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Abstract 

Molecular systematic methods were applied in a series of studies designed to resolve the 

taxonomic relationships of thermophilic actinomycetes known to be difficult to classify using 

standard taxonomic procedures. The test strains included representatives of clusters defined in an 

extensive numerical phenetic survey of thermophilic streptomycetes and twelve marker strains. The 

resultant genotypic data together with the results of corresponding phenotypic studies were used to 

highlight novel taxa and to improve the circumscription of validly described species. 
The most comprehensive study was undertaken to clarify relationships within and between 

representative alkalitolerant, thermophilic and neutrophilic, thermophilic streptomycetes isolated 

from soil and appropriate marker strains. The resultant data, notably those from DNA: DNA 

relatedness studies, supported the taxonomic integrity of the validly described species Streptomyces 

thermodiastaticus, Streptomyces thermoviolaceus and Streptomyces thermovulgaris. However, the 

genotypic and phenotypic data clearly show that Streptomyces thermonitrificans Desai and Dhala 

1967 and Streptomyces thermovulgaris (Henssen 1957) Goodfellow et al. 1987 represent a single 

species. On the basis of the priority, Streptomyces thermonitrificans is a later subjective synonym of 

Streptomyces thermovulgaris. Similarly, eight out of eleven representative alkalitolerant, 

thermophilic isolates and three out of sixteen representative neutrophilic, thermophilic isolates had 

a combination of properties consistent with their classification as Streptomyces thermovulgaris. One 

of the remaining alkalitolerant, thermophilic isolate, Streptomyces strain TA56, merited species 

status. The name Streptomyces thermoalcalitolerans sp. nov. is proposed for this strain. A 

neutrophilic, thermophilic isolate, Streptomyces strain NAR85, was identified as Streptomyces 

thermodiastaticus. Four other neutrophilic thermophilic isolates assigned to a numerical phenetic 

cluster and a thermophilic isolates from poultry faeces were also considered to warrant species 

status; the names Streptomyces eurythermophilus sp. nov. and Streptomyces thermocoprophilus sp. 

nov. are proposed to accommodate these strains. It was also concluded that additional comparative 

taxonomic studies are required to clarify the relationships between additional thermophilic 

streptomycete strains included in the present investigation. 

A corresponding polyphasic approach was used to clarify the taxonomy of six thermophilic 

isolates provisionally assigned to either the genera Amycolatopsis or Excellospora. Two of the 

isolates, strain NT202 and NT303, had properties consistent with their classification in the genus 

Amycolatopsis. However, the genotypic and phenotypic data also showed that these strains formed a 

new centre of taxonomic variation for which the name Amycolatopsis eurythermus sp. nov. is 

proposed. Similarly, the four remaining strains formed two new centre of taxonomic variation 

within the genus Excellospora. It is proposed that isolates TA113 and TA114 be designated 

Excellospora alcalithermophilus sp. nov. Similarly, the name Excellospora thermoalcalitolerans sp. 

nov. is proposed for strains TA86 and TA111. An emended description is also given for the genus 

Excellospora. 



Contents 

Acknowledgements 

Publications 

Abstract 

Chapter I. Current Trends in Bacterial Systematics 
1. Polyphasic taxonomy 1 

2. Suprageneric classification: Nucleic acid sequencing 5 

(a) Background 5 

(b) 16S rDNA sequence analysis 9 

(c) Phylogentic trees 11 

(d) Suprageneric classification of actinomycetes 17 

3. Classification at genus and species levels 25 
(a) Chemotaxonomy 25 

(b) Numerical taxonomy 37 

(c) Molecular systematics 38 

4. Classification at and below the species level 44 

(a) Nucleic acid fingerprinting 44 

(b) Chemical fingerprinting 51 

Chapter II. Classification of Novel Thermophilic Amycolatopsis and 

Excellospora Strains 

Introduction 

1. Thermophiles 54 

2. Thermophilic actinomycetes 60 

3. Present study 92 

Materials and Methods 

. 1. Strains and cultivation 97 

2. Acquisition of phenotypic data 97 

3. Chemotaxonomy 100 



(a) Analysis of menaquinones 100 

(b) Analysis of polar lipids 101 

(c) DNA base composition 103 

4. Sequencing and analysis of 16S rDNA 103 

(a) Small scale preparation of genomic DNA 104 

(b) PCR amplification of 16S rDNA 109 

(c) Dye-DeoxyTM terminator Taq cycle sequencing of 16S rDNA 113 

(d) Analysis of 16S rRNA sequence data 114 

5. DNA: DNA hybridisation 121 

(a) Large scale isolation of DNA 121 

(b) Loading DNA on nitrocellulose filters 124 

(c) Preparation of labelled reference chromosomal DNA 125 

(d) Pre-hybridisation 126 

(e) Hybridisation 126 

(f) Scintillation counting 127 

Results and Discussion 

1. Classification of thermophilic Amycolatopsis strains 130 

2. Classification of alkalitolerant, thermophilic excellosporae 144 

Chapter HE Systematics of Thermophilic Streptomycetes 

Introduction 
1. Circumscription of the genus Streptomyces 167 

2. Thermophilic streptomycetes 171 

3. Streptomycete systematics: the early years 173 

4. Application of modern taxonomic methods 176 

(a) Numerical taxonomy 176 

(b) Molecular systematics 186 

(c) Chemotaxonomy 201 

5. Polyphasic taxonomy 207 

Materials and Methods 

1. Strains and cultivation 
210 

2. Morphology and pigmentation 
210 

3. Degradation and nutritional tests 217 



4. Menaquinone and polar lipid analyses 217 

5. DNA base composition 217 

6. Sequencing and analysis of 16S rRNA 217 

7. DNA: DNA relatedness studies 220 

8. Molecular fingerprinting: Ribotyping 221 

Results 

1. Phylogenetic analyses based on 16S rDNA sequences 229 

(a) Reference strains 229 

(b) Thermophilic isolates 234 
2. DNA: DNA relatedness study 243 
3. Ribotype patterns 245 
4. Chemotaxonomic markers 248 

5. Phenotypic properties 248 

Discussion 261 

References 292 

Appendix 1. World Wide Web sites 348 
Appendix 2. Secondary structures of bacterial 16S ribosomal RNA 

352 

Appendix 3. Formulae used for calculating oligonucleotide primer 
concentrations 356 

Appendix 4. Culture media and reagents 358 



CHAPTER 1 BACTERIAL SYSTEMATICS 1 

Chapter I: 

Current Trends in Bacterial Systematics 

1. Polyphasic taxonomy 

Bacterial classification and identification are data dependant and hence are in a 

progressive state of development as they are influenced by the introduction and application 

of new taxonomic concepts and methods. Nomenclature, by ensuring that the current 

internationally recognised scientific names are given to taxa (classification) and unknown 

strains (identification), covers both disciplines and, as with classification and identification, 

is constantly being adjusted and refined. Sound classification is a prerequisite for both stable 

nomenclature and reliable identification. Classification and identification are core 

disciplines as they are relevant to both basic and applied research. Nomenclature is central to 

all aspects of microbiology as microbiologists need to know what organisms they are 

working with before they can pass on information about them. In other words, an organism's 

name is the key to its literature, an entry to what is known about it. 

Classification and identification of actinomycetes is essentially a two stage process 

(Goodfellow & O'Donnell, 1989). Reliable taxonomic criteria are needed to assign 

organisms to genera prior to the selection of diagnostic tests for identification to constituent 

species. Identification to the genus level and above can usually be achieved either by using a 

combination of chemical and morphological markers (Lechevalier & Lechevalier, 1970a, b; 

Goodfellow& Cross, 1984; Williams et al., 1989; Goodfellow et al., 1997a) or by using 16S 

rDNA/rRNA sequence data (Embley et al., 1988b; Chun et al., 1995; Kroppenstedt et al., 

1997; Zhang et al., 1998). In contrast, few reliable and well tested schemes are available for 

the differentiation of species, the basic taxonomic unit in bacterial systematics. The nature 

of the species concept remains a source of argument amongst bacteriologists (Goodfellow & 

O'Donnell, 1993; Goodfellow et al., 1997a; Ward, 1998). 
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Early definitions of bacterial species were usually based on monothetic groups 

which were delineated using subjectively selected sets of phenotypic properties. This 

traditional species concept has several limitations as strains which vary in key characters are 

liable to be misidentified. Monothetic classifications also tend to lack uniformity as different 

taxonomic criteria are usually used to delineate species belonging to different genera. This 

problem can be exemplified by considering the taxonomic status of members of the families 

Bacillaceae and Enterobacteriaceae, the former group is markedly underspeciated (Rainey 

et al., 1993a; White et al., 1993) whereas with the latter different generic and species 

designations are retained for organisms related at the species level, as exemplified by 

Escherichia coli and Shigella sonnei (Brenner et al., 1972,1973; Brenner, 1984). 

There is still no widely accepted definition of the term species in bacteriology. 

However, it is often useful to distinguish a taxospecies, a group of strains which share a high 

proportion of phenotypic properties (Sneath, 1989a); from a genospecies, a group of 

organisms capable of genetic exchange (Ravin, 1961); from a genomic species a group of 

organisms which have a high degree of DNA: DNA relatedness (Wayne et al., 1987; Murray 

et al., 1990). Nucleic acid sequence data can be used to generate a hierarchical branching 

pattern of relationships but the definition of taxonomic borders still relies on the 

discontinuous distribution of phenotypic characters (Murray et al., 1990; Goodfellow et al., 

1997a). There is, therefore, a need for a unified, holistic approach to bacterial systematics 

based on detailed interdisciplinary taxonomic studies though it is important to remember 

that species, genera and higher taxonomic ranks are artificial constructions and hence are 

subjective (Hull, 1997). 

Bacterial systematics began as a largely intuitive science but has become 

increasingly objective due to the introduction and application of chemotaxonomic, 

molecular systematic and numerical phenetic methods (Goodfellow & O'Donnell, 1993). 

The new advances, especially in molecular systematics, promoted the need to compare older 
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and more recent approaches to bacterial classification (Wayne et al., 1987; Murray et al., 

1990; Stackebrandt et al., 1997). This exercise led to the view that bacterial classification at 

all levels in the taxonomic hierarchy should be based on the integrated use of genotypic and 

phenotypic data (Vandamme et al., 1996; Goodfellow et al., 1997a). This approach, known 

as polyphasic taxonomy, was introduced by Colwell (1970) to signify successive or 

simultaneous studies on groups of organisms using a set of taxonomic procedures designed 

to yield good quality genotypic and phenotypic data. Genotypic information is derived from 

analyses of nucleic acids (DNA and RNA) and phenotypic data from studies on cultural, 

chemotaxonomic, nutritional, physiological and other expressed features. Polyphasic 

taxonomic studies can be expected to yield well defined taxa and a stable nomenclature. 

The polyphasic approach to the circumscription of bacterial taxa only became 

possible due to the availability of rapid data acquisition systems and improved data handling 

procedures (Canhos et al., 1993; Vandamme et al., 1996; Goodfellow et al., 1997a). It is 

encouraging that most descriptions of new cultivable bacteria in recent issues of the 

International Journal of Systematic Bacteriology are based on a judicious selection of 

genotypic and phenotypic data. In the current issues of the journal, for example, several new 

actinomycete taxa are proposed based on the polyphasic approach. These taxa include the 

genus Verrucosispora (Rheims et al., 1998) and the species Corynebacterium confusum 

(Funke et al., 1998) and Mycobacterium bohemicum (Reischl et al., 1998). 

Polyphasic taxonomy is now widely practised but little attempt has been made to say 

which methods should be used to generate genotypic and phenotypic information. At 

present, polyphasic taxonomic studies tend to reflect the interests of individual research 

groups and the equipment and procedures which they have at their disposal. It is difficult to 

say exactly which methods should be applied in polyphasic taxonomic studies as those 

employed to some extent depend on the rank of the taxa under investigation (Table 1-1). 

Nevertheless, it is clear that 16S ribosomal (r) RNA sequencing is a powerful method for 
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Table 1-1. Sources of taxonomic information* 

Taxonomic rank 
Cell component Analysis 

Chromosomal DNA Base composition (mol% G+C) 

DNA: DNA hybridisation 

Restriction patterns (RFLP, ribotyping) 

DNA segments 

Ribosomal RNA 

DNA probes 
DNA sequencing 

PCR based DNA fingerprinting 

(PCR-RFLP, RAPD) 

DNA: rRNA hybridisation 

Nucleotide sequences 

Proteins Amino acid sequences 
Electrophoretic patterns 

Multilocus enzyme electrophoresis 
Serological comparisons 

Chemical markers Peptidoglycans 

Genus or Species Subspecies 
above or below 

-q 

J 
J 

J 

J 

-1 

JJ 
JJ 

JJ 
JJ 
JJ 

J 
J 

J 
JJ 

J 
JJ 

Fatty acids 

Isoprenoid quinones 
Mycolic acids 

Polar lipids 

Polyamines 

Polysaccharides 

Teichoic acids J J 

Whole-organisms Pyrolysis mass-spectrometry J 

Rapid enzyme tests JI 

Expressed features Morphology J J 

Physiology J J 

* Modified from Priest & Austin (1993) and Vandamme et al. (1996). 

Abbreviations: RFLP, restriction fragment length polymorphism; RAPD, randomly amplified pleomorphic 

DNA fingerprints; PCR, polymerase chain reaction. 
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establishing suprageneric relationships between bacteria though it is of less value when the 

object is to unravel relationships below the genus level (Goodfellow et al., 1997a; 

Stackebrandt et al., 1997). In contrast, DNA: DNA hybridisation, molecular fingerprinting 

and phenotypic procedures are preferred when delineating groups at species and 

infrasubspecific levels (Stackebrandt & Goebel, 1994; Wayne et al., 1996). 

The polyphasic taxonomic approach to circumscribing bacterial species can be 

expected to meet most of the primary challenges facing bacterial systematists, namely, the 

need to generate well defined species, a stable nomenclature and improved identification 

systems. In the present study, several alkalitolerant and neutrophilic thermophilic 

actinomycetes, which were initially assigned to the genera Actinomadura, Amycolatopsis 

and Streptomyces using chemotaxonomic and numerical phenetic data (Sahin, 1995), were 

the subject of comprehensive polyphasic taxonomic studies designed to clarify their 

taxonomic status. 

2. Suprageneric classification: Nucleic acid sequencing 

(a) Background 

The most specific and informative methods for classifying microorganisms 

are based on the determination of precise nucleotide sequences of specific regions of the 

chromosome. Sequencing methods have developed rapidly in recent years so that 

comparative sequencing of homologous genes is now a standard procedure in molecular 

systematic studies (Woese, 1987; Kurtzman, 1992; Olsen & Woese, 1993). Conserved 

genes, such as those coding for 23S rRNA (Ludwig et al., 1992), ATPase subunits (Ludwig 

et al., 1993), elongation factors (Ludwig et al., 1993), RNA polymerases (Zillig et al., 1989) 

and citrate synthases (Birtles & Raoult, 1996), have been sequenced to establish the position 

of organisms in an overall taxonomic scheme. Similarly, less conserved genes have been 

used to distinguish between closely related organisms (e. g., exotoxin A gene to type toxin 
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producing strains of Pseudomonas aeruginosa [Loutit &Tompkins, 1991 ], the cholera toxin 

gene to type toxin producing strains of Vibrio cholerae [Alm & Manning, 1990], the DNA 

gyrase B subunit (gyrB) and RNA polymerase Sigma (70) factor (rpoD) genes to 

differentiate between Pseudomonas putida strains [Yamamoto & Harayama, 1996,1998] 

and the outer surface protein rOmpA genes to type rickettsiae [Fournier et al., 1998]). 

It is now well known that rRNA genes are essential for the survival of all organisms. 

These genes are highly conserved in eukaryotes and prokaryotes and are being used to 

generate a universal tree of life. Two premises underlie this approach, namely, that lateral 

gene transfer has not occurred between rDNA genes and that the degree of dissimilarity of 

rRNA sequences between a given pair of organisms is representative of the variation shown 

by corresponding whole genomes. The good congruence found between phylogenies based 

on 16S rRNA and those derived from studies on alternative conserved molecules, such as 

protein-translocating ATPase subunits, elongation factors, 23 rRNA and RNA polymerases, 

lends substance to this latter point (Ludwig et al., 1992,1993; Olsen & Woese, 1993; 

Goodfellow et al., 1997a). It also seems likely that lateral gene transfer between rRNA 

genes will be rare as these genes are responsible for the maintenance of functional and 

tertiary structural consistency (Woese, 1987). There is evidence that horizontal gene transfer 

(Lan & Reeves, 1996) can occur between 16S rRNA genes as exemplified by aeromonads 

(Sneath, 1993) and rhizobia (Eardley et al., 1996). 

Ribosomal RNA operons are transcribed into single pre-rRNA transcripts which 

contain several components, usually, in the following order (5' to 3'): 16S rRNA, spacer 

region, (tRNA, variably present), spacer region, 23S rRNA, spacer region and 5S rRNA 

(Watson et al., 1987; Gürtler & Stanisich, 1996). The 16S rRNA genes are similar in length 

throughout the bacterial domain (about 1.5 kb) and contain both highly conserved and 

variable regions. The location of rare changes in the variable regions are specific to the' 

group or species in which they occur (Stackebrandt & Woese, 1981; Woese, 1987; Dams et 
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al., 1988; Stackebrandt et al., 1997). 

Southern hybridisation studies between 16S rDNA sequences and genomic DNA 

digests with restriction enzymes that cut relatively infrequently (e. g., Eco RI, Hid III) 

showed that several bands may hybridise with the probe. The number of bands often 

corresponds to the number of rRNA operons in the genomes (e. g., ten in Bacillus subtilis 

[Loughney et al., 1982] and Clostridium perfringens [Gamier et al., 1991], seven in 

Escherichia coli [Srivastava & Schlessinger, 1990]; three in Saccharomonospora spp. 

[Yoon et al., 1996], and one or two in Mycobacterium [Bercovier et al., 1986] and 

Mycoplasma spp. [Amikam et al., 1984]). 

There are a few examples where more than one rRNA operon per organism have 

been sequenced. In most of these cases the nucleotide sequences of different operons from 

the same strain have been found to be either identical or to show a low level of heterogeneity 

(about 0.1% or a few differences in nucleotide positions; Maden et al., 1987; Dryden & 

Kaplan, 1990; Heinonen et al., 1990; Ji et al., 1994). However, there are some instances 

where heterogeneity has been found between different rRNA operons in the same strain. The 

halophilic archaebacterium, Haloarcula marismortui, is exceptional as it has two 

nonadjacent rRNA operons where the two 16S rRNA coding regions each contain 1472 

nucleotides but differ in nucleotide substitutions at seventy-four positions (5% nucleotide 

sequence dissimilarity; Mylvaganam & Dennis, 1992). These investigators found that each 

of the rRNA operons were transcribed and that the resultant 16S rRNA molecules were 

present in intact 70S ribosomes. They also noted that none of the seventy-four 

heterogeneous nucleotide positions were related to sites seen as functionally important for 

interactions with tRNA, mRNA or translational factors during protein synthesis. Similarly, 

Thermoblspora bispora has two types of 16S rRNA genes which are transcribed and 

functional but differ at 98 nucleotide positions (6.4% nucleotide sequence dissimilarity; 

Wang et al., 1997). Mycobacterium terrae, unlike other slowly-growing mycobacteria, has 
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two copies of 16S rDNA operons that differ by 18 nucleotide substitutions (1.2 % nucleotide 

sequence dissimilarity; Ninet et al., 1996). These degrees of dissimilarity exceed the 

difference found between 16S rDNA sequences of members of some well-established 

bacterial species (Portaels et al., 1996). 

It is evident from the results of the independent sequencing studies outlined above 

that nucleic acid sequencing methods which do not include a cloning step may be flawed in 

cases where rRNA operons are heterogeneous. However, the identification of most taxa 

should not be affected because multiple copies of 16S rRNA genes found in microorganisms 

tend to show a high level of homogeneity (Cilia et al., 1996). 

The characterisation of 16S rRNA genes is now a well established standard method 

used for the classification of bacteria (Woese, 1987; Amann et al., 1995). By 1997,16S 

rRNA sequences of representatives of over 5487 different bacterial species were available 

(Van de Peer et al., 1998). The corresponding number of sequences available for the 23S 

rRNA gene is 170 (De Rijk et al., 1998). Initially, the 5S rRNA gene was widely studied 

(Stackebrandt & Liesack, 1993) but this macromolecule is now rarely considered due to the 

ease of sequencing the 16S rRNA gene which contains much more taxonomic information. 

The advantages of using 16S rRNA sequencing for the delineation of species far 

outweigh its deficiencies. In addition, the ability to sequence rRNA from difficult to culture 

and uncultivable bacteria is helping to unravel the diversity of prokaryotic species (Embley 

& Stackebrandt, 1997; Pace, 1997). Nucleic acid sequence data can also be used to design 

probes for in situ hybridisation (Schleifer et al., 1993) and thereby facilitate the development 

of appropriate selective isolation strategies by showing whether environmental samples 

contain representatives of target taxa. 

Another advantage of nucleotide sequencing studies is that the resultant sequence 

information can be added to nucleotide sequence databases and readily retrieved for 

comparative studies. 16S rRNA sequence data are held in the GenBank Database (Benson et 
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al., 1998), the European Molecular Biology Laboratories Database (EMBL; Stoesser et al., 

1998), the DNA Data Bank of Japan (DDBJ; Tateno et al., 1998), the Small Ribosomal 

Subunits Database (Van de Peer et al., 1998) and the Ribosomal Database Project (RDP; 

Maidak et al., 1997). Access to sequence data is provided in most databases by means of 

user-friendly interfaces, such as World Wide Webs (Appendix 1). 

It is not always realised that evolutionary relationships between bacteria need to be 

interpreted with care as estimates of phylogeny are based on relatively simple assumptions 

when viewed against the complexities of evolutionary processes (Goodfellow et al., 1997a). 

All methods of phylogenetic inference are based on assumptions that may be violated by 

data to a greater or lesser extent (Swofford & Olsen, 1990; Hillis et al., 1993). O'Donnell et 

al. (1993a) also pointed out that potential problems in interpreting nucleotide sequence data 

include alignment artifacts, non-independence of sites, inequalities in base substitution 

frequencies between sequences, and lineage-dependent inequalities in rates of change. 

(b) 16S rDNA sequence analysis 

The development of molecular biological techniques for sequencing 16S rRNA 

revolutionised bacterial systematics (Lane et al., 1985; Pace et al., 1986a, b; Woese, 1987; 

Woese et at., 1990; Olsen & Woese, 1993). The introduction of the reverse transcriptase 

method (Qu et al., 1983; Lane et al., 1985) made it possible to determine almost complete 

16S rRNA sequences by using primers complementary to the conserved regions in 16S 

rRNA molecules. The reliability of nucleotide sequences determined by using the reverse 

transcriptase method is influenced by strong posttranscriptional base modifications and by 

the secondary structure of rRNA (Stackebrandt, 1992). DNA sequencing methods which 

involve the polymerase chain reaction (PCR) were subsequently found to give better quality 

sequence data than those derived from the application of the reverse transcriptase method. 

The application of the PCR to 16S rRNA sequencing coupled with the development of 

automated nucleotide sequencers, notably those employing non-radioactive labelling (e. g., 
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Applied Biosystems Prism sequencing kits), and computer-assisted data acquisition 

popularised this approach to unravelling bacterial relationships at and above the genus level. 

Two procedures are commonly used to determine PCR-amplified 16S rRNA gene 

(rDNA) sequences. In each case, the first step involves amplification of 16S rDNA using the 

PCR. The amplified rDNA can either be sequenced directly, following a suitable DNA 

purification step (Böttger, 1989; Embley, 1991), or cloned into a vector followed by 

sequencing the resultant recombinant (Stackebrandt & Liesack, 1993). The main differences 

between these two procedures is that the direct sequencing method determines the 

nucleotide sequences of mixtures of all of the rRNA operons present in genomes whereas 

only one operon is sequenced with the cloning method thereby avoiding the generation of 

chimeric nucleotides. However, despite this the two procedures are more or less equally 

suitable for phylogenetic analyses due to the limited heterogeneity found between rRNA 

operons from the same organism. Detailed procedures for 16S rRNA/rDNA sequencing are 

available (Ludwig, 1991; Stackebrandt & Liesack, 1993; Goodfellow et al., 1997a). 

Comparative sequencing of 16S rRNA/rDNA is used to derive phylogenies (Woese, 

1987; Stackebrandt et al., 1997). It has already been pointed out that evolutionary 

relationships based on 16S rRNA/rDNA sequence data should be interpreted with care as 

analyses of nucleotide sequence data are strongly influenced by different treeing algorithms 

(Goodfellow et al., 1997a). The concept of homology underpins all phylogenetic analyses, 

namely, that ancestry can only be traced by estimating changes in nucleotide sequences of 

homologous genes prepared from representative test strains (Sneath, 1989b). 

Alignment of sequence data. Complete or partial sequences of 16S rDNA from test strains 

need to be compared with known sequences. This involves the alignment of the sequence 

data to a set of sequences of representative reference organisms. Complete alignment may 

not always be possible due to factors such as differences in terminal length (i. e., some 

sequences are longer than others), internal length variation (i. e., the presence of base 
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deletions or insertions), recombination and high mutation rates associated with 

hypervariable regions and the degree of uncertainty about the historical correctness' of the 

data. 

Pairwise and multiple sequence alignments are based on minimising mismatches 

between sequences by introducing gaps or shifting bases to overcome mismatches, taking 

into account secondary structural features, that is, base signatures, pairing between distant 

regions, conserved mismatches, hairpins, gaps and loops. Chun (1995) incorporated base 

pairing features of 16S rRNA secondary structure in PC software, namely, the AL16S 

program, designed specifically for the analysis of 16S rRNA sequence data. Unalignable 

regions are omitted from phylogenetic analyses. 

Once sequences have been aligned similarity matrices can be constructed. In most 

cases the main phylogenetic group to which an unidentified sequence shows its highest 

similarity is determined. Then, the sequence can be compared to those available for all 

members of that group. Such a comparison can lead to placement of the sequence at one of 

various taxonomic levels from family down to species. It is at this stage that a detailed 

taxonomic knowledge of the group into which the sequence falls is necessary since failure to 

include nucleotide sequences of all representatives can lead to the erroneous assumption that 

the sequence represents an unknown or unsequenced taxon. 

(c) Phylogentic trees 

Phylogenetic relationships between organisms, expressed as similarity or 

dissimilarity values, can be visualised as trees which consist of internal and terminal points 

(nodes) connected by edges (branches). The terminal nodes represent the molecules of the 

analysed organisms whereas an internal node represents a common stage in the evolution of 

these molecules. Unrooted trees show interrelationships between organisms as the emphasis 

is on establishing relationships between neighboring taxa. In rooted trees the position of the 

common ancestor is indicated hence the perceived order in which the organisms evolved is 
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displayed. The distances between two nodes (organisms) are measured by the sum of edges 

between the nodes. 

Numerous tree-making methods can be used to infer ancestry once nucleotide 

sequences have been aligned (Sneath & Sokal, 1973; Nei, 1987; Felsenstein, 1988). The 

three major types of tree inferring approaches most widely used are the distance 

(Felsenstein, 1978; Fitch & Margoliash, 1967; Saitou & Nei, 1987), maximum parsimony 

(Fitch, 1971) and maximum likelihood methods (Felsenstein, 1981). 

Distance methods involve two consecutive procedures, namely, transformation of 

sequence similarity data to evolutionary distances and construction of trees from information 

in distance matrices (Swofford & Olsen, 1990). The most frequently used method for 

calculating distances is the one-parameter model proposed by Jukes and Cantor (1969) 

which assumes that there is independent change at all of the nucleotide positions hence there 

is an equal probability of ending up with each of the other three bases. This model is also 

based on the assumption that base composition does not vary over time. Several other 

distance transformation methods based on this equation are available . The two-parameter 

model (Kimura, 1980) provides for differences between transition and transversion rates. Jin 

and Nei (1990) developed a method based on the Kimura model of base substitution where 

the rate of substitutions was assumed to vary from site to site according to a gamma 

distribution. Another approach used to estimate evolutionary distances with consideration of 

gaps was introduced by Van de Peer et al. (1990). 

Construction of trees from information in distance matrices is carried out by using 

many of the available tree-making methods which are used to estimate the additive model, 

these include the neighbour joining (Saitou & Nei, 1987) and weighted least-squares 

methods (Fitch & Margoliash, 1967). The neighbour joining method (Saitou & Nei, 1987) 

is theoretically related to clustering methods, such as the UPGMA, but is not based on the 

assumption that data are ultrametric and that all lineages have equally diverged. In contrast 
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to cluster analysis, the neighbour joining method keeps track of nodes on the tree rather than 

taxa or clusters of taxa. The evolutionary distance matrix is provided as input data and a 

modified distance matrix is constructed in which the separation between each pair of nodes 

is adjusted on the basis of their average divergence from all of the other nodes. This 

procedure leads to the normalisation of the divergence of each taxon for its average clock 

rate. 

The least-squares method fits a given set of pairwise evolutionary distance 

estimates to an additive tree. A concrete definition of the net disagreement between the tree 

and the original data, as an objective function to be minimised, is needed. Two procedures 

are generally required to find the phylogenetic tree with the lowest value of error of fitting 

distance estimates to a tree (E value), namely, optimising the branch lengths given a tree 

topology and finding a tree topology with the lowest E value of all of the possible trees. 

The maximum parsimony method is used to find the most parsimonious tree 

among all possible tree topologies (Felsenstein, 1981). With this approach the sum of 

changes which must have occurred to give the sequences in the alignment are determined. 

The number of necessary base changes along the edges connecting the terminal nodes are 

determined for each alignment position. The tree with the minimal overall number of 

changes needed is the most parsimonious one hence it is taken as the one which reflects 

evolution most closely. Parsimony methods tend to misplace individuals or groups of 

organisms when the rate of evolution differs significantly in different lineages (Stackebrandt 

& Rainey, 1995). 

The maximum likelihood method is the most statistically sound way of 

reconstructing phylogeny (Felsenstein, 1988). This approach to phylogenetic inference is 

used to determine an explicit model of evolution by analysing the sequences on a site by site 

basis. It is used to evaluate the net likelihood that the given evolutionary model will yield 

the observed sequences; the inferred trees are those with the highest likelihood. The use of 
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this method is hampered by its computational cost and by the fact that the number of 

organisms that can be handled at any one time is normally below twenty (Olsen et al., 1994). 

The importance of this approach to bacterial systematics has been emphasised by Ludwig 

and Schleifer (1994). 

Factors influencing tree topology. All available treeing methods are based on various 

premises including the assumption that individual sites evolve independently from one 

another. However, this assumption may not be true with real data. Furthermore, due to the 

enormous number of possible tree topologies and the expense in computing time needed to 

generate them programs are not usually used to perform exhaustive tests of all possible tree 

topologies. This means that the optimal tree may not be found. In order to make the best use 

of computing time most programs add and treat data according to their order in an 

alignment. This practice introduces bias which can be eliminated by performing several runs 

and by changing the order of entries randomly. 

In terms of 16S rRNA sequencing, the newcomer to the field of microbial 

phylogeny may assume that complete nucleotide sequences provide the maximum of 

available phylogenetic information accessible from a given sequence. This is true in 

principle but it implies that the inclusion of all positions in all analyses gives optimal results 

(Stackebrandt & Rainey, 1995). The choice of regions to select for sequencing depends on 

the phylogenetic level of relatedness sought between the test strains. Absolutely invariant 

and highly conserved positions indicate homology and are invaluable for aligning sequences. 

However, these positions confer little phylogenetic information. On the other hand, highly 

variable regions, which are subject. to multiple changes at a given site and for which 

homology is difficult to determine, should be excluded from analyses as they lead to an 

underestimation of remote relationships. The higher the number of conserved nucleotides 

the closer the degree of relatedness; in such cases nucleotide differences will be found 

mainly in the variable regions. In other words for highly related organisms the hypervariable 
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regions are the only regions which may show differences. The influence of hypervariable 

positions on tree topologies can be tested by performing several analyses which involve 

successive removal of these positions or regions. It is still a matter of debate whether these 

regions reflect phylogeny (Stackebrandt & Rainey, 1995). 

The statistical significance of the order of particular subtrees in a phylogenetic tree 

can be tested by resampling methods such as the bootstrap procedure (Efron & Gong, 1983; 

Felsenstein, 1985). This approach involves random resampling of alignment positions with 

the result that some of them are included more often than others in analyses whereas others 

are not included at all. The procedure is usually repeated between 100 to 1000 times with 

alternatively truncated or rearranged data sets. The higher the fraction of runs of 

recomputation in which the taxa defined by the branching points appear as a monophyletic 

subtree, the higher is the significance of the individual branching points. 

The root of a subtree can be determined by including homologous sequences from 

phylogenetically moderately related organisms (Swofford & Olsen, 1990). The "outgroup" 

reference can be represented by a single sequence (Ludwig & Schleifer, 1994) but it is 

preferable to include entries from members of different genera in order to avoid artifacts due 

to differences in the evolutionary rate between the outgroup and the organisms under 

investigation (Stackebrandt & Rainey, 1995). 

It should be kept in mind that the addition of any new homologous sequence to an 

existing data set may influence the topology of the resultant tree. This is due to the fact that 

each new sequence which shows differences to those in the data set gives rise to a new set of 

dissimilarity values which causes the algorithm to make adjustments to branch lengths in 

order to match the binary values most closely. The inclusion of this additional information 

may improve the tree locally or even globally but may also have a negative influence on the 

stability of clusters (Stackebrandt & Rainey, 1995). Lineages represented by a single 

organism often cannot be stably positioned in phylogenetic trees. The addition of related 
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nucleotide sequences usually stabilises the branching point of the respective lineage. The 

addition of incomplete or incorrect sequences may reduce the stability of subtrees of related 

sequences. It is evident that the influence of nucleotide sequences on tree topology needs to 

be checked carefully. 

Another potential source of treeing artifacts is caused by compositional bias. The 

G+C contents of rRNAs of most prokaryotes vary within a narrow margin, that is, between 

50 and 55 mol% (Stackebrandt & Rainey, 1995). These values are usually higher in 

molecules from thermophilic bacteria (Rainey et al., 1993b). However, transversion analysis 

is able to compensate for this bias as the purine content is rather stable among bacterial 

rRNAs (Rainey et al., 1993b). 

The restriction of sequence analysis to selected portions of 16S rDNA can cause 

significant deviation in the branching points of almost all species. The variation of tree 

topologies is due to significant differences in the similarity values determined for certain 

regions of the sequence from the same set of organisms. The position of hypervariable 

regions within the 16S rDNA primary structure differs from taxon to taxon and needs to be 

determined individually for their use in the determination of relatedness (Stackebrandt et al., 

1992, Goodfellow et al., 1997a). 

It is obvious from what has been said that partial sequences should not be used to 

unravel intrageneric phylogeny and that the phylogenetic positions of bacterial taxa should 

be based on the analysis of complete nucleotide sequences. However, the 3' terminal 900 

nucleotides, or the first 450 (5'-*3') nucleotides can be used for the rapid allocation of 

isolates and clone sequences to higher taxa (Stackebrandt & Rainey, 1995). Sequencing of 

the first 500 bases of an environmental 16S rDNA clone for example can be used to assign 

the clone to a main line of bacterial descent. This approach can be used to determine the 

degree of diversity in a particular clone library and to design oligonucleotide probes for 

screening clone libraries for the abundance of probe-positive clones (Stackebrandt & 
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Rainey, 1995). 

It is evident that there are still several pitfalls which can distort phylogenies based 

on 16S rRNA sequence data. Examples of these include the assignment of taxa to erroneous 

taxonomic ranks due to the comparison of 16S rRNA sequences with inadequate reference 

strains (Stackebrandt & Ludwig, 1994), classifications biased by the use of nucleotide 

sequences with high numbers of ambiguities from reverse transcriptase sequencing (Bowen 

et al., 1989), PCR generation of chimeric amplification products (Liesack et al., 1991), 

omission of data from critical differentiating regions (Ruimy et al., 1994), sequencing of the 

'wrong' strains (Stahl & Urbance, 1990; Rainey et al., 1995a) and oversimplified 

interpretation of phylogenetic analyses when proposing major taxonomic changes 

(Martinez-Murcia et al., 1992; Embley & Stackebrandt, 1994; Rainey et al., 1995a). It is 

clear, therefore, that 16S rRNA sequence data must be carefully interpreted. This can be 

achieved by preparing comprehensive guidelines to bridge the knowledge gaps of statistical 

assumptions underlying different algorithms used for data analysis and highlighting possible 

sources of error at various steps of the process. 

(d) Suprageneric classification of actinomycetes 

The order Actinomycetales Buchanan 1917'L was proposed as the only member of 

the class Actinomycetes Krassilnikov 1949''. The order, which was introduced to 

accommodate members of the family Actinomycetaceae, was mainly morphological in 

concept. A somewhat muted challenge to the reliance on morphology came from Gottlieb 

(1973) who defined actinomycetes as `varied groups of bacteria whose common feature is 

the formation of hyphae at some stages of development' but went on to say that `in some 

instance hyphal formation was tenuous and required imagination to believe in it'. In 1974, 

Gottlieb defined members of the order Actinomycetales as `bacteria that tend to form 

branching filaments which in some families developed into a mycelium' but conceded that 

filaments might be short, as in members of the families Actinomycetaceae Buchanan 1918AL 
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and Mycobacteriaceae Chester 1897A'. He also noted that in members of certain taxa 

filaments underwent fragmentation and hence could only be observed at some stages in the 

growth cycle. 

The relatively simple morphology of mycobacteria partly explains why these 

organisms were sometimes omitted from actinomycete classifications (Waksman, 1961, 

1967). Other workers questioned whether actinomycetes formed a natural group and 

regarded them as a convenient albeit artificial taxon (Sneath, 1970; Prauser, 1970,1978, 

1981; Goodfellow & Cross, 1974). The difficulty of distinguishing between nocardioform 

actinomycetes and coryneform bacteria was also widely recognised (Williams et al., 1976; 

Goodfellow & Minnikin, 1981). 

The reliance on morphology when describing actinomycetes has been challenged by 

information derived from the application of chemical and molecular systematic methods. 

Data from 16S rRNA cataloguing studies showed that morphological features tended to be 

poor markers of phylogenetic relationships and that the traditional morphological definition 

of an actinomycete could not be sustained (Stackebrandt et al., 1983; Stackebrandt & 

Woese, 1981). The morphologically simple corynebacteria were found to be 

phylogenetically close to the more highly differentiated mycobacteria, nocardiae and 

rhodococci, an association that was consistent with chemotaxonomic (Minnikin & 

Goodfellow, 1980,1981), comparative immunodiffusion (Lind & Ridell, 1976) and 

numerical phenetic data (Goodfellow & Minnikin, 1981; Goodfellow & Wayne, 1982). 

The traditional practice of separating the more highly differentiated actinomycetes 

from the relatively morphologically simple coryneform bacteria no longer holds as strains of 

Actinomyces, Oerskovia and Promicromonospora show a closer phylogenetic affinity to 

members of the genera Arthrobacter, Brevibacterium, Cellulomonas, Curtobacterium and 

Microbacterium than to mycelium-form organisms such as Nocardia and Streptomyces 

(Goodfellow & Cross, 1984). In addition, members of the mycelium forming genus 
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Thermoactinomyces have been reclassified in the family Bacillaceae (Park et al., 1993) 

whereas Arthrobacter and Micrococcus strains have been considered to be indistinguishable 

on the basis of 16S rRNA cataloguing data (Stackebrandt & Woese, 1981; Stackebrandt et 

al., 1980). It is evident from these findings that the possession of branched hyphae should 

not automatically place a strain with the actinomycetes. 

It became increasingly clear from the studies outlined above that the order 

Actinomycetales needed to be formally redefined. Stackebrandt and Woese (1981) assigned 

Gram-positive bacteria to two major subgroups which corresponded to `the high G+C (i. e., 

over 55%) actinomycete-type of organisms and the low G+C (i. e., below 50%) endospore- 

forming organisms and their asporongenous relatives'. The genera Actinomyces, 

Bifidobacterium, Corynebacterium, Mycobacterium, Propionibacterium and Streptomyces 

and related taxa were assigned to the high G+C group ("actinomycetes") and the genera 

Bacillus, Staphylococcus, Streptococcus and Thermoactinomyces to the low G+C group. 

These workers recommended that the genera Bifidobacterium and Propionibacterium be 

omitted from the order Actinomycetales as members of these taxa were anaerobic and only 

loosely associated with aerobic actinomycetes on the basis of 16S rRNA catalogue data. A 

similar definition of "actinomycetes" and the order Actinomycetales were given by 

Stackebrandt and Schleifer (1984). 

Goodfellow and Cross (1984) attempted to redefine actinomycetes in phylogenetic 

terms as 'Gram-positive bacteria with a high G+C content in their DNA (above 55 mol%) 

which are phylogenetically related from the evidence of 16S rRNA oligonucleotide 

sequencing and nucleic acid hybridisation studies', thereby excluding the genera 

Bifidobacterium, Kurthia and Propionibacterium. Murray (1992) proposed the class 

Thallobacteria for `Gram-positive bacteria showing a branch habit, the actinomycetes and 

related organisms' but did not give a precise definition of the taxon. 

Embley and Stackebrandt (1994) considered that the genera Bifidobacterium and 
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Propionibacterium should be included in the order Actinomycetales though they excluded 

several Gram-positive bacteria with DNA rich in G+C, such as Coriobacterium glomerans 

and Sphaerobacter thermophilus. A precise definition of actinomycetes based on the G+C 

content of DNA is complicated by the close relationship found between Coriobacterium 

glomerans and the genus Atopobium (Rainey et al., 1994a). Members of the genus 

Atopobium contain DNA which falls within the range 35 to 46 mol%. 

Stackebrandt et al. (1997) proposed a new hierarchic classification, namely, the class 

Actinobacteria, for the actinomycete line of descent based solely on analyses of small 

subunit (16S) rRNA and genes coding for this molecule. Their definition of the taxon is 

given below. 

Description of the class Actinobacteria classis nov., Stackebrandt et al. 1997. 

Actinobacteria, (Ac. ti. no. bac. te'ri. a. Gr. n. actis, actinis, a ray, beam; Gr. dim. n. bakterion, 

a small rod; -ia, proposed ending to denote class; Actinobacteria, actinomycete group of 

bacteria of diverse morphological properties). The class is definable in phylogenetic terms, 

as one of the main lines of descent within the domain Bacteria (Woese et al., 1990), on the 

basis of the analysis of macromolecules of universally homologous functions and includes a 

wide range of morphologically diverse organisms, most of which are Gram-positive. Strains 

of the class Actinobacteria can constantly be recovered as members of the same 

phylogenetic lineage, revealing > 80 % 16S rRNA/rDNA sequence similarity among each 

other (Fig. 1-1), and the presence of the following signature nucleotides in the 16S 

rRNA/rDNA: an A residue at position 906 and either an A or aC residue at position 955 

(except for members of the families Rubrobacteraceae and Sphaerobacteraceae which show 

U residues at these positions). 

It is apparent from Figure 1-1 that the class Actinobacteria encompasses six orders, 

including the order Actinomycetales (Buchanan 1917) emend. Stackebrandt, Rainey and 

Ward-Rainey 1997. The order Actinomycetales (Ac. ti. no. my. ce. ta'les. M. L. masc. n. 
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Table 1-2. Genera, families, orders and subclasses in the class Actinobacteria 

Family Genus 

Subclass Acidimicrobidae 
Order Acidimicrobiales 

Acidimicrobiaceae Acidimicrobium 

Subclass Actinobacteridae 
Order Actinomycetales 
Acidothermaceae Acidothermus 
Actinomycetaceae Arcanobacterium, Actinomyces, Mobiluncus, Actinobaculum 

Brevibacteriaceae Brevibacterium 
Cellulomonadaceae Cellulomonas, Oerskovia, Rarobacter 
Corynebacteriaceae Corynebacterium, Turicella 

Dermabacteraceae Brachybacterium, Demetria *, Dermabacter 

Dermatophilaceae Dermatophilus, Dermacoccus, Kytococcus 
Dietziaceae Dietzia 
Frankiaceae Frankia 
Geodermatophilaceae Blastococcus, Geodermatophilus 
Glycomycetaceae Glycomyces 
Gordoniaceae Gordonia, Skermania* 

Intrasporangiaceae Intrasporangium, Janibacter*, Sanguibacter, Terrabacter, 
Terracoccus* 

Jonesiaceae Jonesia 
Microbacteriaceae Agrococcus, Agromyces, Aureobacterium, Clavibacter, 

Cryobacterium*, Curtobacterium, Leucobacter*, Microbacterium, 
Rathayibacter 

Micrococcaceae Arthrobacter, Kocuria, Micrococcus, Nesterenkonia, 
Renibacterium, Rothia, Stomatococcus 

Micromonosporaceae Actinoplanes, Catellatospora, Catenuloplanes, Couchioplanes, 
Dactylosporangium, Micromonospora, Pilimelia, Sprilliplanes*, 
Verrucosispora* 

Microsphaeraceae Microsphaera 

Mycobacteriaceae Mycobacterium 
Nocardiaceae Nocardia, Rhodococcus 

Nocardioidaceae Aeromicrobium, Nocardioides 

Nocardiopsaceae Nocardiopsis, Thermobifida* 

Promicromonosporaceae Promicromonospora 
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Propionibacteriaceae Friedmanniella*, Luteococcus, Microlunatus, Propioniferax, 
Propionibacterium 

Pseudonocardiaceae Actinokineospora*, Actinopolyspora, Actinosynnema, 
Amycolatopsis, Kibdelosporangium, Kutzneria, Lentzea, 
Saccharomonospora, Saccharopolyspora, Saccharothrix, 
Streptoalloteichus, Prauserella *, Pseudonocardia, Thermocrispum 

Sporichthyaceae Sporichthya 
Streptomycetaceae Kitasatospora*, Streptomyces 
Streptosporangiaceae Herbidospora, Microbispora, Microtetraspora, Nonomuria *, 

Planobispora, Planomonospora, Streptosporangium 
The rmomonosporaceae Actinocorallia *, Actinomadura, Excellospora *, Spirillospora, 

Thermomonospora 
Tsukamurellaceae Tsukamurella 
Order Bifidobacteriales 
Bifidobacteriaceae Bifidobacterium, Gardnerella 
Subclass Coriobacteridae 
Order Coriobacteriales 
Coriobacteriaceae Atopobium, Coriobacterium 
Subclass Rubrobacteridae 
Order Rubrobacterales 
Rubrobacteraceae Rubrobacter 
Subclass Sphaerobacteridae 
Order Sphaerobacterales 
Sphaerobacteraceae Sphaerobacter 
Genera in search of Bogriella*, Cryptosporangium*, Kineococcus*, Kineosporia*, 
family Micropolyspora *, Thermobispora 
Table based on Stackebrandt et aL (1997). 
Type genera are highlighted in bold. 
*, Taxa which were either not included or described subsequently to Stackebrandt et al. (1997). 
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Actinomyces, type genus of the order; -ales, ending to denote an order; M. L. p1. fern. n. 

Actinomycetales, the Actinomyces order) encompasses Gram-positive bacteria with DNA 

rich in G+C (above 55 mol%) and characteristic nucleotide signature. The 16S rRNA 

signature pattern consists of nucleotides at positions 122-239 (A-G), 449 (A), 450-483 (G- 

C), 823-877 (G-C) and 1118-1155 (U-A). The order contains the ten suborders and thirty- 

five families (Fig. 1-1). The families and genera included in the class are shown in Table 1- 

2. 

3. Classification at genus and species levels 

Current bacterial species concepts have tended to reflect the taxonomic methods 

used to classify individual strains (Goodfellow et al., 1997a). The dramatic impact made by 

the application of chemotaxonomic, molecular systematic and numerical phenetic 

procedures on bacterial classification is testimony to this point. Technique driven 

approaches to the circumscription of bacterial species are sound in an operational sense but 

do not take into account the fact that species are products of evolutionary processes (Ward, 

1998). It is, therefore, the overall pattern of properties shown by cultivable bacteria not the 

processes which gave rise to them which is currently seen to be paramount in bacterial 

classification. Views on how bacterial species should be delineated have been greatly 

influenced by the emergence of chemotaxonomy (Goodfellow & Minnikin, 1985), molecular 

systematics (Stackebrandt & Goodfellow, 1991) and numerical taxonomy (Sokal & Sneath, 

1963; Sneath & Sokal, 1973). 

(a) Chemotaxonomy 

Chemical data derived from the analysis of cell components can be used to classify 

bacteria at genus and species levels according to the pattern of distribution of the different 

compounds within and between members of different taxa (Goodfellow & O'Donnell, 

1994). Chemotaxonomic analyses of chemical macromolecules, particularly amino acids and 
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peptides (e. g., from peptidoglycan and pseudomurein), lipids (lipopolysaccharides), 

polysaccharides and related polymers (e. g., methanochondroitin, wall sugars), proteins (e. g., 

bacteriochlorophyll, whole-organism protein patterns), enzymes (e. g., hydrolases, lyases) 

and other complex polymeric compounds, such as isoprenoid quinones and sterols, all 

provide valuable chemotaxonomic data. In addition, chemical fingerprints of taxonomic 

value can be obtained by using analytical chemical techniques, notably, Curie-point 

pyrolysis mass spectrometry (Goodfellow et al., 1997a). Other approaches which provide 

valuable data for delineating species include analyses of cellular fatty acids (Stead et al., 

1992; Vauterin et al., 1996) and whole-organism proteins (Vauterin et al., 1993; Verissimo 

et al., 1996) and the elucidation of enzyme profiles based on chromogenic and fluorogenic 

substrates (Manafi et al., 1991). 

Developments in molecular systematics are sometimes perceived to be a threat to 

the continued significance of chemosystematics but this is not so as the two approaches are 

essentially complementary. Phylogenetic data provide a hierarchic framework of 

relationships among bacteria but do not give reliable information for the delineation of taxa 

above the species level. In contrast, chemical markers are unevenly distributed across taxa 

but rarely give information on their hierarchic rank. It is, therefore, very encouraging that 

good congruence exists between the distribution of chemical markers and the relative 

position of taxa in phylogenetic trees (Goodfellow & O'Donnell, 1994; Chun et al., 1996). 

Chemical data are not only employed to evaluate existing phylogenies but can also be used 

to adjudicate between conflicting phylogenetic trees (Goodfellow et al., 1997a). 

The value of different types of chemical markers in bacterial systematics have been 

considered in detail (Goodfellow & O'Donnell, 1994; Suzuki et al., 1993). Chemical 

methods that have been shown to be of value in the classification and identification of 

actinomycetes are cited below. 

Specific markers. The most commonly used chemical characters in actinomycete 
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systematics are derived from analyses of fatty acids, menaquinones, mycolic acids, 

peptidoglycans, polar lipids and whole-organism sugars (Goodfellow, 1989a; Suzuki et al., 

1993). Some of these methods provide quantitative or semi-quantitative data, as in the case 

of cellular fatty acid and menaquinone analyses, whereas others yield qualitative data, as 

exemplified peptidoglycan, polar lipid and whole-organism sugar determinations. 

Fatty acids. Fatty acids can be defined as carboxylic derivatives of long-chain aliphatic 

molecules. Most fatty acids are found in the cytoplasmic membrane, as constituents of polar 

lipids and glycolipids (Kates, 1964), where they form an integral part of the lipid bilayer 

(Ratledge & Wilkinson, 1988). Taxonomically, fatty acids in the range CIO to C24 have 

provided the greatest information and are found in a diverse range of microorganisms. In 

addition to chain length, the location of double bonds on unsaturated fatty acids and the 

presence of substituent groups, as found in hydroxylated and 10-methyl branched fatty acids, 

provide data that are useful both from biosynthetic and taxonomic points of view (Suzuki et 

al., 1993). 

A functional plasma membrane requires the presence of a suitable mix of both 

relatively fluid and solid fatty acids esterified to polar lipid head groups. Several different 

types of fatty acid mixtures are found in actinomycetes. At one extreme, straight chain fatty 

acids occur mixed with monounsaturated compounds such as cyclopropane and 

tuberculostearic acids, for example, in members of the genera Actinomyces, 

Corynebacterium and Mycobacterium. At the other extreme, Actinomadura, 

Actinopolyspora, Amycolatopsis and Streptomyces strains contain iso-fatty acids as their 

main relatively solid base, smaller amounts of straight chain fatty acids and anteiso-fatty 

acids provide the fluid element in these organisms. Actinomycetes belonging to the genera 

Pseudonocardia, Saccharomonospora, Saccharopolyspora and Streptosporangium contain 

complex mixtures of fatty acids (Suzuki et al., 1993). 

Kroppenstedt (1985) assigned actinomycetes to several groups and subgroups on the 
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basis of the type and amount of fatty acid components they contained (Table 1-3). 

Organisms with a type 1 pathway contain predominantly straight-chain saturated and 

unsaturated fatty acids and sometimes 10-methyl-branched and cyclopropane fatty acids; the 

10-methyl-branched and cyclopropane fatty acids are synthesised from the unsaturated 

components. Strains with a type 2 pathway have mainly terminally-branched fatty acids, that 

is, iso- and/or anteiso-branched fatty acids, in addition to minor amounts of straight-chain 

saturated and unsaturated fatty acids. The final group, type 3, encompasses organisms that 

have complex branched fatty acid patterns, that is, they contain a high percentage of straight- 

chain saturated and unsaturated or 10-methyl-branched fatty acids (type 1) in addition to 

major amount of iso- and/or anteiso-branched fatty acids (type 2). 

Highly standardised conditions are needed to prepare and analyse fatty acids in order 

to reduce test error. Fatty acid composition is affected by extraction and cultivation 

conditions. The ratio of cyclopropane acids in Lactobacillus strains, for instance, generally 

increases with culture age whereas the corresponding monounsaturated fatty acids decrease 

proportionally to this increase (Veerkamp, 1971). A similar phenomenon has been 

demonstrated with 10-methyl fatty acids in corynebacteria (Suzuki & Komagata, 1983). 

Cellular fatty acid compostion also varies significantly with growth temperature as cells 

grown at higher temperatures show a reduction in the ratio of unsaturated to saturated fatty 

acids (Kawaguchi et al., 1979). Cultivation media often affect cellular fatty acid 

composition, particularly that of organisms with the branched-chain fatty acid type. This can 

be demonstrated by comparing the fatty acid composition of coryneform bacteria grown on 

glucose and peptone-based media (Suzuki & Komagata, 1983; Saddler et al., 1986; Suzuki 

et al., 1993). 

The most commonly used method for the analysis of fatty acids involves gas- 

chromatographic separation of fatty acid methyl esters using capillary columns; the resultant 

individual peaks are identified by comparison of their retention times with those of 
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commercially available fatty acid standards (Embley & Wait, 1994). Fatty acid data can also 

be analysed quantitatively using a variety of statistical methods (Wold & Sjöström, 1977; 

O'Donnell, 1985; Saddler et al., 1987; Ninet et al., 1992; Nijhuis et al., 1997). 

The MIDI system (Newark, Delaware, U. S. A. ), a commercially available 

identification procedure for bacteria based on GLC analysis of cellular fatty acids, has been 

widely used (Miller & Berger, 1985; Wallace et al., 1998; Larsson et al., 1989; Stead et al., 

1992; McNabb et al., 1997; Muller et al., 1998). In this system the cultivation of bacteria 

and the preparation of fatty acid methyl ester samples are completely standardised. Samples 

are automatically injected and analysed and the possible names of species shown on a screen 

of a connected personal computer together with similarity scores. 

Mycolic acids. Mycolic acids are ß-hydroxylated fatty acids substituted at the a-position 

with a moderately long aliphatic chain. They are only found in corynebacteria, dietziae, 

gordoniae, mycobacteria, nocardiae, rhodococci, skermaniae and tsukamurellae, that is, in 

some actinomycetes that have an arabinogalactan-based cell wall and peptidoglycan type 

Aly. Mycolic acids vary widely in structure and several techniques of varying degrees of 

complexity have been developed to recognise the different types (Minnikin & Goodfellow, 

1980; Minnikin, 1988,1993; Yassin et al., 1993; Hamid, 1994). Mycolic acids can readily 

be analysed by using alkaline (Asselineau, 1966) or acid methanolysis (Minnikin et al., 

1980) and the resultant derivatives analysed by thin-layer chromatography (Minnikin, 1988) 

or high performance liquid chromatography (Minnikin, 1988; Butler et al., 1987). 

Isoprenoid quinones. These compounds are found in the membranes of most prokaryotes 

where they have a role as carriers in electron transport systems (Ingledew & Poole, 1984). 

Several types of isoprenoid quinones have been detected in bacteria (Collins, 1994) but 

menaquinones (MK) are the most common type found in actinomycetes (Kroppenstedt, 

1985: Suzuki et al., 1993; Collins, 1994). These molecules have a chemical structure 

analogous to that of vitamin K2 (MK-7; unsaturated menaquinone with seven isoprene 
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units) and are classified according to the number of isoprene units, which can vary from one 

up to fifteen, and the degree of saturation or hydrogenation (Collins & Jones, 1981). 

Menaquinones with seven to twelve isoprene units with various degrees of 

hydrogenation have been found to be useful in the classification of actinomycetes. The 

structure and composition of bacterial menaquinones are determined either semi- 

quantitatively by mass spectrometry or quantitatively by high-performance liquid 

chromatography (Kroppenstedt, 1985; Collins, 1994). The position or point of 

hydrogenation in isoprenoid side-chains can be very specific and hence of taxonomic value 

(Collins, 1994). Sophisticated techniques, such as silver-phase high-performance liquid 

chromatography (Kroppenstedt, 1985) and tandem mass spectrometry (Collins et al., 1988; 

Ramsey et al., 1988) are needed to determine the points of hydrogenation in isoprene units. 

Such studies have provided valuable information for the classification of Actinomadura 

(MK9[II, III, VI1I-H6]), Microtetraspora (MK9[II, VM, IX-H6]) and Streptomyces strains 

(MK9[II, III, IX-H6]) [Yamadaet al., 1982; Collins et al., 1988c; Kroppenstedt et al., 1990]. 

Peptidoglycan composition. Peptidoglycans of Gram-positive walls consist of long glycan 

chains (up to 100 units) composed of ß-1,4-linked disaccharides of N-acetylglucosamine 

and N-acetylmuramic acid. These chains are covalently cross-linked in three dimensions by 

oligopeptides which interconnect 3-0-lactoyl groups of muramic acid residues in the glycan 

chains (Hancock, 1994). Two systems have been proposed to classify peptidoglycans. The 

first was introduced by Ghuysen (1968) and the second by Schleifer and Kandler (1972). In 

each case the mode of cross-linkage is central to the classification, but the system proposed 

by Schleifer and Kandler (1972) is more comprehensive, using a tridigital code consisting of 

either the letter A or B to represent the position of the cross-linkage, a number to indicate 

the presence and type of interpeptide bridge and a small Greek letter to identify the amino 

acids in position 3 of the peptide subunit (Table 1-4). 

Phospholipids. Phospholipids are the most common polar lipids found in bacterial 
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Table 1-4. Classification of peptidoglycans* 
Position of cross-link Peptide bridge Amino acid at position 3 
Peptidoglycan A: 1. None a. L-lysine 

Cross-linkage between 0. L-ornithine 
position 3 and 4 of two y. meso-diaminopimelic 
peptide subunits acid 

2. Polymerised subunits a. L-lysine 

3. Monocarboxylic L-amino a. L-lysine 

acid or glycine or P. L-ornithine 

oligopeptide thereof y. LL-diaminopimelic acid 
4. Contains a dicarboxylic a. L-lysine 

amino acid 0. L-ornithine 

y. meso-diaminopimelic 
acid 

6. L-diaminobutyric acid 
5. Contains lysine and a a. L-lysine 

dicarboxylic amino acid ß. L-ornithine 
Peptidoglycan B: 1. Contains a L-amino acid a. L-lysine 

Cross-linkage between P. L-homoserine 

position 2 and 4 of two y. L-glutamic acid 
peptide subunits S. L-alanine 

2. Contains a D-amino acid a. L-ornithine 

P. L-homoserine 

y. L-diaminobutyric acid 

* Modified from Rogers et a!. (1980), Schleifer & Kandier (1972) and Schleifer & Seidl (1985). 
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Table 1-5. Major phospholipids found in actinomycetes* 

Name Polar head group substituent Overall charge 
Phosphatidylglycerol Glycerol 1+ 

Diphosphatidylglycerol Phosphatidylglycerol 2+ 
Phosphatidylbutanediol Butane-2,3-diol 1+ 
Phosphatidylinositol Inositol 1+ 
Phosphatidylinositol mannosides Acylated mannosylinositols 1+ 

Phosphatidylethanolamine Ethanolamine 0 
Phosphatidylcholine Choline 0 
Phosphatidylmethylethanolamine Methylethanolamine 0 

*, Modified from Minnikin and O'Donnell (1984). 

