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ABSTRACT 

 

Airborne Laser Scanning (ALS) is a fully commercial technology, which has seen rapid 

uptake from the photogrammetry and remote sensing community to classify surface 

features and enhance automatic object recognition and extraction processes.  3D object 

segmentation is considered as one of the major research topics in the field of laser 

scanning for feature recognition and object extraction applications. The demand for 

automatic segmentation has significantly increased with the emergence of                 

full-waveform (FWF) ALS, which potentially offers an unlimited number of return 

echoes. FWF has shown potential to improve available segmentation and classification 

techniques through exploiting the additional physical observables which are provided 

alongside the standard geometric information. However, use of the FWF additional 

information is not recommended without prior radiometric calibration, taking into 

consideration all the parameters affecting the backscattered energy.  

The main focus of this research is to calibrate the additional information from FWF to 

develop the potential of point clouds for segmentation algorithms. Echo amplitude 

normalisation as a function of local incidence angle was identified as a particularly 

critical aspect, and a novel echo amplitude normalisation approach, termed the Robust 

Surface Normal (RSN) method, has been developed. Following the radar equation, a 

comprehensive radiometric calibration routine is introduced to account for all variables 

affecting the backscattered laser signal. Thereafter, a segmentation algorithm is 

developed, which utilises the raw 3D point clouds to estimate the normal for individual 

echoes based on the RSN method. The segmentation criterion is selected as the normal 

vector augmented by the calibrated backscatter signals. The developed segmentation 

routine aims to fully integrate FWF data to improve feature recognition and 3D object 

segmentation applications. The routine was tested over various feature types from two 

datasets with different properties to assess its potential. The results are compared to 

those delivered through utilizing only geometric information, without the additional 

FWF radiometric information, to assess performance over existing methods. The results 

approved the potential of the FWF additional observables to improve segmentation 

algorithms. The new approach was validated against manual segmentation results, 

revealing a successful automatic implementation and achieving an accuracy of 82%. 
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CHAPTER 

1 

INTRODUCTION 

 

 

 

1.1 OVERVIEW 

Automatic restoration of 3D objects from geospatial data is the ultimate goal for many 

different applications such as building extraction and surface modelling (Vosselman and 

Maas, 2010), reverse engineering (Remondino and El-Hakim, 2006), cultural heritage 

recording (Miller, 2007), and archaeology (Doneus et al., 2008). This need has rapidly 

increased in recent years with the vast development in geospatial data acquisition 

technology, including laser scanning systems (Shan and Toth, 2009). With the dramatic 

decrease in the cost of computers, the unstructured massive data from laser scanning can 

be visualised, processed and structured effectively, making the final 3D digital products 

more accessible to a larger range of users (Vosselman and Maas, 2010).  

Once point clouds have been derived, further processing and analysis is required in 

order to extract information about the topographic surface (Baltsavias, 2004; Wang, 

2006). This processing includes visualising, structuring and grouping points for future 

data handling and processing tasks such as feature extraction (Zizhen et al., 2008). The 

fundamental process to extract features is by merging nearby points with similar 

characteristics into sets of similar attributes (Wang and Lu, 2009). This structuring 

process helps deal with massive geospatial datasets by grouping points to define the 

surfaces and facets of the required 3D objects (Jiang and Bunke, 1994; Han et al., 2007; 

Lafarge et al., 2008). In order to deliver the optimal information about object 

characteristics, a combination of geometric information from laser scanning systems 

and additional spectral information from other remote sensing techniques such as 

photogrammetry, is recommended (Habib et al., 2004a; Ronnholm et al., 2008; Zublin 
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et al., 2008; Siqueira et al., 2008; Abdelhafiz, 2009).  This is because the geometric 

information from standard laser scanning systems is not yet sufficient to model land 

cover features and deliver a comprehensive and optimal representation of Earth’s 

surface details. Although nowadays most laser scanning systems can contribute 

additional spectral observables, these observables are raw measurements and need 

careful handling (Akca, 2007).  

However, a new type of laser scanning system, specifically full-waveform (FWF) 

systems, offers the potential to overcome the need to integrate information from 

different systems. This is achieved through the delivery of additional physical 

information on land cover alongside the standard geometric information which all 

systems can provide (Shan and Toth, 2009; Mallet and Bretar, 2009). These FWF 

systems can save the additional effort and cost needed to synchronise data acquired 

from separate sensors. However, FWF information is not recommended to be utilised 

without prior calibration, which is necessary to deliver optimal end products (Wagner, 

2010). Therefore, the research reported in this thesis focusses on calibrating the 

additional information from FWF laser scanning in order to optimise the integration of 

this information with existing segmentation techniques. This is through fully utilising 

FWF information in future segmentation, classification and filtering techniques, thus 

moving towards more accurate 3D object representation and modelling.   

 

1.2 LASER SCANNING 

Laser scanning, also referred to as lidar (light detection and ranging) is the digital 

technique of capturing accurate information about physical objects using laser light 

(Wagner, 2005). It is a non-contact and non-destructive technology, which scans objects 

and delivers information about their details remotely through recording free-form 

shapes by means of physical signals (Wehr and Lohr, 1999). The mechanism starts 

through the scanning optics system by transmitting a laser beam to illuminate the target, 

which is supplemented by a lens to focus the beam on the scanned area within certain 

characteristics. The scan mirror moves the beam forth and back in a rapid manner to 

create the laser line (Shan and Toth, 2009). This type of mirrors generally have an 

oscillating mechanism, however other types are also available such as palmer, fiber, and 

rotating polygon (Wehr and Lohr, 1999; Lin, 2009). Thereafter, the receiver records the 
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signal returned from the target. Following this, the receiver optical system sends the 

laser light received from the scanned target to the detector to retrieve the signal. The 

detector will convert the signal into a digital code to be sent to the decoder for 

processing and interpretation (Shan and Toth, 2009). 

Laser scanning is an active data acquisition technique, which provides range 

measurements between the sensor and the target following the precise measurement of 

time as described in Eqn. 1.1 (Pfeifer and Briese, 2007; Shan and Toth, 2009). 

  

                                                                                                                  Eqn. 1.1 

 

Where: 

R is the range between the sensor and the target 

v is the velocity of light 

t is the elapsed time between the transmitted and the returned signal 

 

The precision of the determined range can be estimated as follows: 

 

      
 

 
   

  

 
                                                                                               Eqn. 1.2 

 

Where: 

   is the range precision 

   is the velocity precision 

   is the time precision 
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Point clouds can be generated from such measurements to provide the end user with a 

3D digital representation of the scanned features (Mallet and Bretar, 2009). To-date 

there are four main types of laser scanning sensors available for commercial and 

research purposes; however other sensors are still to come (Pfeifer, 2011). These are 

aerial (ALS), terrestrial (TLS), mobile (MLS), in addition to spaceborne (SLS) laser 

scanning systems (Figure 1.1) (Vosselman and Maas, 2010). Because of its early, 

prosperous and rapid development during the last two decades, ALS is the more 

investigated and widely utilised system (Pfeifer and Briese, 2007).  

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Existing laser scanning systems (Ullrich, 2009; Wagner, 2009). 

 

Due to its capability for direct acquisition, laser scanning is often favoured for the 

collection of accurate information about objects in 3D space (Habib and Rens, 2008). 

Laser scanning systems consist of two main components, the laser range finder unit 

(LRF), and the positioning and orientation unit (GNSS/INS). The LRF unit delivers 

range information between the sensor and the target, whereas the GNSS/INS unit 

supplies the user with the positional and the orientation of the platform through GNSS 

(primarily GPS) and IMU sensors respectively (Wehr and Lohr, 1999). Figure 1.2 

Mobile Scanning Satellite Scanning 
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shows the main components of laser scanning systems and demonstrates the mounting 

layout of these components in an aerial platform.  

 

 

 

 

 

 

 

 

Figure 1.2.  The typical components of laser scanning systems demonstrated by aerial 

platform (Pfeifer, 2009). 

 

 

Following the Lidar equation (Eqn. 1.3), which includes range, positional, and 

orientation measurements in addition to other system parameters that define the 

relationship between the three combined components, the ground coordinates of the 

point cloud can derived (Figure 1.3) (Pfeifer et al., 2005; Habib et al., 2008). After  

post-processing analysis the derived data can be used to extract 3D information for 

various applications, such as surface modelling, environmental monitoring, shoreline 

management, and many other applications (Shan and Toth, 2009).  

 

 ⃗   ⃗                     ⃗⃗                                       [
 
 
  

]             Eqn. 1.3 
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Where: 

 ⃗  : represents the ground x-coordinate of the point cloud. 

 ⃗  : represents the vector between the ground and the IMU origins. 

                : represent the rotation matrix between the ground and the IMU 

coordinate systems. 

 ⃗⃗  : represent the offset between the laser and the IMU coordinate systems. 

          : represent the rotation matrix between the laser and the IMU coordinate 

systems. 

     : represents the rotation matrix between the laser unit and the laser beam 

coordinate systems. 

  : represents the laser range vector between the exposure and the object points. 

 

Similar equations would be formed for the   ⃗⃗⃗⃗  and   ⃗ . 

 

Figure 1.3.  Coordinate systems and parameters involved in the Lidar equation (Habib 

et al., 2010). 
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1.2.1 Aerial Laser Scanning (ALS) 

Topographic ALS is a laser scanning system mounted on an airborne platform and 

provides range measurements to the Earth’s surface. It delivers a vertical accuracy of   

5-10cm and decimetre-level planimetric accuracy, depending on the terrain type and 

flying height (Ackermann, 1999; Mallet and Bretar, 2009). Land cover features are 

scanned either from a fixed wing or a helicopter platform in order to collect the 

necessary information to model the topographic surface (Vosselman and Maas, 2010). 

A digital camera is usually flown alongside the ALS systems for orthophoto generation 

and data integration. This can be achieved by processing the photogrammetric 

information alongside the laser information to support laser range data for subsequent 

optimal interpretation. This can play a significant role in identifying land cover features 

in cases where the objects are found to be difficult to interpret from the blind range data 

only. However, this requires some extra effort to register and georeference the sensors 

after data collection and through post-processing analysis (Vosselman and Maas, 2010).  

Commercial ALS systems typically operate at wavelengths between 800 and 1550 nm. 

This wavelength range is utilised to acquire data for different applications as the type 

and the amount of the received physical signal from an object primarily depends on the 

laser wavelength. Therefore, it is essential to select the system of the appropriate 

wavelength to meet with the project objectives (Wehr and Lohr, 1999).  With regard to 

modelling usage and application, ALS systems are utilised either for topographic or 

bathymetric measurement (Shan and Toth, 2009). The first system works within a 

certain wavelength (infrared) and comprises of one LRF unit, which emits               

high-frequency pulses in order to estimate the range to the ground targets. The 

bathymetric system combines two LRF unit which emit simultaneous pulses at two 

different wavelengths (infrared and green) in order to estimate water depth based on 

time differences between the received pulses in both wavelengths (Axelsson, 2010). 

Figure 1.4 and Figure 1.5 illustrate the technical design of the topographic and the 

bathymetric aerial systems respectively. The airborne topographic system is the focus in 

this research. 
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Figure 1.4.  Technical concepts of an airborne topographic laser scanning system 

(Petrie, 2009). 

Figure 1.5.  Technical concepts of an airborne bathymetric laser scanning system 

(Axelsson, 2010). 
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Topographic ALS systems are now fully operational to meet the needs of specific 

applications such as surface modelling (Mallet and Bretar, 2009).  In contrast to 

photogrammetry, ALS is an active system, which can operate during day and night. 

Both ALS and photogrammetry are able to produce a digital terrain model (DTM). In 

photogrammetry, the ground point measurements are usually performed by user 

operator, however these points are localised automatically following a certain control 

structure, which depends on the image specifications. In contrast, ALS can 

automatically delivers ground points in a certain pattern, as priory determined by the 

system design (Ackermann, 1999). The laser beam from an ALS system can penetrate 

vegetation to the ground through gaps available in the canopy. This capability 

demonstrates potential to model the ground surface beneath, and deliver accurate DTMs 

where photogrammetry may fail (Kraus and Pfeifer, 1998). Furthermore, ALS 

outperforms photogrammetry by overcoming the shadow problem, because of being an 

active and sun-independent system. Figure 1.6 shows the difference between 

photogrammetry and laser scanning with respect to terrain measurements and the effects 

of shadowing on the determined ground points. Figure 1.6-a demonstrates the data 

acquisition situation in photogrammetry where point number 4 was the only visible 

ground point from both trajectories and therefore represents the terrain in this extended 

area. On the other hand, Figure 1.6-b illustrates the scan situation with ALS where both 

flightlines are independent and therefore all of the detected ground points from both 

flightlines are determined.  

With regard to the technical physical principles, ALS can be grouped into two main 

systems, discrete-return and FWF (Shan and Toth, 2009; Mallet and Bretar, 2009). Both 

systems are designed to estimate range measurements using the physical concept of the 

pulsed laser mechanism. When the receiver only provides the start and the end of a 

signal at a certain rise time of the echo, then the system is called discrete-return. 

However, if the complete digital signal is digitised with extra information about the 

echo shape, then the system is called full-waveform. Further details about both systems 

are introduced in the following sections.  
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(a) (b) 

Figure 1.6.  Principles of  terrain measurements: (a) photogrammetry (b) ALS (Kraus 

and Pfeifer, 1998). 

 

 

1.2.1.1 Discrete Systems 

Discrete-return ALS systems can often capture up to four echoes per emitted pulse 

while some other systems are capable of detecting up to six individual echoes (Mallet 

and Bretar, 2009). Any object will be detected as a separate echo if the distance between 

successive returns is larger than the length of the laser pulse. However, the system will 

only record defined echoes of interest (e.g. first, last, and limited intermediate). This 

means that information about objects between the recorded echoes are lost within 

discrete ALS systems (Lin et al., 2010). The first commercial discrete ALS systems 

provided one echo per emitted pulse, but this system is only sufficient when one target 

is detected within the footprint of the laser beam. For example in a vegetated area, 

accurate modelling applications using this kind of system is restricted even for a small 

laser footprint (0.2-2 m diameter), because all objects (e.g. tree branches) between the 

first recorded echo, which represents the top of the tree, and the ground are being 
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neglected. Moreover, in the presence of gaps between tree branches, the laser light can 

penetrate to reach the ground beneath, which provides information to model the ground 

surface for DTM generation applications. Therefore, multi-echo discrete systems have 

been introduced to overcome single echo system limitations (Mallet and Bretar, 2009).  

The majority of the multi-echo discrete systems are designed to record only the first and 

the last echoes, although some other systems can also record intermediate echoes 

(Doneus et al., 2008). From a physical point of view, the first two detected echoes 

typically comprise about 90% of the received signal (Wagner et al., 2004). Based on 

this concept, there is a large chance of considering the rest of the detected echoes to be 

noise unless robust pulse detection methods are utilised, especially in vegetated areas. 

This is not applicable in this type of system as the pulse detection process is a      

“black-box” and not provided for end users. As the majority of the received signal is 

being discarded with the discrete-return systems, these systems are considered to be 

“lossy” with respect to the amount of  the energy being lost by the detectors (Doneus et 

al., 2008). Therefore, for accurate surface modelling applications it is recommended to 

switch to FWF systems, which are able to record the complete received signal, which 

provides the opportunity to extract extra information and thus deliver more accurate 

range observables. 

 

1.2.1.2 Full-Waveform Systems 

FWF-ALS is unlike the discrete-return systems in that it records the entire backscattered 

signal of the laser pulse and stores it in the system recorder for post-processing (Jutzi 

and Stilla, 2006; Bretar et al., 2009). Capturing the complete waveform of the 

backscatter signal enables distinguishing between neighbourhood echoes of a range 

smaller than the pulse length (Jutzi and Stilla, 2006). Furthermore, complex and weak 

laser echoes can be detected towards improving modelling products such as DTMs (Lin 

et al., 2010). Figure 1.7 illustrates data recording and post-processing techniques of 

FWF-ALS signals from the Riegl LMS-Q560 system. This demonstrates the waveform 

signal digitising as a function of time, and the range derivation and analysis within the 

post-processing phase. In contrast with the discrete-return systems, which provides end 

users with a single range measure to the ground target, FWF stores the entire time 

history of the backscatter signal with a high sampling resolution as shown in Figure 1.8 
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TIME OF ARRIVAL 

TO RIEGL DATA RECORDER 

(Vosselman and Maas, 2010). This gives the user the opportunity to model the received 

signal, applying a function that better fits with the physical trend towards robust range 

estimations and accurate data modelling (Mallet et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7.  FWF data digitising and post-processing from Riegl LMS-Q560 system 

(Rieger et al., 2006).  

Figure 1.8.  Simulation of raw FWF data show five emitted signals alongside their 

received backscatter digitised signal (Bretar et al., 2009). 
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The technical potential of FWF was firstly demonstrated during the 1990s by NASA 

through a large-footprint ALS system (10-70 m diameter), namely the Scanning Lidar 

Imager of Canopies by Echo Recovery (SLICER) and the Laser Vegetation Imaging 

Sensor (LVIS) (Wagner, 2005). Multiple experiments were conducted to study the 

system potential over various land cover types with multiple feature surfaces. The first 

commercial small-footprint FWF system, the Riegl LMS-Q560, was available on the 

market in 2004 and was followed by systems from Optech and Topeye (Wagner et al., 

2006; Mallet and Bretar, 2009). These systems provide high point density and a more 

detailed description of the illuminated surfaces than large-footprint systems which are 

majorly influenced by the flying height and the beam divergence of the laser emitter 

(Vosselman and Maas, 2010). 

FWF analysis and post processing may increase the accuracy and the resolution of the 

range measurements by providing end users with the chance to interpret the physical 

backscatter signals of the individual pulses (Doneus et al., 2008). This is achievable 

through pulse detection methods which give the user a significant opportunity to select 

the function which best fits the signal. In contrast with the discrete systems, FWF is 

applicable to determine the errors acquired from the limitations in the standard pulse 

detection methods that lead to inaccurate range measurements (Lin et al., 2010). 

Following waveform post-processing, denser point cloud data are generated than those 

delivered from the discrete systems. This deliver a great potential for the  most land 

cover applications towards optimal data modelling (Bretar et al., 2009). FWF analysis 

also provides additional information about the physical backscattering properties of the 

illuminated targets (Lin et al., 2008; Mucke, 2008). The pulse width of the echo delivers 

information about surface roughness, slope, scan angle, or the depth of the volumetric 

object, while echo strength (amplitude) delivers information about target backscatter 

properties (Wagner et al., 2006). This provides a promising source of information to 

better identify surface features, as shown in Figure 1.9. 
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Figure 1.9.  Visualisation of FWF signal parameters: (a) orthophoto (b) echo width (c) 

echo amplitude (Mucke, 2008). 

 

1.2.2 Processing of Laser Scanner Data  

1.2.2.1 Data Calibration 

ALS is a multi-sensor system that is affected by many error sources during data capture 

(Shan and Toth, 2009). Modelling these errors through the data quality assurance 

process is essential for accurate end products (Schaer  et al., 2007; Aguilar and Mills, 

2008). The data quality process, including registration and calibration tasks, should be 

performed prior to point cloud applications (Vosselman and Maas, 2010). The 

registration process is concerned with establishing the coordinate system of the point 

cloud and the transformation functions used to deliver these coordinates from        

multi-sensor systems (Eqn. 1.3) (Habib et al., 2004a). The calibration process is more 

concerned with identifying, modelling, and estimating the errors inherent in these data 

(Skaloud and Lichti, 2006; Skaloud  and Schaer 2007). Because calibration and 

modelling is a crucial aspect of the research presented here, data calibration and error 

compensation is further discussed. 

As explained earlier, FWF provides geometric and physical information to the end user, 

which therefore requires some form of calibration. Geometric calibration aims to 

remove systematic errors from the ALS point cloud, which exist due to bias in the 

system parameters (Habib et al., 2011). This bias can be effectively eliminated either 

through applying system-driven or data-driven approaches (Shan and Toth, 2009). Data 
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driven approaches such as strip adjustment are more preferable in this respect as 

information about system measurements (e.g. rotation angles between system 

components) are usually restricted to the system manufacturer (Habib and Rens, 2008). 

Strip adjustment is reliant on the mathematical model used to relate the point cloud 

from overlapping flightlines to the scanning system, which involves the transformation 

function for registration purposes (Vosselman, 2004). These transformation functions 

are mainly based on a selected primitive type (point, line, or areal regions) which are 

used to relate points from overlapping flightlines (Habib et al., 2004a). This aims to 

determine the discrepancies in the 3D offsets between overlapping flightlines, (e.g. 

Figure 1.10), towards minimising these differences. 

   

 

 

 

 

Figure 1.10.  Cross-section visualisation of strip discrepancies observed over a house 

roof (Pfeifer, 2009). 

 

The additional physical information from FWF also requires calibration towards 

optimal feature identification. However, this research area is still at a relatively early 

stage, and requires further investigations, which will be the focus of this research. The 

backscatter energy of the individual echoes can be re-constructed after post-processing 

from the echo width and the amplitude values, however these measurements require 

proper radiometric calibration (Wagner, 2010). These waveform attributes have 

demonstrated potential after calibration for segmentation and classification techniques 

(Höfle et al., 2012; Alexander et al., 2010), which is promising to be integrated with the 

geometric information to improve feature modelling.  

The aim of radiometric calibration is to calibrate the received laser energy from all 

variables affecting the signal as it travels between the sensor and the target. This enables 

delivery of a calibrated signal which is proportional to the target scattering 
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Flightline 1 Flightline 2 

characteristics (Wagner, 2010; Kaasalainen et al., 2011). These processes are dependent 

on the theoretical model selected to describe all the physical phenomena affecting the 

laser energy towards a calibrated laser signal within a desired accuracy (Wagner et al., 

2008). The radiometric calibration is also reliant on the practical process applied to 

correct the signal. When the backscatter signal is corrected according to different 

altitudes, incidence angles, and temporal (atmospheric) effects for a single sensor case, 

radiometric calibration is considered to be relative (Kaasalainen et al., 2011). This kind 

of calibration is more applicable when comparing signals delivered from the same 

system. However, when the signal is corrected to enable comparison to data from other 

systems, which is necessary for integration purposes, then the calibration is considered 

absolute (Kaasalainen et al., 2011). Because in this case, the signal is corrected to be 

independent by compensating for all error sources affecting the received signal, thus 

referring to the target physical characteristics only. Therefore, the absolute radiometric 

calibration is more desirable for a wide range of applications. Figure 1.11 demonstrates 

the visual differences in the backscatter physical signal received from two overlapping 

flightlines over an urban area. This can be realised over all the interest area and 

particularly over the house roofs where the recorded backscatter signals are clearly 

different between both flightlines and therefore requires calibration for further 

processing. 

 

Figure 1.11.  Backscatter signal visualisation from two overlapping flightlines (Briese 

and Lehner, 2009). 
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1.2.2.1 Data Structuring 

Segmentation is a well-known point cloud handling and structuring process which is 

often recognised as the first step to extract information for advanced processing in 

various applications (Vosselman and Maas, 2010). Automatic segmentation is a 

valuable process to group points with similar characteristics into regions automatically 

(Figure 1.12). These regions could be planes, cylinders, or smooth surfaces following 

the selected segmentation algorithm and the features of interest (Mallet et al., 2011). As 

this processing is fully automated, this supports future use of the data for advanced 

processing, such as data modelling and feature extraction strategies (Schiewe, 2002). 

However, if the surface is divided into more than one segment, this results in an      

over-segmentation problem. In contrast, under-segmentation occurs when more than 

one surface is combined in one segment (Han et al., 2007; Wang and Lu, 2009; Appia et 

al., 2010). Although it is recommended to be very careful in selecting thresholds within 

the segmentation algorithm to avoid these problems, over-segmentation is usually more 

preferable. This is because with over-segmentation it is possible to apply extra manual 

editing to the segmentation results towards the optimal solution, whereas with       

under-segmentation it is harder and more challenging to optimise the results (Rabbani et 

al., 2006).  

 

 

 

 

 

 

 

 

Figure 1.12.  Automatic segmentation of ALS data into planar segments (Vosselman 

and Maas, 2010). 
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Automatic point cloud segmentation emerged from 2D image segmentation techniques 

for pattern recognition and computer vision applications. It aims to cluster image pixels 

into salient regions to emphasis individual surfaces or objects from the background 

(Atkinson, 1996).  Thereafter, the process was modified for 3D applications by utilising 

methods those tailored for 2.5 D data and later extended to handle 3D unstructured point 

cloud (Sithole, 2005). Point cloud segmentation can be classified into four main 

approaches (Rabbani, 2006), although other algorithms can also be developed as 

classification is subjective to different variables: 

1. Scanline-based segmentation. 

2. Edge-based segmentation. 

3. Surface-based segmentation. 

4. Hybrid algorithms. 

 

Scanline-based segmentation is designed to group points on a scanline basis (Sithole, 

2005). Thus, each row (scan line) is treated individually based on 3D line detection 

followed by establishing similarity measures between adjacent scan lines to group 

points into meaningful segments. However Sithole and Vosselman (2003) further 

developed this concept by defining profiles in different directions rather than in the scan 

direction only which is more relevant to ALS data. Consequently, edge-based 

segmentation is designed to detect breaklines prior to the segmentation process (Shan 

and Toth, 2009). It detects feature edges and outlines their borders as a first step in 

segmentation. Thereafter, the process group points within these borders into regions to 

identify the final segments (Tovari, 2006). This algorithm is very sensitive to the 

presence of noise in the dataset, therefore it is more relevant to image processing than to 

lidar point clouds. In contrast, surface-based segmentation is relatively less sensitive to 

the noise in lidar data and therefore it is preferable. It aims to group local points into 

segments with similar properties using a similarity measure function (Shan and Toth, 

2009). The points should be close enough to each other and within a certain distance 

from the selected seed point in order to achieve optimal results. This distance should be 

pre-defined to meet with the study objectives and the dataset specifications. The 

similarity measure should be selected precisely to maintain the final goal, and is usually 

optimised based on the region type properties (i.e. surface characteristics) (Rabbani, 
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2006).  As for the final type, hybrid algorithms, as implied by the name, these combine 

more than one of the previously mentioned algorithms to deliver the final segments. It 

usually combines edge-based and surface-based techniques for better results (Rabbani, 

2006). 

   

1.3 RESEARCH MOTIVATION 

The integration of multiple geospatial datasets (such as ALS and photogrammetry) can 

produce more accurate results and more reliable information than that which can be 

obtained from a single source (Habib et al., 2004b). This is due to the fact that each data 

source can provide information about features which the other system cannot deliver. 

Therefore combining multiple information from different systems can compensate the 

limitations in the information provided by a single system. This leads to better feature 

identification and more accurate data modelling results. However, FWF-ALS systems 

provide the end user with a powerful combination of geometric and physical 

information about land cover features in a single system. This information has been 

found to be promising and encouraging to be exploited together towards improving end 

products. Therefore, this research is motivated by the concept of fully-exploiting    

FWF-ALS data to increase the performance of automatic 3D object segmentation 

routines.  

 

1.4 RESEARCH OBJECTIVES 

The overall aim of this research is to fully investigate and optimise FWF-ALS data in 

order to enhance automatic segmentation techniques, which are able to decompose 3D 

objects into coherent point clusters based on reliable estimation of the surface properties.  

To meet this aim, the following objectives were established: 

1. Investigate the potential of the additional information from FWF to improve 

existing 3D object segmentation techniques through reviewing available 

segmentation algorithms and addressing the weaknesses in the identified 

standard methods. 
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2. Develop an effective automatic routine to manage and process FWF-ALS 

datasets in a manner which requires less human effort and reduces the time 

needed to process large laser scanning datasets efficiently.    

3. Calibrate the FWF backscatter signal from all error sources that affected the 

signal during its path between the target and the sensor to provide the 

backscatter energy estimate following a comprehensive calibration workflow. 

4. Assess the developed calibration technique to assure reliability for integration in 

the developed segmentation algorithm. 

5. Develop an automatic segmentation routine that fully integrates the calibrated 

FWF additional information alongside the standard geometric information to 

deliver highly accurate and more detailed segmentation outputs.  

6. Assess and validate the developed segmentation method on real datasets with 

different specifications to establish potential.     

 

1.5 RESEARCH METHODOLOGY 

To achieve the overall aim of this research, a literature critique, including evaluation of 

available segmentation techniques and all related processing strategies, necessary to 

accomplish the final goal, is presented. This is adopted to diagnose the weaknesses in 

existing methods which can be fulfilled with the FWF data exploitation. Thereafter, the 

methodology is established, based on the findings delivered from the literature review 

phase, and classified into four main stages. The first stage deals with the processing of 

FWF-ALS data and the strategies required to manage such a large dataset and deliver 

the outputs within a reasonable period of time. The second stage addresses the signal 

normalisation approach needed to implement and compensate the received laser signal 

for incidence angle effects. The third stage comprises the calibration workflow of the 

backscatter signal to normalise the physical signal for all relevant influencing effects. 

Finally, the fourth stage concentrates on the development of an automatic segmentation 

routine through the integration of the calibrated additional information from FWF with 

the standard geometric information. Finally, the developed methodology is tested, 

assessed and validated through visual and statistical analysis to check potential. 
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1.6 THESIS STRUCTURE 

The thesis is composed of six chapters, as explained in the following flowchart: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Chapter One 

 

 

Discusses literature of FWF-ALS data analysis, including data processing 

 and management, calibration, and existing segmentation algorithms. 

  

Chapter Two 

 

Introduces the developed methodology for 3D object segmentation of  

FWF-ALS data, including a developed post-processing strategy, a novel 

surface normal estimation method, a developed radiometric calibration  

workflow, and a developed segmentation algorithm.   

Chapter Three 

 

Demonstrates the results delivered from applying the developed methodology  

to two different datasets with different characteristics and various land 

 cover types. It includes assessment and validation tests with visual and 

 statistical analysis. 

Chapter Four 

 

Introduces a comprehensive discussion of findings about the applicability,  

transferability, and the potential of the developed methodology. 
Chapter Five 

 

Presents the conclusions established from the introduced methodology 

including research findings, contributions, limitations, and suggestions  

for future work. 

Chapter Six 
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CHAPTER 

2 

 LASER SCANNING DATA PROCESSING AND 

ANALYSIS 

 

 

 

2.1 INTRODUCTION 

Laser Scanning is a fully commercial technology, which has developed rapidly in 

photogrammetry and remote sensing community to remotely determine the geometry of 

the Earth’s surface in a rapid and accurate manner. (Shan and Toth, 2009). It has 

become an increasingly important data acquisition technique to produce quantitative 3D 

digital representation of the land cover features for different applications (Vosselman 

and Maas, 2010). Any application generally necessitates automatic processing, such as 

segmentation and clustering, of the massive data delivered from these systems for better 

object recognition and optimal end products (Lin, 2009; Shan and Toth, 2009). 

Segmentation is an essential process to identify surfaces (Awwad et al., 2010). Since 

surfaces are the basic units to define features, segmentation is required for many feature 

extraction applications (Sithole, 2005).  

Laser scanning systems can capture geometric information of Earth surface features 

(Mallet et al., 2008; Vosselman and Maas, 2010). Filin (2002) found that geometric 

information such as the spatial point distribution and the point density cannot be 

considered as fixed for segmentation and clustering purposes. In order to overcome the 

unstructured nature of the point cloud to deliver accurate segmentation scenarios, most 

segmentation approaches are geometric-based (Filin and Pfeifer, 2006). However, laser 

scanning systems can also provide additional physical information about these features 

alongside their geometric information with FWF sensors.  
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FWF systems first emerged around twenty years ago and have become popular in the 

last five years (Mallet et al., 2011). FWF systems can be characterized from the       

well-known discrete-return systems by their capability to record the entire backscatter 

laser energy from the surface targets and also by providing additional physical 

information about these targets (e.g. echo width and amplitude, unlimited number of 

returns, etc.) (Lin and Mills, 2009b; Guo et al., 2011). Figure 2.1 shows the principles 

of both FWF and discrete ALS systems. The physical observables from FWF can 

provide additional information to segmentation and classification techniques 

(Mandlburger et al., 2010; Mucke et al., 2010a; Niemeyer et al., 2011). Nowadays the 

majority of the discrete systems can deliver intensity measurements for land features 

alongside the standard geometric information (Jutzi and Gross, 2010). However, both 

physical information from FWF and intensity records from discrete systems are not 

recommended to be directly exploited for accurate end products without pre-calibration 

(Lehner et al., 2011; Kaasalainen et al., 2011b). This is because the backscatter signal is 

affected by many variables during the travel between the sensor and the target that 

therefore need to be eliminated (Wagner, 2010; Jutzi and Gross, 2010; Roncat  et al., 

2011).  

 

This chapter will discuss FWF-ALS analysis for 3D object segmentation applications. 

Firstly, the chapter will overview FWF post-processing techniques and available 

frameworks to process and handle the massive data volumes produced. Additionally, it 

will highlight approaches available to calibrate the physical information from FWF and 

their potential to enhance segmentation algorithms. This has reviewed through 

discussing variables affecting the received backscatter signal and available scenarios to 

overcome the effects of these variables such as the essential incidence angle effect. The 

chapter also provides a comprehensive review of the available geometric-based 

segmentation approaches, including a critical discussion of the merits and demerits of 

individual techniques. 
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Figure 2.1. Principles of discrete and FWF ALS systems (Mandlburger et al., 2010). 

 

 

2.2 FWF VS DISCRETE-RETURN ALS SYSTEMS 

Latest generation commercial discrete ALS systems can deliver geospatial 3D point 

clouds to the end user usually with additional intensity values for individual echoes 

(Wagner et al., 2004). Despite the delivery of data with high point density and accuracy, 

the limitation of these systems is that it is not always possible to interpret these 

measurements for all targets (Mallet et al., 2008; Lin, 2009). This is particularly the 

case when multiple echoes are detected and the detection method implemented by the 

lidar operator is unknown, thus the accuracy of the generated echoes may be 

questionable (Wagner et al., 2007). Therefore the end user cannot estimate the errors 

resulting from the limitations in the pulse detection method adopted (Mallet and Bretar, 

2009). Using inaccurate range determination measurements provided directly from 

discrete pulse operators can effectively reduce the accuracy of the end products and 

limit opportunity for further analysis (Ducic et al., 2006).  

In contrast, FWF-ALS systems record the entire waveforms of the received pulses 

which provides the possibility to derive a more detailed description of the features’ 
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structure and provide more accurate range measurements (Briese et al., 2002; Nordin, 

2006; Mallet and Bretar, 2009; Heinzel and Koch, 2010). The potential of FWF-ALS 

systems can be summarised as follows (Rieger et al., 2006): 

 Can deliver high multi-target accuracy; 

 Can deliver unlimited number of returns per emitted signal; 

 Delivers information about surface roughness and slope; 

 Records information about the received laser backscatter signal. 

