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A! investisation of the rook 

meohanios aspeots of a systep of 

short faoe in-se~ development for subsequent 

lonewa.ll retre3t extraotion 

S;ynopsis 

The researoh work undertaken in this study was sponsored by the 

National Coal Board and oonsists of an investigation into the rook meo~ics 

feasibility of a method of in-eeam development by short faces with a oentre 

pack, creating two roadways for subsequent retreating. 

itn &lastostatio solution by an approximate analysis has been given 

for this method of advancing for roof behaviour and to obtain pack load 

with face advance and the ribside abutment pressure distribution. 

The elastostatic analysis for the short face advancing situation has 

been done for anhydrite (setting) and conventional (non-eetting) packs. 

~ method is given for assessing the ribside abutment loading during 

subsequent retreating and loads in the goat. 

The floor loadings obtained during short face advanoing and 

subsequent retreating have been used for a floor stress analysis and for 

predicting the post-failure viscoelastic floor heave during retreating. 

Some anhydrite properties relevant to the analysis have also been 

investigated in the laboratory and a formula for estim~ting the in-situ 

strength of 3.nhy'dri te p::l.cks has been given. 

* * * 
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CHAPTER 

INTRODUCTION 

In recent years, interest has developed in dirtless mining as 

higher speeds of advance require minimisation of non-productive work like 

ripping a roadway and building wide dirt packs at the side of a longwall 

gateroad. Especially noteworthy is the case of crushed natural anhydrite 

as a roadside packing medium which was introduced in Germany with considerable 

SUccess. According to German experience it had the following advantages: 

(a) MUch narrower packs could be built than before, 

anhydrite being stronger and stiffer; load acceptance is 

quicker. 

(b) Prevention of leakage ventilation through waste could 

be effectively achieved. 

(c) Faster rates of advance could be obtained. 

(d) It could effectively fill gaps and cavities. 

(e) Less shift outlay than for transporting and setting 

of chocks. 

With dirtless mining comes 'in-seam' mining, ellminating roof ripping 

and the problem of dirt disposal, in conjunction with Y'etreating systems of 

extraction. To make it economically more feasible, a method of initial 

development by advancing short faces, with a centre pack support to the wide 
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heading, has been proposed(1 ,2). This would create two roadways on 

either side of the centre pack, which would be used subsequently as 

gateroads during retreating as in Fig. 2.8. This Thesis is devoted 

almost exclusively to an assessment of the feasibility of this method 

of working from the point of view of rock mechanlcs, with special 

reference to the use of anhydrite packs. 

The four main structural elements of the short face advancing 

configuration, viz. nether roof strata, centre pack, ribside and floor, 

have been dealt with during both stages of working, advancing and 

subsequent retreating. 

An analytical elastostatlc solution has been given for the 

behaviour of the roof, pack load acceptance with face advance and ribside 

loading in short face advancing. This problem has been analysed using 

the theory of thick beams on elastlc support for extreme fibre deflections, 

developing an appro:xirrate method for applying it to the present situation. 

A review of beam rulalysis is presented in Chapter 3 and Chapters 5 and 6 

deal with the analysis of short face advanclI~g for anhydrite and conventional 

non-setting packs respectively, comparing the effectiveness of the two kinds 

of pack when applied with this method. 

Chapter 2 includes a literature survey of roadway stability 

vis....a-vls pack properties and behaviour with special atter.tion to anhydrlte 

and other setting pack materials. 
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A formula for estimating the strength of an anhydrite pack is 

given in Chapter 4, based on laboratory tests on anhydrite. Also included 

in this Chapter is a study of the material's setting property with time. 

Chapter 7 shows how the short face method differs in respect of floor 

heave from ordinary advancing. The recently developed face element 

technique has been used for stress analysiS of the floor for advancing and 

subsequent retreating. This is followed by a post-failure analysis and a 

viscoelastic analysis for obtaining the final floor heave picture. The 

starting point of the floor heave analysis was defining the ribside abutment 

presSure distribution. In the beginning of Chapter 7 a method to obtain the 

ribside abutment pressure, after ribside failure, is given. The influence 

of pack load and width and face length on floor heave in retreating has been 

considered. 

General conclusions are presented in Chapter 8. 

* * * 
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CHAPTER 2 

Influence of roadside packs on stability of roadways and a concept of short 

face advancing with a centre pack 

2.1 Introduction 

Most of the coal in Britain is being extracted by the longwall advancing 

system. Considerable strata control research has been and is being carried 

out with reference to gateroad supports. Many references are available on the 

Subject of supports within longwall roadways and at the roadside, but only the 

latter aspect of support of the roadside by means of packs is reviewed in this 

Chapter. At the end a brief description is given of a method of short face 

advancing with a centre pack support to create a pair of 'in-seam' roadways 

for subsequent retreat mining. 

Until some years ago, roadside packs were generally formed from ripping 

dirt packed to a width of up to 10m on one or ei +!'1c y ' :3idc of'" \-'1.~ .4 
.L ~. '-.. '-_ ; 

depending upon the extracted seam height. Recently, however, building of lengthy 

dirt packs has become costly, mainly because workers have to be engaged in 

non-productive work. Dirt packs are also unable to cope with faster.rates of 

advance. Retreat mining, which is slowly becoming more popular, and today's 

faster rates of advance, require a simple, inexpensive and effective support at 

the roadside. In the context of retreating, interest is developing in 'in-seam' 

mining, eliminating the problem of dirt disposal. Short face advancing with 

centre packs may be one of the methods for dirtless mining(1-3). 
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2.2 Roadway Stability 

Modern longwall systems favour the positioning of gateroads near the 

ribside and such a position subjects the roadway to uneven or differential 

rock pressures on its two sides, as shown in Fig. 2.1. This happens because 

on one side support is offered by the pre-existing solid coal, while the 

other side can be supported by a pack only after a certain amount of convergence 

has occurred in the roof. ThlS initial convergence later increases as the face 

moves, untll It tapers off to a final value when the face lS about 100 m away(3), 

this later increase causing pack compression and pack load. As will be seen 

later, the pack load is considerably smaller than the ribside abutment pressure 

and this causes the differential pressure distributlon around the roadway. The 

bending of the roof strata doml into the goaf causes pack settlement and some 

crushing of the ribside, shifting the abutment pressure deeper into the coal. 

Very high bending and shear stresses are generated in the roof near the roadway 

region causing fractures. 

Jenkins ~ ~(4) worked on photoelastic models of a roadway adjacent 

to a rlbside, incorporatir~ layers of differing elastic moduli to represent 

coal, pack, roof and floor. Their findings indicate a beamlike behaviour of 

the nether strata glving rise to very high shear stresses at the lower corners 

of the roadway and a tensile stress at the central region of the floor. It 

would seem that not only is tensile failure of the floor possible, but shear 

failure may also be expected if the floor rock is weak enough. Large roof and 

abutment stresses were also seen to occur. Hobbs has carried out considerable 

work on roadway models made of sand-plaster mixtures, though not with special 

reference to packs(S). 
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FIG.2.1-DIFFERENTIAL LOADING ACROSS A GATEROAD 
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The differential pressure distribution ran thus give rise to shear 

failure of the roof as well as floor failure and heaving, together with pack 

settlement, producing overall roadway closure. 

2.3 Roadside Packs 

It would thus appear advisable to reduce the differential nature of 

the pressure distribution for better stability of the roadway. This can be 

achieved in one of three ways: 

(a) Erecting a pack at the ribside, shifting the abutment 

peak further. 

(b) Slotting the ribside, leaving gummings in the slot to 

create a gradual pressure gradient and also shifting 

the abutment pressure away. 

(c) Using a compact material for the goafside pack. 

The advantage gained by using method (a) has been clearly shown by Jenkins 

~ ~(4) on their photoelastic models. Breer (6) mentions three methods of 

roadside support currently being practised in Germany: 

(a) No roadside pack for friable, easily cavable rock which 

breaks higher up. 

(b) Yielding roadside support like wood chocks for soft 

surrounding rock capable of higher deflection. 
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(c) Compact packs (natural or synthetic anhydrite, Blitz

dammer quiok-setting materials) for harder strata. 

SPruth(1) has given several cases where no difference in the roadway 

condition resulted when roadside chocks were completely eliminated. Conducting 

tests on 50 equivalent material models, he concludes that complete elimination 

of roadside support is preferable in the cases of rocks caving in fine pieces 

rather than where thick strong beds fail to break off at the goaf edge and so 

remain hanging. As was natural, substantial economic savings could be achieved 

by removing roadside support. 

Yielding roadside supports like wood chocks with or without dirt filling, 

stone or dirt packs were most commonly used until some years ago and are still 

prevalent. These materials are highly compressible even under quite low pressures 

and, in contrast to the ribside, are generally not sufficiently rigid to prevent 

large differential convergences across the roadway. They have to get compressed 

a great deal before they show substantial load acceptance. Their rigidity, 

however, would be somewhat increased by using stronger pack walls, building 

central pack walls, grading of the strength within the pack towards the roadway 

or USing double packs. Accorcing to Jenkins et ale (4), the ultimate pack -- . 
Convergence may vary between 38% and 53% of its original height. 

Farmer and Robertson(8) assume a soil mechanics convention for underground 

movement of fracture zones around a roadway. When both ribside packs are used, 

three zones of active pressure, radial shear and passive pressure develop about 

the rib edge, which is comparatively remote from the roadway. With in(,r~ased 

rates of advance, the ribside pack is eliminated and the goafside pack is reduced 

in width. The zones of radial movement at the rib edge will now exist in the 
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roadwaYr reducing failure in the roof and floor. The situation can be 

improved by slotting the ribside or using a rigid pack to preserve a structurally 

sound rock around the roadway. Farmer and Robertson suggest the following 

properties desirable in a rigid pack material: 

(a) Sufficient initial strength to support the roof at the 

face end, 

(b) strength lower than that of the ribside during the waste 

caving period to prevent abutment stress concentration at 

the faceside, 

(c) sufficient strength to support stresses induced in the 

roadside after equilibrium, and 

Cd) very low initial compressibility (about 5% strain). 

It would thus seem more desirable to introduce more rigid packs to obtain a more 

even pressure distribution around roadways. Experiments at Holland Colliery 

(Germany) were initiated in 1964 to introduce crushed natural anhydrite as a 

pack material in order to reduce pack setting time, relieve gateroad haulage 

of the transport of wood and prevent leakages of ventilation through wastes(9). 

This is a mined product prepared as a binder and was supplied to this colliery 

in a size range of 0-6 mm, with at least 30% fines under 0.2 mm. Chemically, 

anhydrite is Calcium Sulphate (CaS0
4

) and, in combination with water and a 

suitable accelerator, becomes dihydrate (CaS0
4

.2H20). The accelerator, which 

is 1 part potassium sulphate (K2S0
4

) and 1.8 parts ferrous sulphate (FeS0
4

·1H20), 

greatlJ increases the speed of hydration and promotes the growth of crystals 

forming a strong compact mass. Because of its recent success in Germany, its 
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properties will be considered here, together with those of conventional and 

other substitute packing materials. 

2·4 Properties of packing materials 

Much work has been done in determining pack properties, to understand 

the effects a particular pack would produce in the roadway and also to achieve 

the 'ideal' packing condition at the roadside. 

roadside support are as noted below: 

The various types of packs or 

(a) Wood chocks, with and without dirt filling. 

(b) Dirt or st one packs. 

(c) Aglite blocks and concrete slabs with wood. 

(d) Crushed natural anhydrite. 

(e) Synthetic anhydrite. 

(f) 'Blitzdammer' quick-setting f:i.~J'J·':" 0 

(g) Pump packs. 

(h) Bonded dirt. 

These will be considered one by one. 

2.4.1 Wood chocks with and without dirt filling 

Whittaker and Titley(3) have given results of 23 compression tests 

on wood chocks, both open and stone filled. Open chocks showed an initial 

elastic compression at low loads which soon changed to a sort of plastic 

deformation until failure, resembling a Bingham substance. The rate of 
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compression decreased with respect to load as the blocks were 

squashed and effective contact area increased. The open half 

round chock was much weaker than the square chock during the 

initial 10~cl.in3' stages. Fig. 2. 2(a) shows a typical load

compression characteristic. It can be seen that open wood chocks 

possess a high degree of compressibility. 

The effect of filling the chock with stone was not apparent 

until a load at which the rock had been sufficiently compacted. 

After this, however, the filled chock showed much better load 

bearing capacity with a marked increase in rigidity. Fig.2.2(a) 

indicates clearly the advantage gained in later stages of loading 

due to filling in that the filled chock compressed by 25 cm at 

150 tonnes, whereas the open chock took only about 50 tonnes to 

produce the same compression. At higher loadings (up to 300 tonnes), 

most of the filled chock strength was due to the compacted rock, 

the wood merely serving as a lateral restraint. 

2.4.2 Dirt or stone packs 

Barraclough ~ ~(10) conducted compression tests on stone 

packs in the laboratory. The load-compression characteristic was 

seen to depend on pack construction, compactness and location of 

walls and the type of stone used. Packs built by two different 

teams but in the same manner exhibited very similar behaviour, 

indicating the rep:ro . .:::ibili-:y of the results. When fine river 

sand, 18% by volume, was used with stones, the pack compreSSion 

increased from 9.2% to 10.3%. Fig. 2.2(b) gives a typical test 



so 

en '00 C» 
c: 
c: 
0 -.. 

"C a 
0 

....J 

20 

N ----.. 10 
"C 
0 
0 

...J 

0 
0 

12 

FrG.2·2-LOAD-YIELD CHARACTERISTICS 

(a) Wood chock (after Whittaker & Titley) 

Yield, % 

1 Open 2 Dirt-filled 

t--T--~-1 E 
J--i------'-"""1 U 

~ 

t--r--~-1m 

t--T----r-t 1 
r- 61 cm sq'-1 

(b) Stone pack (afh~r Barraclough- et 01.) 

T --III 
1 

f 2- 3 l- 12·6 ft ---i 
Yigld, in. 

)(4·3 f t 

Built by toams 1 & 2 



1 3 

result showing two curves for two teams of builders. The 

behaviour of the packs is seen to be fairly linear. Also 

noticeable is the high degree of yield. 

2.4.3 Aglite and concrete blocks 

The building of lightweight concrete blocks in the pack 

area was first adopted at Daw Mill Colliery(11). The main 

advantage of Aglite over dense concrete is its low density, which 

is important considering the handling problems involved. Aglite 

is a trade name for lightweight concrete made from sintered clay 

and shale, screened, graded and mixed with cement. 

The technique in use is to build solid chocks (because of 

the poor shear strength) with the blocks in a continuous strip along 

the gateroad. These blocks have a compressive strength of 5500 kN/m
2 

(800 psi). A comparison of the yield characteristic of Aglite 

with those of hard wood and soft wood(12) in Fig.2.3 shows Aglite to 

be far from ideal. Field experience shows that if the bearing 

strengths of the roof and floor exceed that of Aglite, the chock will 

yield slightly until failure load which depends greatly on the 

slenderness of the pack and the constraint offered by the gateroad 

supports. In thin seams, where a pack is more flat, the shear breaks 

developed do nct weaken the major part of the bearing surface, and a 

high resistance will develop wlth little yield. In thick seams, however, 

the chock will disintegrate into a broken mass if the yield point is 

reached. 
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FIG.2·3- LOAD-YIELD CHARACTERISTIC OF AGLITE 
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When the bearing strength of the roof and floor is not sufficiently 

high, penetration of the strata will occur before the chock fails and it 

will become an integral part of the roadway mass. 

At the Dutch State Mine Emma(12) composite chocks of alternating 

layers of concrete slabs and hardwood boards were built at the roadside. 

These chocks were built approximately 3 ft from the roadside and the 

intervening space was filled with roadway rippings. Breaker props were 

erected on the other side. The purpose of the chocks was to induce breaks 

along the line of the chocks rather than over the edge of the solid roadside. 

It was found that the waste did not break at the line of chocks, especially 

when soft wood was used instead of hardwood. 

2.4.4 Crushed natural anhydrite 

Since its introduction in Holland Colliery in 1964, crushed natural 

anhydrite is being used considerably in German mines as a gates ide packing 

material. The reasons which induced various collieries to use natural 

anhydrite, Blitzdammer qUlck setting fillers or synthetic anhydrite have 

been given as(13): 

(a) Less shift outlay than for the transport and setting 

of timber chocks. 

(b) Increased pack resistance and better adaption to 

roadway supports. 

(c) Supporting a road against a face in the process of 

starting up. 
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(d) Preventing ventilation air leaks. 

(e) Fire prevention. 

Genthe(9) has reported a fall in strength of anhydrite with an 

increasing water content like all hydraulically setting materials, the 

highest crushing strength being obtained at 8% water. The strength after 

24 hours of setting at this value of moisture was 10300 kN/m2 (105 kg/cm2) 

and the lowest value of about 2000 kN/m2 corresponded to 16% water. 

Arioglu and Dunham(14) varied the water content from 6% to 16% and 

Showed that the highest strength occurred at 8.5%, the strength falling on 

either side of this percentage. At values less than 8.5% sufficient water 

is not available for complete hydration. Like Genthe they have also 

reported a rise in strength with setting time at varying water contents and 

have given the following general equation for variation of strength s with 

time t: 

At 
s = 

in which A and B are empirical constants changing with water content. These 

findings are shown in Fig. 2.4. 

Genthe(9) and Arioglu and Dunham(14) have also shown a marked fall in 

the strength value with a riBe in temperature and humidity, indicating that 

anhydrite may not be of much benefit as a packing medium in hot and humid 

conditions. Sample cubeB of anhydrite which were prepared and stored under-

ground at a temperature of 21.50 C and 74% relative humidity only attained after 
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24 hours 10 - 50% of the crushing strength values which were registered at 

22
0

C and 40% humidity(9). Quick-setting fillers on the contrary increase in 

strength with a rise in temperature(9). 

2.4.5 HYdro-mechanically stowed pack materials 

Synthetic anhydrite, Blitzdammer quick-setting fillers and pump packs 

have so far been used hydro-mechanically. Synthetic anhydrite is obtained 

as a by-product in the manufacture of hydrofluoric acid and was successfully 

used as a pack medium in Germany in 1968 for the first time(9). The Blitzdammer 

filler is produced by Elsa-Zement of Germany and consists of 54% cement clinker, 

40% lime marl, and 1% calcium chloride and 5% Lepol furnace clinker. It has 

roughly the same strength as natural anhydrite but is much more fine-grained. 

Synthetic anhydrite also has a comparable strength but the water-solids ratio 

is 0.36 as compared to about 0.09 for natural anhydrite. This ratio is 0.40 

for the quick-setting filler. The accelerator for synthetic anhydrite is the 

(9 15) same (FeS0
4 

and K2S0
4

) but the proportion is 1 : 1 ' 

Pump packing in Britain is currently practised by Thyssen and Cementation 

Run of mine coal/shale is transported over a vibrator screen (0.1 inch) and the 

undersize is sprayed with sodium bentonite to increase fluidity and later a 

solution of pack bind (quick-setting cement, citric acid and water) is added 

before being pumped into the pack area(16). Properties of pump packs do not 

appear to be available. 

2.4.6 Bonded Packs 

Blades and Whittaker(17, 18) carried out co;;.r,'€Ef':~ 'm tests on dirt packs 
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bonded with resinous cement, anhydrite, resins (polyester) and cement to 

improve load acceptance. The consolidated pack appears to provide a 

compromise characteristic between those of wood and cement blocks with a 

gradual decline in resistance after a fairly rapidly achieved ultimate 

bearing load.Th~_ test results are shown in Fig. 2.5. in comparison with 

wood chocks and dirt packs. 

2.5 Load acceptance and behaviour of roadside packs 

Underground pack load measurement is an important aspect of strata 

control in gate roadways. The nature of load acceptance of a pack with 

face advance indicates how well or how early the roadway receives protection 

from rock pressure. Pack behaviour depends on the following factors: 

(a) Properties of the material used in constructing the 

pack. 

(b) Number and location of packs near the roadway. 

(c) Size and slenderness of the pack. 

Cd) Rate of advance. 

(e) other miscellaneous factors like strata and coal 

properties, face length, condition of the ribside, depth 

of the mine, etc. 

Phillips and walker(19) in their early work on packs, obtained 

underground experimental evidence to indicate that roadway closure could be 
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FIG.2·5- LOAD-YIELD CHARACTERISTICS OF PACKS 
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reduced if two dirt filled packs were used instead of one on either side 

of a middle gate. 

the single pack. 

The total width of double packs was kept the same as 

Evans ~ ~(20) measured load by means of mechanical dynamometers 

in middle gate packs in two mines at different depths (1000 to 2000 ft.). 

The face lengths were 370 to 400 yds. (330 to 360 m) and the pack width 

8 to 10 yards (7.2 to 9 m). They also measured pack convergence with a 

convergence recorder. In all cases the pack showed a peak load build up 

at about 150 to 200 ft. (45 to 60 m) from the face. The peak load was 

observed to be greater than the cover load which later dropped considerably 

and rose again to be steadied off to a value slightly greater than the 

cover load (see Fig. 2.6 (a)). The pack compression and lateral roadway 

closure in the meantime increased more or less smoothly. 

Similar curves of pack load have been produced by PhilliPS(21) at 

90 yds (81 m) and 900 yds (810 m) depths, the face length being 180 yds 

(162 m) and 218 yds (194 m) respectively. Fig.2.6(b) shows his results 

and indicates again the existence of a pea.k load value some distance from 

the face, which Phillips terms as the back abutment pressure. Curves 1 and 

2 in this figure are for the 90-yd depth with load cells 2.5 and 7.5 ft 

inside the pack. The pack edge appears to carry much less load. Curve 3 

is for the 900-yd depth. 

In another investigation by Phillips and Jones(22) the peak load 

occurrence is confirmed giving support to the back ab"'c'.tJ'Tlont !l~-p,)t}-I":'.iS. 

They also contend that if pack load observations are taken from the start 
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FIG.2·6-DIRT PACK LOAD ACCEPTANCE 
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of a face, there is a limiting distance from the coal pillar from which 

an apprec:~~le back abutment pressure is not developed. 

Two other researchers later obtained pack load characteristics 

very much similar to those of Phillips and others. T~linstanley(23) 

chose a very long face, 3000 ft (900 m), at a depth of 2100 ft (830m) 

for measuring pack load. His investigation g3.ve a steac.,y rise of pack 

load to greater than +he depth pressure at 107 ft (32 m), a later fall 

and steadying off to the depth pressure. Price (24) went a step further 

and installed two load cells, one on the floor and the other in a dug-out 

in the floor (in-floor). The loading curve confirmed the observations of 

others for the on-floor location in that there was a load peak at about 

60 ft (18 m) from the face. The in-floor location, however, produced 

surprising results in that there was no peak load build up and the load 

later steadied off to a value 67% greater than for the on-floor measurement. 

Jacobi(25) installed Maihak pressure capsules in the pneumatically 

stowed goaf and could net observe any back abutment pressure even after 6 

months of face advance. Similar observations have been reported by 

Creuels and Hermes(26) for a pneumatically stowed area. Jacobi disagrees 

with the back abutment hypothesis. 

More recently load measurements were carried out in dlrt packs by 

Thomas by mearlS of a hydraulic pack dynamometer developed at the Mining 

Research Establishment(27). He has criticised the earlier work of 

Evans ~~(20) that their observations were affected by the roadway since 

the dynamometer was installed too near the pack wall, even under it sometimes. 
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Thomas's measurements were taken near ribside roadways ~t Hucknall Collier,y 

from which he concluded that 

(a) the pressures r.!easured are rarely more than 0.5 times 

the cover load, 

(b) the pressures are usually limited by the flow of pack 

floor into the roadway or waste, and 

(c) the proximity of a ribside causes loads on the ribside 

pack to be low. 

No definite evidence of a back abutment pressure was obtained. Thomas 

is, however, silent about the work of other authors. 

It can be seen that most investigations of pack load reviewed till now 

deal with dirt p~cks. Work was recently carried out by Genthe(9) to 

estimate loads on Blitzdammer packs in Germany. His findings, shown in 

Fig. 2.7(a), indicate again a peak load occurrence at about 25 m from the 

face. The maximum load that could be recorded was only 22.5 kg/cm2 

(2220 kN/m2) in a gateroad located near the ribside. Surprisingly this is 

much lower than the figures from Limburg Coalfield, Germany of 42 kg/om2 

(4120 kN/m2) in the case of wood chocks and 63 kg/cm2 (6180 kN/m2) for paoks 

of alternate oak planks and conorete blocks(13). 

Investigations are being carried out by the Department of Mining 

Engineering of the University of Newcastle upon T,yne at !asington Colliery 

for asseSSing the behaviour of gate roads adjacent to ribs ides using anhydrite 
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FIG. 2·7,.. PACK LOAD ACCEPTANCE 
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packs (28). One panel in which pack load measurements have been carried 

out is 1800 ft (590 m) deep and has a face length of 200 yd.s (180 m). The 

pack is 1.5-m wide and exhibited a load acceptance characteristic which 

is similar in general to many others reviewed till now and also to Genthe's 

observation, as c~ be noticed from Fig. 2.7(b). The peak load reached was 

about 5300 kN/m2 as compared to 2220 kN/m2 reported by Genthe. The steady 

state load was abo~t 4500 kN/m2• The maximum load was attained at about 

40m of face advance. The values of these loadings are more comparable with 

those reported from Limburg Co~field of Germany for wood chocks and oak-

and-concrete packs. 

The loading characteristics in the earlier work of Phillips, Evans 

and others were obtained in dirt packs in the middle gate region. The face 

length was also considerable in most cases. It would thus seem natural that 

the ultimate pack load corresponded to the depth pressure. Packs at the side 

of roadways located adjacent to the solid ribside will not probably undergo 

the same load as middle gate packs because of the resistance offered by the 

ribside. The general shape of the load characteristic, conSisting of a 

steady rise to a peak value, later fall and steadying off to a plateau 

value, appears to be the same for anhydrite packs as for dirt -filled middle 
. 

gate packs. There is more evidence in favour of the pack undergoing back 

abutment pressure than against it. Hence the back abutment hypothesis may 

be regarded as sufficiently general and acceptable. 

The pack load values and the consequent convergence variation against 

face advance as obtained by earlier t-lorkers on middle gates can hardly be 



27 

comparable with those observed for anhydrite since the latter have been 

obtained at roadways adjacent to a ribside. Thus a comparative picture 

is difficult to establish, unless observations are taken under similar 

conditions at roadways employing conventional and anhydrite packs. Anhydrite 

and other substitute hydraulically setting materials have, however, met 

with considerable success in Germany and seem to show obvious superiority 

in behaviour over other packs. A brief comparison based on field experience 

in Germany is made below. 

2.6 Substitute packing materials and improvement in roadway stability 

Genthe(9), Heinrich(13), and Lenge ~~(15) have reported in general 

about the improvement in roadway stability due to introduction of anhydrite 

(natural and synthetic) and quick-setting fillers. 

According to Genthe, roadside packs of hydraulically setting materials 

can at the most be compressed by 0.5-1.5% of their initial height before 

breaking. They can obviously serve a better purpose in preventing the rock 

mass over the pack area and the roadway from breaking up as far as possible. 

Empirically speaking, Genthe contends, as a rule the condition of roadways 

with hydraulically setting packs is much better, in particular on account of 

the lack of convergence in the pack area, than in comparable roadways, while 

employing only 1-m wide packs in seam thicknesses of up to 1.5 m. 

Heinrich(13) has collated the experience gained with roadway packs of 

hydraulically setting materials. Up to October 1970 roadway packs had been 

stowed in 17 German pits in 22 different seams (a total of 26 packs), 12 with 
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natural anhydrite, 8 with synthetic anhydrite and 6 with Blitzdammer filler. 

In most cases the seam thickness was greater than 1.4 m and the pack was 

0.7 to 0.9 times thicker than the seams. This criterion for pack width was 

found to be generally satisfactory. 

Hydraulically setting materials, besides having other obvious 

advantages, were early load bearing and rigid and attained considerable 

strengths quickly. They were, therefore, expected to give considerable 

success at the time of implementation in Germany. They have, of course, 

given notable success in some mines but they have also brought about no 

improvement in a few instances and in rare cases have worsened the roadway 

conditions. 

The most successful cases of improvement in roadway conditions have 

been reported by Heinrich in three mines. In all these three cases the 

arched supports were usually placed below the roof, i.e. the roof was not 

ripped. In this circumstance the anhydrite pack is able to fill the cavity 

between the arch and the roof, which wood chocks cannot, and is obviously 

advantageous. 

Heinrich has further recounted examples of success with rigid side packs 

at Auguste Victoria Colliery where the roadway stood with hardlY any loss 

of cross-section and could be used a second time, at Walsum Colliery where 

the roadway supports have remained undeformed and at Matthias StinnesColliery 

in which the loss of cross-section has been reduced so much that it was 

2 2 possible to replace the 14-m arches by 11-m ones. 
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Three more cases have been mentioned where hydraulically-setting 

materials have been used as main packs with complete success. 

Lenge ~ ~(15) have reported successful application of pneumatic-

ally stowed quick setting filler in pack construction at Heinrich Robert 

Colliery. Records kept by Steinkohlenbergbauverein show a slight 

distortion of the supports, which is not sufficient to be visible, and 

the elimination of the need for dinting. After the face had passed, 85% 

of the cross-section of the roadway remained, whereas in previous roadways 

in the same seam only about 65% of the original section had been preserved. 

There have been cases, however, where hydraulically setting packs 

have shown little improvement or have even deteriorated the roadway further 

by causing additional floor heave(13). The packs erected at Holland 

Colliery have shown no improvement over wood chocks as regards roadway 

behaviour. To a certain extent this caused rather more floor heaving, 

but there are no measurements available to support this. 

In Zollverein Colliery a road supported by chocks was accompanied by 

a side pack. The road had been cut about 1.4 m into the floor. It was seen 

that the side of the road with a rigid pack flowed into the floor to a greater 

extent than when only wood chocks were used. 

A 120-m long side pack was stowed in Hugo Colliery. A width of 

approximately 1.6 m was first selected for the 2-m thick seam. This brought 

about some improvement in the roof condition. When the width of the pack 

was reduced to 1 m (half the seam thickness), the side pack was partly 
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destroyed, there was a greater floor lift and the supports were deformed. 

This case shows that the width-height ratio ~ not be reduced to 0.5. 

The floor strength was 250 kg/cm2 (2500 kN/m2 approximately) and the pack 

pressure on the floor was so great as to cause floor penetration, upon 

pack width reduction. The deformation of the supports could be attributed 

to the fact that the pack was erected at a distance of 0.5 to 1 m behind 

them. 

2.7 Advantages of hydraulically setting materials and their applicability 

It w~u1d thus appear that packs built from hydraulically setting 

substitute materials like anhydrite have certain obvious advantages as compared 

to conventional packs, like wood chocks and stone packs. Economically, 

German experience shows that these packs are either superior to or the same as 

conventional packs. From the standpoint of strata control they have brought 

about considerable improvement in roadways of some German mines, judging by 

the case histories in 2.6, but in a few cases have caused no better roadway 

behaviour or even a further deterioration in terms of floor heave. The 

Success with setting packs is thus not entirely unqualified. However, some 

other reasons, which are not rock mechanical, ~ sometimes seem more important, 

e.g. prevention of ventilation leakage from the goaf area. This has been the . 
case at Holland Colliery where German engineers continued to use anhydrite 

packing in spite of the fact that it gave no better roadways than the wood 

chocks(13). Another reason for its popularity in Germany is that it can cope 

with high speeds of face advance. Its advantages from the point of view of 

strata control are: 
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(a) It attains high strengths in short periods and it is 

not necessary to build wide packs. 

(b) It is early load bearing, i.e. it accepts strata pressure 

earlier than conventional packs. 

(c) It is comparatively rigid and causes less convergence in 

roadways. 

(d) It can effectively fill gaps and cavities. 

HYdraulically setting packs have, however, some limitations to their 

applicability: 

(a) In seams with a weak floor liable to flow and fracture, 

packs of anhydrite or such materials may increase floor lift 

due to their rigidity, especially since such packs are narrow. 

In this connection, it is worthwhile investigating the effect 

of pack width on floor heave. According to German experience, 

pack widths should not be less than 0.75 times the seam 

thickness for overall stability. An increase in the width m~ 

alleviate floor heave to some extent, but of course, may mean 

higher costs. Sufficient measurements of pack load under 

similar conditions are not available, so it is difficult to 

say that anhydrite packs will create a higher pressure on the 

floor, and will, in fact, cause additional floor heave. 

(b) The setting process of anhydrite slows down considerably 

with temperature (as opposed to Blitzdammer). Hence it may not 

be successful in hot, humid conditions. 



32 

2.8 Short face advancing with a centre pack 

Having considered the advantages and limitations of anhydrite and 

other substitute pack materials, it is clear that they can serve a very 

useful purpose as roadside packs. In recent years, the building of wide 

stone packs has become costly and the price of wood is becoming higher. 

Retreat mining is becoming more popular and interest is developing in 

in-seam mining in conjunction with retreating. 

Longwall retreating has, however, the disadvantage that it requires 

initial development by headings, which makes it largely unproductive and 

uneconomical during development. A method of developing by short-face 

wide headings with a centre pack of anhydrite or other setting materials 

was, therefore, thought of(1) and is currently under consideration in 

conjunction with pump packs in the Barnsley area(2). This method of 

development and subsequent retreating is shown schematically in Fig.2.8. 

It consists of driving a pair of in-seam wide headings (12 to 16 m wide) 

with a centre pack of suitable width, creating two roadways on either side 

of the pack. These roadways can later be used as gate roads during retreating. 

Roadways will be supported in the usual manner while advancing. This method 

will have the advantage of productivity in the stage of develo~ment, as 

opposed to conventional developing for retreating. 

Before implementation, however, it would be beneficial to consider 

the rock mechanical feasibility of the method and the work in the next 

Chapters is devoted almost exclusively to this method. The next Chapter 
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considers the beam theory in review, as a possible means of assessing 

the centre pack advancing method. 

* * * 



CHAPTER 3 

The beam theory and its application to strata 

mechanical problems 
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CHAPTER 3 

The Beam Theory and its application to Strata Mechanical Problems 

Many instances of mining in stratified rock require estimation of 

roof behaviour. The classical pressure at'ch theory, with its pre-requisite 

of rather systematic bed separation in the roof, explained schematically 

rather than analytically or quantitatively the occurrence of abutment 

pressure on the ribside of a mine opening and also support load and 

subsidence. The theory is too well known to warrant a description here 

and this Chapter will consider the more realistic and later theory of beams 

in its various stages of development. 

The beam theory regards the stratified rock in the roof as a beam 

which deflects downwards due to mining over openings, supports, pillars, 

etc. in some manner, causing convergence or load as the case may be. It 

must be made clear at the outset that the roof rock is infinite in two 

horizontal directions and hence should be considered as a plate rather than 

a bearr.. The differential equation for deflections w of a simple plate 

in a rectangular coordinate system (x,y) is 

=~ 
]) 

where q is the loading on the plate and D is its flexural rigidity. For 

any support configuration under the plate which is considered infinite in 

one direction y, the second and third terms on the left hand side of this 
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equation vanish and the first term becomes an ordinary cel'hah.7e, leading 

to 

This latter equation thF-~ represents plane strain since the plate bends 

only along the x-aXis(29) and is identical to a beam deflection equation 

except for the flexural rigidity D. Hence the term beam instead of plate 

is used in all plane strain anaJytical solutions to problems of strata 

deflection, as has been done throughout in this thesis. 

3.1 Beams with rigid and elastic support 

Until quite recently roof rock over an opening was likened to either 

a beam simply supported at its two ends by ribs or pillars, as the situation 

may be, or clamped rigidly at its ends between the main rockmass and the coal 

seam. The differential equation for beam deflection v is 

which has the general solution 

for a symmetrical rectangular opening with ribs on either side. According 

to these two beam models the following boundary conditions at the coal edge 
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are applied to the solution to obtain the integration constants A1 and A2 

and so complete the solution: 

Simply supported: V"sO 
ot 2

V' 
=0 (deflection and bending , -

el ... " 
moment are zero) 

el.v Clamped: ""~o - ::. 0 (deflection and slope I cJ,,, 

are zero) 

Both beam models, however, treat the roof as finite and completely 

(3.2) 

disregard the behaviour of the roof over the coal and so give the following 

erroneous answers: 

(a) With both models no abutment pressure exists over the 

coal edge. 

(b) In the simply supported case the bending moment is zero 

at the coal edge and the clamped case produces sharp 

clamping moments at the coal edge, the bending moment 

being suddenly zero further inside over the coal. 

(c) The coal seam produces perfect clamping or a simple 

unyielding point support preventing roof deflection at 

the coal edge, while in reality coal is softer than 

most rocks and hence cannot be expected to remain rigid 

while the roof strata deflect downward. 

The deflections and moments are shown schematically in Fig. 3.1 for 

these two models. 
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From the objections (a), (b) and (c) it can thus be seen that the 

seam will yield under the bending action of the roof and will give rise 

to deflections and bending moments at the coal edge in the beam and also 

further inside. Hetenyi(30) enumerates various examples of beams supported 

elastically by a continuous yielding 'foundation' and it is, perhaps, the 

first comprehensive work in the theory of beams on elastic foundations. 

Though his work is quite old, it was seldom seriously considered for 

application to mining in stratified rock until quite recently, when Tincelin 

and Sinou(31 ) showed, probably for the first time, how the theory could be 

applied to a practical mining situation. They used the method to estimate 

pillar loads in a panel of pillars with barriers on either side. 

used the theory to show mathematically how the nether roof behaves over an 

opening and also over the ribside and corroborated his results by models. 

The deflection and bending moment variation as per Adler is shown schematically 

in Fig. 3.1. A comparison with the simply supported and clamped cases in 

the same figure shows the significantly different distribution of bending 

moments and deflections, when the elasticity of the seam is taken into 

consideration. Large values of bending moments and deflections are seen to 

occur over the ribside. 

