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Abstract 
 

 

As the human population increases in parallel with an increase in the standard of 

living, the world energy demand also continually grows every year. Fossil fuels 

are the major components contributing to this energy supply. Natural gas, one of 

the fossil fuels, has shown promising growth due to it price and lower pollutant 

emissions compared to other fossil fuels. 

 

One option for transporting natural gas is the use of Liquefied Natural Gas (LNG) 

carriers. The LNG carrier is one of the most expensive, complex and potentially 

hazardous cargo carriers that are operating across the world’s oceans due to its 

cargo, thus proven components are required to build this type of ship.  

 

There are seven main components involved in constructing an LNG carrier and 

they are manufactured by a range of different companies. This situation has 

created a competitive environment for this industry; however it has also 

introduced a new challenge to the shipbuilder, engineer and ship-owner in terms 

of selecting the right components. For a new ship design, there would typically be 

an incremental change in one or more technology elements from a base design 

and over time this may result in a less than optimum design. 

 

This thesis therefore aims to develop a holistic methodology that can be 

employed in order to help the ship-owner in particular to select the right 

combination components for an LNG carrier to rationalise the fleet size, minimise 

overall costs of construction and operation, and control the total mass of pollutant 

emission products in preliminary design stage. 

 

This methodology is based on the mutual symbiosis between the tools used: 

namely a comprehensive ship system simulation method, an artificial neural 

network (ANN) evaluation process and an integrated ANN based multi-objective 

optimisation process. It is a comprehensive methodology that can be applied to 

all types of ships, although in this study, it focuses on LNG carriers. 
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1. Introduction 

 

1.1. Background of the Study 

 

Ships are the oldest type of mechanical transportation on earth. They date back 

to 4000 BC when ancient Egyptians were using reeds to build sailing boats in 

order to cross the river Nile. Since that time, the development of ships has 

expanded from its initial use as a mere form of personal transport to its present 

use as a principal mode of moving cargo and passengers around the world. The 

first known activity of sea trading was developed around 3000 BC between 

Mesopotamia, Bahrain and the Indus River. Oil and dates were traded for copper 

and ivory (Stopford, 2009). 

 

As time passed, the development of the vessel was changed from the 

construction of wooden ships to ships built from various materials such as steel, 

aluminium and fibreglass. Interestingly, the general method of their overall design 

has remained largely unchanged.  A new ship is often designed by mimicking a 

previous vessel which is usually a full scale ship. This is an ‘evolutionary’ 

approach to design. Thus this approach cannot be adapted to other types of 

ships because the use of copying in the design process is only for arrangements 

that are similar to the model ship. In addition this method does not allow for 

evaluations in, for example, total ship cost to be performed. By contrast, the 

modern approach focuses more on capital and operational costs in maritime 

economics. Thus it takes into account the market demand, emergence of new 

technologies in the components and alternative design methods in order to 

reduce the total costs (Buxton, 1976). For a new ship design, there would 

typically be an incremental change in one or more technology elements from a 

base design and over time this may result in a less than optimum design. 

 

Considering a scenario where a ship-owner requests a tender for a new ship from 

a shipbuilder, frequently the shipbuilder will use existing data from their recent 

experience and match them, with some manipulation, to the new enquiry in order 
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to produce the new design and estimated cost. If the tender is accepted, a 

contract between the ship builder and ship owner is put in place and a fully 

detailed ship design will then be worked up. It may seem that the ship design 

process is simple, however in practice it is a complex task and the best way to 

understand the initial stages of the ship design process is through the so-called 

‘Ship Design Spiral’. 

 

The ship design spiral is actually the same as the general ship design diagram 

model however it reflects the iterative design adjustment process of progressive 

refinement. This is a widely accepted, systematic, progressive approach model 

which was introduced by Evans in 1959 (Evan, 1959). The sequence and 

decision making process to select basic components for the design process can 

be achieved over a period of time (over some iterations). As the process 

progresses, it will increase the details in each pass around the spiral until they 

converge to the required solution and numeric values. Another similar more 

refined spiral was introduced by Buxton (1976) but this time, it incorporated 

economic issues. Hence, the ship design spiral is not only focussed on 

systematic explanation of the theoretical process of ship design development, but 

it also can be used practically as a tool in the industry. Figure 1-1 illustrates 

Buxton’s ship design spiral. 

 

Source: Buxton,1976 
Figure 1-1: Buxton’s Ship Design Spiral 
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Generally, the ship design spiral approach is a point-based design because the 

results produced only lead to a single point, a single configuration, in the design 

space. Parsons (2003) has pointed out that the main disadvantage of this 

approach is that it fails to produce a global optimal solution, i.e., the best 

economic combination of components, and thus cannot guarantee the best 

solution. For example, if the ship-owner has decided to buy a certain type of 

engine, other parameters and components have to be compromised in order to 

produce the optimal combination of components in order to achieve the given 

targets. Alternative approaches to ship design which manage the global optimal 

solution should be considered and one such approach has been proposed in this 

study.  

 

By its nature, ship design is complex due to the high degree of interaction among 

the many disciplines (Papanikolaou, 2009). In principle, the ship design 

procedure may be classified into two main phases; detailed and preliminary 

designs. The detailed design phase is referred to as producing the selected 

principal design features of the ship. The formulation and calculations are 

established and ready to use.   

 

The Preliminary design phase is referred to as the decision making process at 

the early stage (the stage of the ship-owner and shipyard discussing a possible 

contract). This category has often been overlooked, but it is actually the critical 

stage for the ship-owner to make major decisions on the dimensions and 

components which should be selected. Selecting the most economical design 

components does not necessarily produce the best results for given targets, 

however gaining a holistic understanding of the engineering economics is far 

more important in order to achieve the objective functions. In order to appreciate 

the decision making technique for ship design, it is very useful to understand its 

background. 
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1.2. Decision Making: Background 

 

In the real world, everyone is required to make decisions, whether they realise it 

or not and whether large or small, at any given time and location. In most cases, 

the aims of these decisions are either to minimise effort or cost or to maximise 

the desired gain or profit. This process can occur by trial and error or by adopting 

a more systematic approach. In a systematic, clearly thought-out approach, the 

effort required or the gain desired is a functional relationship (x), of a set of 

variables. The variables may be separated into independent and dependent 

variables. Independent variables, sometimes termed decision variables, are 

variables over which one has some degree of control e.g. length of the 

perpendicular and speed, whereas the dependent variables or parameters are 

the results of the independent variables being manipulated e.g., operational costs 

and amount of boil-off gas produced. 

 

In reality, there is no single method that claims that it can solve all types of 

decision making problems perfectly. As a result, many decision making methods 

have been developed to solve specific groups of different problems, as illustrated 

in Figure 1-2. According to Bertram (2003), the actual method used in addressing 

the decision making process can be classified as being one of two approaches, 

these are the Direct Search and the Steepness (Gradient based) approaches. In 

the Direct Search Approach, solutions are created by varying the parameters 

either systematically or randomly. The best results are taken as being the 

estimated optimum for that particular problem. However, the major problem with 

this approach occurs when the number of variables increases, and so also does 

the computer time required producing the solutions. The alternative is the 

Steepness Approach; in which solutions are generated based on information from 

the specified functional relationships. When the derivative approaches zero, the 

estimated optimum solution for the problem is considered to have been found. 

This method is more efficient than the direct search; hence most ship design 

problems have been undertaken using this approach.  
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                 Source: Roa, 1996 

Figure 1-2: Decision Making Techniques 
 

The decision making process can be defined as the act of finding the best 

solution, where ‘best’ is defined by the analyst, for any problem from a set of 

choices within a given set of constraints (Bertram, 2003). A constraint is a 

restriction or limitation or boundary defined for the problem variables to ensure 

that the solutions that are obtained are technically sound and physically or 

economically feasible. The constraints represent the functional relationship 

between the independent and dependent variables satisfying physical restrictions 

and practical or resource limitations. Any consideration of the constraints requires 

the design to remain in static or dynamic equilibrium. In this study, the constraints 

are formulated in static equilibrium to satisfy the physical and resource 

limitations; including regulations from international law and classification society 

restrictions. There are no special formulae or methods to formulate a constraint in 

all problems; hence the researcher must have a full understanding the problem 

that they are dealing with. As a result, the investigation of the decision making 

process will focus within reasonable limits under the appropriate constraints.  

 

Generally, constraints can be sub-divided into two types: Behavioural or 

Functional, and Geometric or Side Constraints (Rao, 1996). Behavioural 

constraints refer to the behaviour of the system’s performance, whereas side 

constraints represent the physical limitations set for the problem. According to 

Deb (2005), each of these constraints can further be classified into two broad 

types: equality and inequality types. An equality constraint is a functional 

relationship matching the exact resource value. The opposite of this function is an 

inequality type.  
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The act of finding the best solution also can be referred to as the objective 

function or the target to be achieved for any particular problem. The common 

engineering objective functions involve the minimisation of operational and capital 

costs, the minimisation of the weight of a component, or in the maximisation of 

annual return (profit). Most objective functions are driven by the nature of the 

specific problem (Bertram, 2003). Thus, for most engineering problems, the 

selection of objective functions is seen as being fairly straightforward. However 

there are cases where the chosen criteria conflict with each other. Therefore, it is 

crucial to select or formulate the right objective function and the success of any 

decision making technique is clearly dependent on it. 

 

In other situations where multiple criteria must be simultaneously considered, 

e.g., in maximising the quantity of goods delivered per year within a limited 

budget, for example, two conditions need to be accomplished; (1) the speed of 

the vessel must be maximised as far as possible and (2) the operational cost per 

year must be minimised. This kind of problem requires a multi-objective decision 

making technique, which will be explained in detail later in this thesis. 

 

The application of decision making techniques to ship design is not a new thing; it 

was started as early as the mid 1960’s when Murphy tried to solve ship design 

problems by using a single objective decision making technique (Murphy et al., 

1965). This type of technique was common in ship design up to the 1990’s. 

During that period, researchers concentrated more on General and Bulk carriers 

due to the large numbers being designed. Later, tankers were included in the 

investigations (Nowacki, 2003) along with Passenger/Car ferries (Papanikolaou 

et al., 1991), High Speed Craft (Jastrzebski and Sekulski, 2005) and other types 

of carriers. All of these researchers used the Mathematical Programming 

Technique approach in which the objective function was cost or profit. In fact, this 

approach has been a frequent feature of ship design for many years. 
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More recently, a single objective decision making technique was combined with 

Stochastic Process Techniques and Statistical Methods in order to handle multi-

objective decision making techniques more efficiently. This combined approach is 

normally known as a Hybrid or Integrated Approach (Cui and Turan, 2009; 

Dimopoulos and Frangopoulos, 2008). As multi-objective decision making 

requires a significant amount of data to be analysed, the use of an advance 

Mathematical Programming Technique such as Artificial Neural Networks (ANN) 

can be beneficial. The large amount of data produced from the simulation 

process gives good indications that the study has taken all possible conditions 

into account in order to provide the information to solve the given problems. 

However, this volume of data can easily be overlooked, misinterpreted and 

mistakes can be difficult to identify. However, an ANN is able to handle these 

problems efficiently and effectively. 

 

Ship design problems involving multiple objectives have been discussed by Sen 

(Sen and Yang, 1998; Sen, 1992);he described algorithms able to apply multiple 

objective decision making techniques to deal with large engineering design 

problems in general and particularly with application to ship design problems.  

 

This study looks at the design of the overall arrangement an LNG carrier in the 

preliminary stage. LNG carriers are amongst the most complex of vessels 

designed by engineers. The design complexity results from the interrelationships 

between advanced technology components, which are required due to the nature 

of the cargo. Before looking further at the LNG carrier components, it is 

necessary to understand the background of this type of vessel.     
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1.3. LNG Carrier: Background 

 

The idea of transporting natural gas in a liquid state was first patented in May 

1915 by Godfrey L. Cabot. The attempt to realise this idea was re-energised in 

1952 by Willard L. Morrison, followed by J. J. Henry in 1954 when they developed 

the Liquefied Methane Barges (Ffooks, 1993). However the idea of transporting 

liquid gas became a reality with the first LNG carrier, named Suehiro Maru No. 8, 

with 150 m3 of LNG capacity, operated from 1962 until 1983 using an internal 

combustion engine as the prime mover. The first steam turbine LNG vessel, the 

Methane Princess was the world’s second LNG carrier, operating from 1964 until 

1998 with an LNG capacity of 27,400 m3 (MAN, 2009). Since then the numbers, 

configurations and sizes of LNG carriers have continued to increase. 

 

An LNG carrier, as the name implies, is used to transport Liquefied natural gas 

across the globe. Because of the nature of LNG, which exists at a cryogenic 

temperature (-160oC), the design and construction of this type of vessel becomes 

very complicated. In addition, each major component of an LNG carrier is 

interrelated with the others, thus increasing the complexity of construction of the 

ship. Assuming that a similar containment system is used, as the size of the ship 

increases, the amount of boil-off gas (BOG) produced will also increase. BOG 

needs removal in order to prevent pressure build-up in the tanks. It can be used 

as propulsion fuel or it can be turned back into the liquefied state and returned to 

the tank to maintain the level of fill. This latter option requires additional power 

and size of the reliquefaction plant in order to manage the volume of BOG 

produced. At the same time, adequate propulsion power is required to overcome 

the total hydrodynamic and wave resistance produced by changes in the hull 

shape and wetted external surface area.  
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Most of the LNG carrier major components (e.g. tanks, reliquefaction plants, and 

propulsion machineries) are manufactured by different companies, and as such, 

their individual performances are independently assessed. In new designs for 

LNG carriers, this creates a variety of options for ship-owners to choose from. 

However it also introduced new challenges to them in terms of selecting the right 

combination of components for their vessels to meet contractual agreements, for 

instance, the volume of LNG carried per year and the distance travelled between 

terminals. Thus it requires a methodology which enables the ship-owners to 

select the optimal combination based on cost of the components for a given task. 

At the same time, this tool should be able to determine the minimum numbers of 

a given size and type of ship for a fleet, the overall costs, and the emission 

pollutant products released to the atmosphere, based on the particular 

combination of the ship system components suggested.        

 

A decision making technique is an analytical tool that could be employed to give 

the optimal system component combination needed. However this tool can only 

be used when there is sufficient response and behavioural data available to be 

processed. Such data, however, can be generated by complex simulation 

programs which consider the behaviour and interactions of all the inter-related 

components. The data must consider all the possible combinations of 

components, within specified limitations for each component, to ensure that the 

results that are produced are logical and economically sound for a given criterion 

or set of criteria.     

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

MdRedzuanZoolfakar   10 

 

1.4. Aims and Objectives 

 

This thesis aims to develop a holistic design methodology which can produce the 

optimum combination of components for an LNG carrier that meets the specific 

transport route requirements, during the preliminary design stage. The 

development of this methodology would help ship-owners to select the right 

combination of components for an LNG carrier, to rationalise the overall fleet 

size, minimise overall costs of construction and operation, and to control the total 

mass of pollutant emission products. This methodology is thus also very useful to 

shipbuilders, engineers and students in marine engineering courses to 

understand the complexity of LNG carrier systems. The aim is thus based on 

creating a tool to support the decision making process for complex systems, such 

as LNG carriers, at the preliminary design stage.     

 

This aim can be realised through the following objectives: 

 

1. The development of an accurate overall mathematical model for an LNG 

carrier simulation.  

2. The development of a model that is able to duplicate and assemble the 

simulation output data efficiently and accurately with minimum 

computational time.  

3. Application of the developed tools as a decision making technique in order 

to achieve the optimal combination of components for given targets. 
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1.5. Outline of the Thesis 

 

The study involves the development, implementation, execution and analysis of 

the overall preliminary design for an LNG carrier. To address this, the thesis is 

organised into six chapters. 

 

Chapter one presents an introduction to the thesis with specific emphasis on the 

rationale, aims and specific objectives of the study. A brief layout of the thesis in 

achieving these objectives is also presented in this chapter.  

 

Chapter Two presents a literature review of LNG carrier transportation 

development, which gives an overview of the various shipboard systems and of 

the alternative components that are associated with it. The review also assesses 

the potential gaps in the preliminary design stage process and identifies the 

opportunities to be undertaken in the scope of the study.  

 

Chapter Three looks at the preliminary design process in greater detail. It 

explains the relationship between the principal components and observes the 

reaction of the results as the parameters are varied.   

 

Chapter Four explains the development of the basic analytical tools which are a 

combination of the simulation method and an artificial neural network (ANN), how 

they work and what kind of solution will be achieved from their use.  

 

In Chapter Five, a series of case studies are investigated to find the most suitable 

combinations of LNG carrier components that give the overall optimal solution for 

a given target, based on the proposed decision support technique.  

 

The last Chapter offers the conclusions from this work and highlights some of the 

assumptions and limitations taken and proposes suggestions for future study and 

development in order to produce a more effective and accurate analytical 

methodology. 
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2. LNG Transportation Systems - Review of Literature 

 

Objective 
 

The overall aim of this chapter is to review the principal aspects of LNG 

transportation systems, particularly as discussed in recent technical publications.  

 

The specific objectives of this chapter are thus as follows: 

 To investigate the ways to transport natural gas, 

 To study each of the main components of an LNG carrier, and 

 To identify the design and evaluation gaps in this field. 

 

2.1. Introduction 

 

An LNG carrier is a special single-purpose vessel that has been developed and 

designed to transport natural gas by sea, worldwide, in a saturated, very low 

temperature condition, at atmospheric pressure and not requiring a pressure tank 

(Oka et al., 2004). LNG carriers are the most expensive, complex and potentially 

hazardous cargo carriers that are operating across the world’s oceans (ABS, 

2003). The LNG is stored inside thermal containment systems in which it is 

essentially kept from boiling at its saturated temperature throughout the voyage. 

The penetration of external ambient heat from the surrounding air and sea to the 

cargo through its containment system, together with the effects of mechanical 

accelerations resulting from the ship’s six degrees of freedom motion in waves, 

and the general cargo operations, will stimulate the evaporation of the LNG 

(Ohira et al., 2002). This evaporated gas is usually referred to as Boil-off Gas 

(BOG). Since BOG is generated throughout the journey, continuous removal of 

this gas is required in order to prevent an increase in the pressure inside the 

cargo tank due to the increased latent heat energy. The act of removing the latent 

heat energy simultaneously cools down the remaining LNG.  
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Currently there are two common types of LNG carrier cargo tank design namely 

‘prismatic’ and ‘spherical’ forms as shown in Figure 2-1 and Figure 2-2 

respectively.  

 
Source: GTT Photo library 

Figure 2-1: Prismatic Type of LNG carrier 
 

 

 
Source: Kvaerner Moss Photo library 

Figure 2-2: Spherical Type of LNG carrier  
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2.1.1. Summary of Available LNG Transportation 

 

Before proceeding further with the discussion of LNG carriers, it is useful to 

review, albeit briefly, the ways in which natural gas is transported from the 

producer to the consumer. Natural gas occupies a large storage volume at 

ambient temperatures (Watanabe et al., 2007), therefore it is advisable to 

transport this gas immediately after it is extracted out of the underground 

reservoir. There are several methods that are used to export natural gas from the 

drilling platforms to the importing countries. According to Thomas and Dawe 

(2003) these include: (1) transportation by LNG carriers, where the gas is first 

cooled to a liquid state at approximately -160oC at atmospheric pressure, and 

then pumped as a fluid into well-insulated containment systems inside the ship 

before being transported; (2) via pipelines to transfer the natural gas in gaseous 

form overland or on the seabed under a pressure of between 4.8 and 7.5 MPa. 

This method is used extensively throughout Europe, USA, South America and the 

Middle East; (3) transporting it in the form of Compressed Natural Gas (CNG) 

where the gas is placed in a pressure vessel, or a Coselle, at high pressure (25 

MPa) before being shipped to other countries; or (4) transported in the form of 

Natural Gas Hydrate (NGH). NGH is the product of mixing natural gas with water 

to form a stable crystalline ice which can be transported by bulk carriers in large 

‘thermos flask’ type tanks and stored at close to adiabatic conditions.  

 

 

2.1.2. A Comparison between LNG Carriers and Pipelines 

 

The most widely used natural gas transportation methods are LNG carriers and 

pipelines. However, there are some issues regarding pipelines which can make 

transportation by sea more promising. One of the dominant issues regarding 

pipelines is their overall cost of construction and subsequent operation. It was 

estimated that the average cost of installing pipelines in 2002 was between one 

and five million US dollars per mile (Thomas and Dawe, 2003). However, the 

construction cost can dramatically increase depending on the topography over 

which the pipeline is laid, which may vary between mountains and the flat 

seabed.  
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The overall cost of transportation using an LNG carrier, which includes  building 

and operating the carrier itself, plus  gas liquefaction at the exporting terminal and 

LNG gasification at the importing terminal, can become more cost-effective if the 

distance between the terminals at the importing and exporting countries is above 

2200 miles, which is frequently the case (Thomas and Dawe, 2003). 

 

The other issue lies in the degree of operational flexibility in selecting the best 

transport route to the importer’s LNG terminals. In the case of pipelines, there is 

no operational flexibility once the pipelines are laid down. Both export and import 

points are fixed until a new route for an alternative pipeline is built. The only 

choice for the exporter is either to allow or to shut off the supply of natural gas 

through the fixed pipeline. However, in the case of LNG carriers, there is the 

flexibility to operate over a different route as instructed by the carrier’s owner, 

including to a different importer, with the added benefit of being able to seek 

shelter from natural disasters, such as a tsunami or an earthquake.  

 

In the case of earthquakes, for example, which have been occurring more 

frequently of late, a pipeline will often suffer extensive damage due to its 

mechanical rigidity. A series of earthquakes affecting natural gas pipelines have 

been recorded in recent years. For example, the Coalinga in 1983, the Whittier 

Narrow in 1987, the Northridge in 1994 and the Chichi in 1999 (Guha and 

McGowan, 2008). As a result, the supply of natural gas stopped, resulting in a 

loss of revenue for the exporter and additional time and extra costs were incurred 

to repair the damaged pipelines and restore the flow. 

 

Political disputes sometimes create another difficult problem for the operators of 

pipelines. The most recent example was when the Ukraine government stopped 

the natural gas trans-shipment supply to many countries during the winters of 

2007 and 2008 due to a payment dispute between Russia and the Ukraine. 

Hungary, Bulgaria, Romania, Poland, Turkey and Greece suffered from this 

action (Landale, 2009; Reuters, 2009).  
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Natural and manmade issues are not limited to those mentioned above, there are 

also frequent terrorist attacks on pipelines (Simonoff et al., 2005). Karmon (2002) 

identified the motives of these attacks, which can be divided into three groups: (1) 

to provoke serious economic problems and create a demand for power which 

increases the internal instability in a region; (2) to prevent foreign countries who 

have interests in this commodity from investing and supporting the local 

government; and (3) to use profits from the sale of the stolen commodity to buy 

weapons to fight against either the local government or other terrorist groups. 

 

Considering all of the advantages and disadvantages mentioned above, it is clear 

that the LNG carrier would be one of the more significant and attractive options to 

transport natural gas. Therefore, it is not surprising that the LNG sea carrier trade 

grew by an average of 7.7% annually compared to that for pipelines which has 

increased only 4.7% annually since 2000 (MER, 2008c).  

 

 

2.1.3. Statistics Related to LNG Carriers 

 
 
The main uses of LNG are to produce electricity and to generate heat. One of the 

main advantages of natural gas as a fuel is that it produces 50% less CO2 

emissions compared to other conventional fossil fuels (Shin and Lee, 2009; 

ENGVA, 2006; Thomas and Dawe, 2003). Methane, as the predominant 

component of natural gas consists of one atom of carbon with four atoms of 

hydrogen, which is the simplest hydrocarbon molecule. Hence, the production of 

carbon dioxide will be much reduced compared with the combustion of other 

hydrocarbons (i.e. propane, butane, etc) that have more carbon atoms. 

Moreover, with new technology, the combined cycle gas turbine engine has 

higher efficiency from burning natural gas as a fuel compared with steam turbine 

engines,  producing electricity with lower fuel consumption (MER, 2008c). A 

further advantage is the recent increase in the price of crude oil, which in 2008 

alone rose by more than 100 dollars per barrel (Miller, 2009a), thus making 

natural gas increasingly attractive as a source of energy.   

 
 

 



Chapter 2: LNG Transportation System – Review of Literature  

MdRedzuanZoolfakar   17 

 

The increase in demand for natural gas has enhanced the LNG market 

significantly (Yamawaki, 2002; Batcheler, 2000). The latest estimation of global 

LNG consumption revealed an increase of 29% in 2009 and 2010. The Middle 

East dominates the supply, providing 61% of the total LNG that is produced 

annually (Miller, 2009b).  

 

The total world supply has been predicted to reach 500 million tonnes by 2020 

(Marzouqi, 2008). The increase in demand has resulted in there being a 

substantial increase in the numbers of LNG carriers in service and under 

construction.   

 

Prior to the 1980s there were only 42 LNG carriers in service; by 2002, the 

number had increased to 129 (Kuver et al., 2002) and in 2008 there were 291 

LNG carriers in service and 98 vessels on order (LWS, 2008). In addition to the 

increase in the numbers of carriers, the liquid volume cargo capacity of individual 

new vessels has grown rapidly as well. Starting with 150 m3 in 1962, increasing 

to 27,400 m3 in 1964 (MAN, 2009), to 130,000 m3 in the early 1980s and to 

138,000 m3 by the middle of the 1990s (SB, 2009). By the end of 2005, the 

maximum size grew again to 153,000 m3 and continued increasing reaching 

266,000 m3 in 2009 (Motorship, 2009).  

 

 

2.1.4. Challenges in the Expansion of LNG Supply 

 

The rapid increase in numbers and sizes of LNG carriers is having a serious 

effect on finding and appointing competent and experienced crews to run the new 

types of machinery such as reliquefaction plants and advanced propulsion units 

with dual fuel firing technology (MER, 2008c).  

 

The other related challenge is the migration of competent and experienced crew 

members to multinational companies which offer higher salaries and other 

incentives. As a result of this migration, the smaller companies are forced to 

employ relatively inexperienced crews, which may increase the risk of human 

error while handling and maintaining this advanced and hazardous cargo and the 

operation of complex vessels and systems. Similar problems are being faced by 
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the shipyards, where the numbers of skilled workers are limited and which makes 

their salaries higher. This situation will increase the construction costs and delay 

the production of new carriers (MER, 2008b).  

 

Some corrective actions have been made by the ship-owners/shipyards who are 

embarking on in-house training programmes to acquaint their crews/workers with 

the latest technology used in new-build LNG carriers. At the same time, this 

problem can also be solved by increasing the number of ship cadets/shipyard 

employees, and by educating them in the latest technologies in the marine field. 

This will make them competent to sail and work with this type of ship upon 

completion of their studies/training.  

 

Historical data has shown that LNG carriers are a relatively safe mode for 

transporting this type of fuel, as their safety record illustrates as in Table 2-1. 

 

Table 2-1: Accidents or Problems Involving LNG carriers 
 

Year Ship Description of Event 
Personal 
Injuries 

LNG 
Release 

1965 Jules Verne (now Cinderella) Overfilling None Yes 

1965 Methane Princess Valve leakage None Yes 

1971 Esso Brega (now LNG Palmaria) Pressure increase None Yes 

1974 Massachusetts (barge) Valve leakage None Yes 

1974 Methane Progress Touched bottom None No 

1977 LNG Delta Valve failure None Yes 

1977 LNG Aquarius Overfilling None Yes 

1979 Mostefa Ben Boulaid Valve leakage None Yes 

1979 Pollenger (now Hoegh Galleon) Valve leakage None Yes 

1979 El Paso Paul Keyser Stranded None No 

1980 LNG Libra Shaft moved against rudder None No 

1980 LNG Taurus Stranded None No 

1985 Gadinia (now Bebatik) Steering gear failed None No 

1985 Isabella Valve failed None Yes 

1989 Tellier Broke moorings None Yes 

1990 BachirChihani Hull fatigue None No 

1996 LNG Portovenere Fire-fighting system malfunction 6 dead No 

2002 Norman Lady Collision with submarine None No 

2003 Century Engine breakdown None No 

2003 Hoegh Galleon Engine breakdown None No 

2004 Tenaga Lima Damage to stern seal None No 

2004 British Trader Fire in transformer None No 

2005 Laieta Engine breakdown None No 

2005 LNG Edo Gearbox vibration None No 

2005 Methane Kari Elin Leaks in cargo tanks None No 

2006 Catalunya Spirit Damaged insulation None No 

     Source: (MBS, 2007) 
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There has been only one accident with fatalities over the period from 1965 to 

2006 (MBS, 2007). Most of the accidents were due to human error rather than as 

a result of systems failure. Some of the accidents and problems detailed in Table 

2-1 were clearly unrelated to the cargo role of the vessel and were of a general 

ship nature, e.g. grounding, fatigue and main machinery problems. The 

International Maritime Organisation (IMO) has created a set of rules and 

regulations which need to be followed while constructing and operating LNG 

carriers. This set of rules and regulations are known as ‘The International Code 

for the Construction and Equipment of Ships carrying Liquefied Gases in Bulk 

1993’ (IGC, 1993). The code must be adopted by all shipbuilders and ship-

owners who are involved in transporting liquefied gas by sea. The code is also 

included in the Safety of Life at Sea (SOLAS). 