 

Using robust fitting functions to model FWF data, accurate range measurements can be 

delivered and more targets can be detected than those detected by discrete systems 

(Wagner et al., 2007; Chauve et al., 2007; Höfle and Hollaus, 2010). In a comparison 

with discrete systems, FWF can provide not only five returns per signal, but rather an 

almost unlimited number of returns which is likely to be the case with vegetation 

(Neuenschwander et al., 2009). Furthermore, the additional physical observables which 

FWF provides can deliver extra information of land cover features which the geometric 

information cannot deliver (Ullrich et al., 2008). For example, Doneus and Briese (2006) 

and later Lin and Mills (2009a) followed by Hollaus and Hӧfle (2010) found that FWF 

echo width is particularly sensitive to surface roughness and slope and thus can be used 

to deliver information on these aspects. In addition, both echo width and amplitude can 

deliver comprehensive information about the backscatter energy of the individual 

echoes (Briese et al., 2008; Abed et al., 2010; Lehner and Briese, 2010). Moreover, 

several studies have shown that using the additional physical information from FWF 

alongside the existing geometric information can effectively increase the reliability of 

the final products (Hӧfle et al., 2007; Lin and Mills, 2009b; Alexander et al., 2010; 

Mallet et al., 2011). However, all such information cannot be generated directly from 

FWF raw data as this is provided to the user in waveform profiles. Thus emerges a 

necessity for pulse detection analysis for better range accuracy (Jutzi and Stilla, 2005a; 

Wagner et al., 2007).  
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2.3 POST-PROCESSING OF SMALL-FOOTPRINT FWF-ALS DATA 

To process laser scanner data for segmentation applications, several stages must be 

followed. These include pulse detection adoption, data calibration such as target 

orientation consideration, and segmentation algorithms implementation. This section is 

particularly discussing post-processing techniques and available pulse detection 

methods for FWF-ALS data.    

Small-footprint topographic FWF-ALS systems firstly became commercially available 

in 2004 (Mallet and Bretar, 2009). These provide users with the advantage of using the 

small-footprint to assess the topographic surface in more detail using a small ground 

footprint size (Lin, 2009; Chehata et al., 2009). The associated waveforms need to be 

post-processed through signal analysis techniques in order to deliver detailed 

information about the geometric and physical properties of the backscattering objects 

(Jutzi and Stilla, 2006; Mallet et al., 2010).  

It is evident from the signal analysis literature that pulse detection is considered to be a 

challenging task with respect to retrieving information in a geometric form (e.g. 3D 

point clouds) (Jutzi and Stilla, 2005a; Nordin, 2006; Mucke, 2008; Lin, 2009). Several 

methods have been developed to detect echoes from FWF signals. This includes 

threshold, constant fraction, peak, and centre of gravity (COG) detection methods (Lin, 

2009). However, each method has its own weaknesses when applied to small-footprint 

FWF-ALS data, and may limit the final range accuracy (Jutzi and Stilla, 2005b; Lin, 

2009). Therefore, for high accuracy range resolution, it is necessary to adopt more 

sophisticated pulse detection methods. 

Gaussian decomposition is a popular pulse detection technique to model laser 

waveforms of approximate Gaussian distribution (Wagner et al., 2006; Jutzi and Stilla, 

2006). It was found that the Gaussian function (Eqn. 2.1) can best describe, and 

therefore effectively model, the small-footprint FWF-ALS data from the Riegl       

LMS-Q560 system (Wagner et al., 2006; Jutzi and Stilla, 2006; Reitberger et al., 2008). 

Therefore, the Gaussian decomposition technique can be used fit the Gaussian function 

to the Riegl LMS-Q560 signals in order to detect all possible echoes within individual 

waveforms. 
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         ∑       [ (
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                                                                  Eqn. 2-1 

 

Where: 

   is the quantized amplitude values 

        is the noise level in the waveform signal 

n  is the number of Gaussians 

   is the amplitude of the i
th

 Gaussian 

x  is the samples time values 

xi  is the i
th

 Gaussian peak 

widthi  is the pulse width of i
th

 Gaussian = √     

    is the standard deviation of the i
th

 Gaussian  

 

The Gaussian pulse detection approach presumes that the laser pulses are transmitted 

with a Gaussian-like distribution and thus the received signal can be treated as a sum of 

multiple Gaussian pulses (Wagner et al., 2006). It aims to detect multiple echoes from 

individual waveforms as an amplitude-against-time measure. As a result of fitting the 

waveforms to the Gaussian function, multiple echoes can be detected and geometric and 

physical information can be extracted for individual echoes (Figure 2.2). This method 

can deliver accurate range resolution and provide a reliable solution as compared with 

other available methods. Consequently, accurate geo-referenced 3D point clouds 

alongside echo width and amplitude measurements can be provided to end users for 

individual echoes in addition to the total number of detected returns (Wagner et al., 

2007). However, the Gaussian decomposition method is considered to be problematic in 

the case of complex and weak waveform signals (Wagner et al., 2006; Lin et al., 2008).   
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Figure 2.2. Fitting Gaussian function to detected FWF signal from the Riegl LMS-

Q560: (Blue dots) recorded waveform signal; (Green dotted lines) fitted Gaussians per 

echo; (Red lines) sum of all Gaussian functions; (R) is the range to the sensor; (P) is the 

echo amplitude; (Sp) is the echo width (Mandlburger et al., 2007). 

 

Motivated by overcoming the weaknesses in the available pulse detection methods, a 

Rigorous Gaussian pulse Detection (RGD) method was developed by Lin et al. (2010). 

This was motivated by the need to develop a sophisticated and reliable method, which 

could decompose complicated waveform signals. RGD was originally designed to 

improve range resolution and accuracy and overcome information loss due to 

limitations in range estimations from standard approaches (Lin et al., 2010). The RGD 

approach also provides a solution to tackle complex overlapping waveforms and 

difficulties in detecting weak signals (Lin, 2009). These two limitations are considered 

to be the main challenges faced by the standard pulse detection methods. RGD is an 

iterative technique based on Gaussian decomposition definition. It is implemented with 

rigorous initial values and applies a sophisticated iteration procedure (Lin, 2009). The 

method can detect overlapping signals in complex waveforms by analysing the second 

derivative of the Gaussian function. Figure 2.3 demonstrate the detection of visible and 

overlapping peaks with RGD from complex waveforms. However weak pulses are 
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detected based on analysis of residuals derived from the least squares fitting procedure 

and the pulse width value delivered from individual echoes (Lin et al., 2010). 

 

 

Figure 2.3. RGD method detecting overlapping peaks in a complex waveform from the 

Riegl LMS-Q560 system (Lin, 2009). 

 

The method has proven to be capable of extracting a greater number of valid echoes 

from individual laser pulses than those extracted through standard available approaches 

(Lin et al., 2010). Figure 2.4 demonstrates the performance of the RGD method against 

two popular algorithms available from leading commercial software. It shows that RGD 

outperforms the comparator algorithms by delivering extra valid echoes for DTM and 

canopy modelling applications as highlighted by red dots. Both complex and weak 

waveform pulses can be resolved with the RGD approach, which was validated through 

comparison to ground truth data.  Refer to Lin et al. (2010) for further details. Adding to 

this, the improved range resolution results from the RGD method shows particular 

potential when the vertical separation between targets is small (less than one pulse 

length). This can reduce the chance of overestimating and underestimating classification 

procedures and deliver more robust products such as DTM or canopy height models 

(CHM) (Lin and Mills, 2009b). 
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Figure 2.4. RGD pulse detection method vs. algorithms from commercial software 

assessing an 80m profile section in a vegetated area: (a) centre of gravity (COG) 

method (b) Gaussian pulse fitting (GPF) method (c) RGD method (Lin, 2009). 

 

In addition to the 3D object location of multiple laser echoes, output from the RGD 

software, which was developed in-house at Newcastle University, delivers backscatter 

properties, including echo amplitude and width parameters. These parameters have 

demonstrated a capability to enhance available classification/filtering algorithms 

(Doneus and Briese, 2006; Lin and Mills, 2009a). However, managing and processing 

dense FWF datasets is a challenging task (Chauve et al., 2009; Guan and Wu, 2010). 

This is because of the dramatic increase in the data volume due to unlimited return 

echoes and delivers a serious problem in computing processing and storage capacity. 

However, organised management of computing resources can effectively improve 

computing usage, but more human effort is required (McGough et al., 2010). Therefore, 

there is a high demand for an effective processing tool or strategy to reduce processing 

time for laser scanning data. 

  

 

(a) 

(b) 

(c) 
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2.4 HANDLING LASER SCANNING DATA  

The efficient handling of laser scanning data has been an issue since FWF systems first 

emerged. The stored waveform profiles delivered from a FWF sensor after a flight 

campaign of 1.6 hours with a mean pulse repetition frequency (PRF) of 50 kHz can 

occupy about 140 GB (Chauve et al., 2009). Therefore, managing this huge amount of 

information for further processing is considered to be a challenging task in the context 

of large flight campaigns.  

For efficient data management, effective resources should be utilised, where resources 

here refer to processor, memory, and disk space. There are three main types of resources 

available for processing approaches: single processor, symmetric multi-processor, and 

distributed processor. With the single processor, only one central processing unit (CPU) 

is used, with centralised memory and disk space. The symmetric processor (e.g.     

quad-core, dual-core) is efficient to use in some cases when the dataset is relatively 

large as the user can take advantage of the multi-core system design. The limitation of 

the symmetric processor is that all CPUs share the same memory, which can 

significantly slow the processing. However, the distributed processor system is 

considered to be the most efficient solution to run massive datasets, as all processors 

have their own dedicated memory but have to communicate with each other to access 

the centralised memory resource (e.g. network) (McGough, 2011). Figure 2.5 shows the 

three mentioned resource types used in data managing and processing.  

Mandlburger et al. (2009) developed the software package, OPALS, as a complete set of 

processing tools for ALS datasets. This software included multiple modules to process 

and visualise ALS data, including FWF for various applications. It is provided in Shell 

script for Linux users, patch for Windows, and also in Python code (Mandlburger et al., 

2010). As the software modules are originally designed to run under a Linux 

environment, no graphical user interface (GUI) is available. The software can be 

downloaded from OPALS (2009). However, the software is originally designed for use 

with both single and symmetric processor types. 
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(a) (b) 

(c) 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Resource types used in data management and processing: (a) single 

processor (b) symmetric multi-processor (c) distributed processor (McGough, 2011). 

 

 

Chauve et al. (2009) introduced a toolkit called FullAnalyze to visualise and process 

laser scanning datasets, including FWF, as a 1D signal or in 3D point cloud format. This 

software is also applicable for either single or symmetric processor types and it was 

released in October 2009 as an open source software (FullAnalyze, 2009). The software 

runs under a Linux environment, and requires a virtual Linux environment to be 

installed on the machine if the user decides to operate under Windows (FullAnalyze, 

2009). Further, all available commercial software designed for laser scanning data 

management and processing, such as TerraScan from Terrasolid (Terrasolid, 2008) or 

RiAnalyze from Riegl (Riegl, 2008), are designed to run under high specification single 

or symmetric processors.   
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On the other hand, Guan and Wu (2010) demonstrate the potential of using a 

symmetrical (multi-core) processor to manage laser scanning datasets and improve 

performance against the single processor scenario. They processed raw laser scanning 

data by partitioning these data into multiple blocks, which have been interpolated 

individually and finally merged into one integrated Digital Elevation Model (DEM). 

Their approach achieved a powerful increase in speed of performance, and effective 

reduction in the overall processing time. However, the proposed technique is not the 

optimal solution for massive datasets.  

The most efficient processor system which is extremely powerful for handling massive 

datasets is the distributed system (Raman et al., 1998). The key leveraging in the 

distributive resources is its compatibility to run independent parallel jobs on different 

physical computers and later integrate these jobs to deliver one combined solution. It is 

best suited to manage multiple independent processing operations where individual 

tasks are highly independent and do not require input from other operations. In this 

context, this mechanism can therefore efficiently meet the requirements for laser 

scanning data processing. The most powerful processing technique which can 

efficiently manage the distributed processor system of large-scale resource sharing, is 

grid computing mechanism (Dai et al., 2002; McGough et al., 2010). Grid computing is 

a technique of combining multi-computer resources to achieve one single goal (Raman 

et al., 1998). It provides consistent, independent and flexible access to intensive 

computational capabilities in the presence of network connection to maintain the 

necessary resources (Dong and Akl, 2006). The ideal solution to manage, process, 

visualises, and also monitor powerful distributed jobs of massive datasets is through 

Condor. Condor is a well-known computing project which provides resource 

optimisation and support for high- throughput computing techniques including grid 

computing on large-scale distributed computing resources (Condor, 1988).  It can run a 

large number of jobs concurrently and provide high quality service with a high network 

usage (Litzkow et al., 1988). Submitting jobs through Condor can be designed as 

illustrated in Figure 2.6. The process starts by designing a robust code that solves the 

current problem and ensures that the code is well designed to run in the Condor 

environment before submission. In certain cases, a compilation is needed against 

middleware on the Condor server, which can be managed through a third-party tool. 

Following a well-structured submission plan, Condor can deploy the independent jobs 

to the computing resources within the network. So far Condor has proven to be 
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extremely effective in improving the productivity of massive datasets (Dean and 

Ghemawat, 2008; Thain et al., 2005) and significantly reducing the time needed to 

generate the results (Abed and McGough, 2010), which is an important factor in the 

case of laser scanning datasets. 

 

Figure 2.6. Principles of the Condor project (McGough, 2011). 

 

 2.5 CALIBRATION OF LASER SCANNING DATA 

FWF laser scanning systems can better define land cover features by delivering both 

geometric and the physical characteristics of the backscattered energy by means of 3D 

point cloud and physical information for individual echoes. For further analysis it is 

necessary to calibrate this information whether from FWF or from traditional discrete 

systems to increase the benefits of the collected positional and physical information 

(Wang and Lu, 2009; Habib et al., 2011; Anttila et al., 2011). Considering scanning 

geometry and terrain properties is essential for improving the quality of ALS geometric 

data (Maas, 2002; Kager, 2004; Filin, 2005; Pfeifer et al., 2005; Schaer  et al., 2007; 

Lee et al., 2007; Habib et al., 2008; Ressl et al., 2008). However, the geometric 

calibration of ALS data is beyond the focus of this research as it has been widely 

addressed in the literature. Consequently, calibrating the backscatter physical energy to 
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enable the full utilisation of the FWF information is the overarching focus in this 

research.  

The physical information that laser scanning data provides is affected by many variables 

during the travel between the sensor and the target. These include sensor properties, 

atmospheric conditions, incidence angle and other target characteristics effects (Luzum 

et al., 2004; Hӧfle and Pfeifer, 2007; Abed et al., 2012; Shaker et al., 2011). A robust 

radiometric calibration strategy must be capable of eliminating all aforementioned 

effects and delivering more reliable physical information for land cover features 

(Wagner et al., 2008b; Qin et al., 2010). Only a limited numbers of studies that deal 

with this important topic have contributed to the literature so far. However, more studies 

can be expected in near future that fully utilise these information in developing end 

products, especially as FWF systems mature.  

 

2.5.1 Theoretical Background 

The measurement principles of ALS systems were first expressed through the principles 

of radar systems (Wagner, 2005). Due to the similarity between ALS and radar systems, 

scientists tend to use the radar equation (Eqn. 2-2) to describe all the parameters 

affecting the received laser power Pr (Steinvall, 2000; Briese et al., 2008; Wagner, 

2010).  

 

   
    

 

      
                                                                                               Eqn. 2-2 

 

Where: 

Pt  is the transmitted power 

Dr  is the diameter of the receiver aperture 

R  is the range between the sensor and the target 

βt is the laser beam divergence 
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σ  is the backscatter cross-section 

ηsys is the system transmission factor 

ηatm is the atmospheric transmission factor 

 

The laser backscatter cross-section σ is a measure of the directional scattering power 

which encompasses all target characteristics (Eqn. 2-3) including scattering direction, 

reflectivity and area of illumination (Jelalian, 1992; Steinvall, 2000; Pfeifer et al., 2008;  

Wagner, 2010).  

 

  
  

 
                                                                                                                Eqn. 2-3 

 

Where: 

Ω  is the scattering solid angle 

ρ  is the surface reflectivity 

Ai is the size of the area illuminated by the laser beam 

 

Note that Ai  is defined in literature as the target area highlighted in green in Figure 2.7, 

which was first defined by Jelalian (1992). For fast derivation of the backscatter     

cross-section parameter, Ai  can be replaced by Alf  (highlighted in yellow in Figure 2.7) 

to avoid the additional efforts of estimating the local incidence angle (α), as it has been 

assumed in some literature (Wagner, 2010), however this is not the case herein.  

The reflection direction is generated from the angle between the laser beam and the area 

enclosing the target by means of the so-called incidence reflection angle. The incidence 

angle is defined as the angle between the surface normal and the illumination direction, 

which alternatively defines the target orientation. However, the reflectance of individual 

echoes is just a portion of the entire reflected incidence radiation from the total target 

area enclosed within the footprint which could be termed in FWF as the convoluted 
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backscatter signal (Wang et al., 2009). Therefore the magnitude and the nature of the 

backscattered signal is dependent on the target properties (Wagner et al., 2004).  

In FWF-ALS systems, and when using the Gaussian function to retrieve the laser signal, 

Pr can be represented as a the product of echo amplitude 
iP


 and echo width 
ips ,
 and thus 

can be replaced by  
ipisP ,


 for simplification (Wagner et al., 2006; Hӧfle et al., 2008). 

Further, the target is considered to be extended within the footprint area, having a solid 

angle Ω of π steradians with Lambertian scattering characteristics.  

To simplify Eqn. 2-2, all unknown parameters assumed to be constant in one scan 

campaign can be combined to one single constant called the calibration constant, Ccal 

(Wagner et al., 2006; Briese et al., 2008; Lehner and Briese, 2010; Wagner, 2010). As a 

result the calibration equation which can deliver the σ value for individual echoes in 

ALS systems can be extracted as follows: 

 

 

  
       

  ̂     

    
                                                                                                   Eqn. 2-4 

 

Consequently, the calibration constant will be: 

 

     
  
 

    
     

                                                                                                       Eqn. 2-5 

 

 

The atmospheric transmittance ηatm in Eqn. 2-4 can be delivered by modelling the 

metrological data on the day of the scan using a suitable atmospheric data modeller, 

such as MODTRAN (Chen et al., 2007; Asmat et al., 2008). However, to estimate the 

calibration constant for a certain ALS campaign, it is necessary to have a reference 

target with a known reflectivity value to deliver σ (Eqn. 2-3). Ai should also be 

estimated, where  Ai represents the area of the target illuminated by the laser beam. This 
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area can be estimated from the range R, the beam divergence βt, and angle of incidence 

α, refer to Figure 2.7. For simplification, and to avoid additional efforts to estimate the 

incidence angle for certain applications, the laser footprint area at the scattering object 

(Alf ) can replace the value of Ai  as follows (Lutz et al., 2003): 

 

 

   
    

  

      
                                                                                                             Eqn. 2-6 

    
     

 

 
                                                                                                           Eqn. 2-7 

Thus,      
   

     
                                                                                                  Eqn. 2-8 

 

 

Figure 2.7. Principles of laser footprint area in an ALS system (Lehner and Briese, 

2010). 
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Once the calibration constant has been delivered, the backscatter cross-section 

parameter can be estimated for individual laser echoes for the entire dataset (Lehner et 

al., 2011). However, Wagner et al. (2008a) introduced another backscatter parameter, 

the backscatter coefficient (γ), which is more stable than σ as the latter tends to vary 

significantly with different system and target characteristics. When the incidence angle 

of the laser beam is changed, then the illumination area is also changed and therefore γ 

can be called the normalised backscatter cross-section with respect to the area of the 

incoming beam and can be derived as follows: 

 

  
 

      
                                                                                                              Eqn. 2-9 

 

However, neither σ nor γ are free from the incidence angle effect (Mandlburger et al., 

2010; Wagner, 2010). Therefore, both parameters should be normalised with respect to 

the incidence angle by dividing each parameter by the cosine of the incidence angle 

within the Lambertian scatterer assumption as detailed in Eqn. 2-10 and 2-11 

respectively (Lehner and Briese, 2010). This will deliver two more backscatter 

parameters for individual echoes of the entire dataset in addition to σ and γ. 

 

   
 

    
                                                                                                             Eqn. 2-10 

   
 

    
                                                                                                             Eqn. 2-11 

 

The quantity sought from the radiometric calibration process in FWF systems is the 

calibration constant. All the available mathematical models propose the estimation of 

one constant for the entire scan campaign in this respect. However, Roncat  et al. (2011) 

introduced a study to quantify the uncertainty of the calibration constant which can be 

acquired due to the variations in the emitted energy. In the derivation process of Ccal, 

the parameters of the transmitted energy, which are considered as unknowns, are 

assumed to be constant during one scan campaign. However, Bretar et al. (2009) 

claimed that the transmitted laser energy cannot be assumed to be “constant enough” for 
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proper radiometric calibration purposes. Therefore, it is essential to check the behaviour 

of the transmitted energy in individual flightlines to quantify the energy variations 

through the adoption of a calibration constant per flightline instead of considering one 

constant for the entire campaign. 

 

2.5.2 Incidence Angle Estimation  

2.5.2.1 Overview  

In order to calibrate the physical information of FWF-ALS data, the incidence angle 

effect of individual echoes needs to be firstly considered (Briese et al., 2008; Jutzi and 

Gross, 2010; Lehner et al., 2011; Roncat  et al., 2011). The incidence angle of the laser 

beam plays a crucial role in object recognition (Phong, 1975), as it varies over differing 

land cover targets according to the different flying directions and positions of multiple 

flightlines (Lutz et al., 2003; Kukko et al., 2008). The Earth’s surface comprises various 

land cover types including natural and man-made features, and the reflected energy 

from these surfaces is highly influenced by the incidence angle of the laser beam   

(Ruiz-Cortes, 2002). Figure 2.8 shows principles of the incidence angle and highlights 

the difference between incidence and scan angles in ALS. In the case of flat surfaces, 

the scan angle and the incidence angle are coincident.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Differences between incidence and scan angles (Vain et al., 2009). 
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The incidence angle is defined as the angle between the surface normal and the 

illumination direction, which can be estimated for individual echoes from the 3D laser 

point coordinates and the scanner position. This effect can significantly increase the 

reflected echo amplitude values at higher incidence angles over different target 

materials and from multiple flightlines (Jutzi and Gross, 2010; Shaker et al., 2011). This 

is mainly because the variation in the incidence angle (object orientation) affects the 

size of the laser footprint which can significantly influence the amount of the reflected 

energy (Wagner, 2010). However, if object position and orientation within a certain 

surface can be determined, it should be possible to eliminate this effect and thus deliver 

more reliable normalised signals (Jutzi and Gross, 2010; Kukko et al., 2008; Jutzi et al., 

2002). 

Kukko et al. (2008) investigated the dependency of the laser intensity signal on the 

incidence angle by means of target brightness on TLS data and later compared the 

results with ALS data. The study was implemented over artificial and natural targets 

using different incidence angle settings. The incidence angle effect was found to be 

evident on all targets and significant for incidence angles >20°. Kaasalainen et al. 

(2011a) further analyse this effect on TLS intensity data and deliver similar outcomes 

from multiple TLS instruments. Jutzi et al. (2009) and later Jutzi and Gross (2010) 

introduced a study that demonstrated the role of the incidence angle effect on the 

received ALS intensity signals.  This is illustrated through Figure 2.9 which shows the 

intensity image of a selected region delivered from four different flightlines. Although 

the highlighted area represents planes from the same materials, the scan direction 

effectively impacts the amount of the reflected energy, causing clear signal 

discrepancies between overlapping flightlines. This highlights the importance of 

intensity data normalisation with respect to incidence angle for a comprehensive 

radiometric correction. 
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Figure 2.9.  Influence of the incidence angle on ALS intensity signals: (a), (b), (c), and 

(d) represent the intensity image of a selected region from four different overlapping 

flightlines (Jutzi et al., 2009). 

 

Further, investigations by Kaasalainen et al. (2009c) showed that Lambert’s Cosine Law 

(Swinehart, 1962) works reasonably well in normalising laser scanning intensity data 

for most targets across a broad range of incidence angles. This was demonstrated to be 

valid even in cases when the scattering surface was not considered to have Lambertian 

characteristics. Moreover, Chelle (2006) showed that Lambert’s Cosine Law can deliver 

a satisfactory estimation of light absorption modelling for rough surfaces such as dense 

crop canopies in both active and near infrared spectral domains. This was also 

confirmed by Jutzi and Gross (2010) in demonstrating that echo amplitude variations 

caused by incidence angle and range effects can be eliminated by using the standard 

Lambertian reflection model. It was shown that considerable improvements in the 

normalized intensity signals can be delivered by adopting this model. This conclusion 

was based on an extended study by Jutzi and Gross (2010) to investigate the optimal 

surface reflection model which should be used to model laser backscatter characteristics 

                            (a)                                                              (b) 

                           (c)                                                               (d) 
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and overcome variables affecting echo amplitude signals including the angle of 

incidence effect. Three different diffuse models were tested, including Lambertian, the 

extended Lambertian, and the Phong reflection model (refer to Jutzi and Gross (2010) 

for further details).  

 

2.5.2.2 Normal Vector Estimations  

Recent studies have shown that the laser echo amplitude of a target is strongly 

correlated to the incidence angle of the laser beam (Kukko et al., 2008; Jutzi and Gross, 

2010; Kaasalainen et al., 2009c; Kaasalainen et al., 2009b; Abed et al., 2012). Other 

studies have discussed the incidence angle impact on the radiometric calibration 

techniques and the laser backscatter signal (Kaasalainen et al., 2007; Kaasalainen et al., 

2008; Vain et al., 2009; Lehner and Briese, 2010; Abed et al., 2011; Shaker et al., 2011). 

Because the incidence angle is a function of the surface normal vector associated with 

the point, robust normal vector estimation is needed towards an optimal radiometric 

calibration. 

In order to deliver the normal vector for individual points, surfaces enclosing these 

points should firstly be defined. Any local surface geometry cannot be generated from 

irregular 3D points without considering the distribution of these points following a 

certain neighbourhood assumption. Several neighbourhood assumptions which can 

deliver normal vector estimations and represent feature surfaces have been previously 

presented. Filin and Pfeifer (2005) have fully described and discussed available 

neighbourhood systems applied to ALS data point clouds such as triangulation (Filin, 

2002; Hofmann, 2004), rasterisation (Wehr and Lohr, 1999), and rectangular cells 

adaption (Kraus and Pfeifer, 1998). All these approaches are traces of 2D concepts, 

which have been adapted to 3D. Laser scanning data is a 3D representation of a variety 

of surface features which could be massively complicated and cannot be handled with 

2D concepts (Vosselman and Maas, 2010). Moreover, the irregular distribution of the 

laser scanning data makes feature extraction highly challenging due to the huge amount 

of information which the data comprise (Shan and Toth, 2009; Yokoyama et al., 2011). 

Adding to this, data density can vary substantially among different datasets and is not 

accounted for within these neighbourhood definitions (Filin and Pfeifer, 2005; Abed et 

al., 2012; Demantke et al., 2011). For these reasons, the previously mentioned 
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approaches fail to deliver adequate neighbourhood definitions as necessary to represent 

the variety of the surface features. Note that these approaches are based purely on 

geometric relationships amongst points in 3D space.  

One of the fundamental requirements for a large variety of geomatic applications in 

discrete 3D space data systems is to find the optimal neighbourhood relationships. The 

neighbourhood retrieval of the 3D laser points is usually defined by the k-nearest means 

inside a small environment centred on the point of interest (Vosselman and Maas, 2010). 

There are two primarily neighbourhood environments which better define the 

unstructured characteristics of the 3D laser point clouds. These are the spherical and the 

cylinder neighbourhood definitions (Lee and Schenk, 2001; Kim et al., 2007; Demantke 

et al., 2011). Figure 2.10 illustrates these two definition concepts. 

Lee and Schenk (2002) developed a robust perceptual organisation approach for 

irregular 3D point clouds. This is based on the adoption of a spherical 3D volumetric 

concept to define the relationship among the unstructured 3D points. This defines a 

neighbourhood system within a certain radial distance from each point in question (refer 

to Figure 2.10-a). All points within the system are considered to determine the 

orientation estimation of the defined volumetric system. The spherical definition was 

used to structure the irregular point clouds into perceptual surfaces and then clustering 

these surfaces points into meaningful classes (Lee and Schenk, 2002). The method was 

visually inspected using a real ALS data to test the quality of the structured output 

points, which can serve as a valuable source for subsequent object recognition processes. 
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                                   (a)                                                                     (b) 

Figure 2.10.  Volumetric definition of neighbourhood approaches: (a) spherical 

definition (b) cylindrical definition (Gross and Thoennessen, 2006). 

 

Subsequently, Filin and Pfeifer (2005) introduced a cylindrical-based neighbourhood 

definition, termed the slope adaptive method. The method is based on defining a 

cylinder volume for an individual point of interest from the k-nearest neighbours’ points, 

defined by a certain radius and height (Figure 2.10-b). As already discussed, variable 

data density due to survey characteristics is a crucial aspect. Therefore, the parameters 

of the defined volume are specified based on data characteristics. This method was able 

to deliver more reliable normal vector estimations over planar surfaces than the 

commonly applied triangulation method. However, the cylinder approach was originally 

designed for simple structure features rather than natural or complicated surface 

structures with minor details. Furthermore, the investigations of Filin and Pfeifer (2005) 

revealed that a spherical-based neighbourhood may be more feasible for dense datasets. 

Although the cylindrical method is adaptive and suited particularly for urban 

environments, the method ignores the assumption of including non-homogeneous points 

in individual neighbourhood definitions which is likely to happen in dense datasets. 

The spherical-based neighbourhood definition is more generic and appropriate to adopt 

in case of dense discrete data. However, the question which still arises is how to make 

sure that the points within individual volumetric neighbourhood definitions belong to 
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the same surface. This concept was discussed by West et al. (2004) and addressed by 

developing a solution using the geometric aspects of the problem without integrating 

any other information such as intensity. The algorithm relies on the eigenvalues 

delivered from the covariance matrix generated from the 3D spherical volumetric 

definition of individual points using a constant radius value. These eigenvalues have 

been used to define the structure tensor features for each defined spherical definition to 

facilitate classification analysis and target detection in 3D space. Although the method 

can effectively differentiate between different features structures, it is hard to deliver 

accurate orientation estimations for individual features. Following this, Demantke et al. 

(2011) introduced a multi-scale neighbourhood definition based on the spherical 

assumption. This approach estimated the 3D geometry of the ground features (linear, 

planar, or volumetric) from ALS, TLS, and MLS data points to deliver knowledge about 

the optimal neighbourhood radius to adopt in the spherical definition. The method relies 

on the matrix of covariance delivered for each point from West et al. (2004) assumption. 

However, the method considers purely the geometric location of these points and 

discards the noisy functionality of laser scanning data which can effectively bias the 

dimensionality labelling.  

Following definition of the neighbourhood, there are three types of representation 

methods which can be adopted to deliver information about surfaces such as the normal 

vector. The first method is to characterise a mathematical formula that accurately 

represents data properties and feature characteristics (Filin and Pfeifer, 2005; Kim et al., 

2007; Abed et al., 2012). Although it is challenging to deliver a generic model that fits 

with all surface features, it is possible to identify common properties that meet with the 

endeavour goal of the study. The second option is to interpolate the data to deliver the 

required information about the extracted surface (Habib et al., 2011; Yan et al., 2011). 

The third option is to approximate the surface in a least squares sense by fitting the 

discrete points to an assumed standard surface (Meek and Walton, 2000; Ou Yang and 

Feng, 2005; Duan et al., 2011). Although the second and the third methods are 

appropriate to use with noisy data such as laser scanning, they approximate the data to 

define the required surface, which may not necessarily reflect the actual object 

properties.  

The majority of the existing normal vector estimation methods are based upon the 

spherical approach (Weingarten et al., 2004; Gross and Thoennessen, 2006; Vosselman 
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and Maas, 2010; Gross and Thoennessen, 2006Jutzi and Gross, 2010;; Demantke et al., 

2011; El-Halawany et al., 2011). Hoppe et al. (1992) described an algorithm to 

reconstruct 3D objects from irregular laser point clouds by trying to fit these points to 

an unknown surface and minimise differences between both in a least squares sense. 

The spherical definition was used to define the neighbourhood for individual points by 

means of Euclidean distances and the normal vector presents a surface criterion for each 

point. The introduced method associates an oriented plane (tangent plane) to individual 

points and attempts to minimise the difference in the distance between the associated 

surface point with the tangent plane, and the centroid point from the defined 

neighbourhood volume. Later Ou Yang and Feng (2005) developed a new method to 

estimate the normal vector by fitting a directional tangent vector to the data using a 

Voronoi mesh. The normal vector is delivered by minimising the variance between the 

normal vector and the associated directional tangent vector by means of the vector dot 

product. Castillo and Zhao (2009) developed the method originally introduced by 

Hoppe et al. (1992) to deliver robust results on surfaces edges by weighting the solution 

with the orthogonality mismatch residuals.  Noise in laser scanning point clouds is a 

significant source of error when determining the approximate normal vector. Therefore, 

Castillo and Zhao (2009) incorporate data denoising constraints to the normal 

estimation to make the solution more appropriate for noisy data. The          

segmentation-based normal vector process using the developed approach delivered 

improved results.  

The normal vector can be established from a 3D spherical volume for individual point 

cloud according to the Euclidian distance between points in 3D space following a 3D 

moment invariant method described by Hu (1962), developed later by Teague (1980) in 

2D, and later by Reeves et al. (1988) in 3D. The spherical volume is defined for each 

point cloud with a radius R and all of the points within this volume are assigned to the 

volume and analysed through the 3D moments as described by Maas and Vosselman 

(1999) and improved later by Gross and Thoennessen (2006). This definition can 

deliver the centre of gravity and the matrix of covariance, which defines the dispersion 

between points in the system. This leads to Eigenvalue analysis of the point clouds 

within the defined system and thus delivers a normal vector estimation which allows for 

optimal object recognition (Kawashima et al., 2001). The moments (mijk) are defined as 

in Eqn. 2.12 which describes the assumption in the discrete case (e.g. laser point clouds). 
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                                                              Eqn. 2-12 

Where: 

i, j, k ϵ n and n is the number of neighbourhood points 

i+ j+ k  is the order of the moment 

v is the individual point 

 f (x,y,z) is the weighting function 

 

There are no restrictions regarding the moment order to select, as the moment invariant 

is theoretically possible to be derived for any order (Mangin et al., 2003). On the other 

hand, the weighting function can be considered as constant for all points assigned to the 

system. However, where non-homogeneous materials are included within the defined 

system, it is recommended to assign a certain measure to individual points to express 

the non-homogeneity such as the intensity signal (Gross and Thoennessen, 2006). In 

this aspect, Jutzi et al. (2005) presented a scheme to extract man-made features from 

laser scanning data by considering the intensity value for individual echoes. Their 

investigations showed accuracy improvements of a factor of at least ten when 

identifying feature edges using a sub-pixel edge localisation algorithm. These outcomes 

can lead to more stable segmentation results, refer to Jutzi et al. (2005) for further 

details. Motivated by these findings, Gross and Thoennessen (2006), Gross et al. (2008), 

Jutzi et al. (2009), Jutzi and Gross (2010), and Abed et al. (2012) showed improvements 

in the results of the final products with the adoption of intensity values as a weighting 

function in the moment definition. 

Following the moment definition, the centre of gravity of the estimated volumetric 

definition can be estimated as follows: 
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                                                                 Eqn. 2-13 

 

Thus, the centralised moments are defined as in Eqn. 2-14 with the dependency on all 

points enclosed within the spherical volume and selected within the defined radius R.  
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              Eqn. 2-14 

 

Where a is the point of interest. 

Due to the moments’ dependency on all points inside the sphere with a selected radius R, 

the normalised moments will be as follows: 
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                                      Eqn. 2-15 

 

For each point of the dataset, the covariance matrix (M) can be delivered as illustrated in 

Eqn. 2-16. The Eigenvector of the smallest Eigenvalue represents the normal vector of 

the centroid point and can be considered to be the normal of the point of interest (a). 

