find a component that

provided the required functionality, but could not be re-used in the system being built due

to mismatches between the architectural characteristics of the component and that system.

This chapter describes the notion of architectural fit as a new approach that could be

utilized by the ideal repository system to facilitate finding re-usable components that match

the non-functional characteristics of the system being built. The chapter starts by defining a

number of use-cases for the ideal repository system in order to gather the requirements for

developing the notion of architectural fit and an approach named architectural interface

that is a solution to be described in this chapter. After that, the chapter introduces a system

model that establishes the basis for generating the vocabulary used in this research.

Subsequently, the chapter discusses the characteristics of architectural interface that is

established in this research to address the gathered requirements of the ideal repository

system. The chapter then describes aspects of checking for architectural fit and how that

can address some of the functional requirements of the ideal repository system.

4.1 Use-cases for the Ideal Repository System

As a way of gathering the requirements of the ideal repository system, a number of use-

cases were identified. Figure 4.1 illustrates a coarse-grained view of the ideal repository

system depicting its users and part of its architecture. The use-cases are identified from the

perspective of the re-user and the depositor who are the two main users of the repository

system.

80

Figure 4.1:Coarse-grained View of the Ideal Repository System
The first two use-cases to be developed correspond to the re-user of the ideal repository

system. The third use-case corresponds to the provider of components to the ideal

repository system.

Tool

Deposit

Read

Find

Re-user

Provider
Eclipse

EJB

Java
Class

Organizing
Scheme

Use-case 1: Finding Re-usable Components

A re-user who is building a system might decide to re-use a component that provides

new functionality instead of building the component from scratch. The re-user can go to

the ideal repository system and search for components. The re-user submits to the

repository system a query that contains the definition of the characteristics of the required

component. After the query has been submitted, it is then received by the checking tool

within the ideal repository system (shown in the above figure) that processes the submitted

query and matches the defined characteristics to component meta-data held in documents

in the organizing scheme in the repository system or against the source code of the

available components in the repository. If a matching component is found then the

component is delivered with all its related dependencies to the re-user.

Three main requirements can be drawn from the above scenario:

• Re-users must precisely define the characteristics of the components to be

searched for in the repository to facilitate their accurate identification.

• The submitted query must be matched against the meta-data corresponding to

components in the repository system. If no match is found, the query must be

matched against the available components in the repository.

81

• Any component matching the defined characteristics must be delivered in full to

the re-user. Compile-time or link-time errors must not arise in the system being

built due to there being parts missing from the component that was delivered.

Use-case 2: Modifying Components to Suit the Requirements of the Re-user

A re-user submits a query to the repository that defines the requirements of a

component required by the system to be built. However, the repository system only finds a

component that matches only some of the requirements. There are two reasons why a

component does not provide a complete match. One possibility is that the found

component provides the required functionality, but conforms to different architectural

requirements to those required. The second possibility is that the found component

matches the required architectural characteristics, but that the provided functionality is not

quite what the re-user needs. The re-user may feel that the effort of modifying the found

component is less than that of building a component from scratch, so the re-user decides to

modify the component to make it match the full requirements of their system, hence may

need the repository to assist the modification.

Three requirements can be drawn from the above scenario:

• The architectural requirements of a software component must be identified

precisely.

• The modified component must be checked against the meta-data in the repository.

• The boundaries of the sub-components of a found component must be identified

in order to modify the component’s functionality.

Use-case 3: Depositing Software Components

A component’s provider deposits a component into the ideal repository system. In

addition to the component, the provider could supply the “meta-data” that defines the

functional and architectural characteristics of that component and any sub-components of

that component. In this case, the repository system assists the provider to define the

required characteristics of the component before depositing it into the repository.

Alternatively, the provider could deposit the component without providing any meta-data.

In both cases, after the component is deposited, it is checked and automatically organized

in the repository based on the meta-data that the deposited component matches.

Four requirements can be drawn from this scenario:

82

• The repository must present the characteristics that the component’s provider

needs in order to define their corresponding values.

• Minimize the effort of defining the values of a component’s characteristics.

• Check the deposited component to ensure that it matches the provided definition.

• If the provider did not supply a definition of a component’s characteristics, check

the deposited component against the available meta-data held in the organizing

scheme of the repository system in order to identify and organize that component

according to its matched meta-data.

The defined use-cases identify the requirements for developing part of the ideal

repository system. Addressing the identified requirements is the subject of the remainder of

this chapter and the next. Thus, a starting point for discussing the structure [15] of software

systems in a general manner, which can establish a vocabulary for investigating the issues,

is to consider defining a system model.

4.2 System Model

A common model for understanding system structure is to consider a system as being

composed from a set of components. A component might be atomic [26] in a scene that it

can be composed of sub-components, and sub-components might also be composed of sub-

sub-components, and so on until a point is reached where a component cannot be

decomposed any further (e.g. a binary code component). Each component itself can be

considered as a system, with the above description being applied recursively.

Following the perspective of this system model, a software developer can be regarded

as building a system. That system might be a complete system (e.g. a stand-alone

application) or be a part of a larger system (i.e. a component), but the model permits the

general term system to be used to cover such eventualities. Since the developer is building

a system, components are what they may try to find and re-use, and are the dependencies

that the system utilizes for providing the necessary functionality.

While this is a simple system model, and clearly does not capture all of the complexity

of a software system’s structure, it is sufficient to use as the model for identifying the

important characteristics necessary for component re-use.

 A re-user is the person who is trying to re-use components when building a system.

Every system has some characteristics that a re-user will need to consider when searching

83

for re-usable components. Similarly, when a potential component is found, it will have

characteristics that the re-user will need to examine to identify whether that component can

be re-used in the system under development. If the characteristics required by the system

are matched by the characteristics exhibited by the component, that component will be a

candidate for re-use in that system.

Following from the system model, the notions of system and component are

interchangeable in the sense that a system can be considered as a component if a re-used

decided re-use it in another system, while a component can be considered as a system in its

own right, for example, if a re-user is interested in examining its composing sub-

components. So, all the characteristics (to be defined) that are relevant to a system are

applicable to a component and vice-versa. Figure 4.2 illustrates the ontology of the

described system model.

Figure 4.2 Ontology of the System Model

Two types of system characteristics (i.e. exhibited and required) are captured by

different interfaces of that system. One interface is intended to identify the characteristics

that a component must exhibit in order to be re-used in the system, while the other

interface identifies the components of the system and the relationships between them. Both

interfaces are crucial to the successful re-use of a component in a system. The next section

discusses the two types of interface in depth.

4.3 Types of Interfaces

It is useful to distinguish between two types of interfaces of a system, namely external

and internal interfaces. The external interface of a system captures the characteristics that

84

must be exhibited by the system, and can be used to identify whether a system is re-usable

or not. The internal interface of a system is significant in identifying the characteristics of

the composing components, that are the dependencies of the system, and also the

characteristics defining how components can interact with each other. An analogy with

jigsaw pieces is useful to express the idea of the two interfaces. The things needed are the

“hole” in a jigsaw piece, and things provided are the “protruding bobble”. So, an external

interface of a piece of a jigsaw has holes that it needs, and bobbles that represent what it

provides; similarly for the internal interface.

Both interfaces identify characteristics that dictate whether a system can be successfully

re-used in another system. For example, if a system requires its components to provide a

method called public void start() to control when the component starts running,

this requirement forms part of that system’s internal interface, and the method must be part

of the external interface of any potentially re-usable component. Similarly, if a system uses

some libraries to implement its functionality, the characteristics of the library must be part

of the internal interface of the system. Figure 4.3 depicts the two types of interfaces for a

system.

Figure 4.3: The Types of Interfaces
It is worth mentioning that a component’s dependencies are in two forms. One form of

dependency, namely external dependencies, will be satisfied by components that are

provided by the system in which a component is re-used. For example, in a Java system, a

component (e.g. a Java class) may need to use the “java.io” library which is one of the

standard libraries used in most Java-based systems. The other form of dependency, namely

internal dependencies, will be specific to a component and not related to what the system

might provide. Internal dependencies relate to the sub-components of the component. The

85

external dependencies are captured by the external interface of a component as they form a

part of the requirement that must be provided to a component to enable that component to

function. The internal dependencies are captured by the internal interface of the component

and are represented by the sub-components that must also be provided together with the

component.

Consider the Eclipse IDE [32] as an example of a system that a developer wants to add

some functionality to by incorporating new “plug-ins”. The Eclipse IDE provides an

extensible environment that precisely defines how new plug-ins can be added to the

system, and also establishes the basis for defining the relationships between plug-ins.

Mapping the Eclipse system to the system model introduced in this section, the internal

interface of the Eclipse system requires the following methods as part of the characteristics

that the external interface of a component (i.e. a plug-in) must match in order to be re-used

in the Eclipse system:

• public void start(BundleContext)

• public void stop(BundleContext).

A plug-in might have interaction with other plug-ins in the Eclipse system or it may

need sub-components to accomplish its desired functionality. For example, a file-transfer

protocol (FTP) plug-in needs to interact with the “org.eclipse.osgi” plug-in, which is part

of the Eclipse system, to facilitate launching the FTP plug-in in the system. So, the

“org.eclipse.osgi” plug-in must be defined as a part of the characteristics that the external

interface of the FTP plug-in must capture, as it is one of the external dependencies of the

FTP plug-in that is required by the Eclipse system. The FTP plug-in uses a Java class

called “newSocket” that is not part of what the Eclipse system requires, hence the

“newSocket” Java class must be captured by the internal interface of the FTP plug-in as

one of its internal dependencies.

Several benefits can be obtained from identifying the two types of interfaces (i.e.

external and internal):

• From the perspective of supporting re-use with a repository system, the external

interface of software components can be used by the repository system to

automatically classify and organise those components, while a set of characteristics

that a re-user requires can be specified and used by the repository to identify

candidate components. Moreover, the internal interface is useful to help the

repository system retrieve a re-usable component together with all of its required

86

dependencies (i.e. sub-components). Thus, the repository can provide a complete

component to a re-user, without requiring the re-user undertake this action

manually.

• From the perspective of organizing components inside a repository system, the

external and internal interfaces can be used to build an organisational hierarchy;

Figure 4.4 illustrates an example. Assume that T is a component that defines the

characteristic Y in its internal interface. Sub-components T1 and T2 are both

identified as providing the characteristic Y in their external interface. However, sub-

component T1 defines the characteristic A in its internal interface while sub-

component T2 defines B as a characteristic in its internal interface. As a result of the

difference in the characteristics defined by T1 and T2’s internal interfaces, the two

sub-components can be discriminated from each other. The example indicates that

the external interface of a sub-component identifies the potential parent in a

hierarchy and the internal interface discriminates a component (or sub-components)

from other components.

Figure 4.4: Using External/Internal Interfaces to Organize Components

• From the re-user’s perspective, understanding the external interface of a component

and internal interface of the system under development might influence the

modifications that the re-user might wish to make. A re-user could modify the

internal interface of the system under development to match the external interface of

a potentially re-usable component, or the re-user could modify the external interface

of a component to match the internal interface of the system.

87

The above discussion has identified the potential importance of the external interface of

a component in addressing the problem of finding re-usable components. It is therefore

necessary to examine in more depth the characteristics that external interfaces should

capture, and this is the subject of the next section.

4.4 The Characteristics Defined by the External Interface of Software

Components

The external interface of a component involves functional and architectural

characteristics. The functional characteristics define the behaviour that a component can

provide. Architectural characteristics define the requirements that allow components to fit

physically into a system. The term architectural type is therefore going to be adopted to

represent the architectural characteristics.

If the architectural type that is defined by a component matches the architectural type

that is required by a system then the component is considered to be an architectural fit for

the system. The term architectural fit has been introduced to represent the ability to

incorporate components physically into a system, meaning that the component will not

cause raise compile-time or run-time errors after integration into a system and satisfy the

architectural fit requirement. The term architectural fit requirement indicates that the

architectural type of a component is the same as the architectural type required by a

system. Similarly, if a component matches the functional characteristics required by a

system then the component is said to be a functional fit for the system, hence satisfy the

functional fit requirement. A component that satisfies both the functional fit and the

architectural fit requirements of a system is termed a perfect fit. The sub-set of

characteristics in the external interface of a component that relate to the functional fit can

be said to identify the component’s functional interface, while those that represent the

architectural type can be said to identify the architectural interface. The two interfaces

comprise the complete external interface of a component.

When a re-user is looking for a component, satisfying functional fit is of course a major

concern. As indicated in Chapter 3, prior work has tried to establish mechanisms to

facilitate finding components that satisfy a re-user’s functional fit requirements. However,

this thesis argues that satisfying the requirements of functional fit is not sufficient to

successfully re-use a component in a system, since it is vital that the architectural fit

requirements are also satisfied. For example, a re-user may find a component that has the

88

exact functionality required, but that will not fit into their Windows environment because

the component was designed for a UNIX environment.

Due to the significant impact of architectural fit on a component’s re-usability, this

thesis addresses the architectural fit requirements identified by the architectural interface of

a software component as a step towards achieving better support for re-use.

4.5 Setting the Context of Architectural Interface in the Scope of the

Ideal Repository System

In a repository system, software components can either be available by themselves, a

standalone application, or as part of a system. In both cases, components must conform to

an architectural type that relates to the system that the components were primarily built for.

The architectural type that a component exhibits can be exploited to discriminate one

component from other components that conform to different architectural types. The

identification of the architectural type of a component is of particular interest when a

component is deposited into a repository as the identification forms the basis for

organizing components in the repository, and hence facilitates their subsequent

identification by re-users.

Figure 4.5 illustrates a fine-grained view of part of the design of the ideal repository

system that relates to identifying and organizing components based on their architectural

type.

89

Figure 4.5:Fine-grained View of the Ideal Repository System
The figure shows four components of the ideal repository system:

• Descriptions of Architectural Types (DAT): contains documents describing the

characteristics of architectural types and defining the relationships between them.

• Matching Tool: when a component is deposited in the repository, the matching tool

can check whether the component conforms to any of the architectural types

recorded in the DAT. The matching tool will also be used when a re-user needs to

specify their architectural interface requirements for components they are searching

for.

• Meta-Data Generator: this tool generates meta-data to be associated with the

component, recording any “is-a” relationships identified by the matching tool

between the component and the architectural types recorded in the DAT.

• Database: stores components and their meta-data for future retrieval.

The sequence of operations performed by the repository to identify and organize

components is as follows:

1. A component is deposited in the repository.

2. The matching tool checks the contents of the component against the characteristics

defined in the architectural type descriptions in the DAT.

3. If the component is identified as matching one or more of the architectural types, the

component and the matching results are passed to the meta-data generator tool. If a

90

component is composed of sub-components, the matching tool also matches the sub-

components against the available architectural types.

4. The meta-data generator annotates the checked component (and sub-components) as

instances of the matched architectural type descriptions, for subsequent storage in

the database.

Every architectural type defined in the DAT is represented by a document, and the

precise characteristics defined in a document are those associated with architectural

interfaces (to be described in section 3.6). Hence, every architectural type within the DAT

is an instance of an architectural interface. Accordingly, a deposited component is matched

automatically against the instances of architectural interface in the DAT in order to identify

its matching architectural type. If a component matches an architectural type, the

component is considered as an instance of that architectural type and organized as such.

The definitions of architectural types in the DAT can also be utilized by the repository

system to identify and extract the sub-components of a deposited component into the

repository system. For example, assume that an Eclipse component (i.e. plug-in) is

deposited into the repository system, and it is composed of three sub-components that

conform to Model, View, and Controller architectural types already present in the DAT.

The DAT can then be used to identify those composing sub-components by matching

every sub-component to its corresponding architectural type in DAT. The ability to

identify the sub-components of a deposited software application is useful to populate the

repository with components, and is especially important to re-users who might be

interested in re-using some of the components that are embedded in a deposited

application.

This section has set the context of the notion of architectural interface and how it can be

used in the repository in which it is located. The detailed characteristics identified by

architectural interfaces are discussed in the next section.

4.6 The Characteristics Identified by the Architectural Interface

Figure 4.6 describes the ontology that defines the vocabulary of a fine-grained view of

the system model defined in section 4.2.

91

Figure 4.6:Fine-grained Ontology of the System Model
The above figure identifies that a system has an external interface that is, in part,

composed of an architectural interface. The architectural interface of a system identifies

the characteristics that are going to be defined by the architectural type that is required by

the system.

Based on the practical experience and the background work conducted by the author of

this thesis, the characteristics identified by architectural interface are as follows:

• Format: this characteristic specifies the language used to write a component. For

example, at the source-code level, a programming language will represent the

format of a component. So if a system requires a component written in Java then a

component written in FORTRAN will not be directly suitable for re-use.

• The way components interact in the system: the interactions between components

involve the method of exchanging data and control. Data can be exchanged between

components in different ways. For example, one component may exchange data by

passing parameters while another component might exchange data through shared

memory. Also, data might be exchanged among components following different

exchange models. For example, a component might employ the push-model [42]

indicating that the data is sent out by the component whenever a change in the

component’s state occurs. The other model that a component could implement to

exchange data is the pull-model [42] where data is requested from the component

by other components in a system whenever a change in the component’s state is

detected by the other components in the system. The way control is exchanged can

also be different from one component to another. One component may synchronize

92

its execution with a system, so the component can return control to the system upon

the completion of its execution. Another component might execute asynchronously

with the system. Thus, identifying the different ways of exchanging data and control

•

m,

•

r states), this must be a characteristic of a

•

5 seconds then components that respond in two seconds are

•

is necessary for finding re-usable components in a repository system.