When a transversely loaded beam is supported elastically, the deflection 

v at any point in the beam is equal to the compression produced in the 

supporting foundation, the upward reaction to the beam being proportional 

to the deflection v. Thus, if the transverse load on the beam is q, the 

differential equation for beam deflection in this case will be(30 , 33) 
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where k is the foundation modulus, of which more will be said later in 

this Chapt ere When Equ. (3.3) is applied to the ribside 1:,: becomes 

the foundation modulus of the seam. Considering again the symmetrical 

configuration of a rectangular opening with infinite ribs on either side, 

as done by Adler(32), for the unsupported opening region we again have 

Equ. (3.1) and for the ribside Eq. (3.3). From these the expressions 

for deflections in the two regions can be written down as 

Opening: 

= _~_ x,4 + A
1
';+ A'J. 

'''1 2 It 1> 

Ribside: 

the first expression satisfying the condition of symmetry and the second 

k, the loading on the ribside is obtained as 

which will have the general shape shown in Fig. 2" "i • The ribside loading 

t:1US shows an abutment peak stress at the edge which falls to the depth 

pressure q eventually. This abutment peak stress is likely to cause 

crushing of the ribside, reducing its support capacity and consequently 

shift the peak into the coal. This will be considered in greater detail 

in Chapter 7. The peak mentioned here is the prefracture peak. The 



41 

integration constants A1 and A2 can be determined from the continuity 

conditions at the coal edge: 

, , 
\If :s v:a , 

v. ,,, - _ .. '" 
f - "'1. 

where L is the opening width. The conditions in words state that at 

the common boundary between the two regions - the coal edge - the deflections, 

slopes, bending moments and shear forces must be equal for continuity. 

These continuity conditions can, incidentally, be used for any two 

neighbouring regions. It can be seen that these boundary conditions are 

completely different from (3.2) and so is the procedure for determining 

deflections when the elasticity of the seam is accounted for. 

3.2 FOundation Models 

The foundation k in Equ. (3.3) is a measure of elasticity of the 

foundation, in this case, the seam. It is defined as(31) 

nearer the coal edge due to biaxial conditions and 

,.., ( 1 +J'" ) ( 1 - ~) 

deeper into the seam because of triaxial conditions of stress. E is the 

modulus of elasticity of the seam, j4 is Poisson's ratio and H is the seam 



42 

thickness. For the usual values of ~ for coal (0.2 or 0.25) the two 

expressions for k are not significantly different. Also the region of 

interest is nearer the opening usually and as such the first expression 

(3.5) will be used in future work. 

The simplest representation of an elastic foundation has thus been 

provided in Equ. (3.5) by Winkler(30 ), who assumed the foundation as 

consisting of closely spaced independent linear springs. Kerr(34) has 

reviewed several alternative foundation models in order to incorporate interaction 

between springs. Some of them are noteworthy: 

(a) Filonenko-Borodich Foundation: In this model the top 

ends of the springs are connected to a stretched membrane 

subjected to a constant elastic tension of some value. Thus 

the behaviour of the foundation depends on the value of the 

tenSion assumed. 

(b) Pasternak Foundation: A shear interaction between spring 

elements is accomplished by connecting the ends of the springs 

to a beam (or plate) which consists of incompressible vertical 

elements and deforms only by shear. 

(c) 'Generalised' Foundation: In thiS, it is assumed, in 

addition to the Winkler hypotheSiS, in which the pressure is 

proportional to deflection at each pOint, that also the moment 

is proportional to rotation. The second assumptIon IS regarded 

by Kerr as quite arbitrary. 
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(d) Reissner Foundation: Reissner assumes that in-plane stresses 

throughout the foundation and the horizontal displacements of the 

contact surface between the beam and foundation are zero. This 

leads to the Pasternak foundation model again. 

The usual approach in formulating deflection problems over such 

foundations is based on the inclusion of the foundation reaction into the 

differential equation for beam deflection. For example, when the reactions 

as per the Winkler model are included, we get Equ. (3.3). For the other 

foundation models the differential equations are more complicated. For 

simplicity the Winkler model will be used in subsequent work, as has been 

done by others (30 - 33, 35 - 38). 

3.3 Thin and thick beams 

In all that has been said till now, there is an implicit assumption 

that the beam is regarded as thin. If the distance between the supports of 

a beam is less than five times its thickness or depth it is considered to 

be a thick beam generally(36). In most mining situations in stratified rock, 

the nether roof, or the strata up to the surface, has to be conSidered as 

thick. Any beam, thick or thin, undergoes deflections which are the sum 

total of the three kinds of deflections due to 

(a) bending moments, 

(b) shear forces, and 

(c) vertical stress ~y depending on the loading on the 

beam (39) • 
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The last-mentioned deflections have not been included in any thick 

beam differential equation and in fact mention is rarely made of these 

deflections even in standard works on the subject of beams in strength of 

materials, presumably because they are not very significant. In a thin 

beam the only deflections of consequence are those due to bending moments. 

Equ. (3.3) is the thin beam differential equation and so gives deflections 

due to bending moments alone. The influence of shear force becomes more 

and more prominent as the beam becomes thicker. The total curvature 

produced in a thick beam is the sum of the curvatures due to bending moments 

and shear forces: 

(3.6 ) 

where v is the total vertical displacement at any point (x,y) in the beam 

and vm and Vs are those due to the bending moment and shear force at the 

beam cross-section containing (x,y). When the beam is thin the second 

curvature term on the right is negligible, and we get Equ. (3.3) when the 

curvature is differentiated twice, multiplied by the flexural rigidity D and 

equated to the loading on the beam. 

The curvature in a thin beam is directly proportional to the bending 

moment M according to the relation 

= M 
D 

so it is simple enough to obtain the differential equation like (3.3) once 

the bending moments (or curvature) are known, as for a thin beam, but such an 
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expression for bending moments does not hold for thick beams (which will be 

seen later). So the derivation for a thick beam cannot proceed ahead from 

this point. 

An exhaustive review of literature on thick beams has been made by 

the U.S. Army Engineers Waterways Experiment Station(40
), but no case of 

thick beams on elastic foundations has been included, perhaps because of their 

field of interest in civil engineering. The first attempt at formulating 

a differential equation for thick beams supported elastically appears to be 

made by Tlncelin and sincu(31
) for pillar load distribtuion in a panel, 

visualising the fact that pillar loads are governed by the distance between 

panel barriers or panel width since this will affect the deflection of 

strata in the panel. Their derivation is given briefly below: 

The deflection Vs due to shear force is related to the shear force 

according to 

where E, ~ are elastic constants of the strata andh is the strata beam 

thickness. Differentiating once, 

2 
~(f.f.)') J. ""s - tAQ 

d.?C. 2 - -Ek rl-x. 

olQ. 4 
Now _ J) oL 11' =-(1-- k ,,) (3.9) - = 

d..~ cJ. 'M.. 4 

so 
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and using (3.6) and (3.7) we finally get 

q, - k" (3.10) 

which is a differential equation for deflection of a thick beam supported 

elastically. As has been pointed out in (41), Equ. (3.9) assumes the thin 

beam equation (3.3) again as valid for thick beams even though v are now the 

total deflections given by (3.6). It was doubtful whether Equ. (3. 10) could, 

therefore, be regarded as acceptable. 

3 3.1 The flexural rigidity of strata 

The product of the moment of inertia of the beam cross-section and its 

modulus of elasticity is defined as its flexural rigidity. In the case of 

a plate, the term (1_~2) also occurs in the denominator. Thus in general 

for roof strata 

])= 
E hI} 

where h is strata beam thickness. Depending on the nature of the problem 

~ may be the nether roof thickness or the depth from surface. 

Mandel(42) proposed to define the strata as a series of thin beams 

loosely placed one over the other without friction, and so proposed the 

following expression for flexural rigidity: 

(3. 11 ) 
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This is just a summation of the flexural rigidities of all the strata 

involved in the roof, the limit of summation n depending on the 

stratigraphy of the area concerned. This expression is valid only 

within regions so affected by workings as to loosen up and break 

cohesion between different rock beds. 

Sometimes, however, it may be doubtful whether cohesion can be 

assumed to have broken as in the case of a panel of pillars where the 

rooms will affect the strata only locally leaving the rest intact up to 

the surface. Also in a langwall panel, strata can be expected to loosen 

up to a certain height only, depending on face length. Thus it may at 

times be necessary to determine the flexural rigidity assuming existence 

of a firm bond between different layers. The strata will then be a 

thick composite beam of several materials. It is known from elementary 

applied mechanics that the flexural rigidity of a composite beam whose 

cross-section consists of two layers of different materials (like wood 

riveted an steel) can be determined, if the cross-section is converted 

into an equivalent T-section of only one of the two materials such that 

where Ew and Es are the elastic moduli of the two materials, say wood and 

steel respectively. b is the original beam width and b1 is the equivalent 

width of the wooden part when it is replaced by a steel flange (see Fig.3.2). 
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FIG. 3·2- CONVERSION OF A COMPOSITE BEAM SECTION 

INTO AN EQUIVALENT ONE-MATERIAL SECTION 
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Proceeding along similar lines, a set of mine strata can be 

converted into an equivalent cross-section as shown in the same figure 

and the flexural rigidity can be shown to be given by(43) 

where 

y = 

2 
the terms (1-)J-,,) occurring becauseof plate effect, the same as in 

Equ. (3.11). 

(3.12) 

For the same set of strata Equ. (3.12) gives a greater value of D 

than Equ. (3.11), i.e. loosened strata will deflect more than composite 

strata. 

3.3.2 Middle-plane, average and botto~-fibre deflections 

When the beam is considered thin, the vertical displacement v at 

any point (x,y) in the body of the beam does not change with y, i.e. the 

de'flection of any horizontal fibre in the beam is identical to the one 

below or above it. This is because in the theory of pure bending beam 

cross sections remain plane during the process of bending. In thick 
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beams, however, the influence of shear stresses causes the cross-sections 

to be deformed laterally and the vertical displacement varies through the 

depth of the beam. 

In a thick beam theory it is, therefore, essential to define the 

deflections in terms of which the beam differential equation is being 

formed. Th h t t · d 1· ·tl T· 1· andSl·nou (31 ) oug no men lone exp 1C1 y, 1nce 1n 

formulated the thick beam differential equation (3.10) in terms of 

deflections in the middle plane of the beam. Reissner has given a theory 

of thick plates(44) in terms of deflections taken as an average over the 

plate depth, assuming a linear variation of the horizontal stress 6 x 

through the depth. Based on this theory, a thick beam equation was developed 

in terms of the average deflections(43). The average deflections were 

defined by 

where Vo are the deflections at any depth y and h is the beam depth. This 

definition was the direct result of the relations 

kJ'J. f 'l:"y v.dy = Q" 

-"'/fJ. 

where 1:' is the shear stress and ~ is the shear force. xy This analysis 

gave the following equations for deflections, bending moments and shear 

forces in an elastically supported thick beam 
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(3.16) 

Q= 
dM -aL't. 

Taking the case of a horizontal seam, the load on the beam q will 

be the uniform weight of the strata and, as such, independent of x. 

Equ.(3.15) then assumes a form somewhat similar to the one arrived at 

by Tincelin and Sinou, Equ. (3.10). The main difference between the two 

equations is the second order derivative of q, which appears in (3.15). 

This is not very important when q is a uniform load, but will make a 

considerable difference when it is a function of x, as it is on the parting 

between two contiguous workings(43). 

A comparison between Equ. (3.7) of the thin beam theory and 

Equ.(3. 16) shows that the expression for the bending moment gets changed 

so that an additional term is included in terms of the deflections. This 

is a correction term because the influence of shear force is considered. 

Equ. (3. 14) is for the distribution of shear stress across the beam 

depth and is parabolic, satisfying the conditions of zero shear stress most 

commonly employed in beam and plate theories: 
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This parabolic law of shear stress distribution, which is 

incorporated in the definition of the average deflections Equ. (3. 13) is 

obtained as a direct result of the basic assumption in this thick beam 

theory of the linear variation of the horizontal stress ~ with y. x 

Filon(45) has shown that in a beam with point loads eccentrically applied 

on the top and bottom edges of the beam, the shear stress distribution acroSS 

the beam section is not parabolic for small values of clh, c being the 

distance between the two loads. Between clh = 0.5 and 00 the distribution 

is near-parabolic, or parabolic. This, in other words, means that only a 

small error is introduced by the assumption of a parabolic law of shear 

stress distribution (or a linear law for ~x) in a thick beam, if the 

distance between supports is equal or greater than the beam depth. In 

fact, it will be noticed that Equ. (3.8) used by Tincelin and Sinou for 

their thick beam equation also assumes a parabolic shear stress distribution. 

The two thick beam theories reviewed so far give differential 

equations for beam deflection in terms of middle-plane and average deflections. 

If the stability of the strata beam only were under consideration, these 

two kinds of deflection would serve the purpose well enough, but it can be 

visualised that the compressions produced in an elastic foundation are 

equa.l to the deflections at the surface of contact between the foundation 

and the thick beam. Hence an element of error is introduced in the equations 

in terms of middle-plane or average deflections in the case of thick beams 

supported elastically. In a thin beam these considerations are immaterial, 

since the deflections are assumed not to vary through the beam depth. 
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The derivation of a thick beam differential equation in terms of 

the lowest or bottom-fibre deflections is given below(46t 

3.3.3 A thick beam differential equation in terms of bottom-fibre 

deflections 

The thick bea~ theory of bottom-fibre deflections was developed 

originally for seam or pillar reactions to the roof, but is generally 

applicable to any elastic foundation, e.g. a pack. The derivation of the 

differential equation is given here in some detail (with some inevitable 

short cuts for brevity), because it is this method which has been used in 

subsequent Chapters on short face advancing with a centre pack. The basic 

assumption in the case of this derivation, as explained in previous theories, 

is the parabolic law of shear stress distribution (or a linear law of 

distribution of the horizontal stress ~ ) over the beam depth. 
x 

Fig. 3.3 shows an infinite beam on some elastic foundation, say a 

coal seam, in the coordinate system (x,y), y being taken positive downward. 

Then the two equations of equilibrium for a two-dimensional system 

~c5"~ () 'C--..y + - 0 
~x. ()y 

~ 6")-
+-

()'l'..., 
= 0 -0,:/ ~"-

and the boundary conditions on the top and bottom edges of the beam 
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FIG.3·3 - SCHEMATIC OF A THICK BEAM ON 

A CONTINUOUS ELASTIC FOUNDATION 
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( Cly ) 1 = ~/2. =- - k V- ) (try) :t = _ "/'- = - C), 

are satisfield by the following expression~for the stresses ~~, 

't; xy : 

6'X- = f (~) y 

(i ~ = ~ + Ie v + (1- _ k v) ( '!J, _ :l)' '3) 
~ ~ ~k ,,3 

a, 
y 

(3.18) 

These expressions are in accordance with the initial assumption of a parabolic 

shear stress distribution. Here ~ are the bottom-fibre deflections and the 

function f(x) is defined by 

The rest of the symbols have the usual meanings. 

Expressions for displacements u,v can be obtained if Equ. (3. 18) 

are used in the displacement relations in plane strain 
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dLt 
~ [( 1-,).1.

2
) 6'"", - /" ( 1 + r) 6",- J == ~x. 

~V -: -L [ (f -?~) 6',. -.r( 1+)"-) ()~ ] -
~y £ 

d'LC.. ~'V' 2 (f+p) 
+- - 'C'X.') - -

"J".:! ()'X. £ 

Only the vertical displacements v are of interest and mentioned here: 

V': _ ~ f ( ) + ).L ( t +f') (<t 'X.~ _ k v ) (l _ 6 Y 2) 
E. II 'X. £ ~ 11 210. {..3 

where B 1 (y) and B 2 (y) are arbitrary funct i ons of y only. From this V 

can be seen to be 

Differentiating four times with respect to x and using Equ. (3.19) 

(3.20 ) 

which is the differential equation for bottom-fibre deflections of a thick 

beam on an elastic foundation. It will be immediately seen that this equation 

is identical to the classical thin beam equation (3.3), the reason being 
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simply that when the usual condition of zero shear stress, given in Equ.(3.17), 

is applied to the top and bottom edges of a thick beam, the deflections of 

these edges become independent of shear stress. This means that the ourvature 

due to shear force vanishes from the total ourvature at these extreme edges, 

so that the bottom-fibre deflection depends on bending moments alone. The 

problem of a thick beam thus becomes more realistic due to Equ. (3.20), which 

has the advantage of being simpler to handle than previous more complicated 

equations. 

3.4 Application of the beam theory in general to strata mechanics 

The beam theory in general has been applied in the past to underground 

strata behaviour problems associated with pillar and seam loadings, and 

stability of mine openings, i.e. room and pillar mining. The reason is that 

this method of mining permits the use of such a method of pre-failure analysis 

of the situation, while in longwall mining some sort of post-failure analysis 

is necessary after having understood the nature and extent of the goaf that 

is close by. Also the failure in the goaf is progressive as the longwall 

face moves, leaving some intact rock higher up and over the ribside, leaving 

a geometry which is largely unknown and also difficult to analyse. 

The work of Tincelin and Sinou (31) has already been mentioned in 

the previous Sections, in connection with the thick beam theory. The thick 

beam equation (3.10) developed by them was subsequently used by HBfer and 

Menzel(35) for loading problems associated with rock salt pillars in thick 

rigid strata and they found by lateral deformation measurements carried out 

on pillars that Equ. (3.10) gave reasonable values of pillar load. In view 
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of the error pointed out in the derivation of this equation in 3.3, mention 

may be made that this Equ. (3.10) and the later developed Equ. (3.15)(43) 

are not significan~ly different for a uniform depth pressure, i.e. level 

single seams, as given in 3.3.2. 

The thin beam theory has been applied in the past to obtain a 

comparative picture of loading on split pillars at the goaf edge during 

depillaring with caving, depending on the extent of splitting(37), also by 

Tincelin and Sinou in their work on pillar loads (31 ), by Adler(32) for the 

stability of a mine opening, as described earlier and by Salustowicz and 

Borecki(47, 48), for seam reactions and load on the stowed goaf. 

Stephansson(36) used both the thin and thick beam theories in 

extensive investigations into the stability of a wide mine opening in 

horizontally bedded rock. He also used equations for deflection of multiple 

beams, simulating multilayered roofs and compared his results with experiments 

on plaster modelling in a centrifuge. When friction was used in his models 

between the seam and the roof, the results on the ribside did not agree 

completely with theory. This showed the approximation introduced due to 

the condition of zero shear stress on beam edges. 

An application of the theory of bottom-fibre deflections has been 

given in (49) for estimating the stability of barrier pillars in a pyrite 

mine using the principle of strain energy. 

The work on beams so far reviewed indicates that rock strata in 

most situations are to be treated as thick and it is also shm-ffi how the 
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theory of bottom-fibre deflections is somewhat more realistic than the 

other thick beam methods, though with inevitable approximations involved. 

This method has been used in the work described in subsequent Chapters on 

short face advancing with a centre pack and on floor heave analysis to 

obtain the loading on floors during retreating. 

* * * 



CHAPTER 4 

Experimental work - elastic modulus of anhydrite 

and a pack strength formula 
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CHAPTER 4 

Experimental work - Elastic modulus of anhydrite and a pack strength formula 

4.1 Introduction 

A roadside pack made of crushed natural anhydrite becomes 

increasingly stiffer with time because of the setting process and so, with 

face advance, develops increasing resistance to roof lowering. This 

property is peculiar to all setting packs as opposed to conventional packs 

like wood chocks or dirt packs. This fact has been taken into consideration 

in the next Chapter which deals with an elastic analysis of the short face 

advancing method using a centre pack of anhydrite. It was, therefore, 

. 
necessary to determine the variation in the elastic modulus of anhydrite 

with setting time, especially since work on this aspect did not appear to 

be available. 

All rocklike materials are subject to a fall in strength with an 

increase in the size of the specimen tested, beoause of the presence of 

macroscopiC flaws. Pores, grain boundaries, cleat planes etc. fall under 

the category of flaws and initiate failure in a specimen under stress. The 

probability of failure under a particular stress value increases with the 

number of these flaws in the specimen or, in other words, there is a fall in 

strength with an increase in specimen volume. This is the weakest-link 

theory. Epstein(50 ) has given equations of strength considering several 

frequency distributions (Gaussian, skew, Weibull, rectangular) for the 
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strengih of brittle materials. Grobelaar (51) has shown the applicability 

of this theory to several rock types and coal, when the frequency 

distribution is Gaussian or normal. Thus, according to the weakest-link 

theor,y, it could be visualised that anhydrite would reduce in strength 

with greater specimen size and a small specimen could lead to erroneous 

estimates of pack strength. 

Also of interest with reference to anhydrite packs is the well-

known effect of slenderness on the compressive strength of a specimen, 

slender specimens being weaker than flat ones. Since anhydrite packs 

could occur in various heights and widths, it was important that this 

influence be considered in estimating pack strength. 

4.2 Experimental investigations 

Crushed natural anhydrite was obtained from British Gypsum for the 

purpose of these experiments, in the size range of 0-6 mm with about 

30% fines under 0.2 mm as per German standardisation(9). A water-

anhydrite ratio of 0.1 was used so that no tamping was necessary to 

produce a consistent specimen. The percentage accelerator used was 1% 

by weight of the anhydrite. 

4.2.1 Influence of setting time on the elastic modulus of anhydrite 

10-cm cubes of the anhydrite mix were cast into suitable wooden 

moulds. The moulds were gently hammered from the outside to settle the 

mix. No tamping was necessary. The setting period was varied from 1 day 

to 6 weeks as seen from Table 4.1. All specimens were prepared from the 

same bag of anhydrite. 
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TABLE 4.1 

Variation of elastic modulus of anhydrite with setting time 

Setting period, 
days 

Elastig modulus, 
x 10 /kN/m2 

1 1. 73 
3 3.20 

7 4.92 
14 6.50 
28 7.53 
42 8.15 

TABLE 4.2 

Influence of size and slenderness on cOmpressive strength 

of anhydrite 

Specimen Specimen No. of specimens Mean Strength 
kN/m2 cross-section, Height, tested 

cm square em 

2·50 5·00 5 62,720 

3.75 2.50 5 85,470 
5.00 5·00 4 70,700 
6.25 9.40 4 48,510 

7.50 3.75 4 75,865 
10.00 .2.50 3 92,665 
15·00 5.00 3 72,665 

Standard 
Deviation, 

% 

5.01 

4. 17 
0.97 
5.46 
0.94 

4·50 
2.65 
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The prepared specimens, after the required setting period, were 

compressed uniaxially in a universal testing machine. Their deformation 

\{9S measured simply by two dial gauges, one on either side of the specimen. 

Three replications were used for each setting period. 

Fig. 4.1 to 4.6 show the stress-strain characteristics of anhydrite 

at the six setting periods. Each curve shows an initial non-linear 

deformation indicating closure of pores and squeezing of the cementitious 

matrix in the material. Then follows a fairly linear behaviour. The 

stress-strain curve is thus similar to that of sedimentary rocks. The 

tangent elastic modulus from the straight line part of the curve was 

determined for every replication graphically and a mean value was calculated 

for each setting time. The mean elastic moduli are given in Table 4. 1 

and their values against setting time are shown plotted in Fig.4.7. A best 

fit to the regreSSion was obtained to give the following relation for the 

variation of the elastic modulus of anhydrite E with setting time t (in 

days) : 

E 
7· 89 ~ 

~·6 5 -+- t 

6 2 This equation is asymtotic to the plateau value of 7.89 x 10 kN/m at 

(4. 1 ) 

The coefficent of correlation for this regression equation was 

0.995 at the significance level of 0.1% and thus shows a high degree of 

correlation. 
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Effect of size and height of specimen on the crushing strens}h 

of anhydrite 

In order to obtain a relation between crushing strength, size 

and slenderness it was necessary to carry out tests on specimens of 

varying sizes and width-height ratios. This was a three-variable 

experiment and a statistical design gave rise to a total of 28 tests 

having 7 sizes, from 2.5 cm to 15.0 cm. sq'lare, and width-height ratios 

from 0.5 to 4.0. For consistency and careful blocking, a 3O-cm cube of 

anhydrite was cast and all 28 specimens were prepared from this single 

cube by cutting and grinding after 7 weeks of setting. A view of these 

specimens is given in Plate 4.1. 

All specimens showed a docile failure under crushing. The 

dimensions of these specimens and the corresponding crushing strength 

values are given in Table 4.2. It may be noticed that the number of 

specimens tested (replications) for each size reduces from 5 to 3 as 

the specimen cross-section increases. This is in keeping with the 

corollary of the weakest-link theory that the percentage standard deviation 

falls with increaSing specimen volume, which is found to be reasonably true 

in practice(50 , 52). A three-variable regression analysis gave the following 

equation for the strength of anhydrite: 

s 22025 

0·073 
w 

,,0<4'39 

where S is the crushing strength of an anhydrite specimen of width wand 

height h m. The correlation coefficient was C.3~ at 0.1% significance 

level. 





12 

Since Equ. (4.2) is in three variables it cannot be shown plotted 

on a graph. A graphic repres~ntation of only the influence of size on 

strength can be made according to the following reduced equation for cubes 

obtained from Eg. (4.2): 

S = 22025 -0.366 w 

This gives the fall in strength with size of cubes of anhydrite, 

as shown in Fig. 4.8. It can be readily seen that the fall is significant. 

The strength of a 1-m cube is obtained as 22025 kN/m2 so that the reduction 

in strength from, say, a 10-cm cube to a 1- m cube is more than 50%. 

Considering the usual order of pack size - a couple of metres - the fall 

in strength from a laboratory small sample is obvious. 

Equ. (4.2) has the same general form as that for the strength of 

square coal pillars given by many investigators(52-56). 

4.3 Pack strength formula 

Equ. (4.2) thus affords a means of estimating the strength of an 

anhydrite pack of given dimensions. To use it in practice as a pack 

strength formula, however, it has to be modified to the form 

S = 22025 
O· Ct73 w 

where F1 is a correction factor to incorporate the difference in the 

laboratory and in-situ strengths of anhydrite and is simply the ratio of 

the two. F2 is a second factor to be used if the pack is less mature than 
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7 weeks, which is the setting period used for these tests. The correction 

factor F3 is meant to include the strength increase due to biaxial effects 

underground. 

F1 is being determined in the laboratory by drawing core samples 

from Easington Colliery(57). Tests so far have not been sufficient but 

there is an indication that F1 may lie between 0.5 and 1.0 approximately. 

The likelihood of a peak pressure on the pack after some face 

advance has been indicated by several workers (see Chapter 2). There is 

a good probability that the pack may not have set fully at this time. 

Knowing the distance at Which the peak occurs and the rate of face advance, 

it is simple enough to estimate the strength of anhydrite at the time the 

peak occurs from the following equation(1 4) 

s = 
39226 t 

2.84 +t 

2 
kN/m 

The correction factor F2 is then obtained as the ratio of the 

strength so calculated to the final strength (i.e. at 7 weeks), and is 

always less than1.0. 

Past experience has indicated that there is a significant increase 

in the strength of rectangular specimens under compression, when the longer 

lateral dimension is increased(58). In fact, the rise in strength is 

indefinite, showing that a specimen with infinite length would be virtually 

indestructible, if it is not too slender laterally. Thus a well 

consolidated long pack can be expected to be very strong, but experience with 
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anhydrite packs at Easington has shown that complete consolidation is not 

possible. Anhydrite remains fluffy and uncrystallised in pockets inside 

the pack, so that the lateral restraint along its length is only partly 

achieved. Hence the factor F3 for biaxial restraint should, it is felt, 

be taken conservatively as 1.0. Equ. (4.3) then becomes 

w 
0.073 

s = 22025 
hO. 439 

It may be of interest to estimate the safety factor of the pack 

at Easington from Equ. (4.5). Taking the observed peak load of 

5300 kN/m
2 

(Fig.2.7(b)), F1 = 0.75, w = h = 1.5 m, the safety factor of 

the pack can be estimated, if F2 is obtained. The time of peak load can 

be taken as 14 days. From Equ. (4.4) we then get the strength value at 

this time and the ultimate value, and F
2

, their ratio, is 0.83. Then 

using Equ. (4.5) the safety factor is found to be 2.28. 

4.4 Conclusion 

1. Anhydrite is found to exhibit a change in its modulus of 

elasticity with setting time, as given by Equ. (4.1), the plateau 

value being 7.89 x 106 kN/m2 for the size range of the particles 

mentioned. This value is nearly reached after about 6 weeks. 

This equation will not be valid for other size ranges of particles. 

2. The strength of anhydrite is found to be influenced 

significantly by the size and height of the specimen. The 

strength of a pack is, therefore, very much overestimated if 
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judged from only small samples tested in the laboratory. 

The fall in strength from a usual laboratory specimen to 

a large one comparable in size with a pack can be 50% or 

more. 

3. Equ. (4.5), while accounting for the influence of size 

and height on strength, can be used for pack strength 

estimation. 

* * * 



CHAPTER 5 

Short face advancing with a centre pack of anhydrite -

theoretical estimation of pack loading with face advance 

and roof bending stresses 
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CHAPTER 5 
\ 

Short face advancing with a centre pack of anhydrite - Theoretical 

estimation of pack loading with face advance . and roof bending stresses 

5.1 Introduction 

Having considered in Chapter 3 the working of the method of short 

face advancing with centre pack support, the situation w~ll be analysed 

elastically to estimate 

(a) the load on the centre pack with face advance, 

(b) the influence of the rate of advanoe on pack loading, 

(c) bending moments and shear forces in the nether roof 

and the maximum tensile stress, and 

(d) the abutment pressure on the ribside. 

Then referring to Fig. 2.8 the short face is seen to commence from a 

trunk roadway~ It has to be advanced to create a certain span before the 

first section of the pack can be erected. Pack placement is then subsequently 

established for each face advance, leaving sufficient working space at the 

face and also leaving two rectangular roadways on either side. The face thus 

advances stage by stage and brings the roof down further in each stage. The 

situation must, therefore, be analysed for each face movement. 

The advance of the wide heading with a centre pack of anhydrite is 

shown along a longitudinal section in Fig. 5.1. Stage (1) is seen to consist 
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of the maximum pack-lree advance of the short face and causes a certain 

amount of roof deflection. The first pack section is now erected and the 

face advanced further. This is st~e (2) in which the roof deflects over 

the pack, causing pack compress~on. In stage (3) another pack section is 

erected adjacent to the first and the face is again advanced. This causes 

the roof to deflect over both pack sections. 

It must here be remembered that during the setting process by 

crystallisation, anhydrite goes on changing its modulus of elasticity, 

and hence compressibility, with time, so that no two pack sections erected 

one after the other have the same compressibility. As seen in Chapter 4, 

the change in the modulus of elasticity with setting time is given by 

(see Ch. 4, Sec. 4 2.1) 

E= 7'8t:tt xfO' 
'3'65 + t 

and the pack foundation modulus k1' which defines its stiffness, is given by 

k ::. 
i 

E 

where H is the pack height (see Ch. 3, Sec. 3.2). Then the foundation 

modulus of the first pack section is not the same as that of the second 

section at any stage of face advance under consideration. This will be true 

for any two adjacent pack sections. 

Considering the stages of face advance once again, in stage (2) roof 

deflections over the pack occur due to face advance when the pack has a certain 
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instantaneous foundation modulus, say k11' depending on the rate of 

advance. k11 can be estimated from Equ. (5.1) and (5.2), knowing the 

time required for face advancement since erection of the first pack section. 

In. stage (3) another pack section is placed and the face advanced, causing 

further roof deflection over the first section, its foundation modulus 

having, in the meantime, increased to another value k12 , k12 > k11 • 

The second pack section erected in this stage, however, undergoes compression 

with its modulus being k11 • 

This goes on as the short face advances, any one pack section achieving 

successively higher moduli, k11 , k
12

, k
13

, etc. with each advance. Thus, at 

any stage of advancement, each pack section is stiffer than the one succeeding 

it and softer th~n the one preceding it. In other words, the foundation 

modulus of a pack section is in a higher phase, the farther it is from the 

short face. This shows how an anhydrite pack becomes increasingly stiffer 

and hence more resistant to roof convergence as the face moves away. 

5.2 An elastic analysis to obtain pack load acceptance. etc. -

LOngitudinal considerations 

Presented here is an elastic solution in plane strain along the heading 

axis stage by stage for obtaining roof deflections. When the heading face 

advances by a distance greater than half the heading width, plane strain 

consideration along the heading axis can hardly be valid. The error due to 

this consideration will be minimised by (a) first considering that the heading 

is infinitely wide and obtaining the deflections of the roof along the heading 

axis (which will be rigorous enough) and then by (b) reducing the width of the 
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heading to a finite practical value using what can be termed as an equivalent 

loading method. This method will be explained as the derivation proceeds 

and its validity and limitations will be shown at the end. 

The mathematical derivation will then consist of two main parts, 

longitudinal and lateral considerations. 

A glance at Fig. 2.8 of Chapter 2 and Fig. 5.1 indicates the complicated 

nature of the problem. Not only is the problem really three-dimensional, but 

also has to be solved for each individual face advance until a sufficient 

number of stages to obtain the pack load acceptance characteristic. It was 

felt that numerical methods of stress analySiS like the finite element method(59) 

would be somewhat cumbersome to use in the present situation. Also the 

later technique of face elements(60) would be equally unwieldy,especially 

since it was originally devised for single-material bodies under stress and 

since it loses its superiority over the former when several materials comprise 

As has been explained,each pack section would have different propertj~s 

which, in turn, would differ from those of the ribside and of the roof. 

Analytically, a solution to the problem does not exist if we consider it 

three-dimensionally, treating the roof like a plate. In fact, very few 

analytical solutions exist in the theory of plates, especially on elastic 

support (61 ). 

Due to the above conSiderations, it was decided to use the theory of 

beams and later try to minimise the errors due to two-dimensional considerations, 

primarily in the regions of interest, by devising a suitable method for lateral 
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considerations, giving an approximate solution. The particular theory of 

beams that has been employed in the derivation is that of the bottom-fibre 

(or extreme-fibre) deflections of a beam on elastic support(46 ), as explained 

in Chapter 3 (see Sec. 3.3.3). Pack load and ribs ide abutment loadings 

will be obtained once the nether roof deflections are known,as will be shown 

in the derivation. 

5.2.1 The mechanical model for roof strata 

When an opening is made in a stratified rock mass, experience has 

shown the formation of bed separation cavities between layers of rock. 

These cavities form up to a certain height in the roof of the opening and 

seldom beyond a height equal to the width of the opening. Any mine support 

erected in the opening has then to take only the weight thrown on it due to 

the deflection of this separated rock, the main rock mass being self-supporting 

(because of its rigidity) across the abutments which comprise the ribside. 

The prcbable configurations resulting from cavity formation in the 

nether roof are shown in Fig. 5.2. ~h th a single kind of stratified rock up 

to a considerable height in the immediate roof, there is a good probability 

that a single cavity develops, instead of multiple cavities, which travels 

upward as the opening is widened. Its height from the bottom of the roof 

is generally less than the width of the opening, as seen from equivalent 

material model studies(62). Configuration (2) shown in Fig. 5.2 is thus 

more probable if a single kind of stratified rock exists in the roof below 

the limit of cavity formation (i.e. at least up to a height equal to the 
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width of the opening). With a competent massive rock, it is also possible 

that no appreciable bed separation may occur before failure of the roof. 

Since it was intended to apply this analysis to the High Main seam 

(E) at Dawdon Colliery, a borehole section of the nether strata from this 

mine is given in Fig. 5.3(63). The mudstone in the immediate roof has 

been described as a medium-strength rock 10 m or more in thickness. 

With these consideratior~ the mech~nical model shown in Fig. 5.4 

has been chosen for stage (1). This model assumes the existence of a 

single separation cavity in the roof, the separated nether rock consisting 

of either (a) a thick composite beam of several layers, or (b) several 

layers, one above the other, with cohesion broken between them due to 

extraction. 

The main rock mass is intact and self-supporting. 

5.2.2 ASSUmptions used in the analysis 

Besides the assumptions(given later) made for the numerical analysiS 

of this method considering conditions at Dawdon Colliery, the following 

were used in the analytical part. Some of these assumptions refer to the 

thick beam theory of extreme fibre deflections. 

(a) The horizontal stress (j x is assumed to vary linearly 

through the depth of a beam. Thls is equivalent to assuming 

that the shear stress 1; varies parabolically. xy 
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FIG.5,3-TYPICAL SECTION OF HIGH MAIN SEAM (E) 
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FIG.5·4-MECHANICAL MODEL FOR STAGE (1) 
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(b) There is no friction or cohesion between two adjacent 

beams or between a beam and its elastic foundation, i.e. the 

sp.ear stress 't , at contact planes is zero. xy 

(c) The weight of a beam can be taken as an externally 

applied uniform lo~ding on the top edge of a be2m in addition 

to reactional normal stresses between beams, if any. 

(d) The associated pack sections, rock and coal are assumed 

to behave linearly and isotropically with stress. 

(e) Every pack section in any stage of advance is assumed 

to be erected with complete contact with the roof. 

(f) Coal ribs and strata are theoretically infinite on 

either side of the short-face heading so that the roof becomes 

an infinite thick beam on elastic support. The analysis, 

therefore, considers that the lateral constraining stress 

(J is 1~,}imeS the vertical stress t5 at an infinite 
x -r Y 

distance from the heading, f' being Poisson's ratio. 

5.2.3 Beam analysis for the nether roof 

The analysis has been carried out stage by stage from the initial 

stage (1) up to stage (7). From Fig.5.4 it is seen that the nether roof 

has separated from the main rock mass above, forming a single cavity. We 

then have a configuration which consists of a pack-free opening of width 

( t1 + w ), the face having advanced to a distance t 1, the trunk roadway 
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width being w. The nether roof is like a thick beam without support 

over the opening and supported elastically over the coal ribside. The 

main strata rest on the nether beam, sandwiching it between itself and 

the ribside, giving a two beam problem. 

The various notations used in stage (1), shown in Fig. 5.4, have 

the following meanings: 

= main strata thickness, 

= nether strata thickness, 

uniform loading on the main strata beam 

representing its own weight, 

= uniform loading on the nether roof beam 

due to its own weight, 

= total depth pressure at the working level, 

= reactions set up at the contact plane 

between the two beams over the ribside, 

deflections of the bottom fibre of the 

nether roof over the ribside and opening 

regions respectively. 

Stage (1) has been analysed for two kinds of nether roof beams: 
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(a) as a thick single beam, cohesion between beds 

unbroken, 

(b) as consisting of several beams of equal thickness, 

cohesion between them broken due to working. 

