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Abstract 

Central nervous system primitive neuroectodermal tumours (CNS-PNETs) are highly 

aggressive tumours with similar histopathological features to other intracranial PNETs 

(medulloblastomas). These two tumours have accordingly been treated using unified 

approaches, but CNS-PNETs have a dismal prognosis. Few studies have investigated the 

genetic features of CNS-PNETs. The molecular basis of CNS-PNET was therefore 

investigated in a cohort containing CNS-PNETs from children (n=33) and adults (n=5), to 

aid improvements in disease classification and treatment. 

The common medulloblastoma molecular defects were investigated in CNS-PNETs, and 

showed RASSF1A promoter hypermethylation is a frequent event (18/22, 82%), and MYC 

family gene amplification occurs in a subgroup (MYCN:  3/25 (12%), MYCC: 0/25 (0%)). In 

contrast and in distinction to medulloblastoma, chromosome 17p loss is not a common 

feature (2/23, 9%), whilst p53 pathway signalling appears to play a major role (20/22, 

91%), and associated with TP53 mutations (4/22, 18%). Aberrant Wnt signalling was 

identified in 2 cases (2/22, 9%) and coupled with CTNNB1 mutation in a single case. IDH1 

mutations (2/25, 8%) however, appear to occur in adult but not childhood CNS-PNETs or 

medulloblastoma. Subsequent genome-wide investigations of the CNS-PNET DNA 

methylome aimed at a wider characterisation of the molecular features of CNS-PNETs 

and its relationships to other childhood tumours identified CNS-PNETs as a 

heterogenous disease group without defined sub-clusters, which were predominantly 

distinct from medulloblastomas, but exhibited overlap with high-grade gliomas. A panel 

of 76 tumour-specific methylation events were identified as disease markers. The 

combination of either RASSF1A hypermethylation or HLA-DPB1 hypomethylation 

discerned normal brain from CNS-PNET in 94% of cases (64/68). In addition, 

hypermethylation of TAL1, MAP3K1 and IGFBP1 is associated with non-infant disease.   

In conclusion, this study has shown CNS-PNETs are a heterogenous group of tumours 

that are molecularly distinct from medulloblastomas, and has implicated developmental 

pathways and genetic events in their tumorigenesis. The associations between 

molecular events identified and clinical features warrant further investigation to aid 

classification and treatment advancements.
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1.1 Introduction to cancer 

1.1.1 Cancer 

The development and repair of normal tissue occurs through the highly regulated 

processes of cell growth (proliferation), differentiation and cell death (apoptosis). In 

health, response to different stimuli results in the transcription of genes to either 

promote or inhibit these processes. Tumour development ensues when abnormalities 

in gene expression result in aberrant regulation of cell cycle progression and cell death 

permitting increased cellular proliferation (Strachan and Read 2004). Tumours can be 

either benign or malignant. Benign tumours are contained within their local 

environment and do not invade adjacent tissues. Malignant tumours in contrast are 

more aggressive and may invade and cause damage to adjacent tissues. Malignant 

tumours may also spread to distant sites, and their ability to metastasise is facilitated 

by the lymphatic system and the bloodstream (Franks and Teich 1997). 

 

1.1.2 The clonal origin of cancer 

Cancer is a monoclonal disease and develops from a mutation in a single cell which 

provides it with a growth advantage over the surrounding cells. The mutated cell 

proliferates and creates a larger population of cells with the same genotype which 

increases the probability of further mutations, a process known as clonal evolution. 

Mutations may also render cells more susceptible to further mutational events by 

disrupting regulatory mechanisms including genes involved in DNA repair. Successive 

mutations confer additional growth advantages to the cancer cells which are clonally 

expanded until a tumour is formed from the different cancer clones. On average it has 

been proposed that six or seven successive mutations are required to convert a normal 

cell into an invasive carcinoma (Strachan and Read 2004) 

The monoclonal origin of cancer has been confirmed in some tumours with 

chromosome X inactivation studies (Jones, Carr et al. 2005; Wang, Wang et al. 2009). 
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In these studies it has been demonstrated that tumour cells at different sites within an 

individual patient have the same inactive X chromosome, suggesting that they have 

arisen from the same cell. It has in contrast also been shown that in some cancers, 

cells may contain variable numbers of inactive X chromosomes suggesting a polyclonal 

origin in these tumours (Parsons 2008). 

 

1.1.3 Cancer: A multistep process 

As a cancer develops from successive aberrant genetic events a stepped divergence 

from a normal healthy tissue can occur. Initially morphological examination may show 

an excessive proliferation of normal cells (hyperplasia). As the process develops the 

proliferative cells can become immature (dysplasia), and become severely dysplastic 

but non-invasive (carcinoma in situ) before progressing to an invasive carcinoma 

(Strachan and Read 2004). This multistep process in the development of a cancer 

requires the acquisition of six key functional capabilities, illustrated in Figure 1.1. 

Cancers must develop (i) limitless replicative potential, (ii) self-sufficiency from growth 

signals, (iii) an insensitivity to growth inhibitory signals, (iv) an ability to evade 

apoptosis, (v) a sustained angiogenesis, and (vi) an ability to invade tissue and 

metastasise (Hanahan and Weinberg 2000). 
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Figure 1.1. Acquired capabilities of cancer cells. Six essential capabilities of all cancers 
to facilitate tumour development. Figure taken from Hanahan and Weinberg (2000).  

 

1.1.4 Cancer epidemiology 

Cancer can affect any tissue within the body and in total more than 200 different types 

have been described in humans. One in three people will develop a cancer during their 

lifetime, and approximately one in every four people will die from this disease 

(www.info.cancerresearchuk.org). Cancer is responsible for 7.4 million worldwide 

deaths annually (13% of total), and this is expected to rise to 12 million by 2030 (WHO 

2009). In the UK breast, lung, colorectal and prostate cancer are the four most 

http://www.info.cancerresearchuk.org/
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commonly diagnosed cancers, and together account for more than half of all cancers 

diagnosed each year (www.info.cancerresearchuk.org/cancerstats )(Figure 1.2).  

The age at which people develop cancer varies significantly (Figure 1.3). As has been 

discussed (section 1.1.2), multiple genetic abnormalities are thought to be required to 

occur to promote the development of a cancer, and this may take a period of many 

years.  This is reflected in the incidence of cancer development in which an exponential 

relationship is observed between age of diagnosis and incidence with cancer 

predominantly arising in people over the age of 60 years (Figure 1.3). Cancers in adults 

(over the age of 16 years) represent over 99% of all cancers (ONS 2010). 

The current overall 5 year survival is 50% however there is significant variation in 

survival ranging from over 96% in testicular cancers to 3% in pancreatic cancers (Figure 

1.4). The four most common cancers, (lung, breast, colorectal and prostate) are also 

responsible for almost half of all cancer-related mortality and are also a significant 

cause of morbidity (www.info.cancerresearchuk.org). 

 

 

 

 

 

 

 

 

 

http://www.info.cancerresearchuk.org/
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Figure 1.2. Incidence of the most common cancers diagnosed in the UK. The most 
commonly diagnosed cancers in the UK in 2007. CNS: Central Nervous System. Figure 
adapted from http://info.cancerresearchuk.org/cancerstats. 
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Figure 1.3. Incidence of cancer in people of different ages in England in 2007. Figures exclude non-melanomatous skin cancers. Cancers in 
those aged under 45 amounted to just over 5.4 per cent of the total for males and 9.2 per cent for females. Of the total of 245,327 
malignancies, 1,147 (0.5 per cent) occurred in children aged under 15. Figure from(ONS 2010).
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Figure 1.4. Survival from different types of cancer in men and women. Five year age standardised relative survival for the 21 most common 
cancers in adult men and women (15-99) diagnosed with cancer during 2001-2006 and followed up to 2007 in England. *Unadjusted survival 
rates given for women with brain tumours as age standardised rate could not be calculated due to the comparatively low incidence and poor 
survival for this group (ONS 2010). 
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1.1.5 Paediatric cancer epidemiology 

Each year approximately 1200 new cases of cancer are diagnosed in children under the 

age of 15 in the UK, which represents 0.5-1% of all newly diagnosed cancers 

(www.info.cancerresearchuk.org). Overall, 1 in 500 children will develop a tumour 

before the age of 15. The risk of developing a leukaemia in childhood is 1 in 1600, 1 in 

2200 for developing a CNS (brain and spinal cord) tumour, and 1 in 1100 for 

developing another form of cancer (www.info.cancerresearchuk.org). The risk of 

developing a cancer is 20% greater overall fora boy than that for a girl before the age 

of 15. Leukaemias are the most common form of cancer in children, and account for a 

third of all childhood cancers, whilst brain tumours account for 20-25% (Stiller 2004), 

and together they are responsible for more than half of all childhood cancers (Figure 

1.5).  

Survival rates, as with adult cancers, vary depending on the individual cancer type 

ranging from 96% with retinoblastoma or germ cell tumours to less than 5% with some 

forms of glioma (Figure 1.7). Overall the five year survival rate for children with cancer 

is 75%.  In total however each year around 300 children with cancer will die from this 

disease, which account for 20% of all deaths in childhood (ONS 2010). Together, brain/ 

spinal cord tumours and leukaemias are responsible for almost two-thirds of childhood 

deaths from cancer (Figure 1.7). 

 

 

 

 

 

 

http://www.info.cancerresearchuk.org/
http://www.info.cancerresearchuk.org/
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Figure 1.5. Incidence of childhood cancer in the UK. Age-standardised rates of 
childhood cancer (aged 0-14 years) in the UK. Data taken from (Stiller 2004). 
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Figure 1.6. Survival rates at 5 years for children diagnosed with cancer in 1992-1996 
in Great Britain. Figure adapted from http://info.cancerresearchuk.org/cancerstats. 

 
 

 

Figure 1.7. UK annual average number of deaths in children diagnosed with cancer 
under the age of 15 in 1997 - 2001. Figure adapted from 
http://info.cancerresearchuk.org/cancerstats. 
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1.2 Cancer:  A genetic disease 

1.2.1 Introduction 

As has been discussed in section 1.1.3, multiple genetic anomalies are required to 

accumulate for a tumour to develop the characteristics required for tumorigenesis. 

These genetic anomalies may arise from environmental factors including exposure to 

ultraviolet light or ionizing radiation.  The most common exposure, which results in 

almost a third (29%) of all cancer related deaths in the UK, is tobacco smoke 

(www.cancerresearch.org). Inherited genetic abnormalities, in which an individual 

inherits an abnormality in one allele of a gene rendering the individual susceptible to 

developing a cancer, are also implicated in a proportion of cancers.  Individuals who 

inherit a BRCA1 or BRCA2 mutation, for example have an 85% chance of developing a 

breast cancer (Ford, Easton et al. 1998). Genes, such as BRCA1 and BRAC2 that may be 

implicated in the development of cancers are classified as being either oncogenes or 

tumour suppressor genes. 

 

1.2.2 Oncogenes 

An oncogene is a gene that when mutated or over-expressed is capable of dominantly 

promoting cancer by supporting the cellular processes required for tumour 

development (Figure 1.1).  First discovered in the 1970’s in viral induced cancers 

(leukaemias and lymphomas), over 100 oncogenes have now been described in human 

cancers and may be classified into five groups based on their function: (i) growth 

factors, (ii) growth factor receptors; (iii) signal transduction components; (iv) 

transcription factors; and (v) cell cycle/ apoptosis regulators (Strachan and Read 2004). 

Oncogenes, derived from mutated normal cellular genes are known as proto-

oncogenes. The conversion to oncogenes may occur by a number of mechanisms 

including gene amplification, point mutation, translocation which incorporates a gene 

within a transcriptionally active region of chromatin, transcriptional activation by 

proteins upstream of the oncogene, or through a translocation which creates a novel 

http://www.cancerresearch.org/
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chimeric gene. These alterations (exemplified in Table 1.1) result in either an increased 

normal product or a new product with tumourigenic properties.  

The targeting of oncogenic proteins by small molecules currently is an important area 

of both research in cancer therapeutics and clinical practice. Imatinib mesylate 

(Gleevec™, Novartis) for example was designed to target the chimeric BCR-ABL protein 

produced in chronic myeloid leukaemia (CML) and is now successfully used in the 

management of patients with this disease (Goldman and Melo 2001; Agrawal, Garg et 

al. 2010). It has also been shown to have activity both in other cancer types, and by 

operating on additional targets including PDGFR and KIT and has developed a broader 

clinical utility (Heinrich, Blanke et al. 2002; Casali, Messina et al. 2004)  
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Oncogene Location Function Mechanisms of activation Cancer association 

PDGFB 22q13.1 Growth factor Translocates to transcriptionally active region Dermatofibrosarcoma 

      Point mutation   

EGFR 7p12 Growth factor receptor Amplification Glioma 

      Point mutation Non-small cell lung cancer 

HRAS 11p15.5 Signal transduction pathway component Mutation Colorectal carcinoma 

      Amplification Rhabdomyosarcoma 

MYCC 8q24.1 DNA binding transcription factor Translocates to transcriptionally active region Burkitt lymphoma 

      Amplification Breast and Prostate cancer 

      Point mutation B-CLL,  

      Transcriptional activation Colorectal carcinoma 

BCL2 18q21.3 Anti-apoptosis Translocates to transcriptionally active region NHL, CLL 

      Transcriptional activation Melanoma 

BCR-ABL t(9;22)(q34;q11) Tyrosine kinase Translocation creating a novel chimeric gene Breast prostate, lung cancer 

Table 1.1. Function and activating mechanisms of common oncogenes. Examples of different oncogene functions and mechanisms of 
activation in different tumour types. CLL, chronic lymphocytic leukaemia; B-CLL, B-cell lineage CLL; NHL, Non-Hodgkin Lymphoma. Data collated 
from (Strachan and Read 2004; Croce 2008) and Wellcome Trust Sanger Institute Cancer Genome Project web site, 
http://www.sanger.ac.uk/genetics/CGP.



17 

 

1.2.3 Gene amplification 

The amplification of genes, as has been discussed in section 1.2.2, may result in the 

development of tumours by increasing mRNA and protein expression. Amplification of 

isolated genes may occur, but an amplicon may also comprise several genes an extend 

to several megabases (Storlazzi, Fioretos et al. 2004). Amplification, shown in Figure 

1.8, may arise by a number of mechanisms. Repeated duplication of chromosomal 

regions may give rise to homogeneously staining regions (HSR) which may contain 

thousands of additional copies of a given gene. Extrachromosomal additional copies of 

a gene may also occur, and form “double minutes” (DMs). The definition of an 

amplified gene varies in different tumour types. In breast cancer for example, a two-

fold increase in EGFR is considered amplified,  whereas in neuroblastoma at least a 

four-fold increase in MYCN is necessary before this gene is considered to be amplified 

(Press, Finn et al. 2008; Theissen, Boensch et al. 2009). In addition to enabling tumour 

formation, cancer cells may also use gene amplification to develop chemotherapy 

resistance. It has been shown for example, that amplification of the dihydrofolate 

reductase gene (DHFR) can confer resistance to methotrexate (MTX) (Trask and Hamlin 

1989), which would normally act to inhibit this enzyme, and is associated with an 

adverse clinical outcome (Goker, Waltham et al. 1995). 
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Figure 1.8. Schematic overview of gene amplification. Fluoresence insitu hybridisation 
(FISH) in a tumour cell using centromeric (green), and MYCN (red) probes. (a) Increased 
copy number of MYCN in a disomic cell, (b) MYCN amplification as part of a 
homogeneously staining region (HSR), (c) MYCN amplification with extra-chromosomal 
copies or double minutes (DM). Figure adapted from (Martin, Mazzucchelli et al. 2009). 
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1.2.4 Tumour suppressor genes 

Tumour suppressor genes (TSGs) code for proteins which function as regulators of 

cellular processes by inhibiting cell proliferation, stabilising the genome by ensuring 

accurate DNA replication and repair, and promote apoptosis should the DNA become 

damaged and not repairable. Cancer may develop if the regulatory function of the 

TSGs is lost. Both TSG alleles are thus typically required to become inactivated for 

tumour development to occur, as was first hypothesised in a landmark study by Alfred 

Knudson in 1971. In a study of familial and sporadic retinoblastomas, and noticing that 

tumours developed earlier in the familial form, Knudson hypothesised that for 

retinoblastomas to develop, 2 mutational events are required (“the Knudson two-hit 

hypothesis”) (Knudson 1971). In familial tumours it was postulated that one “hit” was 

inherited requiring only one mutational event or “hit” to occur, whilst for sporadic 

tumours to develop two mutational events or “hits” would be required to occur. This 

theorem was subsequently validated with the discovery of the retinoblastoma gene 

(RB1) and the observation that both alleles are inactivated in retinoblastomas (Friend, 

Bernards et al. 1986). Retinoblastomas in the familial form require only one “hit”, 

occur at an earlier age and are bilateral, whilst additional time is required to accrue the 

two “hits” in a later onset (>2 years old) and unilateral tumour in the sporadic form.  

Following the discovery of RB1 as a TSG a number of additional genes have been found 

to be associated with familial cancers (Table 1.10) and in total over 100 TSGs have 

been identified (Yang and Fu 2003). The most common TSG implicated in the 

development of cancer is TP53, which has been found to be mutated or deleted in over 

50% of all human cancers (Hollstein, Sidransky et al. 1991). 
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Gene Location Disease Functions 

APC 5q21 
Familial adenomatous 
polyposis coli (FAP) Nuclear signalling 

MSH2, 
ML1 

2p16, 
3p21.3 

Hereditary nonpolyposis 
colonic cancer (HNPCC) DNA mismatch repair 

BRCA1 17q21 Breast and ovarian cancer 

Transcription regulator, 
DNA binding, DNA repair, 
homologous 
recombination, 
ubiquitination of proteins BRCA2 13q12-q13 Early onset breast cancer 

TP53 17p13 Li-Fraumeni syndrome 
Cell cycle regulation, 
apoptosis 

PTCH 9q22-q31 Gorlin syndrome Transmembrane receptor 

ATM 11q22-q23 Ataxia telangiectasia DNA repair 

RB1 13q14 Retinoblastoma Cell cycle regulation 

NF1 17q12-q22 Neurofibromatosis type 1 RAS inactivation catalysis 

NF2 22q12.2 Neurofibromatosis type 2 
Cytoskeleton-membrane 
linkage 

CDKN2A 9p21 Familial melanoma p53 stabilizer 

VHL 3p25-p26 von Hippel-Lindau disease Transcription regulator 

Table 1.2. Common tumour suppressor genes and associated familial cancer 
syndromes. Gorlin syndrome also known as basal cell naevus syndrome. Table adapted 
from (Strachan and Read 2004). 
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1.2.4.1 Inactivation of tumour suppressor genes 

Loss of function of a TSG may occur by a variety of mechanisms (Figure 1.9). 

Chromosome loss, deletions, recombination, gene conversion and point mutations 

may all result in TSG loss of function (Reviewed in (Strachan and Read 2004)). 

Epigenetic modifications (reviewed in section 1.2.6) have also been shown to be 

involved in silencing TSG function by preventing the transcription of TSGs. Many of 

these mechanisms result in a loss of heterozygosity (LOH) of the TSG locus and 

therefore methods capable of detecting such LOH have been used to identify many loci 

harbouring candidate TSGs (Strachan and Read 2004).  
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Figure 1.9. Mechanisms of inactivation of the normal allele of a tumour suppressor gene. In sporadic cancer (top left), both alleles must be 
inactivated (purple band) for tumour suppressor gene (TSG) loss of function. In hereditary or familial cancer (top right), an inactivated allele is 
inherited (green band) and the remaining wild type allele needs to be inactivated before tumour development may occur. The possible 
mechanisms that may give rise to inactivation of the normal allele (“second hit”) are outlined in the bottom panel. Figure adapted from 
(Alberts, Johnson et al. 2002).
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1.2.5  Cytogenetic abnormalities 

Alterations in chromosomal structure and number, as illustrated in Figure 1.9, may 

result in tumorigenesis. These cytogenetic abnormalities, first detected in cancer cells 

in 1960, including the size and number of chromosomes are visualised by karyotyping, 

which requires analysis of the chromosomes of cells during cell cycle metaphase 

(Nowell and Hungerford 1960). 

More recently, alterations in chromosomal structure may also be determined by 

comparative genomic hybridisation (CGH). This technique, first devised in 1992 and 

used to interrogate bladder tumours (Kallioniemi, Kallioniemi et al. 1992), requires an 

investigative sample of DNA to be processed simultaneously with a sample of normal 

control DNA.  The two differentially labelled samples are then permitted to 

competitive hybridise with a normal metaphase spread on a slide, and the ratios of the 

two different signals along each chromosome is then recorded to determine whether 

there is a gain or loss at any given locus in the investigative sample. Unlike 

conventionally karyotyping which is limited both by the quality of the material being 

used and also the resolution at which defects can be determined (discussed in 

(Teyssier 1989)), CGH permits the use simply of fragments of DNA and yields an 

enhanced resolution, identifying smaller regions of chromosomal loss or gain which 

has aided in the identification of oncogenes and TSGs.  

 

1.2.6 Epigenetic modification 

In addition to genetic alterations, epigenetic modifications may also play a role in 

tumour development. Epigenetics is the study of heritable changes in gene expression 

that occur without a change in the DNA sequence. Epigenetic modification may occur 

by a number of mechanisms including DNA methylation, chromatin remodelling, 

histone modification and with micro ribonucleic acids (miRNAs). 
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1.2.6.1 Histone modification 

Histones are basic proteins that form an octamer (H3/H4 tetramer and two H2A/H2B 

dimmers) with 147bp of DNA to form a chromatin nucleosome. Histone tails protrude 

outside of the nucleosome where they may be subjected to post-translational 

modification including acetylation, methylation, phosphorylation, ubiquitylation, 

sumoylation, glycosylation, ADP-ribosylation, biotinylation or carbonylation (Strahl and 

Allis 2000). The various histone tail domain modifications act in a sequential and 

combinatorial fashion to regulate chromatin structure, a concept known as the histone 

code, and exert their epigenetic control by either preventing or promoting the binding 

of proteins to the genome to activate or repress genetic transcription (Mizzen and Allis 

2000).  

Disruption of histone modifications including loss and gain of histone lysine acetylation 

and methylation has been reported to occur in cancerous cells (Fraga, Ballestar et al. 

2005). The loss of lysine acetylation has been shown to be an early event in cancer 

development through gene silencing and also reducing a cell’s DNA repair capability 

(Mutskov and Felsenfeld 2004; Masumoto, Hawke et al. 2005). Mutations in EP300, a 

histone acetyltransferase for example, have been associated with breast, colonic and 

pancreatic cancers (Gayther, Batley et al. 2000), and has subsequently stimulated 

interest in the therapeutic targeting of histone modification control and in particular 

inhibitors of histone deacetylases (HDACs)(Workman 2001). 

 

1.2.6.2 Chromatin remodelling 

DNA within the nucleus is highly folded, constrained and compressed by histones and 

other proteins to form chromatin. The repositioning of nucleosomes along the DNA 

can create nucleosome-free regions which permit gene transcription (Davis and 

Brackmann 2003). Alterations in chromatin structure may consequently be associated 

with cell cycle progression, DNA repair, DNA replication and chromosomal stability 

(Wolffe and Guschin 2000). 
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Chromosomal regions that become transcriptionally repressed appear highly 

condensed in interphase nuclei  including the inactive X chromosome or “Barr body” in 

females (Brown 1966). Disorders of chromatin remodelling are implicated in a number 

of conditions including Rett, Rubinstein-Taybi and Coffin-Lowry syndromes (Ausio, 

Levin et al. 2003). Mutations in genes necessary for chromatin remodelling may also 

result in cancer development as occurs with mutations of INI1 and the development of 

paediatric atypical teratoid rhabdoid tumours (ATRT) (Versteege, Sevenet et al. 1998). 

 

1.2.6.3 DNA methylation 

DNA methylation occurs with the addition of a methyl group to a cytosine residue 5’ to 

a guanosine in a CpG dinucleotide. The CpG dinucleotide is under-represented in the 

genome apart from areas of approximately 0.5-4.0 Kb in length, with a high CpG 

content, located at the promoter region of almost half of all genes and known as “CpG 

islands”. These islands are defined as being at least 500bp in length, with a combined 

guanosine and cytosine content greater than 50%, and an observed over expected 

frequency of the dinucleotide CG greater than 0.6 (Wang and Leung 2004). 

Methylation of CpG dinucleotides is undertaken by DNA methyltransferases (DNMTs) 

which facilitates the replication of methylation patterns between parent and daughter 

cells. In normal somatic cells most promoter-associated CpG islands are unmethylated 

and associated with an open, transcriptionally active chromatin structure, whereas 

CpG dinucleotides elsewhere in the genome are generally methylated and therefore 

transcriptionally repressed (Figure 1.10) (Bestor 2000; Lindsey, Anderton et al. 2005). 

Epigenetic modification by DNA methylation is a dynamic process that facilitates 

variation in expression at different stages of development and in different tissue types 

and is therefore important in a range of processes including early development, tissue-

specific gene expression, host defence, genomic stability and gene imprinting 

(reviewed in (Gopalakrishnan, Van Emburgh et al. 2008). 
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Aberrations in methylation may also occur and are implicated in a number of diseases 

(Robertson 2005). In addition to sex differences as a result from inheriting different X 

and Y chromosome combinations, sex specific differences in methylation patterns on 

other chromosomes may give rise to differential expression, in a process known as 

imprinting (Robertson 2005). The developmental disorders Prader-Willi (PWS) and 

Angelman syndrome (AS), for example may result from a loss of paternally or 

maternally expressed alleles respectively at the imprinting centre located at 15q11-q13 

(Nicholls and Knepper 2001). Cancers have also been shown to occur as a result of 

genetic imprinting. The maternal allelic loss of expression on chromosome 11p15.5 of 

H19 by imprinting for example,  permits activation of the normally silent maternal IGF2 

gene which is associated with Wilms’ tumour development (Steenman, Rainier et al. 

1994). 

 Alterations in DNA methylation patterns are a hallmark of most human cancers (Baylin 

and Herman 2000). In cancer development, genome-wide hypomethylation of tumour 

cells compared to normal tissue has been shown predominate (Feinberg and 

Vogelstein 1983). This genome wide hypomethylation occurs as an early event in 

tumorigenesis and has been shown in some tumour types to correlate with both 

metastatic potential and disease severity (Widschwendter, Gattringer et al. 2004). 

Individual genes however may also become methylated in cancer. Methylation of RB1 

was the first gene to be associated with cancer (Ohtani-Fujita, Fujita et al. 1993), but 

DNA methylation has subsequently been shown to effect the expression of a plethora 

of genes involved in critical regulatory processes including those responsible for cell-

cycle regulation, tumour invasion, apoptosis, transcription, DNA repair, cell signalling 

and chromatin remodelling (summarised in Table 1.3) (Robertson 2005).  
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Figure 1.10. Epigenetic inactivation by promoter hypermethylation. (A) 
Transcriptionally active chromatin (euchromatin) is associated with widely spaced 
nucleosomes (light blue circles), unmethylated CpG residues (white circles), acetylation 
(green triangles) of histone H3 lysine residues (pink arrows) and an open chromatin 
structure. The open chromatin is easily accessible to transcription factors and enzymes 
involved in gene transcription including histone acetyl transferases (HATs). (B) The 
methylation of CpG residues (red circles), compacted nucleosomes (dark blue circles) 
and deacetylated histones (dark pink arrows) result in a compacted chromatin 
structure (heterochromatin) and repression of transcription. The establishment and 
maintenance of heterochromatin is performed by methyl-CpG binding proteins (MBPs), 
histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Figure taken 
from (Lindsey, Anderton et al. 2005). 
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Gene Function Gene Cancer type 

Cell cycle regulation RB1 Retinoblastoma 

  CDKN2A Colon, lung and others 

Tumour cell invasion CDH1 Breast, gastric, thyroid, leukaemia, liver 

  CDH13 Lung, ovarian, pancreatic 

  TIMP3 Brain, kidney 

  VHL Renal cell 

DNA repair/ detoxification MLH1 Colon, endometrial, gastric 

  MGMT Brain, colon, lung, breast 

  BRCA1 Breast, ovarian 

  GSTP1 Prostate, liver, colon, breast, kidney 

Chromatin remodelling SMARCA3 Colon, gastric 

Cell signalling RASSF1A Lung, liver, brain 

  SOCS3 Liver, colon, multiple myeloma 

Transcription ESR1 Colon, breast, lung, leukaemia 

Apoptosis DAPK1 Lymphoma 

Table 1.3. Epigenetic silencing of genes by aberrant DNA methylation in cancer. RB1, 
retinoblastoma 1; CDKN2A, cyclin-dependent kinase inhibitor 2A; CDH1, cadherin 1 (E-
cadherin); CDH13, cadherin 13 (H-cadherin); TIMP3, tissue inhibitor of 
metalloproteinase; VHL, von Hippel-Lindau; MLH1, mutL homolog; MGMT, 
methylguanine-DNA methyltransferase; BRCA1,breast cancer 1 ; GSTP1, glutathione S-
transferase pi 1; SMARCA3, SWI/SNF related matrix associated actin dependent 
regulator of chromatin 3; RASSF1A, Ras association domain family member 1; SOCS3, 
suppressor of cytokine signaling 3; ESR1, oestrogen receptor 1; DAPK1, death-
associated protein kinase 1 . Table adapted from (Robertson 2005). 

 

 

 



29 

 

1.2.6.4 MicroRNA 

Discovered in 1993, miRNAs are single stranded RNA molecules comprised of 21-23 

nucleotides which are not translated into a protein, but by complementing a number 

of messenger RNA (mRNA) molecules are able to down regulate gene expression (Lee, 

Feinbaum et al. 1993). In total more than 1000 miRNAs have been identified 

(http://microrna.sanger.ac.uk), and may be associated with cancer development by 

acting as oncogenes or tumour suppressor genes (Table 1.4). In chronic lymphocytic 

leukaemia (CLL) for example, down-regulation of anti-apoptotic BCL2 by miR-15a and 

miR-16-1 can promote tumour development, whilst up-regulation of antiapoptotic 

miR-21 is implicated in glioblastoma development (Calin, Dumitru et al. 2002; Chan, 

Krichevsky et al. 2005; Ciafrè, Galardi et al. 2005).  
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Function MicroRNA 
Confirmed 

targets Mechanism of action Cancer Association 
Tumour 
Suppressor 
miRNA 

miR-15a, 
miR-16-1 

BCL2, WT1 Induce apoptosis, 
reduce tumorigenicity 

CLL 

let-7 RAS, MYCC, 
HMGA2 

Induce apoptosis Lung & breast cancer 

  miR-29 
(a,b,c) 

TCL1, MCL1, 
DNMT3 

Induce apoptosis, 
reduce tumorigenicity 

CLL, AML,  
cholangiocarcinoma, 
lung & breast cancer 

  miR-34  
(a,b,c) 

CDK4, CDK6, 
cyclinE2, E2F3 

Induce apoptosis Pancreatic, breast & 
colon cancer 

Oncogenic 
miRNA 

miR-155 c-maf Induce 
lymphoproliferation 

CLL, DLBCL, AML, Burkitt 
lymphoma, lung & 
breast cancer 

  miR-17-92 
cluster 

E2F1, PTEN Cooperate with c-myc 
to induce tumour 
development 

Breast, lung, colon, 
stomach & pancreatic 
cancer. Lymphomas. 

  miR-21 PTEN, PDCD4, 
TPM1 

Blocks apoptosis, 
promotes 
tumorigenicity 

Breast, colon, 
pancreatic, lung, 
prostate, liver & 
stomach cancers. AML, 
CML, Glioblastoma 

  miR-372, 
miR-373 

LATS2 Promote 
tumorigenesis in 
cooperation with RAS 

Testicular tumours 

Table 1.4. MiRNAs with tumour suppressor or oncogenic function in cancer. CLL, 
chronic lymphocytic leukaemia; AML, acute myeloid leukaemia; DLBCL, diffuse large B 
cell lymphoma. Table adapted from (Garzon, Calin et al. 2009) 
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1.3 Paediatric brain tumours 

1.3.1 Introduction 

Brain tumours are the most common solid tumours of childhood and in total account 

for 20% of all childhood malignant tumours. In the UK each year approximately 350-

400 children are diagnosed with a brain tumour (CCLG 2010). Brain tumours are 

diagnosed in 3 per 100,000 children under the age of 15 each year and annually in 2 

per 100,000 15-19 year olds (Capra, Hargrave et al. 2003; Peris-Bonet, Martinez-Garcia 

et al. 2006). The incidence of brain tumours increased in the 1970s to 1990s, as shown 

in Figure 1.11, and in children increased by 1.7% per annum between 1988 and 1997 

(Peris-Bonet, Martinez-Garcia et al. 2006). This trend was recapitulated in a number of 

international studies during this period (Kaatsch, Steliarova-Foucher et al. 2006; Stiller 

2007). More recently however it has been reported that this trend has reached a 

plateau (Linabery and Ross 2008; Peris-Bonet, Salmeron et al. 2010) and that the 

previously observed increases may have in fact been an artefact of changes in 

diagnostic and neurosurgical practice (Smith, Freidlin et al. 1998; Smith, Seibel et al. 

2010). 

 

 

Figure 1.11. Age standardised European incidence rates of CNS tumours 1975 -2007. 
Figure taken from http://info.cancerresearchuk.org/cancerstats. 

http://info.cancerresearchuk.org/cancerstats
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1.3.2 WHO classification 

The World Health Organisation (WHO) first published a classification of human CNS 

tumours after a decade in development in 1979 (Zulch 1979).  The aim of the WHO 

classification system was to establish a classification and grading system of human 

tumours that would be accepted worldwide and would facilitate the study of these 

tumours, but a consensus in classification has been difficult to establish (reviewed in 

(Scheithauer 2009) ).  The original classification was based on tumour site, grade and 

histology but developments in immunohistochemical techniques, clinical trial 

observations and molecular findings have resulted in 3 updated editions being 

produced in 1993, 2000 and 2007 respectively (Kleihues, Burger et al. 1993; Kleihues 

and Cavenee 2000; Louis, Ohgaki et al. 2007). The current fourth edition of the WHO 

classification of CNS tumours (summarised in Table 1.5.) includes eight new entities 

and additional histological variants.  

The tumours are graded I to IV based on their aggressiveness (Louis, Ohgaki et al. 

2007). Grade I tumours have a low proliferative potential and may be cured with 

surgical resection alone. Grade II tumours whilst also of low proliferative potential are 

infiltrative in nature and more likely to recur after surgical resection. Some of these 

grade II tumours also possess the ability to transform into higher grade tumours (eg 

diffuse astrocytomas, oligodendrogliomas, and oligoastrocytomas). Tumours which 

exhibit nuclear atypia and an increased mitotic index are classified as grade III. Patients 

with these tumours are usually treated with adjuvant therapy including radiotherapy 

and chemotherapy. The most aggressive tumours which are invasive and highly 

mitotically active are designated grade IV. Without successful multimodal therapy 

these tumours typically rapidly evolve and are fatal. The incidence of the different 

WHO brain tumour subtypes are shown in Figure 1.12. 
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Figure 1.12. The incidence of CNS tumours of childhood. UK Children’s Cancer 
registration data 1999-2008 (CCLG 2010). 
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Table 1.5. WHO Central Nervous System tumour classification. Tumours graded from 
benign to malignant (I to IV). Reproduced from (Louis, Ohgaki et al. 2007). 
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1.3.3 CNS Embryonal tumours  

CNS embryonal tumours comprise a group of 5 highly aggressive, WHO grade IV 

tumours including medulloblastomas, atypical teratoid rhabdoid tumours (ATRT), 

medulloepitheliomas, ependymoblastomas and CNS-PNETs. The clinical features of 

these tumours are summarised in Table 1.6. The most common embryonal tumour is 

the medulloblastoma which arises in the cerebellum particularly in children (mean age 

7 years) and accounts for a fifth of all brain tumours in childhood. The remaining 4 

forms of embryonal tumours are comparatively uncommon and in total account for 

less than 5% of childhood brain tumours. 

Recently, a new diagnostic category of “embryonal tumour with multilayered rosettes 

(ETMR) has been suggested to replace the ependymoblastoma sub-group (Paulus and 

Kleihues 2010), but this does not form part of the current WHO classification. 

Originally described by Eberhart et al in 2000, microscopically these tumours share 

classic features including ependymoblastic rosettes and neuronal differentiation and 

therefore have also been referred to as “embryonal tumours with abundant neuropil 

and true rosettes, (ETANTR)” (Eberhart, Brat et al. 2000; La Spina, Pizzolitto et al. 2006; 

Dunham, Sugo et al. 2007). Interestingly these tumours appear to only occur in young 

children and are associated with a poor outcome and with a focal amplification at 

19q13.42 (Li, Lee et al. 2009; Pfister, Remke et al. 2009; Korshunov, Remke et al. 2010). 

It has been suggested that this amplification could be used as a genetic marker in 

clinical practice to augment the histopathological diagnosis, and promisingly describes 

for the first time a distinct biological entity within the CNS-PNET group (Korshunov, 

Remke et al. 2010). 
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  Medulloblastoma CNS-PNET* ATRT Medulloepithelioma Ependymoblastoma 

Incidence 95% 1-2% 1-2% <1% <1% 

Age 70% <16 years 80% < 10 years 94% < 5 years < 5 years < 5 years 

  Mean: 7 years Mean: 5.5 years Mean: 17 months     

Location Cerebellum 
Cerebrum, 
Suprasellar Posterior fossa (52%) Periventricular Supratentorial, 

      Supratentorial (40%) Cerebral hemisphere Intraparenchymal 

      Pineal, Spinal      

Histopathology Undifferentiated cells 
Undifferentiated 
cells Rhabdoid cells 

Resembles embryonic 
neural tube 

Multilayered 

  ± neuronal/ glial 
differentiation 

± neuronal/ glial 
differentiation 

PNET, glial, epithelial 
and mesenchymal 
components 

ependymoblastic 
rosettes 

      

  5 sub-types         

Immunohistochemistry Synaptophysin + Synaptophysin + EMA and Vimentin + Nestin and vimentin + Vimentin + 

  Vimentin + GFAP / NF ± SMA, CK, GFAP, NF ± INI1 + GFAP, S100 negative 

  GFAP / NF ± INI1 + INI1 negative   EMA, NF negative 

  INI1 +       INI1 + 

Outcome 50-70% (5yr OS) 34% (5 year OS) Mean: 1 year (<20%) 6 months - 1 year 6 months - 1 year 

Table 1.6. Comparative profile of the clinical characteristics of CNS embryonal tumours. Five embryonal tumour/ PNET variants identified. 
CNS-PNET, central nervous system primitive neuroectodermal tumour; ATRT, atypical teratoid rhabdoid tumour; GFAP, glial fibrillary acidic 
protein; NF, neurofilament; EMA, epithelial membrane antigen; SMA, smooth muscle actin; CK, cytokeratin; wnt, wingless.  Figure is adapted 
from (Sarkar, Deb et al. 2005), *updated using the current 2007 WHO classification (Louis, Ohgaki et al. 2007) with the term CNS-PNET 
replacing supratentorial PNET (SPNET) and the classification of pineoblastomas as a separate entity and not an CNS embryonal tumour.
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1.3.4 The “PNET” concept and controversy 

Embryonal primitive neuroectodermal tumours of the CNS have historically been 

classified using a plethora of terms based upon their histopathological characteristics. 

This has resulted in considerable controversy which persists today and affects 

contemporary management of these tumours.  

Until 1837, these tumours were simply referred to as  sarcomas after which time they 

were given a variety of names including spongioblastoma, neuroblastoma malignum, 

neurogliocytome embryonaire and medulloblastoma (Tola 1951). In 1925 Bailey and 

Cushing, as reviewed in Rorke et al 1997,  named the undifferentiated ectodermal cells 

from which the tumours were considered to have arisen “medulloblasts”, and the 

resultant tumour a “medulloblastoma cerebelli” (Rorke, Trojanowski et al. 1997). It 

was however noticed at this time that whilst most of the tumours arose in the 

posterior fossa around the fourth ventricle that they occasionally occurred in the 

cerebral hemispheres, and therefore the term “medulloblastoma cerebri” was later 

applied to these tumours. 

Following a review of CNS tumours, in 1973 Hart and Earle established for the first 

time the term “primitive neuroectodermal tumour” (PNET), but applied this diagnostic 

category to cerebral neuroepithelial tumours only and specifically excluded pineal and 

cerebellar tumours (Hart and Earle 1973). The PNET diagnostic category was later 

adapted and expanded to include all poorly differentiated embryonal neuroepithelial 

tumours wherever they arose in the CNS, and the concept of the “PNET family” of 

tumours was established (Becker and Hinton 1983; Rorke 1983). The hypothesis that 

these histopathologically similar tumours may arise from a common precursor, and 

therefore would benefit from similar treatment approached, in turn facilitated the 

development of unifying “PNET” treatment strategies.  

Pineoblastomas were later removed from the PNET family in the 2nd WHO CNS tumour 

classification (Kleihues, Burger et al. 1993) and co-classified with other pineal tumours, 

although they continued to be often included in studies with other non-cerebellar 

PNETs, and referred to as supratentorial PNETs (SPNETs). A discordance in outcome (as 
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will be discussed in 1.4.5.6) along with emerging molecular studies which suggest 

alternative origins for medulloblastomas and SPNETs has resulted more recently in 

further controversy of the “PNET” concept (Marino, Vooijs et al. 2000; Pomeroy, 

Tamayo et al. 2002; Pfister, Remke et al. 2007). In the current 4th edition of the WHO 

classification of CNS tumours therefore a new term “CNS PNET” was derived to apply 

to PNETs of the CNS that do not arise in the cerebellum (medulloblastoma) or in the 

pineal gland (pineoblastoma)(Louis, Ohgaki et al. 2007). This diagnostic category 

replaced the term “supratentorial PNET” or “SPNET” used in previous classifications 

and importantly included non-cerebellar and non-pineal PNETs located not only in the 

supratentorial compartment but also those that occur, albeit rarely, in the brain stem 

and spinal cord. Medulloblastomas in this classification are not considered PNETs at all, 

but represent a separate and distinct diagnostic entity. 

The investigation and management of CNS-PNETs for over 30 years has been directed 

and moulded by advancements made predominantly in medulloblastoma as a result of 

the PNET concept. The suggestion that this hypothesis should be rejected and CNS-

PNETs investigated and treated as a distinct entity provides a pivotal challenge: if not 

part of the medulloblastoma family of tumours, then what are these tumours and how 

should they best be treated? 
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1.4 CNS-PNET 

1.4.1 Epidemiology 

CNS-PNETs are the second most common CNS embryonal tumour and account for 2-3% 

of all paediatric brain tumours (Bruno, Rorke et al. 1981; Gaffney, Sloane et al. 1985; 

Dai, Backstrom et al. 2003).  It is a disease of early childhood with a mean age of 

incidence of 5.5 years, and two-thirds of all CNS-PNETs occurring before the age of 5 

(Jakacki, Zeltzer et al. 1995; Louis, Ohgaki et al. 2007). CNS-PNETs rarely arise in 

adulthood. A review in 2008 found only 57 reported cases worldwide of supratentorial 

PNETs in adults (Ohba, Yoshida et al. 2008). 

 

1.4.2 Presentation features 

Most frequently CNS-PNETs affect the frontal, temporal or parietal lobes of the 

cerebral cortex, however these tumours may also arise rarely in the suprasellar region. 

The presentation signs and symptoms that a patient presents with depends both on 

the site of the tumour and the age of the patient. Typically the child will present with 

non-specific symptoms as a result of the mass effect of their tumour and subsequent 

raised intracranial pressure (RICP) (Ashwal, Hinshaw et al. 1984). Such non-specific 

symptoms include headache, dizziness, nausea, vomiting, blurred vision, somnolence, 

seizures, weakness and occasionally hemiparesis (Behdad and Perry 2010). These 

tumours are particularly common in very young children who may therefore not be 

able to verbalise their symptoms. Vomiting, seizures and irritability were the most 

common presenting features of thirteen children under the age of 3 years who were 

diagnosed with a SPNET between 1986 and 1990 as part of a larger POG 8633 trial (Dai, 

Backstrom et al. 2003). Focal motor deficits were noted in 46% and in a quarter of 

patients an increased head circumference was noted. This latter sign is specific to the 

infants as it requires the skull bone plates to have non-ossified malleable cartilaginous 

connections which permit expansion of the cranium. Presentation features are 



40 

 

therefore characteristically non-specific and similar to those reported in other 

supratentorial tumours (Wilne, Collier et al. 2007). 

 

1.4.3 Diagnostic investigations 

1.4.3.1 Neuroimaging 

MRI of the neuroaxis including the spinal cord is performed pre-operatively to avoid 

post-operative artefacts including subdural collections and contrast leakage into the 

subarachnoid and dural spaces from being misinterpreted as evidence of disease 

dissemination (Wiener, Boyko et al. 1990; Shaw, Weinberger et al. 1996). MRI scanning, 

as shown in Figure 1.13, reveal these tumours to be typically large, over 40% greater 

than 6cm in diameter at diagnosis (Albright, Wisoff et al. 1995) with heterogenous 

signals on both T1 and T2 weighted images due to the variable presence of calcification, 

cystic change and blood within the CNS-PNET tumour mass. Compared with glial 

tumours CNS-PNETs are typically hyperintense on diffusion weighted images (DWI), 

and fluid-attenuated inversion recovery (FLAIR) sequences may be used to 

differentiate necrotic areas (hyperintense) from cystic regions (hypointense). Whilst 

obstruction of CSF pathways resulting in hydrocephalus is a common finding, the 

presence of peritumoural oedema is typically absent (Dai, Backstrom et al. 2003). In 

accordance with other intracranial tumours, CNS-PNETs have been shown to exhibit 

high choline and low N-acetyl aspartate (NAA) on MR spectroscopy (MRS)(Chawla, 

Emmanuel et al. 2007).  
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Figure 1.13. Saggital section magnetic resonance images (MRI) of a supratentorial 
CNS-PNET. (a) T2-weighted image showing a large heterogenous cerebral mass, (b) 
areas of hypodensity on T1-weighted imaging suggestive of necrosis within the tumor. 
Figure adapted from (Behdad and Perry 2010). 
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1.4.3.2 Neurohistopathology 

CNS-PNETs, as described in the current WHO 2007 classification of CNS tumours (Louis, 

Ohgaki et al. 2007) appear as undifferentiated or poorly differentiated highly 

aggressive tumours composed of mitotically active cells, resulting in the proliferation 

index Ki67 antibody staining characteristically intensively, with high nuclear to 

cytoplasmic ratios. The nuclei are typically large and round although in some tumours 

the nuclei may be oval or elongated in shape. Homer-Wright rosettes (Figure 1.14) may 

also be present. The tumour cells may exhibit differentiation along neuronal, astrocytic, 

muscular or melanocytic lines. Neuronal markers such as synaptophysin and 

neurofilament are therefore characteristically positive, and markers such as glial 

fibrillary acidic protein (GFAP) may also be positive depending on the degree of 

astrocytic differentiation (Figure 1.15). 

The diagnosis of a CNS-PNET frequently poses a diagnostic challenge for the 

neuropathologist. Depending on the degree of differentiation these tumours may 

resemble other brain tumours. In the SIOP PNET3 study, for example, 12% of CNS-

PNET diagnoses were not confirmed at central pathological review and the diagnoses 

in these 6 patients changed to include anaplastic astrocytoma, atypical teratoid 

rhabdoid tumour (ATRT), anaplastic oligodendroglioma and anaplastic ependymoma 

(Pizer, Weston et al. 2006). Haberler et al have also reported a subset of previously 

diagnosed CNS-PNETs that were subsequently shown to have loss of INI1 nuclear 

expression (Haberler, Laggner et al. 2006). Whilst these tumours lacked the classical 

rhabdoid features of ATRT their aggressive phenotype and adverse outcome suggested 

that they should be reclassified as ATRT. Immunohistochemical testing for INI1, 

retained in CNS-PNETs and absent in ATRTs, now forms part of the mandatory 

diagnostic work up of these and all “PNET” tumours. 

In the recently proposed ETANTR subgroup of CNS-PNETs (see section 1.3.3) primitive 

ependymoblastoma-like and Homer-Wright rosettes constructed of primitive 

hyperchromatic neurocytic cells and embedded within abundant neuropil are 
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prominent (Figure 1.16). CD99 staining also shows a characteristic dot-like pattern 

within the apical aspect of the rosette primitive cells (Dunham, Sugo et al. 2007). 
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Figure 1.14. Classical CNS-PNET histopathological appearances. On haematoxylin and 
eosin staining (a) Hypercellularity with patchy necrosis is seen at low magnification 
(100x), (b) at higher magnification characteristic oval to carrot-shaped hyperchromatic 
nuclei with minimal cytoplasm is seen (400x). (c). Tumour-associated neuropil may be 
seen in a delicate fibrillary matrix (100x), (d) formation of Homer Wright neuroblastic 
rosettes (200x). Figure adapted from (Behdad and Perry 2010), no scale given in 
original paper, magnifications quoted are approximations. 
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Figure 1.15. Immunohistochemical histopathological features of CNS-PNETs. (a) CNS-
PNET with synaptophysin showing widespread presynaptic membranes (200x); (b) 
CNS-PNET with Neu-N. Neuronal marker showing patch uptake in areas of neuronal 
differentiation within the tumour (200x); (c) Glial-fibrillary acidic protein (GFAP) 
positivity in some tumour cells with glial features (200x); (d) retention of INI1 staining 
in the CNS-PNET, confirming that the tumour is not an atypical teratoid rhabdoid 
tumour (ATRT) in which this staining would be absent (200x). Figure adapted from 
(Behdad and Perry 2010), no scale given in original paper, magnifications quoted are 
approximations. 
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Figure 1.16. Histopathological features of ETANTR. Embryonal tumours with abundant 
neuropil and true rosettes (ETANTR) (a) show numerous ependymoblastic-like rosettes 
constructed of neurocytic cells and embedded within abundant neuropil (haematoxylin 
and eosin (H&E) staining, 200x).  Inset shows an ependymoblastic-like rosette at higher 
magnification (400x). (b) NeuN staining of neurocytic cells (200x). (c) Synaptophysin 
stain highlighting the tumour cells (200x). (d) With CD99 staining a dot-like positivity 
can be observed within the apical aspect of the primitive tumour rosette (400x). Figure 
adapted from (Dunham, Sugo et al. 2007). 
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1.4.4 Disease risk stratification 

There are no molecular or histopathological characteristics that are currently used to 

stratify CNS-PNET management. Treatment is based on the age of the patient, and is 

different in younger (age less than 3 years) and older (age greater than 3 years) 

patients, based on the need to avoid radiotherapy in young children (discussed in 

further detail in section 1.4.5.3). Staging is assigned using the modified Chang staging 

system originally designed for staging medulloblastomas which is based on a 

combination of MRI neuroaxis findings and morphological examination of 

cerebrospinal fluid (CSF) obtained through a lumbar puncture taken 10-14 days after 

surgery (Zeltzer, Boyett et al. 1999). In the same way that neuroaxis imaging is 

performed pre-operatively (section 1.4.3.1) to avoid misinterpretation of post-

operative artefacts, delayed CSF sampling is performed to similarly avoid sampling 

tumour cells that have been deposited in the CSF at the time of surgery and 

misinterpreting this as evidence of metastasis.   
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Chang Stage Classification criteria 

M0 No evidence of metastasis 

M1 
Microscopic evidence of metastasis 

with tumour cells found in CSF 

M2 
Metastatic spread beyond the primary 

site, but remaining within the brain. 

M3 
Metastatic seeding into the spinal 

subarachnoid space 

M4 Metastasis outside of the CNS 

Table 1.7. Chang metastasis staging system. Classification of CNS-PNET metastasis 
based on the Chang staging system originally devised for medulloblastoma staging. 
Classification is based on cerebrospinal fluid (CSF) cytological examination and 
magnetic resonance imaging (MRI) scanning of the central nervous system (CNS) 
encompassing both brain and spinal cord. Table adapted from (Zeltzer, Boyett et al. 
1999). 

 

1.4.5 Treatment  

1.4.5.1 Introduction 

The management of children with CNS-PNETs requires multimodal therapy 

incorporating surgery, radiotherapy and chemotherapy as will be discussed in sections 

1.4.5.2, 1.4.5.3 and 1.4.5.4 respectively. Currently there are no pathological or 

biological features that are used in treatment stratification.  Age at diagnosis, with 

infants and young children under the age of 3-5 years depending on the series, 

remains the only parameter used to determine the treatment strategy. The 

management strategy employed in the UK currently is outlined in Figure 1.17.  

In the UK, children under the age of 3 years are treated using guidelines that apply for 

children with either infratentorial or supratentorial PNETs. Current treatment requires 
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assessment of disease extent with MRI neuroaxis imaging and CSF cytology, and 

upfront surgery to resect as much of the tumour as possible.  Following recovery from 

surgery, children receive 6 cycles of induction high-dose intensive chemotherapy with 

cyclophosphamide, carboplatin and vincristine with granulocyte colony stimulating 

factor (GCSF) support. The use of craniospinal radiotherapy after induction 

chemotherapy is, as will be discussed in 1.4.5.3, controversial but may be offered to 

some patients before a 6 month course of consolidation chemotherapy comprising 4 

cycles of vincrsitine, lomustine (CCNU) and cisplatin (“Packer chemotherapy” (Packer, 

Sutton et al. 1994)).  

For children diagnosed with a CNS-PNET over the age of 3 years in the UK since the 

discontinuation of the most recent UK CNS-PNET trial (UKCCSG HART SPNET) due to 

inadequate registration, the approaches used for children with high-risk 

medulloblastoma are employed. The recommended treatment in the UK follows the 

Milan approach (Massimino, Gandola et al. 2006)  which is summarised in Table 1.8. 

Treatment involves surgery to remove the bulk of the tumour, followed by sandwich 

chemotherapy with methotrexate, cyclophosphamide, etoposide and carboplatin. 

Following recovery from the chemotherapy course the patient receives radiotherapy 

both to the tumour bed, and also to the entire craniospinal axis. In the UK 

conventional radiotherapy is used in preference to hyperfractionated accelerated 

radiotherapy (HART) as used in the Milan study and investigated in the UK HART SPNET 

study, at conventional doses with 20Gy to the tumour bed and 35Gy to the 

craniospinal axis that have been used in previous PNET studies (SIOP PNET 4) 

(Lannering and Kortmann 2004). Treatment is consolidated with 2 courses of high dose 

chemotherapy with thiotepa and peripheral blood autologous stem cell rescue (AuSCR). 

A few centres in the UK (personal communication Dr Barry Pizer, CCLG CNS division) 

may use the St Jude strategy (Chintagumpala, Hassall et al. 2009) which utilises a 

comparable radiotherapy strategy, does not include sandwich chemotherapy, and uses 

4 cycles of cisplatin, cyclophosphamide and vincristine with peripheral blood AuSCR as 

part of a high dose consolidation strategy. The treatment strategies are summarised in 

Table 1.8.  
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Figure 1.17. Current UK management recommendations for intracranial PNETs. 
*Average risk medulloblastoma patients treated suing conventional radiotherapy and 
Packer chemotherapy used in the SIOP/ CCLG PNET4 study. ** The UK CCLG CNS 
division recommendation for the management of high risk MB and CNS-PNET is to use 
high dose chemotherapy with autologous haematopoietic stem-cell rescue (AuHCR) as 
published by the Italian group (Massimino, Gandola et al. 2006) 
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Protocol Milan St Judes UKCCSG HART SPNET SIOP PNET4 

Sandwhich 
chemotherapy 

Methotexate 8g/m2 Topotecan (Optional) No Weekly Vincristine 1.5mg/m2  
 (x 8 doses) prior to, and during 
radiotherapy 

Etoposide 2.4g/m2     

Cyclophosphamide 4g/m2     

Carboplatin 800mg/m2     

Radiotherapy 

(Start 8 weeks after surgery if 
recovered from chemotherapy) 

(Start within 4-6 weeks from 
surgery) 

(Start within 4-6 weeks 
from surgery) 

(Start within 4-6 weeks from surgery) 

Randomisation 

HART Conventional HART A B 

31.2 - 39 Gy CSI  36-39.6 Gy CSI  39.7Gy CSI Conventional HART 

with 1.3 Gy fractions bd PTB (55.8 Gy total) 22.3 Gy PTB 23.4 Gy CSI  36 Gy CSI 

21-29 Gy PTB (Max 60 Gy total)   1.24 Gy fractions bd 30.6 Gy PTB 32 Gy PTB 

with 1.5 Gy fractions bd     1.8 Gy fraction od 1 Gy fraction bd 

Post- 
radiotherapy 

Chemotherapy 

2 High dose cycles with PBSCT 4 High dose cycles with PBSCT  "Packer Chemotherapy" "Packer Chemotherapy" 

Thiotepa 300mg/m2 Cisplatin 75mg/m2 8 x 6 weekly cycles 8 x 6 weekly cycles 

  Cyclophosphamide 4g/m2  Lomustine 75mg/m2 Lomustine 75mg/m2 

  Vincristine 1.5mg/m2 Cisplatin 70mg/m2 Cisplatin 70mg/m2 

    Vincristine 1.5mg/m2 x3  Vincristine 1.5mg/m2 x3 doses 

Table 1.8. CNS PNET treatment following surgery in children over the age of 3 years. Protocols: Milan (Massimino, Gandola et al. 2006), St 
Judes (Chintagumpala, Hassall et al. 2009), UKCCSG HART SPNET (Saran, Taylor et al. 2004) and SIOP PNET 4 (Lannering and Kortmann 2004). 
Abbreviations: HART: hyperfractionated accelerated radiotherapy; Gy: Gray, od: once daily; bd: bis die (twice daily); CSI: cranial spinal 
radiotherapy; PTB: primary tumour boost; PBSCT: peripheral blood stem cell transplant. “Packer chemotherapy” as originally described in 
(Packer, Sutton et al. 1994).
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1.4.5.2 Surgery 

CNS-PNETs are often located close to the meningeal surface and may become firmly 

attached. Patients with meningeal involvement at the time of surgery are at a higher 

risk of developing progressive disease (Jakacki 1999). Gross total surgical resection is 

possible in only a minority of cases due to the large size of the tumours at presentation 

and their proximity or involvement of important structures. These tumours may also 

occur deep within the brain in thalamic, hypothalamic and paraventricular sites, which 

pose a significant challenge for their safe resection (Dai, Backstrom et al. 2003). It has 

been shown that with post operative residual disease measuring less than 1.5cm2 (as 

judged by post operative imaging) that 4 year survival was 40% (± 22%), compared to 

13% (± 8%) if residual tumour measuring more than 1.5cm2 remains (Albright, Wisoff 

et al. 1995). The need for complete surgical resection does however remain 

controversial. In the HIT 88/89 German series patients with an incomplete resection 

fared as well as those who underwent macroscopically complete resection 

(Timmermann, Kortmann et al. 2002). Current surgical recommendations are therefore 

to attempt maximal surgical resection, aiming for a tumour residuum of less than 

1.5cm2, whilst minimising morbidity and mortality. 

 

1.4.5.3 Radiotherapy 

CNS-PNETs are radiosensitive tumours. Radiotherapy treatment targeted at the 

tumour bed is employed following surgery to improve local disease control. In the HIT 

88/89 study for example, 60% of patients with a CNS-PNET relapsed, and of these in 

almost three-quarters (71%) disease recurred at the primary site only (Timmermann, 

Kortmann et al. 2002). These findings have been subsequently corroborated in the 

SIOP PNET 3 trial in which local failures occurred in 72% of relapsed patients (23/32) 

(Pizer, Weston et al. 2006), and in the CCG921 study where a local failure rate of 42% ± 

8.5%, twice that seen in medulloblastomas, was reported (Hong, Mehta et al. 2004). 

These tumours do however also exhibit a propensity for leptomeningeal spread 

through the subarachnoid space and therefore irradiation of the entire craniospinal 
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axis (CSRT)  in addition to the tumour bed is recommended (Timmermann, Kortmann 

et al. 2002). In the HIT 88/89 and 91 studies a significant 3year PFS advantage was 

observed in those receiving CSRT (43.7% v 14.3%, p=0.012) (Timmermann, Kortmann 

et al. 2002). The dose administered is important with a loss of local control observed 

with doses less than 54Gy (Hong, Mehta et al. 2004; Jakacki 2005). The use of 

radiotherapy, as reviewed in Saran 2004,  in the treatment of this disease is however,  

determined by a number of factors including the patient’s age, the anatomical location 

and extent of the tumour, availability of paediatric radiotherapy and allied supporting 

facilities, as well as patient, parental and physician attitudes towards and assent to 

treatment (Saran 2004). 

Severe neurotoxicity, including profound deterioration in intelligence quotient (IQ) 

scores, have been shown to result from the use of radiotherapy in infants (Spunberg, 

Chang et al. 1981; Danoff, Cowchock et al. 1982; Jannoun and Bloom 1990; Mulhern, 

Kepner et al. 1998). In one large series that followed up 165 children under the age of 

3 whose treatment for a brain tumour included radiotherapy found disabling long-

term morbidity in 58%, and a poorer neurological outcome for those with 

supratentorial tumours (p<0.001)(Syndikus, Tait et al. 1994). The neurological toxicity 

observed is in particular related to the extent of white matter loss (Mulhern, Palmer et 

al. 2001). The use of radiotherapy in infants and very young children for these reasons 

in contemporary management is limited.  

To avoid the devastating neurological consequences of delivering radiotherapy to the 

CNS of infants, strategies which delay or omit the use of radiotherapy have been 

developed. The use of intensive induction chemotherapy, as discussed in section 

1.4.5.4 has been used in these strategies with some limited success (Marec-Berard, 

Jouvet et al. 2002; Timmermann, Kortmann et al. 2006).  
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1.4.5.4 Chemotherapy 

The use of adjuvant chemotherapy in CNS-PNET management has arisen through 

“intracranial PNET” studies involving both medulloblastomas and supratentorial PNETs 

to eradicate minimal residual disease, and the observation that benefit is derived in 

those with high risk tumours. Whilst in medulloblastoma chemotherapy strategies 

have been shown to improve survival (Packer, Sutton et al. 1994; Taylor, Bailey et al. 

2003), the effectiveness of a similar regimen in CNS-PNET is uncertain. In the 

SIOP/CCLG PNET3 trial no benefit was derived in either EFS or OS with the addition of 

chemotherapy (Pizer, Weston et al. 2006), raising doubt as to the effectiveness of 

Packer chemotherapy in this disease (Biswas, Burke et al. 2009).  High dose 

chemotherapy has been employed in predominantly limited institutional series in this 

disease, but its role as discussed in 1.4.5.6, is currently under investigation. 

In infants, chemotherapy has been used to delay or avoid the use of radiotherapy and 

its associated sequelae. In a paediatric oncology group (POG) study, 21 infants under 

the age of 3 years were treated with  2 cycles of vincristine and cyclophosphamide 

following surgery which resulted in a complete or partial response in 6 (29%), and 

stable disease in 9 (43%) (Duffner, Horowitz et al. 1993). Similar findings were 

observed in the Headstart I + II trials, in which 18/22 (82%) of patients treated with an 

intensive induction chemotherapy regimen comprising vincristine, etoposide, 

cyclophosphamide and (in Headstart II) methotrexate achieved a complete or partial 

response (Fangusaro, Finlay et al. 2008). In a further study, a 5 year EFS of 17 ± 6% was 

observed in a study of CNS-PNETs treated with surgery and induction chemotherapy 

only (Geyer, Sposto et al. 2005). 

 

1.4.5.5 Recurrent or refractory disease 

If tumours recur they tend to recur early, typically within 2 years of diagnosis. In 1955 

Collins et al, proposed “Collins’ Law” which states that these tumours recur within 

“nine months plus the age at which they were diagnosed” (Collins, Loeffler et al. 1956). 
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This has been largely supported in three subsequent studies by Paulino et al, Brown et 

al, Hong et al which showed that this law was upheld in between 93.3%, and 100% of 

cases (Brown, Tavare et al. 1995; Paulino and Melian 1999; Hong, Mehta et al. 2005). 