The way components can be initialized: some components may provide special

methods that must be executed to provide initialization, while others may require the

presence of special tools or files for their initialization. For example, a stand alone

Java application must have a method called public static void main() to

be initialized, while an Eclipse plug-in can be initialized by reading a file called

“plugin.xml” and the presence of a method called public void

start(BundleContext). So, a component must match the initialization

mechanism that a system requires in order to be re-used successfully in the syste

and considering this characteristic is necessary for finding re-usable components.

The way components handle failures: if a fault [91] occurred in a component at any

stage during its execution then the failure handling mechanism implemented by the

component must conform to the one expected by the system. For example, if a

system assumes that its composing components must provide a specific recovery

action in case of failure (e.g. reset thei

component to be re-used in the system.

The non-functional characteristics of software components: characteristics such as

performance, size, memory usage, and reliability are important to be identified as far

as re-use is concerned. For example, in a real-time system a component’s

performance may be an important issue to consider. If a system requires components

that must respond in 0.0

not suitable for re-use.

Using external dependencies: a software system may require its composing

components to use dependencies that it provides for them to fit in the system. For

instance, referring to an earlier example, a Java system requires its composing

components (i.e. Java classes) to use a library called “java.io” to achieve the basic

input and output functionality. Also, an Eclipse system requires its components (i.e.

plug-ins) to use a plug-in called “org.eclipse.osgi” to allow the system to control

their execution. So, components must use the external dependencies that are

93

provided by a system in order to be re-used successfully in the system; hence this

characteristic should be considered to find an appropriate re-usable component.

A component’s boundary: components in a system must have some boundaries that

identify which parts of a system source code form that component. For example, in

Java, classes form the boundary of the source code of a component that separates it

from other components in a system.

•

Although this characteristic may not be relevant

• n sub-components.

•

reader component then this might cause

•

one [51]. Re-users must configure the

• Context: the context defines the way components can be registered in a system

subscribe to events that may be raised by the system and also to obtain infor

ple, the Applet architectural type defines the method

to achieving successful re-use, it is a requirement that must be defined in order to

extract a component from a system.

Internal dependencies: components in a system may depend o

Hence, extracting one component of a system to re-use in another system requires

also extracting all the internal dependencies of that component.

The sequence in which components need to be invoked: a software system must

invoke components in the correct sequence otherwise some of the composing

components of the system may not execute correctly. For example, consider a

simple parser system composed from a reader component that reads from a file and

stores data in a temporary buffer for processing, and an analyzer component that

analyzes the data and identifies their semantics. The parser system must invoke the

reader component first and then invoke the analyzer component. If the analyzer

component is invoked prior to invoking the

the analyzer component to raise an error, and hence cause the system’s execution to

fail.

Support pre-emption: pre-emption is the ability of a system to interrupt the

execution of its composing software components in order to switch the thread of

control from one component to another

components that they want to re-use to support such a characteristic if the system

they are developing requires that.

 to

mation

from the system. For exam

public AppletContext getAppletContext() that provides a handler

for the applet in a system.

94

•

atabase) and retrieve their state when necessary. For example,

recise manner that could be identified

in

ed in this research are concerned only with syntactic matching of the characteristics

de

Persistency: a system might require its components to store their state to an external

storage (e.g. file, d

Eclipse plug-in architectural type defines a method public final IPath

getStateLocation() throws IllegalStateException to handle

persistency issues.

Identifying the possible values of the characteristics is necessary to determine whether a

component can fit architecturally into a system or not. The values of the identified

characteristics are defined by an architectural type. Hence, there is a need to specify these

characteristics and their corresponding values in a p

the source code of a given component. A prototype of a specification language namely

ArchInt (to be described in the next chapter) is developed in this research to formalize the

characteristics identified by architectural interface.

The specification language has to describe things with respect to syntactic constructions

that can be identified in the source code of the component, and semantics concerning what

the construct means. For example, the syntactic aspects of identifying what a method is

(e.g. a Java Method), must be separated from the semantics of that method (e.g. it

corresponds to handling a failure). What is needed is a simple mechanism that returns a

“Yes/No” answer with respect to matching a component’s source code against the

characteristics defined by an architectural type – in other words, performing a syntactic

match between a component and an architectural type. Ignoring the semantics of the

characteristics defined by an architectural type has the advantage of facilitating a tool to

check automatically the availability of the characteristics in the architectural interface of

software components without human intervention. For instance, if an architectural type that

is required by a system defines one of its characteristics as requiring a UNIX process with

standard inputs and outputs then the architectural type of a component must define this

requirement in order to match the architectural type required by the system. The semantics

of that UNIX process is not important to fit into the system. Therefore, the practical studys

conduct

fined by an architectural type against the source code of components as a first step to

investigate the feasibility of the approach of architectural interface to support component

re-use.

95

The next section introduces some aspects of checking, illustrated by Java programming

lan

4.4 that described the main concern of

architectural fit as facilitating the successful incorporation and integration of components

me

ng the component to a

re-user. So, an analogy of the functionality provided by the Java compiler can be utilized in

a r

short). So, if one of the components of the system missed the required method by mistake,

guage mechanisms, that could be utilized by the ideal repository system to check for

architectural fit in a language neutral manner.

4.7 Aspects of Checking for Architectural Fit

Recall the earlier discussion in Section

chanically into a system. This section discusses how architectural fit can be checked in

the context of programming languages and draws analogies to the kind of check necessary

for the repository system.

Starting with a simple example to express the idea of how architectural fit is checked

within the confines of programming languages, the mechanisms in Java can be used to

exemplify this idea. The Java compiler performs one form of check at compile time

(syntax checking) and another at link time (relationships checking based on methods

availability in a class) before generating the executable version of a system. At compile

time, the compiler checks whether the source code is syntactically correct. This kind of

check is analogous to checking whether the format of a component matches the format

defined by an architectural type. The Java compiler can also check the links between

components in a system using the “linker” which is a sub-tool of the Java compiler. If a

component is missing one or more of its dependencies then the “linker” can identify those

omissions and notify the developer. These link-time checks are analogous to checking for a

component’s dependencies in a repository system prior to deliveri

epository system to identify all the necessary external and internal dependencies of a

component, and the internal dependencies can be delivered together with the component to

a re-user while the external dependencies are noted for the re-user.

In Java, there is also the notion of abstract classes and interfaces that can be used by the

Java compiler to check the availability of methods in a component. For example, if the

developer has decided that all the components of the system to be built in Java must

implement a method called “public void run()” in order to start their execution, the

method could be defined in a Java interface (or abstract class) that every component must

then implement. This kind of check means checking for the decisions imposed on

components by the architecture of the system to be built (the component’s architecture for

96

the compiler can identify the missing method and notify the developer. The notion of

Java’s abstract classes and interface mechanisms could be utilized by a repository to check

a

 into a system, to ensure that the component’s architectural type

characteristics conform to those required by the system. The next section describes the

architectural type.

e 3.1 in

Chapter 3. There are two occasions where the checking tool described in the design of the

ideal repository system :

component’s conformance to an architectural type. However, not all programming

languages have these features, and hence a solution not linked to a specific programming

language is required.

A more general example that is not dependent upon programming language mechanisms

to express the idea of architectural fit of a component is the Eclipse system introduced

earlier. Currently, there is no tool support to check whether a component will fit

architecturally into the Eclipse system or not. An Eclipse plug-in is composed of a

compiled Java source code, but the link checks cannot be performed as the plug-in has to

be dynamically linked to an already executing Eclipse system. The only way to verify that

a component can fit into an Eclipse system is to see whether the system executes

successfully with the component; however, unsuccessful execution, indicating an

unsuccessful fit, is something that the re-user might have preferred to find out about at an

earlier stage, along with the reasons why the component would not fit. Therefore, it is

necessary to establish a checking mechanism for software components before

incorporating them

general mechanisms for checking component conformance to the characteristics of an

4.8 Checking Architectural Types in the Context of the Ideal Repository

System

Recall the design of the ideal repository system illustrated earlier in Figur

 can perform the necessary checks to support re-use effectively

• Checking performed when a component is deposited in the repository; and

• Checking performed when a re-user is searching for a component.

 The checks performed at deposit time are necessary for identifying and categorizing the

component in the repository. The repository system contains a number of architectural

types definitions, held in the DAT component of the repository as illustrated in Figure 4.5.

Every deposited component can be matched against the available architectural type

definitions in the repository system to identify its matching architectural type. If a match is

97

identified, the component is categorised appropriately. Matching the characteristics of a

component against the characteristics defined by the architectural types in the repository

system will be referred to as checking for the “is-a” relationship, that is to check whether

the architectural type of the provided component is found to be equivalent to an

architectural type defined within the repository. If a match is found between an

architectural type in the repository and a component, the following statement will become

va

n be checked against the source code of the

av

l of the components in a repository which more closely match the

req

icates that the notion of defining architectural

lid: “the architectural type of component X is-a Z architectural type” where Z is the

architectural type for which the match was found. The component is considered to be an

instance of the Z architectural type and categorized as such.

The checking at search time involves matching the characteristics of the architectural

type that a re-user has provided against the characteristics of the available architectural

types held in the repository system. If a matching architectural type is found then the

components in the repository that are categorized under the defined architectural type will

be the set of interest to the re-user. If no matching architectural type is found, the

characteristics provided by the re-user ca

ailable components in the repository in order to identify any matching components, in a

similar manner to the checks performed when a component is deposited in the repository

(i.e. checking for the “is-a” relationship).

It is vital for a repository to be able to identify and organize components automatically

without requiring human intervention. The repository also should facilitate finding the

most appropriate components, otherwise the repository is not going to be very practical to

support software development. Hence, checking for the “is-a” relationship can be utilized

by a repository system to perform the automatic identification and organization of the

components being deposited in the repository without requiring a component’s provider to

be involved. Checking for the architectural fit can be utilized by the repository to provide a

selected sub-set of al

uirements of re-users. This check can therefore add additional value to the current

searching mechanisms (e.g. free text searching) discussed in Chapter 3 in order to facilitate

finding components.

The two checking mechanisms (i.e. “is-a” relationship and architectural fit) have to be

built on a precise characterization of the architectural types of software components. The

improvement in the support provided by a repository system that can be achieved by

employing the two checking mechanisms ind

98

fit could be really useful to enhance component re-usability, and consequently improve

sof

n affect component re-usability. The

characteristics of architectural fit and how components can be considered as potential fit

can he chapter described how architectural

typ

catego

The omes from this chapter are:

e are perfect

• categorizing

•

ter so that the identified capability of

architectural interfaces can be examined. The chapter also investigates a concrete prototype

of a language to specify architectural interfaces so that experiments can be undertaken to

tware development with re-use. So, both checking mechanisms are appropriate as parts

of the design of the ideal repository system.

4.9 Summary

This chapter has established the basis for developing an approach that can satisfy some

of the key requirements of an ideal repository system. The chapter started by identifying

the requirements of two users of the repository system (i.e. re-user and depositor) by

describing a number of use-cases for the repository. A simple system model was

introduced to provide a useful framework for viewing software systems, their components,

and how they relate to each other. After the system model was described, the chapter

proceeded by identifying two component interfaces, namely the external and internal

interfaces. The chapter then described the different characteristics of an architectural

interface and how those characteristics ca

didates in a system was discussed. Finally, t

es can be utilized by an ideal repository system to perform the checks necessary to

rize and find components.

 important outc

• Re-usable components are those that not only provide the required functionality but

also match the architectural type of the system being built, and therefor

fit candidates.

Component interfaces (i.e. external and internal) can be used for

components and to build an organizing scheme for a repository system.

The architectural types of software components can be utilized to identify and

categorize software components automatically in a repository system.

• The architectural type is useful as a complementary approach to the available

searching mechanisms introduced in prior work, and can assist re-users in refining

their search criteria to find components that fit architecturally into their systems.

The following chapter describes an approach, namely ArchInt, that formalizes the idea

of architectural type introduced in this chap

99

determine whether the potential advantages of the whole approach described

research are borne out in practice.

 in this

100

Chapter 5 - The Formalization of Architectural Interface

The previo and identified

several characteristics re . The chapter also pointed out

that matching the sem to this stage of the

development of interest in

order to exam s

related component re-use.

This chapter form terface described in

Chapter 4 by discussing how tice through the

developm terface to be called

ArchInt

evaluating architectural interface, and discusses the results of the studies. Chapter 6 will

evaluate the ov nt re-use.

us chapter described the notion of architectural interface

lated to supporting component re-use

antics of the various characteristics is not relevant

 the architectural interface; only the syntactical matching is of

ine the feasibility of architectural interface for addressing the problem

alizes some of the concepts of architectural in

those concepts can be represented in prac

ent of a prototype specification language for architectural in

. The chapter also describes experimental work conducted with ArchInt for

erall concept of architectural interface and its support for compone

5.1 ArchInt Specification

It was mentioned in Chapter 4 that a prototype of a specification language is needed for

describing architectural interface in a manner that can be constructed by the some human

(e.g. an engineer) and subsequently can be machine processable. ArchInt is developed as a

prototype of the required specification language to evaluate some aspects of architectural

interface. ArchInt represents a document that contains the set of values that comprise a

particular architectural type and is used to match characteristics represented in the source

code of a software component against the architectural type. An ArchInt document has a

specific structure that needs to be processed by machine. Hence, XML seemed a sensible

choice for representing the information to help in detecting errors in the document itself. In

the context of the ideal repository system, ArchInt documents represent the architectural

types defined in the DAT component (discussed earlier in Chapter 4) of the repository

system as illustrated in Figure 5.1.

101

sitory, this is

cap

Figure 5.1: Fine-grained View of the Ideal Repository System
Every document must start with a pair of opening and closing tags called <ArchInt>

to identify the boundaries of a document written in ArchInt and also to indicate that the

defined XML document is an ArchInt document. The opening and closing tags must be the

first and last tags in any ArchInt document. In a repository system, every architectural type

must have a name to distinguish it from other architectural types in the repo

tured by ArchInt using a pair of tags called <name>. Every ArchInt document must

contain only one name and the tag corresponding to the name must be the first tag that

appears after the <ArchInt> tag. One characteristic that is identified by architectural

interface in Chapter 4 was the “Format”; this characteristic specifies the programming

language that is used to write a component. ArchInt captures the “Format” characteristic

using a pair of tags called <programming_language>. This tag is necessary to

identify how software components can be processed. A repository system holds a number

of tools that can be used to process software components to check their architectural

characteristics. The <programming_language> tag identifies the appropriate tool to

be used by the repository to check the conformance of software components to an

architectural type. As will be seen later in this chapter, the compiler associated with a

programming language is used as a tool to examine the characteristics of software

components.

The three tags described earlier represent the basic features of the ArchInt language and

must be present in every ArchInt document to identify the type of the document (i.e.

102

conforming to ArchInt specification), to identify the name of an architectural type, and to

identify the tool that can process a component from the tools available in a repository. The

structure of the basic features of ArchInt should be similar to the one used to represent the

Java class architectural type as depicted in Figure 5.2.

Figure 5.2: Java Class Architectural Type Represented in ArchInt
In the above example, the tag <programming_language> specifies that the

necessary tool to check software components is related to the Java language system, hence

the Java compiler can be used to perform the necessary checking for the specified

programming language.

The characteristics that need to be matched in the source code of software components

against an architectural type description are captured by ArchInt using the pair of tags

called <must_have>. This pair of tags indicates that the content between them is related

to the requirement of architectural fit. So, if an architectural type that is required by a

system defines a method called “public static void main(String arg)”,

then this me

ir of complex tags

(i.e. compos

the pair of <Method> ponent where

t and output of the

com eant to refer to any particular

programmi

might exchange data. For exam nds to the methods

 defined by an

ithin the body of the

tag <Method> <name>. The data

that can be received by a m

the pair of tags

by ArchInt using the pair of tags <string>. A method may have more than one

parameter th ortant to

reflect the sequence of the data input to a m

thod should be described between the <must_have> tags pair.

ArchInt captures part of the requirements of architectural fit by the pa

ed of sub-tags) called <Method>. The fundamental idea that is captured by

 tags is related to identifying the address within a com

data is exchanged, and also the type and sequence of data inpu

ponent in that address. The name of this tag is not m

ng language but might be used to indicate a block or part of a source code that

ple, in Java the <Method> tag correspo

defined in a Java class, while in Eiffel the tag corresponds to the features

Eiffel class, and in FORTRAN the tag corresponds to sub-routines. W

 the name of a method is captured using the pair of tags

ethod is captured as parameters and represented in ArchInt by

<param>. The data type of the input parameters of a method is captured

at would be represented by a sequence of <string> tags that is imp

ethod. The data type of the output of a method

103

is captured by ArchInt using the tag <returnType>. If there is more than one output, the

sequence of <returnType> tags written in an ArchInt document reflects the sequence

of data output from a method. An exception that might be raised by a method is

represented in ArchInt using the tag <exception>.

Software components might include some descriptive files that might satisfy special

requirements of a system in addition to the source code of the component. As a result,

ArchInt identifies a pair of complex tags called <File> to capture the additional files that

might be defined by an architectural type. This tag will be part of the characteristics that

ument.