The main strata have throughout been considered as a single thick 

composite beam. 

The configuration is symmetrical about the y-axis in stage (1), the 

position of the rectangular coordinate axes being as indicated in Fig. 5.4. 

The y-axis is taken downward positive. 

5.2.3.1 Stage (1): nether roof as a single thick beam 

The situation in stage (1) will be analysed in parts for the main 

and nether strata beams over the ribside and over the opening. 

Main strata: t1 + w 
---2~ <:: x <00 

In accordance with the theor,y of extreme fibre deflections, the 

horizontal stress () can be assumed to var,y linearly through the depth x 

of the main strata beam in the coordinate system of Fig. 5.4 as 

where F(x) is an as yet unknown function of x only. Substituting Equ.(5.3) 

in the first of the equilibrium equations in plane strain: 
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d<f:x. + ~<f~y 0 ::: 
dX. oJ 

d cry d 'r?C.i: 
(5.4) 

-- + :: 0 ay dX. 

we get the shear stress 't' xy as 

where A1(x) is an arbitrary function of x only. 

Applying the conditions 

('r'Y-" ) = ('tx.,,) = 0 
J :J = 0 J 'Y = hi 

on the upper and lower edges of the main strata, we find 

From this expression for ~ and the second of the equilibrium xy 

equations (5.4) 
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From Fig. (5.4) the conditions in terms of the vertical normal stress 

~ on the two edges of the main strata are seen to be 
y 

both X and q1 being taken negative because they are compressive. 

These conditions, when applied to (5.6) give 

so that 

Having determined F"(X) in Equ. (5.7) the following are obtained 

by direct integration 

F ' (?G) = - ( ~ 1 'X. - X I ) % + A 
:2 1 

(
?(. X) f2. + A ~ + .B F ( ')t) = - <1("2 - II J;i 

• 
where A = 0 to satisfy,; = 0 on the edges and B depends on the beam end 

xy 

condit ions. 

The expressions for the three stresses (5.3), (5.5) and (5.8) become 
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The loading reactions X between the main and nether strata are 

still unknown but can be determined later from displacements taking place 

at Lhe contact plane y = o. 

The displacement relations in plane strain are 

~LL I 
[ ( 1-r: ) (f'k. -)"~ (1 +?i) 6"y ] -ax. E1 

air ~ ((1-jk:)6j -)'-~(1+~1) 6""~ J -- .. 
d'J E. t (5. 10) 

&It ov- :::. 
:t (1 +?-V -- +-- T 

';}'J }-,c. E1 'K-J 

E1 and ~1 being the elastic constants of the main rock strata. The 

second equation in (5.10) does not agree with the initial assumption of 

linear variation of (J with y as in Equ. (5.3) (46). Also, only the first 
x 

and third equations in (5.10) are sufficient to obtain an expression for 

the vertical displacements v. Then making use of only these two 

displacement relations and the stress equations (5.9), the horizontal and 

vertical displacements u and v can be written down as 
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" = 

where B1 (Y) and B2 (Y) are arbitrary functions of y only. The expression 

for v gives the vertical displacements at the contact plane between the 

beams as 

where D1 

~ 

_ .L (~ 'X- t., _ X ) _ e I (0) ~ +- 8" (0) - 0 ~ 
D 1 2.'1 1 V 1 ... -.. 

1 

'b 
E11..1 

= is the flexural rigidity of the main strata. 
12 ( f -)-'1'-) 

Nether strata (over ribside): -if +- W < 1(. ( ():) 

~ 
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As in the case of the main strata, we can assume an expression 

for ~ in terms of an unknown function of x G(x) like x 

Then using the equilibrium equations (5.4) and proceeding along the same 

lines we find 

satisfying the conditions ('t ) xy y = 0 

We also get 

with 

h 2 
6''1 =- _. ( 't.,t + X) +- ~ ( 't,2 + X - k.t "1 ) ( i 'j 

2. 

(5. 1 3) 

o • 

where k2 = Ec is the foundation modulus of the seam, E , }k being 
H( 1-/-,2) c c 

the elastic cOnsta~(s of the seam and H its thickness. v1 are the bottom 

fibre deflections of the nether roof in the ribside region as explained before. 

Equ. (5.14) satisfies the conditions of normal stress on the upper and lower 

edges of the nether roof: 

, 

the second condition being in accordance with the theory of beams on elastic 

foundations. 
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Integrating G#(x) of Equ. (5.15) once and twice and using 

relations (5.12) and (5. 13), the stresses can be rewritten as 

0"" '" - :; (1, 7· ... X II - k. Vf II ) ( y - -? ) + C ( y - ~ ) 
:t 

The displacements along the contact plane between the two strata 

beams or the upper edge of the nether strata y = 0 can be determined in a 

similar manner as in the previous case of the main strata using (5.16) and 

the displacement relations (5.10). Mentioned here are only the vertical 

displacements v for relevance: 

''\I'' ::. 12 ( -x. " ) ~ 
h ~ 'f..2 ~ 4 of- X I V - k.2.. v:, 1 V - C ~ 
~ 

~ ~ (i1 ~ ~ + XlI - k2 "'1 rr ) (~2 'J - 'Y:l ) 
:t 
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From this, at the contact plane y = 0, 

;t, B; (0) ~ -t- (\ (0) - C 1-

E2 "'2
3 

where D2- ~ is the flexural rigidity of the nether roof. 
12(1-~,.) 

Equ. (5.18) must be identical with Equ. (5. 11 ) since both refer to the 

deflections at the same plane y = o. Equating the two right hand sides of 

these equations and differentiating four times with respect to x we get an 

expression for X, the unknown reactions at the contact plane: 

x = 
'1.1 D~ - ~.2. D1 + ])1 k:1 "1 

Df + D~ (5.19) 

The displacements at the lowest fibre of the nether roof or at the 

contact plane between the seam and the nether roof y = ~ can be determined 

from Equ. (5.17): 

"'1 ::. (V') ~ "" ":l. 
~ 

- I ( 'X.'" ) I ( ) + e (k) C ~ - D.:z. q:l. ~Lj +- XIV - k.:z. V1 IV - B:!> (,..2, 'X.. 4 2 - -;: 

Four times differentiation with respect to x gives us 

and substituting for X from (5.19) we get finally 

4 

( D f + D 2) ::~ -::: 't I + <t,:2 - k:l Vi 
(5.20) 
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This is the differential equation for deflections v1 of the lowest fibre 

of the nether strata over the ribside. 

In order to evaluate the integration constants in the general solution 

of Equ. (5.20), expressions for bending moments and shear forces will be needed 

in terms of these deflections. Using stress equations (5.16) and the following 

definitions of bending moments and shear forces 

4~ 

M (,,) = f If%- ~ d.y 

o 

and Q(x) = j\"y d, 
o 

we find 

for the ribside region. Substituting for X from Equ. (5. 19), 

D!2 ~ 
~ (x) = - 1)1 -+- D2 [ ( tt- f + ~~) ~ 

~ (x) = ~ M i ( " ) 

Now, the differential equation (5.20) has the general solution 

= 
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Considering that the coal seam is infinite in the region of v1 we must 

satisfy the condition 

( "'1) = x. = 00 

, 

so that the arbitrary constantsC 3 = 04 = o. Then 

Substituting (5.22) in Equ. (5.21) we see that the bending moments and 

shear forces acquire the simpler forms 

(5.22) 

It may be noticed that these are thin beam expressions for bending 

moments and shear forces because they are expressed in terms of the bottom 

fibre deflections. 

Nether strata (over opening): _ l1 + iii! < 'X. < .l.f + w 
;t ;2, 

It only remains to work out the deflections in the hanging or 

unsupported part of the nether strata and satisfy the continuity conditions 
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on the ends so as to solve the situation in stage (1) completely. 

The stress distribution in this part of the nether roof can be 

written down by the usual procedure: 

From these expressions the final differential equation for deflections 

v
2 

of the lowest fibre of the unsupported nether roof can be shown to be 

It has the solution 

by symmetry about the ordinate. The bending moments and shear forces are give~ 

by 

2 

M2(x) = -D2 
d. ".2 

olx~ 

d.. 3 
V'.t 

(5.26) 
Q2(x) = -D2 

d.'x.:
JJ 
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We can now lay down the conditions of continuity for determining 

the integration constants C1 to C4 in Equ. (5.22) and (5.25). The 

continuity conditions in beams state that at the common line between two 

regions of the same beam, which are either differently supported or 

differently loaded, the deflections, slopes, bending moments and shear 

forces must be the same when obtained from either of the deflections in 

the two regions. Considering this definition and the expressions for 

bending moments and shear forces (5.23) and (5.26), the continuity conditions 

at the coal edge, which is the common line, become 

\1'. = '\I'~ 
, 

v:' 

1 
v, :- 2 

at x ::. .t1 + W' . 

J 
2. 

, 
II II '" III (5.27) 

'V'1 :. ,,~ , v
1 

:: "'2. 

Putting v1 and v2 from Equ. (5.22) and (5.25) in these four 

conditions will give rise to four simultaneous linear algegraic equations 

whose solution will determine the integration constants C1 - C
4

, completely 

determining the deflections over the opening and the ribside in stage (1). 

5.2.3.2 Stage (1): nether roof as several beams with broken cohesion 

between them 

As mentioned earlier, stage (1) consists of creating an opening with 

a width (t 1 + w). This working is more likely to induce breaks in the 

cohesion between different layers of the nether roof up to the cavity higher 

up. These breaks then represent just a loosening of contact reducing the 

overall flexural rigidity of the nether roof. 
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Let us initially assume that the nether roof has two beds of 

different thicknesses, the upper one resting on the lower one. Due to 

bending action this will generate normal reactions X1, X2 and X3 as in 

Fig.5.5. The loadings, due to the dead weights of the two layers, will be 

q2 and Q3' acting as shown on the upper edges of these layers. Only the 

bottom fibre deflections of the lower layer are of interest. 

As in the previous case, the method of analySiS consists of 

determining the unknown reactions X1, X2 and X3 and eliminating them. 

* Main strata (over coal): 

In the coordinate system shown in the figure, it can be proved 

that the deflections at the contact plane y = 0 between the main strata and 

the top nether roof are 

~ 

1-P1 1:l --x. 4 
) I 8 ( -- · - (q - Xf I" - 81 ( o):lr. + 2. 0) 

E h ~ f 24 Of 
of t 

Top nether roof (over coal): .i1 + W' < x <. 00 , ~ 

4 ~ 4 
v = -P2. 12. ( ~ X - X ) _ 

E2, "i Cl,2 ~4 + 'IV :2 I" 

* Constants B, C occurring earlier are excluded from further derivation since 

they do not affect deflections v. 
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FIG.S·S-STAGE (1)- TWO-LAYER NETHER ROOF 
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giving again the deflections at the contact plane y = 0, 

and the deflections at the contact plane y = ~2 between the two layers of 

the nether roof, 

Equ. (5.28) and (5.29) muijt be identical, hence 

= .q, Dg - <lit D, + 2>1 X2 

D, + D:t 

where D2 is the flexural rigidity of the upper nether roof. 

( L .... w Bot t om nether roof over coal): f < X < ~ 
:t 

We similarly obtain at the contact plane y = h2 

At the bottom fibre of the lower nether roof we can write 

--

Identifying (5.30) and (5.32) 

(5.30) 

(5.31) 
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x~ = 
q~ D~ + Xi D3 - <:J,31>:z - 1)2 k2 Vf 

D:z, + D?> 

and with the help of Equ. (5.31) 

X ::. -(D,t- D:z)<J3 + (~,+'J.2) D3 +( D1+D1) k~vf 
~ 

where D3 is the flexural rigidity of the bottom nether roof. 

Differentiating Equ. (5.33) four times with respect to x and substituting 

this value of X2, we finally obtain the differential equation in terms of 

deflections v1 over the solid coal: 

We can similarly show that the deflection equation for the bottom 

nether roof over the opening is 

A comparison of Equ. (5.34) and (5.35) with those for a single layer 

roof, Equ. (5.20) and (5.24), shows that they are very similar, with the 

flexural rigidity D2 of the single layer roof being replaced by D2 + D
3

, 

the sum of the rigidities of the two layers. 

It can similarly be proved by deduction that when there are several 
\'\ 

layers I say 'n, we have . I. D instead of Dol + D3 and when all these layers 
f n 

have the same flexural rigidity D the differential equations are of the form 
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for the ribside and 

for the unsupported part over the opening .• Here q2 has now the same meaning 

as in Equ. (5.20) and (5.24) of the single layer case. 

It is important to note that these two equations (5.36) and (5.37) 

assume that the flexural rigidity of the beam is ""D over the opening which 

changes suddenly to (D1 + ~D) over the ribside. Structurally this is not 

permissable in the same continuous beam. We must, therefore, assume that the 

equati ons have the form 

instead of their earlier versions. Here "D has been replaced by D2 for 

simplicity, with D2 representing either the single-layered or multi-layered 

roof. Equ. (5.38) have the solutions 
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and J (5.39 ) 

... 
(

k 4 

in which now 0<. = 4 ~2 ~. The arbitrary constants C1 - C 4 can be 

determined from the continuity conditions (5.27) as explained before. 

5.2.3.3 Stage (2) 

Having made an opening of width (t 1 + w) in stage (1) the first pack 

section is now erected and the short face advanced further by a distance t . 

The length of the pack is also .t • When the opening is widened this way, it 

produces deflections additional to those existing already in the nether roof. 

These additional deflections occur over the pack, producing pack load. They 

also occur over the unsupported part of the opening and the ribside. 

Referring to Fig. 5.1 and 5.6 stage (2) shows that the new final deflections 

have been designated as follows: 

v 3 - over the stagnant ribside, ( t 1 + ( +w) < ')(. <: Q) , 

v5 - over the pack, .t1 <: ox <. ('/'1+'/')' 

v6 - over the working area at the face, 0 < ~< ~1' 

v 7 - over the faceside coal, - Q) <: x <. o. 

The y-axis has been shifted to the face edge from its earlier position 

in stage (1) since this problem is no longer symmetrical in stage (2) (l1+ w). 



FIG.5·6 -STAGE (2) OF FACE ADVANCE 
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The pack was erected when the roof deflections were already v2 ' as 

given by the second equation in (5.39). The new final deflectiomdue to 

face advancement are v5 so that the additional deflections responsible for 

pack compression are (V
5
-v2), and the pack load produced will be k 11 (v

5
-v2) 

where k11 is the pack foundation modulus at the instant the roof deflects 

in stage (2). 

The unknown reactions X1and X2 set up at the contact plane y = 0 

between the main strata and the nether roof can be eliminated by the earlier 

procedure and it can be shown that (Fig. 5.6). 

tt, + ~:2 -'" "'( ) = + e C S' us 0( x.. + C 6 S-w.. 0( ')(. 

k~ 
(5.40) 

the first equation satisfying the = and the 

second one satisfying (v 7 )-x.= _ 00 

condition 
q1+q 2 

= k2 
These two separate equations 

are necessary for the two solid coal sides because the configuration is no 

more symmetrical, unlike stage (1). Similarly, for the unsupported parts 

of the nether roof 

'i-.? 4 ~ C !2 C +C 
v 4 = - 'X. + C7 'X.. + 8 '" + . 9 '" 10 

~4 ]):2 
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again due to lack of symmetry. 

Deflections over the pack, or pack compression, can now be considered 

under the following conditions on the two edges of the nether roof in the 

regi on of t he pack: 

In order to determine v5, the stresses in the nether roof in the 

pack region have to be determined. They can be written down as 

which satisfy the edge conditions (5.42). From these equations we get 

the differential equation for deflections in the pack region in the usual 

manner: 
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(5.43) 

The general solution of this equation can be obtained after substituting 

for v2 from Equ. (5.39), modifying it to suit the new position of the 

y-axis at the coal face thus 

This expression when substituted in Equ. (5.43) gives its solution as 

"'5 .: ~ (:a:..- t _ J.f+W )I.f+ C (~-I. _ ll+II<I)2 + C'" 
~4 Dot 2. 3 2-

-(3,-x. 
+ " f (C 11 c.os P1 'X. -+- Cftl. s~ fbi" ) 

in which 
I. I;. 

( ~) 4 
4 D~ • 

The five equations in (5.40), (5.41 ) and (5.44) are the complete 

deflection equations for the different regions in stage (2). They involve 

16 integration constants C
5 

- C20 which can be determined if the same number 

of algebraic equations can be framed. Continuity conditions like (5.27) can 

be applied to each pair of neighbouring regions. The pairs formed will be 
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for each of these pairs, we will get 16 simultaneous linear algebraic 

equations. As will be remembered, the fOur conditions are laid down 

in terms of deflection, slope, bending moment and shear force at the line 

of demarkation separating two neighbouring regions. 

Stage (2) is then completely determined. 

5.2.3.4 Stage (3) 

A second section of the anhydrite pack is now placed adjacent to 

the first one of stage (2) and the short face is advanced further by a 

distance 1. • The length of each of the two pack sections is also l . 

This additional face movement causes further deflections to occur over 

both pack regions, co;npressing the first pack section further and the 

second section for the first time. At the instant the face moves, the 

foundation modulus of the first pack will have risen to another value 

The second section will have acquired the value k11 • 

The deflections in the different regions are as deSignated in 

F1g. 5.1 and those over the coal sides and the unsupported regions of the 

opening can be shown to be similar to stage (2): 
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Besides the usual conditions of zero shear stress on the upper 

and lower edges of the nether roof beam, the conditions for the vertical 

normal stress cr y in the two pack regions are: 

pack section (1): (6"':I)~=O:: - '1.2,. , 

(~'i)'Y:. h
2

:::' - k ff (V's - V"~) - ku (v,o - V s ) 

pack section (2): (~) = - <i2 , 
., )"0 

(cr)' ) ':t :: h:1. :: - k 1 f ( "'11 - \t 6 ) 

The second term in the second condition for pack section (1) corresponds 

to the additional loading thrown due to face movement in this stage. v10 

and v11 are the final new deflections in stage (3) in the region of pack 

sections (1) and (2) respectively. We can then form the differential 

equation for deflections v10 over the first pack section: 

14 

D d "'10 () ( ) 
:2. = 'J" - k/~ '\rio - "'5 - ku "'5 - V;z 

d. '1-~ " 

Changing v 2 of Equ. (5.39) and v5 of Equ.(5.44) to suit the new 

position of the y-axis, we get the solution of this equation as a 

complementary function and a particular integral, 



113 

with 

Similarly, over pack section (2) 

4 

D c1V"" k ( v) ~ "* =- '1-2 - If "if - 6 
cJ.-x. 

giving v11 '" .1!.. ex -l t + CIS ( '" - l)?> + CIG ( .. - t t ... C I7 ("--I)'" C'9 
~4D~ 

+ ;-Pf:r. ( C
31 

<:..os (JJf ~ + C:?>!2 s.;.... f31 ox. ) 

changing v6 of Equ. (5.41) to suit the new position of the y-axis and 

substituting in the differential equation. 
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Applying continuity conditions as usual we can determine the 

new set of 20 arbitra~y constants C21 - C
40 

involved in Equ. (5.45-47), 

completely solving the configuration of stage (3). 

5.2.3.5 Further stages 

Derivation can thus proceed up to whatever stage desired. 

In the instance of anhydrite packs it was carried out to stage (7), 

until when, it was felt,a sufficient part of the load acceptance curve 

of the pack would be obtained. 

The load on any pack section considered can be seen to vary with 

face advance as given by the conditions for the normal stress cs; on the 

lower edge of the nether strata. Taking each pack section stage by stage, 

at y = 1,2' 

Stage (2): pack (1) 6"., = - kit ( \1'5 - v:l ) 

Stage (3): pack (1 ) 6''1 '" - kit (vs- - '\1",2) - 1<42 ( v40 - Vs ) 

pack (2 ) 6'''$ = - kff ( '\Tn - V',) 

Stage (4) pack (1) ($"'1 : - kft ("'s - '\1",2) - 4<'2 (\/'10- Vs ) - k'3 ( 'VH - V,o) 

pack (2 ) 6"":y :: - k ff ( "'i, - v,) - k'2 ( V'7 - "11 ) 

pack (3) try = - kif ( '\1;8 - Vi 2 ) 

Stage (5): pack (1 ) 6""~ = - k'1 ( "'.,. - '\1"2) - kt~ ( ""0- "5' ) - k f3 ( 'lIf, - Vic) 
- k.,~ ( V':l~ - V f , ) 

pack (2) cry = - k1( ( Vtf - vIS ) - Jc,,!2, (v,? - 'If" ) - kf~ ( \1".24 - V'7) 

pack (3) 6"'1 = - k ff ( -.r'8 - \f,ll) - k12. ( V'25 - v'8 ) 

pack (4) 5"':1 : - J:: 11 ( \1"2' - V"19 ) 
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and so on up to stage (7). 

Taking, for example, pack (1) the loading is seen to 'increase' 

step by step as for any other pack section. Deflection equations for 

stages (4) through (7) are given in Appendix I and may be referred to for 

interest. It will be seen that the integration constants from stages (4) 

to (7) are 24, 28, 32 and 36, the total constants from stage (1) to (7) 

being thus 160. 

A suitable computer program was written for each stage in Fortran 

IV for the application of continuity conditions and solution of the resulting 

simultaneous equations. For the purpose of this numerical analysis, 

the conditions at Dawdon Colliery were taken. The computer program for 

stage (7), together with the output is given in Appendix II. A NAG 

Library Subroutine F04ATF was used for solution of the simultaneous 

equations (of which there are 36 in stage (7)). 

5.2.4 Assumptions and data for numerical analysis on the computer 

As already seen, there is a single rock (mudstone) in the nether roof 

above High Main seam at Dawdon up to a thickness of 10 m or more. It is 

more realistic to consider that the nether roof will be disturbed by breaking 

off of interstratum cohesion due to working up to the bed separation cavity. 

The assumptions made for the numerical analysis were therefore: 

(a) When the short face is started, the roof develops a bed 

separation cavity at a height of 10 m (which appears to be a 
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a reasonable figure, considering the three heading widths 

of 12, 14 and 16 m, for which the situation has been analysed 

later) in stage (1). In spite of further face advance this 

cavity does not travel upward, since it would be limited by 

the width of the heading and not its length. 

(b) The cohesion between layers is broken every 1 m in the 

nether roof mudstone, so that the flexural rigidity of the 

nether roof D2 is 10D where D is the flexural rigidity of 

each such layer. 

(c) The elastic properties used in the analysis were taken 

as an average of those for some Durham rocks and coals(64). 

The following data for numerical analysis could then be 

Depth of High Main seam from surface 

Thickness of seam H 

Modulus of elasticity of seam E c 

365 m 

1.9 m 

6/2 2.0 x 10 kN m 

Modulus of elasticity of nether roof (mudstone)E
2 

1.35 x 107kN/m2 

Poisson'S ratio (coal, rock, anhydrite)" 0.25 

Length of each pack section (or unit advance)! 3.0 m 

Width of trunk roadway w 6.0 m 
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Maximum unsupported span between the short 

face and the last pack section l1 

Rock pressure per metre of depth J' 

5.0 m 

2 22.8 kN/m 

Three rates of advance, 9.0, 6.0 and 4.5 m/day,were used to obtain 

the pack load variation with face advance. The values of the foundation 

modulus, k11' k12' etc. will depend on the time interval between two successive 

face advances. The rate of advance will, therefore, affect pack load 

acceptance, even though this analysis is purely elastostatic and does not 

otherwise include time-dependent phenomena. 

in this Chapter are elastostatic only. 

Results of lOngitudinal considerations 

All the results presented 

The values of all the 160 integration constants could be determined 

from the computer programs, so that the deflection equations were completely 

known for all stages. Two pOints, A and B, were chosen on the top centre of 

pack sections (3) and (2) respectively, as shown in Fig. 5. 1 • No point 

was chosen on the first section as it was assumed to be close enough to the 

ribside to be influenced by it. 

Deflections at A and B were obtained from before the placement of pack 

section below them to the last stage, i.e. from stage (3) and stage (2) 

to stage (7) respectively. From these deflections the load values at each 

stage of face advance were computed from the conditions given in Seo.5.2.)·5· 

These computations are given in the computer program of stage (7) in Appendix 

II. These load values form the load acceptance curve of the anhydrite pack 
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sections at points A and B,as presented in Fig. 5.7 and 5.8. The two 

figures indicate a somewhat different pack load behaviour, leading to 

the conclusion that point B is still a little influenced by the coalside 

across the trwnk roadway, at least more so than point A. All subse;rJent 

work has, therefore, been carried out with reference to point A in the 

third pack section. 

Elastically, the rate of advance is observed to have only a small 

effect on pack load acceptance, at least in these longitudinal considerations, 

in which the short face is infinitely long with a very large pack width, as 

pointed out earlier. It will be shown later that the rate of advance has 

a more significant influence when finite face lengths are taken. The 

loading curves will be discussed in greater detail for finite pack widths. 

5.3 An elastic analysis by lateral considerations - an equivalent 

loading method 

5.3.1 The first stage of pack loading 

The short face advancing method, as analysed by the earlier 

longitudinal conSiderations, is shown is plan in Fig. 5.9, in which the 

section line marked BB represents the sectional elevation of Fig.5. 1 • It 

can be realised that the earlier derivation based on this configuration was 

purely hypothetical, since it assumes an infinite heading width and alsO 

because it assumes that the separated nether roof will be still 10 m in 

thickness. However, an a~alysis along the length of this infinitely wide 

heading was necessary as a first step to obtain the loading curves of a 

pack section for a later analysiS of finite practical heading widths. The 
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nether roof thickness of 10 m was hence chosen to correspond to these 

finite widths. 

The point A has been marked in Fig. 5.9. Taking a lat eral 

section CO across the heading through A, the situation looks as shown 

in the same figure. Point A received load due to roof deflection in 

stage (4) for the first time, as seen from Fig.5.1. If the load is 

designated as q21 and the deflection as 8
2 

(their values are already 

known from the longitudinal analysis), the following equation is proposed 

for the deflection of the roof cross-sectiQn: 

This equation accounts for the conditions that 

(a) at an infinite distance from the roadways (i.e. at the 

centre of an infinite pack), the bending moment and hence 

the curvature, becomes zero, so that the loading on the upper 

and lower edges of the roof beam is Q21' the deflection being 

8 2 • Then 

(b) k11 is the foundation modulus at the time ~2 occurs, 

(c) 3 1 is the initial deflection at x = 0 (Le. at an 

infinite distance from the roadway). 

All the three above conditions are satisfied by the previous 

longitudinal analYSis so that Equ. (5.48) agrees with it. It can be 

rewritten as 
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FIG.S.9-LATERAL CONSIDERATIONS 
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according to condition (a). The deflections v31 describe the bending 

curve of the nether roof over the pack region between the two roadways. 

This equation has the solution 

When x is very large the terms containing hyperbolic and 

trigonometric functions vanish, leaving at x = 0 

for an infinite pack width. When the pack is finite 

so that A acts as a correction to the deflection 8 2 when the pack, and also 

the short face, has a finite width. The last two terms containing functions 

in Equ. (5.49) thus describe correction values for different x in the pack 

region. 

This, then, is an equivalent loading method by which a loading q21 

obtained from the longitudinal conside~ations is placed on the beam instead 

of Q2' the loading due to its own weight, such that the condition at the 

centre of the beam (pack centre) is satisfied. The loading Q21 thus takes 

into account the nearness of the short face, at least as far as the pack 
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centre is concerned. The limitations of such a method and the error 

involved will be discussed later in this Chapter. 

Subsequent stages of pack loadings 

In the next stage of face advance (stage (5)), point A deflects 

by an amount 8
3

, the equivalent loading on the beam being q22. These 

are again known from the longitudinal analysis and the differential 

equation for the pack region now becomes 

where v32 are Ghe new deflections over the pack due to face advance. 

Now, the longitudinal analysis gives 

or 

so that Equ. (5.50) has the solution after substituting for v31 from 

(5.49) 

(5.50) 

Without writing the differential equations for further stages up 
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to (1), the expressions for def1e ctions over the pack can be written 

down corresponding to equivalent loadings, Q23' Q24: 

v33 = \1''32 + $4 - 8~ 

+ As c.osh. f!J, '" (..05 /'J'J" + A, s~'" I'3')t. S.f- f.>3 ~ 
(5.52) 

The deflection equations for the roadway region and the solid coal 

side can be written as usual: 

where v1 and v2 are for the ribside and roadway respectively. Tl+e eight 

integration constants A1 - Aa in Equ. (5.49) and (5.51-52) can be evaluated 

in pairs by applying the usual continuity conditions between each of three 

equations and Equ. (5.53) turn by turn. 

of B1 - B6• 

5.3.3 Numerical Analysis 

This \ .. 111 also determine the values 

A suitable computer program in Fortran IV was written for the solution 

of the simultaneous equations resulting from applying the continuity conditions 
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to the above-mentioned equations of deflections. 

designed to give 

The program was 

(a) Pack load acceptance with face advance. 

(b) Bending moment distribution in the roadway roof, 

pack and ribside regions. 

(c) Shear forces in the same regions. 

(d) Ribside distribution of abutment pressure. 

(e) Distribution of load on the pack. 

Along with the earlier data for Dawdon Collier.y, the heading width 

(or short face length) was chosen as 12, 14 and 16 m and the corresponding 

pack width as 2, 4 and 6 m, so that the roadways on either side of the pack 

had a constant width of 5 m. The rates of advance were taken as before at 

9.0, 6.0 and 4.5 m per day. 

As will be shown later, the solution is more accurate when the face 

has travelled a sufficient distance from the point under consideration (point 

A) so the bonding moment, shear force and loading distributions were 

ascertained only for stage (7), calling them 'ultimate' values. Theoretically, 

the term ultimate is erroneous, since it can be used only for the situation 

when the face has moved an infinite distance. After stage (7), however, the 

changes in the picture are quite small and so this stage has been regarded 

as at infinity. 
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5.3.4 Results and discussion 

5.3.4.1 Pack load variation with face advance 

Figs. 5.10 - 12 display the load acceptance of the anhydrite 

centre pack with face advance for the three short face lengths (heading 

widths) of 12, 14 and 16 m. The general shape: of the characteristic is 

similar in all the three cases of heading widths as well as rates of 

advance in that it indicates a rapid initial load build up to a peak 

value and a later, more gradual fall to a steady state value. All 

the curves have been plotted for loads at the pack centre. Peak load 

and ultimate or steady state load values are given in Table 5.1. 

It is observed from Figs. 5.10 - 12 and Table 5.1 that the load 

increases if the heading width is increased from 12 to 16 m, except for 

the rate of advance of 4.5 m/day, when it remains virtually the same 

for heading widths of 14 and 16 m. The ultimate loads are really quite 

small. Obviously, the load values cannot be compared with those for 

a full-fledged langwall excavation, since the heading width is only 

12 - 16 m. The reasons for such low loads are: 

(a) Only the nether roof of 10-m thickness below the 

bed separation cavity throws load on the pack while 

deflecting downward, the ribside taking most of the 

strata weight (the dead weight of the nether roof is 

230kN/m2) • 
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TABLE 5.1. 

Peak and steady state loads on anhydrite packs 

during short face advancing 

Rate of advance, Peak load, 

m/day kN/m
2 

9.0 270 

6.0 336 

4.5 378 

9.0 339 

6.0 373 

4.5 392 

9.0 364 

6.0 382 

4.5 390 

Steady State 
Loa~, 

lC~,! ., 

230 

295 

338 

294 

327 

347 

316 

334 

344 
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FJG.5·10-PACK LOAD VARIATION WITH FACE ADVANCE 
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FIG.5·11 - PACK LOAD VARIATrON WITH FACE ADVANCE 

Heading width 14 m 

4 8 12 

Face advance, m 

-

Rate of advance 

1 9·0 m/day 

2 6.0 m/day 

3 4.5 m/day 

16 20 



- 131 
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(b) a large" part of the roof deflection occurs 

before the pack can be erected and so the pack cannot 

take care of the whole roof deflection. 

Mathematically, the steady state load is reached at infinite face 

advance but practically at about 20 m to 25 m depending on the rate of 

advance. The rate of advance has a more pronounced effect for smaller 

loading widths, higher loads occurring at slower rates. '!he maximum 

change in the peak pack load which occurs for the 12-m case, is from 

270 to 378 kN/m
2

, corresponding to a change in the rate of advance 

from 9.0 to 4.5 m/day. The increase in load is thus 40%. The 

corresponding rise for a 16-m heading is only 7 %. 

The wavy nature of load acceptance is attributable to the 

behaviour of an elastically supported beam as seen from the deflection 

equations for the various pack regions (see Appendix I). These equations 

were used to obtain the equivalent loadings q21' q22' etc. for the lateral 

analysis. 

It is of interest to note that the shape of the loading 

characteristic is seen to agree with those observed underground by other 

workers (Fig. 2.6-7, Chapter 2), particularly the one for the anhydrite 

gateside pack at Easington Colliery (Fig. 2.7(b)). It may als 0 be 

pointed out in this connection that there is apparently the difference 

that the load does not rise again in the steady state region, as it does 

in the underground curves mentioned. This is because the computations 

were not carried further than stage (7). A later rise in load would 

again be seen in the steady state region after stage (7), though it would 
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be small, because the deflection equations in the pack regions are of 

the form of quickly damped oscillations. This will be more clear from 

the abutment pressure curves and from Sec. 5.4.3. 

5.3.4.2 Ultimate pack and ribside loading distribution 

The steady state or ultimate load distribution across the section 

of the centre pack and on the ribside is shown in Figs. 5. 13-15 for the 

three heading widths and three rates of advance mentioned earlier. Since 

the configuration is symmetrical about the heading centre, only the right 

half is shown plotted. 

The load is ~een to be maximum at the pack centre with a gradual 

fall toward the edge. This is because of the maximum central deflection 

of the roof over the pack. The edge load, as also the central load value, 

is seen to increase with heading width, the increase being greater from 

12 m to 14 m than from 14 to 16 m heading widths, as in Table 5.2. 

The ribside pressure forms a peak at the coal edge and falls 

curvilinearly with distance into the coal. It rises again to a very small 

extent and later falls to the depth pressure (8288 kN/m2 for the depth at 

Dawdon in this instance). This later small rise is attributed to the 

wave-like nature of the deflection equation for solid coal and is commonly 

.- alled the Weber wave (65) • 

The peak abutment pressure value is about 12 to 15% higher than 

the depth pressure, depending on the heading width and the rate of advance. 

