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Abstract 

Flexible pipes are used for risers and flowlines in the offshore oil and gas industry and in 

many other applications. As part of the construction of these pipes, tensile armour wires are 

incorporated to resist longitudinal stresses which arise during installation and service. Tensile 

armour wires also resist hoop stresses for pipes without a designated pressure armour layer.  

 

The flexible pipeline manufacturing industry desires a better understanding of the tensile 

armour wire fracture mechanism, and especially the effects of defects with dimensions less 

than 0.2mm. Reverse bending operations (which arise due to the wire moving through paired 

rollers on unreeling during pipe manufacture) also affect the tensile properties of the tensile 

armour wires. Customarily, engineers estimate the safe load carrying capacity of defective 

wires solely by multiplying the ultimate strength obtained from a tension test by the original 

nominal area of the wire without any consideration for the fracture mechanisms of the wire. 

This approach may overestimate the strength of the wire. Recent research considering the 

fracture mechanisms of wires has employed a classical fracture mechanics approach, mainly 

using Linear Elastic Fracture Mechanics (LEFM) and/or Net Section Theory (NST). 

 

Obtaining parameters for fracture mechanics analyses requires large/thick standard fracture 

mechanics test specimens which cannot be made out of tensile armour wires due to their 

small size. Also fracture mechanics analyses based on these parameters including the elastic 

plastic crack opening displacement (COD) and J-integral parameters are largely size and 

geometry dependent making transferability of the results obtained from full size specimens to 

actual structures questionable. 

  

Laboratory tensile testing and tensile testing finite element simulations with mechanism-

based fracture mechanics carried out on the as-received tensile armour wire and tensile 

armour wires with engineered defects reveal that the tensile armour wires fail by a shear 

mechanism. They also reveal that flat bottom scratches, pointed end scratches and dents 

identified from the Scanning Electron Microscope images of the as-received wire surface 

reduce the ultimate load and extension at fracture of the wires.  In addition, denting was 

found to increase the wires yield load while scratching reduced the wire‟s yield load. The 

reduction in the tensile/ mechanical properties of tensile armour wires were found to depend 

largely on defect dimensions rather than defect locations with defects less than 0.2mm in any 
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of its dimensions causing less than 0.072%, 0.238% and 10.946% reduction the yield load, 

the ultimate load and the displacement at fracture of tensile armour wires respectively.  

 

Laboratory and finite element simulations of reverse bending, straightening and tensile 

testing of the reverse bent tensile armour wires reveal that reverse bending and straightening 

operations reduce the ultimate load and fracture displacement of the wires. This work also 

reveals that the reverse bending process can only reveal near surface laminations as wires 

with mid depth laminations or with scratches less than 1mm deep would pass through the 

reverse bending process without fracturing.  
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List of nomenclatures 

iA  Specimen instantaneous cross sectional area 

0A  Specimen original cross sectional area 

a  Notch depth or crack size 

ca  Critical crack size 

0b  Initial ligament length 

D  Full width of specimen/component or full diameter  

d  Width of the net section of specimen/component 

E  Young Modulus 

F  Deformation gradient matrix 

G  Energy release rate 

cG  Critical energy release rate. 

IcG  Mode I  critical energy release rate. 

H  Hardening parameters 

h  Thickness 

I  Identity tensor  

J  Contour integral 

QJ  Provisional contour integral initiation toughness  

K  Stress intensity factor 

eK  Effective stress concentration factor 

IK  Mode I  stress intensity factor  

IcK  Mode I critical stress intensity factor 

tK  Theoretical stress concentration factor  

iL  Instantaneous length 

0L  Specimen original gauge length 

P  Applied force 

p  Equivalent hydrostatic stress 
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List of nomenclatures continued  

q  Mises equivalent stress 

R  Rotation matrix.   

pr  Plastic rotation factor 

  s  Stress deviator  

T0 Thickness of gauge section of tensile specimen  

pl

fu  Displacement at failure, 

V  Stretch matrix  

fV  Volume occupied by a part of the body 

pV  Plastic displacement at the crack mouth 

W  Rate of rotation or spin  

eW  Elastic deformation energy 

fw  Tearing energy per unit torn area  

0W  Width of the parallel length  

pW  Plastic deformation energy  

tW  Total deformation energy 

pw  Plastic energy per unit volume 

X  Initial location/position of a particle in an undeformed structure  

x  New position of a particle during structural deformation 

0Y  Yield stress 

iY  Initial yield stress 

  Yield offset. 

  Crack-tip-opening displacement (CTOD) δ  

Ic  Mode I critical value of CTOD  

el  Elastic components of CTOD   

pl  Plastic components of CTOD 
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List of nomenclatures continued 

  
Q  Provisional CTOD initiation toughness 

c  Crosshead displacement 

E  Elastic displacement in specimens 

P  Plastic displacement in specimens 

m  Elastic deflection of  testing machines 

  True strain 

  Total mechanical strain rate matrix 

  Equivalent strain 

nom  Engineering or nominal strain 

T  Strain tensor 

u  True uniform elongation at the ultimate tensile stress 

el  Elastic strain rate 

pl  Plastic strain rate 

pl

f  Equivalent plastic strain at failure 

pl

D  Equivalent plastic strain at the onset of ductile damage 

pl

s  Equivalent plastic strain at the onset of shear damage 

  Triaxiality 

  Temperature 

s  Shear stress ratio 

  Poisson's ratio 

v  Velocity  

  Radius of curvature of the notch/defect tip 

  Half the width of the “elementary structural unit” 

  True stress 

c  Fracture strength  
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List of nomenclatures continued 

f  Fracture stress 

fl  Flow stress 

nom  Engineering or nominal stress 

0  Yield strength 

0  Size of the yield surface (size of the elastic range), 

max  Maximum shear stress 

  backstresses,  

  Diameter 

Q  Maximum increase in the elastic range 
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Chapter 1  Introduction to thesis 

1.1  Introduction 

Flexible pipes are used as risers and flowlines in the offshore industry and in many other 

applications. As part of the construction of these pipes, tensile armour wires are incorporated 

to resist longitudinal stresses which arise during installation and service. Tensile armour 

wires also resist hoop stresses for pipes without a designated pressure armour layer and for 

risers in particular, the weight of the riser is carried by the tensile armours wires. 

Consequently, the tensile armour wires are essential to the integrity of the flexible pipes. 

 

Prior to service, tensile armour wires inevitably contain defects arising from their 

manufacturing and/or from the processing they are subjected to during their transportation 

and during the manufacturing of flexible pipes. While in service, tensile armour wires may 

also develop defects, such as pitting corrosion when the external sheath of the flexible pipes 

is damaged and the wires get in contact with sea water. The presence of defects in the tensile 

armour wires can affect their expected mechanical properties and consequently affect the 

flexible pipes performance and integrity. Consequently, an understanding of the effects of 

defects on the tensile armour wire properties and the fracture mechanism of the wires is 

essential to be able to predict their real performance as against their ideal performance when 

they are defect free. 

 

Also, tensile armour wires are subjected to routine reverse bending and straightening 

operations as a lamination check. The reverse bending and straightening operations subjects 

the wires to high bending stresses which could affect their tensile properties, and affect the 

behaviour of laminations and scratches present in the wires. Thus an understanding of the 

effects of reverse bending and straightening on the tensile armour wire properties and the 

combined effects of reverse bending and straightening, and defects such as laminations and 

scratches in the wires is essential.  

 

Presently, in the tensile armour wire manufacturing industry, the manufacturing process has 

an inline eddy current defect detection system. The inline eddy current defect detection 

system can only detect defects that are 0.2mm and above in size. In practical terms, it means 

that defects that are lower than 0.2mm in depth are not detected by the in-line eddy current 
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defect detection system, and as such, all the tensile armour wires being currently used for 

flexible pipe manufacturing may have defect in them that are as deep as 0.19mm. 

Consequently, in the flexible pipes manufacturing industry, there is the desire to know if the 

present defect detection capability is adequate by knowing the effects of defects with sizes 

below the 0.2mm detection capability of the inline eddy current detection system on the 

fracture mechanisms and mechanical properties of tensile armour wires. Also the flexible 

pipes manufacturing industry desires to know the effects of reverse bending and straightening 

operations and the combined effects of reverse bending and straightening, and defects such as 

laminations and scratches on the tensile properties of the tensile in the wires.  

 

The desires for a better understanding of the tensile armour wire fracture mechanism(s) and 

the relationships between surface defect sizes and the tensile armour wires‟ mechanical 

properties have driven this project to produce design curves for the flexible pipes quality 

assurance and control.  

1.2 Objectives of the research  

This research was undertaken to provide an understanding of the failure mechanism of tensile 

armour wires and the effect of the various defect types, sizes, and locations on their tensile 

properties. In addition, the work aims to provide an understanding of how the reverse bending 

and straightening operations and the combination the reverse bending and straightening 

operations with defects such as laminations and surface scratches affect the tensile properties 

of the tensile armour wires.  

 

This research aims to ascertain if the current defect detection capability of the inline eddy 

current defect detection system used in the flexible pipes manufacturing industry is adequate 

and provide design curves. The design curves could be used to determine the reductions in 

the tensile properties of the tensile armour wires due to the presence of defects with given 

dimensions and thus be used to estimate the critical or maximum defect sizes that can be 

allowed in tensile armour wire and/or estimate the flexible pipe‟s safe working loads. This 

research also aims to provide data on the tensile properties of defective tensile armour wires 

which could serve as input into the material specifications, quality standards, and quality 

control of the flexible pipe tensile armour wires.  
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1.3 Scope of the research  

This research covers the effects of the sizes and locations of flat bottom scratches, pointed 

end scratches, dents and laminations on the mechanical properties of tensile armour wires. 

These are the main defects identified from scanning electron microscopy images of the 

tensile armour wires surface that are of interest to flexible pipe manufacturers. The research 

also covers the effects of the bending, reverse bending and straightening operations on the 

tensile properties of the as-received wires as well as the effects of these operations on near-

surface laminations, mid-depth laminations and surface scratches. 

1.4  Thesis outline  

Chapter 1 deals with the introduction to the research covered in this thesis, the scope of the 

research and the aims and objectives of the research. Chapter two covers the introduction to 

flexible pipes and tensile armour wires, defects in engineering materials and the damage 

tolerance approach to the design and assessment of structures. Chapter three introduces the 

finite element modelling and simulation, virtual prototyping, and verification and validation 

of numerical simulations. It also covers the background information and basic theories for the 

Abaqus Finite Element software used for the numerical investigations in this research as well 

as a summary of the types of the structural mechanics simulations in Abaqus. A review of the 

previous work on presented in the literature defects and failures in wires, tensile testing 

simulations, denting and its effects on steel structures and the effects of reverse bending on 

metal products is presented in Chapter 4. 

 

The experimental methodology and techniques, and the test method development are covered 

in Chapters 5 and 6 respectively, while the effects of miniature flat bottom scratches, 

miniature pointed end scratches and miniature dents on the tensile properties of tensile 

armour wires are presented in Chapters 7, 8 and 9 respectively. Chapter 10 covers the effects 

of bending, reverse bending and straightening operations on the tensile properties of the 

tensile armour wires as well as the effects of these operations on surface scratches and 

laminations in the wires. The conclusions and recommendation for further work are presented 

in Chapter 11.  
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Chapter 2 Literature review: flexible pipes and damage 

tolerance approach to design of structures. 

 

This chapter starts with an introduction to flexible pipes; their components, their uses, failure 

modes and the structural importance of tensile armour wires. Also presented in this chapter is 

a review of literature on: tensile testing, fracture in metals, effects of defects on engineering 

materials and damage tolerance approaches to design and assessment of defective structures.  

Section 2.1 covers the review on flexible pipes and their uses, failures in flexible pipeline 

systems and tensile armour wires. A review on tensile tests and tensile deformation processes 

including fracture in ductile metals; structural deformation prediction theories and equations, 

and the influence of testing machine on tensile properties are presented in section 2.2. A 

review on defects in engineering materials and their effects on the tensile properties of metals 

are presented in sections 2.3 and 2.4 respectively.  This chapter ends with the review on 

defect/damage tolerance approach to design and assessment of defective structures; and 

fracture mechanics based design and assessment of structures with cracks, which are 

presented in sections 2.5 and 2.6 respectively. 

2.1  Flexible pipes  

A flexible pipe is a composite structure, which consists of several steel and plastic layers. The 

steel layers are the tensile armour layer (made of carbon steel), pressure armour layers (made 

of carbon steel) and internal carcass (made of corrosion resistance alloys such as stainless 

steel). The plastic layers are the thermoplastic outer sheath, the thermoplastic anti-wear layer 

and the thermoplastic pressure sheath, which are made of PVC, PP, PE (Braestrup et al, 

2005). Each of these layers has an individual function but they also interact with each other 

(Troina et al, 2003). A flexible pipe can be bonded or unbonded. In a bonded flexible pipe, 

the steel reinforcement is integrated and bonded to a vulcanised elastomeric material while in 

an unbonded pipe shown in Figure 2.1; the polymeric and metallic layers are separate and 

unbonded with relative movement between layers (EN ISO 13628-2, 2006). Flexible pipes 

are used onshore and offshore for oil and gas production and transportation. They are used as 

seabed flowlines, water injection lines, horizontal and vertical jumpers, risers and as wellhead 

jumpers on floating dry tree units. In particular, flexible pipes are used in offshore floating 

production systems (FPS) where rigid pipelines are not suitable.  Figure 2.2 shows the 

various ways in which flexible pipes are used in offshore oil and gas production. 
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Figure 2.1: Flexible pipes components (Coutarel, 2001). 

 

 

Figure 2.2:   Offshore floating production system (Breastrup et al, 2005) 

 

The use of flexible pipes within the petroleum industry to replace steel pipe as risers and 

flowlines is becoming popular because flexible pipes accommodate large relative motions, 

accommodate undulating seabed conditions, provide high corrosion resistance, reduce 

installation time and cost. Flexible pipes also have high damping coefficients, high resistance 

to dynamic loads and possibility of reuse. They also permit remote connection to subsea 

production equipment (Wolfe, 1991). 

2.1.1 Failures in flexible pipeline system  

Recently in the United Kingdom, the Health and Safety Executives (HSE) has observed an 

emerging trend of incidents involving the failure of flexible pipelines (HSE, 2007). The main 

failure modes of flexible pipes systems obtained from Pipa et al, (2010) and the HSE website 

are presented in Table 2.1. From Table 2.1, it is evident that many flexible pipes failures are 
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associated with tensile and pressure armour layer/wire failures. This is because in high-

pressure applications and in ultra deepwater, the tensile armours and the pressure armours are 

challenged. As a matter of fact, the fatigue life of the tensile and pressure armour layers 

dictates the life of the flexible pipes (Troina et al, 2003). Consequently, for flexible pipes 

without dedicated pressure armour layer/wires, the static strength and the fatigue life of the 

tensile armour wires solely dictates the performance and durability of flexible pipes 

 

Table 2.1:   Flexible pipes failure modes (Pipa et al, 2010) 

S/no Failure modes Courses of failure/potential failure manifestations 

1 Collapse 

 

Collapse of carcass and/or pressure armour due to excessive 

tension, excessive external pressure or installation overloads 

2 Burst 

 

Rupture of tensile or pressure armours due to excess internal 

pressure 

3 Tensile failure Rupture of tensile armours due to excess tension 

4 

 

Compressive 

failure 

Birdcaging of tensile armour wires 

5 Overbending Rupture or crack of external or internal sheaths 

6 Torsional 

failure 

Failure of tensile armour wires 

7 Fatigue failure Tensile armour wire fatigue 

8 Erosion  Erosion of f internal carcass 

9 Corrosion 

 

Corrosion of internal carcass or tensile/pressure armour 

exposed to seawater or diffused product 

 

 

2.1.2 Tensile armour wires,  

Tensile armour wires are carbon steel wires with sizes ranging from 4mm Χ 2mm to 12mm Χ 

7mm in cross sectional dimensions and are generally produced by cold rolling or hot rolling 

and cold finish rolling processes (Troina et al, 2003). The two main mechanical properties of 

tensile armour wires that affect their suitability and ability to withstand the severe static and 

extreme dynamic loads (structural performance) are their tensile and fatigue properties 

(Troina et al, 2003). Tensile armour wires as a typical engineering material inevitably have 

defects such as surface markings, sharp edges, rough edges/burrs, corrosion pits, laps, dents, 
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cracks, and scratches. Others include: shavings, gouges, corrosion, scaling, discoloured areas 

(blurring, scorching, staining and the like, except at welds), distorted or buckled strip or wire 

profile and significant scoring (BS EN ISO 13628-2:2006). 

2.2 Tensile tests 

The uniaxial tension test is the fundamental mechanical test used to provide the basic 

information on the mechanical behaviour of materials and it is also used as an acceptance test 

for materials specification (Mahmudi et al, 2003). Tensile tests can be used to determine the 

yield strength, tensile strength, elongation, reduction in area, modulus of elasticity, and the 

deformation energy values consumed during the elastic and plastic deformations (Mahmudi 

et al, 2003). The yield strength is the stress at which a material begins to deform plastically. 

For materials without a conspicuous yield point, the yield strength is taken as the proof stress, 

which is the stress at an offset strain of 0.002 -0.005 (0.2-0.5%). Tensile tests are carried out 

using carefully prepared specimens which are gripped and loaded in a very controlled manner 

by the tensile testing machine, which provides the force-displacement curves. Stress-strain 

curves which provide more useful information on the mechanical properties of materials can 

be constructed from the load-extension curves (Mahmudi et al, 2003).  

 

Tensile test specimens are usually substantially full size/un-machined or specimens machined 

to standardised dimensions (ASTM E 8M: 2009).  They may be of circular, flat (square or 

rectangular), annular or some other uniform cross-section (BS EN ISO 6892-1:2009). The 

standard round test specimen shown in Figure 2.3(a) is generally used for testing metallic 

materials, including both cast and wrought. The standard flat test specimen shown in Figure 

2.3 (b) is used for testing metallic materials in the form of sheets, plates, flat wires, strips, 

bands, hoops, rectangles, and shapes (ASTM E 8M: 2009).  In Figure 2.3, L is the overall 

length, W0 is the width of the parallel length, T0 is the thickness of gauge section, B is the 

width of the grip sections/shoulders, R is the fillet radius, A is the length of the reduced 

section and L0 is the gauge length (ASTM E 8M: 2009).   

 

It is essential to know that the tensile strength results obtained from test pieces machined to 

standardised dimensions may not totally represent the strength and ductility properties of the 

end product or its behaviour while in service under different environments. Also machined 

specimens may not be perfectly prepared in terms of dimensional precision and may not be 

http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Plasticity_(physics)
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completely defect free (i.e. free from all the defects listed in the last paragraph). All these 

could lead to obtaining unsatisfactory and incorrect test results (ASTM E 8M: 2009).  

 

(a) Standard round tensile test specimen  

 

(b) Standard flat tensile test specimen  

 

Figure 2.3:   Standard machined tensile test specimens (ASTM E 8M: 2009).   

2.2.1 Tensile deformation  

For most ductile materials, the load-extension curve has the elastic, uniform plastic and post-

necking or post-uniform deformation sections (Mahmudi et al, 2003). When a ductile 

material is stretched below its yield strength point A shown in Figure 2.4, the atomic and 

molecular bonds are merely stretched and not broken. Consequently, when the stress/applied 

load is removed, the material will return to its original shape. The elastic deformation energy, 

We, is usually very small and is recovered after failure. It is calculated as the area under the 

elastic part of the load-extension curve and is usually ignored in the calculation of the total 

energy, Wt (Mahmudi et al, 2003). Most metals do not have a specific yield point because the 

transition from elastic to plastic behaviour occurs gradually and the elastic range generally 

extends slightly beyond the proportional limit. The gradual transition from elastic to plastic 

behaviour is due to the successive yielding of the individual crystal grains (Chakrabarty, 

2006).  

 

When the material is stressed beyond its yield point, the atomic and molecular bonds begin to 

break and the broken bonds do not reform when the applied load/stress is removed, leading to 
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permanent/plastic deformation. The uniform plastic deformation energy, pW , is the plastic 

energy dissipated before necking and is related to the bulk material in the gauge section 

(Mahmudi et al, 2003). It is significantly higher than the elastic deformation energy and it is 

calculated using the expression in equation 2.1 obtained from Mahmudi et al, (2003). 

 

pp wTLWW 000         (2.1) 

Where 
u

dwp




0

is the plastic energy per unit volume and u is the true uniform 

elongation at the ultimate tensile stress before necking. 

 

Plastic deformation in metals usually involves sliding/slipping of blocks of metal crystals 

over one and other along defined crystallographic planes (slip planes). The slip plane usually 

occurs at locations of dislocations. Dislocations are defects/imperfection in the crystal lattice 

of metals (Dieter, 1988). During tensile plastic deformation, the strain increases faster than 

the stress because the specimen cross-sectional area decreases uniformly along the gauge 

length. In ductile materials, despite the reduction in specimen cross-sectional area, the 

stress/load sustained by the specimen increases in this region up to the ultimate load/tensile 

strength due to strain hardening/work hardening. Strain hardening is caused by dislocation 

storage and is proportional to the dislocation density. As the deformation continues, more 

dislocations are formed and stored during uniform straining as well due to gradient of strain, 

which occurs due to the geometry of loading or because the material is plastically 

inhomogeneous (such as when the material contains a non deforming phase) (Fleck et al, 

1994). Dislocations stored due to trapping of dislocations by each other in a random way is 

termed the statistically stored dislocations and the dislocations stored due to the requirement 

for compatible deformation of the various parts of the crystal is termed geometrically 

necessary dislocations (Fleck et al, 1994). The trapping/interactions of dislocations with each 

other and with other barriers such as the grain boundaries impede/hinder their motion through 

the crystal lattice. The impedance of the motion of the dislocations leads to dislocation pile-

ups/accumulation on slip planes at barriers in the crystals. The pile-ups produce a back stress 

which opposes the applied stress on the slip plane (Dieter, 1988).  

 

If the strain hardened material is loaded in the reverse direction, the back stress assists the 

dislocation movements in the reverse direction (Takeda and Chen, 1999), thereby making 

them move more easily. This leads to easier plastic deformation (since plastic deformation 
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occurs by dislocation movement) and a reduction in the yield strength in the reverse 

direction. This phenomenon by which the plastic deformation of a material in one direction 

such as the tensile cold working of a material increases its tensile yield strength in that 

direction but decreases its yield strength in the opposite direction (i.e. decreases its 

compressive yield strength) is termed the Bauschinger effect. The Bauschinger effect is 

responsible for the reductions in both the fatigue strength and the static yield strength of a 

metal subjected to strain reversal (Takeda and Chen, 1999).  

 

 

Figure 2.4:   Typical experimental engineering stress-strain curve (Mahmudi et al, 2003). 

 

Once the specimen is stressed to its ultimate load/tensile strength, the cross-sectional area of 

the specimen now decreases more than the increase in the deformation load due to strain 

hardening. Under this condition, all further plastic deformation is concentrated at a slightly 

weaker point in the specimen, leading to non-uniform plastic deformation, causing flow 

instability and making the specimen neck or thin down locally at this weaker point.  For 

cylindrical specimens, diffused necking which involves reduction in the specimen cross 

sectional area over an extent that is much greater than the sample thickness as shown in 

Figure 2.5 occurs. Diffuse necking may terminate in fracture, but for flat specimens, 

especially thin strips; it is often followed by a second instability process termed localized 

necking of thin strips (Ling, 1996). Localized necking occurs over a narrow band inclined at 
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an angle to the specimen axis, as shown in Figure 2.5. Localized necking is associated with 

plane strain deformation with considerably increased strain and strain rate within the 

deformation band (Ifergane et al, 2010) and is characterized by a little contraction of the 

specimen in the width direction and a rapid shrinking of the specimen thickness along the 

necking band (Ling, 1996). Within the narrow band, the specimen cross section undergoes 

intense thinning leading to the thin sheet specimen fracturing with two knife-edges (Ifergane 

et al, 2010). As the specimen cross-sectional area is now decreasing far more rapidly than the 

deformation load due to strain hardening can cope with, the actual load required to deform 

the specimen continues to reduce (and so does the engineering stress) till fracturing of the 

specimen begins.  

 

 

Figure 2.5:   Diffused and localized necking in flat thin strips specimens (Ling Yun, 1996) 

2.2.2  Fracture in metals 

 

Fracture occurs when a homogeneous solid or a metallurgical junction separates into two 

parts due to one or a combination of mechanical stress, chemical influences and effect of heat 

(Lothian et al, 1981). The fracture of ductile materials culminates the progressive damaging 

process associated with the substantial plastic deformation of materials and it occurs when 

the materials are loaded beyond their load carrying capacities (Huang and Xue, 2009). The 

tearing or fracture energy Wf  is related to the necked region and to the torn cross-sectional 

area. It is calculated in terms of the tearing energy per unit torn area 
fw  using the expression 

in equation 2.12 obtained from Mahmudi et al, (2003). 

  

ff wTWW 00          (2.2) 

 

The ductile failure of structures usually begins with the accumulation of ductile plastic 

damage, followed by the initiation of fracture and ends with crack propagation. 

Microscopically, the accumulation of ductile plastic damage is associated with the void 

nucleation, growth and coalescence, shear band movement and the propagation of micro-
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cracks. Macroscopically, fracture initiation is associated with the degradation of the material, 

which leads to a decrease of the material stiffness, strength and a reduction of the remaining 

ductility. Ductile materials may exhibit cleavage or ductile transgranular fracture mechanisms 

depending on the temperature (Xue, 2007). 

2.2.2.1  Brittle-cleavage type fracture 

 

For steel, the cleavage fracture mechanism often occurs at low temperatures. Cleavage 

fracture is nucleation controlled and the nucleation is considered a stress controlled process 

(Neimitz and Galkiewicz, 2006). Brittle-cleavage type fracture is characterised by separation 

normal to the tensile stress. It involves rapid rate of crack propagation without any 

appreciable plastic deformation before and during the crack propagation. Brittle fracture 

starts with plastic deformation which involves consecutive displacement and slipping of 

individual atoms of the metal to varying distances. This is followed by pile-up of dislocations 

along their slip planes at an obstacle. Shear stresses build-up at the head of the dislocation 

pile-ups leading to nucleation/initiation of a microcrack. Microcracks are initiated as a result 

of cracking of particles during plastic deformation or as a result of cracking/fracturing of 

inclusions due to high stresses associated with dislocation pile-ups at the location of inclusion 

or second phase particles (Dieter, 1998). The materials with these microcracks eventually fail 

in a brittle manner by crack propagation. 

2.2.2.2  Ductile fracture 

 

Ductile fracture process starts with micro-separation and the mechanisms by which the 

micro-separation is formed depend on the type of material, its microstructure, temperature, 

stress, strain and strain rate (Neimitz and Galkiewicz, 2006). Micro-separations in metallic 

polycrystalline materials that exhibit ductile fracture due to void nucleation, growth and 

coalescence occur after a severe local plastic flow and are thus strain controlled. However 

void growth depends both on the strain and hydrostatic stress. Micro-separation grows into 

micro-crack if the stress in front of it is high enough or grows as a void if not (Neimitz and 

Galkiewicz, 2006). A microcrack/microvoid is formed when a sufficient stress is applied to a 

material that exceeds its cohesive/bond strength c , and breaks the bond between the atoms 

of the material at grain boundaries or interfaces between the metal and inclusions (Askeland 

and Phule, 2006). The cohesive/bond strength is due to the cohesive force of attraction 
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between the atoms per unit area and can be estimated approximately using the expression in 

equation (2.3) obtained from Anderson, (2005).  




E
c                          (2.3) 

Unlike brittle-cleavage type fracture, ductile fracture involves appreciable plastic deformation 

before and during ductile crack growth. Ductile fracture occurs by a slow tearing of the 

metal. Ductile fracture can take three forms. These are: a shear fracture in ductile single 

crystals, a cup and cone fracture in moderately ductile metals (polycrystals) and a completely 

ductile fracture, called rupture failure which occurs in very ductile metals (Dieter, 1998). A 

rupture failure occurs in high purity ductile metals. The metal necks down to a line or a point 

before separation. 

 

A shear fracture occurs when shear stresses are present during plastic deformation (Lothan et 

al, 1981). It occurs due to extensive slip on the active slip plane. Slip occurs when the applied 

stress produces a resolved shear stress (the highest value of which occurs at 45° to the applied 

tensile stress) that equals the critical resolved shear stress. The critical resolved shear stress is 

the stress required to break enough metallic bond in order for slip to occur (Askeland and 

Phule, 2006). Applied stresses causes shear band formation and localization. This leads to the 

formation of cracks within shear bands and eventual failure due to fracture within shear bands 

(Simulia, 2007). The fracture surface of a shear fracture appears grey and fibrous and when 

examined using a scanning electron microscope, the dimples (the traces of the microvoids 

produced during fracture) on the surface are oval shaped or elongated as shown in Figure 

2.9(a) (Askeland and Phule, 2006).  Shear failure surface is characterised by a separation at 

approximately 45 degrees to the tensile stresses (Dieter, 1998). 

 

A cup and cone fracture in moderately ductile metals begins with necking at the ultimate load 

as shown in Figure 2.6(a) which introduces a triaxial state of stress in the necked region.  As 

shown in Figure 2.6(a), voids or cavities are formed in the necked region and these voids 

grow and coalesce into a central crack which grows in a ductile manner perpendicularly to 

the direction of the applied tensile stress, resulting into a flat fracture [ (Anderson, 2005) and 

(Askeland and Phule, 2006)]. The growth of void at the center is controlled by the plastic 

strain and hydrostatic stress (Neimitz and Galkiewicz, 2006). The flat ductile fracture 

continues until it approaches the surface/edge of the specimen that is dominated by plane 

stress, where the growth of the void is due to the shearing plastic strain (Neimitz and 
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Galkiewicz, 2006) and then propagates along localised shear plane at roughly 45 degree to 

tensile force direction. This leads to slant fractures and the formation of shear lips on both 

surfaces/edges of the specimen as shown in Figure 2.6(a) (Dieter, 1998; Askeland and Phule, 

2006). The fracture surface of the flat portion of the cup and cone fracture when examined 

using a scanning electron microscope, has round or equiaxed dimples as shown in Figure 

2.9(c).  

 

              

Figure 2.6:   Cup and cone formation stages and micrographs of shear and ductile fractures: 

(a) Ductile cup and cone formation stages, (b) Elongated dimples at shear slip, (c) Equiaxed 

dimples at the centre of the cup and cone (Askeland and Phule, 2006). 

 

The slant and flat fracture morphologies exhibited by moderately ductile materials are due to 

crack “tunnelling”. Crack “tunnelling” is the term used to describe the preferential and faster 

crack growth at the center of the specimen which has high triaxiality and a slower crack 

growth on the outer regions of the specimen with low triaxiality/or a biaxial stress. The 

difference in the level of triaxiality and the speed of crack propagation between the centre of 

the specimen and its outer edges/surfaces results in a flat fracture at the centre of the 

specimen and a slant fracture and formation of a shear lips on the edge (outer region) of the 

specimen (Anderson, 2005). The combination of the flat and slant fracture morphologies 

results in the cup and cone fracture mode/shape associated with moderately ductile metals 

failures (Dieter, 1998). 
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2.2.3 Tensile structural deformation prediction                                                                                 

Predicting the deformation of a structure is done by “mapping” the history of the movement 

of a particle from its initial location at some position X in the initial configuration of a 

structure to a new position x  as the structure deforms throughout the history of loading of the 

structure. The “mapping” is done using the deformation gradient matrix F given in equation 

2.4 obtained from (Simulia, 2007).  

X

x
F




                            (2.4) 

The deformation gradient matrix F can also be expressed in terms of its components, the 

straining part of the motion and the rotating part of the deformation as given in equation 2.5 

obtained from (Simulia, 2007). The straining part of the motion is represented by the stretch 

matrix,V , and the rotating part by the rotation matrix R .  The stretch matrix V , completely 

defines the deformation of the material particles at x
 
while the rotation matrix R defines the 

rigid body rotation of the principal directions of strain from IN in the reference configuration 

to In  in the current configuration. 

RVF .                 (2.5) 

The velocity v of a material particle during the motion is defined as the rate of change of the 

spatial position x , of a fixed material particle. It is calculated as the partial differentiation of 

the spatial position x with respect to time (t) as given in equation 2.6 obtained from (Simulia, 

2007). 

t

x
v




                  (2.6) 

The rate of deformation or strain rate matrix  (also known as the rate of deformation tensor) 

of the material or component is calculated using the strain rate matrix given in equation 2.7 

obtained from Simulia, (2007) in terms of the velocity gradient 












x

v
  and velocity gradient

 

transpose

T

x

v












. The rate of rotation or spin W is calculated using the rotation rate matrix 
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given in equation 2.8 also obtained from (Simulia, 2007). 












x

v
and  

T

x

v












 represent a 

“column” vector and a “row” vector  respectively. 
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                (2.7) 
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                                   (2.8) 

During deformation, the Effective Mises stress, q , is given in equation 2.9 

ssq :
2

3
                (2.9) 

Where s , the deviatoric part of the Cauchy stress tensor  is given in equation 2.10.  

 

 pIs          (2.10) 

p is the hydrostatic pressure given in equation 2.11 

 Ip :
3

1
                 (2.11) 

2.2.3.1  Elastic-plastic structural deformation prediction  

With the exception of the deformation plasticity which is used primarily for the ductile fully 

plastic (plastic collapse or net section yielding) fracture mechanics applications under small-

displacement conditions and which defines stress in terms of the total mechanical strain with 

no history dependence, generally, elastic-plastic deformation are based on incremental 

plasticity theory (Simulia, 2007). The incremental plasticity theory in is based on the 

assumption that the total mechanical deformation consists of an elastic part and an inelastic 

(plastic) part. The incremental plasticity theory is based on three rate equations which are the 

strain rate decomposition equation, the flow rule equation and the hardening evolution 

equations. The strain rate decomposition given in equation 2.12 is based on the additive strain 

rate decomposition and is formulated in terms of the total (mechanical) strain rate , the 
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elastic strain rate el  (rate of change of the elastic strain) and the plastic strain rate pl (rate of 

change of inelastic strain)  

plel                                         (2.12) 

The flow rule equation defines the limit of the region with purely elastic response and is 

defined by a yield function, f, which may depend on the true stress, , temperature, , and  

hardening parameters, H , as shown in equation 2.13 obtained from Simulia, (2007). For 

isotropic yielding, the yield function given in equation 2.14 is equal to the equivalent uniaxial 

(Mises) stress, q .  

0),,(  Hf                                      (2.13) 

SSqf :
2

3
                         (2.14)  

Where elGS 2 is the deviatoric stress and 
)1(2 


E

G  is the shear modulus.  

Isotropic hardening is exhibited by a material in which its yield surface changes size 

uniformly in all directions, such that the yield stress increases (or decreases) in all stress 

directions with plastic straining (Ken-ichiro, 2001; Simulia, 2007).The isotropic yielding 

modelling is based on the Mises yield surface, which is based on the assumption that yielding 

of the metal is independent of the equivalent pressure stress (Simulia, 2007). This assumption 

is not valid for voided metals.  

The Gurson's porous metal plasticity theory which is based on the assumption that the yield 

stress of the fully dense matrix material is a function of the equivalent plastic strain in the 

matrix is used for the deformation prediction of voided metals. The yield condition for porous 

metal plasticity given by Gurson  and modified by Tvergaard and Needleman is given in 

equation 3.6 obtained from Simulia, (2007).  
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Where Ip :
3

1
 is the hydrostatic pressure and I is a unit matrix. 1q and 2q  are the 

coefficients of the void volume fraction introduced by Tvergaard as adjusting parameters 

used in bringing experimental void growth measurements in agreement with the model theory 

(Ragab, 2004). 3q  is the coefficient of pressure term. The function *f  models the rapid loss 

of stress carrying capacity that accompanies void coalescence and is defined in terms of the 

void volume fraction as: 

 

Where:  

 

  Critical value of the void volume fraction at which void nucleation begins, 

 Value of void volume fraction at which there is a complete loss of stress carrying 

capacity in the material (failure) 

  and  model the material failure when , due to mechanisms such as micro 

fracture and void coalescence. Total failure at the material point occurs when .  f  is 

related to the relative density, r , of the material by equation 2.16 

rf 1                           (2.16) 

For a fully dense material with a relative density )0(1  fr , the Gurson yield condition 

reduces to the Von Mises yield condition.  If )0(1  rf , the material is completely voided 

and has no stress carrying capacity. The porous metal plasticity model generally gives 

physically reasonable results only for 9.0(1.0  rf (Simulia, 2007). 

Kinematic hardening models are used to model the behaviour of metals that are subjected to 

cyclic loading and are typically applied to studies of low-cycle fatigue (Simulia, 2007). In 
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Kinematic hardening model, the yield surface doesn‟t change; but it is rather being pushed 

around in the stress space (Ken-ichiro, 2001) or shifts in stress space so that straining in one 

direction reduces the yield stress in the opposite direction (Simulia, 2007). Kinematic 

hardening models are the simplest theory used in modelling the Bauschinger effect in Abaqus 

(Simulia, 2007). In  

The combined or mixed hardening model is a combination of the nonlinear kinematic and 

isotropic hardening models. It is used to simulate plastic hardening in cyclic loading 

conditions Simulia, (2007).  The combined hardening model is used for modelling nonlinear 

isotropic combined with kinematic cyclic hardening behaviours. A typical isotropic cyclic 

hardening component of the combined hardening model modelled with the exponential law 

given in equation 2.17 obtained from Simulia, (2007) is defined by specifying the equivalent 

stress and the equivalent plastic strain.  

)1(0 plb

i eQY  

                               (2.17) 

Where 0 is the size of the yield surface (size of the elastic range), Q is the maximum 

increase in the elastic range, b is the  material parameter that defines the rate at which the 

maximum size is reached as plastic straining develops and iY  is the initial yield stress. The 

kinematic hardening component based on the evolution of the backstress (a nonlinear 

evolution of the centre of the yield surface)   is given in equation 2.18 obtained from 

Simulia, (2007).  

plplC 


  )(
1

0
               (2.18) 

2.2.3.2  Engineering and true stresses and strains  

 

Generally the original sample/structure dimensions change uniformly and continuously as it 

is stressed/strained and the changes in dimension becomes more noticeable after yielding. 

Engineering/nominal stress nom and strain nom values are based on the original area and 

original length of the specimen/component and do not reflect the continuous changes in the 

specimen‟s dimension. Thus using engineering stress and strain values do not give a true 

indication of the deformation characteristics of a metal, and therefore cannot provide a proper 

description of the physical phenomena that are involved in the tensile test (Simulia, 2007). 
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Consequently, the true stress  and true strain   values, which are based on instantaneous 

area and length, estimated using the expressions in equations (2.19) and (2.20) respectively 

are used as material input for FEA simulation (Simulia, 2007). 

)1( nomnom                    (2.19) 

)1ln( nom                  (2.20) 

For small strains (about 1% strain), there is no significant difference in the engineering and 

true strain values as the error is of the order of 10-4. Thus, the true stress can also be related 

to the true strain by the expression given in equation (2.21) which is the same expression that 

relates engineering stress to engineering strain. This is so because the modulus of elasticity, 

E , is established at a small strain level when the instantaneous area iA , and the original cross 

sectional area 0A ; as well as the instantaneous length, iL and original gauge length 0L are 

approximately equal. 

 E                             (2.21) 

At large strains (strains greater or equal to 5%), the most popular empirical mathematical 

equation that relates true stress to true stain is the Hollomon‟s equation (Soboyejo, 2003) or 

Ludwick simple power law (Chakrabarty, 2006) given in equation (2.22). 

nK                   (2.22) 

Where K is the proportionality constant that represents the true stress at a true strain of 1.0 

and n  is the strain hardening/work hardening exponent which is a measure of the resistance 

to plastic deformation. The value of “n” is between 0 and 1. The higher the value of n, the 

more pronounced the strain-hardening characteristic of the metal (Chakrabarty, (2006). K and 

n are constants determined from known true stress-strain data before necking. Equation 2.21 

is valid up to the onset of necking. 

 

The true stress can also be related to the true stain using the modified power law given in 

equation 2.23 which represents a strict rigid/plastic behaviour of metals or by the Swift‟s 

generalised power law given in equation 2.24. When n =1, equation 2.23 gives a linear strain-

hardening which is a “reasonable approximation” for heavily prestrained metals 

(Chakrabarty, 2006). 

 n

i mY   1                            (2.23) 
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 nmC                                                     (2.24) 

Where C, m and n are empirical constants and iY  is the initial yield stress. 