This law also supports the finding that relapses in younger children occur earlier as 

well as more frequently. In the largest study of CNS-PNETs (CCG 921)  the median time 

to failure for children under the age of 3 was 0.38 years (range: 0.15 – 1.15 years) 

compared to 0.9 years (range: 0.4 - 5.8 years) for older children (Hong, Mehta et al. 

2005). In the same study treatment failure also occurred earlier in those with 

metastatic disease (median age of 0.21 versus 0.41 years for those with metastatic and 

localised disease respectively).   

The outcome for children with recurrent CNS-PNET is dismal. High dose chemotherapy 

has been used in this context, but with limited success. Studies treating patients with 

high dose chemotherapy for recurrent CNS-PNET have always to date been undertaken 

in combination with medulloblastomas, as reviewed in (Gajjar and Pizer 2010). High 

dose carboplatin, etoposide and thiotepa was used in two promising studies from the 

Memorial Sloan Kettering Cancer centre and Children’s Cancer group incorporating 17 

supratentorial PNETs including 9 CNS-PNETs (Broniscer, Nicolaides et al. 2004). In only 

one patient who had received upfront radiotherapy was a second durable remission 

attained (101 months), whilst in all 4 patients who had not received radiotherapy in 

first remission were alive at 40-123 months. Other studies however including the UK 

relapsed PNET and German HIT studies have not replicated these findings, and in total 

only 4.2%  (5/118) patients treated with high dose chemotherapy have become event 

free survivors (Gajjar and Pizer 2010). In combination this suggests that second 

remission may be possible in a subgroup who has not received maximal initial therapy 

with aggressive surgery and radiotherapy, but relapsed patients who have received 

this as part of their upfront therapy continue to have a very poor outcome. 
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1.4.5.6 Clinical Studies of CNS-PNET 

Recent reported clinical studies of CNS-PNETs are summarised in Table 1.9. These 

studies include a number of institutional reviews (Mason, Grovas et al. 1998; Yang, 

Nam et al. 1999; Reddy, Janss et al. 2000; Paulino, Cha et al. 2004; Massimino, Gandola 

et al. 2006; Chintagumpala, Hassall et al. 2009) in addition to clinical trials (Duffner, 

Horowitz et al. 1993; Albright, Wisoff et al. 1995; Cohen, Zeltzer et al. 1995; Marec-

Berard, Jouvet et al. 2002; Timmermann, Kortmann et al. 2002; Hong, Mehta et al. 

2004; Pizer, Weston et al. 2006; Timmermann, Kortmann et al. 2006; Fangusaro, Finlay 

et al. 2008; Grundy, Wilne et al. 2010). In all cases the reported results of CNS-PNETs 

were part of a larger study that incorporated previously classified other intracranial 

PNETs including medulloblastomas or pineoblastomas. The numbers of CNS-PNETs 

included in individual studies are typically small and the distinction in particular 

between pineoblastomas and CNS-PNETs historically is not always recorded. 

The results for infants are consistently dismal and inferior to those achieved in older 

patients. The UKCCSG 9204 baby brain study reported a 0% event free survival (EFS) at 

1 year (Grundy, Wilne et al. 2010), whilst the POG, Societѐ Française Oncologie 

Pѐdiatrique (SFOP) and HIT SKK 87+92 studies resulted respectively in only a 19% 

progression free survival (PFS) at 2 years, 14% overall survival at 5 years, and  a 17% 

PFS at 3 years (Duffner, Horowitz et al. 1993; Marec-Berard, Jouvet et al. 2002; 

Timmermann, Kortmann et al. 2002). An EFS of 43% at 2 years has been achieved in 

one study, but this was a single institutional study and included both pineoblastomas 

and CNS-PNETs and included children up to the age of 5 years (Mason, Grovas et al. 

1998). Their approach however of using high dose chemotherapy with AuSCR following 

tumour resection forms the basis of current treatment in this age group. 

In older children, CNS-PNET clinical studies combined with medulloblastomas using 

surgery, radiotherapy and chemotherapy have been undertaken, but yielded a 

consistently poorer outcome in those children with a CNS-PNET. In the UK for example, 

54 patients with a CNS-PNET were treated on the PNET3 study. An inferior EFS of 41% 

at 5 years was achieved in this study, compared with 74% at 5 years in children treated 
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on the same protocol for medulloblastoma (Taylor, Bailey et al. 2003; Pizer, Weston et 

al. 2006). To date, the best reported results in children over the age of 3 years with 

CNS-PNET’s were derived from a multi-institutional study using cycles of non-

myeloablative chemotherapy and autologous stem cell rescue following tumour 

resection and radiotherapy (Chintagumpala, Hassall et al. 2009). An event free survival 

at 5 years of 78 ± 14% was reported. In  this study, and for the first time patients were 

stratified as either being of “average” or “high” risk based on the presence of 

metastatic disease and degree of tumour resection. The craniospinal radiotherapy 

dose administered to those of average risk was lowered in this study. The 5 year EFS 

was 75% and 60% respectively for the average and high risk patients, suggesting that a 

reduction in CSI and its late effects may be achievable in this disease without 

compromising on survival.  The series, however comprised of only 9 CNS-PNET cases 

and therefore needs to be replicated in a larger multi-institutional cohort. 
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Trial / series Enrolment Tumour Cases PFS (%) Age (years) Reference 

POG 1986-1990 PB + CNS-PNET 36 19 ± 12 @ 2 yr <3 (Duffner, Horowitz et al. 1993) 

CCG 921 1986-1992 CNS-PNET 27 33 @ 3yrs 1.5 -19 
(Albright, Wisoff et al. 1995; Cohen, Zeltzer 
et al. 1995; Hong, Mehta et al. 2004)  

 Memorial Sloan Kettering Cancer   1991-1995 PB 3  43 @ 2yr*  <5 (Mason, Grovas et al. 1998) 
 Center  Institutional Study   CNS-PNET 11       
Institutional study 1986-1995 PB 3 38 @ 5 yrs <17 (Yang, Nam et al. 1999) 
(Seoul University)   CNS-PNET 25       
Institutional study (CNMC + CHP) 1981-1986 CNS-PNET 9 33 @ 5yrs 3-18 (Reddy, Janss et al. 2000) 
HIT 88/89, 91 1988-1998 CNS-PNET 52 34 @ 3yrs 3-18 (Timmermann, Kortmann et al. 2002) 
SFOP 1990-1997 PB 4 14 @ 5yrs** <5 (Marec-Berard, Jouvet et al. 2002) 
    CNS-PNET 21       
Institutional study (UoI + LUMC) 1980-2001 PB 7 36 @ 5yrs 1-32 (Paulino, Cha et al. 2004) 
    CNS-PNET 18       
PNET3 1992-2000 CNS-PNET 54 41 @ 5 yrs 3 -16 (Pizer, Weston et al. 2006) 
Milan 1997 PB 3 54 ± 14 @ 3yrs 3-18 (Massimino, Gandola et al. 2006) 
    CNS-PNET 12     
HIT-SKK 87 +92 1987-1997 PB 2 17 @ 3yrs < 3 (Timmermann, Kortmann et al. 2006) 
    CNS-PNET 27     
Headstart I+II 1991-2002 CNS-PNET 30 48 ± 9 @ 5 yrs*  <10 (Fangusaro, Finlay et al. 2008) 
Multi institutional study*** 1996-2003 CNS-PNET 9 78 ± 14 @ 5yr* 3-21 (Chintagumpala, Hassall et al. 2009) 
UKCCSG CNS 9204 1993-2003 PB 3 0 @ 1yr* <3 (Grundy, Wilne et al. 2010) 
(Baby Brain)   CNS-PNET 8       

Table 1.9. Outcomes from clinical trials and studies of CNS-PNETs.  POG, Pediatric Oncology Group; PB, pineoblastoma; CNS-PNET, central 
nervous system primitive neuroectodermal tumours; CCG, Children’s Cancer Group; SFOP, Societѐ Française Oncologie Pѐdiatrique; CNMC, 
Children's National Medical Center; CHP, Children's hospital of Philadelphia;  UoI, University of Iowa; LUMC, Loyola University Medical Center; 
*event free survival (EFS); **overall survival (OS); ***Texas Children's hospital, USA; Melbourne Royal Children's hospital, Australia; Brisbane 
Royal Children's Hospital, Australia; St Jude Children's Research Hospital, Memphis, USA.
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1.4.5.7 Treatment outcome 

Survival from a CNS-PNET remains poor and inferior to that achieved for those with a 

medulloblastoma. An EFS of 78 ± 14% has been achieved in one pilot study involving 

children over the age of 3 years (Chintagumpala, Hassall et al. 2009), but larger studies 

have consistently shown a poorer outcome with a 3 year EFS of 33-54% (Yang, Nam et 

al. 1999; Reddy, Janss et al. 2000; Timmermann, Kortmann et al. 2002; Paulino, Cha et 

al. 2004; Massimino, Gandola et al. 2006; Pizer, Weston et al. 2006; Fangusaro, Finlay 

et al. 2008). The outcome for infants and children under the age of 3 remains bleak 

with a 3 year EFS of 0 - 19% (Duffner, Horowitz et al. 1993; Timmermann, Kortmann et 

al. 2006; Grundy, Wilne et al. 2010). 

In addition to age, the presence of metastatic disease also affects outcome and may be 

present in up to a third of cases at diagnosis (Timmermann, Kortmann et al. 2002; Pizer, 

Weston et al. 2006; Fangusaro, Finlay et al. 2008). Five year EFS has been shown to fall 

from 64.3% to 36.4% in those with M0 or M1+ disease respectively (Pizer, Weston et al. 

2006). Studies of large series of CNS-PNET are however required to investigate this 

relationship further. 

 

1.4.5.7.1 Long-term therapy associated sequelae 

Survival following a childhood brain tumour is known to be associated with a number 

of adverse sequalae. In a large survey of 342 survivors of childhood brain tumours with 

479 sibling controls, survivors were found to be more than ten times less likely to be 

employed, and almost 30 times less likely to be able to drive a car (Mostow, Byrne et al. 

1991). Young age at diagnosis, the use of cranial or CSI radiotherapy and a 

supratentorial location were all shown to be adverse factors. The association with a 

poorer outcome in those with a supratentorial compartment tumour has also been 

replicated in a recent study that followed 120 patients with a brain tumour (aged 2 – 

24 years)(Kiehna, Mulhern et al. 2006).  Increased cognitive dysfunction was observed 

in those with supratentorial tumours (p=0.035). Furthermore, tumours arising in the 
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dominant hemisphere (left sided cortical tumours, in right-handed people) are 

associated with increased cognitive dysfunction (Hahn, Dunn et al. 2003; Kiehna, 

Mulhern et al. 2006). 

In a recent Childhood Cancer Survivor Study incorporating 818 adult survivors of 

childhood CNS tumours, radiation doses ≥ 30Gy to the temporal region were 

associated with a greater propensity for memory impairment, whilst radiotherapy to 

the frontal lobe was associated with physical performance limitations. (Armstrong, Jain 

et al. 2010). In addition survivors who had received temporal lobe radiotherapy 

reported dose dependent higher rates of poor general health and social functioning.  

Radiotherapy, and in particular CSI in addition to the cognitive and neurological deficits 

is also associated with hearing loss, neuroendocrine defects including hypothalamic 

axis, pituitary and thyroid dysfunction, pneumonitis, cardiotoxicity, scoliosis and 

secondary malignancies.(Schell, McHaney et al. 1989; Holm 1990; Silber, Littman et al. 

1990; Constine, Woolf et al. 1993; Jakacki, Zeltzer et al. 1995; Bieri, Sklar et al. 1997; 

Adams, Lipshultz et al. 2003; Gleeson and Shalet 2004). The risk to benefit balance of 

the use of RT, particularly CSRT, is therefore the major determinant influencing 

treatments used in CNS-PNET. 

Adjuvant chemotherapy may also cause late effects including peripheral neuropathy 

following cisplatin and vincristine administration; nephrotoxicity and subfertility 

following the use of cisplatin or CCNU; deafness with cisplatin; and an increased risk of 

secondary malignancies, and in particular leukaemias following lomustine (CCNU) or 

etoposide administration (Skinner, Wallace et al. 2005). Chemotherapy may also 

potentiate radiation induced defects including cardiac toxicity, growth retardation and 

hearing loss (Gleeson and Shalet 2004). The reduction of late effects arising from the 

surgery, radiotherapy, chemotherapy, or in combination therefore remains a key 

challenge in current management. 

 



61 

 

1.4.5.8 Emerging therapies 

Whilst CNS-PNETs are radiosensitive tumours the late effects derived from the use of 

radiotherapy has limited its role in treatment strategies, particularly in infants and very 

young children under the age of 3 years. The use of conformal radiotherapy has 

enabled a reduction in such toxicities (Saran 2004), but to potentially avoid these risks 

further, proton beam radiotherapy, which enable radiation to be targeted to the 

tumour whilst delivering  a reduced dose to surrounding normal structures, has been 

developed (Greco and Wolden 2007). Proton therapy has already become the “gold 

standard” for some tumours including base of skull chordoma and chondrosarcoma, 

and its use in paediatric and in particular childhood brain tumours is being investigated 

(St Clair, Adams et al. 2004; Bouyon-Monteau, Habrand et al. 2010). 

The use of ifosfamide and temozolamide in CNS-PNET has been suggested, based on 

the hypothesis that as some of these tumours show similarities with glioblastoma 

which benefit from these therapies, a similar beneficial effect may be derived in 

patients with CNS-PNET (Biswas, Burke et al. 2009). In support of this, Temozolamide 

has been successfully used in an adult patient with a CNS-PNET (Terheggen, Troost et 

al. 2007). 

 

1.4.6 CNS-PNET: The clinical challenge 

Current therapeutic strategies for CNS-PNETs are derived from adjusted strategies for 

medulloblastomas based on the historical concept of an intracranial “PNET”. These 

strategies result in a poorer prognosis for patients with CNS-PNET irrespective of 

disease spread or their age. In addition, survivors of this disease are frequently left 

with significant toxicities as a result of the treatment which confers further lifelong 

health and social disadvantages. There is therefore a very clear and urgent need to 

improve the outcomes for these patients, by improving the treatments they receive. 

Advancements could be made through the development of molecularly targeted 

therapies, or through the identification of disease sub-groups which may in turn permit 
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a stratified therapeutic approach. Both of these approaches have been successfully 

employed in the treatment of other cancers including the use of the tyrosine kinas 

inhibitor imatinib mesylate in the management of BCR-ABL chronic myeloid 

leukaemia(Baccarani, Dreyling et al. 2009), and in the management of childhood acute 

lymphoblastic leukaemia (ALL) a risk-adapted stratified approach is used based on a 

combination of clinical and molecular criteria (Moorman, Ensor et al. 2010). The 

fundamental clinical challenge of improving outcome is however itself restrained by 

the current poor understanding of the biological mechanisms involved in the 

development of a CNS-PNET as a result of a paucity of research into this tumour. To 

address the CNS-PNET challenge a programme of research into these tumours is 

therefore now required. 
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1.5 Molecular genetics of CNS-PNET  

1.5.1 Introduction 

To date, research into the biological basis of CNS-PNET tumorigenesis has been limited, 

and correspondingly our understanding of the molecular basis for these tumours is 

poor. Studies into the molecular characterisation specifically of CNS-PNETs, and the 

discovery of disease distinct events have rarely been undertaken. Insights into the 

development of these tumours have been derived from tumours developed in children 

with genetic predisposition syndromes (section 1.5.2), but have predominantly come 

from larger intracranial PNET studies, which have included only a limited number of 

CNS-PNETs, and comparison with defects observed in medulloblastomas.  

 

1.5.2 Genetic predisposition to CNS-PNET 

1.5.2.1 Introduction 

A number of different familial conditions are associated with the development of brain 

tumours, summarised in Table 1.10. Li Fraumeni syndrome, Turcot syndrome, and 

Gorlin syndrome however are all associated with the development of intracranial 

PNETs. 
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Syndrome Gene Chromosome CNS tumours 

Neurofibromatosis type 1 
  
  
  

NF1 
  
  
  

17q11 
  
  
  

Neurofibroma 

MPNST* 

Optic pathway glioma (OPG) 

Astrocytoma 

Neurofibromatosis type 2 
  
  
  
  

NF2 
  
  
  
  

22q12 
  
  
  
  

Bilateral vestibular schwannoma 

Meningioma 

Meningioangiomatosis 

Spinal ependymoma 

Astrocytoma 

Von Hippel-Lindau VHL 3p25 Hemangioblastoma 

Tuberous sclerosis 
  

TSC1 9p34 Subependymal giant cell astrocytoma 

TSC2 16p13   

Li-Fraumeni 
  

TP53 
  

17p13 
  

Primitive neuroectodermal tumour 

Astrocytoma 

Turcot  
  
  

APC 5q21 Medulloblastoma 

hMLH1 3p21 Glioblastoma 

hPSM2 7p22   

Cowden PTEN 10q23 
Dysplastic gangliocytoma of the 
cerebellum (Lhermitte-Duclos) 

Gorlin** PTCH 9q31 Medulloblastoma 
Rhabdoid tumour 
predisposition syndrome INI1 22q11.2 Atypical teratoid rhabdoid tumour 

Table 1.10. Familial brain tumour predisposition syndromes.  *MPNST: Malignant 
peripheral nerve sheath tumour, ** Gorlin syndrome, is also known as nevoid basal 
cell carcinoma syndrome (NBCCS). Table adapted from (Louis, Ohgaki et al. 2007) 

 

1.5.2.2 Li Fraumeni Syndrome 

Li Fraumeni syndrome (LFS) is an autosomal dominantly inherited disorder 

characterised by the development of multiple tumours in childhood and in adult life. 

Tumours that develop may include soft tissue sarcomas, osteosarcomas, breast cancer, 

leukaemia, adrenocortical tumours and brain tumours (Li, Fraumeni et al. 1988). The 

incidence of LFS ranges from 1 in 5000, to 1 in 20,000 live births (Lalloo, Varley et al. 

2006; Gonzalez, Noltner et al. 2009). LFS families are defined as those where a patient 

develops a sarcoma before the age of 45 years, a first degree relative develops cancer 
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before the age of 45, and an additional first degree relative develops a cancer before 

the age of 45 or a sarcoma at any age (Li, Fraumeni et al. 1988). A Li-Fraumeni like 

syndrome (LFLS) has also been described where a childhood tumour, brain or 

adrenocortical tumour occur before the age of 45 in addition to a first or second 

degree relative developing any cancer before the age of 60 (Hottinger and Khakoo 

2009). LFS results from mutation in the TP53 gene (discussed in detail in section 1.5.5.1) 

in 70% of cases, whilst mutations in TP53 (Kleihues, Schauble et al. 1997) are observed 

in only 20-40% of families with LFLS (Hottinger and Khakoo 2009). 46% of the 

mutations observed were missense and located at codons frequently mutated “hot-

spot” codons in cancer 175, 213, 245, 248, 273, and 282 (Olivier, Goldgar et al. 2003). 

Brain tumours occur in 10-15% of people with LFS, typically before the age of 45. The 

majority of these tumours are gliomas, but in up to a third medulloblastomas and CNS-

PNETs develop (Taylor, Mainprize et al. 2000). Unfortunately almost half of all patients 

who are successfully treated for a cancer will develop a second cancer within 30 years 

(Birch, Alston et al. 2001). In patients with Li-Fraumeni Syndrome it is therefore 

recommended that ionising radiation therapy where possible is avoided to reduce the 

risk of further tumours (Evans, Birch et al. 2006). 

 

1.5.2.3 Turcot syndrome 

Turcot syndrome is an autosomal dominantly inherited condition characterised by 

adenomatous colorectal polyps or colonic carcinomas in addition to brain tumours. 

There are two forms of Turcot syndrome. In type 1 Turcot syndrome, glioblastomas 

occur in the presence of germline mutations of mismatch repair genes (hPMS2, hMSH2 

or hMLH1) or hereditary non-polyposis colorectal carcinoma (HNPCC). In type 2 Turcot 

syndrome medulloblastomas occur in patients with familial adenomatous polyposis 

(FAP) or with germ line mutations of APC (5q21). The risk of developing a brain tumour 

with Turcot syndrome is 92 times greater than in the general population (Hamilton, Liu 

et al. 1995). Turcot syndrome has also been described in children who develop CNS-
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PNETs with mutations in germline PMS2 and MSH2 described (De Vos, Hayward et al. 

2006; Jeans, Frayling et al. 2009). 

 

1.5.2.4 Gorlin syndrome 

Gorlin syndrome, or naevoid basal cell carcinoma syndrome (NBCCS) is an autosomal 

dominant disease characterised by a spectrum of developmental abnormalities and 

neoplasms, reviewed in (Lo Muzio 2008).  It is caused by germline mutations of the 

PTCH gene, located on chromosome 9 (9q22.3) and in the UK affects 1 in 55,000 to 

57,000 of the population (Farndon, Del Mastro et al. 1992; Evans, Ladusans et al. 1993). 

90% of affected individuals develop multiple skin basal cell carcinomas in early 

childhood and also keratocysts of the jaw within the first three decades of life (Evans, 

Ladusans et al. 1993). Palmar and plantar dyskeratoses and congenital abnormalities 

including macrocephaly, cleft lip and/ or palate, and skeletal defects may also occur. 

Within the CNS ectopic calcification and cyst development may occur (Stavrou, 

Dubovsky et al. 2000). The development of medulloblastoma in young children under 

the age of 2 years is also a feature of Gorlin syndrome. These tumours have been 

associated with desmoplasia and the medulloblastoma with extended nodularity 

(MBEN) subtype and a superior prognosis (Amlashi, Riffaud et al. 2003; Garre, Cama et 

al. 2009). In addition to the histopathological and prognostic associations, it has been 

suggested that the identification of patients with Gorlin syndrome may increasingly 

have a therapeutic significance (Choudry, Patel et al. 2007). Patients with Gorlin 

syndrome have an increased risk of radiation induced tumours and therefore it may be 

in the future that the judicious use of radiotherapy in the management of these “less 

aggressive” medulloblastomas may be warranted (Choudry, Patel et al. 2007). 
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1.5.3 Cytogenetic abnormalities in CNS-PNET 

There have been very few studies to characterize cytogenetic abnormalities in CNS-

PNET. As with nearly all genetic studies in this disease, when performed these studies 

have usually been as a part of an overarching “PNET” characterization study involving 

medulloblastomas and pineoblastomas, or as part of a paediatric brain tumour study. 

A series of studies have characterised the karyotype of 23 CNS-PNETs in total, 

(Chadduck, Boop et al. 1991; Fujii, Hongo et al. 1994; Bhattacharjee, Armstrong et al. 

1997; Bigner, McLendon et al. 1997; Burnett, White et al. 1997; Bayani, Zielenska et al. 

2000; Roberts, Chumas et al. 2001; Uematsu 2003), as summarised in Table 1.11. The 

most common abnormalities were found with chromosome 11 in 10/23 (43%) cases. 

These chromosome 11 cytogenetic abnormalities includes gains (1/23, 4%), losses 

(3/23, 13%), translocations (4/23, 17%) and other abnormalities (duplications, 

deletions and gain of additional material) in 4/23 (17%). A gain of chromosome 7 was 

observed in 4/23 (17%) and loss of chromosome 13 also in 4/23 (17%).  

The most common cytogenetic abnormality seen in medulloblastoma is loss of the p-

arm of chromosome 17 occurring in up to 40% of tumours (McDonald, Daneshvar et al. 

1994; Burnett, White et al. 1997). This may occur in association with a gain of 17q and 

the formation of an isochromosome (i17q) or may arise as an isolated defect. 17p loss 

or i17q formation was not found in any of the CNS-PNET cases described, however 

chromosome 17 loss and a deletion of 17q21.3 were both observed in isolated cases 

(Bayani, Zielenska et al. 2000; Roberts, Chumas et al. 2001).  

In a third of cases (8/23) a normal karyotype was found. Karyotyping may however not 

detect more subtle cytogenetic alterations, and therefore comparative genomic 

hybridization (CGH) studies have also been undertaken in a small number of cases. A 

study by Nicholson et al reported the cytogenetic features by CGH of 4 paediatric CNS-

PNETs  (Nicholson, Wickramasinghe et al. 2000). In one case no abnormality was 

detected, but in the other 3 cases a series of genetic losses and gains were observed, 

including in common with the previous karyotyping studies, frequent gains on 

chromosome 7 (2/4, 50%). Unfortunately in CGH studies by Russo et al, Avet-Loiseau et 
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al and Inda et al, involving 18 SPNETs the distinction between pineoblastomas and 

CNS-PNETs was not made, and therefore these findings cannot reliably be used to 

characterize CNS-PNET disease (Avet-Loiseau, Venuat et al. 1999; Russo, Pellarin et al. 

1999; Inda, Perot et al. 2005). 

More recently, three studies (summarised in Table 1.12 and Table 1.13) have 

interrogated CNS-PNETs by array-CGH, which has provided an enhanced resolution of 

genetic abnormalities observed in these tumours (Kagawa, Maruno et al. 2006; 

McCabe, Ichimura et al. 2006; Pfister, Remke et al. 2007). Even with the superior 

resolution that array CGH provides, in keeping with the previous karyotyping studies in 

3 cases (3/20, 15%) no abnormality was observed suggesting that alternative 

tumourigenic mechanisms (see section 1.2) may be implicated in at least a sub-group 

in this disease.  In total genetic gains were observed in 35% (7/20) involving 

chromosome 12, 30% (6/20) with chromosome 7q, and 20% (4/20) for both 

chromosomes 17q and 2p.  

Interestingly, in the Pfister series loss of 17p was seen in 2 cases (2/10, 20%), and the 

region of loss (17p11.2-pter) occurred at the breakpoint similar to that which has been 

observed in medulloblastomas (Biegel, Janss et al. 1997; Scheurlen, Seranski et al. 

1997). This finding was not observed however in either the McCabe et al, or Kagawa et 

al studies. In a recent large medulloblastoma study 25% (47/190) of medulloblastomas 

were shown to have loss of 17p (Ellison, Kocat et al. 2011). This finding, (as will be 

discussed in chapter 3 and summarised in table 3.28) has only rarely been observed in 

CNS-PNETs, but very limited small studies only have previously been performed and a 

dedicated study of 17p defects in CNS-PNETs has not previously been undertaken.   

Finally, using a high resolution single nucleotide polymorphism (SNP) array on 39 CNS-

PNETs,  Li et al in common with the previous array CGH studies identified recurrent 

gains (8/39, 21%) on chromosome 2 incorporating the MYCN locus and also a novel 

amplicon on chromosome 19 (19q13.42) incorporating a micro RNA cluster (8/39, 21%) 

(Li, Lee et al. 2009). Amplification at this locus was shown to confer an adverse 
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prognosis (4 +/- 1.3 months in amplified cases versus 44 +/- 12.8 months in non-

amplified cases; p<0.0001). 
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Reference 
Age 

(Years) 
Karyotype 

 (Chadduck, Boop et al. 1991) <1 Normal 

<1 Normal 

<1 Normal 

<1 45, XY,-22 

 (Fujii, Hongo et al. 1994) 9 Normal 

11 
43-44;XY;+2,-6;der(10)t(10;11)(q26;q21),del(11)(q21,-12,-
13=mar,(8)/84/90,XXYY,der(10)t(10;11)(q26:21),der(10;11)(q26:q21),del(11)(q21),+2mar/(8) 

14 Normal 

 (Bhattacharjee, Armstrong et al. 1997)   46,XY,i(1)(q10);-9,t(9;11)(q34;q13)<8?/90; idemx2, -X,Y1/46;XY 

 (Bigner, McLendon et al. 1997) 2 46,XY,t(6:9)(q21;q13),del(10)(q22)2/34. idem, t(11;13)(q15;q11)-13 

  Normal 

  Normal 

  Normal 

 (Burnett, White et al. 1997) 
 
 
 

(Bayani, Zielenska et al. 2000) 
 
 

7 
49,XX,add(3)(q23 or q24),+5,+8,dup(11)(q12q22.3 or 
q13q23),del(16)(q22q24),add(19)(p13),+21[8]/49.idem,add(13)(q34[1] 

16* 
90,XX,add(X)(p22)x2,dic(1;9)(q42;p21)x2,dic(4;9)(q3?5;p2?2),6,add(6)(p24), 
9,add(11)(p15)x2,add(16)(q2?2),+mar1,+mar2[11] 

3 70-103 chromosomes, dmins and double rings 

3 55-75,XX,-X,del(1)(p22),i(4)(p10),-5,+6,+add(7)(q36),add(9)(p21),-11,-13,-17,add(18)(q23),-19,-19,+13mars+dmins 

4 46,X,?rea(X),?rea(10p),?rea(14q),add(19q),+?add(22q),22q 

6 46,XY,t(6;13)(q25;q14) 

 (Roberts, Chumas et al. 2001)   46,XX,del(2)(p22.2-2p23.1),del(5)(q33-q35)/46,idem,del(17)(q21.3q21.3) 

  der(9:15)(q10;q10)x2,+11,+13,+18,+20,+56-59,Xc,+X<+1,+1,+1,add(1)(p?),add(1)(q?),+2,del(2)(p24),+7,+8,add(8)(q?) 

  69~75XX,-X,add(10(q42)x2,-4,-4,add(4)(q3?),-10,-11,del(11)(q2?),-13,-16,-18,+7~13mar,dmin(cp7)dmins 

 (Uematsu, Takehara et al. 2002) 7 52,XX,+1x2,add(3)(q25)+7x2,add(11)(q25)x2,+21x2 

Table 1.11. Reported karyotypes of CNS-PNETs. Karyotypes described using International System for Cytogenetic Nomenclature (ISCN) 1995 
(Mitelman 1995), * relapse tumour sample.
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Reference 
 

Case 
 

Age 
(years) 

Gain 
 

Loss 
 

 (Kagawa, 
Maruno et al. 
2006) 

1 <1 MSH2 (2p22.3-p22.1), ERBB2 (17q11.2-q12), BCR (22q11.23) (none) 

2 2 Ch 7, MYCN (2p24.1), MSH3 (5q11.2-q13.2), EGFR (7p12.3-p12.1), RFC2 
(7q11.23), PTCH (9q22.3), DMBT1 (10q25.3-q26.1), GLI (12q13.2-q13.3), 
ERBB2 (17q11.2-q12) , TK1 (17q23.2-q25.3), STK6 (20q13.2-q13.3) 

Chr 6q, MSH2 (2p22.3-p22.1) 

3 3 MSH2 (2p22.3-p22.1), EGFR (7p12.3-p12.1), RFC2 (7q11.23), DBCCR1 
(9q33.2), CDK2 & ERBB3 (12q13), BRCA1 (17q21), STK6 (20q13.2-q13.3) 

APC (5q21-q22), SNRPN (15q12), HRAS (11p15.5), GLI 
(12q13.2-q13.3) 

 (McCabe, 
Ichimura et al. 
2006) 

4 - FIP1L1-CHIC2 (4q12) 13q14.11qter 

5 - FOXQ1-FOXF2 (6p25.3), ALDH8A1-MYB (6q23.3), PHACTR2-SF3B5 (6q24.2) RASA3 (13q34) 

6 - CACNG8-LILRB5 (19q13.42) RASA3 (13q34) 

7 - (none) Chr 13q 

8 - (none) CDKN2A/CDKN2B (9p21.3) 

9 - (none) (none) 

10 - (none) (none) 

 (Pfister, 
Remke et al. 
2007) 

11 1 (none) (none) 

12 1 ADAM8 (10q26.3) (none) 

13 2 UNC5B/CDH23 (10q22.1) (none) 

14 3 PRDM16 (1p36.32), CNTNAP2 (7q35), NOS3 (7q36.1), URP2 (11q13.1), 
DACH1 (13q22), TNFRSF6B (20q13.33) 

UNC5C (4q22.3) 

15 3 TNFRSF6B (20q13.33) AJAP (1p36.13), IGSF21 (1p36.13), GRM2 (3p21.1), 
TAF6L/HRASLS3 (11q13) 

16 6 TMEM/MGC33556 (1p34.1), MM-1 (12q13.13), NULL (12q23) NULL (1q31.1), UNC5C (4q22.3), GPR116 (6p12.3) 

17 7 RHOB (2p24.1), MAP3K7 (6q16), MM-1 (12q13.13), NULL (12q23), DACH1 
(13q22) 

AJAP (1p36.13), IGSF21 (1p36.13), HRG (3q27.3), DOK7 
(4p16.2), DUSP8 (11p15.5), RHOG (11p15.4), JAM3 (11q25) 

18 7 CNTNAP2 (7q35), NOS3 (7q36.1) GPR116 (6p12.3), MED4 (13q14.2) 

19 11 LMO1/STK33 (11p15.4) MGMT (10q26.3), DUSP8 (11p15.5), RHOG (11p15.4), 
TAF6L/HRASLS3 (11q13), GRM5 (11q14.2), JAM3 (11q25) 

20 12 IGFB2/5 (2q35), TNFRSF6B (20q13.33), PDGFB (22q13.1) MED4 (13q14.2) 

Table 1.12. Losses and gains in CNS-PNET tumour samples by array CGH. Genes names in italics:  www.ensembl.org/Homo_sapiens. NULL: Gene 
unspecified. Regions of gains or losses <3MB only are shown for cases 11-20 from the Pfister et al study. 

http://www.ensembl.org/Homo_sapiens
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Chromosome Loss or Gain Number Frequency (%) 

13q Gain 5 25 

20q Loss 5 25 

2p Gain 4 20 

7q Gain 4 20 

12q Gain 4 20 

10q Gain 3 15 

11p Loss 3 15 

11q Loss 3 15 

17q Gain 3 15 

Table 1.13. Summary of the most frequent chromosomal abnormailities by array CGH in 
CNS-PNETs. The most frequent nine abnormalities observed in 20 CNS-PNETs investigated by 
array CGH in three studies (Kagawa, Maruno et al 2006; McCabe, Ichimura et al 2006; and 
Pfister, Remke et al 2007).
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1.5.3.1 19q13.42 amplification and ETMR 

In 2009, Pfister et al reported the results of an array CGH performed on the tumour 

sample taken from a 2 year old girl with a CNS-PNET(Pfister, Remke et al. 2009). An 

amplification at 19q13.42 was detected which has been subsequently been identified 

from two further studies in an additional 48 cases (Li, Lee et al. 2009; Korshunov, 

Remke et al. 2010). This amplification appears to be specific to CNS-PNETs, and did not 

occur in an additional 300 paediatric brain tumours screened for this amplicon 

(Korshunov, Remke et al. 2010). The histopathological feature of the original case and 

72% (8/11) of the Li et al, series were consistent with the proposed embryonal tumour 

with multilayered rosettes (ETMR) subtype (see section 1.3.3), whilst all of the tumours 

investigated by Korshunov et al, were of the ETMR subtype, and the 19q13.42 

amplicon was present in 93% (37/40). In addition to the histopathological correlation, 

these tumours also appear to occur in children under the age of 3 and associated with 

an inferior outcome compared with other children with CNS-PNETs. 

 

1.5.4 Gene specific defects in CNS-PNET 

The development of CNS-PNETs in those with cancer predisposition syndromes has 

suggested a role of a number of cell signalling pathways, including wnt/wingless, p53, 

sonic hedgehog and Notch, in CNS-PNET tumorigenesis. Aberrations of components of 

these pathways have subsequently been shown to be implicated in this disease, as is 

discussed in section 1.5.5. Cytogenetic studies, as discussed in section 1.5.3, have also 

identified a number of loci associated with CNS-PNET development including CDKN2A 

(section 1.5.5.1) and the MYCC and MYCN (section 1.5.4.1). 

 

1.5.4.1 MYC family genes 

The MYC family of oncogenes comprises 3 genes (MYCN, MYCC and MYCL) which are 

involved in cell growth, proliferation, differentiation and apoptosis (Pelengaris, Khan et 
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al. 2002). In humans MYCC, MYCN and MYCL are mapped to 8q24.1, 2p24 and 1p34 

respectively, and have similar gene structures (Ryan and Birnie 1996). 

 

1.5.4.1.1 The functional role of MYC 

The MYC genes are essential for normal development. In murine models knockdown of 

either c-myc or n-myc is lethal within 10.5 and 12.5 days respectively (Charron, Malynn 

et al. 1992; Davis, Wims et al. 1993). Germ-line mutation and deletions of MYCN have 

also been shown to be associated with a number of developmental defects including 

oesophageal atresia, duodenal atresia, congenital cardiac defects, macrocephaly and 

learning difficulties as part of Feingold syndrome (FES) (van Bokhoven, Celli et al. 2005).  

In cancer, MYC is implicated in promoting cell growth, vasculogenesis, reducing cell 

adhesion, increasing genomic instability and promoting metastasis (summarised in 

Figure 1.18) (Adhikary and Eilers 2005; Vita and Henriksson 2006). Cell growth is 

promoted through the role of MYC enabling  G0/1 to S phase cell cycle progression 

(Meyer and Penn 2008). MYC messenger RNA (mRNA) and protein levels increase 

during cellular proliferation, but are absent in differentiated quiescent cells. Sustained 

up-regulation of MYC expression conversely has been shown to be associated with an 

inhibition of cellular differentiation and the promotion of tumour development 

including tumours that resemble human PNETs (Su, Gopalakrishnan et al. 2006). 

Genomic instability has been shown to result from up-regulated MYC expression (Mai, 

Hanley-Hyde et al. 1996), occurring through a variety of mechanisms including 

alteration in chromosomal structure, the promotion of DNA strand breaks  with 

increased levels of reactive oxygen species, and bypassing the p53 checkpoint through 

repression of p53 (Prochownik and Li 2007). The role of MYC in angiogenesis has also 

been demonstrated in cell line and murine models (Ngo, Gee et al. 2000; Prochownik 

and Li 2007). In addition to its effect on growth, MYC family members may also 

promote apoptosis through p53 dependent and independent pathways (Prochownik 

and Li 2007; Meyer and Penn 2008).
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Figure 1.18. Cellular control by MYC during normal conditions and tumorigenesis. Myc is a key regulator of many biological activities and the 
deregulation of Myc may result in apoptosis, genomic instability, uncontrolled cell proliferation, escape from immune surveillance, growth 
factor independence, and immortalization. Figure taken from (Vita and Henriksson 2006).
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1.5.4.1.2 MYC genes in human cancers 

The involvement of MYCC, MYCN and MYCL have are all implicated in human cancer 

development.  MYCC is up-regulated in approximately 70% of all human tumours 

(reviewed in (Vita and Henriksson 2006) but most frequently occurs in Burkitt’s 

lymphomas which is characterized by a translocation incorporating the MYCC locus 

which results in MYCC over-expression in 91% of cases (Vita and Henriksson 2006). 

MYCC amplification may also occur in many human tumours including osteosarcomas, 

melanoma and ovarian, beast, bladder, prostate, cervical, colonic, lung, gastric and 

hepatocellular carcinomas (Vita and Henriksson 2006).  Amplification, particularly at a 

high level, is frequently associated with a poorer prognosis (Nesbit, Tersak et al. 1999; 

Takei, Nguyen et al. 2009). MYCN amplification in contrast with MYCC amplification is 

associated with predominantly paediatric tumours including neuroblastoma, 

rhabdomyosarcoma, medulloblastoma and retinoblastoma (Nesbit, Tersak et al. 1999). 

It is however also associated with a more aggressive phenotype and a poorer prognosis. 

MYCN amplification was the first genetic marker used in the management of 

neuroblastoma which is associated with a reduced 5 year overall survival from 98% to 

36% in MYCN amplified cases (Lu, Pearson et al. 2003; Vasudevan, Nuchtern et al. 

2005). The MYCL gene has been less commonly associated with tumours in humans 

compared to the MYCC and MYCN homologues, but has been seen in ovarian 

carcinoma and  small cell lung carcinoma (Vita and Henriksson 2006). The impact of 

MYCL amplification on clinical outcome has however not been established. 

 

1.5.4.1.3 MYC genes in medulloblastoma and CNS-PNET 

MYCC and MYCN amplification occur in 15-25% of medulloblastomas, are associated 

with large cell anaplastic subtype and an unfavourable outcome (Leonard, Cai et al. 

2001; Lamont, McManamy et al. 2004; Vita and Henriksson 2006; Pfister, Remke et al. 

2009). Few studies however have investigated MYC family amplification in CNS-PNETs. 

In murine models CNS-PNETs have been shown to develop with increased c-myc 

expression. In a study involving 43 p53 deficient mice, CNS-PNETs developed in 35% 
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(15/43) of cases, located in the periventricular region in 53% (Momota, Shih et al. 

2008). In human studies 54 CNS-PNET tumour samples analysed across three clinical 

cohorts revealed MYCC and MYCN amplification in 5% cases (MYCN amplification 1/54, 

MYCC amplification 5/54) (Fruhwald, O'Dorisio et al. 2000; Pfister, Remke et al. 2007; 

Behdad and Perry 2010). However in CNS-PNETs unlike in medulloblastomas, no 

clinicopathological correlation with MYC expression has been derived. In summary, the 

previous studies in CNS-PNET show that the MYC family genes are implicated in CNS-

PNET development, and demands further investigation. 

 

1.5.5 Developmental pathways disrupted in CNS-PNET  

1.5.5.1 The p53 pathway 

Located on chromosome 17 at 17p13.1, TP53 was one of the first tumour suppressor 

genes discovered four decades ago (Linzer and Levine 1979). TP53 codes for a 393 

amino acid phosphoprotein transcription factor found at low levels in all healthy 

tissues, and has a number of critical roles that has lead to it being referred to as “the 

guardian of the genome” (Lane 1992). Cellular stresses including DNA damage, hypoxia, 

growth factor depletion, oncogenic activation and microtubule disruption result in the 

stabilisation and nuclear accumulation of activated p53 (Figure 1.19). Activated p53 is 

then able to induce a number of responses including cell cycle arrest and apoptosis 

(Vousden and Lu 2002).  

During embryogenesis up to 50% of neurones undergo apoptosis under the control of 

p53 as they fail to differentiate correctly (Oppenheim 1991). The pro-apoptotic 

functions of p53 are however potentially lethal and are therefore tightly regulated 

(Figure 1.19). MDM2, an E3 ubiquitin ligase, is a critical negative regulator of p53. 

MDM2 itself is induced in response to p53 activation and therefore forms a tightly 

regulated negative feedback loop. Deletion of mdm2 in the mouse model is lethal in 

early embryonic development (Marine, Francoz et al. 2006). In addition the tumour 

suppressor p14ARF, both negatively regulates MDM2 and inhibits the p53-MDM2 
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interaction by binding to MDM2 within the nucleolus facilitating p53 accumulation and 

enabling p53 induced transcriptional activity (Sionov, Coen et al. 2001). P53 levels are 

highest in G1 phase, and accumulate in the nucleus in S phase (Shaulsky, Goldfinger et 

al. 1990) 

Post translation modifications of p53 may arise in response to stress and  may include 

the addition of a functional group to p53 by phosphorylation, ubiquitylation, 

acetylation, sumolyation, glycosylation, ribosylation and methylation and direct 

whether apoptotic genes or those involved in cell cycle arrest are transactivated 

(Vousden and Lu 2002). Subcellular location is another important component of p53 

regulation. Whilst p53 may readily shuttle in a cell cycle dependent manner between 

the nucleus and cytoplasm, translocation to the nucleus is essential for it to undertake 

its transcriptional activity (Jimenez, Khan et al. 1999; Sionov, Coen et al. 2001).  

Targets of p53 may inhibit cell cycle progression leading to G1 or G2 arrest and include 

p21WAF1 and GADD45. p21WAF1 is an inhibitor of cyclin dependent kinases (CDKs) and by 

binding to cyclin-CDK complexes blocks cell cycle progression from G1 to S phase 

(Levine 1997; Vogelstein, Lane et al. 2000). GADD45 directly inhibits G2M transition 

through binding with B1-Cdc” complexes (Zhan, Antinore et al. 1999). 
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Figure 1.19. Overview of the p53 pathway. The cellular response of p53 to DNA 
damage and stresses includes cell cycle arrest enabling either apoptosis or DNA repair. 
Control of the pathway is influenced by MDM2 by negative feedback inhibition. Levels 
of MDM2 are themselves controlled by p14ARF and both MYCC and MYCN. Figure 
adapted from (Carr, Bell et al. 2006). 

 

1.5.5.1.1 The TP53 gene and cancer 

The TP53 gene encodes a 393 amino acid phosphoprotein and is comprised of five 

functional domains (Vousden and Lu 2002). Amino acid residues 1-42 at the N-

terminus form the transcriptional activation domain (TAD) where interaction with 

basal transcriptional machinery results in transactivation of downstream target genes. 

It is at this site where negative regulators such as MDM2 bind to inhibit p53 mediated 

transcriptional activity. A second domain is located at codons 40-92 and contains a 

series of repeated proline residues and a second transactivation domain. The amino 

acid residues 101-306 constitute the (central) DNA binding domain (DBD). DNA binds 

to p53 at this site, and it is within the DBD where TP53 is commonly mutated. An 

oligomerization domain at codons 307-355 is involved in the formation of p53 dimers. 
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The final carboxy-terminus of p53 (amino acid residues 356-393) contains 3 nuclear 

localization signals (NLS) and a non-specific DNA binding domain that binds to 

damaged DNA. This region is also involved in downregulation of DNA binding to the 

central domain (DBD). 

TP53 is frequently mutated in human cancers, and occurs in over a third of non- 

melanomatous skin (80%), lung (70%), head and neck (60%), colonic (60%), ovarian 

(60%), bladder (60%), gastric (45%) and oesophageal (40%) cancers (data from 

http://p53.free.fr/p53). TP53 mutation most commonly occurs at residues R175, G245, 

R248, R249, R273 and R282, accounting for 30% of all TP53 mutations (Figure 1.20) 

and result in damage to the structural integrity of the DBD (Greenblatt, Bennett et al. 

1994; Levine 1997). The majority of TP53 mutations result in a single amino acid 

substitution; 75% are missense and 7% nonsense (http://www-p53.iarc.fr/). Mutation 

results in the accumulation of an inactive mutant protein although in some cases a 

gain of function has been demonstrated (Lang, Iwakuma et al. 2004; Olive, Tuveson et 

al. 2004; Soussi and Lozano 2005). Germline mutations of TP53 result in the Li 

Fraumeni cancer predisposition syndrome (see section 1.5.2.2). 

 

Figure 1.20. Genetic location of TP53 mutations in human cancers. In 30% of tumours 
mutations arise in the DNA binding region at 6 codons (175, 245, 248, 273 and 282). 75% 
of these mutations are missense substitutions, 9% frameshift and deletions, 7% are 
nonsense mutations and in 5% mutations are silent. Data and figure adapted from the 
IARC TP53 Database (http://www-p53.iarc.fr/, R13, November 2008) and (Petitjean, 
Mathe et al. 2007) 

http://p53.free.fr/p53
http://www-p53.iarc.fr/
http://www-p53.iarc.fr/
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1.5.5.1.2 The p53 pathway in cancer 

The importance of the p53 pathway in cancer development was demonstrated in 

murine models where a high incidence of tumours developed in mice deficient in p53 

(Donehower, Harvey et al. 1992). Mutations of TP53 are the most common cause of 

p53 pathway dysregulation, but the pathway may be disrupted through a variety of 

other mechanisms. The aberrant  accumulation of the MDM2 protein for example, 

occurs in many tumours (Onel and Cordon-Cardo 2004). This accumulation may arise 

as a result of amplification of the MDM2 gene, which occurs in 7% of all cancers, or 

increased genetic transcription (Momand, Jung et al. 1998; Michael and Oren 2002). 

Aberrant expression of p14ARF may also result in tumour development. Alternative 

splicing of CDKN2A at 9p21 produces both p16INK4A and p14ARFand the homozygous 

deletion of CDKN2A has been shown to occur in a number of tumours including in up 

to 40% of glioblastomas (Schmidt, Ichimura et al. 1994) including paediatric cases 

(Newcomb, Alonso et al. 2000). The MYC family of genes also play a role in the 

regiulation of p53, as shown in Figure 1.19, the role of the MYC genes in cancer 

development is described in further detail in section 1.5.4.1. 

 

1.5.5.1.3 The role of the p53 pathway in CNS-PNET 

Germ line mutations in TP53 resulting in Li-Fraumeni syndrome are known to be 

associated with an array of tumours including CNS-PNETs (Malkin, Li et al. 1990; 

Orellana, Martinez et al. 1998; Reifenberger, Janssen et al. 1998). In addition mice 

models have provided further evidence for the importance of p53 in CNS-PNET 

tumorigenesis with the development of CNS-PNETs as well as medulloblastomas in 

p53-/- mice (Tong, Ohgaki et al. 2003). CNS-PNETs have also been shown to develop 

within 3 months in p53 deficient murine models with c-myc and/ or β-catenin 

(Momota, Shih et al. 2008).  

Reviewed in Ellison 2002, mutations in TP53 have been shown to occur in less than 10% 

of medulloblastomas (Ellison 2002)(Ellison 2002)(Ellison 2002)(Ellison 2002)(Ellison 
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2002)(Ellison 2002)(Ellison 2002)(Ellison 2002)(Ellison 2002)(Ellison 2002) which was 

confirmed recently in a large study investigating 310 medulloblastomas in which TP53 

mutations were observed in 6.8% (21/310) (Pfaff, Remke et al. 2010). The clinical 

significance of TP53 mutations has not been established. In a recent study mutation 

was associated with a universally poor outcome (p<0.001) (Tabori, Baskin et al. 2010), 

but in the Pfaff et al 2010 study no correlation with survival was observed (p=0.63) 

(Pfaff, Remke et al. 2010). To date, few CNS-PNET tumours have been investigated for 

TP53 mutations. In five studies a total of 46 CNS-PNET tumour samples were screened 

for TP53 mutations, and identified in 7 cases (Table 3.30)(Ho, Hsieh et al. 1996; Burnett, 

White et al. 1997; Zagzag, Miller et al. 2000; Kraus, Felsberg et al. 2002; Zakrzewska, 

Rieske et al. 2004). Evidence of p53 pathway dysregulation appears however to be a 

common event in CNS-PNET and appears to occur significantly more frequently than in 

medulloblastomas (Eberhart, Chaudhry et al. 2005). In the Eberhart et al study, p53 

dysregulation, assumed with the immunohistochemical accumulation of p53, occurred 

in 88% (7/8) CNS-PNETs, but only 18% (8/44) classic medulloblastomas (p<0.001).  

The involvement of MDM2 in CNS-PNET has been investigated in one study. Kraus et al 

2002, reported the results of 12 CNS-PNETs, and found no evidence of MDM2 

amplification (Kraus, Felsberg et al. 2002). In the same study evidence of CDKN2A 

(p14ARF) deletion was also investigated, and not found to be a feature. However more 

recently a series of studies have reported a role of CDKN2A in CNS-PNET disease. Array 

CGH studies identified loss of the CDKN2A locus at 9p21.3 in 3 tumours (McCabe, 

Ichimura et al. 2006; Pfister, Remke et al. 2007). Using fluorescence in situ 

hybridisation (FISH) in a second cohort Pfister et al showed loss of CDKN2A in a total of 

7/21 (33%) of CNS-PNETs, and reported an associated trend with metastatic disease 

(p=0.07). An investigation of the role of p53 pathway dysregulation, TP53 mutations, 

MDM2 amplification and CDKN2A loss in a large series of CNS-PNETs is required to 

determine the role of this pathway in CNS-PNET tumorigenesis. 
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1.5.5.2 Wingless signalling pathway 

1.5.5.2.1 Overview of Wingless (WNT) signalling 

The wingless (WNT) pathway is a critical developmental signal transduction pathway 

involving a group of lipid-modified signaling proteins, collectively known as Wnt 

proteins, in the proliferation, fate specification, polarity, and migration of cells (Willert, 

Brown et al. 2003; Logan and Nusse 2004). Signal transduction may occur via either a 

β-catenin dependent (canonical) or an independent pathway. 

Under normal conditions cytoplasmic β-catenin is degraded by a protein complex 

comprising axin, APC and glycogen synthase kinase-3β (Axin-APC-GSK3β complex). 

GSK-3β phosphorylates β-catenin which is then available for proteosomal degradation. 

β-catenin, through its degradation, is prevented from translocating into the nucleus to 

replace Groucho to permit Wnt target gene expression and therefore expression is 

repressed (Kalderon 2002). 

In the canonical Wnt signalling pathway, Wnt signalling (Figure 1.21) is initiated 

through the binding of Wnt proteins to a transmembrane receptor complex. The 

transmembrane receptor complex comprises one of the seven Frizzled (Fz) proteins 

and the low density lipoprotein receptor-related protein (LRP). The binding results in 

phosphorylative activation of LRP and the cytoplasmic recruitment of Axin in addition 

to phosphorylation of Dishevelled (Dsh) by (Fz). The resulting Axin-APC-GSK-3β 

complex inhibits the phosphorylation of β-catenin by GSK-3β. The hypophosphorylated 

β-catenin is unsuitable for proteosomal degradation in this state which results in its 

cytoslic accumulation and translocation into the nucleus. In the nucleus it replaces 

Groucho and in a partnership with T-cell –specific transcription factor (TCF) and 

lymphoid enhancer factor (LEF) activates gene expression including cmyc, cyclin D1 

and Axin 2 (He, Sparks et al. 1998; Shtutman, Zhurinsky et al. 1999; Tetsu and 

McCormick 1999; Jho, Zhang et al. 2002; Lustig, Jerchow et al. 2002). 
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Figure 1.21. Overview of canonical WNT signalling. (a) In cells not exposed to Wnt, β-
catenin associates with a complex comprising Axin, APC, and GSK-3. Phosphorylation of 
β-catenin occurs which targets it for degradation. Wnt target genes are in this state are 
repressed by the association of TCF with Groucho. (b) Wnt binds to the Fz and LRP 
receptors which induces phosphorylation of LRP and recruitment of Axin. Dsh is also 
phosphorylated, and the Axin·APC·GSK-3 complex is inhibited, leading to accumulation 
of cytosolic β-catenin. Accumulated β-catenin then translocates to the nucleus, 
replaces Groucho from TCF, and activates target genes. Abbreviations: APC, 
adenomatous polyposis coli; GSK3, glycogen synthase kinase 3β; TCF, T-cell specific 
transcription factors; Fz, Frizelled; LRH, lipoprotein receptor related protein; Dsh, 
Dishevelled (Figure adapted from (Gordon and Nusse 2006)). 

 

1.5.5.2.2 WNT signalling in medulloblastoma and CNS-PNET  

Aberrant Wnt signalling resulting from germ line defects in the Wnt signalling pathway 

may give rise to medulloblastoma or CNS-PNET development, as has been described in 

Turcot syndrome (see section 1.5.2.3).  In clinical trials, aberrant Wnt signalling, 

identified by β-catenin accumulation has been shown to occur in 16% of patients with 

medulloblastomas (Ellison, Kocat et al. 2011). In this study, mutations in exon 3 at 

codons 33,34 and 41 in CTNNB1, that affect the binding site for the β-transducin 
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repeat-containing protein (β-TRCP) which promotes the degradation of β-catenin in 

the proteosome (Gilbertson 2004), were found to occur in 10% of medulloblastomas. 

There have however only been two previous small studies in which Wnt pathway 

disruption has been investigated in CNS-PNETs, and in total 16 tumours were screened 

for CTNNB1 mutations and 33 for β-catenin nuclear accumulation by 

immunohistochemistry (Koch, Waha et al. 2001; Rogers, Miller et al. 2009). In these 

studies only a single case of CTNNB1 mutation was observed. Unlike in 

medulloblastoma where a favourable prognostic phenotype has been repeatedly and 

convincingly demonstrated with Wnt pathway disruption (Ellison, Onilude et al. 2005; 

Gajjar, Chintagumpala et al. 2006; Fattet, Haberler et al. 2009; Ellison, Kocat et al. 

2011), the effect of CTNNB1 mutations and β-catenin accumulation in CNS-PNET has 

not been determined. Further study of this pathway is now required in this disease to 

clarify its role in CNS-PNET development and to establish whether it may be exploited 

in the future for treatment stratification, as is being proposed currently for the 

management of children with medulloblastomas (Pizer and Clifford 2009). 

 

1.5.5.3 Sonic hedgehog pathway 

The sonic hedgehog signalling (shh) pathway is involved in the development of the 

brain and in particular the external granular layer of the cerebellum. The SHH gene is 

located at 7q36 and produces a ligand that binds to the patched receptor to initiate 

shh pathway signalling (Figure 1.22). The patched gene (PTCH1) is situated on 

chromosome 9q22.3 and is responsible for medulloblastoma tumour development as 

part of the Gorlin syndrome when mutant (section 1.5.2.4). 

Activation of the SHH ligand results in dissociation of PTCH from SMO, releasing SMO  

to activate Gli which, following nuclear translocation, induces target gene expression, 

including those that are involved in angiogenesis (components of the platelet derived 

growth factor (PDGF) and vascular epithelial growth factor (VEGF) pathways), and in 

controlling cell proliferation (cyclin D, cyclin E, and MYC) (di Magliano and Hebrok 

2003). 
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Mouse models have shown that transgenic Ptc+/- mice and a transgenic mouse model 

with mutant SmoA1 both develop medulloblastoma tumours (Goodrich, Milenkovic et 

al. 1997; Hallahan, Pritchard et al. 2004). Mutations in the PTCH, SMO and SUFU genes, 

have been shown to be important in the development of medulloblastomas and in 

particular the nodular desmoplastic subtype (Xie, Murone et al. 1998; Taylor, Liu et al. 

2002). In murine models, downstream effectors of Shh signalling (Gli 1-3) have been 

identified in the cerebral cortex and midbrain in addition to the cerebellum, suggesting 

that Shh signalling may also be implicated in brain development outside of the 

infratentorial compartment (Dahmane, Sanchez et al. 2001). The role of the shh 

pathway in CNS-PNET pathogenesis has however not been extensively investigated, 

but in a series of 3 CNS-PNET tumours all were shown to express the downstream 

target of the Shh-Gli pathway, MYCN (Moriuchi, Shimizu et al. 1996). In an additional 

study 3 out of 8 CNS-PNETs harboured mutations at the PTCH gene locus, at 9q22.3, 

Vorechovsky, Tingby et al. 1997), suggesting that aberrant shh signalling could be a 

feature in a small subset of CNS-PNETs.  
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Figure 1.22.  The sonic hedgehog signalling pathway. (a) In the absence of ligand, the 
sonic hedgehog signaling pathway (shh) is inactive. The transmembrane protein 
receptor Patched (Ptch) inhibits the activity of Smoothened (Smo) and the 
downstream transcription factor Gli is prevented from entering the nucleus to activate 
transcription through interactions with cytoplasmic proteins Fused and Suppressor of 
fused (Sufu). (b) Pathway activation. Binding of the hedgehog ligand  (Hh) to Ptch 
results in the removal of Smo repression and activation of a cascade that leads to the 
translocation of activated Gli to the nucleus. Nuclear Gli activates target gene 
expression, including those that are involved in angiogenesis (components of the 
platelet-derived-growth-factor (PDGF) and vascular-epithelial-growth-factor (VEGF) 
pathways), and in controlling cell proliferation (cyclin D, cyclin E, and MYC). Figure 
taken from (di Magliano and Hebrok 2003). 

 

1.5.5.4 The Notch signalling pathway 

The Notch signalling pathway is involved in the regulation of mechanisms that control 

multiple cell differentiation processes during both embryonic and adult life using cell 

to cell communication. Large transmembrane proteins (Notch 1-4) are encoded by the 

NOTCH genes which act as receptors for ligands expressed by neighbouring cells and 

activation of this pathway results in the release of the notch intracellular domain 

(NICD) and activation of the Hes(1-3) target genes (Kume 2009) as illustrated in Figure 

1.23. Signalling plays an important role in the normal development of many tissues 

effects cellular differentiation, survival, and proliferation. The pathway has also been 
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shown to be involved in the regulation of normal neurogenesis (Ishibashi, Ang et al. 

1995; Gaiano and Fishell 2002). 

Aberrant Notch signalling, first observed in T-cell leukaemias with a translocation 

involving the NOTCH1 locus on chromosome 9 (t(7;9)) (Reynolds, Smith et al. 1987), 

has been shown to be involved in many cancers including small cell lung cancer, basal 

cell skin cancer, prostate cancer, neuroblastoma and cervical cancer (reviewed in 

(Allenspach, Maillard et al. 2002). To date there has been limited research on the 

NOTCH signalling pathway in intracranial PNET development but activation of this 

pathway has been shown in two studies suggesting that it may play a role in CNS-PNET 

development (Rostomily, Bermingham-McDonogh et al. 1997; Fan, Mikolaenko et al. 

2004). Rostomily et al, demonstrated differential expression of hASH1, a basic helix-

loop-helix protein inhibited by NOTCH signalling, in CNS-PNETs. In the subsequent Fan 

et al study, differential expression of NOTCH 1 and 2 was interestingly shown in CNS-

PNET and MB with high levels of NOTCH 2 detectable in CNS-PNETs.  Inactivation and 

associated cell growth retardation in the CNS-PNET cell line PFSK, provided further 

support for the role of NOTCH 2 in CNS-PNET tumorigenesis (Fan, Mikolaenko et al. 

2004). 
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Figure 1.23. Overview of the Notch signalling pathway. Upon Notch ligand binding, a 
two-step proteolysis cleavage process (small arrows) is catalyzed by a member of the 
disintegrin and metalloproteases (ADAMS) family and the γ-secretase containing 
complex. Notch intracellular domain (NICD) is then released from the membrane and 
translocates to the nucleus, where it forms a transcriptional activation complex with 
CSL and coactivators (CoA), and induces transcription of target genes. Figure taken 
from (Kume 2009). 

 

1.5.6 Epigenetic events in CNS-PNET 

The role and mechanisms of epigenetic modification in CNS-PNET are currently poorly 

understood. A number of recent studies investigating micro RNAs in CNS-PNET have 

however provided significant insights into CNS-PNET tumourigeneis and have 

supported the hypothesis that this disease may in fact consist of a number of entities. 

In a case report in 2009, Pfister et al, reported the molecular features of a 2 year old 

girl with an ETANTR CNS-PNET (Pfister, Remke et al. 2009). Molecular analysis revealed 

a 19q13.42 amplicon containing C19MC, a known microRNA cluster.  In a subsequent 

study by Li et al, 45 CNS-PNET tumours were investigated and a similar amplification of 

C19MC within the 19q13.41 amplicon was identified in 24% (11/45) (Li, Lee et al. 2009). 

Expression of miR-520g and miR-517c from within this cluster were found to be 

significantly elevated in the amplified cases, and in both in vivo and in vitro models 

associated with oncogenic effects including promoting cell survival. 
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Changes in DNA methylation patterns appear also to be a significant feature of 

intracranial PNETs, and studies have estimated that aberrant hypermethylation occurs 

in up to 1% of CpG islands in primary PNET tumours (Fruhwald, O'Dorisio et al. 2001). 

To date there have however been few studies investigating DNA methylation 

epigenetic modification in CNS-PNET. Reported DNA methylation events in CNS-PNET, 

in common with genetic aberrations, have been identified as a part of wider brain 

tumour or intracranial PNET cohorts, rather than specific CNS-PNET studies. These 

studies have investigated a selected group of genes and reported evidence of aberrant 

methylation in a subset, as summarised in Table 1.14.  

Methylation of the p14ARF promoter has been shown to be a feature of supratentorial 

PNETs in one study, occurring in 50% (3/6) of analysed tumours (Inda, Munoz et al. 

2006) . In contrast, in this study p14ARF promoter hypermethylation was seen in only 14% 

(3/21) of medulloblastomas. A subsequent study however did not corroborate this 

finding (Muhlisch, Bajanowski et al. 2007).  Promoter hypermethylation of CASP8 has 

been observed in a third of CNS-PNETs (8/24) (Muhlisch, Schwering et al. 2006), and in 

a further study by Chang et al, promoter hypermethylation of FHIT and sFRP1 was 

detectable in 22% (2/9) and 11% (1/9) of cases respectively (Chang, Pang et al. 2005). 

Promoter hypermethylation of the tumour suppressor DLC-1 was identified in a single 

CNS-PNET case (9%, 1/11) (Jesse Chung-Sean, Qing et al. 2005).  In a study that 

screened the largest number of genes in CNS-PNET, only CDH1 was found to be 

frequently methylated in 60%, but the investigative cohort only comprised of 5 CNS-

PNET tumours (Muhlisch, Bajanowski et al. 2007). In this study evidence of methylation 

for DAPK1, DUTTI1, p16INK4A, P15INK4B and SOCS1 was not seen in any of the 

primary CNS-PNET tumours.  