Within the body of the g the pair of tags

<name>

architectural type. Every file m at (e.g. XML, Doc,

TXT). The t

pair of tags called those available

in a repository system

an extract of the two

complex tags and .

should be defined between the <must_have> pair of tags in an ArchInt doc

<File> tag the name of a file is captured usin

 to identify a file from any other files that might also be defined by an

ust have a type that represents its form

ype of a file defined by an architectural type is captured by ArchInt using a

<type>. This tag identifies what tool can be used from

 to check whether a file is well-formed or not. Figure 5.3 illustrates

 the Eclipse plug-in architectural type to exemplify the usage of

<Method> <File>

Figure 5.3: An Extract of the Eclipse Plug-in Architectural Type
A system might require its composing components to hold temporary data during their

lifetime in the system or to define values for some specific attributes of components

104

required by the system. ArchInt captures this requirement of a system using a pair of

lled <Field>. In the source code of components, fields and m

variables are the concern of this tag. Every field must have a name

 other fields in a component, hence a pair of sub-tags called <name>

 of a field that a system is expecting its component to

certain type, hence a pair of sub-tags called

defined by ArchInt. Figure 5.4 illustrates an extract of the ArchInt docum

ral type (to be described later).

complex tags ca ember

 that distinguishes it

from that represent

the exact name have. The data held

by a field must be of a <dataType> is

ent that describes

the “Eclipse XML” architectu

Figure 5.4: An Extract of the Eclipse XML Architectural Type
ArchInt can reduce the effort of writing new ArchInt document of an architectural type

that, part of its defined characteristics, is captured by another ArchInt document in a

repository. So, old ArchInt documents can be extended instead of replicating the same

characteristics in a new ArchInt do

ArchInt docum ers to the

Ar

cument. ArchInt captures the feature of extending old

ents through a pair of tags called <uses_ArchInt>. This tag ref

chInt documents that are going to be extended by their names, hence a pair of tags called

<name> is introduced. Figure 5.5 illustrates an extract from the ArchInt document of the

Applet architectural type to express the usage of the <uses_ArchInt> tag.

105

Figure 5.5: An Extract of the Applet Architectural Type
The defined tags in this section are the ones that the prototype of the ArchInt

spe

presents some of the requirements identified in Chapter 4, in fact the tags capture

som

n, a re-user might need to replace components from their

order to fix a bug, satisfy new non-functional

requirem

cification language has defined at the moment. Although this is a small set of tags and

only re

e of the essential and key features of architectural interface. Therefore, this set of tags

formed the basis for a set of studies designed to evaluate the feasibility of architectural

interface to support re-use. The studies have been confined to Java examples since this was

sufficient to demonstrate the soundness of the basic idea to start with rather that attempting

to generate completely a general solution at this stage of the development of the language.

The next section presents the experimental work conducted in this research.

5.2 Experimental Work for Evaluating Architectural Interface

A number of studies were conducted as a test-bed [116] to provide evidence about the

applicability of architectural interface for helping re-users firstly to identify re-usable

components, and secondly to modify an existing system. A re-user is interested to find

components in a repository, so identifying re-usable components is important in order to

find them for re-use. In additio

system with others from a repository in

ent (e.g. need faster response time), or adding more sophisticated functionality to

their system. As a result, investigating how architectural interface can help to modify a

system need also to be examined. These two types of studies (i.e. identifying and

modifying) were selected as they seem to be the major concern of component re-users. So,

the hypothesis of the overall experimental work was that:

106

Ar itectural interface rech presented in ArchInt can provide significant support to

im ve

However, a first study before this eval t was

sufficient and general enough to capture the characteristics of different architectural types.

This was important to ensure that the other following studies are built on solid basis. The

architectural type descriptions generated in this first study were then used in subsequent

studies for a tural interface.

5.2.1 Study 1: Describing Different Architectural Types

types.

Based on the autho ural types, three

architectural types nam dy to

es or whether

it would need to be m was selected as

 type to start the

evaluation of

framework for com

extensible so

system . The selection of

 these three

is early stage

of the developm

m

s

that conform of their

specifications, the s der to fit into an

Applet system was found to be:

pro components re-use.

uation was to examine whether ArchIn

 ev luating the notion of architec

The aim of this study was to examine whether the current features of prototype ArchInt

language were sufficient to construct different architectural types. Therefore, the

hypothesis of this study was that:

ArchInt is appropriate for defining the architectural characteristics of architectural

r’s initial examination of a number of architect

ely Applet, Eclipse, and MIDlet were been used in the stu

investigate whether ArchInt would be sufficient to define these particular cas

odified and improved. The Applet architectural type

it is widely used in web page applications and as it is a simple architectural

 ArchInt with. Eclipse architectural type was selected as it defines a rigorous

ponents integration and extensibility and it is used hardly in building

ftware systems. Moreover, Eclipse is one practical example of software

s that have their structures generated dynamically at run-time

MIDlet architectural type was made to examine the soundness of the notion proposed by

ArchInt on a different platform other than desktop applications. It was felt that

architectural types should be adequate to perform the experimental work at th

ent of ArchInt.

1) Applet Architectural Type:

The Applet architectural type enables component to run in the context of another syste

(e.g. web browser). From studying several components in open-source repository system

 to the Applet architectural type and also looking into some

et of characteristics that components must satisfy in or

107

• must be a Java class

• must have the following methods:

o public final void setStub(AppletStub stub)

o
The above architectural charact d to capture using ArchInt.

The ArchInt represen in Figure 5.6 and uses

the Java Class architectu

o public void init()

o public void start()

o public void stop()

o public void destroy()

public AppletContext getAppletContext()

eristics were straightforwar

tation of the Applet architectural type is given

ral type introduced earlier in this chapter.

Figure 5.6: Applet Architectural Type Description

108

This exam ent that captures

the characteristics defined by th ust match in

order to fit into an Applet system

2) Eclipse Pl

Eclipse is an llows new

tools to be plugged into the m

illustrates a coarse-grain -ins) in an Eclipse

system as it appeared in its

ple demonstrated that ArchInt can be used to write a docum

e Applet architectural type that components m

.

ug-in Architectural Type

 extensible IDE (Integrated Development Environment) that a

ain Eclipse system to provide new functionality. Figure 5.7

ed view of the structure of components (i.e. plug

 original reference [32].

Figure 5.7: Eclipse Architecture [32]
nt cannot fit into an Eclipse system unless it maA compone tches the characteristics

defined by the Eclip any open-source

Ec

during its lifetime within a system (e.g. running, active, passive).

The Eclipse plug-in architectural type is more complicated than the Applet architectural

type in that its architectural characteristics are not purely based on source code but also on

associated additional descriptive files (e.g. plugin.xml). The plugin.xml file must, in

turn, conform to some characteristics that are required by Eclipse. For example,

plugin.xml must be a well-formed XML file, and its contents must capture the details

that Eclipse is expecting to find (e.g. id, name, extension-points). The ArchInt

representation of the Eclipse architectural type is given in Figure 5.8.

se architectural type. Manual examination of m

lipse plug-ins and exploration of their specification identified the basic requirements that

characterize the Eclipse plug-in architectural type as:

• There must be a file called plugin.xml associated with the component. This

file introduces a new plug-in to the Eclipse system and captures its details.

• A plug-in must have a number of methods that control the status of the plug-in

109

Figure 5.8: Eclipse Plug-in Architectural Type
t representation of the Eclipse plug-in architecturalThe ArchIn type uses the Java class

architectural type intro nd a File that must

be

ype is given in Figure

5.9.

duced earlier, and defines a number of methods a

 available in a component in order to fit into an Eclipse system. In addition, the ArchInt

representation of the Eclipse plug-in uses the “Eclipse XML” architectural type that

defines the characteristics that the Eclipse system is expecting to find in the plugin.xml

file. The ArchInt representation of the “Eclipse XML” architectural t

110

Figure 5.9: Eclipse XML Architectural Type
ber

e values for, and these values are required

by the Eclipse system. This example demonstrated that ArchInt is capable of describing the

arc

As shown in the above figure, the “Eclipse XML” Architectural type defines a num

of attributes that an Eclipse plug-in must provid

hitectural characteristics of the Eclipse plug-in architectural type.

3) MIDlet Architectural Type:

MIDlet [84] is an architectural type targeting resource-constrained devices such as

mobile phones and PDAs. Generally speaking, MIDlet represents the architectural types of

games and applications that run on handheld devices. From a manual examination of

several MIDlet components and the specification of MIDlet, the following key

characteristics were identified:

• Must be a Java class.

• Must implement a number of methods that control the life cycle of the component.

• Must have a file that is of type JAD that describes the attributes of the component

(e.g. version, vendor, name).

111

The ArchInt description of the MIDlet architectural type is represented using ArchInt in

a similar manner to the previous two architectural types. The ArchInt representation of the

MIDlet architectural

does not demonstrate extra features cked in the previous

two exampl

Overall, this study has dem

represent the characteri ypes; hence the hypothesis of this

architectural types ponents

accurately by exam s (i.e. components) obtained

from

5.2.2

Chapter 4 identif s is to facilitate

 of this study was to

investigate that claim ponents from

existing open-source r ntify whether they

ma

is among the prominent open-source repository systems nowadays. Sourceforge.net

sup

 below [2]. The random

nu

 type is provided in Appendix A due to its lengthy size and also as it

 to those that have already been pi

es of architectural types.

onstrated that the current prototype of ArchInt can be used to

stics of different architectural t

study was contented. The next study is concerned with evaluating whether these

 represented using ArchInt can help to identify re-usable com

ining them against some concrete sample

 open-source repository systems.

Study 2: Identifying Re-usable Software Components

ied that the potential benefit of using architectural type

more structured searching of re-usable components. The aim

. This study concerned obtaining a number of com

epositories and checking the components to ide

tched the architectural types constructed in the previous study. Therefore, the

hypothesis of this study was that:

ArchInt helps to identify re-usable software components from open-source software

repositories based on their architectural types.

Sourceforge.net is selected as an open-source repository for conducting this study as it

ports searching queries written between quotations and also queries without quotations.

A query that is written between quotations seems to return more focused results (i.e. exact

match) than the one written without quotations. This study considers searching for

software components using queries surrounded by quotations as the study was aimed at

evaluating whether ArchInt can work to identify components based on the provided

architectural type descriptions, hence exact matching results need to be considered at this

stage of the development of ArchInt. The selection of components was done randomly

using an applet that implement a random number generator using the formula “1 +

(int)(N * Math.random())” as shown in figure 5.10

mber generator takes two integer values as inputs, the maximum number in a list and the

112

count of randomly generated numbers, and produce output based on the two provided

inputs.

Figure 5.10: Random Number Generator [2]
Results that are listed in Sourceforge.net without their corresponding source code were

discarded. Moreover, components returned by Sourceforge.net that are written in different

programming languages than Java were not considered at this stage. The developm

status of components within the repository was not considered as a parameter in this study

but it was noted for future reference in case there will be further investigation about the

quality of re-using source code that is still under development.

The terms used to search for software components are those that were observed

common among various repository systems or those that precisely state the name of an

architectural type. However, there might be other expressions of use that were beyond the

ent

knowledge of the author; henc t claimed to be extensive.

Sa

oach as it represents an

average percentage of 10% of the number of results listed by Sourceforge.net in response

to the searching queries for each architectural type in this study.

A tool, named ArchIntParse, was developed for performing the automated matching of

the source code of a component to an architectural type. The main functionality of the tool

e the selected terms were no

mples of 30 components were selected randomly for each architectural type from within

the sample frame (i.e. Applet, Eclipse, and MIDlet). This number was felt sufficient to

build the required confidence about the soundness of the appr

113

is to read through an ArchInt document and then parse the source code of a provided

ponent to identify the characteristics that match those defined by one of the three

architectural types generated in the first study.

The approach followed by the ArchIntParse tool for matching an architectural type

document to a provided component is based on utilizing the compiler associated with the

com

programming language id ge> tag to check the

syn

ain method calls representing invocations of all

of the m

f an Eclipse

plug-in to the Eclipse plug-in architectural type.

entified by the <programming_langua

tax of a component and also identify whether a component is missing any of its

required sub-components (i.e. internal dependencies). The tool works by automatically

generating a “TestSuite” Java class from an architectural type document. The TestSuite

class contains code to exercise all of the features specified in the architectural type

document. For example, the class will cont

ethods identified in the <must_have> tag. Figure 5.11 illustrates an example of

the automatically generated TestSuite java class to match the source code o

Figure 5.11: TestSuite Class
The tool then compiles and links the generated Java class with the source code of the

provided component. Figure 5.12 illustrates an extract of the output generated from

executing the ArchIntParse tool on a number of Eclipse plug-ins.

114

Figure 5.12: ArchIntParse Tool Output

 do not include the phrase “Eclipse plugin” in their description was

ma

 If no compile-time or link-time errors are raised, this indicates that the provided source

code matches the architectural type that was used to generate the TestSuite Java class, and

the tool returns a positive result. If compile or link errors are raised, this reflects a

mismatch and the tool returns a false match result. The design and implementation of the

ArchIntParse tool is given in Appendix B.

This study was conducted in several iterations. Each iteration evaluated software

components against one of the architectural types generated in the first study.

First iteration

This iteration checked the source code of components obtained from Sourceforge.net

against the definition of the Eclipse plug-in architectural type. Sourceforge.net was

searched for Eclipse plug-in components, using the normal text matching search, for the

phrase “Eclipse plugin” provided by the Sourceforge.net repository. The searching phrase

returned 279 components as at 12/2008 that only contain the phrase “Eclipse plugin”. The

selection of components was made using the random number generator to select randomly

a total of 30 samples out of the 279 results to be checked by the ArchIntParse tool against

the Eclipse plug-in architectural type document. In addition, a random selection of another

30 components that

de.

Results

Considering first the results from the 30 Eclipse components that Sourceforge.net

provided as Eclipse plug-ins, the tool identified 22 components out of the 30 as

conforming to the Eclipse plug-in architectural type, while eight components were

identified as not conforming. To check the validity of the generated results, all 30 Eclipse

components were tried as plug-ins in an Eclipse system. The 22 components that were

identified by the ArchIntParse tool as conforming to the Eclipse plug-in architectural type

were all recognized and run successfully in the Eclipse system. The remaining eight

components did not work in the Eclipse system.

115

The other 30 components that did not contain the word “Eclipse plug-in” in their

description in Sourceforge.net were checked by the ArchIntParse tool and also tried in the

e ArchIntParse tool indicated an unsuccessful match against the Eclipse

plu

 as they had the

.xml file, but resulted in run-time errors. The remaining three components those

we

, and captured that

in

mponents that

 the characteristics of the Eclipse architectural type, but the repository has

co

Eclipse system. Th

g-in architectural type, and this was confirmed by the components not executing

successfully within Eclipse.

Discussion

Visual inspection of the source code confirmed that all eight of these non-conforming

components did not implement the methods defined by the Eclipse plug-in architectural

type; in addition, three components of them were also missing the plugin.xml file. as a

result, all the eight components did not work in the Eclipse system. However, five

components out of the eight were recognized by the Eclipse system

plugin

re missing the required plugin.xml file were not recognized at all by the Eclipse

system as expected.

The results obtained demonstrated that ArchInt successfully identified the salient

characteristics of requirements of architectural fit into an Eclipse system

an architectural type description using the ArchInt prototype language. In addition, the

experiment showed that the defined characteristics of the Eclipse plug-in architectural type

represented by ArchInt have been successfully matched automatically by a tool. The study

also demonstrated the usefulness of the ArchIntParse tool. The ArchIntParse tool can be

utilized to identify the exact reason for the non-matching components and provide the

information to a re-user, the provided information could be helpful if the re-user wanted to

fix the component.

This iteration also revealed a weakness in Sourceforge.net as it listed co

do not match

nsidered them mistakenly as matching ones. A possible justification of listing these

erroneous results by Sourceforge.net is that the provider of these components seemed to

assume that re-users of the components should be responsible for implementing the

required architectural characteristics. The providers only focus on producing components

that provide certain behaviour without completely concerning about their architectural

aspects. As a result, the providers of these components considered them as Eclipse plug-

ins, even though they do not practically match the full characteristics of the Eclipse

architectural type. This problem could have been avoided if Sourceforge.net used checking

116

mechanism to validate components’ characteristics against the claimed architectural type

of components by their providers.

Second iteration

This iteration involved the Applet architectural type. Text matching in SourceForge.net

was used again, but this time with the string “Java Applet”. A list of 120 results that

contained the phrase “Java Applet” was returned by Sourceforge.net as in 12/2008. A

nu

components were selected from

hat did not contain the words “Java Applet” in their description to be

ex

ts ran

lly, including the 23 components that the ArchIntParse tool had identified as

be

compile-and-link process in the ArchIntParse tool failed. This was the real reason that

mber of 30 of these components were selected randomly using the random number

generator to be checked by the ArchIntParse tool against the ArchInt document for the

Applet architectural type. In addition, 30 other

Sourceforge.net t

amined by the ArchIntParse tool against the Applet architectural type.

Results

The ArchIntParse tool identified that 23 of the 30 components matched the Applet

architectural type document. The remaining seven components were flagged as not

matching. The other 30 components that Sourceforge.net did not consider them as Applets

also did not match the Applet architectural type.

To check the validity of the generated results, all the 30 components that identified by

Sourceforge.net as Applets were tried on an Applet system using a normal

appletviewer utility. It was found that 28 components out of the 30 componen

successfu

ing instances of the Applet architectural type. Two components did not run successfully,

all of which were correctly identified by the tool as not being instances of that architecture

type. The five components that apparently were successfully executed as Applets and were

not correctly identified as matching by the tool are discussed further below.

