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Abstract 
Software development is a costly process for all but the most trivial systems. One of the 

commonly known ways of minimizing development costs is to re-use previously built 

software components. However, a significant problem that source-code re-users encounter 

is the difficulty of finding components that not only provide the functionality they need but 

also conform to the architecture of the system they are building. To facilitate finding re-

usable components there is a need to establish an appropriate mechanism for matching the 

key architectural characteristics of the available source-code components against the 

characteristics of the system being built. This research develops a precise characterization 

of the architectural characteristics of source-code components, and investigates a new way 

to describe how appropriate components for re-use can be identified and categorized.  
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Chapter 1 - Introduction 

1.1 Vision of the Future  

Adam is a software engineer who works for the EasySoftMicrosystems company, 

developing graphical environments for software development. He has been assigned a task 

of building a new and novel integrated development environment (IDE) that helps software 

developers to build their systems using graphical representations rather than pure source-

code writing. So, developers can construct their systems simply by selecting the right 

components from a list, customizing as required, and dropping them into the system being 

developed. 

 Adam has gone through the necessary processes to build the system, starting from 

collecting the requirements and writing the specification of the new system, to establishing 

the overall design of the system intended to be built. The design identified the basic 

building blocks of the system as being composed of several components such as editors, 

source-code generator, compiler, builder and debugging tools, in addition to a shared 

library (i.e. a repository system) that stores and organises re-usable components. After 

Adam documented the design of the new system he decided to start implementing the real 

working IDE system.  

While Adam was programming the various parts of the system he came to a point at 

which he needed to add a component to perform the parsing functionality to the system 

being built, so he started looking for something to re-use in the hope of saving his time and 

effort. He searched for some within his company’s repository system but couldn’t find 

anything re-usable for his system. Then he started looking externally to find a repository 

where the required component might be found. 

 Adam searched several repositories that offer different kinds of components, some free 

of charge while others were subject to some cost. Finally, he came across a repository 

system called GeniusComponents that offered a wide range of components freely. He tried 

the repository by providing some information to search for matching components. The 

repository system started searching for the component that Adam was looking for and 

returned some results. The repository listed a parser that provided the exact functionality 

that Adam was looking for. Adam was very pleased that he managed to get the component 

he needed.  
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However, there were two problems with the found component. Firstly, it was written in 

FORTRAN but what Adam needed was a component written in Java. The second problem, 

which seemed more challenging, was that the found component was a part of another 

system, so it must be extracted from its original system before re-using it in Adam’s 

system. Adam was very concerned about how the extracted component might impact on 

his own system as his experience suggested that the component might cause system failure 

if, for example, some of its required dependencies had been missed during extraction. 

Adam also wondered how he could modify the component to fit into his system as there 

was the major language dissimilarity. His frustration was rising as he started to believe that 

building one’s own component is much easier than re-using one, as found components 

often cannot be re-used without major modifications. What he got from the repository 

demonstrated that. The modification itself was hard to achieve as it required a thorough 

understanding of the component’s architectural aspects in addition to its functional aspects. 

While Adam was looking sadly at the listed component wondering what to do, he 

noticed something flashing in the top right corner on the screen where the component he 

found was listed. It was a button labelled with the word “modify”. Adam clicked on that 

button and what he got was an extensive list of automatic conversions that could be 

applied. One option was to convert a component into a stand-alone application. Adam tried 

that option hoping that it could extract the component he needed and the extracted 

component would work satisfactorily when converted. The repository system advised that 

the conversion was completed successfully. So, Adam obtained an application that 

provided the functionality that his system required, however, the application was still 

written in FORTRAN, hence still not re-usable in his system as the application must to be 

connected to his system prior to being able to re-use it as a component. Adam found 

another option in the list of possible conversions that converted FORTRAN applications to 

Java applications, so without any further thinking, he clicked on that option. The result was 

stunning; the application was converted, somehow, to Java.  

The next step was to wrap the application to fit as a component into Adam’s system. An 

option for accomplishing that conversion was also provided by the repository system, so 

Adam simply selected that option and, somehow, the application was wrapped as a 

component that satisfied his system’s requirements. Adam was happy that he had finally 

got what he needed but he was worried that the modification might have broken the 

component. Adam found another listed option in the repository to automatically check the 

component to ensure its validity against some specified requirements. There were numbers 
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of pre-defined requirements of other systems recognized by the repository that he could 

use if his system requirements were similar, but Adam’s system was novel, hence he 

needed to supply his system’s requirements to the repository in order to be utilized by the 

checking tool. The repository system assisted Adam in providing the required details of his 

system’s requirements by asking him about the different characteristics of his system. So, 

Adam specified his system’s requirements to check the component against and tried that 

test. The result was positive indicating that the converted component was fine and it was 

conforming to the requirements of his system. Adam then requested that the component be 

delivered to him from the repository so that he could re-use it in his system, and the 

repository system successfully delivered it. Adam noticed that the delivered component 

also came with a help file describing everything he needed to know in order to utilize the 

component. 

 So finally Adam obtained the component that fitted perfectly into his system, provided 

the required functionality and satisfied his system’s requirements. Adam was very pleased 

that he found such a super repository system that assisted him to obtain re-usable 

components and encouraged him to keep re-using components rather than building them 

from scratch. 

1.2 Thesis Context 

It is obvious from the above “vision” story that a repository system called 

GeniusComponents has helped Adam to build his intended system (i.e. the novel IDE). 

Without such a repository system, re-use would have been very unlikely and Adam would 

have been faced with writing a new component from scratch. 

The above described repository system is an example of an ideal repository that every 

software re-user is hoping to find. That repository would speed up the development 

process, save time and effort, and encourage the software engineer to practice re-use. 

However, the state of current repository systems is in reality far behind such an envisaged 

level of support. Today’s repository systems have many limitations that, in one way or 

another, discourage software development from re-use. Therefore this thesis is primarily 

motivated by the fact that the current support provided by repository systems is not 

sufficient and may hinder re-use, and the research to be described is a step towards 

achieving the ideal case of software re-use described in the story above. Therefore, the 

hypothesis of this research is that re-use would be highly advantageous for software 

development, however the inadequate support for re-use is preventing these advantages 
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from being realised. The corresponding aim and objectives of the research to be described 

in this thesis are listed in section 1.10. 

1.3 Software Re-use 

Software re-use is commonly described as the process of re-using previously built 

components to drive the building of a new system. So a system might be built from re-

usable components instead of reinventing components every time a new system is needed. 

Re-using previously generated components has the potential to significantly lower the cost 

of developing new software systems, speed the development process, and improve the 

quality of the final software product [138].  

At a first glance, re-using components might seem a natural approach that software 

developers should follow, comparable to the well-established practice of re-use when 

building an electronic system. However, it seems that software developers usually prefer to 

build their own components rather than harnessing ones generated previously. This 

reluctance to re-use components is caused by many reasons, often based on the perspective 

that the developer has. Software developers can be classed into three groups with respect to 

re-using components:  

i) those who would never re-use components; 

ii) those who have never thought about re-use; and 

iii) those who would exploit re-use if the process was better supported. 

 The first group of developers may not trust components that were generated by others 

as they believe those components are vulnerable to unauthorized access, or they might 

think that the available components are inaccurate, or of inappropriate quality to re-use. 

Others might prefer to take the intellectual challenge of solving the problem by themselves 

rather than re-using existing solutions. The second group of developers may not be aware 

of the availability of re-usable components, so they always work on generating their own 

components without considering any re-use attempt. The third group of developers might 

be aware that re-usable components are available somewhere, but the problem that 

distracts them from re-use is the difficulty of obtaining them. The first group of developers 

are not interested in re-use in the first place. The second group may or may not be 

interested. However, the third group of developers are interested in practising re-use as 

they are aware of its advantages, but they suffer from not being able to obtain the 
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components easily. This research is targeting primarily the third group of developers by 

addressing the difficulties they currently encounter. 

Obtaining re-usable components involves the activities of searching, finding, and 

retrieving components from places where they are stored. Components stores are 

commonly known as repositories. If components are not organized and represented in a 

repository in a precise manner then obtaining them will not be trivial. Organizing 

components for re-use is a significant feature that a repository system must exhibit to 

support re-use.  

1.4 Repository Systems  

A repository system in very general terms is a place where data are stored and 

maintained for subsequent access. In software development, a repository is a commonly 

known place where re-usable components can be found. Practising re-use in software 

development requires the availability of a repository system to help obtaining components 

for re-use. 

Deciding whether a repository system is really necessary or not is, primarily, based on 

the number of components available for re-use [43]. Small numbers of components (e.g. 10 

components) may not need a complex repository system, a shared folder could be 

sufficient. However, if the number of components is large then a properly organized 

repository system is essential.  

Some repository systems are built privately within organizations and do not provide 

external access; only employees within that organization can access the repository. Other 

repository systems are in the public domain and open to more general access. Repository 

systems may vary from one organization to another, based on the needs that organizations 

want to fulfil. However, all repository systems must exhibit some common key 

characteristics including: 

• Organize components: if the number of components within a repository is large 

then a mechanism to organize components systematically is required. 

• Mechanisms to facilitate searching and browsing: a repository must employ a 

mechanism to search for and locate components of interest. It is desirable also to 

provide browsing mechanisms. 

• Adding new components: a repository system must be able to accept and organize 

new components. 
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• Provide descriptions for components: every component in a repository must be 

described by some means (e.g. textual description) to reflect the main purpose of 

generating them in the first place. The provided descriptions can be utilized to help 

re-users search for their desired components. 

• Provide a version control mechanism: components in a repository system may 

differ in versions. So a mechanism to control versions and differences between 

versions is useful in a repository system. 

Before further details of software repository systems are examined, it is appropriate to 

examine the nature of the re-usable software components that may be stored in repository 

systems. Many types of components can be kept in a repository system; these are discussed 

briefly in the next section. 

1.5 Re-usable Components  

Several types of components are produced throughout the process of software 

development: from requirements documents, specification documents, designs, plans, 

through to source code, binary libraries, and even test harnesses and test data. These types 

of component can be classified as high-level and low-level. High-level components include 

all components produced before the implementation stage of a software system (e.g. 

requirements, specification, and design). The low-level components are those produced in 

the implementation stage and in the stages thereafter (i.e. testing and maintenance). 

Theoretically, many components produced in a software development process could be 

re-used. Specification documents, for example, could be re-used in a development process 

that intended to build a similar system with some added functionality. Design patterns  

[55], for instance, are a type of component that can be re-used in software development 

within a design stage. Design patterns describe solutions to recurrent problems at the 

design level. So, one might re-use design patterns to help overcome system design 

problems. Source code can also be re-used from an existing system that do similar 

functionality as the one needed by re-users. Re-using source code can reduce the overhead 

of building a system as re-users will not need to write source code from scratch, but re-use 

the code that is already available to them.  

Re-using any components produced during the software development process could be 

beneficial, but the main focus in this research is in re-using source-code components. The 

term software components will now be used to mean source-code components throughout 
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the thesis. The term artefact will be used to refer to the different types of components in 

general (e.g. requirements, specification, design). The term component will be used to refer 

conceptually to a part of a system (e.g. library of functions, web service, design element, 

source-code component). 

1.6 Software Component Repository Systems 

Obtaining software components from a software repository system is one of the 

obstacles encountered by re-users  [138]. This problem is caused by the lack of sufficient 

categorization for software components inside repository systems. Obviously, software 

components cannot be re-used unless they can be obtained, and they need to be found with 

less effort than it would take to implement the desired functionality from scratch. 

Of course, currently available repositories employ some mechanisms to organize the 

software components they contain. However, the categories used to organize software 

components are very abstract in nature and can cause a large number of results to be listed 

under a single category. For example, in sourceforge.net (one of the leading open-source 

repositories) 3,351 open-source projects were listed on 12/2007 under the utilities 

category. One obvious problem indicated by this example is that the number of potentially 

re-usable candidates is large because the categorisation is too general, which would require 

the re-user to spend extensive time in locating suitable components for re-use. Another 

problem is that this category (i.e. utilities) is very abstract and may not reflect any useful 

meaning to re-users. This indicates that unless re-users are aware of the specific categories 

that classify software components, it can be extremely hard to locate re-usable source code, 

especially given the limited searching support provided by the current open-source 

repositories (usually limited to free-text searching and category browsing). The existence 

of sufficient and effective ways to group and organize software components within 

software repositories is a key aspect that eases finding source code, hence encouraging 

their re-use. 

Precise categorization of software components inside a repository system is necessary to 

achieve logical structuring and organizing of source-code components within a repository 

system, and hence to facilitate re-users in obtaining them. However, categorizing source-

code components is not always trivial in software because the discriminating 

characteristics of source code identities are ill defined compared to other engineering 

disciplines. For example, in electronics, a simple transistor can be identified by its I/O pins. 

Whenever an electronic component is described as having an Emitter, a Collector, and a 
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Base pins then it can be categorized as a transistor. This degree of precision, that specifies 

what a component “must have” to fit within a category, is not obvious in software, and 

there appears to be no standard mechanism for describing their characteristics. For 

example, what are the distinguishing characteristics by which components can be identified 

as JavaBeans? Or what are the characteristics that a parser component must have to 

achieve its parsing behaviour? Thus a means for identifying the characteristics that may 

allow discrimination of components, and hence form the basis for a categorization 

mechanism that a repository can use, is needed.  

Prior work (which will be discussed in Chapter 3) has attempted to establish a 

categorization for software components, although mostly based on trying to capture a 

component’s functional characteristics. Categorizing components by their functional 

characteristics is one of the obvious ways to organize software components in a repository, 

as functionality is likely to be the characteristic that re-users consider first, when searching 

for software components to re-use. Re-users might further apply filtering mechanisms to 

identify the most relevant components, but their primary searching criteria are likely to be 

based on functional characteristics. So, precise descriptions of component functionality are 

desirable in order to establish an organizational basis for a repository’s categorization 

mechanism. 

However, capturing and understanding complex functionality of software components is 

a significant challenging to software developers [48]. For high-level artefacts (e.g. 

specification) there are several attempts to capture descriptions of functionality in a formal 

manner, but they are not in widespread use. For source-code components, there is no 

appropriate way of obtaining key functional characteristics from source code. In addition, 

understanding the functionality of software components requires the presence of good 

documentation, whereas having well-written documentation is not guaranteed all the time 

especially in the case of software components in open-source repositories. Moreover, 

finding components that provide the required functionality is not enough alone to re-use 

the found components successfully as their architecture is also of importance. 

One requirement of an ideal repository system is that it should depend primarily on 

identifying components’ characteristics from the source code of the deposited components 

to facilitate their easy finding and subsequent re-use. The characteristics that can be 

identified from a component’s source code relate to the functionality that the component 

provides and also the architecture it conforms to. While capturing key functionality from 
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the source code is not possible at the moment, a first step towards achieving the optimal 

solution that the ideal repository system can provide, however, is trying to capture a 

component’s architecture from its source code. This research assumed that software 

components can be re-usable into a re-user’s system if they provide the required 

functionality and also conform to the system’s architecture at hand. This assumption is 

motivated by the fact that re-users might find, somehow, components that provide the right 

functionality (fit at functional level) and re-use them in their system but soon they discover 

that components raised compile-time, link-time, or run-time errors due to missing some 

required methods, for instance, or being written in a different programming language than 

the one required by a re-user, and hence caused an architectural mismatch (i.e. not fit at the 

architectural level). Recall the “vision” story at the beginning, Adam had found the 

required “parser” component but he could not re-use it directly as it needed some 

modification in order to satisfy his system’s architectural requirements (e.g. converted 

from FORTRAN to Java). 

Satisfying the functional requirements of a system is named as functional fit while 

satisfying the architectural requirements of a system is referred to as architectural fit. 

Achieving both functional fit and architectural fit is referred to as the perfect fit. 

Components can perfectly fit into a re-user’s system if they provide the required 

functionality (i.e. functional fit) and also conform to system’s architecture (i.e. 

architectural fit). This separation between functional fit and architectural fit can help the 

more accurate understanding of a component’s re-usability and, as a result, allow re-users 

to plan their modifications to components. For example, if developers are aware of what is 

required to modify a component conforming to the “Net-Beans” architecture to an 

“Eclipse” architecture then that would help re-using the component, as a result, the 

component can be fit architecturally after applying the necessary modification, and 

consequently is considered re-usable. An additional advantage of the separation between 

functionality and architectural aspects is that a tool might be used to perform the 

modification automatically either at the architectural level or at the functional level as both 

levels of fit are described precisely. This is what has been described in the story at the 

beginning when a FORTRAN component needed to be modified and converted to a 

component written in Java instead, also converting a component into a stand alone 

application. 

While satisfying the functional fit is not possible at the moment, this research concerns 

the characteristics of the architectural fit as the distinguishing characteristics that an ideal 
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repository system can utilize in order to identify and organize components automatically 

for subsequent re-use. The research also concerns addressing the architectural fit of 

software components as a starting point towards achieving the complete solution, in the 

future, by which components can perfectly fit into systems where they are re-used. The 

architecture that a component conforms to is named as its architectural type. The 

architectural type defines the characteristics that a component must satisfy in order to fit 

architecturally into a system. For example, one of the characteristics of a Java application 

architectural type is that it must have a method called “public static void 

main()”. The characteristics that are defined by an architectural type are distinct and 

different from one architectural type to another. As a result, it is useful to exploit the 

characteristics defined by an architectural type to build the basis for organizing software 

components inside a repository system. Therefore, addressing the architectural fit was 

considered as the topic in this research while the functional fit is left for future work.                    

1.7 Aim and Objectives 

This research is aimed to address some of the problems that hinder components re-use, 

and investigate potential solutions to optimise the support that can be provided to 

components re-users.  With that aim in mind the set of objectives for this research are: 

1. To identify the design of an ideal repository system. 

2. To investigate the possibility of characterizing components at the source-code level. 

3. To uncover the architectural characteristics and dimensions that correspond to fitting 

components architecturally into a system in order to address the use of these 

characteristics within a repository. 

4. To propose an approach, namely ArchInt, that formalizes the architectural interface in a 

low level of abstraction that reflects the precise characteristics of software components. 

5. To investigate the applicability of ArchInt in automating the process of categorizing and 

modifying software components. 

1.8 Thesis Outline 

The remainder of this thesis is organized into six chapters as follows. Chapter 2 presents 

the background work conducted in this research to set the context for the thesis. The 

chapter describes the potential problems encountered by components re-users and the main 

reason behind the presence of these problems and how they can be solved. The overall 

context of the thesis is described towards the end of the chapter. 
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Chapter 3 presents a classification and analysis of the main characteristics of the 

existing software repository systems – forming taxonomy of software repository systems. 

Using the taxonomy, a survey of software repository systems is provided. Toward the end 

of Chapter 3, an analysis of the current repository systems is presented which provides the 

requirements and justification for proposing the approach of this research. Also a 

discussion about the components categorizations available in the literature is given in 

Chapter 3. 

Chapter 4 draws upon related work into supporting software re-use, and describes a 

number of use-cases to gather the requirements of the approach proposed in this research. 

The chapter then proceeds and discusses concepts related to component fit and identifies 

the characteristics of architectural types. 

Chapter 5 introduces a prototype of a specification language namely ArchInt that 

formalizes some of the characteristics of architectural interface. The chapter also presents 

some studies for evaluating the generated ArchInt prototype and also to give a spin on the 

overall value of architectural interface. 

In Chapter 6, the overall notion of architectural interface is evaluated based on the 

experience gained from the studies conducted in the previous chapter. Also, the chapter 

presents the assessment of ArchInt prototype with a discussion of its observed limitations. 

The conclusion of this research is given in Chapter 7, where the achievements, 

contributions and problems are summarized. Additionally, the main research aim and 

objectives are revised and the usefulness of architectural interface as a paradigm to support 

software re-use is discussed and areas for future work are identified.   
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Chapter 2 - Background Research  

The previous chapter set the scene of the research by establishing the importance of re-

use in general to enhance software development, and identified some of the obstacles 

encountered by re-users that undermine the predicted advantages of re-use. 

This chapter describes the background work to set the context for this research. The 

chapter starts in Section 2.1 with a general discussion about the definition and history of 

re-use. After that, Section 2.2 identifies various artefacts that could be re-used to build a 

system. Section 2.3 describes the software components and identifies their characteristics. 

Then, Section 2.4 discusses the notion of component-based software development (CBSD) 

to identify the area that is the main focus of this thesis. Section 2.5 discusses the notion of 

software architecture and describes the significant impact of such architecture in tackling 

the problems encountered in the field of software re-use. After that, Section 2.6 describes 

the notion of open-source software and identifies the current state of re-use in that area. 

Finally, Section 2.7 sets the context for the research under consideration by identifying the 

key points from the background work that has been discussed in this chapter and mapping 

some of the terminology used in the literature to that which is used in this research. 

2.1 The History of Re-use  

Re-use is one of the old paradigms that were commonly practiced in many different 

professions. In car assembly lines for example, motors, body parts and many other 

components are re-used from one model to another. Rarely are new parts built from 

scratch.  Electronic engineers assemble their integrated circuits from resistors, transistors, 

diodes and many other re-usable components. They simply search for the required 

component on the corresponding data-sheets that explain the detailed specification of each 

type of component so that they can re-use them. 

In software, the concept of software re-use has existed since the beginning of 

programming in that programmers were re-using algorithms, sub-routines and pieces of 

code from previously created programs. The idea of re-use was firstly formalized by 

McIlory [103] who emphasized the need to componentize software systems. So, applying 

McIlory’s idea has led to us thinking about building software systems in a similar manner 

to building hardware systems (e.g. electronic circuits). Later on, more advanced research 

work emerged that discussed re-use and its possible directions, emphasising the 

significance of re-use. Nowadays, re-use has become one of the standard paradigms that 
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most of the leading software development corporations such as HP [62], IBM [154] and 

Motorola [79] have practiced in their software development processes while many others 

have reported successful experience with practicing re-use in their software development 

projects such as the examples provided in the C.R.U.I.S.E book [6]. 

The term, re-use, in its most basic meaning, indicates obtaining some of the already 

built parts with the intention of using them in the building of a new product. A diversity of 

descriptions are available in the literature about software re-use. Some of the commonly 

known descriptions are: 

Software re-use is a process by which organizations describe a set of systematic 

operation to generate, organize, and locate re-usable components for future development 

[111].  Sametinger [127] described software re-use as the process of re-using some already 

built components to construct a new system. Software re-use has also been described by 

Krueger [85] as the process of using existing components to build systems instead of 

building them from scratch.  

Software re-use is among the significant software attributes that permits software 

artefacts to be taken from one project and incorporated into another that shares similar 

characteristics [109]. Many types of artefacts can be re-used. The next section describes 

the different types of artefacts that can result from a software development process.  

2.2 Types of Re-usable Artefacts  

Artefacts might be described as pieces of formalized knowledge that can contribute to 

the software development process [33]. Artefacts might be a complete solution to a 

problem (e.g. a whole system) or they might be part of a complete solution. While re-using 

both might of interest to re-users, it is observed that re-using part of a system always raises 

problems as will be see in the coming sections. Therefore, this thesis is concerned with 

investigating the problems encountered when re-using parts of a system. 

 Many artefacts are produced during the different developmental stages of a software 

system. The following describes the different stages normally found in most development 

processes (e.g. Waterfall [136]) and identifies the possible artefacts produced within these 

stages: 

Requirements & specification stage: the main objective of the requirement and 

specification stage is to identify the problem to be solved and also to describe the possible 

solution to that problem. Many artefacts might be produced during this stage including 
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analysis, data dictionaries, validation schedules, diagrams and a requirement and 

specification document. 

Design stage: the design stage is the stage in which the solution to the problem 

described by the requirement and specification stage is analyzed. The design of a system 

represents the blueprint of the overall system’s organization that describes the architecture 

[14] of the system, its composing elements, and the way that these elements interact with 

each other. Several artefacts might be produced during this stage including design patterns, 

documents and diagrams. 

This research refers to such artefacts as high-level artefacts as it is believed that they are 

usually generated at a high level of abstraction. The artefacts generated during the 

forthcoming stages are referred to as low-level artefacts. 

Implementation stage: the main objective of the implementation stage is to write 

source code that reflects the design of the system being built, according to specific syntax, 

so that tools (e.g. the compiler and the linker) can parse the source code and interpret it 

into executable form (i.e. into binary code) that provides the real working functionality of 

the system. Several artefacts might be produced during this stage including components, 

either in the form of source code or binary code, complete systems and documentation. 

Test stage: the purpose of the test stage is to ensure that the code artefacts have passed 

through a number of tests in order to confirm their suitability and correctness in terms of 

working as expected. Several artefacts might result from this stage including a test suite, 

unit test document, test plans, test practices and some code review techniques.  

Theoretically, many artefacts produced in a software development process could be re-

used. Specification documents, for example, could be re-used in a development process 

that intends to build a similar system with some added functionality. Design patterns  [54], 

for instance, are a type of artefact that can be re-used in software development within the 

design stage. Design patterns describe solutions to recurrent problems at the design level. 

So, one might re-use design patterns to help overcome system design problems. The tests 

generated in the validation of the code of one project can be re-used in similar projects 

[36]. Re-using tests can increase the maintainability of software systems [3]. 

Although re-using high-level artefacts might be beneficial, several problems might be 

encountered by potential re-users. High-level components produced as part of the software 

development process normally suffer from redundancy, errors, disagreements and 

ambiguity [108]. This is mainly because they result from meetings, email discussions, or 
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interviews that are usually recorded in a natural language which is the primary form of 

communication between the stakeholders or used in legacy documents [149]. An additional 

problem that re-users of high-level artefacts may encounter is that one cannot guarantee the 

availability or accuracy of such artefacts at the end of the development process, due to their 

being lost or not appropriate for the system that is eventually produced. The only artefacts 

that can be reliably found at the end of a development process are the source-code 

components.  

Re-using source-code components is a particularly important and growing area of 

interest, especially with the pioneering developments of open-source software [20] that 

gives access to huge collections of freely available source-code components. One 

advantage of re-using source-code components is the possibility of re-users examining the 

source code for “Trojan horses” which form a threat to their systems. Another advantage is 

that the source code is a precise description of behaviour, unlike the natural language that 

might be used to describe behaviour in the high-level artefacts. Moreover, source-code 

components can be utilized by a repository system to be analyzed, checked, and organized 

automatically. Therefore, this research is concerned with the re-using of source-code 

components.   

Practicing re-use involves examining which re-use approach suits the need of the 

development process in terms of the ease of obtaining and customizing particular 

components [121]. Two main approaches are commonly used in the field of re-use, 

namely, white-box and black-box re-use [98]. White-box re-use involves re-using a 

component that have its source code available, hence the component can be modified to 

suite the needs of the developer. Black-box re-use involves re-using components as-is, 

without modification as the source code is not available. In practice, components that 

match the exact specifications of re-users are rarely available. Re-users need to modify or 

customize a component to fit it into their system.  In the case of white-box re-use, 

modification can be done by modifying the source-code, while in black-box re-use the 

modification is done by customizing components to match the desired specifications. Two 

types of modification have been identified, contextual modification and domain 

modification [121]. Contextual modification concerns modifying components to match the 

environmental and programming language requirements of the system to be built. Domain 

modification concerns modifying the functionality of a found component to satisfy the 

required functionality to be incorporated into a system. One potential advantage of white-

box over black-box re-use components is that if a component that matches the functional 
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requirements is found then, in terms of white-box re-use, the source code can be modified 

to match the new contextual requirements. This, however, is not possible in the case of 

black-box components. Hence, re-using source-code components (white-box re-use) can be 

advantageous over binary-code components (black-box re-use). 

Despite the many advantages of re-use in general terms, it is not widely practiced due to 

the difficulty of finding re-usable components [13]. The problem of finding them includes 

locating a proper source of re-usable components and also the ability to find suitable 

components that fit among the available ones. Another problem is related to quality 

assurance issues in the sense that component quality cannot be certified [145]. So, many 

aspects of software components need to be studied in depth in order to understand the 

characteristics of software components and consequently to establish a solution that tackles 

the problems encountered.  It is appropriate now to present the different meanings of the 

term “software component” in the literature before going further in discussing other 

aspects of background work. Hence, the next section presents a number of definitions of 

“software component”. 

2.3 Software Components  

A software component is defined variously in the literature, in that there is no single 

accepted definition of the term yet available [19]. The following descriptions are the most 

prominent ones within the software industry. Brown and Wallnau [22] described 

components as  a nearly independent and replaceable part of a system that satisfies some 

functionality in the context of a well-defined architecture. The component can be bound 

dynamically and accessed through a well-defined interface at run-time. Szyperski et al. 

[139] described a software component as a unit of composition with a specified interface 

and explicit context dependencies. The component can be deployed independently and 

subject to composition by a third party. Meyer [107] described a software component as a 

software element that can be used by other software elements (e.g. clients), possesses an 

official usage description, and is not tied to any fixed set of clients. Heineman and Councill 

[65] described a component as a software element that conforms to a component model 

[87] and can be deployed independently and composed according to composition standards 

without modifications. Yang and Ward [152] described a component as a coherent and 

configurable package that is available independent of the application in which it has been 

used with a well-defined interface that can be used in different contexts to interact and 

communicate with other components to form a system. Brown and Short [21] characterized 
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a component as “…an independently deliverable set of reusable services”. Hopkins [70] 

described a component as a physical package of executable code that exhibits a well-

defined interface. 

The different interpretations of a component seem to agree with regard to the 

description of the main characteristics of a component. All the descriptions agree that a 

component is a packaged part of a system that conforms to specific characteristics and 

provides some functionality. Moreover, the descriptions emphasise the necessity to have an 

interface that can achieve interaction between components and also define explicitly the 

dependencies of a component. The author’s understanding of a component, in a very 

abstracted view, is that components are just parts that fit into a system. They must exhibit 

characteristics through their interface to facilitate incorporation into a system and also for 

identifying them for re-use. 

2.3.1 Component Interface  

A significant part of a component is its interface. An interface describes the 

specifications of a component [139]. It separates the abstract specification of a component 

from the underlying implementation that specifies how a component can provide certain 

behaviour [21].  

Design by contract (DbC) by Meyer [110] is mainly concerned with defining the formal 

specifications of component’s interface in order ensure that the collaboration between the 

components of a system is correct. The notion of DbC guides the design of the software 

system by specifying a set of pre-conditions and post-conditions as part of the interface of 

a component. Pre-conditions are the requirements that must be made available to a 

component prior to be able to provide its services (e.g.  “You need a debit card to withdraw 

from a cash machine”). Post-conditions define what a component will provide once a 

condition is satisfied (e.g. “withdrawing money”). Brown and Short [21] described an 

interface as a way of summarizing the behaviour and the responsibility of the component. 

They used an interface to capture all the semantics related to the collaboration between 

components. The set of operations provided by a component is considered as part of the 

exhibited interface that a client or a system can use to obtain the required functionality of 

that component. Sametinger [127] described a component’s interface as a way to determine 

how a component can be re-used and composed  with other components in a system. An 

interface defines the set of operations that characterizes the behaviour of a component. 