Table 1-6. Classification of actinomycete phospholipids* 

Type Characteristics 

I Nitrogenous phospholipids absent, phosphatidylglycerol variable 

II Only phosphatidylethanolamine 

III Phosphatidylcholine, phosphatidylethanolamine, 
phosphatidylmethylethanolamine and phosphatidylglycerol variable; 
phospholipids containing glucosamine absent 

IV Phospholipids containing glucosamine with phosphatidylethanolamine and 
phosphatidylmethylethanolamine variable 

V Phospholipids containing glucosamine, phosphatidylglycerol with 
phosphatidylethanolamine variable 

* Categories recognised by Lechevalier et al. (1977,1981); most actinomycetes contain 

phosphatidylinositol (Suzuki et al., 1993). 
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cytoplasmic membranes (Suzuki et al., 1993). Amphipathic polar lipids consist of a 

hydrophilic head group linked to two hydrophobic, aliphatic chains. The aliphatic chains 

show considerable variability and when cleaved from the hydrophilic head group and 

methylated yield fatty acid methyl esters which may be analysed as described earlier to 

provide taxonomic information. Less variability is found in the polar or hydrophilic head 

group but when present can provide valuable information for actinomycete taxonomy. The 

major phospholipids found in actinomycetes are shown in Table 1-5. 

Phospholipids extracted from actinomycetes by using organic solvent systems 

(Minnikin et al., 1984) can be separated by two dimensional thin-layer-chromatography 

(e. g., Embley et al., 1983) and detected using non-specific (5 %, w/v, ethanolic 

molybdophosphoric acid) or specific spray reagents (Suzuki et al., 1993). The latter can be 

used to detect a-glycols (periodate-Schiff; Shaw, 1968), amino groups (0.2 % ninhydrin, 

w/v, in water-saturated butanol; Consden & Gordon, 1948), choline (Dragendorff reagent; 

Wagner et al., 1961), lipid phosphates (Dittmer & Lester, 1964) and sugars (a-naphthol; 

Jacin & Mishkin, 1965). Lechevalier et al. (1977,1981) classified actinomycetes into five 

phospholipid groups based on 'semi-quantitative' analyses of major phospholipid markers 

found in whole-organism extracts (Table 1-6). 

In general, members of the same actinomycete genus have a common phospholipid 

pattern. Phospholipid patterns can be important for the recognition of actinomycete genera 

(Goodfellow, 1989a; Williams et al., 1989) and have proved to be of value in the 

recognition of the genera Aeromicrobium (Tamura & Yokota, 1994) and Dietzia (Rainey et 

al., 1995b). Amycolatopsis strains have phophatidylethanolamine and phosphatidylglycerol 

as major polar lipids with diphosphatidylglycerol, phosphatidylinositol and 

phosphatidylinositol mannosides variably present (phospholipid type II sensu Lechevalier et 

al., 1977). Similarly, Actinomadura strains contain phosphatidylinositol and 

diphosphatidylglycerol as major polar lipids with phosphatidylinositol mannosides and 
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phosphatidylglycerol variably present (phospholipid type I sensu Lechevalier et al., 1977), 

and Streptomyces strains diphosphatidylethanolamine, phosphatidylglycerol, 

phosphatidylinositol and phosphatidylinositol mannosides, but not glucosamine-containing 

phospholipids (phospholipid type 11 sensu Lechevalier et al., 1977). 

Sugars. Neutral sugars, which are major components of actinomycete cell envelopes, are 

useful taxonomic markers. Sugar composition can be determined by simple paper 

chromatography (Schaal, 1985) or by using gas-liquid chromatography (Saddler et al., 1991) 

following full hydrolysis of purified cell walls or whole-organisms (Hancock, 1994). In the 

latter case, quantitative sugar profiles can be analysed using multivariate statistical methods 

(St-Laurent et al., 1987). The location and function of sugars in the bacterial cell wall is not 

fully understood (Hancock, 1994). Information derived from analyses of sugar composition 

provides fairly crude data for understanding cell wall structure as the presence of a particular 

sugar in different strains does not necessarily mean that it is derived from the same 

macromolecule. More detailed analyses of cell wall polysaccharide polymers, such as so- 

called linkage analyses, can be used to provide additional information on the structure and 

function of actinomycete envelopes (Daffe et al., 1993). 

Actinomycetes can be assigned to five groups on the basis of the discontinuous 

distribution of major diagnostic sugars (Lechevalier & Lechevalier, 1970a, b); group A, 

presence of arabinose and galactose; group B, presence of madurose (3-O-methyl-D- 

galactose), and group D, presence of arabinose and xylose. Group E was added by Labeda et 

al. (1984) to denote the presence of major amount of galactose and rhamnose. Organisms 

which contain meso-A2pm but lack any of the diagnostic sugars are assigned to group C. 

A number of `rare' sugars have been shown to be diagnostic for members of some 

actinomycete taxa, notably, the occurrence of tyvelose in members of the genus Agromyces 

(Maltsev et al., 1992) and 3-O-methyl-rhamnose in Catellatospora strains (Asano et al., 

1989). Sugar patterns of actinomycetes are usually determined by gas- chromatographic/ 
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Table 1-7. Cell wall chemotypes of some actinomycete taxa* 

Wall 
chemotype 

Major components a Family/Genus 

I LL-diaminopimelic acid and glycine Streptomycetaceae 

II meso-diaminopimelic acid and/or hydroxy- Micromonosporaceae 
diaminopimelic acid and glycine 

III A meso-diaminopimelic acid and madurose Dermatophilaceae 
Frankiaceae 
Streptosporangiaceae 

lII B meso-diaminopimelic acid Brevibacteriaceae 
The rmomonosporaceae 

IV A meso-diaminopimelic acid, arabinose, Corynebacterineae 
galactose and mycolic acids 

IV B meso-diaminopimelic acid, arabinose and Pseudonocardiaceae 
galactose 

V lysine and ornithine Actinomyces israelii 

VI lysine (aspartic acid and galactose) b Microbacterium 
Oerskovia 

VII diaminobutyric acid and glycine (lysine) Agromyces 
Clavibacter 

VIII ornithine Curtobacterium 
Cellulomonas 

Table modified from Lechevalier & Lechevalier (1970a, b) and Goodfellow & O'Donnell (1989). 

All wall preparations contain major amounts of alanine and glutamic acid. 
b, Variable components. 
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mass-spectrometric analyses of derivatised preparations from whole-organism hydrolysates 

(Saddler et al., 1991; Hancock, 1994) though semi-quantitative thin-layer chromatographic 

procedures can be used (Ruan et al., 1994). 

Amycolatopsis strains contain arabinose and galactose (group A sensu Lechevalier & 

Lechevalier, 1970a, b), Actinomadura strains madurose (group B sensu Lechevalier & 

Lechevalier, 1970a, b), and Streptomyces strains no characteristic sugars (group C sensu 

Lechevalier & Lechevalier, 1970a, b). 

Wall chemotypes. The introduction of wall chemotypes by Lechevalier and Lechevalier 

(1970a, b, 1980) provided a much needed practical way of assigning actinomycetes to a 

number of groups using qualitative chemical data. The system is based on the discontinuous 

distribution of major diagnostic amino acids and sugars in whole-organism hydrolysates 

(Table 1-7). The diagnostic amino acids can readily be detected by their characteristic 

chromatographic behaviour and staining properties on thin-layer chromatography (Staneck 

& Roberts, 1974) or by gas chromatography (O'Donnell et al., 1982). Similarly, diagnostic 

sugars in whole-organism hydrolysates can be analysed by thin-layer chromatographic or gas 

chromatographic separation of derivatised molecules (Drucker, 1981; Hancock, 1994). 

Ribosomal proteins. Ochi (1989) found that ribosomal protein patterns contained 

information that could be used for classification and identification. He and his colleagues 

showed that the ribosomal protein AT-L30 varied amongst actinomycetes and could thereby 

be used to identify actinomycetes to genera on the basis of 2-D electrophoretic patterns 

(Ochi, 1992,1995; Ochi & Yoshida, 1991; Ochi & Miyadoh, 1992; Ochi & Hiranuma, 

1994). 

Chemical characters as phylogenetic markers. It is encouraging that good congruence 

exists between the distribution of certain chemical markers and classifications based on 16S 

rRNA sequence data (Goodfellow, 1989a; Embley & Stackebrandt, 1994; Goodfellow et al., 

1997a). Members of the family Microbacteriaceae, for example, have the uncommon type B 
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peptidoglycan, branched-chain fatty acids (fatty acid type 2c), unsaturated menaquinones 

with 9 to 12 isoprene units, a type I phospholipid pattern and DNA within the range of 64 to 

75 mol% G+C. The assignment of these organisms to a common family is also supported by 

5S rRNA (Park et al., 1993) and 16S rRNA sequence data (Stackebrandt et al., 1997). 

Actinomycetes with meso-A2pm, arabinose and galactose in the wall peptidoglycan 

(wall chemotype N sensu Lechevalier & Lechevalier, 1970a, b) fall into two distinct 

suprageneric groups (Goodfellow, 1992). Wall chemotype IV actinomycetes which contain 

mycolic acids belong to the genera Corynebacterium, Dietzia, Gordonia, Mycobacterium, 

Nocardia, Rhodococcus, Skermania and Tsukamurella (Goodfellow, 1992; Rainey et al., 

1995b; Chun et al., 1996,1997; Goodfellow et al., 1998) and the their mycolateless 

counterparts to the family Pseudonocardiaceae (Embley et al., 1988a, b; McVeigh et al., 

1994; Warwick et al., 1994). The mycolic acid-containing wall chemotype IV 

actinomycetes, together with members of Turicella otitidis which lack mycolic acids but are 

morphologically related to corynebacteria, were currently assigned to suborder 

Corynebacterineae on the basis of 16S rRNA sequence data (Stackebrandt et al., 1997). 

(b) Numerical taxonomy 

Early bacterial systematists relied on tests that were based on morphology and a 

number of other selectively weighted phenotypic features. Strains were assigned to groups 

on the basis of morphology, staining properties, ability to produce acid from sugars, 

motility, nutritional requirements, pigmentation and spore formation. In contrast, the 

primary objective of early numerical taxonomic studies was to assign individual bacterial 

strains to homogeneous groups or clusters, which could be equated with taxospecies, using 

large sets of phenotypic data. The resultant quantitative data on numerically defined 

taxospecies were used to design improved identification schemes (Priest & Williams, 1993). 

The theoretical basis of numerical taxonomy is well documented (Sneath & Sokal, 
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1973; Goodfellow et al., 1985; Sackin & Jones, 1993; Goodfellow, 1998) and hence is not 

considered in detail here. Numerical taxonomic data are usually stored and managed using 

computer systems due to the widespread availability of specialised software and the need to 

study large numbers of strains and properties (Canhos et al., 1993; Sackin & Jones, 1993). 

Numerical taxonomic procedures have been applied to most groups of cultivable 

bacteria in order to revise existing taxonomies and to classify unknown strains isolated from 

diverse environmental habitats (Goodfellow & Dickinson, 1985; Sackin & Jones, 1993). It is 

evident from such studies that this approach to classification provides an effective way of 

delineating taxospecies. The method has been less successful in generating higher 

taxonomic ranks, but this is almost certainly due to the types of data used rather than to 

fundamental flaws in numerical methods. Thus, representative strains from diverse genera 

may have different metabolisms and growth requirements which can make studies across 

generic boundaries difficult. Numerical taxonomic surveys have been widely used to 

circumscribe taxospecies, including those encompassed in taxonomically complex 

actinomycete taxa such as Mycobacterium (Wayne et al., 1996) and Streptomyces (Williams 

et al., 1983a, Kämpfer et al., 1991; Manfio et al., 1995). 

Taxonomic clusters or taxospecies are `operator unbiased' representations of 

natural relationships between strains though group composition may be influenced by the 

choice of strains and tests, experimental procedures, test error and data handling methods 

(Sackin & Jones, 1993; Goodfellow et al., 1997a). It is, therefore, essential to evaluate the 

taxonomic integrity of taxospecies by examining representative strains using independent 

taxonomic criteria derived from the application of chemotaxonomic and molecular 

systematic methods. 

The ability to delineate taxospecies has had a marked influence on the way bacteria 

are classified and identified. Any tendency to see numerical phenetic taxonomy as a method 

with a long past and an uncertain future should be resisted as improved methods and 
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automated data acquisition systems can be expected to facilitate the generation of high- 

quality phenotypic databases for a variety of purposes. It can, for example, be anticipated 

that with the developing interest in bacterial species diversity these databases, which may 

reflect the functional diversity of a habitat, will be put to even more fundamental uses. 

(c) Molecular systematics 

It has already been pointed out that the driving force in bacterial systematics owes 

much to developments in molecular biology, notably, nucleic acid sequencing studies. 

However, several other molecular systematic methods provide valuable data for 

classification of bacterial species, notably, the estimation of the mean overall base 

composition of DNA and indirect comparisons of nucleotide sequences by DNA: DNA 

hybridisation. 

DNA base composition. DNA base composition is expressed as the mole percent of 

guanosine plus cytosine (mol% G+C). The mol% G+C content of bacteria ranges from 25 to 

80 with the value being constant for a given organism (Johnson, 1989; Tamaoka, 1994). 

However, DNA base composition data cannot be used as a direct measure of relatedness 

though such studies do provide supportive evidence for taxonomic work as organisms that 

differ markedly in DNA base composition cannot be considered to be closely related. The 

converse is not necessarily true as organisms with similar mol% G+C ratio may be unrelated 

(Stackebrandt & Liesack, 1993) as such values do not take into account the linear 

arrangement of nucleotides in the DNA. 

DNA base composition is usually considered to be one of the characteristics required 

to characterise the genome and should form part of the minimal descriptions of species and 

genera (Levy-Frebault & Portaels 1992). In practice, DNA base composition studies provide 

additional information for assigning and/or confirming the placement of bacterial strains to 

broad taxonomic groups, such as the high and low G+C Gram-positive phyletic lines. Such 

studies may also be used to distinguish between members of taxa that have a similar 
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morphology, such as Micrococcus and Staphylococcus, but are genetically different (Colwell 

& Mandel, 1964; Silvestri & Hill, 1965). The DNA base composition values of strains from 

well circumscribed species do not usually differ by more than 3 mol% G+C (Mandel, 1966; 

Tamaoka, 1994). Similarly, members of species within a genus should not differ from one 

another by more than about 10 mol% G+C. However, there are no firm guidelines set for the 

range of DNA base compositions that can be encompassed at these taxonomic ranks. 

Two relatively simple methods are available for determining DNA base composition: 

direct chromatographic separation of enzymetically hydrolysed nucleotides using HPLC 

(Mesbah et at., 1989; Tamaoka & Komagata, 1984; Tamaoka, 1994) and indirect estimation 

of mol% G+C content from thermal denaturation curves using spectrophotometry (Marmur 

& Doty, 1962). DNA base composition data need to be interpreted with care as there is 

evidence that DNA preparation, choice of analytical methods and experimental conditions 

greatly influence results (De Ley, 1970; Tamaoka & Komagata, 1984; Tamaoka, 1994). 

DNA: DNA hybridisation. A unique property of DNA and RNA is their ability for 

reassociation or hybridisation. The complementary strands of DNA, once denatured, can, 

under appropriate experimental conditions, reassociate to reform native duplexes. The 

specific pairings are between the base pairs, adenine with thymine and guanine with 

cytosine; the overall pairing of the nucleic acid fragments is dependent on similar linear 

arrangements of these bases along the DNA. When comparing nucleic acids from different 

organisms, the amount of molecular hybrid and its thermal stability provide an average 

measurement of nucleotide sequence similarity. 

Information from DNA: DNA pairing studies has been extensively used to delineate 

bacterial species (Krieg, 1988; Stackebrandt & Goebel, 1994). The Ad Hoc Committee on 

Reconciliation of Approaches to Bacterial Systematics (Wayne et al., 1987) proposed a 

formal molecular definition of bacterial species, namely, that a species should generally 

include strains with approximately 70 % or more DNA-DNA relatedness with 5 °C or less 
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divergence values (OTm). Values from 30 % to 70 % reflect a moderate degree of 

relationship, but values become increasingly unreliable once they fall below the 30% level 

as they can be attributed to experimental artefacts. These guidelines have been used to 

clarify species relationships in diverse bacterial genera (Stackebrandt & Goebel, 1994; 

Goodfellow et al., 1997a). 

Experimental procedures for estimating DNA relatedness are based on two key 

properties of DNA molecules, namely, specificity of base pairing and denaturation- 

renaturation kinetics at specific temperatures (Marmur & Doty, 1961). Double stranded 

DNA dissociates into single-stranded DNA either at its melting temperature (Tm) or under 

highly alkaline conditions and reassociates at temperatures 15 °C to 30 °C below the Tm 

value at neutral pH. Single-stranded (ss) DNA from one organism will hybridise with 

ssDNA from another organism under appropriate experimental conditions to form 

heterologous molecules or duplexes. The extent of hybridisation can be directly quantified 

by monitoring the rate of the reassociation kinetics or by using labelled reference DNA. The 

amount of mismatch in heterologous duplexes can also be determined by comparing Tm 

values with those of corresponding homologous duplexes, the smaller the difference 

between the thermal stabilities (OTm), the fewer the mismatches in the hybrid. The 

stringency of hybridisation reactions can be varied by altering experimental parameters, 

notably, temperature, salt concentration and added reaction components (Johnson, 1991). 

The procedures currently used to measure DNA sequence similarity values either 

involve "immobilised DNA" or "solution reassociation" assays (Stackebrandt & Goebel, 

1994). Most methods, apart from optical determinations of hybrid formation in solution 

hybridisation, use radioactively labelled reference ssDNA but colorimetric DNA: DNA 

pairing methods using nonradioactive labelling with either biotin or digoxigenin are safer 

and increasingly applied alternatives (Ezaki et al., 1989; Jahnke, 1994; Hirayama et al., 

1996). 
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The rationale for using DNA reassociation as the gold standard for species 

delineation originates from the results of numerous studies where a high degree of 

correlation was found between DNA similarity and chemotaxonomic, genomic, serological, 

and numerical phenetic data (Stackebrandt & Goebel, 1994; Goodfellow et al., 1997a). 

These studies were based on the original finding that single-stranded DNA from two 

different strains will reassociate to a measurable extent and form a DNA hybrid if the 

strands contain less than 15 % base mispairing (Ullmann & McCarthy, 1973). In general, 

organisms which have 70 % or greater DNA similarity show at least 96 % DNA sequence 

identity (Stackebrandt & Goebel, 1994). Therefore, DNA: DNA pairing does not provide a 

satisfactory resolution for establishing relationships between organisms at the genus level 

and above due to the limited rate of hybridisation imposed by sequence divergence hence 

comparisons are limited to species and sub-species levels. 

DNA-rRNA hybridisation. This method involves the use of labelled rRNA as a probe for 

determining relationships between strains at taxonomic levels at and above the generic level 

(De Smedt & De Ley, 1977). The experimental procedure which underpins DNA-rRNA 

hybridisation studies is similar to that for direct binding DNA-DNA homology assays with 

the difference that the denatured immobilised DNA on membrane filters is hybridised with 

either 16S or 23S labelled rRNA at optimal reassociation temperatures (25-35 °C below 

Tm). Relatedness between strains is measured by the amount of rRNA probe bound and the 

stability of the resultant duplexes. Homology determinations may be strongly biased by the 

number of rRNA operons in test strains and by self-renaturation of probe rRNA due to the 

stable secondary structure of rRNA (Kilpper-Bälz, 1991). Once individual species have been 

defined, they can then be arranged into genera and families on the basis of overall similarity 

to form a hierarchic system. 

Few DNA-rRNA hybridisation studies have involved actinomycetes, though 

ribosomal RNA cistron similarity data showed that acid-fast actinomycetes are 
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phylogenetically close (Mordarski et al., 1980,1981). Similarly, it has been shown that 

sporoactinomycetes fall into at least three major phylogenetic clades which correspond to 

the genera Actinoplanes, Ampullariella and Micromonospora; to the genera Planobispora, 

Planomonospora and Streptosporangium; and to the genus Streptomyces (including 

Chainia, Elytrosporangium, Kitasatoa, Microellobosporia and Streptoverticillium; 

Stackebrandt et al., 1981). 

16S rDNA sequencing. This method provides valuable data for the circumscription of 

genera and can also be used to highlight new species. The circumscriptions of several 

actinomycete genera including Corynebacterium (Pascual et al., 1995), Kitasatospora 

(Zhang et al., 1997), Microtetraspora (Wang et al., 1996a; Zhang et al., 1998), 

Microbispora (Wang et al., 1996a), Micromonospora (Koch et al., 1996), Mycobacterium 

(Rogall et al., 1990; Pitulle et al., 1992), Nocardia (Chun & Goodfellow, 1995), 

Nocardiopsis (Rainey et al., 1996), Thermomonospora (Zhang et al., 1998), 

Saccharomonospora (Kim, S. B. et al., 1995), Streptomyces (Witt & Stackebrandt, 1990; 

Kim, D. et al, 1996), Streptosporangium (Ward-Rainey et al., 1996) have been strengthened 

as a results of 16S rDNA sequence studies. 16S rDNA sequencing data also highlighted the 

distinctiveness of the genera Nonomuria (Zhang et al., 1998), Skermania (Chun et al., 

1997), Prauserella (Kim, S. B. et al., 1998), ThermobiWda (Zhang et al., 1998) and 

Thermobispora (Wang et al., 1996b), and provided vital information for the recognition of 

novel actinomycetes species as exemplified by Nocardia flavorosea (Chun et al., 1998b), 

Saccharopolyspora spinosporotrichia (Thou et al., 1998), Pseudonocardia asaccharolytica 

and Pseudonocardia sulfidoxydans (Reichert et al., 1998). 

Fox et al. (1992) pointed out that 16S rRNA molecules from members of closely 

related species may be so conserved that they cannot be used to differentiate between strains 

at species level. This important observation means that strains of related species with 

identical, or almost identical, 16S rRNA/rDNA sequences may belong to different genomic 
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species. This is the case with species of Aeromonas (Martinez-Murcia et al., 1992), Bacillus 

(Fox et al., 1992), Legionella (Fry et al., 1991) and Tsukamurella (Yassin et al., 1995b, 

1996,1997). 

It is clear from the observations noted above that the sensitivity of DNA: DNA 

hybridisation is greater than that of 16S rRNA/rDNA sequence analyses. Nevertheless, even 

in this context 16S rRNA/rDNA sequence data can be used to select appropriate reference 

strains for the more exacting DNA: DNA relatedness studies. The terms rRNA species 

complex and rRNA superspecies have been proposed for organisms which have virtually 

identical 16S rRNA sequences but can be distinguished using DNA: DNA relatedness data 

(Fox et al., 1992). 

The correlation between 16S rRNA sequence and DNA relatedness data is not linear 

though rRNA similarity values below 97 % invariably correspond to DNA relatedness 

values below 60 % (Stackebrandt & Goebel, 1994; Goodfellow et at., 1997a). 

4. Classification at and below the species level 

The accurate circumscription of subtypes within a species is assuming greater 

importance in all branches of microbiology. Microbial typing is important in diagnostic 

bacteriology (Oyarzabal et al., 1997), ecological studies which involve the release and 

monitoring of novel microorganisms in natural habitats (Frothingham & Wilson, 1993; 

Stapleton et al., 1998) and in search and discovery programmes designed to detect new 

microbial products (Goodfellow & O'Donnell, 1989; Bull et al., 1992). Advances in 

molecular biology provide highly specific methods for typing isolates based on nucleic acid 

sequence data (Towner & Cockayne, 1993). The various molecular typing methods have 

advantages and disadvantages when applied to specific situations. In addition to the ability 

to discriminate between strains within target species is the ease of performance and 

interpretation of the tests and the availability of reagents. The usefulness of typing systems 
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varies depending on the specific organisms of interest. Several molecular typing systems 

have been found to be helpful in delineating actinomycetes below the species level (Grimont 

& Grimont 1986; L vy-Fr6bault et al., 1989; Welsh & McClelland, 1990; Klijn et al., 1991; 

Frothingham & Wilson, 1993; Poulet & Cole, 1995; Gürtler & Stanisich, 1996; Janssen et 

al., 1996). 

(a) Nucleic acid fingerprinting 

Restriction enzyme based techniques. Most if not all bacteria have genomic regions that 

are highly variable. This variability can be seen when chromosomal DNA is purified and 

cleaved into thousands of pieces with an appropriate restriction endonuclease, that is, an 

enzyme that cuts DNA at a constant position within a specific recognition site that is usually 

composed of 4 to 6 bp. It is often possible to distinguish between differences in banding 

patterns by visual examination when DNA from two different strains is cleaved into 

fragments (which usually range in size from 20,000 to 1,000 bp) and separated on an 

agarose gel. Differences in the length of restriction fragments are due to sequence 

rearrangements, insertions or deletions in DNA, or to base substitutions within restriction 

enzyme cleavage sites (Swaminathan & Matar, 1993). 

The technique outlined above was originally called restriction fragment length 

polymorphism (RFLP; Towner & Cockayne, 1993). Conventional RFLP analyses have 

been used to assess the genetic relatedness of bacteria but do not allow strain-specific 

identification as the large number of restriction fragments do not allow the recognition of 

specific banding patterns (Collins, 1984,1985; Ross et al., 1991; Swaminathan & Matar, 

1993; Roberts et al., 1998). 

Infrequent-cutting restriction endounucleases (e. g., Apa I, Not I, Sfi I, Sma I) cut 

chromosomal DNA into a few large restriction fragments (LRFs; Levy-Frebault et al., 

1989), require the application of pulsed-field gel electrophoresis (PFGE; Frothingham & 

Wilson, 1993) as they cannot be separated by conventional agarose electrophoresis. Pulsed- 
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field gel electrophoresis allows the generation of simplified chromosomal restriction 

fragment patterns without the need to resort to probe hybridisation methods. However, 

several factors limit the application of PFGE to subtyping representatives of bacterial 

species, notably, the long and tedious procedures required for the isolation and cleavage of 

genomic DNA, the requirements for expensive enzymes and reagents, and the complexity of 

experimentally optimising electrophoretic conditions (Swaminathan & Matar, 1993; Roiz et 

al., 1995). 

Other approaches have been developed to simplify genomic RFLP analyses by 

decreasing the number of DNA fragments that need to be compared. One such approach 

involves treating chromosomal DNA restriction fragments with one or more labelled probes 

(Swaminathan & Matar, 1993). Identical or closely related strains have a large number of 

hybridising fragments in common whereas unrelated strains have few, if any, such 

fragments. 

Restriction fragments of total chromosomal DNA separated on agarose gels can be 

transferred to nitrocellulose or nylon membranes and then hybridised with labelled probes. 

Initially, probes were almost always labelled with radioisotopes but the use of 

nonradioactive reporter molecules, such as biotin or digoxigenin, is now widely used. 

Probes used for subtyping include randomly cloned genomic DNA fragments (Grimont et 

al., 1992) and those derived from genes coding for putative virulence factors (Loutit & 

Tompkins, 1991), insertion sequences (Striissle et al., 1997), bacteriophage DNA (Wei et 

al., 1992) and rRNA (Laurent et al., 1996). 

A generalised typing method based on the procedure outlined above was introduced 

by Grimont and Grimont (1986). This method, which is commonly known as ribotyping, is 

based on the fact that rRNA genes are highly conserved and scattered throughout the 

chromosome of most bacteria and hence produce polymorphic restriction endonuclease 

patterns when probed with rRNA or the corresponding genes. The term "ribotyping" was 



CHAPTER 1 BACTERIAL SYSTEMATICS 46 

coined by Stull et al. (1988) to describe RFLP typing in molecular epidemiological studies 

of diverse bacterial species. 

Ribotyping has been applied to a wide range of microorganisms that includes 

members of the genera Actinomyces (Barsotti et al., 1994), Corynebacterium (Soto et al., 

1991; De Zoysa et al., 1995), Mycobacterium (Chiodini, 1990; Kanaujia et al., 1991; 

Domenech et at., 1994), Nocardia (Laurent et al., 1996), Rhodococcus (Lasker et at., 1992), 

Saccharomonospora (Yoon et al., 1996), Streptomyces (Doering-Saad et al., 1992) and 

Tsukamurella paurometabola (Auerbach et al., 1992). However, this technique is of limited 

value for typing microorganisms which only contain a single ribosomal operon, notably, 

slowly-growing mycobacteria (Chiodini, 1990; Arbeitet at., 1993). 

Several other typing procedures are based on the use of different probes. 

Randomly cloned probes, that is, randomly cloned DNA fragments of unknown function, 

can be evaluated in initial experiments to select those which recognise stable chromosomal 

regions and hence have discriminatory value. Such probes have been shown to be more 

discriminatory than rRNA probes for subtyping Brucella species (Grimont et al., 1992) and 

Legionella pneumophila (Tram et al., 1990). The main disadvantage of this approach is that 

a new set of probes is required for each bacterial species. In addition, useful probes can only 

be selected after a large number of clones from a genomic DNA library have been screened. 

Restriction fragment length polymorphism techniques have also been used for 

species delineation and typing members of the genera Mycobacterium (Telenti et al., 1993; 

Steingrube et al., 1995; Swanson et al., 1996,1997), Nocardia, Rhodococcus, Streptomyces, 

and Tsukamurella (Steingrube et al., 1995,1997) by making use of polymorphisms in the 

gene coding for the 65-kDa heat shock protein. Steingrube et al. (1995) observed that 

amplicons of the 65-kDa HSP gene from Nocardia isolates did not contain a Bst Ell 

recognition site thereby differentiating these organisms from most Mycobacterium species 

as the latter typically produce amplicons which contain one or more Bst EU recognition sites 
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(Steingrube et al., 1995; Telenti et al., 1993). Several investigators have distinguished 

between mycobacterial species and subgroups by PCR-based RFLP of the 65-kDa HSP gene 

(Plikaytis et al. 1992; Telenti et al., 1993; Steingrube et al., 1995; Swanson et al., 1996, 

1997). 

Repeated DNA elements have been isolated from an assortment of eukaryotic and 

prokaryotic organisms (Poulet & Cole, 1995). Distinct families of insertion sequences 

appear to be widely spread in the prokaryotic world based upon their genetic organisation 

and host range (Poulet & Cole, 1995). The polymorphism observed when separated 

endonuclease cleaved fragments of genomic DNA were hybridised with cloned repetitive 

DNA sequences has been found to be species specific (McAdam et al., 1994). Several 

insertion elements (IS) have been described in mycobacteria, such as IS900, IS901, IS1110, 

IS] 141 and IS1245 in members of the Mycobacterium avium- intracellulare complex (Moss 

et al., 1992; Guerrero et al., 1994; Roiz et al., 1995). The insertion sequences IS6110, which 

is specific to members of the Mycobacterium tuberculosis complex, is useful for tracing the 

global distribution of Mycobacterium tuberculosis strains (McAdam et al., 1994; Poulet & 

Cole, 1995; Strässle, 1997). 

DNA probes based on specific virulence factors derived from nucleotide 

sequences coding for putative virulence factors or from sequences upstream or downstream 

of virulence associated structural genes have also been used to subtype bacteria 

(Swaminathan & Matar, 1993). A fragment of the gene coding for exotoxin A has been used 

to type Pseudomonas aeruginosa (Loutit & Tompkins, 1991). Similarly, a probe consisting 

of the cholera toxin gene was used to type toxin producing strains of Vibrio cholerae (Alm 

& Manning, 1990). This method is not universally applicable as probes need to be 

developed for each bacterial species and the selection of suitable subtyping probes has to be 

done empirically by screening several nucleotide sequences. 

Polymerase chain reaction based techniques. The introduction of the PCR for 
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amplification of specific nucleic acid sequences (Saiki et al., 1985) led to the development 

of several typing methods for the analysis of amplification products (Welsh & McClelland, 

1990; Klijn et al., 1991; Versalovic et at, 1991; Smith-Vaughan et al., 1995; Janssen et al., 

1996). The simplest of these methods involves the use of gel electrophoresis to identify the 

size of the reaction products though better specificity and sensitivity can be obtained by 

analysing the reaction products by hybridisation with specific probes. Polymerase chain 

reaction methods offer several advantages over other nucleic acid-based subtyping 

procedures, notably, the need for only a few cells of the microorganism, speed and a 

protocol which consists of relatively few steps. 

Two types of PCR-based methods can be recognised, namely, PCR-RFLP and PCR 

ribotyping. The PCR-RFLP method involves the use of the PCR technique to amplify a 

particular region of the genome coupled with restriction endonuclease analyses of PCR 

products from different strains on agarose or polyacrylamide gels. This method has 

significant advantages over conventional DNA restriction analyses as it requires only a small 

amount of chromosomal DNA for digestion and is less involved due to the elimination of 

the Southern blotting and hybridisation steps. Another important advantage of PCR-RFLP 

over genomic DNA restriction is that problems of poor restriction of genomic DNA due to 

DNA base modifications (methylation) are not encountered. The PCR-RFLP technique has 

been used to clarify relationships below the species level of actinomycetes belonging to the 

genera Mycobacterium (Telenti et al., 1993) and Nocardia (Lungu et al., 1994). It has been 

also used to clarify relationships of members of clinically significant actinomycetes 

(Steingrube et al., 1997) and the members of Nocardia asteroides complex (Laurent et al., 

1996). 

PCR ribotyping, an alternative to traditional ribotyping, involves the use of PCR 

to detect polymorphisms in genes or intergenic spacer regions associated with rRNA or 

tRNA (Klijn et al., 1991). Fingerprinting methods based on 16S-23S rRNA spacer regions 
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have been used to differentiate between closely related organisms, typically those at and 

below species rank since these regions show more variability than the corresponding rRNA 

coding regions (Frothingham & Wilson, 1993; Postic et al., 1994). Intergenic spacer regions 

often differ in length and show high nucleotide sequence dissimilarity between operons. In 

some cases, only certain rRNA operons have the tRNA gene(s) in the intergenic spacer 

region between the 16S and 23S rRNA genes (e. g., East et al., 1992). This procedure has 

been successfully used to type members of several actinomycete taxa, notably, 

Mycobacterium (Steingrube et al., 1995), Nocardia (Lungu, 1994) and Streptomyces species 

(Hain et al., 1997). 

Conventional PCR assays can be used to amplify DNA sequences that are 

characteristic of a particular strain or species (Hackel et al., 1990; Zoig & Philippi-Schulz, 

1994; Soini & Viljanen, 1997; Swanson et al., 1996,1997). However, this approach has the 

drawback that specific oligonucleotide primers are required; this means that knowledge of 

the DNA sequence of the test organism is essential. Analysis of randomly amplified 

polymorphic DNA fingerprints (RAPD), also known as arbitrarily primed PCR (AP- 

PCR), removes this requirement by using a primer(s) chosen without regard to the sequence 

of the genome that is to be fingerprinted (Welsh & McClelland, 1990; Williams et al., 

1990). 

The RAPD procedure involves enzymatic amplification of template DNA directed 

by one or more arbitrary oligonucleotide primers to produce a characteristic spectrum of 

polymorphic products. The method is based on the observation by Welsh and McClelland 

(1990) that a single arbitrarily chosen primer combined with two cycles of PCR at low 

stringency and many cycles at high stringency generated a discrete and reproducible set of 

amplification products characteristic of particular genomes. Several variations of the 

original procedure have been developed (Williams et al., 1990; Caetano-Anolle s et al., 

1991; Bassam et al., 1992), each showing differences in DNA amplification conditions, the 
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length of primers used, and the resolution of the resultant amplification products. 

Analysis of randomly amplified polymorphic DNA fingerprints is fast and 

independent of prior biochemical and genetic knowledge of the target organism (Welsh & 

McClelland, 1990; Williams et al., 1990; Bassam et al., 1992). This means that the method 

can be applied to all species from which DNA can be extracted. The existence of 

polymorphisms among the amplification products can be detected and used as genetic 

markers for the fast and accurate identification of bacterial isolates in ecological, 

epidemiological and taxonomic studies (Bassam et al., 1992; Brousseau et al., 1993; 

Stephan et al., 1994). The method has been used to determine interstrain relationships 

between diverse bacteria, including actinomycetes such as actinomadurae (Trujillo & 

Goodfellow, 1997), mycobacteria (Palittapongarnpim et al., 1993; Abed et al., 1995; 

Matsiota-Bernard et al., 1997), nocardiae (Exmelin et al., 1996) and streptomycetes (Anzai 

et al., 1994). 

(b) Chemical fingerprinting 

Pyrolysis is a chemical process that involves the thermal breakdown of complex 

organic material, such as whole organisms or cell fractions, in an inert atmosphere or 

vacuum to produce a series of volatile, lower molecular weight molecules, the `pyrolysate' 

(Irwin, 1982). The breakdown of test material is reproducible under controlled conditions 

and the resultant fragments are characteristic of the original material. The volatile fragments 

are ionized and separated by mass spectrometry on the basis of their mass-to-charge ratio 

(m/z) to give a pyrolysis mass spectrum which can be taken as a `chemical fingerprint' of the 

original material. The resultant data are complex and need to be analysed using suitable 

statistical routines (Gutteridge, 1987; Magee, 1993,1994; Goodfellow et al., 1997b). 

One of the major advantages of pyrolysis mass spectrometry (PyMS) over 

comparable taxonomic methods, such as conventional chemotaxonomic procedures (Suzuki 

et al., 1993; Embley & Wait, 1994; Pot et al., 1994) and nucleic acid probing (Schleifer et 
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al., 1993; Amman et al., 1995), is that it is rapid with respect to single and multiple samples. 

Pyrolysis techniques, notably Curie-point pyrolysis mass spectrometry, are currently being 

introduced to diagnostic and industrial screening laboratories (Sanglier et al., 1992; 

Goofellow et al., 1997b; Goodacre et al., 1998). 

To date, the most important application of Curie point pyrolysis mass spectrometry 

has been in microbial epidemiology (Goofellow et al., 1997b). Pyrolysis mass spectrometry 

is not a typing method per se as a permanent type designation is not assigned to test strains 

but it has proved to be a quick and effective method for inter-strain comparisons of bacteria 

that commonly cause outbreaks of disease. This conclusion is based on studies of clinically 

significant bacteria, recent examples include Acinetobacter calcoaceticus (Freeman et al., 

1997), Bacteroides spp. (Sultana et al., 1995), Campylobacter jejuni (Orr et al., 1995), 

Clostridium difficile (Al-Saif et al., 1998), Legionella pneumoniae (Sisson et al., 1991), 

Listeria monocytogenes (Freeman et al., 1991a; Low et al., 1992), Pseudomonas cepacia 

(Corkhill et al., 1994), Streptococcus pneumoniae (Freeman et al., 1991 b), Staphylococcus 

aureus (Gould et al., 1991) and Xanthomonas maltophilia (Orr et al., 1991). 

It is evident that PyMS can be used to discriminate between strains as accurately as 

routine typing systems (Goodfellow, 1995). Indeed, in some cases it has been used to 

separate isolates beyond the resolution of such systems (Freeman et al., 1991 b; Gould et al., 

1991). The results of PyMS analyses have also been shown to correspond to those from 

molecular based techniques, including DNA: DNA relatedness and 16S rDNA sequencing 

(Manchester et al., 1995), random amplification of polymorphic DNA analyses (Kay et al., 

1994; Trujillo & Goodfellow, 1997), restriction length fragment polymorphism (Low et al., 

1992) and ribotyping (Al-Saif et al., 1998). 

Pyrolysis mass spectrometry has also been used to classify and identify industrially 

significant actinomycetes (Saddler et al., 1988; Sanglier et al., 1992). In this latter study, 

members of representative actinomycete genera were pyrolysed in order to determine the 
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effects of medium design, incubation time and sample preparation on experimental data; it 

was concluded that reproducible results could be obtained given rigorous standardisation of 

growth and pyrolysis conditions. Sanglier and his colleagues also showed that PyMS data 

could be used to objectively select strains for pharmacological screens, as unknown or 

putatively novel actinomycetes appeared as outliers on ordination diagrams. They were also 

able to distinguish between actinomycetes at and below the species level. In particular, 

representatives of three closely related Streptomyces species, namely Streptomyces 

albidoflavus (subcluster IA; Williams et al., 1983a), Streptomyces anulatus (subcluster 1B; 

Williams et al., 1983a) and Streptomyces halstedii (subcluster 1C; Williams et al., 1983a), 

were distinguished. These worker also used the procedure to compare Streptomyces 

hygroscopicus isolates and bona fide represenatives of Streptomyces violaceusniger (cluster 

32; Williams et al., 1983a). The separation of these numerically circumscribed 

streptomycete species indicated that PyMS can provide a rapid way of establishing the 

taxonomic integrity of established or putatively novel actinomycete species. 

Chun et al. (1993a, b) demonstrated the value of artificial neural networks (ANN) in 

the analysis of pyrolysis data for the identification of streptomycetes. Pyrolysis profiles 

derived from representatives of several actinomycetes taxa, including the genera 

Actinomadura, Mycobacterium, Nocardia, Nocardiopsis, Saccharopolyspora, 

Streptosporangium and Streptomyces, were used to train an ANN to recognise the 

characteristic pyrolysis profiles of representatives of Streptomyces groups A, B and C. 

Successful identification of members of the three Streptomyces species-groups was also 

achieved when data from several different PyMS runs were carried out over a twenty-month 

period (Chun et al., 1997c). These findings demonstrate the potential of ANN analyses in 

the circumscription of Streptomyces species. 
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Chapter II: 

Classification of Novel Thermophilic 

Amycolatopsis and Excellospora Strains 

Introduction 

1. Thermophiles 

Thermophiles can be loosely defined as organisms which live at high temperatures. 

Thermophilic microorganisms are of interest from both fundamental and applied 

perspectives. Basic research focuses on their ecology, evolution, genetics, molecular 

biology, origins and taxonomy whereas from the applied aspect they are sources of 

thermostable enzymes and fine chemicals, and are active agents in high temperature 

fermentations, mineral leaching and waste-treatment processes. 

There is no universally accepted definition of the term thermophile partly because 

of the varying temperature requirements of thermophilic organisms (Table 2-1). It is also 

the case that for most taxa only members of a few species are able to live close to the upper 

temperature limit for the group. Consequently, Brock (1986) defined a thermophile as `an 

organism capable of living at temperatures at or near the maximum for the taxonomic 

group of which it is a part. ' This definition has the advantage that it emphasises 

thermophily within the context of different groups of organisms. The temperature ranges of 

representatives of the domain Bacteria are cited in Table 2-2. 

Many of the other definitions of thermophily which have been used are ill-defined. 

Bacteria which grow over a fairly wide range of temperatures are considered to be 

eurythermal whereas those which live under relatively constant temperature regimes are 
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Table 2-1. Limits for growth of selected thermophilic organisms 

Group Upper temperature limit (°C) 

Animals a 

Fish and other aquatic vertebrates 38 

Insects 45-50 

Ostracods (crustaceans) 49-50 

Plants a 

Mosses 50 

Vascular plants 45 

Eucaryotic microorganisms a 

Algae 55-60 

Fungi 60-62 

Protozoa 56 

Bacteria b 

Aquifex pyrophylus 95 

Bacillus 80 

Cyanobacteria 70-74 

Thermotoga 90 

Archaea b 

Methanopyrales 110 

Pyrodictiaceae 113 

Thermoplasmales 67 

Thermoproteaceae 104 

Data from e Brock (1986) and b Kristjansson et al. (1998). 
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Table 2-2. Growth temperatures of selected taxa classified in the domain Bacteria a 

Taxa Temperature range (°C) b 
Actinomycetes 

Actinokineospora 23-41 
Actinomadura 10-60 

Dactylosporangium 15-42 
Dermatophilus (37) 
Excellospora 40-60 
Jonesia 10-40 

Kibdelosporangium 15-45 
Kitasatospora 1542 
Mycobacterium -55 
Micromonospora 18-40 

Microtetraspora (20-37) 

Nocardiopsis 10-45 
Nonomuria 20-55 
Pilimelia 10-38 
Planobispora 28-40 

Planomonospora 20-40 

Pseudonocardia -60 
Saccharomonospora 24-60 

Saccharopolyspora 20-63 

Streptomyces 4-65 

Streptosporangium -55 
Terrabacter 10-35 

Thermobifida 35-60 
Thermomonospora -65 (45-55) 

Chemolithotrophic bacteria 
Thermothrix 40-80 
Thiobacillus (20-50) 

Endospore-forming Gram-positive bacteria 

Bacillus -80 
Clostridium -91 (10-65)` 
Thermoactinomyces 29-70 

Facultatively anaerobic Gram-negative rods 
Aeromonas (22-28) 

Escherichia! Klebsiella/ Salmonella/ (37) 

Shigella 
Vibrio -30 

Gliding bacteria 
Myxococcus -40 
Stigmatella 18-37 

Gram-negative aerobic bacteria 
Acidothermus 37-70 (50-60)` 

Aquifex 67-95 (85) 
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Brucella 20-40 
Pseudomonas 1-45 

Psychrobacter 5-37 
Thermomicrobium 45-80 

Thermus -85 (70-75)` 
Gram-negative anaerobic bacteria 

Thermobacteroides 35-80 
Thermotoga -90 (70-80)` 

Gram-positive cocci 
Staphylococcus 10-50 

Streptococcus 10-50 

Helical or vibrioid bacteria 
Bdellovibrio 10-37 (28-30) 
Helicobacter 30-42 

Oxygenic phototrophic bacteria 
Chlorogloeopsis -64 
Cyanothece -43 

Sheathed bacteria 
Haliscomenobacter 8-30 
Leptothrix 10-35 

Sulphate- or sulphur-reducing bacteria 
Desulfobacterium (20-30) 

Thermodesul obacteium (65-70) 

e Data taken from Bergey's Manual of Systematic Bacteriology (Williams et al., 1989), Bergey's Manual of 

Determinative Bacteriology (Holt et al., 1994) and Kristjansson et al. (1998). 

b Temperature ranges cover members of all species in the genus. 

Temperature ranges in brackets denote optimal temperatures. 
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considered to be stenothermal. Brock (1986) set the thermophile boundary at 50 to 60 °C 

on the basis of ecological and evolutionary considerations. Temperatures lower than 60 °C 

are widespread on earth, for example, in composts whereas temperatures greater than 50 to 

60 °C are rare; higher temperatures are almost exclusively associated with geothermal 

habitats. The upper temperature limit for eucaryotic life is 60 °C (Table 2-1). In contrast, 

members of several procaryotic taxa can grow above 60 °C. 

The terms obligately (extremely) thermophilic, facultatively (moderately) 

thermophilic and thermotolerant (thermoduric) are defined with respect to the thermophile 

boundary. Obligate thermophiles cannot grow below the thermophile boundary whereas 

facultative thermophiles and thenmotolerant organisms are able to grow at both sides of the 

boundary. Facultative thermophiles have optimal temperatures higher than the thermophile 

boundary whereas thermotolerant organisms have optimal temperatures lower than the 

thermophile boundary. However, such definitions are arbitrary as organisms grow over a 

range of temperatures and hence tend to form a continuum. This means that the precise 

temperature range of thermophilic microorganisms under prescribed culture conditions 

must be given. 

The primary natural habitats of many thermophilic microorganisms are found in 

geothermal regions (Brock, 1978; Kristjansson & Stetter, 1992,1998). These areas are 

found in all parts of the globe associated with tectonic activity and are usually concentrated 

in well defined geological regions. The latter are mainly of two types, the low pH and 

alkaline pH types, which reflect the geothermal heat source. The low pH type, which is 

found in solfatara fields, is characterised by acidic hot springs, acidic soils, boiling mud 

pots and the production of hydrogen sulphide and sulphur and the alkaline pH type by 

geysers and freshwater hot springs (Kristjansson & Stetter, 1992). Groundwater percolates 

into hot areas heated by extinct deep lava flows or by dead magma chambers, warms up 

and returns to the surface containing dissolved minerals such as silica and some dissolved 
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gases, mainly carbon dioxide (C02). However, on the surface the CO2 is blown away and 

silica is precipitated resulting in increased pH. 

Other naturally occurring hot places are usually more transient, such as composts 

and solar-heated ponds and soils. The organisms found in these transient ecosystems are 

mainly rapidly growing, spore-forming bacteria (Edwards, 1990). Man-made, long-term 

hot environments of the neutral-alkaline type include hot water pipelines in houses and 

factories and thermophilic waste treatment plants. Similarly, many processes, for example, 

in the chemical and food industries, run at high temperatures. All such systems are 

inhabited by thermophilic microorganisms (Perttula et al., 1991; Kristjansson et al., 1994). 

Representatives of a number of thermophilic prokaryotes have been isolated and 

extensively characterised using modem taxonomic methods, notably chemotaxonomic, 

molecular systematic and numerical phenetic procedures. These organisms include Aquifex 

pyrophilus (Huber et al., 1992), Thermotoga maritima (Huber et al., 1986) and Thermus 

aquaticus (Brock & Freeze, 1969). However, in general, relatively little attention has been 

paid to the taxonomy of thermophilic microorganisms, including thermophilic 

actinomycetes. 

Small subunit (16S) rRNA sequence analysis is now widely used as the universal 

method of establishing hierarchical relationships of extant bacteria at and above the species 

level (Woese, 1987; Goodfellow & O'Donnell, 1993; Stackebrandt et al., 1997; Fig. 1-1, 

page 21). The universal phylogenetic tree derived from such studies is taken to depict the 

evolutionary histories of organisms and allows inferences to be drawn about the origin and 

evolution of cellular machinery and metabolic pathways (Woese, 1987; Olsen & Woese, 

1993; Dijkhuizen, 1996; Gray & Spencer, 1996). The systematics of thermophilic 

prokaryotes is closely linked to questions on the origin and early evolution of life. It is 

interesting that many thermophilic microorganisms form `old' lineages that are deeply 

rooted in phylogenetic trees and striking that seven out of the twelve major bacterial phyla 
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contain thermophiles. Members of four taxa, the Aquifex-Hydrogenobacter, the 

Thermotoga, the green non-sulphur bacteria, including Thermus, and the 

The rmodesulfobacter group, form the deepest phylogenetic branches in the bacterial 

phylogenetic tree. 

2. Thermophilic actinomycetes 

Thermophilic actinomycetes form part of the autochthonous microflora of habitats 

where decomposition of organic material takes place at elevated temperatures and under 

aerobic or semiaerobic conditions. Numerous genera of the order Actinomycetales consist 

of organisms that grow well within the temperature range of 50-60 °C which is regarded as 

the thermophilic boundary (Brock, 1986); such organisms are considered as thermophilic 

actinomycetes (Cross, 1968). 

Korn-Wendisch and Kutzner (1992) noted that most thermophilic actinomycetes 

grow within the temperature range 25 to 55 T. However, Greiner-Mai et al. (1987) has 

assigned actinomycetes to three groups based on temperature requirements: the mesophilic 

(20-45 °C), moderately thermophilic (28-55 °C) and euthermophilic (37-65 °C) groups. 

Members of these groups showed considerable overlap and temperature maxima and 

minima varied on different media thereby showing that the temperature range was of only 

limited taxonomic value. On the other hand, the optimal temperature for growth was the 

same for all of the strains of a particular species. 

Members of several genera classified in the order Actinomycetales contain 

thermophilic strains (Table 2-2), an observation which raises the question of the 

evolutionary origin of thermophily in these organisms. There are two hypotheses, the 

common ancestor of the actinomycetes may have arisen in a high-temperature environment 

with descendants of this line still evident in a broad range of taxa or thermophily may have 

evolved with members of several taxa having become adapted to high-temperature 
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environments. More comparative studies on the biology of thermophilic strains are needed 

to resolve this question. 

It is difficult to apply the term thermophile to actinomycetes in a universal sense as 

members of different taxa have different temperature requirements (Table 2-2). 

Nevertheless, it is possible to distinguish between taxa that contain thermophilic strains, 

notably, the genera Excellospora, Saccharomonospora, Thermobifida, Thermobispora, 

Thermocrispum and Thermomonospora, and members of other genera, such as 

Streptomyces, which contain relatively few thermotolerant (growing up to 45 °C) and 

thermophilic (growing between 28 and 55 °C) organisms. Streptomyces 

thermoautotrophicus is unusual as it is an obligate chemolithoautotrophic organism which 

grows between 40 and 65 °C (Gadkari et al., 1990). 

Relatively little attention has been paid to the taxonomy of thermophilic 

actinomycetes. Species descriptions of these organisms have mainly been based on 

incomplete morphological criteria with the consequence that many of the early described 

species were not included in the Approved Lists of Bacterial Names (Skerman et al., 1980; 

Moore et al., 1985). However, within the last two decades considerable progress has been 

made in the classification of Actinobacteria mainly due to the application of chemical, 

molecular systematic and numerical phenetic procedures (Williams et al., 1989; Embley & 

Stackebrandt, 1994; Stackebrandt et al., 1997). Nevertheless, taxonomic studies on 

thermophilic actinomycetes have continued to lag behind those carried out on their 

mesophilic counterparts though progress has been made in clarifying the classification of 

thermophilic organisms belonging to the families Pseudonocardiaceae (Embley et al., 

1988b; Stackebrandt et al. 1997), Streptomycetaceae (Goodfellow et al., 1987; Kim, D. et 

al., 1996, Kim, S. B. et al., 1998) and Thermomonosporaceae (Cross & Goodfellow 1973; 

Zhang et al., 1998). The taxonomy of thermophilic streptomycetes is considered in Chapter 

3 and that of the families Pseudonocardiaceae and The rmomonosporaceae below. 
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The family Pseudonocardiaceae. This taxon was proposed by Embley et al. (1988b) for 

organisms belonging to the genera Actinopolyspora Gochnauer et al. 1975AL, 

Amycolatopsis Lechevalier et al. 1986, `Faenia' Kurup & Agre 1983, Pseudonocardia 

Henssen 1957a'ß, Saccharomonospora Nonomura & Ohara 1971 AL and 

Saccharopolyspora Lacey & Goodfellow 1975AL. The taxon was designed to encompass 

aerobic, Gram-positive, non-acid-fast, catalase positive actinomycetes which exhibited a 

broad range of morphological and physiological properties, and formed extensively 

branched vegetative and aerial hyphae. Smooth, spiny, or hairy spores were produced either 

singly, in pairs, or in chains of variable length, or in sporangium-like structures, on aerial 

hyphae. Representatives of some taxa produced spores on vegetative hyphae whereas 

others did not form spores or aerial hyphae. Fragmentation of the mycelium occured but 

was generally not pronounced. Neither endospores nor sclerotia were formed. The 

organisms were generally chemoorganotrophic though some were facultatively autotrophic. 

Members of some taxa were halophilic. Diverse compounds were used as sole carbon and 

energy sources for growth. Some genera assigned to the family Pseudonocardiaceae 

contained both mesophilic and thermophilic species whereas others only encompassed 

thermophilic organisms (Table 2-3, pages 66 and 67). 

Whole-organism hydrolysates of members of the family Pseudonocardiaceae 

contained meso-A2pm, arabinose and galactose (wall chemotype N sensu Lechevalier & 

Lechevalier, 1970a, b) and acetylated muramic acid (Uchida & Aida, 1977,1984). 

Members of the taxon were also shown to have an Aly peptidoglycan (Schleifer & 

Kandler, 1972). The distribution of madurose (3-0-methyl-galactose) was seen to vary 

(Mordarski et al., 1986; Shearer et al., 1986) but mycolic acids were absent. The cell 

envelope contained major amounts of mainly mono-methyl branched acids of the iso- and 

anteiso- series (fatty acid types 2 or 3 sensu Kroppenstedt, 1985) though 10-methyl 

branched, iso-10-methyl branched, and straight chain saturated and unsaturated acids were 
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found as minor components in some strains (Embley et al., 1988a); hydroxy fatty acids 

were detected in members of the genera Amycolatopsis, Pseudonocardia and 

Saccharomonospora (Kroppenstedt, 1985; Embley et al., 1988a). The major menaquinones 

were tetrahydrogenated with eight, nine or ten isoprene units (Labeda et al., 1984; 

Kroppenstedt, 1985; Collins et al., 1988; Embley et al., 1988a). Diphosphatidylglycerol 

and phosphatidylinositol were universally present; phosphatidylethanolamine or derivatives 

thereof were found in members of all genera, apart from Actinopolyspora. 

Phosphatidylcholine was synthesised by representatives of the genera Actinopolyspora, 

Pseudonocardia and Saccharopolyspora. The G plus C ratio of the DNA fell within the 

range 63 to 79 mol%. 

Members of the family Pseudonocardiaceae have been isolated from diverse 

habitats, notably soil and vegetable matter. Some strains cause hypersensitivity disease, 

others are the source of bioactive compounds (Embley, 1992). 

The type genus of the family is Pseudonocardia Henssen 1957a. 

Other amycolate wall chemotype IV actinomycetes, namely, the genera Amycolata 

Lechevalier et al. 1986 and Kibdelosporangium Shearer et al 1986, were not included in 

the family Pseudonocardiaceae as defined by Embley et al. (1988). However, these taxa 

were classified in the family Pseudonocardiaceae by Bowen et al. (1989) mainly on the 

basis of 16S rRNA sequence and chemical data. The genus Amycolata was subsequently 

reduced to a synonym of the genus Pseudonocardia using a wealth of genotypic and 

phenotypic data (Warwick et al., 1994). Bowen et al. (1989) did not included the genus 

Saccharothrix in the family Pseudonocardiaceae as members of this taxon were considered 

to have a distinct chemical profile. 

Members of the genus Pseudoamycolata Akimov ei al. 1989 have chemical and 

morphological properties consistent with their classification in the family 

Pseudonocardiaceae. This taxon was reduced to a synonym of Pseudonocardia mainly on 
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the basis of 16S rDNA sequence data despite the presence of phophatidylcholine in the 

type strain of Pseudomycolata halophobica (McVeigh et al., 1994). Similarly, the genus 

Faenia Kurup and Agre 1983 was reduced to a synonym of the genus Saccharopolyspora 

Lacey and Goodfellow 1975`L by Korn-Wendisch et al. (1989). 

The taxonomic position of the genera Actinokineospora Hasegawa 1988, 

Actinosynnema Hasegawa et at. 1978'v', Kutzneria Stackebrandt et al. 1994, Lentzea 

Yassin et al. 1995, Saccharothrix (Labeda et al. 1984) Labeda and Lechevalier 1989, 

Streptoalloteichus Tomita et al. 1987 and Thermocrispum Korn-Wendisch et al. 1995 is 

equivocal for while these taxa are closely related to the family Pseudonocardiaceae on the 

basis of 16S rRNA sequence data they have a wall chemotype III, that is, they contain 

meso-A2pm but lack characteristic sugars. 

Warwick et al. (1994) considered that the genera Actinosynnema, Saccharothrix 

and Streptoalloteichus might form a sister group to the family Pseudonocardiaceae. This 

now seems to be the case as Labeda (1998b) has suggested that the genera 

Actinokineospora, Actinosynnema, Lentzea and Saccharothrix be assigned to a putatively 

new taxon, the family Actinosynnemaceae, on the basis of chemical and 16S rDNA 

sequence data. 16S rDNA sequence data also suggest that the genera Kutzneria and 

Streptoalloteichus belong to this group (Kim & Goodfellow, 1999). If accepted, these 

proposals would leave the family Pseudonocardiaceae as a relatively homogeneous group. 

The genus Prauserella, which was proposed for organisms previously misclassified as 

Amycolatopsis rugosa Lechevalier et al. 1986, also belongs to the family 

Pseudonocardiaceae (Kim & Goodfellow, 1999). 

Stackebrandt et al. (1997) emended the description of the family 

Pseudonocardiaceae using 16S rDNA data. The revised family encompassed the genera 

Actinopolyspora, Actinosynnema, Amycolatopsis, Kibdelosporangium, Kutzneria, Lentzea, 

Pseudonocardia, Saccharomonospora, Saccharopolyspora, Saccharothrix, 
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Streptoalloteichus and Thermocrispum but not . the genus Actinokineospora the 

suprageneric position of which was considered to be equivocal. However, members of the 

emended family are markedly heterogeneous with respect to chemical properties. Further 

comparative studies are also needed to resolve the suprageneric relationship of the genus 

Actinobispora. This taxon was proposed by Jiang et al. (1991) for a morphologically 

unique actinomycete strain which had chemical properties similar to those of members of 

the family Pseudonocardiaceae sensu Warwick et al. (1994). 

The characteristic features of members of the genera assigned to the family 

Pseudonocardiaceae (Embley et al., 1988a, b; Warwick et al., 1994; Kim & Goodfellow, 

1998), and to the putatively novel family Actinosynnemaceae (Labeda, 1998b), are shown 

in Table 2-3. The thermophilic members of these taxa are highlighted in Table 2-4. The 

taxonomy of the genera Amycolatopsis and Excellospora are considered below as these 

taxa are the focus of the present study. 

The genus Amycolatopsis. Amycolatopsis (A. my. co. la. top'sis. M. L. fem. n. Amycolata 

genus belonging to the order Actinomycetales; Gr. n. opsis appearance; M. L. fem n. 

Amycolatopsis that which appears similar to Amycolata). 