It is seen to decrease very slightly with an increase in the heading width, 
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TABLE 5.2 

Ultimate load values at the centre and edges of the 

anhydrite pack during short face advancing 

Heading Rate of Advance Load at Centre Edge Load 
Width m/day kN/m2 kN/m2 

m 

12 9.0 230 202 

6.0 295 259 

4·5 338 297 

14 9.0 294 209 

6.0 327 228 

4·5 347 239 

16 9.0 316 180 

6.0 334 183 

4·5 344 184 
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FIG.S·13-ULTIMATE LOADING ON PACK & RIBSIDE 

10 

1 

: .. ! '. : : ::\ 
':1:· :', " 
Pack Roadway 

Heading wid th 12 m 

8 12 m 

~~~,000 
Ribside 



.,.. 136 -

FIG.5·14- ULTIMATE LOADING ON PACK & RIBSIDE 
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FIG.5.15-ULTIMATE LOADING ON PACK & RIBSIOE 
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Peak abutment pressure on the ribside during 

short face advancing using anhydrite packs 

(Depth pressure 8288 kN/m2) 

Rate of Advance Peak abutment 

m/day kN/m
2 

9.0 9514 

6.0 9426 

4.5 9367 

9.0 9456 

6.0 9358 

4·5 9298 

9.0 9405 

6.0 9314 

4·5 9260 

pressure 
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probably because the pack offers a better support resistance (see Table 

5.3). The abutment pressure appears to be quite small as compared to 

a full longwall face (in which it may vary between 2 to 4 times the 

cover load) because the ribside has to support a much smaller rock mass, 

the heading width being quite small. This has been more elaborately 

explained in Chapter 7. 

The abutment pressure forms a sharp peak at the coal edge which 

may (or may not) crush the ribside a little and shift the peak inward. 

The peak shown is thus the prefracture pressure. This aspect of a 

possible fracturing of the ribside will be covered in greater detail in 

Chapter 7. 

5.3.4.3 Ultimate bending moments and shear forces in the nether roof 

Shown in Figs. 5.16-18 are the bending moment and shear force 

distributions in the roof over the pack, roadway and ribside regions 

for the three heading widths and the two extreme rates of advance of 

9.0 and 4.5 m/day, marked 1 and 3. Curves corresponding to the inter

mediate value of 6.0 m/day liein between and are not shown. 

All figures indicate the existence of a large negative bending 

moment about 1.2 to 1.4 m on the solid coal Side, which falls quickly 

in a wavy form to the state of no bending after about 16 m in the ribside.* 

*Negative moments mean bending convex upward and positive ones mean convex 

downward. 
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FIG.5·16-ULTIMATE BENDING MOMENTS AND SHEAR FORCES 

IN THE ROOF 
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FIG.S·17-ULTIMATE BENDING MOMENTS AND SHEAR FORCES 

IN THE ROOF 
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FIG.S·18-ULTIMATE BENDING MOMENTS AND SHEAR FORCES 

IN THE ROOF 
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Bending moments of about the same magnitude are seen to occur 

in the roadway but are positive and generally fall in value into the 

pack. The maximum moment in the roadway is of importance for roof 

stability and is Significantly affected by the rate of advance. The 

pack is thus seen to take care of a part of the bending process. 

Because of increased pack load the maximum bending moment in 

the roadway as well as over the ribside falls with greater heading 

width, and also the rate of advance for the same reason. It occurs 

near the pack edge in the roadway when the heading width is 12 m and 

the rate of advance is 9.0 m/day, and farther into the roadway as the 

heading width increases and the speed of advance reduces. 

The shear force variation shows the occurrence of a maximum 

shear force at the solid coal edge due to the cutting effect of the 

ribside, as might be expected. It is influenced by the speed of 

advance but not to the same extent as the bending moment. 

Given in Table 5.4 are ·"he values of the maximum tensile 

stress in the roof of the roadway. Since the tensile stress is 

proportional to the bending moment it varies the same way ana reduces 

with increasing heading width. ConSidering the average tensile 

strength of some Durham rocks (about 6700 kN/m2(64)), we see from Table 

5.4 that the tensile strength is exceeded in most cases. 



144 

rrABIE r .' 
j.''-

Maximum roadway tensile stress during 

short face advancing using anhydrite packs 

Heading Width Rate of Advance Maximum 
m/day m Tensile Stress 

kN/m2 

12 9.0 11 ,340 

6.0 10,020 

4.5 9,120 

14 9.0 8,760 

6.0 7,740 

4·5 7,320 

16 9.0 7,380 

6.0 6,960 

4.5 6,600 
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5.4 Validity and limitations of the equivalent loading method 

As previously explained, the equivalent loading method consists of 

splitting the problem of a semi-infinite plate of finite width into two 

beam problems; the loading of the elastic foundation, obtained by considering 

the width of the plate as infinite and by solving the problem longitudinally, 

is placed on the plate and the problem is again solved laterally for finite 

widths of the plate. Obviously then the region of interest is the longi-

itudinal central axis of the plate, or the centre line of pack in this 

instance. 

The validity of this method, as well as the errors involved in it, 

can be shown by analytical solution of a parallel example, albeit a 

crude one. Very few plate problema are soluble analytically, so it was 

only possible to choose a comparatively much simpler situation than the 

short face advancing method. 

Shown in Fig. 5.19 is a plate on elastic foundation with its edges 

simply supported. The plate is infinite along the pOSitive direction of 

y and has a finite width a along x. There is a uniformly distributed 

load q on it. First a rigorous solution will be obtained fo~ the downward 

deflection w perpendicular to the plane of the plate and later the same 

problem will be approached through the equivalent loading method. 

Plate solution 

The general differential equation for the deflections of an 

elastically supported plate is(61) 



q. 
% -

1) 

k.W 

D 

where D is the fluxural rigidity of the plat e and k is the modulus of 

the elastic foundation. Its solution can be expressed in the form 

00 

w= + LYW\s~ 
'WI:. , 

w being a particular solution of Equ. (5.54) representing a simply o 

supported strip on elastic foundation. The infinite series is the 

general solution of the homogeneous equation 

k.w 
J) 

w can be obtained from the equation 
o 

Choosing w to be of the series form 
o 

00 

w" - Z A'M s-w
'W\ :. f 

and expressing the uniform load q as a Fourier series 

co ,,: Z. ~! (1- Lc5 ~TT) s~ w.:" 
"'" :. 1 

we get from Equ. (5.57) after substitution 

(5.54) 

(5.55) 
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FIG.5·19 - FOUNDATION LOADS BY EQUIVALENT LOADING 

& PLATE METHODS -PlatQ width 12 m 
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Q~ 1 - cos W\1T 

rrJ)' (?'VI4TTI, k) 
'W\ 0..4 + 1> 

Only odd values of m can exist in the series because, when m is even, 

A ~ O. When m is odd 
m 

so that 

A m 

w 
o 

4q. 

= 
J)n 

I 

oa .y\.o\.7rX 
\ s~ 0.. 

~,s ... -( _::4 + ~) 
The second part of the solution can be obtained by substituting 

the series of Equ. (5.55) in Equ. (5.56) giving an ordinary differenti~l 

equation in the functions Ym: 

y ;v _ Q. 
'tYI 

v:" + ( +~) '[ - 0 
J) -M 

This has a solution 

Yrn = 
(5.59) 

in which ( [J( "':4rr4 <- ~) + "':;" f" {!> 'WI ::. 
{Q 
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1 [/C 'tv\ 4 rr '1 .!.. ) _ ",. Jr" ] '/. 
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The functions Ym vanish at y = QC) and the deflections are given by 

w = w so that the plate behaves like a uniforrnlyloaded, simply supported o 

strip on elastic foundation at y = ClO • 

Substituting (5.58) and (5.59) in (5.55) it is seen that the 

deflections w satisfy the boundary conditions 

(\.II) = 0 
'X.~o, 'It.-::.o. 

To ascertain the values of the constants B and C the following m m 

boundary conditions can be applied to w at y = 0 

(w) -0, 
'Y=o 

Then 

B = - Aw. 
'h'\ 

, 

Since B and C are proportional to A they too cannot exist for even 
m m m 

values of m and thus we get finally the deflections w 

[

00 • 1M '7f x. WI ~ IT ~ 
4 q, .5..,....~ [-P'W'o y( -::T"" 

w = :p,. '" (:;"" + ;) 1 - ... us "~y + if, s-
1oYI:f,3J S .. 

(5.60) 

The load on the elastic foundation at any point (x,y) can be determined 

simply by multiplying this equation by the foundation modulus k. 
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Solution by the equivalent loading method 

According to this method deflections along the centre line of the 

plate parallel to the y-axis are determined, assuming a -.. 00 

dimensionally. These deflections are given by 

w c 

,9; 

, two-

satisfying the condition (w ) = k. Here We have 
c y= 00 

the simply supported conditions (w ) = (w ") = 0 giving 
c ":/:0 C Y::.o 

so that w 
c 

, c~ :: 0 

Q -"I' Y t ( 1 - e CAS 'I'~ ) 

This gives the loading on the foundation along the centre line as 

(5.61) 

This loading can be placed on any lateral cross-section of the plate parallel 

to the x-axiS, say y = L to give the deflection of that cross-section 

approximately. The equation for this deflection will be that of a beam 

on el~stic foundation Simply supported at its ends and uniformly loaded by 

Now it wU 1 be remembered that when the load is q the 

deflections are given by the first series (w ) in Equ. (5.60) for a beam. 
o 



Therefore, when the loading is (kwC)y = L the deflections are 

This equation, when multiplied by k,will as usual give the foundation 

loads along any cross-section y = L. 

The following numerical data were t~en as an example: 

Width of the plate, a 12, 14, 16 m 

Uniform loading, q 

Fl exural rigi di ty, D 1.2 x 107 kN-m 

Foundation modulus, k 

The first three values are taken directly from the short face advancing 

situation considered before. k corresponds approximately to the ultimate 

foundation modulus of the anhydrite pack after setting for more than 

6 weeks. 

The loads on the foundation due to plate deflectio~were 

calculated from the edge x = 0 to the centre line of the plate x = ~/2 

at every metre by writing a simple computer program for both the methods. 

The results are plotted in Fig. 5.19-21. Foundation loads are shown to 

vary with y at different values of x. 
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A comparison of the two methods and limitations of the 

equivalent loading method 

The foundation loading characteristics in Fig. 5.19-21 reveal 

the following salient features of the equivalent loading method as 

compared to the more rigorous plate method: 

(a) The equivalent loading method is found to 

overestimate the foundation load slightly for all 

values of x, y (x ! 0, y ! 0) before reaching the 

steady state. Both the methods give virtually 

identical results when y is greater than nearly 

7 m for all the three plate widths, i.e. when the 

edge y = ° ('face') is more than 7 m distant. The over-

estimation is a maximum of 6.6%, and occurs at 

y = 3 m along the longitudinal sections x = 1,2,3 m 

for all the plate widths. The error is least at 

the centre lines of the plate and is less than 1%. 

(b) A peak load - hump - is found to occur in both 

the methods at a distance y = 5 m for the plate 

method and at y = 4 m for the equivalent loading 

method, which thus shows a somewhat early load 

peak. The wave-like load variation agrees with the 

load acceptance characteristics of the anhydrite 

centre pack. The distance y at which peak load occurs 

remains the same at the centre line and nearer the 

edges, i.e. for all values of x > o. 
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FIG.5·20-FOUNDATION LOADS BY EQUIVALENT LOADING 

& PLATE METHODS-Plate width 14 m 
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FIG.5·21- EJUNDATION LOADS BY :::Ql,JIVALE~J·_ LOADING 
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(c) Across any lateral section y = L, a hump is also 

seen to occur at x = 5 m from the longitudinal edges 

of the plate in the case of 14 and 16 m plate widths. 

This is the reason why the loading curves for x = 5 m 

lie uppermost, even above those for the centre lines 

x = 7 m and x = 8 m of the 14-m and 16-m plates. The 

equivalent loading method agrees with this behaviour, 

the distance being x = 4 m. 

(d) In the steady state region the equivalent loading 

method gives slightly lower values (1 kN/m2 or less) 

before giving the same values in the end as the plate 

method, as seen from some of the curves. 

(e) Along the centre line x = 8 of the 16 m plate, both 

the methods give almost identical values, hence Fig.5.21 

indicates only one curve for x = 8. Predictions by the 

equivalent loading method improve near the centre line, 

especially for wider plates. 

(r) A slight rise again in the foundation load occurs 

at nearly 11 m in the steady state region, but the rise 

is too small to be noticeable (1 kN/m2 or less) in most 

cases. (see 6ec.5.).4.1 in this connection). 

It is thus Been that the equivalent loading method gives fairly 

reasonable estimates of foundation loads (and so plate deflections). 
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The example considered is that of a simply supported plate 

on elastic foundation which is much simpler that the situation of short 

face advancing with a centre pack. The main difference is that the 

foundation in the form of an anhydrite pack comes into existence only 

after a certain pack-free initial deflection occurs in the roof. 

This initial deflection, denoted by 8 1 in Equ. (5.48) of Sec. 5. 3. 1, 

was obtained from longitudinal considerations at Point A (see Fig.5.9), 

so that 8 l' in fact, corresponds to an infinite heading width. When 

the loading has a finite width, however, 81 would be somewhat smaller. 

Also S 1 would vary from one ribside to another and would be a 

maximum at the centre of the heading. 

In Equ. (5.48) S1 has been taken as a constant which means that 

the occurrence of a uniform roof deflection has been assumed in the pack 

region in the lateral consideration. Since it is not necessary to take 

into account the initial deflections in the roadway region and ribside, 

the roof across the entire heading section was then assumed to defl~ct 

initially uniformly over the pack region and curvilinearly over the 

roadway and ribside. This form would entail introducing some errors, 

especially at the edges of the pack, in estimating pack load. 

form of 811 on the other hand, is impossible to determine. 

The exact 

If in the longitudinal analysis it was seen that the ultimate 

deflection or deflection in the steady state, when the face was suffiCiently 

distant, was greater than the pack-free deflection 8 1 , errors due to 

aS2U~'1::'ng a uniforr.1 form would be minimised. This was essential to 

see, since over an anhydrite pack section deflections were found to 
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reduce (roof lifting) with face advance in the steady state region. 

For this, reference may be made to the output of the computer programme 

in Appendix II (deflections at A), in which it is seen that the 

deflection in the last stage is greater than the initial deflection. 

If this had not been the case, the roof would have lifted more than 

the initial pack-free position and the analysi~ by lateral considerations 

would have given negative pack loads. 

8 1 is seen to have three values for the three rates of face 

advance. 

Thus it may be concluded that since the initial deflections 8 1 

are assumed to be uniform in the pack region and of the same value for 

all the three heading widths of 12, 14 and 16 m, subsequent additional 

deflections over the pack after its erection will be somewhat under

estimated, especially near pack edges. On the contrary, the equivalent 

loading method overestimates deflections and hence pack loads, so that 

it was likely that there would be some compensation. Central values of 

pack load would be more and more reliable as the heading width increased. 

5.5 Conclusion 

The equivalent loading method was found as an approximate approach 

to elastostatic analysis of the short face advancing situation for three 

probable heading widths. A comparison of this method with the rigorous 

plate method indicates that deflections of the plate on an elastic found-

ation are somewhat overestimated. The maximum error introduced was found 
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to be 6.6% in the case of a simpler parallel example of a rectangular 

semi-infinite plate on an elastic foundation, the edges being simply 

supported. 

A compensating factor to this overestimation was that the 

initial deflection in the face area prior to pack setting (elastostatic 

face convergence) induced somewhat lower estimation of deflections in 

the pack region, as explained. With due consideration of the limitations 

of the equivalent loading method, the following conclusions can be 

~a~: 

1. The anhydrite centre pack is found to build up 

load very quickly to a peak value which gradually falls 

to a steady state value. This initial build up of a 

hump and later fall is found to agree with observations 

underground by several workers. The load is found to 

increase with heading width and a reduced face advance. 

The values of load estimated are quite small (the 

maximum peak value is 392 kN/m2 ) because of the small 

depth of the nether roof (10 m) below the bed separation 

cavity which is to be supported by the pack,and because 

a large part of the roof deflections take place before 

pack placement. The pack is found to be strong enough 

to take the load in all the three heading widths considered. 



159 

2. Loads at the edge of the pack are lower than at 

the centre because the roof deflections are higher at 

the centre. The pack load distribution is thus not 

uniform across the width of the pack. 

3. The abutment pressure on the ribside is influenced 

by the pack load in that it shows a fall with higher loads 

accepted by the pack. The peak abutment pressure is 

found to be 12-15% higher than the depth pressure, which 

is quite small. This is because of the small size 

of the opening (12 to 16 m). 

4. The maximum positive bending moment occurs in the 

roadway roof nearer the pack edge. Comparable negative 

moments occur 1.2 to 1.4 m inside the solid coal region. 

In all the cases of heading widths and rates of 

advance, the maximum roadway tensile stress is found to 

exceed the average tensile strength of some Durham rocks. 

This would be expected, since the elastostatic analysis 
. 

does not consider roadway supports and is merely an 

indication that steel supports in the roadway would be 

necessary. 

Because of the lower loads accepted by the anhydrite 

pack in narrower headings, the roof has to be more self-

supporting than in wider ones. This is the reason why 

lower maximum tensile stress values occur in the roadway 
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of a wider heading. This is a point in favour of wider 

headings. EXcessively wide headings will, however, induce 

further bed separation in the roof, bringing greater loads 

on the roof layers and increasing the tensile stress. The 

qualitative assessment that lower ~ensile stresses in the 

roadway are encountered in wider headings is thus true 

only if no further bed separation takes place. 

5. With better pack load acceptance there is some relief 

in the abutment pressure, reducing the maximum shear force 

at the coal edge. This might be of some advantage in 

decreasing floor heave. A detailed analysis for floor 

heave has been made in Chapter 7. 

6. The rate of face advance influences the bending moment 

more significantly than it does the shear force. It also 

influences the pack load but its influence falls with 

increasing heading width. Lower rates of advance appear 

to be beneficial, if they can be adopted without detriment 

to productivity. The effect of rate of advance considered 

in this Chapter is purely elastostatic because the roof 

behaviour depends on the setting properties of anhydrite. 

This analysis does not include any viscoelastic or creep 

effects. In this connection it is important to note that 

the loading situation on packs reaches the steady state 

quite quickly, both in terms of time and distance and the 
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rate of advance is thus important, viscoelastically, 

for a short initial life of the heading only. 

7. Judging by the load acceptance characteristic of 

pack obtained in this analysis and underground by other 

workers, the theory of beams on elastic foundations can 

be used as a possible explanation for the occurrence of 

peak pressure in the back abutment zone of a longwall 

face. 

* * * 



CHAPTER 6 
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CHAPTER 6 

Short face advancing with a centre pack of conventional non-setting materials

an elastostatic analysis 

6.1 Introduction 

In order to assess the advantages gained by using an anhydrite pack 

instead of a conventional non-setting pack and also to study the possibility 

of using a more compressible pack in the method of short face advancing with 

a central pack support, it was decided to analyse this situation elastostat-

ically, introducing conventional packs. The influence of pack compressibility 

on the variation of the earlier factors of Chapter 5, pack load etc., was 

also studied to define the benefits of a stiffer pack. As in the case of 

anhydrite centre packs, the analysis was done longitudinally and laterally. 

The basic difference between a material like anhydrite and a non-setting 

one like dirt packs, wood chocks, etc., is the setting property of the former, 

by virtue of which it hardens and becomes less compressible with time, as 

given by Equ.(5.1). The usual non-setting materials are much more 

compressible, as seen in Chapter 2, and also their modulus of e:asticity 

does not change with time in the sense of setting. As observed in the 

previous Chapter, the foundation modulus of each anhydrite pack section 

acquires different values, k11 , k12 , etc. with face advance, while a 

conventional pack would have the same value k1 at all stages of advance 

(assuming the load-yield characteristic of a conventional pack to be 

linear) • 
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6.2 Roof deflection equations for various stages of face advance 

6.2.1 LOngitudinal analysis 

Equations for the deflection of the nether roof were again 

developed along the longitudinal section of the heading, taking initially 

an infinite pack width. The mechanical model for the nether roof with 

regard to bed separation was the same as in the previous case of anhydrite 

packs. Stage (1) represents the maximum pack-free advance of the short 

face and, therefore, coincides with the earlier analysis for anhydrite 

packs (see Fig.5.4). The deflection equations are thus identical to 

Equ. (5.39) which are reproduced here for convenience: 

Stage (1) 

(6.1 ) 

where the different symbols have the same meanings as given in Chapter 5. 

In stage (2) a pack section is erected and the face is advanced 

further. From this stage onward the pack modulus remains unchanged with face 

advance and we thus get a series of pack sections, all of the same modulus. 

The roof deflection before placement of each pack section is, however, different 

from those for the neighbouring sections until the face is sufficiently far 

away. Hence it was necessary to develop a differential equation for deflections 
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over each pack section separately, just as in the case of anhydrite packs. 

As seen from Appendix I the deflection over a pack section is 

given by expressions of the form of damped oscillations or damped waves, 

the parameters 13
1

,13.,., etc. occurring in the exponential functions 

being termed damping coefficients. In the case of an anhydrite pack 

section, the deflection comprises a number of such waves, the number being 

higher the farther the face is. These damping coefficients determine the 

distance necessary to damp a wave to reach the steady state. From the 

nature of the deflection equations for anhydrite packs it is impossible, 

theoretically, to predict such a distance, but for a conventional pack, 

for which the damping coefficient remains constant at a value f3 whatever 

the face advance, this distance is given by 51(!> (33) • Like (31' fo 2' etc. 

fo is defined by 

Considering the range of foundation moduli k1 taken for a numerical analysis 

of this problem (given later in this Chapter), it was decided that the 

longitudinal analysis would have to be carried out up to stage .(9) of face 

advance, the unit advance, width of the trunk roadway and working area at 

the face remaining the same._ 

Stages (1) to (5) are shown in Fig. 6.1. Then for the position of 

the y-axis indicated, the deflections v
3

, v
4

, etc. in stage (2) can be 

wri t t en down as 
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(6.2) 

In stage (3), a second pack section is pla.ced and the face is advanced 

fUrther, causing compression of the first section once more and of the second 

section for the first time. The differential equations for these two sections 

are then 
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section (1 ): 

Section (2): 

Their solutions are written with the rest of the deflection equations for 

stage (3): 

Stage (3) 

0+0 -oC'l(. ) 
-~I V:l, ( C· "8 =- t- e C~f CDS ~ x.. + -Z2. S1M- 0( 'l(. 

K,2. 

q.~ 
-x, 4 C x.; + 2-

C:1.'5'" + C:J.G \1"9 =. -+- Ca.4 x + 
:t 4 .D~ 

2-; 

-(!J" 
v = V"4 + e. ( C~7 c.cs f'J 'X.. + C~8 Sw.. f3'X. ) 10 

(6.3) 

f''K. 

+ e ( C:l<'l Cos f3-x.. +- C30 S.wv f3-x. ) 
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... :: 'l-,1 ( tf+-W)4 C ( .l,+W')2. C vlf - X. - - + 'X. - . + 
:J.41)~ 2 3 !2. 4 

- f.nt .. 

+ e ( C'3f CoS ~'X. +- C~:l. s;.,.. (3 'X.. ) 

(6.3) 

~~ ) 
of- e (C';<1 c..os ooe .. + CLto S~ Ot?(.. 

Further deflection equations could similarly be written down up to 

stage (9). The integration constants, C1 ' C2, etc. would be 244 for all 

the stages together which could be determined, as before, by applying 
.. 

continuity conditions (5.27) in terms of deflections, slopes, bending 

moments and shear forces to any two neighbouring deflection regions in each 

stage. 

The assumptions and data for a numerical analysis of this situation 

were taken agai~ to correspond to the conditions at Dawdon Colliery (see 

Sec. 5. 2 • 4 ) • A suitable computer program was written as in Appendix III 
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for applying continuity conditions to Equ. (6.1-3) and all equations up 

to stage (9) to give the 244 integration constants and obtain finally the 

deflections and pack loads at Point A (Fig.6.1) as before. 

Since this pack foundation modulus does not change with time, and 

hence face advance, the elastostatic influence of rate of advance could 

not be included. The pack elastic modulus was varied from 3.5 x 104 to 

1.75 x 105 kN/m2, taking five values at equal intervals of 3.5 x 104 

kN/m2• The least value of 3.5 x 104 kN/m2 was approximately estimated 

for a stone pack tested by Barraclo~gh ~ ~(10) (see Chapter 2, 

Fig 2.2(b). The rest of the values are just multiples of this value and 

do not necessarily belong to any particular pack type. This was done to 

study the influence of varying pack compressibility. 

6.2.2 Lateral considerations 
i 

A lateral analysis of this situation is comparatively simple when 

compared with the c~se of anhydrite packs. After an initial pre-setting 

deflection B , compressions of the pack take place with its foundation 

modulus remaining constant at a value k1• At infinite advance of the face 

the roof settles down over the pack section under consideration (Point A), 

causing deflections v3 in the pack region in addition to the deflection 8 . 

The roof deflections in the roadways and the ribside are v2 and v1 

respectively. S is the elastostatic convergence at the face and has 

five values corresponding to the five pack foundation moduli. These are 

the first values in the output of the computer program of Appendix III. 

The differential equation for the deflections v3 at Point A for 



infinite face advance will be 

It has the solution 

by symmetry of the heading about the pack centre, the y-axis being positive 

downward through the pack centre. For an infinite pack width, the last two 

functional terms in the solution vanish for x = 0 so that 

and for a finite pack width we have for x = 0 

Thus A1 acts as a correction term for the deflections at the pack centre 

when the pack width is finite and the two functional terms for the deflections 

elsewhere in the pack. 

The deflection equations for the roadway and ribside are written down 

as usual: 

Ribside: 

Roadway: 
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It can ,hus be seen that the lateral analysis in the case of 

conventional centre packs is much simpler than for the earlier case of 

anhydrite packs. It was not necessary to resort to the equivalent 

loading method to obtain the ultimate roof deflections because the pack 

foundation modulus k1 remains const~nt. 

The integration constants A1 , A2, B1-B6 in the deflection equations 

(6.4-5) could be determined by applying the usual continuity conditions 

to give sets of 8 simultaneous equations. A similar computer program 

was written to obtain the variation of pack load, ribside load, bending 

moments, etc. for the five pack moduli mentioned and for the three heading 

widths 12, 14 and 16 m. 

6.3 Results and Discussion 

6.3.1 Pack load variation with face advance 

The acceptance of load by a conventional pack is seen to be of the 

form shown in Fig. 6.2. These load characteristics were obtained by 

longitudinal analysis. Lateral considerations would yield similar curves, 

as :as the case with anhydrite. Only the steady state cr ultimate loads 

were hence calculated for the three heading widths by lateral analysis. 

The load build up is observec~ to be slower for conventional non-

setting packs than for anhydrite packs. The figure shows that the load 

builds up to a flat peak slowly and later falls gradually (cf. Fig.5. 10-12). 

For low values of pack moduli the peak is hardly noticeable and ocours at a 

greater distanoe from the short face than for higher moduli. 
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As mentioned earlier in Sec. 6.2. 1 , it is possible to predict the 

distance at which the steady state would be reached. This distance, 

5/~ , varies between 20 and 30 m for the five values of pack moduli 

considered as given in Table 6.1. 

The ultimate loads obtained by lateral analysis for the three 

heading widths and five moduli are given in Table 6.2. Lower pack moduli 

and narrower heading widths give very low values of ultimate pack load as 

in the Table, indicating that the strata have to be virtually self-

supporting. Conventional packs of low moduli like stone packs or wood 

chocks serve hardly any purpose by way of support in the short face 

advancing method. 

6.3.2 Ultimate load distribution on pack and ribside 

Fig 6.3-5 indicate the ultimate or steady state load distribution 

in the pack and ribside for the three heading widths of 12, 14 and 16 m 

respectively. The ribside loading looks similar to the anhydrite case 

(cf. Fig. 5.13-15), but the loading on the pack is more flatly distributed. 

Pack load increases with the heading width and pack modulus. Overall, the 

pack load is found to increase and the ribside abutment pressure to fall with 

rising pack modulus. The abutment peak is greater for all values of moduli 

than for anhydrite (because anhydrite accepts load better), the highest value 

being about 25% greater than the depth pressure which occurs in case of the 