Sametinger distinguished between three types of interface namely, data interface, user 
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interface, and programming interface. Data interface concerns the format and 

transformation of the data between components. User interface captures the protocol of 

interaction between a component and a user, for example through a simple command line 

or a graphical user interface. Programming interface captures the possible interactions 

between components and how they can be composed in a system. Arbab et al. [9] 

described the interface as a definition of the observable behaviour of components that 

contains five elements.  These are a name, a channel signature, a blocking invariant, pre-

condition, and post-condition. The name of an interface is used to uniquely identify an 

interface from other interfaces. The channel signature captures a set of parameters 

representing the data input and output of a component. The blocking invariant specifies 

special cases when a component needs to allow exceptions or perform a special action. The 

pre-condition refers to the required set of inputs that must be supplied to the component in 

order for it to operate. The post-condition refers to the set of values that are supplied by the 

component. They considered the component interface as a way to reason about the 

correctness of composition of a system from its components. Hondt et al. [69] described 

the notion of a re-use contract that concerns capturing the requirements of a component 

from other components in a system. They considered the interface as a way that not only 

captures the operations responsible for providing functionality, but also document what a 

component requires in order to work and what interaction structure is required in order to 

obtain a correct collaboration between the components of a system. An interface of a 

component captures the signature of operations without considering any semantics or type 

of information. The key contribution of the notion of a re-use contract is to detect conflicts 

in component interfaces, in that a conflict indicates that components cannot work together 

in a system. 

The author of this thesis describes the component interface abstractly as a contract of fit. 

An interface is, in fact, a kind of contract of communication between a component and a 

system. Both a component and a system must agree upon a defined contract in order to 

allow for a component to be re-used in a system and also to allow a system to use the 

component. The characteristics defined by an interface capture the functional and non-

functional aspects of software components. Based on the exhibited characteristics of a 

component’s interface, a component can be identified and re-used. The component’s 

interfaces can be represented directly in the code of the component (e.g. Java Interfaces) or 

by using additional files (e.g. a textual file) that describes the interface of the component. 
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2.3.2 Component Categorization  

In the literature, several works have provided a categorization of software components. 

An early categorization was provided by Booch [18] that suggested that source codes have 

categorized components into structure, tool, and subsystem.  Structure denotes components 

that are of an abstract data type (e.g. class). Tools are components that are denoted by an 

algorithmic abstraction. The subsystems category refers to a logical structure of 

cooperative components. Booch’s categorization seems concerned with identifying the 

granularity of the software component. So, structure represents individual classes or 

objects, hence can be considered as a fine-grained view of components. Tools represent a 

collection of classes or objects that interact to perform certain functionalities, hence can be 

considered as a medium-grained view of components. A subsystem represents a collection 

of tools packaged together as a library, hence they can be considered as a coarse-grained 

view of components. An interpretation different to Booch’s taxonomy could be that 

components might be of a single class, an application, or a library. Kain [80] distinguished 

between two types of components namely, specification and implementation. The major 

motivation behind proposing this categorization seems to be that Kain wanted to separate 

the interfaces of a component from its real implementation. So, specification captures the 

description of the characteristics (e.g. Java interface) while  implementation captures the 

description of the technical details behind a component and the way that component 

behaviour is implemented (e.g. Java class). Dusink and Katwijk distinguished between two 

types of components based on thread of control as active and passive components. Active 

components are those that originate a thread of control in a system. They could be the core 

components that instantiate other components in a system (e.g. the framework). Passive 

components are those that receive a thread of control to accomplish certain task such as 

libraries or databases. Heineman and Councill [65] categorized components into GUI 

components, service components, and domain components. Their categorization seems to 

distinguish between components based on their cost and complexity. Heineman and 

Councill suggested that re-using GUI components (e.g. buttons, forms) is the simplest ones 

among the other types of components and their re-use might increase productivity by 40%. 

Service components (e.g. database access) are more complex than GUI components, but 

their re-use can increase productivity by 150%. Domain components (e.g. payroll, bill 

calculation) are the most complex components among the other two. Their re-use can 

increase productivity by 1000%. However, their development requires extensive work.   
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The author of this thesis has categorized components based on their interfaces into 

single components, component structures (i.e. system) and applications. Detailed 

discussion of the different interfaces is given in Chapter 4. In the meantime, two interfaces 

are distinguished namely, external and internal interfaces. The single component category 

specifies two interfaces; an external interface that a component must exhibit to fit into a 

system, and an internal interface that specifies the dependencies of the components (i.e. 

sub-components). The system category describes two interfaces - an external interface 

which describes how a system can be used by a user, and an internal interface that 

describes the specifications that components must conform to. The application category 

describes only the external interface that describes how the application can be used by a 

user.  

Components are the cornerstone of the field of component-based software development 

(CBSD) that addresses aspects relevant to putting the components together in order to form 

a system.  The next section describes the notion of CBSD. 

2.4 Component-Based Software Development (CBSD) 

The notion of CBSD is not new. It was firstly coined by McIlory [103] who established 

the need to componentize software (i.e. building software from components) as a way of 

resolving some issues identified by the software crisis that concerns the case of building 

large and reliable software in a controlled way [148]. CBSD is concerned with the 

assembly of software systems from pre-existing software components. One of the main 

objectives of the CBSD approach is to promote the re-use of previously developed 

components to allow the building of a new system. The notion of building a system from 

components can reduce development costs and increase the quality of the final system 

[139]. 

Building a software system from re-usable components requires a clear understanding 

of the aspects related to the characteristics of the overall system, the characteristics of 

software components, and aspects related to obtaining and integrating components [101].  

A common model for CBSD is that a re-user who wants to add functionality to their 

system might find a component repository to search for re-usable components. The re-user 

then gathers their ideas about the characteristics of the component they are looking for. 

After that, the re-user types a search query that formulates their thoughts about the 

characteristics of the required component, either as free-text or in the form of a 

specification model [21]. Alternatively, the re-user could browse the available categories in 
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case they are not fully aware of the representation method [49] used by the repository to 

organize the component.  In this way, browsing can build up their knowledge [93]. In 

response, the repository may list a number of results that are relevant to what the re-user 

needs. Consequently, the re-user can examine the characteristics of every component on 

the list until they find a best match in terms of the required characteristics. Sometimes, the 

re-user might need to modify the component they have found in order to exactly match the 

requirements of the system to be built, so they might apply some adaptation techniques 

[16] to accomplish the modification. Once the component matches the required 

characteristics, it can be incorporated safely into the system.    

The above model identifies a number of aspects with respect to development according 

to the CBSD approach. The various aspects are discussed in the next sub-sections. 

2.4.1 Identification 

 Identifying components involves recognizing the potential of re-usable ones, based on 

their exhibited characteristics from a list of components. This activity involves searching 

and browsing software components. The selection of the appropriate component from a list 

of components is done by matching the characteristics of the component to the 

specifications of the system to be built. This requires a precise definition of the 

components’ characteristics in order to facilitate an understanding of them by their users 

and also to classify them for re-use [94]. The success and soundness of the identification of 

the component is a major factor for the success of the CBSD approach as components 

cannot be re-used unless they are found [7, 135]. The key element for the success of the 

identification activity is the availability of an effective organizing scheme with regard to 

the software component [101]. A detailed discussion about the available characterization 

organization schemes (i.e. classification schemes and indexing schemes) is given in 

Chapter 3. 

The software components can be identified in various ways. Some of the common ways 

of identifying components are based on matching their behaviour [117], their signature 

[156] and their specifications [66, 77]. Behavioural matching identifies components based 

on a set of predicates (i.e. pre- post-) that are used to execute components. The resulting 

values of the execution are then used as representative “terms” to identify the 

corresponding components. Signature matching identifies components based on the 

signature of the functions within a component and the type of parameters. For example, in 

ML a function “hd” can be identified by the type of its input and output parameters “a 
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list  a”. A whole component that is composed of several functions can be identified 

by the signature of the functions within the component. Specification matching is derived 

from the behavioural matching approach. However, it relies on predicates of the entire 

component’s operation. The set of predicates are written using formal specification 

languages such as Z language [137] or OCL [46]. 

2.4.2 Validation 

 Validation is a way of checking the characteristics of the component against a pre-

defined specification. Two kinds of validation are relevant to the CBSD paradigm - unit 

test and integration test [123]. The unit test is done by a component developer to ensure 

that the provided behaviour of the component is correct [35]. Testing a component’s 

behaviour could either be done as black-box testing by providing a set of inputs and 

examining the resulting output, or white-box testing by inspecting the source code [124].  

The integration test is undertaken by a component re-user to determine whether or not the 

component can interact with the other components in the system and is not going to raise 

any structural problems [72]. In addition, integration tests can be done in some cases to 

measure the quality of a component in order to decide whether or not the component can 

be trusted for re-use [107].  

2.4.3 Integration 

 The activity of integrating a component can be seen as a mechanical activity involving 

connecting components by means of matching their syntax and semantics to form a system 

[27]. Part of the integration activity is related to checking the compatibility of the 

components to match the characteristics of a system [38]. The main issue to address in this 

activity is related to solving potential mismatches [52] between components. One reason 

behind the occurrence of a mismatch in a component’s characteristics is due to the fact that 

the component’s producers may be unaware of the potential usages (i.e. context) that their 

component might be re-used in,  hence their assumptions are different from the 

assumptions considered by the components initial users [29]. Thus, it is extremely 

important that the software components are produced with a well-defined interface in order 

to understand the assumptions that components can match [65], and also can be connected 

with at runtime [114].  

In a system that is built locally, integrating heterogeneous component can be achieved 

using a wrapper or glue code to bridge the differences between the components’ interfaces. 
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So, if a component that takes two parameters as an input is composed with a component 

that provides three values as an output, then a glue code can be used to map the input and 

the output of the components.  In building a distributed system, the interaction between the 

components can be addressed using the notion of middleware (e.g. CORBA [134]) that 

unifies the components’ interfaces to enable their interaction across a network. 

2.4.4 Evolution 

This activity is concerned with replacing components from a system with other 

components that conform to the same interface, so that we can substitute the replaced 

component without affecting the other components of the system [10, 21]. The reasons for 

replacing the components could be to fix bugs in the system or to extend the functionality 

of the system by incorporating new components that provide the desired behaviour into it. 

Consequently, this activity is important in the notion of CBSD. 

2.4.5 Discussion 

With regard to the above aspects, integrating components is a significant issue that 

needs to be investigated in depth [142]. Addressing component integration is especially 

important when dealing with heterogeneous components, as they might cause lots of 

interoperability problems when re-users need to incorporate components into their systems. 

Components can either be integrated statically or dynamically [25, 109]. Statically 

integrated components are those that are bound by programming mechanisms (e.g. method 

invocation) at compile time and usually conform to an architectural style [56] (described in 

Section 2.6). The dynamically integrated components are those that are bound at run-time 

and they are identified by the services (i.e. behaviour) they can provide. 

Integrating components involves adapting components to resolve potential mismatches 

in the characteristics of a component and the characteristics of the system to be built. 

Adaptation refers to modifying the interface of the software components by means of using 

a wrapper, glue code, or a translator to eliminate the unnecessary behaviour of a software 

component and also to add additional characteristics to its current interface in order to meet 

the requirements of a re-user [21]. Specifically, the adaptation of the component is mainly 

concerned with solving potential interaction problems that are caused due to potential 

architectural mismatches between components interfaces [57]. 

Several attempts have been made to try to tackle the problem of integrating components 

in a system. Eclipse [31] has established a framework by means of plug-ins that 
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encapsulate components in order to unify their interfaces. So, different components that 

conform to different assumptions can be incorporated into an Eclipse if they are wrapped 

with the necessary plug-ins’ architectural characteristics. The Vienna Component 

Framework (VCF) [115] has established a framework similar to that of Eclipse, but its 

authors claim that it is has an advantage over Eclipse in the sense that it provides uniform 

access through different component models. VCF has defined general characteristics for 

software components that, they claim, are common among different types of components. 

These characteristics are: 

• Life-cycle: every component must implement a set of methods that allows a system 

to control it when it must be initialized and destroyed. 

• Persistence: this allows a component to be stored and retrieved from storage. 

• Method: this characteristic gives a handle to the real methods provided by a 

component that are responsible for functionality aspects. 

• Property: this characteristic allows for the manipulation of the component’s state. 

• Event: this characteristic allows components to be registered as listeners to be 

notified about events. 

Integration problems are experienced in various situations where the CBSD approach is 

used to build a system. One of the prominent examples that demonstrates this problem is 

the integration of Commercial Off the Shelf products (COTS) [26]. The problems 

encountered at integration time are primarily due to potential mismatches in the 

architectural assumptions between the components that are planned to be re-used and for 

the system to be built [133][56]. One may find, somehow, a component that seems to 

satisfy their functionality. However, that component does not fit into the system under 

development due to an incompatibility in the programming language used to write the 

component and that of the system, such as incompatibility in the operating system or the 

database schemes [56]. These incompatibilities are additional difficulties that a re-user 

might need to take into consideration when considering re-use. As a result, software 

components must define their characteristics through their interfaces in order to make the 

characteristics explicit for re-users wishing to identify a component from others [30]. 

The next section introduces the background work in the field of software architecture to 

give the reader information about how software architecture might affect components’ re-

use and the role of software architecture in tackling the problem of integrating components. 
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2.5 Software Architecture 

 People usually refer to the term ‘architecture’ to indicate the physical construction of a 

building in terms of external shape, and also how rooms are structured within that building. 

In software, the word ‘architecture’ is a term that is in general use, with a number of 

different interpretations. However, as an analogy to its meaning in civil engineering, it 

inspires the meaning of creating a product (software system in this case) from a number of 

selected components rather than building a single monolithic one. So, the way components 

must be incorporated, the order in which they must be placed, and the mechanism of 

interaction between them, are parts of what system architecture describes.  

Bas et al. [14] defined software architecture as the structure of a system that comprises 

software elements, their external visible characteristics, and that defines the relationship 

between them. IEEE 1471 [74] defines software architecture as “the fundamental 

organization  of a system embodied in its components, their relationship to each others and 

the environment, and the principles guiding its design and evolution”.  Jones [78] defined 

architecture as the structure that is composed of components and rules that establish the 

basis for the interaction between them. All the definitions have agreed upon the fact that 

architecture is concerned with the constituting parts of a system and the relationship 

between them. 

In the literature, many of the available sources have explained the significance of 

considering architecture in software development (especially in the CBSD paradigm). One 

reason for considering software architecture is to help our understanding of complex 

software systems [60]. Shaw and Garlan [133] suggested that architecture can be used to 

define the overall design of a system. Garlan and Perry [59] identified the benefits of 

considering software architecture in software development as providing support for re-

using, evolving, analysing, and managing software. Budged [24] considered software 

architecture to be a way of describing the constructional aspects of a software system at a 

high-level of abstraction (e.g. design stage). Allen [5] identified architecture as being the 

vehicle to communicate between the requirement and the implementation stages. Szyperski 

[139] suggested that architecture is important for establishing a context for software 

systems representing standards and platform requirements. 

Garlan et al. [56] identified a number of architectural characteristics that might cause a 

mismatch to occur in terms of component interaction within a system. These characteristics 

are: 
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• The infrastructure that a component is primarily built on. 

• Control issues of whether a component can generate a control signal or not. 

• The data type manipulated by a system and the way it is transferred between 

components. 

• The pattern of interaction between components. 

• The sequence that components must be instantiated and invoked with. 

From the re-users point of view, these characteristics are significant in order to identify 

whether or not a component can be re-used within their system and is based on an 

understanding of the different characteristics of the architecture to hand. Consequently, a 

component that supports a single thread of control will not be suitable for re-use in a 

system that assumes its components must be thread-safe. Also, a component that 

communicates through RPC will not be re-usable in a system that uses message passing to 

transfer data [37], hence a mismatch might occur.   

Yakimovitch et al. [151] refined the work of Garlan [56] and identified five variables 

that describe assumptions about components’ interactions, namely packaging, control, 

information flow, synchronization, and binding. Their main motivation was to establish a 

mapping between certain architectural assumptions and some real problems. They 

demonstrated that the defined variables can be used to classify different software 

architectures.  

Software architecture seems to consider another view of a system that is not tightly 

relevant to functionality. This view examines the structure of a system and tries to identify 

components and define the possible interaction that a component can have in order to avoid 

the occurrence of fault [90] due to a potential mismatch between components in a system. 

The development of the AESOP system [56] from large-scale components demonstrated 

the difficulty of incorporating components, and emphasised that the main reason for the 

observed difficulty is due to architectural mismatch between the various components. Even 

though the various components of the AESOP system were providing the required 

functionality as the developers needed, the integration of the various components to form a 

complete system was impossible without major modifications. The problems encountered 

by the AESOP developers was in favour of the assertion by Shaw [130] that considering 

functionality alone is not enough to successfully re-use components.  
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The core elements of software architecture are architectural styles and architectural 

patterns [25]. These two elements of software architecture are discussed in next sub-

sections. 

2.5.1 Architectural Styles 

The basic element of software architecture is represented by the notion of architectural 

styles that define a family of structures for software components to guide the design of a 

system. Garlan and Shaw [60] defined the vocabulary for architectural styles in order to 

understand the construction of a system. They defined the notion of components (e.g. 

COTS [26]) to capture functionality, connectors (e.g. shared memory, RPC, Network 

protocol [133]) to capture interactions among components, and constraints to define how 

components and connectors can be combined.  Later on, Shaw and Clements  [131] defined 

architectural style as set of design rules that identify components and connectors that make 

up a system, together with constraints that govern its composition. They characterized 

architectural styles based on: 

• The kind of constituting parts (components and connectors) 

• How control is transferred among components 

• Issues of how data is passed through the system  

• How control data interacts 

• What type of reasoning is compatible with a selected style 

 Their characterization is based on the coarse-grained description of properties and 

motivated by the need to discriminate between the organizational structure of software 

systems (i.e. styles) in order to help the software designer to identify a suitable style for the 

system that they intend to build. Moreover, their characterization is aimed at establishing 

uniform descriptive standards for architectural styles so they can be publicised among 

software architects. 

Mehta et al. [105] established a taxonomy for software connectors in order to 

understand the building blocks of the main constitution of component interaction (i.e. 

connectors) as this is a significant aspect to consider for accomplishing the successful 

integration of software components. They identified the major connector types as: 

procedure calls, data access, linkages, streams, events, arbitrators, adaptors, and 

distributors. The main motivation for their work was to define precisely the high-level 
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terms used to refer to connectors in a more meaningful way that can be physically 

observed. They have identified that one problem with the current approach with regard to 

software architecture is in representing the interaction of software components. 

Interactions are always represented at a high-level of abstraction at the design stage. 

However, interaction is hidden at the source-code level and one may not able to identify 

what part of a source code is concerned with the interaction with the other parts that are 

responsible for providing functionality. 

DeLine [37] identified two parts of a component; the functionality that can be provided 

by a component (named as ware) and the packaging that indicates the way that it can 

interact  with other software components (named as packager). The two parts, when 

combined, form a complete software component. DeLine has established a method known 

as Flexible Packaging, that takes the decisions about the components’ interaction out of the 

provider’s hand and places them into the hands of the component’s re-users. An 

assumption is made in their work that in using Flexible Packaging, the components’ seller 

needs only to concern themselves about the functionality of the software component; the 

packaging will be selected by the re-users when they acquire components. The main 

motivation for their separation is to reduce the difficulty of writing the packaging source 

code by a component developer.  As a result, a developer will focus only on the 

functionality aspects of the component they are building, while the packaging is addressed 

based upon the request of the integrator.  

When a component is integrated into a system it must match the characteristics defined 

by the architectural style of the system to be built [151]. The characteristics include the 

type of the component and the way that the system expects the components to interact. If a 

component conforms to different architectural styles than the one required by a system, 

then developers need to use techniques such as wrapping the component or writing a glue 

code in order to exhibit the characteristics that allow for its integration within a system. 

The availability of source-code is the prime factor in deciding upon the technique used to 

integrate components [130]. 

2.5.2 Architectural Patterns 

The notion of an architectural pattern is derived from the notion of design patterns [54] 

that are concerned with defining the organizational structure of a system. The architectural 

pattern follows a more precise path to define the structure of a system. It captures the 

recurrent form of the interaction between components and also the types of the components 
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selected in every pattern. Buchman et al. [129] defined architectural patterns as a way to 

express the fundamental structural organization of a system by identifying the set of 

components, specifying their responsibility, and laying down the rules that govern their 

relationship with one another. The architectural pattern helps software builders to 

understand how they need to organize their systems. A prominent example of an 

architectural pattern is the Model-View-Controller (MVC) architectural pattern that 

separates the presentation of data and its computational aspects. One significant motivation 

behind developing the notion of an architectural pattern is to support the inter-

changeability of the components of a system. The architectural pattern defines the 

components’ characteristics that distinguish it from other components in a system. The 

definition of the components’ characteristics is advantageous for supporting the mix-and-

matching of the components of a system in the sense that one component can be identified 

and extracted from a system and replaced with another that fits into its place without 

affecting the other components in the system.  

However, architectural patterns suffer from the ambiguity of what they really represent 

[11]. In addition, there is no single way to define an architectural pattern as every designer 

can define a pattern based on their perspective with regard to the construction of a software 

system.  This results in having a different view or examples of a single pattern. One 

potential reason that can cause the ambiguity in defining architectural patterns is caused by 

the fact that they are represented at a high-level of abstraction without considering any 

concrete representations of such patterns at the implementation level. Thus, various 

implementations might be available for the same architectural pattern. 

2.5.3 Architecture Description Languages (ADLs)   

ADLs are specification languages for defining the structure of software systems at a 

high level of abstraction by identifying elements and the relationship between them [32, 

55]. ADLs provide a description of the conceptual architecture of a system [104]. A 

general characterization of ADLs’ capability was given in [61]. ADLs aim to support 

architecture-based software development by establishing notations that are appropriate for 

defining system architecture and its constituting elements.  They formalize the definition of 

a system at the architectural level in a graphical way that can be communicated to humans. 

Moreover, instead of drawing boxes and lines that may not involve rules that govern 

connections between them (i.e. boxes and lines), ADLs provide a semantic check of 
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whether two elements can be linked together and what the requirements are that need to be 

satisfied in order to successfully create the links between these elements.  

ADLs are built on the notion of components, connectors and constraints that have been 

described in the software architecture field. They provide a basis for analyzing and 

verifying the design of a software system [61]. There are many ADLs available nowadays 

such as ACME [58], that can be used to represent the architecture of the system to be built  

(Darwin [34], Rapide [97] and many others).  ADLs possess several characteristics that are 

relevant to the CBSD field as many of them facilitate the automatic generation of glue 

codes to form a system [76]. Despite the variety of ADLs, they are not widely adopted by 

the software industry, because they are not general enough as they only support specific 

architectural styles [17].  

2.6 The Development of Open-source Software  

Open-source software [147] represents one of the most interesting and influential trends 

in the software industry over the past decade. The notion of open-source software 

development was firstly coined by the GNU project at MIT in the early 1980s. Their main 

intention was to encourage freedom in producing software systems [88], and also to 

compete with commercial software products [122]. In fact, commercial software 

organizations could not function without using open-source software as part of their 

products [20]. Today, many organizations are looking towards open-source software as a 

way of providing greater savings in their development costs, and many software systems 

such as Linux, Apache, Mozilla and Openoffice have been developed in this way. The term 

‘open-source’ refers to software in which the source code is freely available for others to 

view, use, execute, amend and adapt [88]. The open-source definition proposed by the 

Open Source Initiative (OSI) can be used to determine whether or not software can be 

considered as being open source. With regard to the definition of open-source, a software 

must satisfy a number of criteria including [44]: 

• It can be freely re-distributed. 

• The source code must either be included with the component or freely obtainable. 

• Re-distribution of modifications to the source code must not be restricted to usages 

or applications [51].  

Many open-source software hosting environments (i.e. repositories) exists on the 

Internet.  These include Sourceforge, Freshmeat, Apache, CPAN, RpmForge and many 
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others. These environments are places were software project developments are launched 

and contributors from all around the word participate in building software products within 

these environments. Contributors can communicate with each other by e-mail to exchange 

ideas, decisions and design documentation [20]. However, these open-source environments 

are not limited to the contributors who participate in building systems, but are freely open 

to anyone who might be interested in observing, learning, and re-using some of the 

available source codes. In this sense, these environments can be considered as repositories 

of source code products. So, open-source repository systems represent a rich resource that 

can be utilized by re-users to obtain re-usable source code due to the huge amount of 

source code available at no cost within these repositories. 

Based on the author’s practical experience of re-using open-source software, current 

open-source repository systems facilitate finding software components using free-text 

searching mechanisms based on matching words or phrases to the descriptions of software 

components or their corresponding source code. Many search engines such as Koders, 

GoogleCode, Krugle and many others can be used to facilitate searching through the 

source codes of open-source software in order to help find re-usable possibilities.  

Alternatively, a re-user could browse through a number of categories that organize 

software components until they find a potential candidate for re-use. These are the two 

methods used to acquire components in almost all the open-source repository systems. 

Further characteristics of open-source repository systems are given in Chapter 3 when 

discussing the characteristics of the Sourceforge.net repository system. 

In the literature, the major concern with regard to discussing the re-use of open-source 

software, focuses on the security and licensing aspects [20]. Addressing aspects such as the 

effective re-use of open-source software to improve software development is not 

considered in depth.  As a result, research in this area is still needed when it comes to 

utilizing open-source products for software development. 

2.7 Setting the Context of the Thesis 

The main theme of this research is a desire to utilize the architectural characteristics of 

source-code components in order to support the finding of re-usable candidates that can fit 

into the re-users’ system that is under development. Based on the work reviewed in this 

background chapter, the following key aspects are the main forces and motivations that 

drive this research: 
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1. The free availability of rich source-code components that resulted from the open-

source software movement. 

2. The support provided by open source software repositories is limited to string 

matching which is not very effective when it comes to obtaining re-usable 

components. 

3. The major problems that hinder re-use are related to identifying and integrating 

components into a system due to the potential mismatches between their 

characteristics and the characteristics expected by a system. 

4. The architectural characteristics are defined abstractly in the design stage and are 

not reflected precisely in the source code. 

So, this section draws on the different work discussed earlier as a context for this thesis.  

A problem encountered with component re-use is related to identifying the standards 

that components have to be conformed to, and also the dependency issue that is related to 

specific models [115]. Moreover, source-code components obtained from open-source 

repositories usually suffer from the absence of documentation that a re-user can examine in 

order to identify whether or not a component can fit into the system under consideration 

[121]. Furthermore, the developers of open-source software components are not normally 

available. The only thing that can be examined is pure source code. The current support 

provided by the open-source repository system is restricted to sting matching that may 

result in listing a large number of irrelevant results. As a result, an effective 

characterisation of source-code components is needed in order to refine the re-user’s search 

and to generate a list of more focused results. 

The approach adopted in this research is to characterize software components based on 

their architectural characteristics. The motivation for this selection is based on the author’s 

experience in finding components that have the required functionality but never work in 

the system to be built. This decision to consider architectural characteristics is motivated 

by Shaw’s argument that stated functionality alone is not enough and that packaging 

should also be considered [130]. 

The value of considering architectural characteristics appears at the time of integrating 

components to the system under development. Integrating components, as described 

earlier, involves an understanding the architectural characteristics of the software 

components, in order to identify whether or not a component can be re-used in a system 
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and is not going to cause a mismatch. However, architectural characteristics are always 

defined at the early stages of a development process (e.g. the design stage).  Not many 

details of the architectural characteristics are reflected in the actual implementation of a 

software system. The work by Shaw and Clements [131] identified the notion of 

components and connectors to classify different architectural styles. However, these 

terminologies (i.e. components and connectors) are very abstract and can only be used to 

define a system at the design stage. The work by Mehta et al. [105] identified a fine-

grained view of component interaction (i.e. connectors) in an attempt to reflect the high-

level principle of connectors with a physical meaning that can be observed during 

implementation. However, at the source-code level, one may not be able to tell whether a 

method in the source code is responsible for interaction (i.e. for the connector) or whether 

it provides functionality [37]. For example, if an interaction is defined between two 

components as a “method invocation”, then knowing this will not be of significance to a 

re-user who wants a precise specification in terms of how the interaction has been 

accomplished. Thorough characterization of components’ interaction is required in order to 

identify them in the source code [99]. 

The problem that high-level architectural decisions are not reflected precisely on the 

source code was addressed partly by DeLine [37] who established a distinction between 

the functional concern and the architectural concern of software components. However, 

DeLine’s approach focused more on addressing the problems of interaction between the 

source code responsible for providing functionality and that of the architecture. Moreover, 

DeLine assumed that the component should be made available to a repository as a source 

code that purely defines functionality. The source code responsible for capturing the 

architectural characteristics are left unspecified until a re-user describes the required 

architectural characteristics. Based on the provided characteristics, the component is then 

wrapped as necessary to match the characteristics of the architectural style of the re-user. 

Once a suitable wrapper has been generated, then both the functional and the architectural 

source codes are combined to form a complete component.  Although the work of DeLine 

is closely related to the work presented in this thesis, it may not be applicable in the case of 

open-source software components where all the source codes that are relevant to 

functionality and architecture are mixed together. A provider might provide a component 

that is composed of functional and architectural source code, hence violating the 

assumption made by DeLine that a component should only be provided as a “ware”. In 

addition, open-source software components usually lack any form of documentation that a 
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packaging specialist might use to identify the architectural source code from the functional 

one. Even though the specialist was able to use their expertise to identify the architectural 

characteristics and split them from the functional characteristics, it would be very difficult 

and time consuming.  

So, based on the above identified problems, an approach is needed to identify the 

architectural characteristics of source-code components, based on nothing but the source 

code itself. Currently, open-source software components are characterized by textual 

descriptions that reflect the behaviour of the software components. Very little effort has 

been made with regard to characterizing components based on their architectural 

characteristics. Even the available architectural characterizations are restricted to 

programming languages. The major aspects discussed in the literature regarding the re-use 

of open-source software tends to focus on the security and licensing aspects [20]. 

Addressing aspects such as effective re-use of open-source software to improve software 

development has not been considered in depth. Therefore, this research is concerned with 

identifying the architectural characteristics at the source-code level in order to solve the 

problem of architectural mismatch, hence encouraging re-use. This research proposes a 

particular approach, namely Architectural Interface, that is dedicated to addressing the 

problem as will be seen in Chapter 4. However, it is appropriate to mention abstractly that 

the nature of the architectural characteristics considered in this thesis is derived from the 

previous work in the field of software architecture that concerns how to avoid architectural 

mismatch between components. This research aims to represent some of the key high-level 

architectural characteristics in a way that can be examined in the source code in order to 

avoid potential mismatch. Considering source-code components to capture some of the 

architectural characteristics is useful, as the source code is a precise representation of the 

system’s design.  Garlan et al. [56] suggested that a way to avoid architectural mismatch is 

by explicitly defining the architectural assumptions of the software components, hence 

identifying the architectural characteristics at the source code level is in line with their 

assertion. 

 With respect to the terminologies used in the field of software architecture, two terms 

(i.e. architectural styles and architectural patterns) are discussed and linked in this thesis. 

The author understands architectural style to be a representation of a systems view in the 

sense that it defines the architectural characteristics that a system requires, while 

architectural pattern represents components’ view, as it defines the architectural 

characteristics of the components and their relationship. One architectural style can be 
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composed of a number of architectural patterns but not vice versa. As a result, architectural 

patterns can be considered as instances of an architectural style. Although the definitions of 

architectural styles and architectural patterns in the literature might seem similar, the 

author of this thesis observes that the architectural pattern identifies the characteristics that 

define the type of components at a high-level of abstraction. For example, architectural 

patterns define how a component can be a “Model” or a “Filter”. This characterization of 

component characteristics is not within the scope of architectural styles. 

This research has adopted a similar term with regard to the two terminologies. The term 

architectural interface is used to represent architectural style and the term architectural 

type is used to refer to architectural pattern. These two terms are identified because the 

high-level views established in the field of software architecture are not commonly used at 

the source-code level, hence avoiding possible confusion in terms of terminologies. 