For metals without sharply defined yield stress which show smooth elastic-plastic transition 

and work harden, the Ramberg-Osgood elastoplastic equation given in its multiaxial stress 

states in equation 2.25 obtained from Simulia, (2007) defines the relationship between the 

strain(ε) and stress(ζ) for the elastic, elastic-plastic transition and plastic regions Chakrabarty, 

(2006). The Ramberg-Osgood relationship is essentially a nonlinear elastic model but can 

also be used to model the plastic response of materials which exhibits plastic collapse (a limit 

state during which all of a specimen net section yields (Simulia, 2007; Broek, 1997). 
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Where T  is the strain tensor, 0Y is the yield stress, p is the equivalent hydrostatic stress, q is 

the Mises equivalent stress, s is the stress deviator,   is the Poisson's ratio, I is the identity 

tensor and is the “yield” offset. 

2.2.4  Influence of testing machine on tensile properties 

The characteristic of the testing machine can strongly affect the shape of the force-

displacement curve and the fracture behaviour of test specimens (Dieter, 1998). “All testing 

machines deflect under load” (Dieter, 1998). Hence, testing machines crosshead displacement 

cannot be directly converted to the deformation of the specimen without applying appropriate 

correction. The crosshead displacement c given in equation 2.26 obtained from Dieter, 

(1998) and Davis, (2004) is the sum of the elastic displacement in the specimen
E

L
E

 , 

the plastic displacement in the specimen LEPP  and the elastic deflection of the testing 

machine (elastic deflection of machine frame, load cell and grips)
K

P
m  .  

K

P
LE

AE

PL
Pc                                                (2.26) 

The machines stiffness K  is calculated using the expression in equation 2.27 obtained from 

Davis, (2004). 

1

001 )//(  EALPK c                            (2.27) 
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Where 0L  is the specimen original gauge length, 0A  is the specimen original cross sectional 

area, P  is the load in the specimen and E is the young modulus. 

2.3    Defects in engineering materials  

Most engineering materials contain defects. These defects vary in degrees and sizes; and may 

range from nanoscale to macroscale (i.e. can be nanoscale, microscale, mesoscale, and 

macroscale defects) (Shen et al, 2009). Surface defects are as a result of damage to the 

surface of a solid body due to its interactions with another solid body or some other medium 

(liquid or gas) (Lothian, 1981). These interactions could be mechanical, thermal and or 

chemical. Surface damage by mechanical interaction could lead to elastic deformation, plastic 

deformation, impression (denting) by a foreign body, adhesion, material transfer and removal 

(Lothian, 1981).Thermal interactions could lead to heat transfer phase changes and localized 

melting while chemical interactions could lead to a chemical reaction like corrosion. 

Interactions causing heat transfer and elastic deformation leave no permanent traces while 

others do.  

 

Some mechanical surface defects such as the stress crack after rolling, groove and  scratch 

after grinding shown in Figures  2.7 (a), (b) and (c) respectively are introduced to metal 

products right from the production line by certain production processes such as rolling, 

drawing, grinding and metal cutting operations (Lothian, 1981). Mechanical damage can also 

occur during transportation, construction and installation, and during the service life of the 

metal products. 

 

                       

(a) Stress crack  (b) Groove   (c) Scratch after        (d) V-notched specimen  

     after rolling                                                     grinding 

 

Figure 2.7 Common surface defects in engineering materials (Lothian, 1981). 

A typical example of an internal defect is the lamination. A lamination is an elongated line 

type defect or a long crack that is usually parallel to the surface of metal products produced 

through rolling or drawing process. Laminations result from the elongation of cylindrical 

cavities in the parent ingot during rolling or drawing process (Smith et al, 1957) or from slag 
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and or mould powder entrapment during the steel making or casting process (Moir and 

Preston, 2002). Lamination may also be caused by seams, non-metallic inclusions (MnS) or 

by alloy segregation that is made directional by working the material (Escoe, 2006). 

Laminations represent a material separation or discontinuity and are normally invisible at the 

surface (Smith et al, 1957). 

2.4 Effects of surface defects on tensile properties of metals  

Surface defects can generally be classified as surface cracks and notches. Notches in a broad 

sense are used to refer to any discontinuity in shape or non-uniformity in material (Yen and 

Dolan, 2007). Consequently, notches are inevitably present in a large number of structural 

and machine components (Tlilan et al, 2008). Traditionally, the study of notches (such as the 

V-notch in Figure 2.7 (d)) and the study of cracks have been carried out on parallel tracks 

with little overlaps (Atzori et al, 2001). However, the stress distributions around the tip of 

notches have been established to be quite different from the stress distributions around the tip 

of cracks. The effects of defects on the tensile properties of specimens/components can be 

determined by carrying out notch tension tests. Notch tension tests involve laboratory tensile 

testing of 60 degree notched specimens with root radius of 0.025mm or less (Dieter, 1998).  

2.4.1 Effect of defects on yield strength  

Defects such as cracks, grooves and scratches shown in Figure 2.7 act as stress concentrators 

and the maximum stress occurs at the root of the notch. The degree of amplification of the 

stress falls of rapidly while moving away from root of the notch. This creates a steep stress 

gradient from the peak amplified stress at notch root to the nominal stress away from the root 

notch. When the local amplified stress at the root of the notch reaches the yield stress, 0 , of 

the material, yielding/plastic flows begins. During yielding, the material at the root of the 

notch attempts to stretch plastically in the direction of the applied load and contract laterally 

and transversely but is constrained by the rest of the material, which remains elastic, leading 

to the development of tensile stresses in the other two principal directions (Bayram et al, 

1999). With the development of the tensile stresses in the other two principal directions, it 

becomes necessary to increase the axial stress ( y ) to initiate plastic deformation as shown 

by the Tresca yield criterion in equation 2.28 (for a plane stress condition), leading to higher 

yield strength of notched specimens. This is referred to as “notch- strengthening” for ductile 

metals [(Dieter, 1998) and (Bayram et al, 1999)]. The plastic constraint increases with the 

notch depth. Consequently, the deeper the notch, the higher the axial stress required to 
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deform the specimen and the higher the yield strength of the notched specimen (Bayram et al, 

1999).  

 

xy  0
                  (2.28) 

2.4.2 Effect of defects on ductility 

The steep stress gradient created by the stress concentration at the notch root is accompanied 

by sharp strain gradients which causes a high local plastic strain concentration around the 

notch root that increases the tendency for brittle fracture. The high local plastic strain 

concentration is accompanied by a high local strain hardening which can lead to ductile void 

formation that can be converted to brittle cracks.  Also the high local plastic strain 

concentration leads to a local strain rate which is much higher than the average strain rate 

thereby promoting brittle fracture, since brittle fracture depends strongly on strain rate 

(Dieter, 1998). Furthermore, for materials prone to brittle fracture, the increase in tensile 

stresses due to the difficulty in spreading the yield zone in the presence of triaxial stress 

(plastic constraint) mentioned earlier can exceed the fracture stress/strength before the 

material undergoes general plastic deformation. The introduction of a triaxial stress state 

(which reduces plastic flow during yielding due to plastic constraint) by notches, the high 

local stress and strain concentrations at the root notch, the production of high local strain 

hardening and cracking, and the magnification of local strain rate around the notches, all 

increases the tendency for a brittle fracture and leads to a reduction in the ductility of a 

material (Dieter, 1998). 

2.4.3 Effects of defects on tensile strength  

Although the presence of a notch reduces the cross sectional area of specimens/components, 

the tensile strength of a notched specimen of ductile metals is also greater than the tensile 

strength of unnotched specimen due to the notch strengthening (Bayram et al, 1999) 

discussed in section 2.4.1. In moderately ductile metals, failure occurs by ductile 

damage/tearing or shear failure mechanism, both of which involve ductile crack propagation. 

Crack propagation in moderately ductile metal starts at a stress level far lower than the tensile 

strength of the material because the high local strain hardening associated with the stress 

concentration at the notch root promote cracking. Thus the presence of cracks leads to a 

reduction in the tensile strength of materials (Dieter, 1998).  
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2.4.4 Effects of defects on fracture strength and breaking load 

Theoretically, the cohesive/bond strength estimated using the expression in equation (2.3) 

should be equal to the fracture strength of the material. This means that for fracture to occur, 

the applied stress at the atomic level must be greater than the cohesive/fracture strength of the 

material (Anderson, 2005). However in practice, the experimental fracture strength or 

breaking load of engineering materials has been found to be typically three or four orders of 

magnitude lower than the theoretical cohesive/fracture strength/load of the materials 

estimated with equation (2.3) (Anderson, 2005). The fracture strength or the breaking load 

depends on the cross sectional area and the ultimate tensile strength of the material (Schrems 

and Maclaren, 1996). Thus the lower experimental fracture strength of engineering materials 

is basically due to the unavoidable presence of inherent defects in these materials. The 

presence of defects lowers the fracture/breaking load/strength because the presence of defects 

reduces the cross-sectional area and the tensile strength of structures/components, the two 

parameters upon which fracture/breaking load depends (Schrems and Maclaren, 1996). 

2.4.5 Effects of defects on fracture modes 

As stated in section 2.4.2, the presence of defects, such as notches/cracks reduces the ductility 

of a material and increases the tendency for a brittle fracture. The presence of a notch also 

increases the ductile-brittle transition temperature of some metals such as steel (Anderson, 

2005).  Consequently, a metal such as steel that normally exhibit ductile failure at a given 

temperature can fail in a brittle manner at the same temperature due to the presence of 

defects/crack (Anderson, 2005). Thus the presence of defects can change the fracture mode of 

structures/components. 

2.5 Defect/damage tolerance approach to design and assessment of defective 

structures  

Generally, fracture mechanics deals with the mechanisms by which materials fracture. It 

specifically deals with the deformation and fracture of structures and components with cracks 

and/or notches (Savruk and Kazberuk, 2010). The measure of how defects, discontinuities or 

irregularities raise/amplify the stress around them above the nominal stress is termed the 

stress concentration factor, K (Shigley et al, 2004). For modern structures designed to carry 

high loads, stress concentration becomes the most serious issue in safe design (Tlilan et al, 

2008) and maintenance of structures, and in general engineering critical assessment of 

structures that develop defects while in service (Li and Guo, 2001). 
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2.5.1 Calculation of stress concentration factors  

Calculation of the stress concentration factor involves determining the nominal stress at the 

defect free section, nom and the amplified stress around the defect max. nom and max can be 

calculated from theoretical equations, by using the finite element method or by using 

experimental techniques such as, the photoelastic stress analysis method, the grid method, 

brittle coating methods and electrical strain-gauge method (Shigley et al, 2004).  Discussion 

in this thesis is limited to calculations of stress concentration factor using the theoretical 

equations and the finite element method. 

2.5.1.1  Calculation of stress concentration factors using theoretical equations  

The theoretical stress concentration factor, Kt is defined as the ratio of the value of the 

maximum stress in a notched member to that in a corresponding unnotched member (Yen and 

Dolan, 2007). Alternatively and in many instances, the theoretical stress concentration factor, 

Kt, as expressed in equation 2.29 is defined as the ratio of the maximum stress  around the 

discontinuity or irregularities, max, to the nominal applied stress, nom [(Garrell et al, 2003); 

(Yen and Dolan, 2007)]. max and nom can be estimated in terms of the tensile or shear stress 

(Garrell et al, 2003) or the equivalent stress (Harkegard and Mann, 2003). max and nom are 

estimated from the expressions given in equations (2.30) and (2.31) respectively. While either 

definition is acceptable, the values of Kt are slightly different and the nominal stress in many 

instances is calculated from the reduced net cross section/minimum section of the 

components at the notch (Yen and Dolan, 2007; Noda et al, 1995). The area may also be 

based on the original/ gross cross section; however, care must be taken to ensure that the 

correct nominal stress is used. 

nom

tK


max                 (2.29) 

 
 a

nom2max                                               (2.30) 
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nom                                   (2.31) 
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 Where a is the notch depth or length of a surface crack,   is the radius of curvature of the 

notch/defect tip, P is the applied force, A is the area of the specimen, h is the thickness of the 

specimen and d is the width of the net section of the specimen. 

The subscript‟ t ‟ in tK  indicates that the stress concentration value is a theoretical 

calculation based only on the geometry of the component and the geometry of the 

defect/notch and does not depend on the material used (Shigley et al, 2004). The stress 

concentration factor tK varies for different notch shapes (Kato, 1992). Notches commonly 

treated in published literatures such as that of Noda and Takase, (2006), and Murakami et al 

(1981) are 'U', 'V', circular, semi-elliptical or semicircular shaped. 

 

When the stress remains elastic, or in small-scale yielding, where plastic deformation is 

limited to the notch root and nominal plastic strain is negligible, the stress concentration 

factor estimated using equation 2.29 is termed the elastic stress concentration factor 

(Harkegard and Mann, 2003). When large-scale yielding occurs, the stress concentration is 

redistributed leading to the reduction in the level of the maximum stress. The stress 

concentration factor under this condition is termed the plastic stress concentration factor and 

is lower than the elastic stress concentration factor (Harkegard and Mann, 2003). 

 

From the expression for theoretical stress concentration factor, the nominal stress is raised by 

the factor tK due to the presence of the notch. Although the reduction in the load-carrying 

capacity due to the presence of a notch has been experimentally observed to roughly tend to 

increase with increase in tK ; the reduction in the load-carrying capacity is generally always 

smaller than the factor tK  (Yen and Dolan, 2007). Consequently, there is a discrepancy 

between the theoretical stress concentration factors tK and the “effective stress concentration 

factors” eK  (also known the "strength reduction factor") especially for ductile materials. 

Discrepancy occurs because any elastic or plastic straining of the notch root tends to 

change/increase the root radius which might lead to lengthening of notch root by a very small 

length of arc at the bottom of the notch. The increase in the notch radius and the lengthening 

of the arc at the bottom/root of the notch evenly distributes the stress load around the flaw 

(especially for ductile material) leading to the reduction of the high theoretical stress 

concentration factor tK to an "effective" stress concentration factor eK (Yen and Dolan, 
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2007). The ratio of eK to tK determines the notch-sensitivity of a material. A metal that is 

notch-sensitive has a relatively high eK to tK ratio. Generally, the value of eK is between 1 

and tK , but in exceptional cases such as for some stainless steels, eK may be less than one, 

while for some quenched and tempered steels eK may sometimes be greater than tK (Yen 

and Dolan, 2007). 

2.5.1.2  Calculation of stress concentration factor using finite element method. 

The stress concentration factor can also be estimated using the nominal stress and the 

maximum stress obtained from finite element simulation/analysis. The stress concentration 

factor obtained from finite element analysis is designated as fK  (the subscript f indicates 

that the stress concentration value is estimated from finite element analysis). The maximum 

stress can be taken as the maximum “nodal” Von Mises stress or maximum first principal 

stress. Using maximum first principal stress is more suitable for the analysis of brittle 

materials. The nominal stress can be taken as either the average Von Mises stress or the 

average first principal stress on nodes in the gauge section (Garrell et al, 2003). 

2.5.2 Stress concentration factor due to V-notches 

Angular corners (also known as re-entrant corners), defects with angular ends and sharply 

notched components (such as rolling bearing seats and circlip grooves) often found in 

engineering structures can be represented by sharp V-notches (Strandberg, 1999). 

Theoretically, a sharp V-notch as shown in Figure 2.8(a) with a notch opening angle, 2 , can 

have an infinite stress concentration due to the approximately zero root radius ρ. They are 

sharp stress raisers, and under linear elastic theory, they are associated with infinite stresses at 

their tip. The intensity of the stress field at the tip of sharp V-notches is given in terms of the 

notch or generalised stress intensity factors (NSIF), N

ItK  . NSIF are comparable to the 

fracture toughness of components made of brittle materials as a crack propagates from the 

notch tip when the NSIF at the tip of the notch reaches a critical value (Zappalorto et al, 

2009).  

 

However in practical cases, re-entrant corners always have a fillet radius of some size and are 

often modelled as blunt V-notches.  A typical blunt V-notch shown in Figure 2.8(b) has 

straight edges with vertex rounded with a circular arc of finite root radius (Strandberg, 1999; 
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Savruk and Kazberuk, 2010).  Sharp V-notches are V-notches with 2ρ/D values ranging in 

value from 0.02-0.03 (Noda et al, 1995). 

                                          

a) Sharp V-shaped notch                    b) Blunt/rounded V-shaped notch  

Figure 2.8:   Sharp and blunt V-notches in an elastic plane (Strandberg, 1999). 

 

Also the theoretical infinite stress concentration due to sharp V-notches is not true for actual 

materials. This is because theoretical infinite stress concentration is based on the classical 

theory of elasticity which assumes that materials are perfectly homogeneous and infinitely 

divisible whereas actual materials are made of a finite number of particles (atoms or crystal 

grains) of definite dimensions. These particles are represented by many small cubic blocks of 

uniform size called the "structural elementary units." The size of the “structural elementary 

unit” depends on materials and is as a material property.  

 

The stress concentration factor of a sharp V-notch depends upon the size of the particle or 

“structural elementary unit” as the values of the maximum stresses at the notch tip are 

averaged over the surface of an elementary structural unit. The averaging of the maximum 

stresses over the surface of the elementary structural unit reduces the effective maximum 

elastic stress due to the steep stress gradients existing over the unit. Consequently the 

lengthening of the notch radius and its associated lengthening of the arc at the bottom/root of 

the notch due to elastic or plastic straining which redistributes stresses, and the averaging of 

the maximum stresses over the surface of the elementary structural unit lowers the stress 

concentration effects of sharp V-notches. Hence the theoretical stress concentration factors 

due to sharp V-notches in structures are reduced to the effective stress concentration factors 

and are not infinite as predicted theoretically (Yen and Dolan, 2007). For sharp and blunt V-

notches, loadings (even moderate loadings), cause the stresses at their vertices to significantly 

exceed the strength of materials. Thus, the classical criteria (traditional strength of material) 
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for the estimations of structures load carrying capacity are not applicable for 

structures/components with V-notches (Savruk and Kazberuk, 2010).   

 

Traditionally, for over 30 years, the Neuber trigonometric rule/formula given in equation 

(2.32) has been used to estimate the values of approximate stress concentration factors 

designated as KtN. However, Noda et al, (1995) stated that the systematic analyses carried out 

using the body force method have confirmed that the stress concentration factors values 

estimated using Neuber trigonometric rule/formula have non-conservative errors for a wide 

range of notch depths. Kato, (1991) also stated that Neuber trigonometric rule gives values a 

little lower than numerical or experimental values and does not give accurate values. 
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Where: 

tsK  The solution of an elliptical hole in an infinite plate taken as a shallow notch 

tdK  The solution of a hyperbolic notch taken as a deep notch (Noda et al, 1995). 

 

„In general, it is difficult to accurately calculate the stress concentration factors for sharp 

notches‟ (Noda et al, 1995). Consequently, approximate methods such as those based on the 

stress distribution for domains with rounded notches shown in Figure 2.8 (b) (with not 

necessarily small curvature radius) become very attractive alternatives (Savruk and 

Kazberuk, 2010). However, except for very deep notches, the stress concentration factor of a 

sharp notched round or flat bar tK , shown in Figure 2.8(a), can be estimated from the stress 

concentration factor of a 60 degree V- notched semi-infinite plate, tvK , shown in Figure 

2.8(b) provided both tK , and tvK  have the same shape factor, /a . This is because the 

values of tK , and tvK are dependent on the value of 
D

a2  alone and independent of the notch 

shapes. tK , becomes equal to tvK as Da /2  tends to zero (Noda et al, 1995). D and d  are the 

full width and the width of the net section of the specimen/component. The approximate 

value of tK for single and double blunt V-notched flat bars with better than 1% accuracy 

obtained from using the solution of semi-infinite plates given by Noda et al, (1995) can be 
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obtained from Figures 2.9 and 2.10 respectively. The nominal stress, 
dh

p
nom  for both 

cases. 

 

                                                 

Figure 2.9: Chart for approximate tK for a single 60° V-shaped notched flat bar under pure 

tension (Noda et al, 1995). 
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Figure 2.10:   Chart for approximate tK for a double 60° V-shaped notched flat bar under 

pure tension (Noda et al, 1995). 

 

The "effective" stress concentration factor eK for sharp notches can be estimated using the 

Neuber's empirical relationship/formulas given in equation 2.33 obtained from Yen and 

Dolan (2007). Neuber's formula comes from empirical interpolation between theoretical 

limiting values and is not entirely based upon rigid mathematical analysis. Also it does not 

include size effects and was derived for the case of static loading only for explaining the 

notch effect. Consequently, the extent of its application as an exact relation is likely to be 

limited and questions remain on how far this equation/theory can be generalized to explain 

the notch effect and size effect in repeated loading (Yen and Dolan, 2007).  
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Where  is half the width of the “elementary structural unit” and   is the notch opening 

angle. 

 

The stress concentration factor of a sharp V-notch is related to the NSIF by the expression 

given in equation 2.34 obtained from Lhermet et al, (1987), Livieri, (2003); and Savruk and 

Kazberuk, (2010) when the notch root radios    tends to zero and the ratio between the V-

notch depth a  and notch root radios   tends toward infinity. Substituting nomtK  max  

from equation 2.29 in equation 2.34 gives a complete expression relating the stress 

concentration factor of a sharp V-notch to the NSIF as shown in equation 2.35. Equation 2.35 

can thus be used to for a rough estimation of the NSIF when the stress concentration factors 

is known or vice versa (Savruk and Kazberuk, 2010). 
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From the review on the calculation of the stress concentration factor for sharp V-notches, the 

available equations/formula can only be used for an approximate/rough estimation of the 

stress concentration factor for sharp V-notches and they give approximate relationships 

between the notch stress intensity factor and the stress concentration factor for sharp V-

notches. 

2.5.3  Limitation on use of stress concentration values  

Generally, the stress concentration factor depends on the orientation and geometry of the 

defect/discontinuity/irregularity. Thus, to estimate the stress concentration factor, the 

part/component geometry and the defect geometry (such as the geometry of a notch or 

groove) must be known (Callister, 2007). When a part contains a crack, the geometry of the 

crack may not be known. Also for infinitely sharp cracks (with zero radius of curvature) or 

atomically sharp cracks (with atomic radius of curvature that is also approximately equal to 

zero), the stress concentration values tend to infinity. Hence for parts/components with 

cracks, the stress concentration factor is no longer a useful/helpful design tool and fracture 
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mechanics techniques should be used for the design and assessments of such components 

(Callister, 2007). 

2.6 Fracture mechanics based design and assessment of structures with cracks 

Fracture mechanics deals with the behaviour of cracked bodies subjected to stresses and 

strains by analyzing the flaws to determine if they are safe and will not propagate or if they 

will propagate and cause the failure of the flawed structures (Anderson, 2005). Fracture 

mechanics uses the energy criterion and the stress intensity approaches to fracture analysis. In 

energy criterion approach, crack propagation/failure occurs when the energy release rate G is 

equal to the critical energy release rate cG  as expressed in equation 2.36 obtained from 

Anderson, (2005) which  relates the critical combinations of crack size and stress to the 

fracture toughness of the material at failure. 

E

a
G

cf

c

2
                                       (2.36) 

Where f  is the failure/fracture stress, ca is the critical crack size.  

In the stress intensity approach, crack propagation or failure occurs when IK  is equal to IcK  

as expressed in equation 2.37 obtained from Anderson, (2005) which relates the critical 

combinations of crack size and stress to the fracture toughness of the material at failure. The 

subscript I indicates that the stress intensity factor is due to mode one (I) loading which 

causes tensile stress at the crack tip. Y is a dimensionless geometry correction factor. 

 

cfIc aYK                                       (2.37) 

The stress intensity factor is related to the energy release rate by the expression in equation 

(2.38) obtained from Toribio et al, (2006). 

E

K

c
ICG
2

                                  (2.38) 

 

The energy release rate and the stress intensity factor are applicable to linear elastic materials. 

Linear elastic materials exhibit little or no crack-tip plasticity and the fracture toughness of 

such materials are characterised by IcG and IcK . Elastic-plastic fracture mechanics analysis is 

http://en.wikipedia.org/wiki/Structural_failure
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used for fracture analysis of elastic-plastic materials which exhibit substantial time 

independent nonlinear behaviour which results in plastic deformation at the crack tip. The 

plastic deformation at the crack tip leads to blunting of the crack and the extent of the crack 

blunting is a measure of the fracture toughness of the material (Anderson, 2005). The crack-

tip-opening displacement (CTOD) δ and the J contour integral are the two elastic-plastic 

fracture criteria. The CTOD is related to the stress intensity factor and the energy release rate 

by the expression given in equation (2.39).  

00

2

mY

G

EmY

K I                            (2.39) 

Where m is a dimensionless constant that depends on the stress state and material property. 

m is approximately equal to 1.0 for plane stress and 2.0 for plane strain (Anderson, 2005). 

 

The J contour integral is suitable for characterising fracture in nonlinear elastic (reversible 

plasticity) and elastic-plastic materials (with irreversible plasticity) provided no unloading 

occurs. J is the nonlinear energy release rate and its critical value IcJ  represent the fracture 

toughness of the material (Anderson, 2005). J in nonlinear elastic and elastic-plastic 

materials is the equivalent of G, the energy release rate in linear elastic materials. J is related 

to KI and CTOD by equations (2.340). 

0mY
E

K
J I                                      (2.40) 

Failures by plastic collapse occur in materials whose plastic response involves yielding of the 

net cross section of the ligament of defective components/specimens. The maximum load 

carrying capability of the structure is attained while yielding as the yielding cross-section can 

no longer carry any more loads. Yielding continues at the maximum load (collapse load colP , 

failure load, or limit load) given in equation 2.41 obtained from Broek, (1997) until it 

eventually results in fracture of the specimen. Fracture can even occur during yielding before 

the entire ligament yields (Broek, 1997). Plastic collapse occurs at the collapse strength, colF , 

which is the yield stress for perfectly plastic materials, and at a flow stress fl for materials 

that work hardens (Broek, 1997).  

fcol aWBP )(                                                (2.41) 

Under the net section theory, the critical nominal stress, cr  is estimated using the expression 

in equations (2.42) obtained from Mahmoud, (2007) and Broek, (1997). The fracture strength 
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and the critical defect size of a component/specimen depend totally on the flow stress of the 

material and not at all on its fracture toughness (Anderson, 2005).  

  

ColW
aW

ColA

AA

ColA

A

cr FFF CrackNet 
                      (2.42) 

 

Where BWA  is the nominal cross-sectional area, NetA is the net section area, crackA  is the 

area occupied by the crack or notch. 

 

2.6.1 Fracture toughness test                                                                                                       

Carrying out a fracture toughness test is the primary method to investigate the interaction 

between a crack and an applied stress (Gliha and Rojko, 2003). A fracture toughness test 

measures the resistance of a material to crack extension (Anderson, 2005). The critical stress 

intensity factor IcK and the critical J contour integral IcJ  are assumed to be material 

constants or material parameters (i.e. the fracture toughness of the material) only if the stress 

field in front of the crack is controlled by one parameter, the stress intensity factor (SIF) for 

brittle (linear-elastic) materials or the J-integral for ductile (nonlinear elastic or plastic) 

materials. For one-parameter characterization to be satisfied, a proper constraint level at the 

crack tip must be ensured (Neimitz and Galkiewicz, 2006). However, one-parameter 

characterization is not always satisfied in most practical situations because the relative crack 

length and/or element thickness are not appropriate to assure a proper constraint level at the 

crack tip (Neimitz and Galkiewicz, 2006). Consequently the fracture toughness measured 

according to national or international standards from highly constrained specimens is often 

not transferable to real structural elements containing cracks as the measured fracture 

toughness represents the lowest value for a variety of geometrical configurations and is thus 

conservative. For most real life structures without high constraint in front of the crack, the 

fracture toughness can be several times higher that obtained from laboratory specimens with 

high constraint (Neimitz and Galkiewicz, 2006). 

 

The dependence of fracture toughness on specimen geometry, crack length and loading 

configuration is normally referred to as the constraint effect (Liu and Chao, 2003). In 

addition, fracture toughness values also depends on the crack shape and specimen size [(Chao 

et al, 2001) and (Liu and Chao, 2003)]. For the same thickness of the single-edge notched 

bend (SENB) and the compact tension (CT) specimens shown in Figures 2.11(a) and (b) 
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respectively, the CT specimen has a higher constraint and thus gives lower values of cleavage 

fracture toughness (Petti and Dodds, 2004). This is because the constraint loss in SENB is 

greater than that in the CT, especially during the last stage of loading (Petti and Dodds, 

2004).  

 

In terms of the effect of crack size on fracture toughness, Chao et al, (2001), Qingfen et al, 

(1990)  and Narasaiah et al, (2010) stated that the deeper the cracks size, the higher the 

constraint. Chao et al, (2001) stated that for brittle materials, the deeper the cracks size, the 

higher the measured fracture toughness. Conversely, for spring steel and for 20MnMoNi55 

pressure vessel steel, which are typical ductile materials, Qingfen et al, (1990) and Narasaiah 

et al, (2010) observed that the deeper the cracks size, the lower the measured fracture 

toughness.   

 

The size effect relates to the effect of specimen size on the fracture toughness. Generally, 

smaller specimens exhibit higher loss of constraint because of their finite thickness and the 

deviations from plane strain conditions, and thus give higher fracture toughness values 

(Balart and Knott, 2006). However, the fracture toughness becomes relatively constant or 

insensitive beyond certain specimen thickness as shown in Figure 2.11(a) (Anderson, 2005). 

This observed thickness effect on fracture toughness is generally associated with materials 

with ductile crack propagation (that involves microvoid coalescence). It depends on the 

relative proportions of slant fracture and flat fracture (Anderson, 2005). In a thin specimen, 

the slant fracture morphology which results in shear failure dominates as shown in Figure 

2.12. In a “moderately” thick specimen, a mixture of both flat and slant fractures is observed 

and for a very thick specimen, flat fracture mechanism dominates as shown in Figure 2.12. In 

a thin specimen, the apparent fracture toughness is higher. This is due to the slant fracture 

/shear lips associated with the fracture mode of thin specimen and is responsible for the 

thickness dependence of the fracture toughness of materials.  
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Figure 2.11:   Standardised fracture mechanics test specimens: (a) compact specimen, (b) 

disk-shaped compact specimen, (c) single-edge notched bend (SENB) specimen, (d) middle 

tension (MT) specimen and (e) arc-shaped specimen (Anderson, 2005).  
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(a) Effect of thickness on fracture toughness (sketched to reproduce the Figure in Anderson, 

2005). 

 

(b) Effect of thickness on fracture surface morphology  

Figure 2.12   Effect of thickness on fracture toughness and fracture surface morphology of 

ductile materials (Anderson, 2005). 

2.6.1.1  Fracture toughness test specimen dimensions 

The stringent size requirements of ASTM E 399 and other standards given in equations (2.43) 

and (2.44) meant to ensure that the fracture toughness values obtained from tests correspond 

to plane strain conditions make it difficult and sometimes impossible to measure a valid 

IcK for low and medium strength steels used for structural applications. This is because the 

specimen thickness required is larger than most available material thickness and valid IcK  

can only be obtained for brittle materials which are probably too brittle for structural 

applications (Anderson, 2005).  
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5.2,,                             (2.43) 
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55.045.0 
W

a                                     (2.44) 

The specimen size requirements for a valid, IcJ measurement  given in equation (2.45) 

obtained from (Anderson, 2005), are much more lenient than that required for valid IcK for 

the same material.  

 
Y

QJ
bB 

25

0,                                                  (2.45) 

Where 

QJ   the provisional initiation toughness becomes the IcJ if the validity criterion in 

equation (2.45) is fulfilled. 

0b  the initial ligament length which is equal to (W-a). 

 

The specimen size requirements for a valid, Ic measurement  given in equation (2.46) 

obtained from (Anderson, 2005), are much more stringent than that required for 

IcJ measurement and are approximately two to four times the specimen size required for 

IcJ measurement.  

QbB 300, 0                 (2.46) 

Where 

Q  the provisional initiation toughness becomes the Ic , if the validity criterion in 

equation (2.46) is fulfilled. 

 

In conclusions, all the present fracture toughness test standards have specimens size 

requirements which specify the minimum thickness of the specimens to be used for fracture 

toughness measurement for all the fracture toughness measuring parameters ( IcK , IcJ  or Ic ). 

As it would be seen in chapter four, standard fracture toughness test specimens cannot be 

manufactured from wires owing to their sizes. 

 

Having presented the literature review on flexible pipes, laboratory tensile testing, defects 

and their effects on the tensile properties of structures, and damage tolerance approach to 

design and assessment of defective structures in this chapter, the literature review on finite 

element simulation and analysis is presented in the next chapter.  
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Chapter 3  Literature review: finite element modelling and 

simulation.  

In this chapter, the use of FE as virtual testing, the verification and validation of FE results 

are presented. A review on virtual prototyping/testing and the verification and validation of 

numerical modelling and simulation are presented in sections 3.1 and 3.2 respectively. A 

brief introduction to Abaqus Finite Element Analysis Software is presented in section 3.3 and 

the elastic-plastic-simulation and damage and failure simulations in Abaqus are presented in 

sections 3.4 and 3.5 respectively. The limitations of existing fracture models and contact 

simulations in Abaqus FEA are presented in sections 3.6 and 3.7 respectively.                                                                                              

3.1 Virtual prototyping/testing 

Virtual prototyping and virtual testing are terminologies used to describe numerical 

simulation for the design, evaluation and “testing” of new hardware and entire systems 

(Oberkampf and Trucano, 2008). Virtual prototyping or testing is also referred to as 

numerical or virtual experiment (Springmann and Kuna, 2005). The use of virtual testing is 

becoming popular and unavoidable in engineering, especially where the need to reduce the 

time and cost of bringing products to market is intense. This new trend of modelling and 

simulation based design is also driven by the high cost and time required for testing 

laboratory or field components 

3.2 Verification and validation of numerical modelling and simulation  

There is the need to have justified confidence in the credibility of the computational 

simulation results which are nowadays being used for engineering, safety and legal decision-

making processes. In computational science and engineering (CS&E), computational 

simulations verification and validation (V&V) are the major processes for assessing and 

quantifying the required confidence in the predictions/results of computational simulations 

(Oberkampf et al, 2004). 

 

Verification is defined as the assessment of the software correctness and numerical accuracy 

of the solution to a given computational model (Oberkampf et al, 2004). It is basically a 

process of assessing the accuracy of the solution of a computational model by comparing it 

with known solutions. It is meant to verify/determine that a model implementation accurately 

represents the developer‟s conceptual description of the model and the solution to the model. 
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Verification is also a way to establish that a mathematical model derived from a conceptual 

model is solved correctly by the computer code (Oberkampf et al, 2004). 

 

Validation on the other hand is defined as the assessment of the physical accuracy of a 

computational model based on comparisons between computational simulations and 

experimental data. It is basically a process of determining the degree to which a model is an 

accurate representation of the real world from the perspective of the intended uses of the 

model (Oberkampf and Trucano, 2008). In validation, the relationship between computation 

and the real life (experimental data) is the focal point. This is because it is only through 

physical observations/experimentations that the adequacy of the selected conceptual and 

mathematical models of reality of interest can be carried out. Validation therefore serves as a 

way to establish how accurately the computational model simulates the real world system 

responses. Validation hinges on carrying out appropriate experiments correctly and on the 

mathematical accuracy of the computed solution (Oberkampf and Trucano, 2008). 

 

Using V&V to achieve the required level of credibility (accuracy and reliability) in 

computational simulations involves issues such as: the reliability of the computer software 

(code verification), the estimation of numerical accuracy (solution verification), the quality of 

the physics models used (validation experiments), the quantification of uncertainty, and the 

training and expertise of users of the codes.  

3.3 Abaqus Finite Element Analysis Software  

Abaqus is one of the commercial software packages for finite element analysis. Abaqus 

consists of a group of powerful engineering simulation programs that are based on the finite 

element method. Abaqus can be used to solve relatively simple problems involving linear 

analyses as well as the most challenging nonlinear simulations. Abaqus is a general-purpose 

simulation tool, which can be used to simulate and study problems in the various areas of 

engineering such as structural (static and dynamic, stress/displacement etc), heat transfer, 

mass diffusion, thermal management of electrical components (coupled thermal-electrical 

analyses), acoustics, soil mechanics (coupled pore fluid-stress analyses), piezoelectric 

analysis (Simulia, 2007). For structural analysis, Abaqus has inbuilt material models which 

can be used for elastic, elastic-plastic, damage and fracture simulations. In Abaqus, the 

element and nodal output variables such as stress, strain, displacement etc are always defined 

http://en.wikipedia.org/wiki/Finite_element_analysis
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in the global Cartesian coordinate system even if a large-displacement simulation involves 

element rotation during the simulation (Simulia, 2007). Generally, the accuracy of the finite 

element simulation increases with mesh refinement and optimum mesh density obtained by 

performing mesh convergence should be used to obtain sufficiently accurate results 

3.4 Elastic-plastic-simulation in Abaqus                                                                                                     

Elastic-plastic simulation is required for structures subjected to high strain magnitudes 

(greater than 5% strain) sufficient to cause the structure to yield; and leading to a dramatic 

reduction in the stiffness and plastic deformation of the structure. The plastic behavior of a 

material is described by its yield surface, its flow rule and its post-yield hardening discussed 

in section 2.2.3.1. Abaqus has various inbuilt models, such as the isotropic, kinematic and 

combined hardening models for elastic-plastic simulations. The details of the theories and the 

structural deformation prediction equations used for elastic-plastic deformation in Abaqus 

have been presented in section 2.2.3. 

3.5 Damage and failure simulation in Abaqus                                                                       

Damage evolution involves the degradation of the material stiffness/elastiity in the region of 

strain localization (necked region) leading to the strain-softening (reduction in the load-

carrying capacity of the material with straining) of the specimen. The progressive degradation 

of the material stiffness in the region of strain localization in accordance with specified 

damage evolution criterion continues until the material fails. Failure occurs in an FE 

simulation when there is a complete loss of load-carrying capacity due to the progressive 

degradation of the material stiffness. The process of progressive degradation of material 

stiffness is modelled using damage mechanics (Simulia, 2007). The progressive degradation 

of the material stiffness to failure translates to the continuous reduction in the load-carrying 

capacity of the specimen till failure occurs at the equivalent plastic strain at failure.  

3.5.1 Models for damage and failure of ductile metals in Abaqus. 

The available mechanical constitutive models with damage mechanics concepts for ductile 

metals in Abaqus are the classical fracture mechanics (discussed in section 2.6) and the 

mechanism based fracture mechanics. Mechanism based fracture mechanics consists of the 

micromechanical and the phenomenological failure approaches or models. Both 

micromechanical and phenomenological failure criteria model ductile fracture by a process of 

nucleation and growth of voids that ultimately link to form cracks. Micromechanics inspired 

fracture models such as Gurson‟s model, are based on the assumption that ductile fracture 
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occurs when the void volume fraction reaches a critical threshold value. Hence such models 

involve modelling void nucleation and growth. Phenomenological models are alternatives to 

micromechanical based models as they predict ductile fracture without modelling void 

nucleation and growth. Phenomenological models are based on the assumption that ductile 

fracture occurs when a weighted measure of the accumulated plastic strain such as the 

equivalent plastic strain reaches a critical value (Dunand and Mohr, 2009). The development 

of micromechanical models was largely driven by the fracture mechanics community to 

simulate crack growth in ductile materials when a safe use of the classical fracture mechanics 

concepts cannot be insured. (Pardoen et al, 2010). In addition, the application of the global 

criteria of fracture mechanics such as COD and J-integral to characterise ductile fracture 

initiation does not provide satisfactory results for all cases of external loading, and there are 

significant problems with the application of their results to describe the behavior of various 

structures of different geometry (Rakin et al, 2004). 

 

The available mechanism based damage initiation criteria for ductile metals in Abaqus fall 

into two categories which are: the damage initiation criteria for the necking instability of 

sheet metal and the damage initiation criteria for the fracture of metals. The damage initiation 

criteria for the necking instability of sheet metal cover the forming limit diagrams used to 

model the formability of sheet metal and the Marciniak-Kuczynski (M-K) criterion suitable 

for numerical prediction of necking instability in sheet metal taking into account the 

deformation history (Simulia, 2007). The onset of necking is immediately followed by 

fracture and the model therefore represents a conservative failure criterion in structures 

discretised with shell elements (Werner et al, 2005). 