The most commonly methylated gene identified in CNS-PNET to date is RASSF1A. In 

total, 39 CNS-PNETs have been investigated in three small studies for 

hypermethylation of the RASSF1A promoter (Chang, Pang et al. 2005; Muhlisch, 

Schwering et al. 2006; Inda and Castresana 2007). Overall, RASSF1A promoter 

hypermethylation was shown to occur in 77% (30/39) of cases, but these findings 

require validation in larger series.  
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Gene 
Hypermethylation 

Frequency 
Reference 

CASP8 8/24 (33%) (Muhlisch, Schwering et al. 2006) 

CDH1 3/5 (60%) (Muhlisch, Bajanowski et al. 2007) 

DAPK1 0/5 (0%) (Muhlisch, Bajanowski et al. 2007) 

DLC-1 1/11 (9%) (Jesse Chung-Sean, Qing et al. 2005) 

DUTTI 0/5 (0%) (Muhlisch, Bajanowski et al. 2007) 

FHIT 2/9 (22%) (Chang, Pang et al. 2005) 
p14ARF 

0/4 (0%) (Muhlisch, Bajanowski et al. 2007) 

3/6 (50%) (Inda, Munoz et al. 2006) 

p15INK4B 0/2 (0%) (Muhlisch, Bajanowski et al. 2007) 
p16INK4a 

0/5 (0%) (Muhlisch, Bajanowski et al. 2007) 

1/6 (17%) (Inda, Munoz et al. 2006) 
RASSF1A 

6/9 (67%)  (Chang, Pang et al. 2005) 

19/24 (79%) (Muhlisch, Schwering et al. 2006) 

5/6 (83%) (Inda and Castresana 2007) 

sFRP1 1/9 (11%)  (Chang, Pang et al. 2005) 

SOCS1 0/3 (0%) (Muhlisch, Bajanowski et al. 2007) 

TIMP3 1/5 (20%) (Muhlisch, Bajanowski et al. 2007) 

Table 1.14 Promoter hypermethylation in CNS-PNET primary tumours. 

 

1.5.6.1 RASSF1A 

The RASSF1 (Ras Association Domain Family Protein 1) gene is located on chromosome 

3p21.3 and encodes a protein of 38.8kD which is expressed in all tissues. It contains 2 

promoters and produces 7 different transcripts (RASSF1A-G) using different 

combinations of alternative splicing and promoters. The RASSF1 locus has CpG islands 

associated with its two promoter regions, and the first CpG island includes the 

promoter region for RASSF1A (Pfeifer and Dammann 2005).  
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RASSF1A is a tumour suppressor gene which promotes cell cycle arrest, apoptosis, 

microtubule stability and proliferation (Agathanggelou, Cooper et al. 2005). Expression 

of RASSF1 proteins has been shown to promote cell cycle arrest and apoptosis (Feig 

and Buchsbaum 2002), and the discovery that RASSF1A -/- cells are more sensitive to 

depolymerization and induced microtubule damage by nocodazole has provided 

evidence for its role in microtubule stability (Liu, Tommasi et al. 2003).  

 

1.5.6.1.1 RASSF1A in cancer 

Evidence supporting epigenetic suppression of RASSF1A leading to tumorigenesis 

originates from mouse models. The first mice developed lacking rassf1a were 

engineered by Smith et al, (Smith, Xian et al. 2002).  Tommasi and colleagues later 

engineered a knockout mouse model, deleting exon 1α and thus Rassf1a, and tumours 

developed in the mice included lymphomas, lung adenomas and a breast 

adenocarcinoma (Tommasi, Dammann et al. 2005). RASSF1A promoter methylation 

has subsequently been observed in multiple tumour types including a range of 

paediatric malignancies, summarised in Table 1.15 (Agathanggelou, Cooper et al. 2005).  
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Tumour Type RASSF1A Methylation 

  % Tumours 

Ewings Sarcoma 0 0/8 

Hepatoblastoma 19 5/7 

Medulloblastoma 79 27/34 

Neuroblastoma 55 37/67 

Osteosarcoma 0 0/11 

Rhabdomyosarcoma 61 11/18 

Retinoblastoma 59 10/17 

Wilm's tumour 71 22/31 

Table 1.15. RASSF1A promoter methylation in primary paediatric tumours. 
Summarised from data in the review by (Agathanggelou, Cooper et al. 2005). 

 

1.5.6.1.2 RASSF1A promoter methylation in PNET 

RASSF1A promoter methylation has been shown to be a prominent feature in 

intracranial PNETs. In six studies incorporating 129 medulloblastoma tumour samples 

RASSF1A methylation occurred in 79-100% of cases (Table 1.16)(Harada, Toyooka et al. 

2002; Lusher, Lindsey et al. 2002; Horiguchi, Tomizawa et al. 2003; Lindsey, Lusher et 

al. 2004; Chang, Pang et al. 2005; Inda and Castresana 2007). Methylation of the 

RASSF1A promoter is not known however to confer a survival bias or be associated 

with any clinicopathological feature (Harada, Toyooka et al. 2002; Lindsey, Lusher et al. 

2004). Three small studies have investigated RASSF1A promoter methylation in CNS-

PNET, and determined rates of methylation of 67% (6/9), 79% (19/247) and 83% 

(5/6)(Chang, Pang et al. 2005; Muhlisch, Schwering et al. 2006; Inda and Castresana 

2007). In limited series, RASSF1A methylation is therefore the most common 

epigenetic event detected in CNS-PNET to date, but both validation of this finding and 

the determination of any clinic-pathological correlates needs to be established. Taken 

together, these data also suggest a role for methylation events in CNS-PNET, which 

now requires further investigation.  
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Reference 
Cohort size Methylation 

Size Age (yrs) Freq 

(Lusher, Lindsey et al. 2002) 34 1-11 27/34 (79%) 

(Harada, Toyooka et al. 2002) 16 <16 14/16 (88%) 

(Horiguchi, Tomizawa et al. 2003) 5 - 5/5 (100%) 

(Lindsey, Lusher et al. 2004) 28 0-68 27/28 (96%) 

(Chang, Pang et al. 2005) 25 3-69 25/25 (100%) 

(Inda and Castresana 2007) 21 2-87 19/21 (91%) 

Table 1.16. RASSF1A promoter hypermethylation in medulloblastoma tumours. 

 

 

 

 

 

 

 

 

 

 

 

 



95 

 

1.6 Project summary and aims 

CNS-PNETs are embryonal malignant brain tumours that arise particularly in young 

children. The tumours are treated aggressively according to their age with multi-modal 

therapy including surgery, radiotherapy and chemotherapy. However, whilst there has 

been an improvement in the outcome for children with cancer as a whole over the last 

few decades, with over 75% of all children now surviving beyond 5 years (ONS 2010), 

the outcome for children with a CNS-PNET remains dismal. Fewer than half of the 

children who develop this tumour survive. Improving the chance of cure remains the 

most critical goal in the clinical management of patients with this disease.   

Establishing the diagnosis of a CNS-PNET remains both a significant challenge and 

controversial. Whilst the introduction of routine INI1 staining has aided in the 

differentiation between ATRTs and other CNS tumours including CNS-PNETs, no 

specific test is currently available to confidently classify a tumour as a CNS-PNET. On 

histopathological examination, a CNS-PNET appears as a highly malignant tumour but 

may exhibit a diverse array of non-specific features which frequently overlap with, and 

may be misclassified as other diagnoses, and in particular high grade gliomas. New 

approaches are therefore essential to assist in the diagnosis of this tumour.  

The PNET concept, devised by Harte and Earle in 1973, classified together tumours 

throughout the CNS with similar histopathological features. The hypothesis that 

histopathologically similar tumours would respond to a similarly unified treatment 

approach has directed international management in these tumours for over three 

decades. The consistent disparity in outcome however, between intracranial PNETs 

arising from the cerebellum (medulloblastoma), and those arising elsewhere in the 

CNS has led to renewed controversy in the PNET concept. The contemporary 

hypothesis is that despite histopathological similarities, the differences in outcome 

seen in children with intracranial PNETs at different sites reflect diversity at the 

molecular genetic level. 
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A well characterised series of molecular events have now been shown to be implicated 

in medulloblastoma development. The most frequent aberration in this disease is 

RASSF1A promoter methylation, which has been shown to occur in 79-100% of cases. 

The development of medulloblastomas in patients with cancer predisposition 

syndromes including Li-Fraumeni, Turcot and Gorlin syndromes, suggested that 

aberrant p53, Wnt and sonic hedgehog signalling respectively is involved in the 

pathogenesis of this disease, and dysregulation of these pathways are frequently 

observed in tumour samples. In addition, large clinical trial based cohorts in this 

disease have more recently revealed the prognostic impact of some of these events 

which are now being exploited clinically to provide stratified treatment regimens.  

To date, research into CNS-PNET has been very limited. The few studies that have been 

undertaken typically have arisen as part of either a paediatric brain tumour or 

intracranial PNET study and have shown extensive molecular heterogeneity in the CNS-

PNETs.  Consequently, studies have commonly lacked sufficient power or specific focus 

to detect novel insights into the pathogenesis of CNS-PNETs.  Investigation of 

molecular events frequently observed in other intracranial PNETs in a large and well 

characterised CNS-PNET cohort is required to determine the role of these events in this 

disease, and to define the relationship with medulloblastomas. 

The overall objective of this project was to investigate in comparison with 

medulloblastomas the molecular mechanisms that may be involved in the 

development of a CNS-PNET and to determine their clinical and histopathological 

significance, by attending to the following specific aims: 

 

1.  To investigate in a large cohort of primary CNS-PNET tumour samples and cell 

lines the role of common genetic features associated with medulloblastomas, 

and to identify clinical and histopathological correlates (Chapter 3). 
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2.   To follow up the findings of recent large-scale genome-wide genetic studies in 

brain tumours in which novel candidate genes have been identified to 

determine their role in CNS-PNET (Chapter 4). 

 

3.  Undertake a systematic investigation of the CNS-PNET methylome in a cohort 

of primary tumours, to investigate the role of DNA methylation epigenetic 

modification in CNS-PNETs, to identify new genetic markers in CNS-PNET and 

their clinico-pathological significance, and also to compare and contrast the 

CNS-PNET methylome with medulloblastomas and other paediatric brain 

tumours (Chapter 5). 
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2 Chapter 2 

Chapter 2 

Materials & methods 
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2.1 Clinical cohort 

2.1.1 Primary CNS-PNET tumour samples 

The cohort of primary CNS-PNET samples for this study was collected in the Northern 

Institute for Cancer Research (NICR) tumour bank at Newcastle University. Tissue was 

stored in accordance with the Human Tissue Act 2004 (Human Tissue Act, 2004) and 

the Human Tissue Authority (HTA) code of practice (Human Tissue Authority, 2009). 

Ethical approval for the registration, storage, access and study of samples was 

obtained from the Newcastle and North Tyneside Local Research Ethics Committee. All 

clinical data was anonymised. 

The cohort consisted of 39 primary CNS-PNETs. The samples (frozen tumour material 

in 21 cases and formalin fixed and paraffin embedded in a further 18) were kindly 

provided from local, national and international sources including the Newcastle Upon 

Tyne NHS Trust pathology archive, the Children Cancer and Leukaemia Group (CCLG) 

tumour bank, Professor Richard Grundy (Nottingham University, UK), Professor 

Michael Fruhwald and Dr Martin Hasselblatt (University Hospital of Munster, Germany), 

and Dr Peter Hauser (Semmelweis University, Budapest, Hungary). All cases underwent 

a central pathological review. Cases were reviewed in three review sessions by UK 

neuropathologists involved in providing central pathological review for the UK Children 

Cancer and Leukaemia Group (CCLG) brain tumour studies, and included Professor 

David Ellison (formerly Northern Institute Cancer Research, Newcastle University, UK 

and now, St Judes Children’s Research Hospital, Memphis, USA), Dr Keith Robson and 

Dr Jim Lowe (University of Nottingham, UK), and Dr Tom Jacques (Great Ormond Street 

Hospital, London, UK).  

The characteristics of the cohort are summarised in Table 2.1. The metastatic stage for 

each tumour is given using the Chang staging system score (see section 1.4.4). 

Tumours in the cohort collected prior to the routine clinical assessment of CSF to 

ascertain evidence of microscopic metastatic disease and therefore where no CSF 

results is available are classified by convention as stage M0/1, and are considered as 



102 

 

being non-metastatic (Pizer, Weston et al. 2006). Additional details of the tumour 

samples used in each study will be given in the methods section of each results chapter. 
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Tumour 
sample 

ID 
Diagnosis Site Sex 

Age at 
diagnosis 
(Months) 

Metastasis 
Stage 

(Chang) 
Status 

Follow up 
(months) 

Investigated 
in studies in 

chapter 

3 4 5 

SP3 CNS-PNET Parieto-occipital lobes Male 48 M0/1 Dead 17       

SP4 CNS-PNET Parietal lobe Female 78 M0/1 Alive 121       

SP7 CNS-PNET Intraventricular Female 75 M0 Dead 7       

SP10 CNS-PNET 3rd Ventricle Male 158 M0/1 Alive 112       

SP13 CNS-PNET Cerebral Male 106 M0/1 Dead 71       

SP14 CNS-PNET Parietal lobe Female 105  - Alive 100       

SP21 CNS-PNET Left tempoparietal lobes Male 65   Dead 25       

SP23 CNS-PNET Cerebral Male 126 M0/1 Alive 108       

SP24 CNS-PNET Cerebral Male 31  - Dead 7       

SP28 CNS-PNET Right frontal lobe Female 23 M0/1 Dead 9       

SP40 CNS-PNET Right parietal lobe Female 348 M0/1  -  -       

SP41 CNS-PNET Left Fronto-temporal lobes Male 56 M0/1 Dead 24       

SP42 CNS-PNET Right temporal lobe Female 288 M0/1 Alive 24       

SP43 CNS-PNET Left parietal lobe Male  - M0/1  -  -       

SP45 CNS-PNET Right parietal lobe. Female 11 M0/1  -  -       

SP46 CNS-PNET Left frontal lobe Female 312 M0/1 Dead 36       

SP47 CNS-PNET Left frontal lobe Female 87 M0/1 Alive 132       

SP49 CNS-PNET Right temporal lobe Female 15 M2 Alive 36       

SP50 CNS-PNET Left tempoparietal lobes Female 36 M0/1 Dead 15       
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SP51 CNS-PNET Cerebral Female 360  - Dead 55       

SP52 CNS-PNET Left parietal lobe Male 127 M0/1 Alive 43       

SP54 CNS-PNET Infra + Supratentorial Female 26 M0/1 Dead 3       

SP55 CNS-PNET Temporal lobe Male 77 M0/1 Dead 15       

SP57 CNS-PNET Frontal + temporal lobes Male 21 M0/1 Alive 39       

SP58 CNS-PNET Right (superficial) parietal lobe Female 223 M0 Alive 17       

SP101 CNS-PNET Right parietal lobe Female 10 M2 Dead 41       

SP103 CNS-PNET Right frontal lobe Female 20 M0 Dead 0       

SP104 CNS-PNET Right parietal lobe Male 122 M0 Alive 52       

SP106 CNS-PNET Right frontal lobe Male 141 M3 Dead 30       

SP108 CNS-PNET Left cerebral hemisphere Male 107 M2 Dead 71       

SP110 CNS-PNET Right temporal Lobe Male 37 M4 Dead 6       

SP111 CNS-PNET Right frontal, temporal & parietal lobes Female 53 M0 Alive 36       

SP113 CNS-PNET Sub thalamic, left lateral & 3rd ventricle  Male 142 M0 Dead 0       

SP115 CNS-PNET Right frontoparietal Lobes Female 71 M0 Dead 5       

SP116 CNS-PNET Left frontal lobe Male 61 M0 Dead 21       

SP117 CNS-PNET Midline frontal region Male 59 M2 Dead 9       

SP124 CNS-PNET Suprasellar Female 14 M2 Alive 24       

SP125 CNS-PNET Suprasellar Female 144 M0 Alive 3       

SP126 CNS-PNET Right parietal lobe Male 84 M1 Dead 1.6       

Table 2.1. Clinical characteristics of CNS-PNETs used in studies. Highlighted boxes indicate cases investigated in studies described in specific 
chapters of this thesis.
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2.1.2 Normal brain tissue cohort 

A panel of normal brain tissue samples were also investigated (Table 2.2) which was 

derived from Newcastle Upon Tyne NHS Trust post-mortem specimens. The conditions 

in which the samples were collected and stored were as described in section 2.1.1 for 

the tumour cohort assembly. 

 

ID Site Age Sex 

cbll17 Cerebellum prenatal* male 

cbll18 Cerebellum prenatal* male 

cbll19 Cerebellum  -  - 

cbll20 Cerebellum 67 years male 

cbll21 Cerebellum newborn female 

cbll22 Cerebellum 60 years male 

cbll23 Cerebellum prenatal* female 

cbll24 Cerebellum prenatal* male 

Table 2.2. Clinical characteristics of normal brain samples used in this study. 
*Prentatal samples from foetuses as 18-22 weeks gestation. 

 

2.1.3 CNS-PNET cell lines 

Two immortalised cell lines of CNS-PNETs were investigated (PFSK and CHP707m), and 

these were both kindly donated by Dr Michael Grotzer (University Children’s Hospital, 

Zurich, Switzerland) and cultured for experiments. PFSK was derived from a 22 month 

old boy with a right frontal lobe CNS-PNET. He underwent a subtotal resection and 

received postoperative chemotherapy, but died within 4 months of diagnosis from 

extensive disease. (Fults, Pedone et al. 1992). The second cell line, CHP707m, was 

derived from a 33 year old man with a right frontal lobe CNS-PNET. He also underwent 

a subtotal resection and this was followed by radiotherapy to the tumour bed and the 
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craniospinal axis. He relapsed at 11 months and the cell line was derived from a bone 

marrow metastatic deposit at this time. (Baker, Reddy et al. 1990). The clinical and 

cytogenetic features of PFSK and CHP707m are summarised in Table 2.3. 

The CHP707m cell line contains a t(11;22) translocation. This is however a 

characteristic feature of Ewing’s sarcomas and peripheral PNETs (Nagao, Ito et al. 1997) 

and is not observed in CNS-PNETs. Indeed, the presence of a t(11;22) has been used to 

distinguish peripheral PNETs from CNS-PNETs when these tumours may rarely arise in 

the central nervous system (Dedeurwaerdere, Giannini et al. 2002; Ohba, Yoshida et al. 

2008). There is therefore some doubt as to the true nature of the CHP707m cell-line 

and caution with interpreting results based on experiments using this, as it may in fact 

have arisen from a peripheral PNET/ Ewings rather than a CNS-PNET. 
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PFSK CHP707m 

Sex Male Male 

Patient age 22 months 33 years 

Location Right Frontal lobe Right Frontal lobe 

Surgery Subtotal Subtotal 

Radiotherapy No Tumour bed + C/S axis 

Chemotherapy Vincrisine, Cyclophosphamide, Methylprednisolone No 

Relapsed 
At 3 months, metastasising into both cerebral 

hemispheres At 11 months, metastatic to bone marrow 

Died At 4 months from diagnosis At 21 months after diagnosis 

Cell line From primary tumour at diagnosis From metastatic deposit at relapse 

Cytogenetics 81,XXYY,t(Xp;8q), del(1)(p22), -2, -3, del(4)(p14), -5, 
-8, -9, -9, -13, -13, -14, -14, -16, -20, -22 

n52XY,+Y, -1,-3,+8,-11,+13, -14, +17, -20, -22, +i(1q), 
+der(3), del(5)(q31), del(7)(q21q32), +del(7)(q11.2), 

t(9;18)(q13;q11.2), +der(11ins) t(11,22) 

Table 2.3. Clinical and cytogenetic features summary of supratentorial CNS-PNET cell lines. 
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2.1 CNS-PNET cell line in vitro culture 

2.1.1 Principles of in vitro cell culture 

Cell culture is the culture of dispersed cells taken from the original tissue and was first 

devised in 1902 by Haberlandt (Freshney 2000). Tissue culture is used as a means of 

studying the behaviour of cells at relatively low cost whilst the physicochemical 

environment is controlled. A primary cell culture is started from cells taken directly 

from an organism and may be propagated into a cell line. A continuous cell line has the 

capacity for infinite survival and is therefore also referred to as being “established” or 

“immortalised” as described by George Gey, in 1952,  with the production of the first 

continuous human (uterine cervix cancer) cell line, HeLa(Jones, McKusick et al. 1971).  

All tissue culture experiments were performed in a Class II tissue culture hood 

(Streamline lab) using standard sterile techniques and pipettes.  

 

2.1.2 Resurrection of cells from liquid nitrogen 

Cryopreservation tubes (Nunc, Denmark) containing the frozen cells were removed 

from liquid nitrogen and placed on ice. Tubes were thawed rapidly in a 37°C water 

bath. The thawed cells were then transferred to pre-cooled 25ml universal tubes kept 

on ice. Ice-cold Fetal Calf Serum (FCS) (Sigma-Aldrich, UK) was added drop-wise to the 

cells; the cell suspension was mixed gently and left on ice for 20 minutes to allow the 

dimethylsulphoxide (DMSO) to diffuse out of the cells. The universal tube was then 

centrifuged for 5 minutes at 1000g in a MSE Mistral 2000R centrifuge (MSE 

Incorporation, USA) and the supernatant was discarded. The cell pellet was 

resuspended in fresh medium containing 10% (v/v) FCS and transferred to a sterile 

tissue culture flask (Corning, USA) and placed in a humid incubator (SANYO) to culture. 
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2.1.3 Cell line maintenance and sub culture 

Cells were grown in optimal growth conditions at 37°C with air containing 5% carbon 

dioxide within a humid incubator (SANYO). The cells growing in culture were passaged 

twice weekly to optimise growth potential and nutrient availability. The flasks were 

first inspected for contamination and growth status assessed by cell density under a 

phase contrast inverted light microscope (Nikon E400) at x100 magnification. The 

colour of the medium was used as an additional guide as to when replenishment of 

medium was necessary since it contained phenol red which becomes progressively 

more yellow with a  fall in pH, seen with the accumulation of metabolic waste products 

(Sambrook and Russell 2001). 

 

2.1.3.1 Maintenance and subculture of PFSK 

Cells were grown in RPMI 1640 media (Sigma) containing 10% (v/v) FCS and 1% (v/v) 

sodium pyruvate (Sigma-Aldrich).  1% (v/v) streptomycin / penicillin (sigma-Aldrich, UK) 

was also added to protect against bacterial contamination. To passage cells excess 

media was gently aspirated off the cells, which were then washed with 5-15ml of 

sterile phosphate buffered saline (PBS) at 37°C to remove traces of FCS. PBS was then 

drawn off the cells and 1-3ml of 1xEDTA- trypsin solution (Sigma-Aldrich, UK) was 

added to detach cells from the flask. Cells were incubated for 5 minutes at 37C, and 

microscopy was used to gauge detachment. An equal volume of prepared media was 

used to neutralise the trypsin and then the cells were transferred to a 25ml universal 

tube. The universal tube was centrifuged at 1000g for 5 minutes in a MSE Mistral 

2000R centrifuge (MSE Incorporation, USA) and the supernatant was discarded. The 

cell pellet was resuspended in 10ml fresh media pre-warmed to 37°C, before being 

split into 3-4 aliquots. Each aliquot was transferred using sterile pipettes into a 

separate sterile flask and made up to 25ml with fresh media at 37°C. 
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2.1.3.2 Maintenance and subculture of CHP707m 

Cells were again grown in RPMI 1640 media (Sigma-Aldrich, UK)) containing 10% (v/v) 

FCS, 1% Sodium pyruvate, and 1% (v/v) streptomycin / penicillin. CHP707m grows as a 

non-adherent culture and so to passage the cells the contents of the flask were 

centrifuged at 1000g in a MSE Mistral 2000R centrifuge (MSE Incorporation, USA) for 5 

minutes in a 25ml sterile universal container. The supernatant was discarded and the 

cells pelleted at the bottom were washed in 20ml sterile PBS at 37°C. The PBS was 

removed by centrifugation at 1000g for 5 minutes. The resulting cell pellet was 

resuspended in 10ml fresh media pre-warmed to 37°C, before being split into 3-4 

aliquots. Each aliquot was transferred using sterile pipettes into a separate sterile flask 

and made up to 25ml with fresh media at 37°C. 

 

Cell line CHP707m PFSK 

Growth characteristics Non- adherent Adherent 

Media RPMI 1640 R8758 RPMI 1640 R8758 

   + 10% Fetal Calf Serum  + 10% Fetal Calf Serum 

   + 1% Sodium Pyruvate  + 1% Sodium Pyruvate 

  

 + 1% Penicillin/ 
streptomycin 

 + 1% Penicillin/ 
streptomycin 

Table 2.4. Supratentorial CNS-PNET cell lines growth characteristics and media 
requirements. 

 

2.1.3.3 Mycoplasma testing 

Unlike bacterial and fungal contamination, infection with mycoplasma is not readily 

identified by the naked eye. Cultures were tested every 2 months for mycoplasma 

infection using the MycoAlert® mycoplasma detection kit (Lonza, UK) following the 

manufacturer’s instructions, by DR E Matheson in the Northern Institute for Cancer 

Research. Any mycoplasma positive cultures identified would be discarded.  
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2.1.3.4 Cell number assessment 

To determine the concentration of cells, the suspension was firstly gently pipetted to 

remove clumping and to generate a suspension containing single cells. A 10µl aliquot 

of suspension was then drawn under the cover-slip on a haemocytometer (Sigma-

Aldrich, UK) by capillary action.  The haemocytometer had 2 chambers each comprising 

9 large grids of 25 squares. The area of each grid was 1mm2 with depth of 0.1mm with 

a resultant volume of 0.1mm3 (1x10-4ml).  Using a light microscope cells contained in 

four large grids were counted, including those cells on the top and left borders only, to 

avoid counting the same cell twice. The number of cells was subsequently divided by 

four to produce an average number of cells in each grid, and finally multiplied by 104 to 

ascertain the total number of cells/ ml in suspension. 

 

2.1.4 Harvesting cells for DNA extraction 

Cell suspensions were generated and removed from the tissue culture flask into 25ml 

universal tubes as previously described (section2.1.3). Cell numbers were assessed as 

described in section 2.1.3.4. The cell suspension was centrifuged at 1000g in a MSE 

Mistral 2000R centrifuge (MSE Incorporation, USA). The supernatant produced was 

discarded and the resulting cell pellet was resuspended in 20ml of ice-cold PBS. The 

suspension was again centrifuged at 1000g for 5 minutes before the supernatant was 

gently aspirated away from the cell pellet which was resuspended in PBS to yield a 

final concentration of 5x106 cells/ ml. Aliquots contacting 1ml of cell suspension were 

transferred into 1.5ml microfuge tubes and centrifuged at 12000g using an Eppendorf 

5147R centrifuge (eppendorf). The supernatant was gently aspirated from the tubes 

without dislodging the cell pellet which was snap-frozen with liquid nitrogen and 

stored until DNA extraction, at -80°C. 
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2.1.5 Long-term cryopreservation of cell lines 

The cell suspension from the tissue culture flask was transferred into a 25ml universal 

tube and centrifuged at 1000rpm for 5 minutes. The supernatant was discarded and 

the cells were resuspended at a concentration of 5-6x106 cells/ml in ice cold FCS and 

left on ice for 10 minutes. Pre-cooled FCS containing 20% DMSO was added drop wise 

to minimise shock to the cells in an equal volume to the cell suspension. To allow the 

DMSO to permeate the cells, the universal tube was left on ice for 30 minutes. The cell 

suspension was transferred to pre-cooled cryopreservation tubes and stored overnight 

at -80C, before being transferred into liquid nitrogen for long-term storage. 

 

2.2 DNA extraction 

2.2.1 Primary tumour DNA extraction 

DNA from formalin fixed-paraffin embedded material (FFPE) was extracted using the 

QIAamp DNA FFPE Tissue Kit (Qiagen, UK). The FFPE tissue was first dewaxed and 

digested using 1-2x25µm curls according to the manufacturer’s instructions. For 

samples where frozen material was available the DNeasy kit (Qiagen, UK) was 

employed, and extraction was achieved following the manufacturer’s instructions. 

 

2.2.2 Cell line DNA extraction 

DNA from cell line pellets was extracted using the DNeasy kit (Qiagen, UK) according to 

the manufacturer’s instructions and stored in the EB elution buffer provided.  
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2.2.3 Quantification of extracted DNA 

The concentration and quality of extracted DNA was evaluated using the NanoDropTM 

Spectrophotometer (Thermo scientific). Using 1µl of sample the spectrophotometer 

assessed the UV light absorbency (optical density (OD)) at OD260 and OD280. DNA 

molecules show maximum UV light absorbance at OD260 and therefore the amount of 

light absorbed at OD260 reflects the concentration of DNA in a sample, and the ratio 

with OD280 give an indication of the DNA quality. Using spectrophotometry to estimate 

DNA concentration is reviewed by Sambrook et al (Sambrook and Russell 2001). 

Working stocks of 25ng/µl were prepared and stored at -20°C, and concentrated 

stocks were stored at -80°C. 

 

2.3 Polymerase chain reaction (PCR) 

2.3.1 Introduction 

The polymerase chain reaction (PCR) was devised by Mullis and colleagues in 1984, 

and is a method for the in vitro amplification of DNA fragments (Mullis and Faloona 

1987). A sample containing DNA is first heated to 95oC so that 2 single strands are 

produced (denaturation step). The reaction mixture is then cooled so that short 

amplimers (oligonucleotides of 15-30 bases) hybridise to the target sequence 

(annealing step). The optimal temperature for the primer annealing depends on the 

melting temperature of the primers used (50-65oC). The next step (extension step) 

utilises a thermostable DNA polymerase to catalyse the addition of deoxynucleotides 

(dNTPs) to the new double strand DNA in a 5’ to 3’ direction at a rate of 1000 bases per 

second at 72oC. This cycle yields 2 copies of the targeted DNA, a further cycle will 

result in 4 double stranded copies. The process is repeated for 30- 40 cycles resulting 

in an exponential accumulation of PCR product. 
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Figure 2.1. The three steps of a PCR reaction. During the first step a) the double 
stranded DNA is denatured by the reaction being heated to 95°C. The temperature is 
then lowered b) to enable specific primers to anneal to either strand of the single 
stranded DNA. In the final extension step c) the temperature is raised to 72°C and the 
DNA polymerase adds complementary dNTPs to synthetise new DNA strands. Figure is 
adapted from (http://commons.wikimedia.org/wiki/File:PCR_Steps.JPG) 

 

 

http://commons.wikimedia.org/wiki/File:PCR_Steps.JPG
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Figure 2.2. The exponential amplification of PCR. From a single starting template after 
35 cycles of a PCR reaction 68 billion copies are produced (adapted from: 
users.ugent.be/~avierstr/principles/pcrsteps.gif). 

 

2.3.2 Primer design 

A set of two primers were designed for each PCR reaction which contained 

complimentary sequences to the region of DNA to be amplified. One primer was 

designed to bind to the forward DNA strand, and another to the reverse to which DNA 

polymerase would attach to promote the synthesis of new complimentary DNA strands 

in the 5’ to 3’ direction.    

Primers were optimised considering the following factors to contain a G/C content of 

approximately 50%, be of 20-25 nucleotides in length, to avoid complementary regions 

between the primer pair, and to avoid repetitive sequences to prevent the formation 

of hairpin loops. All designed primers were reviewed using BLAST 

(http://blast.ncbi.nlm.nih.gov) and BLAT (http://genome.ucsc.edu) searches to ensure 

that the resultant amplified PCR products would contain only the correct and unique 

http://genome.ucsc.edu/


116 

 

sequence. Details of primers used in particular studies are given in the methods of the 

relevant chapter (see sections 3.2, 4.2 and 5.2). 

 

2.3.3 Standard PCR protocol 

For each sample to be tested, 25μl reactions mixtures were set up and volumes were 

doubled if sequencing was to be performed in PCR tubes containing 2.5l each of 

10M Forward and Reverse Primer (Invitrogen), 2.5l of Amplitaq Gold 10 x PCR Buffer 

(Applied Biosystems), 1.0l of 5mM dNTPs (Amersham Biosciences), 1.5l of 25mM 

MgCl2 (Applied Biosystems), 0.3l Amplitaq Gold (Applied Biosystems) and 12.7l of 

sterile water to a final volume of 22l. Two microlitres of each cell line or tumour DNA 

(25ng/l) were added to individual tubes as outlined in Table 2.5. The tubes were then 

placed in a GeneAmp PCR System 9700 machine (Applied Biosystems) programmed to 

perform automated cycles using parameters optimised for each reaction as shown in 

Table 2.6. 

 

Reagent Volume 
Final 

Concentration 

Source 

  (µl)   

Forward primer (10µM) 2.5 1µM Invitrogen 

Reverse primer (10µM) 2.5 1µM Invitrogen 

10 PCR buffer 2.5  - Applied Biosystems 

Magnesium chloride (25mM) 1.5 1.5mM Applied Biosystems 

dNTP (5mM) 1 0.2mM Amersham Biosciences 

Distilled water 12.7  -  ELGA, UK 

AmpliTaq Gold (5U/µl) 0.3 0.06U/µl Applied Biosystems 

Genomic DNA (25ng/µl) 2 2ng/µl  -  

Total 25     

Table 2.5. Standard PCR reaction reagents. Reagents were added as listed to make a 
final volume of 25µl. 
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Stage 1 

Stage 2 

Stage 3   Step 1 Step 2 Step 3 

Process Denaturation Denaturation Annealing Extension Elongation 

Temperature 95°C 95°C 50-65°C 72°C 72°C 

Duration (mins)  5-10 0.5 -1 0.5-1 0.5-1 7 

No. Of cycles 1 30-40 1 

Table 2.6. Standard PCR conditions. The PCR reactions can be divided into 3 main 
stages. During the first stage the double stranded DNA is denatured and the Taq 
polymerase activated. The second stage consists of three steps (denaturation, 
annealing and extension) which are repeated in 30- 40 cycles. In stage 3 the extension 
step is elongated to enable the completion of all newly synthesised single stands. 
Following the completion of the PCR the product is cooled for storage to 4°C. 

 

2.3.4 Fast-PCR protocol 

Some PCR reactions were performed using a contemporary rapid methodology. The 

GeneAmp® Fast PCR system (Applied Biosystems) uses a hot start polymerase system 

that has been optimised to reduce the overall amplification time, reducing the time 

taken to perform a PCR from 2-3 hours to 20 -30 minutes. For a standard reaction , 

10µl of GeneAmp® Fast PCR Mix (2X) was added to 2µl of both 10µM forward and 

reverse oligonucleotide primers, 50ng DNA template and made up to 20µl with water 

(Elga). The samples were placed in a GeneAmp PCR System 9800 machine (Applied 

Biosystems) and the PCR reaction run using the settings shown in Table 2.7. During 

cycling there is a combined annealing and extension step. The temperature for this 

step is dependent on the melting temperature of the primers but must be set between 

62-72°C for the optimal performance of the GeneAmp Fast PCR Master Mix. The 

duration of this step is determined by the PCR product length and is set at 25 seconds 

for every 1000 bases. Details of primers and cycling conditions for each experiment are 

given in the method sections of chapters 3,4 and 5.  
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Step 1 2 3 4 

Denaturation 

& 

Taq activation 

PCR Amplification 

(30-40 cycles) 

Elongation HOLD 

Denature Annealing &  

Extension 

Temp  95oC 94oC 62-72oC 72oC 4oC 

Time  10-60 sec 0 sec 25 seconds / Kb 10-60 sec  

Table 2.7. Fast PCR standard conditions. Conditions programmed into a GeneAmp PCR System 9800 machine (Applied Biosystems). A 
combined annealing and denaturation step is set at a temperature in between a conventional PCR extension temperature of 72°C and an 
annealing temperature based on the melting point of the oligonucleotide primers and is set to continue for a period based on the 
predicted amplification product size.
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2.3.5 PCR product purification 

The products obtained after a PCR reaction contain not only the desired amplified 

sequence but also some low molecular weight sequences including primer excess and 

additional primer dimer structures. These sequences may impede subsequent 

sequence analysis and were removed using the PureLinkTM PCR Purification Kit 

(Invitrogen, UK) according to the manufacturer’s instructions. The purified PCR 

products were stored at -20°C before processing.   

 

2.4 Agarose gel electrophoresis 

2.4.1 Introduction 

Agarose gel electrophoresis is a technique used to separates the product of a PCR 

reaction, DNA fragments, according to their size.  The negatively charged DNA 

molecules are transported across the agarose gel by the application of an electric 

current.  The migration of larger fragments is reduced by the gel’s polysaccharide 

matrix resulting in separation based on molecular size which may be referenced 

against DNA ladders producing bands of known sizes. The DNA is visualised by adding 

ethidium bromide to the gel which intercalates between the bases of the DNA and 

fluoresces under ultraviolet light illumination. 
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Figure 2.3. Image of a electrophoresis gel stained with ethidium bromide under UV 
light. Comparing the size of the bands against the standard size marker ladder 
(Invitrogen, UK) in lane 1 shows the products in lanes a) i 2 and 3 to be 210 base pairs, 
b) 5 and 6 to be 336 base pairs and c) 8 and 9 260 base pairs. No PCR product is seen in 
lanes 4 and 7 (arrows). 

 

2.4.2 Standard protocol 

Agarose gels were produced at a 2% (w/v) concentration in 1 x TBE buffer. 150ml of 

0.1mM Tris, 1M Boric acid, 10mM EDTA buffer (1 x TBE buffer) was added to 3g of 

agarose (Invitrogen), this solution was heated in a microwave. Two drops of ethidium 

bromide was added to the molten agarose when cooling which was then set in a gel-

casting tray (Gibco) with combs in position to produce wells once the gel set. The PCR 

product was mixed (4 parts to 1) with Orange G loading buffer (800l Glycerol, 40l 

0.5M EDTA pH 8.0, 1160l water and a pinch of Orange G (Sigma)) before being loaded 

into an individual well on the gel. A Power Pac 3000 (Bio-Rad) was used to run the gel, 

immersed in a gel tank containing 1 x TBE (see appendix), at 100 volts. Band sizes were 

determined using a 100bp marker (125l of 1g/l 100bp marker (Invitrogen), 250l 

of bromophenol blue loading dye and 875l 1 x Tris EDTA (TE)) and the gels were 

photographed using a Bio Vision UV trans-illuminator (Biogene Limited). 

 



121 

 

2.5 Direct sequencing 

2.5.1 Introduction 

This method of sequencing, illustrated in Figure 2.4, was devised by Frederick Sanger in 

1974 (Sanger, Nicklen et al. 1977).  A short oligonucleotide primer first attaches to the 

DNA template. DNA polymerase and dNTPs are added to the mix so that 

complementary strands can be produced. In addition however dideoxynucleoside 

triphosphates (ddNTPs) are added which are dideoxy analogues that lack the 3’OH 

group necessary for chain elongation. 

The new strand synthesis continues until it is terminated by the incorporation of a 

ddNTP lacking the necessary hydroxyl group for chain elongation. Using the 4 different 

dideoxy analogues the new strands formed will terminate at all the possible nucleotide 

positions. The resultant mix will contain new strands of every length. For automated 

DNA sequencing the ddNTPs are labelled using different fluorescent probes. The 

sample is passed across a gel and separated according to size by electrophoresis. The 

samples pass across a laser detector which interprets the fluorescence wavelength and 

assigns a base at that position. 



122 

 

 

 

Figure 2.4. Sanger sequencing. The steps involved in sequencing are shown. (a) DNA sequence to be analysed. (b) A mixture of 
nucleotides are added including labelled dideoxynuceoside triphosphates (ddNTPs) which lack a hydroxyl group necessary for chain 
elongation so that (c) when incorporated in to the sequence result in sequence termination. The pool of sequences of various lengths, are 
then (d) passed across an electrical current. Smaller chains pass across first and the terminal labelled ddNTP is detected by a fluorescence 
detector and (e) an electrophoregram of the sequence is generated.  
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2.5.2 Standard protocol 

PCR reactions were carried out and purified as detailed above (section 2.3). 

Sequencing reactions were carried out using CEQ 2000 Dye Terminator Cycle 

Sequencing (DTCS) with Quick Start Kit (Beckman Coulter). The following reagents 

were added to 0.2ml thin-walled PCR tubes (Abgene): 8l of DTCS Quick Start Master 

Mix, 0.5l of 8M forward or reverse primer (as used for the original PCR reaction), 

and 11.5l of DNA purified using the QIAquick Gel Extraction Kit. The tubes were run 

on the following cycle using a GeneAmp PCR System 9700 machine: 

96C for 20 seconds, 50C for 20 seconds and 60C for 4 minutes, for a total of 30 

cycles, followed by a holding step of 4C.  

The sequencing products were precipitated using the CEQ 2000 DTCS Kit. Four 

microlitres of stop solution (1.5M NaOAc and 50mM EDTA, prepared by adding equal 

volumes of 3M NaOAc and 100mM EDTA (Sigma-Aldrich)) and 1l of 20mg/ml 

glycogen (Beckman Coulter) were added to 1.5ml eppendorph tubes. The sequencing 

reactions were transferred to the appropriately labelled tubes and vortexed. Sixty 

microlitres of ice-cold 95% (v/v) ethanol was added to the tubes, which were 

immediately centrifuged at 10000g 4C for 20 minutes in an Eppendorf 5417R 

Centrifuge. The supernatant removed and the pellets were rinsed twice with 200l of 

70% ice-cold ethanol. The samples were centrifuged at 12000g for 3 minutes and the 

supernatant carefully removed in between each washing. The pellets were vacuum 

dried for approximately 40 minutes, to remove all remaining ethanol. Each sample was 

resuspended in 30l of sample loading solution (SLS, Beckman Coulter). 

Samples were loaded into the appropriate wells on the CEQ sample plates (Beckman 

Coulter). One drop of light mineral oil (Beckman Coulter) was added to the surface of 

each sample on the plate. The plate was loaded into the CEQ 8000 Genetic Analysis 

System and processed using the appropriate method program for the size of the PCR 

product. Sequence traces were analysed using the CEQ analysis software.  
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2.6 Quantitative real-time PCR (qRT-PCR)  

2.6.1 Introduction 

A PCR reaction goes through three phases: exponential, rate-limiting and plateau. 

Quantitative real-time PCR (qRT-PCR) was devised in 1992 to take advantage of these 

properties to enable the simultaneous amplification and quantification of PCR 

products (Higuchi, Dollinger et al. 1992). At the start of a PCR reaction reagents are 

plentiful and the DNA template is at a low concentration so as not to interfere with 

primer binding, and therefore the PCR amplification proceeds at an exponential rate 

(the exponential phase).  Eventually, when reagents become limited and the 

concentration of DNA template inhibits primer binding and further template synthesis, 

the reaction enters a rate-limiting phase. The point at which the reaction exits the 

exponential phase and enters the rate limiting phase is variable. Finally the formation 

of product stops and the reaction enters the terminal plateau phase. Analysis of PCR 

products in the plateau phase can identify the presence or absence of a particular 

product as in conventional PCR (see section 2.4), but cannot determine the quantity of 

starting template. Measurement however of the amount of product during the 

exponential phase of a PCR reaction permits the estimation of the template quantity. 

Higushi et al  first demonstrated that a PCR method could both simultaneously amplify 

and quantify PCR products exploiting the characteristics of the exponential phase of a 

PCR reaction with the addition of ethidium bromide to the reaction reagents (Higuchi, 

Dollinger et al. 1992). Ethidium bromide intercalates into double-stranded DNA so that 

the intensity of fluorescence emitted is proportional to the quality of double stranded 

DNA produced. The fluorescence emitted at the end of every PCR cycle is plotted and a 

graph plotted which identifies the exponential, rate-limiting and plateau phases, as 

illustrated by Figure 2.5. If a threshold is set in the exponential phase, then the number 

of cycles taken to reach a given threshold will be less in samples with a higher 

concentration of template DNA. The number of cycles required to achieve this 

threshold is defined as the Ct (cycle threshold). Modern quantitative real-time PCR 

(qRT-PCR) protocols in preference to ethidium bromide use less toxic chemistries such 
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as TaqManTM probes (Applied Biosystems) and SYBRTM green (Molecular Probes) to 

intercalate with double stranded DNA. Computerised automated platforms also now 

exist to systematically calculate the level of fluorescence after each cycle. For reviews 

of qRT-PCR, see (Valasek and Repa 2005; Kubista, Andrade et al. 2006). 

 

2.6.2 Absolute quantification (AQ) 

qRT-PCR can be employed to determine the absolute quantity (copy numbers, ng, 

mRNA) of specific genes within a particular sample using an absolute quantification 

(AQ) , or standard curve method (reviewed in(Bustin 2000). For this approach a sample 

of known concentration is first serially diluted to produce a series of samples of known 

concentration. A standard curve is then generated for each target gene and 

endogenous control by plotting the initial concentration of each sample against the 

qRT-PCR cycle number at which the Ct is reached (Figure 2.6). The quantity of a specific 

gene in an unknown sample can then be calculated by interpolation of the standard 

curve using the Ct value of the target gene and endogenous control in the unknown 

sample. The target gene is normalised to the endogenous control to account for 

sampling issues and then determine the absolute quantity of the target gene in the 

unknown sample.  

The slope of the standard curve can be used to measure the efficiency of the reaction 

primers. If the primers are 100% efficient the amount of PCR product should double 

with every cycle in the exponential phase. If then the results from a 10-fold serial 

dilution are plotted, as on a standard curve, the individual Ct values should differ by 

3.32 cycles. The slope of a standard curve from -3.2 to -3.6 therefore represents primer 

efficiencies in the range of 90-100%. 

Following the PCR reaction the AQ method performs a dissociation step which can be 

used to assess primer specificity (Figure 2.7). During this step the PCR products are 

heated from 60°C by 1°C every 15 seconds up to 95°C and the amount of 

fluorescence recorded. When the new double stranded molecules become denatured 
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the fluorescence intensity falls and a bell shaped dissociation plot produced. Due to 

the unique biochemical properties of individual sequences each PCR product has a 

specific dissociation temperature (Tm). Using non-specific primers will therefore result 

in multiple dissociation curves for each product produced rather than the single curve 

seen when primers bind to a single specific template region.  

 

2.6.3 qRT-PCR primer design 

Primers were designed with Dr Sarra Ryan (Northern Institute Cancer Research) to 

cover all transcript variants of a specific gene found using the NCBI and Ensembl 

genomic databases (www.ncbi.nlm.nih.gov, www.ensemble.org). PrimerExpress® 

software (Applied Biosystems, UK) was used to design the qRT-PCR primers with 

amplicons of 50-150 base pair, a Tm of 58-60°C, and have a G/C content of 30-80%. 

The primers were then checked using BLAST (www.ncbi.nlm.nih.gov) and BLAT 

(www.genome.ucsc.edu) searches to determine their uniqueness. Concentrated 

primer stocks (Sigma, UK) were made up to 100nmol with Purelab Ultra water (ELGA, 

UK) and stored at -80°C, and 10nmol working solutions aliquots were stored at -20°C. 

Primer specificity was initially assessed by performing a conventional PCR (section 

2.3.3) and identifying products on an electrophoretic gel (section 2.4.2). A dissociation 

curve was subsequently generated using the AQ method (section 2.6.2) to test for non-

specific products. Nucleic acid sequences of primers used in this study will be provided 

in the relevant methods sections. 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
http://www.ensemble.org/
http://www.genome.ucsc.edu/
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Figure 2.5. An amplification plot produced from a qRT-PCR assay. The number of 
cycles required to achieve the cycle threshold (Ct) for samples (a) and (b) repeated in 
triplicate is shown. The Ct is set during the exponential phase of product amplification. 
Sample (a) consistently requires fewer cycles to achieve Ct compared to (b) which 
suggests an elevated initial sample template.  

 

 

Plateau 

Exponential 

Threshold 
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Figure 2.6. The development of a standard curve in a qRT-PCR assay.  (A) qRT-PCR is 
performed on a serial dilution of a control sample at a known concentration which 
results in the samples with a higher-fold initial template achieving the cycle threshold 
(Ct) with fewer PCR cycles. (B) A standard curve for the primer set shown in (A). The 
slope coefficient is -3.2 showing the PCR efficiency to be almost 100%. The number of 
cycles required to achieve the Ct value is plotted on the y-axis and the amount of 
template DNA on the x-axis. Plots in red record the results of test samples with an 
unknown starting template concentration which can now be calculated by 
interpolating the standard curve.   
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Figure 2.7. A dissociation curve produced from a qRT-PCR assay. The dissociation 
curve for a single gene repeated in triplicate on one sample is shown. A single product 
is produced with a Tm of 78°C.  

 

 

2.6.4 Standard protocol 

QRT-PCR was performed on an ABI PRISM 7900HT instrument (Applied Biosystems, UK) 

using the reagents and reagent concentrations shown in Table 2.8. The assays were 

performed in 384-well plates (Applied Biosystems, UK) which were covered with 

adhesive lids (Applied Biosystems, UK). All samples were assessed in triplicate in a 

single experiment, and where copy number alterations were observed the experiment 

was repeated on two further occasions to corroborate the finding. On each plate a 
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negative control containing Purelab Ultra water (ELGA, UK) and a cell-line DNA positive 

control was added. Standard cycling conditions were as outlined in Table 2.9. The data 

generated was analysed using SDS version 2.2 (Applied Biosystems) and converted into 

Excel®2007 (Microsoft) format for normalisation and further analysis.  

 

Reagent 
Volume 

Final Concentration Source 
(µl) 

SYBR green (+Rox) 5.1  -  Invitrogen, UK 

Forward primer 0.2  - VhBio, UK 

Reverse primer 0.2 0.2µM VhBio, UK 

Purelab Ultra Water 0.5 0.2µM ELGA, UK 

Genomic DNA 4 variable ng/µl  - 

Total 10     

Table 2.8. Standard qRT-PCR reaction reagents. The addition of the Rox reference dye 
reduces the background noise by normalising non-PCR fluorescent fluctuations   
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Stage 1 Stage 2 

Stage 3 

Stage 4 

 

Step 1 Step 2 

Process 
UDG 

Activation 

Denaturation 
& Taq 

activation Denaturation 
Annealing & 

Extension Dissociation 

Temperature 50°C 95°C 95°C 60°C 95°C 60°C 95°C 

Duration 2 min 10 min 15 sec 1min 15sec 20 sec 15 sec 

No. Of cycles 1 1 40 1 

Table 2.9. Standard qRT-PCR conditions. 
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2.7 Loss of heterozygosity (LOH) assessment 

2.7.1 Introduction to LOH 

Loss of heterozygosity (LOH) is a frequent finding in tumours and indicates the loss of 

one of the two alleles of a gene in a cell. By screening paired blood and tumour 

samples and identifying differences, genome-wide scanning techniques which identify 

regions of LOH have been used to identify narrow regions of chromosomal loss for 

further investigation which in turn may harbour tumour suppressor genes (Strachan 

and Read 2004). The identification of LOH can be undertaken using polymorphic 

microsatellite markers. Microsatellites are short polymorphic nucleotide repeat 

sequences consisting of di-, tri-, or tetra- nucleotide repeats (eg; CACACACA, or 

CAGCAGCAGCAG, or CAGTCAGTCAGTCAGT). The number of repeats present is 

polymorphic and therefore for a given microsatellite the number of repeats inherited 

on each allele is likely to be different. If this region were amplified by using flanking 

primers in a PCR reaction, yielding two products would suggest the retention of both 

alleles, whilst the production of a single product in a tumour sample where two are 

seen in the constitutive DNA, would indicate a loss of heterozygosity. 

 

2.7.2 The HOMOD method 

Homozygous mapping of deletions (HOMOD) is a technique used to identify LOH 

without using constitutive DNA as a comparator. HOMOD uses a statistical approach to 

identify extended regions of homozygosity (ERH) with polymorphic satellite markers. 

The frequency of heterozygosity for each marker in the general population is known 

and details may be obtained from databases including the Marshfield Clinic Research 

Foundation (http://research.marshfieldclinic.org/genetics/GeneticResearch/). The 

probability of a number of consecutive markers being homozygous is calculated by 

multiplying the homozyosity scores (1 - heterozygous probability) of each marker 

together. LOH is recorded when the probability of homozygosity at contiguous markers 

http://research.marshfieldclinic.org/genetics/GeneticResearch/
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is ≤0.001, which is typically equivalent to ≥5 adjacent homozygous markers (Goldberg, 

Glendening et al. 2000). 

 

2.7.3 Primer design 

Polymorphic markers covering the chromosomal region to be investigated were 

identified from the Marshfield Research Foundation website 

(http://research.marshfieldclinic.org/genetics/GeneticResearch/). The markers were 

then entered into the National Center for Biotechnology Information (NCBI) Uni-STS 

database from which details of the nucleotide primer sequences and PCR product sizes 

for each marker were derived. The forward oligonucleotide primer of each set was 

labelled with a fluorescent dye, WeLLRED, at the 5’ end (Sigma-Proligo, France). 

Further details of the primers used in HOMOD studies are described in (section 3.2.6) 

 

2.7.4 Standard protocol 

PCR products for each marker were generated using primers described in section 3.2.6 

and methods described in section 2.3.3. Products were subsequently analysed using 

the CEQ 8000 Genetic Analysis System (Beckman Coulter) by loading 0.5µl PCR product 

onto a 96 well plate (Beckman Coulter) and adding 40µl sample loading solution (SLS, 

Bekman Coulter), and 0.5µl 400 size standard (Beckman Coulter). A fragment analysis 

installed programme was run (Frag-4) according to the manufacturer’s instructions. As 

described in paragraph 2.5.2 and illustrated on Figure 2.4, this system involved the PCR 

products travelling across a fluorescent sensor during electrophoresis. Smaller 

products labelled with the WeLLRED dye were detected by the sensor at an earlier 

stage, resulting in a peak in fluorescent intensity. By labelling different PCR primers of 

different sizes with altering coloured WeLLRED tags up to 3 samples were loaded into 

the same well of a plate and analysed together (Figure 2.8). A fragment analysis 

http://research.marshfieldclinic.org/genetics/GeneticResearch/
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programme was subsequently run on the CEQ8000 Analysis System (Beckman Coulter) 

to convert the raw data into interpretable traces. 

 

2.7.5 Interpretation of results 

The results are interpreted by recognising the specific pattern that each polymorphic 

microsatellite produces as shown in Figure 2.9, In addition the pattern of nucleotide 

repeats for each microsatellite (mono, di, tri, tetra) is also considered. The presence of 

a single major peak suggests homozygosity at that marker.  More than one peak may 

however still be interpreted as homozygous, if it is the characteristic pattern of a 

particular marker to produce a number of minor peaks to represent a major peak.  

Minor peaks always occur within 2, 3 or 4 base-pairs of the major peak of a mono, di, 

tri, or tetra nucleotide repeat marker respectively. In addition, a second peak is only 

considered to be a major peak if it is at least 30% of the size of the main peak. Taken 

together samples are assigned as being homozygous for a particular marker if there is 

a single peak, or if additional peaks are less than 30% of the size of the major peak. 

Heterozygosity is assigned if two peaks whose height measure within 50% of each 

other are observed. Where the peak heights fall between 30 and 50% of each other a 

non-informative assignment is made, and the experiment for that sample repeated.  

Details of the polymorphic microsatellite markers used in this study are described in 

section 3.2.6. 
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Figure 2.8. HOMOD trace. For this sample two different polymorphic microsatellite markers have been analysed simultaneously. D17S969 
(black) shows 2 major peaks (128.8 and 137.1) more than 3 base pairs apart indicating a retention of heterozygosity at this locus. The trace in 
blue shows the result for the tetra-nucleotide marker D17S1866. This marker produces a characteristic pattern of 4 minor peaks. These minor 
peaks constitute a single major peak suggesting homozygosity at this locus. Standard size markers are shown in red. 
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Figure 2.9. Fragment analysis traces at a polymorphic microsatellite site. Analysis using dinucleotide polymorphic microsatellite marker 
D17S974.(a) A single major peak (206.7) is produced suggesting homozygosity at this locus. (b) Heterozygous trace. The marker produces a 
major peak for each allele positioned more than 3 base pairs apart (203.1 and 211.3).  Standard size markers are shown in red. 
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2.8 Multiplex ligation-dependent probe amplification 

(MLPA) 

2.8.1 Introduction 

Multiplex ligation-dependent probe amplification (MLPA) is a multiplex PCR based 

method first described in 2002 that can be employed to detect abnormalities in 

genomic DNA or RNA copy number (Schouten, McElgunn et al. 2002). Probes can also 

be designed to incorporate known mutation sites and epigenetic methylation changes 

using methylation-specific MLPA (MS-MLPA)(Eldering, Spek et al. 2003). Crucially 

because it is a multiplex technique up to 50 different sequences may be interrogated 

within a single reaction with only 20-100ng DNA or RNA template. 

The MLPA reaction is divided into five steps: (1) DNA denaturation and hybridisation of 

MLPA probes, (2) ligation reaction, (3) PCR reaction, (4) separation of amplification 

products by electrophoresis, and (5) data analysis, as shown in Figure 2.10. The DNA is 

first denatured and hybridized with two separate oligonucleotide MLPA probes. The 

two oligonucleotide probes are designed to hybridize at immediately adjacent regions 

on the template DNA and also contain one of the PCR primer sequences. A ligation 

reaction is then performed. Crucially only ligated sequences will contain both PCR 

primer sequences, and therefore only these will be amplified and produce a signal in 

the subsequent PCR reaction (see section 2.3). 
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Figure 2.10. The 5 stages of MLPA. (a)DNA denaturation and hybridisation of MLPA probes: Two probes with a complementary sequence to 
the target DNA hybridise adjacent to each other. Attached towards the 3’ end of the probe is a non-hybridising stuffer sequence which 
elongates the final product to a pre-determined length. At the 5’ and 3’ ends are common MLPA primers; (b) Ligation: The adjacent probes are 
joined together (c) PCR amplification: The ligated sequence is the amplified using the common PCR primers (X and Y), (d) Electrophoresis: The 
MLPA product is run on a Beckman-Coulter Genetic analysis system and each product length is determined using a fragment analysis 
programme. (e) Data analysis: The results are subsequently analysed in comparison to normal controls using GeneMarker®software to 
determine copy number changes. (Figure adapted from (Schouten, McElgunn et al. 2002))
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2.8.2 Primer design 

The sequences of genes to be investigated were obtained from 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene. Probes were designed with Dr 

Matthew Allan (Northern Institute for Cancer Research) following the guidance 

provided by MRC-Holland (MRC-Holland 2009) and manufactured by Metabion 

(Germany). Each MLPA probe consisted of a left probe oligonucleotide (LPO) and a 

right probe oligonucleotide (RPO). The MLPA probes were designed to be 100-140 

nucleotides in length, with the length of each probe being at least 4 nucleotides 

different from any other probe to facilitate distinct fragment separation and avoiding 

lengths of probes already contained in the normalisation probe mix.  Each MLPA probe 

contained PCR primers comprising 42 base pairs and therefore the left and right 

hybridising sequences (LHS and RHS) combined with a stuffer sequence were designed 

to be 58-98 base pairs in length (optimal MLPA probe length – PCR primer length) . The 

structure of an MLPA probe is outlined in Figure 2.11. The LHS and RHS sequences 

were reviewed using BLAST (http://blast.ncbi.nlm.nih.gov) and BLAT 

(http://genome.ucsc.edu) searches to ensure that following hybridisation and 

subsequent PCR amplification that the resultant products would comprise only the 

correct and unique sequence. Details of the MLPA probes designed and used in the 

study are given in (sections 3.2.7.4 and 3.2.8.5). 

 

 

 

http://genome.ucsc.edu/
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Figure 2.11. Schematic representation of a MLPA probe. An optimal MLPA probe 
following ligation is between 100 and 140 nucleotides in length. It comprises two 
standard PCR primers (a) and (e) of 42 nucleotide in length. The combination of the (b) 
left hybridising sequence (LHS), with the (c) right hybridising sequence (RHS), and a 
stuffer sequence (d) must measure between 58 and 98 nucleotides. 

 

2.8.3 Standard protocol 

All probes and reagents used in the MLPA reactions were supplied by MRC-Holland. 

The probes were provided at a concentration of 20nM and were diluted with 200µl TE 

(see Appendix) to make 100µM stock solutions which were stored at -20°C. Working 

aliquots of 1 µM of each probe were made by diluting 10µl stock solution with 1ml TE 

and stored at -20°C. 

In the first step, 50-200ng (5µl) sample DNA was first denatured by heating aliquots in 

PCR tubes in a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems) to 

98°C for 5 minutes. This was then left to cool to room temperature before the MLPA 

SALSA probe mix was added (detailed in Table 2.10). In a GeneAmp PCR System 9700 

thermal cycler (Applied Biosystems) the mix was incubated at 95°C for 1 minute, and 

then heated at 60°C for 16 hours to enable hybridisation to occur. Following 

hybridisation the temperature of the thermal cycler was reduced to 54°C and 32µl of 

ligation mix (Table 2.10) was added which was then incubated at 54°C for 15 minutes 

followed by 98°C for 5 minutes in the thermal cycler. In a separate PCR tube a mix 

containing 4µl SALSA PCR buffer and 26µl of PureLab Ultra water (ELGA, UK) was 

prepared to which 10µl of the ligation reaction product was added. The tubes were 
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incubated in a GeneAmp PCR System 9700 thermal cycler at 60°C to which 10µl of a 

polymerase mix (Table 2.10) was added before proceeding with the MLPA PCR 

programme  (Table 2.11). Samples containing 40µl sample loading solution (Beckman 

Coulter), 0.5µl 400 size marker (Beckman Coulter) and 1µl PCR product were 

subsequently loaded into the appropriate wells on the CEQ sample plates (Beckman 

Coulter). One drop of light mineral oil (Beckman Coulter) was added to the surface of 

each sample on the plate. The plate was loaded into the CEQ 8000 Genetic Analysis 

System and processed using the MLPA installed software programme (MLPA). The 

data generated was downloaded and analysed initially using GeneMarker® version 

1.75 (Softgenetics). The peak intensity of all probes including the control probes within 

a sample was derived. This data was then transferred to an Excel® 2007 (Microsoft) 

format and the intensities of the test probes relative to a series of control probes 

calculated. Details of the probes used can be found in (sections 3.2.7.4 and 3.2.8.5). 
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Table 2.10. Reaction reagents prepared on ice in a standard MLPA experiment. (a) 
Constituents of a hybridisation reaction to which 5µl denatured DNA template is added. 
Following hybridisation a ligation reaction is performed to which the (b) ligation mix is 
added. After ligation a PCR step is performed requiring a 10µl ligation reaction product 
aliquot to be combined with (c) a polymerase mix.  
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  Stage 1 

Stage 2 Stage 3   Step 1 Step 2 Step 3 

Process Denaturation Annealing Extension Elongation Hold 

Temperature 95°C 60°C 72°C 72°C 15°C 

Duration 30 seconds 30 seconds 1 minute 20 minutes ∞ 

No. Of cycles 35 1 ∞ 

Table 2.11. MLPA PCR program conditions. Prior to commencing the PCR program 
samples were kept at 60°C whilst a polymerase mix was added.  

 

2.9 Fluorescence in situ hybridisation (FISH) 

2.9.1 Introduction 

Fluorescence in situ hybridisation (FISH) is a cytogenetic technique employed to detect 

the presence or absence of chromosomal abnormalities including changes in copy 

number and structural rearrangements which affect the DNA sequence. Probes are 

designed to be complimentary to the specific region under investigation. The 

technique then involves hybridizing, either directly or indirectly the fluorescently 

labelled DNA probes to interphase nuclei or metaphase chromosomes. Using a 

fluorescence microscope the detection of genetic sequences may then be viewed 

within a cellular context. 

Probes may be labelled directly or indirectly with fluorophores by a variety of methods. 

In a technique referred to as nick translation some of the nucleotides from a DNA 

sequence are replaced using DNA Polymerase I with fluorescently labelled analogues.  