 

Carbon dioxide, sulphur oxide and nitrogen oxide are the three major contributors 

to the overall emission pollutants generated by ships that use heavy fuel oils as 

the medium to produce power. These pollution emission products are a global 

problem and are a contributory cause of global warming. Thus there is a clear 

incentive to minimise them when and wherever possible. 

 

Shipping is a relatively low cost means of mass transportation, particularly for 

transporting bulk material and it is reliable and can reduce road and rail traffic. 

However, this industry also has the potential, if unchecked, to produce 50% of the 

world’s air pollution by 2020, if no corrective action is taken (MER, 2008a). The 

political issue of pollutant gas emission in the shipping industry is addressed by 

international laws such as the Sulphur Emission Control Area (SECA) 

regulations. Possible solutions to reduce CO2 were discussed at the United 

Nations Climate Change Conference 2009 in Copenhagen. Sulphur Oxides (SOx) 

must be reduced from 4.5% to 1.5% by mass released to atmosphere as 

mandated by the SECA rules from March 2010 and the IMO has proposed that 

by January 2011 all new engines are only allowed to produce NOx at levels that 

are 15-22%  according to g/kWh below the current IMO limit (MER, 2008a; 

Brown, 2007). Details of the SECA regulations will be explained in subchapter 

5.3. 
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Transporting natural gas using LNG carriers has significant advantages 

compared to pipelines; however, it requires dedicated engineering knowledge 

and technical expertise on each vessel in order to reduce the risks of failure 

especially when handling and monitoring the hazardous and sensitive cargo. It is 

important to understand the interactions within integrated LNG carrier systems in 

order to evaluate the relationships between design decisions and vessel 

operation. There is therefore a need to understand the behaviour of the individual 

components in order to then address the challenges posed by their collective 

integration to form the complete LNG carrier system.  

 

2.2. Main Components of LNG Carriers 

As mentioned previously, the LNG carrier is a unique type of vessel because of 

the need to accommodate its cargo’s extreme physical characteristics. The BOG 

and extremely low temperatures of the LNG have created a huge challenge to 

shipbuilders and engineers. In order to address this challenge, it is necessary to 

know the characteristics of all of the main components that make an LNG carrier 

operate efficiently. As an LNG carrier is a complex system, it may be referred to 

as a ‘system of systems’. The LNG carrier systems/components in this thesis 

refer to the containment systems, hull geometry, reliquefaction plant systems, 

power prediction variables, main propulsion units, and the mission profile 

variables.  

 

These components can be separated into two groups which are ‘physical’ and 

‘operational’ components. Some of these components consist themselves of a 

complete functional system which involves a collection of independent variables 

that interact with each other within the component’s boundaries and overall 

system (Nowacki, 2003). LNG carrier components can only themselves perform 

at an optimal level if all of their constituent elements themselves operate 

optimally. Any change in the input variables to any component however will also 

affect the overall ship component. This interdependency has created complex 

relationships between the components. However, these problems can be solved 

by establishing a clear understanding of each component and in their 

multidirectional interrelationships with other components.  
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Six of the main components in LNG carriers are illustrated in Figure 2-3. Since all 

of these components/systems are interdependent and overlapping with each 

other, it is appropriate to study each component as a system individually before 

expanding to form the overall ship system in order to investigate their 

relationships.  

 

 
Figure 2-3: LNG carrier’s Significant Components as a System of Systems. 
 
 
 

2.2.1. Cargo Containment Systems 

 

 

The cargo containment system is the component which makes an LNG carrier 

radically different from other vessels. Although this system design can be built 

independently, the containment system requires inputs from other components 

such as the hull geometry and fleet size. The design determination of the 

individual tank sizes can only be finalised once all of the other components of the 

LNG carrier have been considered.  

 

Life 
Cycle 

Cost  
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For example, the size of the vessel is a function of fleet size for a given service 

which will include the volumes of LNG to be moved over a given distance for a 

given period of time, which in turn relate to mission profile, power prediction, 

propulsion units and hull geometry. The amount of BOG produced over a given 

period of time is an additional factor to be considered because it affects the 

reliquefaction plant size and its particular power requirements, and also the 

vessel propulsion units which may involve utilisation of some fraction of the BOG 

as a fuel when necessary.   

 

A containment system consists of a primary barrier (the shape of this barrier and 

tank, is discussed later) to physically and securely contain the LNG liquid, a 

secondary barrier to provide a failsafe retaining wall in case of a leakage through 

the primary barrier, and a series of layers of insulation materials sandwiched 

between the two barriers and the hull structure (Deybach and Gavory, 2008). The 

primary barrier, which depends on the type of tank, is made of materials that 

have the ability to structurally function and withstand the cryogenic temperature 

due to direct contact with the cargo.  

 

Generally 36% nickel steel (INVAR), stainless steel or aluminium alloys are the 

common materials that are used for the primary barrier. The secondary barrier is 

usually made from INVAR or a thin aluminium sheet between two layers of 

Reinforced Polyurethane Foam (RPUF) plus resin (referred to as Triplex). The 

second barrier, which is also fluid tight, acts as a hull temperature protection layer 

against any possible leakage of LNG through the primary barrier in the case of a 

membrane flaw, crack or an accident (Liddle, 2007; Yuasa et al., 2001). An 

illustration of the barriers and insulation is shown in Figure 2-4.  

 

The vessel’s hull structure, made from conventional steels, needs to be protected 

against the extreme cold of the LNG because of the potential for very severe 

embitterment and thermal gradient induced stresses. The insulation materials in 

the containment system have a low thermal conductivity coefficient in order to act 

as an efficient insulator to limit the external heat penetrating into the cargo hold. 

Limiting the heat flow into a cargo hold is very important in reducing the amount 

of BOG produced and it can be done by covering the whole external surface of 
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the LNG tanks with the aforementioned insulation materials of sufficient quality 

and thickness. Before selecting insulation materials for optimisation purposes, 

additional information regarding time-related changes in physical characteristics 

such as aging, creep, water absorption and flammability must be considered 

(Adorjan, 1991).  

 

 

      Source: GTT Photo library 

 

 

Another aspect which requires attention in selecting materials for containment 

systems, both the two barriers and the insulation materials, is their mechanical 

ability which is required to support the structure against both cargo and its own 

weight; this is in addition to the free surface ship-induced motions of the LNG 

inside the tank and which is referred to as ‘sloshing’ (Ogiwara et al., 1990).  

 

Primary Barrier 

 

Secondary Barrier 

 

Inner Hull 

 
Figure 2-4: Barriers and Insulation Layers of a Containment System 
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Sloshing depends on the shape and size of the tank, filling levels, loading 

conditions and sea keeping characteristics (Deybach and Gavory, 2008; Liddle, 

2007; DNV, 2003). The repeated impact forces from sloshing can cause fatigue 

failure which results in cracks in insulation panels. Several studies have been 

carried out to investigate and understand this dynamic failure of containment 

systems as well as other failure modes, particularly in the compression of 

insulation panels as examined during drop tests. Kim et al. (2006) used fibre optic 

sensors while Lee et al. (2006) applied both finite element analysis and 

experimental approaches in their investigations.  

 

The IGC classifies containment systems into five types, essentially based on their 

structural form and load carrying capability, which are: membrane tanks, semi-

membrane tanks, and types A, B, and C independent tanks. However, most of 

the recently built LNG carriers fall into two types, namely: membrane tanks and 

independent type B tanks. Each type can further be divided into two principal 

design models. Membrane tanks are manufactured either by the ‘Gaz Transport’ 

company, called No96 tanks, or by the ‘Technigaz’ company, whose tanks are 

referred to as MARK III tanks. The main differences appear to be in the materials 

and structural form of the primary barrier. These two French companies, 

however, have now been merged and have developed a combined system called 

CS1 (Liddle, 2007; Chapot, 2002).  

 

Figure 2-5 shows the membrane tanks for two LNG carriers. Since the primary 

barrier for No96 and CS1 systems is constructed from INVAR, the appearance of 

these tanks is similar.  

 

Independent type B tanks can be subdivided according to the geometric shape of 

the tank: Spherical B tanks and Self-supporting Prismatic shape IMO Type B 

tanks (SPB) (DNV, 2003). Generally, prismatic tanks tend to map more closely to 

the conventional hull form of a double skeg with conventional transverse water-

tight bulkheads and utilise the hull volume better than do spherical tanks.  
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        Source: GTT Photo library 

  No96/CS1     MARK III 
 
Figure 2-5: Membrane Tanks 
 

 

Figure 2-6 shows the independent type B tank and a spherical tank. In these 

tanks, weight and tank contents are fully contained by the strength of the tank 

structure and no forces are applied to the insulation. Similarly sloshing forces are 

reacted by the tank structure, not by the insulation. 

 

 

  Source: IHI and Moss Photo library 

 
SPB     Spherical B Tank         

 

Figure 2-6: Independent Type B Tanks 
       



Chapter 2: LNG Transportation System – Review of Literature  

MdRedzuanZoolfakar   26 

 

A summary of the various LNG carrier containment systems is illustrated in 

Figure 2-7. 

 

 
 
 

 

Reducing costs is always one, perhaps the most important, of the financial 

objectives in the shipping community. With regard to containment systems, 

several factors have been identified which can help to reduce the overall cost of 

the system, although a ship-owner may accept higher capital costs as being 

preferable if savings can be made in operational costs. Selecting the right types 

of tank and types of insulation material and barrier elements, and calculating the 

right thickness of material based on BOG percentage targets, can reduce the 

capital costs and also the operational costs in terms of inspection and 

maintenance expenses throughout the carrier’s life span. However, there are 

several other factors which have equal importance such as size, visibility, 

collision or grounding leak resistance, construction, contents-free surface effects, 

loading and secondary barriers (DNV, 2003).  
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Figure 2-7: Containment System Types 
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A clearer understanding of the various aspects and consequences of each factor 

is achieved by making comparisons between current containment system types. 

Table 2-2 illustrates the main comparisons between Membrane, Spherical and 

Self-supporting Prismatic shape IMO Type B Tank (SPB) types. 

 

Table 2-2: Comparisons between Containment System Types 

Features Membrane Spherical SPB 

Size 

Smaller ship principal 
dimensions - This tank 
makes more efficient use 
of the available cargo hold 
length and volume than 
other containment 
systems.  

- As IGC Code and Class 
Rules 

Smaller Ship Principal 
Dimensions - however 
the dimensions are 
greater than the 
membrane vessels of the 
same cargo capacity. 

Visibility 
Better visibility from the 
wheelhouse  

- As IGC Code and Class 
Rules 

Better Visibility from 
Wheelhouse - Same as 
for membrane vessels. 

Collision or 
Grounding 
Response 

- As IGC Code and Class 
Rules 

Increased Safety under 
Collision and Grounding - 
The majority of the tank has 
larger distances from the 
side and bottom shell than in 
the other configurations.  

Increased Safety under 
Collision and Grounding – 
The SPB are at a greater 
spacing distance than the 
membrane tanks but 
smaller than spherical.  

 Construction 

No shipyard capital 
investment required in 
term of building workshop 
just to fabricate the 
containment systems 
constructed out.  

Faster Construction - The 
tanks may be built in parallel 
with the ship, while the 
installation of the membrane 
tank cannot start until the 
construction of the holds has 
been completed. 

Faster Construction - 
Same as per spherical 
tank vessels. 
 

Free 
Surface 
Effects 

- As IGC Code and Class 
Rules 

Less Free Surface Effects - 
Due to the shape of the tank. 
 

Less Free Surface Effects 
–Damping due to the 
presence of wash 
bulkheads inside the 
tanks. 

Loading 
- As IGC Code and Class 
Rules 

Better Slack Loading and 
filling ratio - In general these 
tanks can be loaded to any 
level with minimum sloshing 
damages and due to the 
shape of the tank and it is 
possible to load the cargo at 
an increased filling ratio. 

Better Slack Loading – 
With the presence of the 
longitudinal and 
transverse bulkheads to 
reduce sloshing. 

Secondary 
Barrier 

Complete Secondary 
Barrier - It can be 
considered an advantage 
from the overall safety 
point of view and a 
disadvantage from the 
construction cost point of 
view. 

Possibility to Use a Partial 
Secondary Barrier - It can be 
considered a disadvantage 
from the construction cost 
point of view and an 
advantage from the overall 
safety point of view. 

Possibility to Use a 
Partial Secondary Barrier 
- Same as per spherical 
tank vessels. 
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Each of the containment systems that have been reviewed above has its own 

merits and limitations. Since the LNG carrier main components have an 

interrelationship with each other, the selection of the containment system for a 

new vessel should not be limited to the above parameters, but must consider 

other components. For example, the specific dimensions of a containment 

system can only be obtained from the selection of the carrier size which is directly 

related to the fleet size. Meanwhile, additional information is required from the 

transportation mission profiles including delivered cargo volumes per unit of time 

(in years, for example) and propulsion power estimations, in order to define the 

appropriate fleet size.  

 

 

2.2.2. Hull Geometry 

 
 

The hull defines the principal geometric form and character of a vessel and is the 

location within which the LNG containment system will be installed. Similar to the 

containment system, the estimation of the required hull volume and external 

geometry depends on many other factors and components, and this will 

eventually determine the size and displacement and the total resistance to motion 

of a ship in a seaway. At the same time, the resistance to forward motion has a 

direct effect on the prediction of the installed motive power required to sail at a 

desired continuous operational speed. 

 

The prismatic type LNG carriers and conventional oil and products tankers 

require similar hull constructions particularly the double skeg arrangement. The 

most significant difference is in the number of cargo tanks: LNG carriers usually 

have four to six tanks lengthwise while tankers typically have more than ten tanks 

and include several longitudinal bulkheads defining tanks into crosswise as well 

as lengthwise spaces, the oil and products tanks actually being formed or 

bounded as an integral part of the hull structure. The aim of limiting the number of 

tanks in an LNG carrier is to make the installation of the complex containment 

system easier.  
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The second important difference is in the total weight of the cargo volume for the 

same cargo capacity (ABS, 2003). The density of LNG is approximately half that 

of oil. It is also to be noted that LNG trade involves only the ‘all tanks full’ 

condition, whereas, for example, product tankers may off load parts of their cargo 

at different ports, thus resulting in checker board loading. 

 

The selection of material for the primary hull structure will also have an impact on 

the safety and cost of the life cycle of the LNG carrier. In principle, the types of 

steel used as hull materials in LNG carriers are similar to the types used in other 

general merchant vessels. However, in the case of an accidental LNG leakage, 

clearly a highly undesirable situation, the steel can easily become very brittle 

(crystallised) when in contact with the LNG (Barron, 1999). If this occurs, the 

steel section in contact with the LNG will develop thermal gradient induced 

stresses in the embrittled region, as well as normal hull stresses and will almost 

certainly crack in a very short time, reducing the local strength of the ship’s hull. 

Therefore, a special grade of marine steel must be used for LNG carrier hull 

construction to prolong its fracture resistance to this crystallisation embrittlement. 

 

Several studies have been carried out recently with the aim to reduce both the 

manufacturing costs and the through-life costs of hull structures. Yamamoto et al. 

(2008), from Nippon Kaiji Kyokai (Class NK) have developed a programme called 

Total Life Care (TLC) to be used to optimise the planned maintenance of LNG 

carriers based on both Risk Assessment and Life Cycle Cost assessment 

procedures. TLC involves the analysis of the fatigue strength of the hull structure, 

the integrity of paint coatings and the maintenance and management of 

machinery and equipment in order to predict the optimum planned maintenance 

schedule for a specific vessel. According to Yamamoto et al. (2008), the 

assessment has produced an optimum maintenance management plan which 

improves the operational safety and reliability of LNG carriers.      
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A study by Jin et al. (2006) has revealed that large LNG carriers with a twin skeg 

hull form have lower fuel consumption and increased cargo capacity compared 

with those vessels with a more conventional single skeg hull form. This implies a 

higher internal volume is available within the hull, hence a higher block 

coefficient. The results were analysed using a Computational Fluid Dynamics 

(CFD) computer program and were qualified based on model tests carried out at 

Statens Skeppsprovnings Anstalt (SSPA) in Sweden. They also performed an 

economic evaluation using both Required Freight Rate (RFR) and Capital 

Recovery Factor (CRF) approaches. The results showed a reduction of 9 to 10% 

in propulsion power requirements and approximately a 3.2% reduction in RFR, 

while allowing a 4 to 5% increase in cargo capacity, and a 4.2% higher CRF 

compared with a single skeg vessel. These results will reduce operation costs in 

the long term. A similar study was also carried out by Kim and Lee (2005) from 

Daewoo Shipbuilding & Marine Engineering Co. Ltd. However, both of these 

studies only focused on large LNG carriers. In reality, there are effectively five 

classes of LNG carriers: small with a capacity of up to 90,000 m3, small 

conventional with a capacity of 120,000 to 149,999 m3, large conventional with 

the capacity of 150,000 to 180,000 m3, Q-flex with a capacity of 200,000 to 

220,000 m3, and Q-max with a capacity of up to 260,000 m3(MAN, 2009). Thus 

the results do not represent all classes, of LNG carriers and they also ignore the 

main propulsion machinery costs which contribute to capital costs. Thus, 

choosing between a single skeg and a twin skeg form does not depend solely on 

one factor but upon a comprehensive study of other components. 

 
2.2.3. Reliquefaction Plant Systems 

 

No matter how thermally efficient the cargo containment system is, the production 

of BOG from transported LNG cannot be avoided due to the very large difference 

between the external temperatures and the temperature of the LNG itself. The 

amount of BOG that is produced is determined by four factors, these being the 

exterior air and sea temperatures, the surface area of cargo tanks and the 

efficiency of their insulation material. The efficiency of insulators has been 

discussed in the cargo containment system section, thus the following section 

focuses on the remaining factors.  
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The differences between the LNG temperature inside the cargo tank and the 

external temperatures are clearly very high. These differences may be reduced 

for certain routes and sailing seasons, such as by going through colder 

environments, for example, sailing via the route from Norway to France in winter.  

In this example, the ship will produce less BOG (per day) if compared to, say, the 

much hotter route between Malaysia and Japan in summer. In relation to a 

decision making technique for the carrier design, little or nothing can be done in 

relation to this factor since it will not depend on the ship-owner and his choices, 

but much more heavily on the operator and his intended trading patterns. This 

leads to another factor that can be optimised in order to reduce the BOG 

produced: that is, the size of the cargo tank. For given cargo volume, smaller 

tanks mean more tanks, and larger tanks mean fewer tanks are required. 

 

An increase in the volume of a tank will correspondingly reduce the external 

contact area per unit volume and the subsequent penetration of heat, which 

eventually reduces the amount of BOG produced. However, increases in the 

cargo volume in the tank will also increase the tank size which eventually 

increases the ship size; hence any related problems with large vessel size and/or 

large block coefficient such as increases in capital and operational costs need to 

be considered carefully.   

 

Since the production of BOG cannot be avoided, on-board utilisation or re-

processing of the BOG is necessary in order to prevent it from venting into the 

atmosphere, especially from the membrane tanks which cannot tolerate any 

increased pressure. Venting BOG to the atmosphere not only wastes its potential 

energy but also reduces the cargo quantity and hence value, and at the same 

time increases the possibility of air pollution and clearly represents a fire hazard. 

There are two possible options to deal with the BOG: (1) to use it as a fuel for the 

vessel’s propulsion units, or (2) to reliquefy the BOG again and return it back to 

the cargo tanks.  
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A reliquefaction plant is a mechanical system which has the ability to convert 

BOG back into its liquid phase. The process of this system can be explained in 

terms of a thermodynamic cycle. Several alternative refrigeration cycles can be 

adapted for this purpose (Barclay et al., 2007; ENGVA, 2006; Adorjan, 1991), 

among them are the Linde-Hampson, Claude, and Reverse Brayton cycles. The 

Reverse Brayton cycle is the one that has been mainly selected for onboard 

reliquefaction systems because it is less sensitive to feed gas concentration. This 

cycle can be used with variable BOG production rates (this can be expected 

during a voyage and possibly during shorter time periods) and can perform at 

lower pressures of about 1.14 MPa, compared to, for example, the Linde-

Hampson system which performs at 20 MPa and the Claude system which 

performs at 4.5 MPa. The Brayton cycle, in addition, requires a series of 

combined heat exchangers acting as a refrigeration unit and once the BOG is 

condensed, it must be immediately pumped back to the cargo tanks. A typical 

arrangement of a reliquefaction plant is shown in Figure 2-8. 

 

 

Source: Hamworthy Photo library 

Figure 2-8: Typical Reliquefaction Plant Arrangement 
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Reliquefaction plants onboard LNG carriers can be grouped into two main 

categories: process usage requirements and energy utilisation sources (Mesbahi, 

2007). Each of these categories can be further subdivided into two other sub-

groups as illustrated in Figure 2-9. 

 

Figure 2-9: Reliquefaction Categories and BOG Management Options 

 

The ‘Total reliquefaction’ category means that all of the BOG will be reliquefied 

and returned to a tank or tanks. Alternatively, in ‘partial reliquefaction’, a portion 

of the BOG will be used as a fuel in the vessel’s propulsion system with the rest 

being returned to a tank. In the ‘energy source’ category, the ‘external source’ 

refers to the energy which is obtained from normal bunker fuel and is required to 

run this system. On the other hand, ‘Self sustained reliquefaction’ refers to using 

a fraction of the BOG as a fuel to produce power to run the reliquefaction system 

itself with the rest being returned to the cargo tanks. 

 

Total Reliquefaction can improve the annual return to the company since the total 

quantity of LNG will be the same throughout the journey (Moon et al., 2007). It 

also reduces heel and trim requirements on ballast voyages and improves the 

propulsion redundancy (Hamworthy, 2009). However, the initial installation cost 

of this system is high, estimated to be around five million US Dollars in 2002 for 

138000 m3 cargo capacity, 19.5 knots and the approximate corresponding power 

at the propeller is 26 MW (Kosomaa, 2002).   
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The use of reliquefaction plants on LNG carriers is a relatively recent 

development in LNG design history. The first LNG carrier with a reliquefaction 

plant onboard dates back to October 2000 (Ohira et al., 2002) and subsequent 

improvements of the reliquefaction system have continued (Sorensen and 

Christiansen, 2006). Mossmarine Reliquefaction made two major modifications to 

the basic design, the first being the optimisation of the heat transfer in the heat 

exchanger and which was done by introducing pre-cooling for the BOG and by 

installing two nitrogen expanders.  The second modification was to heat the BOG 

before compression in addition to the use of a third stage compression with 

intercoolers and an after cooler. As a result, the power consumption of the 

system was reduced by 15-25 % from the previous levels. Sorensen and 

Christiansen concluded that reliquefaction plants coupled with slow speed diesel 

propulsion systems have shown an incremental increase in annual return of 

between four and five million dollars per vessel compared to the use of 

conventional steam turbines. 

 

Pil et al (2006) focused on the reliability of reliquefaction systems using the time 

dependent Markov approach. In order to minimize the costs, three considerations 

were made: (1) to configure reliquefaction plants to obtain optimal redundancy, 

(2) to produce in-service and in-port maintenance plans, and (3) by making spare 

parts readily available when carrying out any repairs. Although they managed to 

achieve their objectives, emission of pollutants from burning fuel for power 

production was ignored. 

 

Currently there are only two main manufacturers in the marine LNG reliquefaction 

equipment market: Hamworthy, which is licensed by Mossmarine Reliquefaction 

and Cryostar. Another company that has shown interest in this market is 

Daewoo, Shipping & Marine Engineering Co, Ltd. (Sillars, 2007). Each of these 

companies uses similar methods but they design to different working pressures in 

both the BOG and the nitrogen cycles. Selection of the most suitable 

manufacturing company for a new vessel’s plant should not be solely based on 

the offers given by the manufacturers, but also on consideration of the quantity of 

BOG to be condensed in a given period of time and based on the type of 

containment system selected.  
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2.2.4. Propulsion Power Requirement Prediction 

 

 

Propulsion power prediction is the method used for estimating the required 

continuous power output from the main propulsion system (as delivered by the 

propeller (s)), as determined by the mission profile and the design specification 

for the vessel (Woud and Stapersma, 2002). Two factors will determine the 

installed power that is required: namely the normal sailing speed and the total 

resistance to motion of the ship through the water. 

 

Speed is an important parameter in determining the power requirement for a 

vessel. Usually, the owner specifies the normal operating/cruising speed required 

of the vessel and the designer ensures that the installed engine allowing for 

propeller and transmission efficiencies, will achieve this speed. According to 

Bertram (2003), the economic efficiency of the vessel can be determined by 

selecting the required continuous service speed because if the vessel travels at 

an unnecessarily high speed, the fuel consumption over a voyage will also 

increase considerably; however, this will shorten the time of the journey. Buxton 

(1976) indicated that there are several factors to be considered for the vessel to 

cruise at a high speed which include: efficient propulsion system, high value 

cargo, high freight rates and an improved hull form design. 

 

The second major parameter that is used for power prediction methods is in the 

calculation of the total hydrodynamic resistance of a ship travelling in a seaway. 

According to Nabergoj and Orsic (2007), this resistance can be categorised into 

three components: motion resistance through still water, wind resistance, and 

added wave resistance. Arribas (2007) mentioned that any calculations that are 

carried out in calm water require an additional power component of 15-30 % to be 

added to the main propulsion system calculations  in order to overcome the effect 

of the wave environment on ship behaviour.  
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This additional power is often referred to as the sea margin or weather margin. 

There are basically two approaches to calculate the ship’s resistance: (1) using a 

regression analysis of random model experiments to predict full scale data 

(Holtrop and Mennen, 1982), and (2) numerical calculations (Arribas, 2007). 

Once the value of the total resistance of a ship is obtained, the power prediction 

can be calculated by multiplying the value of the total resistance coefficient by the 

speed of the ship.  

 

Accurate estimation of the power required will prevent unnecessary loss of time 

and extra cost in modifying a propulsion system that is found to be either under or 

over powered. In addition, a major contribution to the operational costs is the fuel 

consumption which is a function of the selected propulsion system. The accuracy 

of the predicted power depends on many factors, such as ship hull form and 

dimensions, construction of hull form and the ship’s mission profile. The results 

from this prediction will be used to select the required size and type of propulsion 

unit when all the factors mentioned above have been considered properly. 

 

 

2.2.5. Propulsion Machinery Systems 

 

 

As mentioned previously, the size of new LNG carriers has increased 

considerably in recent years and this requires more power to propel the ship. To 

solve this problem, the trend has been to select a propulsion unit with a superior 

thermal efficiency (MER, 2008c), and calculating the power required correctly, 

which has high interdependency with the ship’s speed and the total hull 

resistance. This total resistance is related to the size and shape of the vessel 

which interconnects with all the major components of the LNG carrier. As a result, 

in order to select the propulsion system, one must have a holistic view of the ship 

rather than focusing only on certain aspects.    
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The steam turbine has been proven to be suitable for the prime mover of an LNG 

carriers since 1964 (MAN, 2009). However, based on the new construction LNG 

carrier orders as of October 2008, out of 99 vessel orders, only 34 selected 

steam turbines, 24 were being fitted with slow speed Internal Combustion 

Engines and reliquefaction plants, and 41 with diesel electric propulsion systems 

(LWS, 2008). Up until November 2009 there were 20 carriers in service using 

diesel electric propulsion, 39 vessels with slow speed Internal Combustion 

Engines and reliquefaction plants, and 267 ships sailing with steam turbine 

engines (SB, 2009).  