The damage initiation criteria for the fracture of metals cover, the ductile and shear failure 

criteria models which are the two main phenomenological fracture mechanisms for ductile 

metals. Another damage and fracture model available in Abaqus is the micromechanical 

ductile damage and failure model known as the porous metal plasticity model. This is suitable 

for modelling damage and fracture of voided metals. The coupling of the damage variables 

and constitutive relation of materials make calibration of material parameters or constants and 

damage laws difficult to carry out as the damage variables required to use these models are 

generally are not a direct output of tensile tests (Yingbin and Tomasz, 2004).  
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3.5.2 Micromechanical failure model in Abaqus   

The Gurson-Tvergaard-Needleman damage and fracture model for porous ductile material is 

a widely used micromechanical model [(Yingbin and Tomasz, 2004) and (Springmann and 

Kuna, 2005)] and is based on the porous metal plasticity damage and failure criterion. The 

porous metal plasticity damage and failure criterion is used in modelling damage and failure 

of voided metals (with a dilute concentration of inherent voids) with relative density (ratio of 

the volume of solid material to the total volume of the material) that is greater than 0.9. The 

model is based on the Gurson‟s porous metal plasticity discussed in section 2.2.3.1. Using the 

Gurson-Tvergaard-Needleman damage and fracture model for fracture simulations requires 

over ten material parameters. These are the elastic-plastic parameters, the porous metal 

plasticity parameters, the void nucleation parameters and the porous failure parameters. The 

elastic-plastic parameters are the initial yield, 0 , and the two hardening parameters, the 

plastic yield strain, 0 , and the work hardening exponent, n (Springmann and Kuna 2004). 

The porous metal plasticity data are the relative density r with a value between 0.9 and 1, the 

coefficients of the void volume fraction
1q  (with a value between 1.0 and 1.5), and

2q  (with a 

value of 1.0); and the coefficient of pressure term 2

13 qq   (with a value between 1.0 and 2.25) 

(Springmann and Kuna 2004). 1q , 2q and 3q  are used to model the yield behaviour of the 

material (Bernauer and Brocks, 2002).                          

The void nucleation data are the average nucleation strain N (with values ranging from 0.1 to 

0.3.), the standard deviation of the normal distribution of the nucleation strain NS (with 

values ranging from 0.05 to 0.1) and the void volume fraction of the nucleated voids Nf  

(Simulia, 2007). These three parameters are used in modelling void nucleation (Bernauer and 

Brocks, 2002). The porous failure data are the critical void volume fraction, cf , which 

characterises the beginning of void nucleation; and Ff , the value of void volume fraction at 

which fracture occurs (Springman et al, 2004). These two parameters are used to model the 

evolution of void growth up to coalescence and final failure (Bernauer and Brocks, 2002).                                                                        

Determining these parameters requires extensive and expensive material testing (Bernauer 

and Brocks, 2002). Yingbin and Tomasz, (2004), and Bernauer and Brocks, (2002) stated that 

these shortcomings are  also associated with other micromechanical fracture models such as 

the Rousselier models, Rice and Tracy model; and Hancock-Mackenzie- Gunawardena 
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models, and make these  model unattractive in the industrial environment. Consequently, the 

determination of the damage and failure data/parameters remains predominantly a 

phenomenological fitting procedure which requires a combination of testing and numerical 

simulations.  The phenomenological fitting procedure involves keeping some parameters 

constant and varying others during numerical simulations until the simulation results fit the 

experimental data. The onset of macroscopic fracture which represents the point/instance at 

which void coalescence is “supposed” to start is marked by a sudden drop of load. Hence the 

values of the set of damage and fracture parameters used for the simulation at which the 

numerical data fits with experimental data at this point of sudden drop of load has become a 

common technique to determine critical fracture parameters like the critical void volume 

fraction in the Gurson-Tvergaard-Needlemam model (Bernauer and Brocks, 2002). However, 

there is still a problem with regards to the uniqueness and transferability of parameters sets 

(Bernauer and Brocks, 2002). 

3.5.3 Phenomenological failure models in Abaqus  

The ductile damage criterion is a phenomenological model for predicting the onset of damage 

by micro-void nucleation, void growth and void coalescence. Micro-void nucleation could be 

as a result of micro-cracking of particles and/or fracture or decohesion of second phase 

inclusions. Plastic straining causes the nucleated voids to grow or enlarge, leading to 

localisation of plastic flow between the enlarged voids and eventual ductile tearing of the 

ligaments between the enlarged voids which leads to ductile cup and cone fracture (Kim et al 

(2007). The ductile failure model assumes that the equivalent plastic strain at the onset of 

damage pl

D , is a function of stress triaxiality   and the equivalent plastic strain rate
pl . The 

criterion for damage initiation is met when the condition in equation 3.1 is satisfied:  
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D is a state variable that increases monotonically with plastic deformation. At each 

increment during the analysis, the incremental increase in D is computed using the 

expression in Equation 3.2 obtained from Simulia, (2007).  
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The shear criterion is a phenomenological model for predicting the onset of damage due to 

shear band localisation. Applied stress causes shear band formation and localisation, leading 

to the formation of cracks within the shear bands and an eventual failure due to fracture 

within the shear bands (Simulia, 2007). The model assumes that the equivalent plastic strain 

at the onset of damage pl

s is a function of the shear stress ratio s and strain rate
pl . The 

shear stress ratio is calculated using the expression in equation 3.3 obtained from Simulia, 

(2007). 

max/)(  pkq sS                                     (3.3) 

Where max , is the maximum shear stress and Sk  is the material parameter. 

The criterion for damage initiation is met when the condition in equation 3.4 is satisfied:  
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S  is a state variable that increases monotonically with plastic deformation proportional to 

the incremental change in equivalent plastic strain. At each increment during the analysis the 

incremental increase in S is calculated using the expression in equation 3.5 obtained from 

(Simulia, 2007). 
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3.5.3.1   Material parameters for ductile and shear damage and fracture simulations.                            

The material parameters required for ductile damage and failure simulations in Abaqus are 

the equivalent plastic strain at the onset of ductile damage (simply referred to as the fracture 

strain) pl

D , the stress triaxiality and the strain rate.  Similarly, the material parameters 

required for shear damage and failure simulations are the equivalent plastic strain at the onset 

of shear damage (fracture strain) pl

s , shear stress ratio, strain rate, and a material 

parameter Sk . For both ductile and shear damage simulations, the displacement at failure, 

pl

fu , a parameter required for damage evolution is also required. The displacement at failure 

is the effective total displacement (for elastic materials in cohesive elements) or the plastic 

displacement at failure (for bulk elastic-plastic materials), measured from the time of damage 

initiation. The value of plastic displacement at failure ranges from 0 to 1. Instantaneous 

failure occurs when the plastic displacement at failure value is 0 (Simulia, 2007). 



     

48 

These parameters needed for shear and ductile failure simulations could be obtained 

experimentally. However, obtaining these parameters through direct experimentation may be 

difficult because it would require experiments over a range of stress triaxiality for the ductile 

failure, and requires experiments over a range of shear stress ratio for shear failure simulation 

(Simulia, 2007). An alternative approach is to estimate these parameters needed for shear and 

ductile failure simulations using Hooputra et al. (2004)‟s simplified analytical expressions 

giving in equations 3.6 and 3.7 respectively. Even using Hooputra et al. (2004)‟s simplified 

analytical expressions to estimate the equivalent plastic strain at the onset of both ductile and 

shears damage initiations also requires a number of specially designed experiments (Simulia, 

2007).  
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Where: 



T and 


T are the equivalent plastic strain at ductile damage initiation for equibiaxial tensile 

and equibiaxial compressive deformation, respectively, 

 and 
 are the stress triaxiality in equibiaxial tensile deformation state and equibiaxial 

compressive deformation state with a value of 2/3 and -2/3 respectively for isotropic 

materials, 



S and 

S correspond to the equivalent plastic strain at shear damage initiation for 

equibiaxial tensile and equibiaxial compressive deformation respectively, 

 



S and 

S correspond to the values of S at 
 and 

 respectively and  

 

 /)1( sS k  with eq /max   
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3.5.3.2  Determination of parameters for ductile damage and failure simulation 

To use Hooputra et al, (2004)‟s simplified analytical expression given in equation 3.37 to 

estimate the equivalent plastic strain at the onset of ductile damage pl

D , three material 

parameters: 

T , 

T , and 
0k  must be determined experimentally. These three parameters 

depend on the strain rate. Thus, for each strain rate of interest; three different experiments are 

needed at different values of stress triaxiality to obtain the three material parameters 

(Hooputra et al, 2004). 

 

The first experiment involves determining 

T  from Erichsen test (  ). The second 

experiment involves three-point bending of sheet coupons (with width/thickness > 4) under 

plane strain tension (
3

1 ) and the third experiment involves fracture at the notch root of 

waisted tensile coupons in uniaxial tension (
3
1 ). The last two experiments are to 

determine 

T  and  (Hooputra et al, 2004). 

3.5.3.3 Determination of parameters for shear damage and failure simulation  

Similarly, to estimate the equivalent plastic strain at the onset of shear damage pl

s , using the 

Hooputra et al. (2004)‟s simplified analytical expression given in equation 3.38, four 

parameters: sk , 

S , 

S  and f must be determined experimentally: These parameters 

depend on the material and strain rate. The first experiment involves using tensile specimens 

with a groove (rectangular cross-section with groove depth of half the sheet thickness) at 

045 to the loading direction )469.1( S . The second experiment involves using specially 

designed tensile specimens with a groove parallel to the loading direction (pure shear, 

)732.1( S . The third experiment involves carrying out Erichsen tests )6.1( S . The 

three experiments are used to determine 

S , 

S  and f (Simulia, 2007).  

3.5.3.4  Limitations of Hooputra et al. (2004)’s simplified analytical expressions             

From the scope and scale of the experiments required to be carried out in other to use 

Hooputra et al. (2004)‟s simplified analytical expressions to obtain the parameters required to 

carry out shear and ductile failure simulations, this alternative approach, does not present 

either an easy or a fast way to obtain these parameters. In addition, Hooputra et al. (2004)‟s 

simplified analytical expressions may give very high values of the equivalent plastic strain at 
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damage initiation when the stress triaxiality or the shear stress ratio is very small (Simulia, 

2007). „A cut-off value of the equivalent plastic strain can be provided in such cases‟ 

(Simulia, 2007). 

3.6 Limitations of existing fracture models                                                                                    

The available ductile damage and fracture criteria are only able to predict accurately the 

elastic and plastic responses of materials up to the beginning of fracture phase which involves 

micro-crack nucleation and growth (Kut, 2010). Modelling of the actual material fracture 

phase which involves macro-crack initiation (occurring by microvoids coalesce) and the 

fracture development (ductile tearing/ductile crack growth) is modelled by these damage and 

fracture models by element deletion or node separation. The accuracy of such fracture phase 

modelling is affected by the ductile fracture criterion on which the model is based, the 

modelling parameters, the method of modelling parameters determination and the accuracy of 

the material parameters themselves (Kut, 2010). Hence these damage and fracture models 

cannot describe in an adequate form the macrocrack formation that takes place at the last 

instants of the fracture process (Celentano and Chaboche, 2007). They are also yet to be able 

to exactly predict materials fracture trajectory (Kut, 2010).                                      

3.7 Contact simulations in Abaqus FEA                                                                                              

When two surfaces are in contact, a force normal to their contacting surfaces acts on the two 

bodies (causing normal stresses) and if friction exists between their surfaces, shear forces 

(causing frictional shear stresses) may be created that prevent sliding or tangential motion of 

the bodies (Simulia, 2007). Contact analysis basically involves detecting when two surfaces 

are in contact or separated, identifying the areas on the surfaces that are in contact, 

applying/removing contact constraints accordingly and calculating the contact pressures 

generated (Simulia, 2007).  

The contact formulation in Abaqus consists of the constraint enforcement method, the contact 

surface weighting, the tracking approach, and the sliding formulation (Simulia, 2007). The 

penalty contact method is used to enforce both normal contact constraint and tangential 

contact constraint. Its penalty friction formulation incorporates allowable “elastic slip”. The 

“elastic slip” refers to the small amount of relative motion between the surfaces that occurs 

when the surfaces should be sticking (Simulia, 2007). The penalty friction formulation works 

well for most problems, including most metal forming applications (Simulia, 2007). The 

general contact algorithm in Abaqus uses the balanced master-slave weighting which 
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minimises the penetration of the contacting bodies and, thus, gives accurate results (Simulia, 

2007).. 

Sliding formulation deals with the relative sliding of the two surfaces during the analysis. 

Small sliding formulation is used for analyses where the magnitude of sliding or relative 

motion of the two surfaces is less than a small proportion of the characteristic length of an 

element face. Finite sliding formulation is used where the magnitude of sliding may be finite. 

General contact interactions use only the finite-sliding formulation option. 

In this chapter, the review of literature on the use of FE as virtual testing, the verification and 

validation of FE results, and the FE models updating are presented. The background 

information on Abaqus finite element analysis code, the details of the mechanics of elastic-

plastic and damage and failure models in Abaqus, and the contact simulations in Abaqus are 

presented. In the next chapter, the review of the past work done on mechanical testing is 

presented. 
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Chapter 4  Literature review: mechanical testing and finite 

element simulations involving wires and other steel products 

The review of the past work done on defects and failures investigations in wires and the past 

work done on tensile testing simulations, indentation and its effects on the mechanical 

properties of steel products, and bending and reverse bending and their effects on the 

mechanical properties of wires and other steel products are presented in this chapter. Where 

the work done in any of these aforementioned areas is not on wires, the review of literatures 

on the work done in these areas on other steel products are presented to show the approaches 

used and the conclusions drawn by the researchers. The review of the past work done on 

defects and failure investigations in wires is presented in section 4.1 and the past work done 

on tensile testing simulations, and indentation and its effects on the mechanical properties of 

steel products are presented in sections 4.2 and 4.3 respectively. Section 4.4 presents the 

review on bending and reverse bending and their effects on the mechanical properties of 

wires and plates.  

4.1  Review of research on defects and failures in wires  

Recent research involving the determination of the fracture mechanism and the fracture 

strength of defective wires, such as the research conducted by Mahmoud, (2007) on bridge 

cable wires, and by Toribio and Valiente, (2004) and Toribio and Valiente, (2006) on 

concrete pre-stressing wires used the classical fracture mechanics approach for toughness 

analysis. These researchers used non-standardised fracture mechanics specimens as standard 

test specimens could not be manufactured from the wires owing to their sizes. Mahmoud, 

(2007) stated that the current state of practice used by engineers to estimate the safe load 

carrying capacity of cracked wire by multiplying the ultimate strength obtained from a 

tension test by the original nominal area of the wire may overestimate the strength of the wire 

due to crack tip plasticity. He pointed out that the fracture parameters of the wire material are 

not considered in the current state of practice used by engineers.  Mahmoud, (2007) and 

Toribio and Valiente, (2004) argued for fracture mechanics based analysis of cracked wires. 

 

Mahmoud, (2007) evaluated the fracture strength of the bridge cable wires using both LEFM 

and net section theory/plastic collapse fracture mechanics theorems using non-standardised 

fracture mechanics specimens because the cable wires are too small to meet the standard 

specimen dimensional requirements for a valid KIC measurement. The fracture strength 
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estimated using the net section theory was even higher than the designed/ in-situ dead load 

stress imposed on the broken wires of the suspension bridge. Consequently, Mahmoud, 

(2007) concluded that “the bridge cable wires fracture strength is not governed by the net 

section theory” and recommended that for the purpose of safety evaluation of main bridge 

cables, the toughness criterion provides a better understanding and evaluation tool than the 

net section theory.                                                

 

Toribio and Valiente, (2004) used un-notched 30 cm long cylindrical specimens shown in 

Figure 4.1 that were fatigue pre-cracked by axial fatigue loading to determine the directional 

toughness (toughness in both the longitudinal/wire axis and the transverse/perpendicular 

directions) of the wires. In Figure 4.1, the part-through crack was assumed to be semi-

elliptical in shape with a crack depth a  (minor axis of the ellipse), b is the other dimension of 

the crack (major axis of the ellipse) and D is the diameter of the bar. The pre-cracked 

specimens were subjected to monotonic tensile loading at a crosshead speed of 3 mm/min up 

to fracture to represent the fracture behaviour of the steels.  

 

                                 

Figure 4.1:   Cracked bars used in Toribio and Valiente, (2004) experimental programme. 

 

Toribio and Valiente, (2004) and Toribio and Valiente, (2006) evaluated the fracture 

toughness for 7mm, 7.5mm and 8.15 mm diameters wires designated as Steel4, Steel5 and 

Steel6; and  steel0, steel1, steel2 and steel3 respectively from the load-extension plot 

obtained from the tensile testing of the cracked bars. The numbers 0-6 represent the number 

of cold-drawing passes the wire underwent. Toribio and Valiente, (2004) observed that the 

heavily cold drawn pre-stressing wires exhibited fracture behaviour with crack deflections 
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whereas the slightly drawn wires did not. The crack deflections caused an approximately 90° 

change in crack propagation direction from the original single mode (mode I) propagation in 

the radial direction observed in slightly drawn wires shown in Figure 4.2(a); to a crack 

propagation in the wire axis/cold drawing/axial direction shown in Figure 4.3(b).  

Consequently, the directional fracture toughness in the radial and axial crack propagation 

directions were obtained for the heavily cold drawn pre-stressing wires.  

 

The crack deflection occurs at a load level FY (associated with the pop-in and the 90°-step) as 

shown in Figure 4.2(c) while the final fracture in the radial direction occurs at a load level 

Fmax as shown in Figure 4.2(d). FY is associated with a detectable pop-in at the initiation of 

non-linear behaviour; while Fmax is the maximum load level at the point of final fracture. For 

the slightly drawn steels, FY = Fmax as the load–displacement point is linear up to the fracture 

point).  The 90°- propagation step shown in Figures 4.2 (b) and (c) is quasi-parallel to the 

cold drawing/wire axis direction and the 90° change in crack propagation direction occurred 

due to the presence of local interlamellar spacing created by the cold drawing process. The 

interlamellar spacing has minimum local toughness which makes it the more preferred 

fracture path compared to the radial direction. 

     

(a)            (b)              (c)          (d)  

 f, fatigue pre-crack; I, mode I propagation; II, crack deflection; F, final fracture  

Figure 4.2:   Fracture modes of heavily and slightly drawn steels (Toribio and Valiente, 2006)  

 

For the heavily cold drawn steel, Toribio and Valiente, (2004) found that the radial 

directional toughness was higher than the axial directional toughness which shows strength 

anisotropy in the heavily cold drawn steels. The slightly drawn pre-stressing steel wires with 

0–3 cold-drawing passes exhibited isotropic or quasi-isotropic fracture behaviour. Steel0 

which did not undergo any cold drawing pass/step (a typical hot rolled bar), exhibiting a fully 

isotropic fracture behaviour. 
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Toribio and Valiente, (2006) used the Linear Elastic Fracture criterion to estimate the 

toughness of the pre-stressing wires. They estimated the fracture toughness of the slightly 

drawn wires which failed in a brittle manner using a local fracture criterion that is based on 

stress intensity factor; and estimated the radial and axial fracture toughness of the heavily 

drawn pre-stressing wires which failed in a more ductile manner using a global fracture 

criterion that is based on the energy release rate. The expressions used by Toribio and 

Valiente, 2006 to estimate the fracture toughness in terms of the stress intensity factors 

(calculated from the energy release rate which was obtained from the specimen compliance) 

under the global fracture criterion and the local fracture criterion are given in equations 4.1 

and 4.2 respectively. 

aDaYK appi )/(**

1                (4.1) 

abaDaYK appi )/,/(****

1               (4.2) 

app  is expressed as the tensile load applied on the cylinder divided by the cross section area 

of the cylinder (
2

4
4

D

P
Papp


  ). Y*(a/D) is a dimensionless function given in equation 4.3 

Y
*
(a/D) = [0.473-3.286(a/D)+14.797(a/D)

2
]

1/2
[(a/D)-(a/D)

2
]

1/4 
          (4.3) 

  

The double asterisk used in equation (4.2) indicates that two parameters, the relative crack 

depth a/D and the crack aspect ratio a/b are needed to obtain local fracture criterion KI 

compared with the relative crack depth a/D alone required for global fracture criterion. 

 

Krishnadev et al, (2008) conducted a research to identify the failure modes and failure 

mechanisms of a guy rope assembly by studying the microstructures, mechanical properties 

and fracture morphologies of carefully sectioned specimens. The research revealed that the 

guy assembly failed as a result of the failure of the tube housing the wire rope. The failure 

occurred due to local microstructural weakness attributed to decarburisation and the 

unusually large ferrite grain size of the tubing. The local microstructural weakness reduced 

the strength of the tubing locally because the yield strength is inversely proportional to the 

grain size. Also the reduction in carbon content due to the decarburisation further reduced the 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V2X-4H27CD8-1&_mathId=mml6&_user=7381125&_cdi=5714&_rdoc=1&_acct=C000014659&_version=1&_userid=7381125&md5=a8b6abefc9705e53e8fd2dc5564302cd
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strength. On the basis of the result of scanning electron microscope which indicated the 

presence of dimples, Krishnadev et al, (2008) concluded that failure occurred by micro void 

coalescence (MVC) due to tensile overload.  

 

Mapelli and Barella, (2009) carried out research to identify the failure mechanism and the 

origin of failure of a cable-way rope made up of many wires. The metallographic 

examination carried out revealed a sound and very fine pearlite microstructure and the micro-

hardness tests carried out revealed reliable homogeneous strength properties along the wire 

section. The visual examination of the rope showed that the wires fractured without traces of 

visible necking or significant plastic deformation of the wires. Mapelli and Barella, (2009) 

concluded that the cable-way rope failed by fatigue based on the fractographic analysis 

carried out with the Scanning Electron Microscope coupled with an  Energy Dispersion X-ray 

Spectrometer (SEM–EDS) which clearly indicated that failure occurred by crack initiation 

and fatigue cracks propagation. 

 

Smith and Easterline, (1993) carried out an investigation to explain the premature failure of 

the 1.3mm diameter single strand, drawn, high tensile, pearlitic high carbon wires used as 

cables for towing target behind aircraft. They conducted tensile tests on: wire specimens with 

scratches made with a sharp blade, wire specimens subjected to cyclic loading and 

shock/stress wave propagation, wire specimens straightened after being bent through 180 

degrees about decreasing radii of a curvature, and wire specimens that have been subjected to 

a compressive loading. The metallographic examination of the failed wires, the wires that 

have been flown several times without failure and the wires tensile tested revealed a ductile 

cup-and-cone failure. A Few failed wires exhibited a shear failure mode. The cup-and-cone 

failure mostly occurred at the locations of transverse scratches that were observed to be 

approximately 0.1 to 0.15mm deep and at the locations of localised heating effects (e.g. wires 

being struck by lightning). The shear failure mode was said to have occurred due to a 

combination of a tensile overload with a loss of ductility in the wire. Shear failure also 

occurred where kinking of the wire due to severe bending occurred. The metallographic 

examination of wires that have been flown several times without failure revealed local 

necking.  

Based on the breaking loads of the used and unused wires, Smith and Easterline, (1993) 

concluded that that was no evidence of faults in the manufacturing process of the wires and 

also there was no evidence of overall degradation of the strength of the wires. However, 
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while the breaking load of wires that have been flown several times without failure increased 

due to working hardening occurring during the winding and unwinding processes, and during 

cyclic loading of the wires, a lost of ductility was observed in the used wires 

4.1.1  Concluding remarks  

From the review of the past research carried out on wires, it is obvious that there is the need 

to use fracture mechanics based analysis and design for the design and assessment of 

defective wires. However, the test procedures in the present fracture toughness standards are 

not suitable for the determination of the fracture toughness of wires due to their small sizes. 

While the net section theory overestimates the fracture strength/capacity of the low ductility 

wires considered, the alternative option considered, the LEFM is only suitable for wires with 

low ductility. Neither the net section theory nor the LEFM has been proven to be suitable for 

high ductility wires such as the tensile armour wires.   

4.2  Previous works on tensile test simulations  

A tensile test is simulated by applying an axial displacement (a quasi-static displacement 

controlled loading) to one end of the model of the tensile test specimen with the other end 

fixed (Bernauer and Brocks, 2002; and Dunand and Mohr, 2009). The tensile test specimen 

can be modelled with a uniform cross section or with tapered profile as specified in ASTM 

Standards (1988) to trigger necking formation in the middle of the specimen (Bernauer and 

Brocks, 2002; Celentano and Chaboche, 2007). The value of the axial displacement to be 

imposed on the specimen model can be taken as the value corresponding to the average 

fracture elongation observed in tensile test experiments (Celentano and Chaboche, 2007). The 

force-displacement response predicted by the tensile test (numerical results) needs to 

correlate well with the experimental results as getting a correct force-displacement response 

is a necessary condition for a perfect tensile test simulation (Yingbin  and Tomasz , 2004). 

The mechanical properties of the material such as the yield strength, the ultimate strength, the 

fracture load and the displacement at which fracture occurs can be estimated from the 

predicted force-displacement curve. Other parameters such as the stress triaxiality, the 

equivalent plastic strain and the fracture strain can also be obtained from the tensile test 

simulation results (Dunand and Mohr, 2009). 

Cabezas and Celentano, (2004) carried out large strain isotropic elastic-plasticity simulations 

of the tensile testing of cylindrical and sheet tensile test specimens of SAE 1045 steel using 

the properties obtained from the laboratory tensile testing of cylindrical specimens. The 
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experimental and finite element simulation predicted engineering stress-strain curves 

obtained by Cabezas and Celentano, (2004) for cylindrical and sheet specimens are presented 

in Figures 4.3 (a) and (b) respectively. Cabezas and Celentano, (2004) attributed the 

discrepancies in the experimental and finite element simulations engineering stress-strain 

curve to the inaccuracy of the potential correlation at the beginning of the plastic region 

where no hardening is produced.  

 

      

(a) Cylindrical specimen    (b)  Sheet specimen 

Figure 4.3:   Experimental and FE tensile test results from SAE 1045 steel cylindrical and 

sheet specimens (Cabezas and Celentano, 2004).  

 

From the results of the full 3D and a simplified 2D simulation in Figure 4.4, Cabezas and 

Celentano, (2004) concluded that the 3D and plane stress/2D simulations practically 

predicted the same response up to the onset of necking. Beyond necking, the 2D simulation 

provides an unrealistic response. Cabezas and Celentano, (2004) attributed this unrealistic 

response to the fact that the outward unit normal to the specimen in the thickness (z- axis) 

rotates at high levels of elongation as the thickness reduces during necking and concluded 

that the typical plane stress relation
yy

zzxx e
ee

2
1 is only valid before the onset of 

necking. 
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Figure 4.4:   Engineering stress-strain curves predicted by 3D and 2D simulations (Cabezas 

and Celentano, 2004).  

 

Figure 4.5 shows the force-displacement curves obtained from the simulations of the tensile 

testing of smooth round tensile specimens carried out by 15 participants of the “European 

numerical round robin on the application of constitutive equations for ductile damage to 

simulate tearing of ferritic steel” presented by Bernauer and Brocks, (2002). The participants 

used various FE codes and various micromechanical fracture models including the  Gurson-

Tvergaard-Needlemen (GTN),  Rousselier, Rice and Tracy, and Hancock-Mackenzie-

Gunawardena models (Bernauer and Brocks, 2002). All the participants varied only the 

critical void volume fracture till the sudden load drop and fracture in the numerical curves 

correspond to the sudden load drop and fracture in the experimental curve.  

 

 

Figure 4.5:   Experimental and FE force displacement curves predicted by simulations with 

various damage and fracture models (Bernauer and Brocks, 2002). 
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The differences in the force-displacement curves beyond the ultimate load is attributed to the 

differences at which necking progressed in the various FE models for the same imposed 

displacement (Bernauer and Brocks, 2002). They also attributed the difference to the 

beginning of necking that is subject to arbitrary imperfections in the simulation as well as in 

the experiment. They substantiated this with the fact that even the experimental curves 

obtained from the five specimens they tested did not lie on a unique curve.  Bernauer and 

Brocks, (2002) also observed that the FE simulations carried out without imperfection 

introduced in the specimen to induce necking necked early and even necked earlier than in 

the experiment. From Figure 4.5, the force-displacement curve predicted by the simulation 

carried out using the Rousselier model by participant 05 (i.e. curve #05 R) is the closest to the 

experimental curve. This may be because the FE code (which is not explicitly stated  in the 

literature) used by participant 05 models necking better than the codes used by the other 

participants, as this is the only reason that can be established from the literature. 

 

The experimental and finite element tensile test stress-strain curves and force-displacement 

curves obtained by Celentano and Chaboche, (2007) and Kut, (2010) are presented in Figure 

4.6 and 4.7 respectively. Celentano and Chaboche, (2007) used a ductile damage evolution 

method that is based on the reduction of the Young‟s modulus, E , of a material due to the 

appearance of microcracks and cavities inside the material. They used load-unload tensile 

cyclic tests to track the deterioration or degradation of the young modulus and expressed the 

damage variable pd in terms of the Young‟s modulus of the undamaged material, 0E , and the 

effective elasticity Young‟s modulus of the degraded or damaged material, E , as shown in 

equation 4.4. They adopted the Young‟s modulus of the undamaged material as the young 

modulus of the first load path in the tensile test and the values of the effective elasticity 

Young‟s modulus, E  were taken as the degraded young modulus obtained from the 

subsequent load-unload tensile cyclic tests. Celentano and Chaboche, (2007) concluded that 

there is an overall good agreement between the numerical predictions by the simulation 

conducted with the damage characterisation and constitutive model they proposed and the 

average experimental values as shown in Figure 4.6 

0

1
E

E
d p                               (4.4) 
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Figure 4.6: Experimental and FE simulation engineering stress-strain curves for SAE 1020 

steel (Celentano and Chaboche, 2007). 

 

                                   

Figure 4.7: Experimental and finite element tensile force-displacement curves for S355JR 

sheet steel (Kut, 2010). 

4.2.1  Concluding remarks  

Nearly all the force-displacement curves from the laboratory and numerical tensile testing 

presented in the papers reviewed stopped at the fracture initiation point without the portions 

of the curves describing the fracture trajectories of the specimens/materials. This could be 

because the fracture initiation point is the last point from which the displacement after 

fracture (and invariably, the ductility), which is the last mechanical property of interest for 

design and quality assurance, is determined from the curves. It could also be because there is 

no good agreement between the experimental and FE predicted fracture trajectories as shown 

in the few ones with the fracture trajectories such as the curves shown in Figures 4.5 and 4.7, 

which could be because most of the FE codes are not yet able to describe in an adequate form 

the macrocrack formation that takes place at the last instants of the fracture process and 
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predict the fracture trajectory accurately as earlier stated by Celentano and Chaboche, (2007) 

and  Kut, (2010).                                      

4.3  Past research on effects of indentation on steel products. 

Most research reported in open literature such as those conducted by Duan et al, (1993); 

Duan et al, (1994); Ueda Y, (1991), and Abdel-Nasser et al, (2006) is on denting of steel 

structures in service by mechanical damage, such as denting by: impact from dropping heavy 

objects, an excavator prong, supply workboat collisions, and minor mishaps during offshore 

structure construction, loadout or installation. Past research reported in the open literature 

such as those conducted by Paik et al, (2003) and Paik, (2005) have investigated the effects of 

dents on the ultimate compressive strength and the ultimate shear strength of dented steel 

plates. Other research such as those conducted by Duan et al, (1994); Abdel-Nasser et al, 

(2006); Ueda Y,(1991); Chun and Nho, (2005); etc, have focused on the effect of dents on the 

ultimate (mostly compressive) strength of dented tubular members subjected to various loads 

and load combinations such as axial compressive loads, end bending moments, laterally 

distributed and concentrated loads. A research on the influence of denting on stiffness and 

ductile strength of ships and offshore steel structures was also carried out by Smith and Dow, 

(1981). In all this research, denting was found to have a detrimental effect on the strength of 

the offshore structural members.  

4.3.3 Localised indentation of elastic-plastic solids 

The knowledge of the contact between two non-conforming bodies is fundamental in 

mechanics of materials as it has a wide range of applications such as in instrumented 

spherical indentation tests (Mesarovic and Fleck, 1999). Most research reported in the open 

literature on miniature localised dents is on instrumented spherical indentation test.  The 

research has focused on carrying out experimental and finite element simulations of 

instrumented spherical indentation tests which involves a local indentation with a sphere 

indenter to obtain the mechanical properties of materials from their hardness/indentation 

response. The instrumented spherical indentation tests have been used to obtain/predict 

mechanical properties such as the yield stress, Young Modulus, plastic hardening parameters, 

tensile strength, other flow properties and even residual stresses of materials (Cao and Lu, 

2004; Kim et al, 2006; Kim et al, 2009;  Kim et al, 2010 etc). It has even been used to 

evaluate the entire stress-strain curve of metallic materials (Beghini et al, 2006). 

http://www.scopus.com/authid/detail.url?authorId=13410526900
http://www.scopus.com/authid/detail.url?authorId=13410526900
http://www.scopus.com/authid/detail.url?authorId=24497421200
http://www.scopus.com/authid/detail.url?authorId=24497421200


     

63 

Local indentation involves complex deformation processes and the indentation region 

exhibits multiaxial stress conditions with high stress gradients, and may exhibit large elastic-

plastic strains if plastic deformation is involved (Beghini et al, 2006). Figure 4.8 shows a 

sphere indenter of radius, R, under a load, L, making a typical local spherical (Brinell) 

indentation of contact radius, r , with a slope of ,  , at its edge producing a pile-up of height, 

ℓ, at indent depth h. The spherical (Brinell) indentation shown in Figure 4.8 begins with an 

elastic indentation regime with elastic response at small indent depths, h. 

  

The elastic response is given by the Hertz elastic solution for frictionless indentation. At 

small indentation depths, the region beneath the indenter is under a high hydrostatic pressure 

that is roughly semicircular or hemispherical in shape, which forces the surrounding material 

to have a radial elastic expansion to accommodate the material displaced by the penetrating 

indenter (Johnson, 1987).  

 

Figure 4.8:   Geometry of a spherical indentation (Mesarovic and Fleck, 1999; Johnson, 

1970).    

 

As the indent depth increases, a small portion of the material under the centre of the indenter 

yields but the strain remains small because the surrounding elastic material acts as a 

constraint. This marks the beginning of elastic-plastic indentation during which the 

deformation and the indentation pressure are influenced by both elastic and plastic strains 

(Johnson, 1987). Plastic deformations begin with a small plastic deformation/flow which is 

confined to a small region beneath the indenter (core). As the indentation depth further 

increases, a greater region of the material becomes plastic and the plasticity spreads. The 

material displaced by the penetrating indenter is now accommodated by the elastic-plastic 

expansion of the surrounding material. Further increase in indentation depth increases the 

pressure. At a sufficient pressure, the elastic-plastic indentation regime changes to a fully 
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plastic indentation regime resulting into a fully-plastic flow and  leading to the region of 

plasticity breaking to the surface and pilling up at the sides as in Figure 4.12 [(Johnson, 1987) 

and (Mesarovic and Fleck, 1999)].  

 

For fully plastic regime, a similarity solution for rigid-plastic indentation exists. A typical 

loading and unloading (indenter load-penetration depth) curves for a spherical indentation is 

shown in Figure 4.9. The loading curve generally follows the power relation given in 

equation 4.5. 

 

                                             

Figure 4.9: Typical loading and unloading curves during spherical-indentation (Nayebi et al, 

2001) 

nKF                   (4.5) 

Where F is the indenter force and  is the indenter displacement. K  and n depend on the 

mechanical material parameters and on the indenter geometry.  

For a spherical indenter, n is 1.5 and K is given by the expression in equation 4.6 (Johnson, 

1987).  
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Where R is the radius of the spherical indenter and E* is the effective modulus which is 

obtained from Hertz equation given in equation (4.7) obtained from Nayebi et al, (2002). 
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Where E and ν are  the Young‟s modulus and Poisson ratio, respectively of the dented 

material and EInd and νInd are the Young‟s modulus and Poisson ratio, respectively of the 

indenter. 

4.4  Past research on effects of reverse bending on metal products  

Metal products such as sheets and wires/wire rods are subjected to bending and reverse 

bending during their service life or while being processed to manufacture other engineering 

structures, such as during sheet metal forming processes, descaling of wire rods, winding 

wires round mandrel for transportation or installation purposes and during routine testing to 

detect defects, especially laminations in wires. There are a few literature on bending and 

reverse bending of wires as most literature deals with bending and reverse bending of sheet 

metal. Consequently, a review of literature on bending and reverse bending of sheet metals 

and wires are presented.  

4.4.1 Effects of bending and reverse bending on sheets metals 

During sheet metal forming processes, sheet metals are subjected to bending followed by 

unbending deformations (Brunet et al, 2001) and reverse bending (to reduce springback) 

(Chen and Ko, 2006). Figure 4.10 shows a bent plate of thickness, h, with a bend radius, R, 

(radius of curvature on the concave surface of the bend). For elastic bending (bending 

stress/strain below the elastic limit), the strain passes through zero half way through the 

thickness of the sheet as the location of the neutral axis is at the centre of the sheet thickness 

(Dieter, 1998). In plastic bending (stress/strain beyond the elastic limit), the neutral axis 

moves closer to the inside surface of the bend as the bending proceeds and the plastic strain is 

proportional to the distance from the neutral axis. Consequently, the fibers on the outer 

surface are strained more than the fibers on the inner surface are contracted and the  fiber at 

the mid-thickness (which is the average fiber) is stretched, leading to a decrease in thickness 

in the radial direction at the bend to preserve the constancy of volume (Dieter, 1998).  
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Figure 4.10:   Bent plate (Dieter, 1998). 

 

The smaller the radius of curvature, the higher the straining and the greater the reduction in 

the thickness of the sheet on bending. If the bend radius is smaller than a certain value called 

the minimum bend radius, the metal will crack on the outer tensile surface. The minimum 

bend radius is usually expressed in multiples of the sheets thickness (T) and it represents a 

forming limit. For high-strength sheets, the bend radius may be 5T or higher. 

 

Most literature on bending and reverse bending of steel sheets deals with experimental and 

finite element simulations of sheet metal forming. In the published literature, emphasis has 

been particularly placed on the importance of the material constitutive models in FE sheet 

metal forming. This is because the reliability of both the formability and springback 

predictions depends on the selected computational modelling approach (Firat, 2007; Gau and 

Kinzel 2001). Material constitutive models that have been used in FE forming predictions and 

springback analyses include; isotropic, kinematic, anisotropic or combinations of two or more 

of these hardening plasticity models called the combined/mixed hardening model. The Mroz 

multiple yield surfaces method, which is based on the concept that the yield surfaces are 

concentric at the origin of the stress space before the material undergoes plastic deformation 

and become nonconcentric after plastic deformation, has also been used by Gau and Kinzel, 

(2001) for FE forming and springback predictions.  

 

Elastic–plastic models with isotropic hardening are able to give a rather good prediction of 

the material behaviour (Carbonnie et al, 2008). However, the isotropic hardening plasticity 

model does not predict the through-thickness stress distribution properly because it does not 

take into consideration the Bauschinger effect and also overestimates the hardening 



     

67 

component (Firat, (2007); Zhao and Lee, (1999)). Isotropic hardening plasticity model has no 

mechanism to capture Bauchinger effect (Ken-ichiro, 2001). 

 

Experimental sheet metal deformation analysis has shown that the Bauschinger effect is 

important (Firat, 2007) and has a significant influence on the internal stress calculation when 

sheet metal undergoes complicated cyclic deformation (Gau and Kinzel, 2001). Using the 

kinematic hardening model is the most popular method to handle the reverse yielding 

problem and is the most popular way used to model the Bauschinger effect. The Mroz 

multiple yield surfaces method can be used to monitor the Bauschinger effect even when 

experimental reverse loading data are not available (Gau and Kinzel, 2001). 

 

While Brunet et al, (2001) reported that using a kinematic hardening law, even linear, that 

takes the Bauschinger effect into account instead of  isotropic hardening has been shown to 

improve the performance of the model in predicting cyclic and other transient material 

behaviours, Zhao and Lee, (1999) reported that “the Kinematic hardening rule underestimates 

the hardening component and exaggerates the Bauschinger effect”. An emerging new 

standard of models with mixed or combined hardening has proven to increase the numerical 

prediction reliability; particularly in the case of springback. Such new models describe the 

mechanical behaviour under monotonic, as well as reversed strain paths (Carbonnie et al, 

2008). 