 

  (

 ̃    ̃    ̃   

 ̃    ̃    ̃   

 ̃    ̃    ̃   

)                                                                                         Eqn. 2-16 

 

Thus, it is more preferable to adopt the spherical neighbourhood definition in dense 

dataset for optimal normal vector estimation to avoid discarding target details. This is a       

non-linear least squares case, which can be solved by adopting the moment invariant 

definition as stated above. However, data characteristics (e.g. density and accuracy) 

should be considered for reliable outcomes over different land cover features.  
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2.5.2.3 Point Cloud Data Management  

Selecting the optimal neighbourhood definition is a crucial and challenging mission for 

several applications in 3D space such as for delivering the local surface normal which is 

essential for angle of incidence estimations (Demantke et al., 2011). The 3D 

neighbourhood allocation of lidar point clouds is usually defined by the k-nearest 

neighbours algorithm (Hoppe et al., 1992; Hastie and Tibshirani, 1996). Based on this 

algorithm either the vertical or the Euclidean distance is estimated between the point of 

interest and its k-neighbourhood points in order to define the 3D volume environment 

for normal vector estimation. However, direct use of the unstructured point clouds is not 

recommended as it cannot provide an explicit representation of the data distribution 

(Vosselman and Maas, 2010; Lari et al., 2011). Moreover, using the data without prior 

organisation such as spatial indexing can render the computational aspects inefficient 

and time consuming (Shen et al., 2011). Therefore, it is important to structure the 

irregular data to define the relationship between neighbourhood points in the 3D space 

for further computation.  

The K-d tree technique proposed by Friedman et al. (1977), is a popular and effective 

data structure which is compatible with irregular and dense datasets such as lidar point 

clouds (Vosselman and Maas, 2010). This algorithm is designed to partition a certain 

file with n data records into dimensional nodes and afterward using a k-dimensional 

binary search to sort the data effectively. This facilitates searching the location of the 

nearest neighbours of individual point cloud. It can be done by spatially indexing each 

point based on k value to reduce computation time upon calling for the required point. 

For further details see Friedman et al. (1977) and Vosselman and Maas (2010). Figure 

2.11 shows an example for the K-d tree binary search. 
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Figure 2.11.  Sample ALS data shows K-d tree binary search technique 

(Mandlburger, 2011). 

 

 

2.5.3 Available Radiometric Calibration Approaches 

There are different approaches, which have been already introduced regarding the 

radiometric calibration of ALS data in literature. Multiple studies concentrate on the 

potential of the calibrated intensity values from discrete systems in improving the 

quality of the final products (Noel et al., 2002; Hӧfle et al., 2007; Hopkinson, 2007; 

Höfle et al., 2009). Luzum et al. (2004) presented an algorithm for correcting the 

inconsistencies in the intensity signals caused by variations in range, such as flying 

height and differences in ground topography. Although the model introduced is simple 

to be utilised for various applications, it does not consider sensor properties and target 

characteristics. Attempting to consider all variables affecting the received backscatter 

signal, Hӧfle and Pfeifer (2007) present two methods for intensity correction:          

data-driven and model-driven approaches. The data-driven approach is based on 

estimating a calibration parameter for the whole flight campaign by using the laser echo 

measurements delivered from multiple flying heights over a homogeneous extended 

area. The second approach is derived from the radar equation and is based on physical 

target properties of individual echoes and atmospheric conditions estimated from a 
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single flying height. Both methods were found to successfully correct intensity values 

and are well-suited for implementation on large datasets. However, the second approach 

is more preferable as measurements are not required from multiple flying heights.  

Later Yoon et al. (2008) discussed the potential of ALS intensity data in distinguishing 

land cover types and its capability to replace spectral information delivered from the 

near-infrared band of optical images after calibration. They examined the effects of 

reflectance and range on the ALS intensity behaviour using small-footprint data and 

investigating its radiometric properties as a pre-processing procedure. They found that 

intensity fails to effectively distinguish land cover types as vegetation cannot be      

well- differentiated from other objects. On the other hand, the range was found to be the 

major factor affecting intensity measurements except over vegetation. This is primarily 

because vegetation intensity signals were found to be low and similar to the intensity of 

other targets thus, no clear relationship with range could be determined over vegetation. 

As a result, Yoon et al. (2008) recommend a radiometric calibration with respect to 

range over all land cover types except vegetation, because signals can be overcorrected 

in case of vegetation as range effect is not well manifested over vegetation. Aiming to 

improve the quality of the derived products from ALS data, Habib et al. (2011) and later 

Yan et al. (2011) present a combined radiometric and geometric calibration approach 

for ALS data. They investigate the potential of the calibrated intensity values on the 

accuracy of the land cover classification results.  A physical model based on the radar 

equation for the radiometric calibration of the intensity data was applied by taking 

sensor properties, topographic effects and atmospheric attenuation into consideration. 

After the implementation of this radiometric calibration, improvements in the 

classification results of up to 11.6% were delivered. However, their proposed angle of 

incidence correction approach is not robust enough for accurate applications. This is 

because the incidence angle estimation delivered from interpolated Surface (DSM) and 

not from the original point cloud, which incorporates more error source to the solution.  

Some of the developed calibration approaches assume absolute workflow by using 

reference targets to calibrate the entire dataset using physical models that take into 

account effects on individual point clouds (Hӧfle et al., 2008). Kaasalainen et al. (2005) 

introduced a new calibration approach of using portable artificial brightness targets to 

calibrate ALS intensity data. These targets are made from polyester fabric and coated 

with polyvinyl chloride (PVC) of nominal reflectance from 5% to 70% for validation 
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purposes. A goniometer and ASD FieldSpec Pro spectrometer have been utilised to 

measure the targets’ reflectivity from multiple incidence angle settings in the lab. 

Thereafter the laser intensity behaviour was examined at different wavelengths and 

incidence angle settings by calibrating the reference targets reflectivity measures with a 

Spectralon reference panel. This showed that surface brightness has a major effect on 

the backscattering energy at 1064 and 632.8 nm wavelengths. Kaasalainen et al. (2005)  

claimed that following this calibration routine the calibrated intensity data would 

facilitate separation between vegetation and other surface types supported improved 

classification and segmentation results. Following these findings and by using the same 

reference targets utilised by Kaasalainen et al. (2005), Ahokas et al. (2006) calibrated 

ALS intensity data from different flying heights relying on the radar equation. Their 

findings highlighted the necessity for correcting ALS intensity values with respect to 

transmitted power differences, in addition to range, incidence angle, and atmospheric 

conditions. These effects should be considered before integrating intensity observables  

in further data analysis where intensity will refer to target reflectance after calibration 

(Wagner et al., 2006; Korpela et al., 2010). 

A similar approach was later presented by Coren and Sterzai (2006), but this time by 

using homogeneous asphalt sections as natural reference targets for the calibration 

process. The results proved the potential of using natural targets as reference and also 

introduced the calibration procedure as an effective tool to correctly image land cover 

features through the calibrated intensity image. Following this, Kaasalainen et al. (2007) 

showed the feasibility of using natural reference targets as an alternative to fabric 

targets in a practical radiometric calibration approach. This was further investigated and 

later discussed in several studies where the potential of using natural reference targets to 

calibrate ALS intensity data (Kaasalainen et al., 2008; Kaasalainen et al., 2009a), and 

TLS data (Pfeifer et al., 2007; Pfeifer et al., 2008; Kaasalainen et al., 2011a) was 

approved. However, particular attention should be given when selecting a suitable 

reference target and sampling its reflectivity measures (Vain et al., 2009). 

Since ALS systems first became available, a number of researchers have concentrated 

on assessing and evaluating the potential of exploiting intensity for further analysis. 

However, the intensity measurements are not representative of all the parameters that 

affected the received backscattered energy, in contrast to the physical observables which 

FWF systems can deliver. Based on these physical parameters, various approaches to 



Chapter Two                                              Laser Scanning Data Processing and Analysis 
 

54 
 

the calibration of FWF data have been developed and exploited in several studies, 

demonstrating significant improvements in the relevancy of the final products for 

various applications (Hӧfle et al., 2008; Reitberger et al., 2009b; Bretar et al., 2009; 

Reitberger et al., 2009a; Mallet et al., 2011). FWF radiometric calibration routines were 

firstly undertaken shortly after small-footprint FWF systems first emerged. There was a 

particular interest in this topic as small-footprint systems can deal with the received 

laser power more precisely than the large-footprint systems. This is because the 

convoluted backscatter signal in small-footprint systems can comprise a limited number 

of targets as compared with the case of large-footprint systems. Wagner et al. (2008b) 

introduced a novel usage of backscatter parameters which defined all target properties, 

and discussed the potential of these parameters for calibrating the FWF backscattered 

signal. This is applicable by using the additional physical information from FWF data 

(echo width and amplitude) in a comprehensive physical mathematical model that takes 

all parameters affecting the recorded backscatter power into consideration. This was 

approved later by Briese et al. (2008) through a practical absolute radiometric 

calibration workflow. They investigated the backscatter parameter introduced by 

Wagner et al. (2008b) which defines a measure of the electromagnetic energy 

intercepted and radiated by land cover features and consider it as the required parameter 

to calibrate the backscatter energy. The proposed approach utilises a natural reference 

target with known backscatter information to derive the calibration constant for the 

entire campaign. This facilitated the calibration process, which relies on the radar 

equation to create the relationship among all variables affecting the laser energy. In 

contrast with all previously proposed radiometric calibration approaches, the presented 

routine proposes to measure the backscatter information of the reference target by 

means of reflectivity in the field. This can be achieved through utilising a portable 

reflectometer to maintain the same scan conditions. However, the introduced workflow 

ignores the incidence angle effect on individual laser echoes in the calibration process. 

Following the previous findings,  Wagner et al. (2008a) and later Alexander et al. (2010) 

investigated the potential of using the backscatter parameter to improve 3D point cloud 

classification results. This could be generated from FWF systems through the adoption 

of the radar equation as a calibration mathematical model. Wagner et al. (2008a) 

demonstrated the successful separation between broad tree canopy and terrain echoes by 

applying the backscatter cross-section parameter introduced earlier (Wagner et al., 

2008b). Following this, the 3D point cloud was classified into vegetation and           
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non-vegetation echoes with more than 90% overall mean accuracy. Following this, 

Alexander et al. (2010) detected improvements in classification performance through 

the backscatter cross-section parameter as compared with results delivered from 

utilising the original echo amplitude signals. A further backscatter parameter, so called 

the backscatter coefficient, introduced  by Wagner et al. (2008b) and later reviewed in 

more details by Wagner (2010) was also investigated. This parameter considers the 

change in the laser illumination area with respect to the incidence angle. They show the 

potential of using this parameter to classify 3D point clouds in preference to the 

backscatter cross-section parameter in FWF systems. However, the main weaknesses in 

the proposed routine of Alexander et al. (2010) is ignoring the consideration of the 

incidence angle effect firstly when estimating the calibration constant for the whole 

campaign and later when estimating the backscatter parameters for individual echoes.  

By aiming to overcome the weaknesses in the previously introduced radiometric 

calibration approaches, Lehner and Briese (2010) incorporated the incidence angle 

effect in the radiometric calibration workflow proposed by Briese et al. (2008). 

Consequently, and by building on the findings of Alexander et al. (2010), they used the 

derived incidence angle estimations from their approach to deliver the normalised 

backscatter coefficient parameter with respect to incidence angle for individual echoes. 

Later, they investigated various backscatter parameters to compare differences in the 

backscatter signals between overlapping flightlines and accessing the calibration 

accuracy. Figure 2.12 shows these outcomes before and after calibration over a selected 

interest area. However, although, the presented routine is highly valid over planar 

features, their findings concluded that results are uncertain over natural features with 

challenging surface trends. 
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Figure 2.12. Difference maps of the backscatter signals from two overlapping 

flightlines before and after radiometric calibration: (a) Orthophoto (b) original 

amplitude (c) backscatter cross-section (d) backscatter coefficient (e) normalised 

backscatter cross-section with respect to incidence angle (f) normalised backscatter 

coefficient with respect to incidence angle (Lehner and Briese, 2010). 
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2.6 SEGMENTATION OF LASER SCANNING DATA 

Segmentation is the process of partitioning a given data set into meaningful subset 

segments (Schiewe, 2002; Hofmann et al., 2002; Melzer, 2007). These segments should 

be geospatially connected and related to objects with similar attributes, such as planes, 

cylinders, or spherical surfaces, defining features of interest (Rabbani, 2006; Mucke, 

2008). The majority of feature extraction methods are often initialised through a 

segmentation or clustering process (Vosselman and Maas, 2010).  

The term segmentation is often mixed with clustering in computer vision and image 

analysis. Clustering primarily operates in feature space by grouping points with similar 

characteristics but not necessary belonging to same object. In contrast, segmentation 

works in object space where the segmented points are constrained to represent 

individual objects (Sithole, 2005). Because of similarity between both techniques, many 

segmentation approaches adapt ideas from clustering methods and vice versa.  

Numerous segmentation approaches have been developed for laser scanning data for a 

diversity of applications, such as feature extraction and modelling. These methods differ 

in terms of the selected segmentation criterion (the similarity measure between points), 

the segmentation function, and the algorithm developed to group points (Vanco, 2002; 

Rutzinger et al., 2008a; Vosselman and Maas, 2010). Hough transform and random 

sample consensus (RANSAC) are the most widely-applied segmentation algorithms, 

whereas surface growing and scanline segmentation are particularly the popular 

segmentation strategies in computer vision (Vosselman and Maas, 2010). These 

approaches will be discussed in detail in the following sections for various applications. 

These techniques are either based purely on geometric information or additionally 

integrate laser intensity data. However, there are some recent studies that investigated 

the potential of FWF additional information and have shown potential when integrating 

this information into the available solutions.  
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2.6.1 Segmentation Algorithms 

2.6.1.1 Hough Transform  

The Hough transform is a popular fitting technique to identify points of similar 

properties in order to describe shapes or surfaces with certain characteristics (Hough, 

1962). It is commonly used for feature detection and extraction applications by 

segmenting similar points following a voting scheme procedure. This enables the 

identification of meaningful clusters from the unstructured point cloud, such as 

segmenting a house roof data into multiple facets (Liu et al., 2009). The Hough 

transform was originally invented to detect lines in 2D space and later extended to 

detect complex features in 3D space mainly for segmentation and clustering analysis 

(Vosselman and Maas, 2010).  

The technique in 2D space is based on defining the candidate points with a constant 

distance and declination parameters from the defined origin (Figure 2.13), by trying to 

fit lines passing through these points to represent these parameters (Eqn. 2.17). In order 

to detect a line passing through points in object space, the method maps all points to the 

lines in a parameter space and then determine line function parameters based on the 

high number of lines passed through the defined point (Hough, 1962). Points those 

defined the same line will deliver the same parameters within a pre-defined threshold 

value. These points are identified as points of similar attributes in order to be grouped 

later into individual segments. To deliver accurate line parameters in object space, least 

squares fitting is usually applied to improve the final results. However, the size of the 

defined neighbourhood system is correlated to the accuracy of the final results which 

are severely affected by data noise in the case of laser point clouds (Vosselman and 

Maas, 2010).  

 

                                                                                                      Eqn. 2-17 

 

Where: 

  is the orthogonal distance between the line and the origin 

  is the line orientation with respect to the origin coordinate system 
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Figure 2.13. The Hough transform algorithm in 2D space. 

 

This concept was extended to detect planes in 3D space by aiming to deliver plane 

parameters instead of line parameters (Eqn. 2.18). These concepts are described in 

further detail by Vosselman (1999) and Maas and Vosselman (1999) using real point 

cloud datasets.  

 

                                                                                  Eqn. 2-18 

 

Where      and   are the plane parameters. 

Using the extended version of the Hough transform in 3D space, Vosselman and 

Dijkman (2001) present an automatic technique to detect planar features for building 

model reconstruction applications. They described two strategies to improve the 

parameters of the detected objects. The first strategy is reliant on detecting intersection 

lines and height differences between segmented planar surfaces. The second approach 

enables detection of a larger number of building details through the adoption of a coarse 

Y 
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initial neighbourhood system in first place, thus delivering more useful results. The 

parameters delivered from both models are refined through least squares adjustment. 

Vosselman and Dijkman (2001) claim that using a dense dataset can improve the results 

and allow detection of minor features. However, in some cases, the latter method 

demonstrated the extraction of incorrect and non-existent details. 

Later, Lee et al. (2005) presented a Hough-based algorithm to extract linear features 

from ALS data in order to detect discrepancies between overlapping flightlines. To 

extract these features they segmented the point clouds into planar segments based on the 

similarity in the normal distance between the defined plane and each tested point.  

Subsequently, Tovari and Pfeifer (2005) introduced a segmentation based classification 

method to separate ground from non-ground points for DTM derivations. The method 

relies on normal vector estimation following Hough definition. It presumes that points 

from n nearest neighbours should show similarity in the normal vector within a         

pre-defined threshold. However, distance between the candidate point and the current 

point in the neighbourhood definition in addition to the distance between the adjusted 

plane and the candidate point should also be below a certain value. Points which fulfil 

these three conditions are grouped and the region is grown until no more points can be 

found to meet these criterion. The definition is affected by the three mentioned 

parameters in addition to the number of neighbours used to define individual systems. 

The eigenvalues from moment invariant approach was utilised to deliver plane 

parameters in Tovari and Pfeifer (2005) approach. Although the presented method 

proposed many parameters to be fulfilled to deliver the final solution, the results show 

promising outcomes for various feature details. However, the introduced method works 

partially in 2.5D as the ground segments were interpolated to generate a reference 

surface to act as the adjusted plane.  

A similar approach was implemented by Rutzinger et al. (2008a) which demonstrates 

convincing results with planar features. However, Sampath and Shan (2008) utilise the 

eigenvalue analysis to detect breaklines in planar surfaces and was later extended by 

Wang and Shan (2009) for building extraction applications. Dorninger and Nothegger 

(2007) present a surface fitting Hough-based algorithm within an iterative re-weighted 

least squares workflow. Although re-weighting data measurements enables improved 

handling of noisy data than the standard least squares workflow, it still sensitive to data 

density and distribution. A comprehensive data-driven automatic building extraction 
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approach was later presented by Dorninger and Pfeifer (2008) for ALS data. The 

method is based on the assumption that each planar object can be modelled from a set of 

planar surfaces. They utilised the normal vector delivered from LS fitting using a 

spherical assumption to define individual planar surfaces by taking local roughness of 

the defined system in consideration. The planar surfaces delivered from the fitting 

function are compared with the initial segments and the merging process is adopted 

upon similarity. The procedure continues to iterate until no more segments can be 

merged. Although the method shows successful results to segmenting building facets 

efficiently, it showed shortcomings in modelling small structures on house roofs such as 

chimneys.   

Although the Hough transform can reliably detect planes in point clouds, it is not 

necessary that all points in the parameter space represent one planar surface in the 

object space (Vosselman and Maas, 2010). Figure 2.14 shows an example of this 

assumption over a house roof target and highlights the differences between the 

parameter space and object space. In this particular example, the Hough transform 

considers all the points within the parameter space (the grey region) as having the same 

geometric attributes and belonging to the same surface. This is practically incorrect as 

points from multiple facets of the house roof were grouped in one single segment. 

Therefore, this assumption should not be accepted unless adjacency among points is 

well considered. To overcome the limitation of this assumption, cylindrical detection in 

Hough space has emerged. 

 

 

Figure 2.14.  Incorrect planar surface detection with the Hough transform algorithm 

(Vosselman and Dijkman, 2001). 
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Cylinders are commonplace in industrial scenes, therefore the cylindrical assumption as 

described in 2.5.2.2 is more compatible for Hough space within these kinds of objects. 

The parameter space of the cylindrical definition is defined by the cylinder radius and 

height (Rabbani and Heuvel, 2005) thus the normal vector from such systems is able to 

deliver better results in industrial scenes. Rabbani et al. (2006) applied this assumption 

to a TLS dataset of an industrial landscape to segment the unstructured point clouds into 

smooth surfaces. They used the surface normal as the only segmentation criterion to 

group the points, as this can be reliably delivered even with noise presence, which is the 

case in laser scanning data. The algorithm includes two main steps, normal vector 

estimation, and region growing strategy (Rabbani, 2006). The normal vector is 

delivered by adopting the cylindrical assumption in the Hough space where the 

neighbourhood relation among points is either defined from adopting the k-nearest 

neighbours (KNN) or fixed distance neighbours (FDN) definitions. They adopted the 

non-linear Least squares solution to solve the plane fitting problem in the parameter 

space and later used plane fitting residuals to detect surfaces of high curvature. The 

potential of using the residuals as an indicator to detect curvature was investigated. This 

was implemented by estimating the normal vectors to a sample of dataset from different 

radius cylinders and plotted against 1/r
2
 where r represent the residuals from the plane 

fitting solution. It was found that in the absence of noise the residuals are quite similar 

to 1/r
2 

however there is a shift related to the amount of noise in case of noise presence 

(Rabbani, 2006). The results of the cylindrical-based segmentation approach show 

effectiveness with these kinds of feature objects. However, in case of ALS data, the 

cylindrical definition might not be the optimal solution for the multiple land coverage 

types with various surface details.  

Exploring similar aspects in the Hough space, Filin and Pfeifer (2006) presented a 

segmentation-based clustering approach using the cylindrical definition. Point density, 

horizontal and vertical distribution, and data accuracy were taken into consideration 

when defining the neighbourhood system. Following this, surface parameters were 

delivered, represented by the normal vectors, which were utilised subsequently as the 

main segmentation criterion. In  comparison with the Rabbani and Heuvel (2005) 

approach, the Filin and Pfeifer (2006) method applied the segmentation procedure in 

reverse order as the points are firstly partitioned in the feature space, and then 

discriminated in the object space. Filin and Pfeifer's (2006) approach was compared to 

the standard triangulation method and found to successfully detect more structures, such 
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(a)                                             (b)                                           (c) 

as vertical walls, and overcome the influence of outliers to a greater extent. This method 

was extended by Nizar et al. (2006) to overcome misclassified building points and 

present an automatic approach to reconstruct buildings from ALS data.  Further, the 

adaptive cylindrical definition was utilised by Lari et al. (2011) to represent an efficient 

point cloud segmentation approach for planar surfaces. However, this time the 

coordinates of the projection origin of the best fitting plane of individual points are used 

as the only segmentation criterion to prevent ambiguity.  

 

2.6.1.2 The Random Sample consensus (RANSAC) Algorithm 

RANSAC is a general approach for robust model fitting in computer vision (Schnabel et 

al., 2007). It has been applied for various applications to model datasets with large 

numbers of gross outliers where it proves its efficiency. Figure 2.15 shows an example 

of noisy point clouds in a TLS scan of a church and highlights the performance of the 

RANSAC algorithm in tackling the presence of numerous outliers near the top of the 

towers, ultimately delivering a robust model.  

 

  

 

Figure 2.15.  Fitting planes to noisy data containing 20% outliers with RANSAC: (a) 

original point cloud (b) the generated model with random colours (c) the generated 

model coloured by shape type (Schnabel et al., 2007). 
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The method is based on adopting a minimum set of sample data required to define the 

model (e.g. three points for a plane and four points for a sphere). It delivers the model 

parameters based on a certain selected error tolerance value which should be defined 

from empirical estimates (Neidhart and Sester, 2008). The model parameters are 

delivered from a unique solution in case of the availability of the minimum number of 

points required to define the shape type (Boulaassal et al., 2007). 

However further refinements have been adopted to enhance the RANSAC model using 

least squares (Vosselman and Maas, 2010). As the data may have a high level of noise, 

in addition to the presence of outliers, the selection of the error tolerance value has a 

significant impact on the final fitted model (Boulaassal et al., 2007). A modified version 

that partially tackles this problem was presented by Torr and Zisserman (1998). 

However, the probability to differentiate between different surface types (e.g. walls, 

doors, windows, etc.) from one scene is still questionable for some extents. Vosselman 

and Maas (2010) used RANSAC to detect planes from ALS data for segmentation 

applications in an urban area and found that planes are reliably detected, in this case 

roofs and streets. However, these were mixed with erroneously detected planes in 

vegetation regions. To overcome this problem, Awwad et al. (2010) utilised the normal 

vector as an additional check with the original RANSAC algorithm to detect planes in 

an urban scene from TLS scan data. The segmentation results showed improvements 

over the original approach by successfully discriminating between parallel-graded 

planar surfaces such as stairs. However, the method still encountered problems and the 

results show failure in extracting surface edges. The main shortcomings in the standard 

RANSAC algorithm are its relative inadequacy in detecting surfaces from different data 

sources and the spurious results in some of the extracted segments which is not useful 

for users (Awwad et al., 2010). Furthermore, RANSAC was found to deliver many 

meaningless segments because of the over-segmentation behaviour, which necessitated 

further manual editing.  
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2.6.1.3 Other Approaches 

In addition to the standard segmentation approaches discussed in the previous sections, 

other approaches have been introduced through the literature and are worthy of mention 

here. One of these approaches is the mean shift based segmentation proposed by Melzer 

(2007) to segment power lines and vegetation in ALS data. Mean shift is a                    

non-parametric approach which works on the original (non-gridded) data. This 

algorithm was introduced originally by Fukunaga and Hostetler (1975) and is known to 

be an effective tool for filtering, classification, and segmentation of unstructured ALS 

data. Although the method has the advantage of being non-parametric and works 

without any probability distribution assumptions, it is restricted to certain applications 

as it is based on the assumption of “letting the data speak for themselves” which is not 

always reliable and, further, not practical. Later, Zou and Ye (2007) introduced a direct 

multi-resolution segmentation technique based on a pre-approximation of the point 

cloud’s boundary volume using a hierarchical space partitioning data structuring 

approach. The method can tackle the limitations in the mesh-based segmentation 

algorithms by using the original point cloud data as an input rather than relying on the 

topology information delivered from the mesh surface. Furthermore, the approach can 

directly process large-scale datasets into distinct features within a reasonable period of 

time.  However, shortcomings have been delivered at the edges of the segmented 

patches, which demonstrated non-smoothness between the adjacent segments. 

On the other hand, integrating additional information from other remote sensing 

systems such as photogrammetry to be exploited alongside the laser scanning geometric 

attributes has seen some investigation in segmentation applications. In this regard, Zhao 

et al. (2011) integrated spectral information from photogrammetry with the geospatial 

information from ALS data in order to enhance automatic building segmentation. The 

method delivered improved results by detecting elevation-error points during the region 

growing process by taking into account elevation, gradient, spectral, and entropy 

information from photogrammetry to identify building from non-building points. These 

findings are promising for various applications as much of this additional information 

can provide additional knowledge about surface features, which could not be extracted 

from the standard laser scanning systems. However, this method is lacking in accuracy, 

as the method adopts a triangular network which works in 2.5D rather than 3D.    
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2.6.2 Similarity Measures  

In order to identify surface features from unstructured 3D point clouds efficiently, the 

points should be modelled into functional structured shapes (Bornaz et al., 2003). These 

shapes can be delivered from segmentation process following a proper similarity 

measure to group points into distinct clusters. Using standard functions, shapes can be 

identified as lines, planes, spheres, cylinders, etc. (Barnea and Filin, 2008). Based on 

the area of study and data characteristics, the most suitable approach should be selected 

to highlight objects of interest in each dataset. In a least squares sense, to fit any surface 

to a group of given points it is required to estimate the parameters that minimise the 

sum of squares of the distances between the points and the estimated surface. These 

distances are usually defined in the orthogonal direction and aimed to be minimised as 

much as possible to deliver the optimal solution. In terms of complexity this is a       

non-linear least squares solution; however the problem could be simplified to be solved 

as an eigenvalue operation in 3D vector space. In theory and in cases of dense datasets, 

planes can efficiently define most types of complex objects, even spheres and cylinders 

which could be represented by the normal vector, as shown in Figure 2.16. However, 

robust selection of the neighbourhood definition in 3D space should be implemented 

and data noise should be considered (Filin and Pfeifer, 2006).  

 

 

 

 

 

 

 

 

Figure 2.16.  Fitting planes to 3D point cloud data using the normal vector: (a) sphere, 

cylinders, and planes (b) L-junction in industrial landscape (Rabbani, 2006). 

(a)                                                                  (b) 
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The normal vector is the most trustworthy parameter which can be reliably generated as 

a proper segmentation criterion from 3D point cloud data even in the presence of noise 

(Rabbani, 2006; Filin and Pfeifer, 2006). This is true only when the neighbourhood 

definition is selected properly. It delivers the fitting function solution by estimating the 

orthogonal distances between the points and the fitted surface which can truthfully 

define the strength of the suggested solution (Filin, 2002; Kim et al., 2007). The 

segmentation-based normal vector techniques can detect sharp edges, as well as flat or 

highly curved surfaces as shown in Figure 2.17 (Vanco, 2002; Sithole, 2005). 

 

 

 

 

 

 

 

Figure 2.17.  Visualised normal vectors of three house roofs (OPALS, 2009) 

 

The majority of the reliable segmentation approaches for feature extraction applications 

adopt the normal vector as the main criterion to detect planarity (Rabbani et al., 2006; 

Filin and Pfeifer, 2006; Rutzinger et al., 2008a; Dorninger and Pfeifer, 2008). However, 

some authors have incorporated other attributes to emphasise certain behaviours and 

avoid mis-clustering results. These include height difference and surface slopes (Filin, 

2002; Zhao et al., 2011), however these two parameters are highly sensitive to the noise 

level in the data. The majority of these methods are segmentation based classification 

approaches to improve the separation procedures between surfaces of similar 

characteristics. They are particularly useful to separate high vegetation from low 

vegetation and smooth surfaces from rough surfaces.  
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2.6.3 Segmentation Strategies 

2.6.3.1 Surface Growing 

Surface growing is the popular segmentation strategy of grouping points in the 

proximity neighbourhood system into homogeneous attribute clusters (Tovari and 

Pfeifer, 2005). This is based on similarity in the segmentation criterion earlier defined in 

object space. The method is considered as the 3D version of the well-known region 

growing technique in image processing (Vosselman and Maas, 2010; Awwad et al., 

2010). It is often utilised as a strategy to group adjacent points of similar attributes into 

small segments (Zhan et al., 2008). These segments are grown gradually by adding new 

nearby points to the seed surface in order to represent meaningful surfaces in the object 

space (Jochem et al., 2012). The method assumes that in the object space a part of the 

dataset which is defined within a specific distance are related to the same surface 

(Vosselman et al., 2004).  

The method commences by selecting seed points based on either certain conditions or 

random selection (Pu and Vosselman, 2006; Pu, 2008). Then similarity between points 

is assessed through checking the attributes of the surrounding neighbour points 

(Roggero, 2002). Later, seed points are grown to be seed surfaces and the similarity 

checking is performed then with the new estimated attributes of the seed surface such as 

the normal vector. When a point is added to the seed surface the plane parameters are    

re-estimated by delivering a new normal vector to improve the accuracy of the 

implemented technique. The growing of the surfaces is based on fulfilling one or more 

of the following conditions which could be delivered from the normal vector (Awwad et 

al., 2010): 

1. Proximity of points. 

2. Surface planarity. 

3. Surface roughness. 

Using normal vector similarity to group points into segments is quite interesting as this 

criteria does not necessary search for only planarity (Tovari and Pfeifer, 2005). 

However, the robustness of the generated segments is related to several considerations 

such as data noise and density as discussed in 2.6.2. The surface growing technique 

suffers from sensitivity to noise, which is particularly the case where seed points are 

wrongly selected. Thus, the error could significantly grow with erroneous seed points 
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selection in the presence of noisy data. However, this can be overcome by adopting a 

reliable selection of seed points based on robust criterion such as normal vectors and 

their residuals (Rabbani et al., 2006). The technique is considered to be reliable and 

truthful if the noise is considered carefully and adequately during the process. 

Otherwise, alternative approaches such as the clustering features based model or the 

fitting model could be adopted as a segmentation strategy instead. However, both 

approaches have serious shortcomings in dealing with noise which is recognised as a 

common problem in the available segmentation strategies (Awwad et al., 2010).   

 

2.6.3.2 Scanline 

Scanline segmentation is an aggregation technique to segment the 3D point cloud on 

scan row basis into multiple entities each of similar attribute contents (Han et al., 2007; 

Vosselman and Maas, 2010). The method is known as range image segmentation in 

computer vision literature (Jiang and Bunke, 1994) which has been extended to work in 

3D. Each scan line (row of 3D points) is split into small parallel segments of similar 

attributes and then merged to the adjacent linear segments to define a certain object 

(Sithole and Vosselman, 2003). However, Sithole and Vosselman (2005) introduce a 

new definition to the scan line technique by segmenting scan line segments with 

multiple orientations (i.e. not parallel). Specifically, the method slices points in different 

directions in order to deliver multiple profiles. A weighted minimum spanning tree is 

then generated for individual profiles to facilitate the workflow (Sithole and Vosselman, 

2005). Following this, all edges with a weight exceeding a pre-defined threshold value 

should be withdrawn from the overlaying profile solution. Later, these profiles are 

segmented together to deliver line segments followed by a surface growing procedure. 

Figure 2.18 shows an example of the developed scanline segmentation definition by 

segmenting the point clouds of a cube object and the background beneath into 

continuous segments in different directions. These procedures are based on similarity 

criteria and follow the surface growing technique (Vosselman et al., 2004). The later 

definition of scanline technique can ensure better results than those from the standard 

scanline definition; however, both techniques are better designed to deal with structured 

data, which is not always the case with ALS data. 
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Figure 2.18.  Scanline segmentation technique: (a) 3D model (b)-(d) line segments in 

parallel, left diagonal, and right diagonal directions (e) overlaying segments from all 

directions (Sithole and Vosselman, 2005). 

 

 

2.6.4 Segmentation Challenges 

The key for successful and effective point cloud segmentation can be described as 

follows (Kim et al., 2007): 

1. Adoption of a meaningful neighbourhood definition to extract the volumetric 

system in 3D space. 

2. Definition of reliable segmentation algorithm and criteria to detect similarity 

among the point cloud. 

3. Definition of a proper aggregation strategy, which better defines data 

characteristics and fits with the study aims. 

However weaknesses of the available approaches can be summarised as follows 

(Rabbani, 2006): 

1. The majority of available approaches are designed to work only with simple 

planar features and face shortcomings to define complex features. 

2. Most of these approaches fail to detect minor features and handling curved 

objects is unsatisfactory. 

3. Most of these approaches work in 2.5D and are not compatible with 3D data. 

4. Many of these approaches implement solutions which are dependent on a large 

number of parameters. 

Further, most of the available approaches discard noise presence and do not account for 

variation in data density. Additionally, existing approaches are targeted at man-made 

           (a)                           (b)                        (c)                       (d)                       (e)  
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objects and are not adaptable to natural features. However, the common  of all available 

approaches can be described as a failure to distinguish between different features of 

similar geometric attributes such as asphalt and bricks ground or bare ground and mown 

grass.   

 

2.6.5 Fusion of the Additional Information from ALS Systems 

The physical information from FWF-ALS offers tremendous potential to better identify 

surface features by delivering information about surface roughness and reflectivity 

(Doneus and Briese, 2006; Höfle et al., 2009; Heinzel and Koch, 2010; Mucke et al., 

2010b). Therefore integrating this information in segmentation and classification 

routines alongside standard geometric information can enhance the results and provide a 

stronger solution than relying on the geometric information alone  (Reitberger et al., 

2009b; Song et al., 2002; Höfle and Hollaus, 2010; Mallet et al., 2011). 

Before discussing the potential of FWF, it is important to review some of the available 

segmentation techniques, which integrate ALS, intensity signals to enhance final results. 

In this respect, Höfle (2007) evaluated the integration of intensity values to improve 

results for specific applications. Particularly, a developed 3D object segmentation 

workflow was presented to segment glacier surfaces using the geometric and intensity 

information of the ALS point cloud. It was demonstrated that exploiting the intensity 

signals jointly with the geometry of ALS data is more sufficient for segmenting and 

classifying features than using individual information source alone. Later, Xudong et al. 