Discussion

Inspecting by hand the source code of the five components that returned negative result

by the ArchIntParse tool showed that all the components matched the characteristics

defined by the Applet architectural type. After examining the possible reasons for the

conflict in results obtained by the ArchIntParse tool and by trying the components on the

Applet system, the reason for the conflict was identified. The five components for which

negative results were returned by the ArchIntParse tool were delivered by the

Sourceforge.net repository missing some their internal dependencies. As a result, the

117

caused the ArchIntParse to return negative results and not because the two components

were not conforming to the Applet architectural type. So, this result is considered a false

ult as the failure in the compilation was not due to missing any of the

ch

MI

ArchInt document of the MIDlet architectural type.

negative res

aracteristics of the Applet architectural type but it was related to missing internal

dependencies that allow the components to work in an Applet system. Despite the false

negative results, this results obtained in this iteration are promising.

Overall, this iteration demonstrated that the Applet architectural type represented by

ArchInt has worked successfully to check and identify automatically the conformance of

software components to the Applet architectural type.

Third iteration

This iteration concerned evaluating the ArchInt description generated in the first study

for the MIDlet architectural type to identify matching components to that architectural

type. As before, text matching of words was used against component descriptions in

Sourceforge.net, using the string “J2ME” as that is the common term used to search for

Dlet components. A number of 300 components were listed as a result of the search. A

random selection of 30 components that contained the word “J2ME” in their description in

Sourceforge.net was made. Moreover, another 30 components that did not include the

word “J2ME” in their description were selected. All selected components were checked by

the ArchIntParse tool against the

Results

The ArchIntParse tool identified the 28 components that contained the word “J2ME” in

their descriptions as conforming to the MIDlet architectural type. Two components out of

the 30 did not succeed in the ArchIntParse tool check. The other 30 components that did

not include the word “J2ME” in their descriptions were identified by the tool as not

conforming to the MIDlet architectural type.

To check the validity of the generated results, all the 30 components that contain the

word “J2ME” in their description in Sourceforge.net were tried in a MIDlet system (e.g.

J2ME application server). Among the 30 components, 28 components (including the 28

components for which positive matches were obtained by the ArchIntParse tool) ran

successfully in the MIDlet system indicating that the architectural type description

accurately reflected the MIDlet architectural fit requirements. The other 30 components

that obtained negative matching results from the ArchIntParse tool did not execute in the

118

MIDlet system to further reinforce the utility of the approach. The two components that did

not pass the check by the ArchIntParse tool are discussed further below.

Discu

A visu pection wo ts ed the y the

ArchIntParse tool was done. It was d that components were not MIDlet

components as they were missing the characteristics of the MIDlet architectural type. The

two nts that were nd as not orming to the MIDlet architectural type were

mistakenly considered by Sourceforge.net as MIDlet components while they are not

acco he characteri n of the M let architectural type defined by ArchInt. The

results obtained in this iteration indicate that the accuracy of matching obtained from using

ArchInt was advantageous over the results obtained by using the free-text search

in Sourceforge.net. This uncovered an additional problem that can be encountered by re-

users ing for r ponents in Sourceforge

useful to certify that a component is correctly categorized as described.

arized in Table 5.1.

ArchIntParse tool in the

stu

ssion

al ins of the t componen

foun

 that fail

both

 to pass check b

compone fou conf

rding to t zatio ID

ing facility

 when search e-usable com .net, hence ArchInt can be

 Overall, this iteration demonstrated that the representation of the MIDlet architectural

type in ArchInt has worked successfully to check and identify automatically the

conformance of software components to the MIDlet architectural type. Moreover, the

iteration revealed that ArchInt could be utilized to certify the correctness of components in

terms of their architectural type.

Summary of the Second Study

The results of the study conducted in the three iterations are summ

The table shows the total number of components tested by the

dy, the percentage of components that returned true positive results, the percentage of

components that returned false positive results, the percentage of components that returned

true negative results, and the percentage of components that returned false negative results.

The true positive column indicates that components were identified by the ArchIntParse

tool as conforming to an architectural type, whereas the false positive column indicates that

components that conformed to one architectural type incorrectly matched a different

architectural type (e.g. a component that conforms to Eclipse plug-in architectural type

passes the test against the ArchInt of the EJB architectural type). The true negative column

indicates the percentage of components that have failed in the compilation process with the

generated “TestSuite” Java class due to missing some characteristics required by an

architectural type, while false negative column denotes the percentage of components that

119

failed in the compilation process but due to reasons other than missing some of

characteristics of an architectural type (e.g. missing internal dependencies).

Architectural

Type

Number of

samples

True False True False

Positive

(%)

Positive

(%)

Negative

(%)

Negative

(%)

Eclipse 30 73 0 27 0

Applet 30 77 0 6 17

MIDlet 30 93 0 7 0

Non-Eclipse 30 0 0 100 0

Non-Applet 30 0 0 100 0

Non-MIDlet 30 0 0 100 0

Table 5.1: Summary of the Results of the Second Study
An interesting observation from the above table of results is that the ArchIntParse tool

never returned any false positive results. This observation indicates that the representation

of the different architectural types in ArchInt was useful and reflected precisely the

characteristics of different architectural types without mixing one architectural type’s

characteristics with another. This study has demonstrated that ArchInt can be used to

identify software components, hence satisfied to an extent the hypothesis of the study.

5.2.3 Study 3: Modifying an Existing Software System

Modifying a software system is usually related to modifying its functionality and can be

accomplished either by replacing components from the system with others that provide the

ionality or by extending the system with new components. Also, system

mo

system developer needs to replace one component with another one, then what the

necessary funct

dification can be considered in a case where non-modifiable components are needed to

be re-used in a system. So, the architectural type of a system can be adjusted to match the

characteristics of the architectural type that the non-modifiable components are matching.

However, modifying the characteristics defined by a system to fit components is not part of

this study as the main focus concerns modifying a system by replacing or adding

components to it. Modifying a component-based software system requires the presence of

a precise characterisation of the interfaces of the composing components of the system in

order to facilitate unplugging components from a system and plug new ones into it. If a

120

developer ought to understand is the architectural interface of the component that needs to

be replaced. The aim of this study was to evaluate ArchInt for providing assistance to the

tas of

components that could be obtained from a repository system. The hypothesis of this study

wa hat

al type (i.e. an architectural type that defines precisely a required set

of

 [131]) design pattern system. The MVC

system

ral characteristics are precisely defined (e.g. Eclipse) and another one where the

architectural characteristics are ambiguous (e.g. MVC).

First itera

 and tested to examine that it fit into the Eclipse system. Assuming

that the incorporated plug-in provides functionality that needs to be replaced with other

component; the study proceeded by trying to extract the plug-in that has been incorporated

earlier and replaces it with another plug-in in order to accomplish the objective of this

study. The ArchIntParse tool was selected to be the new component that had to replace the

k modifying an existing software system by replacing some of its composing

s t :

ArchInt can expose component’s interfaces and significantly facilitate system

modification.

This study was undertaken in two iterations. The first iteration was concerned with

replacing a component from a system that requires its composing components to adhere to

a rigorous architectur

characteristics). The system used in the first iteration was the Eclipse system, which was

defined and examined in the previous studies. The second iteration concerned replacing a

component from a system that inaccurately specifies what architectural characteristics

components must have in order to fit into it. The example system used in the second

iteration was the Model-View-Controller (MVC

 lacks a precise characterization of what defines its architectural characteristics at

the source-code level. As a result, one may find two components that are considered by

their developers as conforming to the characteristics defined for a Model within an MVC

system but the external interface of the two components matches different characteristics

than each other. The reason for selecting these two types of systems was to examine the

usefulness of ArchInt to model the interfaces of software components in two different

extremes with respect to the preciseness of the architectural characteristics. One where

architectu

tion

In this study the Eclipse wizard was used to build automatically a simple plug-in

without worrying about the details of the required architectural characteristics as the

wizard can generate them automatically. After generating the plug-in, it was incorporated

into the Eclipse system

121

extracted E clipse

• itectural

•

So, a f tool to

“Eclipse

also m

in architectural type.

plug-in architectural type that the ArchIntParse tool was required to match in order to fit

into the Eclipse system. Although the necessary architectural characteristics might be

provided automatically by the wizard of the Eclipse IDE, ArchInt could be generalized to

identify and check the required architectural characteristics of other architectural types as

demonstrated in the previous studies. This study also demonstrated that ArchInt was useful

to understand what is required to perform the modification from one architectural type to

another.

Second iteration

Figure 5.13 illustrates the architecture of one implementation of an MVC system as

found in Java2s repository system [76]. This study involved replacing a component that

matched the observed characteristics of the Model architectural type as identified in this

system (i.e. “ContactModel”) with another modelling component obtained from a

repository system.

clipse plug-in. Since the tool did not satisfy the requirements of the E

plug-in architectural type, it had to be modified to provide the required characteristics:

Must have the necessary methods required by the Eclipse plug-in arch

type; and

Must have a necessary plugin.xml descriptor file.

ile called “plugin.xml” was generated by hand for the ArchIntParse

satisfy one of the requirements of the Eclipse plug-in architectural type as described in the

 XML” architectural type defined earlier. The ArchIntParse tool’s source code was

odified to implement the necessary life cycle methods as defined in the Eclipse plug-

The ArchIntParse tool was compiled and linked successfully and then incorporated into

the Eclipse system to run it. The component was recognized by the Eclipse system and ran

successfully. The generated ArchIntParse Eclipse plug-in was also checked using the

ArchIntParse tool itself and it was found matching to the Eclipse plug-in architectural type.

Discussion

ArchInt was useful in this study to understand the salient characteristics of the Eclipse

122

r to identify the

architectural characteris odel architectural

type acco . The observed

characteristics of the Model arch rated in Figure 5.14.

The ArchIntParse ent for the Model

architectural type agains the “ContactModel” Java

class was verified as the only one that ent.

Figure 5.13: Contact MVC System
The Java source code of “ContactModel” is inspected by hand in orde

tics that would constitute a description for the M

rding to the implementation of the “ContactModel” in this system

itectural type of this system are illust

 tool was used to check the generated ArchInt docum

t all the Java classes in this system and

matched the generated ArchInt docum

123

Figure 5.14: Model ArchInt
An attempt was made to try to find a component from open-source repository to fit into

this system. Although, finding component was not intended to be part of the evaluation in

this study, it was done to exam

architectural type in this example are common to all Model architectural types. It was not

possible to search open-source repository systems using the characteristics of the Model

architectural type identified above as open-source reposit

ine whether the identified characteristics of the Model

ory systems do not currently

support searching for components based on the characteristics defined by an ArchInt

do

tactModel” component can be replaced.

cument. The only possible way to search was by searching the open-source repositories

using the text-matching approach of instances of the Model architectural type available in

the repository (“e.g. “servlet”, “JavaBeans”). However, the searches retrieved results that

were not re-usable as they were not conforming to the architectural type of the above MVC

system in this study.

With respect to modifying the above system, the defined architectural characteristics in

Figure 5.14 was used to understand how the “Con

124

So

t the identified architectural

t fixed for every Model architectural type as it is observed that

different characteristics for the Model architectural type were available. For example, one

imple

one that must have a

me

el architecture of a

system ent that is responsible for storing and manipulating data in a system

can be considered abstractly as an in

View, and Controller architectural types resulted.

, the component was replaced successfully from the system with another Java class that

was generated manually and implemented conforming to the Model architectural type of

this system. The new added component fit in the system and ran as expected.

Discussion

A problem encountered when generating the ArchInt document for the Model

architectural type of the above MVC system was tha

charac eristics are not

mentation of the Model architectural type might consider implementing data

exchange between the instance (i.e. component that conforms to an architectural type) of

the Model and the instances of the other architectural types (e.g. Controller and View)

using a push-model [42]. The push-model concerns transferring data out of an instance of

the Model to other components whenever changes in the state of the instance of the Model

occurs, hence requiring the View component to register with the Model component.

According to this implementation, a Model component must have a method called

“public void addContactView(ContactView)” as defined in the Model

architectural type in this study. Another implementation of the Model architectural type,

however, might be to exchange data by applying a pull-model [42]. An instance of the

Controller component would then need to keep checking changes in the state of the Model

component and pull data from the Model component as appropriate, thus requiring the

View component to register with the Controller. According to this implementation, the

component that conforms to the Controller architectural type is the

thod “public void addContactView(ContactView)” and not the Model as

described earlier. This variation in the implementation of the various components of the

MVC system indicates the lack of a precise definition of what the characteristics of the

Model, View, and Controller architectural types are.

It seems that the variety in describing the characteristics of the Model, and also View

and Controller, of an MVC system is caused as the three architectural types are in fact

metaphors normally used at the design stage to identify the high-lev

. The compon

stance of a Model. The architectural types of an MVC

system are defined abstractly but their definitive characteristics are left for programmers to

determine at implementation time, and hence variety in the characteristics of the Model,

125

An advantage of ArchInt is observed in this iteration indicating that the identified

characteristics of the Model architectural type depicted in Figure 5.14 can be used to

understand what is required to modify a component to fit in the place of the replaced

instance of the Model architectural type in that MVC system. If ArchInt was not provided,

then a developer would need to identify the interfaces of the components of the system at

hand manually, which can be difficult and time consuming.

5.2 4 Observation

he two studies (i.e. identifying components and modifying system) have shown

significant contribution to the notion of architectural interface to support component re-

use. The study that concerned identifying component from open-source repository system

uncovered some interesting aspects about the applicability of the notion of architectural

interface to identify and certify component conformance to an architectural type.

Components in Sourceforge.net are not checked with respect to their architectural type,

hence the notion of architectural interface can be utilized to improve the functionality of

that repository. An additional observation on Sourceforge.net is that not all of the

components listed in that repository are really open-sourced. Examining various

components from Sourceforge.net revealed that some of them are available without their

corresponding source code, and some other components are available with only part of

their source code. As a result, it is felt that Sourceforge.net seems to violate the definition

of open-source software with respect to making source code available, and hence should

not be considered as an open-source repository system.

he other study that concerned modifying a system also recorded promising success

indicating that architectural interfaces are useful to accomplish the modification as they

explicitly describe the architectural characteristics of software component. Moreover, the

study revealed a new interesting area where architectural interface could be useful. As a

result of the studies, it seems that the overall hypothesis of the experimental work that

stated “Architectural interface represented in ArchInt can provide significant support to

improve components re-use” has been considerably satisfied.

5.3 Summary

his chapter has introduced a prototype of a specification language, namely ArchInt,

that formalised some aspects of the notion of architectural interface defined in Chapter 4.

The chapter has described the experimental work conducted for evaluating the sufficiency

.

T

T

T

126

of ArchInt to represent different architectural types. In addition, the chapter has examined

the generated descriptions of the three architectural types represented in ArchInt to support

com

ponents re-users. The chapter also demonstrated the applicability of ArchInt to assist

re-users in modifying an existing software system. The results of the studies described in

this chapter are going to be used in the next chapter to form an overall assessment of the

architectural interface approach established in this research.

127

Chapter 6 - Evaluating the Achievements of the Research

The previous chapter presented the experimental work conducted for evaluating

arc

y the design of an ideal repository system.

T

a

c

5. T egorizing

a

The

architec

follow

evaluat

compon .

This eva

interface is

characteristics of softwa

3. Then, based on the observation obtained from will

be evalua

ository

system. Finally, the evaluation of the first objective will be drawn from evaluating the

suitability of ArchInt to satisfy the overall design of the ideal repository system.

hitectural interfaces from the perspective of the support that can be provided to facilitate

component re-use. A prototype of a specification language called ArchInt was developed

to formalize some of the concepts of architectural interfaces for the studies.

From the experience gained from the work described in the previous chapter and from

this research overall, this chapter evaluates outcomes of this research based on the

objectives identified in Chapter 1:

1. To identif

2. To investigate the possibility of characterizing components at the source-code level.

3. To uncover the architectural characteristics and dimensions that correspond to fitting

components architecturally into a system, in order to address the use of these

characteristics within a repository.

4. o propose an approach, namely ArchInt, that formalizes the architectural interface

t a low level of abstraction that reflects the precise characteristics of software

omponents.

o investigate the applicability of ArchInt in automating the process of cat

nd modifying software components.

building blocks of the ideal repository system are centred on the implementation of

tural interface (i.e. ArchInt). Therefore, the evaluation in this chapter will not

the sequence of the objectives specified above. The first aspect that is going to be

ed is whether ArchInt can precisely identify the characteristics of software

ents as that was the major concern of the ideal repository system to support re-use

luation leads into evaluating Objective 4. After that, the notion of architectural

 going to be evaluated to verify that it has identified the architectural

re components. This evaluation will lead into evaluating Objective

 the previous evaluations, Objective 2

ted. Objective 5 will be evaluated based on the results of studying with ArchInt to

satisfy some of the key requirements identified by the use-cases of the ideal rep

128

6.1 Evaluate ArchInt for Representing Precisely the Characteristics of

Source-Code Components

The studies

co

• Flexible: the tags defined by ArchInt are general enough to represent the

ent architectural types. The same set of tags were been used to

define the architectur pplet, Eclipse plug-in, and MIDlet

architectural types witho odify the available ones.

• Precise: ArchInt can a aracteristics that software

components mu . This precision in the defined

characteristics was exam ber of components were

matched against ArchInt docum entify their architectural types.

 the studies discussed in Chapter 5 was broadly in line with expectations

indicating that ArchInt did captur e-code components.

Generally, the source code is the precise representation of a software system, and it

captures implicitly the design decisions imposed by developers on the system that is going

to be built. Considering re-use at the source code level requires the ability to represent

source-code components in a meaningful way that can be utilized by re-users in order to

allow them to find re-usable components. The representation of source-code is in fact the

meta-data that describes aspects of source-code components. The organisation of the

components in a repository system can be based on the meta-data that defines their

characteristics.