 

This variety of propulsive machinery has given the ship-owners the opportunity to 

select the most suitable propulsion system for their requirements. However, 

selecting the right propulsion system needs careful consideration because it 

affects the entire LNG carrier system. The selection should focus on safety, 

economics, operational convenience and utilisation of BOG (Chang et al., 2008). 

Once this machinery has been installed in the ship, or indeed firmly defined in the 

final stages of design for production, it is clearly difficult to change. Changes not 

only demand a large amount of money but also require significant modifications 

to the engine room and transmission which is impractical in LNG carriers as a 

result of its high degree of interdependency with other components in the overall 

system.  

 

 Steam turbines 

 

Steam turbine propulsion systems have fewer moving parts, generally lower 

maintenance requirements and the usage of lubrication oil is comparatively low 

compared to an internal combustion engine (ICE) and gas turbine systems. 

However, according to Shin and Lee (2009), steam turbines have a low thermal 

efficiency of about 30% and this will increase the operational costs due to higher 

fuel consumption compared with similar vessels with higher thermal efficiency 

propulsion systems. In addition, steam turbines require a large volume of engine 

room space in order to accommodate two large boilers and this reduces the 

amount of cargo capacity when compared with a similar hull size carrier using 

other types of propulsion units. Steam turbine vessels also require specifically 

trained personnel to handle them (Makris, 2006). 
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 Internal Combustion Engine (ICE) 
 

 

Since higher thermal efficiency has been highlighted as one of the principal 

aspects required to reduce the operational costs of LNG carriers, engineers have 

developed technology  able to burn BOG alongside the conventional fuel oil; 

known as dual fuel engines. This technology has changed the paradigm of 

conventional engines such as ICE. The ICE is well known to have a thermal 

efficiency of approximately fifty percent (Woodyard, 1999) and by incorporating 

dual fuel technology, this becomes one of the more significant propulsion 

systems for LNG carriers. The first LNG carrier using an ICE dual fuel diesel 

electric system was launched in 2006. Since then, the number of carriers that use 

this type of engine has increased dramatically to 86 at the end of 2007 (MER, 

2008b). Even the largest Q-max LNG carrier, the ‘Mozah’ with 266,000 m3 cargo 

capacity has selected this type of engine for its propulsion system (MER, 2008c).  

 

An additional advantage of using an ICE is that it has a lower environmental 

impact with reduced NOx and SOx emissions and provides smokeless operation 

(Thijssen, 2006; Kosomaa, 2002; Sekula, 2002). NOx emissions can be further 

reduced by using water injection and selective catalytic reduction, while SOx 

emissions can be reduced by the use of low sulphur fuel or by installing a 

desulphurisation plant (scrubber) on board the vessel (MER, 2008a; Brown, 

2007; Kremser, 2007). However, an ICE is not free from drawbacks, such as 

using large amounts of lubrication oil and requiring high levels of maintenance 

work as a result of the large number of moving parts involved in producing the 

power. These moving parts increase the probability of wear and tear on the 

engine parts and also produce vibrations and noise which can potentially 

increase the risk of fatigue failure of machinery and of the local ship structure 

over a period of time (Kosomaa, 2002). 
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 Gas turbines 

 

Gas turbines are also capable of using dual fuel when fitted with an electronic 

controller governor. The first LNG carrier using dual fuel gas turbine engines was 

the 29,000 m3 cargo capacity Gas Turbine Ship (GTS) Lucian in 1974 

(Mensonides, 2006). Gas turbines may be attractive because of their size which 

is generally small and compact. This will reduce the engine room volume and 

could increase the cargo capacity within a given hull (Lee and Michalski, 2002). 

According to Puntis (2002) this form of propulsion generally has a 42% thermal 

efficiency, which is higher than that of steam turbines and nearly equal to that of 

an ICE. Nevertheless, this type of engine has some disadvantages such as 

higher capital cost, the use of more expensive fuel, such as marine diesel 

compared to common heavy fuel, and also requires specialised personnel 

(Makris, 2006). The two main suppliers in this field are Rolls Royce which 

produce the MT30 system and General Electric (GE) Transportation with its 

LM2500 series (MR&AM, 2005b). Research to improve their thermal efficiency 

has continued in recent years and one of the ideas that is currently being pursued 

is that of the recovery of the normal heat loss from the gas turbine exhaust 

through a Heat Recovery Steam Generator (MR&AM, 2005a). 

 

 

 Electric Propulsion  

 

 

An electric propulsion system vessel entered the world-wide LNG carrier fleet in 

November 2006 (Castel and Sainson, 2008). This form of propulsion requires a 

reliable power generating system which can, for example, be achieved by having 

a multiplicity of diesel-electric generators.  Electric propulsion for an LNG carrier 

may be a good idea because the generators which power the propulsion system 

at sea, in port can be used to run cargo pumps while the cargo is discharged. 

Since all propulsion engines that have been mentioned earlier are capable of 

turning electrical generators to provide electricity for the actual propulsion 

equipment, their particular advantages and disadvantages are unavoidable in 

their application within the actual overall propulsion system.  
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This integrated electric propulsion, for example, the combination of gas turbine 

and steam turbine usually referred to as COGES (Combine Gas Turbine Electric 

and Steam Turbine), has several advantages in terms of flexibility, efficiency and 

space reduction (Dimopoulos and Frangopoulos, 2008). On the other hand, this 

power system has drawbacks including its higher initial installation costs 

compared to other propulsion systems (Manuelle et al., 2006; Kuver et al., 2002; 

Lee and Michalski, 2002; Sekula, 2002). 

 
A comparison among the alternative prime movers for LNG carriers is given in 
Table 2-3. 
 
 
Table 2-3: Prime Mover for LNG carrier Propulsions 
 

Prime 

mover 

Configuration Fuel 

used 

BOG Transmission Electric Power 

handling Back Up 

Steam 

Turbine 

Two Boilers 

with HP & LP 

Turbines 

HFO 

&/or 

Gas 

Burning in 

Boiler 

Steam 

Dumping 

Mechanical drive 

through reduction 

gear 

2 turbo- 

generator and 1 

or 2 diesel 

generator 

 

Slow 

speed 

diesel 

 

1 or 2 slow 

speed diesel 

HFO Reliquefaction Not 

Required 

 

 

Direct drive 

 

Usually four 

diesel 

generators 
HFO 

&/or 

Gas 

Burning in the 

engine 

Oxidizer 

 

 

 

Medium 

speed 

diesel 

 

Combine HFO 

& dual fuel 

diesels 

 

 

HFO, 

Gas or 

MDO  

 

Burning in the 

dual fuel 

engines 

 

 

Oxidizer 

 

Electric drive 

through slow speed 

propulsion motor or 

medium speed 

propulsion motor 

and reduction gear 

or electric with Pod 

 

 

Electric power 

available from 

main generator 

engines  

 

Dual fuel 

diesels 

Gas or 

MDO 

Burning in the 

engine 

Oxidizer 

 

Gas or 

HFO 

 

Burning in the 

engine 

 

Oxidizer 

 

 

 

 

Gas 

turbine 

Simple cycle 

gas turbine 

usually one 

propulsion 

turbine and one 

auxiliary 

turbine 

 

 

Gas or 

MGO 

 

Burning in the 

propulsion 

and auxiliary 

turbine 

 

 

Oxidizer 

 

Electric drive 

through slow speed 

propulsion motor or 

medium speed 

propulsion motor 

and reduction gear 

or electric with Pod 

 

Electric power 

available either 

from main gas 

turbine or 

auxiliary gas 

turbine. One 

diesel generator 

engines as back 

up. 

Combined Gas 

turbine and 

steam 

 

Gas or 

MGO 

Burning in the 

propulsion 

and auxiliary 

turbine 

 

Oxidizer 

  

Source: Makris, 2006 
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Propulsion systems for LNG carriers have experienced a number of changes 

over the years. These changes generally have improved the overall performance 

of the system, such as by having a higher thermal efficiency. Each of the various 

types of propulsion engines has its own advantages and limitations, thus 

considerations to select the most appropriate propulsion system for a new LNG 

carrier should not only focus on engines having a high thermal efficiency, but also 

on other factors including the size of the carrier which influences the total 

hydrodynamic resistance of a ship’s hull (as mentioned in the power prediction 

subsection). This resistance will determine the power requirement of the carrier 

according to its mission profile. However, increases in power requirement 

eventually would result in increases both the capital and operational costs and 

thus reduce the annual profit returns.    

 

 

2.2.6. Mission Profiles 

 

Mission profile is clearly not a component of the LNG carrier itself but is an 

essential ‘operational’ aspect which is a virtual component of the ‘system of 

systems’ approach. The Mission Profile can be defined as the process of 

transferring a given amount of cargo from port A to port B within a specific time 

period for a given price (Veenstra and Ludema, 2006). For LNG carriers, the 

destination is stated in the contract and is binding between the exporter and the 

importer. The following are some examples of contracts between two countries: 

 

 Contract between Trinidad & Tobago and the United States of America 

initiated on 4th November 1999, for the supply of 82 Billion Cubic Feet LNG 

per year (~2.3 Billion Cubic metres per year) over a period of 22 years. 

  Contract between Nigeria and the United States of America, created on 

15th June 1992, for the supply of 28 million British Thermal Units per year 

(~0.8 Billion Cubic meter per year) over a period of 20 years.  

 Contact between the Sonatrachi Amsterdam B.V. and Trunk line LNG 

Company was made on 26th April 1987, for 3,300,000,000 million British 

Thermal Units total or 165,000,000 million British Thermal Units per year 

(~4.7 Billion Cubic metre per year) over 20 years (USDOE, 2009).  

 



Chapter 2: LNG Transportation System – Review of Literature  

MdRedzuanZoolfakar   42 

Clearly the numbers, size and the speed of the carriers (assuming that all are to 

be identical, new construction vessels) must be calculated in order to fulfil the 

agreement stated in the contract and to avoid potential penalty charges due to 

any delays in delivery of the cargo. All these parameters need to be considered 

holistically because they are interrelated. Additional focus on the potential 

operating routes is required in order to satisfy or meet existing and anticipated 

future international and local rules. The major current LNG routes in the world-

wide natural gas market are shown in Figure 2-10. 

 

 
Source: (Grant, 2009) 

Figure 2-10: Natural Gas Market 
 

In 2009, the natural gas import market was concentrated in three main areas, 

which were (1) Japan, Korea and China, (2) Europe and (3) America (Grant, 

2009).  The Middle East, South East Asia and Australia, North and West Africa, 

and Trinidad are the major exporters of LNG (EIA, 2009). Currently, the main 

trade routes are: from the Middle East to Japan, Korea, China, Europe and 

America; from South East Asia & Australia to Japan, Korea and China; from 

North & West Africa to Europe and America; and from Trinidad to America, 

Europe and Brazil.  
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Consideration of changes in the worldwide environment is clearly a significant 

factor for the shipping industry. The emission of exhaust gases resulting from the 

burning of all types of fossil fuel has produced many problems including global 

warming and producing acid rain. Other environmental and pollution issues 

related to ships include: loss of cargo due to collisions, grounding  storage 

problems and the discharge of untreated ballast water (Veenstra and Ludema, 

2006). In order to protect the natural air and sea environment, several 

international rules have been created, such as the definition of the SECA, e.g. the 

North Sea and Baltic Sulphur Emission Control Area. These regulations will affect 

transiting LNG carriers especially those operating from the Middle East and Africa 

in order to deliver LNG to North European countries.  

 

Other constraints related to shipping mission profiles include hull size and speed 

restrictions when operating on specific routes, such as the Suez Canal (Perakis, 

2002). All of the constraints that affect the mission profile of LNG carriers may 

require additional equipment, such as scrubbers to reduce the sulphur content 

from exhaust gases, which eventually increase the capital cost of the carrier and 

also affect all other ship systems and factors such as numbers of vessels 

required for the fleet when the physical size of the carrier is in some way 

restricted. It will also increase the operational costs when restricted speed 

regulations must be followed.   

 

 

2.3. Life Cycle Costs Analysis 

 

Life Cycle Costs (LCC) analysis is an economic evaluation technique that 

determines the total cost of owning and operating a product over a given period 

of time (Huang, 2006; Mearig et al., 1999). In this case it involves the whole life of 

an LNG carrier starting from the design stage through to the final scrapping of the 

carrier, from an economic point of view. Since all of the components in an LNG 

carrier contribute to all costs, they need to be grouped accordingly for a better 

understanding of their consequences.  
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Wijnolst and Wergeland (2008) have divided this method of economic evaluation 

study into four groups: (1) capital costs which cover the total cost of the carrier 

before sailing and any interest payments required to finance the ship, (2) 

operating costs which cover all of the necessary costs that enable the ship to sail 

including man power, (3) voyage costs which cover actual sailing costs such as 

fuel and port charges, and (4) cargo handling costs which cover costs to load and 

discharge the cargo. However, IOCS (2005), have included operating costs, 

voyage costs and cargo handling costs into fixed and variable costs categories. 

They defined fixed costs as those expenses that produce services but do not vary 

with level of volume of cargo transported, and variable costs as being those items 

which do vary with the volume of cargo transported.  

 

In this thesis, the capital costs or initial expenses are all of the costs that are 

incurred prior to the commissioning and entry into service of the LNG carrier. 

Meanwhile, other fixed and variable costs, or future expenses, are all costs that 

are incurred after delivery of the vessel. Examples of capital, fixed and variable 

costs are as shown in Table 2-4. 

 

Table 2-4: Capital, Fixed and Variable Costs for LNG carrier 

 
Capital Costs Fixed & Variable Costs 

Costs of Hull Port Costs 

Costs of cargo Containment System Total Crew Costs 

Costs of Reliquefaction Plants Cargo Capacity 

Costs of Propulsion Units Vessel Speed 

Costs of Auxiliary  cargo Machinery Round Trip Distance 

Overhead Costs Days in Service/year 

Taxes, fees and insurances Days in Port/trip 

Accommodation Costs Energy Consumption/day 

Percentage of Rate of Return Costs of Energy 

Economic Life Spare Parts 

 Dry Docking, Inspection & Maintenances 

 Specialist Costs 

 Class Society Fees 
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The ‘fixed and variable costs’ in this thesis are referred to as operational costs. 

As illustrated in Table 2-4, all main system components in an LNG carrier 

contribute significantly to the total sum of the LCC. In order to reduce capital and 

operational costs of the LNG carrier, first each of the main components has to be 

examined in order to reduce its own capital and operational costs through 

improvements in its main sub-components. Since all the ship system components 

are interrelated, the combination that produces lowest combined overall capital 

and operational cost will be selected. This target combination can be obtained 

with the help of decision making tools. 

 

The relationships between the LCC and all components of a LNG carrier are 

shown in Figure 2-11. This figure illustrates the overview of all the components 

that are integrated in constructing an LNG carrier. Since the LCC for each 

component varies according to their purpose; three categories have been 

specified. They are, (1) System Life Cycle Costs, (2) Machinery Life Cycle Costs, 

and (3) Other Ship Life Cycle Costs. Everything related to costs within the system 

is placed in the System Life Cycle Costs. The major cost contributions come from 

the operating profile which receives instructions from the Operating Doctrine and 

Mission Profile. 

 

Meanwhile, the Machinery LCC calculates all costs that involve the machinery on 

board the vessel. Fuel, maintenance and crew are the main costs in this 

category. The Other Ship LCC category will handle other costs that do not belong 

either to system or machinery LCC. This includes the Regulatory Body which 

involves taxes, fees and insurance.  

 

It is clear that every component of an LNG carrier is interrelated to the others. 

Therefore any changes, regardless of the size, will contribute to costs variation. 

This phenomenon creates a fragile situation for the ship-owner in handling the 

total costs. Hence a holistic approach to select the optimum combination of the 

components at the preliminary stage toward the objective given is very crucial. 
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No of rooms 

Size of rooms 

Furniture 

Ship Design Variables: 

Compartment Systems 

Capacity & No of Tanks 

Financial Conditions 

Accommodations 
Approved by Regulator -

Body 

Tank & Hull 

Dimensions  
 

 

Ship 

Dimensions 
 

 

No of Crew 

 
 

   No96 

   MARK III 
   CS1 

   MOSS 

   STB 
   Type C 

Type of insulation material (inner and outer) 

Thickness of Insulation (inner, outer and 

plywood) 

Taxes & Fees 

Insurance 
Class Society 

Overhead costs 

Operating Profile: 

Distance/Routes 
Operating Speed 

Cargo Handling 

Man Power 
Port Costs 

Dry Docking Costs 

Financial Conditions 
 

Insurance 

Class Society 
 

Trips

/year 
 

 

Port time 

 
 

Sea time 

 
 

Maintenance 

 
 

Fuel 

Consumption
s 

 

 

Machinery Design Variables: 

Power 
Type of Main Propulsion units 

Aux. Machineries 

Control Characteristics 
Maintenance Characteristics 

 

 

Crew Cost 

Maintenance Cost 

Fuel Cost 

Plan Maintenances Schedules  

Repair Spare Parts 

Specialist 

Nationality 

Skills 
 

Machinery Cost 

Machineries 

Life Cycle 

Costs 

Steam Turbine & Boiler 

Gas Turbine 
Internal Combustion – 

Low & Medium Engine 

Combined Systems 

Type of fuel used 

Specific fuel consumption 
Size/weight 

Thermal efficiency 

Emission Gas  
Reliability & Flexibility 

Reliquefaction Plant 

Energy   

Maintenance Cost 
 

 

Plant Cost 
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Of Ships 
 

    Ship Cost 

 
 

System 

Objectives 

& Requirements 

Operating Doctrine 

Mission Profile 
 

Payload  

Capacity 
 

 System 

Life 

Cycle 
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Operation Costs 
 

 

Power 

Requirement 
 

 

Other Ship 
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BOG Calculation 

 Sea and Air Temperatures 

Figure 2-11: Relationship between Components of LNG carrier with Life Cycle Costs 
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2.4. Timeline of LNG carriers to Date 

 
Figure 2-12 illustrates the timeline of LNG carrier development since the time of 

the launching of the first vessel of this type. The number of LNG carriers has 

increased to 355 vessels as of March 2011 in less than five decades. Over a 

similar period of time the liquid capacity of the new typical carrier also has 

increased from 150 m3 in 1962 to 266,000 m3 by October 2008, and it is expected 

to reach 300,000 m3 in the near future (MAN, 2009). This is a result of 

progressive improvements in all of the main components in LNG carriers 

(containment system, hull geometry, reliquefaction plant, power prediction, 

propulsion system, and mission profile) that have taken place in parallel.  

 

Figure 2-12: Illustration of Major LNG carrier developments 
 

As has been mentioned throughout this chapter, each of the individual 

components in an LNG carrier is interrelated with the other ‘system’ components. 

There is no doubt that improving each component is important but improving one 

component without considering the possible consequences on other related 

components will not necessarily produce better results for the whole ship system, 

the ‘system of systems’. The best way to handle this is by linking each of the 

components in a manner that creates a single overall system such that an 

improvement or modification in one component of the ‘system of systems’ will 

result in an overall improvement. The problem with attempting this approach, 

however, is that each of these components, individual systems, does not 

communicate to the others with a similar interface language which makes it 

challenging to link them with each other.  
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One possible solution to this wider problem is to transform the physical behaviour 

of each of the components into an equivalent numerical formula and to use these 

mathematical formulae as a platform for all of the components in the overall 

system to communicate with each other. By doing this, any changes in input 

variables to any one component will directly affect all related output variables 

simultaneously.  

 

A ship is a complex, multifunctional system and, therefore, there are many criteria 

and decisions involved in selecting items in each component for a new vessel at 

the preliminary design stage. This is because the decisions that are made at the 

preliminary stage will ‘lock’ into the subsequent design development the eventual 

total costs of the vessel, thus making it an extremely important step in the overall 

process. From the literature review it became evident that the majority of previous 

studies were carried out using conventional design iterations but with no defined 

preliminary systems integration stage. Papanikolaou (2009) discussed methods 

to improve cargo carrying capacity, safety, powering and environmental issues by 

using genetic algorithms to perform multi-objective optimisation for ship design. 

However this work was at an early stage and no results were presented. A further 

limitation of the paper with respect to the present work was that it did not explain 

the selection criteria for optimum combinations of LNG carrier components.       

  

Since each of the components in an LNG carrier are subject to a series of 

improvements in order to achieve given targets, most of the time the targets 

contradict each other thus creating further problems to be solved. Compromises 

between individual component performances cannot be avoided because of their 

interrelationships as shown in Figure 2-11. Decision making techniques will thus 

need to be used in order to optimise these sub-optimal components as 

subsystems within the overall ship system.  

 

The use of decision making techniques at the preliminary stage of the design of 

LNG carriers is currently virtually non-existent, thus, this gives the author the 

opportunity to contribute to the body of knowledge in this area. This study is 

focused on the development of techniques to enable the designer to efficiently 

select the principle components required for LNG design at the preliminary stage.  
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2.5. Chapter summary 

 

Chapter 2 has presented an overview of the LNG transportation system. Two 

major aspects that have been discussed in detail, the transport mechanisms for 

natural gas, and the main system components of an LNG carrier. The first aspect 

was an explanation of the methods of transporting the natural gas, their 

comparisons and the challenges. Basically there are many methods of 

transporting natural gas; however the most common are LNG carrier and 

pipeline. Other methods focus more on providing natural gas where LNG carriers 

or pipelines are not available due to economic reasons or limitations in facilities. 

All methods have some drawbacks but an LNG carrier offers several advantages 

over other transport systems for natural gas, including flexibility. 

 
An LNG carrier is a complex system, where many subsystems are involved and 

overlap with each other. Thus an LNG carrier may be termed a ‘system of 

systems’. The main systems/components of an LNG carrier can be classified into 

six groups. A comprehensive discussion of the six main system components of 

LNG carriers is the second aspect that has been discussed in detail. The LNG 

carrier systems/components in this thesis refer to the containment systems, hull 

geometry, reliquefaction plant systems, power prediction variables, main 

propulsion units, and the mission profile variables. The functions, types, strengths 

and weaknesses of each component were explained.  

 
As the aim of this study was to develop a decision making philosophy for LNG 

carriers to be used at the preliminary stage, the overall ship design process for 

this type of vessel needs to be understood clearly. Failure to understand the 

relationships between all of the principal components with the given targets of 

cost minimisation can jeopardise the whole idea and concept of systems 

integration of this thesis. The following chapter will explain the detail of the 

preliminary design process for LNG carriers. 



Chapter 3: Preliminary LNG carrier Design Process 

MdRedzuanZoolfakar   50 

3. Preliminary LNG Carrier Design Process 

 

Objectives 
 

The overall aim of this chapter is to evaluate the basic principles of the 

preliminary design process for the main components of LNG carriers. 

 

The specific objectives of this chapter are thus as follows: 

 

 To investigate the relationship between the LNG carrier main components,  

 To study the effects of LNG carrier fleet sizing,  

 

3.1. Introduction 

 

The primary aim of any business is to maximise the profit for a given level of 

effort. This is true also for LNG transportation where any possible reduction in 

capital and operational costs will attract ship-owners attention. The main strategy 

for achieving this is to select the optimal combination of the main components of 

the vessel according to the given objective. There are no fixed regulations or 

formulae that need to be applied in choosing the right combination of 

components; however several techniques have been developed over the years to 

assist with the development process in ship design e.g. the ship design spiral. 

The decision making techniques for the selection of these main components 

need to be performed at the preliminary stage because once the main 

components have been selected, the overall costs will be locked-in and 

constrained over the ship’s life span. Modification of the selected components 

can be done at a later date; however it would come with a considerable cost and 

programme delay. The modification would not only involve buying a new 

component, it also requires re-arrangement of the ship’s layout in order to 

accommodate the new component. This therefore, requires additional capital 

costs which would potentially conflict with the ship-owners interests.  
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There are two main elements to the preliminary design stage, namely (1) 

technical form and arrangement design, and (2) associated cost estimation. It is 

hard to dispute the influence of costs on the ship-owner because they relate 

directly to profit. These costs can be grouped as capital and operational costs. 

Sometimes, components may be comparatively cheap to purchase and install. 

However, in order to maintain these components, an accumulative large sum of 

money throughout the ship’s life span may be required. In order to solve this 

problem, the first element of the preliminary design, known as technical form and 

arrangement design would come into play. In terms of technical design, each 

main component, with their feasible alternatives, will be investigated given their 

advantages and limitations. Following this, a complete study should be carried 

out to understand the pattern of relationships between all components. By 

undertaking this investigation, the general directions to achieve the given cost 

targets can be narrowed down.  

 

 

3.2. Relationship between the main components of an LNG 

carrier 

 

An understanding of the relationship between all components of the LNG carrier 

will illustrate the sophisticated nature of this type of vessel. It would also give a 

rational explanation of the results, which can predict the trend of the relationships 

when there are changes in the selected parameters. Two main parameters have 

been selected for investigation, namely ship’s size (which represent the amount 

of cargo volume) and speed as they must be selected in order to ensure the 

required LNG delivery schedule. Both of these parameters would produce high 

impacts on the other components. The results of this investigation are presented 

in the following sections which are based on the data collected from the holistic 

modelling of an LNG carrier which has been developed and will be explained in 

the next chapter.  
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3.2.1. The Effect of Overall Ship Size 

 

As new LNG carrier designs are getting larger, it is interesting to understand the 

relationship between their size and the other main components of an LNG carrier. 

The following bullet points highlight the relevant topics that need to be 

investigated.  

 

 

 Relationship with the type of Containment System 

 

 
 
Figure 3-1: The effect of size of an LNG carrier and the type of Containment 
System on Capital Costs 

 

As the size of the ship increases, the LNG tanks also get larger because they are 

part of the hull structure. Thus, the amount of material used to construct this 

containment system also increases. Since the cost of containment system is 

heavily dependent on the amount of the material used, the cost of this system will 

naturally increase. Furthermore, as the capacity and size increase, so also does 

the man-power required to construct and install the containment system.   
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A comparison of No 96, MARK III, CS1 and Moss containment systems, which 

are the most commonly used systems for LNG carriers, indicates that the MARK 

III has the lowest cost of construction. Thus this gives advantages to the MARK 

III compared to other containment systems for the ship-owner because it will help 

to minimise the vessel capital cost. The CS1 system is second, with an 

approximately seven percent higher cost than the MARK III. This is due to the 

material used for the primary barrier. The price of a square metre (m2) of INVAR 

of 0.762 mm thickness was £185 as of July 2008 (Alloy, 2008) hence it is not a 

surprise that the cost of a containment system using INVAR as a barrier is much 

higher than those using other materials.    

Figure 3-1 shows that as the size of the ship increases, the capital costs also 

grow accordingly. Although the ship-owner is always searching for possible ways 

to reduce the cost of the ship, selecting the MARK III as the lowest cost 

containment system is not necessarily the right ship system decision. For 

example, the MOSS type of containment produces the minimum percentage of 

BOG per day as illustrated in Figure 3-2. This is because the insulation materials 

and geometry limit the external heat penetration into the cargo tank. Thus it can 

be seen that careful consideration of all other parameters is a better overall 

system approach before making the decision on the containment system 

because all of the components in an LNG carrier are interrelated with each other.   

 

Figure 3-2: The effect of size of an LNG carrier and typical percentage of BOG 
per day 
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 Relationship with the Reliquefaction Plant 

 

 

 
Figure 3-3: The effect of size of an LNG carrier and the Reliquefaction Plant on 
Cost 
 

Figure 3-3 shows the variation of the capital and typical operational costs for the 

reliquefaction plant. The cost of both items increases slowly as the size of the 

vessel increases. The reliquefaction plant is used for the condensation of BOG, 

since the production of this gas cannot be eliminated as discussed in the 

previous chapter. As the capacity of the cargo increases, the surface area of the 

tanks also increases. As a result, more BOG will be generated and it is necessary 

to remove this from the cargo tanks, especially for membrane tanks which do not 

tolerate any increase in internal pressure.   