In addition to direct labelling techniques which involve the attachment of fluorophores 

to a nucleic acid probe indirect techniques may be employed where the nucleic acid 

probe binds to a non-fluorescent molecule such as biotin and digoxigenin. With 

indirect techniques following in situ hybridisation of non-fluorescent probes to cells, a 

fluorophore-labelled antibody or avidin is applied which provides the fluorescent signal. 
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The steps involved in a typical FISH experiment are illustrated in Figure 2.12. For a 

detailed review of FISH, see (Fan 2002; Gorczyca 2008).  

Bacterial artificial chromosomes (BACs) are vectors derived from E.coli bacteria which 

are often used to develop probes for FISH studies. The BACs contain foreign DNA 

fragments of 100-200kb into which probe DNA sequences can be incorporated and 

subsequently inserted into E.coli bacteria by electroporation. The advantage of this 

system is that with growth the transformed bacteria will produce a large amount of 

cells containing the probe in a short period which can be harvested when the cells are 

lysed and the DNA content purified. For a detailed review of BAC cloning, see (Birren, 

Green et al. 1999) 
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Figure 2.12. Scheme showing the principle of indirect FISH.  a) A DNA probe is labelled with a non-fluorescent molecules preparation and a 
slide is prepared b) with fixed cells, to which c) the probe hybridizes. Antibodies to the probe are then applied d) which are linked to 
fluorescent molecules which allows the material to be viewed under a fluorescent microscope. (Adapted from 
www.en.wikipedia.org/wiki/fluorescent_in_situ_hybridization).
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Figure 2.13. Fluorescence in situ hybridisation composite image showing a normal 
cellular diploid copy number of MYCN. Image captured using a fluorescence 
microscope with a excitation wavelength of 540nm to capture the Texas red labelled 
centromeric probe, and a 490nm to capture the MYCN Fluorecein isothiocyanate 
labelled (green) probe. 

 

2.9.2 Slide preparation 

All FISH studies were performed using FFPE material. Where available 10µm sections 

were cut from a FFPE tissue block and fixed to microscope slides (Nunc) by baking at 

60°C for 5 minutes. Before using in the FISH studies the fixed sections were dewaxed 

by placing them in xylene for 5 minutes and rehydrating them through an alcohol 

graded series of ethanol baths (100% (v/v), 80% (v/v), 70% (v/v), 50% (v/v)) for a 

minute each. To each slide 400µl of 0.5% pepsin (Sigma-Aldrich, UK) in 0.1M HCl was 

applied. The slides were then incubated in a humidified chamber for 2 hours at 37°C 

before being washed in 37°C water and immersed in PBS (see Appendix) for 5 minutes 

at 37°C. The slides were then rehydrated by descending through a series of ethanol 

baths (95% (v/v), 85% (v/v) and 75% (v/v)) and left to dry for 5 minutes before applying 

the probe. 
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To perform FISH on isolated nuclei a single 25µm section curl of FFPE tissue was placed 

in a 1.5ml microfuge tube containing xylene to dewax. The xylene was then aspirated 

and the tissue resuspended in ethanol before being centrifuged at 12000g for 5 

minutes in an Eppendorf 5147R centrifuge (Eppendorf). This process was repeated to 

facilitate the removal of all xylene from the suspension. The cycle was repeated a third 

time with the tissue resuspended in PBS before being passed through a 70µm mesh 

cell strainer (Fisher) at 1000g in a pre-cooled to 4°C Eppendorf 5147R centrifuge 

(Eppendorf) for 10 minutes. The resultant isolated nuclei were then centrifuged at 

1000g for 10 minutes onto microscope slides (Nunc) using a Cytospin 2 centrifuge 

(Thermal Scientific).  The slides were stored at -20°C until used at which time they 

were warmed in a 37°C water bath for 10 minutes before 100-200µl of pepsin (Sigma-

Aldrich) solution (4mg/ml HCl) was applied and incubated in a 37°C humidified 

chamber for 16 minutes. The slides were then washed in 37°C water and placed in PBS 

(see Appendix) for 5 minutes at 37°C before finally being rehydrated with passage 

through a series of ethanol baths (95% (v/v), 85% (v/v), and 75% (v/v)) and left to dry.  

 

2.9.3 Standard protocol 

The labelled probe was placed in a water bath at 37°C for 20 minutes and then 2.5µl 

was pipette onto the pre-prepared slides (section 2.9.2). A small cover slip (Nunc, 

Denmark) was placed over the top which was then sealed to the slide with a rubber 

cement (Marabo, Germany). Slides were placed onto a hot plate and heated to 75°C 

for 5 minutes to denature the genomic and probe DNA before being left overnight in a 

humidified incubator at 37°C. The following morning, the cover slips were taken off by 

removing the rubber seal and then gently agitating the slides in 2x saline-sodium 

citrate buffer (SSC, Becton Dickinson) at 37°C.  To remove any unbound DNA 

molecules the slides were then washed twice in 30% (v/v) formamide (Sigma-Aldrich) 

in 1xSSC at 43°C for 5 minutes. The slides were then placed in 2xSSC at 37°C for 5 

minutes, followed by incubation in 4xSSC (see Appendix) in a humidified chamber at 

37°C for 15 minutes. The slides were then incubated at 37°C for 20 minutes in a 
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humidified chamber with 50-100µl of six different antibodies washed twice in 4xSSC 

for 5 minutes in between each antibody exposure. The antibodies were added in the 

following order: 

1) 1:20 anti-digoxigenin fluorescence fab fragments (FITC, (Roche)) 

2) 1:50 rabbit anti-sheep IgM (DAKO) 

3) 1:40 anti-rabbit FITC (DAKO) 

4) 1:500 Texas red avidin (Vector) 

5) 1:100 goat biotinalated anti-avidins (Vector) 

6) 1:500 Texas red avidin (Vector) 

The slides were subsequently washed for 4 minutes with 2xSSC twice and with PBS for 

2 minutes once before being rehydrated through an ethanol gradient series (95%, 85%, 

and 75%). The slides were then left to dry in the dark for 15 minutes before being 

counterstained with a drop of DAPI (Vector) and protected with a cover slip (Nunc) 

sealed with nail varnish. The probes were then visualised with a DM300 Fluorescence 

Microscope (Leica) using the appropriate probe excitation wavelengths as shown in 

Table 2.12. 

 

Probe 

Wavelenth (nm) 

Excitation Fluorescent emission 

Fluorecein isothiocyanate (FITC) 490 520 

Texas red 590 620 

Table 2.12. FISH probe excitation and fluorescent emission wavelengths. 
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2.10 Immunohistochemistry (IHC) 

2.10.1 Introduction 

Immunohistochemisty (IHC) is an established process which identifies cellular proteins 

or antigens in tissues by using labelled antibodies and observing antigen-antibody 

interactions with marker fluorescent dyes or enzymes. The visualisation of an antigen-

antibody interaction may use a fluorophore, as first described in 1941 by Albert Coons 

(Coons, Creech et al. 1941), or by conjugation of an antibody to an enzyme that 

catalyses a colour producing reaction (Nakane and Pierce 1966). IHC enables the 

distribution and location of specific cellular components to be identified within intact 

cells. Specific molecular markers may be associated with particular cellular process or 

disease states and therefore this technique is widely used to discern normal from 

abnormal cells, and in particular the demonstration of cancerous cells. 

 

2.10.2 Antibodies for antigen detection in IHC 

Antibodies used in IHC can be either polyclonal or monoclonal (mAb). Typically 

polyclonal antibodies are generated by injecting an animal with an antigen and then 

harvesting the antibodies that are produced in response. Polyclonal antibodies 

therefore comprise a hetergenous mix of antibodies to a variety of epitopes. 

Monoclonal antibodies differ as they are monospecific, created by the overproduction 

of a unique immunoglobulin against a particular antigen. This method was first devised 

in 1975 with the creation of a hybridoma using a mouse myeloma to produce an 

antibody from an immunised donor (Kohler and Milstein 1975). This approach can now 

be used to selectively produce specific antibodies to defined antigens. 

Antibodies may be further sub-classified as being primary or secondary.  Primary 

antibodies are raised against an antigen of interest and are usually unlabelled 

(unconjugated), while secondary antibodies are raised against primary antibodies and 

identify immunoglobulins of a particular species.  
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Antigens may be detected through either a direct or indirect method (see Figure 2.14). 

In the direct method a single labelled antibody reacts directly with the antigen. Whilst 

simple this method has the disadvantage of poor signal amplification and is 

comparatively expensive.  More commonly an indirect approach is used. In this 

method the primary antibody again reacts with a specific antigen but is unlabelled. A 

secondary labelled antibody is then applied which reacts with the primary antibody. 

Importantly, the same labelled secondary antibody may be used with many different 

primary antibodies derived from the same species which makes this a particularly 

economical approach. 

To facilitate visualisation the secondary antibody is conjugated to biotin, or a reporter 

enzyme, or fluorescent dyes such as alkaline phosphatase or horseradish peroxidase 

(HRP). Commonly a biotinylated secondary antibody is coupled with a streptavidin 

tagged horseradish peroxidase enzyme which is reacted with diaminobenzidine (DAB) 

to produce colorimetric reaction. The resultant brown staining identifies and localises 

the antigen under investigation and the signal intensity is typically amplified as the 

secondary antibody is able to react with a number of epitopes on the primary antibody.  
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Figure 2.14. Immunohistochemical (IHC) approaches. (a) The direct method: A single labelled antibody (red inverted Y) binds to a specific cell 
antigen (A), and not to other cellular proteins (B and C). (b) The Indirect Approach: A primary antibody is applied which binds to a specific 
cellular antigen. A second antibody (purple inverted Y) is then applied which is labelled and reacts with the primary antibody. (redrawn from: 
http://en.wikipedia.org/wiki/Immunohistochemistry).

http://en.wikipedia.org/wiki/Immunohistochemistry
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2.10.3 Standard protocol 

Slides were placed in an oven at 60°C for 30 minutes before being transferred into a 

xylene bath for 10 minutes to dewax. The slides were then passed through a 

descending ethanol gradient to rehydrate for 30 seconds in each bath (100% (v/v), 100% 

(v/v), 95% (v/v), 95% (v/v), 75% (v/v), water). The slides were placed in a non metallic 

polyacetal slide rack trough (Thermo Scientific) and submerged in a citrate buffer pH6 

(see Appendix) before being microwaved at full energy for 5 minutes. The slides were 

then inspected to ensure that they continued to be submerged in citrate buffer which 

was replenished as necessary before being microwaved at full energy for a further 5 

minutes. The slides and buffer were then left to cool for 20 minutes before being 

rinsed in water. The slides were then placed into a coplin jar (Fisher Scientific) for 20 

minutes containing 100ml 6% hydrogen peroxide (Sigma-Aldrich). The slides were then 

rinsed initially in water and then using 10x TBS-Tween (see Appendix). The slides were 

then placed on a slide hydration tray (Fisher Scientific) containing 1ml of water in each 

lane and 100-200µl of the antibody solution depending on the area of the section was 

applied. The tray was covered and left to incubate at room temperature for 1 hour. 

After an hour excess antibody was rinsed off using 0.05M TBS (see Appendix). To 

ensure the complete removal of all free antibody the slides were then placed in a 

coplin jar containing TBS and rinsed. This was repeated a second time with TBS before 

the slides were placed in 10x TBS-Tween. To enable antibody detection the 

MenapathTMpolymer-HRP detection kit (Menarini Diagnostics) was used according to 

the manufacturer’s instructions. 1-2 drops of the MenapathTM universal probe was 

applied to cover the tissue on each slide and left in a hydration tray for 30 minutes. 

The slides were then rinsed with TBS to remove any excess which was repeated twice 

further in a coplin jars containing TBS. Excess solution was removed and then 1-2 drops 

of MenapathTM HRP-polymer was applied and left in a hydration tray for 20 minutes. 

Excess solution was removed by rinsing the slides in running water for 20 minutes. A 

solution containing 1ml DAB dilutent and 1 drop of chromagen liquid DAB was 

prepared and 1-2 drops were dropped on each slide and left for 3-4 minutes. The slides 

were then rinsed in water before being counterstained with haematoxylin for 30 
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seconds, rinsed again in water, and dipped into an acid/ alcohol bath. The slides were 

then rinsed again in water before being placed in a solution of Scott’s water for 10 

seconds and then re-ascending a gradient of ethanol baths (75% (v/v), 95% (v/v), 100% 

(v/v)). The tissue was finally fixed with xylene, mounted in DPX and protected with a 

cover slip (Nunc) before placing at 4°C for storage. Details on the preparation of the 

counterstains may be found in the Appendix. 

 

2.11   DNA methylation analysis 

2.11.1 Introduction 

DNA methylation is an enzyme-mediated chemical modification that adds methyl (CH3) 

groups to the carbon-5 position of the cytosine base (C) and occurs in approximately 3-

5% of the cytosine residues in genomic DNA (Ehrlich et al, 1982). Almost 60% of genes 

contain regions of DNA with a high content of cytosine and guanosine (G+C) 

nucleotides and a high frequency of the CpG dinculeotide, known as CpG islands. 

These CpG islands frequently arise upstream to transcriptional start sites or promoter 

regions and methylation may result in chromatin remodelling into a transcriptionally 

repressive structure, and therefore act as an epigenetic modification by altering 

transcription without affecting the nucleotide sequence, as discussed in section 1.2.6. 

Methods to assess DNA methylation often require an initial modification to reveal the 

methylation status at a particular locus, including bisulphite modification. 

 

2.11.2 Bisulphite modification of DNA 

Bisulphite modification is a technique employed to detect whether methylation of CpG 

diucleotides is present by introducing a sequence alteration between methylated and 

hypomethylated states. In this process all unmethylated cytosines are deaminated and 

sulphonated by the sodium bisulphite treatment which converts them to uracils. 

Methylated cytosines are resistant to this treatment, and therefore the sequence at 
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this residue remains unaltered. In subsequent PCR amplification the uracils are 

replaced by thymines as outlined in Figure 2.15 and Figure 2.16. 

 

2.11.3 Sequencing of bisulphited DNA  

Following bisulphite treatment the DNA sequence is transformed to produce altered 

sequences for both methylated and unmethylated DNA. To determine these 

sequences PCR amplification is performed. Oligonucleotide primers are generated to 

amplify the converted sequences, and are therefore different to those that would be 

employed to amplify the same locus in the original untreated DNA template. Primers 

need to be able to amplify both unmethylated and methylated sequences and 

therefore the primers are designed not to contain any CpG dinucleotides. Primer 

design is undertaken using MethPrimer 

(http://www.urogene.org/methprimer/index1.html), an online tool that initially in 

silico bisulphite converts a genomic sequence, and then computes appropriate primer 

pairs. The details of oligonucleotide primers are provided in sections 3.2.5 and 5.2, and 

were synthesised by Invitrogen.  

 

http://www.urogene.org/methprimer/index1.html
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Figure 2.15. Sodium bisulphite modification of DNA.Treatment of DNA with sodium bisulphite selectively deaminates unmethylated cytosine 
(C) residues (green) converting them to uracil (U). When methylated (closed red circle) methylcytosine residues (red) remain unaffected by the 
bisulphite modification. The modified DNA sequences can then be analysed for sequence variation using PCR techniques.   
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Figure 2.16. Electrophoregrams demonstrating the effect of methylation following bisulphite modification. Reverse trace sequences for 
RASSF1A on two samples are shown. (a) Methylated sequence, showing the preservation of CG dinucleotides following bisulphite treatment. 
The first CpG (1) is shown to be fully methylated, but the 2nd CpG (2) shows evidence of partial methylation with an adenine peak in addition to 
the guanine in this reverse sequence. (b) Unmethylated sequence. Bisulphite conversion has deaminated all non-methylated cytosines resulting 
in CA dinucleodide at both CpG sites. 
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2.11.4 Standard protocol 

Bisulphite conversion was performed on 500ng of genomic DNA using the EpiTect® 

(Qiagen) kit, following the manufacturer’s instructions. Converted DNA was eluted in 

EB buffer (Qiagen) and stored in two 20µl aliquots at -80°C until used. PCR reactions 

were performed as described in section 2.3.3, visualised by gel electrophoresis as 

described in section 2.4.2 and purified using the PureLink® (Invitrogen) system (section 

2.3.5). Purified products were subsequently sequenced as previously outlined in 

section 2.5.2and the methylation status assigned by interrogating each CpG 

dinucleotide on the electrophotegrams and scoring as being either methylated, 

partially methylated or hypomethylated.   

 

2.12 Illumina GoldenGate methylation array 

2.12.1 Introduction 

The GoldenGate® methylation array (Illumina) platform is a high-throughput method 

that enables the methylation status of up to 96 samples to be simultaneously 

evaluated (Bibikova, Lin et al. 2006; Fan, Gunderson et al. 2006). Using the 

GoldenGate® Methylation Cancer Panel I 1505 CpG sites across 807 genes are assessed. 

The genes incorporated in this panel have been selected as they are either tumour 

suppressor genes, oncogenes, genes involved in DNA repair, or genes that regulate cell 

cycle control or apoptosis or cell differentiation. In the panel 28.6% of the genes are 

represented by a single CpG on the array, 57.3% with 2 CpGs and 14.1% by 3 or more 

CpG dinucleotides.  

An outline of the Illumina GoldenGate methylation array process is shown in Figure 

2.17. Genomic DNA is first bisulphite treated to deaminate non-methylated cytosines 

and has been previously described (section 2.11.2). The transformed sequences are 

then hybridised with probe pairs designed for unmethylated and methylated 

sequences. Each probe pair contains an allele-specific oligonucleotide (ASO) and locus-
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specific oligonucleotide (LSO). The probes anneal to the modified target DNA at the 

ASO and LSO. A ligation reaction is then performed which extends the ASO to the 

corresponding LSO, to form a PCR template. Universal PCR primers attached to both 

the 5’ and 3’ the ends of the probes are used to amplify the resulting sequence. The 

PCR primers also contain fluorophores, different for methylated and unmethylated 

sequences. Following PCR amplification the sequence are hybridised to a bead with a 

complementary sequence and the fluorescence intensity of both fluorophores 

generated at each bead recorded by the BeadArray reader (Illumina). Each of the 1505 

sites is represented up to 30 times on different beads on the Sentrix Array Matrix 

(SAM). The intensity of the 2 wavelengths for each bead is registered and an average 

(mean) value for each CpG generated (average delta beta). The average delta beta 

scores range from 0 (fully unmethylated) to 1 (fully methylated). 
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Figure 2.17. GoldenGate methylation array flow process.The steps involved in the 
Illumina GoldenGate methylation array for methylated (left) and unmethylated (right) 
sequences are shown. (a) Genomic sequences showing methylation (closed red circle) 
at CpG dinucleotides. (b) Sequence transformation following bisulphite treatment.(c) 
For each CpG site two pairs of probes are designed: an allele-specific oligonucleotide 
(ASO (orange)) and locus-specific oligonucleotide (LSO (green)) probe pair for the 
methylated and unmethylated states. The pooled oligonucleotides anneal to the target 
DNA. (d) Extension in the LSO direction. (e) Ligation (purple) of the extended ASO to 
the corresponding LSO to create a PCR template. The ligated products are then PCR 
amplified using fluorescently labelled common primers (grey) and (f) hybridise to a 
bead array bearing the complementary sequence (blue). Two fluorophores are then 
used to distinguish methylated and unmethylatyed loci. (redrawn from: 
www.illumina.com/technology/goldengate_methylation_assay.ilmn) 
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2.12.2 Sample plate preparation 

Methylation analysis on the Illumina GoldenGate Methylation array platform was 

performed by the Wellcome Trust Centre for Human Genetics (Oxford, UK). For each 

sample to be analysed 750ng of genomic DNA was prepared. The clinical details of 

tumours and controls used in this study are given in section 5.2) 

 

2.12.3 Quality control assessment 

2.12.3.1  BeadStudio Methylation Module quality control assessment 

The raw data was first subjected to a quality control assessment using BeadStudio 

Methylation Module, version 3.0 (Illumina). A control summary graph was produced to 

evaluate each step of the methylation process. These steps included a quality control 

assessment of bisulphite conversion, a determinant of gender specific methylation, 

allele specific extension, contamination, hybridisation to the DNA template, secondary 

hybrisdaiation to the array beads and negative controls following the manufacturer’s 

instructions (Illumina) and illustrated in Figure 2.18 and Figure 2.19. Samples that 

failed these quality control steps were excluded from subsequent analyses. 
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Figure 2.18. Illumina GoldenGate Methlyation array control panel (A) summary. (a) 
Bisulphite conversion: The efficiency of bisulphite conversion is verified by checking for 
the presence of genomic DNA (red) compared to bisulphite converted DNA (green) in 
the assay using two primers (868 and 1742) designed to amplify genomic DNA at the 
same locus. (b) Negative controls: A panel of 22 negative control probes are included 
in the oligonucleotide pool which target bisulphite converted sequences but should 
not produce a signal as they do not contain an ASO and will not be PCR amplify. Any 
signal produced therefore represented a background signal resulting from cross-
hybridisation, or non-specific binding of dye. (Note the intensity scale is 10-fold lower 
with minimal signals detected). (c) Gender specific methyaltion: The sex of the samples 
was verified using two X-linked genes (G6PD (1878) and ELK1 (2911)). These genes are 
known to exhibit DNA dose compensation by becoming partially methylated when two 
X chromosomes are present. Only a Cy3 (green) signal in males and both Cy3 and Cy5 
(red) signals in females should be observed. (d) Contamination: PCR contamination 
was detected using four control oligonucleotides (1968, 1992, 2980, 3433). Only one 
was added to each oligonucleotide pool and so the presence of more than one 
suggests contamination. 2980 was added to the pool shown which shows no evidence 
of contamination. 
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Figure 2.19. Illumina GoldenGate Methylation array control panel (B) summary. Cy3 
unmethylated signals are shown in green, Cy5 methylated signals in red. (a) First 
hybridisation: Hybridisation of the allele-specific oligonucleotide (ASO) to the DNA 
template specificity is assessed using 2 different control probes. 962 should provide 
only a Cy3 and 1209 a Cy5 signal if hybridisation has occurred successfully. (b) Allele-
specific extension: The allele-specific extension control test uses 3 sequences (272, 329 
and 1142) to ensure that a Cy5 methylation signal is observed only when a specific ASO 
is applied and that methylation is not being non-specifically detected. Only a Cy3 signal 
should be observed. (c) Extension gap: Tests the efficiency of extending 15 bases from 
the ASO to the locus-specific oligonucleotide (LSO) to produce an intense (yellow) 
signal. (d) Second hybridisation: Hybridisation of generated products to the array 
beads was tested with a panel of known methylated (044/0278), partially methylated 
(1112/1632) and unmethylated (0501/1003) control sequences that should produce 
Cy5 only, Cy5 and Cy3, and CY3 only signals respectively. 
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2.12.3.2 BASH analysis quality control assessment 

Following the BeadStudio quality control analysis the raw data from the BeadArray 

reader (Illumina) was then input into “beadarray”((Dunning, Smith et al. 2007), 

downloaded from Bioconductor (www.bioconductor.org/). Using this package the 

fluorescent intensities of both wavelengths (red and green) for each bead and their 

geographical location on the SAM were analysed to detect any spatial artefacts. 

Artefacts may result because of a damaged chip or from a speck of dust which distorts 

the fluorescent intensities from being read by the BeadArray reader (Illumina). Due to 

the random placement of up to 30 multiple beads for each CpG on the array the effect 

of an erroneous reading from a single bead on the average delta beta methylation 

value will be negligible. Larger defects affecting a number of beads may however make 

the result unreliable.    

Three types of defect have been described: Extended, compact and diffuse ((Cairns, 

Dunning et al. 2008). Extended defects occur where a significant variation in intensities 

between different chips is observed, suggesting a chip fault; compact defects occur 

when small connected clusters of outlying values are seen; and diffuse defects contain 

small regions where more outliers than expected are observed.    

The BeadArray Subversion of Harshlight (BASH) programme within the beadarray 

package was used to produce an “error image” for each sample and discover any 

spatial artefacts. Small (<20%) defects were “masked” from inclusion in the generation 

of average delta beta values for each probe and compared with the raw data values as 

illustrated in Figure 2.20. These corrected values were used in subsequent studies. 

 

 

 

 

http://www.bioconductor.org/
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Figure 2.20. BASH analysis plots. (a) BeadArray reader scan (Left) of a sample with a 
segmental defect, with (right) area identified and masked (red) in BASH analysis. (b) 
Normal read and BASH analysis plots with small focal defects. (c) Plot of unmethylated  
(G, green) and methylated (R, red) intensities across all 1505 CpG dimnucleotides for a 
sample. Left: Normal result with a bimodal distribution (results are methylated or 
unmethylated at most loci with partial methylation occurring at few loci). Right: 
Sample failure, as a paucity of methylation (R) signal detected. 
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2.12.4 Bioinformatic analyses 

BASH adjusted data were analysed in a series of in-silico experiments using the R 

project for statistical computing (http://www.r-project.org/). To describe the variation 

and recognise patterns within this dataset unsupervised analysis using cluster and 

principal component analysis (PCA) was undertaken. Details of the programming 

scripts used in these analyses may be found in the Appendix.  

 

2.12.4.1 Principal component analysis (PCA) 

Principal component analysis reduces the number of characters within a dataset by 

producing new characters that are a combination of contributions from the original 

characters. In this way the relationship between objects with complex 

characterisations comprising more than 3 components, and therefore cannot normally 

be visualised, may be reduced to form data that can be plotted and inspected in 2 or 3 

dimensions. PCA analysis of the methylation dataset was undertaken within R using 

the stats package within the gplots (version 2.8.0) package and the rgl (version 

0.92.798) package to create 3 dimensional plots downloaded from Comprehensive R 

Archive Network (CRAN) (http://cran.r-project.org/). 

 

2.12.4.2 Cluster analysis 

In contrast to PCA, in cluster analysis complex data is managed to facilitate pattern 

recognition by reducing the number of objects rather than characters. In cluster 

analysis objects are grouped by their relatedness (Kapetonovik IM 2004). In the 

methylation analysis hierarchical clustering was employed which uses a ‘bottom up’ 

method of clustering in which each sample begins in its own cluster before successive 

agglomeration of similar pairs resolves all of the samples into a single cluster.  In order 

to determine the extent of sample relatedness in clusters, the Euclidean distance 

between them was measured (Quackenbush 2001). Cluster analysis was performed 

http://www.r-project.org/
http://cran.r-project.org/
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within R using the pvclust (version 1.2-2) package downloaded from CRAN 

(http://cran.r-project.org/). 

 

2.13   Statistical analysis 

Statistical analyses were performed using Prism 4 (GraphPad software). Significance 

was tested using Fisher Exact tests, t-tests, and chi-squared tests where appropriate. 

Survival analyses were measured using Kaplan-Meier survival curves, and tested using 

univariate (log-rank) and multivariate (Cox proportional hazard tests). The p-value was 

used as a threshold for determining significance and Benjamini-Hochberg corrections 

applied with multivariate testing. Further details of the statistical analyses employed 

are given in the relevant results chapters. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://cran.r-project.org/
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3.1 Introduction 

The CNS-PNET is an aggressive embryonal tumour predominantly affecting young 

children. These tumours, in contrast with medulloblastoma, arise at sites outside of 

the cerebellum within the CNS. Their similar immunohistochemical appearance to 

medulloblastoma has resulted in the suggestion that these tumours share a common 

origin and the term “PNET” applied to refer to both groups of tumours (Rorke 1983). 

Patients with intracranial “PNETs” have been treated along parallel lines as it has been 

assumed that the mechanisms underlying their development, in view of their similar 

morphological phenotype, are likely to be correspondingly analogous. The results from 

a series of international clinical studies have consistently shown an adverse outcome 

with an extra-cerebellar intracranial PNET and raised doubt as to whether the 

fundamental concept of a “PNET” entity remains valid (discussed in detail in chapter 1). 

There have been few studies investigating the molecular basis of CNS-PNETs. Where 

investigation has occurred, this has typically been in the context of a combined study 

with medulloblastoma, in which a few cases of CNS-PNET have been analysed in 

addition, but seldom are the focus of the study. This has meant that the molecular 

characterisation of CNS-PNETs and the extent to which they may share similar features 

with their cerebellar counterparts remains yet to be clearly characterised.  

The frequent molecular events in medulloblastoma that characterise this disease are 

summarised in Table 3.1. Promoter methylation of RASSF1A (section 1.5.6) is the most 

frequent event in medulloblastoma (Lindsey, Lusher et al. 2004), whilst loss of the p-

arm on chromosome 17 (section 1.5.3) is the most common karyotypic abnormality 

(McDonald, Daneshvar et al. 1994; Burnett, White et al. 1997). The most common 

biological pathways demonstrated to be involved in tumourigenisis are the TP53 and 

Wnt pathways (discussed in detail in section 1.5.5), with disruption associated with an 

aggressive and favourable phenotype respectively (Eberhart, Chaudhry et al. 2005; 

Tabori, Baskin et al. 2010; Ellison, Kocat et al. 2011). In addition amplification of the 

MYC family of oncogenes (see section 1.5.4) are frequently observed (Ellison, Kocat et 
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al. 2011). The involvement of these defects in CNS-PNET is however unclear and needs 

investigation.
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Defect Manifestation 
Medulloblastoma 

Reference 
Frequency* Significance 

RASSF1A methylation 
Promoter 
hypermethylation 

54/62 (87%) 
Most common 
medulloblastoma tumour 
specific event. 

(Lindsey, Lusher et al. 2004) 

MYC family gene 
amplification 

MYCC amplification 6/292 (2%) 
Associated with a more 
aggressive phenotype. 

(Ellison, Kocat et al. 2011) 

MYCN amplification 16/292 (5%) 
Associated with a more 
aggressive phenotype. 

Chromosome 17 defects 17p loss 47/190 (25%) 
Associated with a more 
aggressive phenotype. 

(Megahed 2010)  

TP53 pathway disruption 

Nuclear p53 
immunopositivity by 
immunohistochemistry 

17/64 (27%)** 
15/49 (30%)** 

Associated with a more 
aggressive phenotype. 

(Eberhart, Chaudhry et al. 
2005; Tabori, Baskin et al. 
2010) 

TP53 mutation 8/49 (16%)** 
Associated with a more 
aggressive phenotype. 

(Tabori, Baskin et al. 2010)  

Wnt signalling disruption 

β-catenin nuclear 
immunopositivity by 
immunohistochemistry 

33/206 (16%) Favourable prognosis 
(Ellison, Kocat et al. 2011) 

CTNNB1 mutations  20/195 (10%) Favourable prognosis 

Table 3.1. Summary of medulloblastoma molecular defects to be investigated in CNS-PNET. *Based on equivalent studies in local 
Newcastle (Northern Institute for Cancer Research) cohorts. **Based on studies reported in the literature.
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The overall aim of studies reported in this chapter was to determine whether the 

significant medulloblastoma defects outlined in Table 3.1 are features of CNS-PNET 

disease. 

The following specific aims were investigated. 

1. Investigation of RASSF1A promoter methylation status in CNS-PNET primary 

tumours and cell lines. 

2.  Analysis of the frequency of MYCC and MYCN amplification in CNS-PNET 

primary tumours by qRT-PCR, using MLPA and FISH validation. 

3.   Determine whether loss of the short of chromosome 17 is a feature of CNS-

PNET disease. 

4.   Investigate whether defects in the TP53 pathway are observed in CNS-

PNET primary tumour samples. Defects studies included abnormal nuclear p53 

protein accumulation, mutation analysis of TP53, MDM2 amplification and 

homozygous loss of CDKN2A. 

5.   To investigate whether aberrant Wnt signalling is a feature of CNS-PNETs. 

6.  Determine any clinicopathological correlations with identified defects. 

7.   Compare and contrast the genetics of CNS-PNET with medulloblastoma. 

 

 

 

 

 

 



175 

 

3.2 Materials and methods 

3.2.1 CNS-PNET cell lines 

Two CNS-PNET cell lines (PFSK and CHP707m) were investigated in this study. Further 

details regarding these cell lines and their culture may be found in sections 2.1.2 and 

2.2 . Genomic DNA was extracted from the cell lines as described previously in section 

2.3.2. 

3.2.2 Control cell lines 

Two medulloblastoma and a neuroblastoma cell line were used in this study to provide 

control DNA. The medulloblastoma cell line DNA was generously provided by Dr Sara 

Ryan (Northern Institute Cancer Research, Newcastle University, UK), and that from 

the neuroblastoma cell line from Dr Jane Carr (Northern Institute Cancer Research, 

Newcastle University, UK). Details of these cell lines are given in Table 3.2.  The 

medulloblastoma cell lines were cultured as reported by Langdon et al (Langdon, 

Lamont et al. 2006). The establishment of IMR-32 is described (Tumilowicz, Nichols et 

al. 1970). 

 

Cell line Derivation Source Reference 

D341 Med Medulloblastoma 
American Type Culture 
collection 

 (Friedman, Burger 
et al. 1988) 

MHH-MED1 
Medulloblastoma 
metastatic cells 
present in the CSF. 

Dr T Pietsch.              
(University of Bonn 
Medical centre, Bonn 
Germany). 

 (Pietsch, 
Scharmann et al. 
1994) 

IMR-32 Neuroblastoma 
American Type Culture 
collection 

(Tumilowicz, 
Nichols et al. 1970) 

Table 3.2. Control cell lines used in this study. 
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3.2.3 Normal brain control cohort 

To provide reference DNA a cohort of 6 normal brain samples was used. Clinical details 

of these samples is given in Table 3.3. 

 

Sample ID Location Age Material 

N3 Cerebral cortex 4 years FFPE 

N9 Right temporal lobe 14 years FFPE 

N18 Temporal lobe 34 years FFPE 

N21 Cerebral cortex Adult FFPE 

N26 Frontal lobe 14 years FFPE 

CB3 Cerebellum  -  FFPE 

Table 3.3. Normal brain samples cohort. FFPE: Formalin fixed paraffin embedded 
material 

 

3.2.4 CNS-PNET primary tumour cohort 

A total of 25 primary CNS-PNETs were investigated in this study. All samples had 

undergone a central pathological review as described in section 2.1.1. Clinical details of 

these tumours are given in Table 3.4. The cohort included material from 11 male and 

14 female cases enrolled on a number of different studies who underwent different 

treatment strategies. The patients were aged 11 – 360 months (0.92 – 30 years), with a 

median age of 77.5 months (6.5 years) at diagnosis. A single case had evidence of 

metastatic disease on neuroimaging at diagnosis. Genomic DNA was extracted as 

described in section 2.3.1.  
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Tumour 
ID 

Diagnosis Site Sex 
Age at 

diagnosis 
(Months) 

Metastasis 
Stage 

(Chang) 
Status 

Follow 
up 

(months) 

SP3 CNS-PNET Parieto-occipital lobes M 48 M0/1 Dead 17 

SP4 CNS-PNET Parietal lobe F 78 M0/1 Alive 121 

SP7 CNS-PNET Intraventricular F 75 M0 Dead 7 

SP10 CNS-PNET 3rd Ventricle M 158 M0/1 Alive 112 

SP13 CNS-PNET Cerebral M 106 M0/1 Dead 71 

SP14 CNS-PNET Parietal lobe F 105  - Alive 100 

SP21 CNS-PNET Left temporo-parietal lobes M 65  - Dead 25 

SP23 CNS-PNET Cerebral M 126 M0/1 Alive 108 

SP24 CNS-PNET Cerebral M 31  - Dead 7 

SP28 CNS-PNET Right frontal lobe F 23 M0/1 Dead 9 

SP40 CNS-PNET Right parietal lobe F 348 M0/1  -  - 

SP41 CNS-PNET Left fronto-temporal lobes M 56 M0/1 Dead 24 

SP42 CNS-PNET Right temporal lobe F 288 M0/1 Alive 24 

SP43 CNS-PNET Left parietal lobe M  - M0/1  -  - 

SP45 CNS-PNET Right parietal lobe. F 11 M0/1  -  - 

SP46 CNS-PNET Left frontal lobe F 312 M0/1 Dead 36 

SP47 CNS-PNET Left frontal lobe F 87 M0/1 Alive 132 

SP49 CNS-PNET Right temporal lobe F 15 M2 Alive 36 

SP50 CNS-PNET Left temporo-parietal lobes F 36 M0/1 Dead 15 

SP51 CNS-PNET Cerebral F 360  - Dead 55 

SP52 CNS-PNET Left parietal lobe M 127 M0/1 Alive 43 

SP54 CNS-PNET Infra + Supratentorial F 26 M0/1 Dead 3 

SP55 CNS-PNET Temporal lobe M 77 M0/1 Dead 15 

SP57 CNS-PNET Frontal + temporal lobes M 21 M0/1 Alive 39 

SP58 CNS-PNET Right parietal lobe F 223 M0 Alive 17 

Table 3.4. Clinical details of CNS-PNET primary tumour samples used in 
medulloblastoma defect comparison study. M: Male, F: female.
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3.2.5 Analysis of RASSF1A methylation status 

3.2.5.1 Bisulphite conversion of genomic DNA 

To determine RASSF1A methylation status 500ng of genomic DNA of each tumour 

sample was bisulphite treated as described in section 2.12.2. 

 

3.2.5.2 PCR amplification of RASSF1A promoter 

To determine RASSF1A methylation status primers were designed in the RASSF1A 

promoter region, using the CpG plot program (http://www.ebi.ac.uk/emboss/cpgplot/ ) 

to determine the promoter region and MethPrimer 

(http://www.urogene.org/methprimer/index1.html) to design primers, as described in 

section 2.12.3 and shown in Figure 3.1. The PCRs were performed using the standard 

method and conditions described in section 2.4.3. Details of the primers used and 

annealing temperature are given in Table 3.5. 

 

3.2.5.3 Sequencing of RASSF1A products 

PCR products were purified prior to further analysis as described in section 2.4.5. 

RASSF1A purified products were sequenced using methods described in section 2.6, 

and the methylation status at each CpG dinucleotide assessed as either being 

methylated, partially methylated or hypomethylated as discussed in section 2.12.3. 

 

 

 

http://www.urogene.org/methprimer/index1.html
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--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

--1000                             1000                             --500                                     0                       500                                     0                       +500                              +1000+500                              +1000

RASSF1A RASSF1C

CpG

AGTCCCTGCACCCAGGTTTCCATTGCGCGGCTCTCCTCAGCTCCTTCCCGCCGCCCAGTCTGGATCCT
GGGGGAGGCGCTGAAGTCGGGGCCCGCCCTGTGGCCCCGCCCGGCCCGCGCTTGCTAGCGCCCAA
AGCCAGCGAAGCACGGGCCCAACCGGGCCATGTCGGGGGAGCCTGAGCTCATTGAGCT

a)

b)

c)

 

Figure 3.1. Identification of RASSF1A promoter associated CpG island and bisulphite 
sequencing primers. a) Section of chromosome 3 containing the RASSF1 gene 
(ensemble gene ID ENSG00000068028). Blue boxes denote exons, the promoter 
regions and CpG islands marked. b). In silico identification of the RASSF1A CpG island 
using the CpG plot program (http://www.ebi.ac.uk/emboss/cpgplot/ ). The observed 
vs expected (obs/exp) ratio of the frequency of the CpG dinucleotide, percentage G/C 
content and CpG islands predicted by this program. The first 100bp of the gene and 
1000bp upstream flanking sequence are shown and the base pairs relative to the 
transcriptional start site are recorded.  (c). Section of RASSF1A CpG island between -
162 to +29 bps relative to the transcriptional start site. Methylated bisulphite 
converted sequence is shown. Primers were designed using MethPrimer 
(http://www.urogene.org/methprimer/index1.html), and are shown underlined, CpG 
sites shown in red type, and the transcriptional start site in bold italic. 

 

http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000068028;db=core
http://www.urogene.org/methprimer/index1.html
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Gene 
Primer 

location Forward sequence Reverse sequence 

Product 
size 
(bp) 

Annealing 
temperature 

(°C) 
PCR 

method 

RASSF1A Promoter* 5'-GTTTTATAGTTTTTGTATTTAGGTTTTTAT-3' 5'-AACTCAATAAACTCAAACTCCCC-3' 191 56 Standard 

Table 3.5. Primers used in the PCR analysis of RASSF1A methylation status. DNA was amplified using a standard 40 cycle PCR reaction 
using the annealing temperatures given. *The promoter location between -162 to +29 bps relative to the transcriptional start site was 
identified using the CpG plot program (http://www.ebi.ac.uk/emboss/cpgplot/). 
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3.2.6 HOMOD assessment of the p-arm of chromosome 17 status 

3.2.6.1 PCR amplification of 17p microsatelites 

PCR primers to amplify polymorphic microsatellite sites on the short arm of 

chromosome 17 were designed as described in section 2.8.3. The location of the 

regions that were amplified by the seven primer sets are shown in Figure 3.2. PCRs 

were performed using the “fast” method as described in section 2.4.4, using a 

combined annealing/ extension temperature of 62°C. The primer sequences, location 

and product sizes are given in Table 3.6. 

 
 
 

 

Figure 3.2. Chromosome 17 ideogram showing the location of 7 polymorphic 
microsatelite markers. Markers were designed and location ascertained using 
Marshfield Research Foundation website 
(http://research.marshfieldclinic.org/genetics/GeneticResearch/).

http://research.marshfieldclinic.org/genetics/GeneticResearch/
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Marker 
Chromosome 

location 

NCBI-STS 
map location 

(bp) Forward sequence Reverse sequence 

Product 
size 
(bp) 

Annealing 
temperature 

(°C) 
PCR 

method 

D17S2196 17p11.2 
17016698 - 
17016842 5'-CCAACATCTAGAATTAATCAGAATC-3' 5'-ATATTTCAATATTGTAACCAGTCCC-3' 139-163 62 Fast 

D17S936 17p12-p11.2 
13328455 - 
13328553 5'-ATTTGAAACCACAACAGCA-3' 5'-AGGTATATGCCCACCCC-3' 93-103 62 Fast 

D17S969 17p12  
11746071 - 
11746198 5'-ATCTAATCTGTCATTCATCTATCCA-3' 5'-AACTGCAGTGCTGCATCATA-3' 116-140 62 Fast 

D17S974 17p13.2 
10418376 - 
10418583 5'-AGACCCTGTCTCAGATAGATGG-3' 5'-TAAAATAGAAAGTGCCCCTCC-3' 201-217 62 Fast 

D17S1840 17p13.3 
867416 - 
867610 5'-GCCTGGGCGACAGAGTGA-3' 5'-TGGGGCAGACTTGGTCCTT-3' 173-225 62 Fast 

D17S1308 17p13.3 
533715 - 
534016 5'-TGTGAAACTTTGTCATCACTATACC-3' 5'-TTGGTGACAAAGAAAGTCTCC-3' 304-318 62 Fast 

D17S1866 17p13.3 
102127 - 
102307 5'-TGGATTCTGTAGTCCCAGG-3' 5'-GGTTCAAAGACAACTCCCC-3' 154-185 62 Fast 

Table 3.6. PCR primers used to investigate chromosome 17p polymorphic microsatelites. For each polymorphic microsatellite marker the 
primer pair nucleotide sequence, PCR product size range and amplification settings are given. The location on chromosome 17 for each marker 
is shown using the National Center for Biotechnology Information sequence Tagged Sites (NCBI-STS) database as recorded in the Marshfield 
Research Foundation website (http://research.marshfieldclinic.org/genetics/GeneticResearch/). 

 

http://research.marshfieldclinic.org/genetics/GeneticResearch/
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3.2.6.2 Fragment analysis of 17p products 

PCR products were analysed on a CEQ 8000 Genetic Analysis System (Beckman Coulter) 

as previously described (section 2.8.4). Traces were assessed as being homozygous, 

heterozygous or indeterminate at each locus in all samples and the presence of an 

extended region of homozygosity (ERH) determined as outlined in section 2.8.5 using 

the homozygous probability values from the Marshfield Research Foundation 

(http://research.marshfieldclinic.org/genetics/GeneticResearch/data/info/info17.txt) 

and given in Table 3.7. The probabilities returned from the Marsfield Reserach 

Foundation maps have been constructed on the basis of nearly 1 million genotypes 

and incorporated over 8,000 short tandem-repeat polymorphisms (Broman, Murray et 

al. 1998). 

 

Marker 
Probability  

 Heterozygous Homozygous 

D17S936   0.6 0.4 

D17S974  0.64 0.36 

D17S969 0.64 0.36 

D17S2196  0.81 0.19 

D17S1866  0.79 0.21 

 D17S1308  0.62 0.38 

D17S1840 0.83 0.17 

Table 3.7. Chromosome 17 p-arm polymorphic microsatellite markers population 
probability scores. The probability of a heterozygous or homozygous result for each 
marker locus as given in the Marshfield Research Foundation 
(http://research.marshfieldclinic.org/genetics/GeneticResearch/data/info/info17.txt) 

 

http://research.marshfieldclinic.org/genetics/GeneticResearch/data/info/info17.txt
http://research.marshfieldclinic.org/genetics/GeneticResearch/data/info/info17.txt
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3.2.7 Investigation of MYCC and MYCN amplification 

3.2.7.1 Polymerase chain reaction validation of real-time PCR primers 

Primers to be used in subsequent real-time PCR (RT-PCR) studies were designed as 

previously described in section 2.7.3. In addition to MYCC and MYCN primers a further 

three primer sets were designed to be used as endogenous controls. These primers 

were designed to amplify chromosome regions which rarely harbour copy number 

aberrations in either medulloblastomas (Bayani, Zielenska et al. 2000; Eberhart, Kratz 

et al. 2002; Rossi, Conroy et al. 2006) or CNS-PNET (Li, Bouffet et al. 2005). The three 

endogenous controls comprised TBP (chromosome 6), RPLPO (chromosome 12) and 

B2M (chromosome 15). Validation PCRs were performed using standard conditions as 

described previously in section 2.7.4. The PCR annealing temperature was set at 60°C 

to correspond with the annealing temperature that would be used in subsequent RT-

PCR experiments. Nucleotide sequences of the RT-PCR primers, location and the 

resultant product length are summarised in Table 3.8 for each analysed gene. PCR 

products were initially analysed by agarose gel electrophoresis as described in section 

2.5 and the size of the bands determined by comparison with a 100bp DNA ladder 

(Invitrogen, UK). 

 

3.2.7.2 Quantitative real-time PCR 

Quantitative real-time PCR (qRT-PCR), described in section 2.7, was used to validate 

the copy number determination produced from the MLPA screen of CNS-PNET 

tumours and cell lines for MYCC and MYCN. All samples were analysed in triplicate. A 

standard curve was derived using a panel of six dilutions (100ng, 50ng, 10ng, 5ng, 1ng 

and 0.5ng) of a medulloblastoma cell line DNA (MHH-Med1), which has previously 

been shown to have a diploid copy number of both MYCC and MYCN (Langdon, Lamont 

et al. 2006). The cycle threshold (Ct) was determined during the exponential phase of 

the PCR reaction as previously discussed (section 2.7.2). For each gene investigated a 

negative control was added (Ultrapure water (Elga, UK)) in addition to two additional 
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medulloblastoma cell line positive controls (IMR-32 (MYCN amplified;(Carr, Bown et al. 

2007)) and D341-MED (MYCC amplified; (Bigner, Friedman et al. 1990)). 4ng of 

Genomic DNA (1ng/µl) from the unknown samples to be tested was added to each 

reaction as previously described (section 2.7.4). The results for MYCC and MYCN for 

each sample processed in triplicate were first averaged and then measured relative to 

the three endogenous controls (TBP, RPLPO, B2M) to generate an average copy 

number for both MYCC and MYCN for each unknown sample. Samples that showed an 

elevation in copy number relative to two or three of the control genes were reanalysed 

on a further two separate replicates to corroborate the finding. 

 

3.2.7.3 Determining elevated MYCC or MYCN copy number by qRT-PCR 

The values derived from section 3.2.7.2 were compared with a reference cohort to 

determine whether a tumour sample had an elevated MYCC or MYCN copy number. A 

reference cohort comprising of 6 normal brain samples (section 3.2.3) which had been 

processed equivalently to the tumour samples was used. Each reference sample was 

investigated as previously described (section 2.7.2). The average copy number of MYCC 

and MYCN for this reference panel was derived and designated to represent a copy 

number of one to which the value for each test sample would be normalised to. The 

elevation detection value (EDV) was defined as the reference panel mean + 3 standard 

deviations. Tumour samples with a MYCC or MYCN copy number greater than the EDV 

measured relative to at least 2 of the endogenous controls in all 3 independent 

replicates were classified as showing an elevated copy number. 
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Gene Location Forward sequence Reverse sequence 

Product 
size 
(bp) 

Annealing 
temperature 

(°C) 
PCR 

method 

MYCC Intron 1-2 5'-CTTTCGAGATTTCTGCCTTATGAAT-3' 5'-CCCAAAACCCAGAGAGCAATT-3' 95 60 Standard 

MYCN Intron 2-3 5'-AAACTTGGTGATAAGCCTCCAGT-3' 5'-AAGTGCTTCCTCACCAAAAGCT-3' 83 60 Standard 

TBP Intron5-6 5'-TCTCTCTGACCATTGTAGCGGTT-3' 5'-CCGTGGTTCGTGGCTCTCT-3' 64 60 Standard 

B2M Intron 1-2 5'-TCTAGGCGCCCGCTAAGTT-3' 5'-TCGCGTGCTGTTTCCTCC-3' 81 60 Standard 

RPLPO Intron 2-3 5'-ATAAACGGGCTCAGGCAAGTT-3' 5'-CGCGCTCTTTTAGAAGCCAG-3' 81 60 Standard 

       Table 3.8. Primers used in the RT-PCR assessment of MYCC and MYCN.
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3.2.7.4 Multiplex ligation-dependent probe amplification (MLPA) 

MLPA, which has been previously described in section 2.9, was used to determine the 

copy number of MYCC and MYCN genes in the cohort of CNS-PNET primary tumour 

samples and cell lines. Probes for 2 control genes (TBP and B2M), MYCC and MYCN 

were designed to produce products of different sizes as described in section 2.9.2. The 

nucleotide sequences and product lengths for the MLPA probes are given in Table 3.9. 

MLPA was undertaken on all tumour samples as described in section 2.9.3. The results 

for MYCC and MYCN for each sample were measured relative to two of the 

endogenous control genes used in the qRT-PCR study (TBP and B2M) in addition to a 

further 2 control probes (Table 3.10) supplied in the MLPA P200 (MRC Holland) 

reaction mix to generate an average copy number for both MYCC and MYCN for each 

unknown sample. Samples that showed an elevation in copy number relative to three 

or four of the control genes were reanalysed to corroborate the finding. 

 

3.2.7.5 Determining elevated MYCC or MYCN copy number by MLPA 

The values derived from 3.2.7.4 were compared with the normal brain reference 

cohort (Table 3.3) to determine whether a tumour sample had an elevated MYCC or 

MYCN copy number. The average copy number of MYCC and MYCN for this reference 

panel was derived and designated to represent a copy number of one to which the 

value for each test sample would be normalised to. The elevation detection value (EDV) 

was defined as the reference panel mean + 3 standard deviations. Tumour samples 

with a MYCC or MYCN copy number greater than the EDV measured relative to at least 

2 of the endogenous controls in all 3 independent replicates were classified as showing 

an elevated copy number. 
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Gene 

Stuffer 
Length 
(nt) 

Probe 
Length 
(nt) Left hybridising sequence Right hybridising sequence 

B2M 7 90 5'-CTGACAGCATTCGGGCCGA-3' 5'-GATGTCTCGCTCCGTGGCCTTA-3' 

TBP 4 96 5'-TCATGGATCAGAACAACAGCCTGCCAC-3' 5'-CTTACGCTCAGGGCTTGGCCTCC-3' 

MYCN 24 110 5'-GAGCTGGGTCACGGAGATGCT-3' 5'-GCTTGAGAACGAGCTGTGGGGCA-3' 

MYCC 25 116 5'-GTGCCACGTCTCCACACATCAGCACAA-3' 5'-CTACGCAGCGCCTCCCTCCACT-3' 

Table 3.9. Primers used in the MLPA analysis of MYCC and MYCC. 

 

Name Probe 
Probe length 
(nt) 

Location 

Ctrl 1 3578-L02939 172 7q31 

Ctrl 2 3139-L02607 178 14q22 

Table 3.10. Control MLPA probes supplied in the P200 kit (MRC Holland). 
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3.2.7.6 Fluorescence in situ hybridisation (FISH) 

Where material was available FISH was performed on cases showing an elevated copy 

number of MYCN. Nuclear preparations and unstained sections were prepared and 

used as described in sections 2.12.2 and 2.12.3. A probe to chromosome 2p24.3 

corresponding to the MYCN locus (MYCN, bA355H10) was compared with a probe to 

the centromere of the same chromosome (pBSD4D).  Both probes were kindly 

provided by Dr Kieran O’Toole (Northern Institute for Cancer Research, Newcastle 

University UK) from DNA isolated from BAC clones as previously described and 

validated by Lamont et al (Lamont, McManamy et al. 2004). 

The genetic status of each cell was assigned based on the ENQUA recommended 

criteria (Ambros, Benard et al. 2003) which is summarised in Table 3.11. Tumour 

samples were considered as showing MYCN amplification if the test probe to 

centromeric probe ratio was equal or greater than 4. The presence of either speckling 

or clumping within the cells consistent with double minute (DM) or homogenously 

staining region (HSR) formation respectively was also  considered to show evidence of 

amplification as has been previously described (Bown 2001; Mathew, Valentine et al. 

2001; Lamont, McManamy et al. 2004; Yoshimoto, Bayani et al. 2006). 

 

Status Test probe copy number Test probe: Centromeric control ratio 

Monosomy 1 1 

Diploid 2 1 

Trisomy 3 1 

Tetrasomy 4 1 

Ploidy >4 1 

Gain >4 >1 to <4 

Amplification >4 ≥4 

Table 3.11. Criteria to define genetic status of cells by FISH. In this study a probe to 
the centromere of chromosome 2 was used as a control and that to MYCN as the test 
probe.  
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3.2.8 Investigation of TP53 pathway defects 

3.2.8.1 Immunohistochemistry 

Slides were prepared from FFPE material as has been previously described (section 

2.11.3) using Dako High pH Target Retrieval Buffer (Dako, USA) (see appendix A). 

Disruption of the p53 pathway was assessed using the M7001 clone D-07 antibody 

(Dako, USA) used in previous medulloblastoma and CNS-PNET studies (Jaros, Lunec et 

al. 1993; McLendon, Friedman et al. 1999; Eberhart, Chaudhry et al. 2005; Tabori, 

Baskin et al. 2010).  A 1/2000 dilution of the M7001 clone D-07 p53 antibody was 

applied and detected using the methods previously detailed (section 2.11.3). Slides 

were viewed under a light microscope and scored according to nuclear staining 

according to previously described scoring system (Ng, Lo et al. 1994) with three 

categories of positive results and a negative score with the absence of nuclear staining 

as shown in Table 3.12.  

 

Score 
p53 nuclear 

positive cells (%) 

0 0 

 +  1-25 

 ++ 26-50 

 +++ >50 

Table 3.12. Scoring of p53 immunohistochemical slides.  

 

3.2.8.2 Polymerase chain reaction 

PCR primers were designed as described previously (section 2.4.2) to amplify the 

commonly mutated TP53 exons 4-9. To investigate the presence of a homozygous 

deletion of CDKN2A (p14) primers were designed to amplify exon 1β of this gene. The 

CDKN2A primer pair were amplified in a duplex PCR reaction with the addition of a 
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previously described control primer pair to SCN4A (Frank, Hernan et al. 2004; Carr, Bell 

et al. 2006). Details of the primers and PCR reactions are given in Table 3.13. The TP53 

exons were amplified using reaction mixes, given previously in section 2.4.4. For the 

CDKN2A duplex PCR 2µl of each of the 4 primers (10µM) was added to 10µl of the 

GeneAmp® Fast PCR Master Mix and 50ng of DNA template to yield a final volume of 

20µl. PCR amplification was performed using a 40 cycle reaction using the fast method 

(section 2.4.4) with an annealing and extension step of 10 seconds.  

 

3.2.8.3 Sequencing of TP53 products 

PCR products were purified prior to further analysis as described in section 2.4.5. prior 

to  sequencing on an ABI 3730 (Applied Biosystems) by DBS genomics (Durham 

University, Durham, UK). Raw data was returned for subsequent mutational analysis. 

 

3.2.8.4 Agarose gel electrophoresis 

The PCR products from the p14 duplex PCRs were separated on an agarose gel by 

electrophoresis as has been previously described (section 2.5). Evidence of p14 loss 

was determined by the absence of a CDKN2A-1β band in the presence of a band 

generated from the control gene (SCN4A). Abnormal results were repeated to confirm 

the finding. 
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Gene 
Location 

(Exon) Forward sequence Reverse sequence 

Product 
size 
(bp) 

Annealing 
temperature 

(°C) 
PCR 

method 

TP53 4 5'-GGCTGAGGACCTGGTCCTCTGA-3' 5'-GCCAGGCATTGAAGTCTCATGG-3' 371 64 Fast 

TP53 5 5'-ATCTGTTCACTTGTGCCCTG-3' 5'-CAACCAGCCCTGTCGTCTCTC-3' 275 64 Fast 

TP53 6 5'-GCCTCTGATTCCTCACTGAT-3' 5'-GGAGGGCCACTGACAACCA-3' 203 64 Fast 

TP53 7 5'-AAGGCGCACTGGCCTCATCTT-3' 5'-CAGGGGTCAGAGGCAAGCAGA-3' 220 64 Fast 

TP53 8 5'-GAGCCTGGTTTTTTAAATGG-3' 5'-TTTGGCTGGGGAGAGGAGCT-3' 344 64 Fast 

TP53 9 5'-AGCGAGGTAAGCAAGCAGG-3' 5'-GCCCCAATTGCAGGTAAAACAG-3' 267 64 Fast 

CDKN2A 1β 5'-CTGTGGCCCTCGTGCTGATGCTAC-3' 5'-AATGCGCCCCGGACTTTTC-3' 103 64 Fast 

SCN4A 24 5'-TCGGCATCTGCTTCTTCTGCA-3' 5'-TCGAACTTCTCCCATGTCTCG-3' 166 64 Fast 

Table 3.13. TP53 pathway studies PCR primers
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3.2.8.5 MLPA assessment of MDM2 amplification 

To determine the copy number of the MDM2 gene in the cohort of CNS-PNET primary 

tumour samples and cell lines, MLPA was used as detailed in section 2.9.3. Four 

reference control probes were used (as discussed in 3.2.7.5) in addition to a probe set 

for MDM2 (Table 3.10 and Table 3.14). Samples that showed an elevation in copy 

number relative to three or four of the control genes were reanalysed to corroborate 

the finding. 

 

Gene MDM2 

Stuffer Length (nt) 1 

Probe Length (nt) 123 

Left hybridising sequence 5'-GATCAGTTTAGTGTAGAATTTGAAGTTGAATCTCTCGACT-3' 

Right hybridising sequence 5'-CAGAAGATTATAGCCTTAGTGAAGAAGGACAAGAACTCTC-3' 

Table 3.14. MLPA probe for MDM2 copy number ascertainment. nt: nucleotides. 

 

3.2.8.6 Determining elevated MDM2 copy number by MLPA 

The values derived from 3.2.8.4 were compared with the normal brain reference 

cohort as has been described for the MYC genes in section 3.2.7.5. The elevation 

detection value (EDV) was defined as the reference panel mean + 3 standard 

deviations. Tumour samples with a MDM2 copy number greater than the EDV 

measured relative to 3 or 4 of the endogenous controls were classified as showing an 

elevated copy number. 
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3.2.9 Wnt pathway defects investigation 

3.2.9.1 Immunohistochemistry 

Slides were prepared from FFPE material as has been previously described (section 

2.11.3) using freshly prepared citrate Buffer see appendix A). Disruption of the Wnt 

pathway was assessed using β-catenin antibody (610514, BD Transduction labs, USA) 

as described in section 2.11.3 and used in previous medulloblastoma studies (Ellison, 

Onilude et al. 2005; Clifford, Lusher et al. 2006; Ellison, Kocat et al. 2011). Slides were 

viewed under a light microscope and scored according to nuclear accumulation of β-

catenin. Nuclear immunohistochemical status was scored using the same criteria as 

used in the aforementioned studies, summarised in Table 3.15. 

 

β-catenin nuclear immunohistochemistry 

Description Score Classification 

No nuclear staining 0 Negative 

<10% nuclear staining  + Negative 

Widespread nuclear staining  ++ Positive 

Patchy nuclear staining >10%  ++ Positive 

Table 3.15. β-catenin immunohistochemistry scoring system. 

  

3.2.9.2 Polymerase chain reaction (PCR) amplification of CTNNB1  

PCR products spanning the GSK-3β phosphorylation domain of β-catenin (see section 

1.5.5.2) were generated for subsequent sequencing and mutational screening. PCRs 

were performed using a standard 40 cycle reaction as described in section 2.4.3 using 

the previously described CTNNB1 primers (Ellison, Onilude et al. 2005). Primer details 

and PCR conditions are given in Table 3.16. 
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Gene CTNNB1 

Primer location Exon 3 

Forward sequence 5'-TCCAATCTACTAATGCTAATACTG-3' 

Reverse sequence 5'-TAAGGCAATGAAAAATAATACTC-3' 

Product size (bp) 293 

Annealing temperature (°C) 53 

PCR method Standard 

Table 3.16. CTNNB1 mutation analysis PCR primers. 

 
 

3.2.9.3 Sequencing of CTNNB1 

All PCR products were purified prior to further analysis as described in section 2.4.5. 

prior to  sequencing on an ABI 3730 (Applied Biosystems) by DBS genomics (Durham 

University, Durham, UK). Raw data were returned for subsequent mutational analysis
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3.3 Results 

3.3.1 RASSF1A promoter methylation in CNS-PNET 

3.3.1.1 Investigation of RASSF1A promoter methylation in CNS-PNET 

cell lines and primary tumours 

Methylation of the RASSF1A promoter was determined in 2 control samples, 2 CNS-

PNET cell lines and in 25 primary CNS-PNET tumour samples. Illustrative 

electropherograms from the methylated DNA and unmethylated DNA control samples 

are shown in Figure 3.3 and Figure 3.4 respectively. Within each amplicon, 15 CpG 

dinucleotides were analysed.  The methylation status at each CpG dinucleotide within 

the amplified sequence for the CNS-PNET cell lines and tumour samples is shown in 

Figure 3.3. 

Both CNS-PNET cell lines (PFSK and CHP707) investigated were found to exhibit 

RASSF1A promoter methylation. RASSF1A methylation results were not obtained in 3 

samples (SP7, SP10 and SP13). In the remaining 22 samples, 18 (82%) exhibited 

promoter methylation and 4 (18%) were hypomethylated.  
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Figure 3.3. Methylated control electrophoregram of RASSF1A promoter amplified sequence. Antisense sequence following bisulphite 
conversion shown. CpG dinucleotides are marked  A to O.  
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Figure 3.4. Unmethylated control electrophoregram of RASSF1A promoter amplified sequence. Antisense sequence following bisulphite 
conversion shown. CpG dinucleotides are marked A to O. The unmethylated cytosines are converted to uracils with bisulphite treatment, seen 
as an adenine substitution when sequenced using the RASSF1A antisense primer.  



199 

 

 

Figure 3.5. RASSF1A promoter methylation in CNS-PNET primary tumours and cell lines. The methylation status at each CpG dinucleotide (A 
to O) of 2 control samples (black bar), including an unmethylated control (UC) and a methylated control (MC), 2 CNS-PNET cell lines (orange bar) 
and samples from 22 primary CNS-PNETs (green bar). Methylation status at each CpG dinucleotide is given as hypomethylated (open circle), 
partially methylated (half closed circle) and methylated (closed circle).   
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3.3.1.2 Comparison of CNS-PNET and medulloblastoma RASSF1A 

promoter methylation. 

Lindsey et al observed a frequency of methylation in a total cohort of 62 primary 

medulloblastoma samples of 87% (54/62) using equivalent methods (Lindsey, Lusher et 

al. 2004). Methylation of the RASSF1A promoter occurred at a similar rate (82%, 18/22) 

in this cohort of CNS-PNET primary tumour samples (p=0.50, Fisher’s exact test). 