  

The internal stress distributions within a sheet specimen obtained from FEA simulations of 

multiple-bending processes which involves bending (B); bending and reverse-bending (BR); 

bending, reverse-bending and bending (BRB); and bending, reverse-bending, bending and 

reverse-bending (BRBR) processes carried out with isotropic, kinematic and combined 

(isotropic and kinematic) hardenings as well as Mroz multiple yield surfaces are shown 

Figure 4.11 (a), (b), (c) and (d) respectively. From Figure 4.11, Gau and Kinzel, (2001) also 

concluded that isotropic hardening overestimates while kinematic hardening underestimates 

the material hardening result, during the multiple-bending processes. They also stated that, 

while the Mroz multiple yield surfaces gave a better prediction than the isotropic and 

kinematic hardening models, the best springback prediction results were obtained with the 

combined hardening model, which also gave the most accurate internal stress distribution. 

Zhao and Lee, (1999) also reported that combined isotropic and nonlinear kinematic 

hardening accurately predict the Bauschinger effect. From the results of the reverse bending 

http://www.scopus.com/authid/detail.url?authorId=7202071763
http://www.scopus.com/authid/detail.url?authorId=7601485603
http://www.scopus.com/authid/detail.url?authorId=7202071763
http://www.scopus.com/authid/detail.url?authorId=7601485603
http://www.scopus.com/authid/detail.url?authorId=7202071763
http://www.scopus.com/authid/detail.url?authorId=7601485603
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simulations carried out by the various authors and their conclusions, it can be inferred that the 

combined hardening model gives the best prediction of the response of metals subjected to 

strain reversal. 

 



Figure 4.11:   Internal stress distributions in sheet specimen predicted by various hardening 

models (Gau and Kinzel, 2001).                                                                                                                  

4.4.2 Effects of bending on hybrid composite core of ACCC wires  

Burks et al, (2009) numerically investigated the effect of mandrel size on the compressive 

stress state in the composite core of the ACCC conductor. They carried out the modelling by 

pinning the nodes on the end of the composite rod that are in contact with the mandrel at the 

beginning of the simulation as shown in Figure 4.12(a) and applying a concentrated load to 

the free end of the wire to bend and wrap the rod round the mandrel as shown in Figure 4.12 

(b). The non-linear finite element predicted stress distribution in the deformed composite core 

is presented in Figure 4.12(c). Burks et al, (2009) stated that the axial compressive stress state 

in the ACCC rods is controlled by the radius of the mandrel. They concluded that due to 

lower compressive strength of ACCC conductor composite core, ACCC rods will be 

mechanically damaged by excessive bending over small diameter mandrels used for their 

transportation and installation purposes. (Burks et al, 2009). 
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Figure 4.12:   Undeformed shape, deformed shapes and stress distribution in ACCC rod 

wound round mandrel (Burks et al, 2009). 

 

Burks et al, (2010) also investigated the effect of excessive bending induced in ACCC hybrid 

composite rods when wound round mandrels on their residual tensile strength and concluded 

that excessive bending of the ACCC core up to 90% of the average flexural strength had no 

effect on the residual tensile strength of the material as SEM work revealed that the majority 

of the micro-structural damage that occurred during the excessive bending of the cores are in 

the form of matrix damage without any significant fibre kinking. 

4.4.3  Effects of bending and reverse bending on steel wires and wire rods  

During mechanical descaling by reverse bending and during one of the routine tests to detect 

defects, especially laminations in wires, wires are subjected to a reverse bending test using 

the roller arrangement shown in Figure 4.13 [(Gillstrom and Jarl, 2006); (Bruehl, 1984)]. 

Repeated bending/reverse bending leads to permanent elongation in wire rod and heavy 

deformation during bending/reverse bending could lead to an undesirable work hardening of 

the steel and cause increased back tension on the rod line leading to stretching and necking-

down of the rod (Gillstrom and Jarl, 2006). 

 

 

Figure 4.13:   Reverse bending equipment with three steel rollers (Gillström and Jarl, 2006). 
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Figure 4.14 shows that elongation occurs at the top surface of a wire of diameter   bent over 

a roller with diameter, rD , while compression occurs at the interface between the rod and the 

roller leading to stretching of the outer fibre and the compression of the inner fiber (Gillstrom 

and Jarl, 2006). The maximum elongation occurs at the surface and provided there are no 

frictional forces between the scale breaker rollers and the rod, it can be calculated by the 

expression in equation 4.8 obtained from Gillstrom and Jarl, (2006). The location of the 

neutral line is at the centre of the cross-section when there is no back-pull or frictional forces 

between the scale breaker rollers and the rod. If the compression of the rod at the interface 

between the rod and the roller is smaller than the maximum elongation at the top of the rod, 

which can occur when there is back-pull or friction between the roller and the wire, the 

location moves to a plane under the centre of the cross-section and produces elongation of the 

rod (Gillstrom and Jarl, 2006). 

 

 

Figure 4.14:  Elongation and compression of a rod bent over a roller (Gillström and Jarl, 

2006) 

D
e






           (4.8) 

 

In this chapter, the review of the past work done on defects and failures in wire and plate, 

bending and reverse bending of wire and plate, tensile testing and indentation simulations are 

presented. The experimental methodology and techniques used in this research is presented in 

the next chapter.  
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Chapter 5: Experimental methodology and techniques 

 

In this chapter, the experimental methodology and techniques used for the laboratory and the 

numerical or virtual experiments as well as the description of the materials (tensile armour 

wires) used for this research are presented. This chapter also describes the experimental 

techniques used for the tensile testing, hardness testing, metallography, microscopy and finite 

element analyses. 

5.1 Experimental methodology 

As stated in section 2.1.1.2, tensile armour wires are subjected to tensile stresses/loading 

while providing the resistance to axial tension and hoop stress which flexible pipes are 

subjected. Their structural performance thus depends on their tensile properties. Although 

classical fracture mechanics tests can also be used to investigate the effects of defects 

particularly cracks in structures, the tensile armour wires have a maximum dimension of 

12mmx7mm and are not large enough to make standard fracture mechanics specimens. 

Consequently, to understand the effects of defects types and sizes on the structural 

performance of tensile armour wires, a series of tensile tests were carried out on the as-

received wires and on wires with engineered defects in the form of notches. 

 

Laboratory tensile strength testing of the as-received wires was conducted to characterise the 

wires, to obtain material data input for the finite element analysis and to serve as references 

against which the finite element analysis results could be validated. Tensile testing finite 

element simulations were carried out on the specimens of the as-received wires, following 

which the FE results were updated and validated with experimental results and the 

appropriate fracture mechanism for the tensile armour wires was identified. 

 

Scanning electron microscope images were taken to identify the defect types on the surface of 

the as-received wires. The scanning electron microscope images revealed depressions/dents, 

groove shaped scratches and scratches with pointed end defects. Larger dimensions of these 

defects were introduced onto the surface of the as-received wires in the forms of dents, 

channel shaped notch and V-notches. Laboratory tensile tests were carried out on the wire 

specimens with these engineered defects. Tensile testing finite element simulations were 

carried out on wire specimens with engineered V-notch, channel shaped notch and dent 
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defects. The FE results were validated with the experimental results obtained from tensile 

tests carried out on V-notched, channel shaped notched and dented wires respectively and 

good agreements were obtained between the experimental and FE predicted force-

displacement curves. 

 

Finite element tensile testing simulations were subsequently used as virtual experiments to 

determine the effects of these defects with miniature sizes below and above the 0.2mm 

minimum detection capability of the inline eddy current defects detector used in the flexible 

pipe manufacturing industry. Finite element simulations were also used to investigate the 

effects of defects shallower and deeper than the standard calibration defects used to calibrate 

the eddy current detector. The variation of the tensile properties of the wires with various 

defect types and sizes were plotted to obtain design curves which could serve as handy tools 

to be used by the flexible pipe manufacturers and engineers to estimate the tensile properties 

of defective tensile armour wires with dents, channel shaped scratches and V-shaped 

scratches. 

 

In the manufacturing process of flexible pipes, the as-received tensile armour wire is 

subjected to a reverse bending process using two offset rollers and straightened over a third 

roller as a lamination check and to ensure quality. To investigate the effects of reverse 

bending over 100mm diameter rollers on laminations and other surface defects, as well as the 

effects of reverse bending on the tensile properties of tensile armour wires generally, 

laboratory tensile testing of as-received wire specimens that have been subjected to bending, 

reverse bending and straightening were carried out. Finite element simulations of the as-

received tensile armour wires subjected to reverse bending, straightening and tensile testing 

were also carried out and the results validated with the experimental results. Also finite 

elements simulations of wire specimens with laminations, channel shaped notch and V notch 

defects subjected to bending, reverse bending, straightening and tensile testing were carried 

out to investigate the effects of reverse bending and straightening processes on laminations 

and other surface defects. 

5.2  Experimental techniques 

The experimental techniques used in carrying out the tensile testing, hardness testing, 

metallography, microscopy and finite elements analyses are presented in this section. 
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5.2.1 Tensile testing techniques 

The tensile tests were carried out with the Instron universal testing machine series IX 4505 

which is a precision electromechanical device with a load frame which applies tension, 

compression or reverse stresses to a test specimen and with Instron series IX software for 

data acquisition, control and analysis. The load frame uses a moving crosshead on which a 

strain gauge based Instron load cell is mounted to apply a load to the test specimen. The 

specimens were gripped with the wedge grip, because it is suitable for holding flat specimen 

as stated by ASTM E 8M: 2000.   

 

An Instron 2518 series load cell with a maximum static capacity of ±100 kN and an accuracy 

of at least 0.025% of the rated output or 0.25% of the indicated load was used for the load 

measurement as it has the sufficient capacity to test the tensile armour wires with an ultimate 

load of approximately 77kN. An Instron 2630 -112 clip on strain gauge extensometer with a 

50 mm gauge length and a +50% -5% maximum strain (+25/-2.5mm axial travel) was used 

for the displacement measurement as it is able to measure the displacement over the entire 

50mm gauge length of the wire specimens. The Instron 2630-112 belongs to the Instron 

2630-100 series which complies with the BS EN ISO 9513:2002 standard (Instron, 2004). BS 

EN ISO 9513:2002 is a British standard that covers the specifications for extensometers with 

relative error on the gauge length and bias error ranging from 0.2 to 2 and with resolution 

ranging from 0.1 to 1. 

5.2.2  Hardness testing techniques 

The through thickness hardness profile of the tensile armour wires was measured using a 

Buehler MMT-7 digital micro-hardness tester fitted with a Vickers diamond indenter. The 

measurements were performed using a test load of 200gf (1.96N).  A JVC colour video 

camera was used to photograph the indents at 400x magnification and the corresponding 

hardness values were calculated using the Buehler OmniMet HMS software, which is a 

calibrated image analysis package.   

5.2.3 Metallography techniques 

The metallography was carried out on polished and etched tensile armour wire specimens, 

mounted in resin, using the optical metallography method. The etching was done with Nital 

and the optical metallography was carried out using a µEye digital camera attached to a 
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Nikon Eclipse LV150 reflected light microscope and the images were captured using Buehler 

OmniMet. 

5.2.4  Microscopy techniques. 

The image of the surface of the as-received tensile armour wires was taken with an FEI XL 

30 environmental scanning electron microscope (ESEM) –FEG (field emission gun) operated 

at high voltage (HV 10kV), high vacuum, using a secondary electron detector (Det SE) 

because of the high vacuum, with a working distance (WD) of 22.6 and 1mm micro-marker. 

5.2.5 Finite element techniques 

The finite element simulations carried out in this research were conducted with Abaqus 

version 6.9.1 research edition which has Abaqus/Standard, which is ideal for static and low-

speed dynamic events; Abaqus/Explicit, which is well-suited to simulate brief transient 

dynamic events; and Abaqus/CAE which is used for modelling, visualisation and process 

automation. These Abaqus products are discussed in details in Chapter 3.   

5.3  Materials 

The tensile armour wire used for this research was provided by Wellstream International 

limited, a manufacturer and supplier of flexible pipe systems. The wires provided are 

12mmx5mm and 12mmx7mm in dimension which are used for the manufacturing of 

unbonded flexible pipes.  

 

Details of the experimental methodology and techniques used for the tensile testing, hardness 

testing, metallography, microscopy and finite elements analyses, as well as the description of 

the materials used in this research have been presented in this chapter. The next Chapter 

introduces the development of the test method used in this research. 
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Chapter 6  Laboratory and virtual/numerical experiments 

test methods development 
 

This section describes the development of the laboratory and virtual or numerical 

experiments test methods used for the tensile testing of the as-received wire and wires with 

engineered defects. It also contains the test methods used for the identification of the types 

and geometries of defects on the tensile armour wire surface. The development of the 

laboratory and numerical tensile test methods for the as-received wires are presented in 

sections 6.1 and 6.2 respectively. The global and local mesh convergence conducted to 

determine the appropriate finite element sizes are presented in sections 6.2.1 and 6.2.2 

respectively. The determination of the appropriate fracture model and modelling parameters 

calibration are presented in section 6.2.3, and the correction of the experimental crosshead 

displacement after the extensometer removal is presented in section 6.2.4.  

6.1  Laboratory tensile testing of as-received wires  

Due to the various shortcomings that are associated with using machined specimens stated in 

Section 2.2 that could lead to unsatisfactory and incorrect test results, and the requirements of 

BS EN 10218-1:1994 and EN10002-1:2001E that full size specimens be used for specimen 

thickness less than 4mm, full size specimens were used for the tensile testing conducted in 

this research. The INSTRON 4505 testing machine with a ±100 kN load cell discussed in 

sections 5.2.1 was used for the tensile testing. The Instron 2630 -112 clip on strain gauge 

extensometer also discussed in sections 5.2.1 was used for the displacement measurement 

since the testing machine cross head displacement does not represent the actual deformation 

of the specimen as stated in section 2.2.4. A gauge length of 50mm specified by ASTM E 8M 

:2000 was used  and the tensile tests were conducted at cross head speed of 5mm/minute 

which translates to a straining rate of 0.0017s
-1 

which is within the 0.00025 to 0.0025 s
-1

 limit 

specified in BS EN 10002-1:2001E and ASTM E 8M :2000. 

 

The results of the laboratory tensile tests carried out on three full size tensile armour wires 

specimens labeled as specimen1, 2 and 3 with cross sectional dimensions of 12mmx5mm are 

presented in the form of force-displacement curves as shown in Figure 6.1. The engineering 

stress-strain curves obtained from these curves are shown in Figure 6.2. 
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Figure 6.1:   Tensile force-displacement curves for tensile armour wire specimens with 

12mmx5mm cross-sectional dimensions and 50mm gauge length. 

 

Figure 6.2:   Engineering stress-strain curves for tensile armour wire specimens with 

12mmx5mm cross-sectional dimensions and 50mm gauge length. 

Since the extensometer was removed immediately after the maximum load point, the 

experimental displacement values beyond the ultimate load point are crosshead displacement 

values. Consequently, the experimental displacement values beyond the ultimate load point 

were corrected by subtracting the testing machine elastic deflection ( E ). Using the 

expression in equation 2.27, with a crosshead displacement of 0.083mm, specimen 

extensometer gauge length L0 of 50mm, specimen cross sectional area A0 of 60mm
2
, E of 

2x10
5
MPa and the force P  in the specimen of 26.87kN, the testing machines stiffness was 

calculated as follows: 

mm
kNEALPK c 9322))20000060/50(87052.26/083.0()//( 11

00    

 The machine deflection at the ultimate load point is calculated as follows: 

 

mm
K

P
E 24.0

88.322
01.76   
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The machine stiffness and deflection values calculated for the remaining force-displacement 

values using Excel spreadsheet is presented in columns 1 and 2 of Table A1 of appendix A. 

The corrected experimental curve for specimen 3 (with tensile properties closest to the 

average values) obtained by subtracting the machine deflection uncorrected experimental 

curve is shown in Figure 6.1.  

 

The average offset yield strengths for the three wire specimens were estimated to be 960MPa 

when rounded up to the nearest 5MPa as recommended by ASTM E 8M: 2000. The average 

tensile strength for the three wires specimens estimated at the ultimate load sustained by 

specimens 1, 2 and 3, which are 75.68kN, 76.01 kN and 76.30kN respectively is 1270MPa 

when rounded up to the nearest 10MPa as recommended by ASTM E 8M: 2000. The 

percentage elongation after fracture based on an average extension after fracture of 4.45mm 

as shown in Table 6.1 is of 9.0% when rounded up to the nearest 0.5%. The summary of the 

mechanical properties of the tensile armour wires with their averages and standard deviations 

are presented in Table 6.1. 

Table 6.1 Summary of the mechanical properties of the tensile armour wires 

 

Parameters 

Specimen number Reported value  

1 2 3  

0.2% Offset yield stress (MPa) 960.0  960.0 960.0 960 0± 0.00 

Ultimate load (kN) 75.68 76.30 76.01 75.97 ± 0.31 

Ultimate strength (MPa) 1261 1270 1270 1267 ± 5.51 

Fracture load (kN) 28.35 30.13 30.09 29.52 ±1.02 

Nominal fracture strength (MPa) 502 502 473 492.1  ± 16.95 

Extension after fracture (mm) 4.40 4.48 4.46 4.45 ± 0.03 

 

6.2  Development of virtual experiment test methods for tensile testing of as-received 

tensile armour wires 

There dimensional (3D) finite element tensile testing simulation was used as the virtual 

experiment. Figure 6.3(a) and (b) show the full size model of 50mm long, 12mmx5mm wire 

with the actual and simplified (rectangular) shapes meshed with 1mmx1mmx1mm C3D8R 

elements. One end of the specimen was fixed and the other end which was free to move in the 

longitudinal (x-axis or length) direction was subjected to a displacement longitudinal 

displacement.  
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(a) Actual wire shape  

 

 

(b) Simplified rectangular shape 

Figure 6.3: Meshed models of actual and simplified rectangular wire shapes. 

 

An elastic-plastic-damage simulation with the isotropic hardening model and the shear 

damage and fracture criterion was conducted. The true stress-true plastic strain data used as 

the material input for the elastic-plastic simulation is presented in Appendix A. The 

preliminary damage and fracture criterion modelling parameters used are fracture strain of 

0.2761, shear stress ratio of 10, strain rate of 0.0001 and a material parameter Ks of 0.3. 

These values are the parameters for a typical ductile material obtained from Simulia, 2007.  

 

The deformed shapes showing the Mises stress distribution in the wire model with 

rectangular shape during necking at an applied displacement of 1.86mm, during fracture 

initiation at an applied displacement of 3.75mm and after fracture at an applied displacement 

of 4.6mm are shown in Figures 6.4 (a) to (c) respectively. The fracture shape of the model 

with actual wire shape is shown in Figure 6.4(d). The Mises stress distribution in the wire 

specimens is indicated by colour coding with the maximum stress represented by red and the 

least stress represented by blue. The numerical values of the various colour coding are show 

in the contour plot. From Figure 6.4, fracture started at the middle of the necked region, 

which agrees with what is reported by Tvergaard and Needleman, (1984) and Kim and Chao, 

(2008) due to the rapid void growth at the center leading to the fracturing of the centre of the 

specimen.  

 

The force-displacement curves predicted by the simulations conducted with the actual and 

simplified wire shapes are shown in Figure 6.5(a). On the basis of the negligible difference in 
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the force-displacement behaviour predicted by the simulations carried out with the actual and 

simplified wire shapes; and for ease of modelling, especially when defects are introduced, 

subsequent simulations were carried out with the simplified (rectangular) shape.   

 

 

(a) During necking at an applied displacement of 1.86mm 

 

 

(b)   During fracture initiation at an applied displacement of 3.75mm 

 

 

(c)  Fracture shape of model with rectangular shape at an applied displacement of 4.6mm  

 

 

(d)  Fracture shape of model with actual wire shape at an applied displacement of 4.6mm 

Figure 6.4:  Deformed shapes of wire model meshed with 1mmx1mmx1mm elements 

showing Mises stress (MPa) distribution at various stages of tensile testing simulation. 
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(a ) Force-displacement curves from simulations with actual and simplified wire shapes 

 

 

(b) Force-displacement curves from simulations with successive global mesh refinement  

 

Figure 6.5:   Experimental and FE force-displacement curves from tensile testing of 50mm 

gauge length, 12mmx5mm wire specimens. 

6.2.1 Global mesh convergence  

Figure 6.5(b) shows the force-displacement curves predicted by the simulations with 

elements having 2mmx2mmx1mm (4mm
3
), 1mmx1mmx1mm (1mm

3
) and 

0.5mmx0.5mmx1mm (0.25mm
3
) dimensions and Figure 6.6 shows the fractured shapes 

obtained from the simulations with the three elements sizes. The 1mm element dimension is 

in the thickness (Z) direction. From Figure 6.5(b) and the negligible percentage difference 

(<1.5%) between the values of yield loads, ultimate loads, fracture loads, yield point 

displacements and ultimate load point displacements predicted by the simulations with the 

three mesh sizes as shown in Table 6.2, it shows that the mesh has converged except for the 
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larger fracture point displacement predicted by the simulation with 2mmx2mmx1mm 

elements. 

 

 

(a) Fractured shape predicted by simulation with 2mm square elements at 4.66mm 

displacement. 

 

(b)   Deformed shape predicted by simulation with 1mm square elements at 4.66mm 

displacement. 

 

(c)   Deformed shape predicted by simulation with 0.5mm square elements at 4.00mm 

displacement. 

 

Figure 6.6:  Mises stress (MPa) distribution and deformed shapes predicted by simulations 

with successive mesh refinement. 

 

The simulation with 2mmx2mmx1mm elements also predicted that at the prescribed 

experimental fracture point displacement, the specimen still had some load carrying capacity 

(15.3kN) which does not agree with the experimental observations/values. This result agrees 

with what is reported by Besson et al, (2003). The larger fracture point displacement and the 

remaining load carrying capacity predicted by the simulation conducted with 

2mmx2mmx1mm elements is due to the fact that the bigger the mesh size, the higher the 
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fracture energy. Thus, the model meshed with 2mmx2mmx1mm elements requires a higher 

level of stress/strain for it to fracture than that required by the models meshed with the finer 

mesh. Consequently, carrying out the simulations with 2mmx2mmx1mm elements would 

predict a larger fracture point displacement, thereby overestimating the ductility of the tensile 

armour wires. Also carrying out the simulations with 0.5mmx0.5mmx1mm elements was not 

necessary as the simulations with 1mm square elements predicted exactly the same force-

displacement curve as the simulation with 0.5mmx0.5mmx1mm elements. This shows that 

1mmx1mmx1mm elements are refined enough to produce sufficiently accurate results. 

 

Table 6.2: Variation in mechanical properties of tensile armour wires with mesh sizes  

Element 

size 

(mm) 

Yield load 

(kN) 

% 

difference 

Ultimate load  

(kN) 

%  

difference 

Fracture load 

(kN) 

% 

difference 

2x2x1 46.27 - 75.95 - 62.98 - 

1x1x1 46.27 0.011 75.97 0.024 63.25 0.428 

0.5x0.5x1 46.28 0.023 75.98 0.003 62.37 1.419 

 

Element 

size 

(mm) 

Yield point 

displacement 

(mm) 

 

Ultimate load  

point 

displacement 

(mm) 

 

Displacement  

at Fracture 

(mm) 

% 

difference 

2x2x1 0.23 - 1.87 - 3.97 - 

1x1x1 0.23 0.00 1.86 0.049 3.74 6.16 

0.5x0.5x1 0.23 0.00 1.86 0.00 3.73 0.13 

 

6.2.2 Local mesh refinement 

To capture the high stress concentration at the centre of the specimen during necking and 

capture the high stress triaxiality at the centre of the specimen during fracturing, the mesh at 

the middle of the specimen was refined with 0.25mm elements as shown in Figure 6.8. The 

force-displacement curves predicted by the simulations with and without local mesh 

refinements at the middle of the wire models are shown in Figure 6.7. The deformed shapes 

at an applied displacement of 0.12mm during necking at an applied displacement of 1.9mm 

during fracture initiation at an applied displacement of  3.73mm and after fracture  at an 

applied displacement of 3.96mm are shown in Figures 6.8(a), (b), (c) and (d) respectively.  
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Figure 6.7:   Force-displacement curves from simulations of tensile testing of 50mm gauge 

length, 12mmx5mm wire specimens with and without local mesh refinements at specimens‟ 

middle. 

 

From Figures 6.7, there are no significant differences in the values of the yield loads, the 

ultimate loads and the displacements at fracture predicted by the simulation with and without 

mesh refinement at the middle of the wire specimen models. However, the fracture 

trajectories (the portion of the curves after the fracture initiation points) predicted by the 

simulations with mesh refinement at the middle of the specimens agree better with the 

fracture trajectory of the experimental curve, as they have lower extensions than the fracture 

trajectories predicted by the simulations without mesh refinement at the middle of the 

specimens. Also the simulation with mesh refinement at the middle of the wire specimen 

predicted a cup and cone failure compared to the flat failure predicted by the simulation 

without mesh refinement at the middle of the specimen shown in Figure 6.4 and 6.6. Thus, 

refining the mesh at the centre of the model improves the FE predictions of the fracture shape 

and the fracture trajectory of the specimen but has negligible effects on the force-

displacement response of the model up to the fracture point. This result agrees with what is 

reported by Besson et al, (2003) and Tvergaard and Needleman, (1984) as sufficient mesh 

refinement at the middle of tensile specimen is required to capture the gradients of stress and 

strain fields adequately in order to predict a cup-cone fracture.  
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(a) Deformed shape at an applied displacement of 0.12mm. 

  
(b) During necking at an applied displacement of 1.9mm. 

 

 
(c) During fracture initiation at an applied displacement of 3.73mm. 

 

 

(d) Fractured specimen an applied displacement of 4.08mm. 

 

Figure 6.8: Mises stress (MPa) distribution and deformed shapes at various stages of tensile 

testing predicted by simulation with local mesh refinement at the middle of wire.  

6.2.3 Determination of appropriate fracture model and modelling parameters. 

To determine which of the failure models best predicts the failure of the wire specimen, FE 

simulations were conducted with both phenomenological (shear and ductile) failure models 

and a micro mechanical (porous metal plasticity) failure model. To obtain the appropriate 

failure modelling parameters, modelling parameters calibrations were conducted using the 
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phenomenological curve fitting method explained in section 3.3.2. The FE simulations were 

conducted with varying parameter combinations, a few of which are designated as parameter 

combinations A to D, E to H and I to L presented in Tables 6.3, 6.4 and 6.5 for the shear, 

ductile and porous metal plasticity models respectively. Parameter combinations A, E and I 

which were the starting parameter values for the shear, ductile and porous metal plasticity 

models are typical parameters for ductile materials.  

 

Table 6.3:  Fracture loads predicted by varying shear fracture parameter combinations  

 

Fracture 

strain 

Shear 

stress ratio 

Strain 

rate 

Parameter 

Ks 
Fracture 

load (kN) 

Parameters combination A 0.2761 10 0.0001 0.3 66.05 

Parameters combination B 0.345125 12.5 0.000125 0.3 63.25 

Parameters combination C 0.41415 15 0.00015 0.3 61.94 

Parameters combination D 0.5522 20 0.0002 0.3 58.08 

 

Table 6.4: Fracture loads predicted by varying ductile fracture parameter combinations  

 

Fracture 

strain  

Stress 

triaxaility 

Strain rate  

 

Fracture 

load (kN) 

Parameters combination E 33.238 3.3333 0.0001 64.56 

Parameters combination F 36.5618 3.66663 0.00011 62.62 

Parameters combination G 49.857 4.99995 0.00015 57.07 

Parameters combination H 66.476 6.6666 0.0002 55.97 

 

Table 6.5: Fracture loads with varying porous metal plasticity parameter combinations  

 

Void 

volume 

fraction 

 

Critical void 

volume fraction 

at failure   

 

Total void 

volume fraction 

at failure 

 

Fracture  

load 

(kN) 

Parameters combination I 0.01 0.01 0.15 59.23 

Parameters combination J 0.001 0.001 0.015 65.30 

Parameters combination K 0.002 0.002 0.03 64.18 

Parameters combination L 0.004 0.004 0.06 62.85 
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The parameters were numerically optimised until the FE simulations predicted force-

displacement curves with approximately the same fracture load/point as the experimental 

curve. For the porous metal plasticity model, the coefficients of the void volume fraction 1q  

and 2q  were fixed at 1.5 and 1.0 respectively, while the coefficient of pressure term 3q , the 

average nucleation strain N  and the standard deviation NS  were fixed at 2.25, 0.3 and 0.1 

respectively for all the simulations.  The force-displacement curves predicted by the 

simulations with varying shear, ductile and porous metal plasticity models parameter 

combinations presented in Tables 6.3, 6.4 and 6.5 are shown in Figures 6.9, 6.10 and 6.11 

respectively. 

 

 

Figure 6.9:   Force-displacement curves for 50mm gauge length, 12mmx5mm wire specimens 

predicted by the simulations with varying shear model parameter combinations. 

 

  

Figure 6.10:   Force-displacement curves for 50mm gauge length, 12mmx5mm wire 

specimens predicted by the simulations with varying ductile model parameter combinations. 
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Figure 6.11: Force-displacement curves for 50mm gauge length, 12mmx5mm wire specimens 

from the simulations with varying porous metal plasticity model parameter combinations. 

 

The fracture loads in Tables 6.5 were estimated as the load values at the point on the force-

displacement curves beyond which pop-in (sudden increase in displacement and sudden drop 

in force) occurs as typically shown in Figures 6.12 for the curves predicted by the simulations 

with shear damage parameter combinations A. The fracture points and the fracture shapes 

predicted by the simulations with the shear parameters combination B, ductile parameter 

combination F and porous metal plasticity parameters combination L which are the closest to 

the experimental fracture point are shown in Figures 6.13 and 6.14 respectively.  

 

The small percentage difference between the experimental fracture load and the fracture loads 

predicted by the simulations with shear failure parameters combination B, ductile failure 

parameters combination F and porous metal plasticity failure parameters combination L as 

shown in Table 6.6 indicates that the three fracture models can be used to predict the tensile 

properties/behaviors of the tensile armour wires accurately up to the fracture point. However, 

a comparison of the fracture shapes in Figure 6.14 predicted by the three damage and fracture 

criteria with the experimental fracture shape shows that only the shear failure criterion 

predicted a cup and cone fracture, which is the fracture shape displayed by the fractured 

laboratory specimen as shown in Figure 6.14(e).   
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Figure 6.12:   Fracture point for 50mm gauge length, 12mmx5mm wire specimen predicted 

by the simulation with shear damage parameters combination A. 

 

 

Figure 6.13: Force-displacement curves predicted by simulation with shear, ductile and 

porous metal plasticity failure models for 50mm gauge length, 12mmx5mm wire specimen. 

 

Table 6.6:   Experimental and FE with damage for ductile metals parameters combination and 

fracture points  

 

Fracture  

load (kN) 

Percentage 

difference 

Experimental  62.55 N/A 

Shear failure parameters combination B 62.95 0.64 

Ductile failure parameters combination F 62.62 0.12 

Porous metal plasticity failure parameters combination L 62.85 0.48 
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(a) Fracture shape predicted by simulation with shear failure model 

 

(b) Fracture shape predicted by simulation with ductile failure model 

 

(c) Fracture shape predicted by simulation with ductile failure model with a larger 

displacement value. 

 

(d) Fracture shape predicted by simulation with porous metal plasticity failure model  

 

                 

(e) Fractured specimen from experiment         (f) Micrograph of fractured surface of wire  

 

Figure 6.14:   Fractured specimen from FE simulations with shear, ductile and porous metal 

plasticity failure models.   
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Since the shape of the fractured specimen predicted by the simulation with the shear damage 

and fracture model agrees best with the fractured mode displayed by the fractured specimen 

obtained from the laboratory experiment, it can be concluded that the shear failure 

mechanism is the appropriate failure mechanism for the tensile armour wires and the shear 

failure parameter combination B represents an appropriate parameter combination to predict 

the shear failure of the tensile armour wires. Consequently, subsequent simulations were 

carried out with the shear failure parameters combination B.  

6.2.4  Percentage reduction in area from laboratory and numerical tensile testing 

The reduction in area of the tensile armour wire predicted by the simulation of the tensile 

testing of the as-received wire was calculated from the reductions in the thickness and width 

of the middle of the specimen after fracture. The reduction in thickness was calculated from 

the vertical displacements of the upper and the lower nodes, and the reduction in width was 

calculated from the lateral displacements of the face and the back nodes shown in figures 

6.15. The reductions in the thickness and the width of the fractured experimental specimen 

are shown in Figure 6.15(c). 

 

 

(a) Locations of nodes before tensile testing simulation  

 

 

(b) Locations of nodes before during necking                            

 

                                                   

(c) Reduction in thickness and width of fractured experimental specimen 

Figure 6.15:  Locations of nodes used to calculate reduction in area at various stages of 

tensile testing simulation.  
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The vertical displacement profiles of the upper and the lower nodes, and the lateral 

displacement profiles of the face and the back nodes throughout the tensile testing simulation 

are shown in Figure 6.16 (a) and (b) respectively. As shown in Figure 6.16 (a), the downward 

vertical displacement of the upper node and the upward vertical displacement of the lower 

node increased up to the fracture initiation point at an applied displacement of 2.68mm, and 

remained relatively constant throughout the fracturing stage of the simulation. Similarly, as 

shown in Figure 6.16 (b), the lateral displacements of the face node and the back node 

increased up to the fracture initiation point at an applied displacement of 2.68mm and 

remained relatively constant throughout the fracturing stage of the simulation.  

 

 

(a)  Vertical displacement profiles of the upper and the lower nodes 

 

 

(b)  Lateral displacement profiles of the face and the back nodes  

 

Figure 6.16: Vertical and lateral displacement profiles of nodes used for reduction in area 

calculation 

 

The addition of the vertical displacements of the upper and the lower nodes, and the addition 

of the lateral displacements of the face and the back nodes represent the reduction in the 

thickness and the reduction in the width of the wire specimen respectively. The reduced 

thickness of the wire after fracture is calculated in equation 6.1 as the difference between the 
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original thickness (5mm) and the reduction in thickness at step time 0.475s. Similarly, the 

reduced width of the wire after fracture is calculated in equation 6.2 as the difference between 

the original width (12mm) and the reduction in width at step time 0.475s. The reduced area 

after fracture and the percentage reduction in area are calculated in equations 6.3 and 6.4 

respectively. 

 

The reduced thickness after fracture = mm60.3)70.070.0(5        6.1 

The reduced width after fracture = mm08.10)96.096.0(12        6.2 

The reduced area after fracture = 233.3660.308.10 mmx      6.3 

The percentage reduction in area = %45.39100)60/)33.3660((  x   6.4 

 

The reduced width and reduced thickness of the fractured experimental specimen measured at 

point A are 9.96mm and 3.80mm respectively, leaving the fractured experimental specimen 

with a reduced area of 37.84mm
2
 at its middle, which gives a percentage reduction in area of 

36.92%.  This percentage reduction in area compares well with the percentage reduced in 

area of 39.45% obtained from the FE with 2.53% difference between the percentage reduced 

in area obtained from the experiment and FE. This difference could be due to experimental 

errors which arise from the measurement of the reduced thickness and width of the 

experimental specimen.  

 

At this stage, a suitable virtual testing/numerical experiment test method for testing the as-

received wires has been developed. This involves the 3D modelling of the tensile armour 

wire with the simplified rectangular shape meshed with a 1mmx1mmx1mm global element 

size  and refined at the centre with 0.25mmx0.25mmx1mm elements, and carrying out the 

simulation with an absolute yield stress and shear failure criterion. The investigations of the 

effects of channel shaped scratches, V-shaped scratches and dents are presented in Chapters 

7, 8 and 9 respectively. 
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Chapter 7 Effects of miniature channel shaped scratches on 

tensile properties of tensile armour wires  

 

Scratches are one of the surface defect types that BS EN ISO13628-2, (2006) recommends 

should be looked out for and which was identified from the SEM image of the surface of the 

as-received tensile armour wires. The scratches considered in this chapter have a flat bottom 

as shown in the SEM image in Figure 7.1(a) and are hereinafter referred to as grooves, 

channel shaped scratches or simply as channels. Grooves with dimensions around the 0.2mm 

detection capability of the online eddy current detection systems used by the flexible pipe 

manufacturing industry as well as grooves with depth up to 1mm were considered. The 

effects of these miniature channel shaped scratches on the tensile properties of tensile armour 

wires were investigated using both laboratory and numerical tensile testing experiments.  

 

The details of the laboratory tensile testing of the as-received wire specimens and the wire 

specimens with a large engineered groove/channel shaped cut are presented in section 7.1. 

The FEA simulations of the tensile testing of the as-received wire specimens and the wire 

specimens with an engineered channel shaped cut are presented in sections 7.2 and 7.3 

respectively. The mesh convergence to determine the appropriate finite element sizes is 

presented in section 7.4. The effects of the across-the-thickness and the across-the-width 

miniature groove on the tensile properties of the tensile armour wires are presented in section 

7.5, and the effects of the mid-thickness g, mid-width and an edge grooves are presented in 

section 7.6. The effects of the channel dimensions on the tensile properties of the tensile 

armour wire and the summary of the effects of the channel shaped scratches on the tensile 

properties of the tensile armour wire are presented in sections 7.7 and 7.8 respectively.  

 

   

(a) SEM image       (b) As-received wire specimen      (c) Wire specimen with a channel cut 

Figure 7.1:  As-received wire specimen and wire specimen with groove/channel cut 
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7.1: Laboratory tensile testing of as-received wire specimens and wire specimens with 

groove/channel shaped scratches 

Laboratory tensile tests were carried out on 50mm long as-received tensile armour wire 

specimens with 12mm Χ 7mm cross sectional dimensions shown in Figures 7.1 (b) and on 

tensile armour wire specimens from the same wire length as the as-received wire with 2mm 

wide by 2mm deep groove/channel cut shown in Figures 7.1(c). The 2mm wide by 2mm deep 

groove/channel cut was made on the wire specimens to ensure that the engineered defects is 

substantially larger than any inherent defects in the wire for its effect to be dominant on the 

tensile behaviour, as it was observed that failure occurred not at the locations of the 

engineered defects in some test specimens with engineered defects that were relatively larger 

than the inherent defects in the wire. The substantially larger engineered channel cut is also 

practically easier to make. Most importantly, the channel could have been of any other 

dimension, as the aim of cutting the channel out of the specimen was basically to have the 

laboratory data to validate the simulation of the tensile testing of wire with an engineered 

channel shaped defect.  

 

The force-displacement curves and the engineering stress-strain curves obtained from the 

laboratory tensile testing of the as-received wire specimens and the wire specimens with 

engineered 2mm wide by 2mm deep groove/channel are shown in Figure 7.2 (a) and (b) 

respectively.  The engineering stress for the wire with 2mm wide by 2mm deep channel was 

obtained by dividing the load in the wire by the cross-section area at the notch (70mm
2
). 

 

From Figure 7.2(a), the ultimate load and the fracture displacement of the as-received wire 

are 68.25kN and 8.81mm respectively while the ultimate load and the displacement at 

fracture of the wire with a 2mm x 2mm are 57.99kN and 2.51mm respectively. The 2mm 

wide by 2mm deep groove/channel has reduced the ultimate load and the fracture 

displacement of the wire by 15.03% and 71.54% respectively.  This result agrees with what is 

reported by Kossakowski, (2010). Conversely, the introduction of the 2mm wide by 2mm 

deep channel into the specimen has increased the offset yield and ultimate strengths of the 

wire from 520MPa to 600Mpa and 810MPa to 830MPa respectively. The introduction of the 

2mm wide by 2mm deep channel into the specimen also reduced the fracture strain of the 

wire from 17.60% to 4%. This result agrees with what is reported by Bayram et al, (1999) 

and the increase in the yield and ultimate strengths of the notched wire is due to notch 
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strengthening, which occurs due to the effect of constraint in the notched specimen as stated 

by Dieter, (1998) and Bayram et al, (1999). 

 

The reduction in the ultimate load of the wire can be attributed to the reduction in the gross 

cross sectional area of the specimen leading to a reduction in the load crying capacity of the 

wire.  Similarly, the reduction in the displacement at fracture or the fracture strain, and 

invariably, the ductility of the wire, can be attributed to the entire phenomenon associated 

with the presence of notch in a structure which promotes brittle fracture as discussed in 

section 2.4.2.  