 

Since more BOG needs to be liquefied, a larger capacity reliquefaction plant is 

required; hence the capital costs increases with vessel size. Moreover, the 

energy that would be required to perform the reliquefaction process would also 

increase. This energy is required to run the various pumps and compressors. The 

source of the energy is either electricity or steam and the costs depend on the 

size of the plant. If a larger plant is required, clearly more energy would be 

required; hence, higher operational costs are expected as indicated in Figure 3-3.  
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There are four principal factors that influence the production of BOG; these being 

the prevailing exterior air and sea temperatures, the size of the cargo tanks and 

the efficiency of their insulation. Two major components of LNG carrier, namely 

the containment system and the size of the vessel are the only parameters that 

can be controlled, since the exterior air and sea temperatures are uncontrollable. 

Since size of the vessel affects almost all of the main components of an LNG 

carrier, the decision to select the type of reliquefaction plant must be based on a 

comprehensive study of all of the components because they are interrelated. 

 

 

 Relationship with the Propulsion Units 

 

 

 
Figure 3-4: The effect of size of an LNG carrier and the Propulsion Units on Costs 
 

Where: 

 Slow is a slow speed internal combustion engine, 

 Medium is a medium speed internal combustion engine, 

 GT is a gas turbine engine, 

 ‘C’ is the capital cost, and 

‘O’ is the operational cost per year. 

 



Chapter 3: Preliminary LNG carrier Design Process 

MdRedzuanZoolfakar   56 

 

It is clear from Figure 3-4 that as the size of the ship increases, both the capital 

and the operational costs also grow accordingly. The cost difference for each 

type of prime mover is due to the variation in engine prices, and, for example, the 

specific cost per kW of the slow speed engine is the highest when compared to 

both medium speed engines and gas turbine engines (Woud and Stapersma, 

2002). Hence, the gas turbine engine may be selected by the ship-owner 

because it is the cheapest prime mover for an equal power requirement 

according to the size of the vessel. However, other factors also need to be 

considered, such as thermal efficiency (as mentioned in the previous chapter), 

because the fuel consumption will vary accordingly with it. The higher the thermal 

efficiency, the lower the fuel consumption for that particular prime mover 

however, the gas turbine engine uses marine diesel fuel, which is more 

expensive than heavy fuel oil, and this makes its operational costs higher 

compared to the other options for the same required power output. Since the life 

span of the typical LNG carrier is about 40 years, the cumulative total operational 

costs will become very significant. Thus, the selection of the propulsion units 

must consider all the parameters holistically. 

 

 Relationship with the Hull geometry 

 

 

Figure 3-5: The Effect of size of an LNG carrier and the Hull Geometry on Costs 
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Where: 

 Single is a single skeg, 

 Twin is a twin skeg, 

 ‘C’ is the capital cost, and 

‘O’ is the operational cost. 

 

Figure 3-5 compares the costs of an LNG carrier in single and twin skeg designs 

within the ship’s cargo volume range of 120000 to 250000 m3. It can be clearly 

seen that the costs for both single and twin skeg increase with size.  

 

Since the size of the ship’s hull is a reflection of the size of the overall 

containment system, increases in the ship size will increase the production of the 

BOG and hence it will increase the power required for the reliquefaction plant to 

re-liquefy this gas. Moreover, as fuel consumption is a function of the power of 

the engine, it will also increase. All of these factors cause the operational costs to 

rise. 

 

Selection of the hull size and geometry is complicated because it involves all of 

the LNG carrier main components, thus any decision requires a comprehensive 

understanding of this complex system of systems.  

 

 

 Relationship with the Power Prediction 

 

 

The Power Prediction method is an analytical tool that is employed in order to 

calculate the propulsive power requirement for a new vessel based on 

consideration of all of the components that are related to it. There are many 

variables involved in this calculation; however, the main selected variables are 

the sailing speed and the total hydrodynamic resistance of a ship through a 

seaway. As the size of a vessel increases, the total resistance of a ship would 

also increase, hence the result from the power prediction will rise accordingly as 

shown in Figure 3-6. 
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Figure 3-6: The effect of size of an LNG carrier and the total Power Requirement 
 

 

Since the power prediction can be obtained by multiplying the total hull and 

appendage resistance by the service speed of the ship, allowing for various 

transmission and propeller efficiencies, the selection of the main propulsion 

machinery system can then be started through the main engine database, which 

has been developed for this study as a look-up table. Selection of the service 

speed of the vessel will be discussed in detail in the next bullet point. However, 

before selection of the main propulsion machinery can take place, all of the 

related components in the LNG carrier must be checked for any conflict of 

interest between them in order to achieve the given objectives. One possible way 

to resolve this conflict is by making some compromises between the various 

system components. 
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 Relationship with the Speed 

 

The overall size of the ship (in terms of its required cargo carrying capacity) is 

another parameter that has a significant impact on costs with changing speed. 

The relationships between service speed and hull size for slow speed internal 

combustion engines (other engines having a similar pattern of graph) are shown 

in Figure 3-7. 

 

It can be seen from Figure 3-7 that as the cargo capacity and overall size of the 

carrier increase, the engine power that is required to propel the ship according to 

the mission profile, specifically the service speed, also increases. This eventually 

increases the capital cost because the cost of the main propulsion machinery is 

directly proportional to the required  power (Woud and Stapersma, 2002). Hence, 

designing for the minimum acceptable service speed of the vessel will reduce the 

capital cost, because it reduces the amount of power required from the main 

engine. However, it will require a longer time to deliver the LNG cargo. This 

eventually may require an additional vessel in the fleet in order to deliver the 

contracted volume of cargo on time. However construction of an additional vessel 

is not a very attractive idea because it will end up with an increase in total vessel 

costs.  

 

 

Figure 3-7: The Effect of Size of an LNG carrier and the Speed in knots on 
Capital costs 
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The ship’s speed needs to be minimised, within acceptable limits, in order to 

reduce the capital and operational costs of the LNG carrier (a discussion on the 

operational costs of LNG carriers with respect to speed is given later in this 

chapter). However reducing the ship’s speed will affect other main components of 

the LNG carrier, which creates a dilemma. Thus, selecting the optimal service 

speed must take into consideration all of the given targets.  

 

 

3.2.2. The Effect of Ship Speed 

 

 

Normally a ship is designed to continuously cruise at a particular speed subject to 

weather and sea state conditions. There are many parameters that contribute to 

the selection of an appropriate service speed. The following discussions will 

focus on these relationships. Again the following graphs have been created with 

the aid of the simulation program that was employed as part of this research, 

except for Figure 3-8. 

 

 

 Relationship with the Containment system and the Reliquefaction 

plant 

 

 

There is no specific relationship between the characteristics of the containment 

system and the service speed of the vessel. The containment system is where 

the LNG is stored until it is discharged at the delivery port. While transferring LNG 

from one port to another, BOG is generated due to either heat penetration 

through the insulation, or mechanical energy gain from wave induced ship 

motions. The total amount of BOG that is required to be re-liquefied and thus the 

cost in energy required is highly dependent on the number of days at sea. The 

rate of BOG generation per day is not uniform and will largely depend on external 

weather conditions which can vary. The number of days at sea can clearly be 

reduced by increasing the speed of the ship.  
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Assuming an LNG carrier with 150000 m3 total cargo capacity is sailing from 

Malaysia to Japan; with the containment system managing to maintain the BOG 

production level at 0.15% per day. If operating at 20 knots, this vessel will reach 

Japan within 5 days with a total of 898 m3 of LNG required to be condensed 

within this period by the reliquefaction plant. However, if the ship speed increases 

to 23 knots, the number of days at sea will be reduced to 3.5 days, and hence 

only 562 m3 of LNG would require re-liquefying. This simple calculation is 

illustrated in Figure 3-8. Thus the faster the ship sails, the lower the power 

consumption required for the reliquefaction plant. A given reliquefaction plant can 

re-condense a certain amount of BOG each and every day at sea. If this 

matches, or slightly exceeds, the maximum daily rate of BOG production then the 

capital cost is unchanged with speed, and the operational cost is fixed with speed 

per day and thus increases in proportion to the voyage duration in days. 

 

 
Figure 3-8: The effect of Boil-off Gas and the Number of Days 
 

The total power calculation for the reliquefaction plant may then be translated into 

the cost associated with meeting the projected average daily demand. These 

costs are added into the overall operation costs. Since the reliquefaction plant’s 

power consumption depends on the volume of BOG produced in a given period 

of time and with assumed environmental conditions, which are interrelated with 

the other components of the LNG carrier, the operational costs will thus vary 

accordingly. The actual power consumption of this plant can only be estimated 

when all the other main system components have been considered and selected. 
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 Relationship with the Propulsion units 

 

 

 

 
Figure 3-9: The effect of speed of an LNG carrier in knots and alternative 
Propulsion units on Operational costs for a given size of vessel 
 

Where: 

 Slow is a slow speed internal combustion engine, 

 Medium is a medium speed internal combustion engine, and 

 GT is a gas turbine engine. 

 

Figure 3-9 illustrates typical variations of operational cost with three types of 

propulsion units between 15 and 23 knots. The three prime movers that have 

been considered are slow and medium speed internal combustion engines, and a 

gas turbine engine. Although the steam turbine is one of the main engines that 

are used for LNG carriers, its low thermal efficiency which is less than 30% and 

its large space requirement for two main boilers have made this type of engine 

less attractive in recent years. The steam turbine is only likely to regain its 

popularity for LNG applications if its thermal efficiency can be increased to be 

similar or better than the other types of engines. This may be possible given the 

ongoing research and development currently being undertaken.    
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Overall, the dimensions and costs of all engines increase as the speed of the 

vessel increases. However, slow and medium speed internal combustion engines 

showed a more gradual increase in their operational costs than did the gas 

turbine engine for increasing vessel speed. 

 

Specifically, as the speed increases, more power and thus more fuel is required 

and hence this increases the operational costs. Furthermore, the gas turbine 

uses marine diesel which is more expensive than heavy fuel oil, which makes the 

increase in costs even more significant. However, a gas turbine requires a 

relatively smaller physical space and hence engine room and therefore it can 

increase the amount of cargo that can be transported, which can help to justify its 

use as the main engine for LNG carriers of a given hull size. 

 

Thus selecting the main propulsion machinery for an LNG carrier is not a simple 

task because it impacts on all the other main components. This is due to the 

complex relationship between the components, thus, the choice of the propulsion 

units for a new carrier must involve a full study of the whole spectrum of LNG 

transportation. 

 

 

 Relationship with the Hull geometry 

 

 

The external surface shape of the hull is a significant parameter for the LNG 

carrier costs because it directly influences the total added resistance of the 

hydrodynamic form which leads to the estimated power required to propel the 

vessel at the required service speed. Since the ship floats on water, this added 

resistance cannot be avoided and it varies according to the ship’s speed. The 

relationship between the number of propellers and the ship’s speed is shown in 

Figure 3-10. 
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Figure 3-10: The effect of Speed of an LNG carrier, in knots, and the Hull 
Geometry on Costs 
 

Where: 

 Single is the single skeg, 

 Twin is the twin skeg, 

 ‘C’ is the capital cost, and 

‘O’ is the operational cost. 

 

Figure 3-10 shows the effect of the ship’s speed and the type of hull geometry on 

costs. As the speed increases, both the capital and operational costs per year 

also increase. Since an increase in the speed requires additional propulsive 

power, and this power is related to the cost of the engine (Woud and Stapersma, 

2002) this will thus increase the capital costs, as illustrated in Figure 3-11. 

Similarly this additional power requires additional fuel which will also increase the 

operational costs due to the increase in fuel consumption. These cost increments 

are similar to those that have been described by Perakis (2002) and IOCS 

(2005). However, an increase in speed will decrease the journey time and hence 

the fuel consumption per trip will need to be considered, rather than the daily rate 

of fuel consumption.  
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Figure 3-11: The effect of Speed of an LNG carrier in knots and the Hull 
Geometry on Power in MW 
 

On average the capital costs for the twin skeg is three to five percent lower than 

that for a single skeg. Similarly, the operational cost for the twin skeg is eight to 

nine percent lower than that for the single skeg. This reduction agrees with the 

research carried out by Jin et al. (2006) and Kim and Lee  (2005).    

 

Although the twin skeg hull can minimise capital and operational costs, this type 

of hull form might have conflicts with the size of the ship and other LNG carrier 

components. Therefore, a holistic approach is required in order to handle this 

problem.  

 

 

 Relationship with the Power prediction 

 

 

The two main parameters that are involved directly with the power prediction are 

(1) required service speed of the ship and (2) total resistance of the ship through 

a seaway. The total resistance of a ship through a seaway has been discussed 

previously through the relationship with the effect of ship size (the stern shape 

will differ between single and twin skeg). For a ship’s performance, as the speed 

is increased, the power required will increase as well as, shown in Figure 3-12. 

skeg 

skeg 
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Figure 3-12: The effect of Speed of an LNG carrier in knots on the Total Power 
Required 
 

Like any type of mechanical transportation system, once the accelerator has 

been pressed, the speed of the engine will increase. This is due to the increase in 

fuel in the combustion chamber and more energy being converted and eventually 

this energy will be transferred to turn the propeller or wheels.  As the speed 

increases, more fuel will be burnt and hence more power will be produced. 

However, each engine has its own limitations; thus selection of service speed for 

a vessel must consider not only engine limitations but other factors such as the 

size of the ship and how this will interact with all the other main components. 

 

In conclusion, based on the effects of the main components and the relationships 

between them, it is clear that the decision making process will never be 

straightforward. Moreover, in a real situation, such as for LNG transportation, the 

ship-owner must have a number of LNG carriers in order to accomplish contract 

requirements in a given time period. Thus, it creates another challenge to the 

ship-owner to efficiently manage the fleet. Failing to have the correct size and 

capacity of fleet will end up failing to maximise the profits of the company. The 

following subchapter discusses the structure and nature of an LNG carrier fleet.   
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3.3. LNG carrier Fleet 

A fleet consists of a group of, usually similar, carriers that collectively transport a 

fixed amount of cargo between two ports over a fixed period of time and for a 

fixed cost (Perakis, 2002). The number of carriers in the fleet and their capacity is 

heavily dependent on the amount of LNG to be delivered annually, as stated in 

the contract. The number of carriers can vary according to the capacity and 

speed of the vessels (Lamb et al., 2004). In addition, fleet operations, scheduling, 

routing, scheduled maintenance and fleet design can contribute to the 

development of the overall configuration of a shipping fleet (Perakis, 2002). 

Specialised long haul carriers with known operating routes, such as LNG 

transportation, depend on the following factors: the ship’s daily running costs, 

voyage costs, costs at sea, costs in port and daily lay-up costs (Powell and 

Perakis, 1997), as well as the average number of round trip voyages per year, 

lay-up costs of the carrier and anticipated number of lay-up days per year 

(Perakis, 2002).  

 

In terms of a mathematical formula, the number of carriers in a fleet can simply 

be calculated by dividing the amount of LNG that needs to be delivered in one 

year by the capacity of a single carrier operating in a single average year. This 

assumes that all of the vessels have the same capacity, the same speed, and sail 

the same route, and this is an ideal situation that allows for no down time, either 

scheduled or unanticipated. The total amount of LNG that needs to be delivered 

to a specified port in a year can be calculated based on the information stated in 

the contract between the two parties, i.e. the total amount of LNG over the stated 

period assuming a uniform delivery per e.g. month. The relationship between the 

inputs and outputs of a fleet size model is shown in Figure 3-13. 

 

 

Figure 3-13: The Inputs and Outputs of the Simplified Fleet Size Model 

LNG quantity/year (m
3
/year) Amount of LNG in the Contract 

  No of Years Need to Deliver in 

Size of Fleet 

or 

No of Carriers 
Cargo/year (m

3
) for a Carrier 
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The amount of cargo that can be delivered within a year long period by a single 

carrier is a function of the number of round trips that are possible per average 

year by a single carrier and its cargo capacity. Since the capacity of an individual 

cargo carrier depends on the size of the ship, the number of carriers will also vary 

accordingly. Meanwhile, the number of trips is a function of the round trip 

distance, the vessel’s service speed, days in both ports per round trip and the 

days in service per year (Buxton, 1976). Speed is a high impact factor on the size 

of the fleet. The faster the ship sails, the smaller may be the size of the fleet or 

the capacity of an individual carrier. However, this will result in an increase in 

operation costs due to the increase in fuel consumption.  

 

Most of the time, the results produced from this model will not be an integer 

number but in reality, there can clearly be no ‘fractions’ of a ship; hence it needs 

to be rounded up or down and analysed on a multi-year basis. The decision to 

round up or down is based on the judgement of the ship-owner. In the case of 

rounding up, the delivery date will be shorter, thus the completion of the total 

volume of LNG delivered according to the contract will end earlier than the due 

date. There is generally nothing wrong with delivery of the goods being earlier as 

long as the customer and its receiving port has no problems or difficulty in 

handling and processing an increased volume of LNG being delivered in a period 

of time, in fact it shows that the shipping company has good size fleet and has 

performed good fleet management. Moreover, they can then charter one or more 

of the ships to another company for additional income. In another scenario, this 

spare time can be a money saver, in unanticipated cases. For example, where 

carriers face problems, e.g. weather and technical, which can result in a delay to 

the delivery of goods according to the agreed schedule. On the other hand, if the 

ship-owner wants to round down the number of vessels, the shortfall in capacity 

can be covered by chartering an additional carrier for a short period of time, or 

sailing at a higher speed, in order to comply with the contract.     
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3.3.1. Fleet optimisation 

 
Definitions of fleet size optimisation vary somewhat, however, the objective is 

generally to find the ideal number of ships to deliver the goods according to the 

contract and to reduce overall fleet costs. According to Powell and Perakis 

(1997), optimisation of an entire fleet is normally based on economic criteria such 

as profitability and income, which is a combination of fleet operations, scheduling, 

routing and fleet design, etc. Christiansen et al. (2004) explained that port fee 

payments per ship, port size limitations, and local and international laws that 

apply to ships’ sailing routes are among the factors that determine scheduling 

and routing decisions which in turn affect a fleet’s size. Wu (2009) categorised 

optimal fleet composition into three groups, namely: labour, fuel and intermediate 

materials (overall operation costs, minus labour and fuel), while List et al. (2003) 

suggested that fleet development is a function of demand, operating network and 

costs. In List’s study, costs referred to fleet ownership costs, fleet operating costs 

and contractual service quality penalties.  

 
However, several studies have been performed using different input variables in 

examining fleet optimisation, such as those by Wu (2009). He used an economic 

model to seek a solution regarding optimal fleet capacity in the Taiwan container 

shipping market. Labour, fuel, capital Investment and a technology index, which 

included the sailing distance, were taken as input parameters. The method was 

used to monitor the performance of the fleet development in three major 

Taiwanese container shipping companies. The results of this study indicated that 

the development of the Taiwan container fleet has improved significantly during 

the past decade.  

 
A group study by List et al. (2003) regarding the robust optimisation of fleet 

planning under conditions of uncertainty, focused on two aspects: (1) future 

demands and (2) the productivity of individual carriers. They suggested that fleet 

development is a function of demand, network and costs. This technique was 

applied to a two-stage stochastic optimisation. Their study developed a solution 

procedure to assess the impacts of uncertainty on fleet sizing development. A 

similar study was reported by Ming et al. (2009) in which they used a Grey-

Markov chain approach in order to model uncertain conditions.  
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It is hard to differentiate fleet size optimisation in terms of operation from a purely 

economic optimisation perspective due to their complex relationships. According 

to Veenstra and Ludema (2006), there are seven relationships between 

operational design and the economic performance of ships: (1) mission definition 

(distance between two geographic points within a given time and price); (2) 

performance and physical parameters including the amount of cargo to be 

carried, transit speed, necessary equipment to handle the cargo, and time for 

loading and unloading; (3) operational deployment (identification of the ship, 

description of route, travelled distance and bunkering locations); (4) operational 

life cycle (i.e. the contract length); (5) utilisation requirements (i.e. sustained 

speed, predicted fuel consumption); (6) effectiveness factors, including berth 

availability windows for arrival in both loading and unloading ports; and (7) ocean 

environments including route, no loss of waste or BOG, and summer and winter 

draught limitations.    

 

A few methods have been used to estimate the operation and capital costs of 

vessels. These include a study by Lee (1999) that used genetic algorithms and 

the Hooke and Jeeves method based codes to minimise the building and 

operation costs. Lee concluded that the operation cost is highly dependent upon 

the operating speed. Dimopoulos and Frangopoulos (2008) have proposed a 

combination of simulation methods and particle swarm optimisation techniques in 

order to solve problems regarding an LNG carrier’s energy systems and the 

associated production of boil-off gas in order to maximise the Net Present Value 

(NPV) of the investment. Turkmen and Turan (2007) have modified the multi-

objective genetic algorithm (MOGA) and weighted evaluation of crowding 

distances in order to improve a Ro-Ro passenger vessel design from both safety 

and economic perspectives. Powell and Perakis (1997) have developed an 

optimisation software package, to minimise the total operating cost and lay-up 

costs. Galareh and Meng (2010) used mixed integer linear programming in order 

to find the optimum for fleet size, vessel speed, and route frequency for short 

term planning requirements, while, Lamp et al. (2004) produced the MSDSS tool 

for both operating cost and life cycle cost analysis, however, they ignored the 

initial capital cost. 
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There are other considerations that need to be taken into account in optimising a 

fleet size, and one of them is in global financial problems. According to Ming et al. 

(2009), the current global financial crisis has impacted negatively on some of the 

shipping fleets. The impacts include a reduction in demand leading to the 

cancellation of some existing contracts and in additional charges such as an 

increase of steel price during the building of the ship which generally takes a long 

period of time. Even though this current crisis has slowed down the shipping 

market it nevertheless provides the opportunity for companies to optimise and 

plan the management of their fleet more effectively. In uncertain times, 

minimising risks and optimising the fleet size can be achieved using two stage-

stochastic optimisation programming.  

 

From the review that has been carried out in this study, it suggests that there are 

many different input parameters that are required for fleet optimisation. 

Operational cost variables and factors associated with them have been the more 

common variables used in all fleet optimisation practices. This indicates that the 

operational cost is clearly one of the predominant factors in determining the 

number of carriers in a fleet. Although LNG carrier fleet optimisation has not been 

discussed specifically in any of the reviewed papers, the selected LNG carrier 

fleet optimisation technique will be similar to those for other types of vessels and 

will be discussed in detail later in this thesis.  

 

At this stage it is appropriate to discuss the relationships of some of the main 

independent variables that affect the fleet size. 
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3.3.2. The Fleet Relationships 

 

 

The relationships between fleet size, speed and round trip distance, for a given 

volume of cargo, can be presented graphically as in the example shown in Figure 

3-14.  The figure, shows that the required number of carriers for given round trip 

distances of LNG carriers reduces as the ship’s speed increases. This is because 

when ships travel faster, the total time to deliver the same volume of cargo 

reduces. Since there is a fixed period of time in which to deliver the product, the 

number of ships can thus be reduced to match this period. On the other hand, the 

required number of carriers increases by up to 65% as the round trip distance 

increases from 5000 to 15000 nautical miles. The obvious reason for this is in 

coping with the demands of the contract.  

 

 

Figure 3-14: The effect of Ship’s Speed and Round Trip Distance on the Fleet 

Size 

 

 

 

 

 

No of Carriers  
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Another consideration is the relationship between the service speed, the number 

of contracted years and the size of the fleet, as shown in Figure 3-15. 

 

 

Figure 3-15: The effect of Ship’s Speed and Number of Years on the Fleet Size 

 

Figure 3-15 shows that, as the speed of the ship increases, the number of 

vessels reduce as would be expected. This reduction is small (approximately 

between 2 to 4 ships between the extreme range of values considered) 

compared to the amount of fuel required and its cost as the speed increases. 

Meanwhile, as the number of years increases from 15 to 25, the required number 

of carriers reduces by about 30% for the same volume of LNG. This is because 

as the number of years increases, the amount of LNG to be transported per year 

will be reduced correspondingly. Thus, the size of fleet that is required is also 

reduced. 
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Figure 3-16: The effect of Round Voyage Distance and Contract Durations on the 

Fleet Size 

 

Figure 3-16 shows the relationship between the trading round trip distances, the 

number of contract years and the fleet size. As it can be seen, when the number 

of years increases, the required number of ships is reduced. This assumes a 

fixed total volume of LNG to be delivered during the period of the contract; hence 

fewer vessels would clearly be required. Since the fleet size, of identical vessels, 

can be determined by dividing the total amount of LNG to be delivered in a year 

by the amount of LNG that can be delivered in a year by a single carrier, an 

increase in contract period will reduce the amount of LNG per year, which 

eventually reduces the number of ships in the fleet.  

 

An increase in the round trip distance could lead to an increase in the fleet size. 

This is because the amount of cargo that needs to be delivered within a year by a 

single carrier is a function of the maximum number of trips per year with a single 

carrier cargo capacity. Hence, as the distance of the round trip increases, the 

number of trips possible per year will be reduced and this will result in an 

increase in the numbers of carriers.  
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As the round trip distance between the two ports increases, the number of 

carriers assuming a constant speed also increases. This increment is due to the 

number of trips per year reducing as the distance increases. Thus in orders to 

accomplish the contract’s delivery requirement, additional ships are or may be 

necessary as shown in Figure 3-17.  

 

 

Figure 3-17: The effect of Round Voyage Distance and Cargo Volumes on the 

Fleet Size 

 

In the case of total contract cargo volume, as discussed before, additional 

numbers of ships are required in order to cope with an increase in volume 

demand. As a result, the capital and operational costs, which are based on a 

single ship, do not change per ship with increases in distances and volumes. The 

total capital and operational costs can thus be calculated by multiplying these 

costs by the number of vessels that are needed. 

 

Figure 3-18 explains the relationship between the cargo volume per contract, the 

contract duration and the number of carriers. As the volume in the contract 

increases, the volume per year also increases for a given fixed period. Hence 

when this volume is divided by the amount of LNG that can be delivered by a ship 
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in a single period of one year the numerical results also record an increase in 

number of vessels required. This number represents the size of the fleet rounded 

to the nearest integer.    

 

 

Figure 3-18: The effect of Cargo Volume and Contract Duration on the Fleet Size 

 

As mentioned earlier, an increase in the contract duration for a fixed volume of 

LNG to be delivered will increase the round trip days which will eventually reduce 

the number of trips possible in a year. A reduction in trips will allow for a lower 

number of ships and this explains the reduction in fleet size as the duration 

increases.  

 

It is clear from the discussions above that the potential interrelationships between 

the principal systems of an LNG carrier are complicated. Changing any system 

variables will affect, to some degree, the whole ship system including the overall 

cost of the LNG carrier as illustrated in figure 2-11. Thus, the results of this study 

indicate the need for a holistic investigation of the relationships between all the 

components. This investigation may be performed by creating an LNG carrier 

simulation based on all of the variables that have been considered. An overview 

of the inputs and outputs of all variables is illustrated in Figure 3-19. 
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Type of Containment System 

  (No96, MARK III, CS1, MOSS) 

 LNG Capacity (m
3
) 

Cargo/year (m3) for 1 Carrier 

  Days for Round trip (day) (MW) 

  Total days per trip (day) 

Number Trips/year 

  Fuel Cost/trip (USD/trip) 

  Fuel Cost/year (USD/year) 

  Main Propulsion Engine 

  Total Power Needed (MW) 

Economic Life (year) 

 Overall Heat Transfer coefficient (W/m
2
K) 

 Inner Thermal Coefficient (W/mK) 

 Inner Thickness (mm) 

 Inner Density (kg/m
3
) Thickness of Insulation (m) 

Weight of Insulation (kg) Outer Thermal Coefficient (W/mK) 

Outer Thickness (mm) 

 Outer Density (kg/m
3
) 

 Plywood Thickness (mm) 

Cost of Containment System (USD)  

 Midship Tank Area (m
2
) 

 Midship Tank Volume (m
3
) 

Geometry Shape of Tank 

No of the Tanks 

Breadth of Carrier (m) 

Power Consumption for Cyrostar (kW) 

  % of BOG/day 

BOG Mass Flow Rate (kg/s) 

  Total Heat Transfer (W) 

 Outside Temperature (
o
C) 

  Speed (knots) 

No of Propeller/s 

Propeller Diameter (m) 

Pitch 

 Blade Area Ratio 

 Length at WL (m) 

Draught (m) 

Volume of Displacement (m
3
) 

  Cm (Midship Section Coefficient) 

Cwp (Water plane Area Coefficient) 

Cb (Block Coefficient) 

  Cp (Prismatic Coefficient) 

Power Consumption for Hamworthy (kW) 

  COP 

  Cost of Reliquefaction Plant (USD) 

Cost of Hull (USD) 

Cost of Steel/tonne (USD) 

  Spare parts Costs (USD/year) 

 Dry Docking Costs (USD) 

 Variable Cost (USD/year)   Specialist Costs (USD/year) 

  Port Cost (USD/year) 

Total Crew Cost (USD/year) 

  Round trip Distance (nm) 

Days in Service/year (day) 

Days in Port/trip (day) 

HFO Consumption (tonne/day) 

HFO Cost (USD/tonne) 

 Marine Diesel Consumption (tonne/day) 

 Marine Diesel Cost (USD/tonne) 

  Natural Gas Consumption (tonne/day) 

  Fixed Costs/year (USD/year) 

Overhead Cost (USD) 

  Capital Cost/year (USD/year) 

 Cost of the Ship (USD) 

  Rate of Return (%) 

 Capital Recovery Factor (CRF)  Taxes, Fees & Insurants (USD) 

 Accommodation Cost (USD) 
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3
) 
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3
/year) 
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    PER of CO2 (g/kg) 

 
 PER of NO2 (g/kg) 
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Cost of Aux. Machineries (USD) 

  Cost of Main Propulsion Unit (USD) 

Natural Gas Cost (USD/tonne) 

Figure 3-19: The Inputs and Outputs of the LNG carrier Main Components 
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3.4. Chapter Summary 

 

The purpose of this chapter was to provide an understanding of the principles 

involved in the LNG carrier design process, for main systems selection. This can 

be achieved in two steps. Step one defines the relationships between all of the 

main components of an LNG carrier, while step two extends these relationships 

into a fleet size. 