It was discussed in Chapter 5 that ArchInt was a prototype of a specification language

for capturing some of the key characteristics that concern fitting components into a re-

user’s system, and hence represents the meta-data for source-code components.

nducted in this research demonstrated that ArchInt satisfied the following features:

• Extensible: one ArchInt document can re-use another ArchInt document to define

new characteristics instead of replicating the definitions of characteristics. This

feature was examined in the first study where the architectural type of a Java class

was re-used to define the Eclipse, Applet, and MIDlet architectural types.

characteristics of different architectural types. This generality was obvious in the

first study that used ArchInt to represent the architectural characteristics of a

number of differ

al characteristics of the A

ut the need to add new tags or m

ccurately define the exact ch

st have in order to fit into a system

ined in Study 2 when a num

ents to id

The result of

e key characteristics of sourc

129

6.2 Uncovering Architectural Characteristics with the Notion of

Architectural Interface

In the early stages of a software development process (e.g. the design stage)

architectural characteristics are normally identified abstractly. Many architectural

description languages (ADLs [134]) capture some of the key architectural characteristics of

co

atic identification of a component’s characteristics is

e characteristics of components

might be extrem

ding the

charac

mponents at a very high level of abstraction. For example, in ACME [59], the notion of

port is developed to indicate an entry or exit point of data and control into a component

and to establish interaction with other components in a system. However, at the source-

code level, one may not be able to tell just by inspecting the source code which part of the

source code is related to defining a port of a component and which part is related to

providing functionality or implementing security requirements. Like many aspects of a

system’s design, they are not carried through directly into something recognisable in the

source code or even traceable from the source code back to parts of the design.

Identifying functional and architectural characteristics in the source code is necessary to

re-use components. Moreover, autom

desirable to further enhance re-use. However, identifying th

ely hard in the case of using a tool to identify them automatically, unless

there is something in the source code of a component that can be used by a tool to identify

the characteristics required.

A system model, illustrated in Figure 6.1, was generated to help understan

teristics of software components. From that model, the notion of architectural

interface has originated.

Figure 6.1: System Model
This system model was meant to be simple, so it covers a wide range of software

systems. The model identified two basic requirements that software components should

satisfy in order to be re-used successfully in a system. One requirement concerned how

External

Internal

External External

Internal Internal

130

components can fit into a system, and the other requirement addressed the issue of how

components can work in a system. The model identified that the characteristics required to

fit components into a system should be defined through the external interface of the

components, while the characteristics that components require to work in a system should

be defined in the internal interface of the system.

A number of key architectural characteristics were identified in Chapter 4. These

fferent aspects that can affect fitting software com

tem. A number of the identified arch

characteristics were defining di ponents

architecturally into a sys itectural characteristics were

ex

6.3 Characterizing Source-Code Components

ajor cause of the

dif

ArchInt documents for finding components from open-source repositories examined

amined in Chapter 5 to verify that they were the characteristics that must be considered

to satisfy the requirement of architectural fit. The results of the studies were entirely

positive indicating that the identified characteristics were really addressing aspects of

architectural fit, hence were related to the architectural characteristics of software

components. The outcome of the studies indicated that the notion of architectural interface

developed in this research was useful to identify the architectural characteristics of

software components.

The absence of high-level artefacts (e.g. design documents) is the m

ficulty in understanding software components and of identifying their distinguishing

characteristics that can be used to characterize components for re-use. This is the case in

most of the available source-code components in open-source repository systems.

 Prior work discussed in Chapter 3 based a characterization of source-code components

on some representation of their functionality. Nevertheless, representing the functionality

of source-code components has not gained widespread success due to the difficulty of

defining the semantics at the source-code level. It was identified in Chapter 4 that a re-

usable component is the one that provides the required functionality and also fits into a

system, hence is a “perfect fit” candidate. While characterizing source code based on

functional characteristics is not adequate as discussed in Chapter 4, this research has

examined the possibility of characterizing source-code components based on identifying

their architectural characteristics.

As discussed in Section 6.2, the notion of architectural interface was introduced to

identify the key architectural characteristics of source-code components, and instances of

architectural interfaces were formalized using ArchInt. The study of using the generated

131

whether the identified characteristics were useful to characterize source-code components

and help find them. The results of the study denoted that 81% of the examined source-code

components matched the characteristics defined by the corresponding ArchInt documents.

This percentage is really promising, indicating that the identified characteristics accurately

characterize source code with respect to an architectural type.

6.4 Evaluating the Usefulness of ArchInt to Support the Basic

.

tify

significant characteristics of software components from their source code. However, the

apability

to ensure the conformance of the deposited software components to the characteristics

claim

Functionality of a Repository System

The basic functionality that a repository system must provide in order to facilitate re-use

is the support to find, modify, automatically characterize, and deliver fully working

software components. Matching component characteristics against the meta-data held in a

repository is a prerequisite for finding and automatically characterizing components; hence

matching against meta-data will be discussed first in sub-section 6.4.1. After that, the

automatic identification of component characteristics will be discussed in sub-section

6.4.2. Component modification will be covered in sub-section 6.4.3. Finally, the issue of

delivering fully working components will be discussed in sub-section 6.4.4

6.4.1 Matching Component Characteristics to Meta-data

The notion of matching against meta-data was introduced by Zaremski and Wing [158]

to match the signatures of functions in software libraries. The function signature matcher

approach they developed is similar to the matching performed by the ArchIntParse tool

developed in this research, in the sense that both approaches are trying to iden

difference is in the capability of the meta-data used to perform the matching. ArchInt

establishes an ontology, which relates to component fit, for defining criteria to help in

searching for re-usable components. In contrast, the meta-data used by function signature

matcher assumes a re-user’s knowledge of the exact signature of functions in a library, and

this relates to issue of understanding semantics that is inherently difficult to describe (as

discussed in Chapter 4). Moreover, ArchInt is more general than the meta-data used by

their function signature matcher in the sense that ArchInt can define characteristics other

than signatures of software components (e.g. required fields and files required).

The repository systems reviewed in Chapter 3 lacked the necessary checking c

ed by their providers. For example, in Sourceforge.net, a component’s provider can

132

provide a textual description and also select the most appropriate characteristics for the

component from those built into the repository (e.g. environment, operating system). The

component is then deposited into the repository system and indexed as appropriate without

any verification of whether the deposited components match the characteristics defined by

the component’s provider or not. Any errors in the characteristics recorded, or by any

inaccuracies in the textual description, will then affect re-users whose searches identify

components that were not what was expected.

Experimenting with ArchInt demonstrated how ArchInt can be utilized to check the

characteristics of software components and ensure that components are as advertised,

hence will meet the expectation of re-users. If a component is claimed to be an Applet

component, the corresponding ArchInt definition of the Applet architectural type can be

used to verify that the component really is an Applet as claimed. The results of the studies

were promising with a matching rate of 81% of all of the components that were extracted

from Sourceforge.net to the defined ArchInt documents, and also the matched components

were demonstrated to actually fit into the corresponding systems. So, ArchInt was useful to

do the necessary check of the architectural type of software components.

6.4.2 Automatic Identification of Software Components

A component might be deposited into a repository system without the component’s

provider defining its architectural type. One way to identify the architectural type of the

deposited component is to match it against the architectural type descriptions held in the

 architectural type.

 to identify the architectural type of any deposited components.

 The second iteration of the third study that involved the MVC system, using ArchInt

raised some interesting cases regarding the potential usefulness of ArchInt to standardize

repository. If a match is found, the component is an instance of that

The studies reported in Chapter 5 demonstrated how successful the matching of

architectural types was even with the prototype ArchInt specification language. Every

component obtained from Sourceforge.net was checked against the generated definitions of

architectural types. The components that passed the compilation process were considered

to be instances of the architectural type used to check the components. The results of the

studies were entirely positive as ArchInt documents were processed automatically to do the

necessary check of the architectural type of software components. The results obtained

from the study indicated that ArchInt accurately represented the meta-data necessary to

support automatic identification of software components, and thus could be utilized by a

repository system

133

the

po

atch the

requirements of a system. Another way for modification is to change the source code of the

s going to be re-used. A third way for

mo

 interfaces of software components. Despite the MVC system being a common design

pattern, the (limited) study demonstrated just how little help this common pattern was in

supporting re-use. ArchInt did not work well for this study. The characteristics of the

Model architectural type in that system were used to examine a number of source-code

components obtained from open-source repositories, but no components were found

matching the characteristics of that Model architectural type. The lack of the usefulness of

ArchInt in this study was because the characteristics of the Model component had not been

standardized by those who have generated the notion of Model in an MVC system.

However, there is still the possibility of utilizing ArchInt to affect the re-usability of

components positively in systems that suffer from problems similar to those of the MVC

system. If the architectural types for Model, View and Controller had been defined and

used by developers when developing their MVC systems, re-use might then have been

ssible as it would be possible to search for components (e.g. Model) based on their

standard characteristics. Moreover, if ArchInt was generated for every component in that

MVC system, a re-user could understand what should be done to modify a component in

order for it to fit into that system. An ArchInt document was generated for the Model

architectural type in the study. The generated ArchInt document has helped to understand

the precise characteristics that a component must match in order to fit as a Model into the

MVC system of that study. Although ArchInt was not useful to identify components

automatically in this study, it has been demonstrated that ArchInt could be useful to

standardize the interfaces of software components.

6.4.3 Support for Component Modification

Modifying source code components can be achieved in three ways. One way is by

changing the source code of the component that is going to be re-used to m

system to match the interface of the component that i

dification is to wrap [130] the component with the necessary changes to make it re-

usable in a system without affecting its original interface or changing the interface required

by a system. Any of the three ways of modification could be employed, however, the most

effective way is the third one as the modification will not involve any changes to either the

component or the system, and this is the form of modification considered in the studies of

this research.

134

The study that involved modifying the ArchIntParse tool from the Java application

architectural type to the Eclipse plug-in architectural type demonstrated the significance of

architectural interfaces in helping to understand what is required to modify a component to

al type using ArchInt provides

use

the new interface of the component after wrapping and the

co

 re-user must write the source code that establishes the mapping between the

me ponent.

The notion of arch ith capturing the relevant

characteristics to mponent and the

ents of

architectural fit, it is still im atic

modification of com

6.4.4

A re-usable com ponent may

not work in a re-u of its internal

dependencies (i.e. terfaces identify

ch

fit into a system. In fact, the description of an architectur

ful documentation to help a developer understand the characteristics of software

components. The modification had not affected the functionality of the ArchIntParse tool,

which indicated that architectural interface can be used as a means for separating

architectural characteristics from the other characteristics (e.g. functionality). This

separation could be advantageous to automate the modification of software components

from one architectural type to another. A tool could identify the characteristics required to

fit a component into a system by parsing the ArchInt document that represents the system’s

architectural requirements and generating the necessary modifications automatically.

Although the notion of architectural interface was found useful for component

modification, the studies revealed that it does not currently specify the source code

necessary to map between

mponent’s interface before wrapping. For example, if a component originally matched

the MIDlet architectural type but a re-user has wrapped the component to fit into an

Eclipse system, then a mapping source code is required after the component has been

wrapped. A

thod required by the Eclipse system and the method already defined in the com

itectural interface is not concerned w

 address this mapping between the old interface of a co

new one. Although this additional source code is not part of the requirem

portant to be defined to help support the autom

ponents from one architectural type to another.

Delivering Fully Working Components

ponent might be found in a repository system, but the com

ser’s system because it was delivered without some

sub-components). Generally, architectural in

aracteristics that relate to the internal dependencies of software components. However,

these characteristics were not part of the investigation of the studies, because it was felt

that internal dependencies are not a new feature and are already demonstrated in other tools

135

(e.g. the make tool). As a result, the investigation of delivering fully working components

has not been covered.

6.5

The results of the evaluation discussed so far are the key determinant to derive the

ev

charac achieved successfully in this research and the

evaluation

identified and

characteristics

ArchInt specification language has also shown success in representing the architectural

characteri s

to support fin

evaluation in

the ideal repo

The de

elements nam

illustrates the

Chapter 3.

 The Design of the Ideal Repository System

aluation of Objective 1 from the list of objectives. The fundamental issue of

terizing source-code components was

 has reflected that success. A number of architectural characteristics were

 the evaluation showed the successful uncovering of the key architectural

 of software components. The evaluation of the developed prototype of the

stic of source-code components. Moreover, evaluating the usefulness of ArchInt

ding and modifying components has produced positive results. Therefore, the

this section is whether ArchInt will be suitable to form part of the design of

sitory system.

sign of the ideal repository system was identified as consisting of three key

ely an organizing scheme, a re-factoring tool, and a matching tool. Figure 6.2

 high-level design of the ideal repository system that was identified in

Matching
Tool

Re-factoring

Send Data

DB

Provider

Matching
Tool

Re-user

Send Data

Deliver

Classify

Doc

Doc

Doc

Organizing
Scheme

Deposit

Engineer

Maintain

Find

Retrieve

Figure 6.2: Design of Ideal Repository System
 organizing scheme element was part of the design of the ideal repository system to

 the requirement of categorizing software components for re-use. The re-factoring

ement was required to support the modification of software components to satisfy

uirement of mappi

The

satisfy

tool el

the req ng a provider’s view to a re-user’s view, as discussed above in

136

Se

deposi se.

be eva

1.

 a number of different

atable: the second study has demonstrated that ArchInt can be used by

l to automatically identify the architectural type of

s presented valuable evidence that

inking one ArchInt document

with another. This feature is satisfied by ArchInt through the usage of the

Hence, the

ction 6.4.3. The matching tool was selected to facilitate automatic identification of the

ted software components, and also to support finding components for re-u

The suitability of ArchInt to form part of the design of the ideal repository system will

luated from four dimensions as follows:

Organizing scheme: the organizing scheme of the ideal repository system should

satisfy the following characteristics:

a. Extensible: the studies have demonstrated that ArchInt is extensible as it

allows for defining architectural types based on existing ones using the pair

of tags <uses_ArchInt> as demonstrated in the first study of the

experimental work.

b. Flexible: ArchInt has successfully represented

architectural types such as Applet, Eclipse, and “Eclipse XML” architectural

types, and the first study in Chapter 5 has demonstrated the applicability of

ArchInt to define these selected architectural types.

c. Autom

the ArchIntParse too

software components. Hence the study ha

ArchInt can support automation.

d. Defines relationships between classifiers: ArchInt defines a “uses”

relationship that represent the ontology for l

pair of tags <uses_ArchInt>. So, one ArchInt document can be related

to another document by the “uses” relationship.

As ArchInt satisfies the above identified characteristics, it is believed that

ArchInt documents can be used as classifiers to organize components in the

ideal repository system.

2. Re-factoring components: the study that concerned modifying software components

from one architectural type to another has demonstrated the usefulness of using

ArchInt to understand what is necessary to perform the modification.

characteristics defined by ArchInt documents are precise, it is believed that ArchInt

could be used to establish the bases for building a re-factoring tool for the ideal

repository system.

137

3. Delivering fully working components: as discussed earlier, this feature was not

supported by the prototype ArchInt so has not been investigated further.

4. Support evolution: this feature has not been examined in the studys of evaluating

ArchInt. However, it is felt that ArchInt could support evolution as it utilizes tools

(e.g. compiler) to perform the necessary checking of software components without

applying restrictions to what those tools should be. The

<programming_language> tag, for instance, identifies the tool to be used to

ould

be satisfied by the ideal repository system can be derived from ArchInt. Therefore, it is

ental design of the ideal

rep

6.6 Limitations of ArchInt

Arch

key asp

specific

observe

One

but req

need to

source

names r

softwar

involve

benefits

way of

Ano

enough ming languages. Some of the current

tags assume the use of Java, which was the language used for all of the components that

perform the necessary check; whether the tool is a Java compiler or an XML parser

depends on the components that are going to be checked. So, if someone wants to

extend the functionality of a repository to make it able to check components written

in FORTRAN, then ArchInt can be still useful as the compiler can be incorporated

into the repository and ArchInt can be used to point to it.

Based on the above evaluation, it seems to be that many of the key features that sh

believed that ArchInt could be utilized to form part of the fundam

ository system.

Int was a prototype language needed to demonstrate the feasibility of some of the

ects of architectural interfaces, and hence was a first step towards a complete

ation language for architectural interfaces. This section discusses some of the

d limitations of the ArchInt specification language.

 limitation in ArchInt is that ArchInt documents cannot be generated automatically

uires human involvement in order to identify the characteristics of importance that

 be considered in a document. Architectural types were generated by inspecting the

code of components from the open-source repository that were annotated with

eflecting their architectural types (e.g. “Eclipse”, “Java Applet”), and by examining

e systems and trying to identify their internal architectural interfaces. The

ment of people for generating ArchInt descriptions conflicts with the claimed

 of ArchInt to be a fully automatable approach. At the moment there is no feasible

identifying architectural characteristics automatically from source code.

ther limitation of the current prototype ArchInt is that the set of tags is not general

 to capture the characteristics of all program

138

we ex

cover a

ArchIn

capabil

parame

precise

capture

A t

depend

system s to

be u

It is fe

addition

6.7 Lessons Learned about Architectural Interfaces

Expe

the ove

• ment environment: consider an IDE with the notion of

 changes on the high-level

artefacts (e.g. design, requirement) of the system and presents them to the

his kind of support that is provided by the IDE would not have been

re perimented with. As a result, further generalization of ArchInt would be required to

 more general set of programming languages. Moreover, the current prototype of

t does not address the issue of how data is exchanged. ArchInt currently utilizes the

ity of the compiler of a programming language to check that the sequence of

ters is correct. However, a useful generalization to ArchInt could be to consider

 definitions of how data can be transferred between components and a system to

 other data exchanging mechanisms (e.g. shared memory, streams).

hird limitation in ArchInt is that it does not address the issue of external

encies that a system should provide to its composing components. For example, if a

requires its composing components to use library X but one of the component

 re- sed in the system uses a library Y, then the component may not fit into that system.

lt that the external dependencies should be part of ArchInt as they identify an

al requirement that a system obliges components to use in order to fit into it.

rimenting with architectural interfaces has uncovered some interesting aspects on

rall approach of this research:

Cohesive software develop

architectural interface integrated into it. A developer can be given help by

automatically generating the source-code that represents the architectural

framework for the system based on the design at hand. This will help developers to

focus only on writing the source code that will provide the functionality for the

components of the system to be developed. Moreover, the IDE can advise the

developer about the potential components that match the architectural interfaces of

their system, so the developer can re-use components without worrying about any

architectural mismatches as that could be dealt with automatically by the IDE.