However, the identified terminologies for this research fall in the same context as those 

identified by the field of software architecture (i.e. to define the architectural 

characteristics). 

2.8 Summary  

This chapter has reviewed the different work in the literature that forms the basis for 

this research. The chapter has defined the term ‘re-use’ and has identified the various re-

usable artefacts. The chapter then listed the different descriptions of software components 

and provides the description of components adopted in this research. After that, discussion 

about the notion of CBSD was undertaken and the different key activities that can be 

conducted in a CBSD were reviewed. Then, there was a discussion with regard to the field 

of software architecture to indicate the kind of characteristics that are of importance when 

considering the re-user. Finally, a number of key points were identified from the 

background work to describe a context for this thesis. 

The next chapter discusses related work in the literature with respect to the 

characteristics of the ideal repository system (as described in Chapter 1) over three 

dimensions, namely organizing scheme, re-factorization and the overall characteristics of 

repository systems. 
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Chapter 3 - Related Work 

The previous chapter discussed the background work conducted in this research to set 

the context for this thesis. It discussed the notion of CBSD and software architecture 

mapped the terminologies used in the literature to the ones presented in this thesis. 

This chapter discusses the related work in the context of the ideal repository system in 

order to identify the characteristics that are of importance to a repository system to support 

component re-use. This chapter starts by an overview in Section 3.1 that describes the 

characteristics of the ideal repository system and its potential users in order to set the 

framework for the conducted surveys in this chapter. After that, section 3.2 surveys the 

available organizing schemes of software components in the literature and analyzes them 

in the scope of the characteristics, described in section 3.1, of the organizing scheme of the 

ideal repository system. Section 3.3 discusses the available work in the literature regarding 

components re-factorization. Section 3.4 describes the survey of a number of key 

repository systems and analyzes their capability to support re-use as compared to the 

characteristics of the ideal repository system. Finally, section 3.5 draws the chapter to a 

conclusion and establishes the necessary link to Chapter 4. 

3.1 Overview 

Pohthong and Budgen [120] identified two strategies for re-use that a re-user might 

practice; one strategy is that a re-user searches for re-usable artefacts first to derive their 

decisions for developing a system and then based on what is found the re-user start the 

building of the system. The second strategy is that a re-user might establish a framework 

(e.g. Java abstract classes) of the system to be built first and then starts searching for 

artefacts that fit with the requirements of the system to be built. This research adopted the 

second strategy that assumes a re-user is going to establish a framework first and then 

search for artefacts in the light of the specifications defined by the framework. 

The vision story at the beginning of Chapter 1 described the support provided by the 

ideal repository system for re-use. As a way to express the various parts that are going to 

be introduced in this chapter in a precise manner, this section was intended to set the scene 

for the background work by illustrating the design of an ideal repository system. The 

envisaged design of the repository system that provides complete support for re-use is 

illustrated in Figure 3.1.  

 

 

36



Matching
Tool

Re-factoring

M
od

ify
\

E
xt

ra
ct

Send Data

DB

St
or

e

Provider

Matching
Tool

Re-user

Send Data

Deliver

Classify

Doc

Doc

Doc

Organizing
Scheme

Find

Deposit 

Retrieve

Engineer

Maintain 

 

Figure  3.1: Design of Ideal Repository System 
The illustrated repository system is composed of several components such as, 

organizing scheme, re-factoring tools, search engine, analyzing tool, matching tools, and 

database storage. The core elements of the repository system are the organizing scheme, 

matching tool, and the re-factoring tool, whereas the other elements are, somewhat, 

supporting tools. The main purpose of having a repository system is to establish an 

environment for supporting components re-use. The environment addresses human aspects 

and technical aspects. The human aspects concern the actors of the repository system, 

while the technical aspects concern the processes to be done inside the repository system to 

promote re-use. 

Brereton and Budgen [20] have identified two actors as a part for establishing a 

framework for component-based software development, namely, provider and integrator. 

The component’s provider addresses the aspects to ensure that the provided component is 

usable by a tool and can be easily understood by a component’s integrator. The component 

integrator concerns with aspects of finding re-usable components and solving potential 

functional or not-functional dissimilarity to the needed specification. The framework 

seems to establish a channel of communication between the provider and the integrator in 

order to facilitate better support for re-use. Vitharana [146] identified three actors for a 

CBSD environment, namely; component developers, application assembler, and customer. 

The component developers are those who build components and make them available for 

re-use. Application assemblers re-use components and integrate them into their system that 

is being built. Customers are those who only use the application as a whole to serve their 

purposes. DeLine [38] identified three actors for a CBSD, namely provider, integrator, and 

packaging specialist. The provider is the developer of a software component. The 
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integrator is the one who re-uses a component. The packaging specialist is an expert who is 

aware of a given packaging technology. 

Component’s integrator in Brereton and Budgen [20]  terminology is nothing more than 

a re-user who is trying to find some functionality to re-use into the system under 

development. This research adopted partly the two views identified by Brereton and 

Budgen [20] and Vitharana [146] (i.e. provider and re-user) in a more general manner. In a 

large development environment the separation between integrator and packaging specialist 

described by DeLine [38] might make sense, however, from a general point of view both 

actors (i.e. integrator and packaging specialist) are simply represented as playing the role 

of a re-user. So, this research identified three actors for the ideal repository system: 

• The component provider:  component providers could be the developer of the 

component being deposited or could be another repository system, for example 

linked to one of the open-source repository systems (e.g. Sourceforge.net). 

Considering component providers in a repository design is essential in order to 

understand the possible mechanisms by which components are going to be 

processed after being deposited inside the repository. For example, if components 

are supplied from another repository system or component providers were persons 

other than their developers, then there must be an automated mechanism employed 

in the repository design to extract the required details by the repository system from 

the deposited component for re-use. Whereas, if the providers were component 

developers then there might be a need to specify a set of questions that they could 

answer prior to being able to deposit the components into the repository. 

• The component re-user:  this user is concerned with obtaining components for re-

use. The activities that a re-user performs in order to obtain components include 

searching, selecting, verifying, and re-using.  The searching is done by providing the 

criteria that reflect the specification of the system to be build to a repository system. 

Selecting components concerns finding parts to fit into a construct of a jigsaw 

puzzle [66]. The re-user needs to verify that a component that is found in the 

repository satisfies the specification of the system to be developed in order to be 

able to re-use it [108]. After a component is verified as matches the desired 

specification, the re-user can then re-use that component by integrate it into the 

system under development. From the perspective of a repository system, a re-user’s 

view concerns the process of mapping, through re-factoring, what is inside the 
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repository to match their requirements and also delivering fully working 

components to a re-user. Mapping components to the re-user’s requirements is 

important to ensure that components conform to all the requirements of re-users. 

Delivering fully working components is important to re-users as components that do 

not compile, for instance, are of no value.   

• The repository engineer: this user is responsible for preserving the repository 

system in terms of maintaining the organizing scheme by allowing new classifiers to 

be added to the organizing scheme in order to ensure its flexibility. Also the 

repository engineer is responsible for ensuring the extendibility of the repository 

system by allowing new tools (e.g. re-factoring tool, compilers) to be added into the 

repository to extend its functionality. 

The technical aspects that relate to the internal processes (e.g. identification, 

modification, classification) within the repository system are discussed in detail in the 

remaining of this chapter.  

The work presented in this chapter concerned surveying the literature that corresponds 

to the identified characteristics of the ideal repository system to denote the extent to which 

current work achieved these characteristics. So, part of the surveyed work was considering 

the different characterization of software components in the literature in order to identify 

whether there is proper characterization that suits the need of the organizing scheme of the 

ideal repository system. The characteristics of an organizing scheme will be described in 

the next section and will form the basis for analyzing the surveyed work. 

3.2 Organizing Components  

The act of organizing components, in its very natural interpretation, is the process of 

grouping together components that share similar characteristics. The main purpose of 

organizing components is to explore and understand the various characteristics of 

components that re-users can utilize to filter their searching criteria to assist finding them. 

Organizing components is potentially useful in cases where the number of components is 

large in order to decrease the difficulty of finding a suitable one among a number of 

components. 

Observing examples of organizing components in the literature suggested categorizing 

the available approaches into two general types based on the way that classifiers are 

generated for organizing components: classification schemes and indexing schemes. 
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Classification schemes define classifiers through number of categories defined by human, 

usually referred to as facets [72] in the literature. The defined categories are resulted from 

thorough analysis by experts to an application domain to capture all the relevant 

characteristics of components. Components can then be organized based on similarity in 

their exhibited characteristics. Indexing schemes are built on generating classifiers based 

on recording occurrence of words or phrases in software components or their 

corresponding documentation and analyzing their semantical meaning to identify possible 

relationships between terms (e.g. using Visual Thesaurus [1]). Components are organized 

using indexing schemes based on identifying similarity in the representative terms of 

components. 

In the literature, classifying and indexing schemes are mixed together. Some authors use 

the term classification schemes to refer to what is described in the above paragraph as 

indexing schemes and vice versa. According to the ISO/IEC 11179 Metadata Registry 

(MDR) standard [74], classification schemes are categorized into: (i) keyword based, (ii) 

thesauri based, (iii) taxonomy based, and (iv) ontology based. Ostertag et al [118] 

categorized the different approaches of organizing components into: (i) free-text based, (ii) 

facet based, and (iii) semantic-net based. Milli et al [113] categorized classification 

schemes into: (i) keyword and string matching based, (ii) facet based, (iii) signature 

matching based, and (iv) behavioural matching based. Frakes et al [50] categorized 

organizing methods into: (i) free-text and keyword based, (ii) enumerated, (iii) facet based, 

and (iv) attribute-value based. Cechich and Piattini [29] have categorizes classification 

schemes into three types: (i) taxonomies and ontologies, (ii) semantic-net based, and (iii) 

learning based.  Interested readers can refer to the original references (i.e. [74] [118] [113] 

[50] [29]) to find descriptions of the various types of classification schemes.   

The above schemes can be mapped to the categorization proposed in this research as 

follows: 

• Classification schemes: taxonomy, facet based, enumerative, and attribute-value 

based. 

• Indexing schemes: keyword based, thesauri based, semantic-net based, ontology 

based, signature matching, and behavioural matching. 

There are some characteristics associated with both types of organizing schemes that 

can be used to discriminate between classification and indexing schemes.  Sections 3.2.1 
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and 3.2.2 (coming next) describe the characteristics of both types of organizing schemes 

and present a number of examples corresponding to every type. 

3.2.1 Classification Schemes 

The key characteristics of classification schemes include: 

• Identifying different interesting dimensions of software components that capture 

distinct view points about the components. For example, a classification scheme 

can define categories to capture functional characteristics, architectural 

characteristics, and usage related characteristics.  

• Adding new classifiers to a classification scheme can be simply achieved by 

considering a new category for the scheme. This allows classification schemes to 

work well in the case of classifying software as the variety of categories can help 

to ensure that at least one of the available categories in a scheme may match that 

of components re-users. 

• Classification schemes make generating hierarchies of types -a type can be any 

thing that has properties (e.g. human, car, system)- easier as it precisely describes 

the characteristics of a type. So, a general type can be split into more specific sub-

types by identifying the specific characteristics that are not part of a parent type in 

a hierarchy and also discriminate sub-types from each other. The tree of life is a 

good example expressing the idea classification schemes. So, a main type is 

Mammal that has, for instance, the characteristics: eat and drink. New sub-types 

called Animal and Human can be defined as inherited from the Mammal type 

which indicates that both Human and Animal can eat and drink. However, Human 

can describe some distinguishing characteristics that discriminate its sub-type 

from Animal; for example, one characteristic of Human being that Human can 

think while Animal cannot. So, the ‘ability to think’ characteristic distinguishes 

Human from Animal sub-types, and also indicates that Human is a new generation 

of Mammal that exhibits new characteristics not satisfied by Mammal. 

This section presents examples of a number of classification schemes identified in the 

literature for organizing components. 

3.2.1.1 Prieto-Diaz and Freeman Classification Scheme 

Prieto-Diaz and Freeman [122] established a classification scheme for classifying 

software components by means of identifying a set of facets to represent components. They 
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proposed six facets for the scheme, three facets for characterizing functionality and the 

remainder for describing the environment where components were originally used. 

The functional facets include: 

• Function, describing what components do 

• Object indicating object manipulations by functions 

• Medium indicating the place where action is executed. 

Whereas the environmental facets include: 

• System type, indicating functional or application-independent area 

• Functional area, indicating application dependant activities 

• Setting, indicating where actions are performed and application used 

Following this classification scheme, software components are classified based on 

selected vocabularies that represent values of their corresponding facets. The scheme 

allows re-users to provide a set of parameters to search through the classification scheme 

and selects and recommends software components that match exactly or closely to the 

provided parameters. The parameters are part of the interface used for the presented system 

[140]. For example, a certain component might be classified according to the tuple 

<compare, descriptors, stack, assembler, programming, software shop> that correspond to 

the values of the facets <function, object, medium, type, functional area, setting>. A 

controlled vocabulary is used to avoid the problem of synonyms that might cause different 

descriptions to be produced for the same component. For example, the descriptors <move, 

words, file> and <transfer, names, file> might be two different descriptors for the same 

components in term of functional facets. So if a component was classified by the first set of 

values of facets then the re-user who provided the second set of values may not able to find 

that component. Therefore, a thesaurus is used to unify the description of components to 

reflect the same meaning. So, if re-users type “move” it will reflect “transfer” and “copy” 

as they are the potential synonyms in the sense that all of the terms describe movement 

from one location to another. A weighted conceptual graph is used to measure closeness by 

conceptual distance among terms that relate to a facet to determine similarity between a 

query made by re-user and the actual descriptors for software components. 

 

42



3.2.1.2 IBM Classification Scheme  

IBM’s software development environment is a heterogeneous set of developers spread 

all over the world. They develop systems ranging from operating systems to IDEs, 

business and medical systems and each may be written in different programming 

languages. Building software with re-use has become common practice in today’s IBM 

software development [121]. Due to the diversity in nature of the development 

environment the facet based classification scheme is selected to classify component for re-

use. 

IBM adapted the facet approach proposed by Prieto-Diaz and added their own facets to 

classify re-usable components. Components in IBM are packaged with all the required 

information (e.g. integration instructions, documentation). The provided information can 

assist re-users to evaluate and understand components. A partial list of the IBM facets is 

displayed in Figure 3.2 [121]. 

A thesaurus is used to help unifying terms into consistent structures, so components are 

identified by a single value of facet (referred to as key in IBM terminology), and the value 

is used to identify a number of closely related terms that are marked as potential synonyms. 

 

 

Figure  3.2: Partial listing of IBM facets [121] 
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3.2.1.3 Sametinger Classification Scheme 

Sametinger [129] classified software components based on four facets: (i) programming 

interface, (ii) user interface, (iii) data interface, (iv) and component platform. The 

programming interface facet is concerned with the various forms of component 

compositions, and is considered to be one of the most significant aspects for component re-

use. Sametinger identified eight types of component composition: 

1. external/internal 

2. textual 

3. functional 

4. modular 

5. object-oriented 

6. sub-system 

7. specific platform, and 

8. open platform composition 

Each form of composition addresses some aspects that concern re-using software 

components. 

The user interface facet addresses the interactivity between software components and 

their end-users. Two types of user interface are distinguished: command-line; and 

graphical user interface. Sametinger claimed that components with command-line user 

interfaces are easier to re-use than components with graphical user interfaces. A possible 

justification of that might be that command line user-interfaces do not usually require 

special implementation of the protocols of interaction with users as opposed to graphical 

user-interfaces where a complex mechanism of interaction must be established. 

The Data Interface facet categorises the format and structure of the data that 

components take as input and provide as output. Data formats and structure are important 

as far as re-use is concerned. Components with different assumption about their data 

formats and structure might raise run-time errors indicating data mismatch. 

All the previous characteristics were considered by Sametinger as specific to 

components. Sametinger emphasized that matching a component’s specific characteristics 

is not enough to re-use components successfully in a system as they need to conform 

number of characteristics that are required by the system (e.g. different run-time 
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environment) in which components can work. So, established capturing the characteristics 

of the system where components can be re-used by the platform facet. The Component 

platform facet gives an indication of the kind of architecture that components were 

originally worked in. Five values are identified: hardware, operating system, programming 

language, frameworks, and programming environment. Identifying these values is essential 

in a classification schemes to support component re-use. 

3.2.1.4 Ali and Du Classification scheme 

Ali and Du [5] established a mechanism to classify software design artefacts, namely 

object-oriented design models, hence facilitating their re-use. Ali and Du considered 

design models as an abstract representation of software system at the design level – the 

design models are primarily created to help in understanding system structure and 

operations from the design point of view. The model captures the design of components in 

the blueprint of the system to be built, the services they provide, and the relationship 

between them.  

They proposed six facets to represent and classify design models for re-use, they are 

summarized in Figure 3.3 as appeared in the original reference [5]. 

 

Figure  3.3: Facets for describing a design mode [5] 
The description of the six facets is as follows: 

• Domain: this facet captures the problem space in general that is addressed by a 

design model. For example, the possible values for this facet could be “Banking”, 

“Industry”, “Hospitals” and so on. 

• Abstraction: this facet lists potential domain-specific terms that capture the possible 

key functional aspects of design models within different domains. For example, the 

terms “account”, “deposit” and “transfer” could be used to represent a design model 

in a banking domain. 
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• Responsibilities: responsibilities indicate the functional requirements of the system 

as whole. For example, the responsibilities of an ATM system can be described by 

the type of transactions a user can perform (e.g. deposit, withdraw, and check 

balance). This facet describes terms associated with actions that capture the 

functional characteristics of a design model. 

• Collaboration: every object model, that represents components in a system, must 

interact with other objects in a system. The interaction represents the contract 

between two objects. At the design level, collaboration between object models is 

captured by design patterns. Therefore, this facet captures the design patterns [55] of 

design models. 

• Design view: this facet captures the analysis and design decisions of classes of a 

system and their collaborations. For example, possible values of the design view 

facet can be class diagram, object diagram, sequence diagram, activity diagram, 

collaboration diagram, and stat-chart diagram. 

• Asset type: the type of software design artefacts is indicated in terms of their 

variability and granularity. This facet contains terms that reveal the type of software 

design models, and lists design models in terms of their size and complexity. 

Possible values for this facet could be system, framework, and template. 

Design models are classified based on terms identified from their design 

documentations that include the analysis and requirement specifications document. For 

example, the terms that represent the facet abstraction can be extracted from the class 

diagram. Also, the terms that represent the responsibilities facet can be obtained from 

different sources, such as important class methods, scenarios, sequence diagrams and use-

cases that represent the functional requirements of a design model. One significant 

advantage of Ali and Du’s classification scheme is its ability to capture the relationship 

between design models, so during retrieval of one design model from a repository, other 

design models that have some similar values of facets are retrieved for re-users as well. 

3.2.1.5 Ugurel Classification Scheme 

Ugurel et al [145] developed an approach for automatic classification of software 

components based on extracting characteristics related to programming languages and 

application domain facets. Their approach is centred on the Support Vector Machine 

 

46



(SVM) [16] developed for automatic text classification. The characteristics are selected 

using the notion of expected entropy loss [3]. 

The characteristics correspond to programming language facet extracted to tokens in the 

source code and specific words in the comments. Tokens are defined to be any alphabetical 

sequence of characters separated by non-alphabetical characters. Numerical values and 

operators are not considered as tokens. Based on the assumption that every programming 

language has some reserved words exclusively related to it, the programming language of 

components is identified by applying keywords matching against the list of keywords 

corresponding to the programming language facet.  For example, the words struct, void, 

sizeof, include, unsigned were extracted from C/C++ components, so they were used to 

programming language identification. 

The related characteristics of the application domain facet are extracted from words and 

lexical phrases from comments, README files in addition to the source code’s header file 

name. For example, Ugurel et al identified the occurrence of the word “calculator” for 

mathematics related applications, “high score” for games related applications and 

“database” for database related applications. 

3.2.1.6 Yacoub, Ammar, and Mili Classification Scheme 

Yacoub et al [152] classified characteristics of the components according to three main 

dimensions: (i) human-related characteristics, (ii) external characteristics, and (iii) internal 

characteristics. 

The human related dimension is informal description of components that concerns the 

following categories (i.e. facets):  

1. Age: this facet is to reflect the status of a component, whether it is newly 

generated or mature. Re-using newly generated components might involve some 

risk as there is no recorded re-use history, whereas mature components that have 

been re-used extensively are more desirable. 

2. Source: this category indicates the producer who developed a component, for 

example, IBM or HP. This characteristic is useful to re-users who are keen to re-

use components from selected suppliers. 

3. Level of re-use: this category specifies the type of component that can be re-used, 

for example, requirement & specification, design, code, and tests. 
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4. Context: describes the domain and applications in which components can be used. 

5. Intent: this facet describes the main purpose of generating components by stating 

the set of problems they solve. 

6. Related components: this facet lists components that solve similar problems to the 

one described. 

The second dimension that Yacoub et al considered in their classification scheme 

concerns the external dimension of software components that describes their interactions 

with other components and the underlying platform where components reside. The set of 

facets are as follows:  

1. Interoperability: this facet identifies the mechanism of interaction with other 

components in a system, and determines how to call/invoke a component (e.g. 

RMI, or RPC ) and the interaction direction (e.g. from client to server). 

2. Portability: this facet describes the mechanism by which components can interact 

with their underlying platform (e.g. hardware, operating system, sub-systems). It 

is a property of components that specifies what kind of systems components could 

work in. 

3. Role: the role of components specifies their actions within a system. So 

components could be either active, i.e. affect other components, or passive, i.e. 

affected by other components in a system.  

4. Integration phase: this facet specifies the time of integration to a system as either 

development-time where components are compiled in a system or at run-time 

where components can be dynamically loaded-to and unloaded-from a system.  

5. Integration framework: components are integrated together to form a complete 

system, however, sometimes components cannot interact directly with each other, 

but through an underlying framework that virtually connects components with 

each other to form a system. This facet identifies the underlying framework that a 

component uses to interact with other components in a system. Some examples of 

frameworks are: CORBA  [136], EJB [9], or web services [64].  

6. Technology: there was not enough information explaining what this facet means, 

however it is inferred that it relates to some aspects about the architecture of the 

system where components are used, for example, object-oriented system. 
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7. Non-functional features: this facet describes aspects other than functional 

characteristics of software components such as a component’s security, 

performance and reliability issues.  

The third dimension that is considered in the Yacoub et al classification scheme is 

components internal which describes the sub-components of components. 

1. Nature: this facet describes where components can be used in a development 

process. For example, specification components, design components, source-code 

components, or executable-code components. It seems that this facet is similar to 

the level of re-use facet identified in the human related facets as it discusses the 

type of components again. 

2. Granularity: this facet describes whether components are coarse-grained or fine-

grained based on their sizes (e.g. LOC) or based on component type as design 

artefact is considered as coarse-grained while source-code components are fine-

grained.  Yacoub et al referred to the work done by Digre [40] who classifies 

components from their business perspectives into enterprise, domain subsystem, 

domain object, and semantic primitives.  

3. Encapsulation: describes the decision hidden inside components such as 

specification decision, design decision, or implementation decision. 

4. Structural aspects: this facet describes the internal participating sub-components 

of certain software components. For example, a component in object-oriented 

programming might have the structure of collaborating sub-components 

represented as the number of classes structured according to the specific order 

required by the component. 

5. Behavioural aspects: Yacoub et al specified two values for this facet, stateless 

behaviour and retrospective behaviour. The stateless behaviour describes a 

component’s responses to specific set of inputs, while retrospective behaviour 

describes a component’s responses to a sequence of actions. 

6. Accessibility to source code: this facet makes the assumption that components are 

binary code that may or may not be attached to a source-code component. So if the 

source code was available with a binary-code component then this indicates the 

possibility of modifying the component.  
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3.2.1.7 Kienle and Muller Classification Scheme 

Kienle and Muller [83] established a classification scheme for characterizing software 

components. They assumed that components can be IDEs, domain-specific tools, 

application generators, compound documents, frameworks, and libraries. The Kienle and 

Muller classification scheme is composed of six main facets as follows: 

1. Origin: this facet identifies the original supplier of components; the supplier can 

be either internal or external. ‘Internal supplier’ indicates that the supplier of 

components is the same as the one building the complete system. External 

indicates that components are obtained from a third party. 

2. Distribution Form: this facet describes whether components are modifiable or not. 

The availability of source code was assumed as a factor to enable modification. So 

the possible values for this facet are black box, white box, or glass box. Black-box 

components indicate that source code is not available, while white-box 

components denote that the source code is available and also modifiable. Glass-

box components, however, indicate that the source code is available but it is not 

modifiable. 

3. Customization Mechanisms: this facet implies the possible customization that re-

users might apply to components. Two possible values are identified for this facet, 

non-programmatic and programmatic. Some examples of non-programmatic 

customization are editing parameters in start up and configuration files, or with 

direct manipulation at the GUI level. Programmatic customization involves 

mechanisms to extend the behaviour of components, for example, via API in Java. 

Programmatic customizations vary from black-box and white-box components, as 

in the former customizations could be done via API or scripting, whereas in white-

box components customizations can be simply done via source code modification. 

4. Interoperability Mechanisms: this facet describes whether components interact 

with other components or not. The possible values for this facet are:  no 

interoperability and interface interoperability. No interoperability indicates that 

components do not interact with any other components, they might only interact 

with the end-user. Interface interoperability indicates that components offer some 

interface for other components to establish interaction. Three types of interfaces 

are distinguished: data, control, and presentation. 
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5. Packaging: this facet denotes how components can be used. Two possible values 

are identified, stand alone component and non-stand alone component. ‘Stand 

alone component’ indicates that a component is an application; further refinement 

to this value can be whether the stand alone component is interactive or batch. 

Interactive means it interacts with users while batch indicates that there is no user 

interface for the stand alone component. The non-stand alone component value of 

the facet indicates that a component must be integrated, and might need to be 

customized, in a system to work. 

6. Numbers of Components: this facet identifies the number of components in a 

system. The possible values of this facet are: single or multiple. The value ‘single’ 

indicates that a system is composed of one important component; single 

component often referred to as a stand alone application.  The value ‘multiple’ 

indicates that a system is built from several components. Components in a system 

can be either homogeneous, meaning that all components in a system conform to a 

single interaction standard, or heterogeneous indicating that components in a 

system conform to different interaction standards or architectures. 

3.2.1.8 Morision and Torchiano Classification Scheme 

Morision and Torchiano [114] have established a classification scheme for COTS 

products. They classify the characteristics of COTS components according to four 

dimensions: (i) Source, (ii) Customization, (iii) Bundle, and (iv) Role. 

The first dimension (i.e. source) concerns defining where the components come from 

and the implication of obtaining that component from its supplier. This dimension involves 

the following facets: 

1.  Origin: this facet identifies how components are developed by their vendors. 

Possible values for this facet are: in house, existing external, externally developed, 

special version of commercial, and independent commercial. 

2.  Cost and property: this facet describes whether a component is obtained subject to a 

cost or free of charge. Also, the facet defines the form of the obtained component 

whether it is in source code or in binary code format. The possible values of this 

facet are: acquisition, licensed, and free. 
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The second dimension (i.e. customization) specifies how much a component can be 

modified and how much work is needed to modify the component. This dimension defines 

the following facets: 

1. Required modification:  this facet describes whether a component can be modified 

or not. The possible values for this facet are: extensive reworking, internal code 

revision, customization, parameterization, and minimal. 

2.  Possible modification: this facet refers to the possible internal customization to a 

component. The possible values of this facet are: none or minimal, 

parameterization, customization, programming, and source code. 

3. Interface: the facet the ways that a component’s interfaces are defined. Te possible 

values for this of this facet are: none, documentation, API, Object-oriented 

interface, and contract with protocol.  

The third dimension (i.e. bundle) specifies the form in which component are delivered 

to re-users. This dimension defines the following facets: 

1.  Packaging: this facet defines the architecture of the component. the possible values 

of this facet are: source-code component, static library, dynamic library, binary 

component, and stand alone application. 

2.  Delivered: this facet defines whether a component should be delivered or not. For 

instance, a Java compiler is not a component that needs to be delivered with a Java 

class.  Possible values of this facet are: non-delivered, partly, completely. 

3.  Size: developers who are concerned about the performance of their system’s 

execution might need to consider this facet. Possible values are: small that is less 

than 0.5 MB, medium that is between 0.5 MB and 2 MB, large that is of size 2 MB, 

and huge that is more that 20 MB. 

The last dimension (i.e. role) defines the characteristics that a component assumes about 

the system in which it is going to be re-used. This dimension defines the following facets: 

1.  Type of functionality: this facet specifies whether the functionality provided by a 

component is general over multiple application domains (e.g. spell checker, web 

browser) or it is specific to a single domain (e.g. banking). Possible values of this 

facet are: vertical and horizontal. 
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2.  Architectural level: this facet identifies type of a component from the architectural 

perspective. Possible values of this facet are: operating system, middleware, core, 

UI, and support. 

Figure 3.4 illustrates an example of classifying three COTS components using the 

proposed classification scheme as depicted in the original reference [114]. 

 
Figure  3.4: Example of Classifying COTS Components [114] 

3.2.2 Indexing Schemes 

The key characteristics of indexing schemes include: 

• Easily automatable as it is purely based on extracting terms and phrases and 

analyzing their semantic meaning. 

• Flexible in nature as there is no fixed set of pre-defined categories required to 

organize components. New indices are generated automatically whenever new 

ways of organizing components are needed. 

• Can describe complex relationships between indices which can be beneficial in 

finding more potential re-usable components. 

• Precise as they work at the source code level. 

This section presents examples of number of the indexing schemes identified in the 

literature for organizing software components. 

3.2.2.1 Maarek, Berry and Kaiser Indexing Scheme 

Maarek et al [101] proposed a mechanism to identify indices automatically by analyzing 

natural-language documentation, represented in the form of manual pages or comments 

usually attached with the software components, and using them to build free-text indices to 

characterize software components. Maarek’s approach is not concerned with extracting 
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indices from the source code itself (e.g. syntax of programming languages, method names) 

but depends primarily on the attached documentation. 

Maarek et al have built a tool, GURU, that extracts indices from the documentation 

associated with the software components to be organized utilizing information retrieval 

technique (i.e. free-text searching)  based on the notion of lexical analysis that is primarily 

based on Latent Semantic Analysis (LSA) [87] that describes the relationships between 

words. The frequency of appearance of words or phrases is considered as a measuring 

criterion to identify significant terms that might be useful for use as representative indices. 

Maarek also provided a mechanism to facilitate browsing components by clustering 

them in a hierarchy based on the identified indices resulting from document analysis. The 

similarity between components in the hierarchy is identified using a numerical measure 

called a dissimilarity index [101]. There is no category established by Maarek’s approach 

for browsing as the browsing is assumed to be done in a bottom-up fashion. Re-users are 

assumed to use the searching facility provided by the GURU tool to search components 

based on some criteria at first, if they do not find relevant results then they can browse 

through a component hierarchy starting from a component retrieved from the previous 

search that they believe has some relation to what they need and moving up towards the 

top of the hierarchy. For example, suppose that a re-user wants a component that performs 

the functionality “identify a process in UNIX”. Imagine that one of the retrieved results 

was “kill”, then the re-user can exploit that result as a starting point for browsing the 

hierarchy and explore components that are classified relevant to the “kill” component in 

order to find an exact or nearest match to the required functionality. 