 

In practical terms, the reduction in the yield load of the tensile armour wire would cause a 

reduction in the amount of axial load flexible flowlines and risers can carry before being 

plastically or permanently deformed (yielding). Also, the reduction in the maximum load of 

the tensile armour wire would lead to the reduction in the maximum load flexible pipe 

(flowlines and risers) can carry. These reductions could have a significant effect on the 

integrity of flexible flowlines and flexible risers, particularly flexible risers, where the weight 

of the riser and its content is carried by the tensile armour wires. Furthermore, for both 

flowlines and risers without pressure armour, where the tensile armour wire is meant to resist 

the internal pressure load, the reduction in the yield and ultimate loads of the wire would 

reduce the amount of the internal pressure flowlines and risers can carry. The reduction in the 

fracture strain or the displacement at fracture of the tensile armour wire would reduce the 

ductility of the wire and consequently reduce the extent to which flexible flowlines and risers 

can be stretched. The reduction in the ductility of the tensile armour wire can cause flexible 

riser and flowlines to fail during installation, when they experience the highest straining as 

stated by Bai and Bai, (2005).  
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(a) Force-displacement curves  

 

 

(b) Engineering stress-strain curves 

 

Figure 7.2:  Force-displacement and engineering stress-strain curves from laboratory tensile 

testing of 50mm gauge length, 12mmx7mm as-received wire and wire specimen with groove. 

7.2 FEA tensile testing simulation of as-received wire specimen  

The FE tensile testing simulation was carried out by modelling a 50mm long, 12mm Χ 7mm 

cross-sectional area full size wire specimen meshed with 1mm C3D8R (8-node hexahedral 

linear brick reduced integration elements with hourglass control) elements as shown in Figure 

7.3.  The mesh at the middle of the specimen was refined with 0.25mm elements. The left 

hand end of the specimen was fixed while the right hand end, which is free to move only in 

the direction of the tensile load, was subjected to a longitudinal displacement as shown in 

Figure 7.3. 
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Figure 7.3:   Meshed full size model of as-received wire with ends boundary conditions. 

 

The material input data used for the simulation consists of true yield stress and true plastic 

strain calculated for all the experimental data points from the nominal absolute yield stress of 

358.4MPa at 30.11kN force to the nominal ultimate tensile strength of 809.7MPa at 68.02kN. 

This was combined with fracture strain, shear stress ratio and strain rate of 0.3589, 13 and 

0.00013 respectively being the appropriate shear damage and failure parameters obtained by 

numerical optimisation. The FEA predicted stress distributions and deformed shapes during 

necking at an applied displacement of 3.68mm, fracture initiation at an applied displacement 

of 5.93mm and the completely fractured specimen at an applied displacement of 6.75mm are 

shown in Figures 7.4 (a), (b) and (c) respectively.The FEA predicted a cup and cone failure 

which is the same as the failure mode exhibited by the wire tested in the laboratory as shown 

in Figure 7.4(d). 

 

The force-displacement curves obtained from experimental and FEA tensile testing of the as-

recieved wire specimens are shown in Figure 7.5. Both curves agree well up to the ultimate 

load with 0.053% difference between experimental and FE predicted ultimate loads as shown 

in Table 7.1. Beyound the ultimate load point, which is the point at which the extensometer 

was removed, the force values also agrees well with 2.552% difference between experimental 

and FE predicted fracture loads as shown in Table 7.1. The large percentage difference 

(31.846%) between the experimental and FE predicted fracture displacement was because the 

experimental displacement values after the ultimate load point are crosshead displacement 

values.  The experimental curve with corrected displacement gives a better agreements with 

the FE curve as shown in Figure 7.5. Technically, the FE curve displacement values are the 

actual displacements within the 50mm gauge length wire specimen alone and the FE curve 

therefore represents the actual tensile armour wire tensile behaviour.  
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 (a) During necking at an applied displacement of 3.68mm (67.97kN load). 

 

 

(b) During fracture initition at an applied displacement of 5.93mm (58.56kN load). 

 

 

(c) Completely farctured wire specimen at an applied displacement of 6.75mm (0kN load) 

 

(d) Fractured wire specimen from laboratory tensile testing  

 

Figure 7.4:   Mises stress (MPa) distribution and deformed shapes of wire specimen at 

various stages of  tensile testing simulation. 
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Figure 7.5:   Force-displacement curves from laboratory and FEA tensile testing of 

12mmx7mm as-received wire specimens with 50mm gauge length. 

 

Table 7.1:   Experimental and FE predicted mechanical parameters for as-received wire 

specimen 

 

Experiment  FE simulation  

Percentage 

difference 

Ultimate load (kN) 68.01 67.97 0.053 

Fracture load (kN) 57.11 58.56 2.552 

Displacement at fracture point (mm) 8.71 5.933 31.85 

Percentage reduction in area  40.85 41.25 0.9% 

 

7.3     FEA tensile testing simulation of wire specimen with a channel shaped scratch 

The full size model of a tensile armour wire tensile test specimen with a groove shown in 

Figure 7.6 was obtained by cutting a 2mm wide and 2mm deep channel out of the as-received 

wires model shown in Figure 7.3. The model with the same end boundary conditions as the 

model of the as-received wire in Figure 7.3 was also meshed with 1mm C3D8R elements as 

shown in Figure 7.6.   
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Figure 7.6:   Meshed full size model of wire with channel cut showing ends boundary 

conditions. 

 

The deformed shapes and the stress distributions at an applied displacement of 0.15mm and 

the predicted fracture shape of the wire specimen with 2mm wide by 2mm deep groove at an 

applied displacement of 3.25mm are shown in Figures 7.7 (a)  and  (b) respectively. From 

Figure 7.7 (a), the stress around the channel is higher than the stresses at all other sections of 

the specimen. This is due to the stress concentration effect of the groove.  

 

 

(a) Deformed shape at an applied displacement of 0.15mm  

 

  

(b) Completely fractured specimen at an applied displacement of 3.25mm  

Figure 7.7:   Mises stress (MPa) distribution and deformed shape predicted by tensile testing 

simulations of wire specimen with groove. 
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The accuracy of the FE simulation was validated by comparing the force-displacement curve 

predicted by the FE simulation with the force-displacement curve obtained from the 

laboratory tensile testing of wire specimens with a 2mm x 2mm groove/channel cut as shown 

in Figure 7.8. The FEA predicted curve agrees well with the experimental curve up to the 

point at which the extensometer was removed. The FEA predicted maximum load and 

fracture load are very close to the experimental value with negligible percentage difference as 

shown in Table 7.2. The large percentage difference between the values of the FEA predicted 

and the laboratory experimental displacements at fracture in Table 7.2 is due to the fact that 

the experimental displacement values beyond the ultimate load point are crosshead 

displacement values. Figure 7.8 shows the difference between the experimental curve with 

the crosshead displacement and the experimental curve with the corrected displacement. The 

experimental curve with the corrected displacement agress more with the Fe curve as shown 

in Figure 7.8. Consequently, the experimental curve with the corrected displacement was 

used for the validation of the results of the subsequent simulations.  

 

 

Figure 7.8: Experimental and FE predicted curves for 12mmx7mm wire specimens with a 

channel shaped cut and 50mm gauge length. 

 

Table 7.2:   Experimental and FE predicted mechanical parameters for wire specimen with a 

groove 

 

Experiment  FE simulation  

Percentage 

difference 

Ultimate load (kN) 57.99 57.75 0.416 

Fracture load (kN) 56.65 55.71 1.659 

Displacement at fracture point (mm) 2.51 1.80 28.23 
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7.4 Mesh convergence  

To capture the rapid stress gradient in the area around the channel with amplified stress 

identified in Figure 7.7 (a) accurately and to obtain the optimum mesh density for the FE 

simulation, the mesh around the channel was successively refined. The deformed shapes 

showing the elastic Mises stress and the zero equivalent plastic strain distributions at an 

applied displacement of 0.02mm for the simulations conducted with 1mm, 0.5mm and 

0.25mm elements around the channel are shown in Figures 7.9(a) to (c) and 7.10(a) to (c) 

respectively.  The deformed shapes at the beginning of the plastic deformation showing the 

Mises stress and the equivalent plastic strain distributions at an applied displacement of 

0.05mm for the simulations conducted with 1mm, 0.5mm and 0.25mm elements around the 

channel are shown in Figures 7.11(a) to (c) and 7.12(a) to (c).  The equivalent plastic strain in 

the wire specimens in Figure 7.10 is zero because the maximum Mises stress in the 

specimens at an applied displacement of 0.02mm as shown in Figure 7.9 is less than the 

359.2MPa absolute yield strength of the wire. This implies that the stress in the wire 

specimen at an applied displacement of 0.02mm merely stretched the atomic and molecular 

bonds of the wire and was not sufficient to break the metallic bond in order for slip to occur 

as explained by Askeland and Phule, (2006) and Dieter, (1998). Consequently, when the 

stress/applied load is removed at this stage of the tensile testing simulation, the wire will 

return to its original shape as no plastic deformation has occurred.  

 

As shown in Figure 7.12, the plastic deformation of the wire specimen begins at an applied 

displacement of 0.05mm because the Mises stress in the wire specimens as shown in 

Figure7.11 is greater than the 359.2MPa absolute yield stress of the wire. This implies that 

the stress in the wire specimen at an applied displacement of 0.05mm has sufficiently broken 

the atomic/molecular bonds between the atoms/molecules of the wire and slip on the active 

slip plane has occurred leading to the plastic deformation of the wire as explained by 

Askeland and Phule, (2006) and Dieter, (1998). 

 

The fracture shapes of the wire showing the Mises stress and the equivalent plastic strain 

distributions at the applied displacements shown in the Figures for the simulations conducted 

with 1mm, 0.5mm and 0.25mm elements around the channel are shown in Figures 7.13 and 

7.14 respectively. This implies that at the applied displacements shown in Figures 7.4, the 

strain in the wire specimen is greater than the 4% fracture strain obtained for the notched wire 
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experimentally, leading to void nucleation, growth and ductile crack propagation as explained 

by Askeland and Phule, (2006) and Dieter, (1998). Further refinement of the elements around 

the channel with 0.1mm elements was carried out with the full size model. However, the 

result could not be opened due to the limited computer resources (i.e. limited computer 

processor capacity). 

 

To reduce the output file capacity for the simulation with 0.1mm elements around the 

channel, the simulation was carried out on a model with a half of the wire thickness (3.5mm) 

using the symmetry boundary condition in ABAQUS. The symmetry boundary condition 

allows half the specimen size to be modelled with the force values obtained multiplied by two 

to obtain the force values for the full specimen. The deformed shapes of the half wire models 

showing the Mises stress and the equivalent plastic strain distributions are shown in Figures 

7.9(d) to 7.12(d) for the simulations carried out with 0.1mm elements around the channel. 

 

Further refinement of the elements around the channel with 0.05mm elements was carried out 

with the half size model but the result could not also be opened due to the limited computer 

resources. Consequently, the simulations with the limiting 0.1mm elements around the 

channel were used to predict the tensile response of the tensile armour wire specimens with 

channel shaped cut. The force-displacement curves obtained from the FE 3D simulations with 

successive mesh refinement around the groove are shown in Figure 7.15. The variation in the 

mechanical properties and the variation in the amplified elastic Misers stress at the bottom 

corner of the channel predicted by the FE simulations with successive mesh refinement 

around the channel are presented in Table 7.3 and 7.4 respectively.  
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(a)   Full wire size model having 1mm elements around the channel tip 

 

 

(b)  Full wire size model having 0.5mm elements around the channel tip 

 

 

(c)   Full wire size model having 0.25mm elements around the channel tip 

 

 

(d)   Half wire size model having 1mm elements around the channel tip 

 

Figure 7.9:  Deformed shapes showing the Mises stress (MPa) at an applied displacement of 

0.02mm predicted by simulations with successive mesh refinement around channel.  
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(a)   Full wire size model having 1mm elements around the channel tip 

 

 

(b)  Full wire size model having 0.5mm elements around the channel tip 

 

 

(c)   Full wire size model having 0.25mm elements around the channel tip 

 

(d)   Half wire size model having 1mm elements around the channel tip 

 

Figure 7.10:  Deformed shapes showing zero equivalent plastic strain (%) at an applied 

displacement of 0.02mm predicted by simulations with successive mesh refinement around 

the channel. 
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(a)   Full wire size model having 1mm elements around the channel tip 

 

 

(b)  Full wire size model having 0.5mm elements around the channel tip 

 

 

(c)   Full wire size model having 0.25mm elements around the channel tip 

 

 

(d)   Half wire size model having 1mm elements around the channel tip 

 

Figure 7.11:  Deformed shapes showing the Mises stress (MPa) at an applied displacement of 

0.05mm predicted by simulations with successive mesh refinement around channel.  
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(a)   Full wire size model having 1mm elements around the channel tip 

 

 

(b)  Full wire size model having 0.5mm elements around the channel tip 

 

 

(c)   Full wire size model having 0.25mm elements around the channel tip 

 

 

(d)   Half wire size model having 1mm elements around the channel tip 

 

Figure 7.12:  Deformed shapes showing equivalent plastic strain (%) at an applied 

displacement of 0.05mm predicted by simulations with successive mesh refinement around 

the channel.  
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(a)   Full wire size model with 1mm elements around the channel tip at an applied 

displacement of 1.80mm  

 

 

(b) Full wire size model with 0.5mm elements around the channel tip at an applied 

displacement of 1.65mm  

 

 

(c)   Full wire size model with 0.25mm elements around the channel tip at an applied 

displacement of 1.64mm 

 

 

(d)   Half wire size model with 0.1mm elements around the channel tip at an applied 

displacement of 1.64mm 

Figure 7.13:   Fracture shapes showing Mises stress (MPa) distributions and the fracture 

shapes from simulations with successive mesh refinement around the channel. 
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(a)   Simulation with full wire size model having 1mm elements around the channel tip 

 

 

(b)   Simulation with full wire size model having 0.5mm elements around the channel tip 

 

(c)   Simulation with full wire size model having 0.25mm elements around the channel tip 

 

 

(d)   Simulation with half wire size model having 0.1mm elements around the channel tip 

 

 

(e) Fractured specimen with 2mmx2mm channel cut from laboratory tensile testing  

 

Figure 7.14:   Fracture shapes showing the equivalent plastic strain distributions and the 

fracture shapes from simulations with successive mesh refinement around the channel. 
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Figure 7.15:   Force-displacement curves variation with successive mesh refinement around 

2mmx2mm channel cut in 12mmx7mm wire with 50mm gauge length.  

 

Table 7.3: Variation of mechanical properties predicted by FE simulations with successive 

mesh refinement  

Ultimate load point parameters  

Size of elements around 

the groove (mm) 

Ultimate 

load (kN)  

Percentage 

difference 

 

Ultimate load point 

displacement (mm) 

% 

difference 

Experimental 57.99 - 

 

2.25 - 

1mm  57.75 - 

 

1.50 - 

0.5mm  57.56 0.32 

 

1.50 0 

0.25mm  57.20 0.63 

 

1.49 0.06 

0.1mm  57.29 0.15 

 

1.49 0 

 

  

 

 

 Fracture point parameters  

 

Fracture 

load (kN) 

Percentage 

difference 

 

Displacement  at 

fracture  (mm) 

Percentage 

difference 

Experimental 56.64 - 

 

2.51 - 

1mm  55.71 - 

 

1.80 - 

0.5mm  56.68 1.74 

 

1.65 8.25 

0.25mm  56.67 0.02 

 

1.64 0.61 

0.1mm  56.80 0.23 

 

1.64 0.00 

 



     

111 

Table 7.4: Variation of elastic Mises stress predicted by FE simulations with successive mesh 

refinement 

Element 

size (mm) 

Amplified 

elastic Mises  

stress (N/mm
2
) 

Nominal 

elastic Mises 

stress (N/mm
2
) 

Elastic stress 

concentration 

factor 

% difference in 

stress 

concentration 

1 
103.9 59.23 1.75 - 

0.5 
104.2 59.69 1.75 0 

0.25 
105.2 59.91 1.76 0.6 

0.1 
105.8 59.97 1.76 0 

 

From the negligible percentage difference (maximum of 0.25%) between the values of force, 

displacement, amplified and nominal elastic Mises, and elastic stress concentration factors 

predicted by the simulations with 0.25mm and 0.1mm elements around the channel shown in 

Table 7.3, it can be concluded that the mesh has converged and carrying out the simulation 

with 0.1mm elements around the channel produces accurate results. However, there is a 

disparity between the fracture trajectories (the portion of the curves from the fracture 

initiation point to the end of the curves) predicted by the curves predicted by the FE and that 

obtained from the laboratory experiments.  

 

The experiment curve shows a rapid loss of the force carrying ability of the specimen with a 

little extension, while the FE predicted a gradual loss of the force carrying ability with large 

extensions. As shown in Figure 7.15, the disparity between the fracture trajectories reduces 

with the increase in the mesh density around the groove, with the fracture trajectory predicted 

by the simulation with 0.1mm element around the groove agreeing most with the 

experimental fracture trajectory. This result agrees with what is reported by Besson et al, 

(2003) and is due to the fact that the smaller the mesh size, the smaller the fracture energy 

required and the lower the displacement to fracture after fracture initiation. From this trend, 

carrying out simulations with finer element sizes would make the fracture trajectory predicted 

by the FE agree more with the experimental fracture trajectory. However as earlier stated, 

carrying out simulations with finer element sizes would have no significant effects on the 

mechanical properties of the wire that are required for designs and quality assurance. Also the 

ability of the simulation carried out with 0.1mm elements to predict the same fracture shape 
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displayed by the fracture specimen from laboratory tensile test shown in Figure 7.14(e) shows 

that the simulation with 0.1mm elements gives sufficiently accurate results.  

7.5 Effects of across-the-thickness and across-the-width miniature groove on tensile 

properties of tensile armour wires 

The effects of across-the-thickness and across-the-width miniature grooves on tensile 

properties of tensile armour wires were investigated by carrying out tensile testing 

simulations on models of wire specimens with 0.2mm wide and 0.2mm deep groove/channel 

across their entire thickness and across their entire width as shown in Figures 7.16 (a) and (b) 

respectively.  

Miniature across-the-thickness channel 

 

(a)   Miniature across-the-thickness groove. 

                                       Miniature across-the-width channel 

 

(b)   Miniature across-the-width groove 

Figure 7.16:   Miniature channel across full wire thickness and full wire width  

 

To minimise the computation time and reduce the output file capacity, the simulation was 

carried out using a model with half the thickness of the wire (3.5mm). The deformed shapes 

and Mises stress distributions of the whole specimen and of the regions around the channel 

across the thickness at the beginning of the tensile testing simulation at an applied 

displacement of 0.38mm, during necking at an applied displacement of 3.59mm, during 
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fracture initiation at an applied displacement of 5.78mm and after fracturing at an applied 

displacement of 6.95mm are shown in Figures 7.17 (a), to (d) and Figures 7.18 (a), to (d) 

respectively.   

 

 

(a) Beginning of simulation at an applied displacement of 0.38mm 

 

(b)   During necking at an applied displacement of 3.59mm 

 

(c)   During fracture initiation at an applied displacement of 5.78mm   

 

(d)   Fractured specimen after simulation at an applied displacement of 6.95mm 

 

Figure 7.17:  Deformed shapes of whole model of wire specimen with across-the-thickness 

groove showing Mises stress (MPa) at various stages of the tensile testing simulation. 
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(a) At an applied displacement of 0.38mm     (b) At an applied displacement 3.59mm  

 

                               

(c) At an applied displacement of 5.78mm      (d) At an applied displacement of 6.95mm  

 

Figure 7.18:  Deformed shapes around across-the-thickness channel during tensile testing 

simulation. 

 

Similarly, the deformed shapes and Mises stress distributions of the whole specimen and of 

the regions around the across-the-width channel at the beginning of the tensile testing 

simulation at an applied displacement of 0.38mm, during necking at an applied displacement 

of 3.40mm, during fracture initiation an applied displacement of 5.28mm and after fracturing 

at an applied displacement of 5.83mm are shown in Figures 7.19 (a), to (d) and Figures 7.20 

(a), to (d) respectively.  
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(a)   Beginning of simulation at an applied displacement of 0.38mm 

 

(b)   During necking at an applied displacement of 3.40mm 

 

(c)   During fracture initiation at an applied displacement of 5.28mm   

 

(d)   Fractured specimen after simulation at an applied displacement of 5.83mm  

 

Figure 7.19:  Deformed shapes of whole model of wire specimen with across-the-width 

groove showing Mises stress (MPa) at various stages of the tensile testing simulation. 
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(a) At an applied displacement of 0.38mm         (b) At an applied displacement of 3.40mm  

 

             

(c) At an applied displacement of 5.28mm         (d) At an applied displacement of 5.83mm  

 

Figure 7.20:  Deformed shapes around across-the-width groove during tensile testing 

simulation. 

 

Figures 7.21 and 7.22 show the variations in the tensile responses obtained from the tensile 

testing simulations of the wire specimen with across-the-thickness groove and the wire 

specimen with across-the-width groove with varying relative depths of the across-the-

thickness and across-the-width grooves. 

7.5.1 Analysis of results 

As shown in Figures 7.21(a) and 7.22 (a), the ultimate loads and the fracture displacements 

reduce with increase in relative groove depth for both the specimen with the across-the-

thickness groove and the specimen with the across-the-width groove. From Figures 7.21(b) 

and 7.22 (b), the yield and the tensile strengths of both the wire specimens with the across-

the-thickness groove and the wire specimens with the across-the-width groove increase with 

an increase in the relative notch depth, while the fracture strain reduces with increase in the 

relative notch depth. This result agrees with what is reported by Bayram et al, (1999) and is 

due to the notch strengthening effect of the groove as described in section 7.1.  While the 
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yield and the tensile strengths of the wire with grooves increase with increase in groove 

depth, in practical terms, the load carrying capacity of the wire reduces with increase in 

groove depth. Consequently, the force displacement response of the wire with grooves is used 

to assess the detrimental effect of the grooves on the tensile properties of the tensile armour 

wire.  

 

 

(a) Force-displacement curves  

 

 

(b) Stress-strain curves  

 

Figure 7.21:   Force-displacement and stress-strain variations with across-the-thickness 

relative groove depth for 12mmx7mm wire specimen with 50mm gauge length. 
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(a) Force-displacement variation 

 

 

(b) Stress-strain variation  

 

Figure 7.22:   Force-displacement and stress-strain variations with across-the-width groove 

depth for 12mmx7mm wire specimen with 50mm gauge length. 

 

From Table C1 of appendix C, the yield loads, the ultimate loads and the fracture 

displacements reduced by 0.025 to 1.030%, 0.057 to 5.612% and 2.626 to 51.12% 

respectively due to the presence of the across-the-thickness groove with relative depths 

ranging from 0.008 to 0.08. Similarly, from Table C2 of appendix C, the yield loads, the 

ultimate loads and the fracture displacements reduced by 0.044 to1.591%, 0.065 to 8.199% 

and 3.837 to 59.20% respectively due to the presence of the across-the-width groove with 

depths ranging from 0.01mm to 0.14mm. Generally, as shown in Figure 7.23, the reductions 

in these mechanical properties are higher for the specimen with the across the width groove. 

For both specimens, the percentage reduction in the fracture displacement is the highest, 

followed by the percentage reduction in the ultimate loads with the yield loads having the 
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least percentage reduction. This shows that the presence of the groove/channel shaped 

scratches have the worst effect on the fracture displacement/strain leading to 3.837% and 

59.202% reduction in the ductility of the tensile armour wires for 0.01mm and 14mm relative 

groove depths respectively. The effect of the reductions in these mechanical properties on the 

flexible flowlines and risers are as discussed in section 7.1  

 

 

(a)   Yield load variation with channel depths 

 

 

(b) Ultimate load variation with channel depth 

 

 

(c)   Fracture displacement variation with channel depth 

Figure 7.23: Variation in mechanical properties with across the thickness and across the 

width groove depths for 12mmx7mm wire specimen with 50mm gauge length. 
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7.6 Effects of mid-thickness groove, mid-width and an edge groove. 

Figure 7.24 shows the locations of the 0.2mm wide, 0.2mm long and 0.2mm deep edge 

groove, mid-thickness groove and mid-width groove on the model of the tensile armour wire 

specimen. The force-displacement curves and the fracture shapes predicted by the simulations 

conducted with specimens having edge, mid-thickness and mid-width grooves are shown in 

Figures 7.25 and 7.26 respectively. As shown in Figure 7.25, there is no noticeable or 

significant difference in the global force-displacement responses of the three specimens. 

Consequently, the location of the miniature grooves/scratches does not make any significant 

difference to the tensile responses of the tensile armour wire 

 

 

Figure 7.24: Edge channel, mid-thickness channel and mid-width channel locations  

 

 

Figure 7.25:   Force-displacement curves for 12mmx7mm, 50mm gauge length specimens 

with mid-thickness, mid-width and edge groove. 

 

With this observation, it can be inferred that the higher reduction in the mechanical properties 

of tensile armour wire predicted by the simulation with the specimen having across-the-width 

groove when compared with the specimen with the across-the-thickness groove observed in 
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section 7.5.1 is due to the longer length of the across-the-width groove (12mm) and 

consequently, larger reduction in the gross area of the specimen with the across-the-width 

groove compared with the 7mm long across-the-thickness groove. 

 

 

(a) Specimen with edge channel.     

 

 

(b) Specimen with mid-thickness channel.  

 

 

  (c) Specimen with mid-width channel   

 

Figures 7.26:   Fractured specimens of wire models with edge, mid-thickness and mid-width 

grooves at an applied displacement of 5.96mm showing Mises stress (MPa) distribution. 

7.7 Effects of channel dimension on tensile properties of tensile armour wires. 

The effects of the channel dimensions on the tensile response/properties of tensile armour 

wires were investigated by carrying out tensile testing simulations on models of wire 

specimens with varying groove widths, depths and lengths. The channel sizes considered are 

0.1mm, 0.2mm and 0.3mm wide with relative depths varying from 0.008 to 0.08. Figures 
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7.27 (a), (b) and (c) show the variations of the yield loads, the ultimate loads and the 

displacement at fracture with groove depths for three specimens with 7mm long across the 

thickness groove but with 0.1mm, 0.2 and 0.3mm widths. 

 

 

(a) Variation of yield load with groove width and depth 

 

 

(b) Variation of ultimate load with groove width and depth 

 

 

(c) Variation of displacement at fracture with groove widths and depths 

 

Figure 7.27:   Variation in mechanical properties of 12mmx7mm, 50mm gauge length wire 

specimens with groove depth and width. 
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From Figures 7.27(a), (b) and (c) and Tables C3, C4 and C5, at any given relative groove 

depth, the yield loads, the ultimate loads and the fracture displacements generally reduces 

with increase in groove widths.  For example, at a groove depth of 0.012, there are 0.022%, 

0.034%, and 0.072% reductions in the yield loads of the specimens with 0.1, 0.2 and 0.3mm 

wide across-the thickness grooves respectively. Similarly, at a groove depth of 0.012mm, 

there are 0.092%, 0.119% and 0.131% reductions in the ultimate load; and 4.735%, 5.576% 

and 6.622% reductions in the fracture displacements of the specimens with 0.1, 0.2 and 

0.3mm wide across-the-thickness grooves respectively. Thus it can be concluded that in the 

worst scenario, the presence of a flat bottom scratch which is 0.2mm wide, 0.2mm deep and 

which cuts across the entire 12mm width of the wire (i.e. 12mm long) reduces the yield load, 

the ultimate load and the fracture displacement of the wire by at most 0.072%, 0.238% and 

10.95% respectively. Hence, flat bottom scratches with dimensions less than 0.2mm which 

cannot be detected by the eddy current detector will not reduce the yield load, the ultimate 

load and the fracture displacement of the wire by more than 0.072%, 0.238% and 10.95% 

respectively. 

7.8 Summary 

From the numerical experiments carried out to investigate the effects of miniature flat bottom 

scratches on the tensile properties of tensile armour wires, it can be concluded that: 

1) Flat bottom scratches with dimensions less than 0.2mm which cannot be detected by 

the eddy current detector will not reduce the yield load, the ultimate load and the 

fracture displacement of the wire by more than 0.072%, 0.238% and 10.95% 

respectively. 

2) The presence of the groove/channel shaped scratches have the worst effects on the 

ductility (in terms of fracture displacements), followed by the ultimate loads (and 

invariably the tensile strength) with the least effect on the yield load (and invariably 

the yield strength) of tensile armour wires. 

3) The extent of the reduction in the mechanical properties of the tensile armour wires 

depends on the size rather than the location of the flat bottom scratches. 

 

Having completed the investigation of the effect of flat bottom scratches on the tensile 

properties of tensile armour wires, the investigation of the effect of the pointed end scratches 

on the tensile properties of tensile armour wires is presented in the next chapter. 
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Chapter 8:   Effect of miniature V shaped scratches on tensile 

properties of tensile armour wires  

The scratches considered in this chapter have a pointed end as shown in the SEM image in 

Figure 8.1(a) and were modelled as 60 degree V-shaped notches as shown in Figure 8.1 and  

are hereinafter referred to as V-notches or V-shaped scratches. The effects of these V-shaped 

scratches on the tensile properties of the tensile armour wires were investigated using both 

laboratory and virtual/numerical tensile testing experiments. The investigation covers the 

effects of the groove dimensions and the effect of the location of the groove on the tensile 

properties of the tensile armour wires. 

 

The details of the laboratory tensile testing of the as-received wire specimens and the wire 

specimens with a large engineered V-shaped cut are presented in section 8.1. The FEA 

simulations of the tensile testing of the as-received wire specimens and the wire specimens 

with an engineered 1mm deep, 60 degree V- notch are presented in sections 8.2 and 8.3 

respectively. The effects of miniature V-notch locations on the tensile properties of the tensile 

armour wires investigated by considering the effect of the across-the-thickness and the 

across-the-width miniature V-shaped scratches, as well as the effects of mid-thickness, mid-

width and an edge grooves on the tensile properties of the tensile armour wires are presented 

in section 8.4. The summary of the findings of the effects of V-shaped scratches on the tensile 

properties of the tensile armour wire is presented in sections 8.5 

 

                                                

(a) SEM image     (b) As-received wire specimen      (c) Wire specimen with a V-shaped cut 

Figure 8.1:  As-received wire specimen and wire specimen with a V-shaped cut 

8.1: Laboratory tensile testing   of as-received wire specimens and wire specimens 

with V-shaped scratches  

 

Laboratory tensile tests were carried out on 50mm long as-received tensile armour wire 

specimens with 12mmx7mm cross sectional dimensions shown in Figures 8.1(b) and on 
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tensile armour wire specimens from the same wire length as the as-received wire with a 60 

degree V-shaped cut shown in Figures 8.1(c). The depth of the V-notch was made 1mm 

because it is practically easier to make 1mm deep V-shaped cut than making a V-shaped cut 

with 0.2mm depth.  The force-displacement curves and the engineering stress-strain curves 

obtained from the laboratory tensile testing of the as-received wire specimen and the wire 

specimens with engineered/simulated 2mm wide by 2mm deep groove/channel are shown in 

Figure 8.2 (a) and (b) respectively. 

 

 

(a) Force-displacement curves  

 

 

(b) Engineering stress-strain curves  

 

Figure 8.2:  Force-displacement and engineering stress-strain curves from laboratory tensile 

testing of 12mmx7mm, 50mm gauge length as-received wire and wire specimen with V-

shaped cut. 

 

From Figure 8.2 (a), the ultimate load and the displacement at fracture of the as-received wire 

are 68.25kN and 8.81mm respectively while the ultimate load and the fracture displacement 



     

126 

of the wire with 1mm deep 60 degree V-shaped cut are 66.09kN and 3.51mm respectively. 

The 1mm deep 60 degree V-notch has reduced the ultimate load and the fracture 

displacement of the wire by 3.16% and 60.22% respectively. This result agrees with what is 

reported by Kossakowski, (2010). The introduction of the 1mm deep 60 degree V-notch into 

the specimen has increased the offset yield and ultimate strengths of the wire from 520MPa 

to 700Mpa and 810MPa to 858MPa respectively, and reduced the fracture strain of the wire 

from 17.60% to 7.01%. This result agrees with what is reported by Bayram et al, (1999). The 

reasons for the increase in the yield and ultimate strengths of the V- notched tensile armour 

wire, and the reductions in the yield load, the ultimate load and the fracture displacement and 

strain, as well as the practical implications of these reductions on the integrity of flexible 

flowlines and risers are the same as that presented in section 7.1 for the reduction in the 

ultimate load and the fracture displacement of the wire by the channel shaped notch.  

8.2 FEA tensile testing simulation of as-received wire specimen 

The FEA tensile testing simulation of the as-received wire specimen has been dealt with in 

section 7.2 and the modelling techniques used have been shown to be appropriate as the result 

of the FE has been validated in the same section. Consequently, the FEA tensile testing 

simulation of the as-received wire, its results and validation are not repeated here to conserve 

space.  

8 .3     FEA tensile testing simulation of wire specimen with a V-shaped cut 

Having established in section 7.4 that meshing the region around the notch with 0.1mm 

elements gives accurate results, the simulation of the tensile testing of the tensile armour wire 

with a V-shaped cut was conducted by meshing the region around the V-notch with 0.1mm 

C3D8R elements as shown in Figure 8.3. The deformed shapes showing the Mises stress and 

equivalent plastic strain distributions during elastic deformation at an applied displacement of 

0.03mm, at the beginning of plastic deformation at an applied displacement of 0.05mm, 

during necking at an applied displacement of 2.93mm, during fracture initiation at an applied 

displacement of 3.01mm and the fracture shape of the wire specimen with 1mm deep 60 

degree V-shaped cut at an applied displacement of 4.5mm are shown in Figures 8.4(a) to (e)  

and 8.5 (a) to (e) respectively. The explanation of the mechanics and physics of deformation 

of the V-notch at the various stages of the tensile testing deformation is the same that given 

for the deformation of tensile armour wire with the channel shaped cut given in section 7.4. 
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Figure 8.3:   Model of a wire specimen with a 1mm deep 60 degree V-shaped cut with 0.1mm 

elements around V-notch. 

 

The good agreement between the experimental and FE curves shown in Figure 8.7 and the 

small percentage difference between the experimental ultimate and fracture loads presented 

in Table 8.1 shows that the simulation is accurate. Also, since the fracture shape predicted by 

the simulation with 0.1mm elements around the V-shaped cut shown in Figure 8.5(e) is 

similar to the fracture shape obtained from the laboratory tensile testing shown in Figure 8.6, 

it can be concluded that carrying out the simulation with 0.1mm elements produces 

sufficiently accurate results. However, the percentage difference (9.45%) between the 

experimental and FE displacement at fracture is large and a finer mesh would be required to 

narrow the difference. Also, carrying out simulations with finer element sizes would make 

the fracture trajectory predicted by the FE agree more with the experimental fracture 

trajectory. However, further mesh refinement was not possible due to the limitation in the 

computer resources used for this project and  as earlier stated, carrying out simulations with 

finer element sizes would have no significant effects on the mechanical properties of the wire 

that are required for designs and quality assurance.  

 

Table 8.1:  Mechanical properties from experiment and FE simulation for wire with 1mm 

deep 60 degree V-shaped cut 

Parameters  Experiment 

FE 

simulation 

Percentage 

difference 

Ultimate load (kN) 66.09 67.57 
2.23 

Fracture load (kN) 63.67 63.26 
0.64 

Displacement at fracture point (mm) 2.75 3.01 
9.45  

 

 



     

128 

 

(a) During elastic deformation at an applied displacement of 0.03mm.  

 

(b) At the beginning of plastic deformation at an applied displacement of 0.05mm.  

 

(c) During necking at an applied displacement of 2.93mm.  

 

(d) During fracture initiation at an applied displacement of 3.01mm.  

 

(e) Completely fractured specimen at an applied displacement of 4.5mm.  

 

Figure 8.4   Deformed shapes showing the Mises stress (MPa) distribution at various stages 

of the simulation of tensile testing of wire with 1mm deep V-shaped cut. 
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(a) During elastic deformation at an applied displacement of 0.03mm.  

 

(b) At the beginning of plastic deformation at an applied displacement of 0.05mm.  

 

(c) During necking at an applied displacement of 2.93mm.  

 

(d) During fracture initiation at an applied displacement of 3.01mm.  

 

(e) Completely fractured specimen at an applied displacement of 4.5mm.  

  

Figure 8.5   Deformed shapes showing the equivalent plastic strain distribution at various 

stages of the simulation of tensile testing of wire with 1mm deep V-shaped cut. 
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Figure 8.6:  Fractured specimen from laboratory tensile testing of specimen with 1mm deep 

V-shaped cut.  

 

 

 

Figure 8.7:   Experimental and FE force-displacement curves for 12mmx7mm, 50mm gauge 

length wire with a 1mm deep 60 degrees V-notch. 

8.4   Effects of miniature V-notch locations on tensile properties of tensile armour wires 

The effect of the locations of the V-shaped scratches was investigated by carrying out tensile 

testing simulations on models of wire specimens with a V-shaped scratch that cut across their 

entire thickness hereinafter referred to as an “across-the-thickness” V-shaped scratch/notch 

and on models of wire specimens with a V-shaped scratch that cut across their entire width 

hereafter referred to as the “across-the-width” V-shaped scratch. Furthermore, tensile testing 

simulations were carried out on wire models with miniature V-shaped scratches on their edge, 

along their width hereinafter referred to mid-width V-shaped scratch and along their 

thickness hereinafter referred to as a “mid-thickness” V-shaped scratch. 

8.4.1 Effects of across-the-thickness and across-the-width miniature groove on tensile 

properties of tensile armour wires 

The effects of across-the-thickness and across-the-width miniature V-shaped scratches on the 

tensile properties of then tensile armour wires were investigated by carrying out tensile 

testing simulations on the models of wire specimens with V-shaped cut across their entire 
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thickness and across their entire width as shown in Figures 8.8(a) and (b) respectively. In 

both cases, the left ends of the specimens were fixed and the right ends that are free to move 

only in the longitudinal direction were subjected to longitudinal displacements. The base and 

the depth of the triangularly shaped V cut are both 0.2mm. The regions around the V-shaped 

scratches were meshed with 0.1mm elements, which have been established to be the element 

size at which mesh convergence occurred.  

 

 

(a)   Miniature across-the-thickness V-shaped scratch 

      

                           

(b)   Miniature across-the-width V-shaped scratch  

 

Figure 8.8:   Miniature V-shaped scratch across full wire thickness and full wire width. 

 

To minimise the computation time and reduce the output file capacity, the simulation was 

carried out using a model with half the thickness of the wire (3.5mm). The deformed shapes 

and Mises stress distributions of the whole specimen and of the regions around the V-shaped 

scratch across the thickness at an applied displacement of 0.37mm, during necking at an 

applied displacement of 3.54mm, during fracture initiation at an applied displacement of 

5.76mm and after fracturing at an applied displacement of 6.73mm are shown in Figures 

8.9(a), to (d) and Figures 8.10(a), to (d) respectively.  
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(a)   At an applied displacement of 0.37mm. 

 

 

(b)   During necking at an applied displacement of 3.54mm 

 

 

(c)   During fracture initiation at an applied displacement of 5.76mm 

 

 

(d)   Fractured specimen after the simulation at an applied displacement of 6.73mm 

 

Figure 8.9:  Deformed shapes and Mises stress (MPa) distribution for whole model of 

specimen with across-the-thickness V-shaped scratch during tensile testing simulation. 
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(a)   At an applied displacement of 0.37mm.    (b) At an applied displacement of 3.54mm  

    

                         

(c) At an applied displacement of 5.76mm         (d) At an applied displacement of 6.73mm  

 

Figure 8.10:  Deformed shapes around the across-the-thickness V-shaped scratch at various 

stages of the tensile testing simulation. 

 

Similarly, the deformed shapes and Mises stress distributions of the whole specimen and of 

the regions around the V-shaped scratch across the width at an applied displacement of 

0.37mm, during necking at an applied displacement of 3.54mm, during fracture initiation at 

an applied displacement of 5.76mm and after fracturing at an applied displacement of 

6.13mm are shown in Figures 8.11 (a), to (d) and Figures 8.12(a), to (d) respectively.  
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(a)   At an applied displacement of 0.37mm. 

 

 

 (b)  During necking at an applied displacement of 3.54mm  

 

 

(c)   During fracture initiation at an applied displacement of 5.76mm  

 

 

 (d)  Fractured specimen after the simulation at an applied displacement of 6.73mm 

 

Figure 8.11:  Deformed shapes and Mises stress (MPa) distribution for whole model of 

specimen with across-the-width V-shaped scratch during tensile testing simulation. 
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(a)   At an applied displacement of 0.37mm.    (b) At an applied displacement of 3.54mm  

 

                 

(c) At an applied displacement of 5.76mm         (d) At an applied displacement of 6.13mm   

 

Figure 8.12:  Deformed shapes around across-the-width V-shaped scratch during tensile 

testing simulation. 