Equally, if a software developer needs to apply some modifications to the

architecture of the system, then the IDE can reflect the

developer. T

possible without the support provided by the notion of architectural interface. The

usefulness of architectural interface is to maintain the links between the high-level

artefacts and the low level implementation.

139

• Identity for components: a re-user might indicate “I want an Applet component that

counts the number of visitors to a webpage”; that would be a more accurate

uld be useful to know what components are in the first place.

The architectural characteristics defined by architectural types can represent

identity for components as the characteristics can be used to discriminate one

architectural type from another. In the above example, the identity of the

component that the re-user was looking for was Applet. A lesson learned about

architectural interface is that it can be useful to define identity for components.

 Source-code documentation: most of the source code available in open-source

repository lacks documentation that explains the meaning of the written source

code and also how to use it. The lack of documentation is an obstacle that could

hinder re-using source code. Architectural interfaces represented in ArchInt

provide a means of documenting source-code components. A fully implemented

ArchInt specification language will generate all the necessary information that re-

users need to know in order to re-use components (e.g. how a component can to be

registered with a system).

 Formalizing high-level artefacts: the design of a software system is usually an

abstract specification of the components of a system and their interaction. System

developers are required to map these abstractions into a concrete implementation,

and the flexibility they have for doing this is precisely the reason for the difficulty

of finding matching re-usable components. Architectural interfaces have been

shown to address this issue. If the designer of a software system has provided the

description of the architectural types of the system to be built, this will reduce the

effort on the implementation stage as developers can use the generated

architectural type description to find re-usable components or build their own that

conform to the provided architectural type description.

6.8 Summary

his chapter has presented an assessment of the overall achievement of this research.

This assessment has uncovered strengths and limitations of architectural interfaces.

Overall, the approach generated in this research has addressed issues that have never been

considered before, and this evaluation chapter has confirmed that the notion of

description of the search requirement than “I want a component that counts the

number of visitors to a webpage”. Instead of describing only behaviour to search

for components it wo

•

•

T

140

architectural interface represents a significant step forward in addressing the problems of

re-using software components.

In the final chapter, the work presented in this thesis is drawn together; summarizing the

research undertaken and discussing the impact of the results achieved and also provides

suggestions for future work.

141

Chapter 7 - Conclusion

The aim of this research was to address some of the problems that hinder component re-

use, and investigate potential solutions to optimise the support that can be provided to

components re-users. In the context of this aim, this chapter summarises the important

points arising from the earlier chapters, including the evaluation of the research, and

suggests areas of future work.

 under

d the found component from a repository. It was mentioned also in the

chapter that curren

7.1 Overview

Chapter 1 set the scene by establishing the need to have a sophisticated repository

system to support re-use. The chapter then discussed the need to characterize software

components to enable their classification within a repository system for re-use, and

established that component characterization can be achieved through precise descriptions

of their interfaces. A major obstacle to re-use was identified in this chapter: re-users who

find components that provide the functionality they need could still encounter problems

when re-using such components in their system, due to a mismatch between the

architectural type of the components and the system.

Chapter 2 described the background work to set the context for this thesis. The chapter

described re-use in general terms, software components, CBSD, and software architecture.

The chapter identified that a major problem that can hinder component re-use is discovered

at integration stage and caused due to architectural mismatch between the system

development an

t work in software architecture is not appropriate to tackle the problem

of re-use as the architectural characteristics are defined abstractly. The chapter then

summed up by describing relation of the work presented in Chapter 2 and the approach of

this research.

Chapter 3 described the related work from the perspective of an ideal repository system.

A key point was raised in the discussion of different approaches to supporting components

re-use, and that was a re-user’s searches were imprecise and led to huge number of

potential components. The reason for the imprecision was the lack of useful categorization

of software components, which in turn was caused by the lack of a precise way of

characterising them. The characteristics of the ideal repository system were identified in

Chapter 3 to form a basis for analysing the related work. The chapter surveyed the

available classification and indexing schemes, re-factoring mechanisms, and repository

142

sys

oftware components as a way to achieve

be

s.

the Applet, Eclipse and MIDlet

architectural types. The study identified the different characteristics that components must

it into systems that require any of the three architectural types, and

rep

tems, and revealed a number of perceived deficiencies including: the lack of precise

source code characterization; the lack of support to categorize software components

automatically for re-use; and the lack of support to map what is deposited into a repository

to what a re-user actually needs (i.e. modifying components). As a result, the development

of an approach to capture architectural characteristics from the source code of software

components was proposed.

Chapter 4 detailed the important role of component interfaces to help achieve a precise

categorization of software components. The chapter established the discrimination between

the functional and architectural interfaces of s

tter understanding of component characteristics. Based on the author’s initial evaluation,

and based on the identified re-use problem, it was decided that the architectural interface of

software components had the potential to address some of the significant re-use problems.

Re-users could utilize architectural interfaces to focus their search criteria in order to help

them find components that not only provide the required functionality, but also fit

architecturally into their system. Different characteristics of fit were identified in Chapter

4, and it was noted that the semantics of the identified characteristics were not of

importance at this stage of the development of architectural interfaces. Rather, the first

concern was to check characteristics in a component’s external interface in order to

examine the feasibility of the overall idea proposed in this research. The chapter paved the

way for the ArchInt specification language that was developed in Chapter 5.

7.2 Results

Chapter 5 presented the formalization of the architectural interface approach by

introducing a prototype of a specification language that was called ArchInt. The language

was described in this chapter, and then used in studies to evaluate the concepts of

architectural interface and to examine its feasibility in addressing the re-use problem

The first study addressed the sufficiency of the ArchInt specification language for the

experimental work that was to evaluate architectural interfaces. This study assessed the

applicability of ArchInt to capture the characteristics of different architectural types. A

number of architectural types were introduced such as

conform to in order to f

resented them successfully using the ArchInt language. This study demonstrated that

ArchInt was sufficient to characterize different architectural types.

143

The second study examined the applicability of the generated ArchInt descriptions from

the first study for finding software components that would fit into a corresponding system.

A prototype tool (ArchIntParse) was built to setup the experimental work required for

evaluating architectural interfaces. The ArchIntParse tool performed the matching between

software components and the ArchInt descriptions of the three architectural types (i.e.

Eclipse, Applet, and MIDlet). The study successfully demonstrated that the architectural

type descriptions could be used to identify matching components. The conclusion drawn

from experimenting with ArchInt was that architectural interface is a significant approach

to support identifying and finding components.

The third study examined the assistance ArchInt could provide when a software system

has to be modified by replacing some of its composing components with re-usable

components (i.e. components that provide the required functionality and also fit into the

system). This study was performed in two iterations. The first iteration considered a system

that has its required architectural characteristics rigorously identified, which was the

Eclipse system. An Eclipse plug-in was substituted by the ArchIntParse tool after applying

the necessary modifications. The results successfully indicated that the formalization of

architectural types in the prototype of the ArchInt specification language was helpful to

understand how to modify a component in order to fit into a system. The second iteration

considered a system that had ill-defined architectural characteristics, which was the MVC

system. This iteration uncovered the architectural characteristics of the MVC system, even

tho

upport provided by the ideal repository system would be

ugh it was found that the system’s architectural characteristics are not fixed as there was

nothing to force developers of MVC systems to adopt common interfaces even when

working from a common pattern. However, it was felt that ArchInt would be useful if it

was defined for every component of an MVC system as it will eliminate the coupling

between them by precisely describing the interfaces of software components. So, this study

was considered valuable as it identified another area where ArchInt can be useful.

Overall, the studies have demonstrated that the notion of architectural interface is sound

and established the necessary ground to derive the building of the ideal repository system.

As a result, further research towards building the ideal repository system based on the

principle of architectural interface should be undertaken.

7.3 Future work

The optimal goal to support re-use fully is to have the ideal repository system described

in Chapter 1. The level of s

144

cen

representation of a component’s boundary was not considered in the generated prototype of

Ar

tered on addressing the issue of perfect fit of software components. Part of the

achievement in this research was to implement a prototype of a tool, named ArchIntParse,

to perform the necessary check of software components against architectural type

descriptions. So an obvious starting point for future work would be to complete the

implementation of the tool to fully automate the operation of searching open-source

repositories for software components. Moreover, future work could address the

implementation of a re-factoring tool that can perform the modification from one

architectural type to another using the architectural interface descriptions as that would

satisfy one further requirement of the ideal repository system.

Another direction for future research would be to investigate the generation and use of

the descriptions of architectural types represented in the ArchInt language as an integral

part of a software development process. This integration would help to add some more

engineering into the software development process by constraining some implementation

details associated with fit. Moreover, it would really help standardize a component’s

characteristics, and hence encourage potential re-use. The study that involved the MVC

system had shed some light on this area, and some preliminary suggestions were made

advising that the generation of ArchInt documents should be integrated into a software

development process. However, a thorough investigation is still necessary in this area to

decide whether integrating architectural type’s generation into a software development

process will be feasible.

From the perspective of specification language to represent architectural type

descriptions, future work should investigate the other dimensions of architectural fit

described in Chapter 4. Although some of the characteristics have not been considered

explicitly, such as component boundaries, it is felt that these characteristics need to be

addressed in more depth as they represent the key aspect addressing whether components

can be automatically identified and extracted from a system. The studies carried out in this

research assumed that a component’s boundaries were Java classes in the case of Java

architectural type and JAR files in the case of Eclipse plug-in architectural type. The

chInt as this characteristic was not germane to the aspects were been evaluated in this

research. However, in other programming languages such as the C programming language,

the boundaries of a software component may not be obvious. Thus, future work with

respect to generating a better specification language that is programming language

independent would be useful.

145

Further work on the architectural interface specification language could also address

how data can be exchanged between components and a system, as addressing data-

ex

could be mapped to the data exchanging mechanism of a component. Possible future work

to generalize a specification la

at could be performed by a block might be to

mponent to be

invoked is significant. Another

change relevant characteristics seems significant to ensure that a component can fit

architecturally into a system. Although aspects of data exchange might be handled by the

programming language mechanisms, it is felt that identifying data-exchanging mechanisms

explicitly would be especially useful in the case of modifying a component from one

architectural type to another. So, the data exchanging mechanism required by a system

nguage could be to consider a feature for identifying the part

of a component that is responsible for exchanging data as being a block of source code. For

example, in the Java language, Java methods are the blocks in the source code that is

responsible of data exchange. Every block might have a name that identifies its address in

the source code of a component. Moreover, a block might need to be written in a specific

syntax that conforms to the syntax of a certain programming language. The name and

syntax of a block are felt to be the two main attributes of a block of source code. A block

might exchange data in three ways namely parameters, streams, and shared memory. If a

block exchanges data through parameters, then identifying the sequence of parameters

seems to be significant as a mismatch in the sequence required by a system to that of a

component can cause the wrong datatype to be passed to the component. If a block

exchanges data through data streams, then identifying the protocol (e.g. HTTP, RPC) of

the data transferred could be significant. If a block exchanges data through shared memory,

then identifying the name of the shared memory and the datatype that can be stored in that

memory is significant in avoiding data loss by passing data to a different shared memory

than the one a component uses. A block might perform a special action in case of the

occurrence of failure. One possible action th

invoke a special component provided by a system, hence the name of the co

possible action could be to return a special value to a

system to indicate that a failure has occurred or the output data of a component is wrong,

so a pre-defined set of values could be significant to identify.

An additional feature, that is needed to develop a precise general specification language

for representing architectural types, could be the definition of the external dependencies of

software components. As discussed in Chapter 4, the external dependencies are the

dependencies that must be used by the components in a system, but these dependencies are

provided by the system itself for its composing components. So, possible future work

146

could be to identify the characteristics of the external dependencies of a software

component and investigate how the component can use them in order to fit into a system.

Of course, the above proposed features (i.e. data-exchanging mechanisms, external

dependencies) for developing a general specification language presented here to give a

direction for possible future work, but none of the identified features have been examined

is felt that the envisaged new features could be necessary to

represent architectural type descriptions in a programming language independent manner.

ing stage involves extracting and

delivering components. The utilizing stage involves configuring and using components.

Th

n a component

to acquire its functionality, or what methods can be invoked to initialize a component and

the like.

7.4 Achievement Against the Specified Aim of the Research

s stated in Chapter 1 the aim of this research was to address some of the problems that

hinder component re-use, and investigate potential solutions to optimise the support that

can be provided to components re-users. Part of the problem that re-users face is the

difficulty of finding components that will fit into their system. This research has

established the notion of architectural interface as a way to capture precisely the

requirements that are necessary for components to fit into a system. Architectural

interfaces uncover the architectural characteristics of software components and make those

characteristics explicit to re-users (or a repository system), and hence avoid possible

thoroughly. Despite that, it

Another possible piece of work could be to identify the characteristics that may affect

the re-usability of software components after a component is found in a repository. It is

believed that a re-use process might involve three stages, namely finding, retrieving, and

utilizing components, and every stage involves a number of characteristics that are

significant from the perspective of re-use. The finding stage involves searching for,

identifying, and categorizing components. The retriev

e finding stage has been addressed adequately in this research. However, the other two

stages have not been addressed in depth. Some discussion was given in this thesis about the

characteristics that relate to the stage of retrieving components, and the characteristics of

internal dependencies was found to be a characteristic relevant to this stage. However

additional work is still needed to capture all possible characteristics in this stage. The third

stage (i.e. utilizing stage) has not been addressed in this research, so it could form a

starting point for future work. The utilizing stage could identify the characteristics that

allow a re-user to understand, for instance, what methods must be invoked i

A

147

architectural type mismatches between components and the system to be built. The

use in t ved that this research has

7.5 Closing Remarks

Alth s advantages tend to

problem

pon

which i

interfac

ut represent a

interfac

a

thesis h

that is a imum support to encourage software re-use.

experimental work described in Chapter 5 successfully demonstrated the usefulness of

architectural interfaces in overcoming some of the key obstacles hindering component re-

oday’s software repository systems. As a result, it is belie

ma significant achievement towards addressing the main aim of this research. de a

ough software re-use is beneficial to software development, it

be hidden by the lack of support offered to re-users. Current repository systems are still far

behind achieving the full support that would encourage re-use. Re-users are faced with the

 of finding components that can really fit into their systems. The problems

encountered by re-users originate from the lack of precise characterization for software

ents. Currently, components are loosely characterized based on their functiocom nality,

s neither sufficient nor accurate at the moment.

In the context of this thesis, despite some limitations, the notion of architectural

e has made a positive contribution to the field of software re-use. Certainly

architectural interfaces do not solve all the difficulties of software re-use, b

step forward in research into the ideal repository system, particularly as architectural

es address the characteristics needed by repository system in order to enable

autom tic identification, organization, and modification of software components. The

as established the necessary basis for building a comprehensive repository system

ble to provide the max

148

References
1. Visual Thesaurus. Accessed 02 - 2008, Available from:

http://www.visualthesaurus.com.
2. Random Number Generator. Accessed 12 - 2008, Available from:

http://academic.hws.edu/bio/oldsite/Pages/Random.html.
3. Abramson, N., Information theory and coding, McGraw-Hill, 1963.
4. Al-Dallal, J., Sorenson, P. G., Reusing class-based test cases for testing object-

oriented framework interface classes. Journal of Software Maintenance, 2005.
17(3): p. 169-196.

5. Ali, F.M., Du, W., Towards re-use of object-oriented software design models.
Information & Software Technology, 2004. 46(8): p. 499-517.

6. Allen, R.,A Formal Approach to Software Architecture, PhD Dissertation, Carnegie
Mellon University, 1997.

7. Almeida, E., Alvaro, A., Garcia, V., Mascena, J., Burégio, V., Nascimento, L.,
Lucrédio, D. and Meira, S., C.R.U.I.S.E - Component Reuse in Software
Engineering. 2007, C.E.S.A.R e-book.

8. Alves, C., Finkelstein, A., Investigating Conflicts in COTS Decision-Making.
Software Engineering and Knowledge Engineering, 2003. 13(5): p. 473-493.

9. Anderson, G., Anderson, P., Enterprise JavaBeans Component Architecture:
Designing and Coding Enterprise Applications (Java 2 Platform, Enterprise
Edition Series) Prentice-Hall PTR 2002.

10. Arbab, F., Boer, F. and Bonsangue, M.,A Logical Interface Description Language
for Components.In Proceedings of the 4th International Conference on
Coordination Languages and Models.2000.Springer-Verlag.