16-m heading with the pack modulus of 3.5 x 104 kN/m2• The corresponding 

highest value was found to be about 15% greater than the cover load for 

anhydrite packs. This is a point in favour of anhydrite as a packing medium 

in that it reduces the unevenness of loading across the roadway. 
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TABLE 6.1 

Face Advance for reaching steadY state load on conventional 

packs during short face advancing 

Pack Modulus kN/m2 Face advance for steady state m 

3.50 x 104 30.5 

1.00 x 104 26.0 

1.05 x 105 23.0 

1.40 x 105 21 .5 

1 .15 x 105 20·5 

TABLE 6.2 

Steady state loads for diffgrent headin~ widths 
(Conventional packs) 

, 

Pack Modulus kN/m2 Steady State load kN/m2 Heading width m 

12 3.50 x 104 15 

1.00 x 104 40 

1.05 x 105 68 

1.40 x 105 95 

1 .75 x 105 120 

14 3.50 x 104 39 

1.00 x 104 80 

1.05 x 105 116 

1.40 x 105 146 

1,75 x 105 172 . 
16 3.50 x 104 10 

1.00 x 104 122 

1.05 x 105 160 

1.40 x 105 189 

1.75 x 105 212 
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FIG.6·3- ULTIMATE LOADING ON CONVL. PACK & RIBSIDE 
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FIG.6·4- ULTIMATE LOADING ON CONVL. PACK & RIBSIDE 
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FIG.6·S - ULTIMATE LOADING ON CONYL. PACK & RIBSIDE 
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6.3.3 Variations of pack load and ribside abutment pressure with pack 

modulus 

The ultimate loads on the pack centre and the ribside abutment peak 

pressure are plotted against pack modulus in Figs. 6.6 and 6.7 respectively. 

Pack load is seen to increase considerably with pack modulus and heading 

width, with very low values of load occurring at the lowest modulus of 

3.5 x 104 kN/m2• For a 12-m heading a fourfold increase in pack modulus 

increases the pack load 8.0 times, which in 14-m and 16-m headings rises 

4.4 and 3.0 times. Thus a centre pack will be more effective in narrower 

headings if it is stiffer. 

The ribside abutment pressure of Fig.6.7 and Table 6.3 shows a fall 

with increasing pack modulus, obviously because of an improvement in pack 

load acceptance. The fall is slower for smaller heading widths. In fact, 

for the 12-m case the fall is almost negligible. This again indicates 

. that the behaviour of the nether roof is less dependent on the stiffness 

of the pack in narrower headings. 

6.3.4 Ultimate bending moments and shear forces 

The pack modulus is found to influence the roof bending picture as 

is seen from Figs. 6.8-10, in which curve 1 corresponds to the pack modulus 

of 3.5 x 104 kN/m2 and curve 5 is for 1.75 x 105 kN/m
2

• The curves for 

the rest of the values lie between these two and are not shown plotted. 

Bending moments increase with the heading width and vary inversely as 

the pack modulus. The influence of pack modulus is very pronounced for 

higher heading widths. 
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TABLE 6.3 

Peak abutment pressure on the ribside during short face advancing using 

conventional pC'.cks 

(Depth pressure - 8288 kN/m2) 

Heading width Pack modulus Abutment /mressure 
m kN/m2 kN m2 

12 3.50 x 104 9,786 

7.00 x 104 9 753 

1.05 x 105 9,718 

1.40 x 105 9,683 

1.75 x 105 9,650 

14 3.50 x 104 10,125 

7.00 x 104 10,014 

1.05 x 104 9,916 

1.40 x 104 9,833 

1.75x104 9,764 

16 3.50 x 104 10,403 

7.00 x 104 10,181 

1 .05 x 105 10,019 

1.40 x 105 9,897 

1 .75 x 105 9,801 
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FIG.6·B - ULTIMATE BENDING MOMENTS & SHEAR FORCES 

IN THE ROOF (CONVL. PACKS) 
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FIG.6·9-ULTIMATE BENOIt'.(; MOMENTS & SHEAR FORCES 

IN THE ROOF (C ONVL. PACKS) 
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FIG.6.10 - ULTIMATE BENDING MOMENTS & SHEAR FORCES 

IN THE ROOF (CO~L PACKS) 
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The maximum positive moment is found to occur over the pack 

instead of in the roadway or pack edge, as opposed to the anhydrite case 

(cf. Figs. 5.16-18). Bending moments are significantly higher for 

conventional packs than anhydrite packs. 

The shear force is distributed across the heading in much the 

same manner, the maximum value, which lies at the coal edge, being greater 

than when using anhydrite packs. This may induce higher floor heave. 

6.3.5 Maximum tensile stress in the roadway roof 

The pack modulus influences the maximum roadway tensile stress in 

the same manner it does the bending moment. It has been plotted in 

Fig. 6.11 against the pack modulus and in general indicates a fall with 

a rising pack modulus (see Table 6.4). 

For the 12 m heading the stress fall is virtually linear within 

the range of the modulus taken, i.e. the benefit of introducing a stiffer 

pack increases linearly, while in 14-m and 16-m headings, the stress 

decreases more slowly for higher moduli. 

The maximum improvement in the stress pict~re takes place in a 

16-m heading with a rising pack stiffness and a minimum in the 12-m case. 

At very low values of the pack modulus the 12-m heading develops 

the least tensile stress but at higher values it has the greatest tensile 

stress of all three widths, again indicating that the utilisation of a centre 

pack as a support element is less effective in narrower headings and the roof 

has to be more self-supporting. 
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FIG.6·11- MAXIMUM ROADWAY TENSILE STRESS VS. PACK MODULUS 
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TABLE 6.4 

Maximum Roadway tensile stress during short face advancing USing conventional 

packs 

(Ultimate roof strength = 6700 kN/m2 ) 

Heading width Pack Modulus Maximum tensile stress 
m kN/m2 kN/m2 

1 2 3.50 x 104 15,420 

7.00 x 104 14,940 

1 .05 x 105 14,400 

1.40 x 105 13,920 

1.75x105 13,380 

14 3.50 x 104 16,620 

7.00 x 104 15,360 

1 .05 x 105 14,160 

1 .40 x 105 13,200 

1 .75 x 105 12,360 

16 3.50 x 104 16,380 

7.00 x 104 14,340 

1.05 x 105 12,840 

1 .40 x 105 11 ,760 

1 .75 x 105 10,860 
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6.4 Conclusion 

1. Loads on conventional non··-setting centre packs during short face 

advancing are lower than anhydrite packs. The general nature of the 

load acceptance characteristic follows a similar pattern, i.e. the load 

rises to a peak value and later falls and steadies off gradually. The 

load reaches, comparatively slowly, a flat peak, the conventional pack 

material being more compressible than anhydrite. The load acceptance 

characteristic again supports the back abutment pressure hypothesis. 

2. Fbr narrower headings like 12 m, conventional packs of low moduli 

(e.g. stone packs) exhibit very poor acceptance of load, showing nearly 

zero loads. This shows that the roof has to be virtually self-supporting 

when the pack is highly compressible. Load acceptapce improves considerab~ 

with the pack modulus. 

3. The ribside abutment pressure is higher than for anhydrite packs. 

It is influenced by the pack load so that it shows a fall if the pack 

accepts load better or if the pack modulus is higher. 

4. The maximum bending moment in the roadway is higher than when 

anhydrite packs are used. Bending moments are found to reduce with increasing 

heading width when using non-setting packs of higher moduli as with anhydrite 

packs. With the modulus on the lower Side, the opposite is the case. 

5. Conventional packs give rise to a greater shear force at the coal edge 

than anhydrite. 



6. The pack modulus influences the maximum tensile st~ess in the 

roadway. In general, there is a fall in the stress level with an 

increasing pack modulus, the fall being slower for narrower headings 

such as 12-m. At very low values of the modulus the 12-m heading 

develops the least tensile stress but at higher values the tensile stress 

is more than in a 16-m heading. This indicates that the utilisation of 

a centre pack as a support to the roof is less in narrower headings and 

the roof has to be more self-supporting. For all the values of pack 

moduli considered the maximum roadway tensile stress exceeds the ultimate 

strength of the roof rock, which is indicative of the need for roadway 

supports. The stress level is higher than with anhydrite packs. 

7. In general, stiffer packs such as anhydrite show better load 

acceptance, less bending moment in the roadway (hence tensile stress), 

less shear force at the coal edge and a smaller abutment pressure than 

conventional non-setting packs. Hence introducing a stiffer pack instead 

of a highly compressible one does appear to lead to better overall 

structural stability. 

* * * 



CHAPTER 1 

Estimation of floor heave during short face 

advancing and subsequent retreating 
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CHAPTER 7 

Estimation of floor heave during short face advancing and subsequent 

retreating 

7. 1 Int roduct i on 

Floor lift seriously affects longwall operations by virtue of 

closure in gateroads, especially in deeper mines and can sometimes be 

the most important consideration in adopting a particular method of 

longwall mining. Having considered the behaviour of the roof in the 

method of short face advancing with centre packs of anhydrite and also 

of conventional non-setting materials, it now remains to estimate the 

extent of heave likely to occur in conditions like those at Dawdon, while 

using this method. 

Floor heave occurs due to the removal of the virgin pressure in 

forming a gate roadway and since this pressure is proportional to the depth 

of the workings, more severe floor heaving is seen to occur at greater 

depths. F100r heave is also governed by the vertical restraint applied to 

the floor by the ribside abutment pressure (its magnitude and proximity) 

and by the roadside pack. If the resulting stresses in the roadway floor are 

high and the floor is weak, fracture may commence, increasing the lift due 

to a volume increase in the broken rock and causing relative pack penetration. 

In addition to this elastostatic behaviour before and after failure, floor 

lift goes on increasing with time, viscoelastically, due to creep effects. 

We thus get a rising heave characteristic with face movement, which is the 
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combined effect of 

(a) increase in the floor stress level from the start 

line of the face, 

(b) build-up of fractures in the floor, affecting 

increasingly deeper levels and causing an apparent 

'swelling', 

(c) further 'softening' of the floor due to breaking, 

(d) creeping of the floor material, and 

(e) swelling, due to wet clay minerals, if present. 

In this Chapter it is proposed to analyse the situation of centre-

pack short face advancing and subsequent retreating for estimating the floor 

lift due to the first four factors. Since the floor stress distribution 

depends on pack load, ribside abutment pressure distribution and also the 

load on the floor in the goaf of a longwall face, it was first necessary to 

obtain a complete picture of floor loading. In the previous two Chapters, 

pack load and ribside abutment pressure distribution have already been 

obtained for short face advancing and we thus know the floor loads during 

advancing. Presented below is a method to estimate the ultimate or steady-

state floor loading in a longwall panel for use in subsequent retreating. 

7.2 Loading on the floor of a longwall panel including a method to 

determine the zone of ribside crushing 

Experience has shown that there exists a high peak stress some distance 
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into the ribside which falls with distance to the depth pressure. The 

shape generally accepted for this abutment pressure distribution on the 

ribside of a longwall panel is shown in Fig. 2.1, Chapter 2, showing a 

zero stress at the coal edge. The supporting capacity of the coal increases 

with depth into the ribside, because of lateral confinement while at the 

edge is at its lowest. The build-up of a peak pressure at the edge due to 

bending of rock strata in the goaf causes rib edge crushing and shifts 

the peak inward until equilibrium is re-established. 

7.2.1 Wilson's method 

A method proposed by Wilson(66) to estimate the zone of crushing 

in ribside coal pillars and the magnitude of abutment pressure is described 

here in some detail. 

The forces on an element of coal in the ribside pillar is shown in 

Fig. 7 • 1 (a). The thickness of the element is 8y and it lies at a distance 

y from the pillar edge. If (f is the vertical stress on the element and v 

c1"H , O"'H + SO",.. are the lateral confining stresses on two sides of the 

element, the equilibrium equation for the element becomes 

= 2 fJv "tAM + . t s y 

where m is the seam thickness, 1 is the element length and tan ¢ is the roof-

seam-floor interface friction (which Wilson erroneously terms internal friction). 
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FIG.7·1(a)- FORCES ON A RIBSIDE ELEMENT 
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HObbs(61) tested several British coals under triaxial compression 

and has proposed the general relation between triaxial fracture strength af, 

and confining pressure tr 3 

where a and b are empirical constants and ~ is the uniaxial strength. o 

Wilson simplifies this relation to the linear form 

and further to the form 

assuming 6"0 to be negligible. tfJVYI.f!> is the slope of the linear relation of 

Wilson. This gives 

Equ. (1. 1 ) then becomes 

S(f. f 'n\ = :l 6'" t'~ ~. Sy 
II tM'\. f.> 

or eLy 'W\. f = .~ 

J-try ~ t().NI. f.J -[tVA f 6'"y 

now ~~ and T~¢ are related according to 



t'""- 1> ;: 
k(E.-f 

2 J.t~ (!J 
so that 

cl. y 'W\. 
::. -

d. (Jv .J lCiW. ~ ( ta.- ftJ - 1) 

integrating with respect to d' , 
v 

y = 

195 

f .-
Cfv 

which satisfies the condition =(J". o 0 
The following values have 

been proposed for using this equation~ 

t &vi\. f.> = '+ ) Cf. = 4 ph. , y 

. 
0-

0 
= I p. $.(.. 

The value of tfMI.f3 = 4 is in keeping with the linear relation of Wilson for 

the triaxial strength of coal based on Hobbs' results. The value of 

~ = 4 ph assumes that the abutment pressure is always 4 times the depth 
v 

pressure jh and the value (J'o = 1 p.s.i. has been arbitrarily fixed by Wilson 

assuming that Cf is very small at the coal edge because of crushing. 
o 

The following criticisms can be expressed against this method: 

(a) Hobbs' triaxial strength relation (7.2) has been 

simplified to a linear form. This may mean over-

simplification, since Equ. (7.2) predicts very rapid 
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initial increments in the fracture strength with small 

increases in confining pressure. 

(b) tan ¢ is assumed to be the coefficient of internal 

friction, which it is not, hence Equ. (7.3) may not be 

valid. 

(c) The magnitude of the abutment peak pressure and 

the extent of ribside crushing are independent of the 

face length. This does not appear probable, since the 

weight of the hanging rock between a pair of longwall 

ribs that has to be supported by them depends on face 

length. 

~ is admittedly small as compared to the abutment o 

pressure but the value ~ = 1 p.s.i. is arbitrary. As o 

per the normally accepted practice of equating negligible 

quantities to zero, if ~ = 0 in Equ. (7.4), we get 
o 

y = 00. However, even if we accept that cr 0 f 0 and 

assign another small value say cr = 2 or 3 p.s.i., ~u. o 

(7.4) still gives greatly different values of y. 

Due to these discrepancies in Wilson'S hypothesis, it was decided to 

develop a method of calculating the abutment pressure and define the 

zone of crushed coal in the ribside of a longwall panel. 
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7.2.2 Alternative method 

Due to strata crushing in the goaf a pressure distribution, say 

OS1C, builds up over the ribside as shown in Fig. 1.1(b). The sharp peak 

stress OS1 causes crushing to commence in the coal, reducing the supporting 

capacity of the rib and shifting the peak deeper into the coal to a new 

position S. Once again equilibrium is established and the post-failure 

pressure distribution is OSC. OA is the crushed coal zone, its limit 

being right below the new abutment peak S. 

The stress condition at the coal edge is biaxial before failure 

commences, the vertical stress ~y being the pre-fracture abutment peak 

OS1. From Hobbs' experiments on coal under biaxial compression(68) it is 

seen that when the lateral stress is t of the vertical stress the rise in 

strength from uniaxial to biaxial is about 10%. Under biaxial confinement 

the edge undergoes a vertical stress (f and a lateral stress u. (J' , the 
y I Y 

third lateral stress being zero. If jJ- = 0.25, we get a rise in coal 

strength by about 10% at the edge. This same rise in strength is obtained 

~n triaxial compression when the confining pressure is, say, c times the 

vertical stress, where c is a fraction. The equivalent triaxial state of 

stress giving the same strength at the edge is then 

when f (x) is the pressure distribution OS 1 C. 

Now deep inside the seam, the depth pressure acts, with the horizontal 

confinement (f being ~ times the depth pressure. 
x 1-JL 

Hence the stress levels 

are 



198 

Results of Hobbs' triaxial tests on 9 coals are shown in Fig.7.2. 

An average best fit by numerical iteration for 7 out of these 9 coals was 

obtained. Pentremawr and Barnsley Bards were not included as being of 

rather high strength, in keeping with the medium strength of Durham coals(64). 

The best fit is given by 

0·45 
cr1 :: 2.:l 00 + (1"11 + 250 ( ""~ ) 

When the line 

is plotted in Fig 7.2 it is seen that it does not intersect. the curve given 

by Equ.(1.7) indicating that the state of stress deep inside the coal defined 

by (1.6) is stable. The limit of the zone of crushed coal and the process 

of crushing occur at stress levels between the two extremes (7.5) and (7.6). 

These two stress levels can be marked as two points on Fig.7.2. Then a 

straight line joining these two points will consist of two parts: one above 

the failure envelope (7.1) indicating rushing and the o·chc;:..~ below it showing 

stability. Such a straight line will have the equation 
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(1 8) 

where a /(0) -.I'" 
= 

b = f(O).f h 

f(o) = pre-fracture abutment peak pressure f(x) 
x = 0 

Ih = depth pressure 

The point of intersection of the two curves (1.1) and (1.8) then 

defines the state of stress at which failure just ceases and, therefore, 

corresponds to the limit of the crushed zone or the position Qfthe new 

abutment peak. To determine this point, the pre-fracture pressure 

distribution on the ribside f(x) must be known. 

Consider the situation of Fig. 1.3 showing the lateral section of 
• 

a longwall working. Equivalent material mine modelling has given an 

indication(62) that the roof in the goaf breaks down and collapses to a 

certain height, depending on the excavation width (face length), and the 

height of collapse in the goaf for competent brittle coal measures could 

be taken to vary between 1.3L and 1.1L, where L is the excavation width. 

In widening the excavation, the roof rock initially breaks down into small 

pieces, which quickly become very large slabs with further widening, so 



201 

that most of the broken rock above the nether roof consists of large slabs 

rather systematically arranged, as shown in Fig. 7.3. It is also seen 

that the intact rock hardly touches the broken rock, indicating that the 

goaf rock is not disintegrated enough and also settles down due to its 

own dead weight so that the goaf volume is not completely occupied by it. 

The floor in the goaf then gets only the dead weight of the broken rock, 

the intact rock pressure being carried by the ribs ides and to some extent 

by the roadside packs. The same type of behaviour is assumed here to apply 

to British rocks. The average value of 1.5L for the height of collapse in 

the goaf is taken for further calculation. Though these observations are 

contrary to popular belief, they do corroborate the observations taken 

underground as quoted by Wilson(66) that the load taken by the centre of 

the goaf can be 1.66 L f while in o,;~r case the value is 1. 5L}' • 

The mechanism of loading of a roadside pack is still unknown, mainly 

because of the unstable nature of the roof, and analytically it is not 

possible to arrive at a suitable load value. In this analysiS, it was, 

therefore, decided to assign different values to the pack load, assuming 

that the pack receives load partly due to the dead weight of some rock 

fractured above it and partly due to the bending action of the main rock mass 

higher up. This is equivalent to replacing the pack as a structural 

element by an upward reaction to the roof rock which is equal to the pack 

load. 

In the model of Fig. 7.3 for a longwall panel there will be a shear 

force Q acting to the left of the pack, the bending moment being taken zero. 
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FIG.7.3-MECHANICAL MODEL FOR RIBSIDE LOADING 
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Also at the rib edge there will be a shear force Q
2 

and a bending moment 

M. The shear force diagram is shown in the same figure for the pack and 

roadway region. Q1 is obtained as the weight of the intact rock to the 

left of the pack up to the centre line of the goaf: 

where Q is the angle of fracture shown in Fig. 1.3. Then the shear force 

~ at the rib edge is obtained as 

and the bending moment M can be written down very approximately as 

:l 

(""i -to w,2) I.. (""'1 W, ) 
M - Q. f ( W1 + "",J - I h 2. +- r W f T + !l 

where p pack load, 

w1 pack width, 

= roadway width. 

Now the equation for deflections v of the lowest fibre of the strata 

above the ribside is 

which gives v 

satisfying the condition 
'ph. 

(v) ::. 
~=c:t) k~ 

• Here 
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Applying the following conditions to the deflections v: 

, 

the arbitrary constants A1 and A2 are obtained as 

, 

The pre-fracture pressure distribution on the ribside f(x) is then 

simply written down from (1.9) as 

<!i':l = J (x.) ::. k:a'l1' 

-= I' k + 20( eQC 
lC. [ ( Qa + MOl.) c.or. Q( '" - MOl. S.4M. DC. "'- ] 

We can then determine the vertical pressure at the point of 

intersection of curves (7.7) and (7.8) by simultaneous solution of the 

equations to these curves. Thus 

'" / 5190 + Iry<~ - j, + 7~ 4 [ 6"". (~ - j, ] 0'45 

(1. 10) 

(1. 11 ) 

and the length 1 to which fracturing will occur in the ribs ide is given from 

Equ. (1. 10) by 

:. f (~) 
='p h + 2~;QI..t[(o..2+f1Q()~SO(t - MexS..Mott] 

Equ. (7.11) and (1.12) are two simultaneous trancendental equat~ons 

in 6 y (() and 1 and can only be solved graphically or numerically. 
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7.2.2. 1 Lateral confinement deep inside the coal seam 

The assumption used in this method that deep inside the seam the 
)k 

lateral confining stress 6 takes a value a- = - (J".., may be open to 
x x 1-jJ- J 

scepticism, since at greater depths conditions of near-hydrostatic or 

hydrostatic stress may exist; it is proposed here, however, as a hypo-

thesis, that Poisson'S ratio Jk itself will change with depth. 

It is seen from compression tests to register stress-volumetric 

strain curves of a rock specimen that ~ increases roughly after half the 

uniaxial fracture load until it reaches values of 0.5 or greater at 

failure (69) • This happens due to n.icrocracking along the load axis of 

the specimen at approximately half the failure stress (fracture initiation), 

producing larger and larger lateral strains as the applied stress approaches 

the failure value. This may explain why higher lateral confinements are 

ger::erally observed in deeper mines. At great depths, the high vertical 

stress level tends to fail the rock if it is exposed and Poisson's ratio 

values of about 0.5 will occur, giving us 

static stress. 

(J" x = L 6", ~ 0'"", which is hydro-
1,?" ." 

Poisson's ratio r changes with the axial stress Oi according to 

the theoretical equation(69). 

" o-:-t E" N ""'" (f- ~ ) crf - Of [ 0"1- ,01 ~ J ')k =. + ?.z 
4 + 

~ 6 f 01 ~61 6':" (7.13) 
f 

where E. tangent elastic modulus at microcrack initiation, 
~ 

K linear bulk modulus, 
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tf 1 = axial stress, 

. 6;' = axial stress $.t microcracking, 

fLi = Poisson's ratio at microcracking, 

N,m = volumetric microcraok strain-nardening parameters. 

In our case at Dawdon Colliery, the dept~ pressure is 8288 kN/m2 

and the average coal strength is 15190 kN/m2 as per Equ. (7.7), i.e. the 

strength is approximately twice the depth pressure. Since the stress 

level at microcracking ~1i is roughly half the failure stress, we can 
. 2 . 

take (j 11 ~ 8288 kN/m. At this stres!=! level in the coal seam 6 1 = (f/" 
and we get from Equ. ( 7 • 1 3 ) f"" = r i • Thus the usual normal value of 

Poisson's ratio, 0.25, can be. taken for this analysis, since up to micro-

crack initiation r does not change significantly. 

7.2.2.2 Numerical analysis 

Taking the data for Dawdon Colliery given earlier in Chapter 5, 

Equ. (1.11) and (1. 12) were solved numerically on the computer with the 

help of a simple program in Fortran IV, incorporati~ the following 

variations: 

Pack width = 1.5 to 6 m at every 0.5 m. 

Faoe Length = 120, 140, 160, 183 m. 

Pack load = 3000 to 7000 kN/m2 at every 1000 kN/m2• 
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o The angle of fracture Q was taken as 15 and the constant ()( was 

calcul~ted to be 3.69 x 10-2 m-1 assuming that bed cohesion was broken over 

every 20 m up to a height of 280 m, which is the height corresponding to 

about 1.5 x the maximum face length. This is rather arbitrary, but it is 

necessary to know beforehand the spacing of weakness planes in the rock 

mass along which cohesion would be expected to break horizontally, and in 

this case this was not possible. 

Results 

1.2.3.1 Abutment pressure distribution 

Fig. 1.4 shows the abutment pressure distribution over the ribside 

of a longwall face for the two extreme face lengths of 120 and 183 m 

considered. Just at the rib edge the pressure is zero but it rises steeply 

to its peak value just over the limit of the crushed zone. The fall after 

the peak is somewhat slower and the depth pressure is reached at nearly 

50 m from the coal edge. A greater extent of crushing and a higher pressure 

is observed for the longer face length. 

7.2.3.2 Influence of pack load and width and face length on abutment pressure 

There is a fall in the abutment peak pressure with both increasing 

pack width and pack load, both factors influencing it more signifioantly 

before ribs ide crushing than after (see Fig.7.5). When the pack is narrow, 

the shear force over the coal edge ~ is not significantly reduced, in spite 

of sufficiently high pack loads and, therefore, the reduction in abutment 

pressure consequent upon increasing pack load is small for narrow packS. In 
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FIG.7·4-ABUTMENT PRESSURE DiSTRIBUTION ON THE P,BSIDE 
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FJG.7·S-ABUTMENT PRESSURE VS. PACK LOAD AND WIDTH 
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FIG.7·6 - VARIATION OF RIBSIDE ABUTMENT PRESSURE 
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fact, for a pack width of 1.5 m the post-failure abutment peak stress shows 

almost no change. As the pack width increases, load changes are seen to 

affect the abutment stress more prominently. Table 7.1 gives values of 

the abutment peak stress as multiples of the depth pressure. The fall 

from a 1.50-m to a 6-m pack is observed to be significant. 

A longer face means a higher shear force Q2 at the coal edge and so 

a higher pressure. The influence of face length on abutment pressure 

increases at a reducing rate. At a certain face length which can be 

calculated as about 240 m (for a depth of 365 m at Dawdon), the fracture 

lines in the goaf will reach the surface and any further increase in the 

face length will cease to raise the abutment pressure. The curves of 

Fig. 7.6 tend to become flatter with face length such that their slope will 

become zero at a value of 240 m. 

7.2.3.3 Extent of ribside cruShing due to abutment stress 

The length of the crushed zone inside the rib is affected by pack 

load, width and face length in much the same manner as the abutment pressure, 

as seen from Figs. 7.7 and 7.8. IncreaSing pack load and width reduce the 

extent of crushing, as is logical, since the pre-fracture abutment falls. 

The reduction in the crushing is almost exactly linear for any pack width. 

7.2.4 Ultimate floor loading 

From the triaxial strength relation of Hobbs, Equ.(7.7), and the 

magnitude of the pre-fracture abutment pressure during short face advancing 

with centre packs, it could be concluded that there would be little crushing 
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FIG.7·7-EFFECT OF PACK LOAD & WIDTH ON THE EXTENT 

OF RIBSIDE CRUSHING 
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TABLE 1.1 

Abutment peak stress after ribside crushing 

(a) Face leAB1h 183 m 

Pack width, Pack Load, 
kN/m2 

Abutment pressure, 
m x depth pressure 

1.5 3000 3.65 
4000 3.65 
5000 3.64 
6000 3.64 

7000 3.63 

3.0 3000 3·58 
4000 3.51 
5000 3·56 
6000 3.55 
1000 3·54 

4·5 3000 3·50 
4000 3.49 
5000 3.41 
6000 3.46 
7000 3.44 

6.0 3000 3.41 
4000 3.3~ 

5000 3.38 
6000 3.36 
7000 3.34 

(b) Influence of face length - pack load 3000 kN/m2, pack width 1.5 m 
I 

Face length, m Abutment pressure, X depth-pressure 

120 3.42 
140 3.53 
160 3.60 
183 3.65 



of coal in this stage of the working. The floor loading is thus given by 

the elastostatic ribside loading and the pack load already obtained in 

Chapters 5 and 6. 

During subsequent retreating, floor heaving of a point marked x 

in Fig 2.8 on the floor will be considered. To the right of this point 

there is a virgin ribside and after the retreating face in panel passes 

this point, the situation becomes as in Fig.7.3. Thus, during retreating, 

the floor loading for the ribside obtained in the previous sections will 

take place. The load on the pack has been already assumed to vary between 

2 
3000 and 7000 kN/m • In order to complete the picture of floor loading 

during retreating, the load in the goaf must now be mentioned. As per the 

model of Fig. 7.3, it is already known that the goaf will receive the 

dead weight of the broken rock which is piled up to a trapezium shape. The 

loading in the goaf is then simply the weight of a rock pile of this shape, 

which throws no load near the pack and a maximum at the goaf centre. 

7.3 An elastostatic analysis for floor stresses and heaving 

After obtaining the complete load distribution on the floor, it was 

necessary to study the stresses in the floor as a result of this loading 

and also the lift produced elastostatically upon fracture, if any, and 

viscoelastically with face movement. 

For this purpose the floor was treated as a semi-infinite medium 

with one straight boundary receiving the aforementioned loading distribution. 
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The floor section ijhown inFig.5.3 indicates that there is a seatearth 

at Dawdon Colliery below the High Main seam with an average thickness of 

0.23 m. In this analysis it was assumed that the entire semi-infinite 

medium was made up of this seatearth. 

Face element method for elastostatic lift 

It was decided to use the face element method for the initial 

elastostatic analysis of this situation during short face advancing and 

subsequent retreating. The face element method is of recent origin and 

comprises a numerical procedure for elastostatic stress analysis by means 

of a surface distribution of pqtential fUnotions(60). The process involves 

division of the surface into discrete elements over which boundary conditions, 

e.g. the loading distribution in the present instance, are known. The 