The genus Amycolatopsis was proposed by Lechevalier et al. (1986) for 

mycolateless, wall chemotype IV actinomycetes that had previously been classified in the 

genus Nocardia. Members of the genus are aerobic, Gram-positive, non-acid fast, non- 

motile organisms which form a branched substrate mycelium (0.5-2 pm in diameter) that 

fragments into squarish elements. When formed, aerial hyphae may be sterile or 

differentiate into long chains of smooth-walled, squarish to ellipsoidal spore-like 

structures. Chains of spores are also produced on vegetative hyphae. Some strains are 
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facultative autotrophs. The organism contains meso-A2pm as the major diamino acid of an 

Aly wall peptidoglycan, arabinose and galactose as major whole-organism sugars, is rich in 

fatty acids of the iso- and anteiso- branched series, has di-, tetra-, and hexahydrogenated 

menaquinones with nine isoprene units as predominant isoprenologues, and 

phophatidylethanolamine and phosphatidylglycerol as major polar lipids with 

diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides variably 

present (phospholipid type II sensu Lechevalier et al., 1977). The mol% G plus C content 

of the DNA ranges from 66 to 74 %. 

Members of the genus have been isolated from soil, vegetative matter and clinical 

specimens. 

The type species is Amycolatopsis orientalis (Pittenger and Brigham 1956) 

Lechevalier et al. 1986. 

The genus Amycolatopsis contains ten validly described species which form a 

phyletic line within the evolutionary radiation occupied by the family Pseudonocardiaceae 

(Fig. 2-1). Members of three out of the ten species, namely, Amycolatopsis fastidiosa (ex 

Celmer et al., 1977) Henssen et al. 1987, Amycolatopsis methanolica De Boer et al. 1990 

and Amycolatopsis thermoflava Chun et al. 1998 grow well between 50 and 60 °C and 

hence can be considered as thermophilic actinomycetes (Cross, 1968; Brock, 1986). 

Members of the remaining species, namely, Amycolatopsis alba Mertz & Yao 1993, 

Amycolatopsis azurae (Omura et al. 1983) Henssen et al. 1987, Amycolatopsis 

coloradensis Labeda 1995, Amycolatopsis japonica Goodfellow et al. 1997c, 

Amycolatopsis mediterranei (Margalith & Beretta 1960) Lechevalier et al. 1986, 

Amycolatopsis orientalis (Pittenger & Brigham 1956) Lechevalier et al. 1986 and 

Amycolatopsis sulphurea (ex Oliver & Sinclair 1964) Lechevalier et al. 1986 are 

mesophilic and do not grow at above 45 °C. The mesophilic Amycolatopsis species form a 
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Amycolatopsis alba DSM 44262T 
4- Amycolatopsis coloradensis NRRL 3218T 

Saccharomonospora viridis ATCC 15386T 
Prauserella rugosa DSM 43194T 

Thermocrispum municipale DSM 44069T 

Thermoscrispum agreste DSM 44070T 
- Saccharopolyspora hirsuta ATCC 27875T 

Saccharopolyspora hordei DSM 44065T 
Saccharopolyspora erythraea NRRL 2338T 

Saccharopolyspora taberi DSM 43856T 
Saccharopolyspora spinosa DSM 44228T 

- Saccharopolyspora gregorii NCIB 12823v 
- Saccharopolyspora rectivirgula DSM 43747T 

Actinopolyspora halophila 
Pseudonocardia hydrocarbonoxydans DSM 43281 T ATCC 279T 
Pseudonocardia petroleophila DSM 43193T 

Pseudonocardia saturnea DSM 43195T 
Pseudonocardia alni VKM Ac901T 

Pseudonocardia thermophila ATCC 19285T 
Pseudonocardia compacta DSM 43592T 

Pseudonocardia autotrophica DSM 43210T 
Pseudonocardia halophobica DSM 430891 

Kibdelosporangiwn aridum ATCC 399221 
Saccharothrix australiensis ATCC 314971 

Saccharothrix mutabilis subsp. mutabilis DSM 43853 T 

Saccharothrix coeruleofusca DSM 43679T 
Saccharothrix longispora DSM 43749 r 

Actinosynnema mirum DSM 438277 
Lenzzea albidocapillata DSM 440731 

Kutzneria viridogrisea JCM 32821 
Actinokineospora riparia IFO 14541r 

Streptoalloteichus hindustanus IFO 151 151 

Figure 2-1. Neighbour joining tree (Saitou & Nei, 1987) based on almost complete 
16S rRNA sequences showing relationships between representatives of the families 

"Actinosynnemceae" and Pseudonocardiaceae. The 16S rRNA sequence of 

Streptomyces violaceoruber A3(2) (Y00411) was used as the outgroup. The scale 
bar indicates 0.01 substitutions per nucleotide position. 

Amycolatopsis mediterranei ATCC 13685T 
Amycolatopsis orientalis DSM 40040T 

Amycolatopsis japonica DSM 44213T 
Amycolatopsis azurae NRRL 11412T 

- Amycolatopsis sulphurea DSM 46092T 

- Amycolatopsis strain K24 
Amycolatopsis therinoflava IFO 14333T 

Amycolatopsis methanolica NCIMB 11946r 
Amycolatopsisfastidiosa ATCC 31181T 

- "Saccharomonospora caesia" INMI 19125 
Saccharomonospora azurea NA-128T 
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recognisable Glade in the phylogenetic tree whereas Amycolatopsis fastidiosa, 

Amycolatopsis methanolica and Amycolatopsis thermoflava fall into two distinct clades at 

the periphery of the evolutionary radiation occupied by members of the genus (Fig. 2-1). 

The genus Amycolatopsis can be distinguished from members of other genera 

classified in the family Pseudonocardiaceae (sensu Warwick et al., 1994) using a 

combination of chemical and morphological markers (Table 2-3). Similarly, members of 

the validly described species of Amycolatopsis can be separated using a combination of 

phenotypic properties (Table 2-16, page 140-142). 

The family Thermomonosporaceae. This family was proposed as a taxon of convenience 

for actinomycetes that formed heat sensitive spores, singly, in pairs or in short-chains on 

aerial hyphae (Cross & Goodfellow, 1973). The founder members of the family were the 

genera Actinomadura Lechevalier and Lechevalier 1970AL, Excellospora Agre and Guzeva 

1975'L, Microbispora Nonomura and Ohara 1957'', Microtetraspora Thiemann et al. 

1968A', Nocardiopsis Meyer 1976AL and Thermomonospora Henssen 1957a'ß', members of 

which had walls that contained meso-A2pm without characteristic sugars (wall chemotype 

III sensu Lechevalier & Lechevalier, 1970 a, b). Saccharomonospora was also assigned to 

this group even though representatives of this genus had a wall chemotype IV. It was, 

therefore, evident from the onset that the family Thermomonosporaceae encompassed 

markedly diverse taxa. 

In 1984, Goodfellow and Cross proposed the concept of `aggregate groups' to 

provisionally accommodate a number of poorly circumscribed sporoactinomycetes that 

were thought to need taxonomic revision. One of these artificial groups, the 

`maduromycetes' (Goodfellow & Cross, 1984; Goodfellow, 1989) encompassed the genera 

Actinomadura Lechevalier and Lechevalier 1970`u', Excellospora Agre and Guzeva 

1975AL, Microbispora Nonomura and Ohara 1957AL, Microtetraspora Thiemann et al. 

1968'v', Planobispora Thiemann and Beretta 1968AL, Planomonospora Thiemann et al. 
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1967 A1, Spirillospora Couch 1963AL and Streptosporangium Couch 1955 AL. Members of 

this taxon were defined as aerobic, Gram-positive actinomycetes which formed a branched 

substrate mycelium that did not carry spores but bore aerial hyphae that differentiated 

either into short chains of arthrospores or into spore vesicles (sporangia) that contained one 

to many spores. Constituent strains of the taxon had a peptidoglycan that contained meso- 

A2pm but lacked characteristic sugars, produced major proportions of straight- and 

branched-chain fatty acids and partially hydrogenated menaquinones with nine isoprene 

units as major isoprenologs. They also had DNA rich in G and C. 

The genera Microbispora, Microtetraspora, Planobispora, Planomonospora, 

Spirillospora and Streptosporangium were subsequently classified in the family 

Streptosporangiaceae Goodfellow et al. 1990 and the genera Saccharomonospora and 

Saccharothrix in the families Pseudonocardiaceae (Embley et al., 1988b) and 

"Actinosynnemaceae" (Labeda, 1988b), respectively. These proposals left the genera 

Actinomadura and Thermomonospora as the sole constituents of the family 

Thermomonosporaceae (Cross & Goodfellow 1973) emend. Kroppenstedt & Goodfellow 

1992. 

The emended family Thermomonosporaceae encompassed aerobic, Gram-positive, 

non-acid-alcohol fast, chemoorganotrophic actinomycetes which produced a branched 

substrate mycelium bearing aerial hyphae that differentiated into single or short chains of 

arthrospores. Constituent strains contained meso-A2pm in an Al'ypeptidoglycan (Schleifer 

& Kandler, 1972), N-acetylated muramic acid (Uchida & Aida, 1977), lacked characteristic 

sugars (Lechevalier & Lechevalier, 1970a, b), but possessed mixtures of straight and 

branched chain fatty acids, hydrogenated menaquinones with nine isoprene units as 

predominant isoprenologues, and major amounts of phosphatidylglycerol, 

phosphatidylinositol and phosphatidylinositol mannosides (Kroppenstedt, 1985,1987; 

Kroppenstedt et al., 1990). Whole-organism hydrolysates of actinomadurae usually contain 
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madurose. The G+C content of the DNA was found to be within the range of 66 to 72 

mol% (Fischer et al., 1983; Poschner et al., 1985; Miyadoh et al., 1987). 

Stackebrandt et al. (1997) emended the family Thermomonosporaceae solely on the 

basis of 16S rDNA sequence data (Fig. 1-1, page 21; Table 1-2, pages 22-23). The revised 

taxon encompassed the genera Actinomadura Lechevalier and Lechevalier 1970AL, 

Spirillospora Couch 1963' and Thermomonospora Henssen 1957a'''I'. The taxonomic 

positions of Actinocorallia linuma et al. 1994 and Excellospora Agre and Guzeva 1975AL, 

which are closely related to the members of the family Thermomonosporaceae (Zhang et 

al., 1998), were not considered. 

The genus Excellospora. Excellospora (Ex. cel'lo. spo. ra. M. L. fem. adj. from excellens, L. 

pr. part of excello prominent; Or. n. spora seed [referring to the special structure of the 

spores]). 

The genus Excellospora was proposed by Agre and Guzeva (1975) for thermophilic 

actinomycetes that were distinguished from actinomadurae primarily by differences in fatty 

acid composition. The genus contained three species, Excellospora viridilutea Agre and 

Guzeva 1975, the type species, which was cited in the Approved Lists of Bacterial Names 

(Skerman et al., 1980), and Excellospora rubrobrunea (Krassilnikov et al. 1968b) Agre 

and Guzeva 1975 and Excellospora viridinigra (Krassilnikov et al. 1968b) Agre and 

Guzeva 1975 which had previously been classified in the genus `Micropolyspora' as 

'Micropolyspora rubrobrunea' and `Micropolyspora viridinigra', respectively. Neither 

Excellospora rubrobrunea nor Excellospora viridinigra were included in the Approved 

Lists of Bacterial Names (Skerman et al., 1980). 

The genus Excellospora Agre and Guzeva 1975'L encompasses aerobic, Gram- 

positive, non-acid fast actinomycetes which form extensively branched, nonfragmenting 

substrate and aerial mycelia. Spores are borne in hooked or spiral chains, singly or in pairs, 

on both aerial and substrate hyphae; the sporulating hyphae tend to undergo autolysis. 
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Excellosporae share a number of morphological and physiological characteristics but can 

be differentiated into species on the basis of the colour of their aerial and substrate mycelia. 

The organism contains meso-A2pm in an A1y peptidoglycan, madurose, 14- 

methylpentadecanoic acid (iso-16: 0), 15-methylhexadecanoic acid (iso-17: 0) and 16- 

methy1heptadecanoic acid (iso-18: 0) as major fatty acids and minor proportions of 10- 

methyloctadecanoic acid (10-meth 18: 0) (Table 2-5). The temperature range for growth is 

between 37 and 65 °C. Excellosporae have been isolated from desert and salty soil samples 

collected from Uzbekistan (Agre & Guzeva, 1975) and from soils under maize and rice in 

Egypt (Krassilnikov et al., 1968b). 

Excellosporae are difficult to separate from actinomadurae. It is not surprising, 

therefore, that the genus was listed as a genus incertae sedis in Bergey's Manual of 

Systematic Bacteriology (Meyer, 1989). Excellospora rubrobrunea and Excellospora 

viridinigra strains were subsequently shown to have many properties in common both with 

one another and with Actinomadura madurae and related species (Greiner-Mai et al., 1987; 

Meyer, 1989; Kroppenstedt et at., 1990). It was noted that they could be separated from 

actinomadurae as they contain relatively high proportions of iso-branched fatty acids (high 

melting point) and low amounts of 10-methyl branched acids (low-melting point) (Table 2- 

5) but these differences were merely attributed to the thermophilic nature of these 

organisms (Kroppenstedt et at., 1990). 

Kroppenstedt et al. (1990) proposed that Excellospora viridinigra be recognised as 

a synonym of Excellospora rubrobrunea and that the latter be transferred to the genus 

Actinomadura as Actinomadura rubrobrunea. These authors did not consider the 

taxonomic position of Excellospora viridilutea. It is now evident that Excellospora 

viridilutea IFO 14480T falls towards the periphery of the evolutionary radiation occupied 

by Actinomadura and related taxa (Fig. 2-2). It is not possible to comment on the 

phylogenetic relationship of Actinomadura rubrobrunea and Excellospora viridilutea as 
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Actinomadura verrucosospora IFO 14100T 
Actinonuadura coerulea IFO 146791 
Actinonwdura citrea IFO 146781 
Actinomadura luteofluorescens IFO 130571 

Actinontadura macra IFO 141021 
Actinonuulura formosensis JCM 74741 

Actinomadura madurae JCM 7436T 
Actinomadura rugatobispora IFO 14382T^^ 

-T 
Thermomonosporaceae 

Hcttnomaaura atramentarta ! NV 1469' 
Actinomadura fulvescens IFO 14347T 

Actinomadura cremea IFO 141831 
Actinomadura kijaniata IFO 14229T 

- Spirillospora albida IFO 122481 
- Actinomadura echinospora IFO 140421 

Thermomonospora curvata DSM 431831 
Excellospora viridilutea IFO 14480T 

Actinomadura libanotica IFO 140951 
Actinomadura aurantiaca JCM 82011 

- Actinocorallia herbida IFO 154851 
Nocardiopsis antarcticus DSM 43884T 
Nocardiopsis alborubidus DSM 404651 

Nocardiopsis dassonvillei DSM 43111T 
Nocardiopsis alba subsp. alba DSM 433771 

Nocardiopsis lucentensis DSM 440481 
Nocardiopsis listen DSM 402971 

Thermobiftda alba JCM 30771 
Thermobifida alba (mesouviformis) JCM 31691 

Thermobifida fusca ATCC 27730T 
Streptosporangium roseum DSM 43021T 

- Streptosporangium longisporum DSM 43180T 
- Streptosporangium carneum DSM 44125T 
- Planomonospora parontospora IFO 13880T 

- Streptosporangiwn pseudovulgare DSM 431811 
Streptosporangium violaceochromogenes JCM 3281 T 

- Streptosporangium viridialbum JCM 30271 

- Nonomuria angiospora IFO 131551 
Nonomuria salmonea IFO 14687T 

Nonomuria fastidiosa IFO 14680T 
Nonomuria polychroma IFO 143457 

Nonomuriaferruginea IFO 140941 
Nonomuria pusilla IFO 14684T 

- Nonomuria africana IFO 147451 
Planobispora longispora IFO 139181 

Microtetraspora glauca IFO 146711 
Microtetraspora fusca IFO 139151 

Microtetraspora niveoalba IFO 15239T 
Microbispora mesophila JCM 3151 T 

Microbispora rosea subsp. rosea IFO 14044T 
Streptosporangium claviforme DSM 441271 

- Herbidospora cretacea IFO 15474 T 
- Streptosporangium corrugatwn IFO 13972T 
Planotetraspora mira IFO 154351 

0.01 

Nocardiopsaceae 

Streptosporangiaceae 

Thermobispora bispora 
ATCC 19993 T rcnA 

chromogena JCM 6244T 
Thermobispora bifpora 

ATCC 19993 rmB 

Figure 2-2. Neighbour joining tree (Saitou & Nei, 1987) based on almost complete 16S 

rRNA sequences showing relationships between representatives of the families 

Nocardiopsaceae, Streptosporangiaceae, Thermomonosporaceae and related taxa. The 16S 

rRNA sequence of Streptomyces violaceoruber A3(2) (Y00411) was used as outgroup. The 

scale bar indicates 0.01 substitutions per nucleotide position. 
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representatives of the former have not been the subject of 16S rDNA sequence studies. 

The genus Actinomadura. Actinomadura (Ac. ti. no. ma. du'ra. Gr. n. actis a ray; Madura 

name of province in India; L. fem. n. Actinomadura referring to a microorganism first 

described as the causative agent of "Madura" foot disease) 

The genus Actinomadura was proposed by Lechevalier and Lechevalier (1970c) for 

aerobic, Gram-positive, non-acid-fast actinomycetes that formed branched nonfragmenting 

mycelia and aerial hyphae that carried up to fifteen spores and had cell walls containing 

meso-A2pm without characteristic sugars (wall chemotype III sensu Lechevalier & 

Lechevalier, 1970a). The taxon initially encompassed Actinomadura dassonvillei Brocq- 

Rousseau 1904, Actinomadura madurae Vincent 1894, the type species, and Actinomadura 

pelletieri Laveran 1906. 

The founder members of the genus had a long and unsettled taxonomic history 

(Lacey et al., 1978). The organism now known as Actinomadura madurae was first 

described in 1894 by Vincent as Streptothrix madurae for strains isolated from an Algerian 

case of Madura foot. Actinomadura dassonvillei and Actinomadura pelletieri had similar 

taxonomic histories though Actinomadura pelletieri was classified in the genus 

Micrococcus by Laveran (1906) as Micrococcus pelletieri because hyphae of this organism 

were considered to fragment into cocci. Actinomadura madurae was subsequently 

transferred to the genus Nocardia as Nocardia madurae (Vincent 1894) Blanchard 1896, 

then to the genus Streptomyces as Streptomyces madurae (Vincent 1894) Gonzalez-Ochoa 

and Sandoval 1956. Similarly, Actinomadura pelletieri was classified first as Nocardia 

pelletieri (Laveran 1906) Pinoy 1912 and then as Streptomyces pelletieri (Laveran 1906) 

Waksman and Henrici 1948. The taxonomic status of all of these organisms remained 

controversial until Becker et al. (1965) found that whole-organism hydrolysates of 

representative strains contained meso-A2pm and a characteristic sugar subsequently 

identified as madurose (Lechevalier and Gerber, 1970). Actinomadura dassonvillei was 
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assigned to the genus primarily on the basis of chemical properties. 

The genus Nocardiopsis was subsequently proposed to accommodate 

Actinomadura dassonvillei as strains of this taxon lacked the characteristic sugar madurose 

and formed spores in a characteristic zig-zag formation on aerial hyphae (Meyer, 1976). 

Subsequent chemical (Collins et al., 1977: Lechevalier et al., 1977; Minnikin et al., 1977; 

Fischer et al., 1983; Athalye et al., 1984) and numerical phenetic data (Alderson & 

Gooodfellow, 1979; Goodfellow et al., 1979; Goodfellow & Pirouz, 1982; Athalye et al., 

1985) strongly supported the recognition of the genus Nocardiopsis with Nocardiopsis 

dassonvillei as the type species. 

16S rDNA sequence data confirmed the separation between Nocardiopsis 

dassonvillei and Actinomadura madurae and suggested that the genus Nocardiopsis was 

most closely related to the genera Microtetraspora and Streptomyces (Goodfellow et al., 

1988; Kroppenstedt et al., 1990). Saccharothrix australiensis Labeda et al. 1984, which 

has chemotaxonomic and morphological properties in common with Nocardiopsis 

dassonvillei, was found to be closely related to members of the family Pseudonocardiaceae 

(Bowen et al., 1989; Warwick et al., 1994; Stackebrandt et al., 1997). 

Six out of the eight validly described Nocardiopsis species which were 

subsequently recognised were later considered to be missclassified (Grund & 

Kroppenstedt, 1989,1990). Nocardiopsis coeruleofusca (Preobrazhenskaya and 

Sveshnikova 1974) Preobrazhenskaya and Sveshnikova 1985, Nocardiopsis (lava (Gauze 

et al. 1974) Gauze and Sveshnikova 1985, Nocardiopsis longispora (Preobrazhenskaya and 

Sveshnikova 1974) Preobrazhenskaya and Sveshnikova 1985, Nocardiopsis mutabilis 

Shearer et al. 1983 and Nocardiopsis syringae Gauze et al. 1985 were reclassified in the 

genus Saccharothrix as Saccharothrix coeruleofusca (Preobrazhenskaya and Sveshnikova 

1974) Grund and Kroppenstedt 1990, Saccharothrixflava (Gauze et al. 1974) Grund and 

Kroppenstedt 1990, Saccharothrix longispora (Preobrazhenskaya and Sveshnikova 1974) 
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Grund and Kroppenstedt 1990, Saccharothrix mutabilis (Shearer et al. 1983) Labeda and 

Lechevalier 1989 and Saccharothrix syringae (Gauze et al. 1985) Grund and Kroppenstedt 

1990, respectively. Another species, Nocardiopsis africana (Preobrazhenskaya and 

Sveshnikova 1974) Preobrazhenskaya et al. 1985, was assigned to the genus 

Microtetraspora as Microtetraspora africana (Preobrazhenskaya and Sveshnikova 1974) 

Kroppenstedt et al. 1991. The two remaining species, Nocardiopsis alba and Nocardiopsis 

dassonvillei, were retained in the genus Nocardiopsis. 

The genus Nocardiopsis currently encompasses Nocardiopsis alba Grund and 

Kroppenstedt 1990, Nocardiopsis dassonvillei (Brocq-Rousseau 1904) Meyer 1976, 

Nocardiopsis halophila Al-Tai and Ruan 1994, Nocardiopsis listeri Grund and 

Kroppenstedt 1990, Nocardiopsis lucentensis Yassin et al. 1993b, Nocardiopsis prasina 

(Grund and Kroppenstedt 1990) Yassin et al. 1997b and Nocardiopsis synnemataformans 

Yassin et al. 1997b. Members of the genus form a distinct phyletic line in the 16S rRNA 

tree (Fig. 2-2). 

In the meantime, additional species had been assigned to the genus Actinomadura 

primarily on the basis of morphological and chemotaxonomic data. Even so, the genus 

Actinomadura was listed as a genus incertae sedis in the eight edition of Bergey's Manual 

of Determinative Bacteriology (McClung, 1974), but was included in the Approved Lists of 

Bacterial Names (Skerman et al., 1980) where twenty-one species were recognised. 

Numerical phenetic analyses of the genus Actinomadura and related taxa 

(Goodfellow et al. , 
1979; Alderson & Goodfellow, 1979; Goodfellow & Pirouz, 1982) 

confirmed the separation between the genera Actinomadura and Nocardiopsis and 

suggested that the Actinomadura madurae and the Actinomadura pelletieri were 

heterogeneous species. In comprehensive chemical and numerical phenetic studies 

members of the genus Actinomadura were assigned to two aggregate taxa, the 

Actinomadura madurae and the Actinomadura pusilla groups (Athalye et al., 1984,1985). 
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Actinomadura madurae and Actinomadura pelletieri were again considered to be 

heterogeneous species. 

Fischer et al. (1983) provided compelling evidence that the genus Actinomadura 

was heterogeneous when they assigned representative strains to two aggregate groups 

defined on the basis of chemical and nucleic acid pairing data. Ribosomal RNA partial 

oligonucleotide sequence (Fowler et al., 1985; Goodfellow et al., 1988), menaquinone 

(Athalye et al., 1984), polar lipid (Lechevalier et al., 1977), numerical taxonomic 

(Goodfellow & Pirouz, 1982; Athalye et al., 1985) and DNA: DNA relatedness data 

(Poschner et al., 1985) underlined this heterogeneity. Actinomadura madurae and related 

species were seen to have a closer affinity to Thermomonospora curvata than to 

Actinomadura pusilla and allied taxa, the latter were found to be related to 

Streptosporangium roseum (Fowler et al., 1985). 

The division of the genus Actinomadura into two separate groups was formally 

recognised by Kroppenstedt et al. (1990) who proposed that the genus Actinomadura 

Lechevalier and Lechevalier 1970c be retained for Actinomadura madurae and related 

species and that the Actinomadura pusilla group be reclassified in the redefined genus 

Microtetraspora Thiemann et al. 1968; this division was supported by other molecular 

systematic data, including those from polyacrylamide gel electrophoresis analyses of the 

ribosomal protein AT-L30 (Ochi et al., 1991). 

The revised genus Actinomadura (Lechevalier & Lechevalier 1970c) Kroppenstedt 

et al. 1990 accommodated twenty-six validly described species, the members of which 

characteristically formed non-fragmenting, extensively branched substrate mycelia and 

aerial hyphae that carried up to fifteen arthrospores. Spore chains were straight, hooked 

(open loops), or irregular spirals (1-4 turns), and spore surfaces folded, irregular, smooth, 

spiny or warty. The organisms grew within the temperature range 10 to 60 °C. In addition, 

they contained major proportions of hexahydrogenated menaquinones with nine isoprene 
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units saturated at sites II, III, and VIII, and complex mixtures of fatty acids with 

hexadecanoic, 14-methylpentadecanoic, and 10-methyloctadecanoic acids predominating 

(Fischer et al., 1983; Athalye et al., 1984; Miyadoh et al., 1989). Whole-organism 

hydrolysates contained galactose, glucose, mannose, ribose, and madurose, the latter 

sometimes in trace amounts (Lechevalier & Lechevalier, 1970b). 

Trujillo and Goodfellow (1997) examined representative Actinomadura madurae 

and Actinomadura pelletieri strains together with markers of validly described species of 

Actinomadura in a polyphasic taxonomic study designed to determine whether species 

containing clinically significant actinomadurae were heterogeneous, as suggested by the 

results of earlier studies (Goodfellow, 1979; Alderson & Goodfellow, 1979; Fischer et al., 

1983). The Actinomadura pelletieri strains were recovered in two distinct numerical 

phenetic groups the composition of which was supported by Curie-point pyrolysis mass 

spectrometric and DNA: DNA relatedness data. The name Actinomadura pelletieri was 

retained for the group containing the type strain in accordance with the rule of priority 

(Sneath, 1992), the epithet Actinomaura latina was proposed for the second group. 

The genus Actinomadura now accommodates thirty-one validly described species, 

including Actinomadura rubrobrunea (Table 2-6). The Actinomadura species that were 

transferred to the genus Microtetraspora by Kroppenstedt et al. (1991) have recently been 

assigned to a new taxon, the genus Nonomuria, mainly on the basis of 16S rDNA sequence 

data (Zhang et al., 1998). The reclassification of these and related actinomycete species is 

outlined in Table 2-7. 

Most of the members of the redefined genus Actinomadura are mesophilic 

organisms which grow optimally between 28 and 30 °C. Actinomadura rubrobrunea is 

currently the only thermophilic member of the genus, as Actinomadura fastidiosa Soina et 

al. 1975 and Actinomadura fexuosa (ex Cross and Goodfellow 1973) Meyer 1989, which 

encompass also thermophilic organisms, are now classified in the genus Nonomuria as 
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Table 2-6. Validly described species and subspecies of genera classified in the families 

Nocardiopsiaceae and The rmomonosporaceae 
Taxa Authors Type strain 

Family The rmomonosporaceae 
Genus Actinocorallia linum a et al. 1994 

A. herbida linuma et al. 1994 IFO 15485 

Genus Actinomadura Lechevalier & Lechevalier 1970c 

A. atramentaria Miyadoh et al. 1987 DSM 43919 

A. aurantiaca Lavrova & Preobrazhenskaya 1975 DSM 43924 

A. carminata Gauze et at. 1973 DSM 44170 

A. citrea Lavrova et al. 1972 DSM 43461 

A. coerulea Preobrazhenskaya et al. 1975 DSM 43675 

A. cremea subsp. cremea Preobrazhenskaya et al. 1975 DSM 43676 

A. cremea subsp. rifamycini Gauze et al. 1987 DSM 43936 

A. echinospora (Nonomura & Ohara 1971) Kroppenstedt et al. 1991 DSM 43163 

A. fibrosa Mertz & Yao 1990 NRRL 18348 

A. formosensis (Hasegawa et al. 1986) Zhang et al. 1998 IFO 14204 

A. fulvescens Terekhova et al. 1987 DSM 43923 

A. glomerata Itoh et al. 1996 JCM 9376 

A. hibisca Tomita et al. 1991 ATCC 53557 

A. kijaniata Horan & Brodsky 1982 DSM 43764 

A. Latina Trujillo & Goodfellow 1997 DSM 43382 

A. libanotica Meyer 1981 DSM 43554 

A. livida Lavrova & Preobrazhenskaya 1975 DSM 43677 

A. longicatena Itch et al. 1996 JCM 9377 

A. luteo luorescens (Shinobu 1962) Preobrazhenskaya et al. 1975 DSM 40398 

A. macra Huang 1980 DSM 43862 

A. madurae (Vincent 1894) Lechevalier & Lechevalier 1970c DSM 43067 

A. nitritigenes Lipski & Altendorf 1995 DSM 44137 

A. oligospora Mertz & Yao 1986 NRRL 15878 

A. pelletieri (Laveran 1906) Lechevalier & Lechevalier 1970c DSM 43383 

A. rubrobrunea Kroppenstedt et al. 1991 DSM 43750 

A. rugatobispora Miyadoh et al. 1991 IFO 14382 

A. spadix Nonomura & Ohara 1971 DSM 43459 

A. umbrina Galatenko et al. 1987 DSM 43927 

A. verrucosospora Nonomura & Ohara 1971 DSM 43358 

A. vinacea Lavrova & Preobrazhenskaya 1975 DSM 43765 

A. viridis (Nonomura & Ohara 1971) Miyadoh et al. 1989 DSM 43175 

A. yumaensis Labeda et al. 1985 NRRL 12515 
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Genus Excellospora Agre & Guzeva 1975 

E. viridilutea Agre & Guzeva 1975 DSM 43934 
Genus Spirillospora Couch 1963 

S. albida Couch 1963 DSM 43034 

Genus Thermomonospora Henssen 1957, emend. Zhang et al. 1998 

"T". chromogena McCarthy & Cross 1984 DSM 43794 

T. curvata Henssen 1957 DSM 43183 

Family Nocardiopsiaceae 
Genus Nocardiopsis (Brocq-Rousseau 1904) Meyer 1976 

N. alba subsp. alba Grund & Kroppenstedt 1990 DSM 43377 

N. dassonvillei (Brocq-Rousseau 1904) Meyer 1976 DSM 43111 

N. halophila AI-Tai & Ruan 1994 IQ-H3 

N. listeri Grund & Kroppenstedt 1990 DSM 40297 

N. lucentensis Yassin et al. 1993 DSM 44048 

N. prasina (Grund & Kroppenstedt 1990) Yassin et al. 1997 DSM 43845 

N. synnemataformans Yassin et al. 1997 DSM 44143 

Genus Thermobifida Zhang et al. 1998 

T. alba (Locci et al. 1967) Zhang et al. 1998 DSM 43310 

T. fusca (McCarthy & Cross 1984) Zhang et al. 1998 DSM 43792 

Genus in search of family 
Genus Thermobispora Wang et al. 1996 

T. bispora (Henssen 1957) Wang et al. 1996 DSM 43833 

ATCC, American Type Culture Collection, Rockville, MD., U. S. A; DSM, Deutsche Sammlung von 

Microorganismen und Zellkulturen, Mascheroder Weg lb, D-38124, Braunschweig, Germany; IFO, Institute 

for Fermentation, Osaka, Japan; JCM, Japan Collection of Microorganisms, Saitama, Japan; NRRL, US 

Department of Agriculture Regional Research Laboratory Collection, Peoria, Illinois, USA. 
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Nonomuria fastidiosa and Nonomuria flexuosa, respectively (Zhang et al., 1998). 

The genus Thermomonospora. Thermomonospora (Ther. mo. mon'o. spo. ra. Gr. n. therme 

heat; Gr. adj. monos single, solitary; Gr. fem. n. spora seed; M. L. fem. n. 

Thermomonospora the heat [-loving] single-spored). The genus Thermomonospora was 

proposed by Henssen in 1957a for thermophilic actinomycetes growing on composted 

horse manure. The genus contained three species the members of which formed single 

spores on aerial hyphae. Members of all of the species produced colourless-to-pale yellow 

colonies and white aerial hyphae and were distinguished from one another by the 

morphology of their aerial mycelia and the type of substrate hyphal branching. 

Thermomonospora curvata, the only species isolated and maintained in pure culture, was 

later designated the type species of the genus (Henssen & Schnepf, 1967). The description 

of the remaining two species, Thermomonspora fusca and Thermomonspora lineata, was 

based on morphological properties detected in contaminated preparations. Neither 

Thermomonsporafusca nor Thermomonspora lineata were included in the Approved Lists 

of Bacterial Names (Skerman et al., 1980) even though Thermomonspora fusca had been 

isolated in pure culture and well described (Crawford, 1975; Crawford & Gonda, 1977). 

Mesophilic monosporic actinomycetes were subsequently assigned to the genus 

Thermomonspora as Thermomonspora mesophila Nonomura and Ohara 1971c and 

Thermomonspora mesouviformis Nonomura and Ohara 1974. A third mesophilic species, 

Thermomonspora formosensis, was described by Hasegawa et al. (1986) but cited as a 

species incertae sedis in Bergey's Manual of Systematic Bacteriology (McCarthy, 1989). 

Krassilnikov and Agre (1964b) proposed the genus Actinobifida for actinomycetes 

that formed single spores on dichotomously branched sporophores. They recognised a 

single species, Actinobifida dichotomica, but failed to mention that dichotomous branching 

had previously been observed both in the genus Thermomonospora (Henssen, 1957a) and 

in species of the genus Micromonospora (Jensen, 1930,1932; Krassilnikov, 1941). 
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Krassilnikov and Agre (1965) proposed a second species, Actinobifida chromogena, and 

suggested that all actinomycetes showing dichotomous branching be transferred to this 

genus. A third species, Actinobifida alba, was proposed by Locci et al. (1967). 

All of the taxa mentioned above were subsequently reclassified. Actinobifida 

dichotomica Krassilnikov and Agre 1964, the type species of the genus, was transferrred to 

the genus Thermoactinomyces as Thermoactinomyces dichotomica due to its ability to 

produce endospores and Actinobifida alba Locci et al. 1967 was reclassified in the genus 

Thermomonospora as Thermomonospora alba as it formed heat-sensitive spores on 

substrate and aerial hyphae (Cross & Goodfellow, 1973). Similarly, Actinobifida 

chromogena was assigned to the genus Thermomonospora as Thermomonospora 

chromogena McCarthy and Cross 1984. In contrast, Thermomonospora viridis (Küster & 

Locci, 1963) was transferred to the genus Saccharomonospora as Saccharomonospora 

viridis (Nonomura & Ohara, 1971). 

A comprehensive numerical taxonomic survey of the genus Thermomonospora and 

related taxa confirmed the taxonomic status of Thermomonospora chromogena and 

provided strong evidence for the formal recognition of Thermomonospora fusca (McCarthy 

& Cross, 1984). In contrast, Thermomonospora mesouviformis Nonomura and Ohara 1974 

was considered to be a synonym of Thermomonospora alba Locci et al. 1967. These taxa, 

which were called the "white Thermomonospora group" because of their white aerial 

mycelia, were sharply distinguished from Thermomonospora chromogena (Krassilnikov & 

Agre, 1965; McCarthy & Cross, 1984), "Thermomonospora falcata" (Henssen, 1970) and 

similar actinomycetes from mushroom compost (McCarthy & Cross, 1981). The 

"chromogena" strains with reddish-brown colonies and light-brown aerial hyphae had 

provisionally been included in the genus Thermomonospora on the basis of wall 

composition and morphology (Cross, 1981). These developments left the genus 

Thermomonospora as a repository for wall chemotype III, thermophilic actinomycetes 
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which formed single, heat-sensitive spores either on aerial hyphae or on both aerial and 

substrate hyphae. This reliance on morphological properties, while understandable, was 

unfortunate as Cross and Lacey (1970) had reported an almost continuous range of 

morphological variation among monosporic thermophilic actinomycetes. 

The discontinuous distribution of chemical markers underlined the heterogeneous 

nature of the genus Thermomonospora (Greiner-Mai et al., 1987) and led to the constituent 

species being assigned to three distinct groups (Kroppenstedt & Goodfellow, 1992; Kudo, 

1997). The first group, which contained Thermomonosora curvata and Thermomonosora 

formosensis, had chemotaxonomic properties similar to members of the genus 

Actinomadura (Greiner-Mai et al., 1987), a relationship supported by 16S rRNA 

cataloguing and sequence data (Fowler et al., 1985; Kroppenstedt et al., 1990). Similarly, 

chemical data supported the transfer of Thermomonospora chromogena and 

Thermomonospora mesophila to the genus Microtetraspora as defined by Kroppenstedt et 

al. 1990. These proposals left Thermomonospora alba (including Thennomonospora 

mesouviformis) and Thermomonospora fusca as related species that were considered to 

merit generic status. 

Zhang et al. (1998) clarified the taxonomy of the genera Actinomadura, 

Microtetraspora and Thermomonospora in a comprehensive 16S rRNA sequence study, 

the results of which are shown in Fig. 2-2. These authors proposed that Thermomonospora 

formosensis Hasegawa et al. 1986 be transferred to the genus Actinomadura as 

Actinomadura formosensis and Thermomonospora mesophila Nonomura and Ohara 1971 

be reclassified in the genus Microbispora as Microbispora mesophila. In addition a new 

taxon, the genus Thermobifida, was proposed to accommodate the thermophilic 

actinomycetes, Thermomonospora alba (Locci et al. 1967) Cross and Goodfellow 1973 

and Thermomonospora fusca McCarthy and Cross 1984. The taxonomic position of 

Thermomonospora chromogena was considered to be equivocal. These proposals left the 
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genus Thermomonospora as a monospecific taxon containing Thermomonospora curvata. 

The revised genus Thermomonospora encompasses aerobic, Gram-positive 

actinomycetes which form branching substrate and aerial mycelia. Single spores are borne 

at the tips of short sporophores branching from aerial or substrate hyphae. The optimal 

temperature for growth is 45 to 55 °C. Thermomonosporae lack diagnostic sugars in 

whole-organism hydrolysates, contain meso-A2pm as the diamino acid in the wall 

peptidoglycan, have MK-9(H4) and -9(Hg) as predominant menaquinones, are rich in 

complex mixtures of straight and branched-chain fatty acids (fatty acid type 3a sensu 

Kroppenstedt, 1985), and contain diphosphatidylglycerol, phosphatidylglycerol, 

phosphatidylinositol and phosphatidylinositol mannosides as major polar lipids 

(phospholipid type I sensu Lechevalier et al., 1977). Thermomonosporae are closely related 

to actinomadurae on the basis of 16S rDNA sequence data and are common in overheated 

substrates such as bagasse, composts, fodder and manures. 

The type species of the genus Thermomonospora is Thermomonospora curvata 

Henssen 1957aAL 

The genus Actinocorallia. Actinocorallia (Ac. ti. no. co. ral'li. a. Gr. n. actis a ray; Gr. n. 

corallium coral; Gr. n. Actinocorallia referring to a microorganism that forms sporophores 

resembling coral). Mang et al. (1998) showed that the monospecific genus Actinocorallia 

is closely related to the members of the family Thermomonosporaceae, notably 

Actinomadura aurantiaca JCM 8201T and Actinomadura libanotica IFO 14095T (Fig. 2-2). 

Actinocorallia herbida was proposed by linuma et al. (1994) to accommodate a novel 

isolate, strain IFO 15485T, which formed coralloid sporophores on substrate hyphae and 

very occasionally coremia on solid media. The organism is an aerobic, Gram-positive 

actinomycete which produces non-fragmenting branched substrate hyphae and long chains 

of nonmotile spores on the tips of sporophores carried on the substrate mycelium. The 

temperature range for growth is 12 to 38 °C. The organism contains meso-A2pm as the 
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major diamino acid of the wall peptidoglycan, has N-acetylated muramic acid, lacks 

characteristic sugars (wall chemotype IR sensu Lechevalier & Lechevalier, 1970a, b), 

contains straight-chain saturated and monounsaturated fatty acids (fatty acid type la sensu 

Kroppenstedt et al., 1985), but not mycolic acids, has MK-9(H4) and MK-9(H6) as 

predominant menaquinones and phosphatidylethanolamine as the diagnostic polar lipid 

(phospholipid type II sensu Lechevalier et al., 1977). The G+C content of the DNA is 73 

mol%. 

The type species of the genus is Actinocorallia herbida linuma et al. 1994. 

The genus Spirillospora. Spirillospora (Spi. ril. lo. spo'ra. Gr. n. speira coil; Gr. n. spora a 

seed, spore; M. L. fem. n. Spirillospora an organism with spores in spirals). Members of the 

genus Spirillospora have chemical profiles that are consistent with their assignment to the 

family Thermomonosporaceae (Zhang et al., 1998). The genus Spirillospora, which was 

proposed by Couch (1963), contains aerobic, Gram-positive, mesophilic, chemo- 

organotrophic actinomycetes which produce spherical to vermiform spore vesicles (5-24 

pm in diameter) on aerial hyphae. The spore vesicles enclose numerous spores that are 

arranged in coiled and branched spore chains. The spores are rod-shaped or curved (0.5-0.7 

x 2.0-6.0 pm) and motile by means of one to seven subpolarly inserted flagella. The colour 

of the substrate mycelium is white to pale yellow or pale buffy pink to red; the aerial 

mycelium is usually white. The temperature range for growth is 18 to 35 °C. 

The peptidoglycan of the cell wall contains meso-A2pm, and madurose is the 

characteristic sugar of whole-organism hydrolysates (cell wall chemotype 1II, sugar pattern 

B sensu Lechevalier & Lechevalier (1970a, b). The organism contains tetra- and 

hexahyrogenated menaquinones with nine isoprene units as the predominant 

isoprenologues (Collins et al., 1984), major proportions of iso- and anteiso-branched fatty 

acids (Kroppenstedt & Kutzner, 1978), and diphosphatidylglycerol, phosphatidylinositol 

and phosphatidylinositol dimannosides as major polar lipids with 
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phosphatidylethanolamine variably present (phospholipid type I sensu Lechevalier et al., 

1977). The G+C content of the DNA is 71.0 to 73.0 mol%. Members of genus 

Spirillospora have been isolated from soil but only infrequently. 

The type species of the genus is Sprillospora albida Couch 1963"L. 

The family Thermomonospora sensu novo. This family currently encompasses the genera 

Actinocorallia, Actinomadura, Excellospora, Spirillospora and Thermomonospora. 

Members of the constituent taxa share many properties in common but can be distinguished 

using a combination of chemical and morphological markers (Table 2-8). The taxonomic 

histories of thermophilic actinomycetes classified in the families Nocardiopsiaceae, 

Thermomonosporaceae and Streptosporangiaceae are shown in Table 2-9. 

3. Present study 

The primary aim of the current aspect of the present study was to establish the 

taxonomic status of two thermophilic, neutrophilic actinomycetes, namely, strains NT202 

and NT303, and four alkalitolerant, thermophilic organisms, that is, strains TA86, TA111, 

TA113 and TA114. All of these organisms were isolated from and and tropical soil 

samples after 5 days of incubation at 55°C using starch casein agar supplemented with 

cycloheximide and rifampicin and adjusted to pH 7.0 and pH 10.5 , respectively (Sahin, 

1995). The test strains were assigned to two distinct clusters in a numerical phenetic survey 

designed to determine the taxonomic diversity shown by thermophilic organisms 

provisionally assigned to the genus Streptomyces (Sahin, 1995). However, all six strains 

contained meso-A2pm as the major diamino acid of the wall peptidoglycan and hence could 

not be classified in the genus Streptomyces. Strains NT202 and NT303 were then 

provisionally assigned to the genus Amycolatopsis, and strains TA86, TA 111, TA 113 and 

TA 114 to the genus Excellospora, on the basis of chemical and morphological properties. 

The organisms were the subject of a polyphasic taxonomic study, which involved 
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phenotypic, chemotaxonomic and molecular systematic analyses, in order to clarify their 

taxonomic positions. 
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Materials and Methods 

1. Strains and cultivation 

The test strains (Table 2-10) were cultivated on inorganic salt-starch agar (ISP medium 

4, Difco; Shining & Gottlieb, 1966), oatmeal agar (ISP medium 3; Shining & Gottlieb, 

1966) and modified Bennett's agar plates (Jones, 1949) at 45 °C and maintained as 

suspensions of mycelial fragments in glycerol (20%, v/v) at - 20 °C (Wellington & 

Williams, 1978). The frozen glycerol suspensions served as a convenient means of long 

term preservation and as a ready source of inoculum. Inocula were obtained by thawing 

suspensions at room temperature for approximately 15 minutes. After use, the glycerol 

suspensions were immediately stored at -20 °C. 

Biomass for the chemical and molecular systematic analyses was obtained by growing 

the strains in 50 ml trypticase soy broth (Difco Laboratories, Detroit, USA) in 250 ml 

shake flasks (ca. 150 rpm) for 3 days at 45 °C when growth was checked for purity by 

subculturing onto inorganic salt-starch agar or modified Bennett's agar plates. The flasks 

were inoculated with single colonies taken from agar plates and biomass harvested by 

centrifugation at 6,000 rpm for 10 minutes. The cells used for the chemical studies were 

washed in distilled water and freeze dried; those required for the molecular systematic 

investigations were washed in sterile NaCI-EDTA buffer (0.1 M EDTA, pH 8.0; 0.1 M 

NaCl) and stored at -20 °C until needed. 

2. Acquisition of phenotypic data 

Morphology and pigmentation. The isolates were examined for aerial spore mass colour, 

substrate mycelium colour and soluble pigment production following incubation on 

modified Bennett's agar (Jones, 1949), Czapek Dox agar (Oxoid, Basingstoke, Hampshire, 
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UK), glucose yeast extract agar (GYEA; Gordon & Mihm, 1962), glycerol asparagine agar 

(ISP medium 5, Difco; Shirling & Gottlieb, 1966), inorganic salts-starch agar (ISP medium 

4, Difco; Shirling & Gottlieb, 1966) and oatmeal agar (ISP medium 3; Shirling & Gottlieb, 

1966), and for the production of melanin pigments on peptone yeast extract iron (ISP 

medium 6, Difco; Shirling & Gottlieb, 1966) and tyrosine agars (ISP medium 7, Difco; 

Shining & Gottlieb, 1966). All of the plates were incubated at 45 °C for 5 days. 

Spore chain morphology and spore ornamentation of organisms grown on Czapek 

Dox (Weyland 1969) and oatmeal agar plates (ISP medium 3; Shirling & Gottlieb, 1966) 

were examined by light and scanning electron microscopy (SEM). Spore chain morphology 

was observed using a Nikon Optiphot binocular light microscope fitted with long working 

distance objectives; spore chains were assigned to the morphological categories proposed 

by Pridham et al. (1958). Spore surface ornamentation was determined on SEM 

preparations using a Joel JSM-51 scanning electron microscope; the spore surface 

ornamentation categories of Tresner et at. (1961) were used. 

Degradation and nutritional tests. The degradation and growth tests were carried out 

using the media and methods described by Williams et al. (1983a). Inoculated plates were 

incubated at 45 °C for 7 days, apart from some of the temperature tests. Growth at 10 °C 

was detected after 15 days; the remaining temperature tests were read after 7 days (Table 2- 

16, page 140-142). Clearing of the insoluble compounds from under and around areas of 

growth was scored as a positive result in the degradation tests (Table 2-16). 

The organisms were also examined for their ability to use 49 compounds as sole 

sources of carbon for energy and growth, and 23 compounds as sole sources of nitrogen for 

growth (Sahin, 1995). The various compounds were prepared as aqueous solutions, 

sterilised by filtration using disposable filters (0.45 pm; Acrodisc, Gelman Sciences, 600 

South Wagner Road, Ann Arbor, Michigan, USA) and added to a molten basal medium 

(Boiron et al., 1993; Appendix 4). When scoring results, growth on the test medium was 
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compared with that on the positive and negative control plates. The positive control plate 

contained glucose as the sole carbon source and glucose plus yeast extract as the sole 

carbon and nitrogen source; the negative control plates lacked a carbon source and a carbon 

plus nitrogen source, respectively. Strains were scored positive if growth on the test plate 

was greater than that on the negative control plate. Conversely, negative results were 

recorded where growth was less than or equal to that on the negative control plate. Acid 

production from sugars was determined after Gordon et al. (1974) using Replidishes. The 

basal inorganic nitrogen medium (Appendix 4) contained 1 %, w/v carbohydrate. 

3. Chemotaxonomy 

(a) Analysis of menaquinones 

Isolation of isoprenoid quinones. The method described by Minnikin et al. (1984) was 

used to extract and purify isoprenoid quinones from the test strains. Dried biomass (ca. 50 

mg) was placed in a test tube fitted with a Teflon-lined screw cap and 2 ml of aqueous 

methanol (10 ml of 3% w/v aqueous sodium chloride in 100 ml of methanol) and 2 ml of 

petroleum ether (b. p. 60-80 °C) added. The contents of the tube were mixed for 15 minutes 

using a tube rotator then centrifuged for 5 minutes at low speed. The upper organic phase, 

which contained the isoprenoid quinones, was transferred to a small glass vial and dried 

under nitrogen at room temperature. The preparations were stored in the dark at -20 °C as 

isoprenoid quinones are susceptible to strong light and high temperatures (Collins, 1994). 

Preparative thin-layer-chromatography of isoprenoid quinones. The extracts 

containing the isoprenoid quinones were resuspended in 50 pl of petroleum ether (b. p. 60- 

80 °C) and applied as 2 cm bands on plastic-backed silica gel plates (10 cm x 10 cm; 

Merck 5735; Merck, Darmstadt, Germany). The thin-layer-chromatographic plates were 

developed in petroleum ether/acetone (95/5, v/v) and the single bands containing the 
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menaquinones visualised and located under UV light at 254 nm; a standard menaquinone 

(MK-4; Sigma Chemical Company, Dorset, UK) was co-migrated with the samples to help 

identify the position of the extracted menaquinones. The latter were detected as dark brown 

bands on a fluorescent yellow-green background. The bands were scraped from the plastic 

plates, deposited in 1.5 ml tubes containing I ml of diethyl ether, the preparations mixed 

thoroughly by vortexing and centrifuged at 13,000 rpm for 5 minutes. The supernatants 

were transferred to small vials, dried under nitrogen and stored in the dark at -20 °C. 

Analysis of isoprenoid quinones by high-performance liquid chromatography. The 

purified menaquinones were resuspended in 50 pl of n-hexane and 10 pl of each sample 

injected into a HPLC instrument (Pharmacia LKB, Uppsala, Sweden) fitted with a reverse- 

phase column (Spherisorb octadecylsilane [ODS] 5 pm; Jones Chromatography Ltd., Mid 

Glamorgan, Wales, UK). Acetonitrile-isopropanol (75: 25, v/v) was used as the mobile 

phase and the samples were detected at 254 nm. Retention times and peak areas were 

determined using an integrator (HP3396A; Hewlett Packard Ltd., Nine Mile Ride, 

Wokingham, Berkshire, England, UK). 

(b) Analysis of polar lipids 

Polar lipids extracted from the test strains were examined by two dimensional TLC 

and identified using published procedures (Minnikin et al., 1984). The purified polar lipid 

extracts were dissolved in chloroform-methanol (2: 1, v/v), and 10 µl samples applied to the 

corners of six silicagel aluminium sheets (10 by 10 cm; Merck Kieselgel 60 F254 no. 

5554). Chromatography was carried out using chloroform-methanol-water (65: 25: 4, v/v) in 

the first direction and chloroform-acetic acid-methanol-water (40: 7.5: 6: 2, v/v) in the 

second direction. The following differential stains were used to determine the type of lipids 

present on the chromatograms. 

Molybdophosphoric acid spray for the detection of all polar lipids (Gunstone & 

Jacobsberg, 1972; Suzuki et al., 1993). The first plate was sprayed with 
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molybdophosphoric acid (5 %, w/v in ethanol) and heated at 120 °C for 15 minutes to 

detect the presence of all lipids. The latter appeared as dark green/blue spots on a light 

green background. 

Ninhydrin reagent for the detection of lipids containing free amino groups (Consden 

& Gordon, 1948). A second plate was sprayed with ninhydrin (0.2 %, w/v in water 

saturated butan-l-ol) and heated at 100 °C for 10 minutes. Phosphatidylethanolamine (PE) 

and phosphatidylmethylethanolamine (PME), which contain amino groups, appeared as 

pink spots which were gently ringed with pencil before lightly spraying with Zinzadze 

reagent. 

Zinzadze reagent for the detection of phosphorus containing lipids (Dittmer & Lester, 

1964). The Zinzadze reagent used to spray the second plate was prepared as follows: 

molybdenum trioxide (40.1 g) was added to 1 litre of 25 N sulphuric acid and the mixture 

boiled gently until all of the residue dissolved (Solution A). Powdered molybdenum (1.5 g) 

was added to 500 ml of solution A, and the mixture boiled gently for 15 minutes and left to 

cool (Solution B). Equal volumes of solutions A and B were mixed and the resultant 

solution diluted with two volumes of distilled water for use. After spraying, phosphatides 

appeared immediately on the plates as blue spots on a white background. 

Periodate-Schiff reagent for the detection of lipids containing vicinal hydroxyl groups 

(Shaw, 1968). The third plate was treated with an aqueous solution of sodium 

metaperiodate (1 %, w/v) until it was saturated. It was then left for 10 minutes at room 

temperature to complete the oxidation and decolourised with sulphur dioxide gas (B. D. H., 

Poole, UK) to remove excess periodate. The decolourised plate was sprayed very lightly 

with Schiffs reagent (prepared by decolourisng aI%, w/v aqueous solution of 

pararosaniline hydrochloride with sulphur dioxide gas) before being treated with sulphur 

dioxide gas again. Phosphatidylglycerol (PG) gives a bright purple/pink spot immediately; 

phosphatidylinositol (PI) gives a brown colour, characteristic of compounds giving a 
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malondialdehyde residue on periodate oxidation, in a few minutes but glycolipids often 

require several hours before the characteristic blue-purple colour develops. The identities 

of PI and PG were verified by using this reagent. 

a-Naphthol reagent for the detection of glycolipids (Jacin & Mishkin, 1965). A fourth 

plate was sprayed with a-naphthol reagent which consists of a 15 % w/v, a-naphthol 

solution in 9.5 %, v/v ethanol; 10.5 ml of this solution is then mixed with concentrated 

sulphruric acid (6.5 ml), 40.5 ml of 9.5 %, v/v ethanol and 4 ml water. The sprayed plate 

was heated at 100 °C for 10 minutes when phosphatidylinositol dimannosides (PIDM) and 

glycolipids (GL) were revealed as brown spots. 

Draggendorff reagent (Wagner et al., 1961; Beiss, 1964). Another dried chromatogram 

was sprayed with Draggendorff reagent which contains 0.11 M potassium iodide and 0.6 

mM bismuth nitrate in 3.5 M acetic acid. This reagent was used to detect 

phosphatidylcholine (PC), PE and PME which appear immediately as yellow-orange spots 

on a yellow background. 

(c) DNA base composition 

The base composition of genomic DNA isolated from Amycolatopsis strains NT202 

and NT303 was determined by using the reverse phase HPLC method described by 

Tamaoka (1994) and the HPLC conditions outlined by Gerke et al. (1984). The analyses 

were performed on a Supelcosil LC-18S column (Supelco Inc., Bellefonte, PA, U. S. A. ) 

with 5 pm particle size and column dimensions of 15 cm x 4.6 mm (internal diameter). 

Molar G plus C ratios were calculated using the methods described by Mesbah et al. 

(1989). 

4. Sequencing and analysis of 16S rDNA 

The procedure used to obtain and sequence the 16S rDNA of the test strains is outlined in 
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Fig. 2-3. 

(a) Small scale preparation of genomic DNA 

The guanidine thiocyanate DNA extraction procedure of Pitcher et al. (1989) was used 

with specific modifications to optimise the isolation of DNA from the test strains. 

Treatment of cells with proteinase K (100 pg/ml) and sodium dodecyl sulphate (SDS, final 

concentration 1%, w/v) was found to greatly facilitate the susceptibility of cells to the 

standard digestion and extraction procedure of Pitcher et al. (1989). 

Solutions: 

Guanidine thiocyanate solution (5 M guanidine thiocyanate; 100 mM EDTA; 0.5 %, v/v 

sarkosyl) 

Guanidine thiocyanate ................................................ 60 g 

Milli-Q water (autoclaved) 
....................................... 

20 ml 

0.5 M EDTA, pH 8.0 
................................................ 

20 ml 

The guanidine thiocyanate was dissolved with constant stirring at 65°C and the 

resultant solution cooled to room temperature before adding: 

N-laurylsarcosine 10% (v/v, autoclaved) ................... 5 ml 

The final volume was made up to 100 ml with Milli-Q water and the solution 

filtered through a 0.45 µm membrane. The guanidine thiocyanate solution was 

stored at room temperature in a dark bottle. 

7.5 M Ammonium acetate 

Ammonium acetate ................................................ 
57.81 g 

Milli-Q water ..................................................... to 100 ml 
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Figure 2-3. Protocol for PCR amplification, purification and sequencing of 16S rDNA 

Genomic DNA 
(50-100 ng) 

I 
27f and 1525r primers -4 Vortex and collect +- - PCR mix (100 pi) 

(0.4 µM each) 
reaction mixture dNTPs: 200 mM each 
by centrifugation Taq buffer 

Denaturation - 98 °C, 2 minutes 

- Ice, 1 minute 

Addition of Taq -2U Taq polymerase (0.5 µl) 
DNA polymerase -2 drops mineral oil 

- Vortexing and short pulse 
j centrifugation (5 seconds) 

PCR - Denaturing: 94°C, 2 minutes 

(30 cycles) - Annealing: 55°C, 1 minute 

- Extension: 72°C, 3 minutes 

- Final extension: 72°C, 10 minutes 

a. EcoR Mind 111-4 Check the size of - Electrophoresis: I%, w/v agarose, 

or ? BstE II amplified fragments 0.5 µg ml-1 ethidium bromide, 

DNA MW markers (5 µl of PCR product) 100 V, 1 hour, 0.5 x TEB 

- Photography (optional) 

If product - 1.4 kb -4 Gel purification of - Preparative electrophoresis 

16S rRNA fragment - Centrifugation through 
I Millipore filter units 

I 

16S rDNA reverse -9 Automated sequencing - Taq dye-deoxy cycle sequencing 
and forward primers (Applied Biosystems) 
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Final volume 100 ml. The solution was sterilised by autoclaving and stored at 

4°C. 

Chloroform-iso-amyl alcohol 

Chloroform 
............................................................... 24 ml 

Iso-amyl alcohol ......................................................... 1 ml 

Stored at 4°C in a sealed bottle. 

Phenol-chloroform-iso-amyl alcohol 

This reagent was purchased as a pre-mixed formulation (Sigma) of molecular 

biology grade phenol-chloroform-iso-amyl alcohol (25: 24: 1, v/v) saturated with 

10 mM Tris (pH 8.0) and 1 mM EDTA (pH 8.0). The reagent was stored at 4 °C 

in a sealed dark bottle. 

TE buffer (pH 8.0) 

0.5 M EDTA, pH 8.0 .................................................. 2 m1 

1M Tris, pH 8.0 ....................................................... 10 ml 

Milli-Q water ................................................ to 1 litre 

If necessary, the pH of the solution was adjusted to 8.0 before making up to I litre. 

The buffer was sterilised by autoclaving and stored at room temperature. 

RNase A stock solution 

Dissolve pancreatic RNase (RNase A, Sigma) at a concentration of 10 mg/ml in 10 

mM Tris-HC1,15 mM NaCl or distilled water. Heat to 100 °C for 15 minutes then cool to 

room temperature. Store at -20 °C. 

Protease K stock solution 

Dissolve powder of protease type I (Sigma) at a concentration of 10 mg/ml in 10 

mM Tris-HCI, 10 mM NaCl and self-digest by incubating for 2 hours at 37 °C. Store at - 

20 °C. 
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Procedure: 

1. Approximately 50 -100 mg wet weight biomass (one loopfull or rice grain size) of test 

strain growth from the surface of plates or pellet formed by centrifugation of liquid 

culture was transferred to an Eppendorf microfuge tube. 

2. Biomass was resuspended in 100 pl of TE buffer (pH 8.0) containing 50 mg ml-1 

dissolved lysozyme (Sigma) and incubated at 37 °C for 30 minutes. 

3. Proteinase K (20 µl; 2 mg ml-1) and SDS (20 µl; 10%; final concentration 1%, w/v) 

were added to the preparation which was left at 45°C for an hour. 

4. Lysis was accomplished by adding 500 µl of guanidine thiocyanate solution to the 

preparation followed by brief mixing and incubation at room temperature for 10 

minutes. 

5. The lysate was cooled on ice, 250 µl of 7.5 M ammonium acetate was added and the 

resultant preparation mixed by gently inverting the tube several times. 