(2008) presented a building segmentation workflow based on a filtering algorithm 

which uses range and intensity information from ALS points. The approach is based on 

data fusion theory by integrating spectral and geometric information from laser 

scanning data to improve feature extraction and modelling techniques. The results 

proved the feasibility of the presented approach in urban areas. On the other hand, it 

was demonstrated by Höfle et al. (2009) that accurate water surface modelling can be 

achieved from ALS data when combining intensity with standard geometric information. 

A novel automatic technique, combining a segmentation and classification model to 

define water areas and boundaries is presented. The technique relies on the corrected 

intensity signals to establish a basis for a successful water area identification (Höfle et 

al., 2009). 
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In the same respect, FWF has also been discussed in the literature and assessed to 

investigate the potential of the additional information (e.g. echo width and amplitude) to 

improve segmentation algorithms. The majority of the literature which utilises FWF for 

segmentation were developed to segment and extract tree regions (Rutzinger et al., 

2008b, Neuenschwander et al., 2009; Reitberger et al., 2009b). One of the pioneer 

studies in this instance is the approach presented by Gross et al. (2007). In this study, 

the eigenvalues delivered from the covariance matrix (refer to Section 2.5.2.2) for a 

spherical neighbourhood volumetric system were considered to describe features of 

interest. ALS intensity values have integrated as a weighting function in the moment 

definition to deliver the eigenvalues, demonstrating potential by improving 

segmentation results. Only data with low point density was included in their 

investigations, and therefore a large radius was utilised to define the neighbourhood 

environment for optimal feature representation. This leads to loss in the representation 

of walls and false detection of trees. As an alternative, this approach was extended to 

include the cylindrical neighbourhood definition to overcome these shortcomings. This 

showed that the values of detection of the surface features are influenced by the 

modifications of the parameters of the sigmoid function (a function defines surface 

planarity, intensity, and variance), refer to Gross et al. (2007) for further details. 

However, it was claimed that FWF post-processing can deliver further information 

which was expected to lead for better object identification and more precise 

segmentation outcomes. Gross et al. (2007) also demonstrated that the spherical 

definition can better define planes, edges, and corners than the cylindrical definition. In 

contrast, Rutzinger et al. (2008b) relied on the echo width from FWF to define the 

roughness criterion in the surface growing algorithm to segment vegetation. Significant 

improvements in separating tall vegetation from non-vegetation echoes which have high 

echo width values have been delivered in urban areas. However, it was found that echo 

amplitude is of major significance in identifying surface features in addition to the echo 

width. Similar findings have been presented by Neuenschwander et al. (2009) to 

highlight the potential of the physical information from FWF to define the structural 

differences in land cover features. On the other hand, Reitberger et al. (2009b) present a 

novel routine to segment single trees using a FWF-ALS dataset. The normalised cut 

segmentation approach (presented earlier by Shi and Malik (2000) for image 

segmentation) was adopted to define single trees and tackle shortcomings in the stem 

detection approaches. The introduced method exploited FWF intensity and echo width 
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parameters alongside the coordinates of the detected voxels to identify trees. It was 

concluded that the modified approach can significantly improve the tree detection rate 

results.  

FWF additional information was also integrated alongside the geometric information to 

improve classification results in urban areas. This was demonstrated by Alexander, et al 

(2010) by making use of the backscatter coefficient as an attribute to separate classes 

following a decision tree classifier. The study has demonstrated the advantages of the 

FWF laser data over the discrete return data to improve classification methodologies.  

 

2.7 SUMMARY 

Chapter Two has disscussed the workflow of the FWF-ALS data processing and 

analysis to enhance automatic segmentation routines. The first phase of the chapter 

considered data processing and management by revewing post processing techniques 

and highlighted available strategies to handle massive laser scanning datasets. The 

second part of the chapter reviewed the available radiometric calibration strategies to 

correct the additional information from FWF. This was acheived through reference to 

the shortcomings in the standard routines to provide comprehensive results. Thereafter, 

a review was presented regarding the available 3D object segmentation techniques of 

ALS data where the strengths and weaknesses of these methods were addressed. This 

included the current geometric-based approaches as well as discussing the potential of 

integrating the physical observables from FWF. The following outcomes can be 

highlighted as a result of the literature reviewed in this chapter: 

 It was shown that in order to achieve optimal improvements in range resolution and 

accuracy of the FWF-ALS data, it is necessary to account for the overlapping and 

weak echoes in the complex convoluted waveforms. Therefore, it is required to 

adopt a robust post-processing technique to compensate information loss delivered 

from standard algorithms which is capable to deliver more potential representation 

of land cover features. 

 It is required to calibrate the backscattered signal from FWF to increase the benefits 

of the collected information for further analysis. It was shown that the weaknesses 

of existing approaches relate to their failure to include all the variables affecting the 

received energy, and shortcomings in the methods utilised to derive individual 
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variables. It was shown from the literature that the radar equation is the optimal 

radiometric calibration model for ALS because it describes all the parameters that 

affect the received laser power.   

 With respect to 3D object segmentation, it was shown from the literature that the 

normal vector is the most trustworthy parameter for reliable segmentation of the 3D 

point cloud. However, a reliable definition of the neighbourhood volumetric 

environment should be implemented to achieve optimal results. Surface growing 

was found to be a worthy reliable segmentation strategy provided noise is 

adequately considered during the process.  

 Potential was shown to utilise the physical information from FWF to better identify 

features and thus improve segmentation and classification techniques.  
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CHAPTER 

3 

3D OBJECT SEGMENTATION OF FWF-ALS DATA 

 

 

 

3.1 INTRODUCTION 

FWF-ALS data has shown potential for enhancing segmentation and classification 

approaches through the additional information it can provide (Rutzinger et al., 2008; 

Reitberger J. et al., 2009). Investigation of individual FWF echoes can significantly 

enhance the identification of ground features based on the geometric and physical 

information generated through post processing (Mallet et al., 2008; Coren and Sterzai, 

2006). However, this additional information is unable to directly provide a valid 

physical representation of surface features due to many variables affecting the 

backscattered energy during travel between the sensor and the target (Vain et al., 2010). 

These include sensor properties, flying height and target characteristics (Coren and 

Sterzai, 2006; Hopkinson, 2007). Effectively, this delivers a mis-match between signals 

from overlapping flightlines. Therefore direct use of this information is not 

recommended without the adoption of a comprehensive radiometric calibration strategy 

that accounts for all these effects. 

Dealing with FWF raw data is more challenging than the standard 3D point clouds, and 

post processing of FWF data is a time consuming procedure. Although commercial 

software can effectively speed up the process, the pulse detection methods and their 

accuracy is considered to be “black-box” for end users. Therefore the development of an 

effective processing strategy with high accuracy considerations is highly desirable for a 

range of downstream applications. A new processing strategy using grid computing has 

been proposed and implemented in this research and has shown to be effective in 

managing dense datasets (Abed and McGough, 2010). The output delivers geometric 
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information, echo amplitude and width for individual echoes, as well as the total 

number of echoes for each pulse and the echo number (Lin et al., 2008). However, 

converting echo amplitude and width into reflectivity measures for subsequent 

integration in a segmentation technique, needs more advanced consideration of factors 

such as surface orientation. Therefore, echo amplitude normalisation as a function of the 

incidence angle effect has been applied initially. This is implemented based on the 

development of a novel approach for rigorous estimation of the surface normal vector 

for individual echoes (Abed et al., 2010). The new approach, termed the Robust Surface 

Normal (RSN) method, has proved to be effective in normalising FWF amplitude values 

and providing more comprehensive physical information for further calibration 

applications. In order to fully utilise FWF additional information and to better describe 

land cover features, a more comprehensive parameter that defines all target 

characteristics is required. This research utilises the normalised backscatter parameters, 

as proposed by Wagner (2010), where these parameters are normalised with respect to 

the incidence angle (Abed et al., 2011). Following this, the calibrated additional 

information has been integrated with the standard geometric information to develop a 

new segmentation routine for various applications. 

The first part of this chapter (Section 3.2) describes the study sites and datasets used in 

this research. The second part discusses the segmentation workflow following the 

simplified outline presented in Figure 3.1. The developed FWF-ALS data processing 

strategy is discussed in Section 3.3. Next, the development of the RSN method for echo 

amplitude normalisation is presented in 3.4. Section 3.5 discusses the practical 

radiometric calibration approach using portable reference targets. Finally, the developed 

3D object segmentation technique, utilising FWF information, is introduced in Section 

3.6. The last part of the chapter (Section 3.7) focuses on the implementation and testing 

of the methodology followed by a summary of the main outcomes. 
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Figure 3.1. The developed 3D object segmentation workflow for FWF-ALS data. 

 

 

3.2 STUDY SITES AND DATASETS 

Two study sites were investigated and utilised to develop the methodology in this 

research. The first site, located on the south coast of England, includes an urban area 

over Bournemouth city centre, with additional data acquired at a rural site (Hurn) 

located to the north-east of the city and composed of natural terrain cover with various 

landforms. The second site is located in the south-west of England, within the city of 

Bristol. The site comprises urban areas to the north-west of Bristol city centre and 

alongside the River Avon. Figures 3.2 and 3.3 show the extents (red lines) of the 

Bournemouth and Bristol study sites respectively, together with their flight lines marked 

in grey lines. 
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Figure 3.2. Bournemouth study site, with red blocks representing the ground coverage. 

Urban area to the south-west and rural area to the north-east. 

 

 

© Crown Copyright/database right 2011. An Ordnance Survey/EDINA supplied service. FOR EDUCATION USE ONLY. 
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Figure 3.3. Bristol study site, with red block representing the ground coverage. 

 

 

 

© Crown Copyright/database right 2011. An Ordnance Survey/EDINA supplied service. FOR EDUCATION USE ONLY. 
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Small-footprint FWF-ALS datasets for both sites were captured with a 1550 nm 

wavelength Riegl LMS-Q560 scanner. The technical specifications of this system are 

described in the Table 3.1.  

 

 

Table 3.1. Technical specifications of Riegl LMS-Q560 FWF-ALS system 

(Riegl, 2009). 

 

 

 

 

 

 

 

 

 

Laser wavelength                                                        1.5 μm 

Laser beam divergence                                           ≤ 0.5 mrad 

Scanning mechanism                                    rotating polygon mirror 

Scan pattern                                                      parallel scan lines 

Scan angle range                                ± 22.5° = 45° total (± 30° = 60° total) 

Scan speed                                                         10-160 lines/sec 

Angle measurement resolution                                0.001° 

Laser pulse repetition rate                   up to 120 kHz @ 45° scan angle 

Footprint size                                                       0.5 m @ 1 km 

Pulse width at half maximum                                     4 ns 

Minimum range                                                           30 m 

Intensity measurements      16 bit intensity information is provided for each echo signals 
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The Bournemouth dataset is composed of nineteen flightlines with an average flying 

height of 350 m and was collected from a helicopter platform in May 2008. The Bristol 

dataset was captured during August 2006 from 1000 m flying height using a fixed wing 

aircraft and is composed of nine flightlines. The Bournemouth dataset offers a higher 

point density than the Bristol dataset, with more than 15 points/m
2
 and a 0.18 m 

footprint diameter size compared to 0.5-0.8 points/m
2 

and 0.47 m nominal footprint in 

the case of Bristol. The swath width and scan angle of the Bournemouth dataset is   

~430 m and ±30° respectively. In contrast, the Bristol dataset has a wider swath width 

of ~780 m and narrower scan angle of ±22.5°. Both datasets were directly                  

geo-referenced through an on-board GNSS-IMU system. The Bournemouth dataset has 

been assessed as having an average RMS accuracy of 0.09 m in the urban area and   

0.12 m in the rural area, whilst the RMS of the Bristol dataset is averaged to 0.08 m 

(refer to Lin, 2009). The datasets, together with the trajectory information and 

orthophoto coverage, were provided by Ordnance Survey, Great Britain’s national 

mapping agency. 

In the case of Bournemouth, nine flightlines (1-9) were captured for the rural site at 

Hurn while ten flightlines (10-19) cover the urban site. Figure 3.4 shows the flightline 

coverage, with each flightline illustrated through a different colour. This highlights the 

loss of data over the urban site, particularly in flightlines 16 and 17 where poor quality 

data and problematic raw files (which failed to be read during the processing stage) 

were delivered. This was due to inclement weather conditions at the time of the survey, 

with rain and cloud adversely affecting data quality. Consequently, only 15 flightlines 

(1-15) have been processed to test and validate the research methodology. The last two 

flightlines (18 and 19) were excluded as they primarily covered the sea and shorelines 

and this was beyond the main focus of this research. 
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Figure 3.4. Bournemouth flightlines coverage. 

 

 

As for the Bristol campaign, the dataset was collected from eight flightlines (1-5 are in 

the same direction and 6-8 are cross strips), as shown in Figure 3.5. All flightlines were 

processed successfully and no data quality problems where encountered.  
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Figure 3.5. Bristol flightlines coverage. 

 

 

3.3 FWF DATA POST PROCESSING USING GRID COMPUTING 

Motivated by overcoming limitations in available post processing techniques, RGD 

method was selected as the optimal pulse detection algorithm to post process FWF-ALS 

data in this research (refer to Section 2.3). For detailed information about the 

implemented routine in terms of assumptions, parameters, and thresholds adopted for 

the Bournemouth and the Bristol datasets, refer to Lin (2009). 

Due to processing complexity, which stems from large datasets and the substantial 

number of echoes that the Rigorous Gaussian pulse Detection (RGD) method can detect 
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(refer to Section 2.3 for details), an effective processing strategy was developed using a 

grid computing technique. The new routine relies on high-throughput computing 

utilizing the Newcastle University PC network and taking advantage of Matlab 

functionality provided through the Matlab Distributed Computing Server (Abed and 

McGough, 2010). Grid computing provides the opportunity to run large numbers of 

independent jobs concurrently (McGough et al., 2010; Guan and Wu, 2010). This 

technique can be implemented through utilising the intelligent processing Condor 

project (Condor, 1988; Litzkow et al., 1988).  

Condor provides a powerful job invocation environment which is capable of 

successfully executing large sets of parameter sweep jobs. Parameter sweep operations 

relate to the execution of many similar jobs, which are run by changing only the input 

parameters. Therefore, adopting a Condor-based approach was essential in order to 

feasibly process the datasets in this research. Condor provides the ability to perform 

checkpointing and migration of executions on remote computers where inputs and 

outputs from a user program are staged back to the submitting computer. Checkpointing 

is an intelligent application which is often used in grid computing to save intermediate 

data on a reliable storage for a period of time during long term processing. This 

technique is basically used to recover the run in case of job failure rather than restart the 

application from the beginning (Blythe et al., 2003). This can effectively save 

computing time and provide more elastic processing workflow in cases of complicating 

computation and large datasets. However, this requires the user to compile his/her own 

code alongside the Condor libraries which run under a UNIX based operating system. 

This is something which is not always possible - such as when using a commercial 

package like Matlab. Therefore, it would be desirable to provide some equivalent 

functionality to checkpointing, to help reduce failed execution time in Condor.  

For effective run time reduction, the execution routine implemented within Condor in 

this research is based on two main aspects. Firstly, the data can be used many times as 

soon as it is staged to the Condor computer, where data staging is a managing process 

between the submitting and the remote computers for efficient grid deployment (Elwasif 

et al., 2001). Secondly, data generated on the Condor computer can be staged back to 

the submitting computer as soon as possible. That means the routine has separated the 

data staging part of the Condor job submission from the job deployment phase and 

provides a mechanism for returning data to the user while the code is still running on 
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the remote computer. The user is required to provide new logic in the form of how to 

process the returned data and how to deal with incomplete returns when the job is 

evicted before complete execution.  

The application that is used within the Condor system to run the data is packaged into a 

compressed archive to facilitate transfer files and reduce time needed for submission. 

The Condor cluster at Newcastle is composed predominantly of ~1100 Windows 

computers (~3000 CPUs in total), thus the scripts are written as Windows Batch files. 

Therefore, these files are converted to UNIX shell scripts to be compatible with the 

Condor library’s operating system. The 7zip archive format (see Condor, 1988 for 

details) is used for data compression as this was already deployed across the Newcastle 

Windows clusters. As the clusters work under the Windows operating system, the server 

then starts to submit Condor jobs containing archive and Java client to the cluster, as 

Java Script code is written into an HTML page and can be read with any browser 

regardless the computer operating system (Lindholm and Yellin, 1999). To prevent 

excessive load on the server, the number of jobs that can be launched at any one time 

and the frequency at which these are launched is limited. As each job starts to request 

sub-jobs from the server, the server can deploy new jobs into Condor until the           

pre-defined limit is reached.  

Following this, the Java client can request the next piece of work from the server side. 

As the link between data transfer and execution has now broken, and the data has 

already been staged to the server, requesting sub-jobs can be as small as possible with 

the client asking for further tasks without having to re-request data from the submitted 

computer or re-downloading the original dataset. The execution of the original 

application is invoked by Java which is able to send back the results of these sub-jobs to 

the server immediately on completion. The client is now able to contact the server for 

further sub-jobs and will terminate only when being instructed by the server or due to 

eviction of a Condor job from the host computer. Figure 3.6 illustrates the overall 

architecture of the developed routine. 

The Matlab code has been compiled into a binary executable using the Matlab compiler. 

This code requires a number of configuration arguments. The data file, the index file 

which defines a unique index number for individual FWF echoes, the data point within 

this file to process, the path where to write the output and index data for this output file. 

All of these parameters will remain the same except for the data point to process. The 
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shell script is passed through this index before invoking the Matlab executable. The 

code written for the client takes the output file and the index entry for this output file 

and returns them after successful execution. 

 

 

 

Figure 3.6. The general architecture of the developed Condor-based FWF-ALS data 

post processing.  

 

 

The presented technique essentially reverses the normal Condor push job model 

(sending successive jobs without any interaction with the client after submission) into a 

client based pull model (an efficient interaction between the client and the server 

computers controlled by the client). This is particularly useful in situations where the 

user has large datasets which require significant time to distribute to worker nodes, 

allowing nodes which already have the data to keep on requesting sub-jobs until either 

evicted or all sub-jobs are completed. The developed approach was used to process both 

FWF-ALS datasets (Bournemouth 2008 and Bristol 2006). In the Bournemouth dataset, 

only 15 flightlines out of 19 were processed due to the reasons explained in Section 3.2. 

In contrast, all eight flightlines from the Bristol dataset were successfully processed by 

the developed routine.  
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The introduced technique was capable of reducing run time by 100-300 % depending on 

dataset density and submission configurations, as it lends itself best to programs where 

a large data set is used repeatedly, which means that a large number of jobs can run 

concurrently on Condor.  

 

 

3.4 FWF DATA NORMALISATION USING ROBUST SURFACE NORMAL 

ESTIMATION  

Incidence angle is a function of illumination direction from the sensor to the target and 

the surface normal vector associated with the point. Figure 3.7 illustrates the perfect 

case when the terrain surface is completely flat, where N is the normal vector, R is the 

range between the sensor and the target, α is the incidence angle, and Ai is the area 

illuminated by the laser beam (refer to Section 2.5.2 for details). In this research, the 

FWF echo amplitude signals have been normalised as a function of the incidence angle 

effect. The standard Lambertian reflection model has been adopted to normalise the 

signals.  

 

 

Figure 3.7.  Incidence angle definition as a function of illumination direction between 

the sensor and target, and the normal vector (N).  
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3.4.1 Normal Vector Estimation using the RSN Method  

Since a minimal size of neighbourhood should be maintained to accurately estimate 

surface normal (Filin and Pfeifer, 2005), a novel method that uses a limited number of 

points to define the normal vector of individual echoes has been developed. This new 

approach, termed the Robust Surface Normal (RSN) estimation method, is based on the 

k-nearest neighbours algorithm. It defines the 3D spherical volume by including only 

the three nearest Euclidian neighbouring points to the point in question. The            

well-known theory of 3D moment invariants has been adopted to estimate the normal 

vector (refer to Section 2.5.2.2). For the sake of simplicity, the moment order is 

restricted to i+j+k <= 2 in this research. The method works on a flightline basis, so the 

three nearest neighbours are acquired from a single flightline, and then the procedure is 

repeated separately for additional flightlines. As it cannot be assumed that natural 

terrain targets are composed of homogeneous material coverage, signal echo amplitude 

has been applied as a weighting function to individual echoes in the 3D moments 

definition, motivated by the findings of Jutzi et al.  (2005).  

With the output symmetric covariance matrix generated for each echo (refer to Section 

2.5.2.2), the eigenvector will be determined based on the smallest eigenvalue computed 

in the defined 3D volume. This eigenvector represents the required normal for each 

point in question if, and only if, the defined spherical volume is comprised of those 

points belonging to the same plane. In reality, this assumption may not always be valid 

due to the varying distribution of neighbourhood points. It is therefore necessary to 

validate the computed normal. Although a planarity check (e.g. West et al., 2004) could 

discard points from other planes and deliver more reliable normal vector estimations, 

localised roughness trends are still hard to overcome and may be erroneously considered 

as forming a single plane. Therefore, a simple assumption based on the vector dot 

product in 3D space is adopted.  

The dot product between two perpendicular vectors is equal to zero in Euclidian 

geometry. In each defined 3D spherical volume it is necessary to prove the vector V 

between the point in question (P) and the centre of gravity (C) which was estimated 

from the three neighbourhood points plus P itself, is perpendicular to the normal vector 

N (Figure 3.8).  
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Figure 3.8. The geometric relationship between point P and C (COG) in Euclidean 

geometry.  

 

 

 

In Figure 3.8, S represents the 3D neighbourhood domain of point P, F represents the 

generated plane from point C and the true normal vector N. N’ represents the estimated 

normal vector, V is the vector between C and P, θ describes the angle between vectors 

V and N’, and ϕ defines the uncertainty in the normal vector estimation due to noise 

effects in the ALS points, as explained below in relation to Figure 3.9. 

In perfect conditions and when both points are belonging to the same plane, θ should be 

equal to 90° and ϕ equal to 0°. Therefore for validation purposes, a check is performed 

to determine how θ deviates from the perpendicular condition (by means of ϕ = abs 

[90°- θ]), with the definition rejected where ϕ exceeds a predefined threshold.  

Figure 3.9 describes the threshold determination of ϕ based on the theoretical vertical 

accuracy (m_Z) of point C and the horizontal distance (D) between point C and the 

theoretical point of interest P in the neighbourhood system. The angle ϕ represents the 

uncertainty level in the estimated normal and is dependent on the values of D and m_Z. 

In this case, the distance, D, is derived from the spatial resolution of the dataset. It is 

therefore essential to check the point density after FWF post processing and consider 

the accuracy in the laser data for optimal estimation of D and m_Z respectively. This 

enables the determination of a reasonable threshold value which is then used to 
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determine whether to accept or reject the definition of the 3D volume, following        

Eqn. 3.1. 

 

       (
   

 
)                                                                                                   Eqn. 3-1 

 

 

Figure 3.9. Threshold determination of ϕ.    

 

 

 

Heuristic investigations based on K-d tree search results (refer to Section 2.5.2.3) were 

made following FWF post processing. This determined that the mean Euclidian distance 

from the third farthest neighbouring point to point P approximates to 0.3 m and 1.5 m 

for the Bournemouth and Bristol datasets respectively. As point C would lie somewhere 

between P and the third farthest neighbouring point, these distances will be considered 

as upper limits for D in Eqn. 3.1, as specified for each dataset respectively. 

The vertical accuracy of each individual point cloud is a function of both range and scan 

angle accuracies (Figure 3.10), where β is the scan angle. Refer to Section 2.5.2.1 to 

avoid confusion between the scan angle and the incidence angle. The laser range 

accuracy and scan angle resolution for the Riegl LMS-Q560 system are quoted as 20 

mm at 1Ϭ (60 mm at 3 Ϭ), and 0.001° respectively (Riegl, 2009). Therefore, error 

propagation theory is applied (Eqn. 3-2 and 3-3) using these values, delivering a value 

of 60 mm (3Ϭ) for the vertical accuracy (mo) of a single point in the system which was 

found, coincidentally, to be identical to the range precision. Note that the super script (Ϭ) 
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has been used throughout the thesis to denote sigma (standard deviation) to avoid 

confusion with the backscatter cross-section parameter which denoted by (σ). 

 

 

Figure 3.10. The Derivation of the vertical accuracy (mo) of a single laser point as a 

function of both range (R) and scan angle (β) accuracies. 

 

 

 

 

                                                                                                                  Eqn. 3-2 
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                                                                                                                 Eqn. 3-3 

 

As point C is estimated from the three neighbourhood points plus point P itself, the 

combined accuracy of these points should be considered in order to estimate the level of 

uncertainty in the geometric position of point C. A mathematical derivation of the 

relationship between the estimated surface height due to this positional uncertainty 

effect and the number of laser points used to generate the surface is presented by Filin 

and Pfeifer (2005) and described in Eqn. 3.4. 
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√ 
                                                                                                          Eqn. 3-4 

 

Where mo is the accuracy of laser points, and n the number of points used to define the 

system. 

This formula assumes the explicit plane model z = f(x,y) to estimate the local plane 

parameters (see Filin and Pfeifer (2005) for derivation). However, in this research the 

implicit form f(x,y,z) = 0 was performed to estimate plane parameters for individual 

points by the 3D moment definition, as points could be inverted from vertical and near 

vertical features if the form z = f(x,y) is utilised. 

Following this, Eqn. 3-4 delivers a value of ± 30 mm for m_Z, which equates to the 

upper level of uncertainty in point C due to noise effects as illustrated in Figure 3.9. 

Consequently, following Eqn. 3-1, approximate values of ± 6° and ± 2° can be adopted 

for ϕ in the Bournemouth and Bristol datasets respectively. These values define sensible 

thresholds for accepting the 3D volume definition and applying the normal estimation 

for further processing. 

Thereafter, the angle θ between the two vectors V and N’ is computed based on the dot 

product following Eqn. 3.5 (Fraleigh and Beauregard, 1995), and an estimation of the 

deviation from the perpendicular condition (by means of ϕ) is performed for the 

individual 3D volume system. 

 

θ       
    

| ||  |
                                                                                                    Eqn. 3-5 

 

If ϕ (i.e. 90°- θ) exceeds the predefined threshold, a further check will be performed to 

compute the distance between P and C for the current definition in order to assess the 

possibility of both P and C belonging to the same XY plane but having different 

elevations. If this distance happens to be equal to zero then the system will be accepted, 

otherwise the current neighbourhood system will be rejected and a new definition will 

commence. Any one or more of the included points used to define the neighbourhood 
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system could be the cause of the rejection. Therefore, vectors are computed from each 

of the three candidate points to point C and ϕ is computed. The point that most exceeds 

the allowable predefined threshold is rejected from the system and the next nearest point 

is used as replacement to define the new neighbourhood system. Thereafter, a new 

normal estimation will commence, followed by planarity checking as previously stated.  

If the threshold is met, the normal will be verified and adopted, otherwise the procedure 

will iterate until the optimal normal value is delivered with the condition that D should 

not exceed the predefined value. If no optimal value is detected, a new assumption will 

be considered by adopting the neighbourhood system that delivers the smallest value for 

ϕ amongst all tested systems and accepting this as the best possible normal estimation 

for the point of interest. 

 

3.4.2 Incidence Angle Estimation and Echo Amplitude Normalisation 

Trajectory information was available for both datasets from the data provider. As stated 

earlier, the incidence angle is a function of the illumination direction from the sensor to 

the target and the normal vector associated with the point (Figure 3-7). Therefore, linear 

interpolation which defines the concatenation of the linear interpolated points between 

each successive trajectory records was performed. This enabled the computation of 

illumination direction between the sensor and individual ALS echoes. Thereafter, 

incidence angle estimation was undertaken between the normal estimated from the RSN 

method and the illumination direction of each individual echo following Eqn. 3-5. 

However, in this case V is defining the illumination direction between the sensor and 

individual echoes while θ delivers the incidence angle. 

Thereafter, the echo amplitude signals of the individual ALS points were normalised 

using Lambert’s Cosine Law for all selected targets in both datasets, following Eqn. 3-6. 

   
  

     α 
                                                                                                            Eqn. 3-6      

Where AN is the normalised echo amplitude signal as function of the incidence angle 

effect,  AO is the original echo amplitude signal, and α is the incidence angle. 
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3.5 RADIOMETRIC CALIBRATION ROUTINE 

The variables which affect the physical characteristics of the FWF during travel from 

the sensor to the surface target and back can effectively cause a mis-match between the 

backscatter signals delivered from overlapping flightlines. A comprehensive radiometric 

calibration strategy must be capable of robustly eliminating the effects of all these 

variables and delivering more reliable radiometric information relating to ground 

features for further downstream applications. Eliminating the discrepancies of FWF 

backscatter signals between overlapping flightlines is the primary focus of the 

radiometric calibration routine presented in this research.  

A practical and reliable radiometric calibration routine accounting for all the variables 

affecting the backscattered energy, including the essential factor of angle of incidence is 

presented herein. The routine is based on the radar equation (refer to Section 2.5.1) and 

relies on the robust incidence angle estimation using the developed RSN method 

introduced in the previous section. This includes the estimation of four different 

backscatter parameters (σ, γ, σα, γα) for individual laser echoes. The backscatter     

cross-section parameter (σ) and backscatter coefficient (γ) were firstly proposed by 

Wagner et al. (2006) and Wagner (2010) respectively. The normalised version of those 

two parameters with respect to incidence angle (σα and γα) has been discussed by 

Lehner and Briese (2010). However, no comprehensive studies focusing on these 

parameters over specific land cover types has been presented in the scientific literature 

so far. The complete workflow of the developed radiometric calibration routine 

considering all these factors is illustrated in Figure 3.11. As the incidence angle 

estimation workflow (red part) has been discussed in detail in the previous sections, the 

next few sections will only discuss the remaining parts of the flowchart illustrated in 

Figure 3.11. 
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Figure. 3.11. The flowchart of the developed radiometric calibration routine. 

 

 

3.5.1 Modelling Atmospheric Scattering  

In order to deliver a comprehensive calibrated backscatter signal, the energy loss due to 

atmospheric scattering and absorption effects during time of flight of the laser pulse 

should be considered in the calibration model (Vain et al, 2010; Briese et al, 2008; 

Hӧfle and Pfeifer, 2007). The calibration constant derived from the lidar adapted 

formulation of the radar equation comprises all unknown parameters in one ALS 

campaign, including atmospheric conditions alongside other variables affecting laser 

energy in the travel between the senser and the target. An absolute calibration routine 

aims to independently account for these effects to provide a calibrated backscatter signal 

which is free from such error sources. It is therefore required to deliver estimations of 

these effects including atmospheric scattering towards a reliable calibration constant 

value. Even if we presume the atmospheric scattering effect to be constant within a 
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certain ALS campaign, the range strongly influnces this extinction (Hӧfle and Pfeifer, 

2007). Therefore, it is highly recommended to model the atmospheric conditions and 

consider flying height dependency of       on the day of scan for optimal calibration 

outcomes, especially with high flying heights and in bad weather conditions.  

In this research the atmospheric transmittance has been estimated based on the model 

described by  Hӧfle and Pfeifer, (2007) and presented in Eqn. 3.7.  

 

                                                                                                                    Eqn. 3-7 

Where      is the atmospheric transmittance, H is the flying height in meters, and a is 

the atmospheric attenuation in dB/Km. 

In order to estimate the atmospheric transmittance, which typically increases with 

higher flying heights (Jelalian, 1992), it is necessary to first estimate the attenuation 

coefficient. As the atmospheric attenuation coefficient of the laser power is strongly 

affected by laser wavelength and visibility, attenuation modelling was undertaken using 

the model described by Kim et al. (2000) as follows: 

 

    
    

 
(

 

    
)
  

                                                                                                  Eqn. 3-8 

 

Where V is the visibility measured in km, λ is the wavelength in nm, and q is the size 

distribution of the scattering particles. 

The British Atmospheric Data Centre (BADC) provided the visibility records from the 

nearest metrological stations to both investigated study sites. The climate station details 

and the delivered visibility records on the day of the surveys are listed in Table 3.1 for 

both the Bournemouth and Bristol study sites. 
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Study Site 

 

Climate Station 

Station’s 

Latitude 

(°) 

Station’s 

Longitude 

(°) 

Station’s 

Elevation 

(m) 

 

Visibility 

(km) 

 

Bournemouth 

Bristol 

 

 

Kings Park station 

LULSGate 

 

50.734 

51.383 

 

-1.822 

-2.713 

 

27 

189 

 

2 

25 

 

Table 3.2. Atmospheric visibility records of both investigated datasets. 

 

As for the size distribution of the scattering particles, the following assumption has been 

utilised based on experimental results presented by Middleton (1952) and described in 

Eqn. 3.9. 

 

 

   〈

                                                        
                                             

        
 

                                            

〉                                                  Eqn. 3-9 

 

Once the atmospheric transmittance is delivered for individual datasets, it used to 

deliver the calibration constants to account for this effect for all laser echoes in 

subsequent datasets.    

 

3.5.2 Measurement of Reference Target Reflectivity 

In order to estimate the backscatter parameters for all echoes in both datasets, it was 

necessary to use reference targets with known reflectivity values in order to estimate the 

calibration constants (refer to Section 2.5.1 for details). These targets should be 

deployed before scanning and successive reflectivity measures should be undertaken 

throughout the scanning mission to deliver the best reflectivity estimation for these 

reference targets under the conditions experienced at the time of survey.  
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In the case of Bournemouth, 24 1 m-radius circular “photogrammetric” PVC fabric 

targets (see Figure 3.12) were distributed across the urban and rural sites as shown in 

Figure 3.13 and 3.14 respectively. The targets were set-up in the field as control targets 

for strip adjustment calibration and not particularly for radiometric calibration purposes. 

These targets were subsequently then utilized as reference targets for radiometric 

calibration in this research. 

 

 

 

 

 

 

 

 

Figure. 3.12. Reference target in Bournemouth study sites. 

 

Although successive reflectivity measures should be undertaken for the reference targets 

during data capture to guarantee the same surface conditions such as wetness, dirt, etc., 

this condition was not met in this dataset since radiometric calibration was not the 

intended function. Therefore, post-survey indoor reflectivity measurements using an 

Analytical Spectral Device (ASD) with two different fore-optics (1° and 8° FOV) and in 

two different modes (white reference and raw mode) were undertaken.  

ASD is a FieldSpec Pro spectroradiometers which is widely used in remote sensing 

applications to deliver spectral measurements such as reflectivity to the targets in the 

field. It works with a high resolution of a 350 - 2500 nm spectral range and has two 

lenses used as a fore-optic attachment to the fibre-optic cable. This helps to apply the 

measurements with different incidence angle settings using lenses of different field of 

views for better comprehensive reflectivity measurements. It delivers reliable spectral 

measurements as it offers a superior signal enhancing components, refer to NERC (2009) 

for details. Different incidence angle measurements, between 0° and 90°, were 
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performed, in order to deliver the optimal reflectivity estimations for the reference 

targets. 

The measurements were conducted in a dark room using a portable lamp mounted on a 

fixed tripod for illumination purposes. The height of the tripod was 0.54 m and the lens 

height was 0.44 m. This set-up was configured to avoid generating shadows during the 

measurements process. The measurements were undertaken successively using 1° and 8° 

optics over multiple regions of the reference target to assure homogeneity. For each lens, 

five different sets of incidence angle measurements were undertaken at 0°, 10°, 20°, 30°, 

and 40° of successive 25 measurements per angle using white reference and raw modes, 

refer to MacArthur (2007a; 2007b) for further details about measurements modes.  

The ASD delivers spectral data files in a binary format. Therefore, these files have been 

converted into ASCII files using the View Spec Pro program available for free 

download from ASD (2009). Thereafter, post processing of the recorded spectral data 

was undertaken using Excel Post Processing Template files provided by NERC (2009). 