3.2.2.2 Ye and Lo Indexing Scheme 

Ye and Lo [155] have developed an approach to index and organize software 

components automatically. They utilized the free-text indexing mechanism and the self-

organizing map (SOM) [85] technology, a mechanism used for organizing documents, for 

building their indexing scheme. 

The proposed approach is centred on extracting significant features (i.e. keywords) that 

reflect functionality from component descriptions and not from the components themselves 

(i.e. source code). They require that the descriptions attached to software components must 

be accurate in order for their approach to be effective. 
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Documents are indexed using free-text indexing mechanisms, and then vectors 

describing components are generated for each component. Elements within vectors 

represent the extracted features from component descriptions. Some features are 

significantly related to component functionality while others are less significant, and 

weighted input vector mechanism is used to specify the most relevant features that 

represent components functionality from those that are less relevant based on their 

significance to components. The significance of features is measured by counting the 

number of occurrences in the documentation attached to the components. Figure 3.5 

illustrates an example of feature weights in different UNIX commands using the weighted 

input vector mechanism is appeared in the original reference [155]. From that figure, it is 

observed that the most relevant functionality for the command sed is edit, cp is copy, 

whatis is manual, ex is edit, and vi is edit. 

 

Figure  3.5: Commands and their Feature Weights [155] 
After all features have been weighted, the generated vectors for various software 

components are deposited into the SOM as multi-dimensional vectors. SOM is capable of 

mapping multi-dimensional input vectors into a two-dimensional grid. So, similar features 

are organized close to each other on a grid after comparing the input of a vector’s features 

against a specific cell on a grid that is associated with n-dimensional reference vectors. 

Ye and Lo claimed that their approach supports flexibility, extensibility, and 

visualizability as follows: 

• Flexible as software components are not grouped and organized based on fixed 

categories, instead components can be grouped in different ways depending on their 

classifier’s perspective. 

• Extensible as it can add new classifiers to organize software components whenever 

new generations of components not belonging to any classifiers from the available 

ones in the scheme appeared. 
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• Visualizable as the resulting map and the semantic relationships amongst 

components can be clearly identified and illustrated. 

3.2.2.3 Tangsipairoj and Samadzadeh Indexing Scheme 

Tangsipairoj and Samadzadeh [142] have adapted the SOM technology and extended it 

to include hierarchal representations of data. GHSOM is a further enhancement over SOM 

as it concerns dynamic SOM modelling that can build a hierarchy of multiple layers of 

several SOMs. The depth of the hierarchy is determined based on the level of refinement 

that might be required by features of nodes in the first SOM. So the top level SOM is 

composed of coarse-grained features (i.e. keywords) while the low level SOM in the 

hierarchy captures more fine-grained features that are refinements of the top SOM. Figure 

3.6 illustrates the architecture of GHSOM as appeared in the original reference [142]. 

 

Figure  3.6: GHSOM Architecture [142] 
For example, the SOM at layer 0 can be used to organize components based on their 

subject areas (e.g. domain information). Every index of the SOM at layer 0 might be 

refined to another SOM at a lower level. So, if an index in the SOM at layer 0 is about 

banking systems then indices of the refinement SOMs at lower levels can represent 

information about types of accounts, names of branches, interest rates and so on. Each 

index then can be refined to a set of SOMs at a lower level as necessary.  

The refinement of features can help to capture more focused keywords to represent 

software components accurately, in addition, the hierarchical nature of GHSOM can help 

in relating components that belong to same domain. 

3.2.2.4 Lin, Amor and Tempero Indexing Scheme  

Lin et al  [96] established an automated indexing mechanism for organizing Java API 

classes in order to ease finding them for re-use. The main intention behind developing the 
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indexing mechanism for Java APIs was based on their belief that the numerous numbers of 

APIs available nowadays might hinder re-using them. As a result, Lin’s main contribution 

was to improve the efficiency of finding classes in the Java API as compared to browsing 

through the API’s documentations manually. 

Lin’s approach is mainly based on the Latent Semantic Indexing (LSI) approach [87] 

and provided as tool, Prophecy, designed to work as a plug-in for Eclipse IDE. Prophecy 

extracts details about APIs from their corresponding JavaDocs, in fact, Prophecy indexes 

API classes based on indexing their respective JavaDocs. The process of generating indices 

is as follows. A term representing a general concept that is identified as semantically 

common through different documents, after applying latent semantic analysis, is selected. 

After that, a number of representative terms are identified from the documents that are 

believed to be addressing different dimensions of the identified concept, these terms are 

not necessarily synonyms. Some of the representative terms could be the important terms 

appeared frequently in various documents. In fact, a key feature of the Prophecy indexing 

mechanism to identify relationships between indices is the consideration of words that 

appear frequently together in a document as a way to relate documents together. For 

example, if the words “String”, “Append”, and “Stringbuffer” appeared together 

continuously in several documents, then if a searching query containing the words 

“Append String” is provided then the set of documents containing these two terms, as well 

as documents that contain just the word “Stringbuffer”, will be retrieved to the re-user. 

3.2.2.5 Kawaguchi, Garg, Matsushita, and Inoue Indexing Scheme 

Kawaguchi et al [82] established a mechanism for organizing open-source software 

components automatically. Kawaguchi’s approach is one of originating categories and 

assigning a number of representative terms to every category. The approach generated is an 

attempt to generate a classification scheme automatically, however, due to the operational 

nature of generating categories the approach is nothing more than an indexing scheme. 

Kawaguchi’s approach is based on the following assumptions: 

• Categories generation is based on processing only source code. 

• Allow components to be categorized by multiple categories. 

• Categorizing terms are not pre-defined as they are generated automatically. 

Kawaguchi has built a tool, MUDABlue, that performs the generation of categories for 

organizing components. The tool is based on Latent Semantic Analysis (LSA)  [87] to 

 

57



identify relationships between terms. The MUDABlue tool targets variable names and 

methods names, referred to as identifiers, assuming that names of variables and methods 

should reflect the behaviour of source code. MUDABlue works as follows: 

1. The tool extracts all the identifiers from the source code.  

2. Count the occurrence of the extracted identifiers in all the available software 

components. 

3. Remove the identifiers that recorded the least number of occurrences from any 

further analysis. 

4. Apply LSA to identify the semantic meaning and relationships between identifiers. 

5. Generate categories based on the result of the LSA of identifiers, considering 

identifiers that recorded the maximum numbers of occurrence. Similar identifiers 

are then grouped under the newly defined categories. For example, the terms 

“gtk_window”, “gtk_menu” might indicate that both terms can be grouped by GTK 

as a category. 

6. Organize software components based on the identified categories. 

7. Generate a titled description for every category derived from the indices that 

recorded maximum occurrence. 

Figure 3.7 illustrates the steps followed by the MUDABlue tool to generate categories 

for components organization as illustrated in the original reference  [82]. 

 

Figure  3.7: Generating Categories [82] 

3.2.3 Analysis of Related Work  

In the scope of the ideal repository system, the organizing scheme for software 

components should satisfy to the following characteristics: 

 

58



• Automatable: the organizing scheme should allow classifiers to be generated 

automatically. Being automatable is important to make the organizing scheme self-

maintainable in the sense that changing (i.e. adding or removing) classifiers can be 

generated automatically; also automatability allows components to be identified and 

organized automatically. 

• Extensible: new classifiers can be added to the organizing scheme whenever new 

components that cannot be organized using the available classifiers in a scheme 

appear, so the scheme can support evolution. 

• Flexible: it is essential that the set of classifiers (e.g. attributes in classification 

schemes and terms in indexing schemes) are not fixed and vary amongst 

components belonging to different requirements. This makes room for an organizing 

scheme to organize components that are of different types and levels of abstractions 

(e.g. high abstraction such as design artefacts and low abstraction such as source-

code components). 

• Re-usable: new classifiers can be defined by re-using old ones and adding the 

necessary characteristics to them in order to reduce the effort of defining new 

classifiers. For example, if one wants to describe new classifiers that capture sets of 

characteristics that had only been defined partly by a classifier in a given scheme, 

then being able to add new classifiers to a scheme building on the ones already 

available is a desirable feature in the ideal repository system. 

• Describe relationships: it is a desirable feature that the organizing scheme of the 

ideal repository system can define the relationship between classifiers. One 

advantage of this is to retrieve potential components that re-users might also be 

interested in. For example, if a component has a design artefact that is organized 

under a design classifier then retrieving the component can also result in retrieving 

its corresponding design. 

• Consider Architecture: in some cases, a component re-user might find a component 

that seems to be re-usable into their system as the component they found in a 

repository provides similar functionality as they need. However the re-user 

discovers later, when integrate the component into their system, that the component 

does not fit into their system due to architectural mismatch as discussed in Chapter 

2. As a result, considering the architectural characteristics of software component is 
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important aspect to identify in an organizing scheme in order to understand the re-

usability of software components.  

• Source code availability: there might be cases where a re-user may find a 

component that satisfy their functional requirement but conform to different 

architectural requirement that they need. If the component can be modified to satisfy 

the architectural requirements of the re-user then it will be a perfect fit. The 

modification cannot be applied unless the source code is available. So, considering 

the availability of source code in an organizing scheme is useful to inform the re-

user if the component can be modified before extracting the component from a 

repository and try to find out whether it is modifiable or not themselves. 

Table 3.1 describes a summary of analyzing the examples of classification and indexing 

schemes against the characteristics required for organizing components in the ideal 

repository system. 

Table  3.1: Analysis of Organization Schemes 

Automation  

           Satisfied 

          X Unsatisfied 

           ?  No enough details  

 

G
enerate 

classifiers

O
rganize 

com
ponents

Extensibility 

Flexibility 

R
e-usability 

R
elationships 

A
rchitecture 

Source code 

Prieto-Diaz & Freeman X   X X ?   

IMB X   X X ?   

Sametinger X X  X X X  ? 

Ali & Lu X X  X X X  X 

Ugurel X X  X X X   

Yacoub et al X X  X X X  X 

Kienle and Muller X X  X X X  X 

C
lassification 

Morision and Torchiano X X  X X X  X 

Maarek et al     X ? X  

Ye and Lo     X X X  

Tangsipairoj & Samadzadeh     X X X  

Lin et al     X  X  

Indexing 

Kawaguchi et al     X  X  

Table 3.1 shows that the classification schemes generated by Prieto-Diaze & Freeman, 

and the one generated by IBM can organize components automatically while the other 

classification schemes cannot. The reason for that is that both classification schemes are 
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implementable while the other classification schemes are merely abstract and not 

implementable. The Prieto-Diaze & Freeman and IBM classification schemes identified 

categories in which their characteristics can be identified from the source code; the other 

classification schemes, however, lack precise characterization that can reflect the 

characteristics of concrete components. In contrast, all indexing schemes are 

implementable and can organize software components automatically. 

With respect to the extensibility characteristic, classification schemes are useful to 

classify new evolutions of software component as classification schemes are built on 

selecting independent categories, hence new categories can be added to classify new 

generation of components. Indexing schemes are extensible as well, as new representative 

terms can be generated whenever there is a need to index a new generation of components 

that cannot be indexed using the current indices in a scheme. 

The table denotes that classification schemes are not flexible; all schemes must be 

associated with a fixed set of categories for classifying components. The set of categories 

might also require a fixed set of values in some cases but it is not necessary. Indexing 

schemes are, however, flexible. There are no categories to use for indexing components as 

components are organized on the basis of some keywords that are selected based on 

monitoring their significance in a certain domain. The selected indices can be changed as 

necessary. 

Regarding the support for re-use, none of the identified classification schemes support 

this characteristic. Classification schemes define facets that are distinct from each other 

and never define any relationship between them. Indexing schemes do not support re-

usability as they do not define categories in the first place. Some indexing schemes might 

involve hierarchical structure of terms; however, the relationships between terms are based 

on lexical meaning of terms which may differ from one lexical analyzer to another. 

With respect to the support for capturing relationships between classifiers, it is not clear 

whether the classification schemes developed by Prieto-Diaze & Freeman and the one 

developed by IBM support this characteristic. Both classification schemes employ LSA 

which describes relationships between terms, but it is not obvious whether these 

relationships are utilized to draw links between categories or not. None of the other 

described classification schemes support capturing relationships between categories as 

categories are completely independent of each other. Indexing schemes vary, some 

indexing schemes do not support this characteristic, such as the work by Ye & Lo, and 
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Tangsipairoj & Samadzadeh. The work by Maarek neither explains this feature nor 

provides enough information to indicate whether the approach can support capturing 

relationships between indices or not. The work by Lin et al and also the work by 

Kawaguchi et al describes explicitly that their approach is capable of capturing 

relationships between classifiers by identifying terms that appear together in different 

documents.  

With respect to considering the architectural characteristics, all the classification 

schemes consider abstractly some architectural characteristics that relate to the system in 

which a component was developed to work in. In contrast, none of the available indexing 

schemes have considered any architectural characteristics. A possible reason for not 

considering architectural characteristics by any of the indexing schemes seems to be 

caused as architectural characteristics can not be represented using simple keywords. 

Keywords are used by the various indexing schemes manly to represent functionality. 

With respect to the availability of the source code, the indexing schemes are fully 

automatable and identify precise set of terms that can be checked in the source code of a 

component. As a result, all the indexing schemes assume the availability of source code in 

order to organize components. In the contrary, not all the classification schemes require the 

availability of source code as they characterize components abstractly that only human can 

read and understand. However, the classification schemes by Prieto-Diaze & Freeman, 

IBM, and Ugurel have defined some representative terms that can be checked in a 

component’s source-code to identify and classify components. So, their approaches 

required the availability of source code in order to organize components. 

3.2.4 Observation 

Classification schemes are useful to capture different interesting dimensions about 

software components in order to allow for understanding of components by re-users and 

also to facilitate their re-use. However, classification schemes lack the tool support to 

achieve automatic generation of classifiers for software components, which is one the 

desirable features for the ideal repository system. Most of the work presented in the 

classification scheme section showed the necessity of involving experts to do extensive 

domain analysis for the purpose of generating classifiers for component classification. In 

contrast, indexing schemes are fully automatable; human involvement is not necessary in 

the process of generating classifiers for software components. The examples presented in 

the section on indexing schemes expressed the feasibility of automating the process of 
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generating classifiers for components. However, all the generated classifiers are semantic-

oriented which is primarily based on extracting terms and identifying their semantic 

meaning and relationship with others potential terms. A problem with this approach (i.e. 

indexing scheme) is that it cannot capture other aspects about components other than what 

is implied by the semantic meaning of terms. For instance, one example of classification 

schemes described a category to capture the possible interaction between components; 

interaction types cannot be identified using regular semantic analysis employed by most of 

the available indexing schemes. As a result, indexing schemes may not be sufficient for 

general component organization. 

In general, the characteristics of classification schemes imply analytical perception 

while indexing schemes imply easiness. So, what is needed to achieve an adequate 

components organization in the ideal repository system is a scheme that captures the 

capability of both organizing schemes (i.e. classification and indexing schemes). 

Another interesting observation with respect to the characteristics considered in the 

different classification schemes is that the characteristics are not solely functional based 

but there are also non-functional characteristics (e.g. architecture, performance, human 

related) that have been considered. Many of the classification schemes have defined some 

architectural characteristics to classify software components. For example, the 

classification by Sametinger defined different types of component interfaces that are not 

relevant to any functional aspects. Also, IBM used operating systems as a distinguishing 

architectural characteristic to classify software components. Observing the consideration of 

many architectural characteristics in the available classification schemes indicates the 

importance of defining the architectural characteristics of software components in order to 

support obtaining them; hence the observation is a valuable justification for the 

significance of the approach of this research (to be described in Chapter 4). 

3.3 Re-factoring Software Components 

A desirable feature that the ideal repository system ought to support is to allow mapping 

what is deposited (e.g. software components) into the repository system by providers (i.e. 

provider’s view) to what re-users actually need (i.e. re-user’s view). The mapping between 

provider’s view and re-user’s view concerns two dimensions:  

• Modifying the component deposited by a provider to match the requirements needed 

by a re-user. 
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• Extracting a component from a standalone application with all its necessary 

dependencies.  

 Apparently, the mapping should consider the non-functional characteristics of a 

software component and not the functional characteristics, because if a component’s 

functionality was not the one required by a re-user then there is no point in applying any 

modification to the component in order to reduce the gap between the provider’s view and 

that of the re-user. So, if a provider supplied a component that matched the functionality 

that a re-user needed but was different in some non-functional characteristics, then 

applying modifications to the component to bridge the gap between the provider’s view 

and the re-user’s view, attempting to match the non-functional characteristics, can increase 

the re-usability of the supplied component. This mapping between the provided view and 

required view can be achieved by employing an advanced re-factoring mechanism. 

Re-factoring is commonly known as the process of changing the internal structure of 

components without affecting their external behaviour [49]. Re-factoring is applied 

primarily for the purpose of optimizing components by removing unnecessary code (e.g. 

duplicated or dead code) [49] or re-structuring the code of software components [44]. It is 

been claimed that optimizing components can improve their quality (e.g. extensibility, 

modularity, re-usability, complexity) and also reduces maintenance cost  [107]. One 

example of a kind of re-factoring is changing a variable name into something more 

meaningful, another example could be to turn the code within an “IF” block into a method 

or a function or even replacing the whole “IF” block with polymorphism (specific to 

object-oriented programming) [49]. 

A survey [107] of component re-factoring has captured various re-factoring 

mechanisms aimed at optimizing components. Beck and Fowler [49] defined re-factoring 

as the process of removing “bad smells” (e.g. duplicated source code) from software 

components. They described bad smells as “structures in the code that suggest (sometimes 

scream for) the possibility of re-factoring”. They established 22 re-factoring mechanisms 

for overcoming bad smells. Balazinska et al [13] used a clone analysis tool to identify 

duplicated code that indicates re-factoring candidates. Ducasse et al [41] established an 

approach to detect duplicated code within software components by employing a language 

independent and visual approach. 

Other work [148] [97] has established re-factoring mechanisms to generalize 

components in order to make them re-usable by tackling the problem of coupling between 
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software components. A number of studies [103] [24] [69] [46] have established re-

factoring mechanisms to assist in the identification of design patterns from software 

components as a way of identifying design decisions from components and mapping them 

to the design stage. 

The intended meaning of re-factoring in the ideal repository system has commonalities 

and slight differences to the more general perspective of re-factoring identified in the 

literature. The commonality is that both perspectives (i.e. the ideal repository system and 

the work identified in the literature) propose that component functionality is unaffected by 

any re-factorization. However, the difference is in the purpose of re-factorization. As stated 

at the beginning of this section, the ideal repository system employs a re-factoring 

mechanism to enhance re-usability of a component by bridging the gap between the 

provider’s view and the re-user’s view, whereas the purpose of re-factoring in the literature 

is primarily to optimize the performance and maintainability of a component  [49]. The 

few works (e.g. [148] [97]) that consider increasing component re-usability by re-factoring 

components are concerned with re-use in general term and not similar to the view adopted 

by the ideal repository system. The intended meaning of re-factorization is in line with the 

notion of “packaging specialist” proposed by DeLine [38], but re-factoring is intended to 

automatically provide the necessary characteristics for fitting components into a system. 

Therefore, there is a need to establish a new re-factoring mechanism that satisfies the 

requirement of the ideal repository system. As a result, establishing a mechanism to 

support the requirement of re-factorization in the ideal repository system constitutes part of 

the investigation in this research. 

3.4 Software Repository Systems 

This section surveys the related work in the literature that concerns establishing 

repository systems to support re-use, and also compare the characteristics of the developed 

repositories in the literature against the characteristics of the ideal repository system to 

evaluate the extent to which they achieve the ideal characteristics. 

3.4.1 Overview  

The term “repository” is sometimes used to mean a search engine. Although repositories 

usually have their own search engines, it is a place where data can be deposited, organized, 

and retrieved, whereas a search engine is nothing more than a mechanism to identify, 

according to certain criteria, items stored inside a repository. 
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Many repository systems are available. Some are in the public domain, such as open-

source repository systems, while others are private to an organization. A number of key 

repository systems are discussed in the next sections. 

3.4.1.1 +1Reuse Repository System  

The +1Reuse repository system was developed by the +1 Software Engineering 

Corporation [65]. It supports re-using several types of artefacts such as designs, 

documentation, code, header files, test cases, test scripts, test results, and modelling 

information. +1Reuse repository stores and organizes projects corresponding to building 

systems. Every project is considered as a library of re-usable artefacts. +1Reuse repository 

supports re-using sub-modules (e.g. components from a system) of projects. Re-users can 

select an artefact from a project within the +1Reuse repository and the repository will 

download the selected artefact and all its associated files to their directory, which is a 

useful characteristic for re-users as it saves them the effort of figuring out dependencies 

manually, and resolves any name duplication problems. The references for this repository 

provide little details about the mechanisms used to organize projects and how re-users can 

search or browse projects to find re-usable artefacts. 

3.4.1.2 CodeFinder-PEEL Repository System 

CodeFinder-PEEL [68] is a repository system for organizing source code components 

written in the Lisp programming language. The designers of the CodeFinder-PEEL 

repository system identified three key characteristics that they believe must be supported 

by a repository system: 

1. Utilize a tool to generate initial indices for organizing components starting with a 

number of randomly selected components. 

2. Provide flexible mechanisms to search and browse the repository. 

3. Tools to refine and adapt indices as re-users work with the repository. 

The repository system organizes components by applying an automatic indexing 

mechanism, using a tool called PEEL [68] that performs the necessary latent semantic 

analysis (LSA). The PEEL extracts terms from definitions of functions, variables, 

constants, and macros of the source code and analyzes the extracted information to 

generate representative terms (i.e. indices) and identifies the possible relationships between 

the indices. The resulting indexing scheme is not final as the repository supports the 

facility to allow re-users to refine indices as they search for re-usable components, and thus 
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organizes components differently based on the refined terms. So, re-users are able to add 

new terms and remove terms that they think are not relevant for representing components. 

The repository builders claimed that a major advantage of employing such an adaptive 

indexing mechanism [143] is to avoid the cost of building complex organizing mechanism 

at the beginning of building the repository system, also to allow the repository to support 

evolution.  

The CodeFinder-PEEL repository system assists re-users in selecting terms that are 

semantically near to what they typed in the search query. This feature is useful to teach re-

users about the vocabulary used in the repository system to represent components and also 

to reformulate their search queries to specify precisely the required component. 

3.4.1.3 The WebComposition Repository System 

The WebComposition repository [54] system is aimed at supporting re-use of 

components for building web application systems based on the Components-Based 

Software Engineering (CBSE) approach  [141]. The repository is composed of three main 

elements: 

• Components store. 

• Metadata store. 

• Searching and browsing tools. 

The Components store is a persistent storage place (e.g. database) that is responsible for 

storing and maintaining components. The Metadata store is responsible for storing data 

about components that is used by the organizing scheme of the repository system for 

organizing components. The searching and browsing tools are responsible for querying and 

inspecting the repository in order to find components of interest. 

Components within the repository can be organized in different ways based on the 

Metadata store used for organizing schemes. One way of organizing components that a 

Metadata store might describe could be by the kind of information available with 

components such as their design, history, interactions with other components, semantic 

information, and documentation. This type of organizing scheme takes the form of a 

classification scheme in the sense that a number of categories should be defined by experts 

to capture the different dimensions of components. Another way employed by the 

repository is an adaptive indexing mechanism [143] that indexes components inside the 

repository based on learning from the actions of re-users recorded against using the 
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searching or browsing tools. The repository system is extensible in the sense that it allows 

new Metadata stores (i.e. classification and indexing schemes) to be added for classifying 

or indexing components differently. In addition, new tools can be added to the repository 

to help searching or browsing for components.  

3.4.1.4 Sourceforge.net Repository System 

Sourceforge.net is one of the largest open-source software development repositories. It 

provides free hosting to open-source software systems. Some of the organized systems in 

the repository are in beta versions and others in their final version. Sourceforge.net 

employs a version control system to manage storing and tracking all changes applied to 

source code by developers. The repository system established a classification and indexing 

schemes for organizing software components. 

Sourceforge.net classifies systems based on some facets including: 

• Topics (e.g. security, games, Database). 

• Operating systems. 

• Programming languages. 

• License. 

• Intended audience. 

• User interface; translations. 

• Database environment. 

• Development status. 

 The values of these facets are provided by system developers at the time of initiating 

projects or depositing systems into Sourceforge.net.  

Re-users can browse directly through the facets of the classification scheme, for 

example, all systems classified under Java programming language. Alternatively, re-users 

can use the provided free-text search engine that searches for matching keywords against 

the free-text descriptions of corresponding systems, and use facets for filtering results. 

Sourceforge.net has recently established a searching mechanism powered by Krugle 

Corporation [127] at the source code level. So, once a potential system is found in 

Sourceforge.net then a re-user can use the source code search engine to search for 

components within that system. The search engine is basically built on keyword matching; 
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the search can be filtered by specifying a value of the programming language used by a 

project in addition to specifying the expected occurrence of the matching keyword from 

within one of six options listed as, source code, comments, documents, function definition, 

function call, or class definition.  Figure 3.8 illustrates the user interface of Krugle, the 

source code search engine in Sourceforge.net. 

 

Figure  3.8: Krugle Search Engine 

3.4.1.5 CompSrc Repository System 

CompSrc [128] is a repository system supporting the re-use of source-code components 

that were developed in different environments and by different development teams. The 

repository employs a mechanism to represent components at a high level of abstraction 

using a meta-language called VDM-SL [48]. One of the key aspects of the repository 

system is to establish a uniform description of all the components in the repository. 

The repository system is composed of four main components:  

• Interface extractor tool. 

• Components calculator tool. 

• Indexing scheme for software components. 

• Testing tool. 

The interface extractor tool extracts details of the APIs associated with different 

software components and generates new versions of the extracted APIs represented in 

VDM-SL called abstract APIs. The generated abstract API is used then by the component 

calculator tool to identify possible functional composition between components and the 

order in which they need be composed. Two ways of component composition are 

identified: (i) composition by aggregation, (ii) composition by wiring. Composition by 

aggregation concerns combining the abstract APIs of the components to constitute a more 

complicated component whose API is the aggregation of the APIs of its components. 

Composition by wiring involves identifying data type similarities between different 

methods within different components. For example, if the return type of one method in 

component A is similar to the input parameter to another method in component B then the 

two components might be wired together to compose a new component AB. The CompSrc 

repository employs a testing tool, which is part of the component calculator tool, that 

 

69



performs the compatibility check between the data type of methods within components. 

The Indexing scheme is purely text-based and is built on the Latent Semantic Indexing 

(LSI) mechanism [87] and it is responsible for organizing components by their 

corresponding abstract APIs in a database. 

3.4.1.6 CRECOR System 

CRECOR [90] is a repository system to facilitate re-using Enterprise Java Beans (EJB)  

[9] components. CRECOR provides the following support to components re-users:  

• Browsing. 

• Selecting; 

• Analysing. 

• Adapting. 

• Deploying. 

• Testing. 

• Component Assembly. 

 The repository system utilizes a graphical user interface to display components and 

their relationships in the form of tree structures, so re-users can browse and select the 

desired component graphically. The component analyzer analyzes the deployment 

descriptors corresponding to Enterprise JavaBeans (EJB) [9] components that describe 

their conformance to the EJB specification. There are some other details such as methods 

signature and interface name extracted from components in the analysis process to support 

identifying components behaviour. The structure of the analyzed components and the 

signatures of their methods are used for identifying re-usable components and the context 

in which they might be re-used. 

The component adaptation process includes renaming attributes/interfaces, adding new 

attributes/interfaces/methods, and replacing source code in methods. So, components might 

be modified to resolve any mismatched interface between components, for example, by 

modifying return type, parameter types, parameter order, and method name. The 

repository’s adaptation mechanism allows extra attributes and methods to be added to 

components in order to match new requirements.  Figure 3.9 illustrates the GUI of the 

adaptor utilized in the CRECOR system for the components adaptation process. 
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Figure  3.9: CRECOR Components Adaptor 
The Component deployment process supports generating components deployment 

descriptors, packaging of components with their constructing files, and installing 

components in application servers (e.g. J2EE, JBOSS). The component testing process 

generates a web-based client program for a selected EJB component that allows re-users to 

test component functionality by supplying different parameter values and examine their 

impact on components behaviour. The assembler tool, COBLAT [92], composes 

components together to form a bigger composite component or a system. Re-users can 

utilize the graphical representation of components in the repository to drag and drop 

components in order to assemble a composite component. 

3.4.1.7 CodeBroker repository system 

Yunwen  [157] has established a repository system called CodeBroker to support 

component re-use written in Java. The repository system is considered active, as compared 

to the other repository systems, in the sense that it works in the background of a 

development environment and provides advice about the availability of components while 

developers are busy writing code. The main objective that CodeBroker repository system 

addresses is to inform developers about the availability of components they might be 

interested in re-using without requiring them to search for components manually using the 

traditional methods. The repository monitors a developer’s activities and provides possible 

re-use advice. Figure 3.10 illustrates a snapshot from an environment with CodeBroker 

taken from the original reference  [157]. 
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Figure  3.10: CodeBroker System [157] 
The CodeBroker system is composed of an interface agent and a backend search engine 

running in the background of the development environment. The interface agent infers and 

forms searching queries automatically to supply to the CodeBroker repository by analyzing 

partially written code typed in by developers.  The inferred queries are then passed over to 

the search engine which attempts to find components that match the supplied query. 

CodeBroker indexes components based on their JavaDocs. The repository delivers 

components whenever comments or source code written by developers are identified as 

matching one in the repository. CodeBroker does not deliver all components it finds but it 

uses a filtering mechanism to deliver the most relevant components. The filtering 

mechanism used in CodeBroker is based on a discourse model that allows a developer to 

specify components that are not of interest in a development session. The CodeBroker 

system learns from a developer’s responses in a session and uses the information obtained 

from a session in future component delivery. 

3.4.2 Analysis of Repository Systems 

The various repository systems described in the previous section indicated the kind of 

support they provide to facilitate re-use, hence attempting to resolve some of the obstacles 

hindering re-use. This section is going to analyze the identified repository systems against 

the characteristics of the ideal repository system which are: 

• Support organizing schemes that have the characteristics identified in section 3.2. 

• Support re-factoring mechanisms that satisfy the characteristics identified in section 

3.3. 

• Support testing components against defined requirements. So, re-users can provide 

their requirements to the testing tool of the repository and the tool can check 
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whether a component matches these requirements or not prior to delivering it. Also, 

the testing tool can be utilized to search for components inside the repository. Re-

users can provide the characteristics of the components they need to the testing tool, 

and the tool can examine the available components in the repository against the 

provided characteristics. 

• Support delivering components with all their associated dependencies. 

• Support evolution by allowing new tools to be added to the repository system to 

enhance its functionality. 

Table 3.2 illustrates a taxonomy matrix that analyzes the characteristics of every 

repository system against the characteristics of the ideal repository system. The table 

shows tradeoffs between the various repository systems in their capability to support re-

use.  
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Table  3.2: Taxonomy of the characteristics of the Repository Systems 

The +1Reuse repository system is described as able to extract modules from the 

available projects in the repository and deliver them together with all their corresponding 

files to a re-user’s system. Considering modules as an analogous to components, then 

+1Reuse repository seems to support one of the significant characteristics of the ideal 

repository system which is about extracting components from a system. Moreover, the 

 

74



repository is able to deliver complete modules to re-users which is another important 

feature of the ideal repository system. Due to the lack of enough details that describe the 

+1Reuse repository system it was not possible to identify the organizing scheme, 

refactoring, testing, and whether the repository supports evolution or not.  