 

Figures 8.13 and 8.14 show the variations in the tensile responses obtained from the tensile 

testing simulations of the wire specimen with across-the-thickness V-shaped scratch and the 

wire specimen with across-the-width V-shaped scratch with varying V-shaped scratch 

relative depths.  
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Figure 8.13:   Force-displacement variation with across-the-thickness V-shaped scratch depth 

 

 

Figure 8.14:   Force-displacement variation with across-the-width V-shaped scratch depth. 

 

The variation of the yield loads, the ultimate loads and the fracture displacements with V-

shaped scratch relative depth for the wire specimen with across-the-thickness V-shaped 

scratch and the wire specimen with across-the-width V-shaped scratch are shown in Figures 

8.15(a), (b) and (c) respectively. 
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(a)   Yield load variation with V-shaped scratch depths 

 

 

(b) Ultimate load variation with V-shaped scratch depth 

 

 

(c)   Displacement at fracture variation with V-shaped scratch depth 

 

Figure 8.15: Variation in mechanical properties with across the thickness and across the 

width V-shaped scratch depths. 
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8.4.1.1  Analysis of results 

As shown in Figures 8.13 and 8.14, the yield load, the ultimate loads and the fracture 

displacements reduce with increase in relative groove depth for both the specimen with the 

across-the-thickness groove and the specimen with the across-the-width groove. From Table 

8.2, the yield loads, the ultimate loads and the fracture displacements reduced by 0.05 to 

0.57%, 0.01to 1.37% and 0.43 to 29.22% respectively due to the presence of the across-the-

thickness V-shaped scratch with depths ranging from 0.1mm to 1mm. Similarly, from Table 

8.3, the yield loads, the ultimate loads and the fracture displacements reduced by 0.02 

to1.36%, 0.04 to 2.44% and 0.56 to 39.66% respectively due to the presence of the across-

the-width V-shaped scratch with depths ranging from 0.1mm to 1mm. 

 

Generally, the reduction in these mechanical properties are higher for the specimen with the 

across the width V-shaped scratch. For both specimens, the percentage reduction in the 

fracture displacement is the highest, followed by the percentage reduction in the ultimate 

loads with the yield loads having the least percentage reduction. This shows that the presence 

of the V-shaped scratches have the worst effect on the fracture displacement/strain leading to 

0.567% and 39.66% reduction in the ductility of the tensile armour wires for 0.1mm and 

1mm V-shaped scratch depths respectively.  

 

Table 8.2: Mechanical properties variation with groove depths for wire specimens with 

across-the- thickness V-shaped scratch 

V-notch  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% 

reduction 

in ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction 

in 

displacement 

at fracture 

(mm) 

0 50.31 

  

67.97 

  

5.93  

0.1 50.31 0.00 

 

67.97 0.01 

 

5.91 0.43 

0.2 50.28 0.05 

 

67.91 0.09 

 

5.77 2.79 

0.3 50.27 0.08 

 

67.90 0.11 

 

5.76 2.82 

0.5 50.21 0.19 

 

67.74 0.34 

 

5.42 8.69 

0.75 50.07 0.47 

 

67.46 0.75 

 

4.85 18.28 

1 50.02 0.57 

 

67.04 1.37 

 

4.20 29.22 
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Table 8.3: Mechanical properties variation with groove depths for wire specimens across-the- 

width V-shaped scratch 

V-notch  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% 

reduction in 

ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction 

in 

displacement 

at fracture 

(mm) 

0 50.31 

  

67.97 

  

5.93  

0.1 50.30 0.02 

 

67.94 0.04 

 

5.90 0.56 

0.2 50.27 0.07 

 

67.91 0.09 

 

5.76 2.92 

0.3 50.24 0.13 

 

67.83 0.21 

 

5.63 5.11 

0.5 50.13 0.35 

 

67.58 0.58 

 

5.05 14.88 

0.75 49.92 0.77 

 

67.09 1.30 

 

4.31 27.35 

1 49.62 1.36 

 

66.31 2.44 

 

3.58 39.66 

 

8.4.2 Effects of mid-thickness, mid-width and edge V-shaped scratch on tensile 

properties of tensile armour wires. 

Figure 8.16 shows the locations at which the 0.2mmx0.2mm base/plan and 0.2mm deep edge 

V-shaped scratch, mid-thickness V-shaped scratch and mid-width V-shaped scratch were cut 

out of the model of the as-received tensile armour wire specimen.  

 

 

Figure 8.16:   Locations of the edge groove, mid-thickness groove and mid-width groove. 

 

Cutting out a scratch in the 3 dimensional model of the tensile armour wire can only be done 

by sketching the two dimensions (plan) of the scratch and extruding the sketched plan in the 
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third direction that is perpendicularly to the sketched plan. With this provision, it was 

possible to readily cut out the full edge V-shaped scratch from the full wire model by 

extruding the triangular/V-shaped plan sketched along the length and the width in the 

thickness direction as shown in Figure 8.22(a). 

 

The full mid-thickness V-shaped scratch and the full mid-width V-shaped scratch could not 

be cut out from the full wire model because it was not possible to extrude the 0.2mmx0.2mm 

square base/plan of the scratches at an angle less than 90 degrees required to form the 

triangular/V-shaped cut.  In order to model the mid-thickness V-shaped scratch, half the size 

of the mid-width V-shaped scratch and half the size of the mid-thickness V-shaped scratch 

were cut out of the models with half the thickness and half the width of the wire. Figure 8.17  

(a), (b) and (c) shows the refined mesh around the full edge V-shaped scratch, and the refined 

mesh and the symmetry boundary condition around the half mid-width V-shaped scratch and 

the half mid-thickness V-shaped scratch respectively. 

 

  

(a) Full edge V scratch.    (b) Half mid width V scratch.    (c) Half mid thickness V 

 

Figure 8.17:   Refined mesh and symmetry boundary condition around full edge, half mid-

width and half mid-thickness V-shaped scratches. 

 

The deformed shapes showing the Mises stress distributions in the whole during necking at 

an applied displacement of 3.74mm, during fracture initiation at an applied displacement of 

5.92mm and after fracturing of the specimens at an applied displacement of 6.38mm are 

shown in Figures 8.18, 8.19 and 8.20 respectively for the specimens with the edge, mid-

thickness and mid-width V-shaped scratch. 
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(a) Full wire model with full edge V-shaped scratch 

 

 
(b) Half wire model with half mid-thickness V-shaped scratch 

 

 
(c) Half wire model with half mid-width V-shaped scratch   

 

Figures 8.18:  Deformed shapes and Mises stress (MPa) distribution for wire models with 

edge, mid-thickness and mid-width V-shaped scratch during necking at an applied 

displacement of 3.74mm 
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(a) Full wire model with full edge V-shaped scratch  

 

 
(b) Half wire model with half mid-thickness V-shaped scratch 

 

 
(c) Half wire model with half mid-width V-shaped scratch   

 

Figures 8.19:  Deformed shapes and Mises stress (MPa) distribution for wire models with 

edge, mid-thickness and mid-width V-shaped scratch during fracture initiation at an applied 

displacement of 5.92mm 

 

 

 

 

 



     

143 

 

(a) Full wire model with full edge V-shaped scratch  

 

 

(b) Half wire model with half mid-thickness V-shaped scratch 

 

 

(c) Half wire model with half mid-width V-shaped scratch   

 

Figures 8.20:  Deformed shapes and Mises stress (MPa) distribution for wire models with 

edge, mid-thickness and mid-width V-shaped scratch after fracture at an applied displacement 

of 6.38mm. 

 

As shown in Figure 8.21, there is no noticeable difference in the force-displacement 

responses of the specimens with the edge, mid-thickness and mid-width V-shaped scratches. 

Thus, the location of the miniature V-shaped scratches does not make any significant 

difference to the tensile responses of the tensile armour wire. With this observation, it can be 

inferred that the higher reduction in the mechanical properties of tensile armour wire with the 

across-the-width V-shaped scratches when compared with the specimen with the across-the-
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thickness V-shaped scratches observed in section 8.4.1.1 is due to the longer length of the 

across-the-width V-shaped scratches groove (12mm) compared with the 7mm long across-

the-thickness groove. 

 

 

Figure 8.21:   Force-displacement curves for 12mmx7mm, 50mm gauge length specimens 

with mid-thickness, mid-width and edge V-shaped scratches. 

8.5 Summary 

This chapter presents the results of the investigation of the effects of the V-shaped scratches 

on the tensile properties of the tensile armour wires. The investigation revealed that the 

presence of the V-shaped scratches reduces the yield load, the ultimate load and the 

displacement at frcture of the wires. The presence of  the V-shaped scratches with dimensions 

less than 0.2mm which cannot be detected by the eddy current detector used in the flexible 

pipes manufacturing industry will not reduce the yield load, the ultimate load and the fracture 

displacement of the wire by more than 0.07%, 0.09% and 2.92% respectively. The presence 

of the V-shaped scratches have the worst effects on the ductility (in terms of displacements at 

fracture), followed by the ultimate loads (and invariably the tensile strength) with the least 

effect on the yield load (and invariably the yield strength) of tensile armour wires. The extent 

of the reductions in the wire tensile properties depends largely on the size rather than the 

location of the V-shaped scratches.  

 

Having dealt with the effects of the V-shaped scratches on the tensile properties of the tensile 

armour wires, the investigation of the effects of denting on the tensile properties of the tensile 

armour wires is presented in the next chapter. 
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Chapter 9 Effect of miniature dents on tensile properties of 

tensile armour wires 

Dents are one of the surface defect types that BS EN ISO13628-2, (2006) recommends 

should be looked out for and which were identified in the SEM image of the surface of the as-

received tensile armour wires shown in Figure 9.1(a). The investigation of the effects of 

miniature dents on the tensile behaviour and the tensile properties of tensile armour wires 

with 12mm x 7mm cross sectional dimensions was carried out using both laboratory and 

numerical tensile testing methods.  The numerical tensile testing of dented wire specimens 

was carried out using the finite element method to simulate the indentation of the wire 

specimens, the removal of the indenter after indentation and the tensile testing of the dented 

wire specimens in three FE simulation steps. The indentation simulation was verified with an 

analytical expression while the simulations of the tensile testing of the as-received (dent free) 

and dented tensile armour wires specimens were validated with experimental results. The 

effects of the sizes and locations of the miniature dents with dimensions close to the 0.2mm 

detection capability of the in-line eddy current detector used in the flexible pipe 

manufacturing industry were considered. 

 

The laboratory tensile testing of the as-received wire specimens and the wire specimens 

dented with a ball bearing indenter is presented in section 9.1. The FE simulations of the 

tensile testing of the as-received wire specimens, and the contact simulation and its 

verification are presented in sections 9.2 and 9.3 respectively. Section 9.4 presents the 

simulation of the tensile testing of dented tensile armour wires and its validation. The effect 

of the dent sizes and locations on the tensile properties of the tensile armour wires is 

presented in section 9.5. The analysis of results and conclusions are presented in sections 9.6 

and 9.7respectively. 

 

                                

 (a) SEM image     (b) As-received wire specimen       (c) Dented wire specimen  

Figure 9.1:  As-received and dented wire specimens 
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9.1: Laboratory tensile testing of as-received and dented wire specimens  

Laboratory tensile tests were carried out on the as-received tensile armour wire specimens 

and on the wire specimens dented to a depth of 0.3mm with a 6.35mm diameter ball bearing 

indenter shown in Figures 9.1(b) and (c) respectively. The force-displacement curves and the 

mechanical properties obtained from the laboratory tensile testing of the as-received wire 

specimen and the wire specimen with 0.6mm diameter, 0.3mm deep dent are shown in Figure 

9.2.  The dent was made with a 6.35mm diameter ball bearing to ensure that the engineered 

dent is substantially larger than any inherent dent in the wire for its effect to be dominant on 

the tensile behaviour of the wire, as it was observed that failure did not occur at the locations 

of the dents made with the standard Rockwell hardness scale B (1.588mm diameter ball 

indenter under 100kgf/980.6N) indenter. This could be because the dent made by the standard 

Rockwell hardness scale B indenter was not larger than the inherent dents in the wire. 

 

 

Figure 9.2:  Force-displacement curves from laboratory tensile testing of 12mmx7mm 50mm 

gauge length as-received and dented wire specimens. 

 

Table 9.1:   Mechanical properties of as-received and dented wire specimens 

Parameters As received specimen Dented specimen 

Percentage 

difference  

Ultimate load (kN) 68.25 67.82 0.63 

Fracture load (kN) 57.95 58.13 0.30 

Fracture point 

displacement (mm) 8.81 8.37 5.06 
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The denting caused 0.3% and 5.06% reduction in the ultimate load and the fracture 

displacement (ductility) of the wire as shown in Table 9.1. The reduction in the ductility of 

the dented wire can be attributed to the work hardening of the dented region, while the slight 

reduction in the ultimate load of the dented wire can be attributed to the residual stress due to 

the indentation and/or the stress concentration effects of the dent. 

9.2 FE simulation of tensile testing of as-received wire specimen 

The FEA tensile testing simulation of the as-received wire specimen has been dealt with in 

section 7.2 and the modelling techniques used have been shown to be appropriate as the result 

of the FE has been validated in the same section. Consequently, the FEA tensile testing 

simulation of the as-received wire, its results and validation are not repeated.  

9.3 FE indentation simulation. 

The simulation of the indentation of the top surface of the tensile armour wire was carried out 

using the assembly shown in Figure 9.3. The bottom, left and right ends of the wire specimen 

were fixed and the 10mm diameter rigid spherical indenter placed 1mm above the top surface 

of the wire specimen was subjected to downward vertical displacement until it contacted and 

dented the wire surface as shown in Figure 9.6(b). The contact interaction between the 

indenter and the wire surface was carried out using a penalty contact interaction to enable 

both shear and normal forces to be transmitted across the interface of the two surfaces. The 

coefficient of friction of 0.0 was used for the simulation of the frictionless contact between 

the indenter and the square plate in section 9.3.1, which was conducted to verify the contact 

simulation output. The coefficient of friction of 0.3 was used for the simulation of the  

indentation of the tensile armour wires which is within the 0.0 to 0.3 generally used in 

literature, (such as the publications by Montmitonnet et al, (1993), Verleene et al, (2002) and 

Nayebi et al, (2002)) for the simulation of indentation of steel. 
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(a) Wire specimen-indenter assembly before indentation with end boundary conditions.  

 

 

 (b) Dented wire with residual Mises stress (MPa) 

 

Figure 9.3:   Wire specimen-indenter assembly before and after indentation.  

9.3.1 Verification of indentation simulation output 

The accuracy of the indentation and contact interaction simulations was verified by 

comparing the power law relating the FE predicted indenter force to indenter displacement 

with the analytical power law expression given in equation 9.1 that relates indenter force to 

indenter displacement. As stated in section 2.21.1, this analytical expression relates the 

spherical indenter force, F, to the indenter displacement, , in an elastic indentation (elastic 

response at small indent depth) of infinite plates.  Infinite plates have widths and thicknesses 

that are very large compared with the dent or the defect dimension, which ensures that there 

are no stress relaxations in the plate and also ensures that the outer boundaries of the plate 

exert no influence on the stresses in the dented or defective area. 

nKF                                                   (9.1) 

Where K  and n are constants.  n is taken as 1.5 for spherical indentation. 
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However, as shown in Figure 9.3(b), due to the size of the tensile armour wires, the residual 

stress around the dent extends to the outer edges of the wire leading to stress relaxations in 

the wires and the interference of the outer boundaries or edge of the wire with the stress state 

in the dented area. Thus, the sizes of the tensile armour wires make it impossible to achieve 

the conditions required for using equation 9.1 to validate the indentation simulation output. 

Consequently, a simulation of the elastic indentation of a 50mm square plate with the same 

12mm thickness as the tensile armour wires with a 10mm indenter shown in Figure 9.4 was 

carried out in order to be able to validate the indentation simulation with the analytical 

expression. With dent depths of up to 1mm, the plate has a dimension that is at least ten times 

the dent dimension, which is sufficient to fulfil the required conditions obtainable in infinite 

plates. The mesh around the location of the indentation of the plate was successively refined 

and seeded with 0.5mm and 0.25mm elements as shown in Figures 9.4 

 

Figure 9.4:   Deformed shape showing Mises stress (MPa) distribution for a dented infinite 

plate at the end of indentation simulation. 

 

As stated in section 2.21.1, the K in equation 9.1 and n depend on the mechanical material 

parameters and on the indenter geometry. For a spherical indenter, n is 1.5 while K is given in 

equation 9.2   











3

4 5.0*RE
K                          (9.2) 

Where R is the radius of the spherical indenter and *E  is the effective modulus obtained 

from the Hertz equation given in equation (9.3). 
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Ind

Ind

EEE

22

*

111  



               (9.3) 

Where E and ν are  the Young‟s modulus and Poisson‟s ratio, respectively of the dented 

material and EInd and νInd are the Young‟s modulus and Poisson‟s ratio, respectively of the 

indenter. For a non deformable indenter, EInd is approximately infinity (∞). Hence equation 

9.3 becomes 

EEE

Ind

222

*

1111  








         (9.4) 

Substituting ν of 0.3 and E of 200GPa for steel in equation 9.4, E* is calculated in equation 

9.5 as follows: 

2
5

22
1019.2

3.01

200000

1
*

mm
Nx

E
E 








     (9.5) 

Substituting the calculated value of E and the indenter radius R of 5mm, K is calculated in 

equation 9.6 as follows:  

 

2
3

5
5.0

/1055.6
3

52197894 





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


 mmNx

XX
K     (9.6) 

Fitting a power law curve to the indenter force-displacement curve predicted by the 

simulation carried out with 0.25mm elements in the refined area at the location of the 

indentation as shown in Figure 9.5 gives a K value of 6.58 X10
5
Nmm

-3/2
, which compares 

well with the K value of 6.56X10
5
Nmm

-3/2
 obtained from the analytical equation. This shows 

that the refinement at the location of the indentation with 0.25mm elements is sufficient, and 

the indentation and contact interaction simulations carried out with the 0.25mm refined 

elements at the location of the indentation is accurate. 
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Figure 9.5:  Power curve on indenter force-displacement curve predicted by simulation with 

refined mesh at location of indentation.  

9.4 Simulation of tensile testing of dented tensile armour wires 

The simulation of the tensile testing of the dented tensile armour wires was carried out with 

indentation, indenter removal and tensile testing simulation steps. During the indentation and 

the indenter removal simulations, the bottom of the specimen and the left and right ends were 

fixed. During the tensile testing simulation, only the left end of the specimen was fixed and 

the right end, which is free to move in the longitudinal direction (x-axis) was subjected to a 

longitudinal displacement. An indenter with the same 6.35mm diameter as the ball bearing 

indenter used for denting the laboratory tensile test specimen was positioned 1mm above the 

top surface of the wire and was subjected to a downward vertical displacement (in the Y-axis 

direction)  of 1.315mm which dented the wire to a depth of 0.3mm as the dented 

experimental specimen.  

 

The deformed shape of the wire showing the longitudinal axial stress (S11) and the equivalent 

plastic strain distributions in the wire after the denting or indentation simulation is shown in 

Figures 9.6(a) and (b) respectively. In the longitudinal axial stress S11 contour plot, the 

positive stresses represent tensile stresses while the negative stresses represent compressive 

stresses. The highest tensile stress is indicated at the top of the contour plot with the deepest 

red colour while the highest compressive stress is indicated at the bottom of the contour plot 

with the deepest blue colour.  

 

As shown in Figures 9.6, the stresses at the location of the indentation (directly under the 

indenter) and at some distance around it are compressive because the elements in this regions 
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were directly and indirectly compressed by the indenter during the indentation. The highest 

equivalent plastic strain and compressive longitudinal axial stress of 1550MPa is directly 

under the indenter as the elements that are directly under the indenter experience the most 

compression. The stresses in the remaining part of the specimen outside the area with 

compressive stresses are tensile. This is because the elements in this part were not directly 

compressed by the indenter but were stretched as the elements in the region under 

compression deflected during indentation.  The highest tensile longitudinal axial stress 

occurred at the edge of the wire closest to the location of the indentation as they are stretched 

most during the deflection associated with the indentation. 

 

 

(a) Longitudinal axial stress (MPa) distribution 

 

(b) Equivalent plastic strain distribution 

 

Figure 9.6:   Deformed shape showing longitudinal axial stress (MPa) and equivalent plastic 

strain distributions after indentation. 

 

During the indenter removal simulation, the indenter was given an upward vertical 

displacement which pulled up the indenter and separated it from the surface of the wire as 

shown in Figure 9.7. The deformed shape of the wire showing the longitudinal axial stress 

(S11) and the equivalent plastic strain distributions in the wire after the indenter removal 

simulation is shown in Figures 9.7(a) and (b) respectively. The maximum longitudinal axial 

compressive stress which reduced to 795.2MPa after the indenter removal simulation still 
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occurred around the bottom of the dent. The reduction in the axial stress is due to the stress 

relaxation in the wire and the rebounding of the dent due to the elastic recovery after the 

removal of the indenter.  

 

 

(a) Longitudinal axial stress (MPa) distribution 

 

(b) Equivalent plastic strain distribution 

 

Figure 9.7: Deformed shape showing longitudinal axial stress (MPa) and equivalent plastic 

strain distributions after indenter removal.  

 

The stress state in the wire specimen at the end of indenter removal simulation represents the 

residual stress in the wire at the beginning of the tensile testing simulation. From Figure 

9.8(a), the 795.2MPa residual compressive stress at the location of indentation reduced 

rapidly to 173.8MPa at the beginning of the tensile testing simulation due to the applied 

tensile stress in the specimen which neutralised part of the compressive stresses. As the 

applied tensile load increased, the compressive stress at the location of the indentation 

progressively decreased until it became tensile as shown Figure 9.9 (a). Figure 9.9(a) also 

shows that the maximum tensile longitudinal axial stress of 1016MPa occurred at the location 

of the indentation/dent. This is due to the stress concentration effect of the dent. The 

deformed shapes of the specimen showing the longitudinal axial stress and the equivalent 

plastic strain distributions after necking and during fracturing are shown in Figures 9.10 (a) 

and (b), and 9.11 (a) and (b) respectively. 
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(a) Longitudinal axial stress (MPa) distribution 

 

 

(b) Equivalent plastic strain distribution 

Figure 9.8: Deformed shape showing longitudinal axial stress (MPa) and equivalent plastic 

strain distributions at an applied displacement of 0.18mm. 

 

 

(a) Longitudinal axial stress (MPa) distribution 

 

 

(b) Equivalent plastic strain distribution 

Figure 9.9: Deformed shapes showing longitudinal axial stress (MPa) and equivalent plastic 

strain distributions at an applied displacement of 2.80mm. 
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(a) Longitudinal axial stress (MPa) distribution 

 

(b) Equivalent plastic strain distribution 

Figure 9.10:  Deformed shapes showing longitudinal axial stress (MPa) and equivalent plastic 

strain distributions at an applied displacement of 3.68mm. 

 

   

(a) Longitudinal axial stress (MPa) distribution 

 

(b) Equivalent plastic strain distribution 

Figure 9.11:   Deformed shapes showing longitudinal axial stress (MPa) and equivalent 

plastic strain distributions at an applied displacement of 5.78mm. 

 

The completely fractured dented specimen with the longitudinal axial stress and equivalent 

plastic strain distributions are shown in Figures 9.12 (a) and (b) respectively. The shaped of 
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the fractured dented specimen from the FE is similar to the shaped of the fractured dented 

specimen obtained from the laboratory tensile test shown in Figure 9.12(c). 

 

 

(a) Longitudinal axial stress (MPa) distribution 

 

 

(b) Equivalent plastic strain distribution 

  

            

(c) Completely fractured dented wire from experiment 

Figure 9.12:   Completely fractured dented specimen from FE and Experiment. 

 

The longitudinal axial stress and the equivalent plastic strain  profiles throughout the tensile 

testing simulations obtained from the dent-depth node are shown in Figures 9.13 and 9.14 

respectively. The dent-depth node is the node that is directly under the spherical indenter tip 

node, at the centre of the location of indentation and at the bottom centre of the dent. It is the 

deepest point in the spherical dent. 
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Figure 9.13:   Longitudinal axial stress profile of the dent-depth node. 

 

 

Figure 9.14:   Equivalent plastic strain profile of the dent-depth node. 

 

At an applied tensile displacement of 0.2mm, the residual compressive stress of 787MPa 

induced in the wire specimen by the indentation was neutralized by the tensile stress induced 

during the tensile testing simulation. Stretching the wire beyond 0.2mm, the stress turned 

tensile, reaches its maximum value at an applied displacement of 3.68mm and became zero at 

an applied displacement of 6.13mm. At the beginning of the tensile testing simulation, the 

equivalent plastic strain at the bottom of the dent is 0.12 and it increases throughout the 

tensile testing simulation. 

9.4.1 Mesh convergence and refinement 

To obtain the optimum mesh density for the FE simulation of the tensile testing of the dented 

tensile armour wires, the mesh around the location of indentation was successively refined 

with 0.5mm, 0.25mm and 0.1mm elements. The deformed shapes showing the stress 

distributions after the indentation, indenter removal and tensile testing predicted by the 
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simulations with successive mesh refinements around the locations of the indentation are 

shown in Figures 9.15, 9.16 and 9.17 (a) to (c) respectively. 

 

 

(a) 0.5mm elements around location of indentation 

 

(b) 0.25mm elements around location of indentation  

   

(c) 0.1mm elements around location of indentation   

Figure 9.15:   Deformed shapes showing longitudinal axial stress (MPa) distributions after 

indentation from simulations with successive mesh refinements. 
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(a) 0.5mm elements around location of indentation 

 

(b) 0.25mm elements around location of indentation  

 

(c) 0.1mm elements around location of indentation  

Figure 9.16:   Deformed shapes showing longitudinal axial stress (MPa) distributions after 

indenter removal from simulations with successive mesh refinements. 
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(a) 0.5mm elements around location of indentation  

 

(b) 0.25mm elements around location of indentation 

 

(c) 0.1mm elements around location of indentation   

Figure 9.17:   Deformed shapes showing longitudinal axial stress (MPa) distributions after 

tensile testing from simulations with successive mesh refinements. 

 

The force-displacement curves predicted by the simulations of the tensile testing of the 

dented tensile armour wires carried out with 0.5mm, 0.25mm and 0.1mm refined elements 

around the location of the indentation are shown in Figure 9.18. The negligible percentage 

differences (maximum of 1.08%) in the mechanical properties predicted by the FE 

simulations with 0.5mm, 0.25mm and 0.1mm elements around the location of indentation 

presented in Table 9.2 show that the mesh has converged. Consequently, subsequent 

simulations were carried out with 0.25mm elements around the location of the indentation as 

this level of mesh refinement produces sufficiently accurate results coupled with the fact that 
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the output from this mesh size has been validated with the experimental results. Also carrying 

out the simulation with 0.25mm instead of 0.1mm elements around the location of the 

indentation minimizes the output file capacity and optimizes the computation time without 

any loss of accuracy. 

 

 

Figure 9.18:   Force-displacement curves with successive mesh refinements around the 

location of indentation of a 12mmx7mm, 50mm gauge length wire specimen.  

 

Table 9.2: Mechanical properties predicted by simulations with successive mesh refinements 

Ultimate load point parameters 

Elements size at 

indentation location 

Yield load 

(kN) 

Percentage 

difference 

 

Ultimate load 

(kN)  

Percentage 

difference 

0.5mm  49.49 - 

 

67.97 - 

0.25mm  49.50 0.03 

 

67.98 0.008 

0.1mm  49.49 0.03 

 

67.96 0.020 

Fracture point parameters 

Elements size at 

indentation location 

Fracture 

load (kN) 

Percentage 

difference 

 

Displacement at 

fracture  (mm) 

Percentage 

difference 

0.5mm  57.24 - 

 

5.77 - 

0.25mm  57.33 0.14 

 

5.78 0.19 

0.1mm  57.95 1.08 

 

5.84 1.08 
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9. 4.2 Validation of the simulation of the tensile testing of dented tensile armour wires  

The force-displacement curves obtained from the laboratory and numerical tensile testing of 

the dented tensile armour wire specimens are shown in Figure 9.19. As shown in Figure 9.19 

and Table 9.3. The force-dispacement curves from the laboratory and numerical tensile 

testing agree well with 0.24% and 1.38% differences in the values of their ultimate and 

fracture loads respectively. As stated earlier, the FE curve represents the actual tensile 

behaviour of the wire since its displacements are the actual displacement within the 50mm 

wire specimen alone and it agrees with the experimental curve with the corrected 

displacements as shown in Figures 9.19. 

 

 

Figure 9.19: Force-displacement curves from laboratory and FE tensile testing of 

12mmx7mm 50mm gauge length dented wire specimen. 

 

Table 9.3:   Mechanical properties of dented wire from laboratory test and FEA analysis  

Parameters Experimental FE simulation  

Percentage 

difference (%) 

Ultimate load (kN) 67.82 67.98 0.24 

Fracture load (kN) 58.13 57.33 1.38 

Displacement at fracture (mm) 8.37 5.78 30.94 

 

9.5 Effects of dent size and locations on tensile properties of tensile armour wires. 

The effects of the location of the dents and the dent sizes on the tensile properties of the 

tensile armour wires was investigated by carrying out FE simulations of the tensile testing of 

the tensile armour wire specimens dented along their thickness, width and edge to dent depths 
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varying from 0.1mm to 1mm by 10mm, 5mm and 2.5mm spherical indenters. The deformed 

shapes after the indentation simulation showing the stress distributions in the specimens 

subjected to indentation along its thickness, width and edge hereinafter referred to as the: 

along-the-thickness dent, along-the-width dent and edge dent respectively are shown in 

Figures 9.20 (a), (b) and (c) respectively. Each indentation at the three locations shown in 

Figures 9.20 (a), (b) and (c) was made with 2.5mm diameter indenters placed 1mm above the 

wire and subjected to 1.8mm displacement. 

 

Generally, the compressive stresses (indicated by the deepest blue to yellow colours in the 

specimen and the contour plots) in the specimen dented along its width is higher than that of 

the specimen dented along its thickness, which is equally higher than that of the specimen 

dented along its edge with the maximum values of 2038MPa, 1939MPa and 993MPa 

respectively. This is because there is no compressive stress relaxation in the specimen dented 

along its width as the compressive stresses were completely contained within the specimen 

without extending to its edges due to the presence of materials with sufficient dimensions 

around the indentation that provided the constraint that contained the compressive stress 

within the specimen.   On the other hand, the compressive stresses in the specimen dented 

along its thickness and the specimen dented along its edge were not contained completely 

within these specimens as the compressive stresses extended to the edges of the specimens 

leading to compressive stress relaxations. The compressive stress relaxation is even greater in 

the specimen dented along its edge, which explains why it has the lowest value of 

compressive stress. 
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(a) Indentation along wire thickness  

 

(b) Indentation along wire width  

 

(c) Indentation on wire edge 

Figure 9.20:   Deformed shapes and longitudinal axial stress (MPa) distributions for 

specimens dented along its thickness, width and edge after indentation simulation. 

 

The deformed shapes showing the stress distributions in the specimens dented along their 

thickness, width and edge after the indenter removal simulation are shown in Figures 9.21 

(a), (b) and (c) respectively.  
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(a) Specimen with the along-the-thickness dent 

 

(b) Specimen with the along-the-width dent 

 

(c) Specimen with the edge dent 

Figure 9.21:  Deformed shapes and longitudinal axial stress (MPa) distributions for 

specimens dented along its thickness, width and edge after indenter removal simulation. 

 

The deformed shapes showing the maximum tensile stresses occurring at the bottom of the 

along-the-thickness, along-the-width and edge dents at an applied displacement of 0.35mm 

are shown in Figures 9.22 (a), (b) and (c) respectively. As stated earlier, the maximum tensile 

stresses occurred at the bottom of the dents at the beginning of the tensile testing simulation 

due to the stress concentration effect of the dent geometry. 
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(a) Specimen with the along-the-thickness dent 

 

 

(b) Specimen with the along-the-width dent 

 

 

(c) Specimen with the edge dent 

 

Figure 9.22:  Deformed shapes and longitudinal axial stress (MPa) distributions for 

specimens dented along its thickness, width and edge at an applied displacement of 0.35mm. 

 

The deformed shapes showing the fracture initiation in the specimens with the along-the-

thickness, along-the-width and edge dents at an applied displacement of 5.80mm are shown 

in Figures 9.23 (a), (b) and (c) respectively. The fractured shapes of the specimens with the 

along-the-thickness, along-the-width and edge dents after tensile testing simulation at an 

applied displacement of 6.31mm are shown in Figures 9.24 (a), (b) and (c) respectively. 
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(a) Specimen with the along-the-thickness dent 

 

 

(b) Specimen with the along-the-width dent 

  

 

(c) Specimen with the edge dent 

Figure 9.23:  Deformed shapes and longitudinal axial stress (MPa) distributions for 

specimens dented along their thickness, width and edge during fracture initiation at an 

applied displacement of 5.80mm. 
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(a) Specimen with the along-the-thickness dent 

 

 

(b) Specimen with the along-the-width dent 

 

 

(c) Specimen with the edge dent 

 

Figure 9.24:   Fractured shapes and longitudinal axial stress (MPa) distributions for 

specimens dented along their thickness, width and edge after tensile testing simulation at an 

applied displacement of 6.31mm. 

 

The variations of the yield loads, the ultimate loads and the fracture displacements with the 

dent depths and the dent diameters obtained from the specimens with the dent along their 

thickness, width and edge are shown in Figures 9.25, 9.26 and 9.27 respectively.  
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(a) From wire specimen with the along-the thickness dent  

 

 

(a) From wire specimen with the along-the width dent  

 

 

(c) From wire specimen with the edge dent  

Figure 9.25:   Variations of yield load with dent depths, dent diameters and dent locations. 
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(a) From wire specimen with the along-the thickness dent  

 

 

(b) From wire specimen with the along-the width dent  

 

 

(c) From wire specimen with the edge dent  

 

Figure 9.26:   Variation of ultimate load with dent depths, dent diameters and dent locations. 
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(a) From wire specimen with the along-the thickness dent  

 

 

(b) From wire specimen with the along-the width dent  

 

 

(c) From wire specimen with the edge dent  

Figure 9.27:   Variation of fracture displacement with dent depths, dent diameters and dent 

locations. 
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9.6 Analysis of results  

Generally, irrespective of the location of the dent, the indentation of the wire increases its 

yield load. The result agrees with what is reported by Harsono, et al, 2010 and the increase in 

the yield load is due to the work hardening associated with the plastic deformation of the wire 

during indentation. The increase in the yield load increases with both dent diameter and dent 

depth as shown in Figure 9.38 and Tables 9.4, 9.5 and 9.6. There is no substantial difference 

in the increase in the yield loads of the specimens dented along their thicknesses and the 

specimens dented along their widths. However, the increases in the yield loads of both are 

substantially higher than that of the specimens dented along their edges. This is because there 

is more stress relaxation in the specimens with the edge dent than the specimens with the 

across-the-thickness and across-the-width dents as there is less constraint in these specimens 

as earlier stated.  

 

Similarly, irrespective of the location of the dent, the indentation of the wire up to 

approximately 0.3mm deep increases the ultimate load of the wire. Beyond 0.3mm dent 

depth, the ultimate load of the wires reduces as shown in Figure 9.39 and Tables 9.4, 9.5 and 

9.6. The change in the effects of the dent on the ultimate strength of the wire at 

approximately 0.3mm dent depth could be due to a trade-off between the work hardening 

effects of the indentation, which increases the wire‟s ultimate load, and the stress 

concentration effects of the dent which reduces the ultimate load of the wire. Thus, it can be 

said that below 0.3mm dent depth, the work hardening effect of the indentation is dominant 

while above 0.3mm dent depth the stress concentration effect of the dent is dominant. 

 

As shown in Figure 9.40 and Tables 9.4, 9.5 and 9.6, irrespective of the location of the dent, 

the indentation of the wire reduces the displacement at fracture and invariably the ductility of 

the wire. The reduction in the displacement at fracture (and invariably, the ductility) increases 

with increases in the dent depth and the dent diameter. Indentation along the edge of the wire 

causes a smaller reduction in the fracture displacement (ductility) than indentation along the 

thickness and width of the wire. This is because the highest stress relaxation that occurred in 

the specimen with the edge dent leaved the specimen with the lowest amount of plastic 

deformation. Consequently, the lowest portion of the total amount of available/allowed 

plastic deformation for the wire specimen was used up during the plastic deformation 
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associated with of the specimen with the edge dent, leaving it with the highest ductility; since 

ductility depends on the total amount of available/allowed plastic deformation. 

 

Table 9.4:   Variations in mechanical properties of specimens dented along their thickness, 

width and edge with depth of dents made with a 10mm diameter indenter 

 

 
Specimen with the along-the-thickness dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

% 

reduction in 

ultimate  

load 

 

Fracture 

displacement %  reduction 

in fracture 

displacement 

0 49.34 - 

 

67.9649 - 

 

5.93 - 

0.12 49.44 0.21 

 

67.9727 0.011 

 

5.78 2.63 

0.21 49.53 0.38 

 

67.9807 0.023 

 

5.77 2.73 

0.30 49.64 0.61 

 

67.992 0.039 

 

5.76 2.87 

0.56 49.79 0.92 

 

67.9638 0.002 

 

5.58 5.88 

0.75 49.93 1.19 

 

67.8898 0.110 

 

4.55 23.33 

0.97 50.04 1.42 

 

67.6777 0.423 

 

3.86 34.96 

 

 

Specimen with the along-the-width dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34 

  

67.96 

  

5.93  

0.12 49.42 0.16 

 

67.97 0.006 

 

5.78 2.60 

0.21 49.50 0.32 

 

67.98 0.020 

 

5.78 2.66 

0.31 49.63 0.59 

 

67.99 0.037 

 

5.59 5.84 

0.57 49.93 1.19 

 

68.00 0.050 

 

5.26 11.27 

0.75 50.20 1.75 

 

68.00 0.055 

 

4.91 17.27 

0.98 50.42 2.20 

 

67.98 0.021 

 

4.40 25.82 

 

 

Specimen with the edge dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34 

  

67.96   

 

5.93   

0.12 49.33 0.009 

 

67.96 0.007 

 

5.75 3.09 

0.21 49.33 0.000 

 

67.96 0.006 

 

5.60 5.60 

0.31 49.35 0.015 

 

67.96 0.009 

 

5.59 5.74 

0.57 49.36 0.053 

 

67.86 0.158 

 

5.29 10.90 

0.75 49.35 0.011 

 

67.80 0.236 

 

5.23 11.77 

0.98 49.35 0.000 

 

67.67 0.432 

 

5.09 14.10 
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Table 9.5:   Variations in mechanical properties of specimens dented along their thickness, 

width and edge with depth of dents made with a 5mm diameter indenter. 