6. The lysate was incubated on ice for a further 10 minutes prior to the addition of 500 µl 

of chloroform-iso-amyl alcohol (24: 1, v/v). The phases were emulsified by shaking by 

hand and separated by centrifugation at 13,000 rpm for 10 minutes. 

7. The aqueous supernatant phase (upper layer) was transferred to a clean microfuge tube 

using a disposable plastic pipette tip and the DNA precipitated by the addition of a 0.54 

volume of cold iso-propanol. The tube was inverted several times to mix the solutions 

or until a visible white fibrous precipitate was seen. DNA was pelleted by centrifugation 

at 6,500 rpm for 20 seconds. 

8. The DNA pellet was washed twice with 70 % ethanol (v/v) and dried under vacuum. 

Short centrifugation pulses (30 to 60 seconds) were applied in case the pellet detached 

from the bottom of the tube during the washes. 

9. The DNA pellet was redissolved in 90 µl of TE buffer (pH 8.0); RNA was removed by 

the addition of 10 µl of RNase A (10 mg ml-1 stock; Sigma) and the preparation 
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incubated for more than 1 hour at 37 °C. 

10. Protein was removed from the preparation by the addition of 1 volume of phenol- 

chloroform-iso-amyl alcohol. After mixing thoroughly, the two phases were separated 

by centrifugation at 13,000 rpm for 3 minutes. The upper aqueous layer was transferred 

into a clean Eppendorf tube with 1 volume of chloroform-iso-amyl alcohol (24: 1, v/v). 

After mixing thoroughly, the two phases were separated by centrifugation as described 

earlier. The upper aqueous layer was transferred to a clean Eppendorf tube. 

It. DNA was precipitated by the addition of 2-3 volumes of cold absolute ethanol with 10 

pl of 8M lithium chloride (LiC12), the phases mixed by hand (do not vortex) and 

centrifuged at 6,500 rpm for 3 minutes. 

12. Remove the supernatant carefully and wash the pellet once with 70 % ethanol (v/v) 

prior to drying under vacuum. DNA was resuspended in 30 pl of Milli-Q water and 

stored at 4°C until needed. 

Purity and quantitation of DNA samples. The purity and quantitation of the DNA 

samples was determined by taking spectrophotometric readings of diluted samples at 230, 

260 and 280 nm. The measurement at 260 nm gave an estimate of the DNA content, the 

corresponding reading at 280 nm gave an indication of protein contamination, and the 

reading at 230 nm measured any contamination with small molecules, e. g., EDTA, 

guanidine or polysaccharide. A ratio A260/A230 > 2.0 was indicative of a carbohydrate-free 

sample while a ratio A260/A280 > 1.8 signified protein-free samples. 

The DNA concentration was estimated as follows: 

Reading x Dilution x 50 µg m1"1 = DNA pg ml"i 

(a reading of 1 at 260 nm is equivalent to 50 µg ml"' of double stranded DNA (Sambrook 

et al., 1989). 

DNA integrity check. DNA samples were checked by agarose gel electrophoresis in a 
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checking minigel in order to ensure that they were not excessively sheared or fragmented as 

a result of the isolation procedure. One pl of each DNA sample was mixed with gel loading 

buffer (1µl, Sigma) and loaded onto the gel. 

(b) PCR amplification of 16S rDNA 

The 16S rRNA genes of the test strains were amplified by PCR using conserved 

primers (Lane, 1991). 

Oligonucleotide primers used in PCR amplification and sequencing of 16S rDNA. 

Oligonucleotide DNA fragments used as primers (Table 2-11) for the PCR amplification 

and sequencing of almost complete 16S rDNA fragments were synthesised using a 

Beckman DNA synthesiser (Beckman Instruments Inc., Fullerton, USA) at the 200 pmol 

scale, according to the manufacturer's protocol. The synthesised oligonucleotides, which 

were received as dry partially purified precipitated DNA (200 pmol), were resuspended in I 

ml of autoclaved Milli-Q water and allowed to dissolve completely at 4°C overnight. 

Insoluble material was precipitated by centrifugation at 13,000 rpm and the supernatants 

transferred to 1.5 ml screw-cap cryogenic storage tubes (Sigma). 

The DNA concentrations of the primer suspensions were determined by measuring A260 of 

1: 10 dilutions of the dissolved oligonucleotides in Milli-Q water using a 500 µl cuvette. 

Accurate concentration of the oligonucleotide primers was determined by using PRIMER 

software (Chun, 1995) which automatically calculated the molar concentration of the 

oligonucleotide fragments taking into account the number of nucleotide bases, GC content 

and the proximity effect of different base linkages, as recommended by Rychlik and 

Rhoads (1989). 

The primers used for PCR amplification of the 16S rDNA were diluted to 20 µM 

and those for DNA sequencing to 1.6 pmol µl"'. These master stocks were stored in 1.5 ml 

screw-cap cryogenic storage tubes (Sigma) at -20°C together with the remaining undiluted 

original primer suspensions. In order to minimise the risk of contamination of primer 



Table 2-11. Oligonucleotide primers used in the PCR amplification and sequencing of 
16S rDNA 
Primer Sequence (5' to 3')e Size Binding site b Usage ̀  Source 

name 5' 3' PCR Seq 

27f ̀  AGAGTTTGATCMTGGCTCAG 20 8 27 Lane (1991) 

MG2f GAACGGGTGAGTAACACGT 19 107 125 Chun (1995) 

MG3f CTACGGGRSGCAGCAG 16 342 357 '1 Chun (1995) 

MG4f AATTCCTGGTGTAGCGGT 18 675 692 '1 Chun (1995) 

782r ACCAGGGTATCTAATCCTGT 20 801 782 \/ Chun (1995) 

MG5f AAACTCAAAGGAATTGACGG 20 907 926 \l Chun (1995) 

MG6f GACGTCAAGTCATCATGCC 19 1190 1208 I Chun (1995) 

1525r' AAGGAGGTGWTCCARCC 17 1544 1525 j Lane (1991) 

M13f GTTTTCCCAGTCACGAC 17 _d - '/ Promega (1993) 

M13r CAGGAAACAGCTATGAC 17 -` - Promega (1993) 

a Degeneracies according to Lane (1991): K= G: T; M= A: C; Y=C: T; R= A: G; S, =C: G; 

W, =A: T. 
b Binding site on the 16S rRNA molecule; numbering according to the Escherichia coli 

numbering system (Brosius et al., 1978). 

PCR, primers used in the PCR amplification of 16S rDNA; Seq, primers used in the 

dye-deoxy cycle sequencing of cloned 16S rDNA. 
d Binding at positions 2944 to 2960 (5' to 3) of the pGEM-T plasmid vector (Promega 

Corporation, 1993), approximately 23 base pairs upstream from the cloning site. 
`Binding at positions 177 to 161 (5' to 3') of the pGEM-T plasmid vector (Promega 
Corporation, 1993), approximately 80 base pairs downstream from the cloning site. 
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stocks with foreign DNA, a set of diluted primer stocks for PCR and sequencing were 

prepared by dispensing 100 pl aliquots of the master stocks in 0.5 ml Eppendorf tubes. The 

latter were stored in a separate container box at -20 °C. 

PCR amplification of 16S rDNA. PCR amplification of 16S rDNA was carried out in a 

HybAid Omnigene automated thermocycler (HybAid, Teddington, UK) using 0.8 ml PCR 

microfuge tubes. Taq DNA polymerase and reaction buffer were from Hoeffer (BioTaq; 

Hoeffer Scientific Instruments, Newcastle-under-Lyme, UK). Deoxyribonucleosides 

(dATP, dCTP, dGTP and dTTP, lithium salts; Boehringer Mannheim) were mixed in a 

master stock in equimolar ratios; the final concentration of individual 

deoxyribonucleosides was 25 mM. 

The following procedure was used for PCR amplification of 16S rDNA fragments: 

1. Stock solutions of primers, dNTPs and 10 x Taq buffer were defrosted and kept on ice. 

Taq DNA polymerase was kept at -20° C until needed. 

2. The necessary volume of reaction mix was prepared in a 0.8 ml PCR tube (or 1.5 ml 

Eppendorf tube), kept on ice and dispensed into individual PCR tubes. Usually 100 µl 

PCR reactions were performed but the protocol also works for 50 µl reactions. 

3. The reagents for one PCR tube were mixed in the following order (volumes for one 

reaction): 

27f primer (20 MM) ..................................................... 2 pl 

1525r primer (20 µM) ................................................. 2 µ1 

dNTP mix (25 mM each dNTP) .............................. 0.8 pl 

10 x Taq polymerase buffer (Hoeffer) ...................... 10 µ1 

Milli-Q water ......................................................... to 95 µl 

The reagents were mixed by vortexing and collected at the bottom of the tube by short 

pulse centrifugation (5 seconds). The tubes were kept in ice and 95 µl of the PCR mix 

dispensed into each of the PCR reaction tubes. 
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4. Approximately 50 to 500 ng of genomic DNA dissolved in a5gI volume Milli-Q water 

was added to each 95 µl of reaction mix. 

5. The contents of the tubes were thoroughly mixed by vortexing and collected at the 

bottom of the tube by short pulse centrifugation (5 seconds). Two drops of mineral oil 

were then added to the top of the reaction mixture. 

6. The tubes were heated at 98 °C for 5 minutes on a PCR block and immediately cooled 

in ice for 5 minutes. 

7. The Taq DNA polymerase was taken from storage at -20°C and put on ice just prior to 

being dispensed; 2.5 U (0.4 p1) of Taq DNA polymerase was added to the aqueous 

layer. 

8. Tubes were kept in ice until ready for PCR. 

9. The PCR reaction was performed according to the following conditions: 

Initial Amplification Final Cooling 
denaturation Extension 

Denaturation Annealing Extension 

94°C 94°C 55°C 72°C 72°C 25°C 

2 minutes 1 minute 1 minute 3 minute 10 minutes 1 minute 

1 cycle 30 cycles 1 cycle 1 cycle 

10. The PCR reactions were kept at -20°C and the amplification products checked by 

electrophoresis on agarose gels (1%, w/v) in 1x Tris-borate buffer (TBE; 89 mM Tris- 

borate and 2.5 mM EDTA, pH 8.0) containing 0.5 pg ml-1 ethidium bromide. A 

mixture of 5 pl of the PCR products and 1 pl of gel loading buffer (Sigma) were used. 

Gels were run at 100 V for 1 hour and the size of the amplified fragments estimated by 

comparison with X Eco RI / Hind III or, % Pst I molecular size markers (Sigma). 

Purification of PCR-amplified 16S rDNA. PCR-amplified 16S rDNA was purified by 
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preparative agarose gel electrophoresis (Sambrook et al., 1989) followed by elution of the 

DNA fragments by centrifugation through Ultrafree-MC microfiltration units (reference 

UFC3 OHV 25; Millipore [UK] Ltd., Watford, UK). 

The following procedure was used for purification of the PCR-amplified 16S rDNA 

fragments: 

1. The complete volume of the PCR reaction (ca. 100 pl) was mixed with 20 pl of gel 

loading buffer (Sigma) and loaded into the well of a preparative agarose mini-gel (1 %, 

w/v) containing ethidium bromide (0.5 µg ml-1). The mini-gel was run in 0.5 x TEB for 

1 hour at 100 V. DNA molecular size markers 71, Eco RI / Hind III or %. Pst I (Sigma) 

were used as standards for the determination of DNA fragment sizes. 

2. After electrophoresis, the gel was visualised using a UV transilluminator. The rDNA 

fragment was located by its molecular weight size (approximately 1.5 kb) and a gel 

slice containing the rDNA was cut using a clean glass coverslip. Exposure to UV light 

was kept to a minimum to avoid photo-nicking of the DNA fragments. 

3. The agarose slice containing the rDNA fragment was transferred to a Millipore 

microfiltration unit. 

4. The gel slices (held inside the tubes) were frozen at -70 °C for 30 minutes and allowed 

to defrost at room temperature. 

5. The tubes were centrifuged at 6,000 rpm for 20 minutes at room temperature. The 

presence of DNA in the extracted solution collected in the lower tube was verified by 

an orange glow in the solution from the fluorescence of the ethidium bromide-DNA 

complex under UV light. 

6. The DNA fragments were extracted once with 1 volume of phenol-chloroform-iso-amyl 

alcohol (25: 24: 1, v/v) and once with 1 volume of chloroform-iso-amyl alcohol (24: 1, 

v/v), as described previously (small scale DNA extraction). 

7. A 0.1 volume of 8M LiC12 was added and mixed well prior to the addition of 2-3 
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volumes of cold ethanol. The solutions were mixed thoroughly by inversion of the 

tubes and kept at -20 °C for 2 hours or at -70 °C for 30 minutes. 

8. DNA was pelleted by centrifugation at 13,000 rpm for 10 minutes. 

9. The pellet was washed once with cold ethanol (70%, v/v) and dried under vacuum. 

10. The rDNA pellet was redissolved in 60 pl of Milli-Q water and stored at -20 °C until 

needed. DNA samples (3 µl) were checked by agarose gel electrophoresis to estimate 

the DNA concentration by comparison with DNA standards of known concentration 

(Sambrook et al., 1989). 

(c) Dye-DeoxyTM terminator Taq cycle sequencing of 16S rDNA 

Sequencing of 16S rDNA fragments was performed using the Dye-DeoxyTM 

terminator Taq cycle sequencing protocol (Applied Biosystems, 1993) and oligonucleotide 

primers specifically designed for hybridising to conserved sites in the 16S rRNA molecule 

(Lane, 1991). Several forward and reverse sequencing primers were used (Table 2-11) 

Sequencing reactions were prepared and run as recommended by the Taq Dye- 

DeoxyTM Terminator Cycle Sequencing Kit protocols (Applied Biosystems, 1993). A 

reaction premix containing the components of the sequencing reaction, except the DNA 

sample and primer, was made as follow (volume for 4 reactions): 

5x TACS buffer 
......................................................... 

16 pl 
dNTP mix ................................................................... 4µl 

DyeDeoxy A terminator ............................................. 4 pl 

DyeDeoxy T terminator .............................................. 4p1 

DyeDeoxy G terminator ............................................. 4 p1 

DyeDeoxy C terminator .............................................. 4 pl 

AmpliTaq DNA polymerase ....................................... 
2 p1 

The reagents were mixed thoroughly by gentle vortexing and collected at the bottom of the 

tube by short pulse centrifugation (5 seconds). The mixture was dispensed into 0.8 ml PCR 

tubes (9.5 pl per tube). The premix was stored at -20°C for up to one month. 
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Approximately I pg of purified 16S rDNA (dissolved in Milli-Q water) and 3.2 

pmol of primer (2 pl of the sequencing primer stock) were added to 9.5 p1 of sequencing 

premix in a PCR tube kept on ice. The final volume was brought up to 20 p1 with Milli-Q 

water and the reaction mixture overlaid with a drop of mineral oil. The contents were 

mixed thoroughly by gentle vortexing and collected at the bottom of the tube by short pulse 

centrifugation (5 seconds). 

The thermal cycling was performed in a HybAid Omnigene automated 

thermocycler (HybAid, Teddington, UK). The PCR program was initiated immediately 

after placing the last PCR tube in the thermal cycler preheated to 96°C. The cycling 

consisted of 96°C for 30 seconds, 50°C for 15 seconds, 60°C for 4 minutes, in a total of 25 

cycles. The extension products were purified by using Centri-Sep spin columns to remove 

the excess DyeDeoxy terminators, according to recommended protocols (Applied 

Biosystems, 1993). Clean DNA samples were dried under vacuum and resuspended in 4 µ1 

of a sequencing loading buffer (5 pl deionised formamide and 1 pl 50 mM EDTA, pH 8.0) 

by vigorous vortexing. The suspensions were collected at the bottom of the tubes by short 

pulse centrifugation (5 seconds) and denatured by heating at 90°C for 2 minutes followed 

by incubation in ice for a few minutes. Samples were loaded onto an Applied Biosystems 

373A DNA sequencer and electrophoresed, according to the manufacturer's instructions 

(Applied Biosystems Inc., Warrington, UK) using a6% (w/v) polyacrylamide-urea gel. 

(d) Analysis of 16S rRNA sequence data 

Data from the automated sequencing of 16S rDNA in text file format were 

transferred into the AL16S program (Chun, 1995). Entries were identified by the strain 

name and primer used to generate the sequence. The 16S rDNA sequences of 

Amycolatopsis strains NT202 and NT303 were aligned manually with the nucleotide 

sequences of related taxa (Table 2-12) retrieved from the Ribosomal Database Project 

(RDP; Maidak et al., 1997) and EMBL-GenBank databases (Benson et al., 1998). 



CHAPTER II MATERIALS & METHODS 115 

Table 2-12. Amycolatopsis and related strains used in phylogenetic studies together with 
their nucleotide sequence accession numbers 
Taxa Strain GenBank 

/EMBL 
References 

Family `iActinosynnemaceae" 

Actinokineosporia riparia IFO 14541 T X76953 Warwick et al. (1994) 

Actinosynnema mirum DSM 43827T X84447 Yassin et al. (1995) 

Kutzneria viridogrisea " JCM3282T U58530 Wang et al. (1996b) 

Lentzea albidocapillata IMMIB D-958T X84321 Yassin et al. (1995) 

Saccharothrix australiensis DSM 43800T X53193 Bowen et al. (1989) 

Saccharothrix coeruleofusca DSM 43679r X76963 Warwick eta!. (1994) 

Streptoalloteichus hindustanus IFO 15115T D85497 Tamura et al. (1997) 

Family Pseudonocardiaceae 

Actinopolyspora halophila NCIMB 11472T X54287 Embley et al. (1988) 

Amycolatopsis alba DSM 44262T AF051340 Chun et al. (1998) 

Amycolatopsis azurae NRRL 11412T X53199 Embley et al. (1988) 

Amycolatopsis coloradensis NRRL 3218T AF051341 Chun et al. (1998) 

Amycolatopsisfastidiosa ATCC 31181T X53200 Embley et al. (1988) 

Amycolatopsisjaponica DSM 44213T X77959 Goodfellow et al. (1997) 

Amycolatopsis mediterranei DSM 13685T X76957 Warwick et al. (1994) 

Amycolatopsis methanolica NCIB 11946T X54274 de Boer et al. (1990) 

Amycolatopsis orientalis subsp. DSM 40040T X76958 Warwick et al. (1994) 

orientalis 

Amycolatopsis sulphurea DSM 46092T AF051343 Chun et al. (1998) 

Amycolatopsis thermoflava IFO 14333T AF052390 Chun et al. (1998) 

Amycolatopsis strain K24 Zhou et al. in preparation 

Amycolatopsis strain NT202 AJ000285 This study 

Kibdelosporangium aridum subsp. DSM 43828T X53191 Bowen et al. (1989) 

aridum 

Prauserella rugosa DSM 43194T AF051342 Kim & Goodfellow (1998) 

Pseudonocardia alni DSM 441041 X76954 Warwick et al. (1994) 

Pseudonocardia autotrophica DSM 43210T X54288 Embley et al. (1988) 

Pseudonocardia compacta DSM 43592T X76959 Warwick et al. (1994) 

Pseudonocardia halophobica DSM 43089T Z14111 McVeigh & Embley 

unpublished 

Pseudonocardia DSM 43281T X76955 Warwick et al. (1994) 
hydrocarbonoxydans 

"Pseudonocardia nitrificans" DSM 46012 X55609 Wersing et al., unpublished 

Pseudonocardia petroleophila DSM 43193T X55608 Wersing et al., unpublished 
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Pseudonocardia saturnea DSM 43195T X76956 Warwick et al. (1994) 

Pseudonocardia thermophila ATCC 19285T X53195 Embley et al. (1988) 

Saccharomonospora azurea K161=NA128T Z38017 Kim et al. (1995) 

"Saccharomonospora caesia" INMI 19125 X76960 Warwick et al. (1994) 

Saccharomonospora viridis ATCC 15386T X54286 Embley et al. (1988) 

Saccharopolyspora erythraea NRRL 2338T X53198 Embley et al. (1988) 

Saccharopolyspora gregorii NCIB 12823T X76962 Warwick et al. (1994) 

Saccharopolyspora hirsuta subsp. ATCC 27875T X53196 Embley et al. (1988) 
hirsuta 

Saccharopolyspora hordei DSM 44065T X53197 Embley et al. (1988) 

Saccharopolyspora rectivirgula DSM 43747T X53194 Embley et al. (1988) 

Thermocrispum agreste DSM 44070T X79183 Korn-Wendisch et al. (1995) 

Thermocrispum municipale DSM 44069T X79184 Korn-Wendisch et al. (1995) 

Thermomonospora curvata DSM 43183T X97893 Rainey et al. (1996) 

ATCC, American Type Culture Collection, Rockville, MD., U. S. A.; DSM, Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; IFO, Institute of Fermentation, 

Osaka, Japan; JCM, Japan Collection of Microorganisms, Saitama, Japan; NCIMB, National Collection of 

Industrial and Marine Bacteria, St. Machar Drive, Aberdeen, Scotland, UK; NRRL, Northern Regional 

Research Laboratory, Agricultural Research Service, U. S. Department of Agriculture, Peoria, Illinois, 

U. S. A. 
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Table 2-13. Excellospora and related strains used in phylogenetic studies together with 
their nucleotide sequence accession numbers 

Taxa Strain GenBank 
/EMBL 

References 

Family Thermomonosporaceae 

Actinocorallia herbida IFO 15485r D85473 Tamura et at. (1997) 

Actinomadura atramentaria IFO 14695T U49000 Wang (1996) 

Actinomadura aurantiaca JCM 8201T D50669 Itoh et al. (1995) 

Actinomadura citrea IFO 14678T U49001 Wang (1996) 

Actinomadura coerulea IFO 14679T U49002 Wang (1996) 

Actinomadura cremea IFO 14183T U49003 Wang (1996) 

Actinomadura echinospora IFO 14042T U49004 Wang (1996) 

Actinomadura formosensis JCM 7474T AF002263 Zhang et al. (1998) 

Actinomadura fulvescens IFO 14347T U49005 Wang (1996) 

Actinomadura kijaniata IFO 14229T U49006 Wang (1996) 

Actinomadura libanotica IFO 14095T U49007 Wang (1996) 

Actinomadura luteofluorescens IFO 13057T U49008 Wang (1996) 

Actinomadura macra IFO 14102T U49009 Wang (1996) 

Actinomadura madurae JCM 7436T U58527 Wang (1996) 

Actinomadura rugatobispora IFO 14382T U49010 Wang (1996) 

Actinomadura verrucosospora IFO 14100T U49011 Wang (1996) 

Excellospora viridilutea IFO 14480T D86943 Tamura et al. (1997) 

Excellospora strain TA111 **** This study 

Excellospora strain TA113 **** This study 

Spirillospora albida WO 12248T D85498 Tamura et al. (1997) 

Thermomonospora chromogena JCM 6244T AF002261 Zhang et al. (1998) 

Thermomonospora curvata DSM 43183T X97893 Rainey et al. (1996) 

Family Nocardiopsiaceae 

Nocardiopsis alba DSM 43377T X97883 Rainey et al. (1996a) 

Nocardiopsis dassonvillei DSM 431111 X97886 Rainey et al. (1996a) 
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Nocardiopsis listen DSM 40297T X97887 Rainey et at (1996a) 

Thermobifida alba JCM 3077T AF002260 Mang et at (1998) 

Thermobifcda fusca ATCC 27730 T AF002264 Zhang et at (1998) 

Family Streptosporangiaceae 

Herbidospora cretacea IFO 15474 T D85485 Tamura et at (1997) 

Microbispora mesophila JCM 3151 T AF002266 Zhang et at (1998) 

Microbispora rosea subsp. aerata ATCC 15448T U48984 Wang et at. (1996a) 

Microbispora rosea subsp. rosea 1FO 14044T D86936 Tamura et at. (1997) 

Microtetrasporafusca IFO 13915T U48973 Wang et al. (1996a) 

Microtetraspora glauca IFO 14671T U48974 Wang et at (1996a) 

Microtetraspora niveoalba IFO 15239T U48976 Wang et at (1996a) 

Nonomuria africana IFO 14745 T U48842 Wang et at (1996a) 

Nonomuria angiospora IFO 13155 T U48843 Wang et at (1996a) 

Nonomuriafastidiosa IFO 14680T U48844 Wang et at (1996a) 

Nonomuriaferruginea IFO 14094T U48845 Wang et at (1996a) 

Nonomuria polychroma IFO 14345v U48977 Wang et at (1996a) 

Nonomuria pusilla IFO 14684T U48978 Wang et at (1996a) 

Nonomuria salmonea IFO 14687T U48982 Wang et at (1996a) 

Planobispora longispora IFO 13918 T D85494 Tamura et at (1997) 

Planomonospora parontospora IFO 13880 T D85495 Tamura et at (1997) 

Planotetraspora mira IFO 15435 T D85496 Tamura et at (1997) 

Streptosporangium carneum DSM 44125T X89938 Ward-Rainey et at (1996) 

Streptosporangium claviforme DSM 44127T X89940 Ward-Rainey et at (1996) 

Streptosporangium corrugatutn TFO 13972 T U48991 Wang (1996) 

Streptosporangium longisporum DSM 43180T X89944 Ward-Rainey et at (1996) 

Streptosporangium pseudovulgare DSM 43181 T X70428 Kemmerling et at (1993) 

Streptosporangium roseum DSM 43021T X89947 Ward-Rainey et at (1996) 

Streptosporangium JCM 3281 T U48997 Wang (1996) 

violaceochromogenes 
Streptosporangium viridialbum JCM 3027T U48998 Wang (1996) 

118 
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Thermobispora 

Thermobispora bispora operon rrnA ATCC 19993 T U83909 Wang et al. (1997) 

Thermobispora bispora operon rrnB ATCC 19993 T U83910 Wang et al. (1997) 

ATCC, American Type Culture Collection, Rockville, MD., U. S. A.; DSM, Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; IFO, Institute of Fermentation, 

Osaka, Japan; JCM, Japan Collection of Microorganisms, Saitama, Japan. 
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Similarly, the 16S rDNA sequences of Excellospora strains TA86, TA111, TA 113 and 

TA 114 were aligned with corresponding sequences of related taxa drawn from the 

databases (Table 2-13). In all cases alignment of the nucleotide sequences took into 

account the secondary structural features of the 16S rRNA molecule using functions 

incorporated in the AL16S program (Chun, 1995). The sequence ends, which usually 

contained poor-quality data (ambiguities and duplicated bases), were deleted at this stage 

of the analysis. A consensus sequence was derived by juxtaposition of several partial 

sequences obtained by using the different sequencing primers (Table 2-11). Ambiguities 

were tentatively resolved by referring to the corresponding sequence printouts and by 

checking with the stable secondary structure. Where necessary, additional sequencing 

reactions were performed or else the base was identified as an N'. The G+C ratio of the 

16S rRNA sequences was calculated by using the AL16S program. 

For each group of strains, evolutionary trees were inferred by using three treeing 

algorithms, namely, the least-squares (Fitch & Margoliash, 1967), maximum-parsimony 

(Fitch, 1971) and neighbour joining methods (Saitou & Nei, 1987). Evolutionary distance 

matrices for the least squares and neighbour joining methods were generated following 

established procedures (Jukes & Cantor, 1969; Kimura, 1980). The PHYLIP software 

package (Felsenstein, 1993) was used for all of the phylogenetic analyses. The resultant 

unrooted tree topologies were evaluated in bootstrap analyses (Felsenstein, 1985) of the 

neighbour joining method data based on 1000 re-samplings using the SEQBOOT and 

CONSENSE programs in the PHYLIP package. The root positions were estimated by using 

outgroup organisms, as described by Swofford and Olsen (1990). 

Treefiles obtained from the PHYLIP analyses were used as input files into the 

TREEVIEW program (Page, 1996) for displaying, changing the order of trees and saving 

phylogenetic trees in graphic format. Microsoft Word software (Microsoft Corporation, 

Redmond, WA, USA) was used to edit and change the names of strains to italicised 
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typographical types prior to printing. 

5. DNA: DNA hybridisation 

The DNA relatedness assays (Table 2-10) were performed by using the direct binding 

filter hybridisation method following a well established procedure (Gillespie & 

Spiegelman, 1965; Denhardt, 1966; Mordarski et al., 1976; Meyer & Schleifer, 1978). 

(a) Large scale isolation of DNA 

Large scale DNA preparations were used to obtain yields in the range of several 

milligrams of DNA, as required for the DNA relatedness experiments. The protocol used 

was a modification (Mordarski et al., 1976; Hopwood et al., 1985) of the well established 

lysozyme and phenol-chloroform procedure of Saito and Miura (1963). 

Solutions: 

P-buffer (25 mM Tris-HCI, pH 8.0; 25 mM EDTA; 0.3 M sucrose; pH 8.0) 

1M Tris-HC1, pH8.0 ......................... 2.5 ml 

500 mM EDTA, pH 8.0 ........................ 5 ml 

10.3 % sucrose (w/v, autoclaved) .......... 92.5 ml 

Water up to a final volume of 100ml 

Sterilise by autoclaving at 121 °C for 20 minutes. 

Buffer for phenol solution (0.1 M Tris-HC1; 1 %, w/v SDS; 0.1 M NaCI; pH 9.0) 

1M Tris-HCI, pH 9.0 .......................... 10 ml 

20 %, w/v SDS ................................ 0.5 ml 

5M NaCl ......................................... 
2 m1 

Water up to final volume 100 ml. 

Sterilise by autoclaving at 121 °C for 20 minutes. 

Phenol solution 1 (always use freshly made solution) 
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10 N NaOH ................................... 0.8 ml 

Phenol (distilled) ........................... 85 ml 

Buffer for phenol ........................... 15 ml 

Phenol solution 2 (always use freshly made solution) 

10 N NaOH ................................... 0.8 ml 

Phenol (distilled) ........................... 85 ml 

H2O 
............................................. 15 m1 

Crystalline phenol should be redistilled to remove oxidation products, 

Commercial liquified phenol can be used without redistillation. 

20 x SSC solution (saline-sodium citrate buffer; pH 7.0) 

NaCl ........................................... 175.3 g 

Sodium citrate, trisodium salt ... ........... 
88.2 g 

Sterilise by autoclaving. 

Sodium acetate solution (3 M sodium acetate, I mM EDTA; pH 7.0) 

3M sodium acetate, pH 7.0 ................. 99.8 ml 

0.5 M EDTA 
................................... 0.2 ml 

Sterilise by autoclaving. 

RNaseA stock solution 

Dissolve pancreatic RNase (RNase A; Sigma) at a concentration of 10 mg ml-' in 

10 mM Tris-HC1,15 mM NaCl solution or distilled water. Heat to 100°C for 15 

minutes. Cool to room temperature and store at -20°C. 

Protease K stock solution 

Dissolve protease type I powder (Sigma) at a concentration of 10 mg ml" in 10 mM 

Tris-HCI, 10 mM NaCl solution and self-digest by incubating for 2 hours at 37 °C. 

Store at -20 T. 

Procedure: 
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1. Resuspend biomass in P-buffer (3-5 ml g"' wet weight of biomass), add lysozyme (2 

mg lysozyme / ml P-buffer) and mix well. Usually 1 mg of pure DNA can be extracted 

from a few grams of wet biomass. 

2. Incubate for 20 to 30 minutes at 37 °C until protoplasts can be observed under the 

microscope. 

3. Add 20 %, w/v SDS to give a final concentration of 2% and incubate at room 

temperature until the solution becomes transparent. 

4. Add an equal volume of phenol solution I and mix well and carefully for 15 minutes at 

4 °C. 

5. Centrifuge for 10 minutes at 10,000 rpm at 4 °C and transfer the upper phase to an 

Erlenmeyer flask. 

6. Add 1/10 volume of sodium acetate solution and 2 volumes of absolute ethanol, spool 

DNA on a glass rod and then dissolve in 7 ml of 0.1 x SSC (overnight). 

7. Add RNase A to give a final concentration of 100 µg ml-1 and incubate at 37 °C for 30 

minutes. 

8. Add protease K to give a final concentration of 50 µg ml-' and incubate at 45 °C for 60 

minutes. 

9. Repeat steps 4-5 with neutral solution 2 and transfer the upper phase to an Erlenmeyer 

flask. 

10. Add a 1/10 volume of sodium acetate solution and 2 volumes of absolute ethanol, spool 

DNA on a glass rod and dissolve in 0.1 X SSC (overnight). 

11. Add a 1/10 volume of sodium acetate solution and I volume isopropanol, spool DNA 

on a glass rod, wash with 70 % ethanol and dissolve DNA in 0.1 x SSC overnight (for 

immobilisation of DNA on nitrocellose filter; for radio-labelling and restriction analysis 

DNA should be dissolved in TE buffer). 

12. Check the purity and concentration of DNA solutions by using the spectrophotometry as 
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described earlier (see small scale preparation of genomic DNA). Check residual phenol 

by spectrophotometry at 272 nm; if the purity is lower than the required value, repeat 

step 11 (Sambrook, 1989; Hopwood, 1985). 

13. Check the molecular weight of the extracted DNA by agarose gel electrophoresis (0.7 

%, w/v). 

(b) Loading DNA on nitrocellulose filters 

Nitrocellulose membrane filters (Sartorius AG, Göttingen, Germany; type number, 

11407-50-N; white with black grid; 50 mm diameter; 0.2 gm pore size) were thoroughly 

soaked in 6x SSC at 4 °C and then placed into clean glass vacuum filter holders (Sartorius; 

type number, SM 16316; 47/50 mm diameter; 250 ml volume) with PTFE-coated stainless 

steel filter supports. Gentle vacuum pressure was applied and 50ml of 6x SSC was filtered 

through the system to prime the membranes. Meanwhile purified DNA stocks were diluted 

to 150 tg ml"' in 1x SSC. The DNA concentration of the diluted DNA solutions was 

confirmed by reading absorbance at 260nm. For each filter, 5 ml of the diluted DNA 

sample was alkali-denatured by mixing with an equal volume of 1M NaOH in a clean 

glass flask and the preparation incubated at room temperature for 20 minutes. The 

preparation was then neutralised by thoroughly mixing with 4 volumes (40 ml) of 

neutralisation solution (0.25 M Tris-acetate; 0.5 M NaCl; 0.25 M HCI) and the denatured 

DNA (single-stranded DNA) solution kept at 4 °C throughout the loading procedure. An 

initial 10 ml aliquot of denatured DNA solution was applied to the filter unit without 

vacuum suction and the A260 of the filtrate used to estimate the amount of DNA retained by 

the membrane. The subsequent aliquots (40-50 ml) were applied under mild vacuum 

pressure, the latter was increased as the filter became saturated with DNA. Blank 

membrane filters were prepared by filtering an equivalent mixture lacking DNA. After final 

washing with 50 ml of 6x SSC, the loaded membrane filters were carefully labelled at the 

edge with a soft pencil and allowed to dry thoroughly at room temperature overnight. The 
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DNA was heat-fixed by baking at 80 °C for 2 hours. The membranes were kept in glass 

Petri dishes in a desiccator at 4 °C. 

(c) Preparation of labelled reference chromosomal DNA 

Reference DNA in TE buffer was labelled by nick-translation (Rigby et al., 1977), 

using a standard protocol and commercial nick-translation kit (Amersham life Science, 

Little Chalfont, Buckinghamshire, UK). Deoxy [1', 2, '5_3 H] cytidine 5'-triphosphate (3H 

dCTP) supplied at the specific activity of 1 pCi pl"1 was dissolved in ethanol / water (1: 1, 

v/v; Amersham Life Science). Tritium cannot be monitored directly because of its low 

beta-energy and hence special care is needed to handle it. Tritium compounds can be 

absorbed through the skin and DNA precursors, for example 3H dCTP, are more toxic than 

tritiated water, partly because activity is concentrated into cell nuclei. 

Procedure: 

1. Add 17.5-20 µl of 3H-dCTP solution (17.5-20 pCi) to a 1.5 ml Eppendorf tube and dry 

under nitrogen gas in a safety fumehood. The tubes containing dry 3H-dCTP are stored 

at -20 °C until needed. 

2. Add the following components to Eppendorf tubes containing dry 3H-dCTP and mix 

well. 

DNA ........................................................... 2-3 µg 

Nucleotide buffer ............................................. 
20 µl 

Enzymes (DNase I and Klenow DNA polymerase)..... 10 p. 1 

H2O up to a final volume of 100 µl. 

3. Incubate at 14 to 15 °C for 1.5 hour and stop labelling reaction by adding 4 Al of 0.5 M 

EDTA (pH 8.0). Reaction solution stored at 4 T. 

4. Rinse ELUTIP-D column (Reference number NA010/2; Schleicher & Schuell GmbH, 

Dassel, Germany) with 1 to 2 ml of a high salt solution (1.0 M NaCl; 20 mM Tris-HC1 
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[pH 7.4]; 1.0 mM EDTA) and prime column with 5 ml of a low salt solution (0.2 M 

NaCl; 20 mM Tris-HC1 [pH 7.41; 1.0 mM EDTA). 

5. Slowly load column with labelling reaction solution and wash column with 2 to 3 ml of 

low salt solution. 

6. Elute DNA from the column with 0.4 ml of the high salt solution into an Eppendorf 

tube. 

7. Measure the radioactivity of the DNA solution (5 tl eluate +2 ml liquid scintillation 

cocktail) using a liquid scintillation counter (Beckman, USA) and store labelled DNA 

at 4 T. 

(d) Pre-hybridisation 

For the hybridisation experiments, duplicated 5 mm diameter disks were cut, using a 

calibrated cork-borer, from each of the membrane filters corresponding to a test DNA and 

from the blank membrane. Filters with this diameter contained approximately 12 µg of 

DNA. However, filters of other diameters (4 to 6 mm) were sometimes employed to ensure 

that the same amount of DNA was used for all hybridisations. The disks were placed into 

labelled clean glass bijoux bottles (5 ml volume capacity) fitted with rubber-sealed screw 

caps. Individual filters were pre-hybridised for 3 to 5 hours in a shaking bath at 60 °C with 

0.5 ml of a pre-hybridisation solution that consisted of 5x Denhardt solution (v/v; 

Denhardt, 1966) and 4x SSC (v/v). The Denhardt solution was prepared as a 50 x 

Denhardt stock solution containing 1 %, w/v bovine serum albumin (Fraction V, Sigma), l 

%, w/v Ficoll (type 400, Pharmacia) and 1 %, w/v polyvinylpyrrolidone in sterile water and 

stored at -20 °C. 

(e) Hybridisation 

The probe DNA (0.4 ml) prepared using the procedure described above was thoroughly 

mixed with hybridisation buffer (3 x SSC and 35 % deionised formamide, v/v) at room 

temperature and the mixture immediately dispensed into Eppendorf tubes (0.2 ml per 



CHAPTER II MATERIALS & METHODS 127 

tubes), including an extra tube for scintillation counting. Formamide (Sigma) was 

deionised using an ion exchange resin (AGO 501-X8, analytical grade mixed bed resin; 

Bio-RAD). Probe activity was estimated by scintillation counting using 25 µl of the 

hybridisation solution in 2 ml of Bray's liquid scintillation cocktail. Using clean tweezers, 

the membrane filter disks were transferred from the pre-hybridisation solution into 

Eppendorf tubes which contained 0.2 ml of the hybridisation solution and approximately 

50,000 cpm of labelled DNA. The filters were carefully placed at the bottom of the tubes 

with the DNA side facing up. The Eppendorf tubes were transferred to a floating rack and 

hybridisation carried out at 60 °C for 24 hours in a water bath. After hybridisation, the filter 

disks were washed with 5 ml of 3x SSC and dried overnight on filter paper. The filter 

disks were then baked at 80 °C for 50 minutes prior to scintillation counting. 

The concentrations of SSC and formamide and the hybridization temperature were 

designed to achieve optimal hybridization conditions, that is, 25 °C below the melting 

temperature (Tm) assuming that the mean DNA base composition of Streptomyces strains 

is 70 mol %G plus C. 

(f) Scintillation counting 

The dried filters were transferred to plastic scintillation vials containing 2 ml of 206 

scintillation liquid and the vials carefully capped and placed inside clean glass holders. The 

206 scintillation cocktail consisted of 0.25 g of 1,4, bis-2-(5-phenyloxazolyl-2)-benzene 

(POPOP) and 3g of 2,5-diphenyloxazole (PPO) per litre of toluene (Kilpper-Bälz, 1991). 

Counting was performed in a LKB-Wallac 1409/11 LSC (Version 1.6) scintillation counter 

(Pharmacia-LKB, Uppsala, Sweden). The counting mode was expressed as counts per 

minute (cpm) for 3H isotopes (Beta spectrum). Background samples (blank filters) were 

placed into positions I and 2 of the sample holder with a counting time of 300 seconds and 

the average values automatically subtracted from all of the sample values. Filters from the 

homologous hybridisation reaction were placed in positions 3 and 4 and these values were 
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used as the 100% reference for direct calculation of the percent homology of the remaining 

samples. 

The amount of DNA probe that hybridised by specific base-pairing between similar 

sequences to DNA immobilised to filters is estimated from the radioactivity values of the 

filters from the homologous and heterologous hybridisation reaction. DNA homology is 

calculated as follows: 

H= (r/R)xlOO(%) 

where H is the DNA relatedness, R(cpm) the radioactivity of the filter with reference DNA 

and r(cpm) the radioactivity of the filter with the test DNA. 

The degree of relatedness between two DNA preparations may differ depending on 

which DNA preparation is labelled. Such results can be expected as the hybridisation 

capacities of each filter are affected by the amount, purity, and length of the labelled DNA. 

In such a case the degree of relatedness between two DNA preparations can be determined 

by using the following equation: 

H= 'J(HAXHB) 

where HA is the apparent DNA homology between DNA A and DNA B when A is 

radiolabelled, HB is the apparent DNA homology between DNA A and DNA B when B is 

radiolabelled, and H is the estimated DNA homology between DNA A and DNA B. 

If CA and CB are the hybridisation capacities of filters A and B (in ideal condition 

CA = CB) 

HA =Hx (CB/CA) ----- equation 1 

HB =Hx (CA/CB) ----- equation 2 

equation lx equation2 

H2 = HA x HB 

H= 4(HA X HB) 
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DNA relatedness values were depicted either in a similarity matrix or in a UPGMA 

dendrogram. 
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Results and Discussion 

1. Classification of thermophilic Amycolatopsis strains 

The almost complete 16S rRNA sequence obtained for strain NT202 (1,477 

nucleotides) was compared with the corresponding sequences of representatives of the 

family Pseudonocardiaceae and related taxa. It was apparent that the organism fell within 

the range of variation encompassed by the genus Amycolatopsis (Table 2-14; Figs. 2-4,2-5 

and 2-6). It is clear that strain NT202 forms a distinct Glade with Amycolatopsis 

methanolica NCIMB 11946T and Amycolatopsis thermoflava IFO 14333 T within the 

Amycolatopsis tree. This relationship is supported by the results obtained by using the 

least-squares (Fig. 2-4) and maximum-likelihood (Fig. 2-5) treeing algorithms and by the 

100 % bootstrap value recorded using the neighbour joining method (Fig. 2-6). 

The 16S rDNA sequence similarities between strain NT202 and Amycolatopsis 

methanolica NCIMB 11946T and Amycolatopsis thermoflava IFO 14333 T are 99.2 % and 

98.8 % respectively, these similarity values correspond to 10 and 17 differences out of 

1,328 nucleotide positions. A comparable scale of difference exists between members of 

several validly described species of Amycolatopsis, for instance, between Amycolatopsis 

alba DSM 44262T and Amycolatopsis coloradensis NRRL 3218T (99.2 % sequence 

similarity which corresponds to il nucleotide differences out of 1,339 nucleotides; Chun et 

al., 1998a). Representatives of these species have been shown to have a relatively low 

DNA: DNA relatedness value of 27 %, that is, well below the 70 % cut-off point 

recommended for the recognition of genomic species (Wayne et al., 1987). 

16S rRNA sequence similarities between the representatives of the validly 

described Amycolatopsis species fall between 93.3 % and 99.2 % (Table 2-14) with an 

average value of 95.8 %. The Amycolatopsis strains share less than 94.7 % 16S rDNA 

nucleotide similarity values with members of other genera classified in the family 
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Amycolatopsis orientalis DSM 40040T 
Amycolatopsisjaponica DSM 44213T 

Amycolatopsis coloradensis NRRL 3218T 
Amycolatopsis alba DSM 44262T 

Amycolatopsis azurae NRRL 11412T 
Amycolatopsis mediterranei ATCC 13685T 

Amycolatopsis sulphurea DSM 46092T 
Amycolatopsis strain K24 

__F- 
Amycolatopsis methanolica NCIMB 11946T 

--- Amycolatopsis strain NT202 
Amycolatopsis thermoflava IFO 14333T 

"Saccharomonospora caesia" INMJ 19125 
Saccharomonospora azurea NA-128T 

Saccharomonospora viridis ATCC 15386T 
Prauserella rugosa DSM 43194T 

Amycolatopsisfastidiosa ATCC 31181T 
Thermocrispum municipale DSM 44069T 

Thermoscrispum agreste DSM 44070T 
Saccharopolyspora hordei DSM 44065T 

Saccharopolyspora hirsuta ATCC 27875T 
Saccharopolyspora gregorii NCIB 128237 

Saccharopolyspora erythraea NRRL 2338T 
Saccharopolyspora rectivirgula DSM 43747T 

H Saccharothrix coeruleofusca DSM 43679T 
Saccharothrix australiensis ATCC 314977 

Kutzneria viridogrisea JCM 32827 
Lenzzea albidocapillata DSM 44073T 

Actinosynnema minim DSM 438277 
Actinokineospora riparia IFO 145417 

Streptoalloteichus hindustanus IFO 15115 7 
Pseudonocardia petroleophila DSM 43193T 

Pseudonocardia hydrocarbonoxydans DSM 432817 
Pseudonocardia saturnea DSM 43195T 

Pseudonocardia alni VKM Ac901T 
Pseudonocardia thermophila ATCC 19285T 

"Pseudonocardia nitrificans" DSM 46012 
Pseudonocardia autotrophica DSM 43210T 

Pseudonocardia compacta DSM 43592T 
Pseudonocardia halophobica DSM 43089T 

- Kibdelosporangium aridum ATCC 39922T 

Actinopolyspora halophila ATCC 279T 

0.01 
Figure 2-4. Least squares tree (Fitch & Margoliash, 1967) based on almost complete 16S rRNA 

sequences showing relationships between Amycolatopsis strain NT202 and representatives of the 

families "Actinosynnemaceae" and Pseudonocardiaceae. The corresponding 16S rRNA 

sequences of Thennomonospora curvata DSM 43183T (X97893) and Streptomyces 

violaceoruber A3(2) (Y00411) were used as outgroups. The arrow points position of the root. 
The scale bar indicates 0.01 substitutions per nucleotide position. 



CHAPTER II RESULTS & DISCUSSION 133 
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Amycolatopsis strain K24 
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- Thermoscrispum agreste DSM 44070T 

Amycolatopsis methanolica NCIMB 11946T 
Amycolatopsis strain NT202 

Amycolatopsis thermoflava IFO 14333T 
Amycolatopsisfastidiosa ATCC 31181 T 

"Saccharomonospora caesia " INMI 19125 
Saccharomonospora azurea NA-128T 

Saccharomonospora viridis ATCC 15386T 
Prauserella rugosa DSM 43194T 

Saccharopolyspora erythraea NRRL 2338T 
Saccharopolyspora gregorii NCIB 12823T 
Saccharopolyspora hordei DSM 44065T 

Saccharopolyspora hirsuta ATCC 27875T 
Saccharopolyspora rectivirgula DSM 43747T 

Pseudonocardia petroleophila DSM 43193T 
Pseudonocardia hydrocarbonoxydans DSM 43281T 

Pseudonocardia satumea DSM 43195T 
Pseudonocardia thermophila ATCC 19285T 

Pseudonocardia alni VKM Ac901T 
"Pseudonocardia nitrificans" DSM 46012 
Pseudonocardia autotrophica DSM 43210T 

Pseudonocardia compacta DSM 43592T 
Pseudonocardia halophobica DSM 430891 

Kibdelosporangium aridum ATCC 39922T 
Saccharothrix coeruleofusca DSM 43679T 

Saccharothrix australiensis ATCC 314971 
Lenzzea albidocapillata DSM 440731 

Actinosynnema minim DSM 438271 
Kutzneria viridogrisea JCM 32827 

Actinokineospora riparia IFO 14541 T 
Streptoalloteichus hindustanus IFO 151151 

0.01 Actinopolyspora halophila ATCC 279T 

Figure 2-5. Maximum likelihood tree (Felsenstein, 1981) based on almost complete 16S rRNA 

sequences showing relationships between Amycolatopsis strain NT202 and representatives of the 

families "Actinosynnemaceae" and Pseudonocardiaceae. The corresponding 16S rRNA 

sequences of Thermomonospora curvata DSM 43183T (X97893) and Streptomyces 

violaceoruber A3(2) (Y00411) were used as outgroups. The arrow points position of the root. 

The scale bar indicates 0.01 substitutions per nucleotide position. 
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Amycolatopsis coloradensis NRRL 3218T 
Amycolatopsis alba DSM 44262T 

- Amycolatopsis orientalis DSM 40040T 
Amycolatopsisjaponica DSM 44213T 

- Amycolatopsis azurae NRRL 11412T 

- Amycolatopsis mediterranei ATCC 13685T 
- Amycolatopsis strain K24 

Amycolatopsis sulphurea DSM 460921 
Amycolatopsis strain NT202 

- Amycolatopsis methanolica NCIMB 119461 
Amycolatopsis thermoflava IFO 143331 

- Thermoscrispum agreste DSM 44070T 
Thermocrispum municipale DSM 44069T 

- "Saccharomonospora caesia" INMI 19125 
Saccharomonospora azurea NA-1281 

- Saccharomonospora viridis ATCC 153861 
- Prauserella rugosa DSM 431941 

- Amycolatopsis fastidiosa ATCC 31181 T 

- Pseudonocardia petroleophila DSM 431931 
- Pseudonocardia hydrocarbonoxydans DSM 4328 
- Pseudonocardia saturnea DSM 43195T 

- Pseudonocardia alni VKM Ac901T 
- Pseudonocardia thermophila ATCC 19285T 
- Pseudonocardia autotrophica DSM 432101 

- "Pseudonocardia nitrij7cans" DSM 46012 

- Pseudonocardia compacta DSM 435921 
- Pseudonocardia halophobica DSM 43089T 

Saccharothrix australiensis ATCC 314971 
Saccharothrix coeruleofusca DSM 43679T 
Lentzea albidocapillata DSM 440731 
Actinosynnema mirum DSM 438271 
Kutzneria viridogrisea JCM 32821 

Actinokineospora riparia IFO 14541 T 

Streptoalloteichus hindustanus IFO 15115T 
Kibdelosporangium aridum ATCC 39922r 
Saccharopolyspora hirsuta ATCC 278751 
Saccharopolyspora hordei DSM 440651 
Saccharopolyspora erythraea NRRL 2338T 
Saccharopolyspora gregorii NCIB 128231 
Saccharopolyspora rectivirgula DSM 43747T 

Actinopolyspora halophila ATCC 279T 

Figure 2-6. Consensus tree derived from bootstrap analysis (Felsenstein, 1985) of 1,000 re- 

sampled neighbour-joinig trees (Saitou & Nei, 1987) based on almost complete 16S rRNA 

sequences showing relationships between Amycolatopsis strain NT202 and representatives of the 

families "Actinosynnemaceae" and Pseudonocardiaceae. The 16S rRNA sequences of 
Thermomonospora curvata DSM 43183T (X97893) and Streptomyces violaceoruber A3(2) 

(Y00411) were used as outgroups. The numbers (%) at the nodes indicate the levels of bootstrap 

support based on a neighbour joining analysis of 1,000 resampled data sets. 
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Pseudonocardiaceae. The corresponding value for members of the genera classified in the 

family Actinosynnemaceae is 94.4 %. 

It is apparent from the 16S rDNA sequencing studies that the Amycolatopsis strains 

fall into two well defined clades in the trees based on the least-squares and neighbour- 

joining treeing algorithms. The larger Glade encompasses the mesophilic organisms, 

including Amycolatopsis orientalis, the type species of the genus. The taxonomic integrity 

of the Amycolatopsis orientalis Glade was supported by the results obtained using all three 

treeing algorithms and by the very high bootstrap value (99.5 %) recorded for the 

neighbour joining analysis. These results are in good agreement with those of earlier 16S 

rRNA sequencing study (Warwick et al., 1994) 

The second Glade encompasses the three thermophilic strains, Amycolatopsis 

methanolica NCIMB 11946T, Amycolatopsis thermoflava IFO 14333 T. and Amycolatopsis 

strain NT202, all of which grow well at 50 °C. Strain NT303 also belongs to this Glade as it 

was found to have an identical 16S rDNA nucleotide sequence with strain NT202 in a 

comparison of over 800 nucleotides (16S rDNA nucleotide positions from 44 to 905 

according to the Escherichia coli numbering system; Brosius et al., 1978) covering several 

highly variable regions (Neefs et al., 1993). The remaining thermophilic strain, 

Amycolatopsis fastidiosa ATCC 31181T, was loosely associated with the Amycolatopsis 

methanolica Glade in the maximum-likelihood tree but formed a single membered Glade in 

the analyses based on least-squares and neighbour joining methods (Fig. 2-4 and 2-6). The 

detailed relationship of Amycolatopsis fastidiosa ATCC 31181T to the Amycolatopsis 

methanolica Glade needs to be the subject of additional taxonomic studies. 

The mesophilic and the thermophilic Amycolatopsis strains were also distinguished 

by the G+C content of their 16S rDNA sequences. Amycolatopsis fastidiosa ATCC 

31181T, Amycolatopsis methanolica NCIMB 119461, Amycolatopsis thermoflava IFO 

14333 T and Amycolatopsis strain NT202 have 16S rDNA sequences with a higher G+C 
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range (58.8 to 59.2 mol%) than those of Amycolatopsis orientalis NRRL 2450T and the 

related mesophilic strains (58.3 to 58.8 mol%; Table 2-14). 

The Amycolatopsis clades recovered in the 16S rDNA trees were separated from 

one another by long branches and low bootstrap values. Similar findings were reported by 

Warwick et al. (1994) who concluded that there was no clear indication that the genus 

Amycolatopsis was heterogeneous given the many chemotaxonomic and phenotypic 

characteristics shared by members of this taxon. However, it is clear from the present study 

that further comparative taxonomic studies are needed to determine whether the genus 

Amycolatopsis is heterogeneous or merely encompasses a wide range of taxonomic 

variation. 

DNA: DNA relatedness data are increasingly being used to help resolve the finer 

taxonomic relationships between species found to be closely associated on the basis of 16S 

rRNA sequence data (Stackebrandt & Goebel, 1994; Goodfellow et al., 1997a; Kim, S. B. 

et al., 1998). It has already been pointed out that genomic species encompass organisms 

which show 70 % or more DNA: DNA relatedness under stringent experimental conditions 

(Wayne et al., 1987). In the present study DNA: DNA relatedness values were determined 

between Amycolatopsis strains NT202 and NT303 and Amycolatopsis methanolica NCIMB 

11946T using the nitrocelluose filter method. It is evident from the resultant data (Table 2- 

15) that Amycolatopsis strains NT202 and NT303 belong to a single genomic species 

which is closely related, albeit distinct, from Amycolatopsis methanolica NCIMB 11946T. 

Similarly, Amycolatopsis methanolica NCIMB 11946T and Amycolatopsis thermoflava IFO 

14333 T, which share a 16S rRNA similarity value of 99.0 %, have been found to have low 

DNA: DNA relatedness values (5 % to 21 %; Chun et al., 1998a). 

The assignment of strains NT202 and NT303 to the genus Amycolatopsis is also 

supported by the phenotypic data, notably by the distribution of chemotaxonomic and 

morphological markers. The two isolates are aerobic, nonmotile, Gram-positive, non-acid- 
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Table 2-15.. Mean levels of DNA relatedness (%) found between Amycolatopsis strains 

NT202 and NT303 and Amycolatopsis methanolica NCIMB 11946T a 

Labelled DNA 

Test strains A. methanolica 

NCIMB 11946 T 

Amycolatopsis strains 

NT202 NT303 

A. methanolica 100 
NCIMB 11946 T 

Amycolatopsis 60 100 
strain NT202 

Amycolatopsis 58 93 100 
strain NT303 

Streptomyces 520 
thermovulgaris 

DSM 40444 Tb 

T, Type strain. 

°, The pairwise DNA relatedness values in the table were obtained by averaging measurements from two 

sets of hybridisations. 

b, Phylgenetically distant control strain. 
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alcohol fast actinomycetes which produce aerial and substrate hyphae that fragment into 

squarish, rod-like elements (ca. 0.4-0.5 x 0.7-1.6 µm; Fig. 2-7). In addition, strain NT202 

has a phospholipid pattern consisting of DPG, PE (taxonomically significant polar lipid), 

PG, PI, PIDM, PME and an unidentified polar lipid (Fig. 2-8); a fatty acid profile 

consisting of 14-methylpentadecanoic acid (iso-16: 0; 45.6 ± 1.8 % of the total cellular fatty 

acid composition), hexadecanoic acid (16: 0; 23.0 ± 2.4%), 14-methylhexadecanoic acid 

(anteiso-17: 0; 9.2 ± 0.6%), 15-methylhexadecanoic acid (iso-17: 0; 6.1 ± 0.1 %), 13- 

methyltetradecanoic acid (iso-15: 0; 3.8 ± 0.6 %), heptadecanoic acid (17: 0; 3.4 ±0 %) and 

octadecanoic acid (18: 0; 3.4 ± 0.2 %) (Sahin, personal communication), and di- and 

tetrahydrogenated menaquinones with nine isoprene units as the predominant 

isoprenologues, but does not contain mycolic acids. The G+C content of the DNA of the 

isolates is 73.9 ± 0.9 mol%. 

The properties outlined above serve to distinguish strains NT202 and NT303 from 

members of all mycolateless, wall chemotype IV genera, apart from the genera 

Amycolatopsis (Holt et al., 1994; Kim & Goodfellow, 1998). The strains can also be 

distinguished from representatives of all of the validly described species of Amycolatopsis 

using a combination of growth, morphological and physiological features (Table 2-16). 

It is evident from the genotypic and phenotypic data that strains NT202 and NT303 

form a new centre of taxonomic variation within the genus Amycolatopsis. It is, therefore, 

proposed that these organisms be classified in the genus Amycolatopsis as a new species, 

namely, Amycolatopsis eurythermus. 

Description of Amycolatopsis eurythermus sp. nov. (eur. y. ther'mus; Gr. pref. eury many; 

Gr. n. therme heat; M. L. eurythermus wide, heat). 

The description is based on data taken from this and an earlier study (Sahin, unpublished). 

Aerobic, Gram-positive, non-acid-alcohol fast, non-motile actinomycetes which form an 
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Figure 2-7. Scanning electron micrograph of Amycolatopsis strain NT202 showing 

hyphae that fragment into squarish, rod-like elements. The organism was grown on 

inorganic salt-starch agar (ISP medium 4) at 45 °C for 5 days. Bar =5 µm. 

DP(i 

410 I'\II 

Ph: 
0 

1'(i 

2 
PI 

dw 
1 

Figure 2-8. Two dimensional thin layer chromatography of polar lipids of 

Ainycolatopsis strain NT202. DPG, diphosphatidylglycerol; PE, 

phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIDM, 

phosphatidylinositol dimannoside; PME, phosphatidylmethylethanolamine; ?, 

unidentified phospholipid. Numbers indicate the order of chromatographic 

developments. 
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extensively branched substrate mycelium which fragments into squarish elements (ca. 0.4- 

0.5 x 0.7-1.6 µm). Sparse, white, sterile aerial hyphae are formed. A yellow substrate 

mycelium is produced on glucose yeast extract and modified Bennett's agars but distinct 

substrate mycelium colours are not formed on Czapek Dox, glycerol asparagine or oatmeal 

agars; diffusible pigments are not evident on any of these media. Melanin pigments are not 

formed on peptone yeast extract iron or tyrosine agars. Growth occurs between 25 °C and 

55 °C, and between pH 6.0 and 9.0, but not at either pH 5.0 or 10.0. 

Casein, elastin, gelatin, L-tyrosine and xylan are degraded but no activity is shown 

against adenine, arbutin, chitin, esculin, guanine or starch. The organisms grow on 

adonitol, L-arabinose, arabitol, D-cellobiose, D-fructose, D-galactose, meso-inositol, D- 

lactose, D-mannitol, D-mannose, melibiose, D-melezitose, a-L-rhamnose, D-ribose, D- 

sorbitol, starch, sucrose, D-trehalose, D-turanose, xylitol and D-xylose as sole carbon and 

energy sources, but not on D-raffinose. Strains produce acid from adonitol, L-arabinose, D- 

cellobiose, dextrin, meso-erythritol, D-galactose, meso-inositol, D-lactose, D-mannitol, L- 

rhamnose, D-sorbitol and D-xylose, but not from melibiose, D-melezitose, D-raffinose, 

salicin or sucrose. 