The WebComposition repository is another interesting repository system that is built to 

address some of the re-use obstacles. One advantage of this repository system is that it is 

able to organize components by different organizing schemes (e.g. classification and 

indexing schemes). All the characteristics related to the organizing scheme of the ideal 

repository system are satisfied by this repository apart from the characteristic concerning 

the ability to define new classifiers by re-using old ones. The WebComposition repository 

system provides a search engine that can be filtered by terms representing classifiers; as a 

result, it is considered as supporting the feature of filtering the search for finding potential 

re-usable components. The repository is also capable of delivering components with all 

their necessary dependencies to re-users. The repository system is not closed as new meta-

data stores can be added to it indicating its ability to evolve. 

Sourceforge.net is built based on a combination of defining a set of facets to categorise 

software components and an indexing mechanism to support free-text searching for 

projects within the repository. As a result, the repository can be considered to have 

captured the required characteristics of the ideal classification scheme. However, the 

classification scheme lacks the ability to re-use classifiers to generate new ones. Re-users 

are able to filter their searching for re-usable components using some values of the 

provided facets, for example by selecting Java as a programming language. Also, 

Sourceforge.net is able to deliver components with all their required files and 

dependencies, hence satisfies the delivery characteristic of the ideal repository system. 

CompSrc employs an indexing scheme for organizing software components in the 

repository. A desirable feature satisfied by the CompSrc repository is the ability to 

compose larger components from smaller ones. This feature seems to fall within the kind 

of support that the repository provides to the map provider’s view to the re-user’s view by 

generating new components from the ones already available. This feature is considered to 

be related to the characteristic of modifying components because, it is believed by the 

author of this thesis, components must be modified, somehow, to successfully construct a 

composite component. As a result, the CompSrc is considered as supporting mapping, by 

modification, the provider’s view to the re-user’s view that the ideal repository system 
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need to satisfy. The repository system provides a number of test-suites that can be utilized 

to check the I/O data type of components to ensure that two components can be composed 

together. The developer of the CompSrc repository reported that components are self-

contained entities; this denoted that components are delivered with all their associated 

dependencies to re-users. 

The CRECOR repository system implements an indexing scheme for organizing 

components in similar manner as the other repository systems identified earlier. The 

repository supports re-factoring EJB components to match the requirements of re-users. 

This characteristic indicates that the CRECOR repository system supports the 

characteristic of mapping the provider’s view to the re-user’s view. The repository system 

also provided a number of testing facilities to check the conformance of components to the 

functional requirements of re-users. Components in the CRECOR repository are EJB that 

are packaged in JAR files, this indicated that components are delivered in full to re-users 

without missing their dependencies. 

The CodeFinder-PEEL repository system indexes software components for re-use. An 

interesting characteristic supported by the repository system is the ability to assist re-users 

to formulate their searching queries to best match the terms used to represent components 

in the repository. This feature is considered as a kind of filtering search query in the sense 

that the mechanism used is advising re-users about the possible accurate terms that they 

can use to find more relevant components. Although this mechanism may not sound like 

filtering in the traditional interpretation of filtering, it is believed that it could relate to 

filtering as the advising mechanism used by the repository can limit the number of 

components found by putting more focus on the searching queries than the ones provided 

by re-users.  

Finally, CodeBroker established an indexing mechanism to organise software 

components in the repository. The provider of the CodeBroker repository system claimed 

that the repository is advantageous as it can find components and bring them to developers 

without the distraction of switching from their working environment to search for software 

components as such distraction might hinder re-use attempts. While this feature might 

seem interesting, it was not obvious whether the ideal repository system really benefits 

from this feature or not. The view adopted by CodeBroker concerns software developers 

who are building their systems from scratch but may be interested in re-use, while the ideal 

repository system assumes that developers will build their systems by re-using 
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components, hence developers are named as re-users. The diversion between the two 

assumptions (i.e. CodeBroker’s view and the ideal repository system’s view) suggested 

that the feature provided by CodeBroker may not be of interest to the ideal repository 

system. With respect to delivering full components, CodeBroker is reported as supporting 

this characteristic. 

3.4.3 Observations 
Apparently, numerous attempts by the different repository systems were established to 

support re-using software components. However, it seems that the current state of the 

repository systems is still behind achieving the optimal support as compared to the kind of 

support that could be provided by the ideal repository system; hence more work is still 

needed to improve the applicability of repository systems to facilitate re-use. 

Specifically, it is observed that the surveyed repository systems are primarily concerned 

with the functional aspects of software components. This is clearly indicated by the kind of 

organizing schemes used in the various repository systems. All of the identified 

repositories employ indexing schemes which attempt to capture component semantics to 

reveal some of their functional characteristics, even though identifying key functionality 

using the provided indexing schemes in the described repository systems is questionable as 

capturing functionality requires a formalized approach to reflect precisely the key 

functional characteristics [48]. Matching only the functional characteristics of software 

components to the functional requirements of re-users is not enough to find potential re-

usable components [132]. It is essential to consider, in addition to the functional 

characteristics, matching the non-functional characteristics [93] of software components to 

ensure that the found component really matches all the re-user’s requirements to be re-used 

successfully in the systems being built. Part of the non-functional characteristics that need 

to be considered is the architectural characteristics in addition to the functional 

characteristics to organize and find re-usable software components. 

Capturing the architectural characteristics of software components cannot be 

accomplished by the traditional Latent Semantic Analysis (LSA) mechanisms employed by 

most of the indexing schemes due to the absence of precise characterization of 

architectural characteristics. For example, the role of components can be active or passive 

as described by Yacoub et al [152]. So, unless both roles are characterized in detail, no 

indexing scheme can help to find active or passive components from a repository. 

Although some of the classification schemes identified earlier in this chapter tried to 
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establish categories related to some architectural characteristics, the classifications are 

either coarse-grained in the sense categories cannot be reflected on source-code 

components or only capture few high level architectural characteristics such as 

programming language name or platform name without going into any more depth. 

Coarse-grained classification schemes were not practiced in many of the identified 

repository systems due to the fact that the categories selected to classify components 

cannot be reflected on real components. Although there are some repository systems that 

apply coarse-grained classification schemes (e.g. Sourceforge.net and WebComposition) 

leveraged by some indexing schemes to achieve mapping categories to concrete 

components, the representative indices of architectural characteristics are still inappropriate 

as they are purely lexical-dependant. This difficulty in linking high-level architectural 

categories to concrete software components to assist finding them for re-use seems a 

potential problem that can negatively affect finding re-usable components. Therefore, there 

is a need of further research to investigate the possible benefits of considering the key 

architectural characteristics of software components as a way to assist in finding re-usable 

components that can fit with a re-user’s requirements and address the problem of mapping 

high level categorization to concrete components. 

3.5 Summary 

This chapter introduces the background work that forms the basis for establishing this 

research. The characteristics of the organizing scheme of the ideal repository system have 

been identified and a survey of a number of organizing schemes has been presented based 

on the identified characteristics. Also, this chapter presented some of the key related work 

in the scope of re-factoring components and examined the extent to which the available 

mechanisms suit the ideal repository needs. The chapter then ends by identifying the key 

characteristics of the ideal repository system and surveyed a number of repository systems 

based on the defined characteristics. 

The summary of the outcome of the background work is as follows: 

• Organizing components based on their functional characteristics is not enough to re-

use components successfully as key architectural characteristics must be considered 

as well. 

• Indexing schemes are not appropriate for organizing components in the ideal 

repository system as they are based on lexical analysis of keywords even though 

 

78



indexing schemes satisfy some of the characteristics required by the ideal repository 

system. 

• Current classification schemes use coarse-grained categories that cannot be mapped 

to concrete components, and even the schemes that use less coarse-grained 

categories are not appropriate as they are based on lexical analysis of keywords and 

not on precise characterization of categories. 

• Re-factorization is not concerned with mapping the views of component provider 

and re-user. 

Overall, current repository systems still cannot provide the optimal support for re-use. 

Building on the background work developed in this chapter, the next chapter defines the 

approach followed by this research to satisfy the characteristics of the ideal repository 

system. 
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Chapter 4 - Characterizing Architectural Fit 

The previous chapter established the basis for this research by identifying the gap in 

prior work corresponding to the problem of finding re-usable components in a software 

repository system. That prior work was concerned primarily with identifying and 

characterizing the functionality of software components to facilitate finding re-usable 

components; however, the architectural characteristics of software components were not 

adequately defined and exploited. As a result, a re-user might find a component that 

provided the required functionality, but could not be re-used in the system being built due 

to mismatches between the architectural characteristics of the component and that system. 

This chapter describes the notion of architectural fit as a new approach that could be 

utilized by the ideal repository system to facilitate finding re-usable components that match 

the non-functional characteristics of the system being built. The chapter starts by defining a 

number of use-cases for the ideal repository system in order to gather the requirements for 

developing the notion of architectural fit and an approach named architectural interface 

that is a solution to be described in this chapter. After that, the chapter introduces a system 

model that establishes the basis for generating the vocabulary used in this research. 

Subsequently, the chapter discusses the characteristics of architectural interface that is 

established in this research to address the gathered requirements of the ideal repository 

system. The chapter then describes aspects of checking for architectural fit and how that 

can address some of the functional requirements of the ideal repository system.  

4.1 Use-cases for the Ideal Repository System 

As a way of gathering the requirements of the ideal repository system, a number of use-

cases were identified. Figure 4.1 illustrates a coarse-grained view of the ideal repository 

system depicting its users and part of its architecture. The use-cases are identified from the 

perspective of the re-user and the depositor who are the two main users of the repository 

system.  
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Figure  4.1:Coarse-grained View of the Ideal Repository System 
The first two use-cases to be developed correspond to the re-user of the ideal repository 

system. The third use-case corresponds to the provider of components to the ideal 

repository system. 
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Use-case 1: Finding Re-usable Components 

A re-user who is building a system might decide to re-use a component that provides 

new functionality instead of building the component from scratch. The re-user can go to 

the ideal repository system and search for components. The re-user submits to the 

repository system a query that contains the definition of the characteristics of the required 

component. After the query has been submitted, it is then received by the checking tool 

within the ideal repository system (shown in the above figure) that processes the submitted 

query and matches the defined characteristics to component meta-data held in documents 

in the organizing scheme in the repository system or against the source code of the 

available components in the repository. If a matching component is found then the 

component is delivered with all its related dependencies to the re-user. 

Three main requirements can be drawn from the above scenario: 

• Re-users must precisely define the characteristics of the components to be 

searched for in the repository to facilitate their accurate identification. 

• The submitted query must be matched against the meta-data corresponding to 

components in the repository system. If no match is found, the query must be 

matched against the available components in the repository. 
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• Any component matching the defined characteristics must be delivered in full to 

the re-user. Compile-time or link-time errors must not arise in the system being 

built due to there being parts missing from the component that was delivered. 

Use-case 2: Modifying Components to Suit the Requirements of the Re-user  

A re-user submits a query to the repository that defines the requirements of a 

component required by the system to be built. However, the repository system only finds a 

component that matches only some of the requirements. There are two reasons why a 

component does not provide a complete match. One possibility is that the found 

component provides the required functionality, but conforms to different architectural 

requirements to those required. The second possibility is that the found component 

matches the required architectural characteristics, but that the provided functionality is not 

quite what the re-user needs. The re-user may feel that the effort of modifying the found 

component is less than that of building a component from scratch, so the re-user decides to 

modify the component to make it match the full requirements of their system, hence may 

need the repository to assist the modification. 

Three requirements can be drawn from the above scenario: 

• The architectural requirements of a software component must be identified 

precisely. 

• The modified component must be checked against the meta-data in the repository. 

• The boundaries of the sub-components of a found component must be identified 

in order to modify the component’s functionality. 

Use-case 3: Depositing Software Components 

A component’s provider deposits a component into the ideal repository system. In 

addition to the component, the provider could supply the “meta-data” that defines the 

functional and architectural characteristics of that component and any sub-components of 

that component. In this case, the repository system assists the provider to define the 

required characteristics of the component before depositing it into the repository. 

Alternatively, the provider could deposit the component without providing any meta-data. 

In both cases, after the component is deposited, it is checked and automatically organized 

in the repository based on the meta-data that the deposited component matches. 

Four requirements can be drawn from this scenario: 
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• The repository must present the characteristics that the component’s provider 

needs in order to define their corresponding values.  

• Minimize the effort of defining the values of a component’s characteristics. 

• Check the deposited component to ensure that it matches the provided definition. 

• If the provider did not supply a definition of a component’s characteristics, check 

the deposited component against the available meta-data held in the organizing 

scheme of the repository system in order to identify and organize that component 

according to its matched meta-data. 

The defined use-cases identify the requirements for developing part of the ideal 

repository system. Addressing the identified requirements is the subject of the remainder of 

this chapter and the next. Thus, a starting point for discussing the structure [15] of software 

systems in a general manner, which can establish a vocabulary for investigating the issues, 

is to consider defining a system model. 

4.2 System Model 

A common model for understanding system structure is to consider a system as being 

composed from a set of components. A component might be atomic [26] in a scene that it 

can be composed of sub-components, and sub-components might also be composed of sub-

sub-components, and so on until a point is reached where a component cannot be 

decomposed any further (e.g. a binary code component). Each component itself can be 

considered as a system, with the above description being applied recursively.  

Following the perspective of this system model, a software developer can be regarded 

as building a system. That system might be a complete system (e.g. a stand-alone 

application) or be a part of a larger system (i.e. a component), but the model permits the 

general term system to be used to cover such eventualities. Since the developer is building 

a system, components are what they may try to find and re-use, and are the dependencies 

that the system utilizes for providing the necessary functionality.  

While this is a simple system model, and clearly does not capture all of the complexity 

of a software system’s structure, it is sufficient to use as the model for identifying the 

important characteristics necessary for component re-use. 

 A re-user is the person who is trying to re-use components when building a system. 

Every system has some characteristics that a re-user will need to consider when searching 
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for re-usable components. Similarly, when a potential component is found, it will have 

characteristics that the re-user will need to examine to identify whether that component can 

be re-used in the system under development. If the characteristics required by the system 

are matched by the characteristics exhibited by the component, that component will be a 

candidate for re-use in that system.  

Following from the system model, the notions of system and component are 

interchangeable in the sense that a system can be considered as a component if a re-used 

decided re-use it in another system, while a component can be considered as a system in its 

own right, for example, if a re-user is interested in examining its composing sub-

components. So, all the characteristics (to be defined) that are relevant to a system are 

applicable to a component and vice-versa. Figure 4.2 illustrates the ontology of the 

described system model. 

 

Figure  4.2 Ontology of the System Model 

Two types of system characteristics (i.e. exhibited and required) are captured by 

different interfaces of that system. One interface is intended to identify the characteristics 

that a component must exhibit in order to be re-used in the system, while the other 

interface identifies the components of the system and the relationships between them. Both 

interfaces are crucial to the successful re-use of a component in a system. The next section 

discusses the two types of interface in depth. 

4.3 Types of Interfaces 

It is useful to distinguish between two types of interfaces of a system, namely external 

and internal interfaces. The external interface of a system captures the characteristics that 
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must be exhibited by the system, and can be used to identify whether a system is re-usable 

or not. The internal interface of a system is significant in identifying the characteristics of 

the composing components, that are the dependencies of the system, and also the 

characteristics defining how components can interact with each other. An analogy with 

jigsaw pieces is useful to express the idea of the two interfaces. The things needed are the 

“hole” in a jigsaw piece, and things provided are the “protruding bobble”. So, an external 

interface of a piece of a jigsaw has holes that it needs, and bobbles that represent what it 

provides; similarly for the internal interface. 

Both interfaces identify characteristics that dictate whether a system can be successfully 

re-used in another system. For example, if a system requires its components to provide a 

method called public void start() to control when the component starts running, 

this requirement forms part of that system’s internal interface, and the method must be part 

of the external interface of any potentially re-usable component. Similarly, if a system uses 

some libraries to implement its functionality, the characteristics of the library must be part 

of the internal interface of the system. Figure 4.3 depicts the two types of interfaces for a 

system. 

 

Figure  4.3: The Types of Interfaces 
It is worth mentioning that a component’s dependencies are in two forms. One form of 

dependency, namely external dependencies, will be satisfied by components that are 

provided by the system in which a component is re-used. For example, in a Java system, a 

component (e.g. a Java class) may need to use the “java.io” library which is one of the 

standard libraries used in most Java-based systems. The other form of dependency, namely 

internal dependencies, will be specific to a component and not related to what the system 

might provide. Internal dependencies relate to the sub-components of the component. The 
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external dependencies are captured by the external interface of a component as they form a 

part of the requirement that must be provided to a component to enable that component to 

function. The internal dependencies are captured by the internal interface of the component 

and are represented by the sub-components that must also be provided together with the 

component.  

Consider the Eclipse IDE  [32] as an example of a system that a developer wants to add 

some functionality to by incorporating new “plug-ins”. The Eclipse IDE provides an 

extensible environment that precisely defines how new plug-ins can be added to the 

system, and also establishes the basis for defining the relationships between plug-ins. 

Mapping the Eclipse system to the system model introduced in this section, the internal 

interface of the Eclipse system requires the following methods as part of the characteristics 

that the external interface of a component (i.e. a plug-in) must match in order to be re-used 

in the Eclipse system: 

• public void start(BundleContext) 

• public void stop(BundleContext). 

A plug-in might have interaction with other plug-ins in the Eclipse system or it may 

need sub-components to accomplish its desired functionality. For example, a file-transfer 

protocol (FTP) plug-in needs to interact with the “org.eclipse.osgi” plug-in, which is part 

of the Eclipse system, to facilitate launching the FTP plug-in in the system. So, the 

“org.eclipse.osgi” plug-in must be defined as a part of the characteristics that the external 

interface of the FTP plug-in must capture, as it is one of the external dependencies of the 

FTP plug-in that is required by the Eclipse system. The FTP plug-in uses a Java class 

called “newSocket” that is not part of what the Eclipse system requires, hence the 

“newSocket” Java class must be captured by the internal interface of the FTP plug-in as 

one of its internal dependencies. 

Several benefits can be obtained from identifying the two types of interfaces (i.e. 

external and internal): 

• From the perspective of supporting re-use with a repository system, the external 

interface of software components can be used by the repository system to 

automatically classify and organise those components, while a set of characteristics 

that a re-user requires can be specified and used by the repository to identify 

candidate components. Moreover, the internal interface is useful to help the 

repository system retrieve a re-usable component together with all of its required 
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dependencies (i.e. sub-components). Thus, the repository can provide a complete 

component to a re-user, without requiring the re-user undertake this action 

manually. 

• From the perspective of organizing components inside a repository system, the 

external and internal interfaces can be used to build an organisational hierarchy; 

Figure 4.4 illustrates an example. Assume that T is a component that defines the 

characteristic Y in its internal interface. Sub-components T1 and T2 are both 

identified as providing the characteristic Y in their external interface. However, sub-

component T1 defines the characteristic A in its internal interface while sub-

component T2 defines B as a characteristic in its internal interface. As a result of the 

difference in the characteristics defined by T1 and T2’s internal interfaces, the two 

sub-components can be discriminated from each other. The example indicates that 

the external interface of a sub-component identifies the potential parent in a 

hierarchy and the internal interface discriminates a component (or sub-components) 

from other components. 

 

Figure  4.4: Using External/Internal Interfaces to Organize Components 

• From the re-user’s perspective, understanding the external interface of a component 

and internal interface of the system under development might influence the 

modifications that the re-user might wish to make. A re-user could modify the 

internal interface of the system under development to match the external interface of 

a potentially re-usable component, or the re-user could modify the external interface 

of a component to match the internal interface of the system. 
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The above discussion has identified the potential importance of the external interface of 

a component in addressing the problem of finding re-usable components. It is therefore 

necessary to examine in more depth the characteristics that external interfaces should 

capture, and this is the subject of the next section. 

4.4 The Characteristics Defined by the External Interface of Software 

Components 

The external interface of a component involves functional and architectural 

characteristics. The functional characteristics define the behaviour that a component can 

provide. Architectural characteristics define the requirements that allow components to fit 

physically into a system. The term architectural type is therefore going to be adopted to 

represent the architectural characteristics. 

If the architectural type that is defined by a component matches the architectural type 

that is required by a system then the component is considered to be an architectural fit for 

the system. The term architectural fit has been introduced to represent the ability to 

incorporate components physically into a system, meaning that the component will not 

cause raise compile-time or run-time errors after integration into a system and satisfy the 

architectural fit requirement. The term architectural fit requirement indicates that the 

architectural type of a component is the same as the architectural type required by a 

system. Similarly, if a component matches the functional characteristics required by a 

system then the component is said to be a functional fit for the system, hence satisfy the 

functional fit requirement. A component that satisfies both the functional fit and the 

architectural fit requirements of a system is termed a perfect fit. The sub-set of 

characteristics in the external interface of a component that relate to the functional fit can 

be said to identify the component’s functional interface, while those that represent the 

architectural type can be said to identify the architectural interface. The two interfaces 

comprise the complete external interface of a component.  

When a re-user is looking for a component, satisfying functional fit is of course a major 

concern. As indicated in Chapter 3, prior work has tried to establish mechanisms to 

facilitate finding components that satisfy a re-user’s functional fit requirements. However, 

this thesis argues that satisfying the requirements of functional fit is not sufficient to 

successfully re-use a component in a system, since it is vital that the architectural fit 

requirements are also satisfied. For example, a re-user may find a component that has the 
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exact functionality required, but that will not fit into their Windows environment because 

the component was designed for a UNIX environment. 

Due to the significant impact of architectural fit on a component’s re-usability, this 

thesis addresses the architectural fit requirements identified by the architectural interface of 

a software component as a step towards achieving better support for re-use. 

4.5 Setting the Context of Architectural Interface in the Scope of the 

Ideal Repository System 

In a repository system, software components can either be available by themselves, a 

standalone application, or as part of a system. In both cases, components must conform to 

an architectural type that relates to the system that the components were primarily built for. 

The architectural type that a component exhibits can be exploited to discriminate one 

component from other components that conform to different architectural types. The 

identification of the architectural type of a component is of particular interest when a 

component is deposited into a repository as the identification forms the basis for 

organizing components in the repository, and hence facilitates their subsequent 

identification by re-users. 

Figure 4.5 illustrates a fine-grained view of part of the design of the ideal repository 

system that relates to identifying and organizing components based on their architectural 

type. 
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Figure  4.5:Fine-grained View of the Ideal Repository System 
The figure shows four components of the ideal repository system: 

• Descriptions of Architectural Types (DAT): contains documents describing the 

characteristics of architectural types and defining the relationships between them. 

• Matching Tool: when a component is deposited in the repository, the matching tool 

can check whether the component conforms to any of the architectural types 

recorded in the DAT. The matching tool will also be used when a re-user needs to 

specify their architectural interface requirements for components they are searching 

for. 

• Meta-Data Generator: this tool generates meta-data to be associated with the 

component, recording any “is-a” relationships identified by the matching tool 

between the component and the architectural types recorded in the DAT. 

• Database: stores components and their meta-data for future retrieval. 

The sequence of operations performed by the repository to identify and organize 

components is as follows: 

1. A component is deposited in the repository. 

2. The matching tool checks the contents of the component against the characteristics 

defined in the architectural type descriptions in the DAT. 

3. If the component is identified as matching one or more of the architectural types, the 

component and the matching results are passed to the meta-data generator tool. If a 
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component is composed of sub-components, the matching tool also matches the sub-

components against the available architectural types. 

4. The meta-data generator annotates the checked component (and sub-components) as 

instances of the matched architectural type descriptions, for subsequent storage in 

the database. 

Every architectural type defined in the DAT is represented by a document, and the 

precise characteristics defined in a document are those associated with architectural 

interfaces (to be described in section 3.6). Hence, every architectural type within the DAT 

is an instance of an architectural interface. Accordingly, a deposited component is matched 

automatically against the instances of architectural interface in the DAT in order to identify 

its matching architectural type. If a component matches an architectural type, the 

component is considered as an instance of that architectural type and organized as such. 

The definitions of architectural types in the DAT can also be utilized by the repository 

system to identify and extract the sub-components of a deposited component into the 

repository system. For example, assume that an Eclipse component (i.e. plug-in) is 

deposited into the repository system, and it is composed of three sub-components that 

conform to Model, View, and Controller architectural types already present in the DAT. 

The DAT can then be used to identify those composing sub-components by matching 

every sub-component to its corresponding architectural type in DAT. The ability to 

identify the sub-components of a deposited software application is useful to populate the 

repository with components, and is especially important to re-users who might be 

interested in re-using some of the components that are embedded in a deposited 

application. 

This section has set the context of the notion of architectural interface and how it can be 

used in the repository in which it is located. The detailed characteristics identified by 

architectural interfaces are discussed in the next section. 

4.6 The Characteristics Identified by the Architectural Interface 

Figure 4.6 describes the ontology that defines the vocabulary of a fine-grained view of 

the system model defined in section 4.2. 
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Figure  4.6:Fine-grained Ontology of the System Model 
The above figure identifies that a system has an external interface that is, in part, 

composed of an architectural interface. The architectural interface of a system identifies 

the characteristics that are going to be defined by the architectural type that is required by 

the system. 

Based on the practical experience and the background work conducted by the author of 

this thesis, the characteristics identified by architectural interface are as follows: 

• Format: this characteristic specifies the language used to write a component. For 

example, at the source-code level, a programming language will represent the 

format of a component. So if a system requires a component written in Java then a 

component written in FORTRAN will not be directly suitable for re-use. 

• The way components interact in the system: the interactions between components 

involve the method of exchanging data and control. Data can be exchanged between 

components in different ways. For example, one component may exchange data by 

passing parameters while another component might exchange data through shared 

memory. Also, data might be exchanged among components following different 

exchange models. For example, a component might employ the push-model  [42] 

indicating that the data is sent out by the component whenever a change in the 

component’s state occurs. The other model that a component could implement to 

exchange data is the pull-model  [42] where data is requested from the component 

by other components in a system whenever a change in the component’s state is 

detected by the other components in the system. The way control is exchanged can 

also be different from one component to another. One component may synchronize 
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its execution with a system, so the component can return control to the system upon 

the completion of its execution. Another component might execute asynchronously 

with the system. Thus, identifying the different ways of exchanging data and control 

• 

m, 

• 

r states), this must be a characteristic of a 

• 

5 seconds then components that respond in two seconds are 

• 

is necessary for finding re-usable components in a repository system. 

The way components can be initialized: some components may provide special 

methods that must be executed to provide initialization, while others may require the 

presence of special tools or files for their initialization. For example, a stand alone 

Java application must have a method called public static void main() to 

be initialized, while an Eclipse plug-in can be initialized by reading a file called 

“plugin.xml” and the presence of a method called public void 

start(BundleContext). So, a component must match the initialization 

mechanism that a system requires in order to be re-used successfully in the syste

and considering this characteristic is necessary for finding re-usable components. 

The way components handle failures: if a fault [91] occurred in a component at any 

stage during its execution then the failure handling mechanism implemented by the 

component must conform to the one expected by the system. For example, if a 

system assumes that its composing components must provide a specific recovery 

action in case of failure (e.g. reset thei

component to be re-used in the system. 

The non-functional characteristics of software components: characteristics such as 

performance, size, memory usage, and reliability are important to be identified as far 

as re-use is concerned. For example, in a real-time system a component’s 

performance may be an important issue to consider. If a system requires components 

that must respond in 0.0

not suitable for re-use. 

Using external dependencies: a software system may require its composing 

components to use dependencies that it provides for them to fit in the system. For 

instance, referring to an earlier example, a Java system requires its composing 

components (i.e. Java classes) to use a library called “java.io” to achieve the basic 

input and output functionality. Also, an Eclipse system requires its components (i.e. 

plug-ins) to use a plug-in called “org.eclipse.osgi” to allow the system to control 

their execution. So, components must use the external dependencies that are 
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provided by a system in order to be re-used successfully in the system; hence this 

characteristic should be considered to find an appropriate re-usable component. 

A component’s boundary: components in a system must have some boundaries that 

identify which parts of a system source code form that component. For example, in 

Java, classes form the boundary of the source code of a component that separates it 

from other components in a system. 

• 

Although this characteristic may not be relevant 

• n sub-components. 

• 

reader component then this might cause 

• 

one [51]. Re-users must configure the 

• Context: the context defines the way components can be registered in a system

subscribe to events that may be raised by the system and also to obtain infor

ple, the Applet architectural type defines the method 

to achieving successful re-use, it is a requirement that must be defined in order to 

extract a component from a system. 

Internal dependencies: components in a system may depend o

Hence, extracting one component of a system to re-use in another system requires 

also extracting all the internal dependencies of that component. 

The sequence in which components need to be invoked: a software system must 

invoke components in the correct sequence otherwise some of the composing 

components of the system may not execute correctly. For example, consider a 

simple parser system composed from a reader component that reads from a file and 

stores data in a temporary buffer for processing, and an analyzer component that 

analyzes the data and identifies their semantics. The parser system must invoke the 

reader component first and then invoke the analyzer component. If the analyzer 

component is invoked prior to invoking the 

the analyzer component to raise an error, and hence cause the system’s execution to 

fail. 

Support pre-emption: pre-emption is the ability of a system to interrupt the 

execution of its composing software components in order to switch the thread of 

control from one component to another 

components that they want to re-use to support such a characteristic if the system 

they are developing requires that. 

 to 

mation 

from the system. For exam

public AppletContext getAppletContext() that provides a handler 

for the applet in a system. 
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• 

atabase) and retrieve their state when necessary. For example, 

recise manner that could be identified 

in 

ed in this research are concerned only with syntactic matching of the characteristics 

de

Persistency: a system might require its components to store their state to an external 

storage (e.g. file, d

Eclipse plug-in architectural type defines a method public final IPath 

getStateLocation() throws IllegalStateException to handle 

persistency issues. 

Identifying the possible values of the characteristics is necessary to determine whether a 

component can fit architecturally into a system or not. The values of the identified 

characteristics are defined by an architectural type. Hence, there is a need to specify these 

characteristics and their corresponding values in a p

the source code of a given component. A prototype of a specification language namely 

ArchInt (to be described in the next chapter) is developed in this research to formalize the 

characteristics identified by architectural interface.  

The specification language has to describe things with respect to syntactic constructions 

that can be identified in the source code of the component, and semantics concerning what 

the construct means. For example, the syntactic aspects of identifying what a method is 

(e.g. a Java Method), must be separated from the semantics of that method (e.g. it 

corresponds to handling a failure). What is needed is a simple mechanism that returns a 

“Yes/No” answer with respect to matching a component’s source code against the 

characteristics defined by an architectural type – in other words,  performing a syntactic 

match between a component and an architectural type. Ignoring the semantics of the 

characteristics defined by an architectural type has the advantage of facilitating a tool to 

check automatically the availability of the characteristics in the architectural interface of 

software components without human intervention. For instance, if an architectural type that 

is required by a system defines one of its characteristics as requiring a UNIX process with 

standard inputs and outputs then the architectural type of a component must define this 

requirement in order to match the architectural type required by the system. The semantics 

of that UNIX process is not important to fit into the system. Therefore, the practical studys 

conduct

fined by an architectural type against the source code of components as a first step to 

investigate the feasibility of the approach of architectural interface to support component 

re-use. 
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The next section introduces some aspects of checking, illustrated by Java programming 

lan

4.4 that described the main concern of 

architectural fit as facilitating the successful incorporation and integration of components 

me

ng the component to a 

re-user. So, an analogy of the functionality provided by the Java compiler can be utilized in 

a r

short). So, if one of the components of the system missed the required method by mistake, 

guage mechanisms, that could be utilized by the ideal repository system to check for 

architectural fit in a language neutral manner. 