advantages over the better known finite-element method are that only the 

surface, not the volume, is discretised and an artificial boundary need 

not be formed in semi-infinite or infinite media, as the conditions at 

infinity are automatically taken care of. 

Figs. 7.9 and 7.10 show the formation of the elements on the surface 

line of the floor for the cases of short faoe advancing and later retreating 

respectively. The scheme of loading in Fig. 7.9 on the floor, correspond to 

Fig. 5.13 of Chapter 5 for a pack width of 2 m. Fig. 7.10 shows the 

loading obtained by calculation in this Chapter. The modulus of elasticity 

for the floor material was taken as 5.02 x 106 kN/m2(64), and Poisson's 

ratio as 0.25. The pack width was varied from 1.5 to 6 m and the face 

length and pack load in the case of retreating were varied from 120 to 183 m 
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FIG.7·10-FACE ELEMENT SCHEME FOR FLOOR- RETREATING 
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and 3000 to 7000 kN/m2 respectively. In the short face advancing situation 

only two face lengths (heading widths) of 12 and 16 m were taken. 

A criterion of failure in the face element method 

Since it would be necessary to see whether the floor would undergo 

fracturing,if any, due to the stress distribution obtained in the face element 

analysis, it was decided to adopt a suitable failure criterion for the floor. 

Kidybinski and BabCOCk00 ) have used three variations of the Mohr-Coulomb 

failure criterion for studying the failure pattern of a longwall roof. The 

method described here is a different form of the same criterion of Mohr-

Coulomb. 

Consider the tensile and compressive failure Mohr'S circles in 

Fig. 7.11. Then the failure envelope which is tangential to both these 

circles will have the equation 

in a rectangular coordinate system eJ, 'l'. The coefficient of internal friction 

tan ¢ and the cohesive strength 't'c can be written down as 

in which ~c and ~t are the compressive and tensile failure stresses for a 

rock. 
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FIG.7·11- FAILURE CRITERION 
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Now if we have a point in a stressed rock mass with the general 

stress condition (61,6 2 ) in terms of two principal stresses, the Mohr 

circle corresponding to this state of stress will be as shown by the 

broken circle. The Mohr-Coulomb criterion then states that failure will 

commence at that point if this circle touches or intersects the failure 

envelope (7.14). The variation of this theory suggested here is that a 

tangent parallel to the failure envelope drawn to this circle will have 

an intercept on the 'r -axis greater than or equal to the cohesive strength 

for failure to commence. The parallel envelope will have the equation 

7: = 't 1 + (J tan f; 

where the cohesive intercept ~1 will be given by 

when both the principal stresses are compressive (taken positive here). 

When both are negative (tensile), 

-tr +6. ( ¢/ ~1 = 1 ~tan 45 - 2) 
;z, 

and when If 1 is positive but {f 2 is negative, 

't1 = <f,+6'":z tan (45 - ¢/2) +~2 tan ¢ 
:t 

't1 can occur in three forms, positive, zero or negative, as in 

Fig 7. 11 • When positive, failure is indicated if 'C1 ~ 'l'" • If 1: 1 is less 

than ~, or if it is zero or negative it indicates stability. This then 
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affords us a simple criterion of failure for the floor rock. 

The original face element program on the computer does not include 

a failure criterion. To obtain the state of stress deep into the floor, 54 

bench marks were chosen below the floor level as in Fig. 7.9 for the short 

face advancing case. Their number was 96 in the case of retreating (Fig.7.10). 

The face element source program was modified to include this failure criterion 

represented by Equ. (7.14-18). Appendix IV shows the editing commands, together 

with the modification statements for incorporating in the face element source 

program. 

As per the face elem~nt program manual(60), initial pre-excavation 

virgin stresses corresponding to the depth at Dawdon (365 m) were specified 

in the data so as to produce an upward lift in the floor when they were removed 

and the floor loading was applied. The modified version of the source program 

was run for each pack width, pack load and face length chosen for retreating 

and for the loadings corresponding to the two heading widths with only one 

rate of advance of 9.0 m/daY for anhydrite packs and the five pack moduli for 

conventional packs in the case of short face advancing. The total runs were 27. . 
Discussion of results for elastostatic lift 

7.3.3.1 Elastostatic floor heave during short face advanCing 

Figs. 7.12 and 7.13 show the elastostatic upward deflection of the floor 

in 12 and 16-m wide short face headings using centre packs when the face has 

advanced sufficiently. Very little difference in the lift occurred when the 
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pack material was changed from anhydrite to a soft pack material with a pack 

modulus of 3.5 x 104 kN/m2 (which is the smallest value considered in Chapter 

6). These figures, therefore, represent all pack materials considered till 

now. This indicates that the pack is not very effective in influencing the 

floor lift during short face advancing. 

The maximum lift occurs in the heading centre below the pack and the 

main factor governing it appears to be the heading width. In a 1 6-m heading 

the maximum central lift is nearly 4.3 cm as opposed to 3.6 cm of the 12-m 

heading, which is 19.4% greater. 

The 54 bench marks in the floor were chosen in a rectangular grid 

to the right of the centre line of the heading as in Fig. 7.9. The lowest 

row of bench marks, nos. 46 to 54, represents a depth of 11 m below the floor 

level. The upward displacement of all the bench marks is plotted in Fig.7.14, 

showing that considerable depths are affected by the movement. The movement 

is greatest at the top row, nos. to 9, and it falls gradually to the lowest 

row, nos. 46 to 54. The top row, which is 1 m below the floor level, shows 

displacements which are very little different from those at the floor level, 

being less than 2 mm smaller. 

7.3.3.2 Floor stress during advancing 

Distribution of the three stresses cr ,(f and 'l' has been plotted in x y xy 

Fig. 7.15 across each of the 9 columns of bench marks, the first column 

representing the centre line of the heading and the ninth one being below 
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FIG.7.14-DISPLACEMENTS AT FLOOR BENCH MARKS 
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the ribside. All the three stresses do not exhibit a significant change up 

to the fifth column which is 2 m away from the ribs ide. From the sixth to the 

ninth column the effect of the ribside is quite noticeable, the vertical stress 

6 y showing a great rise due to the abutment pressure. The shear stress is 

zero along the first column due to symmetry of the configuration and rises 

gradually toward the ribs ide. In this figure, negative values of 4" I (f 
X Y 

indicate compression. 

The face element program also gives the values of principal stresses 

at bench marks. Its modified version includes the failure criterion 

explained earlier. Fig. 7. 16 and 7.17 show the safety factor (s.f.) contours 

for anhydrite packs and conventional non-setting packs of modulus 3.5 x 106 

kN/m2 respectively. The safety factor at a point is defined here as the ratiO 

't'c /"r 1 according to the failure criterion. Curves joining points of equal 

safety factors are called safety factor contours. When ~1 is zero or negative 

the safety factor is taken as infinity. Contours were plotted up to a 

maximum value of s.f. = 3.0, reasons for which will be given later. 

Both Fig. 7.16 and 7.17 show virtually the same s.f. contours, again 

indicating that the floor stresses, and hence lift, are not significantly 

affected by the pack quality during short face advancing. The s.f. contours 

travel deeper below the ribside than below the pack, the probability of failure 

being to a greater depth below the ribside. However, since the rock is 

stratified there is a possibility that the fraotures would occur along bedding 

planes rather than follow exactly the shape of the contour. 
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More will be said about s.f. contours in the section on post-failure 

analysis of floor heave. 

7.3.).3 Heave during retreating 

During the retreating stage after short face advancing, the face 

element analysis covered the influence on lift of pack load, pack width and 

face length. In Fig.7.18 and 7.19 is shown the heaving of the floor surface 

at five pack load values of 3000 to 7000 kN/m2 the pack width being 1.5 m 

and 6.0 m respectively. The face length in both the figures is 183 m. The 

heaving curve shows a downward curvature in the pack region and upward in 

the roadway region. The downward curvature is seen to be more noticeable 

at higher pack loads. As the pack load rises, the whole heaving curve shifts 

downward in all regions. At lower values of pack load the downward 

curvature below the pack is almost negligible. A 6-m pack shows a greater 

change in the lift with pack load than a 1.5-m pack, as might be expected. 

A twofold increase in the pack load from 3000 to 6000 kN/m2 reduces the 

maximum roadway lift by about 8.6% in the case of a 1 .5-m pack and by about 

23.2% when a 6-m pack is used. 

If the pack load remains the same an increase in the width of the 

pack produces increased floor heaving as in Fig.7.20. This is somewhat 

surprising, but is probably because of the fall in abutment pressure being 

produced upon a pack width increase. Though this is so, it will be seen 

later that the curvature drops for higher pack widths, giving more advantageous 

floor stress patterns. 
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FIG.7·18-ELASTOSTATIC LIFT DURING RETREATING-EFFECT OF PACK LOAD 
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FIG.1·19-ELASTOSTATIC LIFT DURING RETREATING-EFFECT OF PACK LOAD 
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FIG.7·21-ELASTOSTATIC LIFT DURING RETREATING-EFFECT OF FACE LENGTH 
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The length of the longwall face for the same pack load of 3000 kN/m2 

and pack width of 1.5 m influences the floor heave curve as indicated in 

fig. 7.21. Amongst the four face lengths considered, the greatest roadway 

lift occurs for a length of 160 m instead of for the highest value of 183 m. 

7.3.3.4 Safety factor contours during retreating 

The change in the safety factor contour pattern with pack load can 

be noticed from fig. 7.22 and 7.23 for a 1.5-m pack and from Fig. 7.24 and 

7.25 for a 6-m pack. 

for both pack sizes. 

Increasing the pack load reduces the depth of conto~rs 

In the 1.5-m case the contours change in the roadway 

region more than near the pack. Especially noteworthy are the contours in 

the case of a 6-m pack with a load of 7000 kN/m2 (Fig.7.25). Very short 

contour lines exist just at the corner area between bench marks Nos. 1 and 3. 

The probability of a deep fracture is thus greatly reduced. 

Similar is the effect of widening the pack from 1.5 to 6 m at a 

constant pack load, as observed from Figs. 7.22, 7.24, 7.25 and 7.27. The 

contour depth goes on reducing. 

From all the figures of s.f. contours during retreating the following 

conclusions can be drawn: 

(a) No probability of failure is indicated near the 

ribside up to about 1 m from it. 

(b) The contour lines have the grea-cest depth near the 

pack edge and about 3.0 m from the pack edge in the 

roadway. 
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FIG.7·23-S. F. CONTOURS DURING RETREATING 
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FIG.7·25- S. F. CONTOURS DURING RETREATING 
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FIG. 7· 26- S. F. CONTOURS DURING RETREATING 

Pack width 3·0 m Pack load 3000 kN/m2 
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(c) Probability of failure is greatest near the pack edge as 

opposed to the case of short face advancing in which it is at 

the ribside. 

(d) The effect of widening the pack is less than increasing 

the pack load. 

(e) A probability of deeper fractures exists while advancing 

than while retreating. 

The last conclusion makes it obvious that deeper fractures than the 

subsequent retreating is likely to give rise to may already exist in the floor 

because of short face advancing. This conclusion is important since if the 

longwall face were advancing instead of retreating after short face advancing, 

the s.f. contours would be as in Figs. 7.22-27 and we would obtain much shallower 

fracture areas in the floor than are obtained in Fig. 7.16. This is a point in 

favour of simple advancing than retreating after short face advancing. A 

detailed post-failure viscoelastic analysis is, however, necessary to estimate 

whether the creep will be excessive by this method. 

7.3.3.5 Safety factor variation 

The change in the least safety factor in the bench mark region of the 

floor is represented by Fig. 7.28. The least s.f. rises with pack load almost 

linearly, more quickly for a 6-m pack than for a 1.5-m one. The increase with 

pack width is curvilinear, widening the pack beyond 5 or 6 m not being of much 

consequence. 

The safety factor reduces steeply if the face length is increased beyond 

160 m. Faces shorter than 160 m do not appear to be of any great benefit because 

the safety factor changes little. The least safety factors are given in Table.7.2. 
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TABLE 7.2 

Least safety factors in the bench mark region of the floor 

during retreating 

(a) Safety factor vs. pack load - face length 183 m 

Pack width Pack load 
m kN/m2 

1.5 3000 

4000 

5000 

6000 

7000 

6.0 3000 

4000 

5000 

6000 

7000 

(b) S f t a eiY f t ac or vs. pac k "dth w~ 

-pack load 3000 kN/mt::, face lelll2.'th 
183 m 

Pack width,m s.f. 

1.5 1.34 

3.0 1.48 

4·5 1.56 

6.0 1.60 

(c) 

Face 

s. f. 

1.34 

1. 35 

1.36 

1.37 

1 .37 

1.60 

1. 71 

1.82 

1.93 

2.03 

Safety factor vs. face length 
-pack load 3000kN/m2 , pack 
width 1.5m 

length, m s.f. 

120 1 .51 

140 1.50 

160 1.48 

183 1. 34 
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7.4 Post-failure floor heave analysis 

From Fig. 7.16 for short face advancing and Figs. 7.22 - 27 for 

subsequent retreating, it is felt that there will be fractures in the floor. 

Assuming a safety factor of 3.0 as the limiting value for fracture, the 

contour lines for this value are then the limits of failure or fracture 

surfaces. This value of 3.0 was taken based on the ratio of laboratory 

and in-situ values of the elastic modulus of rock proposed by Kidybinski 

It was assumed that the ratio would be the same for 

strengths for the purpose of this analysiS, so it was decided to draw the 

s.f. contours only up to the value of 3.0. 

Now, it was already mentioned that the fracture surface would not 

exactly follow the s.f. contour lines because of the stratifications. 

The breaks would occur along bedding planes horizontally, and at e = 750 

to the stratification as per the angle of fracture. Mean horizontal 

lines have been drawn in the region of the s.f. contour of 3.0 and another 

line at 750 to this line, near the ribside in Fig. 7.16 and Figs.7.22 - 27. 

It is at once seen that the depth affected by fractures during ehort face 

advancing, which is 2.7 m for a 12-m heading and 3.8 m for a 16-m heading, 

is greater than in any case of subsequent retreating. So during retreating 

floor heave will occur due to the deformation of an already broken floor. 

In advanCing, the breaks will develop gradually and reach their final picture 

of Fig. 7.16 when the short face is sufficiently far away. 

In soil mechanics it is well known that during a plate bearing test, 
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some heave at the soil surface occurs when the bearing plate undergoes 

pressure. The behaviour of a pack on broken rock is akin to a plate bearing 

test. In the absence of any definite conclusive evidence regarding the amount 

of heave vis-a-vis plate load and soil property, it was decided to estimate 

the post-failure heave by elastic analysis of the broken rock zone. A finite 

element elastic analysis of the longwall roof after failure can be seen in 

re ference (70). The method followed here is basically the same except that 

it is analytical and not numerical. 

It is known from experiments that the progressive failure of rock 

in compression,expressed in terms of a decreaSing bearing capacity of a 

specimen, is connected with a gradual drop in the modulus of elasticity 

related to the entire acting section of the material(71 ). Fig. 7.29 shows 

the curve of post-failure elastic behaviour of a sandstone sample, where Eo 

is the initial maximum value of the modulus of elasticity, E is the actual 
n 

E value due to the process of failure, d" is the critical maximum stress and c 

~ is the residual resistance stress during the process of failure. 
n 

Kidybinski and Babcock(70 ) have proposed that 

• :::. -
S 

where S is the safety factor (S < 1). In our case failure is indicated up 

to S = 3.0, so that 

~ 
::. 

S 

This relation gives the value of the ratio ere / (J which can in turn give the 
n 

post-failure modulus values E from Fig. 7.29. 
n 
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Elastostatic solution for the broken zone 

The broken rock zone of Fig. 7.16 has been analysed for two loading 

conditions corresponding to short face advancing and retreating. Since the 

configuration of the broken zone remains the same during both phases of 

working, all that was necessary was to vary the loading condition on the pack 

and ribside. The following simplifying assumptions were made: 

(a) Instead of the fracture surface at the end of the broken 

zone being inclined at 75 0
, it was assumed to be vertical. 

(b) The broken rock was assumed to rest on solid rock with 

initial deflection values being zero. Deflections at the 

surface of the floor so obtained were superimposed on those 

obtained by the face element analysis. 

(c) The extent of the broken zone in the goaf was the same 

as in the roadway. 

(d) The ribside, being solid and infinite, did not actually 

cause penetration into the broken rock, but merely acted as a 

restraint to the broken rock, keeping its deflection zero 

below the ribside. 

(e) The same restraining force was applied on the goaf

side. 

Due to these assumptions the model of broken rock appeared as in 

Fig. 7.30. Because of the symmetrical loading on the top and bottom of the 
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beam, the model satisfies the assumption (b) giving zero displacements v 

at the middle plane t = o. The depth of the broken rock during short face 

advancing and also during retreating is represented by c in the figure, so 

that the bottom half of the beam of thickness 2c gives deflections which are 

mirror images of those of the top half. Suoh a model of double the broken 

rock thickness was necessary to create zero deflections at y = o. The pack 

load is q and the restraining forces R of unknown magnitude have been 

applied on the beam ends to satisfy assumptions (d) and (e). Since the 

condition related to R (zero end displacement) is given, the absolute 

magnitude of R need not be known. 

Fbr a rigorous analysis of the Situation, the loading on the top and 

bottom edges of the beam is represented by the Fourier series' 

f(x) 
'lMrrx.. 

A s~-
W\ I. 

~::.1 

for the coordinate system (x,y) of Fig.7.30, the length of the broken zone 

being 1. The constants A can be obtained by Fourier analysis as m 
l+eL ( f"T . W\nx. do", 

= T 'J, $"- -;:-

.t - a. 
!2. 

- t 

Putting ~ = ~~, the stresses are given by(72) 

6'x 
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[

cCC c..os~ Ole + s~~ o(c 
6 = - 2A Co sA. oty -

y m s~ ~O(C +- J:loec 

Hence the displacement relation 

gives v = - ~Aw. ,~ ~TT?c' [(1J"A'':l)1!l.I(~) +)k(H)J-) 3ti'Y)] + Cl~?7.20) 
1'1. 

in which g1(y) and g2(y) are the functions of y in the expressions for 6~ 

and (J y respectively. Now the vertical displacements v must satisfy the 

condition (\I') :: 0 so that from Equ. (7.20) 
'1:<0 ' 

It can be shown by direct substitution for g2 and g1 that the quantity in 

brackets is identically zero so that 

Thus from Equ. (7.20) we get 

Vc = (v) y = - c 

4 (i _'p-:J.) fA .L... 
:: "" ..,., Tr 

E t\. 'WI ~ t 

• A. 2 11I\1'("c. 
SN\.i\. -.(- • 1oo'V\ «"" 

. S..cN\ -
• I ':l""''T/C- ..L !tw.ITC 1. "..,."."'- .... --.{ ,(. 

(7.21 ) 

which are the vertical displacements at the floor level. A superimposition 

of these displacements over the earlier floor level face element displacements 
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will give us the total post-failure elastostatic floor lift. 

Results 

The situation was numerically analysed writing a computer program 

for Equ.(7.21) for short face advancing and retreating. '!he important 

data were 

Pack width a = 2, 6 m 

Broken zone I = 14, 18 m corresponding to 2, 6~ pack 

Corresponding broken rock depth c = 2.7, 3.8 m 

Corresponding pack loads during advancing q = 215, 275 kN/m2 

Pack loads during retreating q = 3000 - 7000 kN/m2 

E 
n = 6 I 2 1.25 x 10 kN m , )I- = 0.2 

The value of the post-failure elastic modulus E was obtained from 
n 

Equ. (7. 19) and Fig.7.29 after estimating the average value for the safety 

factor S in the broken zone. For this the highest modulus Eo cefore failure 

was taken as 5.02 x 106 kN/m2 as before. Poisson's ratio ~ was 0.2, 

representing a totally disintegrated rock(73). Deflections obtained by this 

analysis, the face element pre-fracture lift and the final lift (elastostatic 

post-failure) are given in Tables 7.3 and 7.4 for advancing and retreating. 

It is noticed from these Tables that the difference in lift due to 

bre-".king is not very significant. It must, however, be remembered that a 
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TABLE 7.3 

Elast astatic pre-fracture and post-failure floor heave 

in advancing by short faces 

Heading width Distance from Pre-fracture Post-failure 
m pack edge lift cm 

m cm 

12 0 3.577 3.566 

1 3.525 3.522 

2 3.428 3.427 

3 3.279 3.279 

4 3.060 3.060 

5 2.672 2.672 

16 0 4.173 4. 153 

1 4.074 4.068 

2 3.933 3.930 

3 3.743 3.743 

4 3.484 3.484 

5 3.061 3.061 

lift 
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TABLE 7.4 

Elastostatic pre-fracture and post-failure lift during retreating 

Pack Pack Distance from Pre-fracture Post -fai 1 ure lift 
width oad2 pack edge lift cm 

m ~/m m cm 

2.0 ~OOO 0 5. 11 2 4.958 
1 4.685 4.651 

2 4.167 4. 162 

3 3·511 3·571 
4 2.901 2.903 

5 2.102 2.105 

~OOO 0 4.969 4.164 
1 4.563 4.511 
2 4.054 4.047 
3 3.468 3.467 

4 2.796 2.798 

5 1.998 2.002 

~OOO 0 4.842 4.586 
1 4.458 4.401 

2 3 956 3.447 

3 3.317 3.316-

4 2.108 2.711 

5 1.913 2.916 

~OOO 0 4.705 4.398 
1 4.340 4.271 

2 3.847 3.836 

3 3.213 3.272 

4 2.609 2.612 

5 1.816 1 .821 
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TABLE 7.4 (contd) 

Pack Pack Distance from Pre-fracture Post-failure 
width Load2 pack edge lift lift 

m kN/m m cm cm 

2.0 7000 0 4·573 4.215 
1 4.229 4. 149 
2 3.745 3.733 

3 3.176 3. 175 

4 2.516 2.520 

5 1.725 1.732 

6.0 3000 0 5.968 5·742 
1 5 571 5.501 

2 5·076 5·047 

3 4.503 4·500 

4 3.840 3.840 

5 3.050 3.053 

4000 0 5·523 5.224 
1 5.162 5.068 

2 4.685 4.646 

3 4.124 4.120 

4 3.470 3.470 

5 2.685 2.689 

5000 0 5.055 4.681 

1 4.727 4.610 

2 4.267 4.218 

3 3.717 3.712 

4 3.070 3.070 

5 2.288 2.243 



256 

TABLE 7.4 (contd) 

Pack Pack Distance from Pre-fracture Post-failure 
width Load2 pack edge lift lift 

kN/m m cm cm 

6.0 6000 0 4.617 4. 168 
1 4.322 4. 181 
2 3.880 3.821 

3 3.342 3.337 

4 2.704 2.704 

5 1.925 1 .931 

7000 0 4. 164 3.640 
1 3.902 3.738 
2 3.476 3.408 

3 2.950 2.946 

4 2.320 2.321 

5 1 .543 1.550 
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considerable difference in the lift will be made due to 'swelling' or an 

apparent increase in the rock volume upon breaking. This has been accounted 

for in the last phase of this analysis, viz. viscoelastic post-failure heave 

including swelling. 

7.5 A linear viscoelastic approach to floor heave and swelling effects 

Having estimated the elastostatic post-failure lift, it now remains 

to ascertain the behaviour of the floor with time due to viscoelastic or 

creep effects. For this a linear viscoelastic approach has been adopted. 

The correspondence principle 

One approach to solving viscoelastic or creep problems consists of 

using the correspondence principle, whereby viscoelastic solutions can be 

deduced from the corresponding elastic solutions for the same configuration 

by applying the Laplace transformation technique(74). This technique has 

been used by several workers(75-77). The Laplace transformation can be 

employed if at all material points the conditions demanded by the system do 

not change during load application, and if the body shape does not change. 

If these conditions are satisfied and if the material is 'initially dead', 

the Laplace transformation is defined by 

co 

f (s) = L [ f ( t )] = J f ( t ) e -s t d t 
o 

where fes) is the Laplace transform of fet), s is the transform parameter 

and L is the Laplace transform operator. 
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Bland(74) expresses the correspondence principle as: "If the 

dependent variables and the boundary conditions in the elastic solution 

are replaced by their Laplace transforms and the elastic moduli by the 

corresponding parameter (s) varying moduli, then the viscoelastic solution 

for these variables is obtained by inversion of the expressions so obtained 

for the transforms of the dependent varia.bles." 

For an isotropic elastic body the stress-strain relation is 

and for a linear viscoelastic material 

F. cr(t) =. Go .£(t) 

where 0" and € are now functions of time and F and G are linear 

differential operators with constant coefficients: 

where f. and g. are material constants defining viscoelastic behaviour. The 
l. l. 

four basic rheological models representing time-dependent behaviour of mine 

rocks are the Maxwell, Kelvin, three-element and Burgers model. The last 

one is considered the most realistic of the four and, a.s shown in Fig. 7.31, 

consists of a spring and dash-pot in series with another spring and dash-pot 

in parallel. Its stress-strain relation is 
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FIG.7·31-BURGERS RHEOLOGICAL MODEL & ITS CREEP CURVE 
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where c til. C
1 

::. .!L ..... 1- +...L = , 
'If '1;2-0 

'1,,''12. E# ~:t 

..L d 1 - £::2 
c2 = , - -

E'f '11-

Upon integration we find 

- c,t t/,1. ] 
e(t) = [..L + s.. + 1- (i- e )cr(t) 

E1 "1 t f,t 

The behaviour of this model is shown by the creep curve of Fig.7.31. It 

includes the instantaneous elastic deformation, the transient creep and the 

steady-state creep which is non-recoverable upon removal of stress. Equ. 

(7.23) is of the linear differential form (7.22) and the Laplace transform 

of the corresponding Young's modulus is(76) 

7.5.2 General solution in plane strain 

Suppose a plane strain elastic problem gives the solution for stresses 

as 

then the relation for vertical displacements 

gives 
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v 

Since A1 (x) is an arbitrary function of x this can be written in the form 

v 

without loss of generality. As Poisson's ratio is assumed time-

independent it has been merged with the unknown functions. At any given 

point (x1 , Y1)' say at the floor level, 

= 

Now the deflections v(x1 'Y1) at any point on or within the floor has already 

been obtained by the face element analysis so that 8 can be determined from 

i.e. by multiplying each elastostatic displacement already obtained by E. 

In terms of Laplace transforms this can be written as 

v(s) 

where H(s) is the transform of the loading history R(t). Since the constant 

8 has the units of (stress x length), R(t) will tell the manner in which the 

ultimate loading condition in a given viscoelastic body has been reached, or 

its loading history. 

It must be noted here that the loading history is actually the change 

of stress taking place in the floor at any point (x1 'Y1)' Since the stresses 
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are two in the equation for vertical strain ;; , the combined effect 

produced due to a change in both these stresses is the real loading 

history. Now at the floor level we have a free surface so that only ~ x 

changes with face advance, ~ being zero in the roadway. 
y 

Then the 

loading history in the roadway is really a change in ~x only. Below 

the pack and ribside, however, the problem of loading history is much 

more complicated because both ~x and ~y will change with face advance. 

1.5.3 Loading history in short face advanCing and retreating 

As seen from the pack load acceptance curves of Chapter 5, the 

steady state of stress for the section of the heading reaches within about 

20 to 25 metres, or in terms of time, in 2 to 3 days, when the rate of 

advance is 9.0 m per day. Assuming that the short faces are driven to a 

distance of 900 m at this rate of advance, the time required for driving 

the heading will be 100 days. If we consider a section of the heading 

which is 450 m from the start line, the loading history for this section_ 

will, for the most part, consist of the steady state, only the first 2 to 

3 days being transient. It was, therefore, decided to choose the loading 

history during short face advancing as of a constant load as in Fig. 7.32. 

During retreating, however, general experience has shown that a 

point reaches steady state after about 100 m or so of face travel. It is 

thus transient over a long period. Also, some floor heave already occurs 

during advanCing under the earlier loading history. Added to this is the 

tranSient loading due to retreating. If the constant 8 has the value Si 
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during advancing and an ultimate value 8 2 during retreating the loading 

histories are: 

(a) Short face advancing: 

H(t) '" ~1 

(b) Subsequent retreating: 

H (t ) = G 1 + ( S 2- $1 )( 1-e -o(t ) 

where a = 0.06, which roughly corresponds to a steady state in retreating 

reaching after about 100 m of face travel at the rate of 1.5 m/day. 

The history (7.29) during retreating can be of two kinds: 

These two conditions are shown in Fig. 7.32. 

1.5.4 Total post-failure viscoelastic floor heave 

During advancing by short faces, the loading history (7.28) gives 

according to Equ (7.21) 'and Equ. (1.25) 

v(s) - S i / s:l.+d.fs 
- f s C s:l. + C 5 + c 

~ f 0 

where !! is the Laplace transform of H( t) = 8 1• An inverse transformation of 
s 

this expression gives 

v(t) (1.30) 

During subsequent retreating the loading history (7.29) has to be applied, 

which involves a constant term 81 for advancing and an additional transient term 

Signifying the change in the history due to retreating. The floor lift due to 

the constant term ~1 is already known from Equ. (7.30). So it is necessary to 

determine the lift only due to the transient term, which gives 
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v(s) 

and by inverse transformation 

unloading during retreating from the value S 1 of advanci~. The steady state 

creep is, however, non--Tecoverable, so that in this case the floor lift will 

be obtained by putting 1/~1 = 0 in Equ. (1.31), thus: 

-EJZ~/t'ffl. , -E:t,t/"'IfI. 
vet) (S~-S1) [ {; + t (1- e, ) + -E"";"~---"-2.a(- ~ 

E f 

+ (~j ~~o<- ~ ) ~~t ] 
9)2. 

Thus the floor lift in retreating is obtained by superimposing 

(1.31 ) or (1.32) on the lift obtained in advancing by Equ. (1.30) for 

t ~ t1 where t1 is the time required for the short face to move to the 