The strains are sensitive to amikacin (4,8 and 16 µg ml-1), bacitracin (32 µg ml"), 

doxycyline (16,32 and 64 µg ml-1), fusidic acid (8 µg ml-1), gentamycin sulphate (64 µg 

ml"'), lividomycin A (16 µg ml"'), neomycin sulphate (32 gg ml''), novobiocin (16 and 32 

µg ml-1), streptomycin sulphate (64 µg ml"'), ticarcillin (16 and 32 µg ml"'), and tyrothricin 

(16 and 32 gg ml-1), but are resistant to ampicillin (8,16 and 32 µg ml-1), bacitracin (16 µg 

ml"'), carbenicillin (12 µg ml-1), cefoxitin (16 and 32 µg ml"'), cephaloridine (32,64 and 

128 µg ml"'), cephradine (8,16 and 32 µg ml"'), doxycyline hydrochloride (4 gg ml"'), 

ethionamide (16 gg ml-1), fusidic acid (4 µg ml-1), gentamycin sulphate (32 µg ml-'), 

gramicidin (8 µg ml"'), lincomycin hydrochloride (32,64 and 128 µg ml"'), isoniazid (16 
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µg ml-1), lividomycin A (4 and 8 tg ml"'), nalidixic acid (32 µg ml-1), neomycin sulphate 

(8 µg ml-1), novobiocin (4 µg m1-1), oleandomycin phosphate (16,32,64 and 128 jig ml-1), 

penicillin G (5,10 and 15 i. u. ), polymyxin B sulphate (16 and 32 µg ml"'), rifampicin (16, 

32 and 64 µg ml-'), spiramycin (10 jig ml-1), streptomycin sulphate (4,8,16,32 and 64 µg 

ml-1), tetracyline hydrochloride (4,8,16 and 32 µg ml"'), vancomycin (16,32 and 64 µg 

m1') and viomycin sulphate (20 µg ml-1). 

The G plus C ratios of the DNA of the two strains is 73.1 ± 0.9 mol%. Additional 

chemical features of the organisms have been mentioned earlier. 

The organisms were isolated from a scrubland soil sample collected in Madurai, 

India (strain NT202) and from an and soil sample collected in Van, Turkey (strain NT303). 

The type strain of Amycolatopsis eurythermus is NT202 (= DSM 44348). 

It is interesting that in the present study the representatives of the genera 

Actinokineospora, Actinosynnema, Kutzneria, Lentzea, Saccharothrix and 

Streptoalloteichus formed a distinct Glade in the phylogenetic trees, a result consistent with 

the view that these taxa be assigned to the putative new family Actinosynnemaceae 

(Labeda, 1998b; Kim & Goodfellow, 1998). However, it is evident from the bootstrap 

analysis of the neighbour joining tree that the inclusion of Kibdelosporangium aridum and 

Streptoalloteichus hindustanus in this Glade is not supported by high bootstrap values. 

2. Classification of alkalitolerant, thermophilic excellosporae 

Almost complete 16S rRNA sequences were obtained for strains TA 111 and 

TA113 (1,442 nucleotides). When these sequences were compared with those of 

representatives of the family Thermomonosporaceae and related taxa it was apparent that 

the two organisms fall within the range of the variation encompassed by genera classified 
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Figure 2-9. Least squares tree (Fitch & Margoliash, 1967) based on 16S rRNA sequences 
showing relationships between strains TAI ll and TA113 and representatives of the family 
The rmomonosporaceae and some related taxa. The 16S rRNA sequences of Arthrobacter 
globiformis (M23411), Bifidobacterium bifidum (M38018) and Streptomyces violaceoruber 
A3(2) (Y00411) were used as outgroups. The arrow points position of the root. The scale bar 
indicates 0.01 substitutions per nucleotide position. 
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Figure 2-10. Maximum likelihood tree (Felsenstein, 1981) based on 16S rRNA sequences 
showing relationships between strains TA 111 and TA 113 and representatives of the family 
The rmomonosporaceae and some related taxa. The 16S rRNA sequences of Arthrobacter 
globiformis (M2341 1), Bifidobacterium bifcdum (M38018) and Streptomyces violaceoruber 
A3(2) (Y00411) were used as outgroups. The arrow points position of the root. The scale bar 
indicates 0.01 substitutions per nucleotide position. 
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Figure 2-11. Consensus tree derived from bootstrap analysis (Felsenstein, 1985) of 1,000 re- 

sampled neighbour joining trees (Saitou & Nei, 1987) based on 16S rRNA sequences showing 

relationships between strains TA111 and TA113 and representatives of the family 

The rmomonosporaceae and some related taxa. The 16S rRNA sequences of Arthrobacter 

globiformis (M23411), Bifidobacterium bifzdum (M38018) and Streptomyces violaceoruber 

A3(2) (Y00411) were used as outgroups. The numbers (%) at the nodes indicate the levels of 

bootstrap support based on a neighbour-joining analysis of 1,000 resampled data sets. 
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in the family Thermomonosporaceae (Table 2-17; Fig. 2-9,2-10,2-11). It is also apparent 

that strains TA 111 and TA 113 form a distinct Glade together with Excellospora viridilutea 

IFO 14480T within the range of variation encompassed by representatives of validly 

described Actinomadura species, Actinocorallia herbida IFO 15484T, Spirillospora albida 

IFO 12248T and Therinomonospora curvata JCM 3096T. This relationship is supported by 

trees based on the least-squares (Fitch & Margoliash, 1967; Fig. 2-9) and maximum- 

likelihood treeing algorithms (Felsenstein, 1981; Fig. 2-10) and by the high bootstrap value 

(72 %) recorded using the neighbour joining method (Saitou & Nei, 1987; Fig. 2-11). It is 

also clear from Table 2-17 that there is no clear difference between the 16S rDNA G+C 

contents of the thermophilic and mesophilic strains classified in the family 

The rmomonosporaceae. 

Strains TAI 11 and TAI 13 share a 16S rDNA sequence similarity of 98.7 %, which 

corresponds to 19 differences out of 1,444 nucleotide positions. A comparable scale of 

difference exists between validly described species of genera classified in the family 

The rmomonosporaceae as exemplified by Actinomadura citrea IFO 14678T and 

Actinomadura madurae JCM 7436T (98.7 % similarity which corresponds to 19 nucleotide 

differences out of 1,406 nucleotides). The 16S rDNA similarities between strains TA 1I1 

and TA 113 and Excellospora viridilutea IFO 14480T were 97.4 % and 97.5 %, values 

which correspond to 38 and 36 differences out of 1,448 nucleotide positions, respectively. 

It is also evident that the Glade encompassing strains TA 111, TA 113 and 

Excellospora viridilutea IFO 14480T is closely associated with representatives of the genus 

Actinomadura and with Actinocorallia herbida IFO 15484T, Spirillospora albida IFO 

12248T and Thermomonospora curvata JCM 3096T. Members of these taxa were also 

recovered within the phylogenetic radiation occupied by the members of the genus 

Actinomadura in an earlier 16S rRNA tree (Zhang et al., 1998). Strains TA 111 and TA 113 

together with Excellospora viridilutea IFO 14480T share 16S rDNA nucleotide similarity 
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values of 94.4 to 97.0 % with the members of the genus Actinomadura, 95.6 to 96.6 % 

with Spirillospora albida IFO 12248T and 94.8 to 96.0 % with Thermomonospora curvata 

JCM 3096T. Further comparative studies, including an analysis of chemical and 

physiological properties, are needed to resolve the complex taxonomic structure shown by 

the members of family The rmomonosporaceae. 

Strains TA86 and TAl 14 also belong to the Excellospora Glade as they were found 

to share identical nucleotide sequences in a comparison of over 800 nucleotide positions 

(16S rDNA nucleotide positions from 59 to 933 according to the Escherichia coli 

numbering system; Brosius et al., 1978) covering several variable regions with strains 

TA 111 and TA 113, repectively. It can, therefore, be concluded that strains TA86 and 

TA 111 belong to a single species as do strains TA 113 and TA 114. 

The test strains share a range of properties consistent with their assignment to the 

genus Excellospora Agre and Guzeva 1975. All four strains are aerobic, Gram-positive, 

non-acid fast, non-motile actinomycetes which grow between 37 and 55 °C and at pH 10.5. 

They produce a bluish-gray aerial spore mass and a pale yellow or non-distinctive substrate 

mycelium on oatmeal agar but do not form soluble pigment on glycerol asparagine agar, 

oatmeal agar, peptone yeast extract iron or tyrosine agars. Spiny spores are carried in 

straight spore chains (Fig. 2-12). Strains TA111 and TA113 contain meso-A2pm as the 

major diamino acid of the peptidoglycan (Sahin, personal communication), major amounts 

of hexahydrogenated menaquinone with nine isoprene units (MK-9[H6]) as the 

predominant isoprenologue, and DPG, PG, PI, PIDM with an unidentified polar lipids (Fig. 

2-13; phospholipid type I sensu Lechevalier et al., 1977). It can, therefore, concluded that 

the test strains should be classified in the same taxon genus as Excellospora viridilutea. 

It is also interesting that Actinomadura rubrobrunea Kroppenstedt et al. 1990 DSM 

43750T and DSM 43751, which were previously classified as Excellospora rubrobrunea 

Agre and Guzeva 1975 and Excellospora viridinigra Agre and Guzeva 1975 share 
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Figure 2-12. Scanning electron micrograph showing straight spore chains with spiny 

surfaces of (a) Excellospora strain TA86 and (b) Excellospora strain TA 113. The 

organisms was grown on inorganic salt-starch agar (ISP medium 4) at 45 °C for 5 days. Bar 

_ (a) 5 µm and (b) 10 pm. 
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Figure 2-13. Two dimensional thin layer chromatography of polar lipids of Excellospora 

strain TAl ll and TAI 13. DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PI, 

phosphatidylinositol; PIDM, phosphatidylinositol dimannoside; ?, unidentified 

phospholipid. Numbers indicate the order of chromatogrphic developments. 
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phenotypic properties with Excellospora viridilutea DSM 43934T (Table 2-18). These data 

suggest that Actinomadura rubrobrunea strains should be returned to the genus 

Excellospora as Excellospora rubrobrunea. However, before any such recommendation 

can be made it will be necessary to determine whether the type strains of Actinomadura 

rubrobrunea falls within the same evolutionary Glade as Excellospora viridilutea and the 

test strains. 

The putative excellosporae share similar morphological and physiological 

characteristics but can be distinguished from representative strains of Actinomadura 

rubrobrunea and Excellospora viridinigra on the basis of the colour of their aerial and 

substrate mycelia (Table 2-18). Similarly, strains TA86 and TA 111 can be distinguished 

from strains TA113 and TA114 by a number of phenotypic properties (Table 2-19). In 

addition, while TA 111 and TA 113 share similar menaquinone profiles they can be 

distinguished as strain TA 113 only contain a trace of octahydrogenated menaquinone with 

nine isoprene units (Table 2-20). 

It can be concluded that strains TA 113 and TA 114, and strains TA86 and TA 111 

can be separated from one another and from Excellospora viridilutea IFO 14480T using a 

combination of genotypic and phenotypic properties. It is, therefore, proposed that the 

validly desribed genus Excellospora merits continued recognition, and that strains TA86 

and TA111, and strains TA113 and TA 114 be recognised as new species within this taxon. 

The name Excellospora alcalithermophila is proposed for strains TA86 and TA 111 and 

Excellospora the rmoalcalitolerans for strains TA 113 and TA 114. 

Emended description of the genus Excellospora Agre and Guzeva 1975"L. 

Ex. cel'lo. spo. ra. M. L. fem. adj. from excellens, L. pr. part of excello prominent; Gr. n. 

spora seed (referring to the special structure of the spores). 

The description is based on the data from this and earlier studies (Agre & Guzeva, 

1975; Greiner-Mai et al., 1987; Kroppenstedt et al., 1990). Aerobic, Gram-positive, non- 
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Table 2-18. Phenotypic properties of the test strains and representative strains of 

Actinomadura rubrobrunea and Excellospora viridilutea 

Properties Strains Excellospora Actinomadura 
TA86, TA111, viridilutea rubrobrunea 
TA113 and DSM 43934Ta DSM 43750T e and 
TA114 DSM 43751' 

Morphological characteristics: 
Spores borne on aerial hyphae + + + 

Spore chain morphology Straight Spiral / hooked Spiral 

Number of spores Below 20 1-20 1-20 
Spore surface ornamentation Spiny Spiny Spiny 

Colour of aerial spore mass Bluish-grey Bluish-green Grey to blue 

Substrate mycelium colour Not distinctive Yellow to orange Reddish brown 

Diffusible pigments Not distinctive Not distinctive Not distinctive 

Degradation tests 

Adenine - ND - 
Arbutin - ND - 
Casein + ND ND 

Chitin - ND + 

DNA + ND ND 

Elastin + ND ND 

Esculin - ND + 

Gelatin + + ND 

Guanine - ND ND 

Hypoxanthine +b ND - 

Starch + + - 

Testosterone +b ND ND 

L-Tyrosine + ND - 

Xanthine - ND - 

Xylan + ND ND 

Nitrate reduction ND + ND 

Sole carbon sources at 1 %, w/v 
Arabinose + - 

ND 

Dulcitol ND - ND 

Galactose + + ND 

Glucose ND + ND 

Glycerol ND + ND 
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Inositol + + ND 

Lactose + + ND 

Maltose ND + ND 

Mannitol + + ND 

Raffinose - + ND 

Rhamnose (0.1 %, w/v) + + ND 

Sodium acetate + + ND 

Sodium citrate + - 
ND 

Starch + + ND 

Xylose + - 
ND 

a, Data taken from Agre & Guzeva (1975) and present study. 

b, Strain TAl II negative. 
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Table 2-19. Phenotypic characteristics of Excellospora strains TA86, TA 111, TA 113 

and TA 114 

Characters: TA86 TA111 TA113 TA114 

DEGRADATION TESTS 
Adenine 
Arbutin 
Casein 
Chitin 
DNA 
Elastin 
Esculin 
Gelatin 
Guanine 
Hypoxanthine 
L-Tyrosine 
Starch 
Testosterone 
Xanthine 
Xylan 

MORPHOLOGY AND PIGMENTATION 
Presence of aerial spores 
Spore chain morphology: 
Rectiflexibiles 
Colour of aerial spore mass: 
Bluish grey 
Pigmentation of substrate mycelium: 
No distinctive substrate mycelium colour 
Diffusible pigments: 
Production of diffusible pigments on ISP5 
Melanin pigment production on ISP6 
Melanin pigment production on ISP7 

NUTRITIONAL TESTS: 
Sole carbon and energy sources 
Sugar alcohols: 
Tetritols and pentitols: 
Adonitol 
Arabitol 
Xylitol 
Hexitols: 
Meso-Inositol 
Mannitol 
Sorbitol 
Carbohydrates 
Pentoses: 
L (+) Arabinose 
D (+) Galactose 
D-Lyxose 
D (-) Ribose 

Strains 

+ + + + 

+ + + + 
+ + + + 

+ + + + 

+ _ + + 
+ + + + 
+ + + + 
+ _ + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 
+ + + + 
+ + + + 

+ + + + 
+ + + + 
+ + + - 

+ + + + 
+ + + + 
+ + + - 
+ + + + 
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Hexoses: 
D (-) Fructose + + + + 
D (+) Mannose + + + - 
D (+) Xylose + + + + 
Deoxy-hexoses: 
a-L (+) Rhamnose + + + + 
Turanose + + + + 
Disaccharides: 
D (+) Cellobiose + + + + 
D (+) Lactose + + + + 
a-D (+) Melibiose + - - " 
Sucrose + + + + 
D (+) Trehalose + + + + 
Trisaccharides: 
D (+) Melezitose + + + + 
D (+) Raffinose - - - - 
Polysaccharides 
Polyglucosides: 
Dextran + - - 
Inulin + - - " 
Starch + + + + 
Glycoside: 
Salicin + + - + 
Synthetics: 
D-Gluconic acid (Na salt) + + + + 
D-Glucuronic acid (K+ salt) + + + + 
Carboxylic acids: 
Aliphatic acid: 
Quinic acid + + 

Aromatic acids: 
Benzoic acid (Na' salt) + + - 
Urocanic acid + + - + 

Monocarboxylic acid: 
Acetic acid (Na+ salt) + + + + 

Dicarboxvlic acids: 
Malonic acid (Na+ salt) - 
Pimelic acid + + + + 
Sebacic acid + + + + 

Hydroxy acids: 
Citric acid (Na+ salt) + + + + 

L(+) Tartaric acid + + + 

Keto acid: 
Pyruvic acid (Na+salt) + + + 

Aromatic hydroxy acids: 
Ferulic acid - 
D (+) Mandelic acid - 
Steroids and sterols: 
Androsterone + + + + 

Cholesterol + + + + 

Saponin + + + + 

Miscellaneous carbon compounds: 
+ + + + 

Amygdalin 
Anthranilic acid - 

+ + 
L-Ascorbic acid + 



CHAPTER II RESULTS & DISCUSSION 158 

Carboxymethylcellulose 
Cinnamic acid -+++ 
Humic acid ++-- 
1-Phenyldodecane ---- 

Sole nitrogen sources 
Amides: 
Acetamide + + 
Glycinamide + + + + 
Propionamide + + + + 

Amine: 
DL-a-Amino-n-butyric acid + + + + 

L-Arginine + + + + 
L-Cysteine + + + + 
L-Histidine + + + + 

L-Hydroxyproline + + + + 

L-Iso-Leucine + + + + 
L-Methionine + 
L-(i-Phenylalanine + + + + 

L-Proline + + + + 

L-Threonine + + + + 

DL-Valine + + - - 
L-Valine + + + + 

Nitrogenous alkaloid: 
Papaverine - " 

Miscellaneous compounds: 
Ammonium dihydrogen orthophosphate + + + + 

Cadaverine + + + + 

Creatine + 
+ + 

Glycine anhydride - + 
+ 

Glycine t-butyl ester + + + 
+ + 

Hypoxanthine + 
+ + 

Xanthine - + 

PHYSIOLOGICAL TESTS 
Growth in the presence of chemical inhibitors w/v) 
Bismuth citrate (0.01) 
Crystal violet (0.001) + + 

+ + 
Phenol (0.1%, v/v) + + 

+ + 
Phenyl ethanol (0.3%, v/v) + + 

+ + 
Potassium tellurite (0.001) + + 

Sodium azide (0.005) 
Sodium azide (0.01) 

+ + 
Sodium borohydride (0.1) + + 

+ + 
Sodium chloride (4.0) + + 

Sodium chloride (7.0) + + 
Sodium deoxycholate (0.005) + + 

Sodium deoxycholate (0.01) 
+ + 

Sodium salicylate (0.1) + + 

Sodium selenite (0.001) 
Sodium selenite (0.005) + + 

Tetrazolium salt (0.001) + + 
Tetrazolium salt (0.01) 
Tetrazolium salt (0.05) 
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Thallous acetate (0.001) + + + + 
Thallous acetate (0.005) + + - - 
Thallous acetate (0.01) - - - 
Growth in presence of heavy metal salts: 
Barium chloride (0.005) + + + + 
Cobalt chloride (0.001) + + + + 
Cobalt chloride (0.005) + + + + 
Cobalt chloride( 0.01) - - - - 
Resistance to antibiotics and antibacterial compounds (. tg/ml) 
Aminoglycosides: 
Amikacin (4) + - + + 
Gentamycin sulphate (8) + + + + 
Gentamycin sulphate (32) + - + + 
Gentamycin sulphate (64) + - + + 
Neomycin sulphate (8) - - ' 
Neomycin sulphate (32) - - - - 
Spiramycin (10) + + + + 

Antitubercular drugs: 

Ethionamide(16) + + + + 
Isoniazid (16) + + + + 
Rifampicin (64) + + + + 
Streptomycin sulphate (4) + - + + 
Streptomycin sulphate (16) + - + + 
Streptomycin sulphate (32) + - + + 
Streptomycin sulphate (64) + - + + 

Cephalosporins: 

Cefoxitin (32) + + + + 
Cephaloridin (128) + + + + 
Cephradin (16) + + + + 
Cephradin (32) + - + + 
Gramicidin (8) + + + + 

Lincosamide: 

Lincomycin (64) + + + + 
Lincomycin (128) - + - 

Macrolide: 

Oleandomycin phosphate (128) + + + + 

Penicillins: 

Ampicillin (32) + + + + 

Carbenicillin (12) + + + + 

Lividomycin A (16) - ' 
Penicillin G (15 i. u) + + + + 

Polypeptides: 

Bacitracin (32) + + + + 

Polymyxin B sulphate (16) + + + + 

Polymyxin B sulphate (32) - + - + 

Viomycin (20) + + + + 

Quinolone 

Nalidixic acid (32) + + + + 

Tetracyclines 

Doxycyline (4) + + + + 

Doxycyline (16) - 
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Doxycyline (64) 
Tetracyline (4) 
Tetracyline (16) 
Miscellaneous compounds 
Fusidic acid (4) 
Fusidic acid (8) 
Fusidic acid (16) 
Novobiocin (4) 
Novobiocin (16) 
Novobiocin (32) 
Tunicamycin (10) 
Vancomycin (16) 

Growth at 
pH 5 
pH 6 
pH 10 
25 °C 
30 °C 
37 °C 
50 °C 
55 °C 
60 °C 

+ + + + 

+ + + + 
+ + + 
+ + + 
+ + + + 
- + - 
+ + - 
+ + + + 

+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 

*, at 1 %, w/v apart from D-Glucuronic acid at 0.1 %, w/v. 
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acid fast actinomycetes which form extensively branched, nonfragmenting substrate and 

aerial mycelia. Spores are borne in chains, singly or in pairs, on both aerial and substrate 

hyphae; the sporulating hyphae tend to undergo autolysis. The organisms contain meso- 

A2pm, madurose, major amounts of branched-fatty acids with 14-methylpentadecanoic 

acid, 15-methylhexadecanoic acid and 16-methylheptadecanoic acid and minor proportions 

of 10-methyloctadecanoic acid; major amounts of hexahydrogenated menaquinones with 

nine isoprene units as the predominant isoprenologue, and DPG, PG, PI and PIDM as 

major polar lipids. Excellosporae are euthermophilic actinomycetes which grow between 

37 and 65 T. 

Description of Excellospora alcalithermophila sp. nov. 

Excellospora alcalithermophila (al. ca. li. ther. mo. phil. a. N. L. n. alcali (from arabic al. end; 

galiy soda ash); Gr. n. therme heat; L. pres. part. philos, loving; M. L. part. adj. 

alcalithermophila thermophilic alkali tolerating). 

The description is based on data taken from this and an earlier study (Sahin, 

unpublished). Aerobic, Gram-positive, non-acid-alcohol fast, non-motile actinomycetes 

which form extensively branched non-fragmenting aerial and substrate hyphae. Straight 

chains of spiny spores are borne on aerial hyphae. The colour of the aerial spore mass on 

inorganic salts-starch agar medium is bluish-grey. A pale yellow or non-distinctive 

substrate mycelium is formed on glycerol-asparagine and oatmeal agar media. Diffusible 

pigments, including melanin pigments, are not produced on glycerol-asparagine, peptone 

yeast extract iron or tyrosine agars. Growth occurs between 37 °C and 60 °C, and between 

pH 6.0 and 10.5. 

Casein, DNA, elastin, gelatin, L-tyrosine, starch, and xylan are degraded but no 

activity is shown against adenine, arbutin, chitin, esculin, guanine or xanthine. The 

organisms grow on acetic acid, adonitol, amygdalin, androsterone, L-arabinose, arabitol, 

benzoic acid, D-cellobiose, cholesterol, citric acid, D-fructose, D-galactose, D-gluconic 
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acid, D-glucuronic acid, humic acid, meso-inositol, D-lactose, D-lyxose, D-mannitol, D- 

mannose, D-melezitose, pimelic acid, quinic acid, a-L-rhamnose, D-ribose, salicin, 

saponin, sebacic acid, D-sorbitol, starch, sucrose, D-trehalose, turanose, urocanic acid, 

xylitol and D-xylose as sole carbon and energy sources, but not on anthranilic acid, ferulic 

acid, malonic acid, D-mandelic acid, 1-phenyldodecane and D-raffinose. 

The strains are sensitive to doxycyline hydrochloride (16 µg ml-1), lividomycin A (4 

µg ml-1), neomycin sulphate (8 µg ml-1), tetracyline hydrochloride (16 µg ml-) and 

vancomycin hydrochloride (16 µg ml"'), but are resistant to ampicillin (32 µg ml"), 

bacitracin (32 µg ml"'), carbenicillin (12 µg ml-1), cefoxitin (32 µg ml"'), cephaloridine 

(128 µg ml"'), cephradine (16 µg ml"'), doxycyline hydrochloride (4 µg ml"), ethionamide 

(16 µg ml-1), fusidic acid (4 µg ml"'), gentamycin sulphate (8 µg ml-1), gramicidin (8 µg 

ml"'), isoniazid (16 µg ml"'), lincomycin hydrochloride (64 µg ml"'), nalidixic acid (32 µg 

ml"'), novobiocin (4 µg ml"'), oleandomycin phosphate (128 µg ml"'), penicillin G (15 i. u. ), 

polymyxin B sulphate (16 jig ml-1), rifampicin (64 µg ml"'), spiramycin (10 µg ml-1), 

tetracyline hydrochloride (4 µg ml"'), tunicamycin (10 jig ml-1) and viomycin sulphate (20 

µg ml"'). 

The organisms were isolated from garden soil collected in Yogyakarta, Indonesia. 

The type strain of Excellospora alcalithermophilus is TA 111 (= DSM 44377). 

Description of Excellospora thermoalcalitolerans sp. nov. 

Excellospora thermoalcalitolerans (ther. mo. al. ca. li. to'le. rans. Gr. n. therme heat; N. L. n. 

alcali (from arabic al. end; galiy soda ash); L. pres. part. tolerans, tolerating, enduring; 

M. L. part. adj. the rmoalcalitolerans thermophilic alkali tolerating). 

The description is based on data taken from this and an earlier study (Sahin, 

unpublished). Aerobic, Gram-positive, non-acid-alcohol fast, non-motile actinomycetes 

which form extensively branched, non-fragmenting aerial and substrate hyphae. Straight 
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chains of spiny spores are borne on aerial hyphae. The aerial spore mass on inorganic salts- 

starch agar medium is bluish grey. A pale yellow or non-distinctive substrate mycelium on 

glycerol-asparagine and oatmeal agar media. Neither diffusible or melanin pigments are 

produced on glycerol-asparagine, peptone yeast extract iron or tyrosine agars. Growth 

occurs between 30 °C and 55 °C, and between pH 6.0 and 10.5. 

Casein, DNA, elastin, gelatin, hypoxanthine, testosterone, L-tyrosine, starch, and 

xylan are degraded but no activity is shown against adenine, arbutin, chitin, esculin, 

guanine or xanthine. The organisms grow on acetic acid, adonitol, amygdalin, 

androsterone, L-arabinose, arabitol, L-ascobic acid, D-cellobiose, cholesterol, cinnamic 

acid, citric acid, D-fructose, D-galactose, D-gluconic acid, D-glucuronic acid, meso- 

inositol, D-lactose, D-mannitol, D-melezitose, pimelic acid, pyruvic acid, a-L-rhamnose, 

D-ribose, saponin, sebacic acid, starch, sucrose, L-tartaric acid, D-trehalose, turanose, 

xylitol and D-xylose as sole carbon and energy sources, but not on anthranilic acid, benzoic 

acid, dextran, ferulic acid, humic acid, inulin, malonic acid, D-mandelic acid, melibiose, 1- 

phenyldodecane quinic acid, and D-raffinose. 

The strains are sensitive to doxycyline hydrochloride (16 µg ml"), lincomycin 

hydrochloride (128 µg ml"'), lividomycin A (8 µg ml"'), neomycin sulphate (8 µg ml-1), 

novobiocin (16 gg ml-1), tetracyline hydrochloride (16 pg ml-1) and vancomycin (16 gg ml- 

'), but are resistant to amikacin (4 µg ml-1), ampicillin (32 µg ml-1), bacitracin (32 µg ml-1), 

carbenicillin (12 µg ml-'), cefoxitin (32 µg ml"'), cephaloridine (128 µg mi''), cephradine 

(32 µg ml-1), doxycyline hydrochloride (4 µg ml"'), ethionamide (16 gg ml"'), fusidic acid 

(16 µg ml-1), gentamycin sulphate (64 µg ml-1), gramicidin (8 µg ml-1), isoniazid (16 gg ml- 

'), lincomycin hydrochloride (64 µg ml"'), lividomycin A (4 µg ml-1), nalidixic acid (32 µg 

ml-1), novobiocin (4 µg ml-1), oleandomycin phosphate (128 µg ml"'), penicillin G (15 i. u. ), 

polymyxin B sulphate (16 µg ml"'), rifampicin (16,32 and 64 µg ml"'), spiramycin (10 µg 
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ml-1), streptomycin sulphate (4,16,32 and 32 pg ml-1), tetracyline hydrochloride (4 tg ml" 

1), tunicamycin (10 µg ml-l) and viomycin sulphate (20 µg ml"'). 

The organisms were isolated from garden soil collected in Yogyakarta, Indonesia. 

The type strain of Excellospora thermoalcalitolerans is TA 113 (= DSM 44379). 

Separation of Excellospora from other genera classified in the family 

Thermomonospora. The revised genus Excellospora can be distinguished from the genera 

Actinocorallia, Actinomadura, Spirillospora and Thermomonospora using a combination 

of chemical and morphological characters (Table 2-8). The continued recognition of the 

genus Excellospora implies that the genus Actinomadura is still heterogeneous as members 

of the validly described species assigned to this taxon were assigned to several 16S rRNA 

clades (Fig. 2-9,2-10 and 2-11). Additional comparative studies are needed to clarify the 

taxonomy of these and related taxa. 
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Chapter III: 

Systematics of Thermophilic Streptomycetes 

Introduction 

1. Circumscription of the genus Streptomyces 

The genus Streptomyces (Strep. to. my'ces. Gr. adj. streptos pliant, bent; Gr. n: myces 

fungus; M. L. masc. n.: Streptomyces pliant or bent fungus) is well circumscribed due to the 

extensive application of chemotaxonomic, molecular systematic and numerical phenetic 

methods (Williams et al., 1983a, 1989; Witt & Stackebrandt, 1990; Kämpfer et al., 1991; 

Goodfellow et al., 1992; Embley & Stackebrandt, 1994; Stackebrandt et at., 1997; Zhang et 

at., 1997). The taxon encompasses aerobic, Gram-positive, non-acid-alcohol-fast 

actinomycetes which produce well developed vegetative hyphae (between 0.5-2.0 p. m in 

diameter) that rarely fragment. Reproduction is by germination of non-motile spores carried 

on aerial hyphae. In members of most species, aerial hyphae differentiate into chains of three 

to many spores (more than 50 spores), which are borne in straight to flexuous, hooked, 

looped or spiral spore chains. The spore surfaces may be hairy, rugose, smooth, spiny or 

warty. In members of some species the aerial hyphae consist of long, straight filaments, 

bearing branches (3-6) at more or less regular intervals, arranged in whorls (verticils). Each 

branch of the verticil produces, at its apex, an umbel carrying from two to several chains of 

spherical to ellipsoidal smooth or rugose spores. Some streptomycetes bear short chains of 

spores on the substrate mycelium. Sclerotia, pycnidial-, sporangial-, and, synnemata-like 

structures may also be formed. In members of some species, such as Streptomyces 

somaliensis, spores have not been detected. 
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Streptomycetes form discrete and lichenoid, leathery or butyrous colonies. Initially 

colonies are relatively smooth but later develop a weft of aerial hyphae that may appear 

cottony, floccose, granular, powdery or velvety. A wide range of pigments is produced and 

these are responsible for the colour of the vegetative and aerial mycelia; coloured diffusible 

pigments may also be formed. Most strains show temperature optima between 25 to 35°C 

and grow well between pH 6.5 and 8.0. However, some strains grow at temperatures within 

the psychrophilic (Williams et al., 1989) and thermophilic ranges (Goodfellow et al., 1987; 

Kim, D. et al., 1996, Kim, S. B. et al., 1998) and others have acidic or alkaline pH 

requirements for growth (Mikami et al., 1982,1985; Goodfellow & Simpson, 1987; Korn- 

Wendisch & Kutzner, 1992; Sahin, 1995). 

Streptomycetes are generally chemoorganotrophic, that is, they have an oxidative 

type of metabolism and are able to use a wide range of organic compounds as sole sources 

of carbon for energy and growth. Some thermophilic strains are obligate chemolithotrophs, 

oxidising carbon monoxide and hydrogen for growth (Gadkari et al., 1990), or facultative 

carboxydotrophs, using single carbon compounds such as methanol or carbon monoxide 

(O'Donnell et al., 1993b; Kim, S. B. et al., 1998). 

Streptomycetes have a cell wall peptidoglycan which contains major amounts of 

LL-diaminopimelic acid (LL-A2pm; cell wall chemotype I sensu Lechevalier & Lechevalier, 

1970a, b) and is of the A3y type (glycine-LL-A2pm; Schleifer & Kandler, 1972). They also 

contain major amounts of saturated, iso/anteiso branched and straight-chain fatty acids (e. g. 

iso-16 and anteiso-15/17; Kroppenstedt & Kutzner, 1978; Kroppenstedt, 1985), either hexa- 

or octahydrogenated menaquinones [(MK-9(H6) and MK-9(H8)] with nine isoprene units as 

the predominant isoprenologue (Collins et al., 1984; Alderson et al., 1985; Kroppenstedt, 

1985) and complex polar lipid patterns that typically contain diphosphatidylethanolamine, 

phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides, but not 

glucosamine-containing phospholipids (phospholipid type 2 sensu Lechevalier et al., 1977). 
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Streptomycetes are also characterised by the presence of teichoic acids (Naumova et al., 

1978; Vylegzhanina et al., 1986), but lack mycolic acids (Goodfellow, 1989; Korn- 

Wendisch & Kutzner, 1992). The mol% G+C of the DNA is between 66 and 78 mol% 

(Williams et al., 1989). 

Streptomycetes are widely distributed in natural habitats and are especially 

common in soil, including composts. Members of a few species are pathogenic for animals, 

including humans and plants (Person & Martin, 1940; Mishra et al., 1980; Healy & 

Lambert, 1991; Korn-Wendisch & Kutzner, 1992; McNeil & Brown, 1994). 

The type species is Streptomyces albus (Rossi-Doria 1891) Waksman and Henrici 

1943A'. 

It is apparent from 16S rRNA sequencing studies that streptomycetes form a 

distinct phyletic line within the order Actinomycetales (Fig. 1-1, page 21; Stackebrandt & 

Woese, 1981; Stackebrandt et al., 1981,1997; Witt & Stackebrandt, 1990; Embley & 

Stackebrandt, 1994). Members of the genus Streptomyces can be readily distinguished from 

other wall chemotype I genera using a combination of chemotaxonomic and morphological 

characters (Table 3-1). 

The genus Kitasatospora (formerly Kitasatosporia) Omura et al. 1982 was proposed 

for actinomycetes that were phenotypically similar to Streptomyces but contained high 

proportions of meso-A2pm. The aerial mycelia of Kitasatospora strains were subsequently 

found to contain LL- A2pm as a major component of the peptidoglycan and whole-organism 

hydrolysates which were rich in galactose (Takahashi et al., 1983). Wellington et al. (1992) 

noted that the 16S rRNA sequence of Kitasatospora setae NRRL B-16185T showed 91.6 % 

similarity to that of Streptomyces baldaccii DPDU 0819T and that a Streptomyces-specific 

oligonucleotide probe recognised representatives of four validly described species of 

Kitasatospora. These authors proposed that the name Kitasatospora should be reduced to a 

synonym of Streptomyces on the basis of these observations and on some phenotypic 
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properties. This proposal was supported by the results of an analysis of N-terminal 

sequences of ribosomal protein AT-L30 (Ochi & Hiranuma, 1994). In contrast, Kim, D. et 

al. (1996) found that three Kitasatospora strains formed a distinct Glade outside the 

evolutionary line comprising Streptomyces species. 

In an attempt to resolve the taxonomic status of the genus Kitasatospora Zhang et al. 

(1997) determined almost complete 16S rRNA sequences of 12 actinomycetes which had 

previously been classified either as Kitasatospora or as Streptomyces but were shown to 

contain major amounts of meso-A2pm in whole-organism hydrolysates. The 16S-23S rRNA 

spacer regions of the test strains were also sequenced. These worker found that the 

Kitasatospora strains either formed a stable monophyletic Glade within the genus 

Streptomyces or a sister taxon depending on the outgroup strains. However, the 

Kitasatospora and Streptomyces strains were consistently recovered as two distinct clades 

independent of the outgroup in phylogenetic trees based on the sequences of the 16S-23S 

rRNA spacer region. Zhang et al. (1997) proposed that the genus Kitasatospora Omura et 

al. 1982 should be revived on the basis of chemotaxonomic, phenotypic and phylogenetic 

evidence. 

2. Thermophilic streptomycetes 

Most of the emphasis in streptomycete systematics has been focused on mesophilic 

strains which grow between 15 and 37 °C with an optimum temperature around 25 °C. 

Thermophilic streptomycetes, that is, strains that grow well at 50 °C have received relatively 

little attention. Indeed, it was a matter of some controversy whether streptomycetes which 

grow at or above 45 °C should be assigned to distinct taxa or considered as thermotolerant 

variants of mesophilic species. Craved and Pagani (1962) proposed the subgenus 

Thermostreptomyces for members of thermophilic taxa, but other workers regarded such 

organisms as thermotolerant rather than thermophilic (Corbaz et al., 1963; Küster and Locci, 
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1963). Thermostreptomyces was listed as a subgenus incertae sedis in the eighth edition of 

Bergey'sManual of Determinative Bacteriology (Pridham & Tresner, 1974a). 

Streptomyces glaucosporus (Krassilnikov et al. 1968a) Agre 1986, Streptomyces 

macrosporus Goodfellow et al. 1987, Streptomyces megasporus (Krassilnikov et al. 1968a) 

Agre 1983, Streptomyces thermoautotrophicus Gadkari et al. 1990, Streptomyces 

thermocarboxydovorans Kim, S. B. et al. 1998, Streptomyces thermocarboxydus Kim, S. B. 

et al. 1998, Streptomyces thermodiastaticus (Bergey et al. 1923) Waksman 1953, 

Streptomyces thermogrieus Xu et al. 1998, Streptomyces thermolineatus Goodfellow et al. 

1987, Streptomyces thermonitrificans Desai and Dhala 1967, Streptomyces thermoviolaceus 

(Henssen 1957a) emended Goodfellow et al. 1987 and Streptomyces thermovulgaris 

(Henssen 1957a) emended Goodfellow et al. 1987 are validly described species which 

contain thermophilic streptomycetes. Additional thermophilic streptomycetes have been 

assigned to taxa which are not cited on the Approved Lists of Bacterial Names, notably 

"Streptomyces thermoflavus" (Kudrina and Maximova 1963) Pridham 1970, "Streptomyces 

thennofuscus" (Waksman et al. 1939) Waksman and Henrici 1948 and "Streptomyces 

thermophilus" (Gilbert 1904) Waksman and Henrici 1948 (syn. Streptomyces rectus; 

Henssen, 1957a). 

Streptomyces albus (Rossi Doria 1891) Waksman and Henrici 1943'v" and 

Streptomyces violaceoruber (Waksman and Curtis 1916) Pridham 1970'°'1' have also been 

reported to grow at 55 °C (Lyons & Pridham, 1962; Fergus, 1964). Streptomyces 

thermoautotrophicus strain UBT1T is unusual as it grows chemolithoautotrophically in a 

mineral medium using either CO or H2 plus CO2 as a sole carbon and energy sources 

(Gadkari et al., 1990). This organism, which was isolated from a heated soil, has an optimal 

temperature of 65 °C but does not grow below 40 °C or over 65 °C. 
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3. Streptomycete systematics: the early years 

Streptomycete systematics has had a long and tortuous history (Goodfellow et al., 

1992; Korn-Wendisch & Kutzner, 1992; Manfio et al., 1995). Early descriptions of 

`streptomycete' species by soil microbiologists were based on ecological requirements, 

pigmentation and spore chain morphology (Krainsky, 1914; Conn, 1916; Waksman & 

Curtis, 1916; Waksman, 1919; Jensen, 1930) and dichotomous keys for the identification of 

unknown strains rested on a few non-standardised tests, notably morphological and 

pigmentation characteristics (Krainsky, 1914; Waksman & Curtis, 1916; Waksman, 1919; 

Jensen, 1930; Krassilnikov, 1941). A turning point in streptomycete systematics came in 

1943 when Waksman and Henrici proposed the genus Streptomyces for aerobic spore- 

forming actinomyces to avoid confusion with pathogenic microaerophilic organisms which 

retained the name Actinomyces Harz 1877. 

It was only after the discovery that Streptomyces antibioticus produced actinomycin 

(Waksman & Woodruff, 1941) that streptomycetes were given serious attention. The 

realisation that these organisms were a rich source of commercially useful and hence highly 

profitable antibiotics prompted many workers to design new procedures for their isolation 

and growth. Lack of acceptable criteria for classification and identification led to new 

species being described usually on the basis of slight differences in morphological and 

cultural properties. This practice led to a proliferation of Streptomyces species (Waksman, 

1957; Kurylowicz & Gyllenberg, 1988). Between 1940 and 1957 over a hundred 

Streptomyces species were described (Pridham et al., 1958). This number increased to 

around 3,000 by 1970 though many of the new combinations were only cited in the patent 

literature (Trejo, 1970). Numerous artificial classifications were proposed to accommodate 

the ever increasing number of Streptomyces species. These classifications were mainly based 

on a few subjectively chosen characters, usually morphological and pigmentation properties, 

but, in some instances, biochemical, nutritional and physiological features were used. These 
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schemes enabled isolates to be `identified' but the name given was dependent on the scheme 

used. 

It had become clear by the early 1960s that streptomycete systematics was in a 

parlous state. The resultant practical problems were addressed in two co-operative 

investigations carried out between 1958 and 1962. One of the studies was performed under 

the auspices of the Subcommittee on Actinomycetes of the Committee on Taxonomy of the 

American Society of Microbiology (ASM; Gottlieb, 1961) and the other by the 

Subcommittee on Taxonomy of Actinomycetes of the International Committee on 

Bacteriological Nomenclature of the International Association of Microbiological Societies 

(AMS; Küster, 1959). 

An attempt was made in each of these co-operative studies to evaluate the 

predictiveness of characters commonly used in streptomycete systematics. In the AMS 

study, 34 investigators examined 25 strains representing 21 streptomycete "series" using 

standard methods and growth conditions (Küster, 1959). The findings of the study were 

published (Küster, 1961; Szabo & Marton, 1964). Ten laboratories were involved in the 

corresponding ASM collaborative project which concluded that more work was required 

before reliable physiological tests could be recommended for the classification and 

identification of streptomycetes (Gottlieb, 1961). 

It was clear from the results of the collaborative studies that developments in 

streptomycete systematics were being hampered by the use of variable and non-diagnostic 

characters that were often examined under non-standardised conditions. The reliance placed 

on subjectively weighted phenotypic features, the unavailability of extant type cultures of 

some species, and the difficulty in finding descriptions of species reported in the patent 

literature were all highlighted as serious problems. Although the co-operative projects raised 

as many problems as they answered they did pave the way for an extensive international 

collaborative study of the genus Streptomyces. 
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The International Streptomyces Project (ISP; Shirting & Gottlieb, 1966) was 

planned and executed by the Subcommittee on Taxonomy of Actinomycetes of the 

International Committee on Bacteriological Nomenclature and the Subcommittee on 

Actinomycetes of the Committee on Taxonomy of the American Society of Microbiology 

with the primary aim of providing reliable descriptions of extant and authentic type strains 

of Streptomyces and Streptoverticillium species. Existing type and neotype strains of species 

assigned to these genera were sent under code to at least three experts in different countries. 

The strains were examined using rigorously standardised procedures to determine their 

morphological, pigmentation, and carbon source utilisation properties. These characters 

were selected in light of the results derived from the earlier international co-operative 

studies (Küster, 1959; Gottlieb, 1961,1963). The methods and new descriptions of the 

cultures were published (Shirling & Gottlieb, 1966,1968a, b, 1969,1972; Gottlieb & 

Shirling, 1967) and the type strains deposited in a number of internationally recognised 

service culture collections. The results of the International Streptomyces Project formed the 

basis of the classification of the genus Streptomyces in the eighth edition of Bergey's 

Manual of Determinative Bacteriology (Pridham & Tresner, 1974a, b). Seven thermophilic 

streptomycetes were included in the International Streptomyces Project, namely, 

Streptomyces thermodiastaticus ISP 5573T, "Streptomyces thermoflavus" ISP 5574, 

Streptomyces thermonitrificans ISP 5579T, "Streptomyces thermophilus" ISP 5365, 

"Streptomyces thermotolerans" ISP 5227, Streptomyces thermoviolaceus subsp. 

thermoviolaceus ISP 5443T and Streptomyces thermovulgaris ISP 5444T. 

The participants in the International Streptomyces Project made a major 

contribution to streptomycete systematics as the practical problems outlined earlier were 

met. However, the very success of the project highlighted a number of serious weaknesses: 

i) No attempt was made to detect synonyms or to devise a species concept for the genus; 

ii) Few criteria were used to describe species and the ones that were applied were 
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essentially those which had been intuitively selected from a plethora of earlier 

classifications (Krainsky, 1914; Waksman & Curtis, 1916; Waksman, 1919,1961; 

Jensen, 1930; Waksman & Henrici, 1948; Baldacci et al., 1954; Hesseltine et al. 1954; 

Gauze et al., 1957; Pridham et at., 1958; Mayama, 1959; Nomi, 1960; Küster, 1961; 

Gottlieb, 1963; Hütter, 1967). 

iii) An objective identification system was not produced although ISP data were used to 

generate dichotomous keys (Arai & Mikami, 1969; Küster, 1972; Nonomura, 1974; 

Szabo et al., 1975). However, none of these schemes were widely used. 

The reliance placed on the use of a limited number of intuitively chosen features, 

with heavy emphasis on morphology and pigmentation, represented a serious conceptual 

flaw in streptomycete systematics. The products of this approach to classification are 

intrinsically artificial and although some of them 'work', in the sense that a name is 

inevitably obtained for an unknown culture, they are essentially monothetic with rigid key 

characters and a limited information content. Indeed, it was only with the application of the 

numerical taxonomic procedure that attempts were made to construct polythetic 

classifications where organisms which share many features in common are grouped together 

with no single character being essential for group membership (Williams et al., 1981; 

Goodfellow et al., 1992; Manfio, 1995; Sahin, 1995). 

4. Application of modem taxonomic methods 

(a) Numerical taxonomy 

The numerical taxonomy procedure was first applied to Streptomyces by Silvestri 

and his colleagues (Gilardi et al., 1960; Hill et al., 1961; Silvestri et al., 1962) who 

examined nearly 200 mesophilic organisms for 100 unit characters. The test strains were 

assigned to 25 centres of taxonomic variation but some strains bearing the same specific 

name were recovered in different clusters. Several physiological and biochemical characters 
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highlighted in this study were used to construct identification keys (Hill & Silvestri, 1962). 

Results from factor analyses suggested that many characters used to described Streptomyces 

species were highly variable and prone to errors of interpretation (Gyllenberg, 1970). These 

early leads had little impact on developments in streptomycete systematics though a number 

of additional numerical phenetic studies were designed to clarify the taxonomy of specific 

groups of streptomycetes (Kurylowicz et al., 1969,1970,1975; Paszkiewicz, 1972; 

Gyllenberg et al., 1975; Szulga, 1978). 

Sneath (1970) considered that a rigorous application of the numerical taxonomic 

procedure provided the only way of reclassifying the six hundred "species" of the genus 

Streptomyces since reliance on a few subjectively chosen tests could not be expected to 

reveal natural phenetic groups. The first comprehensive numerical taxonomic survey of the 

genus was carried out by Williams et al. (1983a) who examined 475 cultures, including 394 

Streptomyces type strains from the International Streptomyces Project, for 139 unit 

characters. The data were analysed using the Si and SsM coefficients and clustering of 

similar strains achieved using the UPGMA algorithm. The resultant classification added to a 

wealth of evidence that eventually led to the genera Actinopycnidium Krassilnikov 1962, 

Actinosporangium Krassilnikov & Yuan 1961, Chainia Thirumalachar 1955, 

Elytrosporangium Falcäo de Morais et al. 1966, Kitasatoa Matsumae et al. 1968, 

Microellobosporia Cross et al. 1963 and Streptoverticillium Baldacci 1958 becoming 

synonyms of the genus Streptomyces (Goodfellow et al., 1986a-d; Witt & Stackebrandt, 

1990). The type strains of the Streptomyces species were assigned to 19 major clusters (6 to 

71 strains), which were provisionally considered as species-groups, and to 40 minor (2 to 5 

strains) and 18 single-membered clusters that were equated with species. The seven 

thermophilic streptomycetes included in the International Streptomyces Project were also 

examined. "Streptomyces thermoflavus" ISP 5574, Streptomyces thermonitrificans ISP 

5579T and Streptomyces thermovulgaris ISP 5444T formed a numerically defined cluster 
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whereas the other thermophilic strains were recovered at the periphery of clusters containing 

mesophilic streptomycetes. However, these results may be anomalous as the thermophilic 

strains were examined at 25 °C and hence may not have grown well on all of the test media. 

The results of this study provided the basis of the current taxonomy of the genus 

Streptomyces in Bergey's Manual of Systematic Bacteriology (Williams et al., 1989). 

The classification of Williams et al. (1983a) was used to generate probabilistic 

schemes for the identification of unknown mesophilic streptomycetes to major and minor 

streptomycete clusters (Williams et al., 1983b; Langham et al., 1989). The computer- 

assisted approaches to the identification of streptomycetes rested on a balanced set of a 

posteriori weighted characters that accommodated some degree of strain variation. These 

approaches were in sharp contrast to previous streptomycete identification systems that were 

based on a few subjectively chosen features (Waksman, 1961; Pridham et al., 1958; Htitter, 

1967). 

Goodfellow et al. (1992) re-examined most of the strains studied by Williams and 

his colleagues for all but two of the original 139 unit characters together with the results of 

rapid enzyme tests based on the fluorophores 7-amino-4-methylcoumarin and 4- 

methylumbelliferone. Excellent congruence was found with the earlier numerical 

classification though three taxa previously defined as subclusters, namely, Streptomyces 

albidoflavus, Streptomyces anulatus and Streptomyces halstedii, were recovered as separate, 

albeit related, clusters. 

It is also encouraging that most of the major clusters defined by Williams et al. 

(1983a) were recognised by Kämpfer et al. (1991) who examined 821 Streptomyces 

(including Streptoverticillium spp. ) for 329 physiological tests in a comprehensive 

numerical taxonomic study. Kämpfer and his colleagues concluded that the taxonomic status 

of many of their clusters, notably the minor and single membered clusters, were 

questionable. However, the results of their numerical taxonomic study were used to 
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construct a probability matrix for the numerical identification of streptomycetes (Kämpfer & 

Kroppenstedt, 1991). 

Saddler (1988) isolated large numbers of alkalitolerant, mesophilic streptomycetes 

from a range of soils using isolation media adjusted to pH 10.0. An artificial classification of 

731 alkalitolerant isolates based on pH requirements for growth, morphology and 

pigmentation properties revealed that 80 % of the taxonomically diverse strains were able to 

grow at pH 7.0 and pH 10.0. One hundred and seventy representatives of the 25 colour 

groups recognised by Saddler were compared with thirty-six marker neutrophilic strains of 

Streptomyces species for 136 unit characters and the resultant data examined using standard 

numerical taxonomic procedures. The test strains were assigned to eight multimembered and 

seven single-membered aggregate groups in the Si, UPGMA analysis. The aggregate groups 

encompassed nine major (5 to 36 strains), eighteen minor (2 to 4 strains) and fifty-three 

single-membered clusters. The alkalitolerant isolates were largely distinct from the 

Streptomyces marker strains. There was considerable correlationship between cluster-group 

membership and the source, colour group and pH ranges of the strains. 

Doering-Saad et al. (1992) examined eighty Streptomyces isolates, including 35 

potato scab-inducing strains and 12 reference strains of Streptomyces scabiei, for 329 unit 

characters. The strains were assigned to three cluster-groups (A to C) defined at the 80 % 

similarity level in an SsM, UPGMA analysis. Cluster-group A contained organisms that were 

related to either Streptomyces exfoliatus or Streptomyces griseus; cluster-group B 

encompassed strains which showed affinities to either Streptomyces rochei or Streptomyces 

violaceus. The majority of the pathogenic isolates and the reference strains assigned to 

cluster-group C were classified as either Streptomyces griseus or Streptomyces violaceus. 

The first comprehensive numerical taxonomic study devoted to thermophilic 

streptomycetes was carried out by Goodfellow et al. (1987). These workers examined fifty 

thermophilic, neutrophilic streptomycetes from diverse habitats and compared the results 
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with corresponding data on representative mesophilic, neutrophilic marker strains that had 

been included in the extensive numerical taxonomic survey of Williams et al. (1983a). The 

thermophilic strains, which were grown at 45 °C, were examined for one hundred and thirty- 

five unit characters and the resultant data analysed using appropriate resemblance 

coefficients and clustering algorithms. Two aggregate clusters were detected, one contained 

the mesophilic streptomycetes and the other the thermophilic strains. The latter were 

assigned to two major (7 to 19 strains), four minor (2 to 3 strains) and two single-membered 

clusters. Three of these taxa were equated with validly described species, namely, 

Streptomyces megasporus (Krassilnikov et al. 1968a) Agre 1983, Streptomyces 

then moviolaceus Henssen 1957b and Streptomyces thermovulgaris Henssen 1957b. The 

remaining cluster was raised to species status as Streptomyces thermolineatus Goodfellow 

et al. 1987. 

Fifty-four thermophilic, carboxydotrophic actinomycetes, isolated from soils and 

composts, were the subject of an extensive numerical phenetic survey together with 

representative mesophilic and thermophilic streptomycetes (O'Donnell et al., 1993b). The 

test strains, which were grown at either 25 °C (mesophilic strains) or 45 °C (thermophilic 

strains), were examined for 119 unit characters and the data analysed using the Dp, Si and 

SsM coefficients and the UPGMA algorithm. The carboxydotrophic actinomycetes formed 

two major cluster-groups which were distinct from corresponding taxa equated with 

mesophilic and thermophilic streptomycetes. Most of the carboxydotrophic strains grew at 

55 °C and all but two of them had a profile of chemical properties consistent with their 

assignment to the genus Streptomyces. 

Sahin (1995) isolated large numbers of thermophilic streptomycetes from and and 

tropical soil samples by incubating starch casein agar plates supplemented with 

cycloheximide and rifampicin, and adjusted to pH 7.0 or pH 10.5, at 55 °C for 5 days. Forty- 

five alkalitolerant, thermophilic streptomycetes, and eighty-five neutrophilic, thermophilic 
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streptomycetes were chosen to represent groups based on aerial spore mass colour, substrate 

mycelial pigmentation, diffusible pigment colour and on the production of melanin 

pigments. These organisms were examined with thirty-two marker neutrophilic, 

thermophilic streptomycetes, including Streptomyces macrosporus K44T, Streptomyces 

megasporus K45T, Streptomyces thermodiastaticus DSM 40573T, Streptomyces 

thermolineatus DSM41451 IT, Streptomyces thermoviolaceus DSM 40443T and Streptomyces 

thermovulgaris DSM 40444T, for three hundred and thirty-nine unit characters together with 

three alkalitolerant, mesophilic organisms, namely, strain ISP 5001T representing 

Streptomyces canescens Waksman 1957'u', strain ISP 5300T representing Streptomyces 

cavourensis subspecies cavourensis Skarbek and Brady 1978`u and strain ISP 5586T 

representing Streptomyces hydrogenans. Lindner et al. 1958M'. Eighteen randomly chosen 

duplicated cultures were studied under code to determine test error. A broad range of 

degradative, enzymatic, morphological, nutritional and physiological tests were performed 

to avoid undue emphasis on any particular character set. The enzymic tests were carried out 

using an automated system that involved the use of conjugated substrates based on the 

fluorophores 7-amino-4-methylcoumarin and 4-methylumbelliferone. Fifty-six unit 

characters were deleted from the raw database as they gave all positive or all negative results 

and a further twenty-three properties were removed because of high test error. 

The final database contained information on one hundred fifty-nine test strains and 

two hundred and sixty unit characters. Good congruence was found between the 

classifications based on the standard resemblance coefficients (Si, Sp and SsM) and the single 

linkage and UPGMA clustering algorithms. The SsM, UPGMA analysis was used as the 

baseline classification as it gave particularly good resolution of aggregate groups and 

clusters and a high cophenetic correlation value; six aggregate groups encompassed twelve 

major (5 to 15 strains), fourteen minor (2 to 4 strains) and thirteen single membered clusters 

(Fig. 3-1). Cluster composition was only marginally affected by the statistics used or by the 



CHAPTER III INTRODUCTION 182 

Figure 3-1. Abridged dendrogram showing aggregate groups and major, minor and single 

membered clusters defined by Sahin (1995) using the SsM coefficient and the UPGMA 

algorithm (* type strain). The clusters were defined at the 87 % S-level. 
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test error of 1.81 %. 

Thirty out of the forty-five alkalitolerant, thermophilic isolates were assigned to 

three major (6 to 13 strains), one minor and three single membered clusters in aggregate 

group VI. One of major clusters in aggregate group VI was identified as Streptomyces 

thermovulgaris as it contained the type strain of this species. The remaining fifteen 

alkalitolerant, thermophilic isolates were assigned to one major, one minor and one single- 

membered cluster in aggregate group IV and to one single-membered cluster in aggregate 

group V. 

Sixty-one out of the eighty-five neutrophilic, thermophilic streptomycetes were 

recovered in aggregate group IV which encompassed six major (6 to 15 strains), six minor 

(2 to 4 strains) and three single membered clusters (Fig. 3-1). The two marker strains 

assigned to this aggregate group, Streptomyces megasporus K45T and Streptomyces 

thermolineatus DSM 41451T, also formed single membered clusters. Twelve neutrophilic, 

thermophilic isolates formed two putatively novel taxospecies that were assigned to 

aggregate cluster II together with two representatives of Streptomyces albus. The remaining 

twelve neutrophilic, thenmophilic isolates were assigned to one major (10 strains), one 

minor and one single membered cluster in aggregate group VI. 

The three remaining aggregate taxa were composed solely of marker strains. 

Streptomyces canescens DSM 40001 IT, Streptomyces cavourensis subspecies cavourensis 

DSM 40300T and Streptomyces hydrogenans DSM 40586T were recovered as single 

membered clusters in aggregate group III and the two minor clusters which formed 

aggregate group V corresponded to the validly described species, Streptomyces 

thermodiastaticus and Streptomyces thermoviolaceus. Aggregate group I contained the two 

marker strains of Streptomyces megasporus. 

The extensive numerical phenetic analyses considered above were partly designed 

to help determine the extent of streptomycete diversity and to provide a framework for 
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further developments in streptomycete systematics. It was, of course, recognised by the 

investigators that relationships depicted in numerical classifications can be influenced by 

test and strain selection, test error and the genetic instability of the test strains (Goodfellow 

& O'Donnell, 1993; Schrempf et al., 1989,1994) hence the need to evaluate numerical 

classifications in light of data derived from independent taxonomic methods. 

(b) Molecular systematics 

Relatively few attempts have been made to determine the taxonomic integrity of 

streptomycete clusters defined in the recent extensive numerical phenetic surveys using 

molecular systematic methods. This is surprising considering the ecological and commercial 

importance of streptomycetes but probably reflects the difficulty of examining a 

representative sample of strains from a genus which currently contains 465 validly described 

species, 44 subspecies (Bacterial Nomenclature, Deutsche Samlung von Mikroorganismen 

und Zellkulturen GmbH, 1998) and many putatively novel species. Most of the molecular 

taxonomic investigations that have been carried out have been focused on a few 

representatives of a relatively small number of the numerically defined taxa circumscribed 

by Williams et al. (1983a). 

Nucleic acid sequencing studies. Nucleic acid cataloguing and sequencing studies have 

been used to determine taxonomic relationships between streptomycete species. 16S rRNA 

cataloguing experiments (Stackebrandt et al., 1983) demonstrate a close relationship 

between representatives of the genera Chainia Thirumalachar 1955, Elytrosporangium 

Falcäo de Morais et al. 1966, Kitasatoa Matsumae et al. 1968, Microellobosporia Cross et 

al. 1963, Streptoverticillium Baldacci 1958 and Streptomyces Waksman and Henrici 1943. 