4.7 Aspects of Checking for Architectural Fit 

Recall the earlier discussion in Section 

chanically into a system. This section discusses how architectural fit can be checked in 

the context of programming languages and draws analogies to the kind of check necessary 

for the repository system. 

Starting with a simple example to express the idea of how architectural fit is checked 

within the confines of programming languages, the mechanisms in Java can be used to 

exemplify this idea. The Java compiler performs one form of check at compile time 

(syntax checking) and another at link time (relationships checking based on methods 

availability in a class) before generating the executable version of a system. At compile 

time, the compiler checks whether the source code is syntactically correct. This kind of 

check is analogous to checking whether the format of a component matches the format 

defined by an architectural type. The Java compiler can also check the links between 

components in a system using the “linker” which is a sub-tool of the Java compiler. If a 

component is missing one or more of its dependencies then the “linker” can identify those 

omissions and notify the developer. These link-time checks are analogous to checking for a 

component’s dependencies in a repository system prior to deliveri

epository system to identify all the necessary external and internal dependencies of a 

component, and the internal dependencies can be delivered together with the component to 

a re-user while the external dependencies are noted for the re-user.  

In Java, there is also the notion of abstract classes and interfaces that can be used by the 

Java compiler to check the availability of methods in a component. For example, if the 

developer has decided that all the components of the system to be built in Java must 

implement a method called “public void run()” in order to start their execution, the 

method could be defined in a Java interface (or abstract class) that every component must 

then implement. This kind of check means checking for the decisions imposed on 

components by the architecture of the system to be built (the component’s architecture for 
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the compiler can identify the missing method and notify the developer. The notion of 

Java’s abstract classes and interface mechanisms could be utilized by a repository to check 

a 

 into a system, to ensure that the component’s architectural type 

characteristics conform to those required by the system. The next section describes the 

architectural type. 

e 3.1 in 

Chapter 3. There are two occasions where the checking tool described in the design of the 

ideal repository system :  

component’s conformance to an architectural type. However, not all programming 

languages have these features, and hence a solution not linked to a specific programming 

language is required. 

A more general example that is not dependent upon programming language mechanisms 

to express the idea of architectural fit of a component is the Eclipse system introduced 

earlier. Currently, there is no tool support to check whether a component will fit 

architecturally into the Eclipse system or not. An Eclipse plug-in is composed of a 

compiled Java source code, but the link checks cannot be performed as the plug-in has to 

be dynamically linked to an already executing Eclipse system. The only way to verify that 

a component can fit into an Eclipse system is to see whether the system executes 

successfully with the component; however, unsuccessful execution, indicating an 

unsuccessful fit, is something that the re-user might have preferred to find out about at an 

earlier stage, along with the reasons why the component would not fit. Therefore, it is 

necessary to establish a checking mechanism for software components before 

incorporating them

general mechanisms for checking component conformance to the characteristics of an 

4.8 Checking Architectural Types in the Context of the Ideal Repository 

System 

Recall the design of the ideal repository system illustrated earlier in Figur

 can perform the necessary checks to support re-use effectively

• Checking performed when a component is deposited in the repository; and  

• Checking performed when a re-user is searching for a component. 

 The checks performed at deposit time are necessary for identifying and categorizing the 

component in the repository. The repository system contains a number of architectural 

types definitions, held in the DAT component of the repository as illustrated in Figure 4.5. 

Every deposited component can be matched against the available architectural type 

definitions in the repository system to identify its matching architectural type. If a match is 
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identified, the component is categorised appropriately. Matching the characteristics of a 

component against the characteristics defined by the architectural types in the repository 

system will be referred to as checking for the “is-a” relationship, that is to check whether 

the architectural type of the provided component is found to be equivalent to an 

architectural type defined within the repository. If a match is found between an 

architectural type in the repository and a component, the following statement will become 

va

n be checked against the source code of the 

av

l of the components in a repository which more closely match the 

req

icates that the notion of defining architectural 

lid: “the architectural type of component X is-a Z architectural type” where Z is the 

architectural type for which the match was found. The component is considered to be an 

instance of the Z architectural type and categorized as such. 

The checking at search time involves matching the characteristics of the architectural 

type that a re-user has provided against the characteristics of the available architectural 

types held in the repository system. If a matching architectural type is found then the 

components in the repository that are categorized under the defined architectural type will 

be the set of interest to the re-user. If no matching architectural type is found, the 

characteristics provided by the re-user ca

ailable components in the repository in order to identify any matching components, in a 

similar manner to the checks performed when a component is deposited in the repository 

(i.e. checking for the “is-a” relationship).  

It is vital for a repository to be able to identify and organize components automatically 

without requiring human intervention. The repository also should facilitate finding the 

most appropriate components, otherwise the repository is not going to be very practical to 

support software development. Hence, checking for the “is-a” relationship can be utilized 

by a repository system to perform the automatic identification and organization of the 

components being deposited in the repository without requiring a component’s provider to 

be involved. Checking for the architectural fit can be utilized by the repository to provide a 

selected sub-set of al

uirements of re-users. This check can therefore add additional value to the current 

searching mechanisms (e.g. free text searching) discussed in Chapter 3 in order to facilitate 

finding components. 

The two checking mechanisms (i.e. “is-a” relationship and architectural fit) have to be 

built on a precise characterization of the architectural types of software components. The 

improvement in the support provided by a repository system that can be achieved by 

employing the two checking mechanisms ind
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fit could be really useful to enhance component re-usability, and consequently improve 

sof

n affect component re-usability. The 

characteristics of architectural fit and how components can be considered as potential fit 

can he chapter described how architectural 

typ  

catego

The omes from this chapter are: 

e are perfect 

• categorizing 

• 

ter so that the identified capability of 

architectural interfaces can be examined. The chapter also investigates a concrete prototype 

of a language to specify architectural interfaces so that experiments can be undertaken to 

tware development with re-use. So, both checking mechanisms are appropriate as parts 

of the design of the ideal repository system. 

4.9 Summary 

This chapter has established the basis for developing an approach that can satisfy some 

of the key requirements of an ideal repository system. The chapter started by identifying 

the requirements of two users of the repository system (i.e. re-user and depositor) by 

describing a number of use-cases for the repository. A simple system model was 

introduced to provide a useful framework for viewing software systems, their components, 

and how they relate to each other. After the system model was described, the chapter 

proceeded by identifying two component interfaces, namely the external and internal 

interfaces. The chapter then described the different characteristics of an architectural 

interface and how those characteristics ca

didates in a system was discussed. Finally, t

es can be utilized by an ideal repository system to perform the checks necessary to 

rize and find components. 

 important outc

• Re-usable components are those that not only provide the required functionality but 

also match the architectural type of the system being built, and therefor

fit candidates. 

Component interfaces (i.e. external and internal) can be used for 

components and to build an organizing scheme for a repository system. 

The architectural types of software components can be utilized to identify and 

categorize software components automatically in a repository system.  

• The architectural type is useful as a complementary approach to the available 

searching mechanisms introduced in prior work, and can assist re-users in refining 

their search criteria to find components that fit architecturally into their systems. 

The following chapter describes an approach, namely ArchInt, that formalizes the idea 

of architectural type introduced in this chap
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determine whether the potential advantages of the whole approach described

research are borne out in practice. 

 in this 
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Chapter 5 - The Formalization of Architectural Interface 

The previo  and identified 

several characteristics re . The chapter also pointed out 

that matching the sem  to this stage of the 

development of  interest in 

order to exam s 

related component re-use. 

This chapter form terface described in 

Chapter 4 by discussing how tice through the 

developm terface to be called 

ArchInt

evaluating architectural interface, and discusses the results of the studies. Chapter 6 will 

evaluate the ov nt re-use. 

us chapter described the notion of architectural interface

lated to supporting component re-use

antics of the various characteristics is not relevant

 the architectural interface; only the syntactical matching is of

ine the feasibility of architectural interface for addressing the problem

alizes some of the concepts of architectural in

those concepts can be represented in prac

ent of a prototype specification language for architectural in

. The chapter also describes experimental work conducted with ArchInt for 

erall concept of architectural interface and its support for compone

5.1  ArchInt Specification 

It was mentioned in Chapter 4 that a prototype of a specification language is needed for 

describing architectural interface in a manner that can be constructed by the some human 

(e.g. an engineer) and subsequently can be machine processable. ArchInt is developed as a 

prototype of the required specification language to evaluate some aspects of architectural 

interface. ArchInt represents a document that contains the set of values that comprise a 

particular architectural type and is used to match characteristics represented in the source 

code of a software component against the architectural type. An ArchInt document has a 

specific structure that needs to be processed by machine. Hence, XML seemed a sensible 

choice for representing the information to help in detecting errors in the document itself. In 

the context of the ideal repository system, ArchInt documents represent the architectural 

types defined in the DAT component (discussed earlier in Chapter 4) of the repository 

system as illustrated in Figure 5.1. 
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sitory, this is 

cap

Figure  5.1: Fine-grained View of the Ideal Repository System 
Every document must start with a pair of opening and closing tags called <ArchInt> 

to identify the boundaries of a document written in ArchInt and also to indicate that the 

defined XML document is an ArchInt document. The opening and closing tags must be the 

first and last tags in any ArchInt document. In a repository system, every architectural type 

must have a name to distinguish it from other architectural types in the repo

tured by ArchInt using a pair of tags called <name>. Every ArchInt document must 

contain only one name and the tag corresponding to the name must be the first tag that 

appears after the <ArchInt> tag. One characteristic that is identified by architectural 

interface in Chapter 4 was the “Format”; this characteristic specifies the programming 

language that is used to write a component. ArchInt captures the “Format” characteristic 

using a pair of tags called <programming_language>. This tag is necessary to 

identify how software components can be processed. A repository system holds a number 

of tools that can be used to process software components to check their architectural 

characteristics. The <programming_language> tag identifies the appropriate tool to 

be used by the repository to check the conformance of software components to an 

architectural type. As will be seen later in this chapter, the compiler associated with a 

programming language is used as a tool to examine the characteristics of software 

components. 

The three tags described earlier represent the basic features of the ArchInt language and 

must be present in every ArchInt document to identify the type of the document (i.e. 
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conforming to ArchInt specification), to identify the name of an architectural type, and to 

identify the tool that can process a component from the tools available in a repository. The 

structure of the basic features of ArchInt should be similar to the one used to represent the 

Java class architectural type as depicted in Figure 5.2. 

 

Figure  5.2: Java Class Architectural Type Represented in ArchInt 
In the above example, the tag <programming_language> specifies that the 

necessary tool to check software components is related to the Java language system, hence 

the Java compiler can be used to perform the necessary checking for the specified 

programming language. 

The characteristics that need to be matched in the source code of software components 

against an architectural type description are captured by ArchInt using the pair of tags 

called <must_have>. This pair of tags indicates that the content between them is related 

to the requirement of architectural fit. So, if an architectural type that is required by a 

system defines a method called “public static void main(String arg)”, 

then this me

ir of complex tags 

(i.e. compos

the pair of <Method> ponent where 

t and output of the 

com eant to refer to any particular 

programmi

might exchange data. For exam nds to the methods 

 defined by an 

ithin the body of the 

tag <Method> <name>. The data 

that can be received by a m

the pair of tags 

by ArchInt using the pair of tags <string>. A method may have more than one 

parameter th ortant to 

reflect the sequence of the data input to a m

thod should be described between the <must_have> tags pair. 

ArchInt captures part of the requirements of architectural fit by the pa

ed of sub-tags) called <Method>. The fundamental idea that is captured by 

 tags is related to identifying the address within a com

data is exchanged, and also the type and sequence of data inpu

ponent in that address. The name of this tag is not m

ng language but might be used to indicate a block or part of a source code that 

ple, in Java the <Method> tag correspo

defined in a Java class, while in Eiffel the tag corresponds to the features

Eiffel class, and in FORTRAN the tag corresponds to sub-routines. W

 the name of a method is captured using the pair of tags 

ethod is captured as parameters and represented in ArchInt by 

<param>. The data type of the input parameters of a method is captured 

at would be represented by a sequence of <string> tags that is imp

ethod. The data type of the output of a method 

 

103



is captured by ArchInt using the tag <returnType>. If there is more than one output, the 

sequence of <returnType> tags written in an ArchInt document reflects the sequence 

of data output from a method. An exception that might be raised by a method is 

represented in ArchInt using the tag <exception>. 

Software components might include some descriptive files that might satisfy special 

requirements of a system in addition to the source code of the component. As a result, 

ArchInt identifies a pair of complex tags called <File> to capture the additional files that 

might be defined by an architectural type. This tag will be part of the characteristics that 

ument. 

Within the body of the g the pair of tags 

<name>

architectural type. Every file m at (e.g. XML, Doc, 

TXT). The t

pair of tags called  those available 

in a repository system

an extract of  the two 

complex tags and . 

should be defined between the <must_have> pair of tags in an ArchInt doc

<File> tag the name of a file is captured usin

 to identify a file from any other files that might also be defined by an 

ust have a type that represents its form

ype of a file defined by an architectural type is captured by ArchInt using a 

<type>. This tag identifies what tool can be used from

 to check whether a file is well-formed or not.  Figure 5.3 illustrates 

 the Eclipse plug-in architectural type to exemplify the usage of

<Method>  <File>

 

Figure  5.3: An Extract of the Eclipse Plug-in Architectural Type 
A system might require its composing components to hold temporary data during their 

lifetime in the system or to define values for some specific attributes of components 
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required by the system. ArchInt captures this requirement of a system using a pair of 

lled <Field>. In the source code of components, fields and m

variables are the concern of this tag. Every field must have a name

 other fields in a component, hence a pair of sub-tags called <name>

 of a field that a system is expecting its component to

certain type, hence a pair of sub-tags called 

defined by ArchInt. Figure 5.4 illustrates an extract of the ArchInt docum

ral type (to be described later). 

complex tags ca ember 

 that distinguishes it 

from  that represent 

the exact name  have. The data held 

by a field must be of a <dataType> is 

ent that describes 

the “Eclipse XML” architectu

 

Figure  5.4: An Extract of the Eclipse XML Architectural Type 
ArchInt can reduce the effort of writing new ArchInt document of an architectural type 

that, part of its defined characteristics, is captured by another ArchInt document in a 

repository. So, old ArchInt documents can be extended instead of replicating the same 

characteristics in a new ArchInt do  

ArchInt docum ers to the 

Ar

cument. ArchInt captures the feature of extending old

ents through a pair of tags called <uses_ArchInt>. This tag ref

chInt documents that are going to be extended by their names, hence a pair of tags called 

<name> is introduced. Figure 5.5 illustrates an extract from the ArchInt document of the 

Applet architectural type to express the usage of the <uses_ArchInt> tag. 
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Figure  5.5: An Extract of the Applet Architectural Type 
The defined tags in this section are the ones that the prototype of the ArchInt 

spe

presents some of the requirements identified in Chapter 4, in fact the tags capture 

som

n, a re-user might need to replace components from their 

order to fix a bug, satisfy new non-functional 

requirem

cification language has defined at the moment. Although this is a small set of tags and 

only re

e of the essential and key features of architectural interface. Therefore, this set of tags 

formed the basis for a set of studies designed to evaluate the feasibility of architectural 

interface to support re-use. The studies have been confined to Java examples since this was 

sufficient to demonstrate the soundness of the basic idea to start with rather that attempting 

to generate completely a general solution at this stage of the development of the language. 

The next section presents the experimental work conducted in this research. 

5.2 Experimental Work for Evaluating Architectural Interface 

A number of studies were conducted as a test-bed [116] to provide evidence about the 

applicability of architectural interface for helping re-users firstly to identify re-usable 

components, and secondly to modify an existing system. A re-user is interested to find 

components in a repository, so identifying re-usable components is important in order to 

find them for re-use. In additio

system with others from a repository in 

ent (e.g. need faster response time), or adding more sophisticated functionality to 

their system. As a result, investigating how architectural interface can help to modify a 

system need also to be examined. These two types of studies (i.e. identifying and 

modifying) were selected as they seem to be the major concern of component re-users. So, 

the hypothesis of the overall experimental work was that: 
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Ar itectural interface rech presented in ArchInt can provide significant support to 

im ve

However, a first study before this eval t was 

sufficient and general enough to capture the characteristics of different architectural types. 

This was important to ensure that the other following studies are built on solid basis. The 

architectural type descriptions generated in this first study were then used in subsequent 

studies for a tural interface. 

5.2.1 Study 1: Describing Different Architectural Types 

types. 

Based on the autho ural types, three 

architectural types nam dy to 

es or whether 

it would need to be m  was selected as 

 type to start the 

evaluation of

framework for com

extensible so

system . The selection of 

 these three 

is early stage 

of the developm

m 

s 

that conform  of their 

specifications, the s der to fit into an 

Applet system was found to be: 

pro  components re-use.  

uation was to examine whether ArchIn

 ev luating the notion of architec

The aim of this study was to examine whether the current features of prototype ArchInt 

language were sufficient to construct different architectural types. Therefore, the 

hypothesis of this study was that: 

ArchInt is appropriate for defining the architectural characteristics of architectural 

r’s initial examination of a number of architect

ely Applet, Eclipse, and MIDlet were been used in the stu

investigate whether ArchInt would be sufficient to define these particular cas

odified and improved. The Applet architectural type

it is widely used in web page applications and as it is a simple architectural

 ArchInt with. Eclipse architectural type was selected as it defines a rigorous 

ponents integration and extensibility and it is used hardly in building 

ftware systems. Moreover, Eclipse is one practical example of software 

s that have their structures generated dynamically at run-time

MIDlet architectural type was made to examine the soundness of the notion proposed by 

ArchInt on a different platform other than desktop applications. It was felt that

architectural types should be adequate to perform the experimental work at th

ent of ArchInt. 

1) Applet Architectural Type:  

The Applet architectural type enables component to run in the context of another syste

(e.g. web browser). From studying several components in open-source repository system

 to the Applet architectural type and also looking into some

et of characteristics that components must satisfy in or

 

107



• must be a Java class 

• must have the following methods: 

o public final void setStub(AppletStub stub) 

o  
The above architectural charact d to capture using ArchInt. 

The ArchInt represen in Figure 5.6 and uses 

the Java Class architectu

o public void init() 

o public void start() 

o public void stop() 

o public void destroy() 

public AppletContext getAppletContext()

eristics were straightforwar

tation of the Applet architectural type is given 

ral type introduced earlier in this chapter. 

 

Figure  5.6: Applet Architectural Type Description 
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This exam ent that captures 

the characteristics defined by th ust match in 

order to fit into an Applet system

2) Eclipse Pl

Eclipse is an llows new 

tools to be plugged into the m

illustrates a coarse-grain -ins) in an Eclipse 

system as it appeared in its

ple demonstrated that ArchInt can be used to write a docum

e Applet architectural type that components m

. 

ug-in Architectural Type 

 extensible IDE (Integrated Development Environment) that a

ain Eclipse system to provide new functionality. Figure 5.7 

ed view of the structure of components (i.e. plug

 original reference [32]. 

 

Figure  5.7: Eclipse Architecture [32] 
nt cannot fit into an Eclipse system unless it maA compone tches the characteristics 

defined by the Eclip any open-source 

Ec

during its lifetime within a system (e.g. running, active, passive). 

The Eclipse plug-in architectural type is more complicated than the Applet architectural 

type in that its architectural characteristics are not purely based on source code but also on 

associated additional descriptive files (e.g. plugin.xml). The plugin.xml file must, in 

turn, conform to some characteristics that are required by Eclipse. For example, 

plugin.xml must be a well-formed XML file, and its contents must capture the details 

that Eclipse is expecting to find (e.g. id, name, extension-points). The ArchInt 

representation of the Eclipse architectural type is given in Figure 5.8. 

se architectural type. Manual examination of m

lipse plug-ins and exploration of their specification identified the basic requirements that 

characterize the Eclipse plug-in architectural type as: 

• There must be a file called plugin.xml associated with the component. This 

file introduces a new plug-in to the Eclipse system and captures its details. 

• A plug-in must have a number of methods that control the status of the plug-in 
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Figure  5.8: Eclipse Plug-in Architectural Type 
t representation of the Eclipse plug-in architecturalThe ArchIn  type uses the Java class 

architectural type intro nd a File that must 

be

ype is given in Figure 

5.9. 

duced earlier, and defines a number of methods a

 available in a component in order to fit into an Eclipse system. In addition, the ArchInt 

representation of the Eclipse plug-in uses the “Eclipse XML” architectural type that 

defines the characteristics that the Eclipse system is expecting to find in the plugin.xml 

file. The ArchInt representation of the “Eclipse XML” architectural t
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Figure  5.9: Eclipse XML Architectural Type 
ber 

e values for, and these values are required 

by the Eclipse system. This example demonstrated that ArchInt is capable of describing the 

arc

As shown in the above figure, the “Eclipse XML” Architectural type defines a num

of attributes that an Eclipse plug-in must provid

hitectural characteristics of the Eclipse plug-in architectural type. 

3) MIDlet Architectural Type: 

MIDlet [84] is an architectural type targeting resource-constrained devices such as 

mobile phones and PDAs. Generally speaking, MIDlet represents the architectural types of 

games and applications that run on handheld devices. From a manual examination of 

several MIDlet components and the specification of MIDlet, the following key 

characteristics were identified: 

• Must be a Java class. 

• Must implement a number of methods that control the life cycle of the component.  

• Must have a file that is of type JAD that describes the attributes of the component 

(e.g. version, vendor, name). 
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The ArchInt description of the MIDlet architectural type is represented using ArchInt in 

a similar manner to the previous two architectural types. The ArchInt representation of the 

MIDlet architectural

does not demonstrate extra features cked in the previous 

two exampl

Overall, this study has dem

represent the characteri ypes; hence the hypothesis of this 

 

architectural types ponents 

accurately by exam s (i.e. components) obtained 

from

5.2.2 

Chapter 4 identif s is to facilitate 

 of this study was to 

investigate that claim ponents from 

existing open-source r ntify whether they 

ma

is among the prominent open-source repository systems nowadays. Sourceforge.net 

sup

 below [2]. The random 

nu

 type is provided in Appendix A due to its lengthy size and also as it 

 to those that have already been pi

es of architectural types. 

onstrated that the current prototype of ArchInt can be used to 

stics of different architectural t

study was contented. The next study is concerned with evaluating whether these

 represented using ArchInt can help to identify re-usable com

ining them against some concrete sample

 open-source repository systems. 

Study 2: Identifying Re-usable Software Components 

ied that the potential benefit of using architectural type

more structured searching of re-usable components. The aim

. This study concerned obtaining a number of com

epositories and checking the components to ide

tched the architectural types constructed in the previous study. Therefore, the 

hypothesis of this study was that: 

ArchInt helps to identify re-usable software components from open-source software 

repositories based on their architectural types. 

Sourceforge.net is selected as an open-source repository for conducting this study as it 

ports searching queries written between quotations and also queries without quotations. 

A query that is written between quotations seems to return more focused results (i.e. exact 

match) than the one written without quotations. This study considers searching for 

software components using queries surrounded by quotations as the study was aimed at 

evaluating whether ArchInt can work to identify components based on the provided 

architectural type descriptions, hence exact matching results need to be considered at this 

stage of the development of ArchInt. The selection of components was done randomly 

using an applet that implement a random number generator using the formula “1 + 

(int)(N * Math.random())” as shown in figure 5.10

mber generator takes two integer values as inputs, the maximum number in a list and the 
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count of randomly generated numbers, and produce output based on the two provided 

inputs.  

 

Figure  5.10: Random Number Generator [2] 
Results that are listed in Sourceforge.net without their corresponding source code were

discarded. Moreover, components returned by Sourceforge.net that are written in different

programming languages than Java were not considered at this stage. The developm

status of components within the repository was not considered as a parameter in this study 

but it was noted for future reference in case there will be further investigation about the 

quality of re-using source code that is still under development. 

The terms used to search for software components are those that were observed 

common among various repository systems or those that precisely state the name of an 

architectural type. However, there might be other expressions of use that were beyond the 

 

 

ent 

knowledge of the author; henc t claimed to be extensive. 

Sa

oach as it represents an 

average percentage of 10% of the number of results listed by Sourceforge.net in response 

to the searching queries for each architectural type in this study. 

A tool, named ArchIntParse, was developed for performing the automated matching of 

the source code of a component to an architectural type. The main functionality of the tool 

e the selected terms were no

mples of 30 components were selected randomly for each architectural type from within 

the sample frame (i.e. Applet, Eclipse, and MIDlet). This number was felt sufficient to 

build the required confidence about the soundness of the appr
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is to read through an ArchInt document and then parse the source code of a provided 

ponent to identify the characteristics that match those defined by one of the three 

architectural types generated in the first study. 

The approach followed by the ArchIntParse tool for matching an architectural type 

document to a provided component is based on utilizing the compiler associated with the 

com

programming language id ge> tag to check the 

syn

ain method calls representing invocations of all 

of the m

f an Eclipse 

plug-in to the Eclipse plug-in architectural type. 

entified by the <programming_langua

tax of a component and also identify whether a component is missing any of its 

required sub-components (i.e. internal dependencies). The tool works by automatically 

generating a “TestSuite” Java class from an architectural type document. The TestSuite 

class contains code to exercise all of the features specified in the architectural type 

document. For example, the class will cont

ethods identified in the <must_have> tag. Figure 5.11 illustrates an example of 

the automatically generated TestSuite java class to match the source code o

 

Figure  5.11: TestSuite Class 
The tool then compiles and links the generated Java class with the source code of the 

provided component. Figure 5.12 illustrates an extract of the output generated from 

executing the ArchIntParse tool on a number of Eclipse plug-ins. 
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Figure  5.12: ArchIntParse Tool Output 

 do not include the phrase “Eclipse plugin” in their description was 

ma

 If no compile-time or link-time errors are raised, this indicates that the provided source 

code matches the architectural type that was used to generate the TestSuite Java class, and 

the tool returns a positive result. If compile or link errors are raised, this reflects a 

mismatch and the tool returns a false match result. The design and implementation of the 

ArchIntParse tool is given in Appendix B. 

This study was conducted in several iterations. Each iteration evaluated software 

components against one of the architectural types generated in the first study. 

First iteration 

This iteration checked the source code of components obtained from Sourceforge.net 

against the definition of the Eclipse plug-in architectural type. Sourceforge.net was 

searched for Eclipse plug-in components, using the normal text matching search, for the 

phrase “Eclipse plugin” provided by the Sourceforge.net repository. The searching phrase 

returned 279 components as at 12/2008 that only contain the phrase “Eclipse plugin”. The 

selection of components was made using the random number generator to select randomly 

a total of 30 samples out of the 279 results to be checked by the ArchIntParse tool against 

the Eclipse plug-in architectural type document. In addition, a random selection of another 

30 components that

de. 

Results 

Considering first the results from the 30 Eclipse components that Sourceforge.net 

provided as Eclipse plug-ins, the tool identified 22 components out of the 30 as 

conforming to the Eclipse plug-in architectural type, while eight components were 

identified as not conforming. To check the validity of the generated results, all 30 Eclipse 

components were tried as plug-ins in an Eclipse system. The 22 components that were 

identified by the ArchIntParse tool as conforming to the Eclipse plug-in architectural type 

were all recognized and run successfully in the Eclipse system. The remaining eight 

components did not work in the Eclipse system.  
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The other 30 components that did not contain the word “Eclipse plug-in” in their 

description in Sourceforge.net were checked by the ArchIntParse tool and also tried in the 

e ArchIntParse tool indicated an unsuccessful match against the Eclipse 

plu

 as they had the 

.xml file, but resulted in run-time errors. The remaining three components those 

we

, and captured that 

in 

mponents that 

 the characteristics of the Eclipse architectural type, but the repository has 

co

Eclipse system. Th

g-in architectural type, and this was confirmed by the components not executing 

successfully within Eclipse. 

Discussion 

Visual inspection of the source code confirmed that all eight of these non-conforming 

components did not implement the methods defined by the Eclipse plug-in architectural 

type; in addition, three components of them were also missing the plugin.xml file. as a 

result, all the eight components did not work in the Eclipse system. However, five 

components out of the eight were recognized by the Eclipse system

plugin

re missing the required plugin.xml file were not recognized at all by the Eclipse 

system as expected. 

The results obtained demonstrated that ArchInt successfully identified the salient 

characteristics of requirements of architectural fit into an Eclipse system

an architectural type description using the ArchInt prototype language. In addition, the 

experiment showed that the defined characteristics of the Eclipse plug-in architectural type 

represented by ArchInt have been successfully matched automatically by a tool. The study 

also demonstrated the usefulness of the ArchIntParse tool. The ArchIntParse tool can be 

utilized to identify the exact reason for the non-matching components and provide the 

information to a re-user, the provided information could be helpful if the re-user wanted to 

fix the component. 

This iteration also revealed a weakness in Sourceforge.net as it listed co

do not match

nsidered them mistakenly as matching ones. A possible justification of listing these 

erroneous results by Sourceforge.net is that the provider of these components seemed to 

assume that re-users of the components should be responsible for implementing the 

required architectural characteristics. The providers only focus on producing components 

that provide certain behaviour without completely concerning about their architectural 

aspects. As a result, the providers of these components considered them as Eclipse plug-

ins, even though they do not practically match the full characteristics of the Eclipse 

architectural type. This problem could have been avoided if Sourceforge.net used checking 
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mechanism to validate components’ characteristics against the claimed architectural type 

of components by their providers. 

Second iteration 

This iteration involved the Applet architectural type. Text matching in SourceForge.net 

was used again, but this time with the string “Java Applet”. A list of 120 results that 

contained the phrase “Java Applet” was returned by Sourceforge.net as in 12/2008. A 

nu

components were selected from 

hat did not contain the words “Java Applet” in their description to be 

ex

ts ran 

lly, including the 23 components that the ArchIntParse tool had identified as 

be

compile-and-link process in the ArchIntParse tool failed. This was the real reason that 

mber of 30 of these components were selected randomly using the random number 

generator to be checked by the ArchIntParse tool against the ArchInt document for the 

Applet architectural type. In addition, 30 other 

Sourceforge.net t

amined by the ArchIntParse tool against the Applet architectural type. 

Results 

The ArchIntParse tool identified that 23 of the 30 components matched the Applet 

architectural type document. The remaining seven components were flagged as not 

matching. The other 30 components that Sourceforge.net did not consider them as Applets 

also did not match the Applet architectural type. 

To check the validity of the generated results, all the 30 components that identified by 

Sourceforge.net as Applets were tried on an Applet system using a normal 

appletviewer utility. It was found that 28 components out of the 30 componen

successfu

ing instances of the Applet architectural type. Two components did not run successfully, 

all of which were correctly identified by the tool as not being instances of that architecture 

type. The five components that apparently were successfully executed as Applets and were 

not correctly identified as matching by the tool are discussed further below. 

Discussion  

Inspecting by hand the source code of the five components that returned negative result 

by the ArchIntParse tool showed that all the components matched the characteristics 

defined by the Applet architectural type. After examining the possible reasons for the 

conflict in results obtained by the ArchIntParse tool and by trying the components on the 

Applet system, the reason for the conflict was identified. The five components for which 

negative results were returned by the ArchIntParse tool were delivered by the 

Sourceforge.net repository missing some their internal dependencies. As a result, the 
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caused the ArchIntParse to return negative results and not because the two components 

were not conforming to the Applet architectural type. So, this result is considered a false 

ult as the failure in the compilation was not due to missing any of the 

ch

MI

ArchInt document of the MIDlet architectural type. 

negative res

aracteristics of the Applet architectural type but it was related to missing internal 

dependencies that allow the components to work in an Applet system. Despite the false 

negative results, this results obtained in this iteration are promising. 