end from the point under consideration plus the time required for the 

retreating face to come back to the same point. 
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Added to this floor lift must be the lift due to swelling of the 

rock upon breaking. If the coefficient of apparent volume increase due 

to breaking is 1.4, then the coefficient of linear increase will be 

(1.4)t = 1.12. So there will be a 12% increase in the thickness of the 

broken zone, lifting the rock upward. Since rock breaking is completed 

in advancing itself, the additional heave due to swelling is just added 

to that given by Equ.(7.31) or (7.32). The total lift in retreating is 

thus 

Total vet) = vet) (advancing) + vet) + 0.12 c 

where c is the depth of the broken rock zone. 

7.5.5 Numerical analysis and results 

For estimating the total floor heave, a point X 450 In from the 

start line of the short face, or midway between its total travel of 900 m, 

was chosen at 2 m from the edge of the pack into the roadway.· The constants 

in the Burgers model were determined from the creep curve for Dawdon seat

earth(64), Fig.7.33, as 

E1 E (post-failure) 6/2 = = 1.25 x 10 kN m n 

E2 = 2.6 x 107 kN/m2 

1)1 = 8 jJ 2 1.62 x 10 kN m - day 

1)2 = 1.88 x 107 kN/m2 - day 
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The post-failure elastostatic deflections at point X are given in 

Table 7.5, from which 01 and 82 could be calculated from the relation (7.26) 

by simply multiplying by E1• The value of t 1 , the time required for the 

short face to travel from X to the end at 9.0 m/daY and retreat back to X 

at 1.5 m/day, was 350 days. 

The total floor heave was obtained by writing a Fortran program 

for Equ. (7.30 ~ 33). The results are shown iri Figs. 7.34"and 7.35 
; 

corresponding to retreating after advancing by a short face of 12 m and 

16 m respectively. The results have the following main features: 

(a) A large part of the floor heave takes place during 

short face advancing itself, mainly from floor breaking. 

The heave due to breaking is constant in retreating and 

has values of 32.4 and 45.6 cm corresponding to the two 

heading widths of 12 m and 16 m, so that breaking alone 

is responsible for a closure of 17% and 24% of the working 

height. 

(b) Pack load does not change the lift as significan~ly 

corresponding to a 12-m heading as in the case of a 16-m 

heading. A higher pack load will obviously increase 

floor penetration so that although the lift falls, the 

overall closure due to downward pack movement may not 

necessarily fall. It is not possible to estimate this 

effect and the overall closure. Changing the pack load 

because of the quality of the pack thus does not signifi-

cantly alter floor heave. 
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TABLE 1.5 

Post-failure elastostatic lift at point X 

(a) Short face advancing 

Heading width lift 
m cm 

12 3.427 

16 3.930 

(b) Subsequent retre~ting 

Peak load Lift, cm 

kN/m
2 Pack width 2 m Pack width 6 m 

.3000 4.162 5·047 

4000 4.047 4.646 

5000 3.947 4.218 

6000 3.8.36 3.821 

7000 3.733 3.408 
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(c) Only two cases of pack load of 6000 and 1000 kN/m2, 

Fig.1.35, correspond to the condition of a falling load 

history. The heave, even for these cases, appears to 

rise because the steady state creep is not recoverable, 

and the Burgers model behaves like a three-element model 

under loading. 

(d) Judging by the heave curves, the total floor lift 

at point X is likely to be, at the finish of the retreating 

operation, as much as 29% or 31% depending on the heading 

width initially adopted for advanCing, and the pack load 

subsequently developed. 

1.5.6 Application of the theoretical method to the example of Easipgton 

Colliery 

From Easington Colliery, where anhydrite packing is being used, 

underground measurements of floor heave are available. It was considered, 

worthwhile estimating the floor heave there theoretically by the method so 

far developed and comparing these results with underground measurements. 

For this, it was necessary first to obtain the zone of crushed coal 

and the loading on the ribside abutment. The pack load in the steady state 

was measured underground as 4500 kN/m2(28). The panel under consideration 

here has the following particulars: 

Depth from surface 548 m 



273 

Section of the roadway as shown in Fig. 7.36 (except 

that the roadway width is taken here as 5.0 m instead 

of 4.7 m). 

Face length 180 m 

Pack width 1.5 m. 

The workings are being carried out by longwall advancing with 

advanced headings in the Low Main seam. 

The same procedure of analysis was followed. The length of the 

crushed coal zo~e in the ribside due to abutment pressure was obtained as 

nearly 11.5 m, the Poisson ratio for this purpose being estimated at 0.4 

instead of the usual 0.25, considering Equ.(7.13), because Easington is 

deeper than Dawdon. The maximum abutment pressure at this distance was 

obtained as 46000 kN/m2 , about 3.7 times the depth pressure. The goaf 

loading on the floor was estimated as usual from the weight of the fallen 

rock. 

A face element run for this case gave the s.f. contours as in Fig.'(.36. 

This gave the depth of the broken zone as c = 2.5 m with the value of the 

post-failure modulus as E = 7.7 x 105 kN/m2• 
n 

The usual post-failure analysis 

yielded the value of the floor lift as 17.85 cm at a point 3 m from the pack 

edge. 

This problem has been worked out assuming that no advanced headings 

were present ahead of the face for simplicity. The loading history for a floor 

point would then be 



o 

1 

2 

3 

4 

5 

6 
m 

FIG.7·36-S. F. CONTOURS IN THE FLOOR AT EASINGTON 

:.···:·:1 WI/I$$.(/$/////~//{II~ 
lit i 

o 1 2 3 4 5 6 7,' 8m 

~ 

~ 
.--~ 

----t::==-P p;: ~ 
I 

I 

1·0 
-~ 

V 

~ 1-5 
/ ~ 

_'1.0 ~ -f.---" / ;! 
----I----I--- 1..5 " 

/' ~~ 
~ 

----~-- --- fo--- --- ---~ !-J 

~ .0 

I'-. :,/1tJ 

-..... 

3·0m 1 105m 
Coal Soft 

~4·7m 1 " ........ -,seah~arth a·3m 
0"' •• " 0" .' 

.:::': :.::.~ -:::':.: :-::~. :':':::: Hard seatearth 0·5 m .. 
: : : : : : : : ; .: : Grey sandstone a-7m 
A :I A :5 " III .... .:Ii IlL ,. .It 

---------- --
= .: : :: : .. :._:.:-:---=--: -= :: Muds tones &. 

-~ ::::- : .: =-: = .: -:. -=------: shales -----------
-

I 
I 

I 
I 

(/ 

---r-Limit of 
brokQn rock I\) 

-.J 
~ 



275 

H (t) = 

where 8 = 0.1785 x 7.7 x 105 kN/m2 and 0< = 0.06. Then using Equ. (7.31 ) 

substituting 8 instead of (82- 81)' the floor lift could be estimated. 

To this floor lift had to be added the swelling of the broken rock. A 

reasonable assumption was that the process of breaking commenced from the 

start of the face (t = 0) and reached its ultim2.te value in the steady 

state of the loading history, so that the lift due to swelling could be 

expressed by 

v(t) swelling = 0.12c 

= 0.12 x 2.5 (1_e-O· 06t ) 

This was superimposed on the viscoelastic lift already determined and the 

results are plotted in Fig. 7.37 along with the observed underground results(28) 

which are shown assuming zero displacements when the face is at the measuring 

station (as if the advanced heading is removed). 

There appears to be a reasonably good agreement between the two 

results. 

7.6 Conclusion 

(a) The method proposed for estimation of the zone of crushing in the 

ribside and the abutment pressure curve appears to give satisfactory 

results. The solution given by Equ. (7.11) and (7. 12) is sensitive 

to changes in the constants a and b which define the str-aight line 

joining the two states of stress at the rib edge and deep inside. 
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The equivalent triaxial state at the edge takes the confinement 

as 1% of the vertical stress, which is only approximate. This 

value needs to be determined precisely since the resulting 

values of the crushed length and abutment peak are sensitive 

to this initial confinement before crushing. The lateral 
jJ

restraining stress deep inside the seam is taken as 1 -/-' times 

the cover load, with a changing value of fk as per Equ (7.13). 

This requires good estimates of the crushing strength of the 

seam for obtaining a proper value of? • 

The results of abutment pressure and zQne of crushing are also 

sensitive to the value of the flexural rigidity of the roof 

strata. A fall in the flexural rigidity has the effect of 

increasing the abutment pressure before crushing and reducing 

the distance at which the cover load is reached by the pressure 

wave. An accurate knowledge of the horizontal weakness planeS 

and reasonable estimates of E of roof strata ae required for 

good accuracy of results. 

(b) The elastostatic face element analYSis showe that this method 

of short face advancing with retreating may produce deeper 

fractures in the floor than simple advanCing and there is a 

probability that floor heave will be greater by the former 

method. This may place a limitation on the depth to which 

this method of initial development may be adopted. By the 

time retreating finishes in the first panel after short face 
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advancing, the roadway on the outer side of the pack will have 

undergone floor heave which could be roughly up to one third the 

roadway height, making it difficult to use as a tailgate for the 

second panel. The floor heave in this roadway depends on the 

width of the heading adopted in short face advancing, wider he2 dings 

being disadvantageous. 

(c) Floor heave also appears to be influenced by p~ck load and width, 

wide packs loaded vlell put a restraining effect on the floor .?nd 

reduce floor heave to some extent. Narrow packs like 1.5 or 2 m 

do not show much benefit when the pack load is increased. It does 

not, therefore, appear greatly beneficial to have a highly resistant 

pack like anhydrite if it is to be narrow from the stand point of 

floor heave. Overall, a control of floor heave by changing the 

pack width or pack load can be achieved only to a small extent. 

The probable reason is that a roadside pack is really a relatively 

small element of the complete longwall structure. 

(d) To alleviate bad roadway conditions due to floor heave, pack load, 

pack width and face length may be changed (i.e. put a stiffer, 

wider pack and a shorter face) though a change ~n just one of these 

factors may not bring about appreciable improvement. The main 

factors influencing floor heave appear to be the depth of working 

and the floor strength, since they govern the depth to which a 

fracture zone may develop in the floor. A large part of the floor 

heave is accounted for by the increase in the apparent volume of 
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the rock upon breaking. It is always advantageous to reduce 

floor breaking. In the method of short face advancing it is 

seen that the quality of pack does not affect floor stress 

significantly. It will, however, be wiser to adopt a stiffer 

pack like anhydrite and use as narrow a heading as permitted by 

the economics of advancing. 

(e) The method of floor heave estimation gives reasonable estimates 

of heave at Easington when compared with underground measurements 

taken there. Even then, it will be necessary to carry out 

extensive field experiments to corroborate the findings of this 

Chapter. 

* * * 
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CHAPTER 8 

Conclusions and recommendations for future work 

The method of short face advancing with a centre pack for in-seam 

development was investigated for feasibility. The elastostatic analysis 

for roof behaviour leads to the following conclusions: 

1. Stiff packs of setting materials like anhydrite accept 

load more quickly than conventional non-setting packs. Both 

kinds of pack show an initial load build-up to a peak value, 

a subsequent fall and steadying off with advance of the short 

face. The initial build-up to a hump is pronounced in the 

case of anhydrite packs, while it is flat in conventional 

packs. Load acceptance increases with the pack modulus. 

The values of pack load obtained during short face 

advancing are quite small. 

loads. 

Wide headings give rise to higher 

The pack loading curve agrees with those observed under

ground by other workers and supports the back abutment 

pressure concept. 

2. The maximum tensile stress, which occurs in the roadway 

on either side of the centre pack, shows a slight fall with 

higher pack loads, i.e. with increasing pack stiffness and 

heading width. It exceeds the ultimate tensile strength 
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(taken as an ~verage for some Durham rocks) in most cases of packs, 

indicating the need for roadway supports. 

The centre pack is seen to take care of only a part of the 

bending moments in the roof, a large amount of roof deflection 

taking place before pack erection. 

3. The ribside abutment pressure is seen to fall with increasing 

pack load. A higher pack load thus appears desirable in reducing 

the unevenness of load distribution across a roadway. 

4. The beam theory, as applied to the short face advancing 

situation, shows that a short face behaves in a manner similar 

to a full-fledged longwall face in that it gives a pack load 

characteristic with an initial peak (back abutment), a ribside 

abutment pressure, smaller values of load at the pack edge than 

at the centre and a flat, delayed load acceptance by soft non

setting packs. 

A laboratory investigation of anhydrite properties indicates that 

1. Anhydrite becomes stiffer with time, the elastic modulus 

reaching a plateau value greater than or comparable with many 

coals after 6 to 7 weeks (Equ. 4.1). 

2. The stre~gth falls significantly with an increase in the 

test specimen size, the fall from a laboratory small speciman 

to a regular pack being 50% or more. Accounting for this 

property and the width-height ratio of a pack, a strength formula 
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(Equ.4.5) has been proposed. 

The method developed for obtaining the post-failure ribside 

abutment pressure and the extent of crushing of the ribside during 

retreating leads to the conclusions below: 

1. The method is found to give reasonable values of 

the abutment pressure and extent of crushing. The 

solution by this method is sensitive to the initial pre

fracture biaxial confinement at the rib edge, the 

strength of the seam and the flexural rigidity of the 

rock mass in the roof. Their accurate determination 

is, therefore, necessary for the success of the method. 

2. Both abutment pressure and ribside crushing are 

reduced with an increase in pack load and width. 

3. A reduction in the face length has the same effect. 

The situation of floor heaving in short face advancing and subsequent 

retreating can be summarised from the post-failure viscoelastic analysis thus: 

1. TPe method used for floor heave estimation gives 

satisfactory results in the test case of Easington Colliery. 

2. The method of short face advancing with subsequent 

retreating may produce deeper fractures in the floor 

than simple advancing, so that there is a probability 

that floor heave will be greater by this method. This 
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may place a limitation on the depth to which this method 

of working can be adopted. By the time retreating 

finishes in the first panel after short face advancing, 

the roadway on the outer side of the pack will have 

undergone floor heave which could be up to ! the roadway 

height, making it difficult to be used for the second 

panel. 

3. The floor heave during subsequent retreating is 

greater if the short face heading during development 

is wider. No additional fracturing appears to occur 

in the floor while retreating, so that the floor condition 

is mainly governed by the width of the development 

heading adopted. It is thus difficult to recommend short 

face headings wider than 10 to 12 m. 

4. It does not appear greatly beneficial to have a highly 

resistant pack like anhydrite from the stand point of 

floor heave. Overall, a control of floor heave by 

changing only the pack load and width can be achieved 

only to a small extent. 

5. A large part of the floor lift occurs due to an 

increase in the apparent rock volume upon fracturing. 

During short face advancing, the quality of the pack 

does not affect floor breaking significantly. It is, 
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however, better to use a stiffer pack like anhydrite to 

improve roof behaviour. 

6. Floor heave in roadways, in general, may be reduced 

by putting a wider pack and a shorter longwall faoe, 

though a ohange in just one of these factors may not 

bring about appreoiable improvement. The main faotors 

influenoing floor heave appear to be the depth of the 

working and floor strength. 

Reoommendations for future work 

There has reoently been a proposal to adopt the method of short 

faoe advanoing with a central pumped paok in one of the Areas of the 

National Coal Board. This could be a good opportunity for underground 

investigations for oorroborating the findings of this Thesis, for an 

experimental oonfirmation of these theoretioal results is much needed. 

It will be of practioal interest to investigate the findings with reference 

to pack load acceptance and floor heave, while using the short face method, 

and also compare the results with a oonventional advanoing faoe in the 

same area. 

A method, at least an empirical thumb rule, is needed to establish 

the relationship between pack quality and the resulting pack load. 

* * * 
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APPENDIX! 

Deflection equations for stages 4 to 7 for 

short face advancing with anhydrite ceptre packs 

As the face moves in each stage, the y-axis is also shifted. If 

the deflection over a pack section is given by vm in a stage of advance 

and if it changes to v in the next stage, the expression for V will n n 

include v such that (x-l) is written instead of x in v , due to the shift m m 

in the y-axis by 1, the unit advance. For brevity v can then .~<: 1·:ri tten down 
n 

as 
vn = (v) (1) + f(x) m x -+ x-

This convention has been adopted for writing down the delfection 

equations for stages 4 to 7. Also, the following notations have been 

used: 

I 

CJ2 
---:. All , 
.24 :Dot 

e
CXX 

"AS .... e (""') ;!1OC~S:_A. O(x, ::. S" (DC) 1 ....... ex... = 3'" ).,.. ~r- ... 

_/!>" 'X. 

e CoS ~i. x. 

{!J.;, x-
C!.. co $ f>.i 'K. 

Deflections have been numbered as per the convention of Fig.5. 1 • 
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Stage (4): 

The equations in further stages have a certain repetitive pattern 

and can be written more concisely if the notations are further shortened. 

The above equations can be written again as 
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Similarly stages 5 to 7 will have the forms of equations below. 

Stage (5): 

v- _ 
~8 -

Stage (6): 
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"'33 = (V:l5) ( C ) [e ( ) ] 
:t. ... (X-t) 10",110 f,It Pl 

4 
"3B:: Gt2 ')C. + (c ) ( x.'!I~O) 

1f9 J U2 

Stage (7): 

• 
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"'43 • (V'31t)~~'''_l) + (Cf1t3 , flt~) [~f,1t (~5)] 

~+ = (V:U)-x. ... '''_l) + (C'+7,f50) [e1,it (,s4)J 

'i'4S= (V'36)'X .... ("_l) + (C15f , •• ",) (f.,,4 (Il,)] 

* * * 
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PTRAN IV r, Cn~PILER 01-30-76 12:43:~q 

02 
fl 03 
004 
005 
f)06 
007 

08 
09 

C**~$HO~T FACf. AOVANCINr. WITH ANH. CENTRF PACK~ 
C~**PROG FnR nEFLNS 4 PACK LOAns AT pnINT~ A.B 
C***~V LnNGL. Cr.NStOEPATTONS 
C***INV8LVtNG ArPLIrATlnN nF CONTINUITV rnNnlTJnNS TO 
c~*.nEFLN F'N~ OF STAr,': 1 -\ snLVING RESULTTN(; Sy ... tJl.TANFOlI EONS 
C***T~ nRTAIN 36 INTEGRATlnN CCNSTS.C125--C160,nF STAGE 1. 

C**.!C 
SUBROUTINF P(N,X,V,A,H' 

C**~V(l' IS T~E FUNCTION A*(X-H,**N 
C**.V(2),V(~"V(4) ARE THE OtRtVATIVE~ 

nntJBLE PRFCISION X,Vf41,l,A,H 
Z=X-H 
V Cit =,-.. Z**N 
V(2)=A.N*l.~(N-l' 
V(3)=A*N*(N-l'*1**(N-2) 
V(4,=A*N*(N-l,*(N-2,.,**CN-3' 
RETURN 
ENO 

OTAl ~J:MORV RfQIJJRE~ENTS OO()'30A I3VTES 
lOl SUI3PI1UTINF Fcn~CA,~,X,V,c,HI 

C**.V(l' IS H·E FUNCTInN CltfXPfA*CX-HII ... cnC\CB*'X-H') 

Oo~ 
()03 
()04 
') 1)5 

'l06 
1')07 
008 
OOq 

1010 
P il 

C**~VI2"V(~),V(4' ARE THF nfPlvATtVE~ 
nnUALE PRECI~ION A,B,C,X,V(4"Z,Z],Z2,H,OExp,ocns,nSIN 
11=A*(X-H) 
Z2=R*(X-H) 
VCl,=c*nEXPCZl,*nCQ~(Z21 
l=C*OF.XPCZl'*OSINCZ2' 
VC2,=A*YCl,-P*l 
VC3'=CA+A-B*B,*V(1,-2.*A*e*z 
VC4'=IA*A-3.*A*BI*A*VIl'-C3.*A*A-~*n'.A*Z 
RETURN 
ENO 

IT I1TAl. ~IFMnRY RFQIJTREMFNT~ OO()20C rWTF.S 
b()l 

h ')2 
It) 0 3 
i004 

')5 
Ot, 
07 
Os 
Oq 

[ lO 
fJ l l 

SUBRnUTINF ~SINC~,B,X,y,C,H' 
C.*.V( 1) IS TI-'E FU~rTJnN C*( XPfA*CX-II, ,rtSINCR*CX-H' I 
C***Y(2),V(3),V(4) A~F THF nfRfVATIVFS 

nf1I1ALE PRECISION A,B,C,X,VC4"l,ll,z~,H,nExp,orns,DS'N 
ll=A*(X-H, 
12=R*fX-H' 
V(11=C*OEXPCZ1,-nSINIZ2' 
l=C*OEXP(ll)*nCf1$(Z2' 
VC2,=A*V(1)+R*1 
Y(31=(A*A-S*f\'*VC1,+?*A*R*Z 
V(4)=(A.4-3.*A.8'*A.YC1)+C3.*A.~-A~~'*A*l 
PETURN 
FNn 

~ OTAI MFMORV RFQIJtREI-1rNTS 00020A RyTES 
C**~MEANINGS nF SVM~nL~ lJSED TN PROt'; 
C.*.[=ALPH~,Fl,F2, ••• =BF.TA1,RfT'-'2t ••• ,n3,n4=r3,c4 



304 

G Cn"1PtLER 07-30-76 

C***Tl,T2, ••• :Kll,K12, •••• Q:Q2/2402,QQ=(Ol+Q2'/K2, 
C***Hl,H2, ••• =L,2L, ••• , HH=6L+(L 1+W)/2, R=TNT.CO~!STS FROM 
C"'*"PREVIOU$ STAGF.S OCCURRING IN nEFLN fQ~IS nF ST 7 
C***AnEll, ••• =OELTAl AT A, ••• , RDf.Ll, ••• =DFLTAl AT B, ••• , 
C.**lAl, ••• =PACK LeAns AT A, lBl, ••• =PACK LOADS AT B. 
c*·* 

nOUBlE PRECISInN F,Q,QQ,03,D4,HH,Hl,H2,H3,H4,H5,Xl,X2,X3, 
*X4,X5,X6,X7,X8,X9,S,Z,Fl,F2,F3,~4,F5,F6,Tl,T2,T3,T4,T5,T6, 

*R(AO,3',A(36,361,B(36',C(36), 
*K(4),l(4',KK(4),lL(4"KKK(4),llL(4""1M(4),NN(4,,MMM(4',NNN(41, 
.G(4),V(41,GG(4),VV(4),MA(4),MAf4),MC(4),MO(4),ME(4',MF(41, 
*M~(4),M~(4),NA(4),NB(4),N(4"NO(4"NE(4),NF(4',NG(4),~H(4). 
*NI(4',NJ(4"NK(4',Nl(4),NM(4),NP(4),NQ(4J,NR(4),NS(4),NT(4),NU(4', 
*AA(36,36',WKSl(361.WKS2(36" 
*L AI, LA 2, l A 3, l A4, L ~ 1, L 87, un, L84, t. A 5, 
*Yl,Y2,Y3,Y4,y~,Y6,F.Xll,FX12,E~21,~X22,fX3l,F.X32,EX41,EX42, 

*EX51,EX52,cnl,C02,C03,C04,cn5,srl,~I?,SI1,SI4,SI5, 

*A~Ell,AOFL2,AOEL3,AOEL4,AOEl5,ASl,AS2,AS3,AS4,BO~Ll,AnEL2, 

*B~El3,gOEL4,AoEL5,AnEL6,PSl,AS2,AS3,~S4,AS5,PA 

C**.OEFINE THF. CONSTS INVOLVED 
E=O.39 
Q=7.C;~6C-7 

QQ=7.4r:l-3 
D3:-].00530-4 
D4=1.ca<71D-2 
HH=23.5 
H1=3.0 
H2=6.0 
H3=9.0 
H4=12.0 
H5=15.0 
xl=29.0 
X2=23.0 
X3=20.0 
)( 4=17.0 
XI)=14.0 
X6=11.0 
X7=8.0 
X8=5.0 
X9=O.0 

C*.*ASSIN INITIAL !ERO VALUES TO ALL MATRIX \ P.H.S. ELEMENT~ 

DO 3 1=1,36 
on 2 J=1,36 

2 AfJ,J'=O.O 
3 CONTTNUE 

D'1 4 1=1,36 
A(J)=O.O 

4 CONTINUE 
00 1 J=1,3 
RA=18./(J+1I 
WRI T f: (f,20)RA 

C***OEFINF Kl1 ETC, BETAl FTf 
S:4.AD+7 
Z=4.42<;50+6 
Ml=J+l 
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,') '3 5 
O() 3 6 
003 7 
01 ~8 
00 39 

c 140 
1)0 41 

1) 42 
)')43 
1 44 
045 
'1 46 

' ''' 47 
Pn48 
";149 

1)0 
I J~51 

) 52 
1) 3 

)( ') 4 

5 5 
) 56 

(1 57 
) 58 

) 5 9 
10 60 
)() 6 1 
>0 62 
1() 63 
164 
165 
j f)6 

) )6 7 
)1 68 
10 69 
)()70 

)0 71 
)r) 72 
)0 73 
:) 74 
'75 

'~>76 
1' >7 7 
t >7 a 
· n9 
}f) 8 0 
jt1 d 1 

}Q 32 
l!) 1 

~ ;n ~ 4 
f) l35 

l() ~) 6 
10 .q 7 
)0 O~ 

Tl=(Ml/6. '/( 3.65 .. ~n/6. ,*z 
Fl=(Tl/<i,**O.25 
MZ=Ml*2 
TZ=(~2/6.)/(3.6~+M2/6.'*Z 
F2=(TZ/S'**O.?'5 
M3=Ml*3 
T3=(M3/6.'/(3.65+M3/6.'*l 
F3=(T3/S,**O.25 
M4=~H*4 
T4=(M4/6.,/(1.65+M4/6.,*l 
F4=(T4/S'**0.25 
M5=Ml*5 
T5= (~5/6.)/(3.65+M5/6.)*Z 
F5=(T5/S'**O.25 
M6=Ml*6 
T6=fM6/6.'/(3.65+M6/6.'#Z 
F6=(T6/S)**O.25 

C**-LIST THE KNOWN INTfGR cnNSTS nF TH E L~ST 5 SFT~ 
R(l,l'=-4.61800-4 
R(l,2'=-S.0820-4 
Rtl,3'=-1.O~50-3 
R(Z,1,=5.3430-3 
R(2,2'=5.12~4D-3 
R(Z,3'=5.0161D-3 
P(3,l'=4.01'5fn-6 
R(3,21=1.396D-6 
R(3,3,=4.281D-7 
R(4,l'=1.088D-5 
R(4,Z)=3.6460-6 
R(4,1)=1.3569D-6 
R{S,1,=-1.51C6D-5 
R(5,~'=-1.447n-5 
R(5,3'=-1.40?50-5 
R(6,1)=4.8Z460-5 
R(6,2)=4.4Q140-'5 
R(6,3)=4.Z951n-5 
R(7,1)=5.4536n-4 
R(7,Z)=5.15410-4 
R(7,,)=4.9787D-4 
R(A,1)=8.48110-3 
R(A,2)=8.4267D-3 
R(A,3)=8.3942n-3 
R(9tl'=-3.ry7~06D-3 
R(9,2'=-3.45830-3 
Q(9,3)=-3.675920-3 
R(lO,l '=5.373111-'3 
R(lO,2,=4.7680ZD-1 
R(lO,~)=4.3f3R66n-j 
R(11,1,=J.086060-6 
R(11.2'=6.776D-7 
R(11,3'=3.34~~-7 
R(12,l,=-1.78 2n-7 
P(12,2,=3.Z26n-7 
P(12,3)=6.8126n-7 
R(13,1'=-3.~58970-4 
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R(13,2'=-7.n0309n-4 
R(13,"=-9.34495D-4 
R(14,lJ=4.84009D-3 
R(14,2'=4.537690-1 
R(14,3'=4.3622120-3 
R(15,1'=3.32750-6 
R(15,2)~2.09C20-6 

R(15,3'=1.1154D-6 
Pf16,1'=-3.1128D-6 
R(16,2'=-7.91060-7 
R(16,3'=1.148D-7 
R(17,l'=-1.3635D-5 
R(17,2)=-1.28034~-5 
R(17,3'=-1.226440-5 
R(lA,l'=4.36CJO-5 
R(}8,2'=3.8A2120-S 
R(18,3l=3.5~584D-~ 
R(19,1)=4.92~96D-4 

R(19,2)=4.51647D-4 
R(19,3l=4.26303D-4 
R(20,l'=8.31685D-3 
R(20,2'=8.302790-3 
P(20,3)=8.256671D-3 
R(21,1)=-5.23068~-3 
~(21,2)=-5.15924BO-3 
R(21,3)=-5.08069D-3 
R(22,1)=4.253630-3 
R(22,2'=3.5890390-? 
R(22,3)=3.2~2301n-~ 

R(23,1)=5.0469D-B 
R(23,2'=3.10526D-8 
R(23,3)=2.0111~1n-8 
R(24,1)=1.4249D-1 
R(24,2)=4.0651D-A 
R(24,3)=1.343350-9 
R(25,1'=-2.909974D-3 
R(25,2'=-~.169327n-3 
R(25,3)=-3.2963460-3 
R(26,1)=4.9811450-3 
P(26,21=4.3341430-3 
R(26,3'=3.919940-3 
R(21,1'=1.3576D-7 
P(27,2'=9.94e60-A 
R(21,3)=S.64631D-8 
R(2A,1)=1.5e46D-7 
R(28,2l=1.7045D-8 
R(28,3'=-1.n561n-9 
R(29,1)=-3.6008230-4 
R(29,2)=-6.278407~-4 

R(?9,3)=-R.2921R~D-4 
R(30,1)=4.4A8396D-3 
R(30.2)=4.133935D-3 
R(30,3'=3.9268180-3 
~(31,l':1.1597n-1 
R(31,2)=1.02616n-7 
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o 44 
45 

()' 46 
'4 7 

J 48 
r 149 
J ')0 
)1 51 
, 152 
.53 
54 

"1 5') 
156 
157 

1')1 58 
159 

60 
, 61 

' 62 
63 
64 
65 
66 
67 

J 68 
' 69 

I 70 
71 
72 

~1 73 
) 74 

~ 75 
\ 76 
171 

)1 78 
:>t 79 
}l ~ () 
H a] 

8? 
11 83 

84 
)1 A5 

86 
'4 87 
l qq 

. t A9 
l I 0 

] ':)1 

.J q2 
193 

_ -1 94 
11 '5 
11 96 
)1 97 
)198 

P(31,3'=3.297984n-~ 
R(32,1'=-3.44269n-6 
R(12,2'=-1.48838~n-6 
R(32,3'=-7.g60130-7 
R(~3,1)=-1.2851860-5 
R(33,2,=-1.20165n-5 
R(33,1)=-1.1483290-5 
R(34,1,=1.e8156RO-5 
R(34,2)=3.311q450-~ 
R(34,3)=7..Q690-5 
R(35,1)=4.5296920-4 
R(35,2)=4.0685D-4 
R(35,3'=3.7815150-4 
R(36,1,=8.30S8610-3 
R(36,2)=B.2254640-3 
R(3n,3)=8.17~9570-3 
R(37,1,=-7.370432n-3 
R(37,21=-7.242291n-3 
R(37,3'=-6.9~9424n-3 
R(38,1'=3.3414D-3 
R(38,21=2.5655940-3 
R(38,3)=2.15570sn-3 
R(39,1'=3.2107610-9 
R(39,2'=5.0803B4n-l0 
R(39,31=6.910262D-IO 
R(40,1'=-2.02259QO-8 
R(40,2'=-1.?2577AO-A 
R(40,3,=-6.320540-9 
R(41,1)=-4.~545010-3 
R(41,2)=-4.~60270-3 
R(41,3'=-4.7139110-3 
R(42,1)=4.0281420-3 
R(42,2)=3.3A5220-3 
R(42,3.=3.04449n-3 
R(43,1'=1.916820-9 
R(43,2)=4.6113230-9 
R(43,31=3.4416230-9 
R(44,1'=-6.44P,671n-A 
R(44,2)=-3.838102n-8 
R(44,)I=-1.9346580-8 
R(4~,11=-2.7,)5122D-3 

R(45,2'=-2.~€81140-3 
R(45,31=-3.1011A4D-3 
R(46.11=4.147351D-~ 

P(46.2)=4.106691 n-3 
R(46,3l=3.103113n-3 
RC47.1'=9.16306D-8 
R(47,2)=4.245291n-8 
P(47,3'=2.2~11a;7()-A 
P(4A,1'=-7.6~8295n-~ 
P(48,2)=-5.219236D-A 
Rt48,3t=-3.7841530-8 
R(49,1'=-3.371495D-4 
R(49,2'=-5.A85794n-4 
R(49,3)=-1.7t5860-4 
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R(~O.1'=4.27233AD-3 
R(SO,2'~3.914308n-3 
R(50,3J=3.70t8220-3 
R(Sl,1)=3.411120-8 
R(~1,2)=1.22t626D-7 

P(51,3)=6.0S76220-8 
R(52,1)=-3.7233QSO-6 
R(52,2)=-1.5729050-6 
R(~?,3)=-8.~44916D-7 
P(51,1)~-1.2567960-5 

R(53,2'=-1.179S960-S 
R(53,3)=-1.1296530-5 
R(54,1)=3.5261720-5 
R(54,2)=2.92~8870-5 

R(54,3'=2.566436D-5 
P(~5,1.=4.2871RIO-4 
R(55,2'=3.824017n-4 
P(~5,3)=3.5442340-4 
R(56,ll=8.2614450-3 
R(56,2'=A.l~8298D-3 
R(56,~)=8.1400440-3 
R(57,1)=-9.866526D-3 
R(57,2)=-9.n412Q9D-1 
R(57,3)=-8.3848RSO-3 
R(S8,l'=1.3n54490-3 
R(5~,2'=6.22241AO-4 
R(58,3)=4.604161D-4 
R(59,l'=2.2992240-10 
R(~9,2'=1.43~5q20-10 

R(S9,3)=7.297279D-ll 
R(60,1)~-7.250476D-IO 

R(60,2'=1.342535D-lO 
R(60,3)=3.392519D-ll 
R(61,l)=-7.1Q7619D-3 
R(61,2'=-6.9911420-3 
R(61,3J=-6.725797D-3 
R(62,1'=3.2842510-3 
R(~2,2)=2.52S874D-3 

R(62.3)=2.1263690-3 
R(63,l'=2.382280-10 
P(63,2)=1.4146790-10 
R(63,1)=9.381325D-ll 
R(64,1)=6.227345n-ll 
R(f4,2'=1.901323n-lO 
P(64,3)=3.6716860-11 
R(65,1'~-4.~29611D-3 
R(6S,2)=-4.14321SD-3 
R(~5,3)=-4.663324D-3 
P (6 6 ,1) =~.93e532D-3 

R(66,Z)=3.3155920-3 
R(66,3)=2.9~422n-3 

FC67 ,1) =2 .713 205D-lO 
R(61,2'=1.531191n-9 
R(67,3)=1.11849n-9 
R(68,1)=-4.gS8264D-A 
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02 5 5 
0;> 15 6 
"' 57 
(')~ 58 
(j:~ C; 9 
)260 
1?6 1 
i >6 2 
I. 63 
116 4 
1265 
)~ 66 
" 61 

"12 68 
~' 69 

I 10 
11 
72 

.;- 73 
)2 74 
'}":l 7 5 
J~' 7 6 
,?7 1 

1~ 78 
IJ 7 9 
);> 80 
,;J8 1 
P 82 
)') 83 
) 84 
);> 85 
P a6 
).1 87 
)2 88 
)? A~ 
)~ 0 
J2 1 

;> ? 
I 93 
'2' 4 
~ 5 

12 96 
') 9 7 

);:» A 
I? 9 
)'~ O O 

11 0 1 
I? 2 
n 0 3 
lj 4 
13 05 
'3 06 
130 7 

tv G cnMPTLER ..,ATN 

R(A8,2)=-1.e~2190-A 
R(68,3,=-9.051QA9D-9 
R(69,1)=-2.6S4240-3 
R(6Q,2'=-2.Q1408 QD-3 
RI6Q,3'=-3.025945D-~ 
RI70,1)=4.6324810-3 
R(70,2,=4.00918D-3 
R(70,1)=3.6194~lD-3 
R(11,lt=1.0216250-7 
PI71,2l=5.2160580-8 
R(71,3)=2.78q~2,)D-A 
R(72,1)=-Q.2083980-A 
P(12,2)=-5.535013D-8 
R(12,3'=-4.086423D-B 
R(13,l,=-3.2511260-4 
R(13,2J=-5.111408D-4 
P(73,3J=-7.5518230-4 
RI74,1)=4.168143D-3 
R(74,2'=3.820987D-3 
P(14,3,=3.621435D-3 
R(75,11=4.312751D-8 
R(75,2):9.845391D-8 
R(75,3)=4.645394D-A 
R(16,1'=-3.634394D-6 
R(76,2'=-1.5331 Q lO-6 
R(16,31=-7.8618910-1 
R(77,1)=-1.2524150-5 
R(71,2'=-1.1196410-5 
R(11,3)=-1.134312D-S 
R(18,l'=3.314766D-S 
R(18,21=2.7170790-5 
R(18,3'=2.3640610-S 
Rf79,l':4.1701260-4 
R(19,2)=3.120083D-4 
P(19,3'=3.44~16D-4 
R(ijO,l'=8.251~30-3 
R(AO,2'=8.175230-3 
R(80,3,=q.12~126n-1 

C***FORM THE ~ATRTX 

309 
01- ,f)-76 

CAll ECOS (-E,F,Xl,A(),l ),1.,0.) 
CALL ESIN(-E,E,Xl,A(1,2),1.,O.' 
C~lL P(3,Xl,A(l,3.,-1.,O.) 
CAll P(2,Xl,Afl,4,,-1.,O.' 
CALL P(1,Xl,A{1,5,,-1.,O.J 
C~Ll P(O,Xl,~(1,61,-1.,O.) 
C~ll P(3,X2.A(5,3),1.,O.l 
CAll P(2,X2,A(~.4,,1.,O.l 
CALL P(1,X2,A(S.51,1.,O.) 
CAl' P(O,X2,A(5,6',l.,O.) 
CALL EC OS(-F6,F6,X2,A(5,1,.-1.,O.' 
C ~ Lt . E S J N ( - F 6, F 6, X ? , ~ ( 15 , a ) , -1. ,0. ) 
CALI. Er.nS (F6,F6,X2,A( 5,Q ,,-1.,O.) 
CALL ESIN(F6,F6,X2,A(5,lot,-1.,f).' 
CAll ECOS (-F6,F6,X"A(9,1),1.,O.) 
CALL EStNI-r.6,F6,X3,AIQ,8),1.,O.) 
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CALL FCOS(F6,F6,X3,A(9,9),1.,0.) 
CALL ESIN(F6,F6,X3,A(9,lO),1.,O.) 
CALL ECOS(-F5,F5,X3,A(9,11),-1.,0.) 
CALL FSTN(-F5,F5,X3,A(9,12),-1.,0.) 
CALL ECOS(FS,F5,X1,A(9,131,-1.,0.I 
CALL ES!N(F5,F5,X1,A(9,14',-1.,0.t 
CALL ECOS(-F5,F5,X4,~(13,11',1.,O.) 
CALL F.SJN (-~:,F5,X4,A(13,12),1.,O.) 
CALL ECOS (F5,F5,X4,A(13,13),1.,O.) 
CALL ESINCF5,F5,X4,AC13,141,1.,0.I 
CALL EcnS(-F4,F4,X4,AC13,15),-1.,0.t 
CALL ESIN(-F4,F4,X4,AC13,16),-1.,O.) 
CALL ECOS(F4,F4,X4,AC13,17),-1.,O.I 
CALL ESIN (F4,F4,X4,A(13,18),-1.,O.) 
CALL ~COS(-F4,F4,X5,A(17,15,,1.,O.) 
CALL ESIN (-F4,F4,X5,A(17,16),1.,O.) 
CALL ECOS (F4,F4,X5,A(17,17',l.,O.I 
CALL ESINCF4,F4,X5,AC17,lOI,l.,O.) 
CALL ECOS(-F3,F3,X5,A(17,19',-1.,0.1 
CALL ES INC-F3,F3,X5,A(17,20),-1.,O.) 
CALL ECOS (F3,F3,X5,A(17,21l,-1.,0.) 
CAll ESTN (F3,F3,X5,A(17,22),-1.,O.1 
CALl ECCS(-F3 ,F3,X6,A(21,191,t.,O.l 
CAl l ESIN(-F3,F3,X6,A(21,20),1.,O.I 
CALL FCnS(F3,F~,X6,A(21,21,,1.,O.' 
CALL ESI~(F3,F3,X6,A(21,22),l.,0.' 
CALL ECOS(-F2,F2,X6,A(21,231,-1.,O.1 
CALL ESIN(-F2,F2,X6,A(21,24I,-1.,O.' 
CALL ECOSCF2,F2,X6,A(21,25),-1.,n.) 
CALL ESIN (F2,F2,X6,A(21, 26 ),-1.,O.) 
CALL EcnS(-F2,F2 ,X7,A(2 5 ,23 ,,1.,O.) 
CALL EStN(-F2 ,F2,X7,A(7 5 ,241,t.,O.) 
CALL FCOS(F2,F2,X7,A(25,2~',1.,O.) 
CALL ESIN(F2,F2,X7,A(25,26),1.,O.) 
CALL fCaS(-Fl,Fl,X7,A(25,271,-1.,O.) 
CALL FSIN(-Fl,Fl ,X7,A( 25 , 2Al , -1 .,O.' 
CALL FCOS(Fl ,Fl,X7, A(25,29 ),-1.,O.1 
CALL ESIN(Fl,Fl ,X7, A( 25,'0} ,-1.,0.) 
CALL ECOS(-Fl,Fl,X8,A(29 ,271,1.,O.1 
CALL ~SIN(-Fl ,F1,X 8,A(29,28 ',1.,O.' 
CALL ECOS(Fl,Fl,X8,A(29 ,29),1.,0.) 
CAll ESTN(Fl,Fl ,X8, A(29 , 30 ),1.,0.1 
CALL P(,3,XA,td2<),3U ,-1. ,0.) 
CALL P(2,X~,A(2<),32,,-1.tO.' 
CALL Ptl,X8,A(29,33',-1.,0.1 
CALL P(O,X8,A(29,34),-1.,O.) 
A(33,34'=1.O 
A(34, ?3 ) =1.O 
A(35, 32 '=2.0 
A(36,31l=6.t1 
CALI. EC0S(E,E,XQ,A,(33,35 ),-1.,0.) 
C4LL ES IN(E,E,XQ,A(33,36),-1.,O.l 

C***FnR~ THE R.H.S. 
CALL P(4,Xl,B(1),Q,O.) 
B (11 =tH lI-QQ 

12:44:03 
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(d 62 
o H,3 
f)1 64 
f)~~ 6 '5 
o ~ 66 
" 61 

68 
0: 69 