Almost complete 16S rRNA sequence data are available for 43 out of the 465 validly 

described species of Streptomyces. Even so, a number of phyletic lines can be detected in the 

emerging streptomycete tree as exemplified by sequences recorded for thermophilic 

streptomycetes (Fig. 3-2). Kim, D. et al. (1996) found that thermophilic streptomycetes 
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Figure 3-2. Neighbour joining tree (Saitou & Nei, 1987) based on almost complete 

16S rRNA sequences showing relationships between representatives of the genus 

Streptomyces. The 16S rRNA sequence of Arthrobacter globiformis DSM 20214T 

(Accession number: M23411) was used as outgroup. Thermophilic streptomycetes are 

in bold. The scale bar indicates 0.01 substitutions per nucleotide position. 
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formed two distinct clades within the evolutionary radiation encompassed by the genus 

Streptomyces. One Glade contained organisms classified as Streptomyces macrosporus 

Goodfellow et al. 1987, Streptomyces megasporus (Krassilnikov et al., 1968a) Agre 1983 

and Streptomyces thermolineatus Goodfellow et al. 1987 and the other representatives of 

Streptomyces thermodiastaticus (Bergey et al., 1923) Waksman 1953AL, Streptomyces 

thermonitrificans Desai and Dhala 1967, Streptomyces thermoviolaceus (Henssen, 1957b) 

emended Goodfellow et al. 1987 and Streptomyces thermovulgaris (Henssen, 1957b) 

emended Goodfellow et al. 1987. These results show that thermophilic streptomycetes form 

a diverse group and hence cannot be considered as a distinct subgroup within the genus 

Streptomyces as proposed by Craveri and Pagani (1962). Subsequently, Streptomyces 

thermocarboxydovorans, a thermophilic, carboxydotrophic streptomycete, was found to be 

closely related to Streptomyces thermodiastaticus on the basis of 16S rRNA sequence data 

(Kim, S. B. et al., 1998). These authors also showed that another carboxydotrophic, 

thermophilic streptomycete, Streptomyces thermocarboxydus, formed a distinct phyletic line 

in the streptomycete tree. Streptomyces thermogriseus Xu et al. 1998, which has an upper 

temperature limit for growth of 65 to 68 °C, also belong to this groups. 

Almost complete 16S rRNA sequence data have been used to help clarify the 

taxonomy of several streptomycete taxa, including streptomycetes which cause potato scab 

(Doering-Saad et al., 1992; Goyer et al., 1996; Healy & Lambert, 1991; Lambert & Loria, 

1989a, b; Takeuchi et al., 1996). The agents of potato scab formed a heterogeneous group 

thereby suggesting that the ability to cause this disease has arisen independently in several 

streptomycete lineages. However, Streptomyces scabies strains isolated from diverse 

geographical areas had either identical 16S rRNA sequences or ones which only differed by 

a single nucleotide. 

Hain et al. (1997) found that Streptomyces albidoflavus strains DSM 40455T, DSM 

40792, DSM 40880 and DSM 46452, Streptomyces canescens DSM 40001 T, Streptomyces 
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coelicolor DSM 40233T, Streptomyces felleus DSM 40130T, Streptomyces limosus DSM 

401311, Streptomyces odorifer DSM 403471, and Streptomyces sampsonii DSM 40394T had 

identical 16S rRNA sequences when almost complete 16S rRNA sequences were 

determined. It was also clear that Streptomyces gougerotii DSM 403241, Streptomyces 

intermedius DSM 40372T, and Streptomyces rutgersensis DSM 400771 were closely related 

to Streptomyces albidoflavus though they showed 15,14 and 16 nucleotide differences to 

representatives of this taxon. These results are interesting as Williams et al. (1989) 

considered that Streptomyces canescens, Streptomyces coelicolor, Streptomyces felleus, 

Streptomyces limosus, Streptomyces odorifer and Streptomyces sampsonii should be seen as 

subjective synonyms of Streptomyces albidoflavus on the basis of shared phenotypic 

properties. 

It is becoming clear that 16S rRNA sequences should form part of the minimal 

descriptions of streptomycete species (Chun et al., 1997; Kim, S. B. et al., 1998). However, 

several recent descriptions of new species of Streptomyces have been based on phenotypic 

properties (Esnard et al., 1995; Li, 1997) or on limited DNA: DNA relatedness data (Goyer 

et al., 1996; Labeda et al., 1997). The danger of this approach can be exemplified by the 

case of Streptomyces spitsbergensis. This organism, which was proposed by Wieczorek et 

al. (1993) based on DNA: DNA relatedness data obtained from a set of wrongly chosen 

reference strains, was subsequently found to belong to the same genomic species as 

Streptomyces baldaccii (Hatano et al., 1997). 

Several investigators have tried to clarify relationships within the genus 

Streptomyces by sequencing the more variable regions of 16S rRNA. Witt and Stackebrandt 

(1990) examined 520 nucleotides of the 16S rRNA of representatives of the genus 

Streptomyces. Sixteen out of the seventeen test strains fell into two phyletic lines. The first 

branch included Streptomyces ambofaciens ATCC 238771, Streptomyces brasiliensis DSM 

43159T, Streptomyces diastaticus DSM 40496T, Streptomyces indianensis DSM 43803T, 
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Streptomyces (coelicolor) violaceoruber A3(2) and Streptomyces (lividans) violaceoruber 

TK2 1, and the second Streptomyces lavendulae DSM 20141, Streptomyces purpureus DSM 

43460T and members of several Streptoverticillium species. Streptomyces albus DSM 

40313T formed a deep-rooted branch which was well separated from the two major 

branches. The 16S rRNA sequence data underpinned the close phenotypic relationship 

detected between Streptomyces lavendulae (cluster F61), Streptomyces purpureus (cluster 

F65) and Streptoverticillium strains (cluster group F) by Williams et al. (1983a). Witt and 

Stackebrandt went on to propose that the genus Streptoverticillium be reduced to a 

subjective synonym of the genus Streptomyces and emended the description of the genus 

Streptomyces accordingly. 

Stackebrandt et al. (1991) analysed partial sequences of 16S and 23S rRNA 

preparations isolated from representatives of several Streptomyces species in a search for 

oligonucleotide signatures that could be used to assign unknown strains to the genus, 

species-groups and individual streptomycete species. 16S rRNA nucleotide 929 

(Streptomyces ambofaciens numbering system [Pernodet et al., 1989]; nucleotide 955 in the 

Escherichia coli numbering system [Brosius et al., 1978]) was found to be unique to 

Streptomyces strains. A genus-specific probe (5'-GCGTCGAATTAAGCCACA-3') was 

generated incorporating this nucleotide position and its flanking regions. 

Stackebrandt and his colleagues also found that regions a and 0 (nucleotides 982 

through to 998 and 1102 through to 1122, respectively; Streptomyces ambofaciens 

numbering system) of 16S rRNA were relatively conserved though variations in these 

regions allowed the test strains to be classified into nineteen and twelve sequence groups, 

respectively. Streptomyces strains with identical nucleotide sequences for regions a and ß 

were separated on the basis of variation in region y of the 16S rRNA (nucleotides 158 

through 203; Streptomyces ambofaciens numbering system). Partial sequencing of helix 54 

of the 23S rRNA (between position 1518 and 1637; Streptomyces ambofaciens numbering 
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system [Pernodet et al., 1989]) of six streptomycete strains, two other actinomycetes and 

two non-actinomycete reference strains revealed a high degree of variation within this region 

of the 23S rRNA molecule which was seen to have potential for designing species-specific 

probes. 

The results of the studies outlined above suggested that stretches of 16S rRNA 

(regions a, 0 and y) and helix 54 of the 23S rRNA showed sufficient variability to be used 

for the identification of members of some Streptomyces species. However, the significance 

of these findings for the classification of the genus Streptomyces has still to be established. 

Stackebrandt and his colleagues (1992) considered that accurate phylogenetic trees 

could be generated by sequencing relatively small stretches of streptomycete 16S rRNA. The 

results of an analysis of the 226-nucleotide-stretch of 16S rRNA corresponding to the a and 

0 variable regions from representatives of fifteen Streptomyces species were used to 

generate a phylogenetic tree which was found to correspond with one based on an analysis 

of 1137-nucleotide 16S rRNA sequences. Good congruence was also found between the 

phylogenetic classifications based on the a and (3 regions and the numerical phenetic 

classification of Williams et al. (1983a). However, an analysis based on a 204-nucleotide 

16S rRNA sequence encompassing the highly variable y region gave a phylogenetic tree 

which showed much less congruence with those of the a and 0 regions and the numerical 

phenetic data. 

Kataoka et al. (1997) compared 120 nucleotides in the hypervariable region of 16S 

rRNA (nucleotide positions 158 to 277; Streptomyces ambofaciens numbering system 

[Pernodet et al., 1989]) of 89 streptomycetes which represented eight cluster-groups 

assigned to category I in Bergey'c Manual of Systematic Bacteriology (Williams et al., 

1989). The test strains were assigned to fifty-seven `identity groups' the members of which 

had common sequences. The identity groups fell into seven clusters each of which contained 

four or more strains. It was concluded that short hypervariable regions of the 16S rRNA 
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could be used to identify unknown strains to members of validly described Streptomyces 

species. 

DNA: DNA relatedness studies. A widely accepted way of determining the taxonomic 

integrity of numerically defined taxospecies is to examine representative strains in 

DNA: DNA relatedness experiments. In general, good congruence has been found between 

bacterial classifications based on numerical phenetic and DNA relatedness data (Goodfellow 

et al., 1997a). The evaluation of numerically defined clusters using DNA relatedness data 

rests on the premise that phenotypic diversity is a function of genotypic divergence. It has 

already been pointed out that genomic species can be defined as taxa that encompass strains 

which share 70% or more DNA: DNA relatedness with a difference in melting point (ATm) 

of 5 °C or less (Wayne et al., 1987). 

Early DNA: DNA relatedness studies on representatives of the genus Streptomyces 

were mainly based on a few strains. Monson et al. (1969) used a DNA hybridisation 

procedure to confirm the identity of strains assigned to Streptomyces coelicolor (Müller 

1908) Waksman and Henrici 1948 and Streptomyces violaceoruber (Waksman and Curtis 

1916) Pridham 1970; members of these species, notably Streptomyces coelicolor A3(2) and 

Streptomyces lividans strains 66 and ISP 5434, are used as model organisms by 

streptomycete geneticists. Streptomyces coelicolor A3(2), a constituent of the species 

Streptomyces violaceoruber, is frequently mistaken for Streptomyces coelicolor Müller 

which is a synonym of Streptomyces albidoflavus (Williams et al., 1983a; Goodfellow et al., 

1992). Hatano et al. (1994) clarified the tortuous nomenclatural history of these organisms 

when they confirmed that Streptomyces coelicolor A3(2), Streptomyces lividans strains 66 

and ISP 5434 were bona fide members of the species Streptomyces violaceoruber 

(Waksman and Curtis 1916) Pridham 1970. 

Farina and Bradley (1970) examined "sporangia-forming" actinomycetes and 

streptomycetes which had similar DNA base compositions (mol% G+C) using reference 
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DNA from strains CBS 107.58T, a representative of Actinoplanes philippinesis Couch 

1950AL, and S13, a representative of Streptomyces venezuelae Ehrlich et al. 1948A 
. They 

concluded that while the members of the different genera shared a similar DNA base 

composition they had little DNA in common. 

Okanishi et al. (1972) examined 57 Streptomyces strains, with an emphasis on the 

`griseus group', using reference DNA from strains ISP 5236T, a representative of 

Streptomyces griseus (Krainsky 1914) Waksman & Henrici 1948, and ISP 5199T, a 

representative of Streptomyces globisporus (Krassilnikov 1941) Waksman 1953. Six sub- 

groups were detected when the DNA relatedness data from taxa assigned to the genomic 

species corresponding to the `griseus group' were represented on an ordination diagram. 

Good correlation was found between the sub-groups and the discontinuous distribution of 

some biochemical and morphological characters. Additional studies demonstrated the 

heterogeneity of streptomycete groups which encompassed strains from industrial 

applications (Tewfik & Bradley, 1967; Tewfik et al., 1968; Toyama et al., 1974). 

Stackebrandt et al. (1981) determined the genomic relatedness of representative 

strains classified in the families Actinoplanaceae, Streptomycetaceae and 

Streptosporangiaceae. The DNA-DNA reassociation data showed that strains from the same 

family were moderately related (Actinoplanaceae = 18-49 %; Streptomycetaceae = 23-41 %; 

Streptosporangiaceae = 31-38 %), a finding that was supported by the results of 

corresponding DNA-rRNA cistron similarity experiments. These workers also recovered 

representatives of the genera Actinosporangium Krassilnikov & Yuan 1961, Chainia 

Thirumalachar 1955, Elytrosporangium Falcdo de Morais et al. 1966, Kitasatoa Matsumae 

et al. 1968, Microellobosporia Cross et al. 1963 and Streptoverticillium Baldacci 1958 in 

the same DNA and rRNA homology groups as Streptomyces strains. 

Mordarski et al. (1986) examined representatives of the Streptomyces albidoflavus 

(cluster 1A), Streptomyces anulatus (cluster 1B), and Streptomyces halstedii (cluster 1C) 
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taxospecies defined by Williams et al. (1983a) together with marker strains of Streptomyces 

albus (cluster 16), Streptomyces griseocarneum (cluster 55) and Streptomyces lavendulae 

(cluster 61). The Streptomyces albidoflavus strains, including Streptomyces coelicolor ISP 

52331, formed a distinct genomic species but much of the remaining data were difficult to 

interpret possibly due to poor strain selection. 

Labeda and Lyons (1991 a) demonstrated that Streptomyces violaceusniger (cluster 

32; Williams et al., 1983a) contained several genomic species when they examined five 

reference strains representing the cluster together with ten additional strains. Ten DNA 

relatedness groups were defined at similarity levels > 70%, seven of which consisted of 

single-membered strains. The multimembered clusters were equated with Streptomyces 

hygroscopicus (Jensen 1931) Labeda and Lyons 1991a and Streptomyces violaceusniger 

(Waksman and Curtis 1916) Labeda and Lyons 1991a. The latter two species were 

redescribed and a number of strains bearing different specific names reduced to synonyms of 

the newly described taxa. The fact that all of the cluster 32 strains had grey, smooth- or 

rough-surfaced spores borne in spiral chains (Williams et al., 1983a) illustrates the danger of 

uncritically weighting morphological criteria when defining Streptomyces species. 

In a further series of experiments, Labeda and Lyons (1991 b) found that the 

Streptomyces cyaneus species-group (cluster 18; Williams et al., 1983a) was markedly 

heterogeneous. Nine out of eighteen representatives of this cluster were assigned to two 

DNA: DNA relatedness groups defined at or above the 70% DNA relatedness level. The first 

group, which corresponded to Streptomyces coeruleorubidus (Preobrazhenskaya 1957) 

Labeda and Lyons 1991b, encompassed three organisms which formed blue spiny spores in 

spiral spore chains on a reddish substrate mycelium. The three strains included the type 

strains of Streptomyces coeruleorubidus Preobrazhenskaya 1957 (ISP 5145T), Streptomyces 

bellus Margalith and Beretta 1960 (ISP 5185T) and Streptomyces curacoi Cataldi 1963 (ISP 

5107T). It was proposed that the two latter species became subjective synonyms of 
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Streptomyces coeruleorubidus (Preobrazhenskaya 1957) Labeda and Lyons 1991b. 

The second DNA: DNA relatedness group was equated with Streptomyces 

purpurascens (Lindenbein 1952) Labeda and Lyons 1991 b and encompassed the type strains 

of Streptomyces purpurascens (ISP 5530T), Streptomyces afghaniensis Shimo et al. 1959 

(ISP 5228T), Streptomyces janthinus (Artamonova and Krassilnikov 1960) Pridham 1970 

(ISP 5206T), Streptomyces roseoviolaceus (Sveshnikova 1957) Pridham et al. 1958 (ISP 

5277T) and Streptomyces violatus (Artamonova and Krassilnikov 1960) Pridham 1970 (ISP 

5207T). All five strains produced red spiny spores in spiral chains, formed reddish diffusible 

pigments and showed similar substrate mycelial pigmentation. It was proposed that 

Streptomyces afghaniensis, Streptomyces janthinus, Streptomyces roseoviolaceus and 

Streptomyces violatus be reduced to subjective synonyms of Streptomyces purpurascens 

(Lindenbein 1952) Labeda and Lyons 1991b according to the rule of priority. 

The type strain of Streptomyces cyaneus (Krassilnikov 1941) Waksman 1953 (ISP 

5081T) formed a distinct single-membered cluster as it only shared a DNA: DNA relatedness 

value of around 20 % with the other test strains. An additional DNA homology group, which 

encompassed grey-spored strains, was highlighted when the DNA relatedness data were 

examined by principal components analysis though it was not possible to determine the 

taxonomic rank of this taxon. The remaining 16 test strains exhibited relatedness values 

between 0 and 57% when examined against reference DNA from Streptomyces 

coeruleorubidus ISP 5145T and Streptomyces purpurascens ISP 5530T. 

The strains assigned to the Streptomyces coeruleorubidus and Streptomyces 

purpurascens genomic species were distinguished by a few biochemical and morphological 

properties. However, the remaining strains assigned to the Streptomyces cyaneus species- 

group were not clearly distinguished from the Streptomyces coeruleorubidus and 

Streptomyces purpurascens strains using the phenotypic properties used to describe these 

species. The Streptomyces cyaneus species-group has also been shown to be heterogeneous 
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on the basis of fatty acid (Saddler et al., 1987) and whole-organism protein electrophoretic 

data (Manchester et al., 1990). 

In additional DNA: DNA relatedness studies (Labeda, 1992,1993), strains assigned 

to cluster 61 (Streptomyces lavendulae: Williams et al., 1983a) were examined together with 

representatives of Streptomyces lavendulae subspecies, five putative strains of Streptomyces 

lavendulae and "Streptomyces majorciensis" NRRL 15167. The cluster 61 strains were 

morphologically similar having rust-coloured to red, smooth, cylindrical to ovoid spores 

borne on sporophores that formed fairly large, open spirals. The numerical phenetic data, as 

reflected in Bergey's Manual of Systematic Bacteriology (Williams et al., 1989), indicated 

that all of the species assigned to cluster 61 should be considered as subjective synonyms of 

Streptomyces lavendulae (Waksman and Curtis 1916) Waksman and Henrici 1948. 

However, the 21 test strains were assigned to 14 DNA: DNA relatedness groups defined 

above the 70 % DNA relatedness level, including 10 single-membered clusters though 

Streptomyces colombiensis Pridham et al. 1958 was reduced to a synonym of Streptomyces 

lavendulae as it showed 83 % DNA relatedness to Streptomyces lavendulae NRRL B-1230T. 

In contrast, the other cluster 61 strains showed less than 45 % DNA relatedness with strain 

NRRL B- 1230T and hence cannot be considered as synonyms of Streptomyces lavendulae. 

Labeda (1998a), in a further examination of red-spored streptomycetes, determined 

the DNA relatedness between representatives of clusters 10 (Streptomyces fulvissimus; 

Williams et al., 1983a) and 17 (Streptomyces griseoviridis; Williams et al., 1983a). 

Members of these taxa were compared with one another and with twelve strains representing 

the DNA relatedness groups encompassed in the Streptomyces lavendulae phenotypic 

cluster, including Streptomyces lavendulae NRRL B-1230T. The test strains were assigned 

to 15 DNA relatedness groups, including ten single membered clusters. The DNA 

relatedness data supported the separation of the members of the Streptomyces fulvissimus 

and Streptomyces griseoviridis phenotypic clusters into six genomic species: Streptomyces 
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aureoverticillatus (Krassilnikov and Yuan 1960) Pridham 1970 AL, Streptomyces fulvissimus 

(Jensen 1930) Waksman and Henrici 1948`, Streptomyces griseoviridis Anderson et al. 

1956A (with Streptomyces daghestanicus (Sveshnikova 1957) Pridham et al. 1958AL as a 

subjective synonym), Streptomyces longispororuber Waksman 1953`L (with Streptomyces 

chryseus (Krassilnikov et al. 1965) Pridham 1970AL as a subjective synonym), Streptomyces 

murinus Frommer 1959A and Streptomyces spectabilis Mason et al. 1961 AL. None of the 

strains from the Streptomyces fulvissimus and Streptomyces griseoviridis clusters shared 

high DNA relatedness values with Streptomyces lavendulae NRRL B- 12W. 

Labeda (1996) also determined the levels of DNA relatedness among 35 strains of 

Streptomyces species originally classified in the genus Streptoverticillium. These organisms 

represented eight out of the twenty-four phenotypic cluster groups described for the genus 

Streptoverticillium in Bergey's Manual of Systematic Bacteriology (Locci & Schofield, 

1989). Average linkage clustering of the DNA: DNA relatedness data resulted in the 

delineation of twenty clusters, including thirteen single-membered clusters, at a DNA 

relatedness level of 70 %. 

Comparable investigations (Labeda, 1992) with phytopathogenic strains of 

Streptomyces ipomoeae (Person and Martin 1940) Waksman and Henrici 1948, a pathogen 

of sweet potatoes, revealed a very close relationship (94-100% DNA: DNA relatedness) 

between strains isolated from several different locations in the USA and Japan thereby 

suggesting a common ancestry of the host root-stock from which the strains were isolated. 

Streptomyces ipomoeae strains were found to be unrelated to other plant pathogenic 

streptomycete species, namely, Streptomyces acidiscabies Lambert and Loria 1989b (17 % 

DNA relatedness) and Streptomyces scabiei (Thaxter 1891) Lambert and Loria 1989a (39 % 

DNA relatedness) or to other members of Streptomyces species that produced blue-spores. 

Streptomyces acidiscabies strains assigned to the same genomic species (Healy & Lambert, 

1991) have been shown to be related on the basis of phenotypic properties (Doering-Saad et 
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al., 1992). However, members of the genomic species corresponding to Streptomyces 

scabies (Healy & Lambert, 1991) were assigned to different phenetic clusters by Doering- 

Saad et al. (1992). 

The studies outlined above underline the need to evaluate the status of 

streptomycete clusters based on the numerical analysis of phenotypic data. The lack of 

congruence between much of the numerical phenetic and DNA relatedness data can be 

partly attributed to the difficulty of finding sufficient good quality phenotypic traits to 

distinguish between representatives of the many validly described species classified in the 

genus Streptomyces. However, DNA: DNA relatedness studies must also be interpreted with 

care as they can be hampered by technical difficulties and experimental test error (Sneath, 

1983; Johnson, 1991; Goodfellow et al., 1997a). In addition, information on taxonomic 

structure can be biased when small numbers of reference strains are examined in DNA 

relatedness experiments (Hartford & Sneath, 1988), as shown in the proposal for 

Streptomyces spitsbergensis (Wieczorek et al., 1993; Hatano et al., 1997). These workers 

showed that it is important to choose reference strains that are widely spread and 

representative of the species under study. 

The interpretation of DNA: DNA relatedness studies can also be influenced by the 

subjective nature of cut-off points considered to correspond to species level relatedness. 

Johnson (1989) suggested that DNA relatedness values as low as 60 % might indicate 

species level relatedness. However, recent DNA relatedness studies on streptomycetes have 

implied that genomic relatedness greater than 80 % may actually equate to species level 

relatedness in this genus (Labeda, 1993,1998a; Labeda & Lyons, 1992a, b). 

It is important to recognise that the advantages of DNA: DNA relatedness studies 

outweigh their limitations. In the case of streptomycetes such studies are (i) giving a more 

uniform concept of what constitutes a streptomycete species, (ii) yielding valuable data for 

the evaluation of the status of phenotypically defined species, (iii) providing a means for 



CHAPTER III INTRODUCTION 199 

delineating taxospecies that accommodate substantial amounts of genetic diversity and (iv) 

highlighting groups that correspond to genomic species. 

DNA fingerprinting studies. Representatives of the genus Streptomyces have been the 

subject of a number of DNA fingerprinting studies designed to separate closely related 

species and strains. Restriction endonuclease digestion of genomic DNA was used by 

Crameri et al. (1983) to determine relationships between Streptomyces strains belonging to 

different species. The use of frequently cutting restriction enzymes led to the generation of 

complex fingerprints which contained a large number of low molecular weight fragments. It 

was concluded that such complex patterns did not provide sufficient resolution for 

determining taxonomic relationships at the species level. 

Beyazova and Lechevalier (1993) used the low-frequency restriction fragment 

analysis (LFRFA) technique to evaluate relationships between 59 strains belonging to six 

Streptomyces species, including organisms associated with human and plant infections, 

namely, Streptomyces albus, Streptomyces ipomoeae and Streptomyces somaliensis; eight 

representatives of Streptomyces coeruleorubidus Labeda and Lyons 1991b and Streptomyces 

purpurascens Labeda and Lyons 1991b were also examined. The Streptomyces ipomoeae 

strains, which represented a well defined genomic species (Labeda, 1992), were recovered 

as two distinct subclusters defined at the 75 % similarity level. In contrast, the remaining 

organisms, including the Streptomyces purpurascens and Streptomyces coeruleorubidus 

strains, were not recovered in taxonomically coherent groups. 

Doering-Saad et al. (1992) examined 40 potato scab-inducing and nonpathogenic 

streptomycete isolates by ribotyping. The results revealed a high degree of diversity among 

the pathogenic strains with little correlation found with corresponding RFLP and numerical 

phenetic data. The authors concluded that genes coding for pathogenicity determinants were 

spread amongst members of different Streptomyces species by mobilizable elements and that 

RFLP data were of little importance in the classification of Streptomyces species. 
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Clarke et al. (1993) examined the RFLP profiles of the ribosomal RNA genes of 

representatives of fourteen Streptomyces species; all but one of the test strains had 

previously been shown to be closely related on the basis of numerical phenetic and DNA- 

DNA relatedness data (Williams et al., 1983a; Mordarski et al., 1986). Considerable 

variation was observed in the RFLP patterns of the representatives of the various species 

though several common fragments were also observed. However, when a method was 

designed to increase the number of fragments per strain on a single agarose gel good 

congruence was found with the results of the earlier studies, in particular Streptomyces 

albidoflavus and Streptomyces anulatus were shown to be good species. Clarke and his 

colleagues concluded that RFLP analysis of ribosomal RNA genes appeared was an accurate 

and rapid strain identification tool for establishing relationships between closely related 

Streptomyces species. 

Fifteen clinically significant streptomycetes were included in the PCR-RFLP analysis 

of an amplified 439-bp segment (amplicon) of the 65-kDa heat shock protein gene together 

with Streptomyces albus ATCC 3004T, Streptomyces griseus strains ATCC 10137 and 

ATCC 23345T and Streptomyces somaliensis ATCC 33201T (Steingrube et al., 1997). The 

test strains were assigned to five groups. RFLP patterns that matched those exhibited by the 

type strains of Streptomyces albus, Streptomyces griseus and Streptomyces somaliensis were 

obtained from fourteen out of the nineteen Streptomyces isolates. In addition, all but one of 

these strains exhibited a unique Hinf I fragment of > 320 bp. It was concluded that PCR- 

RFLP analysis provides a rapid way of identifying clinically significant streptomycetes. 

PCR-fingerprinting based on repetitive intergenic DNA sequences (rep-PCR) has 

been examined as a means of differentiating between closely related strains of plant 

pathogenic streptomycetes which in some cases were indistinguishable using other 

taxonomic criteria (Sadowsky et al., 1996). It was shown that rep-PCR DNA fragments of 

Streptomyces strains with the BOXAIR primer were unique, stable and reproducible thereby 
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showing that the method might provide a useful and rapid way of determining strain identity 

and tracking strains for ecological and epidemiological investigations. In contrast, the 

method seemed to be of little value in discriminating between streptomycete species. The 

rep-PCR results were in good agreement with the DNA analyses of Doering-Saad et al. 

(1992) who also found that RFLP groupings of scab-forming streptomycetes did not 

correlate with numerical phenetic data. 

Hain et al. (1997) examined the 16S-23S rRNA intergenic spacer region of twenty- 

one strains identified as Streptomyces albidoflavus by fatty acid analysis together with the 

type strains of nine proposed subjective synonyms of this taxon. The 16S-23S rRNA 

intergenic spacer region was found to vary in length and sequence composition among the 

strains; the variation in length was rapidly and accurately represented by high-resolution 

electrophoresis of dye-labelled PCR products. Dye-labelled amplication products of the 16S- 

23S rRNA intergenic spacer region were generated for the twenty-seven strains shown to 

have identical 16S rRNA sequences. Electrophoresis and fragment size analysis of these 

products revealed extensive variability in the number and size of the spacer regions and this 

led to the recognition of nineteen distinct banding patterns. The number of bands ranged 

from two to five with band sizes between 347 and 363 bp. This method was considered to be 

a useful for discriminating between streptomycetes at strain level. Strains with the same 

16S-23S rRNA intergenic spacer banding pattern were distinguished by sequence 

composition of the spacer region. 

(c) Chemotaxonomy 

The detection of LL-A2pm, hexa- and octahydrogenated menaquinones with nine 

isoprene units, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and 

phosphatidylinositol dimannosides as major phospholipids and the absence of diagnostic 

sugars in whole-organism hydrolysates allows unknown sporoactinomycetes to be assigned 

to the genus Streptomyces (Table 3-2). Discrimination at the species level can be achieved 
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by analyses of fatty acids and cellular and ribosomal proteins. Some of these methods 

provide quantitative or semi-quantitative data, as in the case of cellular fatty acid and 

menaquinone analyses whereas others yield qualitative data including the procedures used to 

detect the isomers of A2pm. 

Actinophages. Phage host range studies have been found to be useful for the classification 

and identification of some streptomycetes species (Kutzner, 1961a, b; Korn et al., 1978; 

Schneider et al., 1990; Wellington & Williams, 1981; Williams et al., 1993). Wellington 

and Williams (1981) isolated actinophages which were specific for Streptoverticillium 

species. Kom-Wendisch and Schneider (1992) found species-specific phages for 

Streptomyces albus, Streptomyces coelicolor Muller, Streptomyces griseus, Streptomyces 

violaceuruber and Streptomyces viridochromogenes. These authors also noted that the phage 

host range data were consistent with the recognition of Streptoverticillium as a synonym of 

the genus Streptomyces. 

Curie-point pyrolysis mass spectrometry. Sanglier et al. (1992) carried out a number of 

experiments to determine the potential of Curie-point pyrolysis mass spectrometry in the 

classification, identification and typing of industrially important actinomycetes. They found 

the method to be of value in separating streptomycetes and for highlighting closely related 

strains. The analysis of environmental isolates of Streptomyces violaceusniger demonstrated 

that soil isolates could be distinguished from representative type strains assigned to the 

Streptomyces violaceusniger species-group (cluster 32; Williams et al., 1983a) thereby 

indicating that PyMS might prove to be an effective way of detecting novel streptomycete 

taxa. 

Ferguson et al. (1997) found good congruence between numerical phenetic and 

PyMS data in a study designed to evaluate the taxonomic integrity of Streptomyces 

albidoflavus (Williams et al., 1983a). Principal component-canonical variates analysis of 

experimental data collected on thirty-two representative organisms showed that the 
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Streptomyces albidoflavus strains formed a distinct group. This result, when taken with 

earlier whole-organism protein (Manchester et al., 1990), DNA: DNA relatedness 

(Mordarski et al., 1986), 16S rRNA sequence (Hain et al., 1997) and numerical taxonomic 

data (Williams et al., 1983a), indicated that Streptomyces albidoflavus is a distinct and well 

defined species. In contrast, the species-groups equated with Streptomyces anulatus and 

Streptomyces halstedii were found to be heterogeneous and hence in need of further study. 

There is also evidence that analysis of PyMS data using artificial neural networks provides 

an effective way of identifying closely related species of Streptomyces (Chun et al., 1993a, b, 

1997). 

Fatty acids. Saddler et al. (1987) examined fatty acid methyl esters prepared from members 

of the Streptomyces cyaneus species-group (cluster 18; Willimas et al., 1983a), additional 

strains forming a blue aerial spore mass and blue-spored environmental isolates using soft 

independent modelling of class analogy (SIMCA) statistics. Disjoint principal component 

analysis and cross validation showed that most of the Streptomyces cyaneus strains and 

blue-spored soil isolates could be represented by statistically stable principal component 

models. The Streptomyces cyaneus strains fell into two major groups, the largest of which 

contained eighteen representatives of Streptomyces cyaneus. The second cluster was 

relatively heterogeneous as it contained a few of the Streptomyces cyaneus strains and all of 

the additional blue-spored organisms. A third group encompassed all of the blue-spored 

isolates from soil. However, apart from the blue-spored soil isolates, which formed a 

uniform group, the SIMCA groups included strains with diverse morphological properties 

(Williams et al., 1983a). It was disappointing that there was no evidence of correlation 

between the Streptomyces cyaneus fatty acid groups and genomic species highlighted in 

DNA: DNA relatedness studies (Labeda & Lyons, 1991 b); the Streptomyces coeruleorubidus 

and Streptomyces purpurascens strains, for instance, were scattered amongst the unrelated 

strains. 
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Multilocus enzyme electrophoresis. Oh et al. (1996) examined sixteen strains taken to 

represent the numerical phenetic classification of Williams et al. (1983a) together with eight 

additional Streptomyces strains by using multilocus enzyme electrophoresis (MEE) to 

determine the relative electrophoretic mobilities of eleven enzymes. Some enzymes, namely, 

hexokinase, glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, malate 

dehydrogenase and isocitrate dehydrogenase, gave a limited number of constant and 

reproducible polymorphic patterns which were considered to be of potential value for the 

classification and identification of streptomycetes. It was particularly interesting that 

Streptomyces griseolus ISP 5067T and Streptomyces halstedii ISP 5068T (cluster 1C; 

Williams et al., 1983a) shared identical patterns, as did Streptomyces hygroscopicus ISP 

5578T and Streptomyces violaceusniger ISP 5563T (cluster 32; Williams et al., 1983a). 

Polyacrylamide gel electrophoresis of whole-organism proteins. Manchester et al. (1990) 

examined the whole-organism proteins of thirty-seven representative Streptomyces 

albidoflavus (cluster IA; Williams et al., 1983a), Streptomyces anulatus (cluster 1B), 

Streptomyces cyaneus (cluster 18), Streptomyces rimosus (cluster 42) and Streptomyces 

(Streptoverticillium) griseocarneum (cluster 55) strains by polyacrylamide gel 

electrophoresis. Most of the Streptomyces albidoflavus and Streptomyces anulatus strains 

were recovered in discrete clusters but the Streptomyces cyaneus and Streptomyces 

(Streptoverticillium) griseocarneum strains were scattered over several groups. These 

findings were in good agreement with DNA: DNA relatedness (Mordarski et al., 1986), 

PyMS (Ferguson et al., 1997) and 16S rRNA sequence data (Hain et al., 1997) in showing 

that Streptomyces albidoflavus and Streptomyces anulatus were good species. The protein 

patterns also underpinned the DNA: DNA relatedness (Labeda & Lyons, 1991b) and fatty 

acid data (Saddler et al., 1987) which highlight the heterogeneity of Streptomyces cyaneus. 

Ribosomal proteins. Ochi (1989,1992) demonstrated the usefulness of bi-dimensional 

polyacrylamide gel electrophoresis of ribosomal proteins in discriminating between 
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Streptomyces strains. He compared the ribosomal proteins of representatives of nine 

Streptomyces clusters defined by Williams et al. (1983a), including Streptomyces 

antibioticus ATCC 14888T (cluster 31), Streptomyces avidinii ISP 5526T (cluster 56), 

Streptomyces griseoflavus FERM 1805T (cluster 37), Streptomyces griseus IFO 13189r 

(cluster IB), Streptomyces hygroscopicus ISP 5578T (cluster 32), Streptomyces lavendulae 

subsp. grasserius ISP 5385T, Streptomyces lavendulae subsp. lavendulae ISP 5069T (cluster 

61), Streptomyces parvullus ISP 5048T (cluster 12), Streptomyces venezuelae ISP 5230T 

(cluster 6), Streptomyces violaceoruber (coelicolor) A3(2) and Streptomyces violaceus ISP 

5082T (cluster 6). The ribosomal protein patterns were found to be species specific though 

Streptomyces lavendulae subsp. grasserius ISP 53857 and Streptomyces lavendulae subsp. 

lavendulae ISP 5069T had identical ribosomal protein patterns which were very similar to 

that of Streptomyces avidinii ISP 5526T. This technique has not been used by other workers 

presumably because 2D-PAGE profiles of ribosomal proteins require elaborate sample 

preparation and are relatively difficult to standardise due to the fact that the protein patterns 

are highly complex and difficult to interpret. 

Ochi and Hiranuma (1994) analysed the N-terminal sequences (20 amino acids) of 

ribosomal AT-L30 proteins extracted from forty-two strains representing thirty-five species 

classified in the genera Streptomyces, Kitasatospora and Streptoverticillium. They found 

that all of the representatives of the genera Kitasatospora and Streptoverticillium had 

identical or very similar sequences to Streptomyces exfoliatus JCM 4366T. These strains also 

showed high levels of relatedness to Streptomyces lavendulae IFO 12789T. It has been 

already pointed out that these results were used to support the view that the genera 

Kitastaospora and Streptoverticillium should become synonyms of the genus Streptomyces 

(Witt & Stackebrandt, 1990; Wellington et al., 1992). 

Ochi (1995) undertook an extensive analysis of the ribosomal AT-L30 proteins of 

eighty-one species taken to represent the genus Streptomyces (Williams et al., 1983a). Forty- 



CHAPTER III INTRODUCTION 206 

nine strains were classified into four groups (I to IV) the members of which shared identical 

AT-L30 N-terminal amino acid sequences. A phylogenetic tree constructed on the basis of 

the levels of similarity of the AT-L30 N-terminal amino acid sequences revealed the 

existence of six major clusters. The first cluster contained the members of groups I and II 

together with representatives of three other species, namely, Streptomyces chattanoogensis 

JCM4571T, Streptomyces lydicus JCM 4492T and Streptomyces misakiensis JCM 4653T; the 

second cluster, the members of groups III and IV and representatives of eight other species, 

namely, Streptomyces albidoflavus JCM 44461, Streptomyces bambergiensis JCM 47281', 

Streptomyces cellulosae JCM 44621', Streptomyces diastaticus JCM 47451' Streptomyces 

griseoflavus JCM 44791, Streptomyces longisporaflavus JCM 4396', Streptomyces 

thermonitrificans JCM 4841T, Streptomyces thermovulgaris JCM 4520T; the third cluster, 

Streptomyces ramulosus JCM 4604T and Streptomyces ochraceiscleroticus JCM 4801 T; the 

fourth cluster, Streptomyces rimosus JCM 4667T; the fifth cluster, Streptomyces aurantiacus 

JCM 4453T and Streptomyces tubercidicus JCM 4558T; and the sixth cluster Streptomyces 

albus JCM 4450T and Streptomyces sulphureus JCM 48357. Streptomyces thermonitrificans 

JCM 4841T, Streptomyces thermoviolaceus subsp. thermoviolaceus JCM 48431 and 

Streptomyces thermovulgaris JCM 4520T had identical AT-L30 N-terminal amino acid 

sequences and belonged to the first cluster; the same sequence was shown by Streptomyces 

cellulosae JCM 4462T 

Good congruence was found between the AT-L30 N-terminal amino acid and the 

numerical phenetic data of Williams et al. (1983a) as exemplified by Streptomyces griseus 

JCM 4644T and Streptomyces anulatus JCM 4721 T (the Streptomyces anulatus group 

[subcluster 1B]); Streptomyces parvullus ATCC 124341, Streptomyces rochei JCM 4074T 

and Streptomyces tendae JCM 46101 (the Streptomyces rochei group [cluster 12]); 

Streptomyces lydicus JCM 4492T and Streptomyces nigrescens JCM 44011 (the 

Streptomyces lydicus group [cluster 29]); Streptomyces hygroscopicus IFO 134721 and 
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Streptomyces violaceusniger JCM 4850T (the Streptomyces violaceusniger group [cluster 

32]); Streptomyces thermonitrificans JCM 4841T and Streptomyces thermovulgaris JCM 

4520T (the Streptomyces thennovulgaris group [cluster 36]); Streptomyces cyanoalbus JCM 

43631', Streptomyces griseoflavus JCM 4479T and Streptomyces prasinopilosus JCM 4404 1' 

(the Streptomyces griseoflavus group [cluster 37]). Good congruence was also found 

between the AT-L30 sequence and corresponding 16S rRNA sequence data. 

Serology. Cross and Spooner (1963) used an agar diffusion technique in an attempt to 

identify streptomycetes serologically but the results were difficult to interpret due to the 

difficulty of choosing representative strains. Ridell and Williams (1983) demonstrated that 

Streptomyces and Streptoverticillium strains which belonged to same numerical phenetic 

cluster (Williams et al. 1983a) shared a higher number of precipitinogens in common when 

compared with strains from other numerically defined clusters, as determined by using an 

immunodiffusion technique. Ridell et al. (1986) subsequently found that Streptomyces and 

Streptoverticillium strains belonging to the same phenetic clusters showed a high degree of 

immunogenic similarity. 

5. Polyphasic taxonomy 

It can be concluded from the studies outlined above that streptomycete systematics 

is still in a state of flux despite the results of extensive numerical phenetic surveys 

(Williams et al., 1983a; Saddler et al., 1988; Kämpfer et al., 1991; Sahin, 1995). 

Nevertheless, it is clear that the description of Streptomyces species should be based on data 

derived from the application of chemotaxonomic, molecular systematic and phenotypic 

characterisation methods. Strategies similar to the one outlined in Table 3-2 are increasingly 

being used to assign unknown sporoactinomycetes to the genus Streptomyces, as 

exemplified by the descriptions of Streptomyces caviscabies Goyer et al. 1996, Streptomyces 

seoulensis Chun et al. 1997, Streptomyces stramineus Labeda et al. 1997, Streptomyces 
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thermocarboxydovorans Kim et al. 1998, Streptomyces thermocarboxydus Kim et al. 1998 

and Streptomyces turgidiscabies Miyajima et al. 1998. 

A polyphasic taxonomic approach has also been used to circumscribe three 

putatively novel species provisionally designated Streptomyces species-groups A, B and C 

(Manflo et al., 1995; Atalan et al., 1999). The provisional classification of these three taxa 

on the basis of morphology and pigmentation was supported by a combination of genotypic 

(DNA: DNA relatedness, ribotyping and 16S rRNA sequencing) and phenotypic data (fatty 

acids, numerical taxonomy, rapid fluorogenic enzyme tests, pyrolysis mass spectrometry and 

whole-organism protein electrophoresis). 

The primary aim of the present study was to determine the taxonomic relationships 

of the putative type strains of "Streptomyces thermoflavus" (DSM 40574), "Streptomyces 

thermophilus" (DSM 40365) and "Streptomyces thermotolerans" (DSM 40227); three 

alkaltolerant streptomycetes, namely, Streptomyces canescens DSM 40001 r, Streptomyces 

cavourensis subsp. cavourensis DSM 40300T and Streptomyces hydrogenans DSM 40586T; 

Streptomyces violaceoruber DSM 40049T, which grow at 55 °C; and representative 

alkalitolerant, thermophilic and neutrophilic, thermophilic streptomycete isolates included in 

the numerical phenetic study by Sahin (1995) using a polyphasic approach. 
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Materials and Methods 

1. Strains and cultivation 

Organisms and maintenance. The sources and histories of the reference strains and 

isolates are given in Table 3-3. All of the isolates representing clusters defined in the 

numerical phenetic study of Sahin (1995) are centrotype strains. The test strains were 

maintained on inorganic salt-starch agar (ISP medium 4, Difco; Shining & Gottlieb, 1966) 

at room temperature and as glycerol suspensions (20 %, w/v) at -20 °C (Wellington & 

Williams, 1978). The glycerol suspensions were prepared in cryovials by scraping growth 

from sporulating strains incubated on inorganic salt-starch agar (ISP medium 4, Difco) 

plates at 45 °C for 5 days. As explained earlier, the frozen glycerol suspensions were used 

both for long-term preservation and as a ready source of inoculum. The test strains were 

examined using the taxonomic methods shown in Table 3-4. 

Preparation of biomass. Single colonies from each of the test strains were used to 

inoculate 50 ml of Tryptic Soy broth (Difco Laboratories, Detroit, USA) held in 100 ml 

conical flasks. The inoculated flasks were shaken at 150 rpm for 3 to 5 days at 45 °C when 

growth was checked for purity by subculturing onto inorganic salt-starch agar (ISP medium 

4, Difco; Shirling & Gottlieb, 1966) plates and then harvested by centrifugation at 6,000 

rpm for 10 minutes. The cells used for the chemical studies were washed in distilled water 

and freeze-dried; those required for the molecular systematic investigations were washed in 

sterile TE buffer (Tris-HCL pH 8.0,10mM; EDTA 1mM) and stored at -20 °C until 

needed. 

2. Morphology and pigmentation 

Test strains (Table 3-4) were examined for aerial spore mass colour following 

incubation on ISP 4 agar (Difco; Shirling & Gottlieb, 1966) for 5 days at 45 °C. Soluble 
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pigment production was detected on glucose asparagine agar (ISP 5, Difco; Shirling & 

Gottlieb, 1966), and the production of melanin pigments on peptone yeast extract iron (ISP 

6, Difco; Shining & Gottlieb, 1966) and tyrosine agars (ISP 7, Difco; Shining & Gottlieb, 

1966). Inoculated plates were incubated for 7 days at 45 °C. Spore chain morphology and 

spore surface ornamentation were observed after incubation for 5 days on ISP 4 agar 

(Shirling & Gottlieb, 1966) using light and scanning electron microscopy, as described 

earlier (Chapter II, pages 97 and 99). 

3. Degradation and nutritional tests 

The degradation and growth tests (Table 3-4) were carried out using the media and 

methods described earlier (Chapter II, pages 99 and 100). 

4. Menaquinone and polar lipid analyses 

The menaquinone and polar lipid composition of the test strains (Table 3-4) were 

determined following the procedures described earlier (Chapter II, pages 100 and 103). 

5. DNA base composition 

The base composition of genomic DNA preparations of the test strains (Table 3-4) 

were examined following the procedures outlined in Chapter II, page 103. 

6. Sequencing and analysis of 16S rRNA 

Extraction of genomic DNA and PCR amplification of the 16S rRNA from the test 

strains (Table 3-4) were carried out as described earlier (Chapter II, pages 103 and 121). 

The almost complete and partial 16S rRNA sequences of the test strains were aligned 

manually with corresponding streptomycete nucleotide sequences (Table 3-5) retrieved from 
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Table 3-5. Test strains and their nucleotide sequence accession numbers 

Species or subspecies Strain' Sources" Accession no. References 
Almost complete nucleotide sequences (>1300) 
Isolates 
Streptomyces strain B19 DSM 41700 This study 
Streptomyces strain NT307 cluster 3` - This study 
Streptomyces strain NAR54 cluster 6 - This study 
Streptomyces strain NT358 cluster 7 - This study 
Streptomyces strain NT322 cluster 8 - This study 
Streptomyces strain NT576 cluster 10 - This study 
Streptomyces strain NT381 cluster 11 - This study 
Streptomyces strain NT90 cluster 15 - This study 
Streptomyces strain NAR85 SMC, AJO01434 This study 

DSM 41740 
Streptomyces strain TA56 SMC, AJ000284 This study 

DSM 41741 
Reference strains 
S. acidiscabies ATCC 49003T D63865 Takeuchi et al. (1996) 
S. albus ISP 5313T DSM 40313T X53163 Stackebrandt et at. (1991) 
S. albidoflavus ISP 5455T DSM 40455T Z76676 Hain et al. (1997) 
S. ambofaciens ISP 5053T ATCC 23877T M27245 Pernodet et al. (1989) 
S. bikiniensis ISP 5581 T DSM 40581 T X79851 Mehling et al. (1995) 
S. bluensis ISP 5564T - X79324 Mehling et al. (1995) 
S. bottropensis ISP 5262T ATCC 25435T D63868 Takeuchi et al. (1996) 
S. caelestis ISP 50847 NRRL 24187 X80824 Mehling et al. (1995) 
S. canescens ISP 5001T DSM 40001T - This study 
S. cavourensis subsp. cavourensis ISP 5300T DSM 40300T - This study 
S. coeruleoprunus DSM 414727 - Stackebrandt, unpublished 
S. diastatochromogenes ISP 5449T ATCC 12309 T D63867 Takeuchi et al. (1996) 
"S. espinosus" NRRL 5729 X80826 Mehling et al. (1995) 
S. eurythermus ISP 50147 ATCC 149757 D63870 Takeuchi et al. (1996) 
S. fradiae DSM 400637 - Stackebrandt, unpublished 
S. galbus ISP 5089T DSM 40089r X79852 Mehling et al. (1995) 
S. ghanaensis DSM 40746 T - Stackebrandt, unpublished 
S. glaucescens DSM 40716 X79322 Mehling et al. (1995) 
S. gougerotii ISP 53247 DSM 40324T Z76687 Hain et al. (1997) 
S. griseocarneus ISP 50047 DSM 40004T X99943 Mehling et al. (1995) 
S. griseus ISP 52367 KCTC 9080T X61478 Kim eta!. (1991) 
S. hydrogenans ISP 5586T DSM 405867 - This study 
"S. hygroscopicus subsp. limoneus" ATCC 21431 X79853 Mehling et al. (1995) 

S. lincolnensis ISP 53557 NRRL 29367 X79854 Mehling et al. (1995) 

S. macrosporus DSM 41449T Z68099 Kim et al. (1996) 

S. mashuense ISP 5221 T DSM 40221 T X79323 Mehling et al. (1995) 

S. megasporus DSM 414767 268100 Kim et al. (1996) 

S. neyagawaensis ISP 55887 ATCC 27449T D63869 Takeuchi et al. (1996) 

S. pseudogriseolus NRRL 3985 X80827 Mehling et al. (1995) 

S. rimosus R6-554 - X62884 Pujic et al., unpublished 

S. roseoflavus DSM 405367 - Stackebrandt, unpublished 

S. scabiei ATCC 49173 7 D63862 Takeuchi et al. (1996) 
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S. seoulensis 
S. subrutilus 
S. the rmocarboxydovorans 
S. thermocarboxydus 
S. thermodiastaticus 
"S. thermoflavus" 
S. thermogriseus 

S. thermolineatus 
S. thermonitrificans 
"S. thermophilus" 
"S. thermotolerans" 
S. thermoviolaceus subsp. apingens 
S. thermoviolaceus subsp. 
thermoviolaceus 
S. thermovulgaris 
S. violaceoruber 
S. virginiae 

IMSNU 21266T Z71365 Chun et al. 
ISP 5445T DSM 40445T X80825 Mehling et al. (1995) 
AT52T DSM 44296T U94489 Kim et al. (1998) 

AT37T DSM 44293T U94490 Kim et al. (1998) 

ISP 5573T DSM 40573T Z68101 Kim et al. (1996) 
ISP 5574 DSM 40574 This study 

CCTCC AF056714 Xu et al., 1998 
AA97014T 
DSM 41451 T Z68097 Kim et al. (1996) 

ISP 5579T DSM 40579T Z68098 Kim et al. (1996) 

ISP 5365 DSM 40365 - This study 
ISP 5227 DSM 40227 - This study 

DSM 41392T Z68095 Kim et al. (1996) 

ISP 5443T DSM 40443T Z68096 Kim et al. (1996) 

ISP 5444T DSM 40444T Z68094 Kim et al. (1996) 

ISP 5049T DSM 40049T - This study 
ISP 5094T IFO 3729T D85119 Mehling er al. (1995) 

Partial nucleotide sequences (<1300 nucleotides) 
Isolates 
Streptomyces strain NAR84 cluster 5 - This study 
Streptomyces strain NT399 cluster 9 - This study 
Streptomyces strain NT371 cluster 12 - This study 
Streptomyces strain NT312 cluster 13 - This study 
Streptomyces strain NT336 cluster 14 - This study 
Streptomyces strain TA34 cluster 16 - This study 
Streptomyces strain A1853 cluster 19 - This study 

Streptomyces strain A1956 cluster 20 - This study 
Streptomyces strain TA61 cluster 24 - This study 

Streptomyces strain TA26 cluster 25 - This study 
Streptomyces strain TA179 cluster 26 - This study 
Streptomyces strain NT123 SMC - This study 
Streptomyces strain NT218 SMC - This study 
Streptomyces strain NT493 SMC - This study 
Streptomyces strain TA12 SMC - This study 
Streptomyces strain TA127 SMC - This study 

T, Type strain. 
°, ISP, International Streptomyces Project codes (Gottlieb & Shirling, 1967; Shirling & Gottlieb, 1968a, b, 

1969,1972). 
b, ATCC, American Type Culture Collection, 10801 University Boulevard, Manassas, VA, U. S. A.; DSM, 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; IFO, Institute 

of Fermentation, Osaka, Japan; IMSNU, Institute of Microbiology, Seoul National University, Seoul, 

Republic of Korea; KCTC, Korean Collection of Type Cultures, Korean Research Institute of Bioscience and 
Biotechnology, Taejeon, Republic of Korea; NRRL, Northern Regional Research Laboratory, Agricultural 

Research Service, U. S. Department of Agriculture, Peoria, Illinois, U. S. A. 
°, Defined by Sahin (1995). SMC, single-membered cluster. 
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the RDP (Ribosomal Database Project; Maidak et al., 1997) and EMBUGenBank databases 

(Benson et al., 1998) by using the AL16S program (Chun, 1995). 

Evolutionary trees were inferred by using the least-squares (Fitch & Margoliash, 

1967), maximum-parsimony (Kluge & Farris, 1969) and neighbour joining algorithms 

(Saitou & Nei, 1987). Evolutionary distance matrices for the least-squares and neighbour- 

joining methods were generated as described by Jukes and Cantor (1969). The PHYLIP 

software package (Felsenstein, 1993) was used for generating all of the phylogenetic trees. 

The resultant unrooted tree topology was evaluated by bootstrap analysis (Felsenstein, 1985) 

of the neighbour joining method data based on 1000 re-samplings using the SEQBOOT and 

CONSENSE programs in the PHYLIP package (Felsenstein, 1993). The root position of the 

unrooted tree based on the neighbour joining method was estimated by using five outgroup 

organisms (Arthrobacter globiformis DSM 20214T [accession number M23411 ], Bacillus 

subtilis [accession number K00637], Escherichia coli [accession number JO 1695], Nocardia 

asteroides ATCC 19247T [accession number Z36934] and Streptosporangium roseum DSM 

43021T [accession number X70425], as descri bed by Swofford and Olsen (1990). 

The sequences of strains NT307 (centrotype strain of cluster 3; Sahin, 1995), NAR54 

(centrotype strain of cluster 6; Sahin, 1995), NT358 (centrotype strain of cluster 7, Sahin, 

1995), NT322 (centrotype strain of cluster 8, Sahin, 1995), NT576 (centrotype strain of 

cluster 10, Sahin, 1995) and NT381 (centrotype strain of cluster 11, Sahin, 1995) were 

compared with corresponding partial sequences of most of the validly described 

streptomycetes species held in DSMZ database (Stackebrandt et al., unpublished); the 

partial 16S rRNA sequences were based on about 872 nucleotides between positions 33 and 

474 and positions 804 and 1233 (Streptomyces ambofaciens numbering system; Pemodet et 

al. [1989]). 
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7. DNA: DNA relatedness studies 

The DNA relatedness assays were performed on the nineteen strains (Table 3-4) by 

using the direct binding filter hybridisation method following a well-established procedure 

(Gillespie & Spiegelman, 1965; Denhardt, 1966; Meyer & Schleifer, 1978; Mordarski et al., 

1976), as described earlier (Chapter II, pages 121 and 129). The concentrations of SSC and 

the hybridization temperature were designed to achieve optimal hybridization conditions, 

that is, 25 °C below the melting temperature (Tm) assuming that the mean DNA base 

composition of Streptomyces strains is 70 mol% G plus C. 

8. Molecular fingerprinting: Ribotyping 

Ribotyping of the chromosomal DNA of sixteen test strains (Table 3-4) was 

performed as outlined in Figure 3-3. 

Endonuclease digestion and agarose gel electrophoresis. It is known that Bam HI 

(Boeringer Mannheim, Germany) and Sal I (Boeringer Mannheim, Germany) produce 

relatively less strain-specific ribotyping patterns in streptomycetes (Zakrzewska- 

Czerwinska, personal communication). Restriction enzymes which tend to cut inside rRNA 

operons should be avoid. 

Purified genomic DNA (ca. 2-3 µg), prepared as described earlier (Chapter II, small 

scale DNA extraction for 16S rRNA sequencing), was digested with Bam HI (recognition 

sequence GJ. GATCC), Sal I (G LTCGAC) and Pvu II (CAG LCTG) restriction 

endonucleases using 10 units of enzyme per I pg of DNA in 25 pl volume reactions at 37°C 

overnight, as recommended by the manufacturer (Boehringer Mannheim Biochemica, 1996). 

The resultant DNA fragments were separated in 20 cm long agarose gels (1 %b, w/v; 5 mm 

thickness) prepared using low electroendosmosis (EEO) agarose (Sigma). Electrophoresis 

was carried out at 50 V for 12 hours at room temperature in Ix TEB buffer (Tris-borate- 

EDTA; Sambrook et al., 1989). The gels were stained for 20 minutes with ethidium bromide 
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Figure. 3-3. Protocol for ribotyping experiments using digoxigenin labelled rDNA probes 

Geno 1c DNA - 2-3 . tg of purified DNA 

I 
Endonuclease - Endonuclease (10 U µg- I DNA), overnight 

digestion digestion in 20µl reaction volume 

1 
Agarose gel - I%, w/v agarose, 1x TEB, 50 V, 4 hours 

electrophoresis - Ethidium bromide staining 
- UV photography (optional) 

5+ 16 + 23S rDNA Southern blotting - Denaturation: 0.5 M NaOH, 1.5 M NaCl 
(p64 plasmid) 2x 15 minutes with gentle shaking 

- Neutralisation: 0.5 M Tris pH 8.0,1.5 M 
NaCl, 0.001 M EDTA 

Random-primer 2x 15 minutes with gentle shaking 
labelling 

- Vacuum transfer: Hybond-N+ membrane, (DIG Labelling Kit, 20 x SSC 
Boehringer Mannheim) 

- Fixation: 120°C, 30 minutes 

rDNA-DIG probe Hybridisationa - Pre-hybridisation: hybridisation buffer, 
63°C, 1 hour 

- Hybridisation: hybridisation buffer, probe Denaturation of probe (26 ng ml-1), 63°C, overnight (100°C, 10 minutes and 
ice, 10 minutes) 

- Removal of 
Solution stored at hybridisation 

solution 
-20°C, reusable 

Washing - Room temperature (twice each step): 

-2xSSC, 0.1 %, w/vSDS 
- 0.1 x SSC, 0.1 %, w/v SDS 

I 
DIG detectiona - Blocking 

- Binding of anti-DIG-AP Fab antibody 
- Washing 

- Developing: NBT and BCIP 
- Stop: TE pH 8.0 buffer 

Photography 
a Hybridisation and detection were performed according to the recommendations of the DIG system 
manufacturer (Boehringer Mannheim Biochemica, 1993). Hybridisation buffer consisted of 5x SSC, 
0.1%, w/v N-laurylsarcosine, 0.02%, w/v SDS and 1%, w/v blocking reagent (Boehringer Mannheim 
Biochemica, 1993). AP, alkaline phosphatase; BCIP, 5-bromo-4-chloro-3-indolyl phosphate; NBT, nitro 
blue tetrazolium. 
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(0.5 pg ml-1 in water), destained in water and photographed under UV light. 

Southern blotting of DNA. The DNA fragments were denatured in situ and transferred 

from gel to solid support, that is, to positively charged nylon membranes (Hybond-N+; 

Amersham Life Science) by capillary action following a modified Southern blotting protocol 

(Southern, 1975). The relative position of the DNA fragments are preserved during their 

transfer to membranes. The DNA attached to the membrane was hybridised to a non- 

radioactive labelled DNA probe and the chemiluminescence reaction used to visualise the 

pattern of bands containing sequences complementary to the probe. 

Procedure 

1) After electrophoresis, trim away any unused areas of gel with a razor blade. Cut 

off the top left-hand corner of the gel; this serves to orientate the gel during 

subsequent operations. 

2) Denature the DNA by soaking the gel twice for 15 minutes in 3 volumes of 

denaturation solution (0.5 N NaOH, 1.5 M NaCI) with gentle agitation. The 

depurination step was omitted. Transfer may be improved by nicking the DNA 

by brief and controlled depurination with acid or by UV exposure (5 minutes) 

prior to denaturation with alkaline. 

3) Neutralise the gel by soaking twice for 15 minutes in 3 volumes of neutralisation 

solution (0.5 M Tris [pH 8.0], 1.5 M NaCl) at room temperature with gentle 

agitation. 

4) Prepare the nylon membrane while the gel is in the neutralisation solution. Use 

gloves and blunt-ended forceps to handle the membrane. Using a clean cutter, cut 

a piece of membrane about 5mm wider than the gel and cut off a corner from the 

membrane to match the corner cut of the gel. Float the membrane on the surface 

of deionised water until it wets completely. 
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5) Transfer the denatured DNA from the gel to the membrane by capillary action 

using transfer solution (20 x SSC). (a) When the 3MM (Whatman) paper on top 

of the support is thoroughly wet, squeeze out all air bubbles with a glass rod; (b) 

place the gel and then the membrane on it making sure that there are no air 

bubbles between the gel and the membrane; (c) wet three pieces of 3MM paper 

(cut exactly to the size of the gel) in 20 x SSC and place them on top of the 

membrane, squeeze out any air bubbles with a glass rod; (d) pile paper towels 

(10 cm high) as big as or smaller than 3MM papers, put glass plates on top of the 

stack and weigh it down and wrap up this preparation, and (e) allow the transfer 

of DNA to proceed overnight. 