This included comparing the recorded data with the ASD white-reference reflectivity 

(Spectralon® panel), followed by mean value computations for individual lenses to 

deliver the best absolute reflectivity estimation for the reference target from different 

incidence angle settings. Figure 3.15 shows a sample of nadir measurements with a 1° 

fore-optic. 
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 Figure. 3.13. Reference target distribution in Bournemouth urban sites. 

 

Figure. 3.14. Reference target distribution in Bournemouth rural sites. 
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Figure. 3.15. Reflectivity measurements using the Analytical Spectral Device. 

 

A total of 754 points were delivered from 22 of the 24 reference targets (as 2 of the 

reference targets had been set out above shorelines where data was not processed (refer 

to Section 3.2). These echoes have been used to estimate the calibration constant for the 

Bournemouth dataset. 

In the case of Bristol dataset, no reference targets were deployed prior to the ALS 

campaign. Therefore, natural reference targets had to be utilised for radiometric 

calibration purposes.  Eight asphalt road sections were selected from different flightlines, 

comprising a total of 966 laser points. These were then used to deliver the calibration 

constant for the Bristol dataset. A value of 0.25 was adopted for asphalt reflectivity in 

this research for the Bristol dataset, based on previous experiments presented by Briese 

et al. (2008).  Figure 3.16 shows the distribution of the selected asphalt sections across 

the Bristol site. It was necessary to ensure that the point selection was very precise in 

order to avoid including white road markings, road edges, or any distracting minor 

features other than asphalt. As the reference targets used at both sites were not 

guaranteed to be perfectly flat, incidence angle has been estimated across all reference 
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target echoes to account for this effect in both datasets, and was consequently 

considered in the calibration process.  

 

Figure. 3.16. Reference target distribution at the Bristol site. 

 

 

3.5.3 Estimation of the Calibration Constant  

As the backscatter coefficient has a close relationship with bi-conical reflectance (refer 

to Section 2.5.1), it has been considered as the parameter of choice to estimate the 

calibration constants of both investigated datasets in this research. The backscatter 

cross-section was firstly estimated for all individual echoes from the reference extended 

targets in both datasets following Eqn. 3.10 (Jelalian, 1992).  

 

                                                                                                                Eqn. 3-10   
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This includes 754 echoes from the PVC targets in Bournemouth and 966 echoes from 

the natural targets in Bristol.  An ideal Lambertian scatter has been assumed in the case 

of reference targets, with the incidence angle effect considered in the reflectivity 

computations following Eqn. 3.11.  

 

                                                                                                               Eqn. 3-11 

 

Where ρ is the reflectivity when assuming an ideal Lambertian scatterer, ρo is the 

reflectivity at incidence angle zero, and α is the incidence angle. 

 

As the emitted laser energy is not guaranteed to remain constant throughout the 

scanning process, it is necessary to consider whether more than one calibration constant 

should be adopted for the flight campaign. Therefore, the possibility of adopting 

multiple calibration constants, on a flightline by flightline, basis has been investigated. 

As the backscatter energy is described as the product of FWF echo amplitude and width, 

it is affected by the strength of both aspects. Therefore, both pulse amplitude and width 

should be analysed within individual flightlines. This has been implemented by 

estimating simple statistics such as minimum, maximum, mean, standard deviation, and 

coefficient of variation for these parameters for all echoes per flightline. This can help 

to reveal the shape and the distribution of the echo amplitude and width signals in both 

datasets before calibration. 

The analysis of echo amplitude and width from both datasets shows that the backscatter 

signals were relatively stable, with no serious variations in the emitted pulse that could 

adversely affect the backscatter signal in particular flightlines. Based on this evidence, a 

decision was made to adopt a single calibration constant for each campaign. 

Calibration constants were then delivered for all reference target echoes in the 

Bournemouth and the Bristol datasets as illustrated in Eqn. 3.12, refer to Section 2.5.1 

for details.  
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     ̂     
                                                                                                   Eqn. 3-12 

 

This means that both the incidence angle and atmospheric effects have been considered 

over reference targets echoes. To avoid noise effects, a mean calibration constant was 

determined after excluding all outlier points. The calibration constants for the two 

datasets were subsequently utilised for the determination of the four backscatter 

parameters (σ, γ, σα, γα) for individual echoes of the entire datasets following Equations 

2.4, 2.9, 2.10, and 2.11 respectively. 

 

3.5.4 Estimation of Backscatter Parameters 

The methodology proposed to calibrate FWF backscatter signals aims to eliminate the 

discrepancies in the signals delivered from overlapping flightlines. This can be 

considered as a radiometric strip adjustment procedure, aiming to improve the relative 

accuracy of the overall backscatter signal. 

To achieve this goal, it was proposed to find the backscatter parameter that delivers the 

best match between signals from overlapping flightlines after calibration. In order to 

achieve this, it was necessary to undertake a detailed study over different land cover 

types and analyse the individual results. 

In order to carry out this study, it was necessary to consider all factors affecting the 

backscatter signal. Therefore, four different backscatter parameters (σ, γ, σα, γα) were 

estimated for individual echoes within the selected target regions tested in this research. 

The σα and γα parameters demonstrate the influence of the incidence angle effect on the 

reflected backscatter signal. Additionally, these parameters also reflect the performance 

of the developed incidence angle estimation using RSN method. 

These backscatter parameters were then adopted to develop an improved segmentation 

technique, which is better able discriminate between surface features with similar 

geometric characteristics but differing surface characteristics, following a reliable and 

automatic routine.  
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3.6 DEVELOPMENT OF AN ENHANCED SEGMENTATION TECHNIQUE 

Segmentation approaches presented in scientific literature are highly reliant on 

geometric information alone to group laser points into classes which exhibit similar 

characteristics. However, the calibrated backscatter signals delivered from FWF 

systems can enhance the identification of surface features, by offering improved 

discrimination between different targets with otherwise similar geometric attributes 

such as mowed grass and asphalt. The developed segmentation routine presented herein 

aims to integrate the calibrated backscatter signals in order to overcome the weaknesses 

in the available approaches.  

Regarding the optimal backscatter parameter to use in the developed segmentation 

routine, and considering the four presented parameters, radiometric calibration analysis 

shows that no general assumption can be applied to all surface feature types. However, 

two main classes do appear to be clearly distinguishable based on their surface 

roughness specifically vegetation and non-vegetation. However, it is not possible to 

differentiate between the two on the basis of an exact roughness value. However, 

experimental studies should help to deliver a better understanding of roughness, and 

ultimately lead to the determination of threshold settings for specific datasets. 

It has been shown that pulse width is the optimal parameter in terms of defining 

roughness (Lin and Mills, 2009; Doneus and Briese, 2006). Consequently, in this 

research, analysis was performed in order to assess the behaviour of pulse width over 

different land cover types in both investigated datasets. The goal of these analyses was 

to discriminate between land cover classes in order to facilitate the selection of the 

optimal backscatter parameter to use in the segmentation routine. The developed 

segmentation strategy includes two main stages: segmentation criteria computations, 

and segmentation strategy to group points into meaningful segments. Both stages are 

described and discussed in detail in the following sections.  
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3.6.1 Characterising the Developed Method 

The segmentation routine presented in this research adopted the following 

considerations: 

1. The raw unstructured 3D point clouds were used as input to the developed 

routine. This included all FWF echoes delivered from data post processing stage. 

No interpolation or thinning of the original data was performed prior to 

segmentation.    

2. The method is reliant on integrating the calibrated backscatter parameters with 

the geometric information from FWF.  

3. As the normal vector is considered as the optimal criterion to define similarity 

between laser echoes (refer to Section 2.6.2) it was used herein as the only 

segmentation criterion. 

4. The calibrated backscatter parameters were used as a weighting function in the 

normal vector definition to improve detecting homogeneous points that have 

similar criterion such as planarity, smoothness and physical characteristics. 

5. The method used pulse width and the number of returns to discriminate 

vegetation.  

6. Due to its reliability and flexibility, surface growing was the selected strategy to 

segment points, refer to Section 2.6.3.1.  

 

3.6.2 Normal Vector for the Developed Segmentation Routine 

The normal vector is a well-known geometric criterion which can well define the 

orientation of 3D objects and works efficiently in unstructured 3D point clouds. It can 

define the measure of similarity between 3D points by identifying points that belonging 

to same surface based on smoothness constraints (refer to Section 2.6.2). However, the 

possibility of discriminating points with similar geometric characteristics with otherwise 

different physical attributes such as artificial and natural bare ground cannot be reliantly 

offered from only geometric information. The backscatter parameters, which can only 

be delivered from FWF, are capable of defining the physical properties of the surface 

features. Therefore, a developed normal vector was estimated from integrating 

backscatter parameters with the standard geometric information  and then selected to be 

the criterion of choice to segment FWF echoes in this research. 
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The normal for individual points has been estimated using the RSN method described in 

Section 3.4.1. However, this time the weighting function in the moment invariant 

definition used for individual echoes was the backscatter parameter delivered from FWF 

calibration instead of the original amplitude value. As four different backscatter 

parameters were produced for individual echoes from the calibration process, a 

condition was set based on the surface roughness and number of echo returns to select 

the optimal backscatter parameter for individual surface targets. 

The estimated normal vectors from the RSN method deliver ϕ for individual points as 

an indicator of the uncertainty in the normal vector estimation due to noise effects. 

These values are subsequently used in the surface growing algorithm as a residual to 

select seed points. Therefore these values are saved in the memory for each point, and 

are called on later as a vector defined by point index number.  

 

3.6.3 Surface Growing 

After defining the segmentation criterion to be used, it is required to define the strategy 

to be implemented to group these points into meaningful segments. In this research, this 

was achieved through the adoption of a surface growing technique using robust normal 

vectors and their residuals. The technique was originally proposed by Rabbani (2006) 

(refer to Section 2.6.1.1), and has been further developed here using specific 

configurations which meet the aims of this research. 

The inputs for the proposed algorithm are as follows: 

 Point clouds (Pi) and their 3D coordinates, where i represents the point number. 

 Normal vector for individual points (Ni). This is delivered from applying the 

RSN method as explained in Section 3.6.2. 

 Normal vector residuals (ϕi) defined by ϕ from the RSN method. 

 Residual threshold (ϕth). This constant defines the threshold of the maximum 

allowable limit required to upgrade the current point to be a seed point. It has 

been set to define the noise presence in the dataset. Therefore, values of 6° and 2° 

have been used for the Bournemouth and the Bristol datasets respectively.  

 Nearest neighbour definition function (Ωi) delivered from K-d tree search results. 
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 Difference angle threshold (δ). This constant defines the difference in ϕ between 

the normal of the seed region and the normal of neighbourhood points. This 

value is defined through experimental results where it was determined that a 

value of less than 5° may deliver meaningless segments. Therefore a 5° 

threshold value has been used in this research. However, this primarily depends 

on the application and features of interest. 

Additionally, the conditions which should be maintained throughout the workflow are 

as follows: 

 The points in a segment should be geometrically connected and the distances 

between them should be as close as possible. Following experimental 

investigations in both datasets using the K-d tree search function, it was found 

that using K=20 can meet the requirements in this research. 

 The algorithm is searching for homogeneous and relatively smooth surfaces. 

Therefore, each segment should meet the following condition: 

|     |          Where Np is the normal vector of the current point, Ns is the 

normal vector of the seed region, and <·> is the dot product. 

The presented algorithm is described in Figure 3.17. 
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Figure. 3.17. Developed segmentation routine. 

Find nearest neighbours of current seed point 
Ω(Sc(i))→ {Bc}  

 

END 

Add current region to global region, Insert {Rc} → {R} 

End loop 

Insert P(j) → {Sc} 

For i=0: size {Sc} 

While {A} ≠ 0 

Current region {Rc} =0, Current seed {Sc} =0 

For j=0: size {Bc} 

Current neighbour point Bc(i) → P(j) 

If {A} contains P(j) and |N{Sc(i)}.N{P(j)}| > cos (δ) 

Insert P(j) → {Rc}, Remove P(j) from {A} 

If ɸ {P(j)} < ɸth  

Pi = (X, Y, Z, N, ɸ, Ω), ɸth, δ, 
 Initial region list {R} = 0, Available points list {A} = (1, …., Pn) 

Insert Pmin → {Sc} & {Rc}, Remove Pmin from {A} 

End loop 

End if st. 

YES 

YES 

NO 

NO 

Point with min. ɸ in {A} → Pmin 
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3.7 TESTING AND VALIDATING THE DEVELOPED METHODOLOGY 

The developed methodology was implemented over different land cover types, 

including simple and challenging surface trends. The investigated features and interest 

areas have been selected from multiple flightlines and particularly from overlapping 

regions, to assess the accuracy and reliability of the proposed technique from different 

flying directions and positions. Both the new RSN method and the practical radiometric 

calibration routine were tested and compared to existing approaches. The developed 

segmentation algorithm was validated against a human-based manual workflow. This 

section deals with the main three parts of the methodology, discussing the testing and 

the validation approaches. 

 

3.7.1 RSN Method and the Normalised Amplitude Signals 

In order to overcome the signal amplitude discrepancies in adjacent overlapping 

flightlines over any land cover type, a more rigorous approach than currently existing 

methods was developed to estimate the normal for individual points. The overarching 

focus of the developed RSN method was to improve normalisation of the all-important 

echo amplitude parameter as a function of the incidence angle effect.  

To check the validity of the developed approach, the method presented by Maas and 

Vosselman (1999) and improved by Gross and Thoennessen (2006), hereafter referred 

to as the spherical method, was implemented for comparison purposes. This method is 

based on defining the neighbourhood system within a fixed radial distance from the 

point in question (refer to Section 2.5.2.2). A 1 m and 2.5 m radius distance for the 

Bournemouth and Bristol datasets respectively was utilised. These optimised radial 

distances were selected based on testing data density over various land cover types in 

both datasets. Investigation of lower radial distances was shown to fail in the case of the 

selected targets. This was because the use of a lower radial distance resulted in the 

detection of a lower number of points than the minimum number required when 

applying the moment invariant theory (less than 3 points) over some features. This is 

mainly due to varying point density and point distribution over different land cover 

types. 
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Following normal vector computations, the incidence angle was estimated for each 

investigated target and values were delivered from the developed approach and the 

comparative spherical method. Thereafter, the echo amplitude signals of the individual 

ALS points for each selected target in both datasets were normalised using Lambert’s 

Cosine Law. 

The overlapping flightlines was used as a measure of the performance of the respective 

methods. The normalised signals for each target were then acquired from overlapping 

flightlines from both methods. The standard deviation of the echo amplitude for each 

target type was then acquired for each flightline, and the differences in standard 

deviation between overlapping flightlines was used as a criteria to compare the 

performance of the relative methods. This approach was undertaken to validate the RSN 

method after compensation for the angle of incidence effect over different land cover 

types as illustrated in Figure 3.18. Although the spherical method was originally 

designed primarily for planar surfaces, it was chosen for comparison here as the RSN 

method is also based on a spherical assumption. However, the main validation criterion 

is to compare the amplitude signals before and after normalisation from multiple 

flightlines. 

 

 

 

 

 

 

 

 

 

 

Figure. 3.18. RSN method validation workflow. 
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3.7.2 Radiometric Calibration Routine 

In this research, a practical radiometric calibration routine for FWF data is presented 

and validated over different land cover types, including man-made and natural, with the 

aim of eliminating FWF backscattered signal discrepancies between overlapping 

flightlines. In contrast to other approaches, the developed routine utilises the backscatter 

coefficient instead of the backscatter cross-section parameter to deliver the calibration 

constant for the whole campaign. Moreover, the incidence angle effect has been 

considered in estimating the backscatter parameter of the reference target and the 

atmospheric transmittance was also accounted for when delivering the calibration 

constant.   

 

The implemented method uses the radar equation and delivers calibrated backscattered 

signals by means of four different backscatter parameters (σ, γ, σα, γα). It was tested 

over several targets with different surface trends and properties. The results were 

analysed both visually and statistically and a comparison between the backscattered 

signals delivered from the overlapping flightlines presented for each target.  

 

In order to assess the influence of accounting for the incidence angle effect on the 

calibration constant estimation, the developed method was compared with the method 

presented by Alexander et al. (2010) where the incidence angle effect over natural 

reference target echoes has been neglected. Furthermore, in order to assess the 

reliability of using the PVC targets to deliver the calibration constant for the 

Bournemouth dataset, a sample study was carried out, by comparing backscatter signals 

using the PVC reference targets with those delivered from adopting a natural reference 

target.  

 

3.7.3 Segmentation Technique 

With the aim of integrating the calibrated backscatter signals into a more comprehensive 

and reliable 3D object segmentation technique, a segmentation routine is developed and 

validated in this research. The new technique is dependent on the reliability of the 

presented radiometric calibration routine and particularly on the robustness of the 

incidence angle estimation delivered from the RSN method.  
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The calibrated backscatter parameters have been utilised in the segmentation routine to 

differentiate between different surface targets, including those with similar geometric 

characteristics. This was accomplished by integrating these parameters to weight the 

geometric information in order to exploit the full potential of waveform parameters for 

automated point cloud segmentation. 

The developed technique was tested over selected surface features from both datasets. 

However, an interest area from the high density (Bournemouth) dataset was utilised for 

validation purposes through comparison to a manual segmentation process in order to 

assess the accuracy and the performance of the implemented strategy. To better 

demonstrate the improvement acquired with the adoption of FWF physical observables, 

results are presented comparing the segmentation performance with the use of FWF 

additional information to results delivered without FWF information following the same 

routine. 

 

3.8 SUMMARY 

Chapter Three has presented a methodology which aims to delivered reliable FWF 

backscatter laser signals for exploitation alongside the geometric information in a 

developed segmentation technique. This aims to address weakness in existing 3D object 

segmentation approaches.  

The novel outcomes of the presented methodology can be summarized as follows: 

  A new effective processing strategy for FWF-ALS data has been developed 

using a grid computing Condor-based technique. The presented technique 

shows potential in situations where large datasets such as lidar data are utilised. 

This is achieved by reversing the normal Condor push job model into a client 

based pull model which helped to reduce processing time by 100-300 % in the 

case of the datasets investigated in this research. 

 

 A novel echo amplitude normalisation approach based on Robust Surface 

Normal (RSN) estimation has been developed. This is based on determination 

of the incidence angle of individual echoes, from the illumination direction and 

local surface orientation. The local surface orientation estimation method 

computes the normal to an individual point using the minimum number of 
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neighbourhood points. 3D moment invariants are used to deliver the normal 

vector using a weighting function. Thereafter a vector dot product in 3D space 

is adopted to check planarity, ensuring robustness.  

 

 A practical radiometric calibration routine for FWF datasets is presented where 

the backscatter coefficient (γ) has been utilised to deliver the calibration 

constant. This aims to eliminate the discrepancies of FWF backscattered signals 

between overlapping flightlines. This routine is based on applying the RSN 

method, to deliver robust incident angle estimation for reference target echoes 

and thereafter for individual point clouds in both investigated datasets. These 

angles are used to deliver the normalised backscatter coefficient and backscatter 

cross-section parameters for individual echoes for further analysis and 

applications.  

 

 An automatic 3D object segmentation technique has been developed and 

presented. The method aims to fully utilise FWF information to overcome the 

weaknesses in the available approaches. The motivation is to prove that 

integrating FWF physical observables can potentially improve segmentation 

scenarios by distinguishing between surface features with similar geometric 

information. The method uses the calibrated backscatter signals as a weighting 

function to estimate the segmentation algorithm criteria. Thereafter, a region 

growing technique is utilised to segment the 3D point clouds into meaningful 

groups.  
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CHAPTER 

4 

RESEARCH OUTCOMES 

 

 

 

4.1 INTRODUCTION 

A new methodology to integrate FWF backscatter signals in an existing segmentation 

technique was introduced and developed in Chapter Three. The method aims to fully 

utilise FWF information to improve the identification of Earth surface features 

following a comprehensive segmentation routine for downstream applications. The 

method relies on a developed technique to estimate the orientation direction of 

individual ALS echoes. These estimations are used afterward to enhance the calibration 

of the FWF backscatter signals for integration in a 3D object segmentation algorithm.  

This chapter will focus on assessing the developed methodology by separately testing 

and validating each distinct part of the workflow. The method was applied over 

different land cover types using two different datasets and the results were analysed 

both visually and statistically to assess performance of the introduced routine. The 

investigated targets were selected in order to provide different surface characteristics 

such as orientation, material, and roughness. In order to evaluate the method over a 

greater variety of land cover types, and to deliver more comprehensive outcomes for use 

in future analysis, several interest areas were investigated over both urban and rural sites. 

The targets and the investigated interest areas were selected from multiple flightlines 

with different positions and orientations, covering both the Bournemouth and Bristol 

study sites.  

The chapter is divided into three main parts following the methodology introduced in 

the previous chapter. Firstly, the novel RSN method and the normalised amplitude 

signals were assessed and compared against the reference spherical method. Then the 
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comprehensive radiometric calibration routine is tested and validated over a variety of 

land features from multiple flightlines and also compared with a recognised existing 

technique. A justification of the use of one calibration constant for each individual 

campaign is presented based on FWF backscatter signal analysis. Finally, the developed 

segmentation algorithm is tested and later validated against manual processing in order 

to assess the absolute accuracy of the automatic routine. To demonstrate the potential of 

exploiting FWF information in the automatic segmentation routine, the results from the 

developed approach were compared with the results obtained from applying the same 

approach on the same interest area but without integrating the physical observables of 

FWF.   

The Bournemouth dataset produces more detailed representation of surface targets than 

the Bristol dataset due to the higher point density. Thus the Bournemouth dataset was 

given priority to demonstrate the performance of the methodology. This is because the 

introduced methodology is relying on the RSN method which is optimised for 

application to denser datasets.  

 

4.2 ASSESSING THE RSN METHOD AND THE NORMALISED FWF 

AMPLITUDE SIGNALS 

Data from the high point density Bournemouth site and the lower density Bristol site 

were tested to validate the performance of the RSN method against the reference 

spherical method over both natural and urban surfaces. This validation incorporates 

more than 750,000 points comprising 56 land cover types from Bournemouth and 21 

types from Bristol. A lower number of targets were selected from Bristol because the 

lower point density of this dataset limited the variety of land cover types. Selected areas 

included a total of 34 natural targets with non-planar surface trends (such as rough 

terrain, steep terrain, undulating terrain, low vegetation, grass, shrubs, etc.) and 43  

man-made targets with planar trends (including roads, slanting roofs, complex roofs, 

walls, cars, semi-flat ground, highway barriers, etc.). These targets were used to 

visualise the improvements in the normalised amplitude signals using the RSN method 

and later to assess the accuracy of these results following standard statistical tests. 
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4.2.1 Visual Analysis 

In the case of Bournemouth, the RSN method was firstly tested over man-made features 

to validate its performance over high planarity surfaces. The normal vector results 

obtained from the Bournemouth dataset demonstrated that the RSN method is capable 

of detecting small disturbing objects on slanted roofs and delivering an accurate 

estimation of the normal for relatively minor features such as small windows and 

chimneys. In contrast, the reference method completely failed to detect their presence 

by delivering normal vectors with approximate similar directions, as shown in Figure 

4.1 for the extent highlighted area.  

These results arise because through the spherical method the normal value was 

approximated to fit the plane enclosing all the points which are defined by a fixed radius 

from the outset, thus ignoring minor details. In contrast, the RSN method applies a 

smaller local neighbourhood system, comprising a limited number of points which are 

used to estimate reliable normal values for minor detail features. This is preferable to 

the unreliable normal delivered from fitting a plane to a group of points with different 

orientations, which is commonly acquired over natural land coverage and surfaces with 

complex and rough trends. This is basically because the normal delivered from the 

spherical method and other similar approaches could be reliable to some of the points 

used to define the system but not necessarily for the point of interest itself, which 

translates later to the wrong normalised echo amplitude values. 

The RSN approach is therefore better able to consider the distribution of the included 

points and describe the localised complex trends of the surface. Moreover, the robust 

planarity checking procedure makes the definition more reliable by including only the 

points that belong to one plane within each small 3D system. Figure 4.2 demonstrates 

another example of the robustness of the RSN method by detecting chimneys over a 

complex roof target. Due to a mis-match between photos during orthophoto production, 

the right chimney in Figure 4.2-a is not visible. However, the point cloud image in 

Figure 4.2-b shows its presence. 
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(a) Orthophoto of roof 

target showing the small 

window highlighted in the 

red circle. 

(b) Detailed view of the 

highlighted window (extent 

outlined in black, bold) 

showing the normal vectors 

obtained from the RSN 

method (solid blue arrows) 

against the spherical reference 

method (dashed red arrows). 

(c) Visualised normals 

delivered from both methods 

for the roof target. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Normal vector estimation over a simple roof target in the Bournemouth 

dataset. 
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Figure 4.2. Normal vector estimation over a complex roof target in Bournemouth 

dataset (the chimneys are highlighted in red circles): (a) orthophoto image (b) point 

cloud image (c) visualised normals delivered from RSN (solid blue arrows) and 

spherical (red arrows) methods. 
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It was also found that the RSN method is better able to distinguish between features at 

sharp-edged corners and those with challenging planar trends such as the example 

shown from the Bristol dataset in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Normal vector estimation over a flat roof and wall surfaces in Bristol 

dataset: (a) orthophoto of the target highlighting the selected section (b) normal vectors 

obtained from the RSN method (black arrows) against the spherical reference method 

(dashed red arrows) for the selected profile section. 
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Specifically, this approach successfully managed to differentiate walls from roofs and 

clearly delivers appropriate normal values for the vertical wall, where the spherical 

approach fails.  In these instances, the normal estimates for a point near a corner on one 

plane are not degraded by the influence of points on an adjacent plane which is oriented 

differently. However due to unavoidable opposite normal direction in the developed 

technique, the normal vectors of other neighbourhood points on the highlighted wall are 

not visible in Figure 4.3. This finding is highly promising for segmentation scenarios 

and urban feature extraction. Although the method still has weaknesses in estimating the 

correct normal for corner points where the adjacent surfaces are of differing material 

types (e.g. where a concrete wall meets a grass-cover ground surface), further 

improvements could be achieved through the inclusion of accurate radiometric 

information such as the backscatter parameters, which more fully consider all influences 

on the reflected signal. This is investigated in the following sections after application of 

the developed radiometric calibration routine. 

To assess the performance of the developed RSN method over non-planar surfaces, the 

method was tested over challenging surface trends such as natural land coverage. It was 

applied over natural terrain of a discontinuous nature (e.g. bare undulating ground, bare 

sloping terrain, rough terrain with grassy patches, rough sloping terrain and rough 

ground with severe gradient changes, etc.) and its performance compared with that of 

the reference method, initially through visualisation of differences between the results. 

The normal vector results showed that the RSN method successfully followed the trend 

of the challenging natural surfaces and was able to faithfully reflect minor rough details 

where the spherical method failed. For such surfaces the RSN method more effectively 

defined the discontinuities, and as a result delivered more robust normalised echo 

amplitude signals.  

To demonstrate these improvements, an interest area of discontinuous natural terrain 

which comprises some vegetated patches was selected from the Bournemouth study site, 

as highlighted in Figure 4.4.  For this interest area, Figure 4.5 presents a series of plots 

which indicate flightline differences for the RSN and reference methods. For both 

flightlines, the plots indicate that the RSN method is able to deliver details which better 

describe the discontinuous surface trend as shown in Figure 4.5-d and Figure 4.5-e for 

the overlapping flightlines. In comparison, the spherical method shows smoothing of 

such details, discarding the localised roughness trends as shown in Figure 4.5-g and  
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4.5-h respectively. Furthermore, in the case of the RSN approach, Figure 4.5-c, and 

Figure 4.5-f demonstrate a reduction in the difference of the echo amplitude signals 

between overlapping flightlines in comparison to the original signals. In contrast, the 

spherical method shows relatively poor performance due to the non-robust spherical 

assumption.  

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 4.4. A selected interest area of natural terrain from the Bournemouth dataset: (a) 

orthophoto showing the selected region with the cross-section in the middle (b) the 

visualisation of the selected cross-section showing the discontinuous surface trends. 
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Figure 4.5. Colour-coded map of two overlapping flightlines for the selected region in 

figure 4.4: (a) and (b) show the original echo amplitude signals (d) and (e) show the 

normalised echo amplitude signals using the RSN method (g) and (h) show the 

normalised echo amplitude signals using the reference method (c), (f) and (i) portray the 

flightline differences between the original signals, the RSN and the spherical methods 

respectively. 

 

 

Moreover, the method also revealed promising results over low vegetation regions such 

as grass and hedges. However, this will be better realised after accounting for all other 

effects influencing the backscatter signal in the radiometric calibration and later in the 

segmentation results. 
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4.2.2 Statistical Analysis 

In order to assess the accuracy of the developed method, normalised echo amplitude 

signals delivered from the RSN and the reference method over 77 distinct targets from 

both datasets were tested and validated statistically. The analysis investigates the 

deviation of the mean values and demonstrates the differences in the standard deviation 

between overlapping flightlines delivered from both methods individually. This allows 

for inspection of discrepancies for individual targets between overlapping flightlines 

before and after normalisation.  

For demonstration purposes, results for both datasets from natural and man-made 

targets, as highlighted in Figure 4.6 are presented in Figure 4.7 and Figure 4.8 

respectively. These figures show the histograms and the normal distribution curves for 

the echo amplitude signals from the two overlapping flightlines before and after 

normalisation through both approaches. Results from a natural, undulating terrain 

surface, are highlighted in Figure 4.7. Figure 4.8 demonstrates the performance over a 

complex roof target selected from the lower resolution Bristol dataset. Both Figure 4.7 

and Figure 4.8 demonstrate improvements in the signal amplitude discrepancies 

between overlapping flightlines after normalisation using the RSN method. The 

increased standard deviation values derived from the RSN method for the individual 

flightlines arise due to the sensitivity of this method in detecting discontinuities. 

However, the key outcome is the decreased difference between the standard deviation 

values for the overlapping flightlines achieved through the RSN method, indicating 

improved normalisation. Figure 4.8 highlights the impact of a lower density dataset on 

the RSN method’s performance, delivering a less marked improvement in comparison 

to the results from the Bournemouth dataset, although still out-performing the spherical 

method (Figure 4.8-b and Figure 4.8-c).  

In order to generalize the outcomes from both methods, all tested targets from both 

datasets were grouped into two different sets according to their surface trends. The first 

set contains targets with planar trends while the second set relates to non-planar targets. 

The standard deviation difference (as a percentage) between overlapping flightlines was 

computed before and after normalisation. This is based on the mean standard deviation 

of all selected targets in each single flightline and is presented in Table 4.1 and 4.2 for 

the Bournemouth and Bristol datasets respectively. It can be seen from both tables that 
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the discrepancies between overlapping flightlines were markedly reduced with the RSN 

method over both target sets in both datasets. However, less improvement was generally 

realised from the Bristol dataset because of the lower data density which essentially 

means that due to different point distributions between the flightlines, certain surface 

details are included in one flightline, but not in the other. Although small improvements 

can be seen in the normalised signals delivered from the spherical method over the 

planar target set, poor results were delivered for non-planar targets, thus demonstrating 

the shortcomings of the spherical method over natural land cover types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Selected targets from both datasets to assess the performance of the RSN 

method.  

(a) Orthophoto showing the 

undulating terrain surface target 

from the Bournemouth dataset. 

(b) Orthophoto showing the 

complex roof target from the 

Bristol dataset. 
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Figure 4.7. Echo amplitude normalisation of two overlapping flightlines over 

undulating terrain surface from the Bournemouth dataset. 

 

(a) The original echo 

amplitude signals. 

 

(c) The normalised 

echo amplitude 

signals using the 

reference method. 

 

(b) The normalised 

echo amplitude 

signals using the 

RSN method. 
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Figure 4.8. Echo amplitude normalisation of two overlapping flightlines over a 

complex roof target from the Bristol dataset. 

 

(a) The original echo 

amplitude signals. 

 

(c) The normalised 

echo amplitude 

signals using the 

reference method. 

 

(b) The normalised 

echo amplitude 

signals using the 

RSN method. 
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Table 4.1. Mean standard deviations (Ϭ) and differences in percentage between overlapping flightlines before and after normalisation in the 

Bournemouth dataset using RSN and spherical methods. 
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Table 4.2. Mean standard deviations (Ϭ) and differences in percentage between overlapping flightlines before and after normalisation in the Bristol 

dataset using RSN and spherical methods. 
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4.3 ASSESSING THE DEVELOPED RADIOMETRIC CALIBRATION 

ROUTINE 

After delivering robust incidence angle estimations for individual FWF-ALS echoes 

using the RSN method, the incidence angle needs to be integrated alongside other 

parameters, which affect the backscatter signal. This enables calibration of the received 

power and delivers more comprehensive physical observables for use in further analysis. 

This was achieved by adopting the developed radiometric calibration routine introduced 

in Chapter Three.  

This section introduces the results delivered from applying the developed calibration 

technique over different land cover types, including man-made and natural, with the aim 

of eliminating FWF backscattered signal discrepancies between overlapping flightlines. 

The routine is tested, analysed, and validated over different targets with various surface 

trends and properties. Later, a comparison is made between backscatter signals 

delivered from overlapping flightlines for each investigated target and area of interest. 

In order to assess which configuration is able to best eliminate flightline discrepancies, 

the four backscatter parameters introduced in Chapter Three are investigated. 

Firstly, the reflectivity measures of the reference target used in the absolute radiometric 

calibration in the Bournemouth dataset are introduced and analysed. Then, a 

justification for adopting one single calibration constant for the individual campaigns 

rather than per flightline is presented. A statistical comparison between the use of 

artificial and natural reference targets was undertaken for the Bournemouth dataset.  

Then, a statistical study which compares the adopted routine with an existing approach 

that uses a natural reference target for the calibration process, neglecting incidence 

angle effects was undertaken.  Finally, all the results obtained from applying the 

developed routine over various targets and interest areas are presented visually and 

analysed statistically using standard statistical tests. 
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4.3.1 Reference Target Reflectivity Measures Analysis 

As stated in Chapter Three, polyvinyl chloride (PVC) targets and asphalt natural 

sections were utilised as reference targets in the radiometric calibration workflow for 

the Bournemouth and the Bristol datasets respectively. Based on the literature, a 

reflectance of 0.25 at 1550 nm wavelength was used for asphalt to estimate the 

calibration constant for the Bristol dataset, (refer to Section 3.5.3). However, a practical 

reflectivity measure was required for the PVC targets in the Bournemouth dataset to 

deliver the optimal reflectivity value for these targets.   

Although successive reflectivity measures should be taken for the reference targets 

during data capture in order to ensure consistency in terms of the day of scan and 

atmospheric conditions, this condition could not be met for this dataset as already 

explained (refer to Section 3.5.2). As an alternative, indoor reflectivity measurements 

were performed for the 1 m-radius PVC targets using an Analytical Spectral Device 

(ASD), refer to 3.5.2 for more details.  

Figure 4.9 shows a sample of spectral reflectivity measurements recorded by 1°       

fore-optic and 0° incidence angle over the PVC reference target. The X-axis represents 

wavelength spectral range while the Y-axis shows the absolute reflectivity values after 

post processing. The graph shows the distribution of the successive 25 series 

measurements, with the first series always eliminated in order to assure high 

measurement precision. This is because the first measurement could deliver an unstable 

value due to effects with the previous measurement. As the atmosphere strongly absorbs 

radiation between 1350 and 1460 nm wavelengths, and also between 1790 and 1960 nm, 

these bands were removed as it can be realised from the data gaps in Figure 4.9. This is 

because these spectral regions are very sensitive to the atmosphere and thus very noisy 

data is delivered in these two regions.  