 
Specimen with the along-the-thickness dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

% 

reduction in 

ultimate  

load 

 

Fracture 

displacement %  reduction 

in fracture 

displacement 

0 49.34 - 

 

67.96 

  

5.93  

0.12 49.39 0.01 

 

67.97 0.004 

 

5.80 2.19 

0.22 49.45 0.23 

 

67.97 0.014 

 

5.79 2.39 

0.31 49.48 0.29 

 

67.97 0.016 

 

5.63 5.13 

0.57 49.60 0.53 

 

67.96 0.011 

 

5.25 11.43 

0.76 49.68 0.70 

 

67.92 0.069 

 

4.90 17.40 

0.99 49.73 0.80 

 

67.70 0.390 

 

4.19 29.42 

 

 

Specimen with the along-the-width dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34 

  

67.96 

  

5.93  

0.12 49.38 0.092 

 

67.96 0.002 

 

5.77 2.83 

0.22 49.42 0.171 

 

67.97 0.003 

 

5.63 5.08 

0.31 49.46 0.247 

 

67.97 0.008 

 

5.43 8.48 

0.57 49.62 0.562 

 

67.96 0.003 

 

5.24 11.70 

0.76 49.78 0.870 

 

67.94 0.035 

 

4.90 17.47 

0.98 49.93 1.193 

 

67.87 0.135 

 

4.38 26.13 

 

 

Specimen with the edge dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34   

 

67.96   

 

5.93   

0.12 49.34 0.015 

 

67.96 0.000 

 

5.76 2.85 

0.22 49.39 0.096 

 

67.96 0.000 

 

5.60 5.66 

0.31 49.40 0.125 

 

67.98 0.019 

 

5.59 5.71 

0.58 49.43 0.187 

 

67.87 0.141 

 

5.39 9.22 

0.76 49.47 0.258 

 

67.85 0.163 

 

5.33 10.09 

0.99 49.51 0.339 

 

67.79 0.256 

 

5.30 10.56 
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Table 9.6:   Variations in mechanical properties of specimens dented along their thickness, 

width and edge with depth of dents made with a 2.5mm diameter indenter 

 
Specimen with the along-the-thickness dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34 -   67.96 -   5.93 - 

0.12 49.35 0.029   67.97 0.003   5.8 2.187 

0.22 49.4 0.119   67.97 0.008   5.79 2.347 

0.31 49.43 0.192   67.97 0.01   5.77 2.747 

0.58 49.46 0.253   67.96 0.008   5.44 8.366 

0.77 49.48 0.296   67.9 0.091   4.89 17.429 

0.99 49.50 0.334   67.65 0.469   4.23 28.78 

 

 

Specimen with the along-the-width dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34 

  

67.96 

  

5.93  

0.12 49.35 0.015 

 

67.97 0.002 

 

5.79 2.42 

0.22 49.39 0.097 

 

67.96 0.0004 

 

5.62 5.31 

0.31 49.40 0.125 

 

67.96 0.002 

 

5.60 5.54 

0.58 49.43 0.187 

 

67.96 0.009 

 

5.08 14.45 

0.77 49.47 0.258 

 

67.91 0.085 

 

4.90 17.38 

0.99 49.51 0.339 

 

67.75 0.320 

 

4.53 23.67 

 

 

Specimen with the edge dent  

Dent 

depth 

(mm) 

Yield 

load 

(kN) 

% 

increase  

in yield 

load 

 

Ultimate 

load (kN) 

%  

reduction in 

ultimate  

load 

 

Fracture 

displacement % reduction 

in fracture 

displacement 

0 49.34 

  

67.96   

 

5.93   

0.12 49.34 0.000 

 

67.96 0.000 

 

5.71 3.72 

0.21 49.34 0.000 

 

67.96 0.000 

 

5.61 5.50 

0.31 49.35 0.024 

 

67.98 0.020 

 

5.57 6.18 

0.57 49.36 0.044 

 

67.86 0.158 

 

5.42 8.70 

0.75 49.37 0.064 

 

67.84 0.236 

 

5.41 8.78 

0.98 49.38 0.085 

 

67.67 0.432 

 

5.38 9.38 
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9.7 Conclusion  

It can be concluded that irrespective of the location of the dent, denting of the tensile armour 

wires increases its yield load and invariably its yield strength. Denting of the tensile armour 

also increases the ultimate load (and invariably the ultimate strength) of the wire if the dent 

depth is less or equal to 0.3mm, beyond which it reduces the wire‟s ultimate load. 

Furthermore, denting of the tensile armour wires reduces the fracture displacement/ductility 

of the wire. Hence for elastic design, the presence of dent(s) in the wire is not a cause for 

concern, but for elastic-plastic design and for situations in which the wire is subjected to large 

strain, then denting of the tensile armour wires can cause the wire to fail at a lower load 

(especially, if the dent depth is greater than 0.3mm) and/or a lower fracture displacement 

(ductility). The reductions in the ultimate load and the displacement at fracture of the tensile 

armour wires increase with dent depth and dent diameter. The worst effects of the presence of 

dents with depth and/or diameter less than the 0.2mm which cannot be detected by the inline 

eddy current detector are 2.73% reduction in the displacement at fracture of the wire. 

 

Having presented the investigation of the effects of scratches and dents on the tensile 

properties of tensile armour wires, the next chapter introduces the investigation of the effect 

of the reverse bending and straightening operations on the tensile properties of tensile armour 

wires and on tensile armour wire defects 
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Chapter 10    Effects reverse bending on defects and tensile 

properties of tensile armour wires. 

 

As stated in section 2.22.3, tensile armour wires are supplied coiled around reels and are also 

subjected to routine reverse bending tests to detect lamination(s) in the wires. Typically 

during the manufacturing of flexible pipes, tensile armour wires are unwound from the reel 

on which they are supplied and wound round a smaller reel. Tensile armour wires from the 

smaller reel are subjected to bending over a 100mm diameter roller, reverse bending over 

another 100mm diameter roller and finally straightened over the third 100mm roller as shown 

in Figure 10.1(a). Bending the tensile armour wires over the big and small reels and bending 

and reverse bending of the wires over the 100mm rollers subject the wires to bending 

stresses. The wires are subjected to the highest bending stresses during the bending and 

reverse bending over the 100mm rollers. These high bending stresses could affect their tensile 

properties and consequently, their performance in service. The effects of the reverse bending 

and straightening processes on laminations and scratches as well as the tensile properties of 

tensile armour wires were investigated using laboratory and numerical experiments.  

 

The laboratory experiments on the reverse bending, straightening and tensile testing of the 

tensile armour wire, and  on the determination of the through thickness microstructure and 

hardness profiles of  the unbent reverse bent, reverse bent and straightened (RBS ), and RBS 

wire that have been subjected to tensile testing are presented in sections 10.1 and 10.2 

respectively. The finite element simulations of the reverse bending, straightening and tensile 

testing of as-received tensile armour wire, and the validation of the simulation of the tensile 

testing of the RBS wire specimens are presented in section 10.3. The simulations of the effect 

of bending, reverse bending and straightening of the tensile armour wire on the mid-thickness 

lamination, near surface lamination and channel shaped scratches in the wire are presented in 

section 10.4. Section 10.5 presents the summary of the effect of the reverse bending and 

straightening operations on the tensile armour wire and on the defects in the wire.  

10.1: Laboratory experimental reverse bending, straightening and tensile testing of 

tensile armour wires.  

A length of tensile armour wire was wound round a 100mm roller as shown in Figure 10.1(b). 

The wire was released, allowed to spring back and reverse bent (bent in the opposite 
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direction) over the same 100mm roller. The wire length was straightened and cut into tensile 

test specimens. These reverse bent and straightened specimens, which are hereinafter referred 

to as RBS specimens and the unbent wires tensile test specimens cut from the same wire as 

the RBS specimens, were subjected to tensile testing. The force-displacement curves and the   

mechanical properties obtained from the laboratory tensile testing of three as-received/unbent 

and three RBS wire are shown in Figure 10.2 and Table10.1 respectively. The tensile 

properties of the experimental unbent specimen 3 was used for the FE material input and the 

FE result was validated with the experimental RBS specimen 1 curve as their properties are 

the closest to the average values.  

 

              

(a) Industrial reverse bending    (b) Experimental bending  

Figure 10.1:  Bending and reverse bending of tensile armour wire round 100mm diameter 

rollers. 

 

   

 

Figure 10.2:    Force-displacement curves from laboratory tensile testing of unbent and RBS 

12mmx5mm, 50mm gauge length tensile armour wire specimens. 
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Table 10.1:   Mechanical properties from experimental tensile testing of unbent and RBS 

12mmx5mm tensile armour wire specimens   

Experimental as-received/unbent 

Parameters Specimen 1 Specimen 2 Specimen 3 Reported value 

Ultimate load (kN) 
77.6 77.1 77.19 77.30 ± 0.27 

Fracture load (kN) 
61.92 61.06 61.43 61.47 ± 0.43 

Displacement at 

fracture (mm) 
4.88 5.01 4.94 4.94 ± 0.07 

Experimental RBS 

Parameters Specimen 1 Specimen 2 Specimen 3 Reported value 

Ultimate load (kN) 
75.2 75.89 75.19 75.43 ± 0.40 

Fracture load (kN) 
62.87 62.7 63.76 63.11 ± 0.57 

Displacement at 

fracture (mm) 
4.81 4.44 4.92 4.72 ± 0.25 

 

The reverse bending and straightening processes reduce the ultimate load and displacement at 

fracture (ductility) by 2.58% and 2.71% respectively as shown in Table 10.1. The reduction 

in the ultimate load could be due to a reduction in thickness of the wire as a result of necking-

down of the wire caused by high back tension and stretching of the fibres on the outer 

surfaces of the wire during bending and reverse bending. The reduction in the ductility of the 

wire is due to the work hardening of the wire during bending and reverse bending operations. 

10.2 Microstructure and hardness profiles of unbent wires and RBS wires  

The effect of the reverse bending, straightening and tensile testing processes on the 

microstructure and hardness of the tensile armour wires was investigated by taking through 

thickness micrographs and microhardness profiles with an optical microscope and a 

microhardness tester respectively. The through thickness micrographs obtained from the 

unbent wires, reverse bent wires, RBS wires  and RBS wires that have been subjected to 

tensile testing are presented in Figures 10.3, 10.4, 10.5 and 10.6 respectively. 

 

From the micrographs, there is no noticeable difference in the microstructure of the unbent 

wires specimen and the microstructure of reverse bent, RBS and tensile tested RBS 

specimens. The micrographs show that the upper and lower surfaces of the wire contain 

mostly ferrite, which are the white areas of the micrographs, while below the surfaces and 
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throughout the middle of the wire, the wires contain mostly pearlite which are the dark areas 

of the micrographs. The grains in the middle of the wire are elongated in the rolling/drawing 

direction.  From the predominant presence of pearlite across the wire thickness except at the 

upper and lower surfaces, which contains mainly ferrite, the wire can be described as pearlitic 

with decarburised (loss of carbon from pearlite leaving ferrite) surface layers. 

 

 

 

Figure 10.3:   Through thickness micrograph of unbent wire. 
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Figure 10.4:   Through thickness micrograph of wire subjected to reverse bending.  

 

   

Figure 10.5:  Through thickness micrograph of wire subjected to reverse bending and 

straightening. 
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Figure 10.6:  Through thickness micrograph of wire subjected to reverse bending, 

straightening and tensile testing. 

 

The through thickness microhardness profiles shown in Figures 10.7 show that there is no 

noticeable difference in the through thickness microhardness of the unbent wire, reverse bent, 

RBS and RBS tensile tested wire specimens. It also shows that the hardness of the wire is not 

uniform across its thickness with a 57HV0.3, 61HV0.3, 83HV0.3 and 52HV0.3 difference in the 

hardness values between the softest and the hardest parts of the unbent wire, reverse bent, 

RBS and RBS tensile tested wire specimens respectively. 

 

 

Figure 10.7:  Through the thickness hardness profiles of unbent and tensile tested RBS wires. 
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10.3: Numerical experiments on reverse bending, straightening and tensile testing of 

as-received tensile armour wires. 

The simulations of bending, reverse bending, straightening and tensile testing of the RBS as-

received 12mmx5mm tensile armour wires were carried out using the arrangement shown in 

Figure 10.8. The arrangement consists of a 305mm long tensile armour wire length between 

the 100mm diameter left roller (roller 1) and the100mm diameter right roller (roller 2), and a 

guide plate. The 305mm length of tensile armour wire consists of the 50mm long tensile 

testing specimen in the middle the equal length left and right attachments. 

 

 

Figure 10.8:   Assembly of specimen, attachments, rollers and guide plate. 

 

The simulations were carried out with the attachments to prevent local deformations of the 

ends of the 50mm long tensile test specimen which occurred when the reverse bending and 

straightening simulations were carried out without the attachments (i.e. with the ends of the 

specimen directly attached to the rollers) as shown in Figures 10.9 (a) and (b). The localised 

specimen end deformation made it impossible to carry out the tensile testing simulation as the 

boundary conditions for the tensile testing simulation which follows the straightening 

simulation could not be applied to the badly deformed specimen ends.  
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(a) End deformation during bending              (b) End deformation during straightening  

Figure 10.9:  Localised specimen ends deformation and Mises stress (MPa) distribution from 

simulations without attachments.  

 

The whole model was meshed with C3D8R elements (8-node hexahedral linear brick reduced 

integration elements with hourglass control). The rollers and the guide plate were meshed 

with 3mmx3mmx3mm elements while the attachments and the specimen were meshed with 

elements having 3mmx3mmx0.5mm and 3mmx1mmx0.5mm dimensions. The 1mm 

dimension is along the specimen length and the 0.5mm dimension is along the wire thickness. 

With 0.5mm element thickness, there are 10 elements along the wire thickness. The specimen 

was meshed with the finest mesh in order to obtain accurate results as the tensile testing 

simulation was carried out on the 50mm long specimen alone. The rollers, the guide plate and 

the attachments (which were only introduced to prevent localised deformation of the ends of 

the specimen) were meshed with a coarse mesh to reduce the output file size and computation 

time. Attempts to use smaller element sizes were not successful as the ends of the 

attachments meshed with smaller elements deformed excessively as shown in Figure 10.10, 

making subsequent straightening and tensile testing simulation steps impossible. 
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Figure 10.10:   Excessive deformation of ends of attachments meshed with finer mesh. 

 

Two elastic-plastic simulations were carried out; one with an isotropic hardening model and 

the other with a combined hardening model in order to determine which one would predict 

the behaviour of the tensile armour wires more accurately since the simulation involves strain 

reversal. The material input data used for the simulation with isotropic hardening were the 

post yield true stress and plastic strain obtained from the laboratory tensile test results while 

the material input data used for the simulation with combined hardening were obtained from 

laboratory tensile test results and numerical experiments detailed in section 10.3.1. 

10.3.1  Determination of combined hardness modelling parameter values 

The appropriate parameter combinations for the combined hardening model were obtained 

through laboratory and numerical testing, parametric study and correlation with experimental 

curve as stated in section 3.7.4.1. The yield stress at zero plastic strain was obtained from the 

laboratory tensile test results as the true yield stress at the absolute yield point of the wire. 

The numerical testing and parametric study involved simulating tensile testing of unbent/as-

received wire specimens with varying combined hardening modelling parameters until the FE 

force-displacement curve agreed with the experimental curve. The parameter sensitivity 

analysis carried out revealed that the extent of the work hardening and the ultimate load value 

are chiefly determined by the value of the kinematic hardening parameter,  , while the 

displacement at fracture is chiefly determined by the value of the isotropic hardening 

parameter, b . The force-displacement curve is less sensitive to other parameters 

Various simulations were carried out with various combinations of the isotropic hardening 

parameters b  and Q infinity ( Q ), and the kinematic hardening parameters, 1C , and 

Gamma( ), until the force-displacement curve predicted by the FE had ultimate load and 
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displacement at fracture values that are close to the experimental values. Some of the 

parameter combinations are presented in Table 10.2. 

Table 10.2:   Combined hardening parameter combinations  

 

Parameter 

combination A 

Parameter 

combination 

B 

Parameter 

combination 

C 

Parameter 

combination 

D 

Yield stress at zero 

plastic strain (MPa) 754.850 754.850 754.850 754.850 

Kinematic hardening 

parameter 1C  15300 

 

15300 15300 

 

15300 

Gamma   240 280 275 275 

Q infinity  12000 12000 12000 12000 

Hardening parameter 

b  0.01 

 

0.014 

 

0.04 

 

0.05 

 

A simulation of the tensile testing was also carried out with the isotropic hardening model for 

comparison. Figure 10.11 shows the experimental force-displacement curve and the force-

displacement curves predicted by the simulations with the isotropic hardening model and 

combined hardening model with parameter combinations A, B, C and D.  

 

 

Figure 10.11:   Experimental and FE with isotropic and combined hardening models force-

displacement curves for 12mmx5mm wire with 50mm gauge length. 
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As shown in Figure 10.12, the force-displacement curve predicted by the simulation with 

combined hardening parameter combination C agrees best with the experimental force-

displacement curve with only 0.059% and 0.093% differences between their ultimate load 

and their displacement at fracture values respectively as shown in Table 10.3. All the curves 

in figure 10.11 have the same elastic response. Consequently, subsequent simulations were 

carried out with combined hardening parameters combination C.  

 

 

Figure 10.12:   Experimental, FE with isotropic and combined hardening parameter 

combination C force-displacement curves. 

 

Table 10.3:   Mechanical parameters from experiment and FE simulations with isotropic and 

combined hardening models  

Parameters  Experiment 

FE with 

isotropic 

hardening   

FE with 

combined  

hardening  

%  difference 

between 

isotropic  

hardening and  

experimental 

values 

% difference 

between 

combined 

hardening and  

experimental 

values 

Ultimate load 

(kN) 77.19 77.19 77.23 0.00 0.06 

Fracture load 

(kN) 61.43 61.55 63.57 0.21 3.49 

Displacement  

at fracture 

(mm)  3.86 3.86 3.86 0.00 0.00 
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10.3.2  Simulations of bending, reverse bending, straightening and tensile testing of 

tensile armour wires   

Having obtained the combined hardening parameters combination where the force-

displacement curve predicted by the  FE simulation agrees with the experimental curve, 

simulations of bending, reverse bending, straightening and tensile testing were carried out 

with isotropic hardening and combined hardening  models. Throughout the bending, reverse 

bending, straightening and tensile testing simulations, the deformed shapes predicted by the 

simulations carried out with isotropic hardening and combined hardening are exactly the 

same except for the difference in the shapes of the fractured specimens after the tensile 

testing simulation. However, there are slight differences in the values of the stress and strain 

across the thickness of the wire predicted by the simulations with the two hardening models. 

Consequently, only the deformed shapes obtained from the simulation with isotropic 

hardening alone are presented to conserve space while the through the thickness stress and 

strain profiles predicted by the simulations with the two hardening models are presented. 

10.3.2.1 Bending simulation 

The bending simulation was carried out by rotating the left roller (roller 1) in an 

anticlockwise direction. The deformed shape of the whole 320mm wire length showing the 

longitudinal axial stress (S11) distribution during the bending simulation is shown in Figure 

10.13(a). The through thickness longitudinal axial stress and Mises stress distributions in the 

50mm long tensile test specimen during bending simulation are shown in  Figures 10.13(b) 

and (c) respectively. Positive axial stresses in the S11contour plot represent tensile axial 

stresses while negative axial stresses represent compressive axial stresses. The highest tensile 

stress is indicated at the top of the contour plot with the deepest red colour while the highest 

compressive stress is indicated at the bottom of the contour plot with the deepest blue colour. 

From Figure 10.13 (b), the upper and the lower parts of the wire are subjected to tensile and 

compressive axial stresses respectively while the middle of the specimen has zero 

equivalent/Mises stress as shown in Figure 10.13(c). 

 

 

 



     

189 

          

(a) Deformed shape and longitudinal axial stress distribution in whole wire length 
 

    

(b) Specimen longitudinal axial stress distribution   (c) Specimen Mises stress distribution     

Figure 10.13:  Axial stress (MPa) and plastic strain distributions in wire during bending 

simulation. 

 

The deformed shape of the whole 320mm wire length showing the longitudinal axial stress 

distribution after bending simulation is shown in Figure 10.14(a) while the through thickness 

longitudinal axial stress and equivalent plastic strain distributions in the test specimen are 

shown in Figures 10.14 (b) and (c) respectively. 
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(a) Deformed shape and longitudinal axial stress distribution in whole wire length 

     

                   

b) Specimen longitudinal axial stress distribution       (c) Equivalent plastic strain distribution  

Figure 10.14:   Axial stress (MPa) and plastic strain distributions in specimen after bending 

simulation. 

 

The maximum longitudinal axial stress and plastic strain across the thickness of the wire 

hereafter referred to as the through thickness axial stress profile and through thickness plastic 

strain profile respectively in the 50mm long specimen due to bending are shown in Figures 

10.15 and 10.16 respectively. The stress and strain in the upper half thickness and the lower 

half thickness of the wire are plotted with 0 to 2.5mm and 0 to -2.5mm Y-axis coordinates 

respectively. As shown in Figures 10.15 and 10.16, there is a stress-strain gradient across the 

thickness of the wire with the peak stress and strain occurring at the surfaces of the wire. This 

result agrees with what is reported by Tvergaard, (1987) and is due to the fact that the fibres 

at the surfaces of the wire experience the highest stress and strain.  Also the predicted through 

thickness longitudinal axial stress profile in the bent wire in Figure 10.19 agrees with the 
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through thickness axial stress profile after bending shown in Figure 4.11 reported by Gau and 

Kinzel, (2001). As shown in Figure 10.16, the strain profile is linear as expected since the 

deformation or straining of the wire is imposed by the curvature during bending.  

 

Calculating the maximum strain in the wire with a thickness (T ) of 5mm, bent over a roller 

of diameter ( rD ) of 100mm with the expression given in equation 4.8, the maximum strain in 

the wire is calculated as 0.048 as shown in equation 10.1. The 0.048 maximum strain 

obtained with the analytical expression agrees well with the 0.043 predicted by the bending 

simulation as shown in the equivalent strain contour plot in Figure 10.14(c). This shows the 

accuracy of the bending simulation.  

 

048.0
1005

5








rDT

T
e                                (10.1) 

 

From Figures 10.15, and 10.16, the 5mm thick wire is subjected to tensile and compressive 

stresses at its upper and lower parts respectively. The neutral axis/zone occurs approximately 

at a depth of 0.0148mm below the geometric mid-thickness of the wire and not at the mid-

thickness/depth which occurs in elastic and/or pure bending because the simulation involves 

plastic bending and frictional contact between the lower part of the wire and the roller. As 

shown by the elastic zone (zero plastic strain)  in Figure 10.14(c) and the linear portion of the 

axial stress profile in Figure 10.15, approximately the middle 20% of the wire thickness with 

tensile/compressive stresses less or equal to 754MPa (the axial yield strength of the wire) 

remains elastic after bending. The remaining outer portions of the wire have been plastically 

deformed to varying degrees with the highest plastic deformation (typified by the highest 

axial stress and plastic strain) occurring at the top of the upper half and bottom of the lower 

half of the wire.  

(Gau and Kinzel, 2001). 
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Figure 10.15:   Through thickness longitudinal axial stress profile in specimen after bending.  

 

 

Figure 10.16:   Through thickness longitudinal axial plastic strain profile in test specimen 

after bending. 

10.3.2.2 Reverse bending simulation  

The reverse bending simulation was carried out by rotating the right roller (roller 2) in  an 

anticlockwise direction. The deformed shape of the whole 320mm wire length showing the 

longitudinal axial stress distribution during reverse bending over the second 100mm roller 

(reel 2) is given in Figure 10.17(a). 
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Figure 10.17:   Axial stress (MPa) and plastic strain distributions in specimen during reverse 

bending simulation. 

 

The deformed shape of the whole 320mm wire length showing the longitudinal axial stress 

distribution after the reverse bending simulation is shown  in Figure 10.18 (a) and the through 

thickness longitudinal axial stress and equivalent plastic strain distributions in the specimen 

are shown in Figures 10.18 (b) and (c) respectively. 
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(a) Deformed shape and longitudinal axial stress distribution in whole wire length 

 

         

 (b) Longitudinal axial stress distribution     (c) Equivalent plastic strain 

distribution  

 

Figure 10.18:   Axial stress (MPa) and plastic strain distributions in specimen after reverse 

bending simulation.  

  

The through thickness maximum longitudinal axial stress and plastic strain profiles of the test 

specimen after reverse bending simulation are presented in Figures 10.19 and 10.20 

respectively. Again, the predicted through thickness longitudinal axial stress profile in the 

reverse bent wire in Figure 10.19 agrees with the through thickness stress profile after reverse 

bending shown in Figure 4.11 reported by Gau and Kinzel, (2001). As shown in Figure 10.20, 

the strain profile predicted by the simulation with the combined hardening model is linear as 

expected for a bending induced straining, whereas the strain profile predicted by the 

simulation with the isotropic hardening model is not linear. Now, a difference between the 

hardening models is observed. Unlike the bending simulation which subjected the upper and 
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lower halves of the wire to tension and compression respectively, the upper half of the wire is 

now subjected to compression and the lower half is subjected to tension after reverse bending 

simulation as shown in Figures 10.18, 10.19 and 10.20.  

 

As shown by the elastic zone (zero plastic strain) in Figure 10.18(c) and the linear portion of 

the longitudinal axial stress profile in Figure 10.19, approximately the middle 20% of the 

wire thickness with tensile/compressive stresses less or equal to 754MPa (the axial yield 

strength of the wire) remains elastic after reverse bending while the remaining outer portions 

of the wire have been plastically deformed. 

 

 

Figure 10.19:   Through thickness axial stress profile in specimen after reverse bending. 

 

 

 

Figure 10.20:   Through thickness axial plastic strain profile in test specimen after reverse 

bending.  
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10.3.2.3 Straightening simulation 

The straightening simulation was carried out by rotating roller 2 in a clockwise direction to 

unwind the tensile armour wire and by pulling roller 1 longitudinally and vertically until the 

attachments and test specimen was straightened. The deformed shape of the whole 320mm 

wire length showing the longitudinal axial stress distribution after the straightening 

simulation is shown in Figure 10.21(a). The through thickness longitudinal axial stress and 

equivalent plastic strain distributions in the test specimen are shown in Figures 10.21 (b) and 

(c) respectively. 

     

(a) Deformed shape and stress distribution in whole wire length  

 

 

(b) Longitudinal axial stress distribution    

 

(c) Equivalent plastic strain distribution 

 

Figure 10.21:   Axial stress (MPa) and plastic strain distributions in specimen after 

straightening simulation. 
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The through thickness maximum longitudinal axial stress profile and the maximum 

longitudinal axial plastic strain profile in the test specimen after straightening simulation are 

presented in Figures 10.22 and 10.23 respectively. The strain profiles predicted by the two 

hardening models shown in Figure 10.23 are no longer linear after straightening due to the 

tensile induced plastic straining involved in the straightening process. As shown in Figures 

10.21(a), (b) and (c), the initial upper part of the wire at the beginning of the simulation is 

now the lower part after the wire has undergone bending, reverse bending and straightening 

simulations and is in tension. As shown by the elastic zone (zero plastic strain) in Figure 

10.21(c) and the linear portion of the longitudinal axial stress profile in Figure 10.22, 

approximately the middle 20% of the wire thickness with tensile/compressive stresses less or 

equal to 754MPa (the axial yield strength of the wire) remains elastic after straightening 

while the remaining outer portions of the wire have been plastically deformed. 

 

 

Figure 10.22:   Through thickness longitudinal axial stress profile in specimen after 

straightening. 

 

 

Figure 10.23:   Through thickness longitudinal axial plastic strain profile in specimen after 

straightening. 
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10.3.2.4 Tensile testing simulation 

The combined longitudinal axial stress histories showing the stress reversals that the upper, 

the middle and the lower parts of the wire have undergone during the bending, reverse 

bending and straightening simulations are shown in Figure 10.24. The combined stress 

histories were obtained from nodes at the topmost part, the mid-thickness and the bottom of 

the lower part of the wire. In Figure 10.24, the bending, reverse bending and straightening 

simulations occurred at 0-1s, 1-2s, and 2-3s analysis step times respectively. As stated earlier, 

and as evidenced in Figure 10.24, throughout the bending, reverse bending and straightening 

simulations, the middle of the wire remains elastic as it was never stressed beyond its yield 

stress of 754MPa, while the upper and lower parts of the wire underwent cyclic tensile and 

compressive plastic deformations. 

 

The stress at the end of the straightening simulation represents the residual stress in the 

50mm tensile test specimen at the beginning of the tensile testing simulation. Consequently, 

the upper and the lower parts of the tensile test specimen (which were initially the lower and 

upper part at the beginning of the bending simulation respectively) have residual compressive 

and residual tensile stresses respectively at the beginning of tensile testing simulation. Thus 

the residual stress across the wire thickness at the beginning of the tensile testing simulation 

is not uniform leaving the RBS wire test specimen with an unbalanced stress distribution. 

Also the upper and the lower parts of the wire specimen subjected to the tensile testing 

simulation have been plastically deformed and work hardened while the middle 20% 

(approximately) of its thickness remained elastic. 

 

 

Figure 10.24:   Stress histories of upper, middle and lower parts of RBS wire test specimen.  
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10.3.2.5 Boundary conditions during tensile testing simulation 

During the tensile testing simulation step, the left roller, the left attachment and the left end of 

the specimen were fixed while the right roller, the right attachment and the right end of the 

specimen that are free to move only in the longitudinal direction were subjected to 

longitudinal axial displacement. To ascertain whether these boundary conditions are 

appropriate, a tensile testing simulation alone without the bending, reverse bending and 

straightening simulations was carried out on the unbent wire in the rollers-attachments-

specimen assembly with these boundary conditions as shown in Figure 10.25(a). The result of 

the simulation was compared with the result of a tensile testing simulation carried out on 

unbent wire alone (i.e. not in the rollers-attachments-specimen assembly) with the same 

boundary conditions as shown in Figures 10.25(b). 

  

 

(a) Unbent wire in rollers-attachments-specimen assembly  

 

 

(b) Unbent wire alone  

Figure 10.25:   Boundary conditions on unbent wire alone and unbent wire in rollers-

attachments-specimen assembly during tensile testing simulation.  

 

The fracture shapes predicted by the simulations carried out with the unbent wire alone and 

with the unbent wire in the rollers-attachments-specimen assembly are shown in Figure 
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10.26. The force-displacement curves predicted by the simulations with the unbent wire alone 

and the unbent wire in the rollers-attachments-specimen assembly shown in Figures 10.27 

agrees well with a maximum of 0.19% difference between the mechanical properties 

predicted by the two simulations as shown in Table  10.4. This shows that the boundary 

conditions applied to the reels, attachments and specimen during the tensile testing simulation 

step are appropriate as they have negligible impact on the tensile response of the 50mm 

tensile test specimen. The 0.19 percentage difference is within the variation that occurs in FE 

computations and could be due to the differences in the computation of the nodal force and 

displacement values as a result of the differences in the number of nodes involved in the 

computations for the simulations with the unbent wire alone and the unbent wire in the 

rollers-attachments-specimen assembly. 

 

 

(a)  Unbent specimen in reels-attachments-specimen assembly  

 

(b) Fractured specimen between attachments 

 

(c) Unbent specimen alone  

Figure 10.26:  Fracture shapes of unbent wire specimen alone and unbent wire specimen in 

reels-attachments-specimen assembly. 
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Figure 10.27:   Force-displacement curves from simulations with 12mmx5mm, 50mm gauge 

length unbent specimen alone and unbent specimen in rollers-attachments-specimen 

assembly.  

 

Table 10.4   Mechanical properties wire predicted by simulations with specimen alone and 

specimen in rollers-attachments-specimen assembly  

Parameters 

Simulation with 

specimen alone 

Simulation with specimen  in 

specimen-rollers-attachments  

assembly 

Percentage 

difference 

Yield load (kN) 53.14 53.13 0.0131 

Ultimate load (kN) 77.24 77.23 0.0003 

Fracture load (kN) 66.48 66.35 0.1897 

Yield point 

displacement (mm) 0.27 0.27 5.26E-05 

Ultimate load  

displacement (mm) 1.20 1.20 0.0004 

Fracture 

displacement (mm) 3.99 4.26 0.0684 

 

10.3.2.6 Deformed shapes and stress distributions during tensile testing simulation 

The deformed shape of the whole 320mm wire length showing the longitudinal axial stress 

distributions, the residual longitudinal axial stress distributions in the RBS test specimen and 

the undeformed stress-free unbent specimen before tensile testing are shown in Figures 10.28 

(a), (b) and (c) respectively.   
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(a)   Stress distributions in the whole wire length  

 

(b)   Stress distributions in RBS specimen  

 

(c)   Unbent stress free specimen 

Figure 10.28:    Residual longitudinal axial stress (MPa) distributions in whole wire length, 

unbent, and RBS specimens before tensile testing. 

 

The deformed shape of the whole 320mm wire length showing the longitudinal axial stress 

distributions, and the longitudinal axial stress distributions in the RBS and unbent specimens 

at the beginning of tensile testing are shown Figure 10.29 (a), (b) and (c) respectively. As 

shown in Figures 10.29 (a) and (b), at the beginning of the tensile testing simulation, the 

displacement applied to the specimens produced a uniform tensile stress across the thickness 

of the unbent specimen while the stress across the thickness of the RBS specimen is not 

uniform. The stress is not uniform because of the unbalanced residual stress distribution in 
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the RBS specimen and because the outer parts of the specimen has been plastically deformed 

while its middle part remains elastic. 

 

 

(a)   Stress distributions in the whole wire length  

 

(b) Stress distributions in RBS specimen   

 

(c) Stress distributions in unbent specimen 

Figure 10.29:   Longitudinal axial stress (MPa) distributions in unbent and RBS specimens at 

an applied displacement of 0.16mm. 

 

The deformed shape of the whole 320mm wire length showing the longitudinal axial stress 

distributions and the longitudinal axial stress distribution in the RBS and unbent specimens 

before necking are shown Figures 10.30(a), (b) and (c) respectively. At this stage, the stress 

across the thickness of the RBS specimen is purely tensile and approximately uniform. 
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(a)   Stress distributions in the whole wire length  

 

(b) Stress distribution in RBS specimen   

 

(c) Stress distribution in unbent specimen 

Figure 10.30:   Longitudinal axial stress (MPa) distributions in unbent and RBS specimens 

before necking. 

 

The deformed shape of the whole 320mm wire length showing the longitudinal axial stress 

distributions and the longitudinal axial stress distributions in the RBS and unbent specimens 

during necking are shown Figures 10.31(a), (b) and (c) respectively. 
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(a)   Stress distributions in the whole wire length  

 

(b) Stress distribution in RBS specimen   

 

(c) Stress distribution in unbent specimen 

Figure 10.31:   Longitudinal axial stress (MPa) distributions in whole wire length, unbent, 

and RBS specimens during necking. 

 

The deformed shapes showing the fractured RBS specimen within the whole 320mm length 

of wire is shown in Figures 10.32 while the deformed shapes of the unbent and RBS 

specimens alone are shown in Figure 10.33. 
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Figure 10.32:   Fracture RBS specimen within the whole length of wire showing longitudinal 

axial stress (MPa) distribution. 

 

 

(a)   Fractured RBS specimen  

 

(c)    Fractured unbent specimen  

Figure 10.33:   Fractured RBS and unbent specimens showing longitudinal axial stress (MPa) 

distribution. 

10.3.2.7 Analysis of results of FE simulation of tensile testing of RBS specimens 

The force-displacement curves obtained from experimental and numerical tensile testing of 

RBS specimens, and from experimental and numerical tensile testing of unbent and RBS 

specimens with isotropic and combined hardening models are shown the Figures 10.34 and 

10.35. The force-displacement curve predicted by the simulation of bending, reverse bending, 

straightening and tensile testing carried out with combined hardening agrees very well with 

the experimental curve throughout the elastic region, and fairly well in the plastic region and 
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fracture region. Conversely, the force-displacement curve predicted by the simulation with 

isotropic hardening does not agree with the experimental curve throughout the elastic region 

as it shows that the wire has been work hardened which is not evident in the experimental 

curve. It also predicted that the RBS specimen has a higher fracture displacement than the 

unbent specimen as shown in Figure 10.35 (a) which is contrary to the lower fracture 

displacement value for the RBS specimen obtained from the experiment and from the 

simulation with kinematic hardening shown in Figures 10.35 (b) and (c) respectively. 

 

 

 

Figure 10.34:   Force-displacement curves from experimental and numerical tensile testing of 

12mmx5mm, 50mm gauge length RBS specimens. 
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(a)   Simulation with isotropic hardening 

 

 

(b)   Experimental curves  

 

 

(c)   Simulation with combined hardening 

 

Figure 10.35:   Force-displacement curves from experimental and numerical tensile testing of 

12mmx5mm, 50mm gauge length unbent and RBS specimens. 



     

209 

Consequently, the combined hardening model is more appropriate for the simulation of 

bending, reverse bending, and straightening of tensile armour wires which involves strain 

reversal as it captures the behaviour of the wire better than the simulation with isotropic 

hardening. The simulation with isotropic hardening merely captured the work hardening 

during bending, reverse bending, and straightening simulations and not the reduction in yield 

(softening) of the wire due to the Bauchinger effect which results from the strain reversal 

involved in the simulation. Therefore, subsequent simulations were carried out with the 

combined hardening model. 

 

The mechanical properties predicted by the simulations of tensile testing of unbent and RBS 

wire specimens with combined hardening models are presented in Table 10.5. From Table 

10.5, the bending, reverse bending and straightening simulations or operations reduced the 

yield load, ultimate load and fracture displacement by 4.22%, 2.18% and 18.62% 

respectively. This reduction in the yield load agrees with what is reported by Fukuda et al, 

(2005)  and is due to the Bauschinger effect. As with the experimental tensile testing of RBS 

specimen which reduced the ultimate load, fracture load and fracture displacement by 2.58%, 

2.38% and 2.71% respectively (earlier presented in Table 10.1), the largest effect (18.62% 

reduction) of the reverse bending and straightening predicted by the FE simulation is 

observed in  the fracture displacement results.  

 

Table 10.5: Mechanical properties predicted by simulation of tensile testing of unbent and 

RBS wire specimens with combined hardening models 

Parameters 

Unbent wire 

specimen 

RBS wire 

specimen 

Percentage 

difference 

Yield load (kN) 53.14 50.87 4.27 

Ultimate load (kN) 77.24 75.55 2.18 

Fracture load (kN) 66.36 69.05 4.05 

Yield point displacement (mm) 0.27 0.31 17 

Ultimate load point displacement (mm) 1.19 1.12 6.18 

Fracture  displacement (mm) 4.26 3.47 18.62 

 

The differences between the percentage reductions in these mechanical properties obtained 

from experiments and FE simulations could be because the spring back, elastic recovery and 
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stress relaxation in the wire between the bending and reverse bending simulation which 

occurred in the experimental simulations did not occur in the numerical simulation. Also, as 

the rollers are rotated during bending and reverse bending, the FE simulation ensures a 

complete contact between every part of the wire surface and the rollers. A complete contact 

between the wire and the roller may not have been achieved in the experimental simulation as 

the wires were manually wound round the roller. Consequently, there could be differences in 

the radius of curvature of the wires during the experimental and numerical simulations which 

could affect the degree of stress and the degree of work hardening to which the wires were 

subjected during the experimental and numerical simulations. The FE simulation of the 

bending and reverse bending of the wires can therefore be said to replicate the real life 

process in the industry better than the experimental simulation and its results in this context 

can be said to be more reliable than the experimental results. 

 

The drop in the yield stress and the ultimate loads of the RBS wires can be attributed to the 

possible necking and consequent reduction in thickness of the wire due to the high tensile 

stresses to which the outermost layers of the wires were subjected during bending, reverse 

bending and straightening operations as stated in sections 10.3.2, 10.3.3 and 10.3.4. Also the 

reduction in the yield and the ultimate loads could be due to the presence of some residual 

tensile stresses which make it easier for subsequent plastic deformation to occur and which 

may override the work hardening effects of plastic deformation. Furthermore, the drop in the 

yield stress may also be due to the softening effect of the Bauchinger effect. The drop in the 

fracture displacement and invariably the ductility of the RBS wire specimens is due to the 

accumulated plastic straining from the bending, reverse bending and straightening processes 

which has work hardened the specimen and used part of the wires total plastic 

deformation(ductility) due to previous dislocation motions in the RBS specimen.  

10.4 Effects of bending, reverse bending and straightening on tensile armour wire 

defects 

The effects of bending, reverse bending and straightening on tensile armour wire defects were 

investigated by carrying out FE simulations of tensile armour wire specimens with defects  

subjected to bending, reverse bending, straightening and tensile testing. The defects 

considered were laminations and surface scratches. 
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10.4.1  Effects of the combination of lamination and reverse bending and straightening 

on tensile armour wires  

The effects of laminations alone on the tensile properties of tensile armour wires and the 

effects of bending, reverse bending and straightening operations on laminations in tensile 

armour wire, as well as the effects of the combination of laminations and bending, reverse 

bending and straightening operations on the tensile properties of tensile armour wires were 

investigated using finite element simulations. Finite element simulations alone were used for 

the investigation as it is not practicable to introduce laminations into the laboratory wire 

specimens due to the infinite width of laminations.  

10.4.1.1 Effects of lamination on tensile properties of tensile armour wires 

The effect of laminations on the tensile properties of tensile armour wires was investigated by 

comparing the force-displacement curves and the mechanical properties predicted by FE 

simulation of tensile testing of lamination free wire and wires with laminations. The 

simulations of the tensile testing of lamination free wire and wires with laminations were 

carried out with the tensile test specimens within the same specimen-rollers-attachment 

assembly used for the reverse bending and straightening simulations shown in Figures 10.36. 