6) Peel the membrane from the gel. Check under UV light to see if the DNA was 

transferred to membranes successfully. Wash the membrane in 6x SSC to 

remove any agarose gel. Drain excess 6x SSC on 3MM paper for 30 minutes. 

7) The transferred DNA fragments are fixed on the membrane by UV-crosslinking 

(membrane should be wet). Next bake the membrane at 80 °C for 50 minutes. 

Alternatively the DNA can be fixed on the membrane by baking at 120 °C for 30 

minutes. Store dried membrane at 4 °C. 

Preparation of rRNA probe. The cloned rRNA operon containing 16S rRNA - 23S rRNA 

-5S rRNA genes from Streptomyces (coelicolor) violaceoruber DSM 41007 was used as 

probe (Zakrzewska-Czerwinska, 1989). The rRNA operon was cloned in the Sal I site of the 

pUC18 plasmid and the plasmid plus insert amplified following transformation into 

Escherichia coli JM109 (Promega). The 5S+16S+23S rRNA operon insert was removed by 

overnight digestion of 28 pg p64 plasmid DNA with approximately 40 U of Sal I in a 150 p1 

reaction volume for 3-4 hours, according to the recommendations of the manufacturer 

(Boehringer Mannheim Biochemica, 1996). The 7.2 kb rRNA fragment was separated from 

the linearised 2.8 kb plasmid by electrophoresis in a I%, w/v preparative agarose gel 
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(Sambrook et al., 1989). The band corresponding to the rRNA was cut from the gel, the 

DNA isolated and purified by using a standard method (Sambrook et al., 1989) and 

resuspended in 20 µl TE buffer at pH 8.0. The DNA concentration was adjusted to 

approximately 1 µg pl "1 with sterile Milli-Q water. 

Digoxigenin labelling of the rRNA fragment was performed by using a commercial 

kit, according to the recommendations of the manufacturer (Boehringer Mannheim 

Biochemica, 1996). Approximately 1 to 2 µg of purified DNA was labelled in a 50 pl 

volume labelling reaction. The DNA was heat denatured at 100 °C for 10 minutes followed 

by incubation in ice for 5 minutes prior to labelling. The labelling reaction was prepared 

from the reagents provided in the kit; the reagents were added to an ice cooled Eppendorf 

tube in the order listed below: 

Labelling mix 

Template DNA ............................. 1 µg 

10 x Hexanucleotide mixture .............. 
5 pl 

dNTP labelling mixture .................... 
5 p1 

Milli-Q water .................... up to 47.5 p1 

Klenow DNA polymerase ............. 2.5 pl 

The labelling reaction was incubated at 14 °C overnight then stopped by the addition of a 

0.1 volume of 0.5 M EDTA (pH 8.0). The DNA was precipitated by the addition of a 

0.1 volume of 4M LiC12 and 2.5 to 3.0 volumes of chilled ethanol. The preparation was 

mixed well then incubated at -20 °C overnight. DNA was pelleted by centrifugation at 

13,000 rpm for 15 minutes and washed once with 100 pl of chilled 70% ethanol (v/v) with 

centrifugation at 13,000 rpm for 5 minutes before discarding the 70% ethanol. The pellet 

was dried under vacuum, resuspended in approximately 25 pl of TE buffer and stored at -20 

°C. The labelling efficiency was checked in a direct detection assay according to the 

protocol provided by Boehringer Mannheim Biochemica (1996). 



CHAPTER III MATERIALS & METHODS 226 

Membrane hybridisation using DIG-labelled probe. Hybridisation of positively charged 

nylon membranes containing immobilised DNA was carried out in a hybridisation cassette 

following the protocol provided by Boehringer Mannheim Biochemica (1995). Membranes 

were inserted into the hybridisation cassette (Scotlab Ltd; Strathclyde, Scotland) and pre- 

hybridised with pre-hybridisation solution (20 ml per 100 cm2 of membrane surface) without 

probe for at least 1 hour at 63 °C. The pre-hybridisation solution consisted of 5x SSC, N- 

laurylsarcosine (0.1%, w/v), SDS (0.02%, w/v) and blocking reagent (1%, w/v). The 

blocking reagent consisted of an autoclaved stock solution of 10%, w/v hydrolysed casein 

(Boehringer Mannheim Biochemica, 1995), 100 mM maleic acid and 150 mM NaCl (pH 

7.5). 

The concentration of the probe in the hybridisation solution was approximately 26 ng 

per ml-I. The rRNA DIG-labelled probe was denatured by boiling in a water bath for 10 

minutes followed by incubation on ice for 5 minutes. At least 2.5 ml amounts of 

hybridisation solution were used per 100 cm2 of membrane surface. The membranes were 

hybridised overnight at 63°C in a rotary oven (Biometra, Maidstone, UK) with gentle 

shaking. The filters were washed (50 ml of solution per 100 cm2 of membrane surface) at 

room temperature, twice in 2x SSC plus 0.1 %, w/v SDS (5 minutes each wash) and twice at 

63°C in 0.1 x SSC plus 0.1 %, w/v SDS (15 minutes each wash). The membranes were not 

allowed to dry after washing. 

Immunological detection of DIG-labelled probes. The immunological detection of the 

DIG-labelled DNA hybridised to DNA fragments containing the rRNA operon was carried 

out using an anti-digoxigenin Fab antibody conjugated to alkaline phosphatase (Boehringer 

Mannheim Biochemica, 1995). The membranes were equilibrated in approximately 50 ml of 

buffer 1 (100 mM maleic acid, 150 mM NaCl; pH 7.5) for 1 minute at room temperature 

after hybridisation and post-hybridisation washes. They were then blocked by gentle 

agitation in sufficient volume of buffer 2 (1: 10 dilution of 10%, w/v stock solution of the 
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blocking reagent diluted in buffer 1; Boehringer Mannheim Biochemica, 1995) to allow the 

membranes to flow freely in the container for at least 30 minutes. 

After blocking, buffer 2 was discarded and the membranes incubated with gentle 

shaking for 30 minutes with the antibody solution. The anti-digoxigenin-AP Fab antibody 

was diluted 1: 5000 in 20 ml of buffer 2 (per 100 cm2 of membrane surface; Boehringer 

Mannheim Biochemica, 1995) to give a working concentration of 150 mU per ml. The 

solution was mixed gently by inversion and poured over the membrane in the container. 

After antibody binding, the membranes were transferred to a new tray and washed twice 

with 50 ml of buffer I (Boehringer Mannheim Biochemica, 1995), 15 minutes per wash, to 

remove unbound antibody prior to colorimetric detection. 

Colorimetric detection was achieved using 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP) and nitro blue tetrazolium (NBT). Ready-made stock solutions of BCIP (50 mg ml-1 

BCIP, toluidinium salt in 100% dimethylformamide) and NBT (75 mg ml-1 NBT salt in 

70% [v/v) dimethylformamide) were provided by the manufacturer (Boehringer Mannheim 

Biochemica, 1995) and stored at -20°C. The membranes were soaked in 20 ml (per 100 cm2 

of membrane surface) of alkaline phosphatase buffer (100 mM Tris pH 9.5,100 mM NaCI, 

50 mM MgC12) at room temperature for 2 minutes. 

The NBTBCIP substrate solution was freshly prepared by mixing 45 µl of the NBT 

stock solution and 35 pl of the BCIP stock solution in 10 ml of the alkaline phosphatase 

buffer (per 100 cm2 of surface membrane). A single membrane was placed on the bottom of 

a flat-surfaced plastic container with the side containing the immobilised DNA upwards and 

the NBTBCIP solution carefully added then spread over the entire surface of the membrane 

by tilting the container. The latter was sealed and the reaction allowed to develop in the dark 

for several hours. Monitoring for the development of the colour reaction was carried out 

every 10 to 15 minutes taking great care not to shake the container while the colour was 

developing. Once the bands were detected the colorimetric reaction was stopped by washing 
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the membranes with 50 ml of TE pH 8.0 buffer. The membranes were kept wet until 

photographed. 
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Results 

1. Phylogenetic analyses based on 16S rRNA sequences 

(a) Reference strains 

Almost complete 16S rRNA sequences (1400-1470 nucleotides between Escherichia 

coli positions 28 and 1524; Brosius et al., 1978) were generated for "Streptomyces 

thermoflavus" DSM 40574, "Streptomyces thermophilus" DSM 40365, "Streptomyces 

thermotolerans" DSM 40227 and Streptomyces violaceoruber DSM 40049T and for the 

three alkalitolerant marker strains, namely, Streptomyces canescens DSM 40001 T, 

Streptomyces cavourensis subsp. cavourensis DSM 40300T and Streptomyces hydrogenans 

DSM 40586T. The sequences of all seven test strains were compared with the corresponding 

sequences of representatives of the genus Streptomyces, including those of members of the 

validly described thermophilic Streptomyces species. As expected, all of the test strains fell 

within the range of variation encompassed by the genus Streptomyces (Fig. 3-4; Table 3-6). 

The 16S rRNA sequence similarity values found between the Streptomyces species were 

between 92.6 % and 100 % with an average value of 96.4 % (Table 3-6). 

It is apparent from the streptomycete tree generated by using the least-squares 

algorithm (Fig. 3-4) that streptomycete strains can be assigned to four presumptive clades 

(A, B, C and D), three of which were also found in the phylogenetic trees generated by using 

the maximum-likelihood method. Clades B and C are supported by high bootstrap values 

based on the neighbour joining algorithm. 

Five of the test strains were recovered in Glade A, namely, Streptomyces canescens 

DSM 40001T, "Streptomyces thermoflavus" DSM 40574, "Streptomyces thermophilus" 

DSM 40365, "Streptomyces thermotolerans" DSM 40227 and Streptomyces violaceoruber 

DSM 40049T. Streptomyces canescens DSM 40001T had an identical 16S rRNA sequence to 
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Subclade Clade 

*51 

*55 S. thermovulgaris DSM 40444T 
S. thermonitrificans DSM 40579T : Al 

* 100 S. there ogriseus C=C AA97014T 
S. thermoviolaceus subsp. apingens DSM 413921 

*59 "S. thermoflavus" DSM 40574 
S. thertnovioiaceus subsp. thermoviolaceus DSM 40443T 

ES. thernwdiastaticus DSM 40573T A'2 
*54 S. thermocarboxydovorans DSM 44296T 

"S. thetmophilus" DSM 40365 
E ................ S. ghanaensis DSM 40746 T 

: A3 'S. espinosus" NRRL 5729 
*100 S. roseoflavus DSM 405361 j-S. 

fradiae DSM 40063r : A4 
*100, S. coerukoprunus DSM 41472T 54 S. bluensis ISP 5564T 

S. caelestis NRRL 2418T 
S. ambofaciens ATCC 23877T 
S. violaceoruber DSM 40049T 
pseudogriseolus NRRL 3985 

*54 urythermus ATCC 149751 

g 

: A5 

hermotolerans" DSM 40227 *44 
rmocarboxydus DSM 44 tý 2931 1 

*52 S. glaucescens DSM 40716 
S canescens DSM 400011 .................... ... 

*97 S. albidoflavus DSM 404551 : A6 
S. gougeroui ISP 5324T 

*100 S. megasporus DSM 414761 
*94 S. macrosporus DSM 414491 

S. thetmolineatus DSM 414511 
S. scabiei ATCC 49173T 

*89 S bouropensis ATCC 25435T 59 S. neyagawaensis ATCC 274491 1 Cl 
*97 S. diastatochronwgenes ATCC 12309 T_ 

_ *100 "S. hygroscopicus subsp. limoneus" ATCC 214311 

89* S. galbus DSM 400891 C2 
S. lincolnensis NRRL 29361 

S. virginiae IFO 37297 *99 41 *89 S. subrutilus DSM 40445T 
S. griseus KCTC 9080T *95 

*71 72 S. cavourensis subsp. cavourensis DSM 40300 T : C3 
S. hydrogenans DSM 40586T *80 40 40 S. bikiniensis DSM 405811 

S. seouknsis IMSNU 212661 
S. acidiscabies ATCC 490031 

S. griseocameus DSM 40004T 

*44 

0.01 

A 

B 

C 

D 

Figure 3-4. Least squares tree (Fitch & Margoliash, 1967) based on almost complete 
16S rRNA sequences showing relationships between the test strains (in bold) and 
representatives of the genus Streptomyces. The corresponding 16S rRNA sequences of 
Arthrobacter globiformis (accession nuber M23411) was used as the outgroup. The 
asterisks indicate branches that were recovered using the maximum-likelihood 
algorithm (Felsenstein, 1981). The numbers at the nodes indicate the level (%) of 
bootstrap support based on a neighbour joining analyses of 1000 resampled data sets; 
only values over 40 % are given. The arrow shows the root of the tree. The scale bar 
indicates 0.01 substitutions per nucleotide position. 

S. albus DSM 40313T 
S. rimosus R6-554 

- S. mashuensis DSM 4022 1T 
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that of Streptomyces albidoflavus DSM 40455T. An identical 16S rRNA sequence was also 

found between "Streptomyces thermoflavus" DSM 40574 and Streptomyces 

thermoviolaceus subsp. apingens DSM 41392T. "Streptomyces thermophilus " DSM 40365 

showed particularly high 16S rRNA sequence similarity values to Streptomyces 

thermoviolaceus subsp. thermoviolaceus DSM 40443T (99.1 % nucleotide similarity) and 

Streptomyces thermocarboxydovorans DSM 44296T (98.7 % nucleotide similarity). 

"Streptomyces thermotolerans" DSM 40227 and Streptomyces violaceoruber DSM 40049T 

were found to be most closely related to Streptomyces thermocarboxydus DSM 44293T 

(98.9 % nucleotide similarity) and Streptomyces ambofaciens ATCC 238777 (98.9 % 

nucleotide similarity), repectively. 

Clade A also contained eight thermophilic marker strains, namely, Streptomyces 

the rmocarboxydovorans DSM 442961, Streptomyces thermocarboxydus DSM 44293T 

Streptomyces thermodiastaticus DSM 40573T, Streptomyces thermogriseus CCTCC 

AA97014T, Streptomyces thermonitrificans DSM 405791, Streptomyces thermoviolaceus 

subsp. apingens DSM 413921, Streptomyces thermoviolaceus subsp. thermoviolaceus DSM 

404431, and Streptomyces thermovulgaris DSM 40444T together with thirteen mesophilic 

marker streptomycetes. In total, ten out of the thirteen thermophilic strains were recovered in 

Glade A. 

It is evident from Figure3-4 and Table 3-6 that twenty-five out of twenty-six strains 

assigned to Glade A fall into six subclades. Subclade Al encompasses three thermophilic 

streptomycetes, namely, Streptomyces thermogriseus CCTCC AA97014T, Streptomyces 

thermonitrifzcans DSM 40579T and Streptomyces thermovulgaris DSM 40444T. Similarly, 

subclade A2 contains six thermophilic streptomycetes, that is, Streptomyces 

the rmocarboxydovorans DSM 44296T, Streptomyces thermodiastaticus DSM 405731, 

"Streptomyces thermoflavus" DSM 40574, "Streptomyces therinophilus" DSM 40365, 

Streptomyces thermoviolaceus subsp. apingens DSM 41392T and Streptomyces 
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thermoviolaceus subsp. thennoviolaceus DSM 40443T. Subclade A3 encompasses the 

mesophiles, "Streptomyces espinosus" NRRL 5729 and Streptomyces ghanaensis DSM 

407461. Similarly, subclade A4 contains Streptomyces coeruleoprunus DSM 41472", 

Streptomycesfradiae DSM 400631 and Streptomyces roseoflavus DSM 40536T. The largest 

group, subclade A5 contains eight strains including Streptomyces ambofaciens ATCC 

238771, Streptomyces thermocarboxydus DSM 442931, "Streptomyces thermotolerans" 

DSM 40227 and Streptomyces violaceoruber DSM 40049T. The final subclade, A6, 

encompasses three mesophilic strains, namely, Streptomyces albidoflavus DSM 404551, 

Streptomyces canescens DSM 40001 T and Streptomyces gougerotii, ISP 5324T. The three 

remaining thermophilic streptomycetes, namely, Streptomyces macrosporus DSM 41449T 

Streptomyces megasporus DSM 41476T and Streptomyces thermolineatus DSM 41451 T 

formed Glade B. 

Two of the test strains were recovered in Glade C. Streptomyces cavourensis subsp. 

cavourensis DSM 40300T showed its highest 16S rRNA sequence similarity with 

Streptomyces griseus KCTC 9080T (98.9 % nucleotide similarity) whereas Streptomyces 

hydrogenans DSM 40586T showed its highest similarity with Streptomyces bikiniensis DSM 

40581T (98.9 % nucleotide similarity). 

Thirteen out of the fifteen strains in Glade C can be assigned to three subclades (Fig. 

3-4). Subclade Cl contains Streptomyces bottropensis ATCC 25435", Streptomyces 

diastatochromogenes ATCC 12309 T, Streptomyces neyagawaensis ATCC 27449T and 

Streptomyces scabiei ATCC 49173T, subclade C2 Streptomyces galbus DSM 40089T, 

"Streptomyces hygroscopicus subsp. limoneus" ATCC 21431 and Streptomyces lincolnensis 

NRRL 2936T, and subclade C3 Streptomyces bikiniensis DSM 40581"', Streptomyces 

cavourensis subsp. cavourensis DSM 40300T, Streptomyces griseus KCTC 90801', 

Streptomyces hydrogenans DSM 40586"', Streptomyces subrutilus DSM 404451 and 

Streptomyces virginiae IFO 3729T. 
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Streptomyces albus DSM 40313T, Streptomyces mashuense DSM 40221 T and 

Streptomyces rimosus R6-554 formed a loose grouping, Glade D, at the periphery of Glade C. 

However, this Glade was not supported by high bootstrap values. Streptomyces 

griseocarneus DSM 40004T could not be assigned to any of the caldes with confidence. 

In general, the G+C content of the 16S rRNA of the thermophilic streptomycetes was 

higher than the corresponding data for the mesophilic streptomycetes (Table 3-7). The 

highest 16S rRNA G+C value, 61.6 mol%, was shown by Streptomyces megasporus DSM 

41476T. The other members of Glade B, namely, Streptomyces macrosporus DSM 41449T 

and Streptomyces thermolineatus DSM 41451 T showed values of 60.3 and 59.2 mol%, 

respectively. The G plus C values of the thermophilic reference streptomycetes assigned to 

Glade A fell within the range 59.5 to 60.0 mol%. Thirteen out of the fifteen mesophilic 

streptomycetes in Glade A contained 16S rRNA with G+C contents between 58.9 and 59.5 

mol%, the exceptions, "Streptomyces espinosus" NRRL 5729 and Streptomyces ghanaensis 

DSM 40746T gave values of 60.8 and 60.9 mol%, respectively. The fourteen mesophilic 

streptomycetes assigned to Glade C contained 16S rRNA with G+C values within the range 

58.1 and 59.1 mol%. 

(b) Thermophilic isolates 

Almost complete 16S rRNA sequences (1400-1470 nucleotides between Escherichia 

coli positions 28 and 1524; Brosius et al., 1978) were generated for ten thermophilic 

isolates, namely, Streptomyces strain NT307 (centrotype strain of cluster 3, aggregate group 

II; Sahin, 1995), Streptomyces strains NAR54, NT358, NT322, NT576, NT381 and NT90 

(centrotype strains of clusters 6,7,8,10,11 and 15, respectively, aggregate group IV; 

Sahin, 1995), Streptomyces strains NAR85 and TA56 (single-membered clusters, aggregate 

group V and VI, respectively; Sahin, 1995) and Streptomyces strain B19, a strain isolated 
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Table 3-7. Guanine plus cytosine (mol% G+C) content of the 16S rRNA of the test strains* 
Strain G+C Strain G+C 

content content 
Clade A 
S. albidoflavus DSM 40455T 59.4 
S. ambofaciens ATCC 23877T 59.2 
S. bluensis ISP 5564T 59.1 
S. caelestis NRRL 2418T 59.3 
S. canescens DSM 40001T 59.4 
S. coeruleoprunus DSM 41472T 59.2 
"S. espinosus" NRRL 5729 60.8 
S. eurythermus ATCC 14975T 58.9 

S. fradiae DSM 40063T 59.4 
S. ghanaensis DSM 40746 T 60.9 
S. glaucescens DSM 40716 59.0 
S. gougerotii ISP 5324T 59.3 
S. pseudogriseolus NRRL 3985 59.1 
S. roseoflavus DSM 40536T 59.3 
S. thermocarboxydovorans DSM 44296T59.8 

S. thermocarboxydus DSM 44293T 59.7 
S. thermodiastaticus DSM 40573T 59.5 
"S. thermoflavus" DSM 40574 59.7 
S. thermonitrifccans DSM 40579T 60.0 

"S. thermophilus" DSM 40365 59.8 
"S. thermotolerans" DSM 40227 59.7 
S. thermoviolaceus subsp apingens 59.7 
DSM 41392T 
S. thermoviolaceus subsp. 59.6 
thermoviolaceus DSM 40443T 

S. thermovulgaris DSM 40444T 59.9 
S. violaceoruber DSM 40049T 59.1 

Clade B 
S. macrosporus DSM 41449T 60.3 

S. megasporus DSM 41476T 61.6 

S. thermolineatus DSM 41451T 59.7 
Clade C 
S. acidiscabies ATCC 49003T 59.1 

S. bikiniensis DSM 40581T 59.1 

S. bottropensis ATCC 25435T 58.7 
S. cavourensis subsp. cavourensis 58.3 

DSM 40300T 
S. diastatochromogenes ATCC 12309 T 58.7 

S. galbus DSM 40089T 58.5 

S. griseus KCTC 9080T 58.4 

S. hydrogenans DSM 40586T 58.7 

S. lincolnensis NRRL 2936T 58.6 

S. neyagawaensis ATCC 27449T 59.0 

S. scabiei ATCC 49173T 58.7 

S. seoulensis IMSNU 21266T 58.1 

S. subrutilus DSM 40445T 58.2 

S. virginiae IFO 3729T 58.2 

Clade D 
S. albus DSM 40313T 59.1 

S. mashuense DSM 40221T 58.9 

S. rimosus R6-554 59.3 

In search of lade 

S. griseocarneus DSM 40004T 58.8 

The G+C content of the 16S rRNA sequences was determined by using the AL16S program (Chun, 1995). 

**, Clusters defined by Sahin (1995). 
Thermophilic streptomycetes are given in bold. 
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from poultry faeces in Malaysia. The relationships found between the test and marker strains 

are presented in Figure 3-5 and Table 3-8. 

It is evident from the phylogenetic tree based on almost complete 16S rRNA 

sequences (Fig. 3-5; Table 3-8) that nine out of the ten isolates fell into Glade A. The 

remaining organism, Streptomyces strain NT307 was assigned to Glade D. This organism 

shared its highest 16S rRNA similarity with Streptomyces albus DSM 40313T (98.6 % 

nucleotide similarity). 

Streptomyces strain TA56, which formed a single-membered cluster (Sahin, 1995), 

was recovered in subclade Al. This organism shared its highest 16S rRNA sequence 

similarity with Streptomyces thermonitrificans DSM 40579T (98.9 % nucleotide similarity) 

and Streptomyces thermovulgaris DSM 40444T (99.0 % nucleotide similarity). Streptomyces 

strain NAR85, the only isolate assigned to aggregate group V (Sahin, 1995), was recovered 

in subclade A2 and shared its highest 16S rRNA sequence similarities with Streptomyces 

thermodiastaticus DSM 40573T (99.5 % nucleotide similarity), Streptomyces 

thermoviolaceus subsp. apingens DSM 41392T (99.4 % nucleotide similarity) and 

Streptomyces thermoviolaceus subsp. thermoviolaceus DSM 40443T (99.4 % nucleotide 

similarity). Similarly, Streptomyces strain B 19 shared its highest 16S rRNA similarity with 

Streptomyces thermoviolaceus subsp. apingens DSM 41392T (98.6 % nucleotide similarity). 

Five out of the six centrotype strains representing clusters in aggregate group IV 

(Sahin, 1995), namely, NAR54 (cluster 6), NT90 (cluster 15), NT358 (cluster 7), NT381 

(cluster 11) and NT576 (cluster 10) were recovered in subclade A5. Streptomyces strain 

NAR54 showed the same highest 16S rRNA similarity with Streptomyces strain NT576 and 

Streptomyces pseudogriseolus NRRL 3985 (99.3 % nucleotide similarity). Similarly, 

Streptomyces strain NT90 was most closely related to Streptomyces strain NT381 and 

Streptomyces caelestis NRRL 2418T (98.8 % nucleotide similarity). Streptomyces strain 

NT358 showed its highest 16S rRNA similarity with Streptomyces eurythermus ATCC 
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Figure 3-5. Least squares tree (Fitch & Margoliash, 1967) based on almost complete 

16S rRNA sequences showing relationships between the isolates (in bold) and 

representatives of the genus Streptomyces. The corresponding 16S rRNA sequence of 

Arthrobacter globiformis (accession number M23411) was used as the outgroup. The 

numbers at the nodes indicate the level (%) of bootstrap support based on neighbour- 

joining analyses of 1000 resampled data sets; only values over 40 % are given. The scale 

bar indicates 0.01 substitutions per nucleotide position. Alkalitolerant strains are marked 

with an asteriks. SMC=single-membered cluster. 

The following strains had identical partial 16S rRNA sequences with organisms 

included in the tree: (a) Streptomyces strains A1853 (Sahin, cluster 19, aggregate group 

VI), A1956 (Sahin, cluster 20, aggregate group VI), NT218 (Sahin, SMC, aggregate 

group VI), TA12* (Sahin, SMC, aggregate group VI), TA26* (Sahin, cluster 25, 

aggregate group VI), TA34* (Sahin, cluster 16, aggregate group N), TA54* (Sahin, 

cluster 24, aggregate group VI), TA123* (Sahin, SMC, aggregate group VI), TA179* 

(Sahin, cluster 26, aggregate group VI) and TA265* (Sahin, cluster 23, aggregate group 

VI) with Streptomyces thermovulgaris DSM 40444T (Sahin, cluster 22, aggregate group 

VI); (b) Streptomyces strain NAR84* (Sahin, cluster 5, aggregate group IV) with 

Streptomyces strain NAR54* (Sahin, cluster 6, aggregate group N); (c) Streptomyces 

strains NT312 (Sahin, cluster 13, aggregate group IV), NT371(Sahin, cluster 12, 

aggregate group IV), NT399 (Sahin, cluster 9, aggregate group N), NT493 (Sahin, 

SMC, aggregate group IV), TA127* (Sahin, SMC, aggregate group IV) with 

Streptomyces strain NT381 (Sahin, cluster 11, aggregate group IV), and (d) 

Streptomyces strain NT336 (Sahin, cluster 14, aggregate group IV) with Streptomyces 

strain NT90 (Sahin, cluster 15, aggregate group N). 
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14975T (99.4 % nucleotide similarity). Streptomyces strain NT381 showed a 

correspondingly high similarity with Streptomyces caelestis NRRL 2418T (99.2 % 

nucleotide similarity). The remaining isolate, Streptomyces strain NT576 showed its highest 

16S rRNA similarity with strain NAR54 (99.3 % nucleotide similarity). Finally, strain 

NT322, which formed a distinct branch in Glade A, is most closely related to Streptomyces 

thermocarboxydus DSM 44293T (98.6 % nucleotide similarity). 

Partial 16S rRNA sequences (700-1000 nucleotides between Escherichia coli 

positions 28 and 1150) were determined for fifteen thermophilic isolates, namely, 

Streptomyces strains NAR84, NT399, NT371, NT312 and NT336 (centrotype strains of 

clusters 5,9,12,13 and 14, aggregate group IV; Sahin, 1995), Streptomyces strains A1853, 

A 1956, TA265, TA61, TA26 and TA 179 (centrotype strains of clusters 19,20,23,24,25 

and 26, aggregate group VI; Sahin, 1995), Streptomyces strains NT493 and TA127 (single- 

membered clusters, aggregate group IV; Sahin, 1995), and Streptomyces strains TA123, 

NT218 and TA12 (single-membered clusters, aggregate group VI; Sahin, 1995). 

Streptomyces strains A1853, A1956, NT218, TA 12, TA34, TA26, TA61, TA 123 and 

TA 179 had almost identical 16S rRNA sequences to those of to Streptomyces 

thermonitrificans DSM 40579T and Streptomyces thermovulgaris DSM 40444T differing 

from these organisms between 0 and 2 nucleotides. Similarly, Streptomyces strains NT312, 

NT371, NT399, NT493 and TA127 had identical partial 16S rRNA sequences to 

Streptomyces strain NT381, and Streptomyces strains NAR84 and NT336 identical partial 

16S rRNA sequences to those of Streptomyces strains NAR54 and NT90, respectively. 

Six out of the ten alkalitolerant, thermophilic isolates, that is, Streptomyces strains 

TA12 (single-membered cluster, aggregate group VI; Sabin, 1995), TA34 (cluster 16, 

aggregate group IV; Sabin, 1995), TA26 (cluster 25, aggregate group VI; Sabin, 1995), 

TA61 (cluster 24, aggregate group VI; Sabin, 1995), TA123 (single-membered cluster, 

aggregate group VI; Sabin, 1995) and TA179 (cluster 26, aggregate group VI; Sabin, 1995) 
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had almost identical 16S rRNA sequences to those of Streptomyces thermonitrificans DSM 

40579T and Streptomyces thermovulgaris DSM 40444T (99.8 to 100 % nucleotide 

similarities). Streptomyces strain TA56 (single-membered cluster, aggregate group VI; 

Sahin, 1995) which shared its highest 16S rRNA similarity to Streptomyces 

thermonitrificans DSM 40579T and Streptomyces thermovulgaris DSM 40444T (98.9 % and 

99.0 % nucleotide similarities, respectively) is also an alkalitolerant, thermophilic isolate. 

Two of the alkalitolerant, thermophilic isolates, namely, strain NAR54 (cluster 6, aggregate 

group IV; Sahin, 1995) and NAR84 (cluster 5, aggregate group IV; Sahin, 1995) had 

identical 16S rRNA sequences. The remaining alkalitolerant, thermophilic isolate, 

Streptomyces strain TA 127, had an identical 16S rRNA sequence to Streptomyces strain 

NT90 (cluster 15, aggregate group IV; Sabin, 1995). 

16S rRNA sequences of seven isolates, namely, Streptomyces strain NAR54 

(centrotype strain of cluster 6, aggregate group N; Sahin, 1995), NT90 (centrotype strain of 

cluster 15, aggregate group N; Sahin, 1995), NT307 (centrotype strain of cluster 3, 

aggregate group II; Sahin, 1995), NT322 (centrotype strain of cluster 8, aggregate group N; 

Sahin, 1995), NT358 (centrotype strain of cluster 7, aggregate group IV; Sahin, 1995), 

NT381 (centrotype strain of cluster 11, aggregate group N; Sahin, 1995) and NT576 

(centrotype strain of cluster 10, aggregate group IV; Sahin, 1995), were compared with the 

corresponding partial 16S rRNA sequences (16S rRNA positions 33 to 474 and 804 to 1233 

[Streptomyces ambofaciens numbering system; Pernodet et al., 1989]) held in the 

Streptomyces database at the DSMZ (Stackebrandt et al., unpublished). Streptomyces strain 

NAR54 was found to be most closely related to Streptomyces griseoincarnatus DSM40274T 

(99.0 % nucleotide similarity), Streptomyces erythrogriseus DSM 40116T (99.0 % 

nucleotide similarity) and Streptomyces griseoflavus DSM 40456T (99.0 % nucleotide 

similarity); Streptomyces strain NT90 to Streptomyces plicatus (99.1 % nucleotide 

similarity) and Streptomyces cineoruber (99.1 % nucleotide similarity); Streptomyces strain 
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NT307 to Streptomyces flocculus DSM 40327T (98.6 % nucleotide similarity) and 

Streptomyces albus DSM 40313T (98.0 % nucleotide similarity); Streptomyces strain NT358 

to Streptomyces lavenduligriseus DSM 40487T (98.9 % nucleotide similarity) and 

Streptomyces eurythermus DSM 40014T (98.9 % nucleotide similarity); Streptomyces strain 

NT381 to Streptomyces xantholiticus DSM 40244T (98.8 % nucleotide similarity) and 

Streptomyces minutiscleroticus DSM 40301T (98.7 % nucleotide similarity); Streptomyces 

strain NT576 to Streptomyces viridodiastaticus DSM40249T (99.2 % nucleotide similarity) 

and Streptomyces albogriseolus DSM 40003T (99.0 % nucleotide similarity). The remaining 

organisms, Streptomyces strain NT322 showed the highest 16S rRNA sequence similarities 

with Streptomyces coeruleoprunus DSM 41472T (97.6 % nucleotide similarity) and 

Streptomycesfradiae DSM 40063T (97.6 % nucleotide similarity). 

2. DNA: DNA relatedness study 

The DNA relatedness data show that Streptomyces thermonitrificans DSM 40579T 

and Streptomyces thermovulgaris DSM 40444T belong to a single genomic species which is 

readily distinguished from a corresponding taxon which encompasses Streptomyces 

thermoviolaceus subsp. apingens DSM 41392T and Streptomyces thermoviolaceus subsp. 

thermoviolaceus DSM 40443T (Table 3-9). It is also clear from the DNA: DNA relatedness 

data that alkalitolerant, thermophilic isolates TA 12, TA26, TA61, TA 123, TA 179 and 

TA265, and thermophilic, neutrophilic isolates A1853, A1956 and NT218 are bona fide 

members of Streptomyces thermovulgaris (Table 3-9). Similarly, Streptomyces strain AT5, a 

thermophilic, carboxydotrophic isolate, showed 95 % DNA: DNA relatedness with reference 

DNA prepared from Streptomyces thermovulgaris DSM 40444T. The DNA: DNA 

relatedness data also showed that Streptomyces strain NAR85 should be classified as 

Streptomyces thermodiastaticus as it shares 97 % DNA relatedness with the type strain of 
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this species. It is also evident from Table 3-9 that Streptomyces strain TA56 (single- 

membered cluster, aggregate group VI; Sahin, 1995) forms a distinct genomic species which 

shares a relatively close affinity with Streptomyces thermonitrif cans DSM 40579T and 

Streptomyces thermovulgaris DSM 40444T. 

Preliminary studies with labelled DNA from Streptomyces strain AT5 and 

Streptomyces thermovulgaris DSM 40444T indicated that the DNA: DNA relatedness values 

between Streptomyces thermovulgaris DSM 40444T and Streptomyces strains AT6 and 

AT54 were higher than 70 % and that the DNA relatedness values between strains AT5, 

AT6 and AT54 were greater than 87 %. 

3. Ribotype patterns 

It is evident from Figure 3-6a that the test strains showed three ribotype patterns 

when genomic DNA digests prepared using Bam HI restriction endonuclease were probed 

with the 7.2 kb DNA fragment from Streptomyces violaceoruber DSM 41007. Streptomyces 

thennonitrificans DSM 40579T, Streptomyces thermovulgaris DSM 40444T, Streptomyces 

strains A1853, A1956, NT218, TA26, TA61, TA123, TA179 and TA265 gave identical 

ribotype patterns, as did Streptomyces thermodiastaticus DSM 40573T Streptomyces 

thermoviolaceus subsp. apingens DSM 41392T and Streptomyces strain NAR85. The 

corresponding genomic DNA digest of Streptomyces thermoviolaceus subsp. 

thermoviolaceus DSM 40443T gave a very similar pattern to those shown by Streptomyces 

thermodiastaticus DSM 40573T, Streptomyces thermoviolaceus subsp. apingens DSM 

41392T and Streptomyces strain NAR85 though the ribotype bands were lower indicating 

that the molecular weight of the DNA fragments containing rRNA operons were lower (Fig- 

3-6a). Streptomyces strain TA56 showed a distinct ribotype pattern (Fig. 3-6a). 
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Figure 3-6. 

(a) Ribotyping patterns: 1, S. thermovulgaris DSM 40444T; 2, S. thermonitrificans DSM 

40579T; 3, Streptomyces strain TA56; 4, S. thermodiastaticus DSM 40573T; 5, Streptomyces 

strain NAR85; 6, S. thermoviolaceus subspecies thennoviolaceus DSM 40443T; and 7, S. 

thermoviolaceus subspecies apingens DSM 41392T generated from Bam HI genomic DNA 

digests hybridised with the digoxigenin-labelled rDNA probe. M, the size marker, is lambda 

DNA digested with Pst I. 

(b) Ribotyping patterns: I and 5, S. thermodiastaticus DSM 40573T; 2 and 6, Streptomyces 

strain NAR85; 3 and 7, S. thermoviolaceus subspecies thermoviolaceus DSM 40443T; 4 and 

8, S. thermoviolaceus subspecies apingens DSM 41392T generated from Sal I (1-4) and Pvu H 

(5-8) genomic DNA digests hybridised with the digoxigenin labelled probe. M, the size 

marker, is lambda DNA digested with Pst I. 
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Streptomyces strain NAR85 gave the same banding pattern to that of Streptomyces 

thermodiastaticus DSM 40573T with restriction endonucleases Pvu H and Sal I (Fig. 3-6b). 

This banding pattern served to distinguish these strains from the type strains of the two 

subspecies of Streptomyces thermoviolaceus which gave an identical banding pattern. 

4. Chemotaxonomic markers 

The results of the menaquinone analyses are shown in Table 3-10. Ten out of the 

eleven test strains were found to contain hexa- or octahydrogenated menaquinones with nine 

isoprene units as the predominant isoprenologue. The exception, Streptomyces strain 

NT358, produced tetrahydrogenated menaquinones with nine isoprene units as the major 

component. The sole component found in Streptomyces thermonitrilcans DSM 40579T, 

Streptomyces thermovulgaris DSM 40444T and Streptomyces strain TA56 was an 

octahydrogenated menaquinone with nine isoprene units. Identical menaquinone profiles 

were shown by Streptomyces strains NT90 and NT336. 

The results of the polar lipid analyses are shown in Figure 3-7. All of the test strains 

contained PE, DPG, PI, PIDM and many unidentified phospholipids but the distribution of 

PG was variable. In addition, an unidentified glycolipid was detected in the polar lipid 

extract of Streptomyces strain TA56. Streptomyces thermovulgaris DSM 40444T and 

Streptomyces thermonitrificans DSM 40579T gave almost identical patterns, as did 

Streptomyces strains NT90 and NT336, and Streptomyces strains NAR54 and NAR84. 

5. Phenotypic properties 

The morphological properties of the test strains are summarised in Table 3-11. The 

spore chain morphology and spore surface ornamentation of individual strains are shown in 

Figure 3-8. It is evident that most of the test strains produced a grey aerial spore mass, spiral 
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Table 3-10. Menaquinone profiles of the test strains 

Strains MK-9(H4) MK-9(H6) MK-9(H8) 

S. thennovulgaris DSM 40444T (cluster 22, VI) +++ 
S. thennonitrificans DSM 40579 T +++ 
Streptomyces strain B 19 ++ +++ + 
Streptomyces strain NT307 (cluster 3, II)a ++ +++ 
Streptomyces strain NAR84 (cluster 5, IV) + +++ ++ 
Streptomyces strain NAR54 (cluster 6, N) + +++ + 
Streptomyces strain NT358 (cluster 7, IV) +++ ++(+) + 
Streptomyces strain NT322 (cluster 8, IV) ++ +++ 
Streptomyces strain NT576 (cluster 10, IV) + +++ ++ 
Streptomyces strain NT336 (cluster 14, IV) ++(+) +++ 
Streptomyces strain NT90 (cluster 15, IV) ++(+) +++ 
Streptomyces strain TA56 (SMC, VI) +++ 

a, Clusters delineated in the numerical phenetic study of Sahin (1995); SMC, single-membered cluster. II; 

aggregate group II; IV, aggregate group IV; VI, aggregate group VI. 

Abbreviations exemplified by MK-9 (H4) and MK-9 (H6), tetra- and hexahydrogenated menaquinones with 

nine isoprene units. 
The main component in each series is denoted by `+ + +', any other component greater than 50% of the main 

peak by `++', and all other significant components by '+'. (+) indicates subtle difference in quantity. 

Menaquinone components were eluted in the following order (retention time) under the conditions employed: 

dihydrogenated menaquinones with eight isoprene units, 8.4 minutes; dihydrogenated menaquinones with 

nine isoprene units, 9.7 minutes; tetrahydrogenated menaquinones with eight isopren units, 10.5 minutes; 

tetrahydrogenated menaquinones with nine isoprene units, 11.4 minutes; hexahydrogenated menaquinones 

with nine isoprene units, 13.5 minutes; tetrahydrogenated menaquinones with ten isoprene units, 14.6 minutes 

and octahydrogenated menaquinones with nine isoprene units, 16.1 minutes. 
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Figure. 3-7. Two dimensional thin-layer chromatography of the polar lipids of: 

Streptomyces thermovulgaris DSM 40444T (cluster 22, aggregate group VI), 

Streptomyces the rmonitr f cans DSM 40579T, 

Streptomyces strain NT302 (cluster 3, aggregate group II), 

Streptomyces strain NAR84 (cluster 5, aggregate group IV), 

Streptomyces strain NAR54 (cluster 6, aggregate group N), 

Streptomyces strain NT322 (cluster 8, aggregate group IV), 

Streptomyces strain NT576 (cluster 10, aggregate group IV), 

Streptomyces strain NT336 (cluster 14, aggregate group N), 

Streptomyces strain NT90 (cluster 15, aggregate group N) and 

Streptomyces strain TA56 (single-membered cluster, aggregate group VI), 

249 

Chloroform-methanol-water (65: 25: 4, by volume) was used in the first direction followed by 

chloroform-acetic acid-methanol-water (80: 18: 12: 5, by volume) in the second direction. 

Abbreviations: DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PE', 

phosphatidylethanolamine derivative; PG, phosphatidylglycerol; PI, phosphatidylinositol; 

PIDM, phosphatidylinositol dimannoside; PIMs, phosphatidylinositol mannosides; G, 

glycolipids and P, unidentified phospholipids. 
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chains of spores, failed to produce melanin and did not form distinctive substrate mycelial 

pigments. Streptomyces strain NT576 was unusual amongst the test strains as it produced a 

green aerial spore mass. It is also interesting that "Streptomyces thermoflavus" DSM 40574, 

Streptomyces thermoviolaceus subsp. apingens DSM 41392T, Streptomyces thermoviolaceus 

subsp. thermoviolaceus DSM 40443T and Streptomyces strain NAR85 formed spores with a 

tuberculate surface ornamentation. Streptomyces strain TA56 was the only isolate to have 

warty spores. 

A number of physiological tests were carried out to complement the results of Sahin 

(1995). Streptomyces thennonitrifacans DSM 40579T, Streptomyces thermovulgaris DSM 

40444T and Streptomyces strains NAR85 and TA56 reduced nitrate, and Streptomyces 

thermocarboxydovorans DSM 44296T degraded adenine and xylan but not gelatin, and used 

L-arabinose, glucose and xylose as sole sources of carbon for energy and growth. Similarly, 

Streptomyces thermoviolaceus subsp. apingens DSM 41392T degraded adenine, casein and 

gelatin but not guanine, hypoxanthine, testosterone, xanthine or xylan, and used L- 

arabinose, glucose and xylose but not rhamnose as sole sources of carbon for energy and 

growth. Streptomyces thermonitrificans DSM 40579 T degraded adenine, casein and gelatin 

but not guanine, hypoxanthine, testosterone, xanthine or xylan, and used glucose and xylose 

but not L-arabinose or rhamnose as sole sources of carbon for energy and growth. 

Streptomyces thermocarboxydovorans DSM 44296T, Streptomyces thermonitrificans DSM 

40579 T, Streptomyces thermovulgaris DSM 40444T and Streptomyces strain TA56 grew at 

pH 10 but Streptomyces thermodiastaticus DSM 40573T, Streptomyces thermoviolaceus 

subsp. apingens DSM 41392T, Streptomyces thermoviolaceus subsp. thermoviolaceus DSM 

40443T and Streptomyces strains NAR85 did not. All of the test strains grew at 25 °C but 

not at 15 °C. 
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Discussion 

Phylogeny of thermophilic streptomycetes. Thermophilic streptomycetes fall into several 

distinct evolutionary lines based on 16S rRNA sequence data (Kim, D. et al., 1996; Kim, S. 

B. et at., 1998) and have been sharply distinguished from mesophilic streptomycetes in 

numerical phenetic surveys (Goodfellow et al., 1987; O'Donnell et al., 1993). It is, 

therefore, apparent from both genotypic and phenotypic data that these organisms do not 

form a single subgroup in the genus Streptomyces as proposed by Craveri and Pagani 

(1962). The present study confirms and extends the conclusions drawn from the earlier 16S 

rRNA sequence studies as thermophilic streptomycetes were assigned to two phyletic 

groups, provisionally labelled clades A and B (Fig. 3-9). The recovery of Streptomyces 

macrosporus DSM 41449T, Streptomyces megasporus DSM 41476T and Streptomyces 

thermolineatus DSM 41451T as a distinct phyletic line, Glade B, is in agreement with the 

results of the 16S rRNA sequencing studies mentioned above. 

Thirty-six out of the forty thermophilic streptomycetes were recovered in Glade A 

which also contained thirteen strains considered to be mesophilic streptomycetes. However, 

since many of the mesophilic strains have not the subject of temperature range studies it is 

quite possible that some of them may grow at high temperature. Fifty out of the fifty-two 

strains assigned to Glade A were assigned to six subclades that were supported by the least- 

squares (Fitch & Margoliash, 1967) and maximum-likelihood algorithms (Felsenstein, 

1981). 

Subclade Al encompasses three thermophilic reference strains, Streptomyces 

thermogriseus CCTCC AA97014T, Streptomyces thermonitrificans DSM 40579T and 

Streptomyces thermovulgaris DSM 40444T and ten thermophilic isolates, namely, 

Streptomyces strains A1853 (centrotype strain of cluster 19, aggregate group VI; Sahin, 

1995), A1956 (centrotype strain of cluster 20, aggregate group VI; Sahin, 1995), NT218 
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Figure 3-9. Least squares tree (Fitch & Margoliash, 1967) based on almost complete 

16S rRNA sequences showing relationships between the thermophilic streptomycetes 

(in bold) and representatives of the genus Streptomyces. The corresponding 16S rRNA 

sequence of Arthrobacter globiformis (accession number M2341 1) was used as the 

outgroup. The numbers at the nodes indicate the level (%) of bootstrap support based on 

neighbour joining analyses of 1000 resampled data sets; only values over 40 % are 

given. The scale bar indicates 0.01 substitutions per nucleotide position. Alkalitolerant 

strains are marked with an asteriks. SMC=single-membered cluster. 

The following strains had identical partial 16S rRNA sequences with organisms 

included in the tree: (a) Streptomyces strains A1853 (Sahin, cluster 19, aggregate group 

VI), A1956 (Sahin, cluster 20, aggregate group VI), NT218 (Sahin, SMC, aggregate 

group VI), TA12* (Sahin, SMC, aggregate group VI), TA26* (Sahin, cluster 25, 

aggregate group VI), TA34* (Sahin, cluster 16, aggregate group IV), TA54* (Sahin, 

cluster 24, aggregate group VI), TA123* (Sahin, SMC, aggregate group VI), TA179* 

(Sahin, cluster 26, aggregate group VI) and TA265* (Sahin, cluster 23, aggregate group 

VI) with Streptomyces thermovulgaris DSM 40444T (Sahin, cluster 22, aggregate group 

VI); (b) Streptomyces strain NAR84* (Sahin, cluster 5, aggregate group IV) with 

Streptomyces strain NAR54* (Sahin, cluster 6, aggregate group IV); (c) Streptomyces 

strains NT312 (Sahin, cluster 13, aggregate group N), NT371(Sahin, cluster 12, 

aggregate group N), NT399 (Sahin, cluster 9, aggregate group IV), NT493 (Sahin, 

SMC, aggregate group IV), TA127* (Sahin, SMC, aggregate group N) with 

Streptomyces strain NT381 (Sahin, cluster 11, aggregate group N), and (d) 

Streptomyces strain NT336 (Sahin, cluster 14, aggregate group N) with Streptomyces 

strain NT90 (Sahin, cluster 15, aggregate group IV). 
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(single-membered cluster, aggregate group VI; Sahin, 1995), TA12 (single-membered 

cluster, aggregate group VI; Sahin, 1995), TA34 (centrotype strain of cluster 16, aggregate 

group IV; Sahin, 1995), TA26 (centrotype strain of cluster 25, aggregate group VI; Sahin, 

1995), TA61 (centrotype strain of cluster 24, aggregate group VI; Sahin, 1995), TA56 

(single-membered cluster, aggregate group VI; Sahin, 1995), TA123 (single-membered 

cluster, aggregate group VI; Sahin, 1995) and TA179 (centrotype strain of cluster 26, 

aggregate group VI; Sahin, 1995). Eleven out of thirteen strains assigned to subclade Al 

shared almost identical 16S rRNA sequences (three nucleotide differences or less). The 

exceptions, Streptomyces thermogriseus CCTCC AA97014T and Streptomyces strain TA56, 

showed their highest 16S rRNA sequence similarities with Streptomyces thermovulgaris 

DSM 40444T (99.5 % which corresponds to seven nucleotide differences and 99.0 % which 

corresponds to fourteen nucleotide differences, respectively). The integrity of subclade Al is 

supported by both the least-squares and maximum-likelihood trees and by high bootstrap 

values based on the neighbour joining algorithm. 

Subclade A2 contains Streptomyces thermocarboxydovorans DSM 44296T, 

Streptomyces thermodiastaticus DSM 40573T, "Streptomyces thermoflavus" DSM 40574, 

"Streptomyces thennophilus" DSM 40365, Streptomyces thermoviolaceus subsp. apingens 

DSM 41392T, Streptomyces thermoviolaceus subsp. thermoviolaceus DSM 40443T, 

Streptomyces strain NAR58 (single-membered cluster, aggregate group V; Sahin, 1995) and 

Streptomyces strain B19 isolated from poultry faeces. The strains in this subclade were 

closely related in terms of nucleotide similarity (average of nucleotide similarities, 98.8 %± 

1.2) but did not show monophyly. This apparently anomalous result can be attributed to the 

vagaries of the tree-algorithms which cannot reliably differentiate between the close 

relationships found between members of subclade Al and A2; members of subclade A2 



CHAPTER III DISCUSSION 265 

showed a 16S rRNA nucleotide similarity value of 97.8 %±0.5 to Streptomyces 

thermovulgaris DSM 40444T. 

Subclade A5 contains Streptomyces eurythermus ATCC 149751, Streptomyces 

thermocarboxydus DSM 44293T, "Streptomyces thermotolerans" DSM 40227 and 

Streptomyces violaceoruber DSM 40049T, and twelve thermophilic isolates, namely, 

Streptomyces strains NAR54 (centrotype strain of cluster 6, aggregate group IV; Sahin, 

1995), NAR84 (centrotype strain of cluster 5, aggregate group N; Sahin, 1995), NT90 

(centrotype strain of cluster 15, aggregate group IV; Sahin, 1995), NT312 (centrotype strain 

of cluster 13, aggregate group IV; Sahin, 1995), NT336 (centrotype strain of cluster 14, 

aggregate group N; Sahin, 1995), NT358 (centrotype strain of cluster 7, aggregate group 

IV; Sahin, 1995), NT371 (centrotype strain of cluster 12, aggregate group IV; Sahin, 1995), 

NT381 (centrotype strain of cluster 11, aggregate group IV; Sahin, 1995), NT399 

(centrotype strain of cluster 9, aggregate group N; Sahin, 1995), NT493 (single-membered 

cluster, aggregate group N; Sahin, 1995), NT576 (centrotype strain of cluster 10, aggregate 

group N; Sahin, 1995) and TA127 (single-membered cluster, aggregate group N; Sahin, 

1995). Subclade A5 also contained four strains, namely, Streptomyces ambofaciens ATCC 

23877T, Streptomyces pseudogriseolus NRRL 3985, Streptomyces caelestis NRRL 2418T 

and Streptomyces glaucescens DSM 40716, considered as mesophilic streptomycetes. The 

integrity of this subclade is supported by the least-squares and maximum-likelihood trees 

and by high bootstrap values based on neighbour joining method. 

Subclades A3, A4 and A6 only contained organisms considered as mesophilic 

streptomycetes. Another mesophilic organism, Streptomyces bluensis ISP 5564T, formed a 

distinct branch within Glade A. The final thermophilic isolate, Streptomyces strain NT322, 

also formed a distinct branch within Glade A. 

Clade D contained Streptomyces albus DSM 40313T, a thermotolerant 

streptomycete, two mesophilic reference streptomycetes, Streptomyces mashuensis DSM 
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Table 3-12. Comparison between the numerical phenetic and 16S rRNA sequence data 

Numerical phenetic 
classification a 

Strains 16S rRNA 
Glade b 

Aggregate group I 

Cluster 1 S. megasporus DSM 41476T B 
Aggregate group II 
Cluster 3 Streptomyces strain NT307 D 

Cluster 4 S. albus DSM 40313T, K17 ` D 

Aggregate group III 
SMC S. canescens DSM 40001 T A6 
SMC S. cavourensis DSM 40300T C 

SMC S. hydrogenans DSM 40586T C 

Aggregate group IV 
Cluster 5 Streptomyces strain NAR84 A5 

Cluster 6 Streptomyces strain NAR54 A5 

Cluster 7 Streptomyces strain NT358 AS 

Cluster 8 Streptomyces strain NT322 Aa 

Cluster 9 Streptomyces strain NT399 A5 

Cluster 10 Streptomyces strain NT576 A5 

Cluster 11 Streptomyces strain NT381 A5 

Cluster 12 Streptomyces strain NT371 A5 

Cluster 13 Streptomyces strain NT312 A5 

Cluster 14 Streptomyces strain NT336 A5 

Cluster 15 Streptomyces strain NT90 A5 

Cluster 16 Streptomyces strain TA34 Al 

SMC Streptomyces strain NT 125 AS 

SMC Streptomyces strain NT493 A5 

SMC Streptomyces strain TA 127 A5 

SMC S. thermolineatus DSM 41451 T B 

SMC S. macrosporus DSM 41449T B 

Aggregate group V 

Cluster 17 S. thermodiastaticus DSM 40573T A2 

Cluster 18 S. themoviolaceus subsp. thermoviolaceus A2 

DSM 40443T 

Cluster Streptomyces strain NAR85 A2 

Aggregate group VI 

Cluster 19 Streptomyces strain A1853 Al 
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Cluster 20 Streptomyces strain A 1956 Al 

Cluster 22 S. thermovulgaris DSM 40444T Al 
Cluster 23 Streptomyces strain TA265 Al 

Cluster 24 Streptomyces strain TA 61 Al 

Cluster 25 Streptomyces strain TA26 Al 

Cluster 26 Streptomyces strain TA179 Al 

SMC Streptomyces strain TA56 Al 
SMC Streptomyces strain TA 123 Al 

SMC Streptomyces strain TA218 Al 

SMC Streptomyces strain TA 12 Al 
Classification by Sahin (1995) 

b, Based on the least-squares tree (Fig. 3-5). 
C. S. albus K17 was included in the numerical phenetic study whereas S. albus DSM 40313T was included in 

the 16S rRNA sequence analysis. 
d, Phylogenetic position of strain NT322 within Glade A is not clear. 
SMC, single-membered cluster. 
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40221 T and Streptomyces rimosus R6-554, and a thermophilic isolate, strain NT307 (cluster 

3, aggregate group 11; Sabin, 1995). However, the integrity of this Glade was not supported 

by the maximum-likelihood trees or by high bootstrap values based on the neighbour joining 

method. Strain NT307 was most closely related to Streptomyces albus DSM 40313T (98.6 % 

nucleotide similarity). It is also interesting that Streptomyces albus DSM 40313T, the type 

species of the genus Streptomyces, was found to occupy a distinct position in earlier 

streptomycete trees based on 16S rRNA (Witt & Stackebrandt, 1990) and on N-terminal 

sequence of ribosomal protein AT-L30 (Ochi, 1995). 

It is encouraging that good congruence was found in the present study between the 

numerical phenetic and 16S rRNA sequence data (Table 3-12). Aggregate group II was 

represented by Streptomyces strain NT307 (cluster 3) and Streptomyces albus strains K15 

and K17. Strain NT307 and Streptomyces albus DSM 40313T were recovered in Glade D. 

Eleven out of the fifteen strains representing aggregate group IV were assigned to subclade 

AS. Similarly, the three strains representing clusters assigned to aggregate group V were 

assigned to subclade A2. All ten strains representing clusters assigned aggregate group VI by 

Sahin (1995) were assigned to subclade Al. 

Reference strains. Numerical phenetic surveys designed to unravel the complicated 

taxonomic structure of the genus Streptomyces have yielded conflicting results with respect 

to members of some of the validly described taxa which contain thermophilic 

streptomycetes (Williams et al., 1983a; Goodfellow et al., 1987; Kämpfer et al., 1991). In 

particular, the taxonomic standing of Streptomyces thermonitrificans Desai and Dhala 1967 

is not clear as the type strain of this species has been reported to share genotypic (Ochi, 

1995; Kim et al., 1996) and phenotypic (Williams et al., 1983a; Goodfellow et al., 1987; 

Kämpfer et al., 1991) properties in common with both Streptomyces thermoviolaceus 

(Henssen 1957) emend. Goodfellow et al. 1987 and Streptomyces thermovulgaris (Henssen 

1957) emend. Goodfellow et al. 1987. 
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Streptomyces thermodiastaticus (Bergey et al. 1923) Waksman 1953 has many 

phenotypic characters in common with Streptomyces thermoviolaceus (Henssen 1957) 

emend. Goodfellow et al. 1987, including the ability to form spores with small 

hemispherical warts in spiral chains (Vobis & Henssen, 1983; Goodfellow et al., 1987). The 

ultrastructure of the hemispherical warts of Streptomyces thermoviolaceus was examined by 

Vobis and Henssen (1983) who recommended that this type of spore ornamentation be 

designated "tuberculate". The close relationship between Streptomyces thermodiastaticus 

and Streptomyces thermoviolaceus is also evident from both the present and earlier 16S 

rRNA sequencing studies (Kim, D. et al., 1996). 

It has already been stressed that DNA: DNA relatedness studies can be used to 

resolve the finer taxonomic relationships between closely related organisms as it is generally 

agreed that genomic species should encompass strains which show approximately 70 % or 

more DNA: DNA relatedness under suitable experimental conditions (Wayne et al., 1987; 

Stackebrandt & Goebel, 1994; Goodfellow et al., 1997). In the present study, the DNA 

homology data show that Streptomyces thermonitrificans DSM 40579T and Streptomyces 

thermovulgaris DSM 40444T belong to a single genomic species which is readily 

distinguished from a corresponding taxon which encompasses Streptomyces 

thermoviolaceus subspecies apingens and Streptomyces thermoviolaceus subspecies 

thermoviolaceus. Relatively high DNA: DNA relatedness values also support the close 

relationship between representatives of Streptomyces thermodiastaticus and Streptomyces 

thermoviolaceus. 

The type strains of Streptomyces thennonitrificans and Streptomyces thermovulgaris 

share almost identical 16S rRNA sequences (Kim, D. et al., 1996) and similar ribosomal 

AT-L30 proteins (Ochi, 1995), have DPG, PE, PI, PIDM and unidentified phospholipids as 

major polar lipids, octahydrogenated menaquinones with nine isoprene units as the 

predominant isoprenologue, and DNA rich in G plus C (70 and 72 mol%, respectively). The 
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identical ribotype patterns shown by these strains also serve to distinguish them from 

Streptomyces thermodiastaticus and Streptomyces thermoviolaceus and underpins the results 

of an earlier investigation where Streptomyces thermonitrificans DSM 40579T and 

Streptomyces thermovulgaris DSM 40444T were found to produce similar randomly 

amplified polymorphic DNA profiles albeit ones which were markedly different from those 

generated by Streptomyces thermodiastaticus DSM 40573T and Streptomyces 

thermoviolaceus DSM 40443T (Kim, S. B. et al., 1998). 

It is clear from both the present and previous investigations that Streptomyces 

thermonitrificans DSM 40579T and Streptomyces thermovulgaris DSM 40444T are members 

of the same species. This finding is also supported by some numerical phenetic data 

(Williams et al., 1983a; Kämpfer et al., 1991). It is, therefore, proposed that Streptomyces 

thermonitrificans Desai and Dhala 1967 be recognized as a subjective synonym of 

Streptomyces thermovulgaris (Henssen 1957) emend. Goodfellow et al. 1987. This proposal 

supersedes an earlier one where it was proposed that Streptomyces thermonitrificans be 

accepted as a subjective synonym of Streptomyces thermoviolaceus (Goodfellow et al., 

1987) on the basis of phenotypic data. 