It can be realised from the graph that at the 1550 nm wavelength which defines the 

wavelength of the Riegl LMS-Q560 system, the absolute reflectivity for the PVC target 

is shown to be approximately 70% at nadir. This was delivered from all measurements 

after accounting for the multiple incidence angle settings effect. Therefore, a 0.7 

reflectivity value for the reference target was adopted for further processing in the 

Bournemouth dataset. 
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Figure 4.9. Absolute reflectivity measurements of a sample series records over PVC 

target using 1° fore-optic and 0° incidence angle. 

 

 

4.3.2 Empirical Analysis of FWF Echo Amplitude and Width  

The variations of emitted laser energy (echo amplitude and width) were investigated on 

behalf of the Bournemouth and the Bristol flight campaigns in this research. This 

includes analysis to detect any major faults in the emitted signal, which might deliver 

from particular flightlines, and could affect the calibration constant determination. This 

is based on the findings of Roncat et al. (2011) who studied the relationship between the 

calibration constant and FWF echo amplitude and width parameters, assuming how this 

can best deliver a consistent representation of the behaviour of the emitted energy. This 

follows the empirical evidence presented by Bretar et al. (2009) who claimed that the 

emitted energy cannot be considered as “constant enough” throughout the ALS 

campaign for radiometric calibration purposes.   

In FWF-ALS the received signal can be represented as the product of echo amplitude 

and width. Both variables are affected by the final amount of the received energy and 

therefore need to be analysed. This is based on individual analysis of echo amplitude 

and width signals of all flightlines delivered from post processing. To study the shape 
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and the behaviour of individual values, normal distribution curves and standard 

statistical computations were produced. Minimum and maximum values in addition to 

mean, standard deviation (Ϭ), and coefficient of variation (CoefVar) per flightline per 

FWF parameter were computed for the Bournemouth and Bristol datasets. 

Table 4.3 and Figure 4.10 demonstrate the similar distribution of echo width signals in 

the Bristol dataset for the different flightlines. This illustrates that they exhibit 

approximate mean values and only slightly different standard deviation and coefficient 

of variation values to those delivered from multiple flightlines. Although the 

distribution curve in Figure 4.10 is shifted to the left due to the presence of outliers, the 

data from all flightlines seems to be normally distributed and the signals are 

approximately coincident with each other. Similarly, Figure 4.11 shows nearly perfect 

normal distribution of the echo amplitude data signals of the same dataset with no 

evidence for skewness or kurtosis following statistical tests. Although, some slight 

difference in the mean values can be realised from Table 4.4, particularly in flightlines 1 

and 5, the data still exhibits the same distribution. For a comprehensive output, two 

types of histograms were utilised to represent frequency distribution behaviour of the 

various data types. These include frequency and density histograms, refer to Mladen 

(1996) for further details. 
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Figure 4.10. Normal distribution curves of FWF echo width signals in Bristol dataset. 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.3. Statistics of the FWF echo width signals in Bristol dataset in [ns]. 

 

 

                          Mean         Ϭ         CoefVar      Minimum     Maximum 

 
 

Flightline1         2.817      0.557         0.198            1.000              9.982 

Flightline2         2.721      0.509         0.187            1.000              9.930 

Flightline3         2.705      0.522         0.193            0.118              9.902 

Flightline4         2.690      0.499         0.186            0.111              9.964 

Flightline5         2.871      0.682         0.238            0.119              9.981 

Flightline6         2.813      0.608         0.216            0.114              9.950 

Flightline7         2.880      0.713         0.248            1.000              9.946 

Flightline8         2.859      0.679         0.237            0.115              9.966 
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Figure 4.11. Normal distribution curves of FWF echo amplitude signals in Bristol 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.4. Statistics of the FWF echo amplitude signals in Bristol dataset in [DN]. 

 

 

 

                           Mean          Ϭ         CoefVar      Minimum       Maximum 

 
 

Flightline1         71.330      34.866        0.489             4.087             201.343 

Flightline2         67.771      35.753        0.528             4.240             202.035 

Flightline3         63.848      34.193        0.536             4.064             203.480 

Flightline4         59.187      36.267        0.613             4.013             202.761 

Flightline5         49.831      30.032        0.603             4.006             203.567 

Flightline6         54.518      31.276        0.574             4.201             202.345 

Flightline7         54.414      38.407        0.706             4.500             201.041 

Flightline8         54.034      34.741        0.643             4.162             201.263 
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Figure 4.12. Normal distribution curves of FWF echo width signals in Bournemouth 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.5. Statistics of the FWF echo width signals in Bournemouth dataset in [ns]. 

 

                          Mean        Ϭ         CoefVar      Minimum      Maximum 

 

 

Flightline1         2.765      0.531        0.192            1.700               8.999 

Flightline2         2.803      0.538        0.192            1.700               8.997 

Flightline3         2.799      0.557        0.199            1.700               8.997 

Flightline4         2.847      0.631        0.222            1.700               8.999 

Flightline5         2.856      0.634        0.222            1.700               8.999 

Flightline6         2.869      0.543        0.189            1.701               8.998 

Flightline7         2.787      0.369        0.132            1.700               8.996 

Flightline8         2.826      0.491        0.174            1.700               8.984 

Flightline9         2.702     0.307         0.114            1.701               8.979 

Flightline10       2.793     0.580         0.208            1.700               8.999 

Flightline11       2.715     0.314         0.116            1.701               8.991 

Flightline12       2.717     0.478         0.176            1.700               8.999 

Flightline13       2.789     0.573         0.205            1.700               8.994 

Flightline14       2.720     0.471         0.173            1.700               8.994 

Flightline15       2.758     0.542         0.196            1.700               8.998 
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Figure 4.13. Normal distribution curves of FWF echo amplitude signals in 

Bournemouth dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.6. Statistics of the FWF echo amplitude signals in Bournemouth dataset in 

[DN]. 

 

                             Mean          Ϭ          CoefVar      Minimum     Maximum 

 

 

Flightline1          99.282       57.579        0.580             4.501           257.841 

Flightline2        102.581       54.664        0.533             4.500           252.380 

Flightline3          99.986       53.946        0.540             4.501           256.883 

Flightline4          82.189       53.238        0.648             4.500           252.419 

Flightline5          84.512       53.539        0.634             4.501           255.420 

Flightline6        135.08 4      54.766        0.406             4.500           256.610 

Flightline7        141.12 2      53.482        0.379             4.500           255.970 

Flightline8        115.36 6      56.948        0.494             4.500           280.540 

Flightline9        140.42 2      38.857        0.277             4.510           246.770 

Flightline10        90.098       57.050        0.633             4.501           252.273 

Flightline11      133.48 9      37.232        0.279             4.100           246.300 

Flightline12      101.411       51.680        0.510             4.500           256.210 

Flightline13        71.762       46.396        0.647             4.500           256.240 

Flightline14      126.37 1      54.847        0.434             4.230           257.900 

Flightline15        80.260       45.310        0.565             4.315           255.944 
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In contrast, the Bournemouth dataset shows more challenging results. This is 

particularly obvious from the distribution of the echo amplitude signals in Figure 4.13. 

However, the echo width and amplitude signals in Figure 4.12 and Figure 4.13 deliver 

curves which follow the normal distribution and no skewness or kurtosis behaviour can 

be detected. Further, the mean values in Table 4.5 show greater similarity than the echo 

amplitude mean values in Table 4.6. Although the mean values from Table 4.6 show 

significant variations among flightlines, the standard deviation delivers more consistent 

results except in the case of flightline 9 and 11. As a result, the coefficient of variation 

for echo amplitude and width (Table 4.5 and 4.6) are similar for all flightlines, and no 

odd behaviour can be detected.  

Within the concept of radiometric calibration, the current state of the art is to consider 

one calibration constant per flight campaign (Briese et al., 2008; Lehner and Briese, 

2010; Roncat et al., 2011). However, high laser pulse variations (amplitude and width) 

within individual flightlines can influence the determination of the calibration constant 

(Roncat et al., 2011). Following this statistical analysis, the output energy was found to 

be delivered without any major faults over all flightlines as no serious variations in the 

emitted signals have been detected which could influence the determination of the 

calibration constant. However, both datasets showed evidence of noisy signals, visible 

from the minimum values of echo amplitude and width (Tables 4.3 to 4.6). This was 

therefore considered in the estimation of the calibration constants for both datasets 

afterwards.  

 

4.3.3 Artificial vs. Natural Reference Target for the Bournemouth Dataset 

To check the potential of using the PVC target as reference in the calibration process for 

the Bournemouth dataset, a statistical comparison between two approaches of different 

reference targets was adopted. This was undertaken by estimating the backscatter 

parameters (σ, γ, σα, γα) for an arbitrarily selected simple house roof target with the 

geometry depicted in Figure 4.14 and highlighted in red, using the PVC as reference. 

Consequently, the four backscatter parameters were re-estimated for the same target but 

this time by adopting a natural reference target. Thereafter, a comparison between the 

signals delivered from overlapping flightlines through both approaches was undertaken. 
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The two calibration constants from both approaches were estimated following the 

radiometric calibration routine introduced in Section 3.5.  

 

 

 

 

 

 

 

 

Figure 4.14. The geometry of the house roof and the road target selected to check the 

potential of using PVC as a reference target and used later to assess the calibration 

constant for the Bournemouth dataset. 

 

Using 754 echoes over the PVC reference targets and 920 echoes collected from five 

different asphalt road sections in Bournemouth, two empirical calibration constants 

were estimated. Thereafter, the four backscatter parameters (σ, γ, σα, γα) for individual 

house roof echoes were estimated from both approaches and compared with the signals 

delivered from the overlapping flightlines. 

The statistical analysis for the four backscatter parameters of the selected roof target 

shows that the backscatter coefficient normalised according to the incidence angle effect 

(γα) delivers the best performance (agreement) between overlapping flightlines in both 

approaches. This was demonstrated through the standard deviation differences in 

percentage between overlapping flightlines which delivered the lowest value in the case 

of γα as illustrated in Table 4.7. This is an evidence of the importance of considering the 

incidence angle effect throughout the radiometric calibration process; therefore γα was 

selected for the comparison purposes in this test.  

However, the purpose of this comparison test was not to find the optimal backscatter 

parameter which delivers the optimal match between flightlines. This test was aimed to 

investigate the potential of using the PVC target to deliver the calibration constant for 

the Bournemouth dataset. This can be obtained by comparing the signals from 
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overlapping flightlines between those delivered from utilising a PVC reference target 

with signals delivered from adopting a natural reference target. The relationship 

between both approaches should be the same for each backscatter parameter over the 

selected target, except for the differences in the calibration constants. Thus, the 

differences in the standard deviation differences between backscatter parameters in the 

corresponding approaches should be the same as well. Therefore it is not important for 

which parameter to select to apply the comparison in this particular test as long as the 

comparison is performed using the same parameter in both approaches.  However, 

finding the optimal backscatter parameter which delivers best agreement between 

overlapping signals amongst the rest of the backscatter parameters, was investigated in 

the following sections.   

  

 

 

 

 

 

 

 

 

 

Table 4.7. The standard deviation difference in percentage of the backscatter 

parameters and the original amplitude signals delivered from overlapping flightlines of 

a house roof target using PVC and asphalt reference targets. 

 

The results from adopting a PVC reference target perform better than those delivered 

from the asphalt reference target, as realised from Table 4.7 and shown through the box 

plot analysis of the γα parameter in Figure 4.15. It can be realised from this plot that the 

match between flightlines is better achieved between signals delivered by adopting 

artificial reference targets than those delivered by adopting natural reference targets. In 

particular, this can be noticed from the gradient of the red line connect between median 

 

 

Parameter 

 

% Ϭ Differences 

 

PVC reference target 

 

Asphalt reference target 

 

Echo amplitude 

σ 

γ 

σα 

γα 

 

 

34.301 

26.320 

24.549 

24.943 

20.340 

 

34.301 

30.620 

28.849 

29.243 

24.640 
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 percentile 

values from the overlapping flightline signals in individual approaches which is 

reported to be greater in the case of the asphalt reference target. This is also visible from 

normal distribution analysis of the γα parameter in Figure 4.16, and evidenced from the 

lower means and standard deviation differences between flightlines in Figure 4.16-a as 

compared to Figure 4.16-b. Although the differences between overlapping flightline 

signals shown in Figure 4.16 are small, the results demonstrated the potential of using 

the PVC target as a reference in the calibration routine. As both the incidence angle 

effect and atmospheric transmittance were considered in estimating the calibration 

constants in both approaches, it seems that the main parameter affecting the outcome 

was the reflectivity value of the reference target. However, the next section will 

introduce more comprehensive results delivered from comparing the developed routine 

with an existing technique by adopting further statistical testing.  

Figure 4.15. Box plot analysis of house roof target from overlapping flightlines in the 

Bournemouth dataset, showing the performance of the γα parameter and comparing the 

two calibration constants, from artificial and natural reference targets. 
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Figure 4.16. Distribution analysis of house roof target from overlapping flightlines in 

Bournemouth dataset, showing the performance of the γα parameter delivered from 

adopting two calibration constants from artificial and natural reference targets. 

 

 

 

 

(a) Results from 

using PVC 

reference target. 

(b) Results from 

using asphalt 

reference target. 
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4.3.4 Assessing the Calibration Constant for the Bournemouth Dataset 

In this research, after approving the potential of using the PVC artificial reference target 

to estimate the calibration constant for the Bournemouth dataset, it is important to 

assess this constant by comparing it to constants from other approaches. An alternative 

technique to estimate the calibration constant for the same dataset is presented by 

Alexander et al. (2010). They estimate the calibration constant for the Bournemouth 

dataset by using asphalt road sections as a reference target to calibrate the whole dataset. 

The incidence angle effect was neglected for the reference target signals and instead 

only near-nadir echoes were used. They utilised a literature reflectance value of 0.25 for 

the asphalt, and no reflectivity measurements were undertaken in order to calibrate this 

dataset. Following this configuration the backscatter cross-section of the reference 

target was estimated and used to deliver the calibration constant for the whole dataset. 

This is in contrast with the approach developed here, which uses the backscatter 

coefficient parameter (γ) as a measure of the backscatter energy for the PVC reference 

target.  

To assess the calibration constant adopted in this research, the developed routine is 

compared with that presented by Alexander et al. (2010) over a road target which 

appears in overlapping flightlines in the Bournemouth dataset. This target was selected 

in order to minimise the incidence angle effect as much as possible in order to allow 

more direct comparison to the Alexander et al. (2010) method. To assure approximately 

similar conditions (e.g. range and scan angle) from both flightlines, the road target was 

selected to meet the geometry proposed in Figure 4.14 (highlighted in green). Thus in 

perfect conditions, the received backscatter signals from overlapping flightlines are 

assumed to be the same over this particular target. These particular settings were chosen 

in order to test the potential of using the backscatter coefficient parameter (γ) in 

estimating the calibration constant in comparison to the backscatter cross-section (σ) as 

adopted by Alexander et al. (2010). It should be highlighted that Alexander et al. (2010) 

stated the calibration constant value of their approach and it is thus used for direct 

comparison without pre-estimation here.  

Firstly, the developed technique was applied on the individual selected road target 

echoes and the signals compared from both overlapping flightlines. The histogram of 

the γ parameter in Figure 4.17-b shows a significant improvement over the original 

amplitude signals in Figure 4.17-a whereas the results from the σ parameter (Figure 
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4.17-c) shows a significant reduction. This was approved by the standard deviation (Ϭ) 

and mean differences in percentage between signals from overlapping flightlines as 

illustrated in Table 4.8. The reduction in the σ results as compared with original signals 

was not expected, which might be acquired by overcorrecting. However, the γ 

parameter shows encouraging results as the differences were reduced significantly in a 

comparison with the original signals as demonstrated by Figure 4.17 and Table 4.8. 

However, the results of the normalised version of the backscatter coefficient with 

respect to incidence angle effect (γα) deliver a nearly perfect match between the 

overlapping flightlines signals which are highlighted in Figure 4.17-d and demonstrated 

through small mean and Ϭ differences in Table 4.8. Although the investigated target 

was selected to be as flat as possible, it seems that it is not a perfectly flat surface and 

the incidence angle is still affecting the received signals, as demonstrated in Figure 

4.17-d. The results of the γα parameter agreed with the assumption made when selecting 

this target in the first place, which assures similar conditions (e.g. range and scan angle) 

from both flightlines. 
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Figure 4.17. The histogram of the original amplitude signals and the backscatter 

parameters after calibration following the developed radiometric calibration routine of a 

selected road target from overlapping flightlines in the Bournemouth dataset. 

(a) The original amplitude 

signals. 

(d) The normalised backscatter 

coefficient signals with respect 

to incidence angle. 

(c) The backscatter cross-section 

signals. 

(b) The backscatter coefficient 

signals. 
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Parameter 
% Differences 

Mean Ϭ 

 

Echo amplitude 

γ 

σ 

γα 

 

7.270 

4.530 

17.250 

0.630 

 

7.630 

4.210 

17.540 

0.060 

 

Table 4.8. The mean and the standard deviation differences in percentage of the signals 

delivered from overlapping flightlines of a road target before and after calibration using 

the developed approach. 

 

Thereafter, new γ signals were estimated for individual echoes enclosed within the 

selected target from overlapping flightlines using the calibration constant estimated by 

Alexander et al. (2010). The histogram results of the γ signals of the selected target 

following Alexander et al. (2010) routine are demonstrated in Figure 4.18. As the 

approach of Alexander et al. (2010) neglects the incidence angle effect throughout the 

calibration workflow, no incidence angle is available to use for comparison. Therefore 

the comparison between the presented and Alexander et al. (2010) routines are based on 

the backscatter coefficient parameter (γ) of the road target as both routines delivered 

improvements with this parameter after calibration, as shown in Figure 4.17-b and 

Figure 4.18 respectively.   
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γ [m2m-2] 

 

 

 

 

 

 

Figure 4.18. The histogram of backscatter coefficient signals after calibration using 

Alexander et al. (2011) radiometric calibration routine of a selected road target from 

overlapping flightlines in the Bournemouth dataset. 

 

It can be realised from Figure 4.18 that the Alexander et al. (2010) routine proves to 

deliver significant improvements after calibration as compared with the original signals 

in Figure 4.17-a. This can be justified by delivering low mean and Ϭ differences 

between overlapping flightlines of 4.1% and 6.6% respectively, in a comparison with 

the original signals from Table 4.8. However, the potential of the results improvements 

delivered from applying the Alexander et al. (2010) approach against those delivered 

from applying the developed approach is still in need for further investigations. To 

achieve this, a statistical 2-sample T-test is used to compare the backscatter coefficient 

(γ) results delivered from both approaches, (refer to Montgomery (2005) for further 

details). This statistical test is designed to compare the means of two sample datasets 

based on variance check analysis, by delivering an index value known as the P-value 

that better describes the probability that both datasets are significantly different to each 

other or not. In this case, the datasets used in this comparison are representing the 

signals from overlapping flightlines obtained through the two approaches. The test was 

applied using the 95% confidence level. Thus, a P-value of less than 5% means that the 

datasets are significantly different. However, this test cannot be applied without 

checking the variance of both datasets. This was undertaken using the F-test, which 

compares the variances and checks whether the datasets have similar variances or not, in 

order to use the outcome as an input to the subsequent T-test. It is worth noting that 

comparing the variances of the two datasets delivers P-values from two distinct 

hypotheses, the F-test and Levene’s test. Levene’s test assumes the normality of the 

comparative datasets is questionable. However, the F-test assumes the comparative 
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datasets are normally distributed. As our datasets conform to a normal distribution, as 

evidenced through the histograms in Figure 4.17, the F-test results were adopted in this 

particular study. For more details about these statistical tests and their analysis refer to 

Montgomery (2005). 

Figure 4.19 demonstrates the results delivered from comparing the variances of 

backscatter coefficient signals delivered from overlapping flightlines through both 

approaches. As can be seen, the P-value delivered from the F-test shows that the 

comparative datasets have similar variances in both approaches, as described by the 

high P-value (> 0.05). Thereafter, the T-test was applied for final decision of this 

statistical assessment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Variance of backscatter coefficient signals over a selected road target from 

overlapping flightlines in the Bournemouth dataset.  

(a) Results from 

applying the developed 

radiometric calibration 

routine. 

 

(b) Results from 

applying Alexander et 

al. (2010) routine. 

 

γ [m2m-2] 
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Confidence interval (CI) 
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Table 4.9 illustrates the T-test statistical reports for both approaches. It shows that the 

estimate for the differences between the means is lying within the confidence interval 

(CI) in both approaches. Consequently, it can be concluded that the datasets in both 

approaches are not significantly different. This is also clear from the P-value results 

which proved that no significant differences can be observed through both approaches. 

That means, both approaches deliver a significant agreement between signals from 

overlapping flightlines after calibration. However, the developed approach delivers a 

higher P-value than the one delivered from the Alexander et al. (2010) approach. 

Moreover, the T-values which interpret completely opposite the P-value interpretation 

(this will be discussed further in next sections) also meet with these findings. Although 

γα proved to be the best parameter to assess the developed routine, these finding 

confirms the potential of using γ rather than σ to estimate the calibration constant for 

radiometric calibration purposes. 

 

 

Table 4.9. Two-sample T-test reports of backscatter coefficient signals delivered from 

overlapping flightlines through both approaches. 

 

 

4.3.5 Assessing the Calibrated Backscatter Signals  

The calibrated backscatter signals delivered from overlapping flightlines over a variety 

of land cover types with different surface trends and properties were analysed and 

compared for both investigated datasets. In order to assess which configuration is able 

to best eliminate flightline discrepancies, the four aforementioned backscatter 

parameters were considered. A selected interest area from the Bournemouth study site 

and several homogeneous targets (in terms of feature composition and material) from 

 

The developed routine 

 

Difference = mean (Flightline 1) - mean (Flightline 2) 

Estimate for difference:  0.0476 

95% CI for difference:  (-0.0148, 0.1099) 

T-Test of difference:  T-Value = 1.35,  P-Value = 0.299  

 

Alexander et al. (2010) routine 

 

Difference = mean (Flightline 1) - mean (Flightline 2) 

Estimate for difference:  0.0823 

95% CI for difference:  (-0.0315, 0.1961) 

T-Test of difference:  T-Value = 1.43,  P-Value = 0.155  
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both datasets were tested and validated using statistical and visual analysis. The 

validation process aims to compare the backscatter signals from overlapping flightlines 

to demonstrate the performance of the backscatter signals after calibration. Thirty-two 

targets were tested for the Bournemouth dataset, including planar and natural 

discontinuous trends. However due to lower point density, only twenty targets were 

investigated for the Bristol dataset. These include roads, house roofs, artificial ground, 

cars, natural and undulating terrain, bare ground, grassed ground, hedge, scrub, high 

trees and canopies. 

For each examined target and each selected interest area, the signals from overlapping 

flightlines were firstly investigated individually to check whether they follow the 

normal distributed curve. It should be noted that the target refers to one land cover 

feature, however the interest area refers to multi features within a certain region. This is 

essential as the majority of the standard statistical tests are reliant on the normal 

distribution assumption. To check the normality of the examined signals in each 

particular target, one of two approaches was implemented. The first approach was to 

plot a histogram and compute skewness and kurtosis values, in order to check sample 

data distribution and whether there is a skewness behaviour or not. The second 

approach was by applying a normality statistical test available from any statistical 

software such as Minitab, which delivers the same information by means of P-value. By 

adopting either of the previous approaches, the normality distribution of the 

comparative datasets can be analysed. 

Based on the normality check results, the decision is made in whether to utilise the      

F-test or Levene’s test when testing variances. Thereafter, a 2-sample T-test is applied 

to check whether the comparative signals have equal means or not. This is based on the 

P-value or alternatively T-value analysis (in the case where the P-values are found to be 

equal). The T-value can also be used to analyse the probability of a significant 

difference between two datasets by delivering a T-index value to be compared with a 

tabulated critical T-value which is available from T-distribution tables found in most 

statistical resources. The critical T-value is usually detected in the T-distribution table 

based on the confidence interval level selected to implement the analysis test. To better 

understand the hypothesis and interpretation of the T-value, refer to Montgomery 

(2005). Finally, to identify the parameter that provides the greatest potential for 

improvements amongst the four investigated backscatter parameters, a Pareto chart is 
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produced for each distinct target. The Pareto chart is a series of frequency bars whose 

heights indicate the impact of a certain problem. It utilised in this study to reflect the 

discrepancies between flightlines based on T-value analysis. 

To demonstrate the implemented calibration workflow, a small interest area                 

(≈ 100 m x 60 m) which comprises various surface features was selected and analysed 

from the Bournemouth study site. Gradient black and white-coded maps of original 

echo amplitude signals and the four derived backscatter parameters delivered for 

overlapping flightlines is presented in Figure 4.20.  
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2.8 2.8 

-2.2 -2.2 

(a)           (b)           (c)           

The results show that γα delivers the smallest differences between overlapping flightline 

signals in comparison with other parameters. This is evidenced over house roofs, roads 

and grass regions. Consequently, in order to examine the performance of the calibration 

routine, colour-coded difference maps for overlapping flightline signals were produced 

as shown in Figure 4.21. These include the original amplitude signals and their 

corresponding calibrated signals delivered from the γα parameter. The reduction in the 

signal differences is clearly visualised over roofs, roads and grass regions in Figure 4.21, 

demonstrating the minimisation of differences between the backscatter signals before 

and after calibration. It is also evident that a relative improvement in the signal 

differences has been detected over vegetated regions in this case, which requires further 

investigations.  

 

 

 

 

Figure 4.21. Difference maps from two overlapping flightlines for an interest area in 

the Bournemouth study site: (a) orthophoto of the interest area; (b) original echo 

amplitude difference map; (c) γα difference map. 
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To summarise these outcomes over the selected interest area, a Pareto chart of all 

backscatter parameters is shown in Figure 4.22. The chart describes the discrepancies 

between flightlines delivered from the four backscatter parameters based on the           

T-values following the T-test. It shows that the γα parameter delivers the best match 

through the lowest T-value (highest P-values), while σ shows the poorest performance 

of all the parameters. This is because the backscatter coefficient parameter normalised 

with respect to incidence angle, can better account for the differences in signals 

acquired from trajectories of different position and orientation. However, these results 

represent overall signal behaviour over the selected interest area which is composed of 

multiple target materials and geometries. Therefore, the next part of this section focuses 

on results from individual, homogeneous targets. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Pareto chart of the backscatter parameters over an interest area in the 

Bournemouth study site.  

 

 

 

To demonstrate the visual discrepancies between the flightlines for the backscattered 

signals before and after calibration, two homogeneous targets from both datasets were 

examined. Figure 4.23 illustrates the sample targets from the Bournemouth and Bristol 

datasets respectively. Figures 4.24 and Figure 4.25 show the corresponding backscatter 
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signals from overlapping flightlines for the two mentioned targets for both datasets 

respectively, represented by the histograms and the normal distribution curves. 

 

 

 

 

 

 

 

 

Figure 4.23. Orthophotos highlighting roof targets from Bournemouth (left) and Bristol 

(right) study sites. 

 

 

It can be realised from both Figure 4.24 and Figure 4.25 that the backscatter coefficient 

parameter γ delivers more homogeneous signals and a better match between the 

flightlines than σ for both targets. However, the incidence angle normalised version γα 

shows the best performance amongst the four backscatter parameters by eliminating the 

differences between the standard deviation and mean values for both flightlines through 

the inclusion of robust incidence angle estimation. 

The results delivered from all examined targets in both datasets indicate marked 

improvements after calibration. However, the γα parameter delivers the optimal match 

between flightlines except over vegetation, where the σ parameter shows better 

performance. This was evidenced by the small standard deviation differences as 

compared with the original echo amplitude differences delivered from all backscatter 

parameters, and as shown in Table 4.10 and Table 4.11. However, the differences in the 

ratio R of the variation coefficients VC is more representative as it considers both 

standard deviation and the mean values of each particular target. Therefore, the 

outcomes were demonstrated over all tested targets and presented in Table 4.10 and 

4.11 for the Bournemouth and Bristol datasets respectively. The analysis is based on 

computing the differences in the ratio R of the variation coefficients VC between 

overlapping flightlines for the four backscatter parameters, as follows: 
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                                                                                                              Eqn. 4-1 
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                                                                                                                                      Eqn. 4-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.24. The backscatter signals from two overlapping flightlines of a roof target in 

the Bournemouth study site: (a) the original amplitude signals (b-e) the four backscatter 

parameters (σ, γ, σα, γα) respectively. 
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Figure 4.25. The backscatter signals from two overlapping flightlines of a roof target in 

the Bristol study site: (a) the original amplitude signals (b-e) the four backscatter 

parameters (σ, γ, σα, γα) respectively. 
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Table 4.10. Results of the standard deviation difference in percentage and the ratio R of the variation coefficients VC delivered from all tested 

targets in the Bournemouth dataset. Highlighted red numbers are discussed in details in Section 4.3.5. 

  

 

Targets 

 

No. of points 

 

%Ϭ diff 

(Amplitude) 

 

%Ϭ diff 

 (σ) 

 

%Ϭ diff 

 (γ) 

 

%Ϭ diff 

 (σα) 

 

%Ϭ diff 

 (γα) 

 

Diff 

(R1) 

 

Diff 

(R2) 

 

Diff 

(R3) 

 

Diff 

(R4)  

Flightline 1 

 

Flightline 

2 

 
1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

15 
16 

17 

18 
19 

20 

21 

22 

23 

24 
25 

26 

27 
28 

29 

30 
31 

32 

 

Asphalt road 
Slant house roof1 

Slant house roof2 

Complex house roof1 
Complex house roof2 

Complex house roof3 

Complex house roof4 
Tennis play ground 

Artificial ground1 

Artificial ground2 

Bridge 

Car1 

Car2 
Car3 

Natural terrain1 

Natural terrain2 
Natural terrain3 

Natural terrain4 

Natural terrain5 
Natural terrain6 

Natural terrain7 

Bare ground 
Bare slope ground 

Sloped terrain 

Undulate terrain 
Cricket play ground 

Low grass1 

Low grass2 
Hedge 

Scrub 
High tree 

Canopy 

 
2944 

1663 

1287 
1818 

1498 

585 
583 

1126 

202 
471 

4420 

192 
44 

54 

2592 
2882 

2985 

1574 
1219 

2962 

1395 

2447 

1987 

1261 
1570 

1517 

13496 
895 

535 

178 
1391 

12202 

 
2785 

1576 

1324 
1730 

1544 

611 
494 

1035 

139 
385 

4547 

119 
66 

54 

2650 
2904 

2721 

1524 
1237 

2911 

1430 

2409 

1789 

1300 
1518 

1481 

13447 
960 

533 

168 
1361 

12248 

 
17.819 

15.784 

11.118 
19.922 

12.518 

24.883 
12.061 

3.666 

11.582 
7.631 

17.616 

6.489 
11.558 

7.992 

31.710 
56.315 

31.626 

4.738 
10.918 

17.881 

20.952 

12.237 

11.356 

1.906 
49.566 

9.220 

29.419 
28.463 

31.448 

12.037 
1.364 

14.657 

 
7.818 

14.067 

7.698 
16.687 

10.232 

19.616 
11.378 

2.332 

7.330 
2.533 

15.053 

5.576 
17.294 

11.737 

29.178 
33.091 

34.985 

4.345 
12.485 

17.372 

14.899 

8.178 

10.608 

1.337 
33.825 

8.439 

24.483 
25.209 

25.834 

5.164 
0.557 

8.491 

 
3.725 

10.438 

7.139 
11.538 

8.338 

13.229 
4.139 

3.454 

3.042 
1.273 

5.252 

11.666 
18.647 

0.932 

20.826 
27.233 

29.585 

3.183 
7.063 

15.217 

8.768 

5.722 

7.673 

1.784 
26.472 

2.440 

17.739 
22.171 

25.446 

7.879 
0.768 

9.855 

 
1.793 

8.769 

6.330 
3.070 

7.603 

9.292 
3.497 

3.761 

8.052 
2.729 

12.389 

2.940 
16.409 

10.176 

26.588 
15.121 

20.113 

3.750 
11.485 

12.526 

8.759 

4.161 

2.667 

1.547 
27.022 

8.429 

20.852 
21.393 

17.077 

69.417 
16.042 

38.903 

 
1.076 

3.699 

4.193 
2.939 

0.040 

3.733 
1.477 

1.025 

3.000 
1.218 

3.557 

2.751 
19.415 

0.744 

4.070 
7.121 

13.756 

2.207 
6.186 

7.211 

3.706 

2.322 

2.634 

0.137 
9.493 

2.210 

13.885 
21.28 

16.920 

44.059 
20.143 

38.898 

 
0.017 

0.192 

0.020 
0.357 

0.112 

0.091 
0.062 

0.016 

0.017 
0.028 

0.017 

0.400 
0.018 

0.571 

0.604 
0.729 

0.453 

0.930 
0.016 

0.321 

0.033 

0.023 

0.054 

0.028 
0.105 

0.013 

0.008 
0.049 

0.060 

0.053 
0.009 

0.011 

 
0.004 

0.017 

0.009 
0.007 

0.056 

0.045 
0.002 

0.008 

0.011 
0.008 

0.017 

0.013 
0.019 

0.572 

0.314 
0.987 

0.441 

0.019 
0.021 

0.062 

0.034 

0.017 

0.054 

0.028 
0.012 

0.000 

0.014 
0.055 

0.069 

0.054 
0.012 

0.028 

 
0.004 

0.192 

0.021 
0.353 

0.480 

0.053 
0.062 

0.019 

0.016 
0.011 

0.102 

0.900 
0.014 

0.500 

0.556 
0.860 

0.456 

0.926 
0.015 

0.157 

0.297 

0.017 

0.047 

0.019 
0.087 

0.013 

0.004 
0.050 

0.063 

0.167 
0.072 

0.556 

 
0.004 

0.014 

0.001 
0.006 

0.016 

0.043 
0.002 

0.008 

0.010 
0.008 

0.003 

0.013 
0.023 

0.499 

0.208 
0.549 

0.349 

0.016 
0.005 

0.059 

0.030 

0.010 

0.034 

0.015 
0.005 

0.000 

0.004 
0.048 

0.059 

1.161 
0.088 

0.573 
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Table 4.11. Results of the standard deviation difference in percentage and the ratio R of the variation coefficients VC delivered from all tested targets 

in the Bristol dataset. 