 

3.3.2 Investigation into chromosome 17p loss in CNS-PNET 

3.3.2.1 HOMOD investigation of 17p loss 

Investigations to determine the status of the p-arm of chromosome 17 were 

undertaken in 2 CNS-PNET cell lines and the panel of tumours shown in Table 3.1. The 

7 polymorphic microsatellite markers were amplified and assessed as showing 

homozygous or heterozygous state at each locus as shown in Figure 3.6.  Retention of 

heterozygosity was observed for both CNS-PNET cell lines as shown in Figure 3.7.  The 

results for 23/25 primary tumour samples are given in Figure 3.8. Results are not 

available for samples SP3 or SP7. No evidence of entire chromosome 17p loss was seen 

in any of the primary tumour samples or cell lines. However, in 2 cases (SP46 and SP55) 

an extended region of homozygosity (ERH) was observed with the identification a loss 

of heterozygosity (homozygous state) at 6 consecutive polymorphic markers 

(p=0.00064) consistent with segmental loss of chromosome 17p. 
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Figure 3.6. Chromosome 17p polymorphic microsatelite marker CEQ traces. Standard 
size markers are shown in red. (a) and (b): Fragment analysis traces for tetra-
nucleotide repeat marker D17S969; (a) Two sets of two minor peaks 4 base pairs apart 
constitute two major peak indicating a heterozygous trace, (b) Homozygous trace with 
a single major peaks. (c) and (d): Fragment analysis traces for di-nucleotide repeat 
marker D17S1866 and (e) and (f) fragment analysis traces for di-nucleotide repeat 
marker D17S936. (c) and (e) Three minor peaks 2 base pairs apart are shown to 
constitute a major peak in these heterozygous traces, (d) and (f) homozygous traces. (g) 
and (h): Heterozygous and homozygous traces respectively for tetra-nucleotide repeat 
polymorphic microsatellite marker D17S974. (i) and (j): Heterozygous and homozygous 
traces respectively for D17S2196. (K) and (l). Mono-nucleotide repeat marker 
D17S1840 using green fluorescence to enable to discern this result from the 
simultaneous assessment of other markers. (K) example of a heterozygous trace,  (l) 
homozygous status. (m) and (n): Traces for D17S1308 producing the largest product 
size (304-318 base pairs) of all the markers used. (m) heterozygous and (n) 
homozygous status. 
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Figure 3.7. CNS-PNET cell line results from chromosome 17 p-arm homozygosity of 
deletion (HOMOD) mapping. The location of each of the 7 polymorphic microsatelite 
markers on the p-arm of chromosme 17 is shown with the result for both CNS-PNET 
cell lines (PFSK and CHP707). Closed circle: Homozygous, open circle: heterozygous. 
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Figure 3.8. Chromosome 17p Homozygosity mapping of deletions (HOMOD) in primary CNS-PNET. The results for 23 primary CNS-PNET 
samples are shown for each marker - homozygous (closed circle), and heterozygous (open circle). An extended region of homozygosity (ERH) 
with more than 5 consecutive markers displaying a homozygous status was observed in both SP46 and SP55.
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3.3.2.2 Comparison of chromosome 17p loss in CNS-PNET and 

medulloblastoma. 

In a large study by Megahed (Megahed 2010), who undertook an identical approach to 

investigate chromosome 17 status in 190 primary medulloblastoma samples, 25% 

(47/190) were found to have lost the p-arm of chromosome 17 (data not shown). This 

result however does not differ statistically significantly with these results in the CNS-

PNET study where 17p loss was observed in 2/23 of the primary tumour samples 

(p=0.08, Fisher’s exact test).  

 

3.3.3 Investigation of MYCC  and MYCN gene amplification 

3.3.3.1 Development of the qRT-PCR assay 

Primers designed to amplify B2M, RLPO, TBP, MYCC and MYCN genes were tested 

using a standard PCR reaction and assessed on an agarose gel to confirm that single 

products of the correct size were produced as given in Table 3.8. Dissociation plots for 

each primer pair were generated by qRT-PCR to confirm that the qRT-PCR reaction 

resulted in a single product with a specific melting temperature (Tm) as shown in 

Figure 3.9. 
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Figure 3.9. Dissociation curves for genes used in qRT-PCR MYC family study. (a) Dissociation curve generated using the MYCC primers. i) 
multiple replicates resulting in ii) a single PCR product following denaturation, without any products being produced using i ii) negative controls 
(water). (b-e) Unique products produced for all the genes used in the qRT-PCR study, (b) B2M, (c) MYCN, (d) TBP, (e) RPLPO.
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3.3.3.2 Development of elevated copy number thresholds for MYCN and 

MYCC by qRT-PCR using a reference cohort 

The results from qRT-PCR of a panel comprising of the DNA extracted from FFPE 

material from 6 normal brain samples was used as a reference cohort as described in 

3.2.7.3. The copy numbers of MYCC and MYCN were measured relative to the three 

internal control genes (TBP, B2M and RPLPO). The average copy number of MYCC and 

MYCN was measured in three independent replicates and the mean, standard 

deviation (SD) and coefficient of variation (Cv) determined as shown in Table 3.17. The 

elevation detection value (EDV) determined by calculating the mean +3SD for MYCC 

and MYCN of the reference cohort was  used as a cut-off to identify samples in the test 

series with an elevated copy number. Details of the EDV for MYCC and MYCN 

compared to each of the reference genes in the reference cohort are shown in Table 

3.17. 

 

  

MYCC MYCN 

TBP B2M RPLPO TBP B2M RPLPO 

Mean  0.8097 1.0775 0.7342 3.8287 5.1932 3.5703 

SD 0.2234 0.2270 0.1482 0.7000 0.9258 0.7966 

EDV 1.4799 1.7587 1.1788 5.9288 7.9705 5.9600 

Log10 EDV 0.1702 0.2452 0.0715 0.7730 0.9015 0.7752 

Table 3.17. qRT-PCR of MYCN and MYCC copy number in the reference cohort and 
derivative values. Mean, standard deviation (SD) and elevation detection values (EDV) 
for both MYCC and MYCN compared to three reference genes (TBP, B2M and 
RPLPO).The EDV was set at mean + 3SD. 

 

The capacity for the qRT-PCR assay to detect MYCC or MYCN copy number changes 

was confirmed as discussed in section 3.2.7.2 with the inclusion of 2 cell lines known to 

exhibit MYCN (IMR-32) and MYCC (D384) amplification and shown in Figure 3.10. 
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Figure 3.10. MYCC and MYCN amplification in qRT-PCR positive control cell lines. (a) MYCC amplification in medulloblastoma cell line D384. (b) 
MYCN amplification in neuroblastoma cell line IMR-32. A copy number greater than the elevation detection value (EDV) when compared with 
at least 2 control genes (TBP, B2M or RPLPO) denotes a gain. The EDV for TBP, B2M and RPLPO are shown by the blue, red and green dotted 
lines respectively.
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3.3.3.3 Assessment of MYCC and MYCN copy number in CNS-PNET cell 

lines and primary tumour samples. 

Two CNS-PNET cell lines and 25 primary CNS-PNET samples were investigated for copy 

number changes of the MYC family genes by qRT-PCR. PFSK and CHP707 were both 

found to have a raised copy number of MYCC when compared relative to the three 

internal control genes (TBP, B2M and RPLPO) and were validated in three independent 

replicates. This finding was not observed in any of the primary tumour samples (0/25) 

as shown in Figure 3.11. A gain in MYCN copy number was not present in either cell 

line. In 3/25 (12%) primary tumours investigated, a gain in MYCN copy number was 

observed in comparison to the control genes, which was validated in three 

independent replicates Figure 3.12.   
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Figure 3.11. MYCC copy number in CNS-PNET by qRT-PCR. MYCC copy number in 2 CNS-PNET cell lines and 25 primary CNS-PNET tumours 
measured relative to 3 internal control genes (TBP, B2M and RPLPO). Copy number elevation in both CNS-PNET cell lines (PFSK and CHP707) as 
denoted by values above the elevation detection values (EDV) for all 3 control genes (TBP, blue dotted line; B2M, red dotted line; and RPLPO, 
green dotted line). A normal copy number was observed in all primary tumours (relative copy number <EDV when compared with 1> control 
gene). 
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Figure 3.12. Log10 MYCN copy number in CNS-PNET by qRT-PCR.  Log10 MYCN copy number is shown in 2 CNS-PNET cell lines and 25 primary 
CNS-PNET tumours measured relative to 3 internal control genes (TBP, B2M and RPLPO). A normal copy number was observed in both CNS-
PNET cell lines (PFSK and CHP707) as denoted by values below the elevation detection values (EDV) for 2 or 3 control genes (TBP, blue dotted 
line; B2M, red dotted line; and RPLPO, green dotted line). A MYCN copy number elevation was observed in 3 primary CNS-PNET tumour 
samples (SP21, SP42 and SP46). 
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3.3.3.4 Development of the elevated copy number thresholds to be 

used for the MLPA validation of the qRT-PCR results 

The reference cohort used in determining the qRT-PCR EDV for both MYCC and MYCN 

was used to determine the EDV for the MLPA analysis. The copy numbers of MYCC and 

MYCN were measured relative to four internal control genes (TBP, B2M Ctrl and Ctrl2). 

TBP and B2M as previously described (section 3.2.7.5) had product lengths smaller 

than the test genes, whilst Ctrl1 and Ctrl2 produced products greater than the MYC 

products (as shown in Figure 3.13). The elevation detection value (EDV) was 

determined by calculating the mean +3 SDs for MYCC and MYCN as shown in Table 

3.18. 

Gene ratio Mean SD EDV Log10 EDV 

MYCN/B2M 1.2023 0.3306 2.1942 0.3413 

MYCN/TBP 1.2812 0.4155 2.5277 0.4027 

MYCN/Ctrl1 1.0857 0.1636 1.5766 0.1977 

MYCN/Ctrl2 1.4050 0.3263 2.3838 0.3773 

MYCC/B2M 1.1936 0.1535 1.6540 0.2185 

MYCC/TBP 1.2454 0.1915 1.8198 0.2600 

MYCC/Ctrl1 1.1109 0.1919 1.6866 0.2270 

MYCC/Ctrl2 1.4056 0.2063 2.0244 0.3063 

Table 3.18. MLPA reference cohort MYCC and MYCN copy number derived values. 
Mean, standard deviation (SD) and elevation detection values (EDV) for both MYCC 
and MYCN compared to four reference genes (TBP, B2M, Ctrl1 and Ctrl2 ).The EDV was 
set at mean + 3SD. 

 

The capacity for the MLPA assay to detect MYCC or MYCN copy number changes was 

confirmed as discussed in section 3.2.7.2 with the inclusion of 2 cell lines known to 

exhibit MYCN (IMR-32) and MYCC (D384) amplification and shown in Figure 3.14. 
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Figure 3.13. MLPA analysis raw traces. (a) Raw trace from control sample N9. Normal 
size control peaks (blue) for B2M (88.1bp), TBP (99.3bp), Ctrl1 (172.4bp) and Ctrl2 
(178.1bp). In between these peaks are three test peaks for MYCN (108.6bp), MYCC 
(113.2bp) and MDM2 (121.1bp). Additional peaks of molecular size greater than Ctrl2 
reflect redundant additional probes in the MRC-Holland P200 probemix. Reference size 
marker (red). (b) MYCN amplification in SP42. Signal intensity for the MYCN probe 
(108.6bp) is ten-fold greater than the panel of reference and other test probes. 
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Figure 3.14. MYCC and MYCN amplification in MLPA positive control cell lines. (a) 
MYCC amplification in medulloblastoma cell line D384. (b) MYCN amplification in 
neuroblastoma cell line IMR-32. A copy number greater than the elevation detection 
value (EDV) when compared with at least 3 control genes (TBP, B2M, Ctrl1 or Ctrl2) 
denotes a copy number elevation. The EDV for B2M, TBP, Ctrl1 and Ctrl2 are shown by 
the blue, red, green and purple dotted lines respectively. 

 

3.3.3.5 Assessment of MYCC and MYCN copy number in CNS-PNET cell 

lines and primary tumour samples by MLPA. 

The reference cohort EDV was used as a cut-off to identify samples in the test series 

with an elevated copy number. The qRT-PCR cohort comprising two CNS-PNET cell 

lines and 25 primary CNS-PNET samples were investigated for copy number changes of 

the MYC family genes by MLPA. CHP707 was found to have a raised copy number of 

MYCC (1/2 CNS-PNET cell lines) when compared relative to the control genes. This 

finding was not observed in any of the primary tumour samples (0/25) as shown in 

Figure 3.15. A gain in MYCN copy number was not present in either cell line. In 3/25 

(12%) primary tumours investigated a gain in MYCN copy number was observed (Figure 

3.16).
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Figure 3.15. MYCC copy number in CNS-PNET by MLPA. MYCC copy number in 2 CNS-PNET cell lines and 25 primary CNS-PNET tumours 
measured relative to 4 internal control genes (TBP, B2M, Ctrl1 and Ctrl2). Copy number elevation was observed in CHP707 as denoted by 
values above the elevation detection values (EDV) for all 4 control genes (B2M, blue dotted line; TBP, red dotted line; and Ctrl1, green dotted 
line; and Ctrl2, purple dotted line). A normal copy number was observed in all primary tumours (relative copy number <EDV when compared 
with 1> control gene). 



217 

 

 

Figure 3.16. Log10 MYCN copy number in CNS-PNET by MLPA. Log10 MYCN copy numbers are shown in 2 CNS-PNET cell lines and 25 primary 
CNS-PNET tumours measured relative to 4 internal control genes (TBP, B2M, Ctrl1 and Ctrl2). Normal copy numbers were observed in both 
CNS-PNET cell lines (PFSK and CHP707) as denoted by values below the elevation detection values (EDV) for 3 or 4 control genes (B2M, blue 
dotted line; TBP, red dotted line; Ctrl1, green dotted line and; Ctrl2, purple dotted line). MYCN copy number elevation was observed in 3 
primary CNS-PNET tumour samples (SP21, SP42 and SP46). 
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3.3.3.6 FISH validation of MYCN amplification 

Material was available in two of the cases with evidence of MYCN copy number 

elevation (SP21 and SP46), to be used for FISH validation in addition to a reference 

cohort diploid sample (N9) which was used as a diploid normal copy number reference 

control. A normal diploid signal for both the centromeric and MYCN probes was 

observed in the reference sample. MYCN signals for both SP21 and SP46 demonstrated 

clumps of varying sizes consistent with HSR formation and confirming MYCN 

amplification (MYCN probe: control centromeric probe ratio ≥4) in these cases, as 

shown in Figure 3.17.  Based on these results, and the equivalent copy numbers 

observed for the three cases with evidence of MYCN copy number elevation, it may be 

inferred that the copy numbers observed for sample SP42, for which suitable material 

for FISH analysis was not available, are consistent with gene amplification.  
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Figure 3.17. MYCN amplification by fluorescence in situ hybridisation. (a) N9: Normal diploid status. Two (red) centromeric signals are seen in 
each cell (closed arrow head), and two MYCN (green) signals (arrow). (b) SP21: Two centromeric signals are seen indicating that the cells 
contatin 2 copies of chromosome 2, but innumerable additional green signals are also observed indicating MYCN amplification. (c) MYCN 
amplification in SP46. Some cells have additional copies of chromosome 2 with up to 6 centromeric signals in each cell. The MYCN signal 
exceeds 6 copies, again confirming MYCN amplification. 
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3.3.3.7 Summary of MYCN and MYCC amplification findings in CNS-PNET 

primary tumour samples 

An elevation of MYCC copy number was not observed in any of the primary CNS-PNET 

tumour samples (0/25, 0%). This finding was confirmed by both qRT-PCR and MLPA. An 

elevation in copy number (>5) consistent with amplification was observed in 3/25 (12%) 

primary tumour samples by both qRT-PCR and MLPA with 100% concordance. In two 

of these cases appropriate material was available to confirm this finding by FISH. A 

summary of these results is given in Table 3.19. 

 

3.3.3.8 MYCN and MYCC amplification in CNS-PNET in comparison with 

medulloblastoma 

The results from a large study by (Ryan 2009) undertaken using a qRT-PCR approach to 

investigate MYC family gene amplification in 292 primary medulloblastoma samples 

showed MYCC amplification in 2% (6/292) and MYCN amplification in 5.5% (16/292) of 

cases. These findings are consistent with those identified in the current CNS-PNET 

study (p=0.53 and 0.23 respectively, Fisher’s exact test).  
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ID 
MYCN copy number 

qRT-PCR MLPA FISH 

SP3 Diploid Diploid  - 

SP4 Diploid Diploid  - 

SP7 Diploid Diploid  - 

SP10 Diploid Diploid  - 

SP13 Diploid Diploid  - 

SP14 Diploid Diploid  - 

SP21 Amplified Amplified Amplified (HSR) 

SP23 Diploid Diploid  - 

SP24 Diploid Diploid  - 

SP28 Diploid Diploid  - 

SP40 Diploid Diploid  - 

SP41 Diploid Diploid  - 

SP42 Amplified Amplified  - 

SP43 Diploid Diploid  - 

SP45 Diploid Diploid  - 

SP46 Amplified Amplified Amplified (HSR) 

SP47 Diploid Diploid  - 

SP49 Diploid Diploid  - 

SP50 Diploid Diploid  - 

SP51 Diploid Diploid  - 

SP52 Diploid Diploid  - 

SP54 Diploid Diploid  - 

SP55 Diploid Diploid  - 

SP57 Diploid Diploid  - 

SP58 Diploid Diploid  - 

Table 3.19. Summary of MYCN copy number elevation determined by different 
molecular techniques summary. Copy number results derived from quantitative real-
time PCR (qRT-PCR), multiplex ligation dependent probe amplification (MLPA) and 
fluorescence insitu hybridisation (FISH) are shown. An amplified result by qRT-PCR or 
MLPA denotes a relative copy number ≥5. HSR: homogenously staining region. 
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3.3.4 Investigation of TP53 pathway defects in CNS-PNET 

3.3.4.1 Assessment of p53 nuclear accumulation in CNS-PNET cell lines 

and primary tumour samples. 

Assessment of p53 nuclear accumulation was made in 22 primary CNS-PNET tumours 

where suitable material was available (Not performed on SP3, SP21 or SP51). No 

evidence of p53 accumulation was observed in 2 cases (2/22, 9%), low level 

accumulation (1-25% of cells) in 23% (5/22), moderate accumulation in 32% (7/22) and 

evidence of nuclear accumulation in more than 50% nuclei in 36% (8/22). These results 

are summarised in Table 3.20, Figure 3.18, Figure 3.19 and Table 3.20. 

 

ID 
p53 nuclear 

immunohistochemistry 
score 

SP4  + 

SP7  ++ 

SP10 0 

SP13 0 

SP14  ++ 
SP23  + 

SP24  + 

SP28  ++ 

SP40  + 
SP41  ++ 

SP42  +++ 

SP43  +++ 

SP45  ++ 
SP46  +++ 

SP47  +++ 

SP49  +++ 

SP50  +++ 
SP52  +++ 

SP54  ++ 

SP55  +++ 

SP57  ++ 
SP58  + 

Table 3.20. p53 nuclear accumulation in primary CNS-PNET tumours. 
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Figure 3.18.Immunohistochemical analysis of p53 pathway activation. (a) Score: 0. No evidence of pathway activation. (b) Score: +. 1-25% of 
cells show evidence of nuclear accumulation. (c) Score: ++. 25-50% of cells show nuclear accumulation. (d) Score: +++. Intense staining of 
greater than 50% nuclear accumulation.  



224 

 

Figure 3.19. p53 nuclear accumulation in TP53 mutant CNS-PNET primary tumours. (a)SP4: Showing 10-15% positive cells; (b) 
SP46: Intense nuclear staining in all tumour cells; (c) SP47: Widespread accumulation with intense staining in some nuclei 
(arrow); (d) SP55. Widespread accumulation with intense staining in some nuclei (arrow). 
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3.3.4.2 CNS-PNET TP53 mutation analysis 

TP53 mutation analysis of exons 4-9 was successfully performed on 2 CNS-PNET cell 

lines (PFSK and CHP707) and 22 primary CNS-PNET tumour samples. A total of 5 non-

synonymous point mutations were discovered in 4 tumour samples (4/22, 18%). No 

mutation was seen in either cell line.  In SP47 a substitution mutation was detected in 

exon 5 (471G>T, V157F), a substitution (823T>G, C275G) in exon 8 of SP4 and a further 

substitution mutation in exon 8 of SP46 (817C>T, R273C) as shown in Figure 3.20, 

Figure 3.22 and Figure 3.23. In SP55 homozygous substitutions in both exons 5 and 8 

are observed (460G>A (G154S) and 847C>T, (R283C)), shown in Figure 3.21 and Figure 

3.24. All identified mutations were confirmed on independent repeat sequencing and, 

were cross-correlated with the International Agency for Research in Cancer (IARC) 

TP53 database and p53 Mutation Manual, and were confirmed to have been 

previously described in cancer (Petitjean, Mathe et al. 2007; Hjortsberg L, Rubio-

Nevado J.M et al. 2010). 

 

Figure 3.20. Electrophoregrams of TP53 exon 5 showing a mutation in SP47 in 
comparison with a wild type sequence.  (a) and (b) wild type sequences in sense and 
anti-sense direction respectively. (c) and (d) Corresponding region in SP47 in both 
sense and antisense directions respectively showing a non-synonymous heterozygous 
codon 157 GTC to TTC point mutation (arrow). 
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Figure 3.21. Electrophoregrams of TP53 exon 5 showing a mutation in SP55 in 
comparison with a wild type sequence.  (a) and (b) wild type sequences in sense and 
anti-sense direction respectively. (c) and (d) Corresponding region in SP55 in both 
sense and antisense directions respectively showing a non-synonomous homozygous 
codon 154 GGC to AGC point mutation (arrow). 

 

 

Figure 3.22. Electrophoregrams of TP53 exon 8 showing a mutation in SP4 in 
comparison with a wild type sequence. (a) and (b) wild type sequences in sense and 
anti-sense direction respectively. (c) and (d) Corresponding region in SP4 in both sense 
and antisense directions respectively showing a non-synonomous homozygous codon 
275 TGT to  GGT point mutation (arrow). 
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Figure 3.23. Electrophoregrams of TP53 exon 8 showing a mutation in SP46 in 
comparison with a wild type sequence.  (a) and (b) wild type sequences in sense and 
anti-sense direction respectively. (c) and (d) Corresponding region in SP46 in both 
sense and antisense directions respectively showing a non-synonomous homozygous 
codon 273 CGT to TGT point mutation (arrow). 

 

 

Figure 3.24. Electrophoregrams of TP53 exon 8 showing a mutation in SP55 in 
comparison with a wild type sequence.  (a) and (b) wild type sequences in sense and 
anti-sense direction respectively. (c) and (d) Corresponding region in SP55 in both 
sense and antisense directions respectively showing a non-synonomous homozygous 
codon 283 CGC to TGC point mutation (arrow). 
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3.3.4.3 MDM2 amplification in CNS-PNET 

A reference cohort comprising the same samples used in the MYC study was used in a 

study to determine the EDV for an MLPA analysis investigating MDM2 amplification. 

The copy number of MDM2 was measured relative to four internal control genes (TBP, 

B2M, Ctrl and Ctrl2). TBP and B2M as previously described (section 3.2.7.5) had 

product lengths smaller than the test genes, whilst Ctrl1 and Ctrl2 produced products 

greater than the MDM2 products (as shown in Figure 3.13a). The elevation detection 

value (EDV) was determined by calculating the mean +3 SDs for MDM2 as shown in 

Table 3.21. 

 

  MDM2/B2M MDM2/TBP MDM2/Ctrl1 MDM2/Ctrl2 

Mean 1.6471 1.7155 1.5518 1.9351 

SD 0.1859 0.2308 0.3652 0.2145 

EDV 2.2048 2.4079 2.6475 2.5787 

Log10 EDV 0.3434 0.3816 0.4228 0.4114 

Table 3.21. MLPA reference cohort MDM2 derived copy number values. Mean, 
standard deviation (SD) and elevation detection values (EDV) for MDM2 relative to 
four reference genes (TBP, B2M, Ctrl1 and Ctrl2 ).The EDV was set at mean + 3SD. 

 

Two CNS-PNET cell lines and 25 primary CNS-PNET samples were examined for 

evidence of MDM2 amplification. A normal MDM2 copy number was detected for both 

PFSK and CHP707. A copy number elevation of MDM2 was observed in a single (SP40) 

CNS-PNET primary tumour sample (1/25, 4%) as shown in Figure 3.25. 
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Figure 3.25. MDM2 copy number in CNS-PNET by MLPA. MDM2 copy number in 2 CNS-PNET cell lines and 25 primary CNS-PNET tumours 
measured relative to 4 internal control genes (TBP, B2M, Ctrl1 and Ctrl2). Normal copy numbers were observed in both CNS-PNET cell lines 
(PFSK and CHP707) as denoted by values below the elevation detection values (EDV) for 3 or 4 control genes (B2M, blue dotted line; TBP, red 
dotted line; Ctrl1, green dotted line and; Ctrl2, purple dotted line). A MDM2 copy number elevation was observed in a single primary CNS-PNET 
tumour samples (SP40). 
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3.3.4.4 Investigation of CDKN2A homozygous deletion in CNS-PNET 

Results were obtained for both CNS-PNET cell lines and CNS-PNET primary tumour 

samples examined (25/25). Evidence of homozygous deletion of CDKN2A was found in 

one of the cell lines was observed (CHP707). PFSK and CHP707 were both subsequently 

used when investigating the primary tumour cohort for CDKN2A deletion as positive 

controls, as shown in Figure 3.26. There was no evidence of a homozygous deletion of 

CDKN2A in any of the primary tumours investigated (0/25, 0%). 

 

 

Figure 3.26. CDKN2A homozygous deletion analysis in CNS-PNET by duplex PCR. 
Primers to both CDKN2A and control gene SCN4A were amplified in a duplex PCR 
reaction and run on an agarose electrophoretic gel. Duplex bands for both SCN4A and 
CDKN2A using PFSK and a single band for SCN4A with CHP707 indicates a retention and 
a homozygous loss of CDKN2A in these 2 cell line samples, respectively.  CDKN2A 
homozygous loss was not observed in any of the CNS-PNET primary tumour samples. 

 

3.3.4.5 Summary of TP53 pathway defects in CNS-PNET and 

comparison with medulloblastoma 

The results of the investigation into TP53 pathway in CNS-PNET are summarised in 

Table 3.22. Nuclear accumulation of p53 was identified in 20/22 (91%) primary CNS-

PNET samples. In medulloblastoma cohorts, p53 nuclear accumulation have been 

reported to occur at rates of ranging from 9-31% in previous studies (Eberhart, 

Chaudhry et al. 2005; Pfaff, Remke et al. 2010; Tabori, Baskin et al. 2010). In these 

previous studies p53 nuclear accumulation has been assumed to indicate pathway 

dysfunction. The frequency of p53 nuclear accumulation in CNS-PNET primary tumour 
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samples is thus significantly greater than in medulloblastoma (p=0.0001, Fisher’s exact 

test), and may be associated with a higher prevalence of pathway dysfunction. In 53% 

of cases in the Tabori et al study, p53 nuclear accumulation in medulloblastoma was 

associated with a TP53 mutation (Tabori, Baskin et al. 2010), and Pfaff et al reported 

p53 nuclear accumulation in 82% of those with TP53 mutations (Pfaff, Remke et al. 

2010). In the current study of CNS-PNET, mutations occurred in a lower frequency of 

4/20 (20%) of cases with p53 nuclear accumulation (p=0.071, Fisher’s exact test). TP53 

mutations were not observed in cases without p53 nuclear accumulation.. 

To identify alternative mechanisms resulting in disruption of TP53 pathway both 

MDM2 amplification and homozygous loss of CDKN2A (p14ARF) were investigated. 

There was no evidence of homozygous loss of CDKN2A in the cohort studied, and 

MDM2 amplification was observed in only a single case. MDM2 amplification occurred 

in the presence of p53 nuclear accumulation, but unfortunately suitable material was 

not available to permit FISH validation of the MDM2 status in this case. These findings 

suggest that MDM2 amplification may play a role in p53 pathway disruption in a 

subset of CNS-PNETs, but that additional alternative mechanisms are responsible for 

the frequency of p53 nuclear accumulation and possible TP53 pathway disruption in 

CNS-PNET, which requires further investigation. 
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ID TP53 mutation 
p53 nuclear 

immunohistochemistry 
score 

MDM2 
copy 

number 

CDKN2A 
homozygous 

deletion 

SP4 
Homozygous mutation: 

275 TGT>GGT 
 + Diploid No 

SP7 wt  ++ Diploid No 

SP10 wt 0 Diploid No 

SP13 wt 0 Diploid No 

SP14 wt  ++ Diploid No 

SP23  -  + Diploid No 

SP24 wt  + Diploid No 

SP28 wt  ++ Diploid No 

SP40 wt  + Elevated No 

SP41 wt  ++ Diploid No 

SP42 wt  +++ Diploid No 

SP43 wt  +++ Diploid No 

SP45 wt  ++ Diploid No 

SP46 
Homozygous mutation: 

273 CGT>TGT 
 +++ Diploid No 

SP47 
Heterozygous mutation: 

157 GTC>TTC 
 +++ Diploid No 

SP49 wt  +++ Diploid No 

SP50 wt  +++ Diploid No 

SP51 wt - Diploid No 

SP52 wt  +++ Diploid No 

SP54 wt  ++ Diploid No 

SP55 

Homozygous mutations: 
154 GGC>AGC 
283 CGC>TGC 

 +++ Diploid No 

SP57 wt  ++ Diploid No 

SP58 wt  + Diploid No 

Table 3.22. Summary of TP53 pathway defects in CNS-PNET primary tumour samples. 
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3.3.5 Investigation of defects in the Wnt signalling pathway in 

CNS-PNET. 

3.3.5.1 Accumulation of nuclear β-catenin in CNS-PNET primary 

tumour samples. 

Assessment of β-catenin nuclear accumulation was made in 22 primary CNS-PNET 

tumours where suitable material was available. No evidence of β-catenin accumulation 

was observed in 18 cases (18/22, 72%), low level accumulation (1-10% of cells) in 9% 

(2/22), and evidence of intense nuclear accumulation in more than 10% nuclei in two 

cases, SP10 and SP13 (2/22, 9%). These results are summarised in Table 3.23 and 

Figure 3.27 and Figure 3.28.
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ID 

β-catenin nuclear immunohistochemistry 

Description Score 

SP4 Negative Staining 0 

SP7 Negative Staining 0 

SP10 Widespread (100%) & strong intensity staining  ++ 

SP13 Patchy (50%) & strong intensity staining  ++ 

SP14 Negative Staining 0 

SP23 Negative Staining 0 

SP24 Negative Staining 0 

SP28 Negative Staining 0 

SP40 Negative Staining 0 

SP41 Negative Staining 0 

SP42 Negative Staining 0 

SP43 Negative Staining 0 

SP45 Negative Staining 0 

SP46 Negative Staining 0 

SP47 Negative Staining 0 

SP49 Negative Staining 0 

SP50 5% Weak intensity staining  + 

SP52 Negative Staining 0 

SP54 Negative Staining 0 

SP55 Negative Staining 0 

SP57 5% weak intensity staining  + 

SP58 Negative Staining 0 

Table 3.23. Nuclear β-catenin accumulation in primary CNS-PNET tumours. Scoring: 
Nuclear accumulation in 0% cells, 0 (negative); 1-10%, + (weakly positive); and >10% of 
cells, ++ (strongly positive). 
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Figure 3.27. Immunohistochemistry analysis of β-catenin nuclear accumulation and Wnt pathway activation. (a) Positive: Nuclear staining in 
all cells in SP10, (b) Negative staining in SP40. Some cytoplasmic staining but absent β-catenin nuclear accumulation.
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Figure 3.28. β-catenin immunohistochemical analysis of SP13. Sample contained regions with evidence of differential Wnt pathway activation 
(a) nuclear accumulation, and (b) normal status with only β-catenin antibody cytoplasmic staining.  
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3.3.5.2 CTNNB1 mutation analysis in CNS-PNET cell lines and primary 

tumour samples. 

CTNNB1 exon 3 mutation analysis was performed on both CNS-PNET cell lines (PFSK and 

CHP707) in addition to 25 CNS-PNET primary tumour samples. Both cell lines exhibited a wild 

type sequence. A heterozygous point mutation in codon 34 (100G>C, (G34R)) was detected 

in a single primary tumour sample (1/25, 4%) resulting in an amino acid change from glycine 

to arginine (Figure 3.29). This mutation was observed in SP13 which also exhibited 

immunohistochemical β-catenin nuclear accumulation. No mutation of CTNNB1 was 

however detected in the only other case in the CNS-PNET cohort that exhibited β-catenin 

nuclear accumulation (SP10).  

 

 

Figure 3.29. Electrophoregrams of CTNNB1 showing a mutation in SP13 compared with a 
wild-type sequence. (a) and (b) wild type sequences in sense and anti-sense direction 
respectively. (c) and (d) Corresponding region in SP13 in both sense and antisense directions 
respectively showing a non-synonomous heterozygous codon 34 GGA to CGA point mutation 
(arrow). 
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3.3.5.3 CNS-PNET Wnt pathway defects in comparison with 

medulloblastoma. 

Defects in the Wnt pathway were detected in 2/22 primary CNS-PNETs. The frequency of β-

catenin nuclear accumulation was comparable (p=0.542, Fisher’s exact test) with that 

reported in medulloblastoma (33/206, 16%, (Ellison, Kocat et al. 2011)). No mutation in 

CTNNB1 was observed in the absence of nuclear β-catenin accumulation, but this finding did 

not reach statistical significance (p=0.09, Fisher’s exact test). 

 

3.3.6 Analysis of clinical features of investigated medulloblastoma 

defects in CNS-PNET 

A series of defects frequently observed in medulloblastoma cohorts were investigated in 

CNS-PNET primary tumour samples. The results of these investigations are summarised in 

Table 3.24. 
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ID 
RASSF1A 

meth1 
17p 
loss2 

Amplification TP53 Pathway defect 
Wnt pathway 

defect 

MYCC MYCN 
p53 
IHC3 

TP53 
mutation 

MDM2  
elev4 

CDKN2A 
deletion 

β-
catenin 

IHC5 

CTNNB1 
mutation 

SP3 No - No No - - No  No No No 

SP4 Yes No No No Yes Yes No  No No No 

SP7 - - No No Yes No No  No No No 

SP10 - No No No No No No  No Yes No 

SP13  - No No No No No No  No Yes Yes 

SP14 Yes No No No Yes No No  No No No 

SP21 No No No Yes - - No  No - No 

SP23 Yes No No No Yes - No  No No No 

SP24 Yes No No No Yes No No  No No No 

SP28 Yes No No No Yes No No  No No No 

SP40 Yes No No No Yes No Yes No No No 

SP41 Yes No No No Yes No No No No No 

SP42 Yes No No Yes Yes No No No No No 

SP43 Yes No No No Yes No No No No No 

SP45 Yes No No No Yes No No No No No 

SP46 Yes ERH No Yes Yes Yes No No No No 

SP47 Yes No No No Yes Yes No No No No 

SP49 Yes No No No Yes No No No No No 

SP50 Yes No No No Yes No No No No No 

SP51 Yes No No No - No No No - No 

SP52 Yes No No No Yes No No No No No 

SP54 Yes No No No Yes No No No No No 

SP55 Yes ERH No No Yes Yes No No No No 

SP57 No No No No Yes No No No No No 

SP58 No No No No Yes No No No No No 

Total 
18/22                 
(81%) 

2/23 
(9%) 

0/25          
(0%) 

3/25          
(12%) 

20/22         
(91%) 

4/22        
(18%) 

1/25 
(4%) 

0/25 
(0%) 

2/23       
(9%) 

1/25        
(4%) 

Table 3.24. Summary of common medulloblastoma defects investigated in CNS-PNET. 
Cohort comprises 25 primary CNS-PNET samples. 1 RASSF1A promoter methylation, 2 Loss of 
the p-arm of chromosome 17, 3 p53 immunohistochemistry nuclear accumulation, 4 MDM2 
copy number elevation, and 5 β-catenin nuclear positivity in >10% cells. 
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An initial analysis of survival in relation to the presence of identified medulloblastoma 

defects in CNS-PNET showed no survival correlations with any of the identified defects 

(Table 3.25).  

 

Molecular defect Frequency 
Survival 

statistical 
analysis 

Significance 
(pval) 

RASSF1A methyaltion 18/22 Log-rank 0.664 

Chromosome 17p loss 2/23  Log-rank  0.526 

MYCN amplification 3/25 Log-rank 0.624 

MYCC amplification 0/25  -  - 

p53 nuclear 
immunohistochemistry 

(0) 2/22, (+) 5/22, 
(++) 7/22, (+++) 8/22   

Cox 
regression 0.525 

TP53 mutation 4/22 Log-rank 0.580 

MDM2 amplification 0/23  -  - 

CDKN2A homozygous 
deletion 0/23  -  - 

β-catenin nuclear 
immunohistochemistry  

(0) 2/22, (+) 2/22, 
(++) 18/22 

Cox 
regression 0.691 

CTNNB1 mutation 1/25 Log-rank 0.940 

Table 3.25. Summary of investigated medulloblastoma defects in primary CNS-PNET 
survival analyses.  

 

The presence of metastatic disease and age at diagnosis are the two clinical features known 

to be associated with outcome in CNS-PNET disease. The study cohort comprised of only a 

single case with metastatic disease (SP49), whilst in 4 cases the metastatic status was 

unknown (Table 3.4). An analysis of association between detected medulloblastoma defects 

and metastatic status was therefore not feasible using this cohort. In the cohort, 6 of the 

patients were diagnosed as infants (age<3yrs), 13 as children (3-18 years old) and 5 as adults 

(age >18 years). Information on age at diagnosis was not available for SP43 and therefore 

was excluded from the age related analyses. The relative frequencies of the investigated 
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medulloblastoma defects which occurred in more than one case at different ages are given 

in Table 3.26. No statistically significant association was found between age at diagnosis and 

the presence of RASSF1A promoter methylation (p=0.83), MYCN amplification (p=0.16), 

positive p53 nuclear accumulation (p=0.69), chromosome 17p loss (p=0.45), TP53 mutation 

(p=0.41), or β-catenin nuclear accumulation (p=0.69). There was however a tendency 

towards significance when considering MYCN amplification in adults compared with all 

paediatric cases (1/18 v 2/5, p=0.10 Fisher’s exact test). 

 

Molecular defect 
Age Significance 

(pval) Infant 
(<3yrs) 

Child                   
(3-18 yrs) 

Adult 
>18yrs 

RASSF1A methylation 
5/6 (83%) 8/10 (80%) 4/5 (80%) 0.83 

MYCN amplification 
0/6 (0%) 1/13 (8%) 2/5 (40%) 0.16 

Chromosome 17p loss 
0/6 (0%) 1/12 (8%) 1/5 (40%) 0.45 

Positive p53 nuclear 
immunohistochemistry 6/6 (100%) 9/11 (72%) 4/4 (100%) 0.69 

TP53 mutation 
0/6 (0%) 3/13 (23%) 1/5 (20%) 0.41 

Positive β-catenin nuclear 
immunohistochemistry  0/6 (0%) 2/11 (18%) 0/4 (0%) 0.69 

Table 3.26. Common medulloblastoma defects in CNS-PNET patients at different ages. 
Information on the age at diagnosis was available in 24 cases. Positive β-catenin 
immunohistochemistry includes cases where β-catenin nuclear accumulation was present 
in >10% cells. Statistical significance was determined by Fisher’s exact test using the 
multitest package (Pollard, Gilbert et al. 2010) in the R statistical software program. 
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3.4 Discussion 

3.4.1 RASSF1A methylation in CNS-PNET 

Methylation of the RASSF1A promoter was identified in 81% of primary CNS-PNETs which 

represents one of the most frequent molecular defects detected in this disease. Few studies 

have previously investigated RASSF1A methylation in CNS-PNET (Chang, Pang et al. 2005; 

Muhlisch, Schwering et al. 2006; Inda and Castresana 2007) and have found comparable 

rates of methylation in these series as shown in Table 3.27. In the Chang et al study the 

RASSF1A methylation status of 25 medulloblastomas was compared with that of 9 CNS-

PNETs. All of the medulloblastomas were methylated in this series and a statistically 

significant difference between the 2 tumour groups reported (p=0.014, Fisher’s exact test). 

In this current larger study RASSF1A promoter methylation in 22 CNS-PNETs compared with 

a large cohort of medulloblastomas (n=62) does not corroborate this finding.  

 

Reference 
Cohort RASSF1A methylation 

Number Age (yrs) Frequency Method 

Chang et al,  2005 9  1-26  6/9 (67%) MSP 

Muhlisch et al, 2006 24  1-40 19/24 (79%) MSP & BS 

Inda et al,  2007 6  4-49 5/6 (83%) MSP 

Table 3.27. RASSF1A methylation in published CNS-PNET series. RASSF1A promoter 
methylation ascertained using methylation specific PCR (MSP) and direct bisulphite 
sequencing (BS). 

 

In some tumour groups, RASSF1A methylation has been shown to be associated with clinical 

correlates including poorer survival (Astuti, Agathanggelou et al. 2001; Burbee, Forgacs et al. 

2001; Harada, Toyooka et al. 2002; Tomizawa, Iijima et al. 2004; Yang, Zage et al. 2004; 

Banelli, Gelvi et al. 2005; Michalowski, de Fraipont et al. 2008). However in common with 

previous studies including  medulloblastoma (Lindsey, Lusher et al. 2004; Muhlisch, 
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Schwering et al. 2006) and general paediatric malignancy  studies (Wong, Chan et al. 2004) 

no such correlation in CNS-PNET was identified. The cohort size in this investigation was 

however limited, and the study was not powered to determine whether a lack of correlation 

was statistically significant, and therefore further study is required to determine whether 

RASSF1A methylation is associated with clinical correlates. 

 

3.4.2 RASSF1A methylation as a diagnostic marker 

Studies have shown that RASSF1A promoter methylation is a tumour specific event and not 

seen in the normal brain cerebral or cerebellar tissue (Lusher, Lindsey et al. 2002; Chang, 

Pang et al. 2005; Muhlisch, Schwering et al. 2006). The tumour specific nature and frequency 

of RASSF1A methylation make it an ideal candidate to be used as a tumour marker. RASSF1A 

promoter methylation has however been identified as a frequent event in a range of 

malignant and benign brain tumours including glioma (Horiguchi, Tomizawa et al. 2003; Gao, 

Guan et al. 2004; Hesson, Krex et al. 2008), glioblastoma (Piperi, Themistocleous et al. 2010) , 

medulloblastoma (Lusher, Lindsey et al. 2002; Horiguchi, Tomizawa et al. 2003; Chang, Pang 

et al. 2005; Lindsey, Anderton et al. 2005; Inda and Castresana 2007), meningioma 

(Horiguchi, Tomizawa et al. 2003) and ependymoma (Hamilton, Lusher et al. 2005; 

Michalowski, de Fraipont et al. 2006) and therefore its role as a novel marker is limited to 

being a non-specific tumour marker. 

In addition to assaying methylation profiles within tumour specimens, RASSF1A has also 

been investigated in non-invasive clinical material and has suggested a role for RASSF1A as a 

screening tool for tumours. In non-small cell lung cancer (NSCLC) RASSF1A methylated DNA 

can be found in broncheoalveolar lavage fluid (Topaloglu, Hoque et al. 2004; Grote, 

Schmiemann et al. 2006), and in sputum (Honorio, Agathanggelou et al. 2003) . Methylated 

RASSF1A can also be found in nipple fluid in patients with breast adenocarcinoma 

(Krassenstein, Sauter et al. 2004), and urine in patients with kidney(Battagli, Uzzo et al. 

2003), bladder (Chan, Chan et al. 2003; Dulaimi, Uzzo et al. 2004) and prostate cancers 

(Roupret, Hupertan et al. 2007). RASSF1A methylation in CSF samples potentially could 

therefore be used to detect brain tumours including CNS-PNET. 
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Patients with cancer have increased levels of circulating free DNA within their blood serum 

(Leon, Shapiro et al. 1977; Stroun, Anker et al. 1989). Methylated tumour DNA can also be 

detected in serum samples (Muller, Fiegl et al. 2004; Hauser, Zahalka et al. 2010) and may be 

used to detect disease and potentially to identify those with high risk neoplasms. More 

recently RASSF1A methylation has been used in models to detect papillary thyroid carcinoma 

(Mohammadi-Asl, Larijani et al. 2010), non-familial breast cancer(Jing, Yuping et al. 2010) 

and prostate cancer (Ahmed 2010). The persistence of methylation markers may also be 

used to assess treatment response. In a breast cancer study RASSF1A was used as a 

surrogate marker for response to Tamoxifen®, with the persistence or resolution of RASSF1A 

methylation in blood sera indicating treatment resistance or a good response respectively 

(Fiegl, Millinger et al. 2005).  

The precedent for the potential to use methylation markers in the management of brain 

tumours has recently been reported in a study in glioma (Liu, Cheng et al. 2010). In this study 

the methylation profile of a combination of 4 genes (MGMT, P16INK4a, TIMP-3 and THβS1) 

from CSF and serum samples was used to predict prognosis, and was found to be 100% 

specific in this series. However the limitation of using non-invasive rather than tumour 

material is exemplified by two recent studies. Firstly, in a case-control study involving 

RASSF1A in combination with three other markers (GSTP1, APC and RARβ2), the test failed to 

distinguish breast carcinoma from normal tissue using pre-diagnostic serum samples (Brooks, 

Cairns et al. 2010). In a second study in prostate cancer in which the specificity of using 

RASSF1A as a serum marker was found to be 100%, the test however was only 28% sensitive 

(Sunami, Shinozaki et al. 2009) again limiting its potential clinical utility.  

This study has shown that RASSF1A is a highly frequent event in CNS-PNET development. 

Further studies are however now required to determine the role of RASSF1A methylation in 

CNS tumorigeneis and whether this may be exploited therapeutically, potentially as a 

disease marker. Moreover the role of epigenetics in CNS-PNET development as discussed in 

(section 1.5.6) is currently poorly understood. This current study however highlights the 

potential for identifying events to further advance our understanding of these tumours and 

may provide novel clinical application opportunities. A study to investigate epigenetic 

methylation events and determine the “CNS-PNET methylome” is now required.  
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3.4.3 Loss of chromosome 17p in CNS-PNET 

The most common cytogenetic abnormality seen in medulloblastoma is loss of the p-arm of 

chromosome 17, occurring in up to 40% of tumours (McDonald, Daneshvar et al. 1994; 

Burnett, White et al. 1997). This may occur in association with a gain of 17q and the 

formation of an isochromosome (i17q) or may arise as an isolated defect. The absence of 

17p loss in both CNS-PNET cell lines is consistent with previously reported karyotpe and FISH 

studies of these cell lines (Cohen, Betts et al. 2004). Investigation of 17p loss in CNS-PNET 

has not previously been performed in a large cohort of CNS-PNET tumours. In the current 

study, 17p loss, as evidenced by an extended region of homozygosity, was observed in 9% 

(2/23) primary CNS-PNETs, compared with a rate of 17p loss of 25% (47/190) in a panel of 

medulloblastomas analysed using an identical approach (Megahed 2010). This result whilst 

not statistically significant (p=0.08, Fisher’s exact test) is in keeping with the findings of a 

number of published small studies incorporating 49 cases in total where 17p status has been 

investigated, summarised in Table 3.28. Chromosome 17p loss was identified in only a single 

isolated case (Bayani, Zielenska et al. 2000) amongst these 49 CNS-PNETs. The findings from 

this current comprehensive study and their consistency with previous reports suggest that 

unlike in medulloblastoma chromosome 17p loss is not a frequent feature of CNS-PNET 

disease. Accordingly, tumour suppressor genes thought to be located at 17p13.1, telomeric 

to the TP53 locus, and important in the development of medulloblastomas (Biegel, Burk et al. 

1992; Giangaspero, Bigner et al. 2000), may only be a feature in the development of CNS-

PNETs in a small subset. The HOMOD method however, can only detect comparatively large 

chromosomal losses and therefore may not detect a localised regional loss confined to 

17p13.1. 

Whilst this study has confirmed that 17p loss is an infrequent feature of CNS-PNET the role 

of 17q still requires evaluation. Moreover the frequency, nature and clinical correlates of 

cytogenetic aberrations in CNS-PNET still need to be determined. As discussed in (section 

1.5.3) those studies published to date have been in small series and produced inconsistent 

findings. Studies of large cohorts of pathologically reviewed CNS-PNETs, as used in this study, 

are necessarily required. 
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Reference 
Cohort  Chromosome 17p loss 

Number Age (yrs) Frequency Method 

(Thomas and Raffel 1991) n=5  1-12 0/5 RFLP 

(Burnett, White et al. 1997) n=8  0-16 0/8 RFLP 

(Scheurlen, Schwabe et al. 1998) n=2 6-12  1/2 LOH 

(Russo, Pellarin et al. 1999) n=7 1-31 0/7 CGH 

(Bayani, Zielenska et al. 2000) n=5 2-6 1/5 CGH 

(Kraus, Felsberg et al. 2002) n=12 2-9 0/12 LOH 

(Kagawa, Maruno et al. 2006) n=3 0.6-3 0/3 aCGH 

(McCabe, Ichimura et al. 2006) n=7 2.7-23 0/7 aCGH 

(Pfister, Remke et al 2007) n=10 0.6-13 2/10 aCGH 

Table 3.28. Loss of chromosome 17 p-arm in CNS-PNET. Chromosome 17p loss detected 
using different methodologies. Restriction fragment length polymorphism (RFLP), loss of 
heterozygosity (LOH), comparative (or chromosomal) genomic hybridisation (CGH), array 
CGH (aCGH). 

 

3.4.4 Regional deletion on chromosome 17p is a feature of CNS-PNET 

Whilst a complete loss of chromosome 17p was not demonstrated, a deletion of a region in 

a subset is suggested by the resultsusing the HOMOD method in this study. In two tumours, 

SP46 and SP55, an extended region of homozygosity (ERH) not extending to the telomere 

was observed. FISH or CGH studies for validation to confirm the presence and map the 

extent of this regional loss were not part of this current study as unfortunately further 

suitable material to undertake these studies was not available. The TP53 locus (17p13.1) 

however is situated within this ERH and, in both cases, homozygous mutations of TP53, were 

identified which are consistent with an allelic partial loss on 17p. In a third case (SP4) a TP53 

homozygous mutation was also identified without evidence of an ERH. Interestingly the 

polymorphic microsatellite markers either side of the TP53 locus in this case revealed 

retention of heterozygousity (D17S974, (17p13.2) and D17S969 (17p12)) suggesting that 
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regional loss was not an initiating feature in this case, although cannot exclude a restrictive 

deletion incorporating the TP53 locus. Array-CGH studies in larger cohorts of CNS-PNETs 

would be helpful in determining whether smaller restrictive losses rather than complete 

17p11.2-17pter deletions are a consistent feature in a subset of CNS-PNETs. The 17p11.2 

breakpoint, as described in medulloblastoma (Biegel, Janss et al. 1997; Scheurlen, Seranski 

et al. 1997), may therefore play a role in CNS-PNET. 

 

3.4.5 Involvement of MYC family gene amplification in CNS-PNET 

MYCC and MYCN amplification was not observed in either of the two CNS-PNET cell lines, 

PFSK or CHP707, studied. This finding is consistent with the previously reported molecular 

characterisation of these cell lines (Cohen, Betts et al. 2004). The analysis in primary tumours 

showed no evidence of MYCC amplification but amplification of MYCN in 12% (3/25).  These 

findings were not statistically significantly different to a comparable study in 

medulloblastoma (Ryan 2009), or in relation to previous studies in CNS-PNET as summarised 

in Table 3.29. In a study by Fruhwald et al profiling 5 CNS-PNET samples, a single case of both 

MYCN and MYCC amplification was observed (Fruhwald, O'Dorisio et al. 2000). Of note, the 

MYCC and MYCN amplification was observed within the same sample which was taken at 

relapse 2 years after the original treatment. In a further recently published study (Behdad 

and Perry 2010) assessment of MYCC and MYCN in a cohort of both paediatric and adult 

CNS-PNETs observed amplifications of both MYCC (3/28) and MYCN (9/28) by FISH. 41% of 

the paediatric samples were found to exhibit MYCN amplification. The frequency of MYCC 

and MYCN amplification do not differ significantly from the current study (p=0.24 and p=0.11 

Fisher’s exact tests respectively) but a real difference may nonetheless exist as a result of the 

different methodological approaches employed.  

The qRT-PCR and MLPA approaches taken in the current study are not able to determine the 

copy number of a gene in a given cell, but instead return an average result from the 

amplified DNA extracted from many cells within a tumour sample. If, as has been shown in a 

study by Lamont et al with MYCC gene amplification, there is heterogeneity of copy number 

amongst the tumour cells in a sample(Lamont, McManamy et al. 2004), qRT-PCR and MLPA 
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may fail to detect this, but would be identified using FISH. This observation has been 

previously reported with respect to MYCC and MYCN amplification in medulloblastoma 

(McManamy, Lamont et al. 2003) . In the current study therefore there may have been cases 

where MYCC or MYCN amplification occurred in sub-populations of tumour cells but not 

sufficiently frequently to alter the overall “average” result. The potential importance of 

identifying MYC gene amplification in tumour subpopulations is exemplified  in a 

neuroblastoma case report where amplification of MYCN was identified within a metastatic 

deposit but only gain within the primary tumour (Noguera, Canete et al. 2003). This suggests 

that MYCN amplification was present in a minority of primary tumour cells from which the 

metastic depost was derived. Suitable material was not available in the current study to 

validate the copy number results in all samples using FISH based methods and so the 

presence of small populations of undetected MYCN or MYCC amplification may have been 

present in some of these tumours. 

Finally, determining the downstream effects of MYC gene amplification in the three 

amplified cases needs to be determined to elucidate its role in CNS-PNET development. 

However, as has been shown in medulloblastoma studies, the biological effect of up-

regulation may be dependent on the activating mechanism with Myc expression resulting 

from Wnt pathway activation associated with a favourable phenotype, whilst Myc 

expression resulting from MYCC amplification is often associated with a large cell anaplastic 

and more aggressive phenotype (Ellison, Onilude et al. 2005; Takei, Nguyen et al. 2009). This 

is an area for further study. 
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Reference 
Analysis 
Method 

Cohort Amplification 

Number 
Age 

(years) 
MYCC MYCN 

(Fruhwald, O'Dorisio et al. 2000) 
RLGS + 

CGH 5  3-6 1/5 1/5 

(Pfister, Remke et al. 2007) 
FISH + 
aCGH 21 0.6 - 18 1/21 0/21 

(Behdad and Perry 2010) FISH 
6 20-61 1/6 0/6 

22 0.5-18 2/22 9/22 

Table 3.29. MYC family gene amplification in CNS-PNET. Abbreviations: Restriction 
landmark genomic scanning (RLGS), fluorescence in situ hybridisation (FISH), comparative 
genomic hybridisation (CGH) and array CGH (aCGH). 

 

3.4.6 Disruption of the TP53 signalling pathway in CNS-PNET 

3.4.6.1 Frequent p53 pathway disruption and p53 accumulation in CNS-

PNETs. 

In 91% of primary tumour samples there was evidence of p53 nuclear accumulation by IHC.  

The frequency of accumulation in CNS-PNET was shown to be higher than in previous 

medulloblastoma series (Eberhart, Chaudhry et al. 2005; Tabori, Baskin et al. 2010). However, 

whilst these studies all used the same p53 antibody, the scoring of p53 positivity differed. In 

the Eberhart et al study, as with the current study, cases with positive staining nuclei within 

tumour cells were classified as positive. In the Tabori et al study, however, cases were only 

scored as positive if p53 staining was both intense and present in at least 50% of nuclei 

which has also been used in another medulloblastoma study (Ray, Ho et al. 2004). Using this 

approach, Tabori et al found that p53 IHC positivity correlated with an adverse outcome. If in 

the present study this scoring system were applied 8 cases (SP42, SP43, SP46, SP47, SP49, 

SP50, SP52, SP55) would be found to be positive, but the association with survival remains 

not significant (p=0.87, Logrank test) (Figure 3.30). This study does not however exclude the 

possibility that a significant association between an adverse outcome and p53 nuclear 

accumulation in CNS-PNET exists. Whilst this is a comparatively large CNS-PNET study the 
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nevertheless low sample numbers and high frequency of censored events resulting from a 

relatively short follow up increases the possibility of a type 1 error, that a real association is 

rejected. 

The high frequency of nuclear p53 accumulation suggests that either the pathway is highly 

active in this disease, or frequently disrupted resulting in an abnormal accumulation. To 

identify whether the pathway is dysfunctional in up to 91% of CNS-PNETs further 

investigation of downstream targets, including p21 (cyclin dependent kinase inhibitor), 

(Shariat, Kim et al. 2003) is required. 

 

 

Figure 3.30. Kaplan-meier curve of CNS-PNET survival in relation to p53 
immunohistochemical nuclear staining. Positive scores obtained only in cases with intense 
nuclear staining in >50% of cells.  

 

3.4.6.2 TP53 mutations in pathway disruption 

TP53 mutations were detected in 18% (4/22) of cases (SP4, SP46, SP47, SP55). All were 

missense mutations and were associated with p53 nuclear positivity on IHC suggesting the 

accumulation of a mutant protein (Figure 3.19). In three of these tumours (SP46, SP47 and 

SP55) mutation was associated with intense and widespread nuclear accumulation. In SP4 

however there was faint staining in a minority of cells suggesting that accumulation of 
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mutant p53 protein was occurring to a lesser degree than in the other mutated cases. 

Variation in p53 accumulation in mutated cases is known to occur (Horiuchi, Kawamata et al. 

2004). In a study of 99 colorectal TP53 mutated tumours, 28% did not show any evidence of 

p53 accumulation on immunohistochemical testing (Kressner, Inganas et al. 1999). In this 

colorectal study, in some cases nonsense mutations predicted the production of a truncated 

protein which may not be detected by the anti-p53 antibody, 18% (15/84) of missense 

mutations were also negative on immunohistochemical testing. Whilst in the current study 

p53 IHC identified all the cases with mutation, the scoring approach used by Tabori et al and 

Ray et al would have not detected ¼ of the cases with defects in the TP53 pathway. Together 

this suggests that p53 IHC cannot be used reliably as a sensitive screening test for defects in 

the TP53 pathway. 

The current study however represents the largest CNS-PNET cohort screened for TP53 

mutations to date. TP53 mutations have previously been identified in CNS-PNET in a number 

of small studies (Table 3.30). Interestingly in the study by Ho et al, 43% (6/14) of adult CNS-

PNET were found to have mutations of the DNA biding domain (Ho, Hsieh et al. 1996). In 

contrast in paediatric studies few mutant cases have been identified (Burnett, White et al. 

1997; Zagzag, Miller et al. 2000; Kraus, Felsberg et al. 2002; Zakrzewska, Rieske et al. 2004). 

In the current study mutations occurred in patients aged 6.4, 6.5, 7.3 and 26 years and was 

not significantly associated with age (p=0.41, Fisher’s exact test). 

Mutations outside of the DNA binding domain as discussed in (section 1.5.5) may occur but 

the frequency of these mutations may have been underestimated as studies usually screen 

only for mutations in the binding domain exons (5-8). A case of such a TP53 mutation 

outside the DNA binding domain has been reported in a CNS-PNET in a study that 

investigated predominantly gliomas but contained a single CNS-PNET case (Kato, Kato et al. 

2000). A nonsense mutation in exon 10 was discovered (1043T>A, L348X). It is possible 

therefore that TP53 mutation may be responsible for additional cases of TP53 pathway 

dysfunction and may be identified if subsequent studies of CNS-PNET incorporated 

sequencing of all exons.  
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Finally, constitutional DNA was not available for a paired parallel analysis for any of the cases 

in the investigated cohort. In addition the clinical details available were not sufficiently 

comprehensive to exclude a family history of cancer and in the context of TP53 mutations in 

a CNS-PNET, to exclude the possibility that tumours arose in individuals with Li-Fraumeni 

Syndrome (LFS).  The outcome for patients with LFS who develop a CNS-PNET (or 

medulloblastoma) is not however known to be different but determining LFS status may 

confer other clinical benefits (discussed in section 1.5.2) 

 

Reference Exons 

Cohort 
Mutation 
frequency Size 

Age 
(years) 

(Ho, Hsieh et al. 1996) 5-9 n=14 19-77 6/14 (43%) 

(Burnett, White et al. 1997) 4-9 n=8 0-16 0/8 (0%) 

(Zagzag, Miller et al. 2000) 5-9 n=7 1-8 0/7 (0%) 

(Kraus, Felsberg et al. 2002) 5-8 n=12 2-9 1/12 (8%) 

(Zakrzewska, Rieske et al. 2004) 4 n=5 1-13 0/5 (0%) 

Table 3.30. TP53 mutations in published series of CNS-PNET. 
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3.4.6.3 Alternative mechanisms of TP53 pathway disruption: MDM2 

and CDKN2A 

The prevalence of p53 expression in the current study, could not be accounted for by 

TP53 mutation in the majority of cases. Alternative mechanisms for pathway 

disruption (discussed in section 1.5.5.1), MDM2 amplification and deletion of CDKN2A 

were therefore investigated. Increased expression of Mdm2 can be observed in the 

presence of p53 over-expression (Barak, Juven et al. 1993) which has been shown to 

occur through MDM2 amplification in many cancer types and in 7% of all cancers 

(Momand, Jung et al. 1998). Mdm2 binds to p53 to promote its degradation and 

therefore prevent it from promoting apoptosis or inhibiting the cell cycle and therefore 

in excess may lead to cancer development. In the current study there was evidence of 

MDM2 copy number elevation in a single case (SP40) out of the 23 primary CNS-PNETs 

investigated (1/23, 4%). These findings are in keeping with a previous study in which 

no evidence of MDM2 amplification was observed in a cohort of 12 CNS-PNETs (Kraus, 

Felsberg et al. 2002). To determine whether this was indeed an MDM2 allelic gain 

rather than a gain of part of chromosome 12 containing the MDM2 locus (12q13-q14) 

FISH probes to MDM2 and chromosome 12 would have ideally been applied, but this 

was unfortunately not possible due to a lack of appropriate material. The effect of 

copy number changes on Mdm2 expression did not form part of the present study, but 

should be investigated further. 

As discussed in section 1.5.5.1, alternative splicing of CDKN2A encodes for 2 different 

proteins including p14ARF which is involved in the regulation of p53 through inhibition 

of Mdm2. Inhibition of p14ARF permits the unchecked expression of Mdm2, subsequent 

proteosomal degradation of p53 and tumour development. Homozygous deletion of 

CDKN2A has been shown to occur in a number of tumours including in up to 40% of 

glioblastomas (Schmidt, Ichimura et al. 1994) including paediatric cases (Newcomb, 

Alonso et al. 2000). In the current study there was no evidence of homozygous 

deletion of CDKN2A being responsible for TP53 pathway disruption which supports the 

combined findings (0/21) of two smaller previous studies in CNS-PNETs (Kraus, 

Felsberg et al. 2002; Inda, Munoz et al. 2006). However a previous CGH study (McCabe, 



254 

 

Ichimura et al. 2006) homozygous deletion of the CDKN2A locus was observed in a 

single CNS-PNET  (1/7 studied) and in a second study by Pfister et al homozygous 

deletion of 9p21 was observed using FISH in 2/11 CNS-PNETs (Pfister, Remke et al. 

2007). Heterozygous deletion was found in an additional 3 cases in this study and both 

homozygous and heterozygous deletions were associated with reduced “CDKN2A 

protein” expression and a more aggressive phenotype. In the current study suitable 

material was unfortunately not available to ascertain using FISH whether heterozygous 

deletion of the CDKN2A locus was present in any of the CNS_PNETs in this series.  

Finally Inda et al have shown that epigenetic regulation of CDKN2A in CNS-PNET may 

also be implicated in pathway disruption, (Inda, Munoz et al. 2006)  but this needs 

further evaluation in larger series.  