Overall, this iteration demonstrated that the Applet architectural type represented by 

ArchInt has worked successfully to check and identify automatically the conformance of 

software components to the Applet architectural type. 

Third iteration 

This iteration concerned evaluating the ArchInt description generated in the first study 

for the MIDlet architectural type to identify matching components to that architectural 

type. As before, text matching of words was used against component descriptions in 

Sourceforge.net, using the string “J2ME” as that is the common term used to search for 

Dlet components. A number of 300 components were listed as a result of the search. A 

random selection of 30 components that contained the word “J2ME” in their description in 

Sourceforge.net was made. Moreover, another 30 components that did not include the 

word “J2ME” in their description were selected. All selected components were checked by 

the ArchIntParse tool against the 

Results  

The ArchIntParse tool identified the 28 components that contained the word “J2ME” in 

their descriptions as conforming to the MIDlet architectural type. Two components out of 

the 30 did not succeed in the ArchIntParse tool check. The other 30 components that did 

not include the word “J2ME” in their descriptions were identified by the tool as not 

conforming to the MIDlet architectural type. 

To check the validity of the generated results, all the 30 components that contain the 

word “J2ME” in their description in Sourceforge.net were tried in a MIDlet system (e.g. 

J2ME application server). Among the 30 components, 28 components (including the 28 

components for which positive matches were obtained by the ArchIntParse tool) ran 

successfully in the MIDlet system indicating that the architectural type description 

accurately reflected the MIDlet architectural fit requirements. The other 30 components 

that obtained negative matching results from the ArchIntParse tool did not execute in the 
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MIDlet system to further reinforce the utility of the approach. The two components that did 

not pass the check by the ArchIntParse tool are discussed further below. 

Discu

A visu pection wo ts ed the y the 

ArchIntParse tool was done. It was d that  components were not MIDlet 

components as they were missing the characteristics of the MIDlet architectural type. The 

two nts that were nd as not orming to the MIDlet architectural type were 

mistakenly considered by Sourceforge.net as MIDlet components while they are not 

acco he characteri n of the M let architectural type defined by ArchInt. The 

results obtained in this iteration indicate that the accuracy of matching obtained from using 

ArchInt was advantageous over the results obtained by using the free-text search  

in Sourceforge.net. This uncovered an additional problem that can be encountered by re-

users ing for r ponents in Sourceforge  

useful to certify that a component is correctly categorized as described. 

arized in Table 5.1. 

ArchIntParse tool in the 

stu

ssion 

al ins of the t componen

foun

 that fail

both

 to pass  check b

compone  fou conf

rding to t zatio ID

ing facility

 when search e-usable com .net, hence ArchInt can be

 Overall, this iteration demonstrated that the representation of the MIDlet architectural 

type in ArchInt has worked successfully to check and identify automatically the 

conformance of software components to the MIDlet architectural type. Moreover, the 

iteration revealed that ArchInt could be utilized to certify the correctness of components in 

terms of their architectural type. 

Summary of the Second Study  

The results of the study conducted in the three iterations are summ

The table shows the total number of components tested by the 

dy, the percentage of components that returned true positive results, the percentage of 

components that returned false positive results, the percentage of components that returned 

true negative results, and the percentage of components that returned false negative results. 

The true positive column indicates that components were identified by the ArchIntParse 

tool as conforming to an architectural type, whereas the false positive column indicates that 

components that conformed to one architectural type incorrectly matched a different 

architectural type (e.g. a component that conforms to Eclipse plug-in architectural type 

passes the test against the ArchInt of the EJB architectural type). The true negative column 

indicates the percentage of components that have failed in the compilation process with the 

generated “TestSuite” Java class due to missing some characteristics required by an 

architectural type, while false negative column denotes the percentage of components that 
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failed in the compilation process but due to reasons other than missing some of 

characteristics of an architectural type (e.g. missing internal dependencies). 

Architectural 

Type 

Number of 

samples 

True False True False 

Positive 

(%) 

Positive 

(%) 

Negative 

(%) 

Negative 

(%) 

Eclipse 30 73 0 27 0 

Applet 30 77 0 6 17 

MIDlet 30 93 0 7 0 

Non-Eclipse 30 0 0 100 0 

Non-Applet 30 0 0 100 0 

Non-MIDlet 30 0 0 100 0 

Table  5.1: Summary of the Results of the Second Study 
An interesting observation from the above table of results is that the ArchIntParse tool 

never returned any false positive results. This observation indicates that the representation 

of the different architectural types in ArchInt was useful and reflected precisely the 

characteristics of different architectural types without mixing one architectural type’s 

characteristics with another. This study has demonstrated that ArchInt can be used to 

identify software components, hence satisfied to an extent the hypothesis of the study. 

5.2.3 Study 3: Modifying an Existing Software System 

Modifying a software system is usually related to modifying its functionality and can be 

accomplished either by replacing components from the system with others that provide the 

ionality or by extending the system with new components. Also, system 

mo

system developer needs to replace one component with another one, then what the 

necessary funct

dification can be considered in a case where non-modifiable components are needed to 

be re-used in a system. So, the architectural type of a system can be adjusted to match the 

characteristics of the architectural type that the non-modifiable components are matching. 

However, modifying the characteristics defined by a system to fit components is not part of 

this study as the main focus concerns modifying a system by replacing or adding 

components to it. Modifying a component-based software system requires the presence of 

a precise characterisation of the interfaces of the composing components of the system in 

order to facilitate unplugging components from a system and plug new ones into it. If a 
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developer ought to understand is the architectural interface of the component that needs to 

be replaced. The aim of this study was to evaluate ArchInt for providing assistance to the 

tas of 

components that could be obtained from a repository system. The hypothesis of this study 

wa hat

al type (i.e. an architectural type that defines precisely a required set 

of 

 [131]) design pattern system. The MVC 

system

ral characteristics are precisely defined (e.g. Eclipse) and another one where the 

architectural characteristics are ambiguous (e.g. MVC). 

First itera

 and tested to examine that it fit into the Eclipse system. Assuming 

that the incorporated plug-in provides functionality that needs to be replaced with other 

component; the study proceeded by trying to extract the plug-in that has been incorporated 

earlier and replaces it with another plug-in in order to accomplish the objective of this 

study. The ArchIntParse tool was selected to be the new component that had to replace the 

k modifying an existing software system by replacing some of its composing 

s t : 

ArchInt can expose component’s interfaces and significantly facilitate system 

modification.  

This study was undertaken in two iterations. The first iteration was concerned with 

replacing a component from a system that requires its composing components to adhere to 

a rigorous architectur

characteristics). The system used in the first iteration was the Eclipse system, which was 

defined and examined in the previous studies. The second iteration concerned replacing a 

component from a system that inaccurately specifies what architectural characteristics 

components must have in order to fit into it. The example system used in the second 

iteration was the Model-View-Controller (MVC

 lacks a precise characterization of what defines its architectural characteristics at 

the source-code level. As a result, one may find two components that are considered by 

their developers as conforming to the characteristics defined for a Model within an MVC 

system but the external interface of the two components matches different characteristics 

than each other. The reason for selecting these two types of systems was to examine the 

usefulness of ArchInt to model the interfaces of software components in two different 

extremes with respect to the preciseness of the architectural characteristics. One where 

architectu

tion 

In this study the Eclipse wizard was used to build automatically a simple plug-in 

without worrying about the details of the required architectural characteristics as the 

wizard can generate them automatically. After generating the plug-in, it was incorporated 

into the Eclipse system
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extracted E clipse 

• itectural 

• 

So, a f  tool to 

“Eclipse  

also m

in architectural type. 

plug-in architectural type that the ArchIntParse tool was required to match in order to fit 

into the Eclipse system. Although the necessary architectural characteristics might be 

provided automatically by the wizard of the Eclipse IDE, ArchInt could be generalized to 

identify and check the required architectural characteristics of other architectural types as 

demonstrated in the previous studies. This study also demonstrated that ArchInt was useful 

to understand what is required to perform the modification from one architectural type to 

another. 

Second iteration 

Figure 5.13 illustrates the architecture of one implementation of an MVC system as 

found in Java2s repository system [76]. This study involved replacing a component that 

matched the observed characteristics of the Model architectural type as identified in this 

system (i.e. “ContactModel”) with another modelling component obtained from a 

repository system. 

 

clipse plug-in. Since the tool did not satisfy the requirements of the E

plug-in architectural type, it had to be modified to provide the required characteristics: 

Must have the necessary methods required by the Eclipse plug-in arch

type; and 

Must have a necessary plugin.xml descriptor file. 

ile called “plugin.xml” was generated by hand for the ArchIntParse

satisfy one of the requirements of the Eclipse plug-in architectural type as described in the 

 XML” architectural type defined earlier. The ArchIntParse tool’s source code was

odified to implement the necessary life cycle methods as defined in the Eclipse plug-

The ArchIntParse tool was compiled and linked successfully and then incorporated into 

the Eclipse system to run it. The component was recognized by the Eclipse system and ran 

successfully. The generated ArchIntParse Eclipse plug-in was also checked using the 

ArchIntParse tool itself and it was found matching to the Eclipse plug-in architectural type. 

Discussion 

ArchInt was useful in this study to understand the salient characteristics of the Eclipse 
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r to identify the 

architectural characteris odel architectural 

type acco . The observed 

characteristics of the Model arch rated in Figure 5.14. 

The ArchIntParse ent for the Model 

architectural type agains the “ContactModel” Java 

class was verified as the only one that ent. 

Figure  5.13: Contact MVC System 
The Java source code of “ContactModel” is inspected by hand in orde

tics that would constitute a description for the M

rding to the implementation of the “ContactModel” in this system

itectural type of this system are illust

 tool was used to check the generated ArchInt docum

t all the Java classes in this system and 

matched the generated ArchInt docum
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Figure  5.14: Model ArchInt 
An attempt was made to try to find a component from open-source repository to fit into 

this system. Although, finding component was not intended to be part of the evaluation in 

this study, it was done to exam

architectural type in this example are common to all Model architectural types. It was not 

possible to search open-source repository systems using the characteristics of the Model 

architectural type identified above as open-source reposit

ine whether the identified characteristics of the Model 

ory systems do not currently 

support searching for components based on the characteristics defined by an ArchInt 

do

tactModel” component can be replaced. 

cument. The only possible way to search was by searching the open-source repositories 

using the text-matching approach of instances of the Model architectural type available in 

the repository (“e.g. “servlet”, “JavaBeans”). However, the searches retrieved results that 

were not re-usable as they were not conforming to the architectural type of the above MVC 

system in this study.  

With respect to modifying the above system, the defined architectural characteristics in 

Figure 5.14 was used to understand how the “Con
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So

t the identified architectural 

t  fixed for every Model architectural type as it is observed that 

different characteristics for the Model architectural type were available. For example, one 

imple

one that must have a 

me

el architecture of a 

system ent that is responsible for storing and manipulating data in a system 

can be considered abstractly as an in

View, and Controller architectural types resulted. 

, the component was replaced successfully from the system with another Java class that 

was generated manually and implemented conforming to the Model architectural type of 

this system. The new added component fit in the system and ran as expected. 

Discussion 

A problem encountered when generating the ArchInt document for the Model 

architectural type of the above MVC system was tha

charac eristics are not

mentation of the Model architectural type might consider implementing data 

exchange between the instance (i.e. component that conforms to an architectural type) of 

the Model and the instances of the other architectural types (e.g. Controller and View) 

using a push-model [42]. The push-model concerns transferring data out of an instance of 

the Model to other components whenever changes in the state of the instance of the Model 

occurs, hence requiring the View component to register with the Model component. 

According to this implementation, a Model component must have a method called 

“public void addContactView(ContactView)” as defined in the Model 

architectural type in this study. Another implementation of the Model architectural type, 

however, might be to exchange data by applying a pull-model [42]. An instance of the 

Controller component would then need to keep checking changes in the state of the Model 

component and pull data from the Model component as appropriate, thus requiring the 

View component to register with the Controller. According to this implementation, the 

component that conforms to the Controller architectural type is the 

thod “public void addContactView(ContactView)” and not the Model as 

described earlier. This variation in the implementation of the various components of the 

MVC system indicates the lack of a precise definition of what the characteristics of the 

Model, View, and Controller architectural types are. 

It seems that the variety in describing the characteristics of the Model, and also View 

and Controller, of an MVC system is caused as the three architectural types are in fact 

metaphors normally used at the design stage to identify the high-lev

. The compon

stance of a Model. The architectural types of an MVC 

system are defined abstractly but their definitive characteristics are left for programmers to 

determine at implementation time, and hence variety in the characteristics of the Model, 
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An advantage of ArchInt is observed in this iteration indicating that the identified 

characteristics of the Model architectural type depicted in Figure 5.14 can be used to 

understand what is required to modify a component to fit in the place of the replaced 

instance of the Model architectural type in that MVC system. If ArchInt was not provided, 

then a developer would need to identify the interfaces of the components of the system at 

hand manually, which can be difficult and time consuming. 

5.2 4 Observation 

he two studies (i.e. identifying components and modifying system) have shown 

significant contribution to the notion of architectural interface to support component re-

use. The study that concerned identifying component from open-source repository system 

uncovered some interesting aspects about the applicability of the notion of architectural 

interface to identify and certify component conformance to an architectural type. 

Components in Sourceforge.net are not checked with respect to their architectural type, 

hence the notion of architectural interface can be utilized to improve the functionality of 

that repository. An additional observation on Sourceforge.net is that not all of the 

components listed in that repository are really open-sourced. Examining various 

components from Sourceforge.net revealed that some of them are available without their 

corresponding source code, and some other components are available with only part of 

their source code. As a result, it is felt that Sourceforge.net seems to violate the definition 

of open-source software with respect to making source code available, and hence should 

not be considered as an open-source repository system. 

he other study that concerned modifying a system also recorded promising success 

indicating that architectural interfaces are useful to accomplish the modification as they 

explicitly describe the architectural characteristics of software component. Moreover, the 

study revealed a new interesting area where architectural interface could be useful. As a 

result of the studies, it seems that the overall hypothesis of the experimental work that 

stated “Architectural interface represented in ArchInt can provide significant support to 

improve components re-use” has been considerably satisfied. 

5.3 Summary 

his chapter has introduced a prototype of a specification language, namely ArchInt, 

that formalised some aspects of the notion of architectural interface defined in Chapter 4. 

The chapter has described the experimental work conducted for evaluating the sufficiency 

.

T

T

T
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of ArchInt to represent different architectural types. In addition, the chapter has examined 

the generated descriptions of the three architectural types represented in ArchInt to support 

com

 

 

 

 

ponents re-users. The chapter also demonstrated the applicability of ArchInt to assist 

re-users in modifying an existing software system. The results of the studies described in 

this chapter are going to be used in the next chapter to form an overall assessment of the 

architectural interface approach established in this research. 
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Chapter 6 - Evaluating the Achievements of the Research 

The previous chapter presented the experimental work conducted for evaluating 

arc

y the design of an ideal repository system. 

 

T

a

c

5. T egorizing 

a

The 

architec

follow 

evaluat

compon . 

This eva

interface is

characteristics of softwa

3. Then, based on the observation obtained from  will 

be evalua

ository 

system. Finally, the evaluation of the first objective will be drawn from evaluating the 

suitability of ArchInt to satisfy the overall design of the ideal repository system.  

hitectural interfaces from the perspective of the support that can be provided to facilitate 

component re-use. A prototype of a specification language called ArchInt was developed 

to formalize some of the concepts of architectural interfaces for the studies. 

From the experience gained from the work described in the previous chapter and from 

this research overall, this chapter evaluates outcomes of this research based on the 

objectives identified in Chapter 1: 

1. To identif

2. To investigate the possibility of characterizing components at the source-code level. 

3. To uncover the architectural characteristics and dimensions that correspond to fitting

components architecturally into a system, in order to address the use of these 

characteristics within a repository. 

4. o propose an approach, namely ArchInt, that formalizes the architectural interface 

t a low level of abstraction that reflects the precise characteristics of software 

omponents. 

o investigate the applicability of ArchInt in automating the process of cat

nd modifying software components. 

building blocks of the ideal repository system are centred on the implementation of 

tural interface (i.e. ArchInt). Therefore, the evaluation in this chapter will not 

the sequence of the objectives specified above. The first aspect that is going to be 

ed is whether ArchInt can precisely identify the characteristics of software 

ents as that was the major concern of the ideal repository system to support re-use

luation leads into evaluating Objective 4. After that, the notion of architectural 

 going to be evaluated to verify that it has identified the architectural 

re components. This evaluation will lead into evaluating Objective 

 the previous evaluations, Objective 2

ted. Objective 5 will be evaluated based on the results of studying with ArchInt to 

satisfy some of the key requirements identified by the use-cases of the ideal rep
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6.1 Evaluate ArchInt for Representing Precisely the Characteristics of 

Source-Code Components  

The studies 

co

• Flexible: the tags defined by ArchInt are general enough to represent the 

ent architectural types. The same set of tags were been used to 

define the architectur pplet, Eclipse plug-in, and MIDlet 

architectural types witho odify the available ones. 

• Precise: ArchInt can a aracteristics that software 

components mu . This precision in the defined 

characteristics was exam ber of components were 

matched against ArchInt docum entify their architectural types.  

 the studies discussed in Chapter 5 was broadly in line with expectations 

indicating that ArchInt did captur e-code components.  

Generally, the source code is the precise representation of a software system, and it 

captures implicitly the design decisions imposed by developers on the system that is going 

to be built. Considering re-use at the source code level requires the ability to represent 

source-code components in a meaningful way that can be utilized by re-users in order to 

allow them to find re-usable components. The representation of source-code is in fact the 

meta-data that describes aspects of source-code components. The organisation of the 

components in a repository system can be based on the meta-data that defines their 

characteristics.  

It was discussed in Chapter 5 that ArchInt was a prototype of a specification language 

for capturing some of the key characteristics that concern fitting components into a re-

user’s system, and hence represents the meta-data for source-code components. 

nducted in this research demonstrated that ArchInt satisfied the following features:  

• Extensible: one ArchInt document can re-use another ArchInt document to define 

new characteristics instead of replicating the definitions of characteristics. This 

feature was examined in the first study where the architectural type of a Java class 

was re-used to define the Eclipse, Applet, and MIDlet architectural types.  

characteristics of different architectural types. This generality was obvious in the 

first study that used ArchInt to represent the architectural characteristics of a 

number of differ

al characteristics of the A

ut the need to add new tags or m

ccurately define the exact ch

st have in order to fit into a system

ined in Study 2 when a num

ents to id

The result of

e key characteristics of sourc
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6.2 Uncovering Architectural Characteristics with the Notion of 

Architectural Interface 

In the early stages of a software development process (e.g. the design stage) 

architectural characteristics are normally identified abstractly. Many architectural 

description languages (ADLs [134]) capture some of the key architectural characteristics of 

co

atic identification of a component’s characteristics is 

e characteristics of components 

might be extrem

ding the 

charac

 

mponents at a very high level of abstraction. For example, in ACME [59], the notion of 

port is developed to indicate an entry or exit point of data and control into a component 

and to establish interaction with other components in a system. However, at the source-

code level, one may not be able to tell just by inspecting the source code which part of the 

source code is related to defining a port of a component and which part is related to 

providing functionality or implementing security requirements. Like many aspects of a 

system’s design, they are not carried through directly into something recognisable in the 

source code or even traceable from the source code back to parts of the design. 

Identifying functional and architectural characteristics in the source code is necessary to 

re-use components. Moreover, autom

desirable to further enhance re-use. However, identifying th

ely hard in the case of using a tool to identify them automatically, unless 

there is something in the source code of a component that can be used by a tool to identify 

the characteristics required. 

A system model, illustrated in Figure 6.1, was generated to help understan

teristics of software components. From that model, the notion of architectural 

interface has originated. 

                    

Figure  6.1: System Model 
This system model was meant to be simple, so it covers a wide range of software 

systems. The model identified two basic requirements that software components should 

satisfy in order to be re-used successfully in a system. One requirement concerned how 

External

Internal

External External

Internal Internal
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components can fit into a system, and the other requirement addressed the issue of how 

components can work in a system. The model identified that the characteristics required to 

fit components into a system should be defined through the external interface of the 

components, while the characteristics that components require to work in a system should 

be defined in the internal interface of the system.  

A number of key architectural characteristics were identified in Chapter 4. These 

fferent aspects that can affect fitting software com

tem. A number of the identified arch

characteristics were defining di ponents 

architecturally into a sys itectural characteristics were 

ex

6.3 Characterizing Source-Code Components 

ajor cause of the 

dif

ArchInt documents for finding components from open-source repositories examined 

amined in Chapter 5 to verify that they were the characteristics that must be considered 

to satisfy the requirement of architectural fit. The results of the studies were entirely 

positive indicating that the identified characteristics were really addressing aspects of 

architectural fit, hence were related to the architectural characteristics of software 

components. The outcome of the studies indicated that the notion of architectural interface 

developed in this research was useful to identify the architectural characteristics of 

software components. 

The absence of high-level artefacts (e.g. design documents) is the m

ficulty in understanding software components and of identifying their distinguishing 

characteristics that can be used to characterize components for re-use. This is the case in 

most of the available source-code components in open-source repository systems. 

 Prior work discussed in Chapter 3 based a characterization of source-code components 

on some representation of their functionality. Nevertheless, representing the functionality 

of source-code components has not gained widespread success due to the difficulty of 

defining the semantics at the source-code level. It was identified in Chapter 4 that a re-

usable component is the one that provides the required functionality and also fits into a 

system, hence is a “perfect fit” candidate. While characterizing source code based on 

functional characteristics is not adequate as discussed in Chapter 4, this research has 

examined the possibility of characterizing source-code components based on identifying 

their architectural characteristics. 

As discussed in Section 6.2, the notion of architectural interface was introduced to 

identify the key architectural characteristics of source-code components, and instances of 

architectural interfaces were formalized using ArchInt. The study of using the generated 
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whether the identified characteristics were useful to characterize source-code components 

and help find them. The results of the study denoted that 81% of the examined source-code 

components matched the characteristics defined by the corresponding ArchInt documents. 

This percentage is really promising, indicating that the identified characteristics accurately 

characterize source code with respect to an architectural type.  

6.4 Evaluating the Usefulness of ArchInt to Support the Basic 

. 

 

tify 

significant characteristics of software components from their source code. However, the 

apability 

to ensure the conformance of the deposited software components to the characteristics 

claim

Functionality of a Repository System 

The basic functionality that a repository system must provide in order to facilitate re-use 

is the support to find, modify, automatically characterize, and deliver fully working 

software components. Matching component characteristics against the meta-data held in a 

repository is a prerequisite for finding and automatically characterizing components; hence 

matching against meta-data will be discussed first in sub-section 6.4.1. After that, the 

automatic identification of component characteristics will be discussed in sub-section 

6.4.2. Component modification will be covered in sub-section 6.4.3. Finally, the issue of 

delivering fully working components will be discussed in sub-section 6.4.4

6.4.1 Matching Component Characteristics to Meta-data

The notion of matching against meta-data was introduced by Zaremski and Wing [158] 

to match the signatures of functions in software libraries. The function signature matcher 

approach they developed is similar to the matching performed by the ArchIntParse tool 

developed in this research, in the sense that both approaches are trying to iden

difference is in the capability of the meta-data used to perform the matching. ArchInt 

establishes an ontology, which relates to component fit, for defining criteria to help in 

searching for re-usable components. In contrast, the meta-data used by function signature 

matcher assumes a re-user’s knowledge of the exact signature of functions in a library, and 

this relates to issue of understanding semantics that is inherently difficult to describe (as 

discussed in Chapter 4). Moreover, ArchInt is more general than the meta-data used by 

their function signature matcher in the sense that ArchInt can define characteristics other 

than signatures of software components (e.g. required fields and files required).  

The repository systems reviewed in Chapter 3 lacked the necessary checking c

ed by their providers. For example, in Sourceforge.net, a component’s provider can 
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provide a textual description and also select the most appropriate characteristics for the 

component from those built into the repository (e.g. environment, operating system). The 

component is then deposited into the repository system and indexed as appropriate without 

any verification of whether the deposited components match the characteristics defined by 

the component’s provider or not.  Any errors in the characteristics recorded, or by any 

inaccuracies in the textual description, will then affect re-users whose searches identify 

components that were not what was expected. 

Experimenting with ArchInt demonstrated how ArchInt can be utilized to check the 

characteristics of software components and ensure that components are as advertised, 

hence will meet the expectation of re-users. If a component is claimed to be an Applet 

component, the corresponding ArchInt definition of the Applet architectural type can be 

used to verify that the component really is an Applet as claimed. The results of the studies 

were promising with a matching rate of 81% of all of the components that were extracted 

from Sourceforge.net to the defined ArchInt documents, and also the matched components 

were demonstrated to actually fit into the corresponding systems. So, ArchInt was useful to 

do the necessary check of the architectural type of software components.  

6.4.2 Automatic Identification of Software Components 

A component might be deposited into a repository system without the component’s 

provider defining its architectural type. One way to identify the architectural type of the 

deposited component is to match it against the architectural type descriptions held in the 

 architectural type. 

 

 to identify the architectural type of any deposited components. 

 The second iteration of the third study that involved the MVC system, using ArchInt 

raised some interesting cases regarding the potential usefulness of ArchInt to standardize 

repository. If a match is found, the component is an instance of that

The studies reported in Chapter 5 demonstrated how successful the matching of 

architectural types was even with the prototype ArchInt specification language. Every 

component obtained from Sourceforge.net was checked against the generated definitions of 

architectural types. The components that passed the compilation process were considered 

to be instances of the architectural type used to check the components. The results of the

studies were entirely positive as ArchInt documents were processed automatically to do the 

necessary check of the architectural type of software components. The results obtained 

from the study indicated that ArchInt accurately represented the meta-data necessary to 

support automatic identification of software components, and thus could be utilized by a 

repository system
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the

 

po

atch the 

requirements of a system. Another way for modification is to change the source code of the 

s going to be re-used. A third way for 

mo

 interfaces of software components. Despite the MVC system being a common design 

pattern, the (limited) study demonstrated just how little help this common pattern was in 

supporting re-use. ArchInt did not work well for this study. The characteristics of the 

Model architectural type in that system were used to examine a number of source-code 

components obtained from open-source repositories, but no components were found 

matching the characteristics of that Model architectural type. The lack of the usefulness of 

ArchInt in this study was because the characteristics of the Model component had not been 

standardized by those who have generated the notion of Model in an MVC system. 

However, there is still the possibility of utilizing ArchInt to affect the re-usability of 

components positively in systems that suffer from problems similar to those of the MVC 

system. If the architectural types for Model, View and Controller had been defined and 

used by developers when developing their MVC systems, re-use might then have been

ssible as it would be possible to search for components (e.g. Model) based on their 

standard characteristics. Moreover, if ArchInt was generated for every component in that 

MVC system, a re-user could understand what should be done to modify a component in 

order for it to fit into that system. An ArchInt document was generated for the Model 

architectural type in the study. The generated ArchInt document has helped to understand 

the precise characteristics that a component must match in order to fit as a Model into the 

MVC system of that study. Although ArchInt was not useful to identify components 

automatically in this study, it has been demonstrated that ArchInt could be useful to 

standardize the interfaces of software components. 

6.4.3 Support for Component Modification 

Modifying source code components can be achieved in three ways. One way is by 

changing the source code of the component that is going to be re-used to m

system to match the interface of the component that i

dification is to wrap [130] the component with the necessary changes to make it re-

usable in a system without affecting its original interface or changing the interface required 

by a system. Any of the three ways of modification could be employed, however, the most 

effective way is the third one as the modification will not involve any changes to either the 

component or the system, and this is the form of modification considered in the studies of 

this research. 
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The study that involved modifying the ArchIntParse tool from the Java application 

architectural type to the Eclipse plug-in architectural type demonstrated the significance of 

architectural interfaces in helping to understand what is required to modify a component to 

al type using ArchInt provides 

use

the new interface of the component after wrapping and the 

co

 re-user must write the source code that establishes the mapping between the 

me ponent. 

The notion of arch ith capturing the relevant 

characteristics to mponent and the 

ents of 

architectural fit, it is still im atic 

modification of com

6.4.4 

A re-usable com ponent may 

not work in a re-u of its internal 

dependencies (i.e. terfaces identify 

ch

fit into a system. In fact, the description of an architectur

ful documentation to help a developer understand the characteristics of software 

components. The modification had not affected the functionality of the ArchIntParse tool, 

which indicated that architectural interface can be used as a means for separating 

architectural characteristics from the other characteristics (e.g. functionality). This 

separation could be advantageous to automate the modification of software components 

from one architectural type to another. A tool could identify the characteristics required to 

fit a component into a system by parsing the ArchInt document that represents the system’s 

architectural requirements and generating the necessary modifications automatically. 

Although the notion of architectural interface was found useful for component 

modification, the studies revealed that it does not currently specify the source code 

necessary to map between 

mponent’s interface before wrapping. For example, if a component originally matched 

the MIDlet architectural type but a re-user has wrapped the component to fit into an 

Eclipse system, then a mapping source code is required after the component has been 

wrapped. A

thod required by the Eclipse system and the method already defined in the com

itectural interface is not concerned w

 address this mapping between the old interface of a co

new one. Although this additional source code is not part of the requirem

portant to be defined to help support the autom

ponents from one architectural type to another. 

Delivering Fully Working Components 

ponent might be found in a repository system, but the com

ser’s system because it was delivered without some 

sub-components). Generally, architectural in

aracteristics that relate to the internal dependencies of software components. However, 

these characteristics were not part of the investigation of the studies, because it was felt 

that internal dependencies are not a new feature and are already demonstrated in other tools 
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(e.g. the make tool). As a result, the investigation of delivering fully working components 

has not been covered. 

6.5

The results of the evaluation discussed so far are the key determinant to derive the 

ev

charac achieved successfully in this research and the 

evaluation

identified and

characteristics

ArchInt specification language has also shown success in representing the architectural 

characteri s

to support fin

evaluation in 

the ideal repo

The de

elements nam

illustrates the

Chapter 3. 

 The Design of the Ideal Repository System 

aluation of Objective 1 from the list of objectives. The fundamental issue of 

terizing source-code components was 

 has reflected that success. A number of architectural characteristics were 

 the evaluation showed the successful uncovering of the key architectural 

 of software components. The evaluation of the developed prototype of the 

stic  of source-code components. Moreover, evaluating the usefulness of ArchInt 

ding and modifying components has produced positive results. Therefore, the 

this section is whether ArchInt will be suitable to form part of the design of 

sitory system. 

sign of the ideal repository system was identified as consisting of three key 

ely an organizing scheme, a re-factoring tool, and a matching tool. Figure 6.2 

 high-level design of the ideal repository system that was identified in 
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Figure  6.2: Design of Ideal Repository System 
 organizing scheme element was part of the design of the ideal repository system to 

 the requirement of categorizing software components for re-use. The re-factoring 

ement was required to support the modification of software components to satisfy 

uirement of mappi

The

satisfy

tool el

the req ng a provider’s view to a re-user’s view, as discussed above in 

 

136



Se

deposi se.  

be eva

1. 

 a number of different 

atable: the second study has demonstrated that ArchInt can be used by 

l to automatically identify the architectural type of 

s presented valuable evidence that 

inking one ArchInt document 

with another. This feature is satisfied by ArchInt through the usage of the 

Hence, the 

ction 6.4.3. The matching tool was selected to facilitate automatic identification of the 

ted software components, and also to support finding components for re-u

The suitability of ArchInt to form part of the design of the ideal repository system will 

luated from four dimensions as follows: 

Organizing scheme: the organizing scheme of the ideal repository system should 

satisfy the following characteristics:  

a. Extensible: the studies have demonstrated that ArchInt is extensible as it 

allows for defining architectural types based on existing ones using the pair 

of tags <uses_ArchInt> as demonstrated in the first study of the 

experimental work. 

b. Flexible: ArchInt has successfully represented

architectural types such as Applet, Eclipse, and “Eclipse XML” architectural 

types, and the first study in Chapter 5 has demonstrated the applicability of 

ArchInt to define these selected architectural types.  

c. Autom

the ArchIntParse too

software components. Hence the study ha

ArchInt can support automation. 

d. Defines relationships between classifiers: ArchInt defines a “uses” 

relationship that represent the ontology for l

pair of tags <uses_ArchInt>. So, one ArchInt document can be related 

to another document by the “uses” relationship. 