11. Assman, U., Invasive Software Composition, Springer Verlag, 2003.
12. Avgeriou, P., Zdun, U.,Architectural patterns revisited—A pattern language.In 10th

European Conference on Pattern Languages of Programs (EuroPlop
2005).2005.Universitaetsverlag Konstanz.

13. Balazinska, M., Merlo, E., Dagenais, M., Laguë, B. and Kontogiannis, K.,
Advanced Clone Analysis to Support Object-Oriented System Refactoring.In 7th
Working Conference on Reverse Engineering (WCRE'2000).2000.IEEE Computer
Society Press,98-107.

14. Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R. and
Wallnau, K. ,Market Assessment of Component Based Software Engineering,2000,
Technical Report:2001-TN-007,Carnegie Mellon University/Software Engineering
Institute.

15. Bass, L., Clements, P. and Kazman, R., Software Architecture in Practice,
Addison-Wesley, 2003.

16. Bennett, K.P., Campbell, C., Support Vector Machines: Hype or Hallelujah?
SIGKDD Explorations, 2000. 2(2): p. 1 - 13.

17. Bergner, K., Rausch, A., Sihling, M. and Vilbig, A.,Adaptation Strategies in
Componentware.In Proceedings of the 2000 Australian Software Engineering
Conference.2000.IEEE Computer Society.

18. Besnard, D., Gacek, C. and Jones, C., Structure for Dependability: Computer-
Based Systems from an Interdisciplinary Perspective, Springer, 2005.

19. Booch, G., Software Components with Ada: Structures, Tools, and Subsystems,
Benjamin/Cummings Publishing Company, 1987.

20. Brereton, P., Budgen, D., Component-based systems: a classification of issues.
IEEE Computer, 2000. 33(11): p. 54 - 62.

 149

http://www.visualthesaurus.com/
http://academic.hws.edu/bio/oldsite/Pages/Random.html

21. Brown, A., Booch, G.,Reusing Open-Source Software and Practices: The Impact of
Open-Source on Commercial Vendors.In Proceedings of the 7th International
Conference on Software Reuse: Methods, Techniques, and Tools.2002 Springer-
Verlag.

22. Brown, A., Short, K.,On Components and Objects: The Foundations of
Component-Based Development.In Proceedings of the 5th International
Symposium on Assessment of Software Tools (SAST '97).1997.IEEE Computer
Society.

23. Brown, A., Wallnau, K., The Current State of CBSE. IEEE Software, 1998. 15(5):
p. 37-46.

24. Brown, K.,Design reverse-engineering and automated design-pattern detection in
Smalltalk,1996, Technical Report:TR-96-07,Department of Computer Science-
North Carolina State University.

25. Budgen, D., Software Design, second edition, Pearson Addison-Wesley, 2003.
26. Budgen, D., Brereton, P. and Turner, M. and Codifying a Service Architectural

Style.In Proceedings of the 28th Annual International Computer Software and
Applications Conference (COMPSAC'04) - Volume 01 2004.IEEE Computer
Society.

27. Carney, D., Oberndorf, P., The Commandments of COTS: Still in Search of the
Promised Land. Crosstalk, The Journal of Defense Software Engineering, 1997.
10(5): p. 25-35.

28. Cechich, A., Piattini, M.,Quantifying COTS component functional adaptation.In
8th International Conference on Software Reuse: Methods,Techniques and Tools
(ICSR 2004).2004.LNCS(3107).

29. Cechich, A., Piattini, M., Early detection of COTS component functional
suitability. Information and Software Technology, 2007. 49(2): p. 108-121.

30. Cechich, A., Piattini, M. and Vallecillo, A.,Assessing Component-Based
Systems.In Proceedings of Component-Based Software Quality'2003.2003.

31. Cechich, A., Requile-Romanczuk, A., Aguirre, J. and Luzuriaga, J.,Trends on
COTS Component Identification.In Proceedings of the Fifth International
Conference on Commercial-off-the-Shelf (COTS)-Based Software
Systems.2006.IEEE Computer Society.

32. ClayBerg, E., Rubel, D., Eclipse: Building Commercial-Quality Plug-ins. 3rd
edition, Addison-Wesley, 2004.

33. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and
Stafford, J., Documenting Software Architectures: Views and Beyond, Addison-
Wesley Professional, 2003.

34. Coulange, B., Software Reuse, Springer-Verlag, 1997.
35. Crane, S. Darwin: an Architectural Description Language. 1997, Accessed 11 -

2008, Available from: http://www.doc.ic.ac.uk/~jsc/research/darwin.html.
36. Crnkovic, I., Larsson, L., Building Reliable Component-Based Software Systems,

Artech House Publishers, 2002.
37. David, C., Rine,,Success factors for software reuse that are applicable across

domains and businesses.In Proceedings of the 1997 ACM symposium on Applied
computing 1997.ACM,182-186

38. DeLine, R., Avoiding packaging mismatch with flexible packaging. IEEE
Transactions on Software Engineering, 2001. 27(2): p. 124-143.

39. Depke, R., Engels, G., Thöne, S., Langham, M. and Lütkemeier, B.,Process-
Oriented, Consistent Integration of Software Components.In Proceedings of the

 150

http://www.doc.ic.ac.uk/~jsc/research/darwin.html

26th International Computer Software and Applications Conference on Prolonging
Software Life: Development and Redevelopment.2002.IEEE Computer Society.

40. Digre, T., Business Object Component Architecture. IEEE Computer, 1998. 15(5):
p. 60-69.

41. Ducasse, S., Rieger, M. and Golomingi, G.,Tool Support for Refactoring
Duplicated OO Code.In Proceedings of the Workshop on Object-Oriented
Technology (ECOOP Workshop Reader).1999.Springer-Verlag,177-178.

42. Duller, M., Tamosevicius, R., Alonso, G. and Kossmann, D., XTream: Personal
Data Streams.In Proceedings of the ACM International Conference on
Management of Data (SIGMOD).2007.ACM,1088 - 1090.

43. Ezran, M., Morisio, M. and Tully, C., Practical Software Reuse, Springer-Verlag,
2002.

44. Fanta, R., Rajlich, V.,Reengineering object-oriented code.In Proceedings of the
International Conference on Software Maintenance.1998.IEEE Computer
Society,238–246.

45. Feller, J., Fitzgerald, B., Understanding Open Source Software Development,
Addison-Wesley Professional, 2002.

46. Ferenc, R., Siket, I., and Gyimóthy, T.,Extracting Facts from Open Source
Software.In Proceeding of the 20th International Conference of Software
Maintenance (ICSM 2004).2004.IEEE Computer Society,60-69.

47. Fischer, B., Specification-based browsing of software component libraries.
Automated Software Engineering, 2000. 7(2): p. 179 – 200.

48. Fitzgerald, J., Larsen, P. G., Modelling Systems: Practical Tools and Techniques
for Software Development, Cambridge University Press, 1998

49. Fowler, M., Refactoring: Improving the Design of Existing Programs, Addison-
Wesley, 1999.

50. Frakes, W.B., Pole, T.P., An Empirical Study of Representation Methods for
Reusable Software Components. IEEE Transactions on Software Engineering,
1994. 20(8): p. 617–630.

51. Gacek, C.,Detecting Architectural Mismatches During Systems Composition, PhD
thesis, University of Southern California, 1998.

52. Gacek, C., Arief, B., The Many Meanings of Open Source. IEEE Software, 2004.
21(1): p. 34-40.

53. Gacek, C., Gamble, C., Mismatch Avoidance in Web Services Software
Architectures. Journal of Universal Computer Science, 2008. 14(8): p. 1285-1313.

54. Gaedke, M., Rehse, J. and Graef, G.,Supporting Compositional Reuse in
Component-Based Web Engineering.In Proceedings of the 2000 ACM Symposium
on Applied Computing.2000.ACM,927-933.

55. Gamma, E., Helm, R., Johnson,R. and Vlissides, J., Design Patterns: Elements of
Re-usable Object-oriented Software, Addison-Wesley Professional, 1995.

56. Garlan, D., First international workshop on architectures for software systems
workshop summary. ACM SIGSOFT Software Engineering Notes 1995. 20(3): p.
84-89.

57. Garlan, D., Allen, A. and Ockerbloom, J., Architectural Mismatch: Why Reuse Is
So Hard. IEEE Software, 1995. 12(6): p. 17-26.

58. Garlan, D., Allen, R. and Ockerbloom, J.,Architectural mismatch or why it's hard to
build systems out of existing parts.In Proceedings of the 17th international
conference on Software engineering.1995.ACM.

 151

59. Garlan, D., Monroe, R.T. and Wile, T.,ACME: An Architecture Description
Interchange Language.In Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research.1997.IBM Press,169-183.

60. Garlan, D., Perry, D., Introduction to the Special Issue on Software Architecture.
IEEE Transactions on Software Engineering, 1995. 21(4): p. 269-274.

61. Garlan, D., Shaw, M.,Characteristics of Higher-Level Languages for Software
Archiecture,1994, Technical Report:94-TR-23,CMU/SEI.

62. Garlan, D., Shaw, M.,An Introduction to Software Architecture,1994, Technical
Report:CS-94-166,Carnegie Mellon University.

63. Griss, M., Software reuse: from library to factory. IBM Systems Journal 1993.
32(4): p. 548-566.

64. Group, W.C.W. Web Services Architecture. 2004, Accessed - 2005, Available
from: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

65. Guo, J., Luqi.,A survey of software reuse repositories.In Proceedings of the
Seventh IEEE International Conference and Workshopon on the Engineering of
Computer Based Systems.2000.IEEE Computer Society,92-100.

66. Heineman, G., Councill, W., Component-Based Software Engineering: Putting the
Pieces Together, Addison Wesley, 2001.

67. Hemer, D., Lindsay, P.,Specification-based retrieval strategies for module reuse.In
Proceedings 2001 Australian Software Engineering Conference.2001.IEEE
Computer Society.

68. Henninger, H., An Evolutionary Approach to Constructing Effective Software
Reuse Repositories. ACM Transactions on Software Engineering and Methodology,
1997. 6(2): p. 111-140.

69. Heuzeroth, D., Holl, T., Högström, G., Löwe, W.,Automatic Design Pattern
Detection.In Proceedings of the 11th International Workshop on Program
Comprehension co-located with 25th International Conference on Software
Engineering.2003.IEEE,94.

70. Hondt, K., Lucas, C. and Steyaert, P.,Reuse Contracts as Component Interface
Descriptions.In Proceedings of the Workshops on Object-Oriented
Technology.1997.Springer-Verlag.

71. Hopkins, J., Component Primer. Communications of the ACM 2000. 43(10): p. 27 -
30.

72. Hunter, E., Classification Made Simple, Ashgate, 2002.
73. IEEE, IEEE Standard Glossary of Software Engineering Terminology: ANSI/IEEE

Standard 610-12-1990. 1990, IEEE Press.
74. ISO/IEC. Information Technology - Metadata Registries (MDR), parts 1-6, 2nd

edition. ISO/IEC 11179. 2005, Accessed 03 - 2008, Available from:
http://metadata-standards.org/11179/.

75. ISO/IEC. IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. IEEE Std 1471. 2000, Accessed 11 - 2008, Available from:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00875998.

76. Java2s. A Java Repository for Developers. Accessed 11 - 2007, Available from:
http://www.java2s.com/.

77. Jefferson, N.,Dependable Compositions: A Formal Approach, PhD Thesis,
Newcastle University, 2006.

78. Jeng, J., Cheng, B., Specification Matching for Software Reuse: A Foundation.
ACM SIGSOFT Software Engineering Notes, 1995. 20(SI): p. 97 - 105.

79. Jones, A.,The Maturing of Software Architecture.In Software Engineering
Symposium.1993.Software Engineering Institute.

 152

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://metadata-standards.org/11179/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00875998
http://www.java2s.com/

80. Joos, R., Software Reuse at Motorola. IEEE Computer Society Press, 1994. 11(5):
p. 42-47.

81. Kain, J., Components: The Basics: Enabling an Application or System to be the
Sum of its Parts ,Object Magazin, April 1996,

82. Kawaguchi, S., Garg, P. K., Matsushita, M. and Inoue, M.,MUDABlue: An
Automatic Categorization System for Open Source Repositories.In Proceedings of
the 11th Asia-Pacific Software Engineering Conference(APSEC).2004.IEEE
Computer Society,184-193.

83. Kienle, H.M., Müller, H.A.,A lightweight taxonomy to characterize component-
based systems.In Proceedings — ICCBSS 2007: Sixth International IEEE
Conference on Commercial-off-the-Shelf (COTS)-Based Software
Systems.2007.IEEE,193–201.

84. Knudsen, J., Nourie, D. Wireless Development Tutorial Part I. 2006 Accessed 12 -
2007, Available from: http://developers.sun.com/mobility/midp/articles/wtoolkit/.

85. Kohonen, T., The Self-organizing Map. 3 edition. Information Sciences.
Heidelberg, Springer-Verlag, 2000.

86. Krueger, C., Software Reuse. ACM Computing Surveys, 1992. 24(2): p. 131-183.
87. Landauer, T., Foltz, P. W. and Laham, D., Introduction to Latent Semantic

Analysis. Discourse Processes, 1998. 25(2-3): p. 259–284.
88. Lau, K., Wang, Z., Software Component Models. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, 2007. 33(10): p. 709-724.
89. Lawrie, T., Arief, B., and Gacek, C., Interdisciplinary Insights on Open Source, in

Proceedings of the Open Source Software Development Workshop. 2002,
Newcastle upon Tyne.

90. Lee, J.H., Kim, J. and Shin, G. S.,Facilitating Reuse of Software Components
using Repository Technology.In Proceedings of the 10th Asia-Pacific Software
Engineering Conference.2003.IEEE Computer Society,136.

91. Lee, P.A., Anderson, T., Fault Tolerance: Principles and Practice (Second Revised
Edition), Springer-Verlag, 1990.

92. Lee, S.Y., Gwon, O. C., Sin, G. S., COBALT Assembler： A Case Tool for
Supporting EJB Component Assembly based on Architecture. Journal of Software
Engineering, 2002 5(2): p. 32-38.

93. Leite, J., Yu, Y., Liu, L., Yu, E. and Mylopoulos, J., Quality-Based Software
Reuse. Lecture Notes in Computer Science, 2005. 3520: p. 535-550.

94. Li, G., Zhang, L., Li, Y., Xie, B. and Shao, W., Shortening retrieval sequences in
browsing-based component retrieval using information entropy. Journal of Systems
and Software, 2006. 79(2): p. 216 - 230.

95. Li, Q., Bjørnson, F., Conradi, R. and Kampenes, V., An empirical study of
variations in COTS-based software development processes in the Norwegian IT
industry. Empirical Software Engineering, 2006. 11(3): p. 433 - 461.

96. Lin, M.Y.J., Amor, R. and Tempero, E.,A Java Reuse Repository for Eclipse using
LSI.In Proceedings of the Australian Software Engineering Conference
(ASWEC'06) 2006.IEEE Computer Society 351-360.

97. Lowy, J. C# 2.0 Code Re-factoring. 2004, Accessed 08 - 2006, Available from:
http://www.devx.com/codemag/Article/20143.

98. Luckham, D.,Rapide: A Language and Toolset for Simulation of Distributed
Systems by Partial Ordering of Events,1996, Technical Report:CSL-TR-96-
705,Stanford University.

 153

http://developers.sun.com/mobility/midp/articles/wtoolkit/
http://www.devx.com/codemag/Article/20143

99. Lucredio, D., Prado, A. and Almeida, E.,A Survey on Software Components Search
and Retrieval.In Proceedings of the 30th EUROMICRO Conference.2004.IEEE
Computer Society.

100. Lycett, M., Paul, R.,Component-Based Development: Dealing with Non-Functional
Aspects of Architecture.In ECOOP ’98 Workshop on Component-Oriented
Programming 1998.Springer-Verlag.

101. Maarek, Y.S., Berry, D.M. and Kaiser, G.E., An Information Retrieval Approach
for Automatically Constructing Software Libraries. IEEE Transactions on Software
Engineering, 1991. 17(8): p. 800-813.

102. Mahmood, S., Lai, R. and Kim, Y, Survey of component-based software
development. IET Software, 2007. 1(2): p. 57-66.

103. McCSmith, J., Stotts, D.,Case Studies in Automated Design Pattern Detection in
C++ Code using SPQR,2005, Technical Report:TR05-013,The University of North
Carolina.

104. McIlroy, M.,Mass Produced Software Components.In Software Engineering:
Report on a Conference by the NATO Science Committee.1968.NATO Science
Affairs Division,138-150.

105. Medvidovic, N., Taylor, R., A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 2000. 26(1): p. 70-93.

106. Mehta, N., Medvidovic, N. and Phadke, S.,Towards a taxonomy of software
connectors.In Proceedings of the 22nd international conference on Software
engineering.2000.ACM.

107. Mens, T., Tourwé, T., A Survey of Software Refactoring. IEEE Transactions on
Software Engineering, 2004. 30(2): p. 126-139.

108. Meyer, B., The Grand Challenge of Trusted Components, in 25th International
Conference on Software Engineering (ICSE'03). 2003, IEEE Computer Society.

109. Meyer, B., On To Components. Computer, 1999. 32(1): p. 139-140.
110. Meyer, B., On Formalism in Specifications. IEEE Software, 1985. 2(1): p. 6-26.
111. Meyer, B., Applying "Design by Contract". Computer, 1992. 25(10): p. 40-51.
112. Mili, H., Mili, F., and Mili, A., Reusing Software: Issues and Research Directions.