 

3.4.7 Therapeutic targeting of the TP53 pathway in CNS-PNET 

91% of tumours in this study were shown to exhibit nuclear p53 accumulation which 

may indicate TP53 pathway dysfunction. Apart from tumour development, mutant p53 

protein may therefore also significantly contribute to the dismal prognosis in this 

disease by conferring resistance to vincristine and cisplatin which are used as part of 

current treatment protocols (Hamada, Fujiwara et al. 1996; Shelling 1997; 

Giannakakou, Sackett et al. 2000). On the other hand the prevalence of pathway 

disruption may enable therapeutic exploitation of the aberrant TP53 pathway function 

to provide significant opportunities in CNS-PNET. Currently, as reviewed by Lu et al, a 

number of new agents have been developed as possible new treatments in cancers 

with TP53 pathway disruption (Lu and El-Deiry 2009). Treatments include the 

reintroduction of wild-type p53 using an adenovirus vector; elimination of mutant p53 

by selective adenovirus lysis; p53 degradation inhibition and stabilisation using nutlins 

to displace p53 from Mdm2; activation of other components of the pathway including 

p63 and p73 to substitute for the aberrant p53; and a number of agents designed to 

restore wild-type function. Such therapeutic approaches have not been used in CNS-
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PNET to date, but the current study suggests that such approaches may have a role in 

this disease. 

 

3.4.8 Disruption of Wnt signalling pathway in CNS-PNET 

Disruption of the canonical Wnt signalling pathway as identified with nuclear 

accumulation of β-catenin was determined in 2/22 (9%) primary CNS-PNET cases. In 

one of these cases β-catenin accumulation was associated with a CTNNB1 mutation. 

These findings are not significantly different to those observed in medulloblastoma in 

which nuclear β-catenin immunopositivity and CTNNB1 mutations have been shown to 

occur in 33/206 (16%)  and 20/195 (10%) cases respectively (Ellison, Kocat et al. 2011). 

In two previous studies which have investigated wnt pathway disruption in CNS-PNETs 

a total of 16 tumours were screened for CTNNB1 mutations and 33 for β-catenin 

nuclear accumulation by immunohistochemistry (Koch, Waha et al. 2001; Rogers, 

Miller et al. 2009). In these studies, as summarised in Table 3.31, only a single case of 

CTNNB1 mutation was observed. As in the current study a non-synonomous mutation 

in codon 34 was identified, resulting in a valine substitution at this position (GGA>GTA, 

G34V) rather than an arginine as in the current study. Both of these mutations have 

been identified in previous studies in medulloblastoma (Fattet, Haberler et al. 2009; 

Ellison, Kocat et al. 2011) and are known to affect the β-transducin repeat-containing 

protein (β-TRCP) which promotes the degradation of β-catenin in the proteosome 

(Gilbertson 2004). 
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Reference 
Cohort CTNNB1 

mutation 
frequency 

β-catenin 
nuclear IHC 
positivity Number 

Age 
(years) 

(Koch, Waha et al. 2001) 4 0.1-59 1/4 1/4* 

(Rogers, Miller et al. 2009) 29 0.4-15.5 0/12 9/29** 

Table 3.31. Wnt pathway defects in CNS-PNET. Mutation in CTNNB1 exon 3 studied. (*) 
A CTNNB1 mutation in addition to β-catenin nuclear accumulation was observed. (**) 
9/29 cases showed strong β-catenin nuclear accumulation in >10% of cells, and in an 
additional 3/29 samples low level accumulation (1-10%) was reported. 

 

3.4.9 Targeting Wnt pathway in CNS-PNET 

This study has confirmed that disrupted canonical Wnt signalling is involved in a subset 

of CNS-PNETs. The role this disruption has on tumourignesis now needs detailed 

characterisation and further investigation. In similar studies in medulloblastoma 

(Thompson, Fuller et al. 2006; Kool, Koster et al. 2008) canonical Wnt pathway 

disruption with nuclear β-catenin accumulation has been associated with an up-

regulation of Wnt effector gene expression, and associated with a favourable 

prognostic phenotype (Ellison, Onilude et al. 2005; Gajjar, Chintagumpala et al. 2006; 

Fattet, Haberler et al. 2009; Ellison, Kocat et al. 2011). The effect of CTNNB1 mutations 

and β-catenin accumulation in CNS-PNET however is currently unknown and the total 

numbers of reported Wnt pathway disrupted cases are too few currently to determine 

whether this defect is associated with a favourable phenotype in CNS-PNET. 

Identifying CNS-PNETs with Wnt pathway disruption may lead to the use of novel 

treatment strategies which exploit this pathway in these cases. This approach is 

currently being explored in a number of different tumours including colonic carcinoma 

in which aberrant Wnt signalling is observed in 90% of cases (Barker and Clevers 2006). 

In contrast to medulloblastoma and CNS-PNET, in 80% this is attributable to mutant 

APC (Miyaki 1994; Korinek 1997), and mutations in CTNNB1 or Axin-2 in  a small group 

(Morin 1997; Polakis 2000). In a number of other tumours however, including 
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hepatocelluar carcinoma; hepatoblastoma; endometrial carcinoma; ovarian carcinoma; 

prostate cancer; melanoma and wilm’s tumour, disruption of Wnt signalling results 

from frequent mutations in CTNNB1 (Polakis 2000). The range of therapeutic 

approaches currently being investigated to exploit Wnt signalling disruption includes 

the use of aspirin and similarly acting drugs (Non-steroidal anti-inflammatory drugs 

(NSAIDs)). Aspirin has been shown to be protective in familial colonic cancer (Thun 

1997; Thun, Henley et al. 2002) and other NSAIDs have been shown to have a similar 

effect(Giardiello 1993; Phillips 2002; Koehne and Dubois 2004). These agents however 

are limited by their toxicity profile. Modified NSAIDS including aspirin which donate 

nitric oxide and induce oxidatitive stress within the tumour cell (Rigas and Williams 

2002; Rigas 2007) have been developed which result in a more potent reduction in 

gene expression by disruption of the β-catenin/TCF complex (Williamson, Lu et al. 

2005), have fewer side effects and have been shown to be effective in a number of 

tumours including colonic carcinoma (Rigas and Williams 2002; Gao, Liu et al. 2005), 

breast cancer (Nath, Vassell et al. 2009) and prostate cancer (Lu, Tinsley et al. 2009). 

Antibody therapies to the Wnt and Fz proteins have also been developed. In many 

tumours these proteins are over-expressed (Katoh, Kirikoshi et al. 2001; Holcombe, 

Marsh et al. 2002; Rhee, Sen et al. 2002; Milovanovic 2004; You, He et al. 2004; You, 

He et al. 2004a), and have been found to be effective in in-vitro models (You, He et al. 

2004; You, He et al. 2004a). Of particular note a recently published study using a small 

molecule inhibitor (OSU03012) resulted in growth inhibition with reduced nuclear β-

catenin and a consequent reduction in both cyclin-D1 and c-myc through repression of 

TCF/LEF transcription in a series of medulloblastoma and CNS-PNET cell lines 

(Baryawno, Sveinbjornsson et al. 2010). Targeting of the Wnt pathway may therefore 

provide a therapeutic option for a subgroup of patients with CNS-PNET and merits 

further investigation. 
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3.4.10 Medulloblastoma molecular defects in CNS-PNET: 

Implications for the “PNET” concept 

In this study a series of molecular events frequently observed in medulloblastomas 

have been investigated in a CNS-PNET cohort. This approach has shown that CNS-

PNETs are a heterogenous group of tumours which may possess a range of molecular 

defects, but important differences with medulloblastomas are observed. 

In common with many other tumour types RASSF1A promoter methylation is a highly 

frequent event in CNS-PNET. This finding suggests that understanding epigenetic 

modification by methylation in CNS-PNET may provide novel insights into the tumour 

development in this disease. Our current understanding of the CNS-PNET methylome is 

however very limited and only populated by the results of a few small studies in which 

candidate markers in other brain tumours are investigated in a few CNS-PNET in 

addition. A systematic study to investigate the CNS-PNET methylome in a large cohort 

of such tumours is now required, and forms the basis of the study reported in chapter 

5. 

As discussed in section 1.3.4, the PNET concept suggests that tumours that have a 

similar histological phenotype share a common origin and despite their diverse 

location within the CNS is a unified entity. The current study of a range of frequent 

medulloblastoma defects does not support this hypothesis. Whilst some defects are 

seen in subgroups of tumours (MYCN amplification and Wnt pathway disruption), both 

the frequency of chromosome 17p loss and TP53 pathway activation or dyrsregulation, 

suggests that different mechanisms underlie the development of CNS-PNET compared 

with medulloblastomas. This study has however investigated only a limited number of 

defects. Further genome-wide studies are now needed to investigate and characterise 

the similarities and differences between these two tumour groups in greater detail. 

This study suggests that progress in our understanding of the molecular basis for this 

group of tumours will be derived from future biological studies and programmes 

investigating CNS-PNET as a distinct entity in addition to studies with 
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medulloblastomas. The benefits of such an approach are illustrated with the 

elucidation of a novel gene identified in CNS-PNET and not in medulloblastoma in 

chapter 4. Adequate material and corresponding clinical data to undertake these 

studies is crucial and as a consequence of their relative rarity the need for further 

international collaboration to achieve this, as will be discussed in further detail in 

chapter 7, is both necessary and provides exciting opportunities.  
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4 Chapter 4 

Chapter 4 

A study of IDH1 mutations 

in CNS-PNET 
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4.1 Introduction 

4.1.1 IDH1 mutations in cancer 

Research into the genetic events involved in CNS-PNET tumorigenesis have evolved 

primarily by extending studies into MB, as has been discussed in detail in section 1.5. 

New genome-wide techniques however provide a different approach and potentially 

novel opportunities to identify critical genetic events. A genome wide screen 

incorporating 20,661 protein coding genes from 22 human glioblastoma multiforme 

(GBM) samples in 2008 identified recurrent mutations in a gene not previously known 

to be associated with GBM tumorigenesis (Parsons, Jones et al. 2008). In this study, 

mutations in isocitrate dehydrogenase-1 (IDH1) were discovered in 5 of an initial panel 

of 22 tumours, which was then expanded to include 149 GBMs, in which a total of 18 

(12%) had IDH1 mutations. The mutation discovered in all cases was a point mutation 

in exon 4 resulting in the substitution of guanine to adenine at position 395, leading to 

arginine being replaced by histidine at residue 132. 

Located on chromosome 2q33.3, IDH1 encodes isocitrate dehydrogenase-1, an enzyme 

that  catalyses the rate-limiting step in the citric acid (Kreb’s) cycle converting 

isocitrate to α-ketoglutarate (α-KG) with the production of nicotinamide adenine 

dinucleotide phosphate (NADPH) (Barnes, Kuehn et al. 1971). It is located in the 

cytoplasm, peroxisomes and endoplasmic reticulum (Geisbrecht and Gould 1999; 

Margittai and Banhegyi 2008) and plays a central role in tissue energy metabolism and 

through the production of NADPH, a role in the cellular control of oxidative damage 

(Lee, Koh et al. 2002). 

Subsequent to the Parsons et al study (Parsons, Jones et al. 2008), there have been a 

number of studies designed to investigate the presence of IDH1 mutations in a series 

of brain tumours (Balss, Meyer et al. 2008; Parsons, Jones et al. 2008; Bleeker, Lamba 

et al. 2009; Watanabe, Nobusawa et al. 2009; Yan, Parsons et al. 2009). In total, 1603 

brain tumours (at the time of undertaking this study) had been assessed, and 

mutations discovered in 37%, as summarised in Table 4.1. Research into this novel 
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event in tumours originating outside of the brain was also undertaken by a number of 

investigators (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009). These studies 

included 1053 tumours from a variety locations and histopathological subtypes, but 

did not reveal any IDH1 mutations, suggesting that these mutations may be implicated 

exclusively in the tumorigenesis of CNS tumours. 

 

4.1.2 IDH1 mutations in CNS-PNET 

In the study by Balss et al (Balss, Meyer et al. 2008), a panel of embryonal tumours 

were screened for IDH1 mutations. In addition to MB samples, this panel included 9 

CNS-PNETs and discovered G395A mutations in a third (3/9). No mutations were seen 

in any of the medulloblastoma samples, which corroborated findings by Yan et al in 

their panel of MB samples (Yan, Parsons et al. 2009). Taken together, 113 MB samples 

have been analysed in addition to 9 CNS-PNETs and IDH1 mutation occurs only in CNS-

PNET embryonal tumours (p=0.0003, Fisher’s exact test). Investigation in a larger 

cohort of CNS-PNET is therefore now required. 

 

4.1.3 Aims 

The aim of this chapter was to investigate the role of IDH1 mutations in CNS-PNET 

tumorigenesis, and determine any correlation with clinicopathological features. 

The specific aims were: 

1. To screen a CNS-PNET cohort for IDH1 mutations 

2. To correlate findings with clinicopathological features



264 

 

 
 

Number of 
tumours 
analysed 

IDH1 Mutation 

References 

    
Number 

 
Frequency 

(%) 

CNS tumour type         

Astrocytic tumours 917 307 33 

(Parsons, Jones et al. 2008; Bleeker, Lamba et al. 2009; 
Nobusawa, Watanabe et al. 2009; Watanabe, Nobusawa et 

al. 2009; Yan, Parsons et al. 2009) 

Oligodendroglial tumours 241 182 76 
(Balss, Meyer et al. 2008; Bleeker, Lamba et al. 2009; 

Watanabe, Nobusawa et al. 2009; Yan, Parsons et al. 2009) 

Oligoastrocytic tumours 124 101 81 
(Balss, Meyer et al. 2008; Watanabe, Nobusawa et al. 2009; 

Yan, Parsons et al. 2009) 

Embryonal CNS-PNET 9 3 33 (Balss, Meyer et al. 2008) 

  Medulloblastoma 113 0 0 (Balss, Meyer et al. 2008; Yan, Parsons et al. 2009) 

Ependymal tumours 87 0 0 
(Balss, Meyer et al. 2008; Watanabe, Nobusawa et al. 2009; 

Yan, Parsons et al. 2009) 

Sellar region tumour 23 0 0 (Balss, Meyer et al. 2008) 

Cranial & paraspinal nerve tumour 17 0 0 (Balss, Meyer et al. 2008) 

Meningothelial cell tumours 72 0 0 (Balss, Meyer et al. 2008) 

Table 4.1. Summary of IDH1 mutations identified in brain tumours. 
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Number of 
tumours 
analysed 

IDH1 Mutation 
References 

  

Number 
Frequency 

(%) 

Tumour type           

Leukaemia   63 0 0 (Yan, Parsons et al. 2009) 

Bladder   34 0 0 (Bleeker, Lamba et al. 2009) 

Breast   223 0 0 (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009) 

Gastric 
 

57 0 0 (Yan, Parsons et al. 2009) 

Colorectal   267 0 0 (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009) 

Lung   142 0 0 (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009) 

Melanoma   23 0 0 Bleeker, Lamba et al. 2009) 

Thyroid   42 0 0 Bleeker, Lamba et al. 2009) 

Ovary   73 0 0 (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009) 

Pancreas   118 0 0 (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009) 

Prostate   11 0 0 (Bleeker, Lamba et al. 2009; Yan, Parsons et al. 2009) 

Table 4.2. Summary of IDH1 mutations identified in non- central nervous tissue (CNS) tumours.
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4.2 Materials and methods 

4.2.1 CNS-PNET cell lines 

Two CNS-PNET cell lines (PFSK and CHP707m) were investigated in this study. Further 

details regarding these cell lines and their culture may be found in section 2.1.2. 

Genomic DNA was extracted from the cell lines as described in section 2.3.2. 

 

4.2.2 CNS-PNET primary tumours 

A total of 25 primary CNS-PNETs were investigated in this study. All samples had 

undergone a central pathological review as described in section 2.1.1. Clinical details of 

these tumours are given in Table 4.3. The cohort included material from 11 male and 

14 female cases enrolled on a number of different clinical studies who underwent 

different treatment strategies. The patients were aged 11 – 360 months (0.92 – 30 

years), with a median age of 77.5 months (6.5 years) at diagnosis. A single case had 

evidence of metastatic disease on neuroimaging at diagnosis. Genomic DNA was 

extracted as described in section 1.3.1.  

 

 

 

 

 

 

 

 



267 

 

ID Diagnosis Site Sex 
Age at 

diagnosis 
(Months) 

Metastasis 
Stage 

(Chang) 
Status 

Follow 
up 

(months) 

SP3 CNS-PNET Parieto-occipital lobes M 48 M0/1 Dead 17 

SP4 CNS-PNET Parietal lobe F 78 M0/1 Alive 121 

SP7 CNS-PNET Intraventricular F 75 M0 Dead 7 

SP10 CNS-PNET 3rd Ventricle M 158 M0/1 Alive 112 

SP13 CNS-PNET Cerebral M 106 M0/1 Dead 71 

SP14 CNS-PNET Parietal lobe F 105  - Alive 100 

SP21 CNS-PNET Left tempoparietal lobes M 65  - Dead 25 

SP23 CNS-PNET Cerebral M 126 M0/1 Alive 108 

SP24 CNS-PNET Cerebral M 31  - Dead 7 

SP28 CNS-PNET Right frontal lobe F 23 M0/1 Dead 9 

SP40 CNS-PNET Right parietal lobe F 348 M0/1  -  - 

SP41 CNS-PNET Left fronto-temporal lobes M 56 M0/1 Dead 24 

SP42 CNS-PNET Right temporal lobe F 288 M0/1 Alive 24 

SP43 CNS-PNET Left parietal lobe M  - M0/1  -  - 

SP45 CNS-PNET Right parietal lobe. F 11 M0/1  -  - 

SP46 CNS-PNET Left frontal lobe F 312 M0/1 Dead 36 

SP47 CNS-PNET Left frontal lobe F 87 M0/1 Alive 132 

SP49 CNS-PNET Right temporal lobe F 15 M2 Alive 36 

SP50 CNS-PNET Left tempoparietal lobes F 36 M0/1 Dead 15 

SP51 CNS-PNET Cerebral F 360  - Dead 55 

SP52 CNS-PNET Left parietal lobe M 127 M0/1 Alive 43 

SP54 CNS-PNET Infra + supratentorial F 26 M0/1 Dead 3 

SP55 CNS-PNET Temporal lobe M 77 M0/1 Dead 15 

SP57 CNS-PNET Frontal + temporal lobes M 21 M0/1 Alive 39 

SP58 CNS-PNET Right parietal lobe F 223 M0 Alive 17 

Table 4.3. Clinical characteristics of CNS-PNET tumour samples used in IDH1 study.
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4.2.3 Polymerase chain reaction 

PCRs were performed on both cell line and tumour material suing the Fast PCR method 

as described in section 2.4.4, using a combined annealing and extension temperature 

of 64°C for 10 seconds and cycled 40 times. The primer sequences used were as 

previously described (Balss, Meyer et al. 2008) and are given in Table 4.4. Primer 

sequences were verified using BLAST (http://blast.ncbi.nlm.nih.gov) and BLAT 

(http://genome.ucsc.edu) searches as described in section 2.4.2. PCR products were 

analysed by gel electrophoresis and their size approximated using a 100bp DNA ladder 

(as described in section 2.5.2).  
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Gene 
Name 

Forward primer sequence Reverse primer sequence 
Product 
length 

(bp) 
Location 

IDH1 5'-CGGTCTTCAGAGAAGCCATT-3' 5'-GCAAAATCACATTATTGCCAAC-3' 129 Exon 4 

Table 4.4. IDH1 PCR primers.
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4.2.4 Direct sequencing of IDH1 

PCR products were purified as described in section 2.4.5, before being sent to DBS 

genomics (Durham University) for sequence analysis using an ABI 3730 analyser 

(Applied Biosystems) as described in section 2.6.2. Products were sequenced in both 

forward and reverse directions using the PCR primer set in Table 4.4. The sequence 

data generated was imported and analysed in DNASTAR (DNASTAR Inc, USA). Samples 

showing evidence of IDH1 mutation were repeated to corroborate this finding. 

 

4.3 Results 

4.3.1 IDH1 sequence analysis 

Twenty-five tumour samples were screened for mutations of IDH1 in exon 4. The 

results of the sequence analysis are summarised in Table 4.5. IDH1 mutations were 

identified in 2 cases (8%), and confirmed on repeating the PCR amplification and 

sequencing of products. In both cases a non-synonymous point mutation was observed 

in codon 132 with the substitution of guanine for adenine (G395A) as shown in Figure 

4.1 and a corresponding change to the amino acid residue (R132H). 
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ID IDH1 sequence analysis result 

SP3 wt 

SP4 wt 

SP7 wt 

SP10 wt 

SP13 wt 

SP14 wt 

SP21 wt 

SP23 wt 

SP24 wt 

SP28 wt 

SP40 G391A (heterozygous mutation) 

SP41 wt 

SP42 wt 

SP43 wt 

SP45 wt 

SP46 G391A (heterozygous mutation) 

SP47 wt 

SP49 wt 

SP50 wt 

SP51 wt 

SP52 wt 

SP54 wt 

SP55 wt 

SP57 wt 

SP58 wt 

Table 4.5. IDH1 exon 4 sequence analysis results. (wt = wild type sequence) 
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Figure 4.1. IDH1 exon 4 sequence traces. (a) Normal forward sequence in PFSK, (b) Point substitution (G→A) mutation in codon 132 (red bar) in 
SP40. (c) PFSK wild type sequence confirmed in reverse, and (d) reverse trace confirms mutation in SP40 (arrow).
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4.3.2 Association of IDH1 mutation with clinical characteristics 

The outcome data for one of the cases found to contain an IDH1 mutation are not 

known and therefore it was not possible to correlate mutation status with survival. As 

discussed in section 1.4.4, there are 2 clinical characteristics, age at diagnosis and 

Chang stage, which are known to affect prognosis. Both cases with a G395A mutation 

were recorded as having a Chang metastatic stage of M0/1. The IDH1 cohort however 

contained only 1 case (SP49) with metastatic disease confirmed on imaging at 

diagnosis, and so correlation cannot be made. No case of IDH1 mutation occurred in 

infants or in children. The 2 events were seen in adults cases only (26 and 29 years of 

age). The finding that IDH1 mutation occurred solely in adult cases is significant (2/5 

adult cases (>16years) vs 0/19 child cases (<16years), p = 0.04, Fisher’s exact test). 

 

4.4 Discussion 

4.4.1 IDH1 mutations exclusivity to brain tumours 

The original papers that described IDH1 mutations (discussed in section 4.1.1) 

suggested that these events occurred exclusively in tumours of the central nervous 

system. It has however subsequently been discovered that whilst these events have 

been found to be most prevalent in CNS tumours, in particular occurring in 70-80% of 

secondary GBM (Balss, Meyer et al. 2008; Parsons, Jones et al. 2008; Bleeker, Lamba et 

al. 2009; Hartmann, Meyer et al. 2009; Ichimura, Pearson et al. 2009; Nobusawa, 

Watanabe et al. 2009) and other tumours of glial origin (Ichimura, Pearson et al. 2009), 

that these aberrations may also be detected in extracranial disease. IDH1 mutations 

have been observed in myeloproliferative neoplasms including acute myeloid 

leukaemia (AML) (Pardanani, Lasho et al. 2010; Patnaik, Lasho et al. 2010; Tefferi, 

Lasho et al. 2010; Thol, Weissinger et al. 2010). Interestingly, when in conjunction with 

AML, different mutations at the same locus are seen with up to half associated with a 

R132C mutation (Mardis, Ding et al. 2009; Chou, Hou et al. 2010). IDH1 mutations have 

also been identified in a minority of prostate tumours (2/75, 2.7%) in a screen of 1186 
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cancers from various sites including 1161 extracranial tumours (Kang, Kim et al. 2009). 

They do not appear however to play a pivitol role in the development of cerebral 

metastases from an extracranial solid tumours (Holdhoff, Parsons et al. 2009). Overall, 

extracranial IDH1 mutations remain an infrequent finding. 

 

4.4.2 IDH1 mutations occur solely in adult CNS-PNET disease 

This study has shown IDH1 mutations to be correlated with the development of CNS-

PNETs in adults. Clinical data pertaining to the CNS-PNET samples  from the original 

brain tumour screening series which also identified IDH1 mutations in CNS-PNET (Balss, 

Meyer et al. 2008) are shown in Table 4.6 (kindly supplied by Professor Andreas 

Deimling).  R132H mutations were observed in 3 cases in this other, and all were in 

adults (26.8, 27 and 32 years old). These data in combination with the results of this 

study confirm the finding that IDH1 mutations appear to occur solely in adult cases 

(combined data: 5/12 adults (>16 years) vs 0/21 childhood tumours (<16years), 

p=0.003, Fisher’s exact test) and represents the only biological aberration to date to be 

associated specifically with the adult CNS-PNET phenotype.  This in turn suggests for 

the first time that tumorigenesis mechanisms within the spectrum of CNS-PNET 

disease may be different at different ages. IDH1 mutations appear also to be one of 

the most common mutational events discovered in CNS-PNET development to date. 
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ID 
Age 

(Months) IDH1 Sequence analysis 

D1 322 G395A (heterozygous mutation) 

D2 676 wt 

D3 664 wt 

D4 40 wt 

D5 325 G395A (heterozygous mutation) 

D6 209 wt 

D7 384 G395A (heterozygous mutation) 

D8 84 wt 

D9 562 wt 

Table 4.6. Details of CNS-PNETs from Balss et al study, 2008. Wt: wild type. (Personal 
communication, data kindly provided by Professor Andreas van Deimling) 

 

 

4.4.3 IDH1 role in tumorigenesis 

The identification of mutations in IDH genes has resulted in a series of investigations 

into its functional role in cancer development. It has been postulated that IDH1 may 

act as a tumour suppressor rather than oncogene (Zhao, Lin et al. 2009) and is 

implicated in cancer development by establishing a cellular environment in which 

carcinogenic events may arise (illustrated in Figure 4.2). 

The first postulated effect of an IDH1 mutation is loss of function (Yan, Parsons et al. 

2009), by approximately 2 –fold (Bleeker, Atai et al. 2010), in the catalysis of isocitrate 

to α-KG. The mutant IDH1 (mIDH1) also however derives a gain of function to produce 

2-hydroxyglutarate (2-HG) by an NADPH-dependent reduction of α-KG (Bleeker, Atai et 

al. 2010) which has been shown to occur in all analysed tumours with an IDH1 

mutation (Dang, White et al. 2010). The reduction of α-KG and accumulation of 2-HG 
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has three main effects.  Firstly, the process requires NADPH and therefore in addition 

to this not being produced through the IDH1 conversion of isocitrate, the cell becomes 

further depleted. The reduction of NADPH increases the risk of oxidative stress 

associated with increased reactive oxygen species (ROS), which in turn may increase 

the risk of cancer development (Kolker, Pawlak et al. 2002; Latini, Scussiato et al. 2003). 

Secondly, the α-KG control on the hypoxia-inducible factor subunit 1α (HIF1α) “ master 

switch” of cellular adaptation is impaired by the reduction of cytoplasmic α-KG (Zhao, 

Lin et al. 2009), resulting in the transcription of genes which may promote 

tumorigenesis by aiding cell mobility, invasion and energy metabolism (Hughes, Groot 

et al. 2010).  Thirdly, accumulation of 2-HG is known to be associated with cancer 

development. 2HG is known to accumulate in 2-hydroxyglutaric aciduria, an autosomal 

recessive inherited metabolic disorder characterized by psychomotor retardation and 

progressive ataxia. This inborn error of metabolism occurs due to the deficiency of 2-

hydroxyglutarate dehydrogenase which converts 2-HG to α-KG (Struys, Salomons et al. 

2005) and is associated with the development of brain tumours (Wajner, Latini et al. ; 

Kolker, Mayatepek et al. 2002; Aghili, Zahedi et al. 2009). mIDH1 has been shown to 

gain the function of catalysing α-KG to 2-HG (Zhao, Lin et al. 2009; Bleeker, Atai et al. 

2010) and, as CNS tissues are uniquely able to uptake glutamate and convert it to α-KG 

(Tsacopoulos 2002) an abundant substrate for mIDH1 is available, thus potentially 

increasing the risk of future tumour development. 

Additional studies to improve our understanding of the role IDH1 plays in tumour 

development are now required. Drugs to inhibit the mIDH1 expression, or that inhibit 

2HG (Sonoda and Tominaga 2010), and drugs currently being developed to target 

HIF1α (Semenza 2003), could have a potential role in the management of this disease. 
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Figure 4.2. The cellular roles of IDH1 and IDH2. Isocitrate dehydrogenase (IDH) enzymes catalyse the conversion of isocitrate to α-
ketoglutarate (α-KG) in the cytoplasm (IDH1) and mitochondria (IDH2). This results in the reduction of nicotinamide adenine dinucleotide 
phosphate (NADP+) and degradation of hypoxia-inducible factor 1α (HIF1α). Mutation of IDH1 results in a reduction of α-KG and the 
transcription of HIF1α genes, a depletion of NADPH and an accumulation of carcinogenic 2-hydroxyglutarate (2-HG). 
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4.4.4 Emergence of IDH2 mutations 

The isocitrate dehydrogenase family comprises 5 members. IDH1 is the only one to be 

located in the cytoplasm, the other isoforms exert their catalytic properties in the 

mitochondria (Geisbrecht and Gould 1999). No mutational events have ever been 

described in the IDH3, IDH4 or IDH5 isoforms but mutations in IDH2, located on 

15q26.1, have now been described in gliomas (Hartmann, Meyer et al. 2009; Sonoda, 

Kumabe et al. 2009; Yan, Parsons et al. 2009) and also myeloproliferative disorders 

(Tefferi, Lasho et al. 2010). In common with IDH1 mutations, these involve an arginine 

residue in the substrate binding site, usually affecting codon 172 (Hughes, Groot et al. 

2010; Tefferi, Lasho et al. 2010). To date, the role of IDH2 mutations in CNS-PNET 

disease has not been investigated, which in light of these recent findings should now 

be considered. 

 

4.4.5 The role of IDH1/2 mutations as biological markers 

IDH1 mutation in low grade oligoastroctytomas and oligodendrogliomas occurs at a 

higher frequency than in grade III tumours (79% and 79% vs 60% and 49% p<0.05) 

(Gravendeel, Kloosterhof et al. 2010) and have been confirmed on review of previous 

series (Hartmann, Meyer et al. 2009; Watanabe, Nobusawa et al. 2009). Unusually the 

presence of mutation is more characteristic of a lower grade tumour. The high 

frequency of mutation in these tumours and the development of a monoclonal 

antibody to detect R132H (Capper, Zentgraf et al. 2009) has led to the suggestion that 

this may be used in the diagnostic clinical setting (Paulus 2009). In particular an IDH1 

antibody could be employed to aid diagnostic challenges which arise, as current 

techniques can fail to distinguish diffuse from pilocytic astrocytoma and differentiate 

simple reactive gliosis from diffuse astrocytoma invasion. 

IDH1 mutation has also been associated with prognosis.  Improved survival in gliomas 

is seen (Parsons, Jones et al. 2008; Sanson, Marie et al. 2009; Gravendeel, Kloosterhof 

et al. 2010) and is associated with increased survival by 1 year on average for patients 
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with GBM (Bleeker, Atai et al. 2010). In contrast, in myelodysplastic syndromes, 

mutation is associated with an increased rate of transformation to AML and poorer 

survival (Tefferi, Lasho et al. 2010; Thol, Weissinger et al. 2010).  

Studies in CNS-PNET disease now need to be expanded to include a larger cohort 

before survival analyses have sufficient power to determine any difference in outcome. 

 

4.4.6 Summary 

The investigation of IDH1 mutational status in CNS-PNET disease has identified IDH1 

mutations to be one of the most common mutational events in this disease and a 

novel mechanism involved in tumorigenesis in a subgroup of cases. For the first time, a 

molecular event has been shown to be associated with patient age. The identification 

of IDH1 mutation in adults also supports the hypothesis that CNS-PNET disease is 

different in patients of varying ages.  The consequences of this mutation may also be 

exploited to aid classification and provides new targets for novel therapeutic 

approaches.  
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5.1 Introduction 

Epigenetic modifications involving alterations in DNA methylation patterns are a 

hallmark of most human cancers (Baylin and Herman 2000). In cancer development, 

genome-wide hypomethylation outside of CpG islands of tumour DNA compared to 

normal tissue DNA has been shown to predominate (Feinberg and Vogelstein 1983). 

Against this background, changes in DNA methylation may also potentially affect any 

of the estimated 45,000 CpG islands (section 1.2.6.3) present in the genome 

(Antequera and Bird 1993). Changes in methylation of CpG islands associated with the 

promoter region may result in aberrant transcriptional silencing of tumour suppressor 

genes or activation of oncogenes, or lead to genomic instability and facilitate tumour 

development and progression (Esteller 2006; Irizarry, Ladd-Acosta et al. 2009). As 

discussed in section 1.2.6.3, DNA methylation alterations of genes involved in critical 

regulatory processes including those responsible for cell-cycle regulation, tumour 

invasion, apoptosis, transcription, DNA repair, cell signalling and chromatin 

remodelling, have been implicated in tumour development.  

Aberrant DNA hypermethylation has been estimated to occur in up to 1% of CpG 

islands in CNS-PNETs (Fruhwald, O'Dorisio et al. 2001). Current understanding of 

methylation patterns in this disease, including which CpG islands are affected and 

specifically which genes are epigenetically modified, however, is limited. The results 

from a series of small studies which have investigated a number of candidate genes 

(table 1.12) have demonstrated aberrant methylation in CNS-PNETs, and support the 

importance of alterations in DNA methylation being implicated in this disease (Chang, 

Pang et al. 2005; Muhlisch, Schwering et al. 2006; Inda and Castresana 2007; Muhlisch, 

Bajanowski et al. 2007). In addition, in chapter 3, methylation of the RASSF1A 

promoter was identified in 81% of primary CNS-PNETs. To date, aberrant methylation 

of the RASSF1A promoter is therefore one of the most frequent molecular events 

identified in this disease. Studies to describe and interpret the CNS-PNET DNA 

methylome in detail and potentially identify additional genes that are implicated in the 

epigenetic development of these tumours are now required. 
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5.1.1 DNA methylation assessment technologies 

Significant progress has been made in the last decade in deciphering the DNA 

methylome with the development of a spectrum of new techniques and technological 

advancements (reviewed in (Laird 2010)). The methodologies used to determine DNA 

methylation can be broadly divided in two categories based on the process used to 

pre-treat the DNA:  segregation and bisulphite conversion. Segregation techniques can 

be further subdivided into those which utilise methylation specific restriction enzymes 

or those that employ processes which enrich and separate out the methylated DNA 

fraction.  Methylation patterns of individual CpG dinucleotides are typically 

determined using locus-specific or gel-based analyses. These techniques however can 

only be employed to determine the methylation status of a limited number of CpG 

dinucleotides. The development of array-based technologies and, more recently, next-

generation sequencing has enabled the automated assessment of large numbers of 

CpG dinucleotides. Whilst each technique has merits and disadvantages, which can be 

exploited in different experimental contexts, the gold standard for determining DNA 

methylation remains methods which use bisulphite-based DNA sequencing (Clark, 

Statham et al. 2006). A summary of the spectrum of approaches that may be used in 

DNA methylation studies is given in Table 5.1. 
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  Analytical step 

Pretreatment 
Locus-specific 
analysis 

Gel-based 
analysis 

Array-based 
analysis 

NGS-based 
analysis 

Enzyme digestion Hpall-PCR Southern blot DMH Methyl-seq 

    RLGS MCAM MCA-seq 

    MS-AP-PCR HELP HELP-seq 

    AIMS MethylScope MSCC 

      CHARM   

      MMASS   

Affinity enrichment MeDIP-PCR   MeDIP MeDIP-seq 

      mDIP MIRA-seq 

      mCIP   

      MIRA   

Sodium bisulphite MethylLight Sanger BS BiMP RRBS 

  EpiTYPER MSP GoldenGate BC-seq 

  Pyrosequencing MS-SNuPE Infinium BSPP 

    COBRA   WGSBS 

Table 5.1. DNA methylation analyses. AIMS, amplification of inter-methylated sites; 
BC-seq, bisulphite conversion followed by capture and sequencing; BiMP, bisulphite 
methylation array profiling; BS, bisulphite sequencing; BSPP, bisulphite padlock probes; 
CHARM, comprehensive high-throughput arrays for relative methylation; COBRA, 
combined bisulphite restriction analysis; DMH, differential methylation hybridisation; 
HELP, Hpall tiny fragment enrichment by ligation PCR; MCA, methylation CpG island 
amplification; MCAM, MCA with microarray hybridisation; MeDIP, mDIP and mCIP, 
methylated DNA immunoprecipitation; MIRA, methylated CpG island recovery assay; 
MMASS, microarray-based methylation assessment of single samples; MS-AP-PCR, 
methylation-sensitive arbitrarily primed PCR; MSCC, methylation-sensitive cut counting; 
MSP, methylation specific PCR; MS-SNuPE, methylation-sensitive single nucleotide 
primer extension; NGS, next generation sequencing; RLGS, restriction landmark 
genome scanning; RRBS, reduced representation bisulphite sequencing; WGSBS, 
whole-genome shotgun bisulphite sequencing. Table taken from (Laird 2010). 
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5.1.1.1 DNA methylation analysis using segregation techniques  

DNA methylation may be identified using segregation techniques that rely on either 

restriction endonucleases or methods which can select for “enrichment” of methylated 

loci.  

 

5.1.1.1.1 Segregation by endonuclease digestion  

Commonly employed restriction enzymes include the isoschizomers HpaII / MspI and 

SmaI / XmaI. HpaII and MspI recognise the nucleotide sequences CCGG, whilst 

CCCGGG is the target sequence for SmaI and XmaI. HpaII and SmaI cannot however cut 

when the internal cytosine in the recognition sequence is methylated and therefore in 

combination with their respective isoschizomers can be used to determine the relative 

frequency of methylation at a CpG site. The combination of both HpaII and MspI can 

be used to assess up to 98.5% of CpG islands in the human genome (Oda, Glass et al. 

2009).  

Originally, methylation-sensitive restriction enzymes were used to differentially digest 

methylated and unmethylated DNA which produced fragments of different sizes which 

could be visualised, following PCR amplification, using gel electrophoresis. Methods 

included methylation sensitive arbitrarily primed PCR (MS-AP-PCR), amplification of 

inter-methylated sites (AIMS), restriction landmark genomic scanning (RLGS) and 

Southern blots.  These methods are labour intensive and false positive results may 

arise if there is inadequate digestion by the restriction enzyme which limits the use of 

these techniques (Kaput and Sneider 1979; Frigola, Ribas et al. 2002; Liang, Gonzalgo 

et al. 2002; Allegrucci 2007). 

A number of array-based technologies which reduce labour costs also use endonclease 

digestion in determining methylation profiles, but still require relatively large 

quantities of high quality DNA (reviewed in (Laird 2010)). These technologies include: 

methylated CpG island amplification and array hybridisation (MCAM) in which the 

differential cutting properties of SmaI and XmaI are exploited; differential methylation 
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hybridisation (DMH) where the relative intensities of digested (using MseI) and 

undigested fluorescently labelled DNA at different loci on the array are measured; a 

modification of DMH, MethylScope, in which the methylation-dependent 

endonuclease McrBC is used to improve the sensitivity within methylated regions; 

comprehensive high-throughput arrays for relative methylation (CHARM) which again 

uses the same principle as DMH but, with the optimised workflow, permits a greater 

performance; microarray-based methylation assessment of single samples (MMASS) 

where a cocktail of restriction enzymes are used; and HpaII tiny fragment enrichment 

by ligation-mediated PCR (HELP), which uses a ligation-mediated PCR to amplify 

digested fragments prior to array hybridisation. 

More recently, next generation sequencing (NGS) techniques that exploit 

endonuclease digestion have been developed. The main advantages of these methods 

are that they do not require an appropriately designed array, less DNA is needed and 

they permit allele-specific analysis. These techniques include Methyl-seq and MSCC 

(methylation-sensitive cut counting) which employ NGS following digestion with HpaII 

or MspI compared with randomly sheared products in the former and HpaII and MmeI 

digestion with adaptor ligation in the latter, and an adaption of the HELP assay in 

which the output is analysed by NGS (HELP-seq) (Berman, Weisenberger et al. 2009; 

Brunner, Johnson et al. 2009; Oda, Glass et al. 2009). 

 

5.1.1.1.2 Segregation by enrichment 

Methylated cytosines (5mC) and the proteins that specifically recognize and bind to 

these molecules may be identified using specific antibodies. This has permitted the 

development of immunoprecipitation-based methods for DNA methylation analysis 

which have been used to identify DNA methylation markers in cancer (Weber, Davies 

et al. 2005; Koga, Pelizzola et al. 2009). Hybridisation to an array following enrichment 

by immunoprecipitation forms the basis of a number of techniques (MeDIP, mCIP, 

mDIP and MIRA) which have enabled the methylation profiling on a larger scale (Rauch 
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and Pfeifer 2005; Weber, Davies et al. 2005; Keshet, Schlesinger et al. 2006; Zhang, 

Yazaki et al. 2006). 

Finally, enrichment techniques have recently been combined with next generation 

sequencing, including MeDIP-seq and MIRA-seq. These novel techniques enable rapid 

genome-wide DNA methylation assessment to be made, but unlike the bisulphite 

based methods (section 5.1.1.2) cannot resolve the sequence structure at the 

individual CpG dinucleotide level (Down, Rakyan et al. 2008). 

  

5.1.1.2 DNA methylation analysis using bisulphite treated DNA 

In addition to the segregation methods outlined in section 5.1.1.1, DNA methylation 

analyses may also be undertaken using bisulphite treated DNA. As has been discussed 

in detail in section 2.12, sodium bisulphite treatment, first described by Frommer et al 

in 1992, causes the deamination of unmethylated cytosines whilst methylated cytosine 

residues are unaffected and therefore results in the production of differing sequences 

dependent on the methylation status (Frommer, McDonald et al. 1992). The change in 

sequence may then be identified using sequencing technologies, including Sanger 

sequencing as previously described (section 2.6). 

Mass spectrometry of bisulphite converted DNA has been used in a technique known 

as EpiTYPER to determine methylation status at a given CpG dinucleotide. This 

technique utilises the different size and charge properties of methylated and 

unmethylated CpG DNA to determine the methylation status, and can be combined 

with an array format to assess the methylation status of a series of CpG dinucleotides 

within an amplicon (Coolen, Statham et al. 2007). The methylation status at a 

particular locus may also be ascertained using MethyLight or pyrosequencing. In the 

former process, differentially fluorescently labelled PCR probes are generated for 

unmethylated and methylated sequences for a given locus. A real-time PCR reaction is 

then performed and the quantity of methylation estimated by analysis of the 

fluorescent signal generated (Eads, Danenberg et al. 2000). In pyrosequencing in 
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contrast, four enzymes are used including Luciferase for the sequence structure to be 

identified using a bioluminescence real-time approach (Reviewed in (Ahmadian, Ehn et 

al. 2006)).   

DNA methylation may be analysed using bisulphite converted DNA in gel-based 

systems. In methylation-specific PCR (MSP) primers to unmethylated or methylated 

sequences are designed and the methylation status at a locus determined with the 

presence of bands on gel electrophoresis. Gel electrophoreisis is also employed in 

combined bisulphite restriction analysis (COBRA) to distinguish methylation status 

based on product size following the application of a methylation sensitive restriction 

enzyme. The methylation status at a given CpG dinucleotide may also be determined 

by methylation-sensitive single nucleotide primer extension (MS-SNuPE). The MS-

SNuPE technique uses internal primers which anneal immediately adjacent to the 

nucleotide to be analysed in an amplified PCR product and the methylation status is 

determined with the inclusion of differently labelled dNTPs (Gonzalgo and Jones 1997). 

Finally, Sanger sequencing, described in section 2.6, utilises a gel based method to 

determine the nucleotide sequence identity.   

Array and next generation sequencing-based platforms have also been developed in 

sodium bisulphite pre-treated methylation detection strategies. These permit both 

higher throughput and automation of processing and therefore have the advantage of 

being more cost-effective when large numbers of samples and CpG sites require 

investigation. Methylation analysis of small genomes containing methylation dense 

regions maybe investigated by hybridisation to oligonucleotide arrays in bisulphite 

methylation profiling (BiMP) (Reinders, Delucinge Vivier et al. 2008). Discussed in 

section 2.13.1, Bibikova et al in 2006 reported the development of a high throughput 

DNA-methylation profiling technique using an Illumina bead array (Bibikova, Lin et al. 

2006). In this study 1536 CpG dinucleotides were assessed in 371 selected cancer 

related genes, with each gene represented by 1-9 CpG sites. Subsequently a panel 

incorporating 807 known cancer causing genes, and including 1505 CpG sites was 

developed (Cancer Panel I, Illumina) to be used to investigate the methylation profiles 

of different cancers. Most recently this approach has been further modified with the 
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development of the Illumina Infinium platform, which can profile 27,578 CpG 

dinucleotides using less than 1 microgram of DNA including DNA extracted from FFPE 

material (Bibikova, Le et al. 2009; Thirlwell, Eymard et al. 2010). 

Lately a number of techniques have also been developed which combine next 

generation sequencing with bisulphite treated DNA which enable detailed assessment 

of methylation status within a sample, known as “sequencing based methylation 

profiling” (Zhang and Jeltsch 2010). These technologies include reduced representation 

bisulphite sequencing (RRBS); bisulphite conversion followed by capture and 

sequencing (BC-seq); bisulphite padlock probes (BSPP); and whole genome shotgun 

bisulphite sequencing (WGSBS). Cost however currently limits the use of these 

technologies in screening the methylome in multiple samples (Laird 2010). 

 

5.1.2 Illumina Goldengate methylation arrays in cancer 

As has been described in section 5.1.1, methylation arrays permit the interrogation 

and elucidation of tumour epigenetic characteristics. In the construction of global 

methylation profiles new candidate genes may be discovered that could be utilised to 

predict therapeutic outcomes (Shen, Kondo et al. 2007) and patient survival in cancer 

(Rosenbaum, Hoque et al. 2005). Methylation arrays also facilitate a genetic study 

where adequate material may not be available for expression arrays. In particular the 

Illumina Goldengate methylation array may be employed using DNA extracted from 

FFPE tumour material. The Illumina Goldengate methylation array has been 

successfully used to investigate a series of adult cancers which have been reported in 

recent years. These have included; mesothelioma, glioma, AML, lymphoma, and gastric, 

renal cell, colorectal, ovarian, breast, hepatocellular, pancreatic and urothelial cancers 

(Aik Choon, Antonio et al. 2009; Hinoue, Weisenberger et al. 2009; McRonald, Morris 

et al. 2009; O'Riain, O'Shea et al. 2009; Alvarez, Suela et al. 2010; Christensen, 

Houseman et al. 2010; Christensen, Kelsey et al. 2010; Houshdaran, Hawley et al. 2010; 

Loh, Liem et al. 2010; Milani, Lundmark et al. 2010; Noushmehr, Weisenberger et al. 

2010; Shin, Kim et al. 2010; Wolff, Chihara et al. 2010). Apart from investigation into 
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haematological malignancies including childhood ALL (Milani, Lundmark et al. 2010), to 

date there have been no publications that have specifically investigated paediatric 

malignancies.   

 

5.1.3 Genetic profiling in paediatric embryonal brain tumours 

In recent years, the establishment of array technology has provided critical insights 

into both the molecular development of paediatric brain tumours and how these 

tumours may be sub-classified. In 2002, Pomeroy et al reported the results of an 

expression array of CNS embryonal tumours (Pomeroy, Tamayo et al. 2002). This study 

included 60 children with medulloblastomas, 10 children with ATRTs, 10 young adults 

with malignant gliomas and 8 children with supratentorial PNETs. Overall the 

embryonal tumours were shown to comprise of a heterogeneous group, with the 

medulloblastomas clustering separately from the CNS-PNETs. A sub-analysis of the 

medulloblastoma cohort however identified correlations between the tumour 

expression profiles with clinical features including subtype and outcome. This study 

though was limited by the availability of suitable genetic material, and in particular 

high quality RNA extracted from frozen samples.  

A series of studies in medulloblastoma have now been performed showing that 

between 4 and 6 molecular subtypes exist (Thompson, Fuller et al. 2006; Kool, Koster 

et al. 2008; Cho, Tsherniak et al. 2010; Northcott, Korshunov et al. 2010). In the study 

by Thompson et al in 2006, the gene profiles of 46 medulloblastomas were 

investigated and 5 subgroups identified. Two of these subgroups were associated with 

known genetic events in medulloblastoma development, namely Wnt pathway and 

sonic hedgehog (SHH) pathway disruption (Thompson, Fuller et al. 2006). Kool et al 

investigated the expression profiles of 62 primary medulloblastomas and combined 

this with genomic data in 52 cases. A subgroup containing tumours expressing genes 

associated with Wnt pathway disruption (“group A” or “Wnt group”)  and a second 

group comprising those with SHH pathway disruption (“group B” or “SHH group”) were 

again identified. In addition 3 other groups were identified, which were associated 
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with metastatic disease and a poorer outcome. Expression and molecular features of 

neuronal differentiation were observed in “group C”, photoreceptor differentiation in 

“group E”, and a mixture of both neuronal and photoreceptor differentiation in the 

final group (“group D”). 

Northcott et al combined the DNA copy number and expression data of 103 primary 

medulloblastomas and identified 4 distinct genetic subgroups (Northcott, Korshunov et 

al. 2010). The four groups again comprised both a Wnt and a SHH group in addition to 

2 non-wnt and non-SHH groups referred to as “group C” “group D”, the former 

associated with high MYC levels, CSF dissemination and an inferior outcome. Finally, in 

the largest study to date investigating the expression profiles of medulloblastomas, 

Cho et al reported the expression profiles of 194 primary medulloblastomas and 

identified 6 subgroups (Cho, Tsherniak et al. 2010). In addition to a Wnt and SHH group, 

2 groups of medulloblastomas incorporating genes associated with photoreceptor and 

GABAergic expression, and another 2 groups with tumours with neuronal and 

glutamategic expression were identified. Taken together, these studies have 

consistently identified subgroups associated with Wnt and SHH signalling.  The number 

of non-wnt and non-SHH subgroups and their precise definition and characterisation 

has yet to be fully elucidated. 

Currently unpublished work undertaken by Dr Ed Schwalbe at the Northern Institute 

for Cancer Research at Newcastle University has compared the expression profiles of 

primary medulloblastoma tumours with their methylomic profiles. These data, 

summarised in Figure 5.1, have shown that using methylation profiling a number of 

distinct subgroups can be determined, which correlate with the groups identified by 

expression profiling. In particular, a cluster of samples with aberrant Wnt pathway 

activation (Wnt group), a second cluster with aberrant sonic hedgehog signalling (SHH 

group), and a third cluster without Wnt or sonic hedgehog pathway activation (non-

Wnt, non-SHH) can be identified as distinct entities, in addition to a few outlying 

samples that do cluster with any of three groups.  
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The relationship between molecular events and methylomic profiling has not 

previously been investigated in CNS-PNET disease and to date, no stratification or sub-

classification based on clinical or molecular features has been identified in this disease. 

Methylomic profiling may, as has been demonstrated with medulloblastomas, 

facilitate the discovery of subgroups within this otherwise heterogenous group of 

tumours and provide both critical insights into the genetic development of these 

tumours and a rationale for the development of stratified and potentially targeted 

therapeutic approaches. 
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Figure 5.1. Identification of medulloblastoma subgroups using expression and methylomic analyses. (a)  Bootstrapped cluster dendrogram of 
methylation patterns in 100 medulloblastoma samples. Numbers in red refer to bootstrap percentages of major dendrogram branches. Major 
subgroups are coloured (orange, red, green, blue), with outlying samples marked grey. Heatmap shows methylation scores, from green 
(hypomethylated) to red (fully-methylated). (b) Principal component analysis loadings plot of methylomic data confirming the four distinct subgroups 
identified in (a). (c) Principal component analysis loadings plot of WNT/SHH gene expression signature assay (Schwalbe, Lindsey et al. 2011): WNT 
signature expressing (red), SHH signature expressing (blue).  (d) Molecular correlates and relation to methylomic subgroup assignment. Subgroups 
are coloured as in (a).  Line 1: CTNNB1 activating mutation, CTNNB1 mutation (red); no mutation (white) (p=2.7 X 10-16). Line 2: Chromosome 6 loss 
of heterozygosity (LOH), LOH detected (red); no LOH (white) (p=9.4 X 10-16). Line 3: Signature - activation of WNT and SHH pathways by gene 
expression, WNT (red), SHH (blue) pathway activation; WNT/SHH independent (white) (p=2.1 X 10-26). Grey hatching – DNA/ RNA unavailable. All p 
values derived using chi-squared tests. Adapted figures and data kindly supplied by Dr Ed Schwalbe, Northern Institute Cancer Research, UK.  
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5.1.4 Study Aims 

To date understanding of the CNS-PNET DNA methylome is limited. A detailed 

description and understanding of the CNS-PNET methylome and its role in 

tumorigenesis is now required. This approach may afford the potential to develop a 

sub-classification within this heterogenous group of tumours, identify novel 

methylation events for further investigation and investigate the relationship with other 

highly malignant paediatric brain tumours including medulloblastomas and high-grade 

gliomas. 

The specific aims of this study were: 

1.  To determine the global methylation patterns in CNS-PNET primary tumours in 

comparison with those observed within the normal brain. 

2.  To identify tumour-specific markers in CNS-PNET and to develop a model to enable 

the identification of CNS-PNET tumour from normal brain using methylation markers. 

3. To correlate methylation events observed with known clinical, pathological and 

genetic features in CNS-PNET and discover possible sub-groups within this disease. 

4. To compare and contrast the methylation profiles of CNS-PNET with other 

aggressive paediatric brain tumours and examine any molecular interrelationships that 

may exist between the different tumour groups. 
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5.2 Materials and methods 

5.2.1 CNS-PNET primary tumour cohort 

Thirty-nine primary CNS-PNET samples were available for inclusion in the methylation 

array study. The clinical characteristics of these samples have been previously given in 

Table 2.1.  DNA was extracted from the tumour samples and processed using the 

Illumina Goldengate Methylation array, using methods previously described (Section 

2.3.1 and section 2.13.1). 

 

5.2.2 Control brain cohort 

The methylation profiles of normal control brain samples were established from two 

sources. DNA was extracted from normal brain samples from the Northern Institute for 

Cancer Research (Table 2.3) and processed using the Illumina Goldengate methylation 

array, as has been previously described (Section 2.3.1 and section 2.13.1). The 

methylation results from a published series of normal cerebellar and cerebral samples 

was also included (Ladd-Acosta, Pevsner et al. 2007). Additional clinical information 

shown in Table 5.2 pertaining to this published series was kindly made available by Dr 

Potash (Research Director, Mood Disorders Center Meyer, Baltimore, USA) in a 

personal communication. In total 43% of the samples (16/37) were derived from the 

cerebrum and 57% (21/37) from the cerebellum. Samples were obtained from a wide 

range of cases of different ages incorporating both infant cases under the age of 3 

years (9/37, 27%), and adult cases (27/37, 73%). The age of the patient was not 

available for one of the samples (3%).  The clinical features of the normal brain cohort 

are summarised in Table 5.3. 
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Array ID Site Age (years) Sex Source 

cbll1 cerebellum 25 female Ladd-Acosta 
cbm1 cerebrum 25 female Ladd-Acosta 
cbll2 cerebellum 24 male Ladd-Acosta 
cbm2 cerebrum 24 male Ladd-Acosta 
cbll3 cerebellum 28 male Ladd-Acosta 
cbm3 cerebrum 28 male Ladd-Acosta 
cbll4 cerebellum 2 female Ladd-Acosta 
cbm4 cerebrum 2 female Ladd-Acosta 
cbll5 cerebellum 21 male Ladd-Acosta 
cbm5 cerebrum 21 male Ladd-Acosta 
cbm6 cerebrum 26 male Ladd-Acosta 
cbll6 cerebellum 26 male Ladd-Acosta 
cbm7 cerebrum 21 male Ladd-Acosta 
cbll7 cerebellum 21 male Ladd-Acosta 
cbm8 cerebrum 19 male Ladd-Acosta 
cbll8 cerebellum 19 male Ladd-Acosta 
cbm9 cerebrum 30 male Ladd-Acosta 
cbll9 cerebellum 30 male Ladd-Acosta 

cbm10 cerebrum 30  - Ladd-Acosta 
cbll10 cerebellum 30  - Ladd-Acosta 
cbm11 cerebrum 22 male Ladd-Acosta 
cbll11 cerebellum 22 male Ladd-Acosta 
cbm12 cerebrum 2 female Ladd-Acosta 
cbll12 cerebellum 2 female Ladd-Acosta 
cbm13 cerebrum 20 male Ladd-Acosta 
cbll13 cerebellum 20 male Ladd-Acosta 
cbm14 cerebrum 42 male Ladd-Acosta 
cbm15 cerebrum 72 male Ladd-Acosta 
cbm16 cerebrum 67 male Ladd-Acosta 
cbll17 cerebellum prenatal* male Newcastle 
cbll18 cerebellum prenatal* male Newcastle 
cbll19 cerebellum  -  - Newcastle 
cbll20 cerebellum 67 male Newcastle 
cbll21 cerebellum newborn female Newcastle 
cbll22 cerebellum 60 male Newcastle 
cbll23 cerebellum prenatal* female Newcastle 
cbll24 cerebellum prenatal* male Newcastle 

Table 5.2. Normal brain control samples used in methylation array. Newcastle 
samples were derived from the Northern Institute for Cancer Research archive. The 
Ladd-Acosta samples describe those used in their published series (Ladd-Acosta, 
Pevsner et al. 2007). Clinical details for the Ladd-Acosta samples were kindly provided 
by Dr Potash (personal communication). * prenatal samples from foetuses at 18-22 
weeks gestation. 
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Criteria Category n (%) 
Site Cerebrum 16 (43%) 

  Cerebellum 21 (57%) 

      

Age <3 years 9 (24%) 

  3-18 years 0 (0%) 

  >18 years 27 (73%) 

  Unknown 1 (3%) 

      

Sex Male 26 (70%) 

  Female 8 (22%) 

  Unknown 3 (8%) 

      

Table 5.3. Methylation array normal brain control samples clinical characteristics 
summary. 

 

5.2.3 Malignant brain tumour comparator cohorts 

5.2.3.1 Pineoblastoma 

Four pineoblastomas confirmed on central pathological review using the current WHO 

classification system (Louis, Ohgaki et al. 2007) were included in the study.  DNA was 

extracted from the cases, as has been previously described (Section 2.3.1). The clinical 

features of the four pineoblastoma cases used in the study are given in Table 5.4. 

Array ID Sex 
Age 

(months) 
Metastasis 

(Chang stage) 
Follow-up 
(months) Status 

PB1 F 300 M3 Unknown Unknown 

PB4 F 45 Unknown 35 DOD 

SP2 F 73 M0 124 ADF 

SP114 F 13 M3 10 DOD 

Table 5.4. Clinical characteristics of methylation array pineoblastoma cohort. DOD, 
died of disease; ADF, alive and disease free.  
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5.2.3.2 Medulloblastoma 

The methylation profiles of 100 medulloblastomas processed concurrently with the 

CNS-PNET study using the Illumina GoldenGate platform, confirmed on central 

histopathological review according to the current WHO classification by Prof David 

Ellison (St Judes Research hospital, Memphis, Tennessee, USA), was kindly made 

available for use in this study by Dr Ed Schwalbe from the Northern Institute for Cancer 

Research, Newcastle University, UK. A summary of the pathological subgroup and 

clinical features of these tumour samples is given in Table 5.5. 

 

Medulloblastoma characteristic 
 

Category 
 

No 
 

Classification subgroup Classic 72 
  Nodular desmoplastic 17 
  Large cell / anaplastic 10 
  MBEN 1 
Sex Male 63 
  Female 37 
Age (years) <3 15 
  3-16 78 
  >16 7 
Metastasis (Chang score) M0 47 
  M0/1 8 
  M1 7 
  M2 8 
  M3 12 
  M4 0 
  Unknown 18 
Status Alive, disease free 60 
  Alive, with disease 5 
  Died of disease 30 
  Died of other cause 2 
  Unknown 3 
Molecular features* Wnt/ Wingless 10 
  SHH 20 
  Non-Wnt/ Wingless & Non-SHH 59 
  Unknown 11 

Table 5.5. Clinical and molecular characteristics of the medulloblastoma primary 
tumour cohort. 100 primary medulloblastoma tumour samples in the cohort. MBEN, 
medulloblastoma with extended nodularity; SHH, sonic hedgheohog pathway; *data 
kindly supplied by Dr Ed Schwalbe, Northern Institute for Cancer Research at 
Newcastle University.  
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5.2.3.3 High grade glioma 

The methylation profiles, processed using the Illumina GoldenGate platform, of 29 high 

grade gliomas (HGG), confirmed on pathological review, were very kindly made 

available for use in this study by Dr Martyna Adamowicz and Professor Richard Grundy 

from the Children's Brain Tumour Research Centre (CBTRC), University of Nottingham, 

UK. Further clinical details for these samples are not available. 

 

5.2.4 Array sample preparation 

Control and tumour samples to be investigated using the Illumina GoldenGate 

Methylation array platform were prepared and processed as has been previously 

described in section 2.13.2. 

 

5.2.5 Quality control assessment 

The data produced by the Wellcome Trust Centre for Human Genetics (Oxford, UK) 

from processing the Illumina GoldenGate microarrays were subjected to a quality 

control assessment. Firstly, the data was analysed in the BeadStudio Methylation 

Module (version 3.0 (Illumina)) as has been described in section 2.13.3.1. The data was 

also subjected to a further quality control assessment using the BeadArray Subversion 

of Harshlight (BASH) programme within the BeadArray package, as has been described 

in section 2.13.3.2. The methylation data from samples that successfully passed both 

quality control assessments were used in subsequent analyses. 

 

5.2.6 Methylation array platform validation 

The methylation values obtained using the Illumina methylation array platform were 

validated by comparing the methylation scores obtained for 18 tumour samples on the 
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array at a number of differentially methylated loci with the methylation status 

identified by direct bisulphite sequencing. A panel of loci of seven genes were analysed 

comprising ASCL2, CCKAR, COL1A2, HFE, MSH2, NOS2A and SPDEF. PCR primers to 

amplify regions containing the relevant methylation array probe loci were designed 

using methods previously described (section 2.12.3) and are given in Table 5.6. 

Standard PCR reactions were performed as described in section 2.4.3, and the 

resultant PCR product purified and sequenced using Sanger sequencing (see sections 

2.4.5 and 2.6). Anonymised traces for each sample were scored using direct visual 

inspection and the percentage methylation ranging from 0% (unmethylated) to 100% 

(fully methylated) at each CpG locus under investigation estimated. The validation 

study was performed with Dr Janet Lindsey at the Northern Institute for Cancer 

Research at Newcastle University. 
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Gene Array probe ID Forward primer (5’-3’) Reverse primer (5’-3’) 

HFE HFE_E273_R  GGTAATAGTTGTAGGGTGATTTTTG  CAAATCCTCCAAAATTAACAAACTC 

ASCL2 ASCL2_P360_F  GGGAATTTGAATTTTTTATTT  AAACTAAATTCCTACTAAACCCC 

NOS2A NOS2A_E117_R  AAAAATAATTTTTTGGATGGTATGG  TTACAACTAACTACACTACCTCCCC 

CCKAR CCKAR_P270_F ATTGTTTTTTTATAAGGAGGTAGAATATA CTAAATACAAACAACCTAACTACCC 

SPDEF SPDEF_P6_R TTGTTTGTGGTTTGAGGTAAGTAAG CCCTCAAAAAATAACCCTCTAAAAT 

MSH2 MSH2_P1008_F GGTAGAAGATTTTTTGGGTTTAAA CACCATCCTAAACAACATAATAAAAC 

COL1A2 COL1A2_E299_F AGGTATTTTAGGGTTAGGGAAATTTT ATTACTACAAACAACAACAAAATCC 

Table 5.6. PCR primers used in the array validation study.
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5.2.7 Methylation status classification ascertainment 

β-values provided by the Illumina GoldenGate microarray were used to determine the 

methylation status of a sample for a probe at a given locus. The reported β-values 

ranged from 0 (fully unmethylated) to 1 (fully methylated). β-values greater than 0.67 

were classified as being methylated, less than 0.34 as unmethylated and between 

these values (0.34-0.67) as showing partial methylation at a given locus. Differentially 

methylated probes were categorised as those in which the methylation scores across 

the cohort varied in a range of more than 0.34 (Δβ>0.34). 