As ArchInt satisfies the above identified characteristics, it is believed that 

ArchInt documents can be used as classifiers to organize components in the 

ideal repository system. 

2. Re-factoring components: the study that concerned modifying software components 

from one architectural type to another has demonstrated the usefulness of using 

ArchInt to understand what is necessary to perform the modification. 

characteristics defined by ArchInt documents are precise, it is believed that ArchInt 

could be used to establish the bases for building a re-factoring tool for the ideal 

repository system. 
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3. Delivering fully working components: as discussed earlier, this feature was not 

supported by the prototype ArchInt so has not been investigated further. 

4. Support evolution: this feature has not been examined in the studys of evaluating 

ArchInt. However, it is felt that ArchInt could support evolution as it utilizes tools 

(e.g. compiler) to perform the necessary checking of software components without 

applying restrictions to what those tools should be. The 

<programming_language> tag, for instance, identifies the tool to be used to 

ould 

be satisfied by the ideal repository system can be derived from ArchInt. Therefore, it is 

ental design of the ideal 

rep

6.6 Limitations of ArchInt 

Arch

key asp

specific

observe

One

but req

need to

source 

names r

softwar

involve

benefits

way of 

Ano

enough ming languages. Some of the current 

tags assume the use of Java, which was the language used for all of the components that 

perform the necessary check; whether the tool is a Java compiler or an XML parser 

depends on the components that are going to be checked. So, if someone wants to 

extend the functionality of a repository to make it able to check components written 

in FORTRAN, then ArchInt can be still useful as the compiler can be incorporated 

into the repository and ArchInt can be used to point to it. 

Based on the above evaluation, it seems to be that many of the key features that sh

believed that ArchInt could be utilized to form part of the fundam

ository system. 

Int was a prototype language needed to demonstrate the feasibility of some of the 

ects of architectural interfaces, and hence was a first step towards a complete 

ation language for architectural interfaces. This section discusses some of the 

d limitations of the ArchInt specification language.  

 limitation in ArchInt is that ArchInt documents cannot be generated automatically 

uires human involvement in order to identify the characteristics of importance that 

 be considered in a document. Architectural types were generated by inspecting the 

code of components from the open-source repository that were annotated with 

eflecting their architectural types (e.g. “Eclipse”, “Java Applet”), and by examining 

e systems and trying to identify their internal architectural interfaces. The 

ment of people for generating ArchInt descriptions conflicts with the claimed 

 of ArchInt to be a fully automatable approach. At the moment there is no feasible 

identifying architectural characteristics automatically from source code. 

ther limitation of the current prototype ArchInt is that the set of tags is not general 

 to capture the characteristics of all program
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6.7 Lessons Learned about Architectural Interfaces 

Expe

the ove

• ment environment: consider an IDE with the notion of 

 changes on the high-level 

artefacts (e.g. design, requirement) of the system and presents them to the 

his kind of support that is provided by the IDE would not have been 

re perimented with. As a result, further generalization of ArchInt would be required to 

 more general set of programming languages. Moreover, the current prototype of 

t does not address the issue of how data is exchanged. ArchInt currently utilizes the 

ity of the compiler of a programming language to check that the sequence of 

ters is correct. However, a useful generalization to ArchInt could be to consider 

 definitions of how data can be transferred between components and a system to 

 other data exchanging mechanisms (e.g. shared memory, streams).  

hird limitation in ArchInt is that it does not address the issue of external 

encies that a system should provide to its composing components. For example, if a 

requires its composing components to use library X but one of the component

 re- sed in the system uses a library Y, then the component may not fit into that system. 

lt that the external dependencies should be part of ArchInt as they identify an 

al requirement that a system obliges components to use in order to fit into it.   

rimenting with architectural interfaces has uncovered some interesting aspects on 

rall approach of this research: 

Cohesive software develop

architectural interface integrated into it. A developer can be given help by 

automatically generating the source-code that represents the architectural 

framework for the system based on the design at hand. This will help developers to 

focus only on writing the source code that will provide the functionality for the 

components of the system to be developed. Moreover, the IDE can advise the 

developer about the potential components that match the architectural interfaces of 

their system, so the developer can re-use components without worrying about any 

architectural mismatches as that could be dealt with automatically by the IDE. 

Equally, if a software developer needs to apply some modifications to the 

architecture of the system, then the IDE can reflect the

developer. T

possible without the support provided by the notion of architectural interface. The 

usefulness of architectural interface is to maintain the links between the high-level 

artefacts and the low level implementation. 
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• Identity for components: a re-user might indicate “I want an Applet component that 

counts the number of visitors to a webpage”; that would be a more accurate 

uld be useful to know what components are in the first place. 

The architectural characteristics defined by architectural types can represent 

identity for components as the characteristics can be used to discriminate one 

architectural type from another. In the above example, the identity of the 

component that the re-user was looking for was Applet. A lesson learned about 

architectural interface is that it can be useful to define identity for components. 

 Source-code documentation: most of the source code available in open-source 

repository lacks documentation that explains the meaning of the written source 

code and also how to use it. The lack of documentation is an obstacle that could 

hinder re-using source code. Architectural interfaces represented in ArchInt 

provide a means of documenting source-code components. A fully implemented 

ArchInt specification language will generate all the necessary information that re-

users need to know in order to re-use components (e.g. how a component can to be 

registered with a system). 

 Formalizing high-level artefacts: the design of a software system is usually an 

abstract specification of the components of a system and their interaction. System 

developers are required to map these abstractions into a concrete implementation, 

and the flexibility they have for doing this is precisely the reason for the difficulty 

of finding matching re-usable components. Architectural interfaces have been 

shown to address this issue. If the designer of a software system has provided the 

description of the architectural types of the system to be built, this will reduce the 

effort on the implementation stage as developers can use the generated 

architectural type description to find re-usable components or build their own that 

conform to the provided architectural type description. 

6.8 Summary 

his chapter has presented an assessment of the overall achievement of this research. 

This assessment has uncovered strengths and limitations of architectural interfaces. 

Overall, the approach generated in this research has addressed issues that have never been 

considered before, and this evaluation chapter has confirmed that the notion of 

description of the search requirement than “I want a component that counts the 

number of visitors to a webpage”. Instead of describing only behaviour to search 

for components it wo

•

•

 

T
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architectural interface represents a significant step forward in addressing the problems of 

re-using software components. 

 

 

In the final chapter, the work presented in this thesis is drawn together; summarizing the 

research undertaken and discussing the impact of the results achieved and also provides 

suggestions for future work. 
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Chapter 7 - Conclusion 

The aim of this research was to address some of the problems that hinder component re-

use, and investigate potential solutions to optimise the support that can be provided to 

components re-users. In the context of this aim, this chapter summarises the important 

points arising from the earlier chapters, including the evaluation of the research, and 

suggests areas of future work. 

 under 

d the found component from a repository. It was mentioned also in the 

chapter that curren

7.1 Overview  

Chapter 1 set the scene by establishing the need to have a sophisticated repository 

system to support re-use. The chapter then discussed the need to characterize software 

components to enable their classification within a repository system for re-use, and 

established that component characterization can be achieved through precise descriptions 

of their interfaces. A major obstacle to re-use was identified in this chapter: re-users who 

find components that provide the functionality they need could still encounter problems 

when re-using such components in their system, due to a mismatch between the 

architectural type of the components and the system. 

Chapter 2 described the background work to set the context for this thesis. The chapter 

described re-use in general terms, software components, CBSD, and software architecture. 

The chapter identified that a major problem that can hinder component re-use is discovered 

at integration stage and caused due to architectural mismatch between the system

development an

t work in software architecture is not appropriate to tackle the problem 

of re-use as the architectural characteristics are defined abstractly. The chapter then 

summed up by describing relation of the work presented in Chapter 2 and the approach of 

this research. 

Chapter 3 described the related work from the perspective of an ideal repository system. 

A key point was raised in the discussion of different approaches to supporting components 

re-use, and that was a re-user’s searches were imprecise and led to huge number of 

potential components. The reason for the imprecision was the lack of useful categorization 

of software components, which in turn was caused by the lack of a precise way of 

characterising them. The characteristics of the ideal repository system were identified in 

Chapter 3 to form a basis for analysing the related work. The chapter surveyed the 

available classification and indexing schemes, re-factoring mechanisms, and repository 
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sys

oftware components as a way to achieve 

be

s.  

the Applet, Eclipse and MIDlet 

architectural types. The study identified the different characteristics that components must 

it into systems that require any of the three architectural types, and 

rep

tems, and revealed a number of perceived deficiencies including: the lack of precise 

source code characterization; the lack of support to categorize software components 

automatically for re-use; and the lack of support to map what is deposited into a repository 

to what a re-user actually needs (i.e. modifying components). As a result, the development 

of an approach to capture architectural characteristics from the source code of software 

components was proposed.  

Chapter 4 detailed the important role of component interfaces to help achieve a precise 

categorization of software components. The chapter established the discrimination between 

the functional and architectural interfaces of s

tter understanding of component characteristics. Based on the author’s initial evaluation, 

and based on the identified re-use problem, it was decided that the architectural interface of 

software components had the potential to address some of the significant re-use problems. 

Re-users could utilize architectural interfaces to focus their search criteria in order to help 

them find components that not only provide the required functionality, but also fit 

architecturally into their system. Different characteristics of fit were identified in Chapter 

4, and it was noted that the semantics of the identified characteristics were not of 

importance at this stage of the development of architectural interfaces. Rather, the first 

concern was to check characteristics in a component’s external interface in order to 

examine the feasibility of the overall idea proposed in this research. The chapter paved the 

way for the ArchInt specification language that was developed in Chapter 5.  

7.2 Results 

Chapter 5 presented the formalization of the architectural interface approach by 

introducing a prototype of a specification language that was called ArchInt. The language 

was described in this chapter, and then used in studies to evaluate the concepts of 

architectural interface and to examine its feasibility in addressing the re-use problem

The first study addressed the sufficiency of the ArchInt specification language for the 

experimental work that was to evaluate architectural interfaces. This study assessed the 

applicability of ArchInt to capture the characteristics of different architectural types. A 

number of architectural types were introduced such as 

conform to in order to f

resented them successfully using the ArchInt language. This study demonstrated that 

ArchInt was sufficient to characterize different architectural types.  
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The second study examined the applicability of the generated ArchInt descriptions from 

the first study for finding software components that would fit into a corresponding system. 

A prototype tool (ArchIntParse) was built to setup the experimental work required for 

evaluating architectural interfaces. The ArchIntParse tool performed the matching between 

software components and the ArchInt descriptions of the three architectural types (i.e. 

Eclipse, Applet, and MIDlet). The study successfully demonstrated that the architectural 

type descriptions could be used to identify matching components. The conclusion drawn 

from experimenting with ArchInt was that architectural interface is a significant approach 

to support identifying and finding components. 

The third study examined the assistance ArchInt could provide when a software system 

has to be modified by replacing some of its composing components with re-usable 

components (i.e. components that provide the required functionality and also fit into the 

system). This study was performed in two iterations. The first iteration considered a system 

that has its required architectural characteristics rigorously identified, which was the 

Eclipse system. An Eclipse plug-in was substituted by the ArchIntParse tool after applying 

the necessary modifications. The results successfully indicated that the formalization of 

architectural types in the prototype of the ArchInt specification language was helpful to 

understand how to modify a component in order to fit into a system. The second iteration 

considered a system that had ill-defined architectural characteristics, which was the MVC 

system. This iteration uncovered the architectural characteristics of the MVC system, even 

tho

upport provided by the ideal repository system would be 

ugh it was found that the system’s architectural characteristics are not fixed as there was 

nothing to force developers of MVC systems to adopt common interfaces even when 

working from a common pattern. However, it was felt that ArchInt would be useful if it 

was defined for every component of an MVC system as it will eliminate the coupling 

between them by precisely describing the interfaces of software components. So, this study 

was considered valuable as it identified another area where ArchInt can be useful. 

Overall, the studies have demonstrated that the notion of architectural interface is sound 

and established the necessary ground to derive the building of the ideal repository system. 

As a result, further research towards building the ideal repository system based on the 

principle of architectural interface should be undertaken. 

7.3 Future work  

The optimal goal to support re-use fully is to have the ideal repository system described 

in Chapter 1. The level of s
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representation of a component’s boundary was not considered in the generated prototype of 

Ar

tered on addressing the issue of perfect fit of software components. Part of the 

achievement in this research was to implement a prototype of a tool, named ArchIntParse, 

to perform the necessary check of software components against architectural type 

descriptions.  So an obvious starting point for future work would be to complete the 

implementation of the tool to fully automate the operation of searching open-source 

repositories for software components. Moreover, future work could address the 

implementation of a re-factoring tool that can perform the modification from one 

architectural type to another using the architectural interface descriptions as that would 

satisfy one further requirement of the ideal repository system. 

Another direction for future research would be to investigate the generation and use of 

the descriptions of architectural types represented in the ArchInt language as an integral 

part of a software development process. This integration would help to add some more 

engineering into the software development process by constraining some implementation 

details associated with fit. Moreover, it would really help standardize a component’s 

characteristics, and hence encourage potential re-use. The study that involved the MVC 

system had shed some light on this area, and some preliminary suggestions were made 

advising that the generation of ArchInt documents should be integrated into a software 

development process. However, a thorough investigation is still necessary in this area to 

decide whether integrating architectural type’s generation into a software development 

process will be feasible. 

From the perspective of specification language to represent architectural type 

descriptions, future work should investigate the other dimensions of architectural fit 

described in Chapter 4. Although some of the characteristics have not been considered 

explicitly, such as component boundaries, it is felt that these characteristics need to be 

addressed in more depth as they represent the key aspect addressing whether components 

can be automatically identified and extracted from a system. The studies carried out in this 

research assumed that a component’s boundaries were Java classes in the case of Java 

architectural type and JAR files in the case of Eclipse plug-in architectural type. The

chInt as this characteristic was not germane to the aspects were been evaluated in this 

research. However, in other programming languages such as the C programming language, 

the boundaries of a software component may not be obvious. Thus, future work with 

respect to generating a better specification language that is programming language 

independent would be useful. 
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Further work on the architectural interface specification language could also address 

how data can be exchanged between components and a system, as addressing data-

ex

 

could be mapped to the data exchanging mechanism of a component. Possible future work 

to generalize a specification la

at could be performed by a block might be to 

mponent to be 

invoked is significant. Another 

change relevant characteristics seems significant to ensure that a component can fit 

architecturally into a system. Although aspects of data exchange might be handled by the 

programming language mechanisms, it is felt that identifying data-exchanging mechanisms 

explicitly would be especially useful in the case of modifying a component from one 

architectural type to another. So, the data exchanging mechanism required by a system

nguage could be to consider a feature for identifying the part 

of a component that is responsible for exchanging data as being a block of source code. For 

example, in the Java language, Java methods are the blocks in the source code that is 

responsible of data exchange. Every block might have a name that identifies its address in 

the source code of a component. Moreover, a block might need to be written in a specific 

syntax that conforms to the syntax of a certain programming language. The name and 

syntax of a block are felt to be the two main attributes of a block of source code. A block 

might exchange data in three ways namely parameters, streams, and shared memory. If a 

block exchanges data through parameters, then identifying the sequence of parameters 

seems to be significant as a mismatch in the sequence required by a system to that of a 

component can cause the wrong datatype to be passed to the component. If a block 

exchanges data through data streams, then identifying the protocol (e.g. HTTP, RPC) of 

the data transferred could be significant. If a block exchanges data through shared memory, 

then identifying the name of the shared memory and the datatype that can be stored in that 

memory is significant in avoiding data loss by passing data to a different shared memory 

than the one a component uses. A block might perform a special action in case of the 

occurrence of failure. One possible action th

invoke a special component provided by a system, hence the name of the co

possible action could be to return a special value to a 

system to indicate that a failure has occurred or the output data of a component is wrong, 

so a pre-defined set of values could be significant to identify. 

An additional feature, that is needed to develop a precise general specification language 

for representing architectural types, could be the definition of the external dependencies of 

software components. As discussed in Chapter 4, the external dependencies are the 

dependencies that must be used by the components in a system, but these dependencies are 

provided by the system itself for its composing components. So, possible future work 
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could be to identify the characteristics of the external dependencies of a software 

component and investigate how the component can use them in order to fit into a system. 

Of course, the above proposed features (i.e. data-exchanging mechanisms, external 

dependencies) for developing a general specification language presented here to give a 

direction for possible future work, but none of the identified features have been examined 

is felt that the envisaged new features could be necessary to 

represent architectural type descriptions in a programming language independent manner. 

ing stage involves extracting and 

delivering components. The utilizing stage involves configuring and using components. 

Th

n a component 

to acquire its functionality, or what methods can be invoked to initialize a component and 

the like.  

7.4 Achievement Against the Specified Aim of the Research 

s stated in Chapter 1 the aim of this research was to address some of the problems that 

hinder component re-use, and investigate potential solutions to optimise the support that 

can be provided to components re-users. Part of the problem that re-users face is the 

difficulty of finding components that will fit into their system. This research has 

established the notion of architectural interface as a way to capture precisely the 

requirements that are necessary for components to fit into a system. Architectural 

interfaces uncover the architectural characteristics of software components and make those 

characteristics explicit to re-users (or a repository system), and hence avoid possible 

thoroughly. Despite that, it 

Another possible piece of work could be to identify the characteristics that may affect 

the re-usability of software components after a component is found in a repository. It is 

believed that a re-use process might involve three stages, namely finding, retrieving, and 

utilizing components, and every stage involves a number of characteristics that are 

significant from the perspective of re-use. The finding stage involves searching for, 

identifying, and categorizing components. The retriev

e finding stage has been addressed adequately in this research. However, the other two 

stages have not been addressed in depth. Some discussion was given in this thesis about the 

characteristics that relate to the stage of retrieving components, and the characteristics of 

internal dependencies was found to be a characteristic relevant to this stage. However 

additional work is still needed to capture all possible characteristics in this stage. The third 

stage (i.e. utilizing stage) has not been addressed in this research, so it could form a 

starting point for future work. The utilizing stage could identify the characteristics that 

allow a re-user to understand, for instance, what methods must be invoked i

A
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architectural type mismatches between components and the system to be built. The 

use in t ved that this research has 

7.5 Closing Remarks 

Alth s advantages tend to 

problem

pon

which i

interfac

ut represent a 

interfac

a

thesis h

that is a imum support to encourage software re-use.   

  

   

 

 

experimental work described in Chapter 5 successfully demonstrated the usefulness of 

architectural interfaces in overcoming some of the key obstacles hindering component re-

oday’s software repository systems. As a result, it is belie

ma significant achievement towards addressing the main aim of this research.    de a 

ough software re-use is beneficial to software development, it

be hidden by the lack of support offered to re-users. Current repository systems are still far 

behind achieving the full support that would encourage re-use. Re-users are faced with the 

 of finding components that can really fit into their systems. The problems 

encountered by re-users originate from the lack of precise characterization for software 

ents. Currently, components are loosely characterized based on their functiocom nality, 

s neither sufficient nor accurate at the moment. 

In the context of this thesis, despite some limitations, the notion of architectural 

e has made a positive contribution to the field of software re-use. Certainly 

architectural interfaces do not solve all the difficulties of software re-use, b

step forward in research into the ideal repository system, particularly as architectural 

es address the characteristics needed by repository system in order to enable 

autom tic identification, organization, and modification of software components. The 

as established the necessary basis for building a comprehensive repository system 

ble to provide the max
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Appendix A- ArchInt representations of Architectural Types 
This appendix provides the complete representation of the three architectura

discussed earlier in ArchInt prototype specification language. 

1. The full ArchInt representation of the Applet Architectural Type: 

l types 
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2. The full ArchInt representation of the Eclipse Architectural Type: 
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Cont. Eclipse Architectural Type 
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 the MIDlet Architectural Type: 3. The full ArchInt representation of
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Cont. MIDlet Architectural Type 
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4. The full ArchInt representation of the “Eclipse XML” architectural type: 
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5. The full ArchInt representation of the Serializer architectur
 tool: 

al type from the 
ArchIntParse
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Appendix B - Source code of the ArchIntParse Tool 
 This appendix list the design and the source code of the ArchIntParse tool 

1. The architecture of the ArchIntParse tool: 

 
 

2. the source code of the Serializer class: 
 
import com.thoughtworks.xstream.XStream; 
import com.thoughtworks.xstream.io.xml.DomDriver; 
import java.util.*; 
 
public class Serializer   
{ 
     
        MyFileWriter myFileWriter; 
        public void serialize(IArchInt archint)  
        { 
 
                XStream xStream = new XStream(new DomDriver()); 
                String xml = xStream.toXML(archint); 
                if(myFileWriter != null) 
                { 
                    myFileWriter.writeToFile(xml); 
                } 
                else 
                { 
                    System.out.println("Please specify a file Writer 
Object!"); 
                } 
        } 
         
        public void setFileWriter(MyFileWriter myFileWriter) 
        { 
         this.myFileWriter = myFileWriter;    
             
        }        
 
} 
   

3. the source code of the Deserializer class: 
 
import com.thoughtworks.xstream.XStream; 
import com.thoughtworks.xstream.io.xml.DomDriver; 
 
public class DeSerializer 
{ 
 
    XStream xStream; 
    SimpleClassLoader sc = new SimpleClassLoader(); 
   // String xml = ""; 
    ArchInt myArchInt; 
    public DeSerializer() 
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    { 
        xStream = new XStream(new DomDriver()); 
        //xml = xmlEx.getOutput(); 
       xStream.setClassLoader(sc.getClass().getClassLoader()); 
    } 
     
    public void setInput(XMLExtractorFromFile xmlEx) 
    { 
       String xml = xmlEx.getOutput();  
       myArchInt = (ArchInt)xStream.fromXML(xml); 
    // Object o = xStream.fromXML(xml); 
    } 
     
    public ArchInt getOutput() 
    { 
        return myArchInt; 
    }  
     
}             
 

4. the source code of the ArchIntProcessor  class: 
 
import java.util.*; 
 
public class ArchIntProcessor 
{ 
     
     ArchInt myArchInt; 
     ArrayList methodList = new ArrayList(); 
     ArrayList fieldList = new ArrayList();       
         
     public void setInput(DeSerializer dsz) 
     { 
        myArchInt = dsz.getOutput();  
        processor(); 
     } 
         
    public ArchInt getOutput() 
    { 
        return myArchInt; 
    } 
 
      public void processor()  
        {                           
                 
                ArrayList list = 
myArchInt.getExternal().getMustHave(); // external; 
                ArrayList list2 = 
myArchInt.getInternal().getRequired(); // internal; 
                 
                 
                // traverse the External elements; 
                for(int i = 0; i<list.size(); i++) 
                { 
                     
                    String temp = getMarker((Marker)list.get(i));                
                     
                    if(temp.equals("Field")) 
                    { 
                         Field f = (Field)list.get(i); 
                         fieldList.add(f); 
                    } 
                   
                  
                    if(temp.equals("Method")) 
                    { 
                         Method m = (Method)list.get(i); 
                         methodList.add(m);    
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                    } 
                }  
                 
                // traverse the Internal elements; 
                for(int i = 0; i<list2.size(); i++) 
                {                     
                    String temp = getMarker((Marker)list2.get(i)); 
                     
                    if(temp.equals("Dependancy")) 
                    { 
                         Dependancy d = (Dependancy)list2.get(i);                   
                    }                   
                }  
                 
                    
        } 
         
         
        // extract the type of objects from the arraylist based on 
the value returned by the getMarker() method; 
        private String getMarker(Marker marker) 
        { 
        
            String temp = new String();       
            temp = marker.returnMarker();         
            return temp;           
             
        } 
         
         public ArrayList getMethodList() 
        { 
            return methodList;                
        } 
         
        public ArrayList getFieldList() 
        { 
            return fieldList;    
             
        }         
} 
 

5. the source code of the TestGenerator  class: 
 
 
import java.util.*; 
 
public class TestGenerator 
{ 
    String str = ""; 
    String[] parama = new String[]{"a","b","c","d","e"}; 
    String className = ""; 
    String pkg = ""; 
    int parmaCounter = 0; 
    int parmaDecCounter = 0; 
    int rtnTypeCounter = 0; 
    int fieldCounter = 0; 
     
    ArrayList methodsArrayList = new ArrayList(); 
    ArrayList parametersDeclarationsArray = new ArrayList(); 
    ArrayList fieldsArrayList = new ArrayList();  
     
    public void generateTest(String className, String pkg) // split 
into methods; 
    { 
        this.className = className; 
        this.pkg = pkg; 
        
        String inst = "inst"+className; 
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        if(pkg != null) str = "package " + pkg + ";\n"; 
        str = str + "public class TestSuite\n" + "{\n"; 
        str = str +  "    "+ className + " " + inst+ " = new " + 
className +"();\n";     
        str = str +  "    public void test()\n" + "    {\n";         
         
         printMethod(methodsArrayList, inst); 
         printField( fieldsArrayList , inst);             
          
          str = str +"    }\n" + "}"; 
         
            System.out.println(str); 
            MyFileWriter2 fwt = new MyFileWriter2(); 
            fwt.writeToFile(str);         
    } 
     
    public String getStr() 
    { 
     return str;            
    } 
     
    private void printMethod(ArrayList method, String inst) 
    {  
        extractParams(method); 
         
        for (int j = 0; j<method.size(); j++) 
        {    
            
           if(((Method)method.get(j)).getException() == null) 
           {  
               ///////// 
               if(((Method)method.get(j)).getReturnType() != null && 
!((Method)method.get(j)).getReturnType().equals("void")) // if there 
is a return type; 
               { 
                    str = str + "       " + 
((Method)method.get(j)).getReturnType() + " rtn" + rtnTypeCounter++ 
+" = " ; 
                 
                    if(((Method)method.get(j)).getScope() != null && 
((Method)method.get(j)).getScope().equals("static")) 
                    { 
                        str = str  + 
className+"."+((Method)method.get(j)).getName()+"(";                     
                    } 
                    else 
                    { 
                        str = str  + 
inst+"."+((Method)method.get(j)).getName()+"("; 
                    }                               
                } 
                 
                else 
                { 
                    str = str  + "       
"+inst+"."+((Method)method.get(j)).getName()+"("; // for the spacing 
if return type is void; 
                } 
             
                setParameters(((Method)method.get(j)).getParama()); 
                str = str +")"+";\n"; 
            } 
            else 
            { 
                exceptions((Method)method.get(j), inst); 
            }             
        } 
    } 
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    private void exceptions(Method method , String inst) 
    { 
        str = str + "       try\n" + "        {\n";             
         
         if(method.getReturnType() != null && 
!method.getReturnType().equals("void")) 
               { 
                 str = str + "          " + method.getReturnType() + 
" rtn" + rtnTypeCounter++ + " = " ; 
                 str = str  + inst+"."+method.getName()+"("; 
                }        
         else 
         { 
            str = str  + "             
"+inst+"."+method.getName()+"("; 
        } 
             
             setParameters(method.getParama()); 
             str = str +")"+";\n";        
          
        str = str + "        }\n" + "        
catch("+method.getException()+" e){}\n";  
          
    } 
         
    private void setParameters(String[] parameters) 
    { 
         
        if(parameters != null) 
        { 
            for(int i = 0 ; i < parameters.length ; i++) 
                { 
                
                str = str + "a"+ parmaCounter++;//parama[i]; 
                if(i< parameters.length-1) str = str + ","; //e.g. 
(a,b,c) 
                 
                } 
        } 
    } 
     
    private void parmaDeclaration(ArrayList parameters) 
    { 
       
      if(parameters.size() != 0) 
      { 
        for(int i = 0 ; i < parameters.size() ; i++) 
            { 
                
               if(parameters.get(i).equals("int")) 
               { 
                   str = str  + "       "+  parameters.get(i) + " " + 
"a"+ parmaDecCounter++ + " = 0;\n";      
                } 
                 
                else if(parameters.get(i).equals("Double")) 
               { 
                   str = str  + "       "+  parameters.get(i) + " " + 
"a"+ parmaDecCounter++ + " = 0.0;\n";      
                }   
                 
                 else if(parameters.get(i).equals("char")) 
               { 
                   str = str  + "       "+  parameters.get(i) + " " + 
"a"+ parmaDecCounter++ + " = '';\n";      
                }  
                 else if(parameters.get(i).equals("boolean")) 
               { 
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                   str = str  + "       "+  parameters.get(i) + " " + 
"a"+ parmaDecCounter++ + " = false;\n";      
                }  
                else 
               { 
                   str = str  + "       "+  parameters.get(i) + " " + 
"a"+ parmaDecCounter++ + " = null;\n";      
                } 
                 
            }   
             
        } 
          
    } 
     
    public void addMethod(Method method) 
    { 
        methodsArrayList.add(method); 
         
    } 
     
    public void setMethodList(ArrayList mList) 
    { 
        methodsArrayList = mList; 
    } 
     
    public ArrayList getMethodList() 
    { 
        return methodsArrayList; 
    } 
     
    
     
    
   private void extractParams(ArrayList method) 
   { 
       for(int i = 0 ; i < method.size(); i++) 
       { 
           String[] parmas = ((Method)method.get(i)).getParama(); 
           
          if(parmas != null) 
          { 
                for(int k = 0 ; k < parmas.length ; k++) 
                { 
                    parametersDeclarationsArray.add(parmas[k]); 
                } 
            } 
            
        } 
        
        parmaDeclaration(parametersDeclarationsArray); 
        
    } 
     
     
    public void setFieldList(ArrayList fList) 
    { 
        fieldsArrayList = fList; 
    } 
     
    public ArrayList getFieldList() 
    { 
        return fieldsArrayList; 
    } 
     
     public void printField(ArrayList fieldsArrayList , String inst) 
     { 
         for(int i = 0 ; i < fieldsArrayList.size() ; i++) 
         { 
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           str = str + "       "+  
((Field)fieldsArrayList.get(i)).getType() + " field" + fieldCounter++ 
+ " = "; 
           if(((Field)fieldsArrayList.get(i)).getScope() != null) 
            { 
                
if(((Field)fieldsArrayList.get(i)).getScope().equals("static")) 
                { 
                    str = str + className + "." + 
((Field)fieldsArrayList.get(i)).getName() + ";\n ";  
                } 
            } 
            else 
                { 
                    str = str + inst + "." + 
((Field)fieldsArrayList.get(i)).getName() + ";\n ";  
                } 
        } 
          
     } 
     
} 
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