  

 

Targets 

 

No. of points 

 

%Ϭ diff 

(Amplitude) 

 

%Ϭ diff 

(σ) 

 

%Ϭ diff 

(γ) 

 

%Ϭ diff 

(σα) 

 

%Ϭ diff 

(γα) 

 

Diff 

(R1) 

 

Diff 

(R2) 

 

Diff 

(R3) 

 

Diff 

(R4)  

Flightline 1 

 

Flightline 2 

 

1 

 

Asphalt road 

 

1321 

 

1352 

 

0.047 

 

0.040 

 

0.034 

 

0.037 

 

0.029 

 

0.038 

 

0.029 

 

0.031 

 

0.018 

2 House roof1 812 790 6.62 0.055 0.300 0.052 0.210 0.027 0.022 0.026 0.009 

3 House roof2 1719 2060 1.873 0.087 0.041 0.067 0.019 0.061 0.051 0.015 0.007 

4 House roof3 538 533 0.68 0.0934 0.0662 0.077 0.0175 0.013 0.011 0.009 0.002 

5 Complex roof1 2100 2084 0.82 0.059 0.033 0.034 0.009 0.029 0.024 0.025 0.022 

6 Complex roof2 1206 1179 3.456 0.389 0.111 0.370 0.106 0.048 0.032 0.021 0.015 

7 Complex roof3 1376 1379 6.12 0.304 0.054 0.281 0.007 0.022 0.016 0.021 0.012 

8 Artificial ground2 725 729 1.14 0.045 0.034 0.036 0.034 0.029 0.011 0.025 0.000 

9 Artificial ground1 913 972 3.85 0.093 0.067 0.078 0.023 0.010 0.010 0.010 0.010 

10 Highway bridge 1501 1472 5.131 0.162 0.043 0.093 0.014 0.119 0.078 0.117 0.069 

11 Natural terrain1 594 522 1.28 0.019 0.100 0.010 0.005 0.033 0.031 0.029 0.027 

12 Natural terrain2 828 726 0.861 0.135 0.041 0.084 0.032 0.049 0.039 0.039 0.017 

13 Natural terrain3 605 527 2.726 0.077 0.013 0.067 0.010 0.026 0.023 0.028 0.011 

14 Bare ground 331 388 0.26 0.110 0.035 0.083 0.022 0.029 0.022 0.021 0.012 

15 Bare slope 1022 1007 0.083 0.025 0.006 0.014 0.003 0.002 0.006 0.001 0.001 

16 Low grass1 1551 1559 0.669 0.543 0.171 0.342 0.134 0.266 0.235 0.243 0.143 

17 Low grass2 1613 1729 2.842 0.185 0.035 0.159 0.030 0.065 0.064 0.005 0.005 

18 Low tree 2225 2169 0.32 0.013 0.037 0.214 0.038 0.016 0.045 0.089 0.091 

19 High tree 3515 3355 1.722 0.016 0.077 0.019 0.092 0.019 0.027 0.125 0.122 

20 Canopy 

 

5543 5503 1.559 0.006 0.017 0.013 0.008 0.005 0.047 0.029 0.036 
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The γα parameter shows optimal agreement by delivering the smallest difference R 

value represented by Diff (R4) over all targets in both datasets except in the case of 

vegetation, where σ is shown to deliver a better agreement over these targets. However, 

one particular case was detected which did not meet with these outcomes. The Car2 

target in the Bournemouth dataset was found to deliver the smallest R value for σα. In 

this particular case, the standard deviation difference between flightlines was found to 

deteriorate after calibration in comparison with the original amplitude signals. It was 

also noticed that the backscatter cross-section performs better than the backscatter 

coefficient over this target. As a result, the incidence angle normalised version of the 

backscatter cross-section shows better performance than the corresponding normalised 

version of the backscatter coefficient. This may be caused by the fact that the sample 

size for this particular target is relatively small, and therefore, the comparison with the 

corresponding signals from overlapping flightlines may be biased by the inclusion of 

the FWF points. A similar deteriorating behaviour in the discrepancies of the 

overlapping signals after calibration was also detected over Car3. However in this case, 

R4 was found to be the smallest which meets with the overall outcomes. Another odd 

behaviour was detected over the Tennis playground target, where σ delivers a smaller 

standard deviation difference than γ. However, after considering the incidence angle 

effect, γα shows the best agreement results between overlapping flightline signals, which 

leads to small R4 value. Although the Bristol dataset contains a lower point density than 

Bournemouth, no odd behaviour was reported with any of the examined targets. 
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4.4 ASSESSING THE DEVELOPED SEGMENTATION ROUTINE 

4.4.1 Selecting the Optimal Backscatter Parameter 

The radiometric calibration analysis can deliver four backscatter parameters for 

individual echoes. However, no general assumption can be applied to all surface feature 

types regarding the optimal parameter to use in the developed segmentation approach. 

Therefore it is necessary to discriminate between land cover classes based on a reliable 

criterion in order to select the optimal parameter for individual classes.  

Previous studies into FWF-ALS data have found, pulse width to be a reliable parameter 

to group points into rough and smooth surfaces. Simulation results presented by Lin 

(2009) for the same datasets as investigated here, showed that a pulse width value of 

2.69 ns can be used to effectively group points into these two classes. However in 

reality, and especially over natural land coverage, it is likely that there will be rough 

surfaces which do not necessarily represent vegetation.  

To better understand the relationship between pulse width and roughness, pulse width 

was investigated over different land cover types at the two test sites. Nine and seven 

land cover categories were investigated and analysed from the Bournemouth and the 

Bristol datasets respectively (Table 4.12). The examined categories included multiple 

targets from different land cover types with variant levels of roughness. These targets 

were identified with the aid of orthophotography from multiple flightlines and different 

regions in both study sites. The values highlighted in red and green in Table 4.12 

represent categories with a mean pulse width > 2.69 ns. Values in green represent rough 

surfaces which are not vegetation. Therefore another criterion must be used to exclude 

non-vegetation from the rough class. The number of returns delivered from vegetation 

was greater than those delivered from non-vegetation. Therefore, a condition was 

proposed to use the number of returns as a criterion to separate vegetation echoes from 

non-vegetation in the rough class. 

Following these analyses, a condition was set to select the optimal backscatter 

parameter for individual classes, as illustrated in Table 4.13. This condition was used to 

select the optimal backscatter parameter for individual echoes based on the surface 

roughness. It is important to mention that the smooth class does not only include 

perfectly smooth surfaces such as man-made features. It also includes all regular 

surfaces, even hedges and mown grass, as these surfaces exhibit a well-defined 
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geometry in terms of incidence angle. Thereafter, the decision was made following the 

diagram in Figure 4.26. 

 

 

 

 

Dataset 

 

 

Feature type 

 

No. of 

points 

 

Height 

above 

ground 

(m) 

 

Mean of 

the pulse 

width 

(ns) 

 

Std. of 

the pulse 

width 

(ns) 

 

 

 

 

 

Bournemouth 

 

House roof 

Mowed grass 

Asphalt road 

Bare natural sloping 

Undulating terrain 

Hedge 

Scrub 

Small tree 

Canopy 

 

3198 

3348 

385 

648 

2722 

533 

568 

3361 

6202 

 

3.0-6.0 

0-0.1 

0 

0 

0 

0.5-2.5 

1.0-1.2 

1.5-2.0 

12.0-17.0 

 

2.557 

2.555 

2.626 

2.701 

2.769 

2.599 

2.754 

3.864 

3.004 

 

0.015 

0.079 

0.028 

0.055 

0.066 

0.053 

0.242 

0.588 

0.652 

 

 

 

 

Bristol 

 

House roof 

Mowed grass 

Asphalt road 

Bare natural sloping 

High grass 

Scrub 

Canopy 

 

1735 

1422 

1313 

915 

4551 

1540 

2376 

 

6.0-10.0 

0-0.2 

0 

0 

0.4-0.7 

1.0-2.0 

15.0-20.0 

 

2.508 

2.561 

2.526 

2.771 

2.698 

2.977 

3.119 

 

0.104 

0.321 

0.033 

0.384 

0.362 

0.634 

0.780 

 

Table 4.12. Pulse width analysis for the Bournemouth and Bristol datasets. 
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Table 4.13. Backscatter parameters selection for subsequent segmentation. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. Backscatter parameter decision diagram. 

 

Class 

 

Condition 

Backscatter 

parameter 

 

Smooth 

Rough but not vegetation 

Vegetation 

 

 

Pulse width <= 2.69 

Pulse width > 2.69 AND no. of returns <= 2 

Pulse width > 2.69 AND no. of returns > 2 

 

γα 

γα 

σ 
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4.4.2 Testing the Developed Routine 

The developed routine was tested over selected targets from several land cover types for 

both datasets. These targets were selected using orthophoto coverage and they include 

surfaces with planar and non-planar trends such as man-made and natural features. 

Consequently, an interest area from the Bournemouth dataset was selected to visualise 

the performance of the implemented method over an extended region with various land 

cover features. The reason for choosing the majority of the selected targets and the 

interest area to demonstrate the results to be from the Bournemouth dataset is due to its 

high point density as compared with Bristol. As a result, this provides better 

visualisation of the detection of minor details and delivers more comprehensive 

outcomes. Later, the results were compared with results delivered from applying the 

same segmentation workflow without integrating FWF physical information. Thereafter, 

outcomes from both approaches are analysed and discussed. 

Figure 4.27 shows the segmentation results for a house roof target from the 

Bournemouth study site. The results demonstrate how the method can successfully 

discriminate between different roof facets and group point clouds into meaningful 

segments which define the geometry of the selected target. It is also evident from Figure 

4.27 that the method can successfully detect a chimney on the roof surface and group 

the points from this feature into a separate segment from the background. Although the 

method still shows some shortcomings at the very sharp edges where the points fail to 

be included to either side of the surface, this was shown to be overcome in cases when 

adjacent sides belong to different homogeneous materials by means of different 

backscatter values.  

In addition, the method shows promising results over grass regions where two types of 

mown grass were successfully discriminated from each other. This can be demonstrated 

in Figure 4.28 over a selected target region in the Bournemouth study site. The results 

demonstrate the method’s performance in distinguishing between two types of well cut 

grass regions where both have similar geometric characteristics, but different 

backscatter values, thus enabling their differentiation. 
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                      (a)                                                                                 (b) 

                      (a)                                                                                 (b) 

 

 

Figure 4.27. The segmentation results of house roof target from the 

Bournemouth study site: (a) orthophoto (b) segmented point clouds. 

 

 

Figure 4.28. The segmentation results of a mown grass target from the 

Bournemouth study site: (a) orthophoto (b) segmented point cloud. 
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Another example is presented in Figure 4.29, illustrating a natural terrain target from the 

Bristol study site which comprises a mound of earth with clumps of vegetation and 

grass. This demonstrates the performance of the developed method over non-planar 

surfaces such as natural land coverage which are likely to be partly covered by 

vegetation. The results show successful detection of the small mound and differentiate 

this from the semi-flat surrounding ground. Furthermore, the method can distinguish 

between both sides of the mound and also detect the vegetation patches in the upper left 

corner of the figure. 

Further, Figure 4.30 shows interesting results for a highway bridge target from the 

Bournemouth study site, which includes various different materials such as asphalt, 

metal, and grass. As the target represents a highway, it can be realised from the 

segmented point cloud results in Figure 4.30-b that a car was captured during the scan, 

but which was not captured in the orthophoto in Figure 4.30-a. The segmentation 

routine shows successful detection of the bridge barriers on both sides as well as the 

central reservation between the two carriageways on the ground. Although the method 

fails to discriminate between the bridge and the highway beneath (a well-known 

shortcoming in the majority of available segmentation approaches), the method shows 

promising results in detecting some of the road markings on the highway.  Figure 4.30 

also shows the detection of the grassy regions beneath the bridge by delivering a 

separate segment from the surrounding asphalt region.   

In order to generalise the outcomes over a large scale study, an interest area was 

selected, as shown in Figure 4.31. The figure shows various land cover features over a 

selected urban area of 65 m x 65 m in the Bournemouth study site, as visualised from 

the orthophoto in Figure 4.31-a. Figure 4.31-b shows the Digital Surface Model (DSM) 

of the selected area rendered by height differences for better understanding of the FWF 

echo coverage. The segmentation results are presented in Figure 4.32 where some 

interesting behaviour is highlighted and analysed. Note that, due to limited options 

available to colour segments in Figure 4.32, same colours of different segments does not 

mean they are of same material/geometry. For example, the purple ground segments and 

purple roof facets are obviously different. 

The most interesting outcome from the developed method is the capability to 

discriminate grass from artificial ground such as asphalt. This can be visualised clearly 

from the purple segment on the left bottom part of the interest area. This segment was 
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                          (a)                                                                                 (b) 

                       (a)                                                                                    (b) 

delivered after successful separation from the green grass segment that covers most of 

the rest of the ground surface of the area. These outcomes can be further visualised in 

the highlighted inset regions of 1, 2, and 5. In region 1, it can be seen from the 

orthophoto imagery in Figure 4.31-a that this area is represented by a grass lawn, and 

Figure 4.32 (1) shows the successful segmentation of the majority of the grass echoes in 

this region. The method can also distinguish some of the artificial ground echoes from 

the surrounding grass segment, as shown in region 2. In region 5, the method detects 

some of the asphalt echoes of the ground, but fails to detect the surrounding area, by 

mistakenly grouping echoes lying in the south-east corner of the interest area as part of 

the grass segment. 

 

Figure 4.29. The segmentation results for a natural terrain target from the Bristol study 

site: (a) orthophoto (b) segmented point cloud. 

Figure 4.30. The segmentation results of a highway bridge target from the 

Bournemouth study site: (a) orthophoto (b) segmented point cloud. 
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(a) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31. An interest area from Bournemouth study site: (a) orthophoto (b) 

Digital Surface Model. 
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4 5 

2 

1 

3 

(a) 

(b) 

 

Figure 4.32. The segmentation results for the interest area in the Bournemouth study 

site: (a) 3D perspective view of the segmented point clouds (b) 3D perspective view of 

the segmented point clouds with DSM in the background. 
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The method was also found to successfully detect cars from the surrounding 

background and discriminate between different planes of these minor features such as 

the car’s body and roof, as illustrated in region 3. Furthermore, the successful detection 

of chimneys and dormer windows on the house roofs has been demonstrated across the 

interest area. This performance is evident in region 4. It also can be seen from Figure 

4.32 that the method can successfully discriminate hedges from trees and grass. 

In order to analyse the potential of FWF additional information, the method was applied 

without integrating FWF physical observables (either in echo amplitude normalisation 

or in the segmentation process) for the same interest area and otherwise following the 

same approach. The results are demonstrated in Figure 4.33. It can be seen that, without 

integrating FWF additional information, the method fails to discriminate grass from 

artificial ground as expected. It also fails to deliver meaningful segments of car targets 

and shows shortcomings in segmenting some roof facets which have similar geometric 

characteristics but belong to different surfaces, as highlighted at the top of the figure. 

Moreover, this segmentation approach shows poor results over hedges as compared 

with the results delivered from Figure 4.32. Furthermore, the approach shows poor 

performance over some roof surfaces where vegetation was found to cover some facets 

of the roof. In this case, meaningless segments were delivered, such as the example 

highlighted at the bottom of the figure.  

In comparison with the integration of FWF information, it can also be noticed that using 

FWF additional information can deliver more homogeneous segments than those 

delivered without using this information over some house roofs facets. This behaviour 

can be considered as a positive outcome of the developed method, which overcomes the 

sensitivity of the RSN method to discontinuities. It was also found that using FWF 

information can better describe the minor details over house roofs than without 

integrating this information. 
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Figure 4.33. The segmentation results for the interest area in the Bournemouth study 

site without integration of FWF physical information. 

 

 

4.4.3 Validating the Developed Segmentation Routine 

The segmentation routine was validated through comparison to a manual segmentation 

process in order to assess the accuracy and the performance of the implemented 

approach. The same interest area from the high density (Bournemouth) dataset used in 

the previous section was utilised in the validation process. For accuracy assessment 

purposes, an error matrix (or confusion matrix as usually termed in the remote sensing 

community, (Campbell, 1996)) was produced. This was performed after excluding all 

vegetation segments (except mown grass), as it is hard to assess performance and 

accuracy over such irregular features.  
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Firstly, the interest area was segmented manually into 193 different segments using the 

orthophoto as a visual reference. The ground pixel size of the orthophotops was             

5 cm x 5 cm. These segments included house roof facets, minor details over the roofs 

such as dormer windows and chimneys, cars, artificial ground, and mown grass 

segments, in addition to different kinds of vegetation. Figure 4.34 illustrates the results 

of the manual segmentation. 

 

 

Figure 4.34. The results of the manual segmentation of the selected interest area for the 

Bournemouth study site. 

 

It is evident from Figure 4.34 that numerous different details have been included based 

on the orthophoto. However, the majority of these details represent vegetation. In order 

to visualise the performance of the introduced routine in comparison with the manual 

results, house roof segments were only considered and presented in Figure 4.35.   
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             (a)                                                                 (b) 

Figure 4.35. The validation results for the house roof segments for the selected interest 

area in the Bournemouth study site: (a) manual segmentation (b) automatic 

segmentation. 

 

It can be seen from Figure 4.35 that the overall performance of the automatic routine is 

promising, as all of the segments were correctly segmented except a couple of minor 

segments in the lower-right and left-middle of the area (highlighted), which seem to be 

missing from this layer. Apart from this, the automatic method effectively defines the 

shape of individual segments by correctly distinguishing the different surfaces and 

geometries. However, visual validation analysis is not sufficient to assess the 

performance of the developed method. Therefore, accuracy assessment analysis was 

undertaken and implemented through error matrix analysis. 

The Error matrix is a means of comparing two datasets in a tabular form (Campbell, 

1996; Lillesand et al., 2004). One of these datasets should represent the reference (truth) 

dataset while the other represents the data derived from the automated user technique 

(tested). The error matrix is usually used to assess classification accuracy in terms of 

user accuracy and producer accuracy as a percentage, through Eqn. 4-4 and 4-5 

respectively, (Lillesand et al., 2004). User accuracy represents error of commission as 

estimated based on the tested dataset while the producer’s accuracy represents the error 

of omission in the reference dataset. 
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                                                                               Eqn. 4-4 

                    
   

 
                                                                       Eqn. 4-5 

 

Where T represents the number of points delivered from the tested routine, and R 

represents the number of points delivered from the reference routine.   

Firstly, the segments were classified into five main categories and symbolised as stated 

in Table 4.14 to facilitate category representation in the error matrix. Later, the 

summation of points of all segments was delivered for individual categories and 

presented in the error matrix as the total number of points, as illustrated in Table 4.15. 

Thereafter, user and producer accuracies were estimated for individual categories 

following Eqn. 4-4 and 4-5 respectively, as illustrated in the error matrix.  

 

 

Categories No. of segments Symbol 

 

House roof facets 43 H 

Chimneys and minor roof features 26 CH 

Cars 2 C 

Artificial ground 8 AR 

Mown grass 8 CL 

 

Table 4.14. Error matrix categories and their corresponding symbols. 
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Table 4.15. Error matrix of the selected interest area in the Bournemouth study site, 

excluding vegetation, and showing FWF echo counts in addition to producer and user 

accuracies. 

 

The user’s accuracy shows very promising results over all the categories. However, 

slightly poorer performance of 75% and 76% is delivered from artificial ground and 

mown grass respectively. These outcomes were expected following the visual 

segmentation results in Figure 4.32 which demonstrate miss-discriminations between 

artificial ground and clipped grass in region 5 and the surrounded area. This is also 

evident from the low producer’s accuracy for the artificial ground category. However, 

high producer’s accuracy was delivered from the mown grass. For a general outcome, 

overall and mean accuracies were estimated using the error matrix results and following 

Eqn. 4-6 and 4-7 respectively, (Lillesand et al., 2004). 

 

                 
∑   

∑ 
                                                                                  Eqn. 4-6 

              
∑                   

                
                                                               Eqn. 4-7 

 

The overall accuracy was 82% while the mean accuracy was 79% which can be 

considered to be extremely promising. 

 
Automatic segmentation 

  Manual 

segmentation H CH C AR CL Total 

Producer’s 

accuracy % 

H 11367 69 0 1473 1890 14799 77 

CH 87 693 0 0 23 803 86 

C 0 0 101 43 0 144 70 

AR 343 0 19 4880 1962 7204 68 

CL 364 0 0 126 12099 12589 96 

Total 12161 762 120 6522 15974 35539 

 User’s 

accuracy % 93 91 84 75 76 
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In order to compare these outcomes with the approach without integrating FWF 

physical information, the same validation analysis was performed and a new error 

matrix was delivered (Table 4.16).   

 

 

Table 4.16. Error matrix of the selected interest area in the Bournemouth study site, 

excluding vegetation, and showing FWF echo counts without considering FWF physical 

information in addition to producer and user accuracies. 

 

The reduction in the user’s accuracy over the mown grass category was obvious from 

Table 4.16 in a comparison with the results delivered from integrating the FWF 

additional information in Table 4.15. However, the poor producer accuracy of 25% was 

obtained over artificial ground which defines the mis-segmentation results delivered 

from this particular category as illustrated in Figure 4.33. The segmentation accuracies 

(user and producer) of chimneys and minor roof features were also noticed in Table 

4.16 to be less than the corresponding accuracies delivered from Table 4.15. On the 

other hand, the producer’s accuracy from the cars category was reported to be very low. 

No logical explanation for this particular behaviour of the approach for cars could be 

found, however, this outcome meets with the results delivered from Figure 4.33. The 

overall and the mean accuracies of the segmentation results over the interest area 

without integration FWF additional information were 67% and 60% respectively. These 

outcomes show the deterioration in the results without FWF physical information and 

proved the potential of integrating this additional information in the segmentation 

techniques. However, these outcomes could not be achieved without a comprehensive 

radiometric calibration of the FWF physical information. 

 
Automatic segmentation without FWF 

  Manual 

segmentation H CH C AR CL Total 

Producer’s 

accuracy % 

H 10452 162 0 54 4131 14799 71 

CH 56 611 0 0 136 803 76 

C 0 0 58 18 68 144 40 

AR 0 0 0 1787 5417 7204 25 

CL 809 200 11 580 10989 12589 87 

Total 11317 973 69 2439 20741 35539  

User’s 

accuracy % 92 63 84 73 53   
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4.5 SUMMARY 

In Chapter Four, results delivered from the methodology introduced in Chapter Three 

are presented and analysed. The chapter presented the results of the main three sections 

of the methodology by testing and validating these techniques using visual and 

statistical analysis. The aim was to deliver a quantitative evidence of the successful 

implementation of the developed methodology, and demonstrate the values of fully 

utilising FWF information.  The results were tested over multiple surface features of 

different characteristics and for two datasets of different point densities through visual 

and statistical analysis. 

The outcomes of this chapter can be summarized as follows: 

 The results delivered from testing and validating the new RSN method 

demonstrate that weaknesses in the available surface normal estimation 

approaches can be overcome. Consequently, the normalised amplitude signals 

show a significant reduction in the signal differences between overlapping 

flightlines through the RSN method. The main outcomes can be listed as follows: 

1. The RSN method is capable of detecting small disturbing objects on 

slanted roofs and delivering an accurate estimation of the normal for 

relatively minor features. 

2. The RSN method successfully managed to differentiate walls from roofs 

and clearly represents the wall structure, which is promising for urban 

feature extraction. 

3. The RSN method is able to effectively define discontinuities by 

following the trend the challenging natural surfaces and faithfully 

reflecting minor rough detail. 

4. The RSN method shows a marked reduction in the difference of the echo 

amplitude signals between overlapping flightlines after normalisation. 

5. The RSN method shows better performance for dense datasets (e.g. > 

10 points/m
2
). However this is based on feature of interest and the 

application of the study. 

 

 The results delivered from the developed radiometric calibration routine show 

the effective role of the incidence angle parameter in reducing backscatter signal 
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discrepancies between overlapping flightlines after calibration. The main 

outcomes can be listed as follows: 

1. It was proven that using reference target with known reflectivity value 

delivered from practical measurements can lead to a better match 

between calibrated backscatter signals from overlapping flightlines than 

using published literature values. However, it is recommended to 

perform the reflectivity measurements of the reference target at the time 

of data capture in order to deliver the same conditions of the day of scan. 

2. Results show the positive potential of using γ rather than σ to estimate 

the calibration constant for radiometric calibration purposes. 

3. It was proven that the γα parameter provides the greatest potential 

amongst the four investigated backscatter parameters (σ, γ, σα) by 

delivering the optimal match between flightlines except over vegetation 

where the σ parameter shows better performance.  

 

 The results delivered from testing the developed segmentation technique 

emphasise the potential of integrating FWF calibrated physical information to 

develop segmentation approaches which fully utilise FWF information. The 

main outcomes can be summarised as follows: 

1. It was found that echo width and the number of returns can be 

successfully utilised to select the optimal backscatter parameter for 

individual echoes to be integrated later in the developed segmentation 

routine. 

2. It was proven that the developed method can successfully discriminate 

between features having the same geometric characteristics but different 

backscatter values such as artificial ground and clipped grass. 

3. It was demonstrated that the developed approach can deliver successful 

discrimination of minor details over houses roofs from the surrounding 

roof echoes such as chimneys, and dormer windows, and can also better 

define car’s facets than relying on geometric information alone. 

4. The developed segmentation routine was found to offer an overall 

accuracy of 82% based on comparison with a manual validation process. 

This is considered an encouraging basis for future utilisation of FWF 

information in segmentation applications. 
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CHAPTER 

5 

DISCUSSION  

 

 

 

5.1 INTRODUCTION 

A methodology to segment unstructured 3D point clouds from FWF-ALS data into 

meaningful clusters, which reliably represent 3D objects and simulate land cover 

features, was introduced in Chapter 3.  The approach is based on incorporating the 

physical observables from FWF alongside the geometric information to enhance 3D 

object segmentation routines. The method was tested and validated through 

implementation on real surface targets by visual and statistical analysis using two 

datasets with different characteristics as introduced in Chapter 4. This chapter will 

evaluate the implemented routines and discuss the main findings delivered from the 

practical implementation of the proposed methodology. It will also highlight robustness 

issues to enable rigorous evaluation of segmentation approaches, and associated 

techniques.  

Firstly, the appropriateness of the adopted data management and processing 

methodology is discussed in Section 5.2. This includes the adequacy of the RGD 

approach to post-process the raw FWF-ALS data used in this research. This section also 

reviews the significant potential of the high-throughput computing scenario to handle 

intensive processing and management of large lidar datasets. In Section 5.3, detailed 

discussion of the reliability of the physical data normalisation approach is addressed. 

This considers a number of issues associated with the novel RSN method, including 

accuracy and effectiveness in relation to the methodology, and the datasets utilised. In 

Section 5.4, the performance of the developed radiometric calibration routine is 

discussed and further analysed.  This comprises quality assessment of the adopted 
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calibration constant and the derived calibrated backscatter energy values. Finally, in 

Section 5.5, the developed segmentation algorithm is assessed in the context of 

performance and accuracy, and in comparison to existing segmentation scenarios.  

 

5.2 FWF DATA MANAGEMENT AND PROCESSING 

The reason for using the RGD method to post-process FWF-ALS data in this research 

lies in its reliability as a pulse detection method to deliver higher range accuracy than 

other available routines. Furthermore, the RGD method was utilised because of its 

capability to resolve challenging signals and detect targets from complex overlapping 

waveforms. This leads to enhanced representation of land cover features by translating 

the complete received energy into rigorous spatial and physical information. This 

algorithm has already been demonstrated to deliver a greater number of valid echoes 

from individual waveforms than those delivered from the standard approaches, leading 

to better descriptions of surface features. Thus, more accurate 3D data for diverse 

applications can be delivered, including terrain generation, 3D modelling, forest 

mapping, etc. As a result, post-processing with RGD ensures increasing the density of 

the overall datasets, which provides potential in defining neighbourhoods for individual 

points. This performance can potentially increase the accuracy of the adopted RSN 

method and minimise the chances of discarding fine surface details, which cannot be 

delivered if only a limited number of echoes are detected. Therefore, the RGD method 

was adopted here to extract accurate geo-referenced 3D point cloud alongside physical 

observables for individual echoes to facilitate this goal.   

As the proper processing strategy to deliver optimal outputs, high-throughput 

computing was adopted to run the RGD method. The potential of this type of processing 

can be identified as the capability to run independent parallel jobs on different physical 

computers and later merge their output to deliver one combined solution. Therefore, it 

saves time and cost needed to run successive jobs on single computer with limited 

memory size, which can slow processing down considerably. This is basically relying 

on the efficiency of accessing independent memories and using a network for 

communication (Section 2.4). Whereas the processing time is an important factor here 

to deliver FWF point cloud, the Condor workflow was adopted.  
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However, with Condor based student clusters, such as the case in Newcastle University, 

large “cycle stealing” can occur, as the computers are not dedicated for high-throughput 

computing only. In order to reduce network usage and the wastage of computation time 

that occurs in cases of eviction by student login, the new technique of returning data to 

the user while the code is still running on the remote computer was developed, as 

explained in Section 3.3. The routine was developed in cooperation with the Digital 

Institute in Newcastle University to tackle problems in managing large datasets through 

the Condor system, which had less than six years history in the University network. 

This technique was modified to fulfil the needs for a model that keeps on processing 

until all jobs are completed, thus no data is lost due to computer eviction. As check 

pointing can provide reliable data storage for a period of time (refer to Section 3.3), the 

developed pull mode helped the user to re-request a new job upon eviction without 

wasting time to re-data transfer. As a result, this pull model allowed the running of a 

large number of jobs without the need for shared file space. This provides an advantage 

of using the free time on worker nodes more dynamically, such as in the case of       

non-dedicated Condor environments, which has the potential to run large datasets. 

Furthermore, the developed routine addresses and analyses any log run errors that might 

occur, which helps the user to diagnose the problem for a potential manipulation while 

the code is still running remotely. The project shows significant and powerful potential 

to speed up the processing records as highlighted in Section 3.3, which can potentially 

increase with customised settings and larger network usage.     

 

5.3 FWF DATA NORMALISATION USING RSN METHOD 

The RSN method proposes a new strategy, which is applicable to a wide variety of land 

cover types and dataset point densities. The aim of the RSN method is to normalise the 

FWF physical observables from the incidence angle effect acquired due to different 

flying direction and position of multiple flightlines. Correcting the backscatter signal 

from this major effect facilitates signal calibration towards full integration of FWF 

information. Consequently, this method is not restricted to FWF as it could be adopted 

to compensate incidence angle effects in any laser scanning physical signals for a range 

of downstream radiometric calibration and point cloud segmentation applications. 

Compensating the backscatter signals of individual echoes from this effect will 
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eliminate signal discrepancies in adjacent overlapping flightlines. Therefore, 

performance assessment of the RSN method was undertaken through checking 

normalised signal discrepancies from overlapping flightlines over individual targets and 

selected areas. The validation process was based on comparing the differences in the 

STD values between overlapping flightlines before and after normalisation. The 

normalised signals from the RSN method were compared with the original amplitude 

signals and the results from applying the standard spherical approach to assess 

variations.  

 

5.3.1 Neighbourhood Definition 

In order to fulfil the needs for different applications, it is essential to process the 

collected point cloud to extract useful information such as surface normal. The first step 

for potential processing is to define the neighbourhood system for individual points in 

an appropriate way because inappropriate neighbourhood definition can lead to 

erroneous surface detection that ends with wrong 3D object representation. Point 

density, which gives an indication of the point spacing, is one of the key dataset 

characteristics for successful neighbourhood implementation. The overwhelming 

majority of existing neighbourhood definitions considers point clouds with uniform 

point density. However, this is unlikely to occur over all land cover features because of 

the various scanning specifications and target characteristics. Further, these 

neighbourhood approaches, which are used to define the 3D volume for normal vector 

estimation in ALS data, only consider the 2D distribution of the point cloud. These 

methods are designed to work with 2.5D points and discard the characteristics of the 

surface enclosing individual points. 

The neighbourhood definition of the developed RSN method is based on selecting the 

reliable minimum number of points to define the surface for individual points. All 

available approaches are based on fitting a plane to all included neighbourhood points. 

However, the RSN method finds the exact plane associated with a specific point for 

planar surfaces and the best approximate surface over non-planar surfaces by 

establishing small planes from a minimum number of neighbourhoods. In this case, the 

defined spherical system is overcoming the challenge of considering an arbitrary set of 

coplanar points those representing various surfaces to be identified by the same space 
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parameters. This has shown potential to represent land cover features with various 

surface trends and as demonstrated in Section 4.2. 

 

5.3.2 Quality Analysis of the Normal Vector Estimates  

The available normal vector estimation methods are based on minimising the distances 

between neighbourhood points and the postulated plane by iterating the procedure until 

no significant change to plane parameters is acquired. This solution can deliver 

uncertain results over non-planar surfaces because small surface details are discarded. 

Therefore, depending on the surface characteristics, the delivered normal from the 

standard spherical method is not always reliable and should not adopt over different 

land cover types. Whilst the normal delivered from existing methods may be reliable for 

some of the points used to define the system, it is not necessarily to be certain and 

reliable for the point of interest itself. Therefore, the RSN method was developed to 

deliver robust normal vector estimations for individual point cloud over different land 

cover types.  

The core difference of the RSN approach lies in the fact that a rather large 3D spherical 

metric definition is adopted with the existing approaches; it is then reduced until some 

planarity criterion is met. Thus, many points could be included and fitted to the 

generated surface, which may not necessarily represent the surface properties. Reducing 

the radial distance to the minimum with these approaches to assure robustness was 

shown to detect a lower number of points than the minimum required to apply the 

moment invariant theory (less than 3 points) over some features. This is mainly due to 

varying point density and distribution over different land cover types.  

In contrast with the RSN method, the approach starts at point of interest and selects only 

the nearest three neighbours which delivers a sufficient good plane. In other words, the 

RSN method is better considering the orientation of individual points rather than 

delivering an approximation solution. This was achieved by checking all possibilities in 

the nominated neighbourhood points in order to meet the definition threshold and select 

the optimal solution for individual points following the workflow explained in Section 

3.4.1. The solution is obtained through the robust planarity checking that delivers 

reliable normal estimates for different targets with various surface trends. This is 

preferable to the unreliable normal delivered from fitting a plane to a group of points 
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with different orientations, which is commonly acquired over natural land coverage and 

surfaces with rough trends. This is the main difference between RSN and other 

approaches as these techniques are likely to discard topographic details of rough 

surfaces and minor features over planar surfaces. This may be acquired because of the 

non-homogeneity and the complex distribution of these points. Later, this translates to a 

wrong normalised echo amplitude value and erroneous results for different lidar 

applications including the segmentation of point cloud.   

The novelty in the RSN method is based on the notion of minimum neighbourhood 

definition validated by robust planarity checking, which is necessary to assure 

robustness because of reliance on point density and accuracy. Further, the covariance 

matrix in the RSN method, which delivers the normal for individual points, relies on 

both the geometric and the additional physical information from FWF. This overcomes 

the non-homogeneity in the points enclosed within the volumetric neighbourhood 

system defined for individual points.  As a result, this helps to deliver a more accurate 

normal value over planar surfaces and the best approximate normal over non-planar 

surfaces. The method was tested over a maximum point density of 15 pt/m
2
 in the 

Bournemouth dataset. However, it is expected to deliver better results with even higher 

point densities. This is because denser point cloud data can deliver better object 

representation, which results in more accurate normal vectors.  

The RSN method can deliver a highly precise estimation over planar surfaces and the 

best approximation over non-planar surfaces following robustness checking. This 

delivers a marked reduction in the echo amplitude signal discrepancies between 

overlapping flightlines over all tested targets after normalisation. This is because the 

RSN method is adaptive and defines a constant and minimal number of neighbourhood 

points, ensuring relatively accurate results over data of variable density. Consequently, 

results are highly sensitive to local point density and scan pattern, which can vary 

spatially across a dataset, and which cannot be accommodated for through use of a fixed 

spherical radius. In the case of the Bournemouth dataset, this may amount to more than 

35 points being included within the defined 3D spherical volume, and thus considered 

in the computation of the normal vector by the standard spherical method. In contrast, 

the RSN method maintains a relatively high accuracy as it defines a fixed and limited 

number of neighbourhood points for each individual point. The RSN method results are 

robust and reliable for determining ALS point orientation estimates over a wide range of 
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natural and man-made targets. Furthermore, this approach demonstrates the potential to 

integrate additional FWF observables in order to improve existing segmentation 

approaches.  

 

 5.3.3 Overall Performance assessment  

The RSN method shows very reliable performance in corner regions, including corners 

between roofs and walls and other examples of corners between planar surfaces. In 

these instances, the normal estimates for a point near a corner on one plane are not 

degraded by the influence of points on an adjacent plane, which is oriented differently. 

Although the method still has weaknesses in estimating the correct normal for corner 

points where the adjacent surfaces are of differing material types (e.g. where a concrete 

wall meets a grassed ground surface), further improvements were delivered through the 

inclusion of backscatter parameters. The method has demonstrated the capability to 

robustly define planar surfaces and represent details of minor features. However, some 

shortcomings in the results were delivered with the Bristol dataset because of the lower 

point density.  