 

5.2.8 Comparison of the methylation profiles of the normal brain 

and CNS-PNET 

5.2.8.1 Methylation profile ascertainment in the normal brain 

The methylation profile of the normal brain was established using methylation scores 

derived from the Illumina Goldengate methylation platform (see section 2.13) in the 

normal brain cohort (section 5.2.2). The data were processed using unsupervised 

techniques (section 2.13.4) to establish any patterns of methylation within this cohort. 

 

5.2.8.2 Methylation profile ascertainment in CNS-PNET 

The methylation profile of the CNS-PNET cohort was established using methylation 

scores derived from the Illumina Goldengate methylation platform (see section 2.13) in 

the CNS-PNET cohort (section 5.2.1). The data was processed using unsupervised 

techniques (section 2.13.4) to establish any patterns of methylation within this cohort. 
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5.2.8.3 Methylation profile comparison 

Comparison of the methylation profiles of the 37 cerebellar and cerebral normal brain 

samples (section 5.2.2) was made with the 31 CNS-PNET cohort (section 5.2.1) using 

unsupervised approaches previously described (section 2.13.4). Comparison of the 

methylation status in different sample groups of probes situated within and outside of 

CpG islands was made using the probe location data supplied by Illumina (data not 

shown). 

 

5.2.9 Assessment of aberrant methylation in CNS-PNET 

5.2.9.1 Identification of aberrantly methylated genes in CNS-PNET 

To identify aberrant methylation in CNS-PNET, the methylation profile of the control 

cohort was firstly analysed and the probes found in all samples to be consistently 

either methylated (β>0.67) or hypomethylated (β<0.34) recorded. Probes that were 

found to be consistently methylated or hypomethylated in all samples were 

designated as “invariant”. The methylation values of the invariant probes were then 

investigated in the CNS-PNET cohort. A probe was shown to exhibit an aberrant 

methylation profile if the average β value of the CNS-PNET cohort differed significantly 

from that observed in the normal brain. Assessment of significant difference was made 

using the Mann-Whitney test, and a multi-test Benjamini-Hochberg false discovery rate 

correction applied. 

The most significant aberrantly methylated probes in CNS-PNET were determined by 

requiring the difference in the average β-values between the tumour and normal brain 

cohorts to be greater than the reported limit of detection on the Illumina Goldengate 

Methylation array platform (Δβ>0.17) (Bibikova, Lin et al. 2006), as has been previously 

used in published reports by separate groups (Archer, Mas et al. 2010). 
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5.2.9.2 Ontological analysis of aberrantly methylated genes in CNS-

PNET 

To determine whether CNS-PNET development is associated with the involvement of 

particular functional pathways, processes or cellular mechanisms, an ontological 

analysis was performed. The functional classification tool (FCT) within the web-based 

database for annotation, visualisation and integrated discovery (DAVID) ontological 

analysis tool, was used (http://david.abcc.ncifcrf.gov/gene2gene.jsp). The DAVID FCT 

uses an algorithm which classifies highly related genes into functionally related groups. 

Each gene may be represented in a number of different biological pathways or 

processes and is compared with the DAVID FCT tool to reduce the list of genes to be 

investigated into organised classes of related genes or biology (Reviewed in  (Huang, 

Sherman et al. 2009b; Huang, Sherman et al. 2009)). A list of most differentially 

methylated genes in CNS-PNET was generated, as has been previously described 

(section 5.2.9.1), and compared using the DAVID FCT with the list of 807 genes 

represented on the methylation array as a background panel.  

 

5.2.9.3 Investigating associations between aberrant methylation in 

CNS-PNET and clinical features  

A young age at diagnosis (<3 years) and the presence of metastatic disease are the 

only two clinical variables known to influence survival in CNS-PNET.  To determine 

whether aberrant methylation of specific genes is associated with either of these 2 

clinical features the most aberrantly methylated genes in CNS-PNET (see section 

5.2.9.1) were investigated. A Mann-Whitney test was performed and the Benjamini-

Hochberg correction applied to ascertain any significant differences in the methylation 

of the aberrantly methylated genes in those patients diagnosed before or after 3 years 

of age, and in those with (M1-M4) and without (M0 or M0/1) metastatic disease at 

diagnosis. Analyses were performed using the “R” statistical computer package, as has 

been previously described (section 2.13.4). 
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5.2.9.4 Investigating associations between aberrant methylation in 

CNS-PNET and survival 

To determine whether any aberrantly methylated genes are associated with survival 

outcomes, the list of most aberrantly methylated genes (see section 5.2.9.1), were 

analysed for associations with outcome using the ‘R’ statistical package (see section 

2.13.4).  Univariate analysis was performed and the most significant genes (p<0.05) 

from this analysis were entered into a multivariate Cox-model analysis to determine 

whether any of these probes were independently prognostically significant. 

 

5.2.10 Comparison of the methylation profiles of CNS-PNET with 

other malignant brain tumours 

The methylation profile of CNS-PNETs was compared with that observed in other 

malignant brain tumours using unsupervised approaches previously described (section 

2.13.4). Comparison of the methylation profiles of the 37 normal brain samples 

(section 5.2.2) and the 31 CNS-PNETs (section 5.2.1) was made with 4 pineoblastomas 

(section 5.2.3.1 ), 100 medulloblastomas (section 5.2.3.2) and 29 high-grade gliomas 

(section 5.2.3.3). Comparisons were made in triplicate utilising firstly the methylation 

scores of all 1505 probes on the array, secondly using only differentially methylated 

probes (see section 5.2.7), and thirdly using the methylation scores arising from 1421 

probes targeting genes not located on the X-chromosome.  
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5.3 Results 

5.3.1 Array quality control 

Thirty-nine primary CNS-PNET cases that had undergone central pathological review 

were included in the CNS-PNET cohort. As outlined in Figure 5.2, tumour material was 

available in 34 of these to be included on the methylation array. The data obtained 

from the methylation array was subjected to a quality control assessment. Beadstudio 

quality control assessment found that SP42, SP49 and SP55 were quality control 

failures (Figure 5.3). In all 3 cases, abnormal signals were detected in the negative 

control analysis and significant levels of contamination were observed in the analysis 

of both SP42 and SP49. Bisulphite conversion was found to be borderline in SP42, and 

SP55 failed this quality control requirement. In addition SP55 failed tests on both the 

first and secondary hybridisation steps, and SP49 failed the quality control analysis on 

the secondary hybridisation and allele-specific extension steps. The quality control 

process findings were confirmed using a second technique. On BASH assessment SP42, 

SP49 and SP55 failed the analysis (Figure 5.4), and these 3 samples were subsequently 

removed from the analysis. The clinical features of the final cohort of 31 primary CNS-

PNET tumour samples that passed the quality control assessment and were used in the 

subsequent methylation analyses are given in Table 5.7. DNA had been extracted from 

frozen material in 20 of these cases (20/31, 65%), and formalin fixed paraffin 

embedded (FFPE) material in 11 cases (11/31, 35%). In the three cases that failed the 

quality control analysis, DNA had been extracted from frozen material in one (SP55) 

and from FFPE in 2 cases (SP42 and SP49).
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Figure 5.2. CNS-PNET cohort ascertainment. FFPE, Formalin fixed paraffin embedded material; QC, Quality control.  
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Figure 5.3 Beadstudio quality control analysis. Data shown includes the combined results of two methylation array plates (Array index 1-96 
(plate 1), 97-192 (plate 2)). CNS-PNET cohort: array index cases 1-36 (excluding 11 and 22). Red line indicates cut-off for quality control (QC) 
pass. Red numbers indicate samples failing the QC analysis for the different QC parameters (1) SP42 (CNS-PNET), (2) SP55 (CNS-PNET), (3) index 
case 11 (medulloblastoma), (4) index case 22 (medulloblastoma) (5) SP49 (CNS-PNET): a) First hybridisation; b) Contamination (note failures are 
below red line for 2nd plate); c) Negative control; d) Bisulphite conversion; e) Second hybridisation; f) Allele specific extension.
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Figure 5.4. BASH analysis plots. Methylated (R, red) and unmethylated (G, Green) 
intensities across all 1505 CpG probes for individual tumour samples are shown. a) A 
normal plot passing the quality control process showing a bimodal distribution 
(consistent with most loci being either methylated or unmethylated with partial 
methylation at only a few loci. Three samples were excluded from the study as the red 
(methylated) channel failed to detect signals in b) SP42, c) SP55 and d) SP49. 
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Clinical characteristic 
 

Number (Frequency %) 

Sex Male 15 (48%) 

  Female 16 (52%) 

Age at diagnosis Infant (<3 years) 8 (26%) 

  Child (3-16 years) 18 (58%) 

  Adult (>16 years) 4 (13%) 

  Unknown 1 (3%) 

Metastasis (Chang score) M0/1 21 (68%) 

 
M1 1 (3%) 

  M2 4 (13%) 

  M3 1 (3%) 

  M4 1 (3%) 

  Unknown 3 (10%) 

Survival Alive  9 (29%) 

  Died 19 (61%) 

  Unknown 3 (10%) 

Table 5.7. Clinical characteristics of the quality control approved CNS-PNET 
methylation array cohort. In total 31 CNS-PNET primary tumour samples passed the 
methylation array quality control requirements and the methylation data from these 
tumours were used in the subsequent studies. 
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5.3.2 Validation for methylation array results 

The methylation values obtained on the Illumina Goldengate methylation array were 

validated by direct bisulphite sequencing, using a panel of 18 tumour samples to assess 

7 differentially methylated loci which were present on the array. The direct bisulphite 

sequencing traces were inspected, and a numerical score between 0 (fully 

unmethylated) and 1 (fully methylated) recorded by measuring the peak heights of the 

methylated (a) and unmethylated (b) traces at each locus and calculating the 

proportion of methylation present (a/a+b). The results, shown in Figure 5.5, revealed a 

high concordance between the two approaches. The mean difference was 0.006, and 

standard deviation of 0.167. In only 10/126 (7.9%) of cases did a difference greater 

than 2 standard deviations (>0.34) between the methylation array and direct bisulphite 

sequencing occur. 
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Figure 5.5. Validation of methylation array β values. For 18 tumour samples at 7 
differentially methylated loci (ASCL2, CCKAR, COL1A2, HFE, MSH2, NOS2A, SPDEF), the 
methylation status of the interrogated CpG dinucleotide reported from the 
methylation array was compared against estimates from bisulfite sequencing. The 
distribution of differences between array and bisulfite values across all 7 loci, for all 18 
samples, is summarised in the density plot. The mean difference was 0.006, and 
standard deviation was 0.167. Samples lying more than 2 standard deviations from the 
mean (10/126, 7.9%) are shaded red. 
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5.3.3 Methylation patterns in the normal brain 

The methylation pattern across 1505 probes associated with 807 genes implicated in 

cancer development using the Illumina Goldengate cancer panel I was assessed in 37 

control normal brain samples. 28.1% of the genes are represented by 1 probe, 57.3% 

by 2 probes and 14.1% of the genes have 3 or more probes on the array. The mean 

methylation for each probe across the control cohort was calculated and 64.2% 

(966/1505) of probes were hypomethylated, 28% (422/1505) were fully methylated 

and 7.8% (117/1505) were partially methylated. Overall, the methylation values in the 

normal brain control group cohort exhibited a bimodal distribution, as shown in Figure 

5.6. The normal brain samples were shown to exhibit variable methylation (β range > 

0.34) with 28% (421/1505) of the probes on the array, but the majority (72%, 

1084/1505) of probes were therefore invariantly methylated (β range < 0.34). 

The normal brain cohort comprised a diverse range samples from the cerebellum and 

cerebrum, including samples from across the age spectrum (prenatal, paediatric and 

adult) as well as from both male and female patients. Unsupervised hierarchical 

clustering of the normal brain cohort (Figure 5.6c) showed two main branches 

associated with the site of origin of the sample (p= 0.0005, Fisher’s exact test). 

Clustering was not found to be statistically significantly associated with age at biopsy 

(p=0.47, Fisher’s exact test). 
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Figure 5.6. Methylation patterns in the normal brain. Assessment of the methylation 
patterns using 1505 probes on the methylation array of 37 normal brain samples. (a) 
Density plot showing the bimodal distribution of average methylation β-values in the 
normal brain. (b) Unsupervised hierarchical clustering heatmap. Green, 
hypomethylated; black, partially methylated and red, fully methylated. (c) clinical 
characteristics of the normal brain samples. Top bar, sample site; middle bar, sex; 
bottom bar, age at biopsy. 
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5.3.4 Methylation patterns in CNS-PNET 

The methylation patterns of 31 CNS-PNET primary tumour samples were next 

investigated using the Illumina Goldengate Cancer panel I. The methylation or β-values 

at each locus for the 1505 probes on the array are graphically represented in Figure 5.7. 

The experiment was repeated using only the 1065 probes that exhibited variable 

methylation (β range > 0.34) in CNS-PNET and also repeated excluding those probes on 

the X chromosome, with similar results obtained (data not shown). 

Four of the CNS-PNET samples were shown to be outliers (SP54, SP126, SP40 and SP24) 

and did not cluster with other CNS-PNETs. In contrast to the normal brain (Figure 5.6) 

the unsupervised hierarchical clustering of the remaining samples did not yield 

discrete clusters or sub-groups from which associations with clinical characteristics 

could be determined, but demonstrated methylation heterogeneity within the CNS-

PNET cohort. 
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Figure 5.7. Methylation profile of 31 CNS-PNET primary tumour samples using the 
Illumina Goldengate methylation array. (a) Heatmap showing the methylation profiles 
of the CNS-PNET cohort across 1505 probes. Fully methylated (red), partially 
methylated (black) and unmethylated (green). (b) Unsupervised hierarchal clustering 
dendrogram of the bootstrapped methylation profiles of 31 CNS-PNETs.  Numbers in 
red indicate the percentage frequency at which individual branches occur. CNS-PNET 
clinical characteristics. Sex: male (blue), female (pink); Age at diagnosis: Infant (green), 
child (amber), adult (red); metastatic disease:  present (red), absent (green); status: 
died of disease (red), alive (green). No result available (blank). 
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5.3.5 Comparison of CNS-PNET methylation patterns with normal 

brain 

Comparison was next made between the CNS-PNET samples and the methylation 

profile of the normal brain.  In total, 1044 of the 1505 probes (69%) on the Cancer I 

panel used with the methylation array were located within CpG islands, defined 

according to the criteria described by Takai and Jones (Takai and Jones 2002). An 

additional 461 probes (31%) hybridised to CpG dinucleotides outside of CpG islands. As 

shown in Figure 5.8, methylation of the 1044 probes within CpG islands was 

significantly greater in the CNS-PNET tumours compared with the normal brain 

(interquartile range 100-151 and median 120 probes in CNS-PNET vs interquartile 

range 96-106 and median of 101 probes in the control samples; p=0.002). In contrast 

methylation of the 461 probes located outside of CpG islands was greater in the 

control sample cohort (interquartile range 235-303 and median 269 probes in CNS-

PNET vs interquartile range 325-335 and median of 330 probes in the control samples 

(p<0.0001). The variability amongst samples also differed. In the tumour cohort the 

standard deviation of methylated probes inside and outside of CpG islands was 46.5 

and 44.9 respectively, compared to only 8.2 and 8.9 in the normal brain cohort. Taken 

together these data show that methylation profiles of primary CNS-PNET differ 

significantly to those observed in normal brains both with respect the frequency and 

variablity of methylation. Tumour-specific methylation is therefore a feature of CNS-

PNET, although the methylation profiles of a minority of tumours may more closely 

resemble those observed in the normal brain (Figure 5.9). 
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Figure 5.8. Box and whisker plots comparing methylation patterns at and outside of 
CpG island sites in normal brain tissue and in CNS-PNET. (a) methylated, and (b) 
hypomethylated probe comparison. 
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Figure 5.9. Comparison of CNS-PNET methylation profiles with normal brain. (a) Principal component analysis showing the co-clustering of 
normal brain samples and CNS-PNET heterogeneity. (b) Unsupervised hierarchical clustering bootstrapped dendrogram. SP124 (red arrow) is 
shown to have a methylation profile closely related to the normal brain samples.
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5.3.6 Identification of tumour-specific methylation events in CNS-

PNET  

The identification of probes that are significantly aberrantly methylated in CNS-PNETs 

was derived as has been detailed in section 5.2.9.1, and the process summarised in 

Figure 5.10. In the normal brain, 52.1% (784/1505) of probes were found to be 

invariantly hypomethylated and 17.4% (262/1505) of probes were found to be 

invariantly fully methylated. Of the invariantly fully methylated and hypomethylated 

probes 138 and 418 probes respectively were found to exhibit significantly different 

methylation in the CNS-PNET cohort. In total 76 probes were identified that exhibited 

the most significantly aberrant methylation, 24 of which have an invariantly 

hypomethylated profile and 52 of which have an invariantly fully methylated profile in 

the normal brain (Figure 5.11). These significant aberrantly methylated probes in CNS-

PNET target in total 63 different genes as summarised in Table 5.8 and Table 5.9. 

In these 76 probes, aberrant methylation occurs in 16-77% (5/31 – 24/31) of CNS-PNET 

cases (Figure 5.12). The KLK11_P103_R and HLADPB1_E2_R probes are the two most 

frequently aberrantly hypo-methylated probes in CNS-PNET that are fully methylated 

in the normal brain (aberrantly methylated in 77% and 74% of CNS-PNETs respectively). 

The two most frequently aberrantly hyper-methylated probes in CNS-PNET which are 

hypomethylated in the normal brain are RASSF1_E116_F and FZD9_E458_F (aberrantly 

methylated in 68% and 61% of CNS-PNETs respectively). 
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Figure 5.10. Ascertainment of aberrantly methylated probes in CNS-PNET. 
*Invariantly fully methylated (β>0.67) and hypomethylated (β<0.34) probes showed 
consistent values in all normal brain samples. **The average methylation in the normal 
brain and CNS-PNET samples differed significantly (p<0.05, Mann-Whitney testing after 
multi-test correction), and ***magnitude of difference exceeded the limit of 
detectability on the methylation array platform (Δβ>0.17).  
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Figure 5.11. Heatmaps of gene probes significantly differentially methylated between CNS-PNETs and the normal brain. (a) Consistently 
methylated probes (β > 0.66) in all normal brain samples with a significant variation in CNS-PNET samples. (b) Consistently hypomethylated 
probes (β < 0.34) in all normal brain samples with a significant variation in CNS-PNET samples. In (a) and (b), median β in CNS-PNET is 
significantly different (p<0.05, Mann-Whitney test and Benjamin-Hochberg correction.  Methylation β values shown: Green, hypomethylated; 
black, partially methylated; red, fully methylated. Black bar, normal brain; Green bar, CNS-PNET.
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Aberrant 

No (%)

Hypo       

No (%)

ACTG2_E98_R 15 (48%) 8 (26%)

ACTG2_P346_F 14 (45%) 6 (19%)

AFP_P824_F 5 (16%) 2 (6%) AFP 4 transfer/ carrier protein, mesoderm development

AGXT_P180_F 7 (23%) 4 (13%) AGXT 2 transaminase, cellular amin aocid and derivative metabolism

ATP10A_P524_R 13 (42%) 9 (29%) ATP10A 15 cation transporter, hydrolase activity, cation transmebrane transporter activity

CARD15_P302_R 13 (42%) 8 (26%) CARD15 16 intracellular receptor, immune system process, apoptosis induction

CCL3_E53_R 14 (45%) 5 (16%) CCL3 17 chemokine, immune response, cell-cell  signaling, cell  surface receptor l inked signal transduction

CD1A_P6_F 12 (39%) 7 (23%) CD1A 1 immunoglobulin receptor, B cell mediated immunity

CEACAM1_P44_R 10 (32%) 5 (16%) CEACAM1 19 cell adhesion molecule, signal transduction, cell-cell  adhesion

CHI3L2_P226_F 10 (32%) 4 (13%) CHI3L2 1 glycosidease, hydrolase activity, hydrolysing N-glycosyl compounds

CSF3R_P472_F 5 (16%) 3 (10%) CSF3R 1

signaling molecule,  B cell mediated immunity, cell  surface receptor l inked signal transduction,  

ectoderm/ mesoderm & nervous system development,  haemopoiesis

CXCL9_E268_R 17 (55%) 12 (39%) CXCL9 4

chemokine,  cellular defence response, IFNγ response, angiogenesis, mesoderm development, cell-

cell  signaling, signal transduction,  macrophage activation

DLC1_E276_F 11 (35%) 8 (26%)

DLC1_P695_F 18 (58%) 14 (45%)

DSG1_P159_R 11 (35%) 3 (10%) DSG1 18 cell junction protein, cell-cell  adhesion, signal transduction, calcium ion binding

EMR3_E61_F 21 (68%) 14 (45%)

EMR3_P1297_R 15 (48%) 8 (26%)

EMR3_P39_R 18 (58%) 11 (35%)

FGF7_P44_F 15 (48%) 10 (32%) FGF7 15

FGF signaling pathway receptor, ectoderm & nervous system development, cell  cycle, cell-cell  

signaling, intracellular signaling cascade

HLA-DPB1_E2_R 23 (74%) 17 (55%) HLA-DPB1 6

major histocompatibility complex antigen, antigen processing & presentation, cellular defense 

response

IFNG_E293_F 15 (48%) 8 (26%)

IFNG_P188_F 12 (39%) 4 (13%) IFNG 12

interferon glycoprotein, interferon gamma signaling pathway, cellular defense response, cell-cell  

signaling, natural kil ler cell  activation, apoptosis regulation

DLC1 8 G-protein modulator, PDGF signaling pathway

EMR3 19

G-protein coupled receptor, synaptic transmission, B cell mediated immunity, mesoderm & heart 

development, angiogenesis, signal transduction

ACTG2 2 actin-like protein, structural constituent of cytoskeleton

Probe
Methylation

Gene Chr Function(s)
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IL10_P85_F 12 (39%) 4 (13%) IL10 1

interleukin cytokine, cellular defense response, modulate inflammation and immunity by regulating 

growth, mobility and differentiation of lymphoid cells

IL2_P607_R 11 (35%) 5 (16%) IL2 4

interleukin cytokine, cellular defense response, modulate inflammation and immunity by regulating 

growth, mobility and differentiation of lymphoid cells

IL8_P83_F 17 (55%) 12 (39%) IL8 4

chemokine, cellular defense response,  inflamation mediated by chemokine & cytokine signaling 

pathway, , IFNγ response, angiogenesis, mesoderm development

ITK_P114_F 10 (32%) 4 (13%) ITK 5

transmembrane receptor protein kinase, ectoderm/ mesoderm & nervous system development, cell  

cycle & apoptosis, cell-cell  signaling & adhesion

KLK11_P103_R 24 (77%) 16 (52%) KLK11 19

serine protease, blood coagulation, immune system processing, ectoderm & nervous system 

development, cell  cycle

LAT_E46_F 14 (45%) 6 (19%) LAT 16 adapter protein, T-cell activation pathway

MMP19_E274_R 8 (26%) 2 (6%) MMP19 12 metalloprotease, protein metabolism processing

MMP9_E88_R 8 (26%) 4 (13%) MMP9 20 metalloprotease, protein metabolism processing

MPO_E302_R 9 (29%) 3 (10%) MPO 17 peroxidase, immune response, oxygen species metabolic process

NAT2_P11_F 14 (45%) 2 (6%) NAT2 8 acetyltransferase, metabolism

NOS2A_E117_R 8 (26%) 3 (10%) NOS2A 17 nitric oxide synthase

NOTCH4_P938_F 19 (61%) 6 (19%) NOTCH4 6

transcription factor, ectoderm & nervous system development, cell-cell  signaling & adhesion, 

signal transduction

PECAM1_P135_F 10 (32%) 5 (16%) PECAM1 17

immunoglobulin receptor, B cell mediated immunity, natural kil ler cell  & macrophage activation, 

cell  adhesion, signal transduction

PGR_P456_R 9 (29%) 4 (13%)

PGR_P790_F 15 (48%) 5 (16%)

PI3_E107_F 8 (26%) 5 (16%) PI3 20 serine protease inhibitor, protein metabolism

PTK6_E50_F 11 (35%) 3 (10%) PTK6 20

transmembrane receptor protein kinase, ectoderm/ mesoderm & nervous system development, cell  

cycle & apoptosis, cell-cell  signaling & adhesion

PTPRH_E173_F 14 (45%) 7 (23%) PTPRH 19

receptor, hydrolase & phosphatase activity, ectoderm & nervous system development, cellular 

glucose homeostasis, mitosis, immune system process, cell-cell  & cell-matrix adhesion

SFTPB_P689_R 9 (29%) 6 (19%) SFTPB 2 surfactant, l ipid metabolism and transport, blood circulation

SIN3B_P514_R 6 (19%) 3 (10%) SIN3B 19 transcription factor, deacetylase activity, DNA & chromatin binding

SLC22A18_P216_R 17 (55%) 9 (29%) SLC22A18 11 transmembrane transporter

PGR 11

nuclear hormone receptor, neuronal action potential propagation, neurotransmitter secretion, 

sensory perception



326 

 

 

Table 5.8. Most significant differentially hypomethylated gene probes in CNS-PNET. Aberrantly methylated (aberrant): β<0.67, and 
hypomethylated (hypo): β<0.34. 

SLC6A8_P409_F 11 (35%) 3 (10%) SLC6A8 X

amino acid transporter, nicotinic & muscarinic receptor signaling pathways, neuronal action 

potential propagation, neurotransmitter secretion, sensory perception.

SPI1_P48_F 8 (26%) 3 (10%) SPI1 11

transcription factor, interleukin signaling pathway, B cell mediated immunity, macrophage 

activation, cell cycle, mesoderm  & endoderm development, hemopoiesis

SPP1_P647_F 16 (52%) 7 (23%) SPP1 4 extracellular matrix cytokine, cell adhesion, immune system processing

TMPRSS4_P552_F 10 (32%) 8 (26%) TMPRSS4 11 serine protease,  blood coagulation, immune system processing

TRIM29_P135_F 8 (26%) 3 (10%) TRIM29 11 nucleic acid binding protein, nervous system & ectoderm development, cell cycle

WEE1_P924_R 6 (19%) 3 (10%) WEE1 11 mitosis protein kinase

WNT8B_E487_F 6 (19%) 4 (13%) WNT8B 10 signaling molecule, Wnt & cadherin signaling pathway

ZIM3_E203_F 15 (48%) 10 (32%)

ZIM3_P718_R 6 (19%) 1 (3%) ZIM3 19 KRAB box transcription factor, spermatogenesis, nucleic acid metabolic process
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Table 5.9. Most significant differentially fully methylated gene probes in CNS-PNET. Aberrantly methylated (aberrant): β>0.34, and fully 
methylated (fully): β>0.67. 

Aberrant 

No (%)

Fully       

No (%)
CALCA_P171_F 16 (52%) 2 (6%) CALCA 11 peptide hormone, skeletal & mesoderm development, phosphate metabolism

CD81_P272_R 18 (58%) 8 (26%) CD81 11

membrane bound signaling molecule, neuronal action potential propagation, neurotransmitter 

secretion, sensory perception,  B cell mediated immunity

DSC2_E90_F 7 (23%) 7 (23%) DSC2 18 cell junction protein, cell-cell  adhesion, signal transduction

FZD9_E458_F 19 (61%) 17 (55%) FZD9 7 signaling molecule, cadherin & wnt signaling pathway

GRB7_E71_R 7 (23%) 2 (6%) GRB7 17 transmembrane receptor adaptorv protein, signal transduction

HFE_E273_R 14 (45%) 12 (39%) HFE 6 immunoglobulin receptor, B cell mediated immunity, antigen processing & presentation

HTR1B_E232_R 7 (23%) 5 (16%)

HTR1B_P107_F 7 (23%) 4 (13%)

IGFBP1_E48_R 9 (29%) 7 (23%) IGFBP1 7 binding protein, PI3 kinase pathway, cell  matrix adhesion

IRAK3_E130_F 8 (26%) 7 (23%)

IRAK3_P13_F 7 (23%) 5 (16%)

IRAK3_P185_F 13 (42%) 8 (26%)

MAP3K1_E81_F 9 (29%) 6 (19%)

MAP3K1_P7_F 9 (29%) 6 (19%)

MOS_E60_R 9 (29%) 9 (29%) MOS 8 protein kinase, signal transduction, apoptosis regulation, cell  cycle, immune system process

MT1A_E13_R 12 (39%) 10 (32%)

MT1A_P49_R 10 (32%) 8 (26%)

RAB32_E314_R 8 (26%) 6 (19%) RAB32 6 GTPase, signal transduction, neurotransmitter secretion, cell  cycle, endocytosis, exocytosis

RASSF1_E116_F 21 (68%) 19 (61%) RASSF1 3 G-protein modulator, signal transduction, apoptosis

TAL1_E122_F 13 (42%) 6 (19%)

TAL1_P594_F 13 (42%) 7 (23%)

TFAP2C_P765_F 7 (23%) 5 (16%) TFAP2C 20 transcription factor, ectoderm development, nucleic acid metabolism

TNFRSF10C_P7_F 9 (29%) 7 (23%) TNFRSF10C 8

tumour necrosis factor receptor, p53 & apoptosis signaling pathways, B cell mediated immunity, 

macrophage activation, ectoderm & nervous system development

TP73_P945_F 11 (35%) 7 (23%) TP73 1 transcription factor, p53 pathway, apoptosis induction, cell  cycle regulation

Methylation
Probe Gene Chr Function(s)

6

protein kinase, Toll receptor signaling pathway, immune system process, protein metabolismIRAK3 12

transcription factor, DNA binding, nucleic acid metabolism1TAL1

protein kinase, signaling pathways: Toll receptor, Ras, EGF receptor, integrin, FGF & apoptosis MAP3K1 5

MT1A 16 metallothionein protein

G-protein coupled receptor, neuronal action potential propagation, neurotransmitter secretion, 

sensory perceptionHTR1B
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Figure 5.12. Frequency of the most significant aberrantly methylated probes in CNS-
PNET. (a) Probes hypomethylated in normal brain that exhibit aberrant methylation in 
CNS-PNET. Partially methylated (β= 0.34-0.67); fully methylated (β>0.67). (b) Probes 
fully methylated in the normal brain that exhibit aberrant methylation in CNS-PNET. 
Partially methylated (β= 0.34-0.67); hypomethylated (β<0.34). 
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5.3.7 CNS-PNET methylation ontological analysis 

An ontological analysis using the DAVID Functional Classification Tool of the identified 

most significantly differentially methylated genes (section 5.3.6) was performed as 

described in section 5.2.9.2. The list of CNS-PNET aberrantly methylated genes was not 

found to be statistically significantly enriched for any biological pathway or process. 

 

5.3.8 Correlation with CNS-PNET clinical characteristics 

5.3.8.1 Identification of age-specific methylation markers  

The age at diagnosis of patients with a CNS-PNET was known for 30 samples. In 8 cases 

(27%) the samples originated from infants, under the age of 3 years (36 months). In 

22/30 (73%) cases patients were aged 36 months or older at diagnosis. Analysis of the 

76 CNS-PNET specific probes determined in section 5.3.6, as using methods described 

in section 5.2.9.2, identified the probes TAL1_E122_F, MAP3K1_E81_F and 

IGFBP1_E48_R to be statistically significantly associated with age at diagnosis (Figure 

5.13) following false discovery rate correction. For all 3 probes, the methylation profile, 

in common with that observed in the normal brain, was consistently hypomethylated 

in children under the age of 3, but showed variation in older patients. This suggests 

that age-specific methylation events occur in the development of CNS-PNET in infants. 
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Figure 5.13. Methylation probes associated with CNS-PNET age at diagnosis. Methylation scores in individual tumours for three probes 
significantly associated with age at diagnosis (a) TAL1_E122_F, (b) MAP3K1_E81_F and (c) IGFBP1_E48_R. (d) Significant probes heatmap: 
Yellow bar, infant cases; purple bar, children and adults >3 years old.  Hypomethylated (green); partially methylated (black); fully methylated 
(red)
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5.3.8.2 Identification of methylation markers associated with 

metastatic disease  

Metastatic status at diagnosis was known in 29 cases. Metastatic disease (Chang stage 

M1-M4) was identified in 7 (24%) of cases, and 21 (68%) cases classified as non-

metastatic according to the criteria outlined in section 2.1.1 (Chang stage M0 or M0/1). 

The development of metastatic disease was not found to be correlated with aberrant 

methylation in any of the disease specific probes, following analysis, as described in 

section 5.2.9.3. 

 

5.3.9 Survival analysis 

5.3.9.1 Overall CNS-PNET methylation cohort survival analysis 

Survival data was not available for SP40, SP43 and SP45. SP103 and SP113 died within 

7 days from surgery, at day 0 and day 4 post-operatively respectively, and were 

therefore excluded from the survival analysis. The survival analysis therefore 

comprised 26 cases, 9 (35%) of whom are alive and 17 (65%) have died of their disease 

(Figure 5.14). The duration of follow up ranged from 1 – 112 months (median: 24 

months) in the cohort and ranged from 3 – 112 months (median: 41 months) in the 

survivor group.  The overall cohort survival was 72.2% at 1 year (56.7-92%, 95% CI), 

46.2% at 3 years (30-71.5%, 95% CI), and 32.3% at 5 years (16.5-63%, 95% CI). 
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Figure 5.14. Kaplan-Meier plot of survival of patients with CNS-PNET used in the 
methylation array. Graph based on data from 26 cases. Survival (solid line) and 95% 
confidence interval (broken lines) are shown. 

 

5.3.9.2 Identification of methylation markers associated with survival 

Analysis to identify markers associated with survival in CNS-PNET was undertaken 

using the 76 most differentially methylated probes identified in section 5.2.9.4 as 

described in section 5.2.9.1. Shown in Figure 5.15, nine probes (HTR1B_E232_R, 

ITK_P114_F, MMP9_ E88_R, MOS_E60_R, PGR_P456_R, SIN3B_P514_R, 

SLC6A8_P409_F, TRIM29_P135_F and WEE1_P924_R) were found to have a p-value 

<0.05 on univariate analysis, but none of the probes were significant following 

Bonferroni-Hochberg correction for multiple testing. For two probes, (SIN3B_P514_R 

and TRIM29_P135_F) a change in methylation from being hypermethylated in the 

normal brain to becoming hypomethylated in the tumour was associated with a 

survival advantage (p= 0.007 and p= 0.038 respectively). For the other 7 probes, 
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hypermethylation relative to the normal brain was associated with an adverse 

outcome. 
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Figure 5.15. CNS-PNET tumour-specific methylation events associated with survival. 
(a) Kaplan-Meier plots; normally methylated (solid line); aberrantly methylated 
(hatched line). (b) Survival probe features; i) Status, normal brain (black); alive (orange); 
died (purple), ii) Heatmap: Hypomethylated (green); partially methylated (black); fully 
methylated (red). Norm: Normal brain (cohort mean β-value). 
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5.3.10 Development of a model to discern CNS-PNET from 

normal brain 

A model to discern normal brain from CNS-PNET was constructed using the list of 76 

most differentially methylated probes identified in section 5.3.6. Linear discriminant 

analysis identified two of these probes which, when the β-values for these 2 probes 

were used in conjunction, were able to delineate normal brain from CNS-PNET.  

Control normal brain samples were shown in all cases to exhibit hypomethylation 

(β<0.34) of RASSF1_E116_F and for the HLA_DPB1_E2_R probe to be fully methylated 

(β>0.67).  With this model a change from hypomethylation of RASSF1_E116_F or from 

fully methylated in HLA_DPB1_E2_R to either RASSF1_E116_F becoming fully 

methylated (β>0.67) or HLA_DPB1_E2_R becoming hypomethylated (β<0.34) signified 

that a sample was a CNS-PNET rather than normal brain Figure 5.16. The system 

correctly identifies all control samples (37/37), and 87% (27/31) of CNS-PNETs. In one 

case (SP103) the sample is found to be indeterminate as the β-value for 

HLA_DPB1_E2_R (β=0.612) lies between the cut-off for a CNS-PNET (β<0.34) and that 

for a normal brain sample (β>0.67). For both SP124 and SP125 (2/31, 6%) the classifier 

system incorrectly determines that CNS-PNET samples are normal brain. 
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Figure 5.16. CNS-PNET classifier system. Normal brain can be distinguished from CNS-PNET using the methylation β values of 2 probes: HLA-
DPB1_E2_R and RASSF1_E116_F. (a) Scatter plot showing the statistically significant difference β values between CNS-PNET and control brain, 
which when combined (b) the control normal brain (black) co-cluster separately from the CNS-PNET (green). (c) i) Normal brain (black) and 
CNS-PNET (green) ii) heatmap showing the methylation values (hypomethylated, green; partially methylated, black; fully methylated, red) of 
the samples. iii) Designation using the classifier system: normal brain (black), indeterminate (amber), CNS-PNET (green).  
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5.3.11 Comparison of CNS-PNET with the methylation profiles 

other CNS tumours 

5.3.11.1 CNS-PNET vs pineoblastomas 

The methylation profile of 4 pineoblastomas was compared with that observed in CNS-

PNETs (Figure 5.17). The analysis was repeated with the 1085 differentially methylated 

probes and also with the 1421 probes not located on the x-chromosome, and identical 

results obtained (see Appendix). With the exception of SP113, an atypical CNS-PNET 

with supratentorial and infratentorial components, the pineoblastomas co-cluster 

separate from the CNS-PNETs. 
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Figure 5.17. Unsupervised analysis of the relationship between the CNS-PNET and pineoblastoma methylome. (a) Principal component 
analysis, (b) Hierarchical clustering bootstrapped dendrograms.
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5.3.11.2 CNS-PNET vs medulloblastoma 

The methylation profile of CNS-PNETs was next compared with that of 100 

medulloblastomas. As illustrated in Figure 5.18a, both the infratentorial (MB) and 

supratentorial (CNS-PNET) tumours clustered separately from the normal brain. The 

relationships between the methylation profiles of the MB and CNS-PNET groups were 

further interrogated by including medulloblastoma molecular sub-classification details 

(section 5.2.3.2). This detailed study was performed in triplicate with consistent results 

in each analysis. The triplicate analysis included an unsupervised approach utilising all 

of the 1505 probes on the array (data shown in Figure 5.18 and Figure 5.19), clustering 

using the 1421 probes not located on the X-chromosome, and also using only the 1178 

differentially methylated probes (see section 5.2.9.1) across the study cohort (see 

Appendix 8.2). 

The medulloblastoma and CNS-PNET tumours clustered into 6 groups, with the 

exclusion of 9 medulloblastoma and 10 CNS-PNET outlier samples (Figure 5.19, Group 

A). Two predominant clusters of CNS-PNETs were observed (Figure 5.19, Groups B and 

D). With the exception of NMB161, NMB250 and NMB252, all of the designated group 

1 non-wnt and non-SHH medulloblastoma tumours (59/100) formed a discreet cluster 

separate from both the CNS-PNETs and medulloblastoma Wnt and SHH subgroups 

(Figure 5.19, Group G). NMB161 and NMB250 co-clustered with the Group D CNS-

PNETs, and NMB252 with the SHH cluster (Figure 5.19, Group F). 

Three of the CNS-PNET samples clustered with the medulloblastoma molecular 

subgroups. SP10 clustered within the dysregulated Wnt pathway group (Figure 5.19, 

Group E), and both SP124 and SP125 clustered amongst the medulloblastomas with 

aberrant SHH signalling (Figure 5.19, Group F).  All three of these patients with CNS-

PNETs in medulloblastoma subgroups are alive. 
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Figure 5.18. Principal component analysis (PCA) comparison of the methylomes of 
CNS-PNET and medulloblastoma. (a) PCA plot comparing the CNS-PNET and 
medulloblastoma with the normal brain. (b) PCA plot comparison of CNS-PNET with 
medulloblastoma sub groups. Wnt, Aberrant Wnt/ Wingless pathway signalling; SHH, 
Aberrant sonic hedgehog pathway signalling.
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Figure 5.19. Dendrogram showing relationship between CNS-PNET methylation profiles and subgroups of medulloblastoma tumours. MB, 
medulloblastoma; SHH, sonic hedgehog pathway dysregulation; Wnt, Wnt/ wingless pathway dysregulation. A: Outliers, B: CNS-PNET group 1, 
C: SHH group1, D: CNS-PNET group 2, E: Wnt group, F: SHH group 2, G: MB group 1. 
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5.3.11.3  CNS-PNET vs high-grade gliomas 

The methylation profile of 29 paediatric high-grade gliomas was compared with those 

observed in the normal brain and in CNS-PNET. Unsupervised clustering showed the 

high-grade gliomas to have a different methylation profile to the normal brain, but was 

not found to cluster as a distinct entity separately from the CNS-PNETs (Figure 5.20). 

This overlap occurred in contrast to the predominant separation observed between 

CNS-PNETs and medulloblastomas (see section 5.3.11.2) indicating that CNS-PNET may 

share a greater homology to high-grade gliomas than to medulloblastomas at the 

epigenetic level.  Some subgroups of high grade gliomas were however demonstrated 

including one containing 5 cases (HGG_03_0480, HGG_02_1107, HGG_06_20918, 

HGG_18_71 and HGG_99_14974), and another of 4 (HGG_08_18756, HGG_18_407, 

HGG_18_72 and HGG_01_10325). Consistent results were obtained in two further 

analyses using firstly only the 1134 differentially methylated probes and secondly a 

probe set that excluded the 84 probes located on the X–chromosome. 
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Figure 5.20. Unsupervised analysis of the relationship between the CNS-PNET, 
normal brain and high-grade glioma methylomes. (a) Principal component analysis, (b) 
Hierarchical clustering bootstrapped dendrograms. 
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5.3.11.4 Comparison of CNS-PNET methylation with a panel of primary 

malignant brain tumour and normal brain samples 

The methylation profile of 31 CNS-PNETs was finally compared with that of a panel of 

170 normal brain and malignant primary brain tumour samples (Figure 5.21). In this 

summary analysis, the observations identified from investigation of the methylation 

profiles of CNS-PNET with the normal brain, pineoblastoma, medulloblastoma, and 

high grade gliomas (detailed in sections 5.3.5, 5.3.11.1, 5.3.11.2 and 5.3.11.3 

respectively) are maintained.  

The methylation profile of the normal brain is distinct from that observed in primary 

brain tumours. Medulloblastomas are revealed to exhibit a variant methylation profile 

to that observed in the majority of CNS-PNETs, although as has previously been 

described in isolated cases similar patterns and co-clustering may occur. 

Pineoblastomas are shown to have a similar methylation pattern and co-cluster. A 

similar finding is not observed in assessment of high grade gliomas which do not form 

a discrete group, but can exhibit a similar methylation pattern to CNS-PNETs. 
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Figure 5.21 Comparison of methylation in CNS-PNET and a panel of normal brain and primary malignant brain tumour samples. The 
methylation profile of 31 CNS-PNET samples compared with samples taken from the normal brain (n=37), paediatric high grade gliomas (n=29), 
medulloblastomas (n=100), and pineoblastoma (n=4).

a) b)
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5.4 Discussion  

5.4.1 Epigenetic modification by methylation can be assessed 

using an array based approach in CNS-PNET 

In this study the Illumina Goldengate platform was used for the first time to assess the 

methylation in CNS-PNETs. A high correlation of methylation scores was recorded 

between the Illumina Goldengate method and bisulphite sequencing, with a mean 

difference 0.006, and standard deviation 0.167. This finding is in concordance with the 

previously reported reliability and reproducibility of this method (Martin-Subero, Kreuz 

et al. 2009). 

The cohort included samples derived from both frozen and formalin fixed paraffin 

embedded (FFPE) archival material. In total 3 samples failed the quality control (QC) 

requirements and were accordingly removed from the study. Overall, 95.2% (20/31) of 

the cases where DNA had been derived from frozen material, and 84.6% (11/13) of 

cases where DNA had been extracted from FFPE passed the QC and were included in 

the study. In the case of SP24, DNA was successfully extracted, used in the methylation 

array and passed the QC assessment from a 12 year old FFPE block. These findings 

confirm that epigenetic analyses may successfully be performed in archival material 

including archival FFPE, as has been previously reported (Killian, Bilke et al. 2009). 

Importantly this means that a large scale assessment of epigenetic diversity 

incorporating hundreds of genes may be made using this methylation platform where 

expression or CGH approaches requiring high quality DNA or RNA extracted from 

frozen material is not feasible. In the context of rare tumours such as CNS-PNETs for 

which studies necessitating material derived from frozen material may take over a 

decade to collate, crucially the successful application of this technology to FFPE 

archival material permits further contemporary large studies, with international 

collaboration, utilising libraries of archival FFPE material. 
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5.4.2 Genome-wide methylation changes in CNS-PNET are 

consistent with those reported in other cancers 

Alterations in methylation patterns have been identified in most human cancers 

(Baylin and Herman 2000). It has been shown that genome-wide hypomethylation 

outside of CpG islands occurs during cancer development (Feinberg and Vogelstein 

1983) and occurs across multiple tumour types (Kim, Jen et al. 1994; Cravo, Pinto et al. 

1996; Soares, Pinto et al. 1999). In contrast, aberrant hypermethylation occurs 

particularly at CpG islands (Costello, Fruhwald et al. 2000; Jones and Baylin 2007). It 

has been estimated that on average 400 CpG islands are aberrantly methylated in 

tumours (Costello and Plass 2001). In this current study genome-wide methylation 

patterns in CNS-PNET were shown to be consistent with findings reported in other 

tumour groups. A statistically significant difference (p<0.0001) was observed when 

comparing the number of hypomethylated probes outside of CpG islands in CNS-PNETs 

(median 129, IQR 109-144) compared with the normal brain (median 79, IQR 67.5-

84.5). Consistent with other studies, within CpG islands a statistically significant 

(p=0.002) increase in methylation of probes was observed in CNS-PNET compared with 

the normal brain (median 120, IQR 100-151 in CNS-PNET compared with median 101, 

IQR 96-106 I the normal brain). Methylation of genes within CpG islands may inactivate 

tumour suppressor genes or inactivate DNA repair genes which both may result in 

tumour development (Strathdee and Brown 2002) and therefore the findings in this 

current study in CNS-PNET support the hypothesis that hypermethylation at CpG 

islands is implicated in CNS-PNET tumorigenesis. 

 

5.4.3 CNS-PNETs are a heterogenous group of tumours 

CNS-PNETs are commonly regarded as a heterogenous group of tumours (Eberhart 

2011) for which no accepted classification of subgroups exists. The investigation of the 

methylation profiles of CNS-PNETs afforded the opportunity to ascertain whether 

distinct subgroups do exist in relation to this tumour. As outlined in section 5.1.2, the 
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Goldengate methylation array has been used to identify altered methylation patterns 

in a spectrum of tumours and more detailed examination of the methylation profiles in 

some tumours, including breast, colorectal, AML and testicular, have also revealed 

distinct subgroups (Ang, Loh et al. 2010; Cheung, Lee et al. 2010; Figueroa, Lugthart et 

al. 2010). Investigation of the methylation patterns in CNS-PNET using unsupervised 

clustering methods (principal component analysis and bootstrapping) in this study did 

not however identify distinct subgroups. This study was however limited by the 

availability of tumour material, and therefore distinct subgroups may exist but the 

study failed to identify them as there were insufficient cases. Additional studies 

analysing CNS-PNETs with other brain tumours did however provide critical insights 

into the heterogeneity in this disease (see section 5.4.8). 

 

5.4.4 Age related methylation patterns in CNS-PNET 

Infants, under the age of 3 years, with a CNS-PNET are treated differently to older 

children and adults, but have an inferior prognosis (reviewed in section 1.4.4 and 1.4.5). 

Infant protocols limit the use of radiotherapy to avoid the devastating neurological 

consequences that arise following delivery of cranial irradiation to the developing 

brain (reviewed in section 1.4.5.3). CNS-PNETs are however radio-sensitive tumours 

and therefore it could be hypothesised that the poor outcome seen in young children 

may result from the inability to deliver effective treatment, rather than because of 

biological differences in the disease at different ages. 

In this study however, it has been shown that whilst the methylation profiles of CNS-

PNETs overall do not differ at different ages, isolated age-specific methylation events 

do occur. Using the 76 CNS-PNET specific probes (identified in section 5.3.6), probes 

for three genes were found to be statistically significantly associated with age at 

diagnosis. Hypomethylation of TAL1_E122_F, MAP3K1_E81_F and IGFBP1_E48_R were 

found to occur in infant tumours, whilst in CNS-PNETs arising in older children and 

adults these probes were typically methylated (p=0.027, p=0.027, p=0.043 

respectively). In the normal brain cohort, comprising both infant and adult cases (24% 
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(9/27) < 3 years and 73% (27/37) > 3 years), the probes are universally hypomethylated. 

The hypomethylation of probes TAL1, MAP3K1 and IGFBP1 in infant CNS-PNET cases 

indicates methylation occurring in older patients is a tumour-specific aberration and 

not a normal feature of age in brain tissues.  

The identification of variable patterns of methylation correlated with age of onset 

supports the hypothesis that differences in the clinical outcomes of patients with CNS-

PNETs at different ages reflects fundamental differences at the genetic level. 

Investigation of the role that TAL1, MAP3K1 and IGFB1 have in CNS-PNET 

tumorigeneisis in older children did not form part of the current study, but is work that 

should now be undertaken.   

 

5.4.5 Methylation patterns associated with metastatic disease in 

CNS-PNET 

A number of genes have been identified that inhibit cell growth and tumour invasion 

which may act as metastasis suppressor genes (Reviewed in (Esteller 2005)). 

Methylation of tissue inhibitors of proteases (TIMPs), cadherin genes or laminin genes 

have all previously been identified in a number of cancers including gastric, colorectal, 

breast, lung, prostate bladder, pancreatic and gliomas and have been associated with 

advanced disease (Konduri, Srivenugopal et al. 2003; Sathyanarayana, Padar et al. 

2003; Miotto, Sabbioni et al. 2004; Sato, Parker et al. 2005). 

In this study no aberrant methylation events were found to be significantly associated 

with metastatic disease. An involvement of epigenetic modification by DNA 

methylation in the metastatic potential of this disease, cannot however be excluded. 

The CNS-PNET cohort in this study comprised 31 cases for which a Chang score was 

assigned in 90% (28/31). A significant finding may not have been obtained because the 

study was relatively underpowered. It is also possible that a significant result was not 

identified because the cohort contained archival material. In this study material was 

obtained prior to the introduction of the routine cytological examination of CSF to 
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determine microscopic metastatic disease, and accordingly in 68% of cases an M0/1 

status was assigned. Cases with an M0/1 Chang score were categorized as being non-

metastatic, in accordance with convention when analysing historical samples in this 

disease (Pizer, Weston et al. 2006). Regrettably it is plausible however that in some of 

these cases, had a CSF sample undergone a cytological examination, that evidence of 

metastatic disease would have been identified, the tumour classified as M1 and 

analysed with other known metastatic cases. The non-metastatic group may therefore 

have been contaminated with metastatic cases reducing the likelihood of identifying a 

difference between these 2 groups.  In summary, it is conceivable that a falsely 

negative result (type II error) has been obtained in this study, and that it may be 

possible to determine methylation markers associated with metastatic disease in 

future larger, precisely clinically characterised cohorts. 

 

5.4.6 Identification of genes that may be implicated in CNS-PNET 

survival  

In this study, epigenetic modification by methylation in CNS-PNET was investigated 

across 1505 probes incorporating 807 genes known to be implicated in tumorigenesis. 

This has enabled the most extensive investigation to date, of the effect of methylation 

on survival in this disease. Clinical data were available on 26 CNS-PNET cases to 

perform a survival analysis. The subsequent survival analysis was therefore 

constrained by the cohort size and therefore permitted a relatively underpowered 

study. In addition the cohort contained both archival material as well as samples from 

current cases (range 1-112 months, median 24 months) resulting in early censorship in 

a proportion of cases which further limited the capacity of the study to identify survival 

characteristics.  

Nonetheless, univariate analysis identified 9 genes that may be associated with 

survival. These included TRIM29, HTR1B, MOS, ITK, MMP9, PGR, SIN3B, SLC6AE and 

WEE1.  After correction for multiple testing and calculation of the false discovery rate, 
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none of these probes remained significant at the 5% level. It can therefore only be 

concluded that these genes may be associated with survival in CNS-PNET, but require 

further study in larger series to substantiate any survival effect.  

 

5.4.7 Using methylation as a diagnostic tool 

Alterations in the methylation status for specific genes are currently being evaluated 

for use in diagnosis and screening disease in a range of cancers including breast, lung, 

prostate, gliomas and colorectal oral cancers (Goldenberg, Harden et al. 2004; 

Tokumaru, Harden et al. 2004; Sunami, Shinozaki et al. 2009; Al-Moghrabi, Al-Qasem 

et al. 2011; Hinoue, Weisenberger et al. 2011; Radhakrishnan, Kabekkodu et al. 

2011).To date, the assessment of specific genetic features does not form part of the 

diagnostic protocol for investigating suspected CNS-PNETs. The findings from this study 

suggest that a targeted methylation analysis of 2 genes may be of clinical diagnostic 

value. Specifically, probes for the RASSF1 and HLA-DPB1 genes were found to be 

aberrantly methylated in CNS-PNET.  Hypomethylation of RASSF1_E116_F and 

hypermethylation of HLA_DPB1_E2_R was found to occur in all normal brain samples 

(37/37). In CNS-PNET samples, RASSF1_E116_F became hypemethylated or 

HLA_DPB1_E2_R became hypomethylated in 87% (27/31). In total the determination 

of methylation status of RASSF1_E116_F and HLA_DPB1_E2_R correctly identified 94% 

(64/68) of samples as either normal brain tissue or CNS-PNET. Unfortunately however, 

a second panel of tumours and normal brain samples was not available to perform a 

validation study which is required to confirm that these findings are reproducible in 

different cohorts, work which now needs to be undertaken. 

Aberrant methylation of the RASSF1 and HLA-DPB1 genes is not CNS-PNET specific. As 

has been discussed previously (section 1.5.6 and section 3.4.2) hypermethylation of 

the RASSF1A promoter is a feature observed in many paediatric and adult tumours, 

and in the context of CNS embryonal tumours has been shown to be a frequent event 

in both CNS-PNET and medulloblastoma (section 3.4.1). Increased expression of HLA-

DPB1 has been associated with cervical cancers and pilocytic astrocytomas (Huang, 
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Hara et al. 2005; Liang, Xu et al. 2008), and aberrant methylation observed to be a 

feature of renal tumours (McRonald, Morris et al. 2009). Whilst identification of 

aberrant methylation of RASSF1_E116_F or HLA_DPB1_E2_R may therefore signify 

deviation from the normal tissue and the presence of disease, they cannot be 

employed to determine specifically whether the disease process is a CNS-PNET. 

Should aberrant methylation of RASSF1 and HLA-DPB1, following further validation 

studies, be confirmed to be tumour-specific events in CNS-PNET, then these findings 

will represent the most frequent genetic abnormalities identified to date in this 

disease. The high frequency (87%) in which aberrant methylation of RASSF1 or HLA-

DPB1 occurs in CNS-PNET suggests that the probes on these 2 genes are potentially 

significant novel disease markers which may have clinical applicability and warrants 

further investigation. This study has identified aberrant methylation of RASSF1_E116_F 

or HLA_DPB1_E2_R in tumour tissue but, as will be discussed further in section 5.4.9, 

this should be investigated in blood and CSF samples.  If aberrant methylation was 

identified in circulating DNA either in the blood or CSF in patients with CNS-PNETs, 

then analysing the methylation of these probes may have a considerable clinical utility 

in monitoring treatment response and diagnosing progression or relapse.  

 

5.4.8 Pineoblastomas and CNS-PNETs are distinct entities 

Reviewed in section 1.3.4, following the review of CNS tumours by Hart and Earle in 

1973 and the development of the PNET concept, pineoblastomas and CNS-PNETs 

arising at other supratentorial non-pineal sites were co-classified as suprtatentorial 

PNETs (SPNETs) (Hart and Earle 1973; Becker and Hinton 1983). In the second WHO 

CNS tumour classification system, and maintained in subsequent revisions,  

pineoblastomas were removed from the PNET group and reclassified as pineal 

parenchymal tumours along with other pineal tumours (Kleihues, Burger et al. 1993). 

These tumours have however continued to be both investigated and treated alongside 

CNS-PNETs. 
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In this study the methylation profiles of 31 primary CNS-PNETs was compared with 

that of 4 primary pineoblastomas. The four pineoblastomas, using either PCA or 

hierarchical clustering unsupervised analyses, were shown to co-cluster (Figure 5.17). 

The methylation profiles of these tumours were thus shown to have more in common 

with each other than with CNS-PNETs. The CNS-PNET with a profile that was most 

similar to that observed in pineoblastomas was SP113. SP113 originated from an 11 

year old boy with non-metastatic disease at diagnosis who subsequently died from his 

disease. Unusually, the tumour had both infratentorial and supratentorial components 

occurring in the posterior 3rd ventricle and subthalamic region of the left lateral 

ventricle.  

Despite the pineoblastoma comparator group containing a restricted number of 

tumours, the findings of this study suggest that pineoblastomas are a separate group 

of tumours. In addition, this study has shown that pineoblastomas may be 

distinguished from other supratentorial aggressive brain tumours by investigation of 

their methylome. Finally, this study provides new evidence to support the classification 

change and distinction between CNS-PNETs and pineoblastomas. 

 

5.4.9 CNS-PNET and medulloblastoma exhibit divergent 

methylation profiles 

The methylation profiles of 100 primary medulloblastomas were compared with those 

from 31 primary CNS-PNETs. This study showed a predominantly divergent pattern in 

methylation between the 2 groups of embryonal tumours. As shown in Figure 5.19, 

after removal of the outliers (9/100, group A) in total only 4 medulloblastomas (4/91, 

4.4%) co-located in the CNS-PNET groups, and three CNS-PNETs (3/31, 10%) with 

medulloblastomas. The methylation profiles of these 2 groups of tumours in this study 

have therefore been shown to differ significantly. This finding of divergent methylation 

profiles corroborates similar conclusions made in previous smaller studies supporting 

separate classification and treatments. Differences in epigenetic modifications 
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between medulloblastomas and CNS-PNETs were highlighted in a study investigating a 

microRNA cluster. Amplification of the C19MC microRNA cluster on chromosome 

19q13.41 was identified in 24% (11/45) of CNS-PNETs but not in other paediatric brain 

tumours, including 118 medulloblastomas, 34 high grade gliomas and 111 

ependymomas (p=0.0001) (Li, Lee et al. 2009). Aberrant methylation of the p14ARF 

promoter has been shown to be a feature in CNS-PNETs, but not in medulloblastomas 

(Inda, Munoz et al. 2006). In addition, a number of other studies have previously 

identified aberrant methylation of particular genes (see section 1.5.6) in CNS-PNETs, 

but these have been in small cohorts which have impaired the capacity of such studies 

to make significant comparisons with other tumour groups, and in particular 

medulloblastomas.  

 

5.4.10 Co-clustering with medulloblastomas in isolated cases is 

significant 

Whilst, as described in section 5.4.9, predominantly divergent methylation patterns 

were observed between CNS-PNET and medulloblastomas, in a few isolated cases 

similar profiles were derived.  The identification of tumours which have similar profiles 

may have significant implications for both understanding the biology and improving 

treatments for these tumours. 

SP10 was found to co-cluster with the group of medulloblastomas with aberrant Wnt 

signalling. This sample was taken from a 13 year old male with a 3rd ventricular CNS-

PNET with non-metastatic disease and who is alive 9 years following diagnosis. In 

chapter 3 molecular analysis of SP10 also revealed evidence of aberrant Wnt signalling, 

with the nuclear accumulation of β-catenin. Unfortunately this was an isolated case, 

and therefore it cannot be determined whether aberrant Wnt signalling and clustering 

within the Wnt group confers a significantly different prognosis and a superior 

outcome as has been demonstrated in medulloblastoma (Cho, Tsherniak et al. 2010; 

Northcott, Korshunov et al. 2010). 
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Two cases (SP124 and SP125) clustered with the aberrant SHH signalling group of 

medulloblastomas. Both of these tumours originated in the suprasellar region of 

females aged 14 months and 12 years of age respectively, who are both alive but with 

limited follow up (24 and 3 months respectively). In medulloblastoma this group of 

tumours has been shown to have an outcome that is intermediate between the Wnt 

group and other medulloblastomas (80%, 10 year overall survival) (Northcott, 

Fernandez et al. 2009) but the significance in CNS-PNET has not been established.  

The co-clustering of isolated CNS-PNET cases with SHH and Wnt MB tumours are novel 

findings which require further investigation. This result suggests that in a small 

proportion of cases CNS-PNETs and medulloblastomas may share similar genetic 

features. It is thus conceivable that these cases may continue to benefit from similar 

treatments to those used and being developed to treat medulloblastoma. Furthermore 

this study provides a rationale to extend the ascertainment of Wnt status, determined 

immunohistochemically by screening for the presence of nuclear β-catenin, which is 

now routinely performed in the management of children with medulloblastomas, to 

include CNS-PNETs. When similar methods have been evaluated and validated to 

assess the SHH pathway in medulloblastomas, it would be potentially advantageous 

for these to be applied in addition to CNS-PNETs. 

 

5.4.11 Methylation analysis identifies overlap with high-grade 

gliomas 

High-grade gliomas (HGGs) account for 8-12% of all brain tumours arising in childhood 

(Bondy, Scheurer et al. 2008) and arise throughout the brain but most commonly at 

supratentorial sites. Histologically the most frequently HGGs are either anaplastic 

astrocytomas (AA) (WHO grade 3) or glioblastoma multiforme (GBM) (WHO grade 4) 

(Fangusaro 2009). The survival from these tumours is dismal with overall survival rates 

of 20-40% and 5-15% at 5 years for AAs and GBMs respectively (Tamber and Rutka 

2003), although in a recently report superior outcomes have been described in a 
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subgroup of infants (Sanders, Kocak et al. 2007). Clinically, high grade gliomas and 

CNS-PNETs can be difficult to discern (Burger 2006). The clinical course and 

management of these tumours however differ significantly. The methylation profiles of 

31 CNS-PNETs and 29 paediatric high grade gliomas were therefore assessed to 

investigate the relationship between these two tumour groups and the results given in 

section 5.3.11.3. 

The methylomes of HGGs and CNS-PNETs, as shown in Figure 5.20, were found not be 

mutually exclusive, but exhibited substantial overlap. In contrast to the study with 

medulloblastomas (discussed in section 5.4.9) it is not possible to distinguish CNS-

PNETs from high grade gliomas by analysis of their global methylation patterns using 

the Illumina Goldengate methylation array cancer panel I. To further elucidate and 

validate this phenomenon the methylation profiles of the HGGs and CNS-PNETs were 

also compared with a normal brain panel and with medulloblastomas. When 

investigated alongside the panel of 100 medulloblastoma samples (described in section 

5.2.3.2) in contrast to the relationship observed with CNS-PNETs, the HGGs and 

medulloblastomas form distinct and mutually exclusive clusters (Figure 5.22). 

Comparison with the normal brain cohort (Figure 5.20), which includes samples taken 

from diverse CNS locations including from both the supratentorial and infratentorial 

compartments (further details given in section 5.2.2), showed the normal brain 

samples to form a separate cluster. This in turn suggests that the differential 

methylation patterns observed therefore between the normal brain and CNS-PNETs, 

high-grade gliomas or medulloblastomas, reflect a fundamental difference in 

methylation due to the cancerous process rather than a discrepancy attributable to the 

site of origin. 