.~ 7 f) 
,71 

.' 12 
,)73 
. 374 
17'; 

03 76 
.1. 77 

7A 
, 79 
I ~O 

181 
32 

'1-, 83 

184 
138') 
386 
~7 
~A 

38q 
"3qO 

391 
3q2 

" q) 
": 94 
J3 95 
)3 q6 
)~ 97 
). 98 
1)99 
'4()Q 

' 0 1 
O~ 

+01 
', ()4 

.' , 05 
6 

J· 01 
c, )8 

J!. 09 
.}<y.10 
) l' 11 
)4 12 
)4 11 
)4 14 

CALL P(4,X2,K(1),Q,HH) 
CALL P(2,X2,L(1"D3,~H) 
CALL ECOS I-Fl,Fl ,X2,KK(] ),P(l,J),'t'S) 
CALL ESIN(-FltFltX~,LL(1),R(2,JI,HS' 
CALL ECOSfFl,Fl,X2,KKK(1),P(3.J),H5) 
CALL EStN(Fl,Fl,X2,LlLll),R(4,JI,H51 
CALL ECCS (-F2,F2,X2.M~(1),P'(q,J"H4' 
CALL F.SJNf-F2,F2,X2,NN(} I,P(lO,JI,H4) 
CALL ECCS(F2,F2,X2,M~~(1"P(II,J),H4) 
CALL E~IN(F2,F2,X2,NNNll "P(12,J"H4) 
CALL ECOS (-F3,F3,X2,G(1),Rf21,J"H3) 
C~lL ESIN(-F3,F3,X2,V(1),R(22,J),H3) 
CALL F.COS(F3,F3,X2,GG(1 ),R(23,Jt,H3) 
CALL F.SINfF3,F3,X2,VVtl),R(24,JI.H31 
CAll F.CCSI-F4,F4,X2,~A(1 ),P(37,J),H 2 ) 
CALL F.SIN(-F4,F4,X2,MR(I),R(3B,JI,H21 
ChLL ECOSfF4,F4,X2,MCIl),P(39,J),H2) 
C4LL ESIN(F4,F4,X2,~n(1),R(40,J),H2) 
CALL F.COS (-F5,F5,X2,NA(11,P(57,JI,Hl) 
CALL ESI N(-F5,F5,X2,NR(] ),R(S8,.J)t H1 ) 
CALL FCOS (F5,F5,X 2 ,NC(ll,RI~q,J),Hl1 
CALL ESIN(F5,F5,X2,NOfl),R(6Q,J),Hll 
CALL P(4,X2,B(5),-Q,O.) 
on 6 t = 1,4 
I 1= J +4 
JF(I.NE.l)Gn TO 5 
B(5'=B(5' .. 04 

5 CONT tNllF 
6 AffJ)=8(TJ, .. KfI'+ 11'''KK(t)+LL(tl+K~K(TI+lLl(J)+ 

* M t-1 ( J ) + N N ( J ) + M M ~ ( r ) + "I N N f , , + r, ( J , .. v ( I , + r, G ( I I + V V f T , + 
*MA(I)tM8(I)+MC(T)+Mn(r)+NACJ)+~Afr)+N( fl+Nn(tl 

CALL P(4,X3,KCl,,-Q,HH' 
CAt.l P(2,X3,L{lI,-D3,HH) 
C"lL ECOS t-Fl,Fl,X1,KK(1 ),-R(l.JI,HS ) 
CALL F.SINI-Fl,Fl,X3,lL(1).-P(2.J),HS) 
CALL ECOSIF1,Fl,X1,~KK(1 ),-P(3,J),H~1 
CALL ESIN(Fl,Fl,X3,t LLlll,-Pl4,J),HC:;) 
CALL EcnS(-F2,F2,X3,MM(1),-P(9,J),H4) 
CALL ESIN(-F2,F2.X3,NN(1),-RCIO,JI,H41 
CAll ECnS(F2,F2,'O,MMM(1l.-R(11, JI,H4) 
CALL ESTN(F2.F2,X3,N~NCl ),-R( 12,J),H41 
CALL ECOSC-F3,F3,Xl.G(1),-P(21,J),H3) 
CALL F.SJN{-F3,F3,X3,V(1),-R(22.J),H3J 
CALL ECrS(F3,F3,X~.r,r,(11,-R(23,J),H31 
CAll ESIN(F3.~3,X3,VV(11,-P(24,J"H~) 
C'\ll EcnS(-F4,F4,X3,~A(] 1,-P(37.J),112) 
CALL EqN(-F4,F4,)(3,~B(J ),-R(3B,J),H 2 1 
CAll ECOS (F4,F4,X3,~(1),-PI3q,J),H ? ) 
C/ILL ESIN(F4,F4 ,Xl,~O(l ),-R(40. 1),H 2 1 
CAll ECr)S(-F5 ,1=5,X3,~ F (1 ),-p(S7,J),Hl) 
CALL FSTNl-F5,F5,X3,MF(1 ),-P (58,J),Hl) 
CAll ECOS (F5, F5 ,X 3 ,M G (11,-P(~9,J),Hl' 
CALL ESJN(FS,F5 ,)( 3 , MH Cl),-P( 60,J ),Hll 
C~LL P(4,X3,eCQ),Q,H51 
C A I L P f 3, x 3, NA ( 1 , , R ( 5 , .J ) ,H '1 I 
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CALL P(2,X3,~B(11,R(6,J),H5' 

C~Ll P(1,X3,NC(] ),R(7,J),H5' 
CALL ECOS(-Fl,Fl,X3,NO(1),R(13,J),H4) 
CALL F.SJNC-Fl,Fl,X3,NF(1),R(14,J),H4) 
CALL ECOS(Fl,Fl,X3,NF(1),RC15,J),H4) 
CALL FSIN(Fl,Fl,X3,N~(1),R(16,JI,H4' 
CALL ECOS(-F2,F2,X3,NH(1 ),R(25,J),H?-) 
CAll ESJN(-F2,f2,X3,NI(1',P(26,J',H31 
CALL FCOS(F2,F2,X3,NJel',R(27,J),H3) 
C~lL FSIN(F2,F2,X3,NK(1),R(28,J),H31 
CALL ECOSC-F3,F3,X3,Nl (1 ),P(41,J),HZI 
CALL ESJNC-F3,F3,X3,NM(!),P(42,J),H2) 
CALL ECOS(F3,F3,X3,NP(1',R(41,J),H21 
CALL FSIN(F3,F3,X3,NQ(1),RC44,J),H21 
C4ll ~COS(-F4,F4,X3,NR(1),R(61,JI,Hl) 
CALL ESIN(-F4,F4,X3,NS(ll,R(62,JI,HlI 
CAL L e: C r S ( F4 , F 4, X 3 , NT ( 1 ) ,R ( 63 , J , ,H 1 , 
CAll ~SIN(F4,F4,X3,NU(1"R(64,JI,Hl) 
nn A [=1,4 
11=1+8 
IF(I.~F.IIGn Tn 7 
B(91=B(Q)-D4+R(A,JI 

7 cnNTtNtJE 

12:44:03 

8 A(II)=R(IJ)+KeJ)+L(I)+KK(I)+Ll( ('+KKK(T).LLLft'. 
* M M ( r I .. N N ( t ) • M ~1 M ( I , ... N N N ( I I ... G ( J , • v ( I ) + G G ( t I + V V ( I , + 
* M L\ ( I , ... M A ( t , ... ,.. C ( J I + M f) ( I , + N A ( t ) HI R C I ) + N C ( I I + N n ( r I + 
*NE ( J I +~F ( I) +NG ( r , +NH ( J ) +N J ( J ) +-NJ ( r ) +NK ( I ) +NL ( J ) + 
*NII1( J) +NP( I )+NQ( t '+NR( r) +~s (I I+NTC I) +-NlJ( J '+ME (J 1+ 
*MF( I) +-MG( I' +M.H( J , 

CALL P(4,X4,K(1),-Q,H5) 
CALL P(3,X4,L(1I ,-P(5,JI ,H5) 
C4LL P(2,X4,KK(] ),-R(6,JI,HSI 
CAll P(1,X4,lL{1I,-R(7,J),H5) 
CALL FCOS(-Fl,Fl,X4,G(1',-P(13,JI,H4) 
C~LI E5JNC-Fl,Fl,X4,VCl),-R(14,J),H41 
CALL ECOS(Fl,Fl,X4.,GG(1),-P(15,J),1I41 
C~LL ESIN(Fl,Fl,X4,VV( l' ,-RC16,J) ,H4) 
CALL ECOS(-F2,F2,X4,~~Cl),-R(~~,J),H3) 

CAL L E $ IN (- F 2, F 2 , X 4, NN ( 1 ) ,-R ( 26, J ) ,H"3 ) 
CALI ECOS(F2,F2,X4,MMM(1 ),-R(?7,J),H3) 
CALL ~SJN(F2,F2,X4,NNN(1),-R(2~,JI,Hl) 
CALL ECOS(-F3,F3,X4,MA(1),-R(41,JI,H2) 
CALL ~STN(-F3,F3,X4,MA(1,,-R(42,J),H~) 

CALL EC()SCF3,F3,X4,MC(11,-R(43,J"H2) 
CAll ESIN(F3,F3"l(4,~D(l),-P(44,J),H?) 
CALL F.COS(-F4,F4,X4,M EIl),-Rfhl,J),Hl) 
CALL ESIN(-F4,F4,X4,~F(J ),-P(62,J),Hll 
Cl\LL FC.OS(F4,F4,X4,~~G(l),-R(6~,J),H' I 
CALI . ESTN(F4,F4,X4,MH( 1) ,-R(64,J) ,HI) 
CALI P(4,X4, B(13' ,Q,H4) 
CALL P(3,X4,NA(1I,P(l7,.jl,H4' 
(~LL P(2,X4,NRCll,RC19,J',H4' 
CALL P(1,X4,NC(1),R(lQ,J',H41 
CALL ECOS(-Fl,Fl,X4,ND(1),R(2Q,J),Hl) 
CALL ESIN(-Fl,Fl,(4,NF(1 ),PC30,J),H3) 
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CAll ECOS(Fl,Fl,X4,NF(1),P(31,JI,H31 
CALL ESIN(Fl,Fl,X4,NG(1),R(l2,J),H31 
CALL ECOS (-F2,F2,)(4,NH() ),R(45,J),H?I 
CALL ESIN(-F2,F2,X4,NI(1"R(46,J"H?) 
CALL ECOS(F2,F2,X4,NJ(11,R(47,J"H2) 
CAll ESIN(F2,F2,X4,NK(ll,R(48,J),H21 
CALL ECOS(-F3,F3,X4,Nl (1),R(65,J),Hl' 
CALL ESIN(-F3,F3,X4,NM(1),R(66,J),H1) 
CALL ECOS(F3,F3,X4,NP(1),R(67,J),Hlt 
C~LL ESIN(F3,F3,X4,NQ(1),R(6H,J),HlI 
DO J 0 1=1,4 
11=1+12 
TF(J.NE.1'Gn TO 9 
R(131=~(13)-R(A,JI+R(20,J' 

12:44:03 

9 C'1NTINUF 
lOB ( I J , -= B ( J I ) -+ K ( I ) +-l ( I J +- K K ( J .a -+ L l ( ya + r, ( T , +- v ( I a -+ r, (j ( J ) +VV ( I ,-+ 

* M M ( I I -+ N N ( J ) +r~MM ( I , +- N NN ( J ) +- M A ( I , H~ fH T I + M r. ( I a HW ( I , -+ 
* N A ( I '" N A ( I , + NC ( I I +-NO ( I )+ Nf ( T , +-NF ( I , +N G ( ! I +NH ( ! , + 
*NJCI)+-NJCJ)-+NK(JI+NLCII+NM(I)+-NP(J'+NQ(I'+ 
*ME( J '+-MF( I' +fJG(1 )H1H( J I 

CALL P(4,XS,K(1),-Q,H4) 
CALL P,~,X5fl(1),-R(17,J"H4' 
CALL P(2,X5,KK(1),-P(18,J),H41 
CALL P(1,X5,LL(1),-R(19,JI,H4' 
C~LL fcnS(-Fl,Fl,X5,r,(1),-~(29,Jt,H3' 
CALL ESIN(-Fl,Fl,X5,V(1,,-P(30,J),H3) 
CALL ECOS(Fl,Fl,X5,Gr,(1),-R(31,JI,H3' 
CALL ESIN(Fl,F),X5,VV(11,-R(32,J),H3' 
CALL ECOSf-F2,F2,X5,MM(1,,-R(45,JI,H2) 
CALL ESTNl-F2,F2,X5,NNCl),-R(46,J),1f2' 
C'\LL ECOS(F2,F2,X5,MMM(] ),-R(47,J),II'.) 
CALL FSTN(F2,F2,X5,NNN(1,,-R(4R,J),H2) 
CALL ECOS(-F3,F3,X5,M~(1),-R(65tJ),Hl' 
CALL FSIN(-F3,F3,X5,~B(1,,-R(66tJI,Hl) 
CALL ECOS(F1,F3,X5,~C(11,-R(67,J),Hl' 
CALL ESrN(F3,~3,X5,MD(1)t-R(68,J),Hl) 
CALL P(4,X5,8(17),Q,H31 
CALL P(3,X5,NA(1"RC33tJ),H~' 
CALL P(2,X5,NB(l"R(14,J),H3) 
CALL P(1,X5,NCl1),Rl35,JI,H1) 
CALL ECOS(-Fl,Fl,X'5,NO(] I,R(49,J),H?I 
CALL ESIN(-Fl,Fl,X5,NE(1I,P(50,J),H2' 
CALL ECOS(Fl,Fl,X5,NF(1),R(51,J"H2) 
CALL ESIN(Fl,Fl,X5,NG(1"R(52,J),H2) 
CALL ECOS(-F2,F2,X'5,NH(1),Rt69,J"Hl' 
CALL ESINC-F2,F2,X'5,NT(J ),R(70,J"Hl) 
CALL ECnS(F2,F2,X5,NJ(11,R(71,J"Hll 
CALL EStN(F2,F2,X5,NK(}),R(72,J),Hl) 
on 12 1=1,4 
11=1+16 
I~(I.NE.l)GO TO 11 
B(17)=B(171-R(20,J'+R(36,J) 

11 cn~TtNUE= 
12 8 ( I J ) = B ( I J , -+ K t I ) .. L ( I ) -+ K K r f ) .. L L ( r ) .. G ( T , +- v ( r ) .. G G t J I +- VV { f It 

* M ~ ( I ) .. N N ( I ) .. M MM ( I , .. N N N ( J , + M A ( I , .. M 13 ( r , + ~ C ( I ) +- ~ 0 ( J ) .. 
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.NAt T) +NB( I) +NC( I )+N£"'( J )HIF (T) +NF( T) +-NG( I) +-NH (11+ 
*Nt(J)+NJ(I)+hK(I) 

CAll P(4,X6,K(1),-Q,H3) 
CAll P(1,X6,L(1),-R(33,J),H3) 
(ALL P(2,X6,KK(1),-R(34,J),H3) 
CAll P(1,X6,LLCl),-PC35,J),H3) 
CALL ECOS(-Fl,Fl,X6,G(1),-R(49,J),H?) 
CALL ESJN(-Fl,F1,X6,V(1),-P(50,J),H2) 
CALL F.COS(Fl,F1,X6,GGfl),-Pf51,J),H2) 
CALL ESIN(Fl ,Ft ,X6,VV( 1) ,-Rf52,J) ,fI?) 
CALL ECOS(-J:2,F2,X6,~M(1 ),-R(69,J),Hl) 
CALL E~IN(-F2,F?,X6,NN(1),-R(70,J),Hl) 
CALL FCOS(F2,F2,X6,MM"'Cl),-R(71,J),Hl) 
CALI ESINCF2,F2,X6,NNNCl),-R(72,JI,H1) 
CALL P(4,X6,A(21),Q,H2) 
C~ll P(3,X6,NA(1),~(53,J),H2) 

CALL PC2,X6,NB(11,R(~4,J),H2) 

CALL P(1,X6,NC(1',R(55,J),H2) 
CALI. ECOq-Fl,Fl,X6,ND(l),R(73,J),Hl I 
CALL EStN(-Fl,Fl,X6,NE(1 ),R(74,JI,Hl) 
CAll ECOS(Fl,Fl,X6,NF(1),R(75,J),Hl) 
CALL ESINfFl,Fl,X6,NG(1),R(76,J),Hl) 
00 14 1 = 1 t 4 
11=1+20 
IF(J.NE.l)GO TO 13 
B(21)=A(21)-R(36,J)+R(5b,J) 

11 CONTINUE 
14 B(II)=A({t)+K(I)+lCI)tKK(I)+lL(I)+G(I)+V(I)tGG(T)+VV(I It 

* M"'1 ( J ) + N N ( I ) + M", M ( I ) + N N N ( I ) t N A ( I ) + N A ( I ) + ~I C ( I , + N r, ( I ) + 
*NF.(J)+NF(J'+~G(I' 

CALL P(4,X7,K(1),-Q,H2) 
CALL Pf3,X7,l(1),-~(53,J"H2) 
CALL P(2,X1,KK(1',-R{54,J),HZ) 
CAll P( 1,X7,llCl) ,-~(55,J) ,H2) 
CALL ~COS(-Fl,Fl,X1,G(1l,-P(73,.I),H]) 
CALL ESJN(-Fl,Fl,X7,V(] ),-P(74,J),Hl) 
CALL ECOS(Fl,F1,X7,GGCl),-R(75,J),Hll 
CALL EStN(Fl,Fl,X7,VV(1),-P(76,J),Hl) 
CALL P(4,X7,8(?5),Q,Hl) 
CAll P(3,X7,NA(11,R(11,JI,H1) 
CALL P(2,X7,~BCl"R(7q,J"Hl' 
CAll P(1,X1,NC(1),R(7Q,J),H1I 
(1') 1.6 1=1,4 
11=1+24 
IF(Y.NE.l)GO TO 15 
R(25)=A(25)-R(56,Jl+R(BO,JI 

15 CllNTINUF 
16 S(It )=A(IY'+K(II+L(I'+KK(I'+LL(J)+G(I'+V(I'+Gr.(T'+VV(Y'+ 

*NA ( I , +-~EH II toNe ( I I 
CA.LL P(4,XA,K(l),-O,HlI 
CA.lL P(3,X~,l(1),-RC71,J"Hl' 
CAlL P(2,X~,KK(1),-R(7A,J"HlI 

CALL P(),X8,lLCl),-R(79,J"Hll 
CA.ll P(4,X8,A(291,Q,0.) 
DO 1 a 1=1,4 
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IJ =J+2A 
IF(I.NE.1)GO Tn 17 
8(?9)=~(2q)-R(8(),.J) 

17 CONTINUE 

315 
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18 B(ll )=A(tl'+K(I)+L(II+KK(I)+LL(Y) 
8(111=QO 

c*"'*~nlVF THF~E ~QNS AV NAG F04AT~ 
IFAJL=O 
r~Lt F04/HF( A,36, B"~6 ,C,A.6'~6,WK Sl ,WKS?,JI=AIt) 
WRJT E(6,10)(C(I),J=1,36' 

C.*.CALCtH ATE DEFLECTTO~S AT .A,A 

Vl=3.5 
V2=6.'5 
Y3=Q.5 
V4=12.'5 
Y5=15.'5 
Y6=18.1) 
F1=Fl*V2 
F2=F2 t Y3 
F1=F1*V4 
F4=F4*V5 
F5=F5*Y6 
1:=)(1] =f)FXP(-1= 1 , 
FX12=f)EXP(Fl) 
cnl=DCOS(F11 
SIl=nSIN(Fl) 
FX21=OEXP(-F2) 
EX~2=DF.XP(F2} 
crJ2=OCOS (F2' 
St2=DSIN(F2) 
EX31=f)EXP(-F3) 
FX1?=DEXP(F1) 
cn3=nrnS(F3) 
SI3=OSIN(F31 
FX41=OEXP(-F4) 
EX42=[)fXP(F4' 
C'14=OCOS(F4) 
SI4=DSIN(F4) 
EX!>1=DI::XP(-F5' 
EXI)2=DFXr(F'5) 
cnS=DcnS(F,)' 
ST5=[)SIN(FS) 
A DEL 1 = Q * Y 1 * ... 4 + R ( 1 7 , .J 1 * Y 1 "' .. 3 + R ( 1 8 , .J I t Y 1 '" ~ ? + P ( 1 9 , J , .. V 1. + R ( 2 0 , J ) 
A C; 1 = F X 1 1 • ( R ( 29, " ) * C III + R ( 30 , " I .. S T 1 I + F X 1 2'" ( R ( 11 , J , *C n 1 +R ( 3 2 , J 1 • <; t1 
ADFl2=ADEL1+ASl 
AS 2 = E x 21 * ( R ( 45, J , *r n 2 + R ( 46, .J ) * S J 2 ) +f )(22 -* ( P ( 4 1 , J ) * C 02 + R ( 48, J ) '" S t 2 

AnEL3=AnEL2+AS2 
A53= EX3)* (R(65,J)*cn~+R(66,J'*sr31+fX3 2*(R r67,Jl.C03+R(6B,J) ~ST3 
AnEL4=Af"fl3+A~3 
AS4=EX~1*(C(15)*(n4+r(lA)*c;r4'+FX42*(r(t7)*cn4+r.(lA'*514) 
Af)ELS=ACEL4+I\S4 
WRITF.(6,401I\rFll ,A r)[l.? ,h!)EL 1 ,i\'l FI 4,AnE l '5 
R f) E-I 1 = Q * Y 1 *,. 4" R ( '5, .1 I * V 1"':4< '3+ R U , I)" Y 1 .. *? + Q. (7 t .1 , oil V 1 + P ( ~ t .J I 
B,) 1 = F X 11 ., ( p r 1 3 , .J ) .;: r: n 1 .. R ( 14 t J ) * C; J 1 ) .. r: Xl;>" ( R ( ] '" , J I '" r: n 1 + R ( , 6, J I * S T] I 

KnFl ~::AOFLl +eSl 
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A~2=FX21*(R(25,J'*C02tR(26,J'*SI2)+FX22*(P(27,J,*cn2+R(?8,J'*SI2' 
BOEL3=BDEL2+AS2 
AS3=EX31*(R(41,J).C03+R(4?,J'*ST3)t~X32·(R(43,J)*C03+Q(44,J'*SI3' 
BDEL4=BOEL3tBS3 
BS4=EX41*(R(61,J'*C04+P(62,J'*SI4)+fX42*(R(63,J)*Cn4+R(64,J'*~T4' 
BDEL5=BOEl4+BS4 
BS5=EX51*(C(11,*r05+C(121*ST5'+EX52*(Cl13)*CnS+C(14)*SI~' 
RDEl6=BOElStBS5 
WRITF(6,50)BDEll,BDEL2,AOFL3,BOFt4,B~El5,RDE 6 

~.**CAlCULATE PACK LOAD~ rT A,B 
lAl = (ADfL2-AOfLl)*Tl 
lA2=LAl+(AOEl~-AOEl2)*T2 
lA3=lA2+(AOEl4-ADEl3)*T3 
LA4=lA3+(ADEL5-A~~L4).T4 

WRIT E(6,60'LAl,lA2,LA3,Lft4 
UH= (ADEL2-BOEL 1) *Tl 
LA?=I Al+(BOEL3-ROEL2,*T2 
L83=102t(BDEL4-AOEl31*T3 
LB4=LB3+(ADEL5-BOFl4,*T4 
LBS=LA4+(BDtt6-ADEL5)*T5 
WRITF(6,101LA1,LB2,L03,LB4,LB5 

20 FnRMAT('IRATF OF AOVhNCF ',IPOS.I) 
30 FnR~AT('O ·,4(IPD13.6.2X') 
40 FORMAT('OOEFlN AT A ',5(IPDl1.4,2X») 
50 FnRMAT('OOEFLN AT B ·,6(lPDll.4,2X» 
60 FORMAT('OLO~D AT A ·,4(lPOIO.3,2X)) 
10 FtlRMAT('OLOAO AT A ·,5(lP()IO.3,2X)) 

1 CONTINUE 
STOP 
END 

lORY RFQUIRFM ENTS 000142 RYTFS 
.'-1TNATEO 

G 
, INS 



R ~TE OF ADVANCE 9.00 00 

3.240R55~ 00 -9.2382450 01 -7.72~925~-05 2 .741920D-03 

4 .24Q510D- 02 2. 547743n-Ol -1.116313D-02 -1.4176400-0~ 

2 .923130D-11 -9.862840D-ll -~.7799 010-03 1.314062D-03 

2 . 8215610-11 -1.3853050-11 -1.1~~9840-03 3.2608660-03 
1 .0819~5n-lO -1.9949100-10 -4.184001D-0~ 3.90404QD-03 

1 .173973 D-OQ -5.2948850- C8 -2.658090n-03 4.59!206n-0~ 

1.035914n-07 -9.5894830- 0S - 3 .21 0094~-04 4.130501D-03 

4.510045D-08 -3.6013840- 06 -1.2570310-05 3.21509BD-05 
4.12811Qry-04 8.2411120-03 8.411116D-04 2.113905~-04 

DEFL~ AT A 1.0173D-02 1.C1810-02 1.0~56{)-02 1.0826D-02 

~EFL~ AT B 1.0453D-02 1.11f)20-02 1.1119D-02 1.115011-1)") 

L8AO AT ~ 2.255n 02 2.7690 02 2.4~5() 02 2.2Q4D 0:> 

l.08100-0? 

1.11340-02 

LOAD AT R 2 .4040 02 2.936(' 02 2.6600 02 2.468D 0" 2.4620 02 

UJ ....... 
-.l 

1.11341)-0~ I 



RATE OF ADVANCE 6.en 00 

4.045803n 00 -9.062811D 01 - 7 .73 162?~-05 2 .74 1P-2<}n-03 

4 . 23qa 760- 02 

1 • 3990c}0 f)-I 3 
'5. 51~1560-12 
1.156<)68D-11 
1.6113961)-09 

5 .086451D-0 8 
Q.853153D-oe 
1 .691561 0-04 

2. 52<; 811 0- 0 1 

-5.1111190-11 
-6.2155190-11 
- 3.4721981)-11 
-2.2545b9D-O~ 

-5.47856 80- 08 
-1. 521904{"l-06 

8.173571n-03 

-1.C1852"n- 02 

-9. 005139n- 03 
-6.<;685ql D-0 3 
-4.7C87 510- 03 
-2. A9251<m-03 

-5.65638Q n- 04 
-1.181542n- 05 

7.135110n-04 

-1.5914020- 01 

6.0935900-04 
2.5163200-03 
3.2q21~3n-03 

3.9833440-03 

3.795221[,\-O~ 

2. (:, 31 0 740-05 
1.729J:33?n-04 

~EFLN AT A q.93010-0~ 1.03880-02 1.04161)-02 1.0389'1-1)2 

QEFLN AT e 1.02Ron-02 1.0181D-,)2 1.0A090-02 1.07840-02 

LOAD AT A 2.443 D 02 2.7160 02 2.~651) 02 2.238('1 02 

1.03~11)-02 

1.01760-02 

LOAn AT e 2.6720 02 2 . 9170 02 2 .f-l sn 07 2.4930 02 2.5051) 02 

- ...... 

1.07160-02 I 

Lv 
->. 

ex> 



R~TF OF AOVA~CE 4.50 00 

4.4858190 ~O -9.0019170 01 -7.727563~-05 2.737163f'-03 

4. 222546D-~2 
1.8246480-12 
5.729189D-12 

6.695124D-13 
1.2508420-09 

~.733248n-08 

4.6366450-08 
3.42QQ02D-04 

"E~Lt\l AT /!J 

f)E~lN AT B 

2.5089090-01 
-2.6659971)-11 
-3.4789780-11 

-2.5205501"'-11 
-1.1053000-08 

-4.043642n-08 
-1.82031 711-07 

8 .12<1C 870- 03 

-9.<l84248!1-03 
-8.3569390-03 
-6.7088250-03 

-4. (: 37501('-03 
-3.fJ09055n-03 

-1.4985891)-04 
-1.144281'.1)-05 

7.2C;OA61"-04 

-1.4361680-03 
4.479628£)-04 
2.11413941"1-0'3 

2.969295['1-03 
3.6')20681"1-03 

3.603402f)-Q3 
2.2R7210D-0'5 
1.5t')3 7 C)4f1-04 

9.78320-03 1.1)1570-02 1.01650-02 1.0141f)-02 

1.0179D-02 1.05g~f)-02 1.06031"-02 1. O~ 81':)-02 

lOAD 4 T 4 2.5')40 02 2.65~0 02 2.284~ 02 2.2')20 02 

1.01370-02 

I.OS770-0? 

l fJ4n 4 T R 2.B49fl 02 2.Q360 ')2 2.5<111'" l)2 2.5100 02 2.530') 07 

STOP I) 

E XFCUTln~ TEQ~tNAT~n 

$SIG 

1.05180-02 I 

\...oJ 
-> 

'-0 
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C***SHORT FACE ADVANCING WITH CONVL. CfNTPE PACK~ 
C***PROG FOR nEFLNS ..\ PACK LOADS AT PT A RY LONGL. CONSIDER4TIONS 
C.*+INVOLVING APPLICATI1N OF CONTINUITY cnNDITIONS TO 
C*.*OEFLN. feNS. tJP TO STAGE 9 
C.**~ SOLVING RESULTING SIMULTANEnus EONS. 
C***TO OBTAIN 244INTF.GRATION CON TS. 
c**· 

SUBROUTINE ECOS(A,R,X,V,C' 
C ••• '1'(1) IS THE FUNCTION C+FXPIAX).COS{RX) 
C*.*Y(2),Y(3),Y(4' ARE THE OERIVATTVES 

OOUBLE PRECISION A,B,C,X,V(4),l,Zl,Z2,f)EXp,DCns,nSTN 
Zl=A*X 
Z2=A*X 
Yfl,=c*nEXP(Zl'*DcnSCZ2' 
z=c*neXP(Zl,*osrN(l2' 
Y(2)=A*Y(1)-e*l 
Y(3,=(A*A-B*e'*VCl'-2.*A*A*Z 
Y(4'=(A~A-3.*A*A)·A*Y(1'-{3.*A*A-B*A)*R.l 
RETURN 
END 

'a l "'EMORY ~ REQUIR~MEN1S 000266 AYTES 
SUBROUTINE ESIN(A,A,X,'1',C) 

C •• *'1'(1' IS Tt-E FUNCTION c*eXP(AXl*SJN(£\X) 
C* •• Y(2),Y(3),Y(4' APE THf OERIVATrVE~ 

DOUBLE PRECISION A,B,C,X,'1'(4l,Z,Z1,1.2,OEXP,DCOS,OSIN 
Zl=A*X 
12=0*)( 
Y(1'=C*DEXPCZ1,*OSIN(Z2' 
l=C*DEXP(Zl)·ocnS(l2l 
Y(2'=~·Y(1)+-B*Z 
Y(3,=(A*A-B*B)*'1'(1)+2.*t*A*Z 
Y(4)=(A*A-3.*e*R'*A*Yfl'+(3.*A*A-A*B,*A*Z -
RETURN 
FNO 

'A l ME MORY REQtJl REMENT S 0002A4 BYTE S 
SUBROUTINf P(N,X,Y,A,H' 

C***Y(l) IS ThE FUNCTION A*(X-H.**N 
C***Y(2),Yf3),Y(4. ARE THE nFRIVATIVES 

OOtJALE PRECISION X,V(4),Z,A,H 
Z=X-H 
Yll,=A*Z**N 
Y(2'=A*N*1**(N-l' 
Y(3)=A*N*(N-l'*l**(N-2) 
Y(4'=A*N*(N-l,*(N-2l*Z**fN-3) 
RETURN 
f?NO 

'AL MFMORY REQUII~fMENTS 000308 BYTES 
C***MEANINr,S OF SYMBnLS USED TN PRnG. 
C***E=ALPHA, F=BETA,D3=C3,04=C4, P=E(PACKt, 
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C***Q=Q2/24D2,QQ=(Ql+Q2)/K2,H=(L1+W)/2,PLl,PL2, ••• =PACK LOAO~ AT PT A 
C***A,B,C IN EACH ~TAGF ARE THE FLEMENT~ OF THF M!TRtX FQN l.C=R, 
C ••• C B~JNG T~E UNKNOWNS. 
C*·* 

DOUBLE PRECISION E,Q,QQ,K,H,()3,[)4,I=,Al(16,16),A2(20,20), 
*A3(24,24),A4(28,?Al,A5(32,32),A6(36,361,Bl(161,R2(20), 
*B3(24),B4(2AI,A5(32',B6C36"Cl(16),(2(20J,C3(24),C4(2AI,C5(32), 
.C6(36),AAl(16,16l,AA2(20,20"AA3(24,~4"AA4(28,2B),AA~f3?,32}, 
*AA6(36,36J,WKSll(16),WKS21(16),WKS12{20),WKS22(20),WK513(24), 
*WKS23(24"WKS14(2A),WKS?4(2AI,WKS15{32),WK'25(32"WK~16(36), 
*WKS26(36J.KK(4),ll(4"~M(41,NN(4,,VV(4),X3,X4,X~,X6, 
*A7(40,40),B1(40"C7(40),AA7(40,40),WKSJ7(40' ,WKS27(40), 
.A8(44,44),B8(44),C8(44),AA8{44,44),WKS18(44),WKS28(4~I, 

*PL5,Pl6,V54,V66,EP, 
*V9,V16,v24,V33,V43,V54,PLl,PL2,PL3,PL4,PL5,DEXP,nCOs,n~tN 

C*.*LIST THE KNOWN rO~~TS. 
E =0. ~9 
Q=7.9q6D-7 
OQ=7.40-3 
H=5.5 
03=-1.0053D-4 
D4=1.Oa910-2 
Or) 101 l = 1 ,5 
K=3.sn+4*L/l.9 
EP=K*1.9 
WRITF(6,lOOO'F.P 
F=(K/4.8D+7)**O.25 

C***ASSrGN tNITIAl l~PO V~lUES TO All ~~TRTX ! R.H.S. ELEMENTS 
Dr) 1 1=1,16 
nn 1 J=1,16 
A 1 ( J , I , =0 • 

. 81(1)=0. 
1 CONTTNUE 

D'l 2 1=1,20 
00 2 J=1,20 
A2(J,IJ=O. 

2 82(1' =0. 
00 3 1=1,24 
DO , J=1,24 
A3(JtI)=0. 

3 B3(1)=0. 
no 4 1=1,213 
nil 4 J:1,28 
A4(J,I'=0. 

4 B4(l t =0. 
f)O '5 J:l,~2 

on 5 J=l,~~ 
A5(J,I)=O. 

5 AS(r)=o. 
Dil 6 1=1,36 
O t) ,., J=1,36 
A6(J,f) =O. 

6 B6fT) =0. 
DO 70 1=1,40 
nr) 70 J=l,40 
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o 
1 
2 
3 

A7(J,J'=0. 
70 B7(1)=0. 

0'1 AO t=1,44 
011 80 J=1,44 
A8(J,lt=0. 

80 R8(1)=0. 
C***STAGE 2--FOPM ~ SOLVF fONS FOR C5 TO C2ry 

C4LL ECOS(-E,E,14.,A1(1,1),1.) 
CALL ~STN(-E,f,14.,Al(l,2"l.) 
CALL P(?,14.,Al(1,3),-1.,O.) 
CALL P(Z,14.,Al(1,4),-1.,O.l 
CALL P(1,14.,Alfl,5),-1.,O.) 
CALL P(0,14.,Al(l,6),-1.,0.) 
CAt.L P(3,g.,Al(I),3),1.,0.) 
CALL P(?,Q.,Al(S.4),I.,0.' 
CALL Pfl,9.,~1(5,5,,1.,O.) 
C4LL PfO,9.,Al(5,6),1.,O.' 
CALL ECnS(-F,F,9.,Al(5,7),~1.' 
CALL ESTN(-F,F,9.,Al(5,8),-1.) 
CALL ECOSCF,F,9.,Al(5,Q),-1.) 
CALL ESIN(F,F,9.,Al(5,lo),-J.l 
CALL ECOS(-F,F,6.,Al(9,7,,1.) 
CALL ESIN(-F,F,6.,Al(9,8,,1.' 
CALL ECOS(F,F,6.,Al(g,9),1.1 
CALL ESINfF,F,6.,41(9,lO),1.) 
CALL P(3,6.,A1(9,]l),-I.,O.' 
CALL P(Z,6.,Al(9,12),-1.,O.) 
CALL P(1,6.,Al(9,13,,-1.,0.' 
CALL P(0,6.,Al(9,14,,-1.,O.) 
AU13,14)=!. 
Al(14,13'=1. 
AU15,IZ)=Z. 
A 1 ( 16 t 11 , =6. 
CALL FCOS(E,E,O.,Al(]3,15),-1.) 
CALL E~IN(E,E,0.,Al(13,J6,,-1.1 
CAtL Pf4,14. ,BlC 1) ,Q,o., 
Blf 1) =BlC 1 '-00 
CALL P(4,9.,KK(1),Q,H' 
CALL P(2,9.,LL(1,,03,H) 
(ALL P(4,9.,81(5),-Q,O.) 
no 8 I = 1 , 4 
11=I+L' 
IF(I.NE.l'GO TO 7 
B 1 ( 5 , = B l( 5) + 04 

7 CONTINUE 
a Bl(fl}=Bl(I( ,+KKfI)+LL(J' 

CALL P(4,6.,KK(1),-Q,H) 
CALL P(2,6.,LL(1),-03,H' 
CALL P(4,6.,Al(9),Q,O.J 
00 10 1=1,4 
Jt=J+8 
IF( Y .NE.l JGO Tfl q 
Bl(C),=AU9,-04 

9 CflNTINUE 
10 Bl(Ir,=B1(II,+KKfl'+Ll(ll 

10:12:21 
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CALL F04ATF(~1,16,B1,16,C1,AA1,16,WKS11 ,WKS21,TFATLlt 
C**.STAGE 3-C21 TO C40 

CALL fCOS(-E,E,17.,A2(1,1),1.) 
CALL ESIN(-E,F,11.,A2(l,2),1.) 
CALL P(3,11.,A2(1,3',-1.,0.t 
CALL P(2,17.,A2(1,4),-1.,O.' 
CALL P(1,17.,A2(1,5J,-1.,O.) 
CALL PCO,17.,A2(l,6',-1.,O.) 
CALL P(3.12.,A2(5,'),1.,O.) 
CALL P(2,12.,A2(S,4),1.,O.) 
CAll P(1,12.,A2(5,S"l.,O.) 
CALL P(O,12.,A2(S,6),1.,0.) 
CALL ~CnS(-F,F,12.,A2(5,1),-1.) 
CALL EStN(-F,F,12.,A2(S,8),-1.l 
CALL ~COS{F,F,12.,A2(5,9),-1.) 

CALL EStNCF,F,12.,A2(5,10),-1.) 
CALL Ef.OS(-F,F,9.,A2C9,7',1.) 
CALL ESIN(-F,F,9.,A2(9,8J,1.' 
CALL FCOS(F,F,9.,A2(9,9),1.) 
CALL EStN(F,F,9.,A2(9,lO),1.' 
DO 12 J=11,20 
JJ=J-4 
DO 12 1=9,20 
It = 1-4 
A2(I,J'=A1(lt,JJ) 

12 CONTINUE 
CALL P(4,17. ,82(1) ,1),0.) 
82( 1 )=B2C 1)-00 
CALL P(3,12.,B2(S),Cl(3),0.) 
CALL P(Z,lZ.,KK(l),CU4J,0.' 
CALL P(1,12.,LL(J ),C1(5),O.) 
00 14 1=1,4 
It = I +4 
IF{I.Nf.lJGn TO 13 
B2(5)=82(5)+Cl(6) 

13 cnNTINUE 
14 B2(IT)=~2(tlt+KK(I)+LL(I) 

CALL P{4,9.,B2(9J,Q,HJ 
CALL P(2,9.,KK(l),f)3,H) 
CALL P(4,9.,lLCl),-Q,O.) 
CALL P(3,9.,M~(1,,-Cl(3),0.) 
CALL P(2,9.,~N(1),-Cl(4),Q.) 

C4LL P(1,9.,VV(1',-Cl(~),O.) 
DO 16 1=1,4 
11=1+8 
IF(t.NE.l'GO TO 15 
B?(9J=B2(9.+04-Cl{6) 

15 fONTINUE 
16 B 2 ( J I ) = B 2 ( I t J" K K ( r ) .. L L ( J ) .. ~ ~ ( I ) .. N fo.l ( T ) + V V ( I ) 

DO 10 t=13,20 
11-=1-4 
B2(l)=81(tI) 

18 CONTTNUE 
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IFAIL2=O 
CALL F04ATFCA2.20,R2,20,C2,AA2,20,WKSI2,WKS22,tFAIl2l 

C***STAr.€ 4--(41 TO C64 
CALL ECOS(-E,E,20.,A3(l,l),I.) 
CALL ESIN(-E,E,20.,A3(1,2),1.) 
CALL P(3,20.,A3(1,3),-I.,0.t 
CALL P(2,20.,A3(1,4),-1.,O.I 
C At l P ( 1. 2(). , A 3 ( 1 ,5) • -1. , ° · ) 
CALL P(0.20.,A3(1,61,-1 •• O.) 
CALL P(3,lS.,A3(S,3t,1.,0.) 
CALL P(2,lS.,A3(S,4),1.,O.) 
CALL P(1,15.,A3(5,5),1.,0.' 
CALL P(O,lS.,A3(5,6),1 •• 0.t 
CALL ECOS(-F,F,lS.,A3(S,1t,-1.' 
CALL EStN(-F,F,lS.,A3(S,8),-1.) 
CALl FCOS(F,F,1S.,A3(5,Q),-1.) 
CALL ESIN(F,F,1~.,A3(~,lC),-1.1 
CAll ECOS(-F,F,12.,A3(9,7"I.' 
CALL ESINC-F,F,12.,A3(9,S),1.) 
CALL ECnS(F,F,12.,A3C9,Q),1.) 
CALL ESI N(F,F,12.,A3(9,10),J.) 
no 20 J=11,24 
JJ=J-4 
DO 20 1=9,24 
11=1-4 

20 A3(J,JI=A2(It,JJ) 
CALI. P(4,20.,83fU,Q,0.) 
R3(l )=R3f1 )-QQ 
CALL P(3,lS.,B3(S),C2(3),0.) 
CALL P(2,15.,KK(1),C2(4),0.) 
CALL P(I,15.,LL(1),C2(S),O.) 
DO 22 1=1,4 
II = J +4 
JF(J.NE.1lGO TO 21 
B3(5)=B3(5'+C2(6) 

21 CONTINUE 
22 B3(YI'=B3(II )+KK(I)+lL(I) 

CALL P(3,12.,A3(Q',Cl(3),0.) 
CALL P(Z,12.,KK(1),Cl(4),0.) 
CALL PC1,12.,lL(1),Cl(S),0.) 
CALL P(3.12.,~M(1),-C2(3),0.) 
CALL PC2,12.,NN(1),-C2(4),0.' 
CALL P(I,12.,VV{1),-C2(5),0.) 
on 24 1=1,4 
II = I +8 
IF(t.NE.l'GO Tn 23 
B3(9,=B3C9,+Cl(6)-C2(6) 

23 CONTINUE 
24 B 3 ( I r ) -= B 3 ( II ) + KK (J ) + L L ( t ) + MM ( J ) +NN ( I , + V V ( I) 

DO 26 1=13.24 
1[=1-4 
B3(I)=B2(1I} 

26 CONTfNUE 
(FAIL3=O 
CALL F04ATF(A3,24,B3,24,C3,AA3.24,WKS13,WKS23,IFAfL3' 
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CALL EC()Sf-E,E,23.,A4(ltll,1.) 
CALL EStN(-E,E,23.,A4C1,2),1.) 
CALL P(3,23 •• A4(l,3),-1.,O.' 
CALL P(2,23.,A4(1,4),-1.,O.) 
CALL P(1,23.,A4(l,5),-1.,O.' 
CALL PfQ,23.,A4fl,S),-1 •• O.) 
CALL PC), 8.,A4(~,1,,1.,O.) 
CALL P(2.18.,A4(S,4t,1.,O.) 
CALL P(l,18.,A4(5,5),1.,0.' 
CALL P(O,18 ., A4(5,6),1.,0.) 
CAll ECOS(-F,F,18 •• A4(5,7),-1.) 
CALL E~IN(-F,F,18.,A4(5,~),-1.' 
CALL FCOS(F,f,18.,A4(5,Q),-1.) 
CALL ESIN(F,F,lA.,A4{S,lO),-t.) 
CALL ECOS(-F,F,lS.,A4(9,7),1.) 
CAtL E~IN(-F,Ftl5.fA4(9,8),1.) 

CALL E(OS(F,F,1?,A4(9,9),1.) 
CALL EStN(F,F,15.,A4(9,lO),t.) 
DO 30 J.::ll ,28 
JJ=J-4 
on 10 1=9,28 
t 1= r-4 

30 A4CI,J'=A3(II,JJI 
CALL P(4,23.,B4(1',Q,0.' 
B4(1)=84(1)-'Q 
CALL P(3,18.,B4(5"C3(3',O.) 
CALl P(2,18.,KK(1),C3(4),O.) 
(ALL PCl,l8.,LL(l),C3(5),O.) 
Dn 32 1.::1,4 
II = T +4 
IFCT.NE.l'GO TO 31 
84(5)=04(5)+C3(6) 

31 CONTINUF 
32 B4(TI)=R4(lr)+KK(Y)+LLCI) 

CALL P(3,15.,A4(9),C2C3),O.) 
CALL P(2, 15. ,KK(l) ,(2(4) ,0.' 
CALL P(1,15.,LL(l),C2CS),O.' 
CALL P(3,lS.,MM(l),-C3(3"O.J 
CALL P(2,15.,NN(1),-C3(4',O.) 
CALL P(1,15.,VV(t),-C3(Sl,O.) 
on 34 1=1,4 
Jr:t+8 
rF(I.NE.l'GO TO 11 
B4(Q'=B4(9)+C2(6'-C3(6) 

33 CONTINUE 

10:12:21 

34 84(' T) :A4( I t )+KK (I '+It (r )+~M( I '+Nr-.J( r )+VV( t) 
DO 36 1=13,28 
It=I-4 
B4(l , =B3( II) 

36 CONTINUF 
tF~IL4=O 
C~LL F04ATF(A4,28,B4,2R,C4,t.A4,28,WK.S14,WKS24,II=I\ILLt , 

C.*.STAGE 6--(93 Tn C124 
C4LL ECOS(-f:,F,,26.,A5(1,1),1.) 
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CALL ESJN(-E,F,26.,A5(1,2),1.) 
CALL P(~t26.,A5(1,3),-1.,0.' 
CALL P(2,26.,A?(1,4),-1.,O.I 
CALL P(1,26.,A5(1,5),-1.,0.) 
CALL P(0,26.,A5(1,6'.-1.,0.I 
CAll P(3,21.,~5(5,3),I.,O.) 
CAll P(2,21.,A5(5,4),1.,0.' 
CALL P(1,21.,A5(5,5),1.,0.) 
CAll P(O,21.,A5(5,6,,1.,O.) 
CALL ECOS(-F,F,21.,A5(S,7,,-1.' 
CALL E$IN(-F,~,21.,A5(5,81,-1.) 
CALL ECOS(F,F,21.,A5(S,Q),-1.t 
CAll ESIN(F,F,21.,A5(5,10),-1.) 
CALL ECnS(-F,F,le.,~5(9,7',l.t 
CALL ESJN(-F,~, S.,A5(9,8),1.' 
CAll ECOS(F,F,lR.,A5'9,9),1.) 
CALL ESTN(F,F,19.,AS(9,lO),1.t 
on 3A J=11,32 
JJ=J-4 
00 ~8 1=9,32 
11=1-4 

38 A~(J,J'=A4(JI,JJ' 
CAll P(4,26.,B5(1),Q,O.) 
B5(1'=A5(1'-QQ 
CAll P(3,21.,B5(S),C4(3),O.) 
CALL P(2,21.,KK(ll,C4(4),O.) 
CAll P(1,21.,ll. (l),C4(5),O.) 
on 40 1=1,4 
It :: I +4 
IF(I.NE.IIGO TO ~9 
B5(51=B5(5)+C4(6) 

39 CONTINUF 
40 S5( J I ':R5( II H·KK( r )+t L( T I 

CALL P(3,18.,B5(9),C3(~"O.1 
CALL P(2tll3.,KK(1l,C3(4),0.I 
CALL P(1,18.,ll(1"C3(5),O.) 
CALL P(3,113.,~M(I),-r4(3',o.) 
CALL P(2,lS •• NN(1),-C4(4),O.) 
CAll P(1,lS.,VV(1I,-C4f5),O.I 
DO 42 1=1,4 
(l=J+8 
IF(I.NE.IIGO Tn 41 
B~(9)=A5(9)+C3(6'-C4(6' 

41 CONTINUE 
42 B 5 ( r I , = B 5 ( IT) + K K ( 1 , + l L ( I ) + M M ( I J + NN ( I , + v v ( I ) 

on 44 [=13,32 
11=1-4 
A5(1 ,=B4( II) 

44 cn~H' NUE 
IFAIl.5=0 
CALL F04ATF(A5,32,A~,32,C5,tA5,32,WKS15,WKS25,lFAIl5' 

C***5TAGE 7--C125 TO C160 
CAll ECOS(-E,E,Zq.,A6(1,1),1.) 
CALL ESINf-E,F.,ZQ.tA6(1,2),1.) 
CALL P(l,29.,A6fl.3),-I.,O.' 
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CAll P(2,29.,A6(1,4t,-1.,O.) 
CALL P(1,29.,A6(l,5',-1.,0.) 
CAll P(O,29.,A6(1,6),-1.,O.' 
CAll P(3,24.,A6(5,3',1.,O.' 
CALL P(2,24.,A6('5,4),1.,O.' 
CALL P(1,24.,A6(5,~,,1.,0.' 
CALL P(O,24.,A6(5,6),1.,0.) 
CALL ECOS(-F,F,24.,A6C5,1),-1.) 
C~lL ESINC-F,F,24.,A6(S,8',-1.) 
CAt.L ECnS(F,F,24.,A6f5,9),-1.) 
CAll ESIN(F,F,24.,A6(5,lO),-1.) 
CALL ECOS(-F,F,21.,A6(9,7),1.) 
CAll ESJNC-f,F,21.,A6(9,8),1.) 
CAll ECOS(F,F,21.,A6(9,9',1.' 
CALL ESIN(F,F,21.,~6(q,10',1.' 
Or) 46 J=11,36 
J .J=J-4 
00 46 1=9,36 
1 1= 1-4 

46 A6(I,J)=A5(It,JJ) 
CALL P(4,29. ,R6(U ,Q,O.) 
B6(1'=A6(1}-QQ 
CALL PC3,24.,B6(S},C5(3),O.) 
CALL P(2,24.,KK(1),C5(4),O.' 
CALL P(1,24.,Ll(l"C5(5),0.) 
00 48 1=1,4 
11=1+4 
IF(1.NE.l)GO TO 47 
B6(~t=B6{5)+C5(6) 

41 cnNTINUF 
48 B6( I I )=B6( I r '+KK( r )+LL( r) 

CALL P(3,21.,~6(9),C4(3',0.) 
CALL P(2,21.,KKCl),C4(4),O.) 
CALL P(},21.,llCU,C4(5),0.) 
CALL P(3,21.,MM(1),-C5(),0.) 
CALL PC2,21.,NN(1),-C5(4),O.' 
CALL P(1,21.,VVC1),-C5(S),O.) 
on 50 T=1,4 
II = T +A 
JF(f.NE.1)GO TO 49 
B6(9'=B6(9'+C4(6t-CS{6) 

49 CONTINUE 

10: 12:21 

50 B6( t I )=B6( r I )+KK( I )+LLC J )+MM( T '+NN( T )+VV( I' 
on 52 I=13,3t 
I 1= t-4 
86(l'=BS(ltl 

52 cnNTINUE 
tF=AIL6:0 
C~LL F04ATF(A6,36,A6,36,C6,AA6,36,WK)16,WKS?'6,IF~JL61 

C**.ST AGE 8--C161 TO C2no 
CAll ECnS(-F.,E,32.,A7(l,Ud.) 
CALL ES IN(- E ,E,32.,A7(l,2),1.) 
CALL P(3,~2.,A7(1,3),-1.tO.) 

CALL P(2,32.,A1(1,4),-1.,0.' 
ChlL P{1,~2.,A1{lt~),-1.,O.' 
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CALL PfO,32. ,A7(1,6),-1.,0.' 
CALL Pf3,21.,A7f5,3),1.,O.) 
C~ll P(2,Z7. ,A1fS,4' ,1.,0.' 
CAll P(l,21.,A7(5,5),1.,O.' 
CALL P(O,Z7.,A1(5,6),1.,O.) 
CALL ECOSf-F,F,27.,A7(5,7),-1.' 
CALL ESINf-F,F,27.,A1(5,S),-1.' 
CALL ECa~(F,F,27.,A1f5,q).-1.) 
CALL ESIN(F,F,27.,A7(5,lO,,-1.) 
CALL ECOS(-F,F,24.,A7(Q,7),1.) 
CALL ESINf-F,F,24.,A7(9,B),1.) 
CALL ECOS(F,F,24.,A7(Q,9,,1.) 
CALL ESIN(F,F,24.,A1f9,lO),1.) 
on 54 J=11,40 
JJ=J-4 
DO 54 1=9,40 
II=t-4 

54 A7fI,J)=A6([I,JJ) 
CALL Pf4,32.,R7(1},Q,O.' 
B 7 ( 1 ) :: B 7 (] ,- Q Q 
CALL P(3,21.,B7(5),C6(3),O.) 
CALL PfZ,27.,KK(1),C6(4),0.) 
C~LL Pfl,21.,LLfl),C6(5),0.) 
DO 56 1=1,4 
11=1+4 
IF(I.NE.l)GO TO 55 
87(5)=P.7(5'+C6(6) 

55 cnNTJNUE 
56 B7(II)=B7(II'+KK(I)+LLfJ) 

CAll P(3,24.,A1(9),C5(3),0.) 
CALL P(Z,Z4.,KK(1),CS(4),O.) 
CALL P(1,24.,lL(1),C5(5),O.' 
CALL P(3.24 •• MM(1),-C6(3'.O.) 
CALL P(2,24.,NN(I),-C6(4),0.) 
CALL P(1,Z4.,VV(1),-C6(5),0.l 
on 58 '=1,4 
II=I+B 
IF(I.NE.l'GO TO 57 
87(9)=B7(9)+C5(6'-C6(6) 

10:12:21 

57 CONTINUE 
5 B B 7 ( I J ) = B 7 ( It' +KK ( I ) +L l ( I , ... MM ( I ) +NN ( , , +V V ( I ) 

00 60 1=13,40 
11=1-4 
B7(l)=B6(1J) 

60 CONTINUE 
IFAll7=0 C~LL F04ATF(A7,40,A7,40,C7,AA7,40,WKS17.WKSZ7,IFAIl1) 

C.**STAGE 9--C201 TO C244 
CAll Er.OS(-E,E,3S.,A8(1,1),1.) 
CAll ESINt-E,E.35.,A8(1,2),1.) 
CALL P(3,35.,A8(1,3'.-1.,0.) 
CAll P(Z,35.,A8(1,4),-1.,O.J 
CAll P(1,3S.,A8(1,Sl,-1.,O.) 
CAll P(O,35.,A8(1,6),-1.,0.) 
CALL P(3,30.,A8(5,~),1.,0.' 
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C~LL P(2,30.,A8(5,4'.1.,O.' 
CALL P(1,30.,A8(5,5,,1.,O.' 
C~ll P(O,30.,A8('5,6),I.,0.) 
CALL ECOSl-F,F,30.,A8(5,7),-1.) 
CALL ESIN(-f,F,30.,A8(S,8',-1.) 
CALL ECnS(F,F,30.,AA(5,9,,-1.J 
CAll ESIN(F,F,30.,A8(S,10,,-I.' 
CALL ECOSf-F,F,27.,AA(9,7),1.) 
CAll ESIN(-f,F,2 7 .,A8(9,A),1.' 
CAll ECOS{F,F,27.,A8(Q,9),1.) 
CAll ESINfF,F,27.,A8(9,lO',1.) 
DO 62 J=11,44 
JJ:J-4 
on 62 1=9,44 
11-=1-4 

62 AQ(I,J':A7(YI,JJ' 
C~lL P(4,35.,ABCl),Q,O.) 
BBC) )=88(1)-CQ 
CALL P(3,30.,R8(5',C7(3',O.) 
CALL P(2,30.,KK(1),C7(4),0.) 
CALL P( 1,30. ,LL(!) ,C7f 5) ,0.) 
on 64 1=1,4 
11=1+4 
IFfI.NE.l'GO TO 63 
R~(5'=98(5'+C7(6) 

63 CONT INlJE 
fl4 B8( J I '-=B8( I I '+KK( J '+l.L( I) 

CALL P(3,27.,AA(9"C6f31,0.' 
CALL P(2,27.,KK(I"C6(4',O.' 
CALL P(1,27.,lL(l),C6(5',O.' 
CALL P(3,27.,MMfl),-C7(3',O.) 
CALL P(2,21.,NN(l),-C7(4),O.' 
CALL Pfl,27.,VV(1),-C1(5),O.' 
Dn 66 t=1,4 
IJ=I+8 
IF(I.Nf.l)Gn TO 65 
SQ(9,=R8(9'+C6(6'-C7(6' 

65 cnNTINUE 
66 88(fI'=P~(II'+KK(T'+LL(r)HIM(II+~N(J)+VV(I) 

on 68 1=13,44 
t 1= T-4 
B~(J'=B7(II' 

68 cmHINUF 
IFAJL8=O 
CALL F04~TF(A8,44,AA,44,C8,AA8,44,WKS18,WKS28,IFAIl8' 

C**.CALCULATE OF~LN,PACK LOAD 
VQ=O*1, .5**4+C2(,'*13.5**,+C2 (4'*13.5 •• 2+C2(5'*1,.5+C2(6' 
X,=OEXP(-F*13.5'*DCOS(F*13.5) 
X4=nEXp(-F*13.5'*O~IN(F*13.5' 
X5=OEXP(F*13.5,*nCOSlF*13.S) 
X6=OEXPlF*13~51·DSIN(F*13.5' 
V16 =V9 +C3f7,*X3+C3(81*X4+C3(9,*X5+C,IIO'+X6 
V 2 4 = V9+C4(11)*X 3 +C4(12'*X4+C4(131*X5+r.4(141*X~ 
V33=V9+C5(15)*X3+C5(16'~X4+CS(11'*X5+C511~)*X~ 
V4, =V9+C6(19'*X3+C6(201*X4+C6(21 '*X~+C6(221·X6 
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0411 
0472 
0473 
0474 
0475 
0476 
0477 
0478 
047Q 
0480 
0481 
0482 
0483 
04134 
0485 
0486 

V54=V9+C7(23l*X3+C7f24l*X4+C7f25)*X5+C7{26l*X6 
V66=V9+C8(27)*X3+C8(28)*X4+C8t29)*X5+C8t30)*X6 
WRIT~(6,2COO'Vq,V16,V24,V33tV43,V54,V66 
Pl1=(V16-V9)*K 
PL2=CV24-V9'·1( 
PL3=(V3"3-V9,*K 
ol4=(V43-V9).1( 
Pl5=(V54-V9)*K 
PL6=fv~6-V9)·K 
W~ITE(6,3COO)Pll,Pl2,Pl3,Pl4,PL5,PL6 

10')0 FnPMAT('OPACK MODULUS 't1p~q.2J 

2000 CO~~AT('ODEFLECTlnNS ',1(l P 011.4,2X) 
30GO FOQ~AT('OPACK lnAD ',6(lPOIO.3,2X)1 

101 cnNTINlJE 
ST'1P 
E"4('1 

TOTAL ME~OQy REQUIRE~E~TS 02~33E RYTES 
~XECUTlnN TE~~INaT~O 

PAGE 0010 

\.JJ 
\.JJ 
o 



t.R -L0401f+*NA G 
~XEC'JTION BEGINS 

PACK MO~ULU~ 3.500 04 

nE~lECTIO~S 1.36560-02 

04CK LOAO 8.7690 01 

PACK I>10"'H .llUS 7.000 04 

~EFlECTI8~S 1.2799D-02 

P~CK LOAD 1.203~ 02 

PACK MODULUS 1.05~ 05 

OfCLEcrIONS 1.22520-02 

paCK LOA~ 1.3910 02 

PACK ~ODULUS 1.400 05 

9EFLECTIQNS 1.18680-02 

O~CK LOAD 1.5370 02 

PACK MODUlllS 1.150 05 

nFFl~CTr~NS 1.15810-02 

P~CK LnAO 1.o48~ 02 

STOP 0 
~X~CUTln~ TfR~JNAT=n 

1.8416n-02 2.23240-02 2.48900-02 2.62430-02 2.6141£'-02 

1.591n 02 2.0690 02 2.319[' 02 2.4120 02 2.4150 02 

1.60650-02 1.82210-02 1.93040-02 1.96510-02 1.96260-02 

1.9991') 02 2.3960 02 2.524D 02 2.5151') 02 2.4590 02 

1.47801)-02 1 .. 62340-02 1.6814n-02 1.69040-02 1.68020-02 

2.2001) 02 2.5210 02 2.5700 02 2.5141) 02 2.4431) 02 

1.3954n-02 1.50210-02 1.51740- 02 1.53680-02 1.5259!)-02 

2.3280 02 2.583D 02 2.5190 02 2.4980 02 2.4270 02 

1.33710-02 1.4207f\-02 1.44230-02 1.43160-02 1.42750-02 

2.4191) f12 2.61~[) 02 2.5150 02 2.482[) 02 2.4141) 02 

2.67680-02 

1.94140-02 

1.66731')-02 

1.51610-02 

1.42020-02 

w 
w 
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Modification of the face element source program to include the failure 

criterion, obtaining 1:' 1 at each bench mark 

1 • Orange job card 

2. i.H MTS945 

3. £SIGNON ID 

4. Password 

5. i.CRE Filename 

(Creates a file for face element data cards) 

6. £.EMF Filename 

7. i.COPY *SOURCE* Filename 

Data cards for 

face element run 

8. i.ENDFI LE 

9. i.R *GETDISK PAR=MTS945 

(Instructs the operator to mount the disc) 

10. i.CRE - A TYFE=SEQ SIZE=nP 

11 • i.CRE - B TYFE=SEQ SIZE=nP 
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12. £CRE -C TYFE=SEQ S1ZE=nP 

13. £CRE -D TYPE=SEQ S1ZE=nP 

14. £CRE -F TYPE=SEQ S1ZE=nP 

(Creates sequential temporary files - A to-F for buffer space) 

15. £COPY MNB6: FACEL2D TO -ABC 

(Copies face element source program to scratch file -ABC) 

1 6. £GET -ABC 

17. £R *ED 

(Begins editing the source program in -ABC) 

18. 5871 8 

SC= 3.2E+04 

TC= O.5*(SC*ST)**O.5 

TA= (SC-ST)/4./TC 

DO 7 1=1 ,NBM 

'it';'1 "-' ~)RINP(3*I-2 )-PRINP( 3*I-1»)*TC/SC+PRINP( 3*1-2 )*TA 



19. Q 

334 

7 WRITE (6,11 0) I, TC1 

110 FORMAT (II ",I4,1PE10.3) 

(FORTRAN program cards for writing T 1 for each b.m.as per 
failure criterlon) 

20. £CRE FHPW1. 5 

21. £EMF FHPW1.5 

22. £R *FORTRAN SCARDS = -ABC SPUNCH=FHPtl1. 5 

(Creates an object program FHPW1.5 from editing on -ABC) 

23. £R FHPW1.5 1=-A 2=-B 3=-C 4=-D 5=Filename 7=-E 8--F 

(Runs the new object program to give ~1-values in addition 
to the usual face element output) 

24. £R *FREEDISK PAR = MT5945 

25. £L Filename 

26. £SIG 

* * * 
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