 

Understanding each component and the inter-component relationships requires 

detailed investigation into the behaviour of components relative to any changes in 

the multitude of variables. The main challenge is to consider and adapt all of the 

possible constraints within each component. Two variables that affect the main 

components of an LNG carrier have been studied carefully; the size of the carrier 

which represents the cargo capacity, and service speed of the carrier. Since all 

the main components of an LNG carrier are inter-related, changing these two 

main variables, will impact on all the main components. Graphical presentations 

have been provided for better illustration of each relationship interaction.        

 

Furthermore, if there are a number of identical carriers in the fleet, as is normal 

for a company, the interrelationships becomes more complicated and create a 

challenging situation for the engineers to deal with. One of the ways to 

accommodate this kind of problem is by creating a view of the whole LNG carrier 

which consists of a ‘system of the systems’ simulation model. Three dimensional 

graphs have been presented for the purpose of clarifying the investigated 

relationships. Speed, round trip distance, volume of cargo and the number of 

contract years have been identified as the main variables that affect the size of 

the fleet. 
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Since the LNG carrier simulation model links all of the main components, any 

changes in an input parameter will produce different sets of results according to 

their theoretical formulation. This capability is essential to the aim of this study 

which is to select the best combination of components for certain tasks. Before 

the selection of an optimal combination of components can be established 

however, comprehensive systematic simulation data, which considers all possible 

combinations, must be collected. This can be done by systematically varying the 

selected variables in a simulation model. The details of this process are 

discussed in the next chapter. 
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4. Model Development for the LNG carrier Simulation 

 

Summary 

 
The overall aim of the work presented in this chapter was to generate simulation 

data for the LNG ‘system of systems’ and to use this to train an ANN model from 

which results were then generated and analysed 

 

The objectives of this chapter are thus summarised as follows: 

 To describe the process of building the simulation model 

 To describe the data generation process from the simulation model. 

 To develop an equivalent Artificial Neural Network model. 

 

 

4.1. Introduction 

 

Simulation can be described as the process of using a computer program to 

duplicate the behaviour of complex components in order to determine the 

corresponding responses, under various investigated scenarios where the inputs 

change. According to Chung (2004), simulation has four main advantages: (1) the 

ability to understand the operation of a complex system without the need to stop 

and shut down the system; (2) to be able to improve the existing system 

performance once its behaviour has been understood; (3) to be able to predict 

the performance of a new system; and (4) the ability to gain information without 

disturbing a sensitive actual system, such as a security system at an airport. 

However, similar to many other methods, simulation is not free from limitations. 

These limitations include an inability to solve problems by itself, it’s expense in 

terms of manpower and computer time, failure to give accurate results if the input 

data are inaccurate, and results that may be easily misinterpreted with errors that 

may be difficult to trace (Neelamkavil, 1987).  
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A ‘model’ can be defined as an idealised representation of a real physical entity. 

It is a simplified version of more complex forms, processes, and ideas which may 

enhance the understanding of behaviour and facilitate prediction of a system 

through being amenable to mathematical analysis (Bekey, 2003; Neelamkavil, 

1987). The model can provide a quick, cheap and unobtrusive alternative aid to 

learning, design, prediction and evaluation. Models can be divided into three 

groups (Hoover and Perry, 1989): (1) iconic, as they attempt to resemble the real 

physical system e.g. an LNG carrier model; (2) analogue, as they represent or 

emulate system behaviour, such as for the flow of LNG through pipes; and (3) 

symbolic, which is neither iconic nor analogue, but is based on logic flow: such as 

a functional relationship between two spaces in time e.g. a mathematical model.  

 

Models can be further classified into two other groups which are descriptive and 

prescriptive. Descriptive models will produce results when there is change in the 

input parameters, but the results that they produce may not necessarily be the 

best solution to the given problem (Law and Kelton, 2000). The process of finding 

the best solution is totally in the analyst’s judgement, simulation modelling being 

a good example of this type of model. Meanwhile, prescriptive models are an 

advanced group. The results may be analysed using optimisation tools in order to 

formulate and find the best solution to a given problem (Hoover and Perry, 1989). 

An example of this type of model is multiple criteria optimisation which will be 

discussed later in this thesis.   

 

A mathematical model, on the other hand, is a representation, in a form that is 

amenable to mathematical analysis, of a process, device, or concept using a 

number of variables defined to represent the inputs, outputs, and internal states 

of the device or process. According to Karplus (2003), a mathematical model can 

produce two types of information: (1) knowledge of the system being modelled; 

and (2) data observations from a system’s inputs and outputs.  
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In principle, the procedure for the specific component modelling adopted in this 

thesis was to create a computer programme based on mathematical models of 

the whole set of possible components of an LNG carrier. The simulation 

investigation then changed the input variables systematically, enabling one to 

sense the complexity and interaction of the various problems. The appropriate 

combination and characteristics of the individual components were then identified 

in order to reduce the capital and operational costs of the LNG carrier. Prior to 

carrying out any simulations for this study, all related components of the LNG 

carrier needed to be defined in terms of mathematical models. The process of 

transforming each component is explained in the following appendices: the 

containment system (appendix 1), the reliquefaction plant (appendix 2), the 

power prediction (appendix 3), the fleet size, and the life cycle cost analysis 

(appendix 4). Three of the components that have been explained in Chapter Two 

(propulsion unit, mission profile and hull geometry) were not defined in terms of 

mathematical models for the following reasons:  

 

(1) Propulsion unit: because part of the purpose of this is study was to select 

the main engine from the market, based on the power requirement 

predictions, the calculation of emissions has been introduced in order to 

measure the amount of pollutants that will be released into the 

atmosphere due to combustion from the selected engine (appendix 5).  

(2) Mission profile: this involves definition of the input variables to the LCCA.  

(3) Hull geometry: the selection between single or twin skeg is included in the 

power prediction mathematical models; however, the calculation of ship 

steel weight is introduced for the purpose of finding the build cost of the 

ship (appendix 6).  

 

A simplified diagram to show all of the LNG components involved in the overall 

simulation model is illustrated in Figure 4-1.  

 

 

 

 

 



Chapter 4: Modelling Development of LNG carrier Simulation 

MdRedzuanZoolfakar   83 

 

 

 

Figure 4-1: LNG Carrier Components Simulation Models 

 

4.2. Development of an Holistic Simulation Model for the LNG 

Carrier 

A simulation software package named LabVIEW 8.2 was used to create a 

simulation model for the LNG carrier components. LabVIEW is an acronym for 

Laboratory Virtual Instrumentation Engineering Workbench and is a platform and 

development environment for a visual programming language. This LabVIEW 

package ties the creation of user interfaces known as ‘front panels’ into the 

development cycle. The LabVIEW programs and its subroutines are called virtual 

instruments (VIs) or sub-virtual instruments (SubVIs). Each of the VIs has three 

main components, a block diagram, a front panel, and a connector panel.  

 

LNG 

Carrier:  

Simulation 

Model 
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The mathematical models of the LNG carrier components were transformed into 

the input form required for the LabVIEW programme. Each of the components 

was then linked with the others that have the same input or output variables. 

Some additional information generated as output parameters was not linked to 

other components such as thickness of insulation and weight of insulation. Since 

the focus of this thesis is on reducing the fleet size, total costs and pollutant 

emission products, only the outputs related to the given criteria were linked 

together. Additional information was retained as it may be useful to other 

applications or provide justification for certain facts, such as the thickness and 

weight of the containment system. The LabVIEW block diagram for the LNG 

carrier simulation model is illustrated in Figure 4-2.   

 

Once the LNG carrier simulation had been developed, the user was able to select 

any combination of components to study. These selections were not limited to 

any particular types or forms, the user may insert or change the values in the 

inputs variables e.g. insulation thickness and materials, or the pressure and the 

temperatures of the cycles in the reliquefaction plant. The capability of inserting 

any value shows the flexibility of this simulation which gave advantages in terms 

of carrying out further investigations on this system. However, before any further 

investigations could be performed, a set of data needed to be generated from this 

simulation.   

 

The components illustrated in Figure 4-1 were translated into a LabVIEW 

programme, as shown in Figure 4-2. This provides a holistic simulation model for 

the LNG carrier which allows the researcher to investigate the interrelationships 

between the parameters. The model was used to generate a data set to 

investigate all possible combinations of inputs.    
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Figure 4-2: LabVIEW’s Block Diagram for the LNG carrier Simulation Model 
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4.3. The Generation of Data from Simulation 

 

There were a few steps that needed to be taken in generating the data for an 

LNG carrier, starting with selecting the most important independent variables of 

each component in the overall ship components, and in operating parameters. 

This was an important step because there were more than 50 independent 

variables in the full range of LNG carrier components, and selecting those 

variables likely to be of most significant impact on each component  not only 

reduced the number of parameters but also reduce the amount of computing time 

and user input effort (Rao, 1996). Later, a practical range for each of the selected 

variables was set according to restrictions or limitations in order to ensure that 

any solutions that were obtained were technically sound and economically 

feasible (Deb, 2005). The next step was to start feeding the simulation model with 

systematic changes in the variables. Changing each variable systematically while 

keeping the others constant will give all possible solutions for a particular 

problem. A simple flow chart of the data collecting process is illustrated in Figure 

4-3. 

 

 

 

 

 
Figure 4-3: Flow Chart for the Data Collection Process 
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4.3.1. Selecting the Variables 

 

 

The selection of the most high impact variables was a crucial step especially 

when dealing with a large number of variables. As has been previously 

mentioned, the whole range of components of an LNG carrier is linked together 

due to their interdependency; hence, any changes in one or more variables will 

affect one or more others. Depending on the objective function of the problem, a 

variable can be a component by itself, which has a high influence on the overall 

results that are generated. Therefore, a complete understanding of each of the 

components is necessary in order to select the right variables to represent the 

whole picture of the given problem.  

 

In this study, eight independent variables were identified as being the ones that 

would have a high impact on the total cost of an LNG carrier. They are: (1) the 

type of carrier class and propulsive engines; (2) the amount of LNG to be 

transported stated in the contract; (3) the number of years set in the contract; (4) 

the round distance between the export and import ports; (5) the carrier’s required 

speed; (6) the type of containment system to be selected; (7) the type of 

reliquefaction plant chosen; and (8) the number of propellers, which indicates the 

shape of the hull form to be constructed. The results from the simulation models 

give the two cost classifications: namely, the capital costs and the operational 

costs. However, additional results have been produced alongside the costs such 

as fleet size and the emission levels.  

 

Four selected variables are components by themselves: the containment system, 

the reliquefaction plant, the propellers and the LNG carrier class and engines. 

The values of each of these elements were fixed to ensure consistency in the 

results throughout the process. These values are illustrated in Table 4-1, Table 

4-2, Table 4-3, and Table 4-4 respectively. 
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Table 4-1: The Fixed Parameters for the Cargo Containment Systems 

 
Type of Containment 

System 
No96 MARK III CS1 MOSS 

Inner 
Barrier 

Material INVAR 
Stainless 

Steel 
INVAR Aluminium 

Thickness (mm) 0.7 1.2 0.7 30 

Price (USD/m
2
) 268.25 

3.156 
(USD/kg) 

268.25 1323.78 

Inner 
Insulation 

Material Perlite Polyurethane Polyurethane Phenolic 

Thickness (mm) 210 80 80 180 

Price (USD/m
2
) 0.0518 9.39 9.39 4.41 

Density (kg/m
3
) 50 11 11 80 

Outer 
Barrier 

Material INVAR Triplex Triplex - 

Thickness (mm) 0.7 1 1 - 

Price (USD/m
2
) 268.25 7.83 7.83 - 

Outer 
Insulation 

Material Perlite Polyurethane Polyurethane Polyurethane 

Thickness (mm) 280 160 160 180 

Price (USD/m
2
) 0.0518 9.39 9.39 9.39 

Density (kg/m
3
) 50 11 11 11 

 

 

Table 4-2: The Fixed Values for the BOG Reliquefaction Plants 

 

Items Percentage 

Heat Transfer Effectiveness 95 

Isentropic efficiency For Nitrogen Expender 85 

Isentropic efficiency for High and Low Compressors 80 

 

 

 

Table 4-3: The Fixed Values for the Propeller 

 

Items Values 

Propeller Diameter (m) 8 

Blade Area Ratio 0.7 

Pitch (m) 6.87 

Shaft Efficiency 0.98 

Power Margin (1 + x) 1.2 

Propeller Efficiency 0.65 
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Table 4-4: The Fixed Values for the Carrier Classes and Engines 

 
LNG Carrier Classes & Engine Dimensions 

Small Conventional & Slow Speed Engine 

Breadth (m) 43 

Capacity (m
3
) 120,000 

Specific Cost (USD/kW) 580 

Thermal Efficiency (%) 52 

Small Conventional & Medium Speed 
Engine 

Breadth (m) 43 

Capacity (m
3
) 120,000 

Specific Cost (USD/kW) 319 

Thermal Efficiency (%) 46 

Small Conventional & Gas Turbine 

Breadth (m) 43 

Capacity (m
3
) 120,000 

Specific Cost (USD/kW) 261 

Thermal Efficiency (%) 40 

Large Conventional & Slow Speed Engine 

Breadth (m) 46 

Capacity (m
3
) 150,000 

Specific Cost (USD/kW) 580 

Thermal Efficiency (%) 52 

Large Conventional & Medium Speed 
Engine 

Breadth (m) 46 

Capacity (m
3
) 150,000 

Specific Cost (USD/kW) 319 

Thermal Efficiency (%) 46 

Large Conventional & Gas Turbine 

Breadth (m) 46 

Capacity (m
3
) 150,000 

Specific Cost (USD/kW) 261 

Thermal Efficiency (%) 40 

Q-flex & Slow Speed Engine 

Breadth (m) 51 

Capacity (m
3
) 210,000 

Specific Cost (USD/kW) 580 

Thermal Efficiency (%) 52 

Q-flex & Medium Speed Engine 

Breadth (m) 51 

Capacity (m
3
) 210,000 

Specific Cost (USD/kW) 319 

Thermal Efficiency (%) 46 

Q-flex & Gas Turbine 

Breadth (m) 51 

Capacity (m
3
) 210,000 

Specific Cost (USD/kW) 261 

Thermal Efficiency (%) 40 

Q-Max & Slow Speed Engine 

Breadth (m) 56 

Capacity (m
3
) 250,000 

Specific Cost (USD/kW) 580 

Thermal Efficiency (%) 52 

Q-Max & Medium Speed Engine 

Breadth (m) 55 

Capacity (m
3
) 250,000 

Specific Cost (USD/kW) 319 

Thermal Efficiency (%) 46 

Q-Max & Gas Turbine 

Breadth (m) 56 

Capacity (m
3
) 250,000 

Specific Cost (USD/kW) 261 

Thermal Efficiency (%) 40 
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4.3.2. Setting the Allowable Ranges of each of the Variables 

 

 

The range was set due to limitations of the behaviour or the physical constraints 

of the equipment, current practice, the rules and regulations imposed on the 

components or the various and many combinations of them. Varying the 

parameters systematically produced a set of results that showed the effects of 

each change. It was done by dividing the whole range of sets into equal 

increments. The selected range set and step increments for the LNG carrier 

components chosen for this study are shown in Table 4-5. 

 

Table 4-5: The Range and Increments for Independent Variables 

 

Independent Variables Minimum Increment Maximum 

LNG Amount in the Contract (B) m
3
 0.5 1 5.5 

Number of Years to Deliver (Years) 15 5 25 

Round Trip Distance (Nm) 5000 5000 15000 

Carrier Speed (Knots) 15 2 23 

 
 
 
4.3.3. Collecting Results Data from the LabVIEW Simulation Model 

 

 

The last step of collecting data was to run the simulation program through 

iterations, systematically changing the variables over their allowed ranges. The 

numbers of iterations was dependent on the increment values selected. The 

accuracy of the simulation results depended on the amount of data collected and 

the incremental values needed to be small to increase the sensitivity. The output 

data collection was generated automatically by creating multiple loops in the 

LabVIEW software, as illustrated in Figure 4-4. The SubVI labelled Optima is the 

LNG carrier simulation model that was explained previously. The inputs and 

system level outputs of this SubVI are shown in Figure 4-5.  
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Figure 4-4: Simulation Programme for Output Data Collection 

 

 

 

 

Figure 4-5: Inputs and Outputs of the Simulation Model for LNG Carrier 

 

An example of the results of this overall system data collection process can be 

seen in Table 4-6. For simplicity of tabulation, some of the terms in the columns 

such as type of carrier class and engines, containment systems, type of 

reliquefaction plant, and number of propellers have been replaced with reference 

numbers. Table 4-7 provides the meaning of the assigned reference numbers. 
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Table 4-6: Sample of the Simulation Data Table 

 
Type of 
Carrier 
Class & 
Engine 

Amount of 
LNG in the 
Contract 
(m) m3 

No of Years 
need to 
Deliver 
(year) 

Round trip 
Distance 

(Nm) 

Carrier 
Speed 
(knots) 

Containment 
Systems 

Type of 
Reliquefaction 

Plant 

No of 
Propeller 

Fleet size 
Capital Cost/ 
Carrier USD 

(m) 

Operation 
Cost/ Carrier 

USD (m) 

CO2 mass 
of Pollutant 
Emission 
(tonne/hr) 

SOx mass 
of Pollutant 
Emission 
(tonne/hr) 

NOx mass 
of Pollutant 
Emission 
(tonne/hr) 

9 0.5 15 5000 15 5 3 1 11.82 26.97 9.02 7.57 0.05 0.10 

9 0.5 15 5000 15 5 3 2 11.82 26.33 8.38 6.98 0.04 0.09 

9 0.5 15 5000 15 5 4 1 11.82 26.97 9.00 7.57 0.05 0.10 

9 0.5 15 5000 15 5 4 2 11.82 26.33 8.36 6.98 0.04 0.09 

9 0.5 15 5000 15 6 3 1 11.82 20.07 8.97 7.57 0.05 0.10 

9 0.5 15 5000 15 6 3 2 11.82 19.43 8.33 6.98 0.04 0.09 

9 0.5 15 5000 15 6 4 1 11.82 20.07 8.95 7.57 0.05 0.10 

9 0.5 15 5000 15 6 4 2 11.82 19.43 8.31 6.98 0.04 0.09 

9 0.5 15 5000 15 7 3 1 11.82 21.34 8.97 7.57 0.05 0.10 

9 0.5 15 5000 15 7 3 2 11.82 20.70 8.33 6.98 0.04 0.09 

9 0.5 15 5000 15 7 4 1 11.82 21.34 8.95 7.57 0.05 0.10 

9 0.5 15 5000 15 7 4 2 11.82 20.70 8.31 6.98 0.04 0.09 

9 0.5 15 5000 15 8 3 1 11.82 27.71 8.86 7.57 0.05 0.10 

9 0.5 15 5000 15 8 3 2 11.82 27.07 8.22 6.98 0.04 0.09 

9 0.5 15 5000 15 8 4 1 11.82 27.71 8.84 7.57 0.05 0.10 

9 0.5 15 5000 15 8 4 2 11.82 27.07 8.20 6.98 0.04 0.09 

9 0.5 15 5000 17 5 3 1 10.52 30.54 12.51 10.90 0.07 0.14 

9 0.5 15 5000 17 5 3 2 10.52 29.61 11.58 10.03 0.06 0.13 

9 0.5 15 5000 17 5 4 1 10.52 30.54 12.48 10.90 0.07 0.14 

9 0.5 15 5000 17 5 4 2 10.52 29.61 11.56 10.03 0.06 0.13 

9 0.5 15 5000 17 6 3 1 10.52 23.64 12.45 10.90 0.07 0.14 

9 0.5 15 5000 17 6 3 2 10.52 22.71 11.53 10.03 0.06 0.13 

9 0.5 15 5000 17 6 4 1 10.52 23.64 12.43 10.90 0.07 0.14 

9 0.5 15 5000 17 6 4 2 10.52 22.71 11.50 10.03 0.06 0.13 

9 0.5 15 5000 17 7 3 1 10.52 24.92 12.45 10.90 0.07 0.14 

9 0.5 15 5000 17 7 3 2 10.52 23.99 11.53 10.03 0.06 0.13 

9 0.5 15 5000 17 7 4 1 10.52 24.92 12.43 10.90 0.07 0.14 

9 0.5 15 5000 17 7 4 2 10.52 23.99 11.50 10.03 0.06 0.13 

9 0.5 15 5000 17 8 3 1 10.52 31.28 12.34 10.90 0.07 0.14 

9 0.5 15 5000 17 8 3 2 10.52 30.35 11.41 10.03 0.06 0.13 

9 0.5 15 5000 17 8 4 1 10.52 31.28 12.32 10.90 0.07 0.14 

9 0.5 15 5000 17 8 4 2 10.52 30.35 11.40 10.03 0.06 0.13 

9 0.5 15 5000 19 5 3 1 9.50 35.18 16.98 15.22 0.10 0.19 

. . . . . . . . . . . . . . 

. . . . . . . . . . . . . . 

20 5.5 25 15000 23 8 4 2 70.84 43.88 70.93 47.53 0.30 0.59 
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Table 4-7: Meaning of Assigned Reference Numbers 

 
Column No Items 

No. of Propellers 
1 One 

2 Two 

Type of Reliquefaction 
Plants 

3 Hamworthy Reliquefaction Plant 

4 Cryostar Reliquefaction Plant 

Type of Containment 
Systems 

5 No96 Containment System 

6 MARK III Containment System 

7 CS1 Containment System 

8 MOSS Containment System 

LNG Carrier Classes  
& 

Engines 

9 Small Conventional & Slow Speed Engine 

10 
Small Conventional & Medium Speed 
Engine 

11 Small Conventional & Gas Turbine 

12 Large Conventional & Slow Speed Engine 

13 
Large Conventional & Medium Speed 
Engine 

14 Large Conventional & Gas Turbine 

15 Q-flex & Slow Speed Engine 

16 Q-flex & Medium Speed Engine 

17 Q-flex & Gas Turbine 

18 Q-Max & Slow Speed Engine 

19 Q-Max & Medium Speed Engine 

20 Q-Max & Gas Turbine 

 

The total number of rows of data generated was 51,840. This was based on 12 

types of LNG carrier class and engines, 6 increments of LNG transportation 

cargo in the contract, 3 steps of years to deliver the LNG in the contract, and the 

round trip distances, 5 increments of carrier speeds, 4 types of containment 

systems, and 2 types of reliquefaction plant and hull geometry. The 51,840 rows 

of data are clearly too many to analyse and evaluate manually.  

 

Moreover, each row provided six different sets of outputs (corresponding to the 

outputs as shown in Figure 4-5). In total, there are therefore 311,040 cells that 

each represents different scenario values. The preliminary results from this data 

were used to investigate the relationships between variables, as explained and 

illustrated in chapter 3.  

 

The best way to deal with this data is by developing a simplified equivalence for 

the LNG carrier systems design simulation ‘OPTIMA’ process. This was achieved 

with the aid of Artificial Neural Networks (ANN). Moreover, this large volume of 

data, which consists of only numbers, can easily be overlooked, misinterpreted 

and mistakes, if any, are very difficult to find.  
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In addition, further computation time would be required in order to generate 

additional new data for changes to the original input. This raises the idea of a 

program or a model that could simplify and facilitate selection from the large 

amount of generated data. Since the ANN was used in this thesis for reducing the 

decision area and minimising computation time, it is appropriate to understand its 

background.  

 

 

4.4. Artificial Neural Networks Model 

 

 

The Artificial Neural Network (ANN) is a comprehensive data process modelling 

tool which duplicates the brain’s intelligence by using experience to capture and 

represent complex input and output relationships (NeuroSolutions, 2010). The 

ANN is similar to the processing function of the human brain in two ways: (1) 

neural networks acquire knowledge through repetitive learning activities; and (2) 

the neural network’s knowledge is then stored within inter-neuron connections 

known as synaptic weights (Ok, 2006). The real advantage of ANNs is in their 

ability to learn the relationships directly from the input and output data given 

regardless of whether it is a linear or a non-linear relationship.  

 

The ANN method was introduced by McCulloch and Pitts (McCulloch and Pitts, 

1943) when they modelled a simple neural network with an electric circuit in order 

to perform a simple logical function. From that period until 1990, the further 

studies were focused on the development of the ANN theory itself (Mesbahi, 

2007a; Zhang, 1997). From the 1990s onward the focus on theory development 

was reduced with more concentration on the application of ANNs. This however, 

does not mean that the ANNs are perfect and do not need further modifications 

or improvements. In fact the improvement of ANNs has been continuous 

alongside their applications, and ANNs now are widely applied in solving 

engineering problems (Ok, 2006; Rao, 1996). 
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ANN methods have been used to solve problems in many aspects of marine 

engineering, such as work carried out by Dansman et al. (2002) for reducing the 

wave resistance of the aft of the hull of a ship, and Lightfoot et al. (2006) studied 

the impact of welding distortion of steel plate. Predicting the strength of plates 

with pitting corrosion was a studied by Duo et al (2007), whilst Grimmelius et al. 

(2007) used ANNs to predict the speed of a diesel engine from the engine load 

and fuel rack displacement. Other areas in the marine field include the ship 

design process, ship resistance and power, ship motion, ship production, 

manoeuvring and ship design optimisation (Mesbahi, 2007a).  

 

Artificial neural networks have many advantages and according to Ok (2006) 

these advantages can be classified into four main groups:   

 

1. Learning: They have the ability to learn linear and non-linear sets of 

patterns, and to interpolate data within the trained range accurately. 

2. Time: The ANN has a parallel structure which can reduce the computing 

time and they can provide a response in almost real time. 

3. Flexibility: The ANN can accommodate a certain level of interference such 

as noise signals in the input data without producing significant changes in 

the results.  

4. Tolerance to internal faults: Since the ANN stores redundant information, 

partial destruction does not completely destroy the network’s response 

capability. 

 

One of the features that make an ANN so unique is the ability to capture the 

relationships of multiple variables either in input or output data. This unique 

feature is very useful in a study such as this thesis, especially when dealing with 

multi-variable optimisation. However, ANNs have drawbacks. Among the 

disadvantages are the need for a long training time, internal network selection 

that is based on trial and error, especially for a new problem without prior 

knowledge, and ‘network paralysis’, which can happen when the network fails to 

respond due to very large values given to the internal mathematical ‘weights’ 

(Mesbahi, 2003; Roskilly and Mesbahi, 1996). 
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4.4.1. Fundamentals of Artificial Neural Networks 

 

 

In order to initialise a typical ANN, it must have the following elements: the most 

important element is data which consists of input variables (x1 to xn) and the 

required associated output results (Y). These inputs are summed together after 

being multiplied by individual weight factors (W1 to Wn). The summation results 

are fed into an activation function to generate the results which ideally are similar 

to the required output. The simplified basic model of an artificial neural network is 

illustrated in Figure 4-6.  