16S rRNA sequence data show that Streptomyces thermodiastaticus DSM 40573T is 

most closely related to Streptomyces the rmocarboxydovorans DSM 44296T (99.0% 

nucleotide sequence similarity), Streptomyces thermoviolaceus subspecies apingens DSM 

41392T (99.1 %), Streptomyces thermoviolaceus subspecies thermoviolaceus DSM 40443T 

(99.4%) and Streptomyces thermovulgaris DSM 40444T (97.7%) (Kim, D. et al., 1996; Kim, 

S. B. et al., 1998). However, it is clear from the DNA relatedness data that the type strains 

of Streptomyces thermodiastaticus, Streptomyces thermoviolaceus and Streptomyces 

thermovulgaris belong to different genomic species. Members of these taxa can also be 

distinguished from one another and from related taxa, including Streptomyces 

thermocarboxydovorans, using a combination of phenotypic properties (Kim, S. B. et al., 
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1998). Streptomyces thermodiastaticus DSM 40573T was also distinguished from the type 

strains of the two subspecies of Streptomyces thermoviolaceus when genomic digests 

prepared using Pvu II and Sal I restriction endonucleases were probed with the 7.2 kb DNA 

fragment from Streptomyces violaceoruber DSM 41007. However, all three of these strains 

gave similar banding patterns in the corresponding experiments with Bam HI genomic 

digests though the profile for the Streptomyces thermoviolaceus subspecies thermoviolaceus 

strain showed bands with slightly lower molecular weights than those of the Streptomyces 

thermoviolaceus subspecies apingens strain; these differences may be due to deletions in the 

DNA near the rRNA operons. 

The inclusion of Streptomyces thermodiastaticus DSM 40573T in the Streptomyces 

halstedii (Williams et al., 1983) and Streptomyces rochei (Kämpfer et al., 1991) numerical 

phenetic clusters can be attributed to the poor growth of this strain at the incubation 

temperatures used (25 °C and 28 °C, respectively), and to test and sampling error (Sneath & 

Johnson, 1972). Similar factors probably explain the assignment of Streptomyces 

thermoviolaceus DSM 40443T to the Streptomyces aurantiacus (Williams et al., 1983a) and 

Streptomyces graminofaciens clusters (Kämpfer et al., 1991). It can be concluded from the 

present study that both Streptomyces thermodiastaticus (Bergey et al. 1923) Waksman 1953 

and Streptomyces thermoviolaceus (Henssen 1957) emended Goodfellow et al. 1987 

continue to merit recognition as validly described species. 

"Streptomyces thermoflavus" (Kudrina and Maximova, 1963) Pridham 1970, 

"Streptomyces thermophilus" (Gilbert, 1904) Waksman and Henrici 1948 (syn. 

Streptomyces rectus; Henssen, 1957b) and "Streptomyces thermotolerans" ex Pagano et al. 

1959 currently have no standing in nomenclature. "Streptomyces thermoflavus" DSM 

40574, "Streptomyces thermophilus" DSM 40365 and "Streptomyces thermotolerans" DSM 

40227, the putative type strains of these taxa, were included in the International 

Streptomyces Project (ISP; ISP 5574, ISP 5365 and ISP 5227, respectively) but were not 
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cited in the Approved Lists of Bacterial Names (Skerman et al., 1980) and have not been 

validly published since 1 January 1980. 

In the present study, "Streptomyces thermoflavus" DSM 40574 was found to have 

the same almost complete 16S rRNA sequence as Streptomyces thermoviolaceus subspecies 

apingens DSM 41392T and was closely related to Streptomyces thermoviolaceus subspecies 

thermoviolaceus DSM 40443T (99.4 % nucleotide similarity). "Streptomyces thermoflavus" 

DSM 40574, Streptomyces thermoviolaceus subsp. apingens DSM 41392T and Streptomyces 

thermoviolaceus subsp. thermoviolaceus DSM 40443T all produce a grey aerial spore mass 

and spiral chains of spores with tuberculate surface ornamentation. However, in numerical 

phenetic surveys "Streptomyces thermoflavus" DSM 40574 has been assigned to the 

Streptomyces thermovulgaris (Williams et al., 1883a) and Streptomyces 

diastatochromogenes clusters (Kämpfer et al., 1991), and Streptomyces thermoviolaceus 

subsp. thermoviolaceus DSM 40443T has been assigned to the Streptomyces aurantiacus 

(Williams et al., 1983a) and Streptomyces graminofaciens clusters (Kämpfer et al., 1991). 

"Streptomyces thermoflavus" DSM 40574 can be distinguished from strains of Streptomyces 

thermoviolaceus and other thermophilic streptomycetes by its characteristic orange-coloured 

substrate mycelium. Further comparative taxonomic studies are needed to establish the exact 

taxonomic position of "Streptomyces thermoflavus" DSM 40574. 

"Streptomyces thermophilus" DSM 40365 showed its closest relationships to 

Streptomyces thermoviolaceus subsp. thermoviolaceus DSM 40443T (99.1 % 16S rRNA 

nucleotide similarity) and Streptomyces thermocarboxydovorans DSM 44296T (98.7 % 16S 

rRNA nucleotide similarity). Validly described species separated by such nucleotide 

differences have been shown to belong to different genomic species, for example, 

Streptomyces thermoviolaceus subsp. thermoviolaceus DSM 40443T and Streptomyces 

thermodiastaticus DSM 40573T share a 99.4 % 16S rRNA nucleotide similarity but showed 

58 % DNA: DNA relatedness. "Streptomyces thermophilus" DSM 40365 and Streptomyces 
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thermoviolaceus subsp. thermoviolaceus DSM 40443T have also been recovered in separate 

numerically circumscribed phenetic clusters. The former was assigned to the Streptomyces 

chromofuscus (Williams et al., 1983a) and Streptomyces rochei clusters (Kämpfer et al., 

1991a) and as the latter to the Streptomyces aurantiacus (Williams et al., 1983a) and 

Streptomyces graminofaciens clusters (Kämpfer et al., 1991). "Streptomyces thermophilus" 

DSM 40365 can also be separated from related thermophilic streptomycetes, namely, 

Streptomyces thermocarboxydovorans DSM 44296T, Streptomyces thermodiastaticus DSM 

40573T, Streptomyces thermoviolaceus subsp. thennoviolaceus DSM 40443T, "Streptomyces 

thermoflavus" DSM 40574 and Streptomyces thermovulgaris DSM 40444T by its ability to 

produce straight chains of spiny spores and melanin pigments. 

It is clear both from the present and earlier studies that "Streptomyces thermophilus" 

DSM 40574 is genotypically and phenotypically distinct from the related streptomycete taxa 

and should be recognised as valid species in the genus Streptomyces. 

Description of Streptomyces thermophilus (Gilbert, 1904) Kim, B. and Goodfellow. 

Streptomyces thermophilus (ther. mo. phi. lus; Gr. n. therme heat; Gr. adj. philus loving; M. L. 

part. adj. thermophilus heat-loving). 

The description is based on data taken from this and earlier studies (Shirling & 

Gottlieb, 1972; Williams et al., 1983a; Kämpfer et al., 1991). Aerobic, Gram positive, 

thermophilic actinomycete which forms extensively branched substrate and aerial hyphae. 

Straight chains of spiny ornamented spores are borne on aerial hyphae. The organism forms 

a grey aerial spore mass but neither distinctive substrate mycelium colours nor diffusible 

pigments are formed. Melanin pigments are produced on peptone-yeast extract iron and 

tyrosine agars. 

The organism degrades adenine, aesculin, arbutin, gelatin, casein and Tween 80. 

Acetate, L-arabinose, cellobiose, D-fructose, D-galactose, D-glucosamine, D-glucose, meso- 

inositol, D-lactose, D-mannitol, D-mannose, propionate, pyruvate, starch, sucrose, L- 
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tartrate, D-trehalose and D-xylose are used as sole sources of carbon for energy and growth 

but not meso-erythritol, inulin, a-D-raffinose, cc-L-rhamnose or xylitol. Potassium nitrate, L- 

threonine and L-serine are used as sole sources of nitrogen but not L-hydroxyproline. The 

organism is sensitive to dimethylchlortetracycline (500 pg ml"'), gentamicin sulphate (100 

jig m1"'), neomycin sulphate (50 pg ml"'), oleandomycin (100 pg ml"'), streptomycin 

sulphate (100 pg ml"'), tobramycin (50 pg ml"'), vancomycin hydrochloride (50 pg ml-1), 

but not to cephaloridine (100 pg ml"'). This strain does not grow at pH 4.3. 

Isolated from fresh horse manure. 

The type strain is ISP 5365T (=DSM 40365T). 

The taxonomic position of "Streptomyces thermotolerans" DSM 40227 has still to 

be resolved. This organism was found to be most closely associated with Streptomyces 

thermocarboxydus DSM 44293T. "Streptomyces thermotolerans" DSM 40227 should be 

considered as thermotolerant streptomycete as it does not grow well at 50 °C. Further 

studies are needed to determine whether it merits species status. It is encouraging that 

Streptomyces violaceoruber DSM 40049T was found in the subclade A5 associated with 

thermophilic streptomycetes as members of this taxon were reported to grow at 55 °C 

(Fergus, 1964). 

Mikami et al. (1982) found that out of all the ISP strains (Shirling & Gottlieb, 1966) 

only Streptomyces canescens DSM 40001T (ISP 5001T), Streptomyces cavourensis subsp. 

cavourensis DSM 40300T (ISP 5001T) and Streptomyces hydrogenans DSM 40586T (ISP 

5001T) grew at pH 11.5. However, it is evident from the 16S rRNA sequencing data that 

these three alkalitolerant strains are not closely related. shared an identical 16S rRNA 

sequence with. The close relationship between Streptomyces canescens DSM 40001 T and 

Streptomyces albidoflavus DSM 40455T is supported by the present 16S rRNA sequence 

data and the results of numerical phenetic (Williams et al., 1983a; Kämpfer et al., 1991), 
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pyrolysis mass spectrometric (Ferguson et al., 1997) and 16S-23S rRNA spacer sequence 

studies (Hain et al., 1997). It is clear from the genotypic and phenotypic data that 

Streptomyces canescens Waksman 1957`u should be reduced to a synonym of Streptomyces 

albidoflavus (Rossi Doria 1891) Waksman and Henrici 1948`u', as suggested by Williams et 

al. (1989). Streptomyces cavourensis subsp. cavourensis DSM 40300T and Streptomyces 

hydrogenans DSM 40586T showed their highest 16S rRNA similarities with Streptomyces 

griseus KCTC 9080T (98.9 % nucleotide similarity) and Streptomyces bikinensis DSM 

40581T (98.9 % nucleotide similarity), respectively. However, further comparative studies 

are needed with other mesophilic streptomycetes to define their taxonomic status. 

Isolates. Thermophilic, neutrophilic Streptomyces strains A 1853 (centrotype strain of 

cluster 19, aggregate group VI; Sabin, 1995), A1956 (centrotype strain of cluster 20, 

aggregate group VI; Sabin, 1995) and NT218 (single-membered cluster, aggregate group VI; 

Sabin, 1995), and alkalitolerant, thermophilic Streptomyces isolates TA12 (single-membered 

cluster, aggregate group VI; Sabin, 1995), TA26 (centrotype strain of cluster 25, aggregate 

group VI; Sabin, 1995), TA61 (centrotype strain of cluster 24, aggregate group VI; Sabin, 

1995), TA123 (single-membered cluster, aggregate group VI; Sabin, 1995) and TA179 

(centrotype strain of cluster 26, aggregate group VI; Sabin, 1995) exhibited a number of 

phenotypic properties which are consistent with their classification in the genus 

Streptomyces (Williams et al., 1989; Manflo et al., 1995). They all formed an extensively 

branched substrate mycelium, aerial hyphae which differentiated into long chains of smooth 

spores, and gave whole-organism hydrolysates that were rich in LL-diaminopimelic acid. It 

is evident from the DNA relatedness studies that all of these representatives of clusters 

assigned to aggregate group VI (Sabin, 1995) showed 90 % or more DNA relatedness with 

reference DNA prepared from Streptomyces thermovulgaris DSM 40444T. The isolates also 

formed a grey aerial spore mass, lacked distinct substrate mycelium pigments, formed spores 

in hooked or spiral chains, and were melanin negative; all of these properties are typical of 
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bona fide members of the taxon Streptomyces thermovulgaris (Goodfellow et al., 1987; 

Sahin, 1995). In addition, all of these strains gave the same ribotype pattern as Streptomyces 

thermovulgaris DSM 40444T when Bam HI genomic digests were hybridised with the 

rRNA probe. 

It is also evident from the DNA: DNA relatedness experiments and associated 

phenotypic data (O'Donnell et al., 1993) that strains AT5, AT6 and AT54 have properties 

consistent with their assignment to Streptomyces thermovulgaris. This result was not 

unexpected as Kim, S. B. et al. (unpublished data) have shown that these carboxydotrophic, 

thermophilic streptomycetes have almost identical 16S rRNA sequences to that of 

Streptomyces thermovulgaris DSM 40444T. This result raises the prospect that established 

members of Streptomyces thermovulgaris may be able to grow on CO as a sole source of 

energy and growth. 

It is necessary to emend the description of Streptomyces thermovulgaris in light of 

the developments outlined above. 

Description of Streptomyces thermovulgaris (Henssen 1957) Kim, B. et al. Streptomyces 

thermovulgaris (ther. mo. vul. ga'ris. Gr. n. therme heat; L. adj. vulgaris common; M. L. adj. 

thermovulgaris heat common, inferring common thermophile). 

The description is based on data taken from this and earlier studies (Henssen, 1957; 

Goodfellow et al., 1987; Falconer, 1988; Sahin, 1995). Aerobic, Gram positive, 

chemoorganotrophic, thermophilic actinomycete with extensively branched substrate and 

aerial hyphae. Some strains grow on carbon monoxide and methanol as sole carbon sources. 

Hooked or spiral chains of smooth surfaced spores are borne on aerial hyphae. The aerial 

spore mass colour is grey, but neither distinctive substrate mycelium colours nor diffusible 

pigments are formed. Melanin pigments are not produced on peptone-yeast extract iron or 

tyrosine agars. 
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More than 90 % of the strains examined in the present study degrade casein, gelatin, 

starch and L-tyrosine; utilise arabitol, D-cellobiose, cholesterol, D-fructose, D-galactose, 

gluconic acid (Na' salt), meso-inositol, D-lactose, mannitol, D-mannose, starch, D-trehalose, 

turanose and D-xylose as sole sole sources of carbon and energy; utilise DL-a-amino-n- 

butyric acid, ammonium dihydrogen orthophosphate, L-arginine, cadaverine, L-cysteine, 

glycinaniide, glycine t-butyl ester, L-histidine, L-iso-leucine, L-methionine, L-0- 

phenylalanine, DL-0-phenylalanine, potassium nitrate, L-proline, L-threonine, DL-valine 

and L-valine as sole nitrogen sources. The strains grow in the presence of crystal violet 

(0.001 %, w/v), phenol (0.1 %, w/v), phenyl ethanol (0.3 %, w/v), sodium azide (0.005 %, 

w/v), sodium borohydride (0.1 %, w/v), sodium deoxycholate (0.005 %, w/v), sodium 

salicylate (0.01 %, w/v), sodium selenite (0.001 %, w/v), tetrazolium salt (0.001 %, w/v) 

and thallous acetate (0.001 %, w/v), and are not inhibited by ampicillin (8 pg/mI), 

carbenicillin (12 pg/ml), cefoxitin (32 pg/ml), cephradin (8 pg/ml), fusidic acid (8 pg/ml), 

isoniazid (16 pg/ml), nalidilic acid (32 pg/ml), oleandomycin phosphate (16 pg/ml), 

penicillin G (5 i. u), spiramycin (10 pg/ml), tetracyline (4 µg/ml) or tunicamycin (10 µg/ml), 

or by barium chloride (0.005 %, w/v), cobalt chloride (0.001 %, w/v) or zinc chloride (0.001 

%, w/v). 

More than 90 % of the strains studied are unable to degrade arbutin or xanthine; 

utilise adonitol, androsterone, anthranilic acid, L-arabinose, L-ascorbic acid, cinnamic acid, 

citric acid (Na+ salt), ferulic acid, D-glucuronic acid, humic acid, D-lyxose, D-mandelic 

acid, pimelic acid, quinic acid, D-raffinose, sodium malonate (Nat salt), sorbitol, L-tartaric 

acid or xylitol as sole sources of carbon and energy. They are also unable to utilise 

papaverine, protamine sulfate, tetramethylammonium sulphate or xanthine as sole nitrogen 

sources. The strains does not grow in the presence of bacitracin (32 pg/ml), cephaloridin (64 

pg/ml), doxycyline (16 pg/ml), gentamycin sulphate (8 pg/ml), lividomycin a (8 pg/mI), 
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neomycin sulphate (8 pg/ml), novobiocin (4 pg/ml), streptomycin sulphate (16 pg/ml), 

tetracyline (32 pg/ml) or vancomycin (16 pg/ml), or sodium chloride (7.0 %, w/v), 

tetrazolium salt (0.05 %, w/v), thallous acetate (0.005 %, w/v) or zinc chloride (0.005 

w/v). 

The organisms grow between 25 °C and 55 °C, from pH 6.0 to pH 10 (some strains 

grow at pH 11.5) and have DNA rich in G plus C (70-72 mol%). 

The type strain is DSM 40 44T. 

Streptomyces thermogrieus was proposed by Xu et al. (1998) to encompass four 

thermophilic streptomycetes isolated from habitats in Yunnan Province, China. However, in 

the present study, the type strain of this species shared a 99.5 % 16S rRNA nucleotide 

similarity (7 nucleotide differences) with Streptomyces thermovulgaris DSM 40444T. Most 

of the seven nucleotide differences found between the sequences of these two strains were 

located in the conserved regions of 16S rRNA. It seems likely, therefore, that these apparent 

differences can be attributed to sequencing errors. This conclusion is also supported by the 

fact that Streptomyces thermogrieus and Streptomyces thermovulgaris both produce a grey 

aerial spore mass, and smooth surfaced spores in hooked or spiral chains. It seems likely that 

Streptomyces thennogrieus should be reduced to a synonym of Streptomyces thermovulgaris 

though further comparative taxonomic studies are needed to prove this legal doubt. 

The remaining thermophilic isolate, Streptomyces strain TA56, formed a distinct 

single-membered cluster in aggregate group VI in the numerical phenetic study of Sahin 

(1995). This organism showed its closest 16S rRNA sequence similarity to Streptomyces 

thermovulgaris DSM 40444T (98.9 %) but was distinguished from this and related strains on 

the basis of DNA: DNA relatedness data. A number of phenotypic features can also be 

weighted to differentiate Streptomyces strain TA56 from Streptomyces thermovulgaris 

strains, not least the ability of the former to form warty as opposed to smooth surfaced 

spores. The two strains were also distinguished by their polar lipid patterns as only 
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Streptomyces strain TA56 produced an unidentified glycolipid (a-naphthol and periodate- 

Schiff positive) which co-migrated with a derivative of phosphatidylethanolamine. 

Streptomyces strain TA56 and Streptomyces thermovulgaris DSM 40444T also gave 

different ribotype patterns when high molecular weight DNA was digested with Bam HI and 

treated with the rRNA probe prepared from Streptomyces violaceoruber DSM 41007. 

It is clear from both the genotypic and phenotypic data that Streptomyces strain 

TA56 is related to, but distinct from, Streptomyces thermovulgaris. It can also be 

differentiated from Streptomyces thermoautotrophicus for unlike the latter it is not an 

obligate chemolithoautotroph and does not grow at 65 °C (Gadkari et al., 1990). 

Accordingly, the new species Streptomyces the rmoalcalitolerans is proposed to 

accommodate Streptomyces strain TA56. 

Description of Streptomyces thermoalcalitolerans sp. nov. Streptomyces 

thermoalcalitolerans (ther. mo. al. ca. li. to'le. rans. Gr. n. thernie heat; N. L. n. alcali (from 

arabic al. end; galiy soda ash); L. pres. part. tolerans tolerating, enduring; M. L. part. adj. 

the rmoalcalitolerans thermophilic alkali tolerating). 

The description is based on data taken from this and an earlier study (Sahin, 1995). 

Aerobic, Gram positive, thermophilic actinomycete with extensively branched substrate and 

aerial hyphae. Spiral chains of warty surfaced spores are borne on aerial hyphae. The aerial 

spore mass colour is grey, neither distinctive substrate mycelium colours nor diffusible 

pigments are formed. Melanin pigments are not produced on peptone iron agar. Casein, 

DNA, gelatin, starch, testosterone, L-tyrosine and xylan are degraded but not adenine, 

arbutin, elastin, guanine, hypoxanthine or xanthine. Adonitol, L-arabinose, arabitol, D- 

cellobiose, D-fructose, D-galactose, D-glucose, meso-inositol, D-lactose, D-mannitol, D- 

mannose, D-melezitose hydrate, melibiose, a-L-rhamnose, D-ribose, D-sorbitol, sucrose, D- 
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trehalose, D-turanose, xylitol and D-xylose are used as sole carbon sources for energy and 

growth but D-raffinose is not. 

Growth occurs between 25 °C and 55 °C, from pH 6.0 to pH 11.5, and in the 

presence of ampicillin (8 pg ml-1), bacitracin (16 µg ml"'), oleandomycin phosphate (16 pg 

ml-'), penicillin G (15 international units), rifampicin (16 pg ml-1), streptomycin sulphate (4 

pg ml"'), tetracycline hydrochloride (16 pg ml"') and tunicamycin (10 µg ml"'). In contrast, 

growth was inhibited in the presence of gentamycin sulphate (8 pg ml"'), lincomycin 

hydrochloride (32 pg ml-1), neomycin sulphate (8 µg ml-1), novobiocin (4 µg ml"'), 

oleandomycin phosphate (32 pg nil"'), polymyxin B phosphate (32 µg ml"'), rifampicin (32 

µg ml-'), streptomycin sulphate (16 pg ml"'), tetracycline hydrochloride (32 pg ml"'), 

tobramycin sulphate (32 µg ml"') and vancomycin hydrochloride (16 pg ml'). The DNA 

composition of strain TA56 is 73 mol% G+C. 

Isolated from tropical garden soil collected by M. Goodfellow from Yogyakarta, 

Central Java, Indonesia in 1991. 

The putative type strain is TA56 (=DSM 41741). 

Streptomyces the rmoalcalitolerans TA56T is closely related to Streptomyces 

thermovulgaris DSM 40444T as the tow strains share a DNA relatedness value of 62 %, a 

value well below the 70 % cut-off point used to assign strains to single genomic species 

(Wayne et at., 1987; Goodfellow et al., 1997a). The two strains were also found to contain 

octahydrogenated menaquinone with nine isoprene units as the major isoprenologue. 

Streptomyces strain NAR85 was the only neutrophilic, thermophilic isolate assigned 

to aggregate group V in the numerical phenetic study of Sahin (1995). in this study, the 

organism was most closely related to Streptomyces thermodiastaticus DSM 40573T and 

Streptomyces thermoviolaceus DSM 40443T. The close association with Streptomyces 

thermodiastaticus was underpinned by the results of the DNA: DNA relatedness studies as 

strain NAR85 showed 97 % DNA relatedness with labelled DNA prepared from 
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Streptomyces thermodiastaticus DSM 40573T. This assignment was also supported by 

corresponding phenotypic, ribotyping and 16S rRNA sequence data. The nucleotide 

sequence data show that Streptomyces strain NAR85 is closely related to Streptomyces 

thermodiastaticus DSM 40573T (99.5 % nucleotide sequence similarity) and Streptomyces 

thermoviolaceus DSM 40443T (99.4 %). It is clear from both the genotypic and phenotypic 

data that Streptomyces strain NAR85 is a typical member of the species Streptomyces 

thermodiastaticus. Streptomyces thermodiastaticus strain NAR85 has been deposited in the 

DSMZ collection under the accession number DSM 41740. 

It is evident from the 16S rRNA data that the neutrophilic, thermophilic isolate 

NT322 (centrotype strain of cluster 8, aggregate group IV; Sahin, 1995) is most closely 

related to Streptomyces thermocarboxydus DSM 44293T (98.6 % nucleotide similarity), 

Streptomyces coeruleoprunus DSM 41472T (98.4 % nucleotide similarity) and Streptomyces 

thermoviolaceus subsp. thermoviolaceus DSM 40443T (98.4 % nucleotide similarity). These 

similarity values are below the levels commonly found between validly described 

streptomycete species as exemplified by Streptomyces the rmocarboxydovorans DSM 

44296T and Streptomyces thermodiastaticus DSM 40573T (99.1 % nucleotide similarity). 

When the partial 16S rRNA sequence data of this strain was compared with the extensive 

DSMZ partial 16S rRNA database it was evident that strain NT322 was not closely related 

to any of the representatives of validly described Streptomyces species. In addition to 

Streptomyces strain NT322, cluster 8 contained three other strains, namely, Streptomyces 

strains NT342, NT346 and NT364. All four organisms were isolated from an and soil 

sample collected from in Merida, Venezuela. The integrity of cluster 8 is also supported by 

pyrolysis mass spectrometric data (Sahin, 1995). 

It can be concluded from the chemical fingerprinting, phenotypic and molecular 

systematic data that Streptomyces strains NT322, NT342, NT346 and NT364 merit species 
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status in the genus Streptomyces. It is, therefore, proposed that these strains be assigned to a 

new species for which the name Streptomyces eurythermophilus is given. 

Description of Streptomyces eurythermophilus sp. nov. Streptomyces eurythermophilus 

(eur. y. ther'mo. phi. lus; Gr. pref. eury many; Gr. n. therme heat; Gr. adj. philus loving; M. L. 

part. adj. eurythermophilus thermophile with wide growth temperature range). 

The description is based on data taken from this and an earlier study (Sahin, 1995). 

Aerobic, Gram positive, thermophilic actinomycete with extensively branched substrate and 

aerial hyphae. Spiral chains of smooth surfaced spores are borne on aerial hyphae. The aerial 

spore mass is brownish grey, but neither distinctive substrate mycelium colours nor 

diffusible pigments are formed on glycerol-asparagine, inorganic-salt starch or oatmeal 

agars. Melanin pigments are not formed peptone-yeast extract iron or tyrosine agars. 

Adenine, casein, elastin, gelatin, hypoxanthine, testosterone, xanthine and xylan are 

degraded but not guanine or L-tyrosine. D-cellobiose, cholesterol, D-galactose, D-gluconic 

acid (Na+ salt), humic acid, meso-inositol, D-lactose, D-mannitol, D-mannose, a-D- 

melibiose, pyruvic acid (Na+ salt), quinic acid, a-L-rhamnose, salicin, saponin, sebacic acid, 

starch, sucrose, D-trehalose and D-xylose are used as sole carbon and energy sources but not 

adonitol, androsterone, anthranilic acid, L-arabinose, L-ascorbic acid, benzoic acid (Na' 

salt), carboxymethylcellulose, ferulic acid, D-glucuronic acid, inulin, D-lyxose, malonic acid 

(Na+ salt), D-mandelic acid, D-melezitose, L-phenyldodecane, pimelic acid, D-raffinose, 

sorbitol, L-tartaric acid or xylitol. Ammonium dihydrogen orthophosphate, L-arginine, 

cadaverine, L-cysteine, glycinamide, glycine anhydride, glycine, t-butyl ester, L-histidine, 

hypoxanthine, L-iso-leucine, L-methionine, L-(3-phenylalanine, potassium nitrate, L-proline, 

L-threonine, L-valine and xanthine are used as sole nitrogen source but not acetamide, DL- 

a-amino-n-butyric acid, creatine, propionamide, protamine sulphate, tetramethylammonium 

sulfate or DL-valine. Growth occurs between 20 °C and 55 °C, from pH 6.0 to pH 9.0. 
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Growth is inhibited by amikacin (4 µg ml"'), cephaloridine (32 µg ml"'), doxycyline (4 µg 

ml"'), gentamycin sulphate (8 µg ml"'), lividomycin A (4 µg ml"'), novobiocin (4 µg ml"'), 

streptomycin sulphate (4 µg ml-1), vancomycin (16 µg ml-1), streptomycin sulphate (4 µg ml- 

') and viomycin (20 µg ml-1). 

Strain NT322 contains DPG, PE, PI, PIDM and a few unidentified phospholipids as 

the major polar lipids, and hexa- and octahydrogenated menaquinones with nine isoprene 

units as the predominant isoprenologues. 

Isolated from an and soil sample collected from in Merida, Venezuela. 

The type strain is Streptomyces strains NT322. 

The remaining five thermophilic isolates, namely, NAR54 (centrotype strain of 

cluster 6; Sahin, 1995), NT358 (centrotype strain of cluster 7; Sahin, 1995), NT576 

(centrotype strain of cluster 10; Sahin, 1995), NT381 (centrotype strain of cluster 11; Sahin, 

1995) and NT90 (centrotype strain of cluster 15; Sahin, 1995), were recovered in subclade 

A5 in the streptomycete tree. 

Identical partial 16S rRNA sequences were found between Streptomyces strains 

NAR54 and NAR84 (centrotype strain of cluster 5, aggregate group IV; Sahin, 1995), 

between Streptomyces strains NT90 and NT336 (centrotype strain of cluster 14, aggregate 

group IV; Sahin, 1995), and between Streptomyces strains NT381 and NT399 (centrotype 

strain of cluster 9, aggregate group IV; Sahin, 1995), NT312 (centrotype strain of cluster 13, 

aggregate group IV; Sahin, 1995), NT371 (centrotype strain of cluster 12, aggregate group 

IV; Sahin, 1995), TA127 (single-membered cluster, aggregate group IV; Sahin, 1995) and 

NT493 (single-membered cluster, aggregate group IV; Sahin, 1995). The close relationships 

between these groups of strains is supported by morphological data (Table 3-11). 

The 16S rRNA sequences of seven isolates, namely, Streptomyces strain NAR54 

(centrotype strain of cluster 6, aggregate group IV; Sahin, 1995), NT90 (centrotype strain of 
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cluster 15, aggregate group N; Sahin, 1995), NT307 (centrotype strain of cluster 3, 

aggregate group II; Sahin, 1995), NT322 (centrotype strain of cluster 8, aggregate group N; 

Sahin, 1995), NT358 (centrotype strain of cluster 7, aggregate group IV; Sahin, 1995), 

NT381 (centrotype strain of cluster 11, aggregate group IV; Sahin, 1995) and NT576 

(centrotype strain of cluster 10, aggregate group N; Sahin, 1995), were compared with the 

streptomycete partial 16S rRNA database held at DSMZ. 

It is evident from Table 3-13 that some of these isolates have very similar 

morphological properties to those of their nearest neighbours. For instance, Streptomyces 

strain NT307 showed its highest nucleotide similarities to Streptomyces flocculus DSM 

40327T (98.6 % nucleotide similarity) and Streptomyces albus DSM 40313T (98.0 % 

nucleotide similarity) and these strains shared white aerial spore mass colour and smooth 

spores in spiral chains. Similarly, Streptomyces strain NT381 showed its highest nucleotide 

similarities to Streptomyces xantholiticus DSM 40244T (98.8 % nucleotide similarity) and 

Streptomyces minutiscleroticus DSM 40301T (98.7 % nucleotide similarity) and these strains 

shared grey aerial spore mass colour and smooth spores in spiral chains. These findings 

suggest that these isolates may be the members of established streptomycete species though 

additional comparative taxonomic studies are needed to confirm this. These results also 

suggest that members of some established Streptomyces species may be able to grow at or 

above 50 °C. Further comparative studies are needed to determine the taxonomic 

relationships of these isolates and related strains. 

The chemical and morphological properties of strain B 19, which was isolated from a 

sample of poultry faeces collected from the poultry farm at the University of Malaya, are 

consistent with its assignment to the genus Streptomyces (Williams et al., 1989; Manfio et 

al., 1995). The organism forms an highly branched substrate mycelium, aerial hyphae which 

carry smooth surfaced spores in straight chains, contains LL-A2pm in the peptidoglycan, 

lacks characteristic sugars and mycolic acids, has tetra-, hexa- and octahydrogenated 
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Table 3-13. Comparison of morphology between isolates and their nearest Streptomyces 
species 

Isolates Closest matches 16S rRNA Snore surface Snnre Innre 
similarity' ornamentation b chains b 

NT307 (cluster 3) smooth 
S. flocculus DSM 40327T 98.6 % smooth 
S. albus DSM 40313T 98.0 % smooth 

NAR54 (cluster 6) smooth 
S. erythrogriseus DSM 40116T 99.0 % spiny 

S. griseoflavus DSM 40456T 99.0 % spiny 
S. griseoincarnatus DSM40274T 99.0 % spiny 

NT358 (cluster 7) 
S. eurythermus DSM 40014T 98.9 % 
S. lavenduligriseus DSM 40487T 98.9 % 

NT576 (cluster 10) 
S. viridodiastaticus DSM40249T 99.2 % 

S. albogriseolus DSM 40003T 99.0 % 

NT381 (cluster 11) 
S. xantholiticus DSM 40244T 98.8 % 
S. minutiscleroticus DSM 40301T 98.7 % 

smooth 
smooth 
smooth 

spiny 
small- spiny 

warty 

smooth 
smooth 
smooth 

spiral 
spiral 
spiral 

mass 
colourb 

white 
white 
white 

spiral grey 
hooked or grey-red 
spiral 

spiral grey 
hooked of grey-red 
spiral 

straight grey 
hooked grey 
hooked or grey 
straight 

spiral grey 
hooked or grey 
spiral 
hooked or grey 
spiral 

spiral grey 
spiral grey 
spiral grey- 

yellow 

NT90 (cluster 15) spiny spiral grey 
S. cineoruber 99.1 % smooth straight grey 
S. plicatus 99.1 % smooth hooked or grey 

long-spiral 

a, Partial 16S rRNA sequences positions between 33 and 474 and between 804-1233 (Streptomyces ambofaciens numbering 

system; Pernodet et al., [19891) of most of the validly described streptomycete species held in DSMZ database were 

compared. 
b, Descriptions of established taxa were taken from this and earlier studies (Shirling & Gottlieb, 1968a, b, 1969,1972 and 
Gottlieb & Shirling, 1967). 
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menaquinones with nine isoprene units, contains DPG, PE, PI and PIDM as major polar 

lipids, and has a DNA base composition of 68.6 mol % G+C. The assignment of the strain to 

the genus Streptomyces is also supported by 16S rRNA sequence data. 

Comparison of the almost complete 16S rRNA sequence (1492 nucleotides) of 

Streptomyces strain B 19 with corresponding streptomycete sequences showed that this 

organism lies at the periphery of the subclade A2 which is occupied by Streptomyces 

thermodiastaticus and allied taxa. The mean 16S rRNA similarity value found between the 

test strain and members of the Streptomyces thermodiastaticus Glade was 97.9 %. 

Streptomyces strain B 19 shares particularly high percentage nucleotide sequence similarities 

with Streptomyces thermoviolaceus subsp. apingens (98.6 %) and Streptomyces 

thermoviolaceus subsp. thermoviolaceus (98.2 %); these values correspond to 21 and 27 

nucleotide differences out of 1475 nucleotide positions. Nucleotide similarities within this 

range have been reported for several validly described species belonging to the Streptomyces 

thermodiastaticus Glade, for instance, between Streptomyces thermocarboxydovorans and 

Streptomyces thermoviolaceus (98.8 %; Kim, S. B. et al., 1998). Members of these taxa 

form distinct genomic species and can be separated using a set of phenotypic properties 

(Goodfellow et al., 1987; Kim, S. B. et al., 1998). 

Streptomyces strain B19 forms a grey aerial spore mass and produces smooth 

surfaced spores in straight chains. It also produces a brown substrate mycelium and brown 

diffusable pigments on Czapek Dox and yeast extract-malt extract agars, but not on 

glycerol-asparagine, inorganic salts-starch or oatmeal agars. Melanin pigments are formed 

on peptone iron and tyrosine agars. The organism can be distinguished from members of the 

Streptomyces thermodiastaticus Glade using a combination of phenotypic properties (Table 

3-14, pages 289 and 290). This latter observation is in line with recent studies which show 

that members of streptomycete species found to be closely related on the basis of genotypic 

data can be also be distinguished using phenotypic properties, notably morphological and 
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pigmentation features (Labeda & Lyons, 1991; Chun et al., 1997b; Labeda et al., 1997; Kim, 

S. B. et al., 1998). 

It is apparent from the genotypic and phenotypic data that strain B 19 forms a distinct 

centre of taxonomic variation within the genus Streptomyces. It is, therefore, proposed that 

this organism be recognised as a new species, for which the name Streptomyces 

thermocoprophilus is given. 

Description of Streptomyces thermocoprophilus sp. nov. Streptomyces thermocoprophilus 

(ther. mo. co. pro. phi. lus. Or. n. therme heat; Gr. n. copro dung; Gr. adj. philus loving; M. 

L. adj. thermocoprophilus dung loving thermophile). 

The description is based on the present and earlier studies by Al-Tai et al. 

(unpublished data). Aerobic, Gram positive, moderately thermophilic actinomycete which 

forms highly branched substrate and aerial hyphae. The latter differentiate into long straight 

spore chains. The spores are cylindrical shaped and have smooth surfaces. The aerial spore 

mass colour is grey. Diffusable pigments are formed on some standard media such as 

inorganic salts starch agar. Melanin pigments are produced on peptone iron and tyrosine 

agars. Casein, starch, xanthine and xylan are degrade but not adenine is not. 

L-arabinose, D-fructose, D-galactose, D-glucose, meso-inositol, maltose, D- 

mannitol, D-mannose and D-xylose are used as sole carbon sources for energy and growth 

but not carboxymethylcellulose, D-raffinose, starch or sucrose. 

Growth occurs between 20 °C and 50 °C (optimum temperatures for growth are 37 

to 50 °C) and in the presence of ampicillin (10 µg ml"'), erythromycin (15 pg ml"') and 

sodium chloride (7 %, w/v) but not at 10 °C or 55 °C. Growth is inhibited by 

chloramphenicol (30 µg ml"'), gentamycin sulphate (15 µg ml"'), kanamycin sulphate (30 pg 

ml"'), neomycin sulphate (30 pg ml"'), streptomycin sulphate (10µg ml"') and tetracycline 

hydrocholoride (30 pg ml-1). Antimicrobial activity is shown against Bacillus subtilis NCIB 
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3610 but not against Escherichia coli NCIB 9132 or Staphylococcus aureus ATCC 12600, 

or against representative strains of Candida albicans, Curvularia lunata, Pestalotiopsis 

gnepini, Pyricularia oryzae and Trichoderma viride. 

The G+C ratio of the genomic DNA is 68.6 mol%. 

The organism was isolated from a sample of poultry faeces collected from the 

poultry farm at the University of Malaya. 

The type strain is B 19 (=DSM 41700). 

Some phenotypic properties differentiating thermophilic streptomycete species are 

shown in Table 3-14. 

It is evident from these studies that a phylogenetic approach is needed to clarify the 

taxonomy of existing validly described species of Streptomyces. The resultant framework is 

needed to help describe the many strains of streptomycetes which remain to be isolated from 

natural habitats and given formal designations. It seems likely from the results of the present 

study that many more species of the streptomycetes remain to be described. 
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Appendix 1 

World Wide Web Sites 

Biodiversity 

Actinomycete-Streptomyces Internet Resource Center (ASIRC). This web site has been 

developed at the University of Minnesota with the aim of fostering interaction amongst 

actinomycete researchers in academia and industry. Address: http: //molbio. cbs. umn. edu/asirc/ 

The Biodiversity and Biological Collections Web Server. This is designed to provide 

information of interest to systematists and whole-organism biologists. Information can be 

found about specimens in biological collections, taxonomic authority files, directories of 

biologists, reports by various standards bodies (e. g., IOPI, ASC, SA2000), an archive of the 

Taxacom, access to on-line journals (including Flora On-line) and information about MUSE 

and Delta. Address: http: //biodiversity. uno. edu/ 

Convention on Biological Diversity (1992). The full text of the Convention on Biological 

Diversity, which was opened for signature at the 1992 Rio "Earth Summit", is provided. 

Address: http: //www. unep. ch/bio/conv-e. html 

List of Biodiversity World Wide Web Sites. This links many biodiversity-related sites. 

Address: http: //www. biologie. unifreiburg. de/data/zoology/reide/taxalinks. html 

The Microbial Strain Data Network (MSDN). This provides communication and 

information services on microbiology and biotechnology. Address: http: //www. csa. ru: 81/ 

Inst/gorb_dep/inbios/msdn_co. htm 

Species 2000 Project. The aim of this project is to prepare an inventory of all known species 

of plants, animals, fungi and microbes on Earth as the baseline dataset for studies of global 

biodiversity. Address: http: //www. sp2000. org/ 

The Tropical Data Base (Base de Dados Tropical - BDT). This is an information centre 

housed at the FundnAo Tropical de Pesquisas e Tecnologia "Andre Tosello", Campinas, 



APPENDICES 349 

Brazil. The centre has established an interactive biodiversity/biotechnology information 

resource and users network. As major activities, the BDT is involved with the collection, 

analysis and dissemination of data relevant to biodiversity and biotechnology, and with the 

development of software for data management. Address: http: //www. bdt. org. br/bdt/ 

The World Conservation Monitoring Centre (WCMC). This centre provides information 

services on conservation and sustainable use of the world's living resources, and helps others 

to develop information systems of their own. Address: http: //www. wcmc. org. uk/ 

The World Resources Institute (WRI). This institute provides a valuable source for facts 

and figures on biodiversity. Address: http: //www. wri. org/wri/biodiv/ 

Taxonomy-related sites 

The American Type Culture Collection (ATCC) was established to acquire, authenticate, 

and maintain reference cultures, related biological materials, and associated data, and to 

distribute these to qualified scientists in education, industry and government. Address: 

http: //www. atcc. org/atcc. htm 

Bacterial Nomenclature UP-TO-DATE. This database has been compiled by the DSMZ- 

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH. Bacterial Nomenclature 

UP-TO-DATE includes all bacterial names which have been validly published since January 1 

1980 together nomenclatural changes which have been validly published since then. The 

records are updated with the publication of each new issue of the International Journal of 

Systematic Bacteriology. Address: http: //www. dsmz. de/DSMZ/bactnom/bactname. htm. 

The List of Bacterial Names with Standing in Nomenclature also contains updated 

bacterial nomenclature. Address: http: //www-sv. cict. fr/bacterio/ 

The DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (German 

Collection of Microorganisms and Cell Cultures) is an independent, non-profit organization 

dedicated to the acquisition, characterization, identification, preservation and distribution of 

animal cell lines, archaea, bacteria, fungi, phages, plant cell cultures, plant viruses and 
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plasmids. Address: http: //www. dsmz. de/DSMZ/dsmzhome. htm 

Phylogeny 

Genetics Computer Group (GCG). This provides software for the analysis of genes and 

proteins. Address: http: //www. gcg. com/ 

PHYLIP. This was constructed by Joe Felsenstein of the Department of Genetics at the 

University of Washington. Address: http: //evolution. genetics. washington. edu/phylip. html 

Phylogeny programs. This site contains some 120 of phylogeny packages and 5 free servers. 

Address: http: //evolution. genetics. washington. edu/phylip/software. html 

The Tree of Life. This is a project designed to contain information about the phylogenetic 

relationships and characteristics of organisms, to illustrate the diversity and unity of living 

organisms, and to link biological information available on the Internet in the form of a 

phylogenetic navigator. Address: http: //ag. arizona. edu/tree/phylogeny. html 

TreeBASE is a database of phylogenetic information sponsored by the National Science 

Foundation, Harvard University Herbaria, and the University of California at Davis. 

TreeBASE stores phylogenetic trees and the data matrices used to generate them from 

published research papers. Address: http: //www. herbaria. harvard. edu/treebase/ 

TreeView. Tree drawing software for Apple Macintosh and Windows. Address: 

http: //taxonomy. zoology. gla. ac. uk/rod/treeview. html 

Molecular sequence database 

The International Nucleotide Sequence Database Collaboration involves the DNA 

DataBank of Japan (DDBJ), the European Molecular Biology Laboratory database (EMBL), 

and the GenBank database at the National Center for Biotechnology Information (NCBI). 

These organisations exchange data on a daily basis and share the same sequence accession 

numbers. Address: http: //www. ncbi. nlm. nih. gov/collab/ 

DNA Data Bank of Japan (DDBJ), Mishima, Japan. <http: //www. ddbj. nig. ac. jp/> 

European Molecular Biology Laboratory (EMBL/EBI) Nucleotide Sequence 
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Database, Hinxton, UK. <http: //www. ebi. ac. uk/ebi_home. html> 

GenBank (National Center for Biotechnology Information) Bethesda, MD, USA. 

<http: //www. ncbi. nlm. nih. gov/> 

TIGR Microbial Database. This database contains a listing of the microbial genomes that 

have been published or are in the process of being sequenced. Address: 

http: //www. tigr. org/tdb/mdb/mdb. html. 

The Ribosomal Database Project. Large and small subunit rRNA sequence data are drawn 

from the major sequence databases (EBI and GenBank), other rRNA sequence collections and 

from direct submissions. The sequence data are stored and distributed in aligned form with 

entries arranged according to phylogenetic relationships. Additional information on the source 

and taxonomy of the respective organisms, the method of sequence determination, and other 

relevant data are provided with the sequences. The RDP electronic mail server offers data and 

software access. Some analytical functions are also included in the server. Full or partial 

rRNA sequence data (including oligonucleotide probe data) received on request are aligned, 

checked and phylogenetically analysed and the results returned via e-mail. Address: 

http: //www. cme. msu. edu/RDP/ 

Small and Large Ribosomal Subunit RNA sequence databases. 16S and 23S rRNA 

sequences are collected weekly from the EBI and GenBank databases and processed by using 

a set of appropriate programs with respect to primary structural similarity and higher order 

structure predictions. The data are stored in the form of an alignment along with the 

postulated secondary structure pattern in encoded form. Software for sequence data editing 

and phylogenetic tree reconstruction (TREECON; Van de Peer & Wachter, 1994) are 

available for MS-DOS and VAX-VMS platforms. Address: http: //rrna. uia. ac. be/lsu/ and 

http: //rrna. uia. ac. be/ssu. 
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Appendix 2 

Secondary structures of bacterial 16S ribosomal RNA 

The secondary structures of the 16S rRNA of:: (a) Escherichia coli (GenBank Accession 

number JO 1695), (b) Bacillus subtilis strain W 168 (GenBank Accession number K00637) and 

(c) Streptomyces violaceoruber (coelicolor) strain A3(2) (GenBank Accession number 

Y00411) are shown below. The diagrams were retrieved from the RNA Secondary Structures 

Web Site <http: //pundit. icmb. utexas. edu>. 
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Secondary Structure: small subunit ribosomal RNA 
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Secondary Structure: small subunit ribosomal RNA 
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Secondary Structure: small subunit ribosomal RNA 
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Appendix 3 

Formulae used for calculating oligonucleotide primer 

concentrations 

Oligonucleotide primer concentrations were calculated and adjusted to reflect the 

molecular concentration rather than ng per pl or other expressions of concentration. Given the 

OD260 for the respective primer, the molar concentration can be calculated taking into account 

base composition and length according to the equation (Thein & Wallace, 1986): 

M= OD260 

E molar extinction coefficients of dNTPs 

where the molar extinction coefficients of individual dNTPs, assuming a1 cm pathlength 

cuvette, are: A= 15200; T= 8400; G= 12010; C= 7050. 

Thus, given two 20mer oligonucleotide primers with different base compositions, but 

identical mol. % G+C contents (55 mol% G+C): 

-P1: 5A, 4T, 9Gand2C, and 

-P2: 5A, 4T, 2Gand9C. 

The sum of the molar extinction coefficients can be calculated as: 

-P1: 5x 15200 +4x 8400 +9x 12010 +2x 7050 = 231790, and 

- P2: 5x 15200 +4x 8400 +2x 12010 +9x 7050 = 197070. 

Assuming a hypothetical 1/100 dilution of each of the two stock solutions gives an OD260 = 

0.25, the molar concentration of the primer stocks is: 

-PI = 0.25 x 100 = 107.9 µM 
231/Yu 

-P2= 0.25x100 =126.9µM 
197070 
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Alternatively, the molar concentration of DNA oligonucleotides can be calculated by 

using the formulae of Sambrook et al. (1989). However, this approach is not recommended 

for calculating primer concentrations due to the resultant inaccuracy from using empirically 

determined average values. According to Sambrook et al. (1989) the OD260 value of 1 

corresponds to approximately 33 gg ml-i of oligonucleotides hence the primer concentration 

is equivalent to OD260 x dilution x 33. Thus, in the previous example, the primer 

concentration of both 20mer oligonucleotides can be calculated as: 

Concentration = 0.25 x 100 x 33 = 825 µg ml-1 

Given that the mean molecular weight of a base is 325 g per molecule, the molar 

concentration of both 20mer primers is equivalent to: 

0.825 g 1"' = 126.9 µM 
20 x 325 g m1-' 

The methods of Sambrook et al. (1989) and Thein and Wallace (1986) give the same result for 

the concentration of primer P2 but there is a 15% difference in the concentration of primer P1 

using the two different approaches. These biases were found to be even greater with some of 

the primers used for PCR amplification of 16S rDNA and sequencing (results not shown). 

Consequently, the method of Sambrook et al. (1989) was not considered suitable for 

calculating oligonucleotide primer concentrations. 



APPENDICES 358 

Appendix 4 

Culture Media and Reagents 

Aesculin/arbutin hydrolysis (Williams et al., 1983) 

Basal medium: 

Ammonium ferrous citrate, 0.5 g; peptone, 10 g; sodium chloride, 1 g; Difco 

agar, 15 g; distilled water, 1 litre; pH 7.2. Autoclave at 121 °C for 20 minutes. 

Test medium: 

Supplement basal medium with 1.0 g aesculin/arbutin. Autoclave at 121 °C for 

20 minutes. 

Acid production from sugars (Gordon eta!., 1974) 

Basal medium: 

(NH4)2HP04, I g; KCI, 0.2 g; MgSO4.7H209 0.2 g; agar, 15 g; distilled water, 1 litre; pH 7.0. 

Add bromocresol purple solution (0.04 %; 15 ml) and autoclave at 121 °C for 20 

minutes. 

Carbohydrate solutions: 

Carbohydrate solutions (10 %, w/v) were prepared and separately autoclave at 12 1 °C for 

20 minutes. These solutions were mixed with molten basal medium agar to give a final 

concentration of 1% (w/v) before pouring Replidishes. 

Carbohydrates: adonitol, L-arabinose, D-cellobiose, dextrin, meso-erythritol, D-fructose, D- 

galactose, meso-inositol, D-lactose, D-mannitol, D-melibiose, D-melezitose, a-methyl-D- 

glucoside, D-raffinose, L-rhamnose, salicin, D-sorbitol, sucrose and D-xylose. 

Bennett's agar, modified after Jones (1949) 

Yeast extract (Difco), 1.0 g; Lab-Lemco (Oxoid), 0.8 g; Bacto-casitone (Difco) 
, 

2.0 g; 

glucose, 10.0 g; agar (Difco), 12.0 g; distilled water, I litre; pH 7.3. 
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Autoclave at 121 °C for 20 minutes; the glucose solution is autoclaved separately. 

Carbon source utilisation medium (Boiron et al., 1993) 

Ammonium sulphate, 2.64 g; potassium dihydrogen phosphate, 0.5 g; magnesium sulphate, 

0.5 g; agar (Oxoid no. 1), 15.0 g; distilled water, 1 litre; pH 7.0. Autoclave at 121 °C for 

20 minutes. The carbon sources were autoclaved separately at 121 °C for 20 minutes. 

Carbon and nitrogen source utilisation medium (Boiron et al., 1993) 

Potassium dihydrogen phosphate, 0.5 g; magnesium sulphate, 0.5 g; agar (Oxoid no. 1), 15.0 

g; distilled water, I litre; pH 7.0. Autoclave at 121 °C for 20 minutes. The carbon and 

nitrogen sources were autoclaved separately at 121 °C for 20 minutes. 

Czapek Dox media (Weyland, 1969) 

Ferrous sulphate, 0.01 g; magnesium glycerophosphate, 0.5 g; potassium chloride, 0.5 g; 

potassium sulphate, 0.35 g; sodium nitrate, 2.0 g; sucrose, 30.0 g; agar, 12 g; distilled water, l 

litre; pH 6.8. Autoclave at 121 °C for 20 minutes. 

Degradation test media 

Basal medium: 

Yeast extract, I g; Bacto-casitone (Difco), 2 g; Lab-Lemco (Oxoid), 0.8 g; 

glycerol, 10 g; agar, 15 g; distilled water, 1 litre; pH 7.0. Autoclave at 121 °C 

for 20 minutes. 

Organic substances: 

Adenine (4.0 g), allantoin (5.0 g), casein (10 g), elastin (3 g), gelatin (4 g, 

soaked in cold distilled water), guanine (1 g), hypoxanthine (4 g), starch (1.0 

g), testosterone (1.0 g), L-tyrosine (5.0 g), xanthine (4.0 g) and xylan (4.0 g) 

were each dissolved in 50 ml distilled water, sterilised by Tyndallisation at 

100 °C for 30 minutes for three consecutive days and mixed with melted agar 

medium. 
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DNA/RNA degradation (Goodfellow et aL, 1979) 

360 

Tryptose, 20 g; deoxyribonucleic acid/ribonucleic acid, 3.0 g; sodium 

chloride, 5 g; agar (Lab M), 15 g; distilled water, I litre; pH 7.2. Autoclave at 

121 °C for 20 minutes. 

Glucose yeast-extract agar (GYEA; Gordon & Mihm, 1962) 

Glucose, 10 g, yeast extract, 10 g; agar, 18 g; distilled water, 1 litre; pH 6.8. 

Autoclave at 121 °C for 20 minutes; the glucose solution was autoclaved 

separately. 

Glycerol for storage of inocula 

Glycerol (20%, v/v) dispensed in 1.5 ml amounts into cryo vials. 

Glycerol-asparagine agar (ISP medium 5; Shirling & Gottlieb, 1966) 

L-asparagine (anhydrous basis), 1.0 g; glycerol, 10.0 g; KZHPO4 (anhydrous 

basis), 1.0 g; agar, 20 g; distilled water, 1.0 litre; trace salts solution (page 

**), 1.0 ml; pH 7.0-7.4. Autoclave at 121 °C for 20 minutes. 

Guanidine-sarkosyl solution (Pitcher eta!., 1989) 

Guanidine thiocyanate (Sigma), 60.0 g; EDTA (0.5 mM) pH 8,20 ml; deionised water, 20 

ml. The preparation was heated at 65 °C until dissolved. After cooling, 5 ml of 10%, v/v 

sarkosyl solution (GES reagent) was added, the preparation made up to 100ml with deionised 

water, filtered using a disposable filters (0.45 µm; Acrodisc, Gelman Sciences, 600 South 

Wagner Road, Ann Arbor, Michigan, USA) and stored at room temperature. 

Inorganic salts-starch agar (ISP medium 4; Shirling & Gottlieb, 1966) 

Solution I: Soluble starch 10 g. Make a paste of the starch with a small 

amount of cold distilled water and bring to a volume of 500 ml. 

Solution II: K2HPO4 (anhydrous basis), 1.0 g; MgSO47H2O, 1.0 g; NaCl, 1.0 g; 

(N. H4)2SO4,2.0 g; CaCO3,2.0 g; agar, 20 g; distilled water, 500 ml; trace salts 

solution (page **), 1.0 ml. 
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Mix solutions I and II. The pH should be between 7.0 and 7.4. Autoclave at 121 

°C for 20 minutes. 

Nitrate reduction test medium (Gordon & Mihm, 1962) 

Potassium nitrate, 1.0 g; peptone, 5 g; Lab lemco, 2.4 g; distilled water, I 

litre; pH 7.0. Autoclave at 121 °C for 20 minutes and dispensed aseptically in 

3 ml amounts into sterile capped tubes. 

Reagent A: 0.8 cm3 of sulphanilic acid in 100 ml of 5N acetic acid. 

Reagent B: (0.8%, w/v) 8-amino-2-naphthalene sulphonic acid in 100 ml of 5N 

acetic acid. 

Non-sporulating agar (Sanglier et al., 1992) 

Casamino acids (Difco), 20.0 g; soluble starch (BDH), 20.0 g; yeast extract, 4.0 g; agar, 18.0 

g; distilled water, 1 litre; pH 6.5. The starch, which was made into a paste with 100 ml of cold 

distilled water, was incorporated into the hot medium with constant stirring. Autoclave at 

121 °C for 20 minutes. 

Oatmeal agar (ISP medium 3; Shirling & Gottlieb, 1966) 

Cook or steam 20 g oatmeal in 1000 ml distilled water for 20 minutes. 

Filter through cheese cloth. Add additional distilled water to restore volume of 

filtrate to 1000 ml. Add agar (18 g) and trace salts solution (1.0 ml, page **). 

Adjust to pH 7.2. Autoclave at 121 °C for 20 minutes. 

Peptone-yeast extract iron agar (ISP medium 6; Shirting & Gottlieb, 1966) 

Bacto-peptone iron agar, dehydrated, 36 g; Bacto-yeast extract, 1.0 g; distilled 

water, 1.0 litre; pH 7.0-7.2. Autoclave at 121 °C for 20 minutes. 

Bacto-peptone iron agar, dehydrated (36.58 g) contains Bacto-peptone, 15 g; 

proteose peptone, 5 g; ferric ammonium citrate, 0.5 g; dipotassium phosphate, 

1 g; sodium thiosulphate, 0.08 g; Bacto-agar, 15 g. 
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Resistance to lysozyme (Gordon & Barnett, 1977) 

362 

A solution, made by dissolving 0.1 g lysozyme in 100 ml of sterile distilled water in a 

volumetric flask, sterilised by filtration using a disposable filter (0.45 µm; Acrodisc, Gelman 

Sciences, 600 South Wagner Road, Ann Arbor, Michigan, USA). This stock solution was 

stored at 3 to 4 °C for up to 2 weeks. A 5m1 amount of the stock lysozyme solution was mixed 

with 95 ml of sterile glycerol broth (Lab M peptone, 5.0 g; Lab Lemco, 2.4 g; glycerol 70 ml; 

distilled water, llitre, pH 7.0) and dispensed aseptically into sterile capped tubes. Tubes of 

lysozyme (300 to 500 U/ml) and glycerol broth (control) were seeded with a small amount of 

inoculum taken from plates incubated for less than 7 days. The cultures were observed for 

growth after a week of incubation at 45 °C. 

S au ton's broth, modified (Mordarska et at, 1972) 

L-asparagine, 5.0 g; casamino acid, 2.0 g; glucose, 15 g; sodium citrate, 5.0 g; 

potassium dihydrogen phosphate, 5.0 g; magnesium sulphate, 0.5 g; potassium 

sulphate, 0.5 g; ferric ammonium citrate, trace; distilled water, 1 litre; pH 7.2. 

The medium and glucose were autoclaved separately at 121 °C for 20 minutes. 

Trace salts solution (Pridham & Gottlieb, 1966) 

FeSO4.7H20,0.1 g; MnC12.4H20,0.1 g; ZnSO4.7H209 0.1 g; distilled water, 

100 ml. Use as directed in ISP media 3,4,5 and 7. 

Tryptic soy agar (Difco) 

Bacto-tryptone, 15 g; Bacto-soytone, 5 g; NaCl, 5 g; Bacto-agar, 15 g; 

distilled water, I litre; pH 7.2. Autoclave at 121 °C for 20 minutes. 

Tryptone-yeast extract broth (ISP medium 1; Shirling & Gottlieb, 1966) 

Bacto-tryptone (Difco), 5.0 g; Bacto-yeast extract (Difco), 3.0 g; distilled 

water, I litre; pH 7.0-7.2. Autoclave at 121 °C for 20 minutes. 

Tyrosine agar (ISP medium 7; Shirling & Gottlieb, 1966) 

Glycerol, 15 g; L-tyrosine, 0.5 g; L-asparagine, 1.0 g; K2HPO4 (anhydrous 
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basis), 0.5 g; MgSO4.7H209 0.5 g; NaCl, 0.5 g; FeSO4.7H20,0.01 g; Bacto- 

agar, 20 g; distilled water, 1 litre; trace salts solution (page **), 1 ml; pH 7.2- 

7.4. Autoclave at 121 °C for 20 minutes. 

Urease test medium (Rustigan & Stuart, 1941; Christensen, 1946) 

Basal media: 

Glucose, 1.0 g; monopotassium phosphate, 2.0 g; peptone, 1.0 g; sodium 

chloride, 5.0 g; agar (Lab M, MC2), 15 g; distilled water, I litre; pH 6.8. 

Phenol red (0.012 g) is added to this preparation. Autoclave at 121 °C for 20 

minutes. 

Urea: Urea (20 %l w/v) solution was filter sterilised using a disposable filter (0.45 

qcm; Acrodisc, Gelman Sciences, 600 South Wagner Road, Ann Arbor, Michigan, USA). The 

urea was added to the basal media and 2 ml amounts dispensed aseptically in 

bijoux bottles and slopes prepared. 

Yeast extract-malt extract agar (ISP medium 2; Shirling & Gottlieb, 1966) 

Bacto-yeast extract (Difco), 4.0 g; Bacto-malt extract (Difco), 10.0 g; Bacto-dextrose (Difco), 

4.0 g; Bacto agar, 20 g; distilled water, 1 litre; pH 7.3. Autoclave at 121 °C for 20 minutes. 