Performance assessment was adopted for individual targets in order to analyse the effect 

of incidence angle on objects with similar characteristics. Later, the analysis was 

extended to include selected regions with various surface characteristics. The standard 

deviation difference was selected as a validation criterion because this can deliver an 

accurate representation of the discrepancies in performance between overlapping 

flightlines after normalisation. The normalised signals have shown significant 

improvements in comparison with the original echo amplitude signals. Further, the 

outcomes from the RSN routine have shown potential and reliability as compared with 

those produced through the standard spherical method, especially over natural land 

cover where discontinuities prevail. This is because more reliable normal vectors are 

delivered for individual points, which leads to a better surface description and 

improvements in the normalised signals. In other words, the incidence angle error was 

reliably normalised over natural land cover with a rough surface. Although results 

cannot be trusted over vegetation, promising outcomes are delivered over scrub 

vegetation. Moreover, the method delivers very promising results over low vegetation 

(e.g. grass), as discussed further in Section 5.5. 



Chapter Five                                                                                                      Discussion 
 

186 
 

All results delivered in Section 4.2 prove the significant improvements in the 

normalised echo amplitude signals using the RSN method. Although differences 

between flightlines still exist due to data noise and systematic errors in the ALS system, 

further improvements can be achieved when all variables affecting the backscatter 

signal are considered in the solution. 

 

5.4 CALIBRATION OF THE FWF PHYSICAL OBSERVABLES 

5.4.1 Backscatter Signal of the Reference Target 

In order to estimate the calibration constant for the entire dataset, the absolute 

reflectivity of the reference target was measured to deliver its backscatter signal for 

optimal radiometric calibration results. Because of the reasons explained in Section 

3.5.2, the reflectivity measurements could not be taken at time of flight. To assure, as 

close as possible, the conditions of the day of scan on the backscatter signal such as 

weather conditions, angle of incidence, illumination, and wet and dirt of the target, all 

these variables were considered on the points enclosed by the reference target. This was 

explained in detail in Section 3.5 for the Bournemouth and the Bristol datasets. 

However, in the case of Bristol, natural reference targets comprising selected asphalt 

road sections were used to deliver the calibration constant. Although practical 

reflectivity measures were delivered for the artificial targets in the case of Bournemouth, 

a published literature reflectivity value was utilised for the natural reference targets in 

the case of Bristol. This was considered as one of the shortcomings in the radiometric 

calibration results in the Bristol dataset, in addition to the lower point density.    

As explained in Section 2.5.2, the incidence angle effect has a great influence on the 

backscatter signal. Therefore, it was essential to consider this effect when delivering the 

backscatter signals of the reference target in both datasets. In the case of the 

Bournemouth dataset, this can be justified, as the targets cannot be guaranteed to be 

perfectly flat because they were deployed over different ground types such as natural 

surfaces. Further examples are shown in Figure 5.1.  
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Figure 5.1. Reference target deployment in the Bournemouth study site. 

 

As for the Bristol study sites, the case was different as flat asphalt road sections have 

been selected carefully as reference, following the distribution shown in Figure 3.16. 

However, the incidence angle was considered in the individual backscatter echoes of the 

reference target to assure robustness. The incidence angle computations of the reference 

target echoes show variation of up to 10° in the Bristol dataset. This confirms the 

importance of considering the angle of incidence effect even over flat surfaces. Further, 

it demonstrates the robustness of the RSN method to detect minor slope variations by 

delivering the fine details of the surface, which were probably acquired from bumps and 

pavement maintenance.    

 

5.4.2 Validation of the Calibration Constant 

In order to check the potential of using the PVC artificial targets as a reference in the 

Bournemouth dataset, the calibration constant from the PVC target was compared with 

the constant delivered from a natural target. This was achieved by comparing results of 

the backscatter parameters from both approaches over a slanted roof target as introduced 

in Section 4.3.3. The validation was based on checking discrepancies between 

overlapping flightlines delivered from both approaches and represented by the STD 

differences in percentage. Both approaches were similar in accounting for the variables 

influencing the backscatter signal and the values used were identical except in the 

reflectivity value from the different reference targets. The PVC reflectivity value was 

delivered from a practical measure as stated in Section 3.5.2. However, a literature 
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value of 0.25 was adopted for the natural asphalt road target. The delivered results 

showed significant dependency on the reflectivity value by delivering less STD 

differences with the PVC reference target and thus better agreement between signals 

from overlapping flightlines in all backscatter parameters. This means that the 

calibration constant delivered from the artificial PVC target is more robust to calibrate 

the signals than the constant delivered from the natural target. This behaviour is likely 

due to the more reliable reflectivity value of the artificial target, which was delivered 

from a practical measure rather than relying on a standard literature value.  Thus, a good 

reflectivity measure is important for delivering a robust calibration constant. Further, it 

was also shown that the best agreement in results between flightlines was delivered 

from the γα parameter, which highlights the potential of the incidence angle effect in the 

radiometric calibration.  

The developed radiometric calibration routine in this research is based on the γ rather 

than the σ backscatter parameter of the reference target to deliver the calibration 

constant as stated in Section 3.5.3. This is because γ is more stable than σ due to the 

different system and target characteristics and as stated in Section 2.5.1. Although the 

system used in this research was the same for both datasets (i.e. Riegl LMS-Q560), the 

differences acquired from various target characteristics exerted greatest influence. 

Therefore, γ was the parameter of choice to deliver the calibration constant in the 

developed radiometric calibration in this research.  

In order to assess the selection of γ to deliver the calibration constant against the 

standard σ parameter, a comparison was presented in Section 4.3.4 to an existing 

approach introduced by (Alexander et al., 2010). This comparison study was applicable 

for the Bournemouth dataset only as Alexander et al. (2010) used the same dataset and 

provide the calibration constant to facilitate the comparison procedure. In the Alexander 

et al. (2010) approach, the incidence angle effect was neglected and a literature 

reflectivity value was adopted to deliver σ for the reference target. In order to avoid the 

effect of the angle of incidence here, a flat road section was selected to validate the 

results. In theory and following the geometry of the selected road target, the backscatter 

signals from overlapping flightlines should be approximately the same. This was proven 

in a practical sense through the γ results of the developed routine, which show a 

significant reduction in the differences between flightlines. However, a significant 

reduction in the σ results was delivered. No practical justification could be found for 
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these shortcomings, however it emphasised the potential effect of the target 

characteristics on the σ value. Although the atmospheric effect was also considered in 

the developed routine, the bad weather conditions on the day of the survey might 

potentially have affected the results. In contrast, the γα results show perfectly matched 

signals from overlapping flightlines as demonstrated in Section 4.3.4. Although the 

incidence angle was not of concern in this comparison test as the selected asphalt road 

target was selected to be as flat as possible and picked to have nearly same conditions 

(e.g. range) from both flightlines, the incidence angle shows potential through the γα 

results. This emphasises the conclusion from the previous section to importantly 

consider the angle of incidence effect even over flat surfaces especially when a robust 

method is utilised to deliver this variable. 

With regard to testing the potential of the calibration constant of the developed 

calibration routine, the γ asphalt road target results was compared statically with the γ 

results from the Alexander et al. (2010) approach as explained in Section 4.3.4. The 

STD results showed improvements over the original signals, however, the differences 

between flightlines still outperformed the results delivered from following the 

developed calibration routine. The shortcomings in the Alexander et al. (2010) approach 

can be explained due to firstly the unreliable reflectivity value used to deliver the σ of 

the reference target. The second probable reason for these outcomes is discarding the 

change in the reference target characteristics such as the incidence angle when using σ 

rather than γ to deliver the calibration constant. The comparison also shows that the 

homogeneous flatness of the reference target should not be trusted even if the echoes are 

selected from near-nadir. These effects can lead to an unreliable calibration constant, 

which can deliver significantly incorrect calibrated backscatter values, especially over 

complex and natural land cover. Therefore, it is important to account for all variables, 

which affect the received backscatter signal upon calibration.  
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5.4.3 Reliability of the Backscatter Parameters 

To deliver a representative assessment study, the reliability of the developed calibration 

routine was tested over various land cover types with different target characteristics. 

This was explained in detail in Section 4.3.5. The assessments include man-mad and 

natural targets, homogeneous and non-homogeneous, smooth and rough surfaces. The 

analysis comprises two main phases, statistical and visual, to deliver a comprehensive 

outcome.  

The results of the reliability assessment of the backscatter parameters show a significant 

potential of the normalised backscatter coefficient with respect to the incidence angle 

(γα). This was demonstrated over almost all of the tested targets and area of studies in 

both datasets except in the case of vegetation where σ shows better performance. These 

outcomes are delivered because the γα parameter considers the variations in the target 

characteristics and accounts for the important effect of angle of incidence to provide the 

calibrated backscatter signal. This could not be achieved over vegetation because of the 

uncertain estimations of the incidence angle such as over trees where the size of the 

target (leaves) are smaller than the laser footprint. However, in case of lower accuracy 

requirements where it may be appropriate to discount the incidence angle, the 

backscatter coefficient (γ) provides better performance than the backscatter            

cross-section (σ) over all selected targets except vegetation. Although the overall 

outcomes show significant improvements in eliminating the discrepancies between 

overlapping flightlines after calibration, better results were delivered over the 

Bournemouth dataset. This can be explained by the more robust incidence angle 

estimations, which are delivered from the higher point density dataset. 

 

5.5 SEGMENTATION ALGORITHM OF THE FWF-ALS DATA 

Integrating additional attributes to the geometric-based segmentation algorithms such as 

FWF physical observables, can increase reliability of the segmentation results (Hӧfle et 

al., 2007; Mucke et al., 2010). This is because these additional attributes can deliver 

extra information those cannot be provided from the merely geometric information. 

Integrating laser backscatter signal alongside the standard geometric information has 

shown potential to better discriminate between different land cover types and enhance 

segmentation scenarios more than integrating the echo width and amplitude alone 
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(Mucke, 2008). Motivated by these findings, the developed segmentation routine in this 

research is based on integrating the backscatter parameters from FWF to improve the 

identification of surface features. The method is a data-driven algorithm that is     

feature-based rather than object-based. This is because the method not only considers 

the spatial relationship between points but also considers information from additional 

attributes such as the calibrated backscatter signals.  

 

5.5.1 Potential of the Developed Algorithm 

The potential of the developed routine is presented in Section 3.6. This utilises the 

original unstructured 3D point cloud, the normal vector weighted by the calibrated FWF 

backscatter signal, and applied a seeded surface growing algorithm to grow the 

segmentation strategy following robust thresholds. The raw geospatial information is 

utilised as an input in the developed algorithm because pre-classified, filtered, thinned, 

and interpolated data has the potential to contribute additional error sources to the final 

results. Thus, using any alternative assumption rather than raw data can put many    

non-reasonable hurdles to hinder the research meeting its objectives.   

The normal vector was selected to be the segmentation criterion, firstly because it is a 

well-trusted constraint to use as a similarity measure and secondly because of the 

robustness of the RSN method which has been shown to deliver reliable normal 

estimates in comparison with the standard algorithms. However, this time the normal 

vector was augmented by the calibrated backscatter signal, which should lead to better 

discrimination between objects having the same geometric characteristics but different 

physical properties. This is a common problem in standard segmentation routines where 

it is difficult to discriminate between two surfaces with similar geospatial information 

but from different materials or roughness characteristics using the geometric 

information alone.  Further, the available combined routines, which integrate FWF 

additional observables such as echo width and amplitude individually (e.g. Reitberger et 

al. (2009b)) still have shortcomings, as these parameters did not combine all variables 

affecting the received backscatter signal including all target characteristics. 
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5.5.2 Selecting Optimal Backscatter Parameters for Segmentation 

Before incorporating the calibrated backscatter signal in the segmentation algorithm, it 

is important to select the optimal backscatter parameter to use in order to represent this 

signal for individual laser echoes. This is because these parameters have demonstrated 

different performance over different target types and these targets are composed of 

groups of neighbourhood points. As these points have a non-homogeneous distribution 

following the land cover types and the scan characteristics, it is therefore essential to 

select the proper backscatter parameter for individual points to use in the normal vector 

definition.  

Four backscatter parameters (σ, γ, σα, γα) are delivered for individual points. The 

analysis in Section 4.3 has shown that γα parameter can deliver the best calibration 

results amongst other parameters over different target types. The only exception was 

over vegetation where σ shows the best performance. To differentiate vegetation from 

other land cover types, the echo width parameter was utilised to detect roughness. This 

is because the echo width has demonstrated potential to define surface roughness 

(Section 2.6.5). Echo width simulations were undertaken over multiple land cover 

categories from both datasets, as explained in Section 4.4.1, to separate vegetation from 

non-vegetation echoes. The simulation was applied using a roughness threshold based 

on echo width. The results showed successful separation between rough and smooth 

echoes. However, not all of the rough echoes necessarily representing vegetation such 

as in the case of natural land coverage.  Because the number of returns is a good 

indicator to detect vegetation, in this research, this was therefore adopted as a 

complementary condition to differentiate vegetation from other echoes.  

Following this analysis, a condition was adopted to select the optimal backscatter 

parameter for individual echoes. With this condition, γα was utilised as a weighting 

function to augment the normal vector in the segmentation algorithm for all echoes 

except vegetation where σ was used instead. In this case, two adjacent surfaces with the 

same geometric characteristics but made from different materials can be differentiated 

from each other successfully using their backscatter values. Because the normal vector 

in both cases will be different as both are differentiated by their individual calibrated 

backscatter signal.  
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5.5.3 Performance Assessment 

To demonstrate the performance of the developed segmentation algorithm, the routine 

was tested over various types of land cover targets, firstly with the integration of FWF 

additional observables and then secondly without it. This scenario was adopted to 

highlight the potential of weighting the normal by its calibrated backscatter signal 

against utilising pure geometric information as detailed in Section 4.4.2  

The routine with the integration of FWF additional observables was tested firstly. It has 

shown a successful detection of the multiple planar facets of a house roof target from 

the Bournemouth dataset. This is because the normal vectors are accurately estimated 

due to the homogeneous geometry and backscatter signal for the overall echoes. The 

high point density of the dataset provides a visual demonstration of the successful 

performance of the algorithm to detect minor details, which was represented by the 

chimney on the roof. This has shown the successful performance of the RSN method to 

define these minor details and differentiate these echoes from the background by 

delivering independent normal vector values and representing this particular feature. 

Although some points on the sharp edges between two facets still prove difficult to 

assign correctly to either plane, this issue can be overcome when the adjacent facets are 

from different materials and thus exhibit different backscatter values.  

This latter case was demonstrated through the variation in the backscatter values, which 

leads to successful differentiation between two types of mown grass. It has shown that 

the two grass types have the same geometric information because they have been cut in 

a regular manner which helps to deliver a well-defined geometry in terms of incidence 

angle. Despite the fact of the similarity in the geospatial information, the variations in 

the backscatter signal facilitate grouping points of the selected grass region into two 

individual segments. Although the segmentation is not perfectly performed, the results 

are promising for this kind of challenging target type.  

The developed routine was also tested over non-planar land coverage such as natural 

earth mound using the lower point density Bristol dataset. The routine has shown a 

successful description of the natural topography where the sides of the mound has been 

successfully defined and differentiated from the surrounding semi-flat topographic 

ground. These are promising outcomes because with the small plane detection using the 

RSN method it was possible to accurately define the tilted sides of the mound, which 
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are less than 4 m in width in the south-east corner in Figure 4.29, even with the lower 

point density of the Bristol dataset. In contrast, with the standard fitting algorithms, the 

sides of the mound might not be well-defined or may even be missed for detection as 

clear segments from the surrounding ground. The potential of the calibrated backscatter 

signal in the developed routine has been demonstrated through the clear detection of the 

grass regions visualised on the north-west corner and close to the middle of the mound. 

This has facilitated the successful description of the natural land coverage by delivering 

separate segments from the background for better terrain feature segmentation results. 

Similar outcomes were delivered from an urban scene where a highway bridge was 

successfully segmented with complex object details in the Bournemouth dataset as 

explained in Section 4.4.2. The bridge barrier was successfully identified from the 

background and the metal highway barrier beyond the bridge was detected and 

separated from the surrounding grass regions. Although the surface facets of the car, 

which was detected on the highway bridge, were not defined correctly, some of the road 

markings have been clearly visualised and segmented as a separate segment from the 

surrounding black asphalt background. This latter finding is indeed promising for 

detailed and accurate urban mapping applications. However, the problem acquired with 

the definition of the car facets can be explained due to the high speed of the cars, which 

might prevent delivery of enough point cloud coverage over this particular car target.  

Although the method fails to discriminate between the bridge and the highway beneath, 

this shortcoming can be addressed in future work by incorporating height difference and 

STD of Z values for each segment. Although the overall performance of this target was 

not perfect, it can be highlighted as a potential progress in segmentation. Because it 

demonstrated a successful detection of minor feature details by relying on cooperation 

between geometric and physical information.   

Aiming to deliver a representative study, the developed routine was applied over a 

selected urban area from the high point density Bournemouth dataset. This area was 

selected because it comprises various types of surface targets to demonstrate 

segmentation performance in urban areas. However, the Bournemouth dataset was 

selected to demonstrate performance because of the high point density which provides 

further details which cannot be delivered with the Bristol dataset. The overall planar 

surfaces have been segmented successfully, as visualised through house roofs facets and 

dormer windows. However, some points have not been classified correctly over these 
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planar surfaces. This might be because of the sensitivity of the RSN method to 

discontinuity and sometimes because of the non-perfect homogeneity of the backscatter 

signal over these surfaces. However, the minor surface details such as chimneys and 

windows have successfully detected and differentiated from the surrounding 

background in separate independent segments for individual features. This outcome was 

also delivered from segmenting the cars available in the scene by differentiating the roof 

from the body.  

However, the potential of integrating the calibrated backscatter signal in the developed 

segmentation routine was demonstrated through differentiating between natural and 

artificial ground such as asphalt and mown grass. Because the grass regions in this 

selected area were perfectly cut to deliver flat surfaces similar to the asphalt pavement, 

the geometric properties for both surfaces were nearly the same. However, the 

differences in the calibrated backscatter signals represented by the γα parameter in this 

case, have delivered this separation between these two features. Because the normal 

vector value was augmented differently in both cases, this has led to different segments. 

Further, promising results have been delivered as well in differentiating between hedges 

and vegetation. In this case, in addition to the variation in the geometric information, the 

calibrated backscatter parameters are also different which leads to this differentiation.  

In contrast, the results for the segmentation where FWF physical observables are not 

integrated show clear shortcomings in the overall performance. This is clearly visualised 

over features with similar geospatial information such as grass and asphalt where the 

routine fails to differentiate between both mentioned features. Although the developed 

routine was utilised here and represented by the RSN method but without integrating 

any additional physical information from FWF, the segmentation results over planar 

surfaces is not in the same level of performance as the results delivered from integrating 

FWF additional observables. This has been partially overcome with the integration of 

FWF additional observables. Adding to this, the sensitivity of the RSN method to 

discontinuities has shown to be overcome with the backscatter signal integration.  

Further shortcomings relate to the delivery of meaningful segments for hedges as an 

independent class from other vegetation types, which reflect the failure of the merely 

geometric information to define target properties such as roughness.   

It worth mentioning that the results delivered from the developed segmentation 

algorithm are generally sensitive to three main parameters defined by the normal vector 



Chapter Five                                                                                                      Discussion 
 

196 
 

residuals (ϕi) for individual points, residual threshold (ϕth), and the angle threshold 

difference (δ). Normal vector residuals are delivered from the RSN method for 

independent points, thus checking planarity is a particular important aspect to deliver 

small ϕ values towards optimal seed points selection. On the other hand, noise presence 

in the dataset is defining the residual threshold value (ϕth) which can easily estimated 

and assessed by following the RSN checking routine to obtain the threshold value 

defined by (ϕ), which delivered based on data density and accuracy, refer to Section 

3.4.1. Finally, the angle threshold difference (δ) is defining the accepted angle 

difference between the normal of the seed region and the normal of the neighbourhood 

points, which should be defined accurately depending on the variability in the surface 

orientation, in dependence with the application and features of interest. 

 

5.5.4 Validation of Results 

The results delivered from the analysis so far have shown significant potential over 

various land cover types. However, the performance accuracy needs to be analysed and 

validated against reference results to generalise the overall accuracy. To accomplish this, 

the results delivered from the developed algorithm over the selected urban area were 

validated against a manual process, as explained in Section 4.4.3. The manual 

segmentation was based on visual reference from the orthophotos to group the available 

features into 193 different segments.  Because vegetation can deliver irregular outcomes, 

the validation process has excluded these features from the process except the mown 

grass because it is cut in a regular manner.  

To allow visualisation of the performance of the developed algorithm versus the manual 

process, outcomes from both routines were presented over house roof segments. This 

group of segments was selected to investigate the accuracy performance over regular 

planar surfaces and to check the potential of the backscatter signal integration on the 

developed routine with planar surfaces. The results show successful segmentation 

results in detecting planes and defining edges and differentiating minor features from 

the roof facets correctly. Although a couple of minor surfaces are not segmented 

correctly, all other facets were correctly segmented and defined.  

To investigate the accuracy level of the segmentation, an error matrix was generated. 

Because the error matrix can deal with the process numerically per echo, it was adopted 
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to simulate the accuracy validation in this study. However, the outcomes are not 

perfectly representative of reality because it depends on the referenced dataset. The 

reference dataset is correlated to the visual human performance, which may vary from 

user to another. However, the error matrix can deliver a true representation of the 

accuracy performance because it demonstrates the relationship between the error of 

commission and the error of omission in respect of user accuracy and producer accuracy 

(Section 4.4.3).  

Because it is impossible to evaluate segments individually, the segments are instead 

grouped into individual categories/classes to facilitate error matrix implementation. The 

overall performance has met with the visual outcomes as it shows a very promising 

outcome by delivering high overall accuracy of 82% through the developed routine. The 

overall accuracy from the routine without the integration of FWF additional information 

was 67%. The shortcoming with the routine without FWF physical observables was 

clearly demonstrated over artificial ground and mown grass. This clearly indicates the 

potential of the physical observables to support geometric information to differentiate 

between different features of similar characteristics. Further limitations were 

highlighted from all other categories but with relative overall limits for a routine 

without FWF backscatter integration. In contrast, the results from the developed routine 

have highlighted the successful implementation of the algorithm over the individual 

categories by delivering promising accuracy outcomes as explained in Section 4.4.3.    

 

5.6 SUMMARY 

Chapter Five has discussed the results delivered from applying the developed 3D object 

segmentation routine with FWF-ALS data. The chapter discussed reliability assessment 

and the potential to overcome the weaknesses in currently available algorithms. This 

was presented through the validation process to demonstrate the potential of fully 

exploiting FWF information to improve segmentation scenarios.  

The discussion of the FWF post processing and data management shows the potential of 

the RGD method to post-process FWF data to deliver more rigorous estimations from 

the waveform signal and provide the user with additional valid echoes. The benefits of 

this have been proven in the developed normalisation approach, enabling increased 

reliability of the incidence angle estimations. Further, the RGD adoption has shown 
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reliability through the implementation of the Condor pull model, using high-throughput 

computing and producing savings in terms of time and cost exerted to process massive 

datasets. The routine contributes in reducing network usage and wasted computation 

time by providing a successful processing environment for non-detected Condor 

networks.  

The RSN method results proved the potential of the developed algorithm over various 

land cover types by delivering robust estimations for point cloud orientation. This was 

demonstrated through utilising the minimum number of neighbourhood points to deliver 

the normal and taking data accuracy and density into consideration. However, better 

performance was detected over targets from higher point density data. The performance 

assessments demonstrated the feasibility of the RSN routine over challenging and 

complex surface types such as natural land cover in addition to simple, planar surface 

types. This has led to successful identification of surface details, which translates to 

powerful elimination of the differences in echo amplitude signals between flightlines.   

The results from the radiometric calibration routine have shown feasibility to calibrate 

the backscatter signal of FWF data. The emitted energy investigation should be 

undertaken for each dataset on a per flightline basis to determine whether one 

calibration constant should be adopted for all flightlines or per flightline, before 

initiating the calibration process. Consequently, the reflectivity of the reference target 

should be treated seriously through a practical process and all variables affecting the 

backscatter signal should be taken into consideration, including the angle of incidence 

effect.  Further, the γ has shown potential in comparison with the σ parameter over all 

features except irregular vegetation. However, the γα was identified as the optimum 

calibration parameter for all surface types excluding vegetation.  

Finally, the developed segmentation algorithm has demonstrated the potential of 

utilising FWF information to deliver improved results through a better identification of 

land cover features. This has been shown through the integration of the calibrated 

backscatter parameters to differentiate between different features with similar geospatial 

information. However, these improvements cannot be delivered without a proper 

selection of the suitable backscatter parameters to integrate in the developed routine. 

The developed algorithm has shown successful implementation, achieving 82% versus 

67% accuracy using the same routine with, and then without the integration of the FWF 

physical observables.    
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CHAPTER 

6 

CONCLUDING REMARKS 

 

 

 

6.1 CONCLUSIONS 

This thesis has set out the development, implementation and testing of a methodology to 

improve the automatic segmentation of ALS point clouds through exploitation of FWF 

information. Following the investigation and analysis carried out during the research 

programme, several concluding remarks can derived, as summarised in the following 

sections. 

 

6.1.1 Revisiting the Research Objectives 

In this research, the potential of fully integrate FWF-ALS information to enhance 

automatic segmentation algorithms was adopted as a research aim. Progress towards 

achieving this aim was undertaken following six established research objectives, as 

follows: 

 

 Objective One: to investigate the potential of the additional information from 

FWF to improve existing 3D object segmentation techniques through reviewing 

available segmentation algorithms and addressing the weaknesses in these 

standard methods. This objective was addressed in Chapter 2 through a 

comprehensive critique of existing literature, reporting on FWF-ALS data 

processing for 3D object segmentation applications. This included a 

comprehensive review and discussion of the available calibration approaches for 
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delivering an improved backscatter signal for segmentation applications. The 

limitations in the standard segmentation algorithms, which rely merely on the 

geometric information from ALS data, were highlighted. Potential for fusion of 

the additional observables from FWF with geometric information was also 

discussed by reviewing available segmentation routines in this respect. 

 

 Objective Two: to develop an automatic and effective routine to manage and 

process FWF-ALS datasets in a manner which requires less human effort and 

reduces time needed to process large laser scanning datasets efficiently. This 

objective was tackled in Chapter 3, which reports on the development of a 

processing strategy for FWF data based on the RGD pulse detection method. 

The solution adopted a grid computing Condor-based approach, which showed 

significant potential to reduce the time and effort needed to process large 

datasets such as FWF-ALS.  

 

 Objective Three: to calibrate the FWF backscatter signal from all error sources 

that have affected the signal during its travel between the target and the sensor to 

provide the backscatter energy estimate. This objective was achieved, as 

described in Chapter 3, through accomplishing two essential stages. The first 

stage was by compensating the laser backscatter energy for the incidence angle 

effect in multiple flightlines by the development of a signal normalisation 

approach. This approach is based on a novel technique to estimate the 

orientation of the individual point cloud robustly using the RSN method. The 

methodology accounts for Earth surface target orientation through robust normal 

vector estimation of individual ALS points. The second stage was achieved by 

accounting for all variables affecting the backscatter signal, including the angle 

of incidence, through the adoption of a comprehensive calibration routine. The 

presented routine aims to deliver a more appropriate physical signal for further 

applications.  

 

 Objective Four: to assess the developed calibration technique to ensure 

reliability for integration in the developed segmentation algorithm. This 

objective was achieved and is reported in Chapter 4. An assessment was firstly 

carried out for the echo amplitude normalisation approach, by checking the 
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performance of the RSN method (Section 4.2). Thereafter, the calibrated 

backscatter energy was assessed following the developed radiometric calibration 

routine, as detailed in Section 4.3. The results were validated over various 

feature types, including natural and man-made targets, using visual and 

statistical analysis to assess reliability prior to adopting the approach for 

segmentation. Discussion of the delivered results was provided in Chapter 5. 

 

 Objective Five: to develop an automatic segmentation routine that fully 

integrates the calibrated FWF additional information alongside the standard 

geometric information to deliver accurate and detailed segmentation outputs. 

The approach for this was set out in Chapter 3, where a hybrid algorithm was 

developed aiming to fully utilise FWF information to overcome the weaknesses 

in the existing geometric-based approaches. The motivation was to prove that 

integrating FWF physical observables can potentially improve segmentation 

scenarios by distinguishing between different surface features with similar 

geometric information. 

 

 Objective Six: to assess and validate the developed segmentation method on real 

datasets under various conditions. This objective was achieved in Chapter 4 and 

discussed in Chapter 5. To demonstrate the potential of the FWF additional 

observables, results are presented comparing the segmentation performance with 

the use of FWF additional information to results delivered without incorporation 

of FWF information following the same routine. An interest area from the high 

point density dataset was utilised for validation purposes through comparison to 

a manual segmentation process, as presented in Section 4.4.3. The developed 

segmentation algorithm was found to be highly effective, delivering an overall 

accuracy of greater than 80%. 

 

 

Through the accomplishment of the above objectives, the research aim has been 

achieved and the potential of the FWF additional observables for improving 

segmentation has been evidenced. 

 

 

 



Chapter Six                                                                                         Concluding Remarks 
 

202 
 

6.1.2 Main Research Findings 

By following the research programme, several research outcomes have emerged, with 

the main highlights as follows: 

1. The developed Condor model is a significant and a powerful technique to speed 

up the processing of FWF data. It can potentially reduce network usage and 

eliminate wasted computation effort. This can therefore save time and cost 

needed to process massive datasets. This technique has shown potential using 

the RGD pulse detection method which can overcome complex waveforms and 

detect weak pulses, therefore enabling the detection of more targets. Thus, this 

routine is recommended for uptake when distributed computing resources are 

available.    

 

2. The spherical neighbourhood definition is a reliable assumption to adopt for 

point cloud orientation estimation over different land cover surfaces, including 

planar surfaces. However, this assumption should be implemented following the 

k-nearest neighbours algorithm rather than relying on a fixed-distance set of 

neighbours, where uniform point density is assumed. It is essential to consider 

data density and accuracy to deliver robust normalisation results for individual 

points. This can be achieved through considering the least number of 

neighbourhood points to estimate the orientation, which is also effective for 

accommodating fine surface details, especially in dense datasets. However, 

robust planarity checking is essential for robust normal derivation and rigorous 

normalisation results. A robust estimation of point cloud orientation is 

achievable through the developed RSN method. 

 

3. The RSN routine has shown strong performance over challenging and complex 

surface types, in addition to simple and planar surface types. Therefore, a 

successful segmentation of surface details can be delivered following this novel 

method, which translates to a powerful means of eliminating the differences in 

echo amplitude signals between flightlines.   
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4. The incidence angle has an influential role on the variations in the backscatter 

signals due to different target characteristics. This has shown effectiveness on 

the area of the land cover target which illuminated by the laser beam. Therefore 

considering the normalised backscatter cross-section according to the 

illumination area (γ) in order to deliver the backscatter energy is highly 

recommended when applying radiometric calibration. This is particularly so 

when estimating the calibration constant for the entire campaign of a certain 

lidar dataset. 

 

5. The importance of the incidence angle effect has been shown through the 

adoption of the normalised backscatter coefficient with respect to angle of 

incidence (γα). This parameter has greatest potential to effectively minimise the 

discrepancies between signals from overlapping flightlines over any land cover 

targets excluding irregular vegetation. In cases of irregular vegetation where a 

target maybe smaller than the footprint size, such as tree leaves, it is challenging 

to guarantee robust incidence angle estimation and therefore the backscatter 

cross-section (σ) is recommended instead. However, in cases of regular 

vegetation surfaces, such as hedges and mown grass, the γα has proved effective 

in eliminating discrepancies between backscatter signals from overlapping 

flightlines, as these surfaces exhibit a well-defined geometry in terms of 

incidence angle. 

 

6. Integrating the physical observables from FWF alongside the geometric 

information provides a powerful approach to improving segmentation scenarios 

and thus developing feature identification and extraction methods. The 

developed segmentation algorithm has been demonstrated in this context 

through successful discrimination between different features with similar 

geometric characteristics as shown in Section 4.4.2.  
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6.1.3 Research Contributions 

An automatic segmentation algorithm, which fully exploits FWF information, was 

developed in this research. Through this research, a number of contributions can be 

highlighted: 

 Incorporation of the physical information from FWF provides a strong approach 

for better identifying features alongside the standard geometric information, and 

thus improving segmentation and classification techniques. 

 

 Throughput computing within distributive environments is the optimal solution 

to process large lidar datasets towards fully automatic workflow with efficient 

saving of time and effort. 

 

 The RSN method is a rigorous approach for delivering the optimal estimation of 

the surface normal for various types of land cover features with planar and     

non-planar surfaces and thus can be used as a generic approach for multiple 

applications. 

 

 Calibrating the backscatter signals from FWF is essential before initial use to 

increase the benefits of the collected information for further analysis. 

 

 In the case of absolute calibration, it is recommended to use a reference target 

with a known reflectivity value to deliver the calibration constant. However, the 

value should be derived from practical reflectivity measurements and delivered 

at the time of data capture in order to reflect the same conditions as the day of 

the survey. 

 

 It was practically demonstrated that echo width and the number of return echoes 

can be successfully utilised to select the optimal backscatter parameter for 

individual echoes for future integration in segmentation routines. 

 

 The developed segmentation method, which is implemented through the normal 

vector augmented by the calibrated backscatter signal, can deliver successful 
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discrimination between features having the same geometric characteristics but 

different backscatter values such as artificial ground and clipped grass. 

 

 

6.2 SUGGESTIONS FOR FUTURE WORK AND OUTLOOK  

The main research areas for improvements and future development can be summarised 

in the following: 

 

 The geometric calibration of the FWF-ALS data was outside the scope of this 

research. However, for optimal and accurate results it is required to calibrate 

both the geometric and the physical FWF information before integration for 

advanced applications (e.g. feature extraction). 

 

 Limitations were encountered in delivering reliable incidence angle estimations 

over features which were smaller than the laser footprint (e.g. tree leaves). As a 

result, extreme normalised amplitude values could be delivered which act as 

outliers in a comparison with other normalised signals. Therefore, it is 

recommended to treat such targets separately upon calibration, or otherwise 

exclude them during analysis. 

 

 In terms of radiometric calibration, reference targets with known backscatter 

value were not available to deliver the calibration constant in the Bristol dataset. 

Therefore, it is recommended that suitable reference targets should be 

distributed in the field at the time of survey, and considered to be of similar 

importance to standard geometric control targets. 

 

 For further comparison purposes, it is recommended to segment overlapping 

flightlines individually and compare results, visually and statistically, to 

investigate the potential of the radiometric calibration on the developed 

segmentation algorithm from multiple trajectories. 

 

 Segmentation limitations were encountered in discriminating between objects 

having similar normal values but differences in height, such as a bridge with a 
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road beneath. Therefore, it is recommended to use the height difference as an 

additional segmentation criterion to the normal vector to overcome this 

limitation.  

 

 It would be interesting to integrate the spectral information from another remote 

sensing data source such as photogrammetry or radar imagery to apply the 

developed routine and investigate potential with the FWF additional 

information in this context.  

 

 It is also recommended for future work to use the γα parameter to develop 

existing classification techniques and improve DTMs. This can be achieved by 

integrating this additional parameter alongside the standard geometric 

information to improve surface modelling algorithms and DTM generation in 

challenging natural areas and over complex surface types. This parameter could 

also be valuable in reducing ambiguity between building points and nearby 

vegetation in urban sites for segmentation and classification applications, and in 

detecting breaklines for accurate DTMs. 
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