 

 
Figure 4-6: Basic Model of Artificial Neural Network 
 

 

The process of an artificial neural network can be formulated mathematically as 

(Ok, 2006): 

n

k

kkk bWxfY
1

 

Equation 4-1: Artificial Neuron Formula 
 

Where ‘b’ is a scalar bias which acts in a similar manner to the weight ‘W’ and is 

sometimes known as the threshold. 

 

The activation function f(x), which has been described as the summation of the 

inputs and weights in the above equation, can be categorised into one of two 

groups: namely, linear and non-linear functions. 
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 A linear activation function might simply be: xxf )(  

 Examples of non-linear activation functions include:   

o Sigmoid function: 
x

xf
exp1

1
)(  

o Tan-hyperbolic (Tanh) function: 
xx

xx

ee

ee
xf )(  

Where: 

 x is the input. 

 

The sigmoid and the Tanh functions are the more common activation functions 

that are used because they introduce non-linearity into the networks which is a 

common feature of most problems that are encountered in engineering systems 

(Mesbahi, 2006).   

 

In order to train the software, the initial weights, W, of the ANNs are set as small 

random values since the network does not know the relationship between the 

input data and the required output data. As the training develops these weights 

eventually converge according to computational rules, where the overall final 

output results meet the required values. The whole purpose of the training 

process is to teach the ANN to determine the required output value(s) from a 

given set of input data. Thus the ANN is being taught to emulate the performance 

of the more complex system that is associated with the data, both input and 

output.  

 

 

4.4.2. Types of Artificial Neural Networks 

 

There are many types of network architecture, the most common and popular 

being single and multilayer feed-forward networks (Zhang, 1997). Single layer 

feed-forward was the earliest type of network and consists of a single layer of 

output nodes. If the summation products of the input and corresponding weights 

are above the threshold (which is normally zero), then the typical activated value 

is taken as one; otherwise it is minus one (Ok, 2006). On the other hand, 

multilayer feed-forward networks, also known as multilayer perceptions, has one 

or more so-called hidden layers.  
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There are two types of learning algorithms used in ANNs, the ‘feed-forward’ and 

the ‘recurrent’ forms. In a feed-forward network, data only flows in one direction 

from the input layer to the output layer. Once the data passes through to the next 

layer, the previous layer will not know the results that were obtained. Conversely 

with a recurrent or feed-back network, the input layer will receive back the result 

and use it in its re-evaluation process. These configurations are illustrated in 

Figure 4-7. There is no rule to select the most appropriate of these learning 

algorithms and most often it is based on the user’s experience and/or the trial and 

error method. 

 

 
Figure 4-7: A Simple Feedforward and Feedback Network (Mesbahi, 2003) 
 
 
4.4.3. Design of an Artificial Neural Networks Model 

 
 
The software package NeuroSolutions5 was used to develop the artificial neural 

network model for the full system of LNG carrier components. NeuroSolutions5 is 

a graphical software program which combines a modular design interface with 

advanced learning procedures. This gives a flexible design approach and 

provides the best solution for a given problem (NeuroSolutions, 2010). 

 

A main feature of NeuroSolutions5 is that it uses the Microsoft Excel software to 

perform all tasks. This includes getting data into and out of the neural network. 

Among the results that are presented are the regression (r) and the mean square 

error (MSE). 

A Simple Feedforward Network 

Bias input 

A Simple Feedback Network 

Bias Input 
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There are no defined rules to select the specific ANN architecture for a particular 

set of data and such a selection depends on the user. Initial results from a given 

method may be compared in order to choose and adjust the ANN structure. 

Fortunately, there are only three main steps to be followed in order to conduct the 

ANN training and testing stages for any internal structure of ANN. These steps 

are identification, training and testing, and result assessment as illustrated in 

Figure 4-8. 

 

 

 

Figure 4-8: Flow Diagram for the Development of an Artificial Neural Network 
Model 

 
 
 
 

4.4.4. The Neural Network Topology 

 

Artificial neural networks require the user to identify the sets of inputs and 

associated output data for the program. In this study, the simulation data 

discussed in Section 4.3 was used. However, before the identification step could 

take place, the whole set of simulation data had to be randomised. This was to 

ensure equal chance for all of the data to be used for training. The number of 

rows of data to be used for training, cross validation and testing also needed to 

No 
Modify Structure of 
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be identified. In this study, for the identification process, 20 rows of data were 

assigned for testing, 100 rows of data for cross validation and the rest of the data 

(51,720) for training (out of the total of 51,840). Samples of data that has been 

randomised and identified are shown in Table 4-8. The light and darker blue 

columns represent input and target output variables respectively.  

 
Table 4-8: Sample of Randomised and Identified Data 

 

Type of 
Carrier 
Class & 
Engines 

Amount of 
LNG in the 
Contract 
(m) m3 

  No of Years 
need to 

Deliver (year) 

Round trip 
Distance 

(Nm) 

Carrier 
Speed 
(knots) 

Containment 
Systems 

Type of 
Reliquefaction 

Plant 

No of 
Propeller 

Fleet size 

Capital 
Cost/ 

Carrier 
USD (m) 

Operation 
Cost/ 

Carrier 
USD (m) 

CO2 mass 
    of Pollutant      

Emission   
(tonne/hr) 

SOx mass 
of Pollutant 
Emission 
(tonne/hr) 

NOx mass 
of Pollutant   
Emission 
(tonne/hr) 

9 2.5 25 15000 23 5 3 2 67.08 47.05 30.14 26.28 0.16 0.33 

19 3.5 20 10000 23 8 3 1 38.23 48.60 48.93 43.67 0.27 0.55 

20 1.5 20 15000 21 7 4 1 26.37 29.29 55.60 36.82 0.23 0.46 

17 3.5 20 10000 21 5 3 2 49.62 36.80 46.35 31.04 0.19 0.39 

10 4.5 25 5000 19 7 3 1 51.28 22.20 19.10 17.21 0.11 0.22 

14 2.5 25 5000 19 6 4 1 22.79 20.18 30.21 20.92 0.13 0.26 

17 3.5 15 5000 21 8 4 2 34.67 35.60 43.96 31.04 0.19 0.39 

10 0.5 25 10000 21 6 3 1 9.92 24.33 26.98 23.72 0.15 0.30 

19 5.5 25 10000 21 6 4 2 52.40 29.80 36.29 31.83 0.20 0.40 

19 0.5 25 5000 17 7 3 2 3.03 24.07 19.32 16.85 0.11 0.21 

13 4.5 20 10000 15 8 4 2 123.33 25.55 10.53 8.71 0.05 0.11 

12 4.5 15 10000 23 8 3 2 109.23 51.64 32.01 28.54 0.18 0.36 

9 1.5 25 5000 17 7 3 2 18.94 23.99 11.53 10.03 0.06 0.13 

11 1.5 15 5000 23 5 4 1 23.95 32.66 50.75 36.31 0.23 0.45 

14 0.5 15 15000 15 6 4 2 27.09 15.94 15.57 9.78 0.06 0.12 

11 3.5 20 10000 23 8 3 2 79.65 32.28 48.91 33.35 0.21 0.42 

10 2.5 15 5000 21 5 4 2 43.34 30.23 23.80 21.81 0.14 0.27 

10 1.5 20 5000 17 8 4 1 23.67 26.02 13.90 12.32 0.08 0.15 

18 1.5 25 15000 17 8 4 1 25.90 42.22 18.20 15.31 0.10 0.19 

12 5.5 20 5000 15 7 3 1 77.99 22.54 9.79 8.25 0.05 0.10 

 
 
 
4.4.5. The Artificial Neural Network Training Process 

 
 
The next step was the ‘training’ of the data, in which the network topology was 

selected and the activation function and the number of epochs needed to be 

confirmed. A multilayer perception network topology was used for this study and 

its architecture is illustrated in Figure 4-9.  
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Figure 4-9: Three Layer Feed Forward Neural Network Topology Used 
 

The first layer, which is the input layer, consists of eight neurons representing the 

LNG carrier components and independent variables that have been assessed to 

have a high impact on the outcome of the study. Meanwhile, the second layer is 

the hidden layer. There are no strict rules applied to determine the optimum 

number of hidden layers and the number of processing elements on that layer. A 

configuration of three layers and 50 processing elements was selected based on 

a number of simulation investigations. 

 
Both of the popular non-linear activation functions, namely the sigmoid and Tanh 

were used during the training process. The better of the two, based on 

performance, was then selected for the testing process as discussed in the 

following section. 

 
Epochs represent the number of iterations required to reach convergence and in 

this study, the trial number of epochs was set at 1000. 
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4.4.6. The Neural Network Training Results 

 

 

As mentioned earlier, the accuracy of the results from an ANN is highly 

dependent on the quantity of data that needs to be trained. In addition, all of the 

inputs should be independent variables including the full range of characteristics 

needed to build the relationships with the outputs. This is important for the 

network to be able to fully learn the relationships. During the training process, the 

input and the desired output data are repeatedly presented to the network. As the 

network continuously strives to learn the relationships between the inputs and the 

outputs, the ‘weights’ of the system are constantly adjusted in order to reduce the 

gap between the current outputs and the desired target response. This 

instantaneous gap can be represented by the mean square error (MSE) which is 

the average of the difference between each consecutive output of the processing 

elements and the desired output:  
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yd
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Equation 4-2: Mean Square Error 
 

Where: 

 P is the number of output processing elements 

 N is the number of exemplars in the data  

 dij is the desired output for exemplar i at processing j 

 yij is the network output for exemplar i at processing j 

 

The alternative training results, using the sigmoid and Tanh activation functions, 

are shown in Figure 4-10and Figure 4-11respectively. 
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Figure 4-10: Training Result of the Data using the Sigmoid Function 

 

 
Figure 4-11: Training Result of the Data using the Tanh Function 
 

The results indicate that the sigmoid activation function has a relatively small 

MSE, which is a measure of the accuracy of ANN output vs. desired output data. 

In fact, after approximately 170 iterations (epochs), the average MSE is almost 

constant and close to zero. Therefore the sigmoid activation function was chosen 

for the rest of this study.  
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4.4.7. The Artificial Neural Network Testing and Results 

 

 

Once the ANN has been trained, the next step is to test the trained network with 

sets of data, both input and output, that have not already been seen. During the 

testing stage, the results were compared with the MSE, to determine the degree 

to which the desired results conformed to the actual output results. However, this 

does not indicate whether the two sets of data are approaching from the same 

direction. The regression (r), or correlation coefficient, can be used to solve this 

problem. The regression coefficient can be expressed by:  
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Equation 4-3: Regression Coefficient 
 

Where: 

 y is the data output 

 d is the desired output 

 i is exemplar 

 N is the number of exemplars in the data 

 
 
This regression coefficient lies between plus one and minus one. If the coefficient 

is plus one, there is a perfect positive relationship between y and d, and when the 

coefficient is minus one, there is a perfect negative relationship between them 

which varies in the opposite direction. The MSE and regression coefficient of the 

training data are illustrated in Table 4-9. The test performances have shown 

accurate results because all the outputs have minimum MSE and r values that 

are approximately one (more than 0.99). 
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Table 4-9: The Performance of Trained ANN with Test Data 

 

Performance Fleet size 

Capital 
Cost/ 

Carrier 
USD (m) 

Operation 
Cost/ 

Carrier 
USD (m) 

CO2 mass 
of Pollutant 
Emission 
(tonne/hr) 

NOx mass 
of Pollutant 
Emission 
(tonne/hr) 

SOx mass 
of Pollutant 
Emission 
(tonne/hr) 

MSE 4.588 0.303 0.316 0.023 9.936 X 10
7
 3.457 X 10

6
 

r 0.999 0.998 0.999 0.999 0.999 0.999 

 

A sample of the ANN testing results is shown in Table 4-10. The blue columns 

are the actual output data and the green columns are the desired output data. 

This data is based on 20 rows of randomised inputs, and the graphical 

representation of the results is illustrated in Figure 4-12. 

 

Table 4-10: Example of the ANN Testing Results 

 

Fleet 
size 

Capital 
Cost/ 

Carrier 
USD (m) 

Operation 
Cost/ 

Carrier 
USD (m) 

CO2 mass 
of 

Pollutant 
Emission 
(tonne/hr) 

NOx mass 
of 

Pollutant 
Emission 
(tonne/hr) 

SOx 
mass of 
Pollutant 
Emission 
(tonne/hr) 

No of 
Fleet 

Output 

Capital 
Cost/ 

Carrier 
USD (m) 
Output 

Operation 
Cost/ 

Carrier USD 
(m) Output 

CO2 mass 
of Pollutant 
Emission 
(tonne/hr) 

Output 

SOx mass 
of Pollutant 
Emission 
(tonne/hr) 

Output 

NOx mass 
of Pollutant 
Emission 
(tonne/hr) 

Output 

54.60 23.36 23.56 20.26 0.13 0.25 54.97 23.47 23.33 20.19 0.13 0.25 

18.27 24.73 15.25 9.78 0.06 0.12 21.76 24.03 13.83 9.49 0.06 0.12 

142.04 30.07 20.28 17.36 0.11 0.22 142.72 29.73 20.01 17.18 0.11 0.21 

23.82 45.50 32.16 28.16 0.18 0.35 22.84 46.50 32.62 28.10 0.18 0.35 

52.69 28.84 34.51 32.35 0.20 0.40 52.41 29.07 34.59 32.34 0.20 0.40 

145.26 35.18 17.93 15.22 0.10 0.19 145.96 35.43 17.80 15.12 0.09 0.19 

44.77 33.85 20.01 17.92 0.11 0.22 43.21 33.32 19.76 17.82 0.11 0.22 

5.43 21.44 33.01 22.74 0.14 0.28 6.15 22.04 32.83 22.66 0.14 0.28 

87.46 22.67 29.86 19.43 0.12 0.24 87.42 22.94 29.66 19.35 0.12 0.24 

106.20 40.15 29.56 26.28 0.16 0.33 105.69 39.89 29.41 26.23 0.16 0.33 

113.38 26.35 21.40 14.03 0.09 0.18 116.07 26.33 20.04 13.77 0.09 0.17 

212.85 19.93 12.63 10.18 0.06 0.13 219.78 20.77 13.03 10.03 0.06 0.13 

5.67 18.33 20.65 13.56 0.09 0.17 5.36 19.38 20.60 13.65 0.09 0.17 

58.05 24.62 11.59 9.32 0.06 0.12 57.20 24.36 11.84 9.57 0.06 0.12 

5.96 58.87 33.19 29.01 0.18 0.36 4.91 59.00 33.48 28.87 0.18 0.36 

175.78 31.96 43.27 28.77 0.18 0.36 172.16 31.81 44.15 28.95 0.18 0.36 

64.56 29.91 19.37 16.48 0.10 0.21 63.07 28.91 18.84 16.30 0.10 0.20 

14.65 34.39 29.49 25.63 0.16 0.32 15.29 33.98 29.14 25.69 0.16 0.32 

111.65 29.72 39.38 26.63 0.17 0.33 112.71 29.36 39.96 26.81 0.17 0.33 

150.93 32.28 49.77 33.35 0.21 0.42 151.36 31.71 49.39 33.22 0.21 0.42 
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Figure 4-12: Desired Output and Actual Network Output Testing Data Results 
 

 

The two main aims of using the ANN software were to reduce the decision area 

and to minimise the computation time. The results produced by the ANN model 

are close to those obtained from the full model, however for higher accuracy; the 

results could then be fed back into the simulation model. Doing so would improve 

the speed of processing and the accuracy of the results from the simulation 

model.         

 

 

4.5. Chapter Summary 

 

The purpose of this chapter was to develop a simulation model, generate 

simulation data and then develop a simplified model of the overall LNG carrier 

system. The development of the simulation model was carried out in two steps. 

Step one translated all the components of an LNG carrier into mathematical 

models, while step two linked these components together using a single piece of 

software.  
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The translation to a mathematical model required detailed investigation of the 

behaviour of the components and the main challenge was to consider and adapt 

all the possible constraints within each component. Furthermore, selecting the 

correct equation was crucial. There were a total of six groups of 

components/systems which needed to be transformed into mathematical models. 

They were (1) the containment system, (2) the reliquefaction plant, (3) the power 

prediction, (4) the life cycle cost analysis, (5) the emission of pollution products 

from the selected engine, and (6) the ship steel weight. Details of the model 

developments are provided in the appendices. Once the formulation for each of 

the components had been achieved, the construction of the simulation model was 

carried out using the LabVIEW software.  

 

Collecting simulation data from the simulation model required three steps: (1) 

selecting the variables; (2) setting the range and increment; and (3) 

systematically feeding the input into the simulation model. Due to the large 

simulation data set produced, an Artificial Neural Network was trained with the 

data in order to reduce computational time without reducing the quality of the 

information. The background of this software has being explained as well as its 

advantages and limitations. Using the ANN model, the trend or pattern of the 

results is based on changing the input variables being studied and analysed. 

 

This model was then applied to find the optimal combination of LNG carrier 

components according to the stated aims of this study. This was achieved by 

creating another simulation programme which analysed the contributions of each 

component to determine their minimum values given the set of objectives. The 

whole process is referred to as the ‘decision making technique’ and details are 

explained and discussed in the next chapter. 
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5. Decision Making Support Technique 

 

Objectives 

 

The overall aim of this chapter is to discuss a methodology for a preliminary 

decision making technique for the design of a new LNG carrier.  

 

The objectives of this chapter are thus summarised as follows: 

 

 To describe the criteria for the technique inputs. 

 To develop the decision making technique. 

 To analyse the results obtained for selected cases.  

 

5.1. Introduction 

The overall aim of this study was to develop a holistic ship design methodology 

which could produce the best possible combination of an LNG carrier’s main 

components to comply with an objective function for application at the preliminary 

stage. At this stage, major decisions are made that affect the overall configuration 

of a vessel, including the selection of the major components and systems that 

have a significant effect on both the capital and operational costs. As 

developments cycle through the phases of increasing design definition, it 

becomes progressively more difficult to make changes to the major components 

and systems without incurring serious slippages to the build schedule and 

increases to the manufacturing costs. This methodology is an approach to reduce 

the life time costs of LNG carriers from the preliminary design stage to the point 

when the ship is eventually sold or scrapped. The objective function for ships 

varies according to their purpose and priority throughout their life span. For 

example, for a passenger ship the main priority is to ensure the safety and 

comfort of the passengers throughout the journey. For an LNG carrier, the main 

purpose is to transport the LNG safely between two agreed companies with the 

minimum fleet size, capital and operational costs, and pollutant emissions whilst 

operating according to the international rules and regulations. 



Chapter 5: Decision Making Support Technique 

MdRedzuanZoolfakar   109 

 

5.2. Decision Making Process 

 

The decision making technique employed for the LNG carrier in this study was 

based on the ANN model introduced in the previous chapter. This technique was 

designed to handle multi objective functions. Although this proposed technique 

produces recommended solutions at the end of the process, the final decision of 

selecting the actual components would still remain within the ship-owner’s 

exclusive power. This proposed decision making technique is thus a support tool 

for the ship-owner to aid him in selecting the final combination of the main 

components.  

 

Figure 5-1 illustrates the complexity of the decision making process for an LNG 

carrier. Once the trading requirement is known, the process for selecting the main 

components of an LNG carrier may be started. Since LNG carrier components 

are interrelated, all of the possible combinations of the components and their 

interactions need to be considered. Results were recorded for each of the 

combinations based on the objective function. The minimum or maximum values 

of the results that were recorded were then identified. This combination of 

components was then the optimal combination or a close to optimal combination 

to satisfy a given objective function.  The decision making process is complex 

and best handled through the use of a simulation programme. In order to achieve 

this, a mathematical representation of the decision making was required. 

 

Before creating the mathematical model an understanding of the entire inter-

related process including its limitations was necessary. In this study, the decision 

making process involved many local and overall targets, and hence it required a 

technique that was capable of handling many conflicting criteria with complex 

interrelationships. 
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Maintenance Characteristics/Costs  

Man Power Costs 

Taxes & Fees 
Insurances 

Class Society 

  Plant Costs 
 

 

   Capital Costs 

   Variable Costs 

Vessel Costs 

Dry Docking Costs 

Specialist Costs 

Regulation: 

Air Pollutants (CO2, NOX, SOX, CH4) 
Water Pollutions (Ballast, Bilge) 

Outside Temperature 

Shape of hull 

Figure 5-1: Decision Making process for Selecting Preliminary Components 
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The mathematical form of this multi-decision making technique can be written as:  

f(X) = ∑αnfn(x) 

Equation 5-1: Multi-objective Decision Making Equation 

Where: 

f(X) is the overall objective function,  

fn(x) are two or more conflicting objective functions,  

αn are constant ‘weight’ values which indicate the relative importance of 

one objective function compared to the other. 

 

Example of a typical real case scenario 

 

A route between Malaysia (Bintulu) and Japan (Tokyo) used for LNG 

transportation was selected, as shown in Figure 5-2. The round trip distance is 

approximately 5000 nautical miles and the contract is between PETRONAS and 

Tokyo Gas.  

 

Figure 5-2: Map illustrating the Route between Malaysia and Japan 
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One of the carriers which are currently in service transporting LNG under this 

contract is the SS Puteri Delima. The details on this carrier are: 

 

Ship-owner:  M.I.S.C.  Delivery: Jan-95 

Shipbuilder:  Atlantique  Flag:  Malaysia 

Build in:  France  Class:  LR 

Contract:  1991   Horse Power: 36,300 (~ 27 MW) 

 

The comparison between the actual service carrier and author-proposed software 

is shown in Table 5-1: 

 
Table 5-1: Comparison between Actual Service carrier and Proposed Software 
 

Components SS Puteri Delima Proposed software 

Size of the carrier Small Conventional Q-flex 

Type of engine Steam Turbine Slow Speed ICE 

Speed (knots) 21 15 

Containment System No 96 MARK III 

Reliquefaction Plant - Cryostar 

No. of Propeller Single Twin 

 

It is clear that all the components are different in the two cases. There are many 

possible reasons for the real carrier having the combination that it has, such as; 

the vessel was designed for use over another totally different route or ship-owner 

decision. The proposed technique is intended to reduce the total costs for LNG 

transportation for this specific route and the amount of cargo to be delivered; 

hence it proposes the combination of components that best achieves this 

objective. The selected components comply with the discussion explained in 

Chapter Three. Thus it can be shown to determine the components correctly and 

it is able to produce the results almost instantaneously. This programme was 

created by using the LabVIEW software and is shown in functional form in Figure 

5-3. 
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Figure 5-3: Simulation Programme for the evolved Decision Making Technique 

Initial value 
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A simplified way to help to explain Figure 5-3 is by using a flow chart as 

illustrated in Figure 5-4. 

 

                                                          

 

Figure 5-4: Multi-objective Decision Making Process Flow 

 

A large initial value is input to act as a dummy value for comparison purposes. 

When the program is started and runs, each result from the corresponding 

Artificial Neural Networks (ANN) model is compared with this large dummy 

number. The ANN model is represented in Figure 5-3 by a purple box marked 

‘optima’.  

 

Initial Value 
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Results for each criterion were then multiplied by a constant weight in order to 

produce a ‘current value’ which was then compared with the initial value and the 

lower of the two was recorded temporarily before being compared again following 

the next iteration loop. The iteration process was continued until the specified 

number of loops was completed.  

 
A set of minimum values was transferred and then extracted in order to show the 

particular combination of the various components. Since the product value from 

the assigned weight process was the same for all the comparators, the resulting 

value was similar for all the criteria. The assignment of ‘weight’ also enables the 

user to select a value for a specific measure in order to enable the user to impose 

some bias, as opposed to setting all parameters to be of the same importance. 

These sets of values were then fed back to the trained ANN model, or the 

simulation model, in order to obtain a set of objective results. The comparison 

between the trained ANN model results and the simulation model results is 

shown in table 5-2 for the six selected criteria. 

 
Table 5-2: Comparison between ANN trained and Simulation models 

Outputs 
ANN Trained 

Model 
Simulation 

Model 
Percentage 

Error 

Results  

No. of Ships 23.6 24.53 3.79 

 The values based on a single ship 

Capital Cost (m) USD 21.45 22.45 4.45 

Operational Cost (m) USD/year 10.89 11.40 4.47 

CO2 mass of Pollutant Emission (Tonne/hr) 8.961 9.005 0.49 

SOx mass of Pollutant Emission (Tonne/hr) 0.224 0.225 0.44 

NOx mass of Pollutant Emission (Tonne/hr) 0.112 0.113 0.88 

 
The maximum percentage error between models was less than 5%, which 

showed the relative accuracy of the ANN trained model results. Although the 

results from the ANN model are close to those obtained from the full simulation 

model, they can be improved by feeding them back into the simulation model to 

obtain more accurate results. Doing so will improve the speed of the overall 

processing and the accuracy of the final results.  
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This program produces two sets of results simultaneously, which are: 

 

1. A prescriptive combination set of the specific component values that 

produced the minimum values of each of the given six criteria, and 

2. A set of results produced from the above prescriptive combination of 

values of the components as given above for each criterion. 

 

The following sections explain in detail each process within this technique. 

 

5.2.1. Program Development  

 

The most crucial element in developing a decision making technique is to select 

or formulate accurately the objective function for solving the given problem. In 

this study the selected objective functions are: 

 

1. Minimum number of identical ships in the fleet. 

2. Minimum capital cost for the ship. 

3. Minimum operational cost per year for a ship. 

4. Minimum mass of CO2 pollutant emissions for the ship per unit of time. 

5. Minimum mass of SOx pollutant emissions for the ship per unit of time. 

6. Minimum mass of NOx pollutant emissions for the ship per unit of time. 

 

The next step was to identify the selected inputs which represent all of the main 

components of the LNG carrier. These are: 

 

1. The amount or volume of LNG to be delivered by the fleet over a given 

period of time.  

2. The time duration scheduled in which to deliver the full amount of cargo 

according to the contract. 

3. The round trip distance between the export and import terminals.  

4. The carrier’s required service speed.  

5. The number of propellers, which indicates the hull form to be constructed.  

6. The type of containment system to be selected.  

7. The type of reliquefaction plant to be chosen. 

8. The LNG carrier classes and engines to be selected.  
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The first three of these variables are fixed, because they are bound by the terms 

of the contract agreed between exporter and importer. The rest of the 

components are variables to be selected by the ship-owner in order to produce 

the minimums of fleet size, overall capital and operational costs, and overall 

pollutant emission products. A summary of the variables of the components 

complete with their allowed ranges or selectable options is illustrated in  

Table 5-3.  

 
Table 5-3: Complete variables with their Ranges and Items 

Inputs Ranges/Items 

Volume of the LNG (B) m
3
 Fixed 

Delivery duration (Years) Fixed 

Round trip distance (Nm) Fixed 

Speed (Knots) 15 - 23 

No of Propellers 
Single Propeller 

Twin Propeller 

Type of Reliquefaction Plant 
Hamworthy Reliquefaction Plant 

Cryostar Reliquefaction Plant 

Type of Containment System 

No96 Containment System 

MARK III Containment System 

CS1 Containment System 

MOSS Containment System 

LNG Carrier Classes 

& 

Associated Engines 

Small Conventional & Slow Speed Engine 

Small Conventional & Medium Speed Engine 

Small Conventional & Gas Turbine 

Large Conventional & Slow Speed Engine 

Large Conventional & Medium Speed Engine 

Large Conventional & Gas Turbine 

Q-flex & Slow Speed Engine 

Q-flex & Medium Speed Engine 

Q-flex & Gas Turbine 

Q-Max & Slow Speed Engine 

Q-Max & Medium Speed Engine 

Q-Max & Gas Turbine 

 

Initial values for the variables need to be established. Without these starting 

values, the simulation programme cannot be operated because the computer 

needs to have indicated to it which values need to be calculated.  
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In the case of the ‘type’ of components, they must be represented in number 

form, and this applies also for their allowable increments. The initial values, 

increments and the number of iterations of these variables are shown in Table 

5-4.   