The co-clustering between HGGs and CNS-PNETs observed in this study is also 

supported by the hypothesis that brain tumours may arise from neural stem cells. In a 

study by Singh et al, CD133 and nestin (neural stem cell surface markers) were 

identified in gliomas, suggesting that both neuronal and glial neoplastic cells may arise 

from a common neural stem cell (Singh, Clarke et al. 2003) and from this a multi-

potent  brain tumour stem cell (BTSC) may arise (Singh, Clarke et al. 2004). These 
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findings are also consistent with the “cancer stem cell hypothesis”, in which tumours 

are considered to arise from such stem cells capable of self-renewal, differentiaition 

along multiple lines, and possess an ability to migrate throughout the brain 

parenchyma (Wicha, Liu et al. 2006). It has recently also been shown that PNET or glial 

tumours may arise from the same stem cell following different combinations of genetic 

events (Jacques, Swales et al. 2010). In this study recombination of PTEN/p53 was 

shown to give rise to gliomas whilst deletion of Rb/p53 resulted in PNETs. It is 

therefore conceivable that the co-clustering between CNS-PNETs and HGGs may 

reflect a similar origin, which requires further investigation. 

In addition to the histopathological similarities that occur in some cases between HGGs 

and CNS-PNET resulting in the diagnostic challenge illustrated by Burger (Burger 2006), 

there is evidence that this overlap may have clinical significance. Glial differentiation 

has been shown previously to be associated with an adverse outcome in CNS-PNET 

(Janss, Yachnis et al. 1996). In their investigation of 86 PNET tumours (11 CNS-PNETs 

and 75 MBs), GFAP immunohistochemical staining, a feature of glial differentiation, 

was identified in 52 (52/86, 60%) and associated in a Cox model with a 6.7 fold 

increased risk of relapse and an adverse outcome. Furthermore, in a series of 

predominantly case reports tumours with combined features of HGGs and CNS-PNET 

have been described (Wharton, Whittle et al. 2001; Ishizawa, Kan-nuki et al. 2002; 

Kepes 2002; McLendon and Provenzale 2002; Dulai, Bosanko et al. 2004; Kaplan and 

Perry 2007; Kandemir, Bahadir et al. 2009). Recently a review of 53 such cases, 

predominantly arising in adults (range: 12-84 years, median: 54 years) of HGGs with 

CNS-PNET components has been reported, and such tumours were found to be highly 

aggressive and conferring a median survival of only 9 months (Perry, Miller et al. 2009). 

In contrast to HGGs where only 1.1% are reported to be metastatic at diagnosis (Stark, 

Nabavi et al. 2005), but in common with CNS-PNETs, 40% of these tumours were 

metastatic at diagnosis. In this report the authors also commented that in three 

patients who failed to respond to HGG therapy with radiation and temozolamide, a 

response was recorded when their treatment was changed to included platinum-based 

chemotherapy, as is routinely used in CNS-PNET management. This study therefore 
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highlights the potential that the combination of histopathological features and tumour 

behaviour characteristics in this group of tumours can have on clinical management. 

Evidence for an inter-relationship between HGGs and CNS-PNETs has been 

demonstrated in this study, which now requires further investigation. Crucially, the 

relationship between HGG and CNS-PNET tumours may provide novel opportunities for 

the development of an enhanced classification but also in the management of patients 

with these tumours. These concepts will be explored in further detail in chapter 6.  
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Figure 5.22. Unsupervised analysis showing distinct methylation profiles of high 
grade gliomas, and medulloblastoma. (a) Principal component analysis, (b) 
Hierarchical clustering bootstrapped dendrograms. 
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5.4.12 The future role of methylation in CNS-PNET research  

This study has provided the most extensive and detailed investigation into the 

methylome of CNS-PNETs to date. In common with other cancers, alterations in DNA 

methylation appear to be frequent events in CNS-PNET. These investigations have 

afforded a number of critical insights into this disease which warrant further 

investigation and may have clinical utility. 

 As part of this study a list of the most frequently aberrantly methylated genes has 

been generated (section 5.3.6, Table 5.8 and Table 5.9), which has provided evidence 

for a wider range of genes being epigentically modified in this disease than had 

previously been described. Investigating the potential role these candidate genes may 

have in the tumorigenesis of CNS-PNETs was beyond the scope of this study, but could 

form the basis for important further work. 

In this study, two of the most frequently aberrantly methylated genes, RASSF1 and 

HLA-DPB1, were found in combination to be able to discern normal brain tissue from 

CNS-PNET (section 5.3.10 and discussed in section 5.4.7). One of the potential future 

roles for such methylation markers in CNS-PNET would be to detect the presence of 

residual disease or disease progression. Tumour specific methylation markers as well 

as being found in the tumour tissue may also be present in other samples including 

sputum, urine, plasma, stool and saliva (Miyamoto and Ushijima 2005). These may be 

obtained less invasively making them more suitable for follow up screening.  Recently 

however it has also been shown that cell free tumour DNA can be obtained from 

sampling of cerebrospinal fluid in patients with brain tumours (Liu, Cheng et al. 2010). 

In a study of 66 high grade gliomas the methylation profiles of 4 candidate genes 

(MGMT, p16INK4A, TIMP3 and THBS1) were analysed in the tumour, DNA and CSF (Liu, 

Cheng et al. 2010). No aberrant methylation was observed in a panel of 20 normal 

samples. Hypermethylation of CSF DNA was accompanied with hypermethylation in 

the corresponding tumour with 100% specificity, and hypermethylation of MGMT and 

THBS1 in the CSF were found to be independent prognostic markers. In the context of 

CNS-PNET management, the presence of hypomethylation of the HLA-DPB1 marker 
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(HLA_DPB1_E2_R) or methylation of the RASSF1 marker (RASSF1_E116_F) in CSF 

derived DNA could provide useful information in determining response to therapy and 

re-emergence of these markers could be used in predicting recurrence. Studies to 

determine whether tumour DNA is present in the CSF in patients with CNS-PNETs and 

specifically whether these markers are evident would form an important extension of 

this current work. 

Methylation markers may also be used to identify high risk tumours and to monitor 

response to treatment. In breast, bladder and lung cancers for example, DNA 

methylation profiling has been used to predict prognosis (Silva, Dominguez et al. 1999; 

Palmisano, Divine et al. 2000; Hoque, Begum et al. 2006; Belinsky, Schiller et al. 2008; 

Levenson 2010; Wen, Fu et al. 2011; Yamamoto, Nakayama et al. 2011). Furthermore, 

therapeutically DNA methylation patterns have been shown to predict response to 

chemotherapy agents. In the management of high grade gliomas for example, 

methylation of the MGMT promoter is associated with an improved response to 

alkylating agents such as temozolamide (Hegi, Diserens et al. 2004; Stupp, van den 

Bent et al. 2005). The prognostic impact MGMT methylation status has in this disease 

has resulted in a treatment stratification being proposed to reduce the exposure of 

alkylating drugs to those with a hypomethylated MGMT status (Stupp, Hegi et al. 2010). 

In other tumour groups including ovarian, breast, oesophageal and gastric, aberrant 

methylation of different genes have also been shown to predict response to treatment 

(Wei, Brown et al. 2003; Suzuki, Yoshida et al. 2007; Brabender, Arbab et al. 2009; 

Chaudhry, Srinivasan et al. 2009; Hartmann, Spyratos et al. 2009). The current study 

has provided a precedent for using methylation markers to predict survival in CNS-

PNET. Further evaluation of the aberrantly methylated genes identified in this current 

study may therefore yield clinically significant methylation markers which can be used 

in CNS-PNET management. 

In contrast to genetic events, epigenetic modifications are potentially reversible which 

renders aberrant methylation a highly desirable exploitable chemotherapeutic target. 

In two recent reviews the progress in targeting DNA methylation to develop novel 

anticancer therapies is described (Yang, Lay et al. 2010; Ren, Singh et al. 2011). 
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Following experiments which showed that genetic silencing by DNA hypermethylation 

can be reversed using the DNA methyltransferase inhibitor (DNMTi) azacytidine (or 5-

Aza-CR) (Plumb, Strathdee et al. 2000), a series of drugs have now been developed and 

are currently being evaluated  (Yang, Lay et al. 2010; Ren, Singh et al. 2011). 5-Aza-CR 

and the deoxy analogue deoxycytidine (5-Aza-CdR) for example, have been shown to 

be effective in acute myeloid leukaemia and myelodysplastic syndromes (Kornblith, 

Herndon et al. 2002; Bots and Johnstone 2009). Such agents may have a role to play in 

the management of patients with CNS-PNET to impair growth and restore normal 

cellular functions by demethylating genes that have become hypermethyalted in the 

cancer process. However, as has been illustrated in a study in pancreatic cancer where 

the use of Aza-CR resulted in stimulation of the metastatic potential through activation 

of genes promoting tumour invasion, these drugs are not without potentially 

significant side effects (Sato, Maehara et al. 2003). In the context of CNS-PNET, a 

disease of early childhood with two-thirds of such tumours occurring before the age of 

5 (Jakacki, Zeltzer et al. 1995; Louis, Ohgaki et al. 2007), such side effects may also 

arise from alterations to pathways essential for normal development. 

Finally this research, as has been discussed in sections 5.4.8, 5.4.9, 5.4.10 and 5.4.11 

has provided critical insights into the relationship between CNS-PNETs and other highly 

malignant brain tumours. This work has shown that CNS-PNETs are predominantly a 

distinct group of tumours to medulloblastomas, that share a similar to methylome to 

HGGs, but that in isolated cases may be indistinguishable from some of the recently 

identified medulloblastoma subgroups. These findings have applicability not only to 

disease classification, but may also provide rationales for divergent treatment 

regimens within the same tumour group based on their genetic features. Further 

research that seeks to investigate and advance our understanding of these inter-

relationships may therefore also yield evidence for future clinical exploitation.    
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6.1 Background and project summary 

CNS-PNETs are the second most common CNS embryonal tumour, which occur 

predominantly in early childhood and account for 2-3% of all paediatric brain tumours 

(Bruno, Rorke et al. 1981; Gaffney, Sloane et al. 1985; Jakacki, Zeltzer et al. 1995). 

Whilst the overall five year survival rate for children with cancer continues to improve 

and is now 75% (ONS 2010), the prognosis for children with CNS-PNETs remains dismal. 

Despite aggressive multi-modal therapy in children over the age of 3 years, the 3 year 

progression free survival remains only 34-54% (Timmermann, Kortmann et al. 2002; 

Massimino, Gandola et al. 2006; Pizer, Weston et al. 2006), whilst for infants under the 

age of 3 years survival rates are consistently under 20% (Duffner, Horowitz et al. 1993; 

Marec-Berard, Jouvet et al. 2002; Timmermann, Kortmann et al. 2006; Grundy, Wilne 

et al. 2010). New therapies are urgently required to improve the outcome of children 

who develop this catastrophic disease. 

Following the review of CNS tumours by Hart and Earle in 1973 (Hart and Earle 1973), 

and the origination of the term “primitive neuroectodermal tumour” (PNET), CNS-

PNETs have been treated along similar lines to other brain “PNETs” (medulloblastomas) 

in view of their similar histopathological features. Contemporary treatment protocols 

now cure over 70% of children with medulloblastoma, but such improvements have 

not been realised using the same treatments in those with a CNS-PNET (Taylor, Bailey 

et al. 2003; Pizer, Weston et al. 2006; Pizer and Clifford 2008). Clinically therefore, 

these tumours, despite sharing common histopathological features and a classification 

system that suggests a unifying origin, appear to be separate entities requiring distinct 

therapeutic strategies.  The “PNET hypothesis” which has been at the heart of how 

these tumours are investigated and managed for the last three decades, therefore may 

be invalid.   

To date, research into the molecular basis for CNS-PNET development and their 

relationship with medulloblastomas and other brain tumours has been limited. Loss of 

chromosome 17p, which is seen in up to 40% of medulloblastomas (McDonald, 

Daneshvar et al. 1994; Burnett, White et al. 1997), has only rarely been observed in 



366 

 

CNS-PNET (Roberts, Chumas et al. 2001; Bayani, Pandita et al. 2005). MYC family gene 

amplification, which occurs in 15-25% of medulloblastomas and is associated with the 

large cell / anaplastic subtype and a poor prognosis (Leonard, Cai et al. 2001; Lamont, 

McManamy et al. 2004; Vita and Henriksson 2006; Pfister, Remke et al. 2009), has only 

been investigated in a few small studies and found to occur in CNS-PNET in 

approximately 5% of cases (Fruhwald, O'Dorisio et al. 2000; Pfister, Remke et al. 2007; 

Behdad and Perry 2010). Conversely, aberrant Wnt signalling is associated with a 

favourable prognosis in medulloblastoma disruption (Ellison, Onilude et al. 2005; 

Gajjar, Chintagumpala et al. 2006; Fattet, Haberler et al. 2009; Ellison, Kocat et al. 2011) 

but the role in CNS-PNET is unclear (Koch, Waha et al. 2001; Rogers, Miller et al. 2009). 

Finally, in 2005 Eberhart et al discovered a significant difference between p53 pathway 

dysregulation in medulloblastomas and CNS-PNETs (Eberhart, Chaudhry et al. 2005). 

Dysregulation of the p53 pathway was suggested in 88% of CNS-PNETs, compared with 

18% of classic medulloblastomas, but only 8 CNS-PNET cases were investigated 

(Eberhart, Chaudhry et al. 2005).  

Epigenetic as well as genetic mechanisms have been shown to be implicated in the 

development of CNS-PNETs. In three small studies epigenetic modification by aberrant 

DNA methylation has revealed  RASSF1A hypermethylation to occur in between 67 – 

83% of cases (Chang, Pang et al. 2005; Muhlisch, Schwering et al. 2006; Inda and 

Castresana 2007). Whilst RASSF1A hypermethylation is the most frequent epigenetic 

event reported in CNS-PNET, previous studies have only investigated a small number of 

candidate genes (see table 1.12), and a detailed study of the DNA methylome in CNS-

PNET disease has, however, never previously been undertaken. 

The aim of this study was to investigate the molecular mechanisms involved in CNS-

PNET development and determine their clinical and histopathological significance by; (i) 

investigating in CNS-PNETs the common genetic features associated with 

medulloblastomas, (ii) considering in CNS-PNETs novel genetic events determined 

through genome-wide studies in other brain tumours and, (iii) examining the DNA 

methylome in CNS-PNETs. 
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A panel of confirmed CNS-PNETs that had undergone a central pathological review 

were investigated in this study for a series of common medulloblastoma defects. 

Multiplex ligation-dependent probe amplification (MLPA) was used to determine the 

copy number of MYCC and MYCN in a cohort of 25 primary CNS-PNETs. An elevated 

copy number of MYCC was not identified in any case, but MYCN amplification was 

identified in 12% (3/25) and confirmed by quantitative real-time PCR and fluorescent 

in situ hybridisation (FISH). Nuclear β-catenin accumulation was assessed 

immunohistochemically to identify cases with aberrant Wnt pathway signalling. Direct 

sequencing of CTNNB1 was also performed to detect the presence of characteristic 

mutations associated with aberrant Wnt signalling. Intense nuclear β-catenin 

accumulation suggesting aberrant Wnt signalling was identified in 2 cases (2/22, 9%) 

which was associated, in one of these cases, with a CTNNB1 mutation providing 

evidence that aberrant Wnt signalling occurs in a small subset of CNS-PNETs. p53 

pathway activation or disruption was determined immunohistochemically and 

observed in 91% (20/22). Additionally, direct sequencing of DNA identified TP53 

mutations in 18% (4/22) and, using MLPA, a copy number gain of MDM2 in a further 

case, but no evidence of homozygous CDKN2A loss was found. Whilst limited by the 

study cohort size and treatment heterogeneity, neither Wnt or p53 pathway disruption 

was found to be correlated with survival, age at diagnosis or the presence of 

metastatic disease. Loss of chromosome 17p was assessed using the homozygous 

mapping of deletions (HOMOD) technique to identify loss of heterozygosity in 25 CNS-

PNETs. In 2 cases a segmental loss was suggested by the presence of an extended 

region of heterozygosity, which was associated with a homozygous mutation of TP53 

(located at 17p13.1) in both cases. The final common feature in medulloblastoma 

investigated was RASSF1A DNA methylation. Direct sequencing of bisulphite converted 

DNA showed that RASSF1A hypermethylation in CNS-PNETs occurred at a similarly high 

frequency (82%, 18/22) to that which has previously been observed in 

medulloblastoma (Lusher, Lindsey et al. 2002; Lindsey, Lusher et al. 2004). 

A genome-wide study by Balss et al (Balss, Meyer et al. 2008) which included 9 CNS-

PNET cases suggested that mutations in IDH1, a novel tumour suppressor gene which 
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occur frequently in glioblastomas whilst do not appear to occur in medulloblastomas, 

may be a feature in CNS-PNET. Direct sequencing in this current study discovered IDH1 

mutations in 8% (2/25) of cases. Mutant cases were found to be associated with 

disease in adults but not CNS-PNETs arising in childhood (p=0.003), suggesting that the 

tumorigenesis of CNS-PNET arising at different ages differ (Hayden, Fruhwald et al. 

2009). 

Hypermethylation of RASSF1A was identified as the most frequent molecular event 

identified in CNS-PNET and therefore the CNS-PNET DNA methylome was investigated 

in detail in chapter 5 using the Illumina Goldengate methylation array platform. A 

series of 76 tumour-specific methylation events were identified including RASSF1 

hypermethylation and HLA-DPB1 hypomethylation which in combination can be used 

to distinguish tumour from normal brain in 94% (64/68) of cases. Age-specific 

methylation patterns were also observed with aberrant methylation of TAL1, MAP3K1 

and IGFBP1 being observed in CNS-PNETs arising in older children and adults (>3 years 

old). Unsupervised hierarchical clustering approaches using the methylation data 

showed CNS-PNETs to be a heterogenous group of tumours, which are predominantly 

distinct from medulloblastomas, but exhibit some overlap with high-grade gliomas. In 

isolated cases however, co-clustering with medulloblastomas occurs associated with 

known molecular subgroups (Wnt pathway and sonic hedgehog pathway activated 

tumours). 

In summary, this project has provided support for the assertion that CNS-PNETs are a 

heterogenous group of tumours that are distinct from medulloblastomas, and has 

shown that they may possess a range of different genetic and epigenetic features that 

may differ in infant, childhood and adult disease. 
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6.2 The challenge of investigating CNS-PNET  

The prognosis for patients diagnosed with a CNS-PNET is poor. New treatments are 

urgently required to resolve this problem but currently there is a paucity of biological 

information available on which to base the development of such therapies. These new 

therapies could potentially include stratified therapies based on molecular 

classification or targeted drugs. Unfortunately, as has been encountered in this study 

and described below, the investigation of CNS-PNETs is challenged by a number of 

factors.  

Investigation of CNS-PNETs is firstly limited by their incidence. CNS-PNETs are rare 

tumours accounting for only 2-3% of all paediatric brain tumours (Bruno, Rorke et al. 

1981; Gaffney, Sloane et al. 1985; Dai, Backstrom et al. 2003) and therefore accruing 

an adequately sized cohort requires sustained national and international collaboration. 

Such an undertaking was realised in this study and the CNS-PNET cohort was 

populated with cases from a 16 year period (1992 – 2008) from multiple centres across 

the UK and overseas (see section 2.1.1). Unfortunately this means that cases included 

have not been treated uniformly, but instead have been managed using a variety 

protocols from within and outside the clinical trial setting. The variation in treatment 

approaches may be a significant confounding factor and therefore results obtained in 

this study subsequently require validation in a clinical trial cohort. 

The second challenging factor in CNS-PNET research results from changes in diagnostic 

practice and the frequent difficulties or uncertainty in confidently diagnosing this 

tumour. CNS-PNETs do not exhibit characteristic pathognomic features that permit the 

assured assignment to this disease category. On the contrary, CNS-PNETs are 

recognised to be a heterogenous group of tumours which may display a plethora of 

features attributable to their divergent differentiation, which may also be observed in 

other tumour groups and therefore creates diagnostic uncertainty (Burger 2006; Louis, 

Ohgaki et al. 2007). In the SIOP PNET3 study, for example, in 12% of cases the central 

pathological review did not confirm the tumour to be a CNS-PNET (Pizer, Weston et al. 

2006). One of the tumour categories that have been misclassified as CNS-PNETs 
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previously are ATRTs (Haberler, Laggner et al. 2006). In accordance with current 

diagnostic practice, in the current study tumours were immunohistochemically 

screened for nuclear INI1 expression and excluded if this was absent, but 

misclassification of ATRTs as CNS-PNETs is possible in historical cases that have not 

undergone a pathological review.  

Changes in disease risk stratification assignment, creates a third challenge. Over the 16 

year period from which the cases in this study were collated the requirements for 

determining metastatic disease status changed. Presently, a CSF sample is taken 2 

weeks after surgery and examined to detect the presence of malignant cells. In the 

absence of radiological evidence of metastasis, the presence of malignant cells in the 

CSF is classified as M1 disease using the modified Chang staging system (Zeltzer, Boyett 

et al. 1999) (see section 1.4.4). However, the cohort in this study contained cases 

collected prior to the routine assessment of CSF, and therefore in 68% (21/31) no 

radiological evidence of metastatic disease only could be reported (M0/1). Whilst 

conventionally in CNS-PNET the M0, M0/1 and M1 cases are analysed together as a 

non-metastatic group (Pizer, Weston et al. 2006), it has been shown in 

medulloblastoma that M1 compared with M0 disease is associated with a poorer 

outcome and should be considered high risk (Sanders, Onar et al. 2008). It is possible 

therefore that the capacity for the study to detect differences between non-metastatic 

and metastatic cases was impaired by contamination of the former group with cases 

that should have been assigned to the latter group if CSF analysis had been undertaken. 

In summary, the future of CNS-PNET research requires that consented material is 

preferably obtained from within large international clinical trials based on a specified 

treatment regimen and includes a central pathological review as part of their entry 

criteria, to advance scientific discovery and improve outcomes.   
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6.3 CNS-PNETs are a heterogenous group of tumours 

CNS-PNET are a group of aggressive tumours that may be poorly differentiated, or 

show divergent differentiation along neuronal, astrocytic and ependymal lines, and are 

accordingly defined as a heterogenous group of tumours based on these 

histopathological features (Louis, Ohgaki et al. 2007). This study has demonstrated that 

the histopathological heterogeneity observed is also reflected in their genetic and 

epigenetic composition.  

In chapters 3 and 4, a series of molecular events were shown to occur in a proportion 

of CNS-PNETs. MYCN gene amplification was found to be present in 12.5% (3/24), TP53 

mutation in 17% (4/24), aberrant Wnt pathway activation in 2/21 (9.5%), and mutation 

of IDH1 was identified in 8% (2/25) of cases. These findings suggest that a range of 

different pathways and molecular events are implicated in the tumorigenesis of 

different CNS-PNET.   

Genome-wide study of the DNA methylome in CNS-PNET (chapter 5) confirmed the 

heterogeneity of this disease.  Whereas in medulloblastoma, DNA methylation 

profiling results in 89% of tumours being assigned to one of 4 defined groups (see 

figure 5.1), unsupervised hierarchical clustering analyses of the DNA methylome in 

CNS-PNET did not reveal comparable discrete disease sub-clusters (see figure 5.7). 

Whilst CNS-PNETs were shown to have a different methylation profile to the normal 

brain, and were predominantly distinct from medulloblastomas comparison with high-

grade gliomas revealed that, even after exclusion of outlier cases, a number of CNS-

PNETs (SP14, SP58 and SP106) showed greater homology with this different tumour 

group than with other CNS-PNETs (Figure 5.20). However, the study cohort included 

only 31 CNS-PNETs and therefore it is feasible that the disease is not as heterogenous 

as this study suggests, and that distinct clusters and sub-groups do occur but that this 

study lacked sufficient power for this to be revealed. Further large-scale studies are 

therefore required to establish precisely the heterogeneity of this disease. 
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6.4 CNS-PNET genetic features vary at different ages 

A significant disparity exists between the outcomes of infants and young children 

under the age of 3 years with CNS-PNET and older children and adults. In infants and 

young children, the 3 year even free survival (EFS) is dismal at 0-19% (Duffner, 

Horowitz et al. 1993; Timmermann, Kortmann et al. 2006; Grundy, Wilne et al. 2010) 

whereas the 3 year EFS in older children is 33-54% (Yang, Nam et al. 1999; Reddy, Janss 

et al. 2000; Timmermann, Kortmann et al. 2002; Paulino, Cha et al. 2004; Fangusaro, 

Finlay et al. 2008) and indeed an EFS of 78 ± 14% has been reported in this group in 

one study (Chintagumpala, Hassall et al. 2009). Whilst, as is discussed in section 1.4.5.3, 

the desirability of delivering effective radiotherapy to infants and young children may 

be a factor in the prognostic disparity, any biological reasons for this difference have 

not yet been fully elucidated.   

It has recently been shown that CNS-PNETs arising in patients of different ages may 

possess different genetic abnormalities. Amplification of 19q13.42 was first shown in 

2009 by Pfister et al, in a 2 year old girl with a CNS-PNET (Pfister, Remke et al. 2009). 

This abnormality has subsequently been found in an additional 48 cases, occurring in 

infants and young children under the age of 6 years (median age 2 years) (Li, Lee et al. 

2009; Korshunov, Remke et al. 2010). In Chapter 3, genetic features frequently 

associated with medulloblastomas were investigated in the CNS-PNET cohort. None of 

these, including RASSF1A hypermethylation, MYCN gene amplification, p53 pathway 

defects, aberrant Wnt signalling, and chromosome 17p loss were found to be 

associated with age. However, whilst this was a comparatively large CNS-PNET study, 

the overall number of tumours investigated and those possessing an abnormality were 

often small, and therefore significant associations with age may exist, but the power of 

this study was insufficient to detect them.  

In chapter 4, a novel study investigating IDH1 mutations in CNS-PNET, found that 

mutations of IDH1 occurred exclusively in adults cases. R132H mutations were 

observed in 2 of the 5 adult cases (26 and 29 years old), and not in any of the 19 

paediatric (<16 years) cases (p=0.04, Fisher’s exact test). When these data were 



373 

 

combined with the results of a previously published report including 9 CNS-PNETs 

(Balss, Meyer et al. 2008), this association was confirmed and IDH1 mutations 

identified in 42% (5/12) of adult cases, but not in any paediatric cases (0/22)(p=0.003, 

Fisher’s exact test). This study has therefore provided further evidence to support the 

hypothesis that the molecular mechanisms underlying tumour development differ at 

different ages. It has also shown for the first time, a significant difference in CNS-PNET 

biology between adult and paediatric disease.  

Finally, the study investigating the CNS-PNET DNA methylome provided further 

evidence for age-specific features. Overall, tumours were not found to cluster based 

on age of onset (Figure 5.7), but an analysis of tumour-specific methylation events 

revealed statistically significant age-specific methylation of three genes. TAL1, MAP3K1 

and IGFBP1 were all found to be consistently hypomethylated in infants under the age 

of 3 years, but exhibited variable methylation in older patients (p=0.027, p=0.027, 

p=0.043 respectively).  

Overall, the biology of CNS-PNETs, including both genetic and epigenetic features has 

been shown to vary at different ages. Specifically, disease in infancy (< 3 years), older 

children (3-16 years) and adults (>16 years) have been shown to exhibit different 

biological features. That the biology of infant tumours differs from that in older 

children could explain in part the significant difference in clinical outcome that is 

observed between these two groups, and supports the need for developing distinct 

treatment strategies. The observation in this study that a distinction between adult 

and paediatric disease may also be determined is novel. This requires further 

investigation, but ultimately may suggest that CNS-PNETs in adults are a separate 

group of tumours that would benefit from a distinctive therapeutic strategy. 

 

6.5 Methylation profiling in CNS-PNET 

In this study, the Illumina Goldengate platform was used to assess the CNS-PNET DNA 

methylome in detail for the first time. The tumour cohort included samples derived 
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from both frozen and formalin fixed paraffin embedded (FFPE) archival material and 

data from both sources was successfully obtained. Large scale assessment of 

epigenetic diversity incorporating hundreds of genes using this platform is therefore 

feasible and, crucially, may provide information where expression or CGH approaches 

requiring high quality DNA or RNA extracted from frozen material are not possible.  

Using this approach a series of genes have been discovered not previously known to be 

implicated in CNS-PNET development (see section 5.3.6), three of which appear to be 

age-specific (TAL1, MAP3K1 and IGFBP1, see section 5.3.8.1). Similarly, this method has 

also identified two genes (RASSF1 and HLA-DPB1, see section 5.3.10) which may have 

clinical utility as markers of disease. These now all require further analysis in follow up 

studies to validate these findings and substantiate any future clinical role. 

Methylation profiling has also afforded an opportunity to examine the relationship 

between CNS-PNETs and other highly malignant brain tumours. CNS-PNETs have been 

shown to exhibit a methylation signature which, with few exceptions, is distinct from 

medulloblastomas, but more closely aligned to the HGG methylome.  Discussed in 

section 6.6, this supports the assertion that the “PNET” concept does not adequately 

reflect the underlying properties of this group of tumours. Moreover, the 

histopathological similarities between HGGs and CNS-PNET, which create significant 

diagnostic challenges for the neuropathologist (Burger 2006), may occur as the these 

two tumour groups are indeed more closely related than is traditionally recognised. 

 

6.6 PNET: A historical concept 

The classification of embryonal brain tumours has always been both complicated and 

controversial which the WHO classification system sought to rectify and produce 

clarity but the difficulties persist. The term PNET, first applied in 1973 by Hart and 

Earle and later modified by others (Becker and Hinton 1983; Rorke 1983) was used to 

co-classify aggressive embryonal tumours based on their similar histopathological 

features, suggesting a common origin, and enabled unified treatment. Unfortunately, 
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the outcomes for patients managed with the same treatment with cerebellar and non-

cerebellar disease, and in particular between what are now classified as 

medulloblastomas and CNS-PNETs (see section 1.3.3), have been shown to differ 

significantly. In the PNET3 study for example, the EFS at 5 years for patients with CNS-

PNET was only 41%, compared with 74% for those with medulloblastomas (Taylor, 

Bailey et al. 2003; Pizer, Weston et al. 2006). This clinical outcome disparity suggests 

that the biological nature of these tumours may be fundamentally different, and that 

the concept of a PNET entity that may simply arise in different parts of the brain, may 

be false.  

In chapter 3, genetic and epigenetic defects frequently observed in medulloblastoma 

were investigated in CNS-PNETs, to determine whether the differences seen in the 

clinical outcome between these tumour groups were also observed in their biology. In 

common with medulloblastomas where RASSF1A promoter hypermethylation has 

been shown to occur in 87% of cases (Lindsey, Lusher et al. 2004), RASSF1A promoter 

hypermethylation was found to be a frequent event CNS-PNET (18/22, 82%). Similarly 

MYC gene amplification which occurs in under 7% of medulloblastomas (Ryan 2009) 

occurred in a subgroup (MYCN:  3/25 (12%), MYCC: 0/25 (0%)). Both RASSF1A 

promoter hypermethylation and MYC gene amplification are however both events 

which occur in a spectrum of cancers (see sections 1.5.6.1 and 1.5.4.1 respectively), 

and therefore their discovery in CNS-PNET disease does not imply that these tumours 

are necessarily related. The results of the study of chromosome 17p loss and p53 

pathway activation in CNS-PNET on the contrary support the assertion that 

medulloblastomas and CNS-PNETs are genetically different tumours. Loss of 

chromosome 17p was observed in only 2 of the 23 CNS-PNET investigated, compared 

with 25% of medulloblastomas (Ellison, Kocat et al. 2011). Conversely, p53 nuclear 

accumulation, which occurs infrequently in medulloblastomas (Eberhart, Chaudhry et 

al. 2005; Tabori, Baskin et al. 2010), occurred significantly more frequently in CNS-

PNET (91%, 20/22, p= 0.0001 Fisher’s exact test).  

The investigation of IDH1 mutations in CNS-PNET provided further evidence to support 

this fundamental difference between CNS-PNETs and medulloblastomas. In total, in 2 
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published studies, 113 medulloblastomas have been investigated for a mutation in 

IDH1 (Balss, Meyer et al. 2008; Yan, Parsons et al. 2009) and no mutant case identified. 

In contrast, by combining the data from the current study and that reported by Balss et 

al (Balss, Meyer et al. 2008), 13.5% (5/37) of CNS-PNETs are found to harbour an IDH1 

mutation, which is statistically significantly more prevalent than in medulloblastoma 

(p=0.0007, Fisher’s exact test).  

Comparison of the DNA methylome using unsupervised clustering analyses in CNS-

PNET with other brain tumours revealed not only that CNS-PNETs were predominantly 

distinct from medulloblastomas, but that they in fact shared greater commonality with 

high-grade gliomas. This finding suggests therefore that the PNET concept is not only 

incorrect but that it is a different relationship, the relationship between CNS-PNET and 

high-grade gliomas, which requires further exploration. 

In summary, this thesis supports, through an extensive investigation and 

characterisation of the genetic and epigenetic features of these tumours, the rejection 

of the PNET hypothesis, and its place merely as a historical concept. The relevance of 

this finding is found however not only in respect to precise nomenclature and 

classification but also in the clinical management of patients with this disease. By 

determining that CNS-PNETs and medulloblastomas are different tumours and vary at 

the genetic and epigenetic levels, further support is provided for the expansion of 

disease specific research and the development of potentially divergent treatment 

strategies to advance and optimise outcome for both tumour groups. 

 

6.7 Towards an improved classification of CNS-PNETS 

Classification plays a vital and fundamental central role in both the study and clinical 

management of cancer. The WHO classification system was indeed originally 

established in 1979 to harmonize the plethora of systems and terms used to generate 

a consensus which would facilitate the study of tumours between different institutions 

internationally (Zulch 1979). The original WHO classification was based on 
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histopathological features, but now findings from additional techniques including 

immunohistochemical and molecular genetic analyses may be used to inform 

classification. Immunohistochemical lack of INI1 nuclear expression, for example, can 

be used to distinguish CNS-PNETs from ATRTs, which have an inferior prognosis and 

are treated differently, and therefore now forms part of the recommended routine 

diagnostic work up of these tumours (Haberler, Laggner et al. 2006). Sub-classification 

based on the results of genetic findings may also be used to improve outcomes by 

developing targeted or risk-adapted therapeutic approaches. In the management of 

childhood acute lymphoblastic leukaemia (ALL) for example, sub-classification based 

on genetic findings is used to identify cases that would benefit from molecular 

targeted therapies and those where a risk-adapted therapeutic approach is taken to 

improve outcome (Schrappe 2008; Harrison 2009; Moorman, Ensor et al. 2010). 

In the current 4th Edition of the WHO classification of brain tumours CNS-PNETs are a 

designated  as a group of embryonal tumours based on their histopathological features 

(Louis, Ohgaki et al. 2007). No subcategory of CNS-PNET to inform risk and treatment 

stratification currently exists, although a separate group of tumours, often classified as 

CNS-PNETs, with distinct pathological and genetic features has recently been proposed 

(see section 1.3.3). This study has identified a number of genetic and epigenetic events 

that suggest that CNS-PNETs sub-classification may be possible and could be used to 

aid in the development and delivery of improved therapeutic strategies.  

Aberrant Wnt signalling, associated with a superior prognosis in medulloblastoma, has 

been shown in this study to occur in a minority (2/22, 9%) of CNS-PNETs. Whether 

aberrant Wnt signalling in CNS-PNET similarly confers a superior outcome which may, 

as has been proposed for medulloblastoma (Pizer and Clifford 2009), direct treatment 

strategy is unknown and requires further study. Unsupervised hierarchical clustering of 

DNA methylomic array data in this study also potentially identified a further sub-group 

of CNS-PNETs with aberrant SHH signalling. SP124 and SP125 (2/31, 6%) were found to 

co-cluster with a group of medulloblastomas with aberrant SHH signalling.  This finding 

however requires further investigation including a detailed study of SHH pathway 

components and association with clinical features in larger cohorts. If validated, 
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molecular sub-classification could be adopted to direct alternative stratified therapies 

for the standard and higher risk tumours. Overall however, confirmatory studies in 

larger and, preferably, clinical trial based cohorts are now needed, to explore the 

utility of the genetic and epigenetic events discussed in determining future 

classification and treatment stratification.    

 

6.8 Development of targeted therapies for CNS-PNET 

Discussed in section 1.4.5.7, for over 50% of those who develop a CNS-PNET, this 

diagnosis is fatal, whilst in survivors the diagnosis is commonly associated with a 

syndrome of chronic morbidity attributable to the detrimental long-term effects of the 

curative treatment. New strategies are therefore urgently required in the management 

of this disease to improve survival whilst minimising treatment toxicities and late 

effects – the current cost of cure (Marder 2010). In this study, a series of biological 

pathways, genetic and epigenetic events have been shown to be involved in the 

development of CNS-PNETs. These findings not only contribute to enhance our 

understanding of the disparate biology in this disease, but may also be exploited 

clinically to aid in the clinical management and improve the prognosis for patients with 

CNS-PNETs. 

Comparison with genetic features associated with medulloblastoma development 

identified a number of findings that may benefit CNS-PNET management in the future. 

Firstly, 91% of CNS-PNETs in this study were shown to exhibit nuclear accumulation of 

p53. Mutant p53 protein is known to confer resistance to vincristine and cisplatin 

(Hamada, Fujiwara et al. 1996; Shelling 1997; Giannakakou, Sackett et al. 2000), and as 

both of these drugs are currently used in the management of this disease, aberrant 

p53 may be a contributing factor in the dismal prognosis. In the future however, 

disruption of the p53 pathway may be exploited positively with the introduction of one 

of the p53 pathway targeted new agents that are currently under development (Lu and 

El-Deiry 2009). Disruption of the canonical Wnt signalling pathway as identified with 
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nuclear accumulation of β-catenin was determined in 2/22 (9%) primary CNS-PNET 

cases. In medulloblastoma such disruption is associated with a favourable prognostic 

phenotype and has directed the development of a stratified therapeutic strategy 

(Ellison, Onilude et al. 2005; Gajjar, Chintagumpala et al. 2006; Fattet, Haberler et al. 

2009; Ellison, Kocat et al. 2011). Small molecule inhibitors such as OSU03012, which 

targets Wnt signalling (Baryawno, Sveinbjornsson et al. 2010), may also therefore 

provide a therapeutic option in CNS-PNET although further investigation of the role of 

Wnt signalling in this subgroup of CNS-PNETs is required. 

Clinical opportunities may also be derived from studies of CNS-PNETs with other 

tumour groups. IDH1 mutations do not appear to occur in medulloblastomas, but 

occur in a third of gliomas (307/917) and associated with an improved survival 

(Parsons, Jones et al. 2008; Bleeker, Lamba et al. 2009; Nobusawa, Watanabe et al. 

2009; Watanabe, Nobusawa et al. 2009; Yan, Parsons et al. 2009). The investigation of 

IDH1 mutations in CNS-PNET in this study (chapter 4) identified IDH1 mutations as a 

potentially novel therapeutic target in adult disease. Agents currently under 

development which inhibit mIDH1 expression or downstream effectors (Semenza 2003; 

Sonoda and Tominaga 2010) may therefore also have a role in CNS-PNET management 

in the treatment of a subgroup with this genetic feature. 

Methylation profiling in CNS-PNET (chapter 5) has yielded a number of findings that 

may have clinical utility. Firstly a number of tumour-specific events were identified 

that, following successful validation, could be used in clinical diagnostic practice. The 

combination of aberrant methylation of RASSF1 and HLA-DPB1 was shown to be able 

to discern normal brain from CNS-PNET in 94% of cases (64/68). In a recent study 

methylation markers were investigated in gliomas and identified in both CSF and 

serum (Liu, Cheng et al. 2010). If in CNS-PNET it is also possible to detect tumour DNA 

in CSF or serum then the presence of aberrantly methylated RASSF1 and HLA-DPB1 

DNA could potentially be used to monitor treatment response or identify cases of 

relapse. In breast cancer, for example, the persistence or resolution of RASSF1A 

methylation in blood sera following treatment with Tamoxifen® indicates treatment 

resistance or a good response respectively (Fiegl, Millinger et al. 2005). Finally, this 
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study also genes that may be associated with survival in CNS-PNET (see section 5.3.9). 

Methylation markers have been shown to predict survival in a range of cancers 

including brain tumours (Silva, Dominguez et al. 1999; Palmisano, Divine et al. 2000; 

Hoque, Begum et al. 2006; Belinsky, Schiller et al. 2008; Levenson 2010; Liu, Cheng et 

al. 2010; Wen, Fu et al. 2011; Yamamoto, Nakayama et al. 2011) and therefore the 

potential for methylation markers to determine prognosis in CNS-PNET needs further 

evaluation.  

Further work is also required to determine the role the tumour-specific genes 

identified in this study may have in CNS-PNET tumorigenesis. Functional studies 

initially using CNS-PNET cell lines including PFSK and CHP707m (see section 2.12) in in-

vitro work could be used to study the effect aberrant methylation has on RNA 

expression and tumour growth. Candidate genes that exhibit in-vitro a demonstrable 

tumourigenic effect may then be studied in CNS-PNET murine models (Tong, Ohgaki et 

al. 2003). As has been discussed previously (see section 5.4.9), this approach has led 

the development of a number of early phase clinical trials in other cancers in which a 

range of agents that affect DNA methylation are being studied, and could provide 

novel therapeutic opportunities in CNS-PNET management.  

 

6.9 Summary 

To date, research investigating CNS-PNET biology has been limited. This study is one of 

the largest undertaken in this disease and has provided a series of critical insights into 

their pathogenesis. In particular, this study has demonstrated that CNS-PNETs are a 

heterogenous group of tumours that differ from medulloblastomas at the genetic level. 

In a minority of cases however, processes involved in the development of 

medulloblastomas are also implicated in CNS-PNET disease including aberrant Wnt 

signalling and MYCN amplification. The future development of targeted therapies for 

medulloblastoma molecular subgroups may therefore have clinical applicability in the 

management of individual cases of CNS-PNET. In contrast, dysregulation of the p53 
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pathways is a common finding in CNS-PNET which may enable advancements in the 

therapeutic targeting of this pathway to play a significant role in this disease. Whilst 

classified separately, a close relationship with high grade gliomas was however also 

observed in a proportion of cases. Research into, and clinical advancements in the 

management of, high grade gliomas may therefore have applicability in a subgroup of 

CNS-PNETs. Finally, this work has identified a number of developmental pathways, 

genetic aberrations and epigenetic events that are associated with CNS-PNET 

development. The associations between the identified findings and clinical features, 

and their functional roles in disease development, warrant further investigation to 

establish their translational capacity in aiding future classification and treatment 

advancements.  
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All buffers were prepared according to (Sambrook and Russell 2001), and were stored 

at room temperature, unless otherwise stated. 

8.1.1 10x TBE: 

Tris base    108g  (Sigma-Aldrich) 

Boric acid    55g  (Sigma-Aldrich) 

EDTA     9.3g  (Sigma-Aldrich) 

Made up to 1000ml with deionised water 

 

8.1.2 1x TE: 

1M Tris-HCl (pH8.0)  10ml  (Sigma-Aldrich) 

0.25M EDTA   400µl  (Sigma-Aldrich) 

Make up to 1000ml with deionised water 

 

8.1.3 Phosphate Buffered Saline (PBS): 

NaCl     8g  (VWR) 

KCl     0.2g  (Sigma-Aldrich) 

Na2HPO4    1.44g  (Sigma-Aldrich) 

KH2PO4    0.24g  (Sigma-Aldrich) 

Make up to 800ml with deionised water and adjust pH to 7.4 using hydrochloric acid 

Make up to final volume of 1000ml with deionised water and sterilise by autoclaving 

 

8.1.4 0.01M Citrate Buffer: 

To make 10 litres: 

Citric Acid monohydrate 21g  (VWR) 

Distilled water   10,000ml 

Final solution adjusted to pH6.0 by adding 2M sodium hydrochloride solution 

8.1.5 Tris Buffered Saline (TBS) 0.05M: 

To make 5000ml: 
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Trizma® Base   6.95g  (Sigma-Aldrich) 

Trizma®Hydrochloride  30.3g  (Sigma-Aldrich) 

NaCl     45.0g  (VWR) 

Distilled water   5000ml 

Final solution adjusted with 2M sodium hydrochloride solution to pH7.6 

 

8.1.6 Sodium Hydrochloride 2M: 

Sodium Hydrochloride  32g  (Sigma-Aldrich) 

Distilled water   400ml 

 

8.1.7 Dako High pH9.8 Target Retrieval buffer: 

To make 1000ml: 

High pH Target retrieval 100ml (Dako) 

Distilled Water   900ml 

 

8.1.8 Scott’s Water 

Sodium bicarbonate  7g  (Sigma-Aldrich) 

Magnesium sulphate  40g  (Sigma-Aldrich) 

Thymol crystals   3  (Sigma-Aldrich) 

Water    2000ml 

 

8.1.9 Acid/Alcohol immunohistochemistry solution 

100% Ethanol   1400ml 

Hydrochloric acid   20ml  (Sigma-Aldrich) 

Deionised water   600ml 

 

8.1.10 10x TBS-Tween: 

Sodium Chloride   45g  (Sigma-Aldrich) 
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Tris     30g  (Becton Dickinson) 

Made up to 500ml with deionised water  

Adjust to pH7.5 using hydrochloric acid  (Sigma-Aldrich) 

Tween-20    2.5ml 

Made up to final volume of 5000ml with deionised water 

 

8.1.11 Harris Haematoxylin solution 

Potassium alum   100g  (Sigma-Aldrich) 

Haematoxylin   5g  (Sigma-Aldrich) 

Mercuric oxide   2.5g  (Sigma-Aldrich) 

Acetic acid    40ml  (Sigma-Aldrich) 

100% Ethanol   50ml 

Water    1000ml 

 

The potassium alum is first dissolved in water by gently warming and stirring. 

Haematoxylin is dissolved in 100% ethanol and then added to the potassium alum 

solution which is boiled and removed from the heat before the mecuric acid is added. 

Finally once cooled acetic acid is added and the solution filtered to remove any 

deposits.  

 

 

8.1.12 FISH wash buffer (SSCTM): 

Skimmed milk powder  1g   

Tween-20    250µl  (Sigma-Aldrich) 

4xSSC    500ml (Becton Dickinson) 
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Appendix 2 

“R” programme scripts 

 

 

 

7.1 Appendix 2: “R” programme scripts 
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8.2  

8.2.1 To generate a table to include a subset of probes 

setwd("T:/Data/Raw Data/Array/subfolder") 
#### Read in two group files. Obviously can subset to define separate groups 
probes<-read.table("filename_a.csv",sep=",",header=TRUE,row.names=1) 
probes2<-as.vector(probes[,1]) 
data<-read.table("filename_b.csv",header=TRUE,row.name=1, as.is =TRUE,sep=",") 
group1<-data[rownames(data) %in% probes2,] 
write.table(group1, file="filename_c.csv", sep=",") 
dev.off() 
 

8.2.2 Principal component analysis script 

# set working directory 
setwd("T:/Data/Raw Data/Array/subfolder") 
# load library for displaying 3D graphs 
library(rgl) 
# Read in data, using arguments header=TRUE - sets first row as column titles, 
# row.names=1 sets row names as first column 
meth<-read.table("filename.csv",sep=",",header=TRUE,row.names=1) 
meth.pca<-prcomp(t(meth)) 
# Label sample types with different colours eg: MB -red, C Pineos-blue, SPNETs-green, 
control, black,  
colour<-c(rep("black",37),rep("green",31),rep("blue",4),rep("red",100)) 
# plot principal component loadings with plot3d 
plot3d(meth.pca$x[,1:3], type="s",size=1.0,col=colour) 
#now plot PCA again, but removing selected samples eg the controls 
meth1<-meth[,-c(1:37)] 
meth1.pca<-prcomp(t(meth1)) 
dim(meth1) 
colour1<-colour[-c(1:37)] 
plot3d(meth1.pca$x[,1:3], type="s",size=1.0,col=colour1) 
 

8.2.3 Bootstrapped hierarchical clustering and dendrograms 

setwd("T:/Data/Raw Data/Array/subfolder") 
library(pvclust) 
library(gplots) 
meth<-read.table("filename.csv",sep=",",header=TRUE,row.names=1) 
# Store output in pdf 
pdf("pdf_filename.pdf",height=11.7,width=16.5) 
# Carry out bootstrapped hierarchical clustering 
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# Make cluster for parallel clustering 
cl<-makeCluster(4) 
clust1<-parPvclust(cl,meth,method.hclust="average",method.dist="cor",nboot=10000) 
# Plot with 'flattened' projection 
plot(clust1, print.pv=TRUE, print.num = FALSE, hang=-
1,cex.pv=0.5,cex=0.7,col.pv=c("red","#0000ff00","#0000ff00")) 
# Plot with height representing where cluster originates 
plot(clust1, print.pv=TRUE, print.num = FALSE, cex=0.7, 
col.pv=c("red","#0000ff00","#0000ff00")) 
# Plot without (red) probability numbers 
plot(clust1, print.pv=TRUE, print.num = FALSE, hang=-
1,cex.pv=0.5,cex=0.7,col.pv=c("#0000ff00","#0000ff00","#0000ff00")) 
plot(clust1, print.pv=TRUE, print.num = 
FALSE,cex.pv=0.5,cex=0.7,col.pv=c("#0000ff00","#0000ff00","#0000ff00")) 
dev.off() 
 

8.2.4 Heatmap of selected probes 

setwd("T:/Data/Raw Data/Array/Array Summer 09") 
# Probe list to be selected 
probes<-read.table("filename_a.csv",sep=",",header=TRUE,row.names=1) 
probes<-as.vector(probes[,1]) 
probes 
# Load data file containing from which only selected probes will be used in heatmap 
methData<-read.table("filename_b.csv",sep=",",header=TRUE,row.names=1) 
methData.edit<-methData[rownames(methData) %in% probes,] 
odd <- function(x) x!=as.integer(x/2)*2 
even <- function(x) x==as.integer(x/2)*2  
# To generate heatmap red/green colour profile using colorpanal function 
colorpanel <- function(n,low='green',mid='black',high='red') 
   { 
     if(even(n)) warning("n is even: colors panel will not be symmetric") 
     # convert to rgb 
     low <- col2rgb(low) 
     mid <- col2rgb(mid) 
     high <- col2rgb(high) 
     # determine length of each component 
     lower <- floor(n/2) 
     upper <- n - lower 
     red  <- c( 
               seq(low[1,1], mid [1,1], length=lower), 
               seq(mid[1,1], high[1,1], length=upper) 
               )/255 
     green <- c( 
                seq(low[3,1], mid [3,1], length=lower), 



426 

 

                seq(mid[3,1], high[3,1], length=upper) 
                )/255 
     blue <- c( 
              seq(low[2,1], mid [2,1], length=lower), 
               seq(mid[2,1], high[2,1], length=upper) 
               )/255 
     rgb(red,blue,green) 
   } 
# Generate green-black-red colourscale 
greenred <- function(n) colorpanel(n, 'green', 'black', 'red' ) 
 
#draw heat map 
#second code alters the label font size 
heatmap(as.matrix(methData.edit),col=greenred(255),scale="none",Colv=TRUE,Rowv=
TRUE) 
heatmap(as.matrix(methData.edit),col=greenred(255),scale="none",Colv=TRUE,Rowv=
TRUE,cexCol=0.3) 
 

8.2.5 Comparison of 2 groups of data using Mann-Whitney test 

and correction for multiple tests 

setwd("T:/Data/Raw Data/Array/subfolder") 
library(multtest) 
#### Read in two group files.  
group1<-read.table("filename_a.csv",header=TRUE,row.name=1, as.is=TRUE,sep=",") 
group2<-read.table("filename_b.csv",header=TRUE,row.name=1, as.is =TRUE,sep=",") 
#### Transpose data tables to get samples as rows and probes as columns 
tg1<-t(group1) 
tg2<-t(group2) 
#### Get row numbers 
rowNo<-nrow(group1) 
#### Get probe names from first data set 
probeName<-rownames(group1) 
#### Create matrix to store results 
result<-matrix(nrow=nrow(group1), ncol=4) 
i<-1 
#### Carry out unpaired Mann-Whitney test 
for (i in 1: rowNo) 
  { 
 test<-wilcox.test(as.numeric(tg1[,i]), as.numeric(tg2[,i]), paired = FALSE) 
 result[i,1] <- probeName[i] 
 result[i,2] <- test$p.value 
 result[i,3] <- test$statistic 
 i<-i+1 
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 } 
write.table(result, file="filename.csv", sep=",") 
### Correct for multi-testing (Bonferroni and Benjamini-Hochberg FDR) 
procs<-c("Bonferroni","BH") 
### Get p values from Mann-Whitney 
rawp<-as.numeric(result[,2]) 
 
### Original data has probes with measurements of zero for all groups. This will cause 
NaNs when carrying out test. Need to replace NaN with 1(not sig) so the script does 
not fail. 
rawp[is.nan(rawp)]<-1 
#### Carry out multiple hypothesis testing 
res2<-mt.rawp2adjp(rawp,procs) 
### Sort res2 so that probe alphabetical order is maintained 
res3<-res2$adjp[order(res2$index),] 
### add in abs delta beta 
mean<-matrix(nrow=nrow(group1),ncol=3) 
mean[,1]<-rowMeans(group1) 
mean[,2]<-rowMeans(group2) 
mean[,3]<-abs(mean[,1]-mean[,2]) 
### Now write to final table 
write.table(cbind(probeName,res3,mean), file="age_034_MW_with_fdr.csv", sep=",", 
col.names=c("probeName","rawp","Bonferroni","BH","grp1 beta","grp2 beta","abs 
delta beta")) 
 

8.2.6 Classifier probe selection 

setwd("T:/Data/Raw Data/Array/subfolder") 
library(klaR) 
setwd("T:/Data/Raw Data/Array/subfolder") 
data<-read.csv("filename.csv",header=TRUE,row.names=1) 
probes<-read.table("test1.csv",sep=",",header=TRUE,row.names=1) 
probes2<-as.vector(probes[,1]) 
data<-data[rownames(data) %in% probes2,] 
data<-t(data) 
case<-ifelse(substr(row.names(data),start=1,stop=1)=="c",1,2) 
wpval<-matrix(data=NA,nrow=dim(data)[2],ncol=2) 
wpval[,1]<-apply(data,2, function(x) wilcox.test(x~case,exact=FALSE)$p.value) 
plimit<-0.05 
sum(wpval[,1]<plimit) 
nprobes<-12 
d3<-data[,order(wpval[,1],decreasing=FALSE)[1:nprobes]]   
set.seed(1234) 
pdf("pdf_filename.pdf",height=11.7,width=16.5) 
#1st 
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s3<-stepclass(d3,case,"qda",direction="both",improvement = 0.0005) 
list(s3$model$name) 
l1<-list(s3$model$name) 
pairs(d3[,s3$model$nr],pch=21,bg=c("red", "green3")[unclass(case)]) 
partimat(as.factor(case)~d3[,s3$model$nr],method="qda") 
#Run  last 5 lines of code 10 times, change “l1” in line 3: to “l2” – “l10” in successive 
runs 
dev.off() 
 

8.2.7 Survival analysis 

setwd("T:/Data/Raw Data/Array/subfolder") 
library(survival) 
library(multtest) 
 
## Read in table 
data<-read.table("filename.csv",sep=",",header=T,row.names=1) 
data <- t(data) 
data<-as.data.frame(data) 
###  To plot Kaplan Meier curves 
pval<-c() 
# If 76 probes under investigation 
for(i in 1:76) 
 { 
 KM <- survdiff(Surv(Survival,Status) ~ data[,i+2], data=data) 
 temp <- 1-pchisq(KM$chisq,df=1) 
 pval<-c(pval,temp) 
 } 
names(pval) <- colnames(data)[-c(1:2)] 
names(pval)[pval<0.05] 
data2<-cbind(data[,1:2],data[,colnames(data) %in% names(pval)[pval<0.05]]) 
# Make and store plots for the most significant probes 
pdf("KM_sig_Plots.pdf") 
# For the top 9 significant probes 
for (i in 1:9) 
 { 
 plot(main=colnames(data2)[i+2], lty=1:2, xlab="Months", 
ylab="Proportion",survfit(Surv(Survival,Status) ~ data2[,i+2], data=data2)) 
 legend(bty="n","bottomright",lty=1:2,c("Normally methylated","Aberrantly 
methylated")) 
 KM <- survdiff(Surv(Survival,Status) ~ data2[,i+2], data=data2) 
 temp <- 1-pchisq(KM$chisq,df=1) 
 temp <- round(temp,4) 
 temp <- paste("p =",temp) 
 legend("topright",bty="n",temp) 
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 } 
procs<-"BH" 
pvals_corrected <- mt.rawp2adjp(pval,procs) # none significant 
pval_order <- pval[order(pval)] 
rownames(pvals_corrected$adjp) <- names(pval_order) 
write.table(pvals_corrected$adjp,file="adjusted_logrank_pval.csv",sep=",") 
 

8.2.8 Survival univariate Cox model 

setwd("T:/Data/Raw Data/Array/subfolder") 
library(survival) 
## read in data 
cox <- 
read.table("km_surv_raw_combsignifprobe_apr2011.csv",sep=",",header=T,row.name
s=1) 
cox<-t(cox) 
# Functions 
tableWrite<-function(results, x, columnNames) 
{ 
temp<-paste(x,".csv") 
write.table(results,file=temp,sep=",",col.names=columnNames) 
} 
coxAnalyseUnivariateEFS<-function(methData, filename) 
 { 
 colNumber<-dim(methData)[[2]] 
 i<-1 
 results<-matrix(nrow=(colNumber-2),ncol=3) 
 probeNames<-colnames(methData)[3:colNumber] 
 pvals<-vector() 
 while(i<(colNumber-1)) 
  { 
  try(temp<-coxph(Surv(methData[,2],methData[,1]) 
   ~methData[,i+2]),TRUE) 
  pval<-summary(temp)$coefficients[1,5] 
  pvals[i]<-pval 
 
  results[i,1]<-probeNames[i] 
  i<-i+1 
  } 
 pvals2<-mt.rawp2adjp(pvals,proc="BH") 
 pvals2<-pvals2$adjp[order(pvals2$index),] 
 results[,2:3]<-pvals2 
 tableWrite(results, filename, c("ProbeID","Raw Probe p","BH Probe p")) 
 } 
coxAnalyseUnivariateEFS(cox,"univariateCox") 
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8.2.9 Multivariate analysis 

setwd("T:/Data/Raw Data/Array/subfolder") 
library(multtest) 
library(survival) 
data<-read.table("filename.csv",sep=",",header=T,row.names=1) 
LR_Fn2<- 
function(data,baseVar,covariates){ 
data<-as.data.frame(data) 
 results<-vector(length=length(covariates)) 
names(results) <- colnames(data)[covariates] 
# For 9 most significant probes found on univariate analysis 
i<-1 
while (i <=length(covariates)) 
{ 
 if(length(baseVar)==1){ 
 base <- coxph(Surv(EFS_Time,EFS_Status)~data[,baseVar],data=data) 
lr1<- -2*base$loglik[2] 
 extend<-coxph(Surv(EFS_Time,EFS_Status)~ data[,baseVar] + 
data[,covariates[i]],data=data) 
  lr2<- -2*extend$loglik[2] 
} else if(length(baseVar)==2) { 
base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + 
data[,baseVar[2]],data=data) 
lr1<- -2*base$loglik[2] 
extend<-coxph(Surv(EFS_Time,EFS_Status)~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,covariates[i]],data=data) 
 lr2<- -2*extend$loglik[2] 
} else if(length(baseVar)==3) { 
base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] ,data=data) 
lr1<- -2*base$loglik[2] 
extend<-coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,covariates[i]],data=data) 
 lr2<- -2*extend$loglik[2] 
} else if(length(baseVar)==4) { 
base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] +  data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] ,data=data) 
lr1<- -2*base$loglik[2] 
extend<-coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,covariates[i]],data=data) 
lr2<- -2*extend$loglik[2] 
} else if(length(baseVar)==5) { 
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base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]],data=data) 
 lr1<- -2*base$loglik[2] 
extend<-coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + 
data[,covariates[i]],data=data) 
lr2<- -2*extend$loglik[2] 
} else if(length(baseVar)==6) { 
base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + 
data[,baseVar[6]],data=data) 
 lr1<- -2*base$loglik[2] 
extend<-coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + data[,baseVar[6]] + 
data[,covariates[i]],data=data) 
lr2<- -2*extend$loglik[2] 
 } else if(length(baseVar)==7) { 
  
base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + 
data[,baseVar[6]]+data[,baseVar[7]],data=data) 
 lr1<- -2*base$loglik[2] 
 extend<-coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + data[,baseVar[6]] + 
data[,baseVar[7]] + data[,covariates[i]],data=data) 
lr2<- -2*extend$loglik[2] 
 } else if(length(baseVar)==8) { 
 base <- coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + 
data[,baseVar[6]]+data[,baseVar[7]] + data[,baseVar[8]],data=data) 
 lr1<- -2*base$loglik[2] 
 extend<-coxph(Surv(EFS_Time,EFS_Status) ~ data[,baseVar[1]] + data[,baseVar[2]] + 
data[,baseVar[3]] + data[,baseVar[4]] + data[,baseVar[5]] + data[,baseVar[6]] + 
data[,baseVar[7]] + data[,baseVar[8]] + data[,covariates[i]],data=data) 
 lr2<- -2*extend$loglik[2] 
} 
results[i] <- pchisq(q=lr1-lr2, df=1, lower.tail = FALSE)  
print(paste("i",i,"p val",results[i],covariates[i])) 
 i<-i+1 
 } 
results 
 } 
data<-read.table("filename.csv",sep=",",header=T,row.names=1) 
data <- t(data) 
colnames(data)[1:2] <-c("EFS_Status","EFS_Time") 
colnames(data) 
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rownames(data) 
# Include  most significant probe sequentially in model 
extend_LR<-LR_Fn2(data,baseVar=c(11), covariates=c(5,6,7,8,9,10,12,13,14)) 
extend_LR[order(extend_LR)] 
extend_LR<-LR_Fn2(data,baseVar=c(11,14), covariates=c(5,6,7,8,9,10,12,13)) 
extend_LR[order(extend_LR)] 
extend_LR<-LR_Fn2(data,baseVar=c(11,14,6), covariates=c(5,7,8,9,10,12,13)) 
extend_LR[order(extend_LR)] 
extend_LR<-LR_Fn2(data,baseVar=c(11,14,6,12), covariates=c(5,7,8,9,10,13)) 
extend_LR[order(extend_LR)] 
extend_LR<-LR_Fn2(data,baseVar=c(11,14,6,12,13), covariates=c(5,7,8,9,10)) 
extend_LR[order(extend_LR)] 
data<-as.data.frame(data) 
finalModel <- coxph(Surv(EFS_Time,EFS_Status) ~ SIN3B_P514_R + WEE1_P924_R + 
ITK_P114_F + SLC6A8_P409_F 
+ TRIM29_P135_F,data=data);summary(finalModel) 
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Appendix 3 

CNS-PNET methylation study 

supplementary data  

 

 

Appendix 3: CNS-PNET methylation study 
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Figure 8.1. Bootstrapped hierarchical clustering dendrogram of the methylation 
profiles of CNS-PNET and normal brain samples. (a) Clustering using variantly 
methylated probes, and (b) clustering excluding the chromosome X probes. Samples: 
SPx, CNS-PNET; Cbx, normal brain.  

a)

b)
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Figure 8.2. Bootstrapped hierarchical clustering dendrogram of the methylation 
profiles of CNS-PNET and pineoblastoma tumours. (a) Clustering using variantly 
methylated probes, and (b) clustering excluding the chromosome X probes. Samples: 
SPx, CNS-PNET; PB, pineoblastoma 

 

a)

b)
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Figure 8.3. Bootstrapped hierarchical clustering dendrogram of the methylation 
profiles of CNS-PNET, medulloblastomas and normal brain samples. (a) Clustering 
using variantly methylated probes, and (b) clustering excluding the chromosome X 
probes. Samples: SP*, CNS-PNET; Cb*, normal brain; RJG*, NMB* or X*, 
medulloblastoma. 

 

a)

b)
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Figure 8.4. Bootstrapped hierarchical clustering dendrogram of the methylation 
profiles of CNS-PNET, high grade gliomas and normal brain samples. (a) Clustering 
using variantly methylated probes, and (b) clustering excluding the chromosome X 
probes. Samples: SPx, CNS-PNET; Cbx, normal brain; HGG*, high grade glioma.  

 

a)

b)
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