IEEE Transactions on Software Engineering, 1995. 21(6): p. 528-562.
113. Mili, H., Valtchev, P., Di-Sciullo,A.M. and Gabrini, P.,Automating the Indexing

and Retrieval of Reusable Software Components.In Proceedings of Applications of
Natural Language to Information Systems 2001.GI,75-86.

114. Morisio, M., Torchiano, M.,Definition and classification of COTS: a proposal.In
Proceedings of the First International Conference on COTS-Based Software
Systems.2002.Springer-Verlag.

115. Ning, J.,Component-Based Software Engineering (CBSE).In Proceedings of the 5th
International Symposium on Assessment of Software Tools (SAST '97).1997.IEEE
Computer Society.

116. Oates, B., Researching Information Systems and Computing, Sage Publications Ltd
2005.

117. Oberleitner, J., Gschwind, T. and Jazayeri, M.,The Vienna Component Framework
enabling composition across component models.In Proceedings of the 25th
International Conference on Software Engineering.2003.IEEE Computer Society.

118. Ostertag, E., Hendler,J., Prieto Díaz,R. and Braun, C., Computing Similarity in a
Reuse Library System: An AI-Based Approach. ACM Transactions on Software
Engineering and Methodology, 1992. 1(3): p. 205- 228.

 154

119. Podgurski, A., Pierce, L., Retrieving reusable software by sampling behavior. ACM
Transactions of Software Engineering and Methodology, 1993. 2(3): p. 286 - 303.

120. Pohthong, A., Budgen, D., Reuse strategies in software development: An empirical
study. Information & Software Technology, 2001. 43(9): p. 561-575.

121. Poulin, J.S., Yglesias, K.P., Experiences with a Faceted Classification Scheme in a
Large Reusable Software Library (RSL).In Seventeenth Annual International
Computer Software and Applications Conference.1993.IEEE,90-99.

122. Prieto-Diaz, R., Freeman, P., Classifying Software for Reusability. IEEE Software,
1987. 4(1): p. 6-16.

123. Ravichandran, T., Rothenberger, M., Software Reuse Strategies and Component
Markets. Communications of the ACM, 2003. 46(8): p. 109-114.

124. Raymond, E., The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary O'Reilly Media, 1999.

125. Rehman, M., Jabeen, F., Bertolino, A. and Polini, A., Testing software components
for integration: a survey of issues and techniques. Software Testing, Verification &
Reliability 2007. 17(2): p. 95 - 133.

126. Reid, S.,BS 7925-2: The Software Component Testing Standard.In Proceedings of
the The First Asia-Pacific Conference on Quality Software (APAQS'00).2000.IEEE
Computer Society.

127. Richard, B., Krugle Code Search Stats or How to Write a Press Release, Linux
Magazine, 2008, http://www.linux-mag.com/id/5916

128. Rodrigues, N., Barbosa, L. On the Specification of a Component Repository. 2003,
Accessed 05 - 2006, Available from:
http://www.iist.unu.edu/newrh/III/1/docs/techreports/report284/paper2.pdf.

129. Sametinger, J., Software Engineering with Reusable Components, Springer-Verlag,
1997.

130. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects. 1st edition.
Software Design Patterns. Vol. 2, Wiley, 2000.

131. Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P. and Stal, M., Pattern-
Oriented Software Architecture: A System of Patterns, Wiley, 1996.

132. Shaw, M.,Architectural issues in software reuse: it's not just the functionality, it's
the packaging.In Proceedings of the 1995 Symposium on Software
reusability.1995.ACM.

133. Shaw, M., Clements, P.,A Field Guide to Boxology: Preliminary Classification of
Architectural Styles for Software Systems.In Proceedings of the 21st International
Computer Software and Applications Conference.1997.IEEE Computer Society.

134. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M. and Zelesnik, G.,
Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, 1995. 21(4): p. 314 - 335.

135. Shaw, M., Garlan, D., Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

136. Siegel, J., CORBA 3 - Fundamentals and Programming, John Wiley & Sons, 2000.
137. Sommervill, I., Integrated Requirements Engineering: a tutorial. IEEE Software,

2005. 22(1): p. 16-23.
138. Sommerville, I., Software Engineering 8th edition, Addison-Wesley, 2006.
139. Spivey, J., The Z Notation: A Reference Manual, Prentice Hall, 1991.
140. Swanson, J.E., Samadzadeh, M. H.,Re-usable software catalog interface.In

Proceeding 92 ACM SIGAPP Symposium Application Computing
SAC.1992.ACM,1076-1082.

 155

http://www.linux-mag.com/id/5916
http://www.iist.unu.edu/newrh/III/1/docs/techreports/report284/paper2.pdf

141. Szyperski, C., Gruntz, D. and Murer, M., Component Software - Beyond Object-
Oriented Programming. 2nd edition, Addison-Wesley(ACM Press), 2002

142. Tangsripairoj, S., Samadzadeh, M. H.,Organizing and Visualizing Software
Repositories Using the Growing Hierarchical Self-Organizing Map.In Proceedings
of the 2005 ACM Symposium on Applied Computing.2005.ACM SAC Special
Track on Software Engineering,1539 – 1545.

143. Tao, Y., Papadias, D.,Adaptive Index Structures.In Proceedings of the 28th
International Conference on Very Large Data Bases Conference
(VLDB).2002.Morgan Kaufmann,418-429.

144. Traas, V., Hillegersberg, J., The software component market on the internet current
status and conditions for growth. ACM SIGSOFT Software Engineering Notes,
2000. 25(1): p. 114.

145. Ugurel, S., Krovetz, R., Giles, C. L., Pennock, D. and Glover, E.,What’s the Code?
Automatic Classification of Source Code Archives.In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining 2002.ACM,632 –
638.

146. Vitharana, P., Risks and challenges of component-based software development.
Communications of the ACM 2003. 46(8): p. 67-72.

147. Wallnau, C.,A technology for predictable assembly from certifiable
components,2003, Technical Report:2003-TR-009,Carnegie Mellon
University/Software Engineering Institute.

148. Washizaki, H., Fukazawa, Y.,Automated Extract Component Refactoring.In
Proceeding of the 4th International Conference on eXtreme Programming and
Agile Processes in Software Engineering (XP2003), .2003.Springer-Verlag,328-
330.

149. Weber, S., The success of open source, Harvard University Press 2004.
150. Wirth, N., IEEE Annals of the History of Computing. IEEE Annals of the History

of Computing, 2008. 30(3): p. 32-39.
151. Wood, D., Christel, M. and Stevens, S.,A Multimedia Approach to Requirements

Capture and Modeling.In Proceedings of the First International Conference on
Requirements Engineering.1994.IEEE Computer Society Press, 53-56.

152. Yacoub, S., Ammar, H. and Mili, A. Characterizing a Software Component. 1999,
Accessed 07 - 2004, Available from: www.sei.cmu.edu

153. Yakimovitch, D., Bieman, J. and Basili, V.,Software architecture classification for
estimating the cost of COTS integration.In Proceedings of the 21st international
conference on Software engineering 1999.IEEE Computer Society Press.

154. Yang, H., Ward, M., Successful Evolution of Software Systems, Artech House
Publishers, 2003.

155. Ye, H., Lo, B.W.N., Towards a Self-structuring Software Library. IEE Proceedings
– Software, 2001. 148(2): p. 45-55.

156. Yglesias, P.,IBM's reuse programs: knowledge management and software reuse.In
Proceedings. Fifth International Conference on Software Reuse.1998.IEEE
Computer Society,156-165.

157. Yunwen, Y.,Supporting Component-Based Software Development with Active
Component Repository Systems, PhD thesis,Boulder, University of Colorado, 2001.

158. Zaremski, A.M., Wing, J.M., Signature Matching: A Tool for Using Software
Libraries. ACM Transactions on Software Engineering and Methodology, 1995.
4(2): p. 146–170.

 156

http://www.sei.cmu.edu/

Appendix A- ArchInt representations of Architectural Types
This appendix provides the complete representation of the three architectura

discussed earlier in ArchInt prototype specification language.

1. The full ArchInt representation of the Applet Architectural Type:

l types

157

2. The full ArchInt representation of the Eclipse Architectural Type:

158

Cont. Eclipse Architectural Type

159

 the MIDlet Architectural Type: 3. The full ArchInt representation of

160

Cont. MIDlet Architectural Type

161

4. The full ArchInt representation of the “Eclipse XML” architectural type:

162

5. The full ArchInt representation of the Serializer architectur
 tool:

al type from the
ArchIntParse

163

Appendix B - Source code of the ArchIntParse Tool
 This appendix list the design and the source code of the ArchIntParse tool

1. The architecture of the ArchIntParse tool:

2. the source code of the Serializer class:

import com.thoughtworks.xstream.XStream;
import com.thoughtworks.xstream.io.xml.DomDriver;
import java.util.*;

public class Serializer
{

 MyFileWriter myFileWriter;
 public void serialize(IArchInt archint)
 {

 XStream xStream = new XStream(new DomDriver());
 String xml = xStream.toXML(archint);
 if(myFileWriter != null)
 {
 myFileWriter.writeToFile(xml);
 }
 else
 {
 System.out.println("Please specify a file Writer
Object!");
 }
 }

 public void setFileWriter(MyFileWriter myFileWriter)
 {
 this.myFileWriter = myFileWriter;

 }

}

3. the source code of the Deserializer class:

import com.thoughtworks.xstream.XStream;
import com.thoughtworks.xstream.io.xml.DomDriver;

public class DeSerializer
{

 XStream xStream;
 SimpleClassLoader sc = new SimpleClassLoader();
 // String xml = "";
 ArchInt myArchInt;
 public DeSerializer()

 164

 {
 xStream = new XStream(new DomDriver());
 //xml = xmlEx.getOutput();
 xStream.setClassLoader(sc.getClass().getClassLoader());
 }

 public void setInput(XMLExtractorFromFile xmlEx)
 {
 String xml = xmlEx.getOutput();
 myArchInt = (ArchInt)xStream.fromXML(xml);
 // Object o = xStream.fromXML(xml);
 }

 public ArchInt getOutput()
 {
 return myArchInt;
 }

}

4. the source code of the ArchIntProcessor class:

import java.util.*;

public class ArchIntProcessor
{

 ArchInt myArchInt;
 ArrayList methodList = new ArrayList();
 ArrayList fieldList = new ArrayList();

 public void setInput(DeSerializer dsz)
 {
 myArchInt = dsz.getOutput();
 processor();
 }

 public ArchInt getOutput()
 {
 return myArchInt;
 }

 public void processor()
 {

 ArrayList list =
myArchInt.getExternal().getMustHave(); // external;
 ArrayList list2 =
myArchInt.getInternal().getRequired(); // internal;

 // traverse the External elements;
 for(int i = 0; i<list.size(); i++)
 {

 String temp = getMarker((Marker)list.get(i));

 if(temp.equals("Field"))
 {
 Field f = (Field)list.get(i);
 fieldList.add(f);
 }

 if(temp.equals("Method"))
 {
 Method m = (Method)list.get(i);
 methodList.add(m);

 165

 }
 }

 // traverse the Internal elements;
 for(int i = 0; i<list2.size(); i++)
 {
 String temp = getMarker((Marker)list2.get(i));

 if(temp.equals("Dependancy"))
 {
 Dependancy d = (Dependancy)list2.get(i);
 }
 }

 }

 // extract the type of objects from the arraylist based on
the value returned by the getMarker() method;
 private String getMarker(Marker marker)
 {

 String temp = new String();
 temp = marker.returnMarker();
 return temp;

 }

 public ArrayList getMethodList()
 {
 return methodList;
 }

 public ArrayList getFieldList()
 {
 return fieldList;

 }
}

5. the source code of the TestGenerator class:

import java.util.*;

public class TestGenerator
{
 String str = "";
 String[] parama = new String[]{"a","b","c","d","e"};
 String className = "";
 String pkg = "";
 int parmaCounter = 0;
 int parmaDecCounter = 0;
 int rtnTypeCounter = 0;
 int fieldCounter = 0;

 ArrayList methodsArrayList = new ArrayList();
 ArrayList parametersDeclarationsArray = new ArrayList();
 ArrayList fieldsArrayList = new ArrayList();

 public void generateTest(String className, String pkg) // split
into methods;
 {
 this.className = className;
 this.pkg = pkg;

 String inst = "inst"+className;

 166

 if(pkg != null) str = "package " + pkg + ";\n";
 str = str + "public class TestSuite\n" + "{\n";
 str = str + " "+ className + " " + inst+ " = new " +
className +"();\n";
 str = str + " public void test()\n" + " {\n";

 printMethod(methodsArrayList, inst);
 printField(fieldsArrayList , inst);

 str = str +" }\n" + "}";

 System.out.println(str);
 MyFileWriter2 fwt = new MyFileWriter2();
 fwt.writeToFile(str);
 }

 public String getStr()
 {
 return str;
 }

 private void printMethod(ArrayList method, String inst)
 {
 extractParams(method);

 for (int j = 0; j<method.size(); j++)
 {

 if(((Method)method.get(j)).getException() == null)
 {
 /////////
 if(((Method)method.get(j)).getReturnType() != null &&
!((Method)method.get(j)).getReturnType().equals("void")) // if there
is a return type;
 {
 str = str + " " +
((Method)method.get(j)).getReturnType() + " rtn" + rtnTypeCounter++
+" = " ;

 if(((Method)method.get(j)).getScope() != null &&
((Method)method.get(j)).getScope().equals("static"))
 {
 str = str +
className+"."+((Method)method.get(j)).getName()+"(";
 }
 else
 {
 str = str +
inst+"."+((Method)method.get(j)).getName()+"(";
 }
 }

 else
 {
 str = str + "
"+inst+"."+((Method)method.get(j)).getName()+"("; // for the spacing
if return type is void;
 }

 setParameters(((Method)method.get(j)).getParama());
 str = str +")"+";\n";
 }
 else
 {
 exceptions((Method)method.get(j), inst);
 }
 }
 }

 167

 private void exceptions(Method method , String inst)
 {
 str = str + " try\n" + " {\n";

 if(method.getReturnType() != null &&
!method.getReturnType().equals("void"))
 {
 str = str + " " + method.getReturnType() +
" rtn" + rtnTypeCounter++ + " = " ;
 str = str + inst+"."+method.getName()+"(";
 }
 else
 {
 str = str + "
"+inst+"."+method.getName()+"(";
 }

 setParameters(method.getParama());
 str = str +")"+";\n";

 str = str + " }\n" + "
catch("+method.getException()+" e){}\n";

 }

 private void setParameters(String[] parameters)
 {

 if(parameters != null)
 {
 for(int i = 0 ; i < parameters.length ; i++)
 {

 str = str + "a"+ parmaCounter++;//parama[i];
 if(i< parameters.length-1) str = str + ","; //e.g.
(a,b,c)

 }
 }
 }

 private void parmaDeclaration(ArrayList parameters)
 {

 if(parameters.size() != 0)
 {
 for(int i = 0 ; i < parameters.size() ; i++)
 {

 if(parameters.get(i).equals("int"))
 {
 str = str + " "+ parameters.get(i) + " " +
"a"+ parmaDecCounter++ + " = 0;\n";
 }

 else if(parameters.get(i).equals("Double"))
 {
 str = str + " "+ parameters.get(i) + " " +
"a"+ parmaDecCounter++ + " = 0.0;\n";
 }

 else if(parameters.get(i).equals("char"))
 {
 str = str + " "+ parameters.get(i) + " " +
"a"+ parmaDecCounter++ + " = '';\n";
 }
 else if(parameters.get(i).equals("boolean"))
 {

 168

 str = str + " "+ parameters.get(i) + " " +
"a"+ parmaDecCounter++ + " = false;\n";
 }
 else
 {
 str = str + " "+ parameters.get(i) + " " +
"a"+ parmaDecCounter++ + " = null;\n";
 }

 }

 }

 }

 public void addMethod(Method method)
 {
 methodsArrayList.add(method);

 }

 public void setMethodList(ArrayList mList)
 {
 methodsArrayList = mList;
 }

 public ArrayList getMethodList()
 {
 return methodsArrayList;
 }

 private void extractParams(ArrayList method)
 {
 for(int i = 0 ; i < method.size(); i++)
 {
 String[] parmas = ((Method)method.get(i)).getParama();

 if(parmas != null)
 {
 for(int k = 0 ; k < parmas.length ; k++)
 {
 parametersDeclarationsArray.add(parmas[k]);
 }
 }

 }

 parmaDeclaration(parametersDeclarationsArray);

 }

 public void setFieldList(ArrayList fList)
 {
 fieldsArrayList = fList;
 }

 public ArrayList getFieldList()
 {
 return fieldsArrayList;
 }

 public void printField(ArrayList fieldsArrayList , String inst)
 {
 for(int i = 0 ; i < fieldsArrayList.size() ; i++)
 {

 169

 str = str + " "+
((Field)fieldsArrayList.get(i)).getType() + " field" + fieldCounter++
+ " = ";
 if(((Field)fieldsArrayList.get(i)).getScope() != null)
 {

if(((Field)fieldsArrayList.get(i)).getScope().equals("static"))
 {
 str = str + className + "." +
((Field)fieldsArrayList.get(i)).getName() + ";\n ";
 }
 }
 else
 {
 str = str + inst + "." +
((Field)fieldsArrayList.get(i)).getName() + ";\n ";
 }
 }

 }

}

 170