 
Table 5-4: Initial Value/ type of components, Increments and Number of Iterations 

for the Input Variables 

Independent Variables 
Initial Values/ 

type of 
components 

Increments 
No of 

Iterations/ 
loops 

Ship Speed (Knots) 15 2 5 

No of Propellers 1 1 2 

Type of Reliquefaction Plant 3 1 2 

Type of Containment System 5 1 4 

LNG Carrier Classes & Engine 9 1 12 

 

Note: The dark blue numbers in the cells represent the input components as 

identified earlier in Table 4-7. 

 

The following section discusses the selected case studies and the results of 

using the proposed decision making technique.  

 

5.3. Case Studies 

Three case studies were undertaken in order to investigate the performance of 

the multi-objective decision making technique. These studies are: 

 

 Case study 1: Transporting LNG from Malaysia (Bintulu) to Japan (Tokyo). 

A round trip voyage distance of approximately 5,000 nautical miles, 

 Case study 2: Transporting LNG from Qatar (Doha) to Europe 

(Netherlands-Rotterdam). A round trip voyage distance of approximately 

12,620 nautical miles, and 

 Case study 3: Transporting LNG from Russia (St. Petersburg) to Europe 

(Italy-Bari). A round trip voyage distance of approximately 7,420 nautical 

miles. 
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In order to remain consistent and for ease of illustration and comparison, some of 

the operating values have been fixed in the case study calculations. These are: 

 

 Amount of LNG in the contract:  1 billion m3, 

 Number of years in contract: 20 years, and 

 Pollutant Emission Ratio (PER) for the following compositions were taken 

as (Woud and Stapersma, 2002): 

 

 CO2 (86 % C in fuel) : 3200 g/kg of fuel, 

 NOx    : 40 g/kg of fuel, 

 SOx ( 4 % S in fuel)  : 80 g/kg of fuel – High Sulphur content 

 SOx ( 1 % S in fuel)  : 20 g/kg of fuel – Low Sulphur content 

 

The aim of the case studies was to generate and then to evaluate the results 

obtained from the multi-objective decision making calculations and to determine 

the optimal combination of the various main components of the vessels for each 

of the selected routes. With regard to the introduction of Sulphur oxide Emission 

Control Areas (SECA), which have been enforced within the North Sea as 

defined by regulation 5(1)(f) of MARPOL Annex V since March 2010, the aim is 

also to ensure that the study is up to date in relation to industry issues. 

Implementing the SECA rules and regulations requires some modifications to the 

equipment and operation of the vessel which will inevitably have impacts on the 

overall cost of LNG carriers.  

 

In order to study the effects of the SECA area requirements on the case studies, 

two sets of scenarios were investigated in which operations both outside and 

inside the SECA was carried out (case study 2 and 3). 

 

 

 Outside SECA Regulation Areas 

 

Heavy fuel oil (HFO) is the most common fuel that is used for merchant ships 

worldwide due to its relatively low cost. It basically consists of residual refinery 

products and has a density greater than 1000 kg/m3 (Concawe, 1998).  
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It has, however, environmental implications, not only from the composition of the 

exhaust gases but also with respect to the sea water in the case of potential 

spillages due to accidents, carelessness, grounding or collisions. Table 5-5  

shows the multi-objective decision making results for an LNG carrier using 

standard HFO (high sulphur) for the three different case studies. 

 

Table 5-5: Results from the Multi-Objective Decision making analysis for three 

standard Fuel Case Studies 

Outputs/Inputs 

Case Study 1: 
Malaysia 

(Bintulu) to 
Japan (Tokyo) 

Case Study 2: 
Qatar (Doha) 

to Europe 
(Netherland - 
Rotterdam) 

Case Study 3: 
Russia (St 

Petersburg) to 
Europe (Italy – 

Bari) 

Results  

No. of Ships in fleet 14.18 24.53 20.58 

 The following values based on a single ship 

Capital Cost (m) USD 20.49 22.45 20.49 

Operational Cost (m) USD/year 9.377 11.400 9.567 

CO2 mass of Pollutant Emission (Tonne/hr) 7.703 9.005 7.703 

SOx mass of Pollutant Emission (Tonne/hr) 0.193 0.225 0.193 

NOx mass of Pollutant Emission (Tonne/hr) 0.096 0.113 0.096 

LNG carrier Components  

Amount of LNG in Contract (B) m
3
 1 1 1 

Number of Years in Contract 20 20 20 

Round Trip Distance (Nm) 5000 12620 7420 

Number of Propellers 2 2 2 

Type of Reliquefaction Plants 4 4 4 

Type of Containment System 6 6 6 

Vessel Speed 15 15 15 

Type of Carrier and Engine 12 15 12 

 

As shown in table 5-5, the generated optimal LNG carrier components for the 

three case studies are very similar except in the selection of the size and cargo 

capacity of the ship. In Case Study 2, the Q-flex size was selected (highlighted in 

yellow) while for the other two a Large Conventional vessel was selected.  

 

From the results produced, the sizes of the fleets were seen to be different 

between the case studies and mainly this was due to the different round-trip 

distances involved, although the same combination of components are used in 

Case Studies 1 and 3.  
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In terms of the capital cost, Case Studies 1 and 3 produced the same result 

because they have the same components, whereas in Case Study 2, as the size 

of the ship increases, the cost of construction of the ship also increases. In 

addition, the higher power requirement increases the main engine costs. Hence, 

the capital cost in Case Study 2 is the highest.  

 

As for the operational costs, all of the case studies have different values due to 

the difference in fleet size. If the fleet size and the components are the same, the 

operational costs should also have similar values. This situation will also apply to 

the mass of the pollutant products.   

 

 

 Within the SECA Regulations sea Area 

 

The regulations for the Sulphur Oxide (SOx) emission control areas (SECA) are 

part of the MARPOL Annex VI: Regulations for the Prevention of Air Pollution. 

Particularly, Chapter Three, regulation 14(3) which mentions the requirements for 

controlling the exhaust gas emissions from ships. In order to comply with the 

regulation, there are two on-board options which can be implemented: 

1.  Using an approved exhaust gas cleaning process, also known as a ‘scrubber’, 

or 

2. Using low sulphur HFO on board ships which has a content of less than 1.5 

percent of sulphur by mass. 

 

The following sub-sections illustrate the consequences of these options. 

 

Option One – Using Standard Fuel with Scrubber 

 

A scrubber is a piece of equipment that can ‘clean’, in a continuous process the 

main engine exhaust gas in order to reduce the SOx present before the remaining 

exhaust gas is released into the atmosphere. It works by spraying a solution of 

sodium hydroxide in solution in water into the exhaust gas and then allowing it to 

pass through a demister via an absorption section. In the absorption section, the 

treated exhaust gas slowly flows upwards in a direction that is in contra flow to 
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the water. The demister holds any water droplets from within the gas and the 

cleaned exhaust gas is then heated before it is released into the funnel in order to 

prevent local condensation and thus a visible vapour from occurring. The 

relationship between the sulphur content in the fuel and the level of sodium 

hydroxide in the water determines the level of reduction of the SOx (PIN, 2008).     

 

Table 5-6 contains the results from the multi-objective decision making process 

for an LNG carrier using standard fuel with a scrubber installed. From this table, 

the combination of components identified for Case Study 2 was significantly 

different from those for the other two case studies in both the type of 

reliquefaction plant and the ship size. The multi-objective decision making 

identified in this situation the Cryostar reliquefaction plant and a small 

conventional size of vessel for both Case Studies 1 and 3, while the Hamworthy 

reliquefaction plant and the Q-flex size of the ship were again selected for Case 

Study 2 (highlighted in yellow).   

 

Table 5-6: Results of Multi-Objective Decision making for Standard Fuel and 

Using a Scrubber on all three routes 

Outputs/Inputs 

Case Study 1: 
Malaysia 

(Bintulu) to 
Japan 

(Tokyo) 

Case Study 2: 
Qatar (Doha) 

to Europe 
(Netherland - 
Rotterdam) 

Case Study 3: 
Russia (St 

Petersburg) 
to Europe 

(Italy – Bari) 

Results  

No. of Ships in fleet 14.18 24.53 20.58 

 The following values based on a single ship 

Capital Cost (m) USD 20.99 22.95 20.99 

Operational Cost (m) USD/year 9.413 11.41 9.603 

CO2 mass of Pollutant Emission (Tonne/hr) 7.703 9.005 7.703 

SOx mass of Pollutant Emission (Tonne/hr) 0.196 0.225 0.193 

NOx mass of Pollutant Emission (Tonne/hr) 0.096 0.113 0.096 

LNG carrier Components  

Amount of LNG in Contract (B) m
3
 1 1 1 

Number of Years in Contract 20 20 20 

Round Trip Distance (Nm) 5000 12620 7420 

Number of Propellers 2 2 2 

Type of Reliquefaction Plant 3 4 3 

Type of Containment System 6 6 6 

Vessel Speed 15 15 15 

Type of Carrier and Engine 12 15 12 
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In terms of the size of the fleets, the number of carriers in each is different due to 

the difference in round-trip distances. As the distance increases, the fleet size 

also increases, as has been mentioned in chapter three under the effects of the 

distance on fleet size.  

 

The scrubber unit was an additional equipment requirement for the ship and 

hence its cost was added into the capital costs. In practice, the cost of this unit 

varies with the volume of exhaust gas that is required to be processed and its 

manufacturer; however for convenience, in this study, the price of the scrubber 

was fixed at USD 500,000.00 per ship for the comparison purposes. As a result, 

the capital cost for this option was higher than the corresponding option of just 

using high sulphur fuel. 

 

Once a scrubber has been installed onboard the ship, the power and 

maintenance costs for operating the scrubber need to be calculated and this cost 

is to be added into the operational costs. Ten thousand USD per year has been 

assumed in this study, and this additional cost has contributed to an increase in 

the operational costs for vessels otherwise using only standard fuel with similar 

ship components. 

 

The purpose of the scrubber is to reduce SOx emissions; however, in Table 5-6 

the SOx level does not show any obvious reduction compared to table 5-5. This 

is because the SOx mass in the table is a result of the exhaust gas composition 

calculation before entering into the scrubber. Thus the amount of SOx after the 

scrubber should be less than 1.5%, though the rest of the other pollutant 

emission products will be the same.       
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Option Two – Using Low Sulphur Fuel 

 

A low sulphur fuel, as its name implies, has less sulphur in the fuel compared 

with the composition of the standard fuel, however it is more expensive. Table 

5-7 shows the multi-objective decision making results, for the three case studies 

for LNG carriers using low sulphur HFO during the round trip voyage. 

 

The low sulphur fuel would be loaded in anticipation for the ships which were to 

be sailing through the SECA areas, while for other sections of the routes they 

would burn standard fuel. The change-over process, between voyages, would 

require additional time, which would contribute to a reduction in the number of 

trips per year and would therefore potentially result in an increase in the number 

of carriers required in the fleet. To allow for this situation, an extra one day has 

been assumed each trip.  

 

Table 5-7: Result of Multi-objective Decision making for Low Sulphur Fuel for all 

routes 

Outputs/Inputs 

Case Study 1: 
Malaysia 

(Bintulu) to 
Japan 

(Tokyo) 

Case Study 2: 
Qatar (Doha) 

to Europe 
(Netherland - 
Rotterdam) 

Case Study 3: 
Russia (St 

Petersburg) 
to Europe 

(Italy – Bari) 

Results  

No. of Ships 15.13 25.21 15.38 

 The following values based on a single ship 

Capital Cost (m) USD 20.49 22.45 22.45 

Operational Cost (m) USD/year 9.033 11.360 10.990 

CO2 mass of Pollutant Emission (Tonne/hr) 7.703 9.005 9.005 

SOx mass of Pollutant Emission (Tonne/hr) 0.048 0.056 0.056 

NOx mass of Pollutant Emission (Tonne/hr) 0.096 0.113 0.113 

LNG carrier Components  

Amount of LNG in Contract (B) m
3
 1 1 1 

Number of Years in Contract 20 20 20 

Round Trip Distance (Nm) 5000 12620 7420 

Number of Propellers 2 2 2 

Type of Reliquefaction Plant 3 3 3 

Type of Containment System 6 6 6 

Vessel Speed 15 15 15 

Type of Carrier and Engine 12 15 15 
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The only difference found between the case studies is in the size of the ship; for 

Case Study 1, the small conventional ship size was chosen. 

 

As for capital cost, there is an insignificant difference in cost between low sulphur 

and standard fuel. However, this statement is only true if it is found that the fleet 

size and combination of the components are the same. 

 

Since low sulphur fuel is more expensive than standard fuel, the operational cost 

is increased accordingly. In fact, the operational costs for the low sulphur fuel 

option were the higher of the two options tested for the same ship. 

 

Obviously, when using low sulphur fuel the SOx emission levels were reduced 

however the masses of the other pollutant emissions did not show any 

improvement. 

 

5.3.1. Comparison between Routes that do and do not include the SECA 

Areas 

 

It is useful to compare the results of the three tests, which are with the standard 

fuel condition, the standard fuel with a scrubber installed, and the low sulphur fuel 

condition. Table 5-8 illustrates the relative merits of each.  

 

Case study 2, that is Qatar to Rotterdam, was selected because the combination 

of components among them was similar, except for the type of reliquefaction 

plant that was indicated for the low sulphur fuel condition result. 

 

The fleet size for the ‘standard fuel’ and ‘standard fuel with scrubber’ conditions 

were the same however an additional day was allowed in order to change over 

the fuel in the case of the ‘low sulphur fuel’ condition, and therefore there was a 

small increase in the required fleet size.   

 

The ‘standard’ and ‘low sulphur fuel’ investigations indicate similar values for 

capital costs because there are no additional items of equipment that need to be 

bought and installed onboard the ship, such as occurs in the case with ‘standard 

fuel with scrubber’. The difference in values between ‘standard’ and ‘low’ sulphur 

fuel is attributable to the difference in reliquefaction plants used. 



Chapter 5: Decision Making Support Technique 

MdRedzuanZoolfakar   126 

 

The operational costs show small but different values for all scenarios. This is 

because in the case of ‘standard fuel with scrubber’, 10,000.00 USD was added 

into the annual operational costs to allow for the maintenance and power 

requirements for the scrubber. The price of the low sulphur fuel is higher than that 

of the standard fuel (as of 10th of April 2010 their costs were 477.00 and 459.00 

USD/MT, respectively (BunkerWorld, 2010)).The operational costs for the ‘low 

sulphur fuel’ option will be highest if it is multiplied by the fleet size (standard fuel 

is USD 279.64 million, standard fuel & scrubber is USD 279.89 million, and low 

sulphur fuel is USD 286.39 million). 

 

The obvious difference in the overall mass of the pollutant emission products is in 

the reduction of SOx produced in the ‘low sulphur fuel’ arrangement as 

highlighted in blue. The rest of the emission products do not show any difference 

in their composition. 

 

Table 5-8: Comparison between Outside and Inside SECA Areas – identical route 

distance 

Outputs/Inputs 
Outside 

SECA area 
rules 

Inside SECA area rules 

 
Standard 

Fuel 
Standard Fuel 

& Scrubber 
Low Sulphur 

Fuel 

Results  

No. of Ships 24.53 24.53 25.21 

 The following values based on a single ship 

Capital Cost (m) USD 22.45 22.95 22.45 

Operational Cost (m) USD/year 11.400 11.41 11.360 

CO2 mass of Pollutant Emission (Tonne/hr) 9.005 9.005 9.005 

SOx mass of Pollutant Emission (Tonne/hr) 0.225 0.225 0.056 

NOx mass of Pollutant Emission (Tonne/hr) 0.113 0.113 0.113 

LNG carrier Components  

Amount of LNG in Contract (B) m
3
 1 1 1 

Number of Years in Contract 20 20 20 

Round Trip Distance (Nm) 12620 12620 12620 

Number of Propellers 2 2 2 

Type of Reliquefaction Plant 4 4 3 

Type of Containment System 6 6 6 

Vessel Speed 15 15 15 

Type of Carrier and Engine 15 15 15 
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One interesting difference shown in Table 5-8 is that, using a scrubber in order to 

reduce the level of SOx emissions is more economical than simply by using low 

sulphur fuel after a year of operation. This is because of the scrubber cost which 

is estimated to be around USD 0.5 million for a vessel, while a year of operation 

difference between the ‘low sulphur fuel’ and the ‘standard fuel with scrubber’ 

cases is USD 6.5 million, which is enough to cover the capital cost of the 

scrubber.  

 

 

5.3.2. Comparison between Different Priorities given to the Objectives 

 

All of the previous results have been based on the same priority level being given 

to each of the set objectives and since the decision making technique that has 

been created has the ability to select a specific priority for each of the objectives 

given, it is possible to see typical results from the use of this facility. Table 5-9 

illustrates results from this comparison.    

 

Table 5-9: Comparison between the effect of different priorities being given 

Outputs/Inputs Standard Fuel 

Base on Case Study 1 
Same 
weight 
for all 

Higher 
weight for 

Capital 
Cost Only 

Higher 
weight for 

Operational 
Cost Only 

Higher 
weight 
for CO2 

Only 

Higher 
weight for 

Capital and 
Operational 

Costs 

Results  

No. of Ships 12.1 17.7 16.2 16.2 16.2 

 The following values based on a single ship 

Capital Cost (m) USD 19.64 16.76 18.96 18.96 18.96 

Operational Cost (m) USD/year 9.233 9.724 8.467 8.467 8.467 

CO2 mass of Pollutant Emission (Tonne/hr) 7.749 7.895 6.982 6.982 6.982 

SOx mass of Pollutant Emission (Tonne/hr) 0.194 0.197 0.174 0.174 0.174 

NOx mass of Pollutant Emission (Tonne/hr) 0.097 0.099 0.087 0.087 0.087 

LNG carrier Components  

Amount of LNG in Contract (B) m
3
 1 1 1 1 1 

Number of Years in Contract 20 20 20 20 20 

Round Trip Distance (Nm) 5000 5000 5000 5000 5000 

Number of Propellers 2 2 2 2 2 

Type of Reliquefaction Plant 4 4 4 4 4 

Type of Containment System 6 6 6 6 6 

Vessel Speed 15 15 15 15 15 

Type of Carrier and Engine 12 10 9 9 9 
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The main aim for this comparison was to ascertain whether this aspect of the 

decision making technique recognised and responded to any changes in relative 

priority or not. Regardless of which case study and scenario options are selected, 

the results were found to be proportionally similar. Thus, Case Study one using 

standard fuel was chosen for this illustration.     

 

The required size of the fleet show significant differences as the priority changed 

and the minimum number of ships was actually obtained for the ‘equal priority’ 

case. This is because the decision making technique would compromise all 

objectives in order to achieve the specific conclusion. In addition, when extra 

priority was given to a particular objective, the compromising calculation, as 

mentioned in Equation 5-1, was recalculated and a new solution produced. It is 

not surprising therefore that the number of vessels was observed to vary with 

different priorities, for given similar conditions.   

 

As far as the capital cost condition is concerned, on being given a higher priority, 

as expected this results in a reduction in individual vessel capital cost as 

compared to the other cases having different priorities. However, as a 

consequence, the outputs of the other objectives such as the number of carriers, 

operational costs, and mass of CO2, SOx and NOx emissions are all increased. 

The reduction in the capital cost was due to the difference in the size of the 

vessel and type of main engine selected i.e. a reduction in size of vessel. 

 

Similar conditions applied when the operational costs were selected to have 

higher priority resulting in a significant reduction in its output and the other 

objectives were observed to vary accordingly. Selection of the size of the carrier 

was again the dominant factor for this reduction. As the size reduced, the other 

components of the LNG carrier will require less power as explained in Chapter 

Three.  
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The production of CO2 mass pollutant emissions is highly dependent on the 

thermal efficiency of the engine and the type of fuel, which link it to the 

operational cost. As higher priority is given to this objective, this naturally results 

in a reduction in the mass of CO2 produced. Since this objective is bound to the 

operational cost, the combination of LNG carrier components will be similar and 

thus the results between them will be similar, as shown in Table 5-9. 

 

Again, in the case of giving increased priority to both capital and operational 

costs, the different results that are shown compare with the equal priority 

assumptions. Since the main contribution to the overall cost of an LNG carrier are 

the size of vessel and type of engine selected, the program will choose a vessel 

of a size smaller than the ‘small conventional type’ and a better thermal efficiency 

engine than the low speed engine if available.   

 

In all, it is clear that the decision making technique proposed in this study does 

respond to the assignment of relative priority levels being given to the specific 

objectives that are selected. This is clearly an additional advantage of the 

technique.  

 

5.4. Chapter Summary 

This chapter demonstrated the application of the decision making process in 

order to achieve the optimal combination of the main components of an LNG 

carrier based on the stated aim of this study. This has been achieved by 

developing a new simulation programme in combination with a trained ANN 

model.  

 

The decision making techniques start by identifying the exact inputs and outputs 

of each region of the simulation. The next process was to select initial values, or 

types of components, and their possible increments and number of iterations 

before running the simulation. The weight, the relative significance of 

components, indicates the user specified priority to be given to particular 

objectives.  
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There are two sets of results produced by the decision making technique namely; 

(1) the values of each objective given, and (2) the selected components that 

produce those values. Since weighting values have been added in multi-objective 

decision making, the results produced were the same for all the objectives given.  

 

Three case studies with different route scenarios for identical cargo delivery 

schedules have been considered in order to investigate the application of the 

multi-objective decision making techniques for LNG routes. These scenarios refer 

to one case outside SECA and two options for inside SECA. In addition, the 

ability to respond to changes in the given assigned priorities among set 

objectives has shown to give added value to the technique proposed in this 

study. 

 

All of the results that are produced from the decision making process compared 

well with theoretical formulations which are shown in the appendices. Slight 

changes in the input variables, such as a different route distance in a case study, 

produced a different set of results and this is indicative of the robustness of the 

developed technique. Moreover, there are no contradictory results, thus 

illustrating the dependability of the technique. In addition, it is important to note 

that the technique proposed in this study considers the holistic LNG carrier as a 

‘system of systems’, which, to the knowledge of the author, has not been 

previously considered. 
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6. Conclusions and Recommendations 

 

In traditional methods for a new ship design, there would typically be an 

incremental change in one or more technology elements from a base design and 

over time this may result in a less than optimum design. The main aim of this 

thesis was to develop a methodology to select the optimal combination of LNG 

carrier components in order to minimise the fleet size, the construction and 

operational costs, and the total mass of pollutant emission products at the 

preliminary design stage. This has been achieved by proposing a procedure in 

which analytical tools are selected and utilised. This offers a comprehensive tool 

to aid in the selection of LNG carrier components so that decisions to find the 

optimal combination could take advantage of the tool integration. 

 

The holistic-analytical approach consisted of a comprehensive system simulation 

of an LNG carrier, an artificial neural network (ANN) and an integrated ANN 

based multi-objective decision making simulation.  

 

In order to achieve the above aim, the following objectives were identified and 

undertaken: 

 

1. Development of an accurate mathematical model for each component in 

order to create an LNG carrier simulation. 

2. Development of tools that could duplicate and assemble the large 

simulation output data efficiently and accurately with a minimum 

computational time  

3. Application of the developed tool as a decision making technique to obtain 

the minimum component response and in combination, obtain the optimal 

operating response given the holistic integration of the individual 

components. 

 

The framework of this thesis is based on maximising the profit of using LNG 

carriers by minimising the capital and operational costs and at the same time 

obeys all the rules and regulations given by international and local authorities. 

Minimising the costs does not imply the purchase and installation of cheap 
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components, but requires knowledgeable consideration for future operational 

costs. The aim was to make a compromise between these two costs. 

 

Six main LNG carrier components were considered, (1) the containments system, 

(2) the hull geometry, (3) the reliquefaction plant system, (4) the power prediction 

variables, (5) the main propulsion systems, and (6) the mission profile variables. 

In order to build an appropriate simulation model for an LNG carrier, each of 

these components needed to be translated into an appropriate mathematical 

model.   

 

The main challenge in creating the mathematical model for each component was 

developing an understanding of the behaviour and limitations. At the same time, 

the accuracy of results was dependent on selecting or creating the appropriate 

formulation. The simulation had eight high impact input variables that were 

identified, namely: (1) The type of carrier class and propulsion engine, (2) the 

amount of LNG to be transported as stated in the contract, (3) the number of 

years set in the contract, (4) the round trip distance between the export and 

import ports, (5) the carrier speed, (6) the type of containment system to be 

selected, (7) the type of reliquefaction plant chosen, and (8) the type of hull 

geometry. While the outputs were fleet size, capital and operational costs, and 

the mass of CO2, SOx and NOx emission products.        

 

The simulation was conducted based on the above parameters and produced a 

total possible combination of 311,040 outputs. An ANN model was built and 

trained using the simulation input-output data. Accurate results were obtained 

from the ANN model, where the mean square errors (MSE) were close to zero, 

and the regression values were almost one. Investigations were performed to 

identify the consequences of changing each input variable. The results were 

presented in graphical format and found to be in reasonable agreement with 

related theories and practical experimental solutions carried out by other 

researchers. The trend of the results reconfirmed the accuracy of the 

mathematical models that were created previously.  
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Even though the simulation method and ANN were proven to be effective in 

producing output data, these techniques were unable to produce an optimum 

solution. Thus, an additional decision making technique was required in order to 

achieve the aim of this thesis. The proposed technique was an integrated 

decision making tool; an ANN model and a simulation programme, both of which 

have been described in detail, applied and validated in this thesis. The ANN/ 

simulation combination has been demonstrated to work successfully with the 

results agreeing with the related theories. This shows the reliability of this 

decision making technique. Additional investigations in line with current problems 

associated with LNG carriers such as operation in the Sulphur Emission Control 

Area (SECA) and CO2 emission levels were also performed. From the results, 

using ‘standard fuel with scrubber’ was found to be more economical in the long 

term for LNG operation compared to the use of ‘low sulphur fuel’. Moreover, this 

decision making technique has the additional option of selecting the priority 

assigned to the objectives. Investigation of this was also performed and 

discussed.      

 

The contribution of this research is to provide an holistic decision making tool for 

LNG carriers which has not previously been available. The current published data 

associated with LNG vessels only focuses on an individual system, thus it does 

not indicate the whole picture of the LNG carrier. In this research all of the 

systems have been integrated in one platform so the interaction between them 

could be considered   

 

This research has contributed in several ways. Generally, it provides realistic 

scenario analysis of LNG carriers. All rules and regulations have been adopted; 

thus, it provides a holistic view of LNG carriers.  

 

This research also contributes to knowledge in decision making processes for 

identifying optimum combinations of LNG carrier components. This process has 

been successfully demonstrated by linking the components together in a single 

platform. The previous studies have only focused on selected components while 

this research has illustrated the overall relationship between the components. 

Thus, this methodology is applicable for similar engineering issues especially 

when dealing with a conflict of interest in complex systems. 
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A software tool has been developed that provides comprehensive results for 

industrial scenarios and which could be used as a preliminary design tool to aid in 

the optimisation of new build LNG carriers. 

 

6.1. Recommendations for future work 

 

This thesis discussed LNG carrier systems and the potential ways to achieve 

given aims for new constructions in the future. The investigations, examinations 

and simulation analysis have been carried out in order to achieve these aims by 

developing a general methodology that can be applied not only to LNG carriers 

but to all types of ship and engineering decision making problems. 

 

The main consideration in developing and validating a robust methodology for 

ship decision making techniques has been achieved and is evidenced in the 

reasonable comparison of the results obtained from the proposed technique with 

theoretical solutions and experimental results of related studies. Given time and 

funding constraints however, it has not been possible to investigate each of the 

related areas in as much detail as was originally desired. Thus, there are still 

many areas which are deserving of further attention.  

 

Concerning the LNG carrier component simulation model, several parameters 

such as ambient temperature, price of the materials and fuels, overhead, 

manpower and specialist costs have been given constant values. Power 

prediction variables which depend on factors such as size and type of the ship, 

and compositions of the fuel for mass of emission product calculations were 

similarly assumed constant. Their actual values should however be used to 

generate more accurate results. 
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The level of detail of the LNG carrier component simulation should be improved 

depending on the purpose for which the model is being developed. Some areas 

such as thermodynamic heat transfer and surface tank area calculations which 

involve many considerations should be further investigated in order to have a 

more comprehensive simulation model. In addition, the calculations of fleet size 

in this study have been based on calm sea conditions and the uninterrupted 

sailing of the ship without unscheduled stops. However, the calculation of fleet 

size should incorporate a model which considers additional time resulting from 

unexpected and unavoidable delays.   

 

Considering the ANN modelling, use of a wider range of input data in training the 

model would improve the accuracy of predicted results. Further experiments with 

the ANN structure and its transfer functions could also be undertaken to ensure 

accuracy of the results.     

 

Performance of an integrated ANN based multi-objective decision making 

technique can also be improved by further investigation of various parameters. 

This thesis has been mainly concerned with developing a general methodology 

for solving complex systems with a conflict of interests rather than fine-tuning of 

parameters. 

 

Finally, instead of acting as a verification tool toward a new construction of LNG 

carrier, this proposed technique, if supported by a suitable simulation model 

could be used as both a design and operational tool for application in the ship 

industry, and a potential extension to line-production manufacturing processes.   
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Appendix 1 
 

 

Mathematical Modelling of Containment System 

 

 

The containment system consists of a primary and a secondary barrier and a set 

of insulation materials in between the barriers and the tank wall. In addition to 

providing a tank to hold the liquid cargo, the main function of the containment 

system is to limit the penetration of external heat into the cargo hold by using low 

thermal insulation material which can reduce the generation of boil off gas (BOG). 

The presence of BOG in the cargo tank will increase the tank pressure and if 

unvented will eventually damage the membrane of the containment system 

because it is very sensitive to pressure (ABS, 2003).  

External Ambient Heat Influx to LNG Tank 

 

Ambient and seawater temperatures vary according to geographic location, time 

of day, weather conditions, and season. These temperatures are clearly 

considerably higher than those within the LNG itself (-160oC). According to the 

Second Law of thermodynamics, heat flows from higher to lower temperature 

regions (Holman, 2010; Cengel, 1997). Thus, the heat penetration from the 

outside into the cargo hold is hard to avoid due to the very large temperature 

differences between them, which is typically approximately 180oC. The 

calculation of heat transfer comes from Fourier’s law (Joel, 1996), which states 

that the heat transfer is a combined function of thermal potential difference and 

total thermal resistance. The Fourier equation can be written as: 

tR

T
q  

Where: 

 is heat transfer flow rate 

 ΔT is thermal potential difference 

∑Rtis the various thermal resistances of the element layers (K/W)  
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It is clear that the heat flow rate can only be reduced by either reducing the 

thermal potential difference or by an increase in total thermal resistance, which is 

a function of thermal conductivity, thickness of materials and area of resistance to 

flow, or by a combination of the two. Since the thermal potential difference in an 

LNG application is large, the only option is to increase the total thermal 

resistance of the containment system. This can be done by increasing the 

thickness of the insulation material and/or by using a series of materials having 

low thermal conductivity coefficients. However, both of these options have an 

impact on the other components of the LNG carrier, such as an increase in 

overall costs. For example, a low thermal conductivity material might be more 

expensive, reduce the amount of cargo carried because an increase in thickness 

will reduce the cargo volume or there might be an increase in the weight of the 

vessel for the same volume of cargo which eventually increases the ship 

resistance and requires more power to manoeuvre the ship according to its 

mission profile. A compromise between the various components is thus 

necessary in order to handle this problem efficiently.  

 

There are two basic types of LNG containment systems based on the geometric 

shape of the tank: prismatic (wall type) or spherical.  

 

Modelling of Prismatic Tank Containment Systems 

 

There are only two types of prismatic cargo containment systems currently in 

use, the membrane type with a fully effective secondary barrier (No. 96, MARK III 

and CS1) and the Self-supporting Prismatic shape IMO Type B (SPB) tank with a 

partial secondary barrier. A typical cross section of a prismatic tank is illustrated 

in Figure 1-1 
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                                 Source: GTT Photo library 

 
 
 

The mathematical techniques that are required to calculate the heat transfer rate 

for a complete prismatic containment system are complex and some assumptions 

have to be made in order to simplify the problem. The assumptions include: 

 

 The calculation is performed in steady state conditions with a stabilised 

temperature gradient across the system. 

 Only conduction heat transfer has been considered (i.e. no radiation 

effects). 

 The same outside temperature exists around the tank and its insulation 

system. The assumption of uniform outside temperatures (i.e. no 

differences between air and water temperatures) suggests the hull 

equilibrates the temperature. 

 The total area of the tanks is based on the number of the tanks multiplied 

by midship tank area in square metres (i.e. no difference in the size of the 

tanks on a given vessel).   

 

The following sections illustrate the typical arrangement of each prismatic 

containment system including the thicknesses and materials used and provide a 

formulation of the total thermal resistance per unit area. 

Containment Systems 

B is breadth, D is depth, L is length, h is height and d is draft 

Figure 1-1: Typical Cross Section of Prismatic Tank 
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 Modelling of No 96 Tank Containment Systems  

 

The cross section of the wall of a No 96 tank is shown in Figure 1-2. Nitrogen gas 

is supplied in between the resin beads and the vessel’s inner hull for the 

purposes of cargo leak detection. Resin beads, also known as mastic, are used 

to bond the containment system to the ship’s double hull, having two purposes: 

(1) to compensate for the surface irregularities of the inner hull and to transmit 

the mechanical cargo-induced loads to the hull, and (2) as a load bearing filler for 

corner panels and retainers (TNA, 2008).  

 

 

 
 

Figure 1-2: Typical Cross Section of No 96 Containment Systems 
 

 

The total thermal resistance per unit area for a No 96 Containment System is 
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 Modelling of MARK III Tank Containment Systems 

 
 
The cross section of the wall of a MARK III tank is shown in Figure 1-3. Nitrogen 

gas is supplied in between the mastic and the vessel’s inner hull for leak 

detection and also within the corrugated primary barrier. The obvious differences 

between the MARK III and No 96 systems are in the primary and secondary 

barriers and the insulation materials. Also, the thickness of the containment 

system is reduced by about 50 percent for the MARK III compared with the No 96 

system.   

 

 
 
Figure 1-3: Typical Cross Section of MARK III Containment System 
 
 

The Total Thermal Resistance per unit area for the MARK III Containment 

System is given by: 

ΣRMARK III = 
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 Modelling of Combined System Number 1 (CS1) Containment Systems  

 
 
The cross section of the wall of a CS1 tank is shown in Figure 1-4. Nitrogen gas 

is supplied in between the mastic and inner ship’s hull for leak detection. The 

primary barrier is similar to that of the No 96 containment system; however, the 

secondary barrier and the insulation materials are the same as in the MARK III 

system. Since the thickness of the containment system is highly dependent on 

the type of insulation material, the CS1 system will have almost the same 

thickness as the MARK III system.  

 

 
 
Figure 1-4: Typical Cross Section of CS1 Containment System 
 

 

The Total Thermal Resistance per unit area for the CS1 Containment System is 

given by: 
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 Modelling of Self-supporting Prismatic shape IMO Type B (SPB) Tank 

Containment Systems  

 

The SPB containment system consists of a structurally complete freestanding, 

self-supporting independent prismatic tank. The cargo tank rests on the hull 

structure within the hold space and is supported and restrained by the hull 

structure in a manner that prevents forces on and movement of the tank caused, 

due to ship wave induced motions and hull deflections. The tank structure itself is 

designed to be able to resist the cargo pressure forces and the effects of the 

accelerations that are a result of ship motions in waves. The cross section of a 

CS1 tank wall is shown in Figure 1-5. SPB tanks only need a partial secondary 

barrier (IGC, 1993). The three dimensional shape of the tank is similar to that of a 

membrane tank.  

 

 

 
Figure 1-5: Typical Cross Section of SPB Containment System 
 

The total thermal resistance per unit area for the SPB Containment System is 

given by: 
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Modelling of Spherical Tank Containment Systems 

 
 
The first design of Type B independent tanks is the Moss-Rosenberg 

arrangement. It was licensed by Kvaerner and is also known as the Kvaerner-

Moss system. The first generation of this configuration of LNG carriers were the 

vessels named Norman Lady and AsakeMaru. The tanks were made from 9 % 

nickel steel, having a 36.6 m diameter and with the ships having five spherical 

tanks with a combined 125,000 m3 capacity. However, nowadays the 

containment system is made from aluminium alloy (ABS, 2003).  

 

The cargo containment system is made of an unstiffened spherical shell tank 

supported at the equator by a vertical cylindrical skirt. The bottom of the 

cylindrical skirt is welded to the ship hull double bottom structure. The skirt 

supporting the tank thus transmits all of the loads from the tank to the hull. These 

loads are tank and LNG cargo self-weight and include the effects of ship motion-

induced accelerations. A stainless steel thermal ‘break’ has been introduced in 

order to reduce the heat gain in the skirt (Yuasa et al., 2001). The cross section 

of a Spherical Containment System is shown in Figure 1-6.  

 

The Total Thermal Resistance per unit area for the Spherical Containment 

System is given by: 

 

ΣRSpherical=
io Ahrrk

rr

rrk

rr

rrk

rr

rrk

rr

rrk

rr

Ah 1121
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1
 

 

Where: 
Ao is outer surface area of the tank structural shell (m2) 

Ai is inner surface area of the tank structural shell (m2) 
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Figure 1-6: Typical Cross Section of Moss Insulation Tank 

 
A summary of the materials and the typical thicknesses of some existing 

containment systems are given in Table 1-1. 

 
Table 1-1: Summary of Materials used in some Containment System 
 

 

Elements 

Containment Systems 

No 96 MARK III CS1 SPB MOSS 

Primary 

Barrier 

INVAR 36% 

Nickel 

Corrugation 

Stainless Steel 

Membrane 

INVAR 36% 

Nickel 

Aluminium 

Alloy or 

Stainless 

steel 

Aluminium 

Alloy 

Secondary 

Barrier 

INVAR 36% 

Nickel 
Triplex Triplex - - 

Major 

Insulation 

Material 

Perlite 
Polyurethane 

Foam (PUF) 

Polyurethane 

Foam (PUF) 

Phenolic & 

Polyurethane 

Phenolic & 

Polyurethane 

Overall 

Thickness 

(mm) 

551.4 283.2 282.7 394 394 

 

 

 

Aluminium alloy 

(surface material) 

(k5) 2 mm  

 

Polyurethane foam 

(k4) 180 mm 

 

Iron (wire net) 

(k3) 2 mm 

 

 

Phenolic resin foam 

(k2) 180 mm 

 

 

 

Aluminium alloy 

(cargo tank) 

(k1) 30 mm 

Cargo (LNG) 

r1 

r2 r3 

r4 

r5 

r6 

h1 

h2 
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It can be seen from Table 1-1 that the main difference between the containment 

systems, other than the materials selection, is in the overall thickness. With a 

thicker containment system, the amount of the cargo will be reduced for a fixed 

vessel size and at the same time this will require additional power due to the 

extra weight. One way to reduce the overall thickness is by changing the 

insulation materials, and/or by adjusting the thickness of the system to achieve a 

desire value of total thermal resistance. This can be done by implementing the 

heat transfer formula in a simulation model of the containment system and then 

by examining the effects of varying the input parameters.   

 

The system was modelled in LabVIEW and the inputs and outputs of the model 

are shown in Figure 1-7. The input parameters can be varied in order to observe 

the output patterns. At the same time, the outputs were linked to other systems 

such as the ‘cost of containments system’ that was connected to life cycle cost 

analysis, and the ‘total heat transfer’ model used to calculate the amount of BOG 

produced. 

 

 

Figure 1-7: The Inputs and Outputs of the Containment System Model 
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Figure 1-7 it can be seen that one of the elements required in order to be able to 

calculate the total heat transfer is area. Calculation of the areas for containment 

systems is quite straightforward; it is a function of the number of tanks, breadth, 

capacity and the geometric shape of the tank, as shown in Figure 1-8. 

 

 

 
Figure 1-8: The Inputs and Outputs of the Containment System Area 

 

There are two shapes of tank in current usage: spherical tanks with the surface 

area formula given by 
2

4 r where r is the radius of the tank, and prismatic tanks 

with an octagonal transverse shape with the surface area determined using the 

following formula:  
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Where B is breadth in metres, D is depth in metres, L is length in metres, X is 

slope X in metres, and Y is slope Y in metres, as illustrated in Figure 1-9.  

 

Figure 1-9: Shape of the Prismatic Tank 
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Appendix 2 
 

 

Mathematical Modelling of a Reliquefaction Plant 

 

A reliquefaction plant is a system that is used to convert BOG back into liquefied 

natural gas, eventually returning it back to the cargo tanks after the gas flows 

through a series of heat exchangers. This system can be divided into two main 

cycles,  the BOG and the nitrogen gas cycles (Pil et al., 2006). The BOG cycle 

consists of four main elements: the pre-cooler, the Low Duty (LD) compressors 

and pump, the heat exchangers and the expansion device, as illustrated in Figure 

2-1. The pre-cooler acts as a filter to ensure that only dried BOG can flow into the 

LD compressor. The compressors and the pump firstly increase the pressure of 

the BOG and then reliquefy it, while the heat exchangers are where the BOG 

phase changes happen. The ‘expansion device’ is used to reduce the reliquefied 

BOG pressure to close to the cargo tank operating pressure by a throttling effect 

before returning the reliquefied BOG to the cargo tank. 

 

 
 
Figure 2-1: Typical Cycle of the Boil-Off Gas (BOG) Reliquefaction Process 
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The nitrogen (N2) cycle also consists of four main elements; the coolers, the High 

Duty (HD) compressors, the heat exchangers and the expander, as shown in 

Figure 2-2. There are three stages of compressor and then cooler actions. The 

coolers are used to reject the heat generated from the action of the compressor 

and this happens at constant pressure in each stage. A typical mass flow rate 

through each of the coolers is 20 kg/s and it comes from a sea water pump (Kah, 

2007).  The second element is the HD compressor, the main purpose of which is 

to develop a high nitrogen pressure before entering the expander device. In the 

expander device, this high pressure nitrogen will be expanded in an isentropic 

process, which results in a large temperature drop in the nitrogen fluid. This 

temperature drop is then used to condense the BOG in the heat exchangers.  

 

 

 
Figure 2-2: Typical Cycle of the Cryogenic Nitrogen gas Process 
 

 

Currently there are two companies that manufacture reliquefaction plants: 

Hamworthy and Cryostar. Although they use the same thermodynamic cycle to 

carry out the process of reliquefy the BOG, they use different temperatures and 

pressures for each cycle. The values of pressures and temperatures for each 

cycle for Hamworthy and Cryostar equipment are illustrated in Table 2-1 and 

Table 2-2 respectively.  
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Table 2-1: Values of Pressure and Temperatures of the BOG Cycle 

 
 Low Duty Compressor Heat Exchanger Separator/ Expansion 

Hamworthy Cryostar Hamworthy Cryostar Hamworthy Cryostar 

Suction pressure (bar) 1.1 1.1 4.5 4.8 6.5 4.7 

Suction Temperature (
o
C) -125 -120 -25 -80 -159 -165 

Discharge pressure (bar) 4.5 4.8 4.5 4.7 2.3 3.0 

Discharge temperature (
o
C) -25 -80 -159 -165 -165 -165 

                Source: (Sillars, 2007) 

 

 

Table 2-2: Values of Pressure and Temperatures of the Nitrogen Cycle 

 

 

N2 compressor Heat Exchanger N2 Expander Condenser 

Hamworthy Cryostar Hamworthy Cryostar Hamworthy Cryostar Hamworthy Cryostar 

Suction pressure (bar) 13 9.1 53 48 53 47 13 9.5 

Suction Temperature (
o
C) 40 42 42 43 -110 -105 -163 -168 

Discharge pressure (bar) 53 48 53 48 13 9.5 13 9.4 

Discharge temperature (
o
C) 100 110 -110 -130 -163 -168 -140 -140 

                                                                                                                                Source: (Sillars, 2007) 

 

The generation of BOG will be continuous throughout a journey, even with a 

highly efficient containment system. The amount of the BOG generated is the 

main input to the reliquefaction plant model as shown in Figure 2-3. There are 

many factors that contribute to the calculation of the amount of BOG that is 

generated. Among the factors are the insulation materials selected, the insulation 

material thicknesses, the size of the tanks, and the outside temperatures. 

However, the only variables that cannot be controlled are the outside 

temperatures (air, sea and solar/radiant). 

 

Figure 2-3: The Inputs and Outputs of the Reliquefaction Plant Model 
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One of the outputs of the reliquefaction plant calculations are the power 

consumption and thus the system’s contribution to operational costs. Studies of 

the operational costs of reliquefaction plants have been made by many 

researchers such as by Pil et al (2006) and Moon et al (2007). The power 

consumption can be calculated by summarising all of the power required by the 

various items of equipment that are required to operate the reliquefaction plant. 

This equipment includes the low duty and high duty compressors, the 

reliquefaction BOG pump, the nitrogen compressors and the nitrogen expander. 

However, some assumptions have to be made to simplify this calculation: 

 

 The calculation is performed assuming steady state conditions. 

 The system is fully insulated from its external environment, so no heat is 

gained or lost from the system (adiabatic condition). 

 

The formula to calculate the power or work done for each item of equipment in a 

complete reliquefaction plant is (Eastop and McConkey, 1993): 

 

ba hmWP )(  

 

Where: 

P is power (kW) 

W is work done (kW) 

(Δh)b is the differential enthalpy between the inlet and the outlet of each 

item of equipment (kJ/kg), and 

am is mass flow rate through each item of equipment (kg/s)  

 

This equation is based on a perfect heat exchange process, although in reality 

this scenario is hardly ever achieved because there is always some energy loss 

incurred due to moving parts, etc (Turns, 2006). Therefore, an isentropic 

efficiency ( i ) figure is used. Thus, the total power consumed can be calculated 

as: 
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i

n
total

W
Power

 

 

Where: 

∑Wn is total work done by each of the LD and HD compressors, the 

reliquefaction BOG pump, the nitrogen compressors and the nitrogen 

expander, and where 

 ηi is the isentropic efficiency for the whole system. 

 

The total power calculation may then be translated into the cost associated with 

meeting the average demand. These costs were added into the overall operation 

cost section in the Life Cycle Costs Analysis (LCCA). Since the reliquefaction 

plant power consumption depends on the amount of BOG produced in a given 

period of time and assumed environmental conditions, which are interrelated with 

the other components of the LNG carrier, the operational costs will thus vary 

accordingly. The actual power consumption of this plant can only be estimated 

when all the other system components have been considered and selected. 
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Appendix 3 
 

 

Mathematical Modelling of Propulsive Power Prediction 

 

The Power Prediction method is a tool that is employed to calculate the 

propulsive power requirement for a new vessel based on all the components that 

are related to it. There are many variables involved in this calculation, however, 

the main selected variables are normal sailing speed and the total resistance of a 

ship through a seaway as illustrated in Figure 3-1 (Nabergoj and Orsic, 2007; 

Holtrop and Mennen, 1982). In this thesis, this power prediction formula is based 

on research carried out by Holtrop and Mennen (1982), who followed the 

International Towing Tank Conference (ITTC) 1978 approach.  

 

 

 
Figure 3-1: The Inputs and Outputs of the Power Prediction Model 
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Holtrop and Mennen proposed the following equation to calculate the total 

hydrodynamic resistance to the forward motion of a ship:   

 

ATRBWAPPFtotal RRRRRkRR )1( 1  

 

 

Where: 

RF is the frictional resistance according to the ITTC-1957 friction formula 

1+k1 is a form factor describing the viscous resistance of the hull form in 

relation to RF. 

RAPP is the resistance of any appendages. 

RW is the wave-making and wave-breaking resistance. 

RB is the additional pressure resistance of a bulbous bow near the water 

surface. 

RTR is the additional pressure resistance of an immersed transom stern.  

RA is model-ship correlation resistance factor. 

 

The power prediction can be obtained by multiplying the total resistance by the 

speed of the ship. The author developed an engine database that could be used 

as a look up table. Based on the power prediction result, the selection of the main 

propulsion machinery system can be carried out using the main engine database. 

However, before selection of the main propulsion can take place, all the related 

components in the LNG carrier must be checked for any conflict of interest 

between them in achieving the given objective.  
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Appendix 4 
 

 

Mathematical Modelling of Life Cycle Costs Analysis 

 

The Life Cycle Costs Analysis (LCCA) can be sub-divided into two main groups, 

namely capital costs and operational costs. The operational costs can be further 

sub-divided into fixed and variable costs. A summary of the inputs and outputs of 

each of the cost centres is illustrated in Figure 4-1. 

 

 

 
Figure 4-1: The Inputs and Output of the LCCA Model 
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The capital cost is a function of the initial ship costs and the Capital Recovery 

Factor (CRF) (Buxton, 1976). The ship cost is a summation of the costs for the 

hull, the outfit, the containment system, the reliquefaction plant, the propulsion 

and machineries, the overheads, and the taxes, fees and insurance. 

 

The Capital Recovery Factor can be calculated as: 

 

Ni

i
CRF

)1(1
 

 
Where: 

N is the required economic life (year) 

i is Rate of Return (%) 

 

The Fixed cost per year is a summation of the fuel cost, the total crew costs, the 

port costs, and the operational costs for the reliquefaction plant. The fuel cost per 

year can be calculated by multiplying the fuel cost per trip by the number of round 

trips per year. Normal fuels used for LNG carriers are a combination of heavy fuel 

oil, marine diesel and natural gas boil off (BOG) and these fuel prices vary over 

time. Meanwhile, the variable costs per year are a summation of specialist, spare 

parts, and dry docking and maintenance costs. All of the components of the LNG 

carrier were drawn into the life cycle cost analysis section to calculate the total 

running costs of the ship or fleet. Since some of the costs are dynamic according 

to time and demand, their values were fixed in order to simplify calculations.  

 

Drawing together all of the components into the LCCA can only be done if they all 

communicate using a single nomenclature or language. This can be done by 

defining each of the LNG carrier components in a mathematical model. Once all 

of the components of the LNG carrier had been transformed into compatible 

mathematical models, the next step was to create a simulation of the overall 

system behaviour for the LNG carrier. 

 



Appendix 5 

MdRedzuanZoolfakar   165 

 

Appendix 5 
 

 

Mathematical Modelling of Pollutant Emissions  

 

Emission products result from the combustion of fossil fuels in the propulsion 

machinery. A simple chemical equation to illustrate the stoichiometry combustion 

for fossil fuels is given as:  

 

222224 22 NCOOHNOCH  

 

Where: 

 CH4 is methane from the BOG 

 O2 and N2 are from the air intakes 

  

The products of combustion are mainly water, carbon dioxide and nitrogen 

(Cengel, 1997). Nitrogen is an inert gas; therefore it is not involved in combustion 

within certain limits. However, at extremely high temperatures, nitrogen can be 

combined with oxygen to produce nitrogen oxides (NOx) which can cause 

depletion of the ozone layer and contribute to climate changes (Brown, 2007). 

Although CO2 is a stable gas, it also contributes to climate change. Moreover, if 

incomplete combustion occurs, it will produce unburned hydrocarbon, carbon 

monoxide and soot, which further adds to the problem. The situation becomes 

even worse when Heavy Fuel Oil (HFO) or residual fuel is used as this includes a 

mixture of sulphur and the sulphur oxides (SOx) that are produced from its 

combustion are a main contributor to acid rain (Kremser, 2007).  

 

CO2, SOx and NOx are the three major components of propulsion machinery 

emission gases. These emissions can be minimised with the help of new 

technologies, and this reduction is required by local and international rules. SOx 

can be reduced by using low sulphur fuel or by passing exhaust gases through a 

scrubber tower. However, low sulphur fuel is more expensive than the normal 

HFO and having the scrubber tower itself is an additional capital cost and leads 
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to an increase in operational costs in term of both the power consumption and 

maintenance. Additionally, there are also a number of solutions to reduce NOx. 

One of these is by injecting water into the combustion chamber. Other ways are 

by cooling the exhaust gas in a similar manner to a scrubber tower and by 

injecting catalytic compounds into the exhaust gases. All of these additional items 

of equipment will again increase the capital and operational costs for the carriers. 

In the case of CO2, the only way to reduce it is by minimising the actual fuel 

combustion (MER, 2009; Brown, 2007; Kremser, 2007). This can be done by 

reducing the speed and/or by reducing the size of the carrier. However, these 

reductions are not necessarily a good solution. This is because the operation of 

the LNG carrier is based on the interrelationship between all the components to 

deliver the volume of cargo according to a signed contract and on time. Reducing 

the speed and size of the vessel will end up with an increase in fleet size, which 

might result in more emission products. Another way to minimise the fuel 

consumption is by using a higher thermal efficiency engine.  

 

Basically, the emission product is a function of the total power requirement to run 

the ship according to its mission profile, Specific Fuel Consumption (SFC), and 

Pollutant Emission Ratio (PER), as shown in Figure 5-1. 

 

 

Figure 5-1: The Inputs and Output of the Emission Pollutant Model 
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The Pollutant Emission Ratio is the mass flow rate of pollutant emission (
pem ) 

divided by the mass flow rate of the fuel (
fm ), in mathematical form it is given by: 
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The Specific Pollutant Emission can also be obtained by multiplying the PER with 

the SFC: 
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From the above equation, 
pem  is the product of PER, SFC and PB. In this study, 

the unit of mass flow rate of the pollutant emission is in tonnes per hour of the 

amount of emission product produced by a single ship. Although the pollutant 

emissions cannot be eliminated due to the source of energy used to produce 

motive power, which comes through the burning of fuel, overall optimisation of 

the system will however minimise these emissions. 
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Appendix 6 
 

 

Mathematical Modelling of Ship Steel Weight 

There are many materials that have been used to build the hull structures of 

ships, e.g. steel, aluminium and glass-reinforced plastic (Eyres, 2007). All of 

these materials have their own characteristics, however, the selection of the 

materials for the building for a  particular ship are highly dependent on the 

strength of the materials in order to support the forces and stresses produced by 

six degrees of wave-induced ship motions, and their ability to withstand corrosion 

due to the chemical reactions with seawater (Schumacher, 1979). This is to 

minimise the overall material weight of the ship, to reduce the costs of ship 

construction, and for ease of fabrication and maintenance of the ship’s structures 

(Rawson and Tupper, 2001). 

 

Currently, the hulls of the entire world-wide fleet of LNG carriers are made from 

various grades of steel. Since the costs of material to build the ships are based 

on the weight of the steel used in the construction, it is no surprise that the 

calculation of the ship steel weight is an important element in the ship design 

process, due to its contribution to the estimation of the capital cost of the ship. 

The size of the ship obviously influences the ship steel weight, because the size 

has a directly proportional relationship with the weight. The larger the ship being 

constructed, the heavier the weight of the ship will be, thus it will affect the total 

displacement and the ship’s hydrodynamic resistance, which will finally result in 

an additional machinery power requirement to propel the ship according to a 

given mission profile. 

 

In an LNG carrier, the hull steel weight refers to the quantities of steel used to 

manufacture the ship. The quantities of steel used include plates, rolled sections, 

castings and weld metal (Schneekluth and Bertram, 1998). The weight of the 

steel not only refers to the steel plate and varies according to the size of the 

vessel. It is only once the detailed design stage is reached that, with the aid of a 

CAD system, weight may then be calculated with a reasonable degree of 
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accuracy. However, many studies have been conducted in the past regarding this 

subject including those of Watson and Gilfillan (1976), Liu et al. (1981), and 

Schneekluth and Bertram (1998).  

 

Although, there are many methods to estimate the ship steel weight at an early 

stage in the design process, among common variables for this calculation are 

overall length, breadth, capacity and steel cost as shown in Figure 6-1. 

 

Figure 6-1: The Inputs and Outputs of the Ship Steel Weight Estimation Model 
 

In this thesis, the formulation to estimate ship steel weight is based on a 

DetNorsekeVeritas method from 1972 (Schneekluth and Bertram, 1998). The 

estimate of the ship steel weight is given by:   

 

))]/(7.28(06.0))/(004.0009.1([ DLBLW TLSt  

Where: 

 WSt is weight of the ship steel in tonnes 

Δ is displacement of the ship in metres cube 

αL is ])/100(189.0/[]97.0)/004.0054.0[( 78.0DLBL  

αT is 100000/00235.0029.0  

L is length in metres 

B is breadth in metres 

 

Once the estimation of the cost of the steel covering both material and man hours 

to build the ship has been calculated, it can then be linked with the capital costs 

section in the life cycle cost analysis. Since the components of an LNG carrier 

are interrelated with each other, the ship steel weight estimation can only be 

determined when all of the full systems of components have been evaluated. An 

iterative process may be required in order to progressively refine the estimates. 
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