This was conducted to provide a good basis for comparison of the results from this 

arrangement with the result of the simulations involving bending, reverse bending and 

straightening of a wire specimen with laminations used for investigating the effects of a 

combination of laminations and bending, reverse bending and straightening operations which 

was carried out with this same arrangement. 

  

The 50mm long tensile armour wire tensile test specimen in Figure 10.36 has a 20mm long 

lamination. The lamination is not visible in the meshed image in Figure 10.36(a) because it 

was modelled as a partition line with a seam as this is the only way to make the width of the 

lamination infinite. A seam in Abaqus is used to model faces that are originally closed but 

open during analyses. The lamination in the specimen can be seen in the wire framed image 

in Figure 10.36(b). 
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(a) Meshed specimen-rollers-attachments assembly  

 
 

(b) Assembly of specimen-rollers-attachments in wire frame  

Figure 10.36:   Specimen with lamination in specimen-rollers-attachments assembly. 

 

The tensile testing simulations was carried out on wire specimens with a lamination at the 

middle of its thickness hereinafter referred to as mid-thickness lamination, and with a 

lamination 1mm below the top surface of the wire hereinafter referred to as near-surface-

lamination shown in Figures 10.37(a) and (b) respectively. 

 

. 
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(a) Specimen with a mid-thickness lamination.  

 

(b) Specimen with a near-surface lamination. 

Figure 10.37:   Tensile test specimens with mid-thickness and near-surface laminations. 

 

There is no difference in the deformed shapes and stress distribution of the lamination free 

specimen and the specimens with a near-surface lamination or mid-thickness lamination at 

the beginning of the tensile testing simulation and the deformed shape of one of them is 

shown in Figure 10.38.  

 

 

 

Figure 10.38:  Deformed shapes and Mises stress (MPa) distribution for lamination free 

specimen and specimens with laminations at the beginning of tensile testing simulation. 

 

During necking, the entire cross section of the lamination free specimen necked down as a 

single unit as shown in Figure 10.39(a).  For the specimens with laminations, the presence of 

the lamination divides the wire specimen into two ligaments along its thickness with each 

ligament necking separately thereby creating a space between the two ligaments as they 

shrink in opposite vertical directions as shown in Figure 10.39(b) and (c).  
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(a) Lamination free wire specimen  

 

 

(b)   Wire specimen with near-surface lamination 

 

 

(c)   Wire specimen with mid-thickness lamination 

 

Figure 10.39:   Deformed shapes and Mises stress (MPa) distribution for lamination free 

specimen, and specimens with laminations during necking. 
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As shown in Figure 10.40(a), fracture initiation, indicated by elements removal, occurred 

across the entire thickness of the lamination free specimen at once. Fracture initiation also 

occurred in the two ligaments of the specimen with the mid-thickness lamination at the same 

time because of their equal size whilst fracture occurred first in the thin ligament of the 

specimen with the near-surface lamination as shown in Figures 10.40(b) and 10.40(c) 

respectively. Fracture initiation occurred first in the thin ligament of the specimen with near-

surface lamination because the stress and strain in this ligament is higher than that in the thick 

ligament. 

 

 

(a) Lamination free specimen  

 

 

 (b) Specimen with mid-thickness lamination  

 

 

(c)   Specimen with near-surface lamination 

 

Figure 10.40:   Deformed shapes showing Mises stress (MPa) distribution during fracture 

initiation in lamination free specimen and in specimens with laminations. 
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As shown in Figure 10.41(a), the entire cross section of the lamination free specimen 

fractured as a single unit. The two ligaments of the specimen with mid-thickness lamination 

also fractured at the same time because of their size, while the thin ligament of the specimen 

with near-surface lamination fractured first as shown in Figures 10.41(b) and (c) 10.41(c) 

respectively. The completely fractured specimen with near-surface lamination is shown 

Figure 10.41(d). 

 

 

(a)   Completely fractured lamination free specimen. 

 

 

(b)   Completely fractured specimen 

 

 

(c)   Fractured thin ligament 

 

 

(d)   Completely fractured specimen 

Figure 10.41:   Completely fractured lamination free specimen and specimen with 

laminations showing Mises stress (MPa) distribution. 
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The force-displacement curves and the mechanical properties obtained from the simulations 

of the tensile testing of the lamination free wire and wires with mid-thickness and near-

surface laminations are shown in Figures 10.42 and Table 10.6 respectively. 

 

 

Figure 10.42:   Force-displacement curves for lamination free 12mmx5mm, 50mm gauge 

length wire and wires with laminations. 

 

Table 10.6:  Mechanical properties predicted for lamination free wire and wires with 

laminations  

Parameters 

Lamination 

free wire 

Wire with 

mid-thickness 

lamination    

Wire with 

near-surface 

lamination    

Percentage difference 

between lamination free 

wire and wires with 

lamination 

Mid-

thickness 

lamination 

Near-

surface 

lamination 

Yield  load (kN) 53.14 53.14 53.14 0.00 0.00 

Ultimate  load (kN) 77.24 77.24 77.24 0.00 0.00 

Fracture load (kN) 66.35 66.27 66.52 0.12 0.25 

Yield point 

displacement (mm) 0.26 0.26 0.26 0.00 0.00 

UTL displacement 

(mm)  1.19 1.19 1.19 0.00 0.00 

Fracture 

displacement (mm) 4.26 3.99 3.99 6.25 6.25 
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From Figures 10.4 and Table 10.6, both mid-thickness and near-surface laminations have 

negligible effects (0.0079% and 0.0053% reductions respectively) on the yield load and also 

negligible effects (0.0003% reductions for both) on the ultimate loads of the wire. However 

both mid-thickness and near-surface laminations have a worse effect on the fracture 

displacement and invariably the ductility of the wire which both reduced by 6.25%. 

10.4.1.2    The effects of bending, reverse bending and straightening operations on 

laminations in tensile armour wire 

The effects of bending, reverse bending and straightening operations on laminations in tensile 

armour wires were investigated by carrying out FE simulations of bending, reverse bending 

and straightening of tensile armour wire specimens with mid-thickness and near-surface 

laminations. Throughout the bending simulation, the deformed shapes of the specimen with 

mid-thickness and the specimen with near-surface lamination are the same. Hence, the 

deformed shape of only one of them is presented in Figure 10.43. Throughout the bending 

simulation, there was no noticeable effect of bending on both mid-thickness and near-surface 

laminations as shown in Figures 10.43 and (b). Consequently, the lamination is not visible in 

the meshed image in Figure 10.43(a) and is therefore shown in the wire framed image in 

Figure 10.43(b).   
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(a) Meshed image of wire with lamination bent round roller 

 

                                                     

(b) Wire framed image of wire with lamination bent round roller. 

Figure 10.43:   Deformed shapes and longitudinal stress (MPa) distribution for specimens 

with laminations after bending simulation. 

 

During bending, the upper part of the wire which is above the mid-thickness lamination and 

within which the near-surface lamination lies is subjected to tensile stresses while the lower 

part of the wire is subjected to compressive stresses. During reverse bending, the specimen 

opened up at the locations of the laminations. The specimen with the mid-thickness 

laminations opens up slightly as shown in Figures 10.44(a) while the specimen with the near-

surface lamination opened up considerably as shown in Figures 10.44(b). The deformed 

shapes of the specimens with mid-thickness and near surface laminations during the reverse 

bending simulation have openings at the locations of the laminations as shown in Figure 

10.45. 
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(a) Opening at the location of mid-thickness lamination     

 

 (b) Opening at the location of near-surface lamination     

 

Figure 10.44:   Deformed shapes and longitudinal stress (MPa) distribution for of specimens 

with laminations during reverse bending. 
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                (a)  Opening at mid-thickness lamination location 

                  

 

(b) Opening at near-surface lamination location      (c) Buckling under compressive stresses              

 

Figure 10.45:   Opening at locations of laminations during reverse bending. 

 

The presence of a lamination in the wire divided the wire into two ligaments, with the 

ligament above the lamination buckling/bowing under the compressive longitudinal axial 

stresses to which the upper part of the wire is subjected during reverse bending as shown in 

Figure 10.45(c). The blue colour represents a compressive stress while the red represents 

tensile stress as stated earlier. The ligaments buckled and caused the wire to open up at the 

location of the laminations because they are thinner than the remaining parts of the specimen 

and the attachments without lamination or divided ligaments (with a full wire thickness) 

which did not buckle throughout the reverse bending. The thin ligament of the specimen with 

near-surface lamination buckled more than the ligament of the specimen with mid-thickness 

lamination because it is thinner. This explains why the opening in the specimen with near-
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surface lamination as shown in Figure 10.45 (b) is larger than the opening in the specimen 

with mid-thickness lamination shown in Figures 10.45(a). 

 

At the end of the reverse bending simulation, the opening at the location of the near-surface 

lamination remains as shown in Figures 10.46(a) and 10.47(a) as the roller was unable to 

flatten out the buckled thin ligament due to its high degree of curvature. On the other hand, 

the opening at the location of the mid-thickness lamination is closed up as shown in Figures 

10.46 (b) because the buckled ligament was flattened by the roller due to its gentle curvature. 

Hence the mid-thickness lamination is not visible in the meshed image in Figure 10.46 (b) 

and is shown in the wire framed image in Figure 10.46(c).  

Large opening   Opening closed up   Lamination  

 

(a)   Specimens with near-surface lamination 

 

(b) Meshed image of specimens with mid-thickness lamination 

 

(c) Specimens with mid-thickness lamination in wire frame. 

 

Figure 10.46:  Deformed shapes and longitudinal stress (MPa) distribution for specimens 

with laminations after reverse bending simulation.          
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                                      Opening at near-surface lamination location       

     

                                           

(b) Mid-thickness lamination location without opening   (c) Lamination in wire framed image  

 

Figure 10.47:   Deformed shapes at locations of laminations after reverse bending simulation. 

 

During the straightening simulation, the upper and lower parts of the wire specimen are 

subjected to compressive stresses and tensile stresses respectively as shown in Figures 

10.48(a) and (b). Consequently, the buckled/bowed thin ligament of the specimen with near-

surface lamination is subjected to tensile stresses which straightens it and reduces its degree 

of curvature. Conversely, the ligament that is above the mid-thickness lamination 

buckles/bows under compressive stresses during straightening, leading to an opening up of 

the specimen at the location of the mid-thickness lamination shown in Figures 10.48(b) and 

10.49(b). 
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(a)   Specimens with near surface lamination 

 

(a)   Specimens with mid-thickness lamination 

Figure 10.48:  Deformed shapes and longitudinal stress (MPa) distribution for specimens 

with laminations during straightening simulation. 

 

 

(a) Specimen with near-surface lamination  

                                  

(b) Specimen with mid-thickness lamination 

Figure 10.49:   Deformed shapes at locations of laminations toward end of straightening 

simulation.  
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Towards the end of the straightening simulation, the thin ligament of the specimen with near-

surface lamination started fracturing as indicated by the removal of one of the two layers of 

the thin ligament elements, shown in Figures 10.49(a), whilst there was no fracture initiation 

in the ligaments of the specimen with mid-thickness lamination as shown in Figures 10.49 

(b). The thin ligament started fracturing before the end of the straightening simulation while 

the thick ligament did not because the tensile stress/strain in the thin ligament is considerably 

higher than the tensile stress/strain in the thick ligament due to its thinner dimension.  

 

The deformed shapes of the specimens with near-surface and mid-thickness laminations 

within the specimen-rollers-attachments assembly at the end of the straightening simulation 

are shown in Figure 10.50 (a) and (b) respectively. The deformed shapes of the specimens 

alone are shown in Figures 10.50 (c) and (d) respectively. As shown in Figure 10.5c (c) and 

(d), the partially fractured thin ligament of the specimen with near-surface lamination 

fractured completely at the end of the straightening simulation while none of the ligaments of 

the specimen with mid-thickness lamination fractured. The partially fractured thin ligament 

completely fractured due to its thin dimension which was made even thinner by its partial 

fracture during the straightening simulation.  

 

At the end of the straightening simulation, the opening at the location of the mid-thickness 

lamination eventually closed up as shown in Figure 10.53(d) due to the straightening of the 

buckled ligament by the tensile stress to which it was subjected during the straightening 

simulation. Thus, it can be inferred that bending, reverse bending and straightening of tensile 

armour wires can only reveal near-surface laminations in the wire as wires with mid-

thickness laminations will pass through the reverse bending and straightening without 

fracturing. Also the mid-thickness lamination in the wire may be undetected with the naked 

eye as the opening at the location of the mid-thickness lamination closes up after 

straightening which may make the laminations invisible. 

 

Hence the reverse bending operation may not be an effective test to detect mid-thickness 

laminations in the tensile armour wires and other in-line non destructive testing (NDT) 

methods might have to be used to detect mid-thickness laminations. This is because the 

presence of laminations does not only reduce the strength and ductility of the wire but can 

make the wire suffer rapid corrosion failure rate when the wires are in service. 
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(a) Specimen with near-surface lamination within the specimen-rollers-attachment assembly 

 

 

(b) Specimen with mid-thickness lamination within the specimen-rollers-attachment 

assembly 

 

(c) Specimen with near-surface lamination alone  

 

(d) Specimen with mid-thickness lamination alone 

 

Figure 10.50:  Deformed shapes and longitudinal stress (MPa) distribution for specimens 

with mid-thickness and near surface laminations after straightening simulation.  
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10.4.1.3  Effects of combination of lamination and reverse bending and 

straightening on tensile armour wires.  

The investigation of the effects of a combination of laminations, and bending, reverse 

bending and straightening operations on the tensile properties of tensile armour wires was 

conducted by carrying out finite element simulation of the tensile testing of wire specimens 

with laminations that have been subjected to bending, reverse bending and straightening. The 

results of the RBS wire specimens with near-surface and mid-thickness laminations were 

compared with the results of RBS wire specimens without laminations and with the result of 

the unbent wire specimens with laminations. 

 

The deformed shapes and Mises stress distributions in the RBS specimens with the near-

surface and mid-thickness laminations alone at various stages of the tensile testing simulation 

are shown in Figures 10.51 (a) to (d) and Figures 10.52 (a) to (d) respectively. To conserve 

space, only the deformed shapes of the RBS specimen with near-surface and mid-thickness 

laminations within the specimen-rollers-attachments assembly at the end of tensile testing 

simulations alone are shown in Figures 10.51 (e) and 10.52(e). As shown in Figure 10.51(a), 

since the thin ligament has fractured, the applied tensile load was carried by the thick 

ligament until fracture is initiated in this ligament as shown in Figure 10.53 (b), and until it 

completely fractured as shown in Figure 10.51(c). In contrast, the two equal ligaments of the 

specimen with mid-thickness lamination carried the applied tensile load throughout the 

tensile testing simulation. Fracture initiation occurred in the two ligaments as shown in 

Figure 10.53(b) and both ligaments fractured at approximately the same time as shown in 

Figure 10.53(c). 
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(a)   At the beginning of tensile testing      

                                                                                           

 

 (b)   Fracture initiation in thicker ligament 

 

 

(c) Completely fractured specimen isotropic 

 

 

(d) Completely fractured specimen within specimen-rollers-attachments assembly. 

 

Figure 10.51:   Deformed shapes and Mises stress (MPa) distribution from simulation of 

tensile testing of RBS specimen with near-surface lamination. 
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(a)   At the beginning of tensile testing simulation 

 

       

(b)   During fracture initiation  

 

 

(c)   Completely fractured specimen 

 

 

(d) Completely fractured specimen within specimen-rollers-attachments assembly. 

 

Figure 10.52:   Deformed shapes and Mises stress (MPa) distribution from simulation of 

tensile testing of RBS specimen with mid-thickness lamination. 
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The force-displacement curves and the mechanical properties of the tensile armour wires 

predicted by the simulations of the tensile testing of the unbent lamination free specimen, 

RBS lamination free specimen and RBS specimen with near-surface and mid-thickness 

laminations are shown in Figures 10.53(a) and (b),  and Table 10.7 respectively. From Table 

10.7, for both near-surface and mid-thickness laminations, the combination of reverse 

bending and lamination has the worse effect on the wire as it reduces the yield load, the 

ultimate load and the fracture displacement of the wire more than the presence of the 

lamination alone or reverse bending and straightening alone.   

 

 

(a)  Curves from specimen with near-surface lamination 

 

 

(b)  Curves from specimen with mid-thickness lamination 

 

Figure 10.53:  Force-displacement curves from 12mmx5mm, 50mm gauge length unbent and 

RBS lamination free wires and unbent and RBS wires with laminations.  
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Tables 10.7: Mechanical properties of lamination free wire and RBS wires with laminations  

 

 

 

 

 

 

 

 

 

Parameters 

Lamination 

free wire 

RBS wire with 

mid-thickness 

lamination    

RBS wire with 

near-surface 

lamination    

Percentage difference 

between lamination free 

wire and RBS wires 

with lamination 

Mid-

thickness 

lamination 

Near-

surface 

lamination 

Yield  load 

(kN) 53.14 47.69 36.65 10.26 31.03 

Ultimate  

load (kN) 77.24 74.05 67.70 4.12 12.34 

Fracture load 

(kN) 66.35 66.46 58.81 0.17 11.37 

Yield point 

displacement 

(mm) 0.26 0.50 0.4586 88.03 72.21 

UTL 

displacement 

(mm)  1.19 3.84 1.769 220.7 47.74 

Displacement 

at fracture 

(mm) 4.26 3.36 2.599 

21.22 

 39.05 
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The effects of the combination of the near-surface lamination with reverse bending and 

straightening on the tensile armour wire is worse than that of the combination of mid-

thickness laminations with reverse bending and straightening as shown in Figure 10.54 and 

Table 10.7. However, near-surface laminations can readily be detected by the reverse bending 

and straightening procedures and do not constitute a cause for concern. The combination of 

mid-thickness laminations with reverse bending and straightening reduced the yield load, 

ultimate load and fracture displacement by 10.26%, 4.12% and 21.22% respectively, and 

therefore constitutes a cause for concern as it may go undetected by the reverse bending and 

straightening procedures. 

 

 

 

Figure 10.54:   Force-displacement curves from lamination free 12mmx5mm, 50mm gauge 

length wire and RBS wires with mid-thickness and near-surface laminations. 

10.4.2  Effects of reverse bending and straightening operations on tensile armour wires 

surface scratches 

The effect of bending, reverse bending and straightening operations on tensile armour wire 

surface scratches was investigated by carrying out FE simulation of tensile armour wire 

specimens with a flat bottom scratch hereinafter referred to as a groove or channel subjected 

to bending, reverse bending and straightening. The simulation was carried out using the same 

specimen-rollers-attachments assembly shown in Figure 10.55(a). The simulations were 

carried out with wire specimens having a channel cut across the entire wire width on the 

upper and lower faces of the wire as well as across the entire wire thickness as shown in 

Figures 10.5b(b), (c) and (d) respectively. The elements around the channel were refined as 

shown in Figures 10.56 (a) to (c) to capture the stress concentration around the grooves. The 
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grooves considered have a width of 0.2mm (0.2mm being the detection limit of the eddy 

current detector) with depth varying from 0.1mm to 1mm. The across-the-width channels 

have a length of 7mm and the across-the-thickness channel has a length of 5mm.   

 

 

(a)  Specimen with groove in specimen-rollers-attachment assembly 

 

 

(b)  Specimen with across-the-width groove on its upper face  

 

 

(c)  Specimen with across-the-width groove on its lower face  

 

 

 (d) Specimens with across-the thickness groove  

 

Figure 10.55: Specimens with groove at various locations  
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(a) Channel on upper part              (b) Channel on upper part             (c) Channel across 

thickness   

Figure 10.56: Mesh refinement around the across-the-width and across-the-thickness 

channels.  

 

To conserve space, only the deformed shapes predicted by the simulation carried out with the 

wire specimen having across-the-width channel on its upper part within the specimen-rollers-

attachments assembly at the various stages of the bending, reverse bending and straightening 

simulations are presented. The deformed shapes of the specimens with the across-the-width 

channel and the specimen with the across-the-thickness channel at the various stages of the 

simulations are presented. Also only the deformed shapes of the specimens with the 1mm 

deep channel are presented, except where the deformed shapes of the specimen with the other 

channel depths differ from that of the specimen with the 1mm deep channel. The deformed 

shape and longitudinal axial stress distribution in the specimen with across-the-width groove 

on its upper part within the specimen-rollers-attachment assembly at the beginning of 

bending simulation is shown in Figure 10.57.  The deformed shapes of the specimens section 

at the beginning of bending simulation are shown in Figures 10.58 and the deformed shapes 

of the specimens around the grooves are shown in Figure 10.59.  

 

The across-the-width grooves on the upper and lower parts of the specimens amplified the 

tensile and compressive stresses to which the upper and lower parts of the wire are subjected 

as shown in Figures 10.58 and 10.59 respectively. The across-the-thickness groove also 

amplified the tensile and compressive stresses in its upper and lower parts respectively as 

shown in Figures 10.58 and 10.59. 
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Figure 10.57:   Deformed shape of grooved specimen within specimen-rollers-attachments 

assembly at the beginning of bending simulation. 

 

                                                                                           

(a) Specimen with across the width groove on its upper face 

 

 (b) Specimen with across the width groove on its lower face 

  

(c) Specimen with across the thickness groove 

Figure 10.58:   Deformed shapes and longitudinal axial stress (MPa) distribution in grooved 

specimens at the beginning of bending simulation 
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(a) Across the width groove on upper face             (b) Across the width groove on lower face 

                                            

     

                                        (c) Across the thickness groove    

Figure 10.59:  Deformed shapes and longitudinal axial stress (MPa) distribution around 

grooves at the beginning of bending simulation. 

 

As the wire bent more and assumed the curvature of the roller as shown Figures 10.60, the 

tensile stress in the upper part of the wire became high enough to initiate fracture in the wire 

specimen with the across-the-width channel on its upper part as shown Figures 10.61(a) and 

10.62(a). At this stage of the bending simulation, the compressive stress in the lower part of 

the wire was equally high enough to partially close the across-the-width groove on the lower 

part of the specimen as shown in Figures 10.61(b) and 10.62(b). Similarly, at this stage of the 

bending simulation, the tensile stresses in the upper of the specimen with the across-the-

thickness channel opened the upper part of the groove and the compressive in its lower parts 

closed the lower part of the groove as shown in Figures 10.61(c) and 10.62(c). There was no 

fracture initiation in the specimen with the across-the-width groove on the lower part and the 

specimen with across-the-thickness groove at this stage of the bending simulation.  
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Figure 10.60:  Deformed shape and longitudinal axial stress (MPa) distribution in grooved 

specimen within specimen-rollers-attachment assembly during bending simulation.  

 

 

(b) Specimen with across the width groove on its upper face 

 

(c) Specimen with across the width groove on its lower face 

 

(d) Specimen with across the thickness groove 

Figure 10.61: Deformed shapes and longitudinal axial stress (MPa) distribution in the 

grooved specimens during bending simulation 
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 (a) Across the width groove on upper face             (b) Across the width groove on lower face 

 

                                              

                                        (c) Across the thickness groove 

Figure 10.62:  Deformed shapes and longitudinal axial stress (MPa) distribution around 

grooves during bending simulation 

 

The deformed shape of the grooved specimen within the specimen-rollers-attachments 

assembly at the end of bending simulation is shown in Figure10.63. At the end of the bending 

simulation, the fracture in the specimen with the across-the-width channel on its upper part 

has propagated slightly while the specimen with across-the-width groove on its lower part 

and the specimen with across-the-thickness groove are yet to begin fracturing as shown in 

Figures 10.64 and 10.65. The specimen with across-the-width groove on its lower part is yet 

to start fracturing because the stress in its lower part is compressive and does not promote 

fracture initiation. The specimen with the across-the-thickness groove is yet to begin 

fracturing because the groove is not located in the plane of bending of the wire and 

consequently, the tensile stress at the tip of the groove is not high enough to initiate a 

fracture.  
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Figure10.63:   Deformed shape and longitudinal axial stress (MPa) distribution in grooved 

specimen within specimen-rollers-attachment assembly at the end of bending simulation.  

 

    

(a) Specimen with across the width groove on its upper face 

 

 

(b) Specimen with across the width groove on its lower face 

 

 

(c) Specimen with across the thickness groove 

Figure 10.64: Deformed shapes and longitudinal axial stress (MPa) distribution in the 

grooved specimens after bending simulation 
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(a) Across the width groove on upper face         (b) Across the width groove on lower face   

                                            

          

(c) Across the thickness groove 

Figure 10.65:  Deformed shapes and longitudinal axial stress (MPa) distribution around 

grooves after bending simulation 

 

The deformed shape of the grooved specimen within the specimen-rollers-attachments 

assembly during the reverse bending simulation is shown in Figure 10.66. The deformed 

shapes of the specimen alone and the deformed shapes of the specimens around the grooves 

are shown in Figures 10.67 and 10.68 respectively. During reverse bending, the upper and 

lower parts of the wire are now subjected to compressive and tensile stress respectively. 

Consequently, the remaining ligament of the specimen with an across-the-width groove on its 

upper part is now subjected to a tensile stress. Due to the thickness of the remaining ligament, 

the tensile stress was high enough to initiate fracturing early during the reverse bending as 

shown in Figures 10.67 and 10.68(a). At this same stage of the reverse bending simulation, 

the groove in the specimen with the across-the-width groove on its lower part that was closed 

at the end of bending simulation opened up and started fracturing as shown in Figures 10.67 

and 10.68(b) due to the tensile stress now in the lower part of the specimen. No fracture 

initiation was observed in the specimen with the across-the-thickness channel as shown in 

Figures 10.67 and 10.68(c).  However, the lower part of the across-the-thickness channel that 

was closed at the end of bending simulation opened up due to the tensile stress now in the 

lower part of the specimen. 
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Figure10.66:   Deformed shape and longitudinal axial stress (MPa) distribution in grooved 

specimen within specimen-rollers-attachment assembly at the end of bending simulation.  

 

 

 (a)Specimen with across-the-width groove on its upper face                

 

 

 (b) Specimen with across-the-width groove on its lower face      

 

 

(c) Specimen with across-the-thickness groove 

 

Figure 10.67:   Deformed shapes and longitudinal axial stress (MPa) distribution in grooved 

specimens during reverse bending simulation.  
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 (a) Across the width groove on upper face               (b) Across the width groove on lower 

face      

                                              

(c) Across the thickness groove 

Figure 10.68:   Deformed shapes and longitudinal axial stress (MPa) distribution around 

grooves during reverse bending simulation. 

 

As the reverse bending simulations continued, the specimen with the 1mm deep across-the-

width groove on its upper part, and the specimen with the1mm deep across-the-width groove 

on its lower part fractured completely as shown in Figures 10.69(a) and (b) respectively.  No 

fracture initiation was observed on the specimen with the across-the-thickness groove as 

shown in Figure 10.69(c). While the specimens with the 1mm deep across-the-width groove 

on its upper part fractured completely during the reverse bending, the specimen with the 

0.75mm deep across-the-width groove on its upper part passed through the reverse bending 

but started fracturing during the straightening as shown in Figure 10.69 (d). As shown in 

Figure 10.70(a), the specimens with 0.5mm deep across-the-width channel and the specimen 

with up to 1mm deep across-the-thickness channel passed through the reverse bending and 

straightening without fracturing. The deformed shapes of the specimens with the 0.5mm deep 

across-the-width channel and the specimen with up to 1mm deep across-the-thickness 

channel after the straightening simulations are shown in Figures 10.70 (b) and (c) 

respectively. The completely fractured specimen is shown in Figure 10.71. 
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(a) Specimen with 1mm deep across-the-width groove on upper face                

 

 

(b) Specimen with 1mm deep across the-width-groove on lower face      

 

 

(c) Specimen with 1mm deep across-the-thickness groove 

 

(d) Specimen with 0.75mm deep across-the-thickness groove 

Figure10.69:   Deformed shapes and longitudinal axial stress (MPa) distribution in specimen 

with varying channel depths after reverse bending and straightening simulations. 
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(a) Specimen within the specimen-rollers-attachment assembly 

 

 

(b) Specimen with 0.5mm deep across-the-width channel  

 

 

 

(c) Specimen with 1mm deep across-the-thickness channel  

 

Figure 10.70: Deformed shape and longitudinal axial stress (MPa) distribution in specimens 

with 0.5mm deep across-the-thickness and 1mm deep across-the-width channel after 

straightening simulation. 
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(a) Specimen within the specimen-rollers-attachment assembly 

 

 

(b) Specimen with 0.5mm deep across-the-width channel  

 

Figure 10.71: Completely fractured specimen of wire with channel cut subjected to reverse 

bending and straightening  

 

The force-displacement curves obtained from the simulations of the tensile testing of the wire 

specimen with 0.2mmx0.5mm channel and the wire specimen with 0.2mmx0.5mm channel 

that was subjected to reverse bending and straightening are shown in Figure 10.72. The force-

displacement curves and the tensile properties obtained from the tensile testing simulation of 

the: as-received wire, as-received wire subjected to reverse bending and straightening, wire 

specimen with 0.2mmx0.5mm channel and wire specimen with 0.2mmx0.5mm channel 

subjected to reverse bending and straightening simulations are shown in Figure 10.73 and 

Table 10.8 respectively. 
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Figure 10.72:   Force-displacement curves for 12mmx5mm, 50mm gauge length unbent and 

RBS specimens with 0.2mmx0.5mm across-the-width channel  

 

 

Figure 10.73:   Force-displacement curves for 12mmx5mm, 50mm gauge length unbent and 

RBS as-received and unbent and RBS specimens with 0.2mmx0.5mm across-the-width 

channel. 

 

Table 10.8: Tensile properties from unbent and RBS as-received, and Unbent and RBS 

specimens with 0.2mmx0.5mm across-the-width channel. 

Parameters  

As-received 

wire  

As received 

wire subjected 

to RBS  

Wire with 

0.2mmx0.5mm 

channel 

Wire with 

0.2mmx0.5mm 

channel subjected 

to RBS 

Yield load (kN) 53.14 50.87 52.77 42.31 

Ultimate load (kN) 77.24 75.55 76.04 72.55 

Displacement at 

fracture (mm)   4.13 3.47 2.15 2.09 
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From Figures 10.72, 10.73 and Table 10.8, the combination of the presence of the 

0.2mmx0.5mm channel and RBS reduced the yield load, the ultimate load and the 

displacement at fracture by 20.38%, 6.07 and 49.345 respectively compared to the 0.70%, 

1.55% and 47.94% reductions in the yield load, the ultimate load and the displacement at 

fracture of the wire by the presence of the 0.2mmx0.5mm channel, and the 4.2%, 2.18% and 

15.98% reductions in the yield load, the ultimate load and the displacement at fracture of the 

wire by the reverse bending and straightening operations. Thus it can be concluded that the 

combination of the presence of scratches and RBS operations causes a higher reduction in the 

tensile properties of the tensile armour wires than the reduction in the tensile properties due 

to either the presence of scratches or the reverse bending and straightening operations. 

 

Attempts to simulate the bending, reverse bending, straightening and tensile testing of the 

tensile armour wire with channel depth less than 0.5mm were not successful as the wire broke 

from the roller as shown in Figure 10.74 during the reverse bending, which made the reverse 

bending, straightening and tensile testing simulation impossible. The wire broke from the 

roller because the elements that connected the wire to the roller, which are less than 0.5mm 

(the lowest dimension in the thickness direction with which the reverse bending and 

straightening simulation could be carried out) as shown in Figure 10.75 could not withstand 

the excessive strain they are subjected to during the reverse bending simulations. The element 

needed to be of the same dimension as the depth of the channel cut (which is less than 

0.5mm) so as to have adequate node to node contact between the elements of the specimen 

and the elements of the left and right attachments, without which the nodes connecting the 

specimen to the attachments broke during the simulation.   

 

 

Figure 10.74:   Disconnection of wire with channel depth less than 5mm from roller during 

reverse bending simulation. 
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Figure 10.75:   Thin element connecting attachment to roller  

10.5  Conclusion  

From both laboratory and numerical experiments, it can be concluded that bending, reverse 

bending and straightening of tensile armour wires reduces the yield load, the ultimate load 

and the displacement at fracture of the wires by at least 4.27%, 2.58% and 18.62% 

respectively. The presence of either near-surface or mid-thickness lamination has negligible 

effects on the tensile properties of the tensile armour wires with only a 6.25% reduction in the 

displacement at fracture of the wires. However, if tensile armour wires with either near-

surface or mid-thickness lamination are subjected to bending, reverse bending and 

straightening, the yield load, the ultimate load and the displacement at fracture of the wires 

are reduced considerably. The combination of reverse bending and straightening with near-

surface lamination has the worse effects of reducing the yield load, the ultimate load and the 

displacement at fracture of the wire by 31.03%, 12.34% and 39.05% respectively.  

 

The reverse bending and straightening test is only effective in revealing or detecting near-

surface laminations and may not be an effective test to detect mid-thickness lamination in 

tensile armour as wires with the mid-thickness laminations will pass through the reverse 

bending and straightening procedures without fracturing and with the mid-thickness 

laminations undetected. Consequently, other in-line non destructive testing methods might 

have to be used to detect mid-thickness laminations as tensile armour wires with mid-

thickness laminations subjected to bending, reverse bending and straightening may have their 
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yield load, ultimate load and fracture displacement reduced by 10.26%, 4.12% and 21.22% 

respectively.  

 

The reverse bending and straightening test can also reveal scratches with a depth greater than 

0.5mm as the wires will breaks during the reverse bending operation. The combination of the 

presence of 0.5mm deep scratch and the RBS operations reduced the yield load, the ultimate 

load and the displacement at fracture by 20.38%, 6.07 and 49.345 respectively. The reduction 

in the tensile properties due to the combination of the presence of scratches and RBS 

operations is higher than the reduction in the tensile properties of the tensile armour wires 

due to either the presence of scratches or the reverse bending and straightening operations. 

 

Having presented the investigations of the effects of scratches, dents, laminations as well as 

bending, reverse bending and straightening operations on the tensile properties of tensile 

armour wires, the summary and conclusions of the overall findings of this research as well as 

the further works are presented in the next chapter. 
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Chapter 11 Conclusions and further work 

 

In this chapter, the conclusions drawn from the analyses of the results obtained from both 

laboratory and numerical or virtual experiments carried out to investigate the effects of 

miniature flat bottom scratches, miniature pointed end scratches, miniature dents, and 

laminations on the tensile properties of the tensile armour wires are presented. Also presented 

in this chapter, are the conclusions drawn from the analyses of the results obtained from both 

laboratory and virtual experiments carried out to investigate the effects of reverse bending 

and straightening, and the effects of the combinations of reverse bending and straightening 

operations with laminations and with scratches on the tensile properties of the tensile armour 

wires.  In addition, further work is also suggested. 

11.1 Conclusions  

 

The following are the conclusions drawn from the outcome of this research: 

 

a)    The failure mechanism for both the as-received or “defect free” tensile armour wires 

and the defective tensile armour wires is the shear failure mechanism. 

 

b)  The maximum reductions in the yield load, the ultimate load and the fracture 

displacement of the tensile armour wires by flat bottom scratches with dimensions 

less than 0.2mm, which cannot be detected by the eddy current detector system, are 

0.072%, 0.238% and 10.95% respectively.  

 

c ) The maximum reductions in the yield load, the ultimate load and the fracture 

displacement of the tensile armour wires by pointed end scratches with dimensions 

less than 0.2mm are 0.07%, 0.09% and 2.92% respectively.  

 

d)  Denting of tensile armour wires to dent depths and less than 0.2mm increases the 

yield and the ultimate loads of the wire but reduces its displacement at fracture by no 

more than 5.66%. Denting only begins to cause reductions in the yield and the 

ultimate loads of the wire when the dent depth and/or diameter is greater than 0.3mm. 
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d) The extent of the reductions in the yield load, the ultimate load and the displacement 

at fracture of the tensile armour wires depends on the size rather than the location of 

both flat bottom and pointed end scratches. The extent of the effects of indentation on 

the tensile armour wires tensile properties also depends on the size rather than the 

location of the indentation. 

 

e) The worst effect of the pointed end or flat bottom scratches is on the displacement at 

fracture and invariably the ductility of the wire, followed by the ultimate load, with 

the least effect on the yield load of the tensile armour wires. The worst effect of 

denting is also on the displacement at fracture of the tensile armour wires.  

  

f) The 0.2mm defect detection limit of the eddy current defect detection system seems 

adequate as the reduction in the yield load, the ultimate load and displacement at 

fracture of the tensile armour wires by scratches and dents are minimal and are within 

the range of what the factor of safety applied to material properties can conveniently 

accommodate. 

 

g)  Bending, reverse bending and straightening of tensile armour wires reduce the yield 

load, the ultimate load and the displacement at fracture (i.e. the ductility) of the wires 

by at least 4.27%, 2.58% and 18.62% respectively. 

 

h)  Near-surface or mid-thickness laminations on their own have negligible effects on the 

tensile properties of the tensile armour wires with little or no reduction in the yield 

and ultimate loads of the wires, and only a 6.25% reduction in the displacement at 

fracture of the wires. However, if tensile armour wires with either near-surface or 

mid-thickness lamination are subjected to bending, reverse bending and straightening, 

the combination of the reverse bending and straightening, and laminations 

considerably reduces the yield load, the ultimate load and the displacement at fracture 

of the wires. The combination of reverse bending and straightening with near-surface 

lamination has the worse effect, reducing the yield load, the ultimate load and the 

displacement at fracture of the wires by 31.03%, 12.34% and 39.05% respectively. 

 

i) The reverse bending and straightening test is only effective in revealing or detecting 

near-surface laminations, and may not be an effective test to detect mid-thickness 
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laminations in tensile armour wires. This is because wires with mid-thickness 

laminations will pass through the reverse bending and straightening procedures 

without fracturing and with the mid-thickness laminations undetected. Consequently, 

other in-line non destructive testing methods might have to be used to detect mid-

thickness laminations, as tensile armour wires with mid-thickness laminations 

subjected to bending, reverse bending and straightening may have their yield load, 

ultimate load and fracture displacement reduced by 10.26%, 4.12% and 21.22% 

respectively. 

j)   With the present arrangement being used for the reverse bending and straightening 

test, in which the width of the wire is in contact with the rollers, the reverse bending 

and straightening test will fracture tensile armour wires with scratches across or along 

their width that are 0.75mm or more deep. Wires with shallower scratches across or 

along their width and wires with scratches deeper than 0.75mm across their thickness 

will pass through the reverse bending and straightening test without fracturing. 

 

k)  While wires with across-the-width scratches that are shallower than 0.75mm pass 

through the reverse bending and straightening operations unbroken, their yield load, 

ultimate load and displacement at fracture reduce considerably when compared with 

wires with the same size of scratches that are not subjected to the reverse bending and 

straightening test.  Confirm this statement from the FE  

11.2 Further work  

 

Further investigation of the effects of miniature scratches; dents, and laminations on the 

tensile properties of tensile armour wires can be carried out on a range of steel wires with 

different sizes and strengths from the wires covered by this research. Investigation of the 

effects of miniature scratches and dents, and laminations, as well as the bending, reverse 

bending and straightening operations on the fatigue properties or behaviour of the tensile 

armour wires needs to be carried out as flexible pipes and invariably tensile armour wires are 

subjected to cyclic loading during service. For such an investigation, more accurate kinematic 

hardening parameters need to be obtained from laboratory and/or numerical experiments. 

Furthermore, the effects of welding and as well as the effects of the inherent defects in welds 

on the tensile properties of the tensile armour wires needs to be investigated.  
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Appendix A 

TableA1: Crosshead displacement correction values 

Stiffness 

K 

(kN/mm) 

Experimental Machine 

correction 

∆E = P/K 

(mm) 

Displacement 

corrected 

with ∆E (mm) 

 

Assumed grip 

end and plastic 

displacement 

(mm) 

Final 

corrected 

displacement  

(mm) 

Force 

from  

UTL 

(kN)  

Displacement  

from  UTL  

point 

322.8 76.01 2.1 0.2441 1.864 0.03 1.83 

322.4 75.99 2.27 0.2357 2.03 0.07 1.4 

321.8 75.93 2.43 0.236 2.19 0.1 1.24 

316.8 75.83 2.6 0.2394 2.36 0.14 2.22 

308.2 75.68 2.76 0.2456 2.52 0.17 2.35 

300.9 75.42 2.93 0.2507 2.68 0.2 2.47 

293.7 74.91 3.09 0.2551 2.84 0.24 2.6 

289 73.98 3.26 0.2559 3 0.27 2.73 

285.2 72.76 3.42 0.2551 3.17 0.3 2.86 

276.7 71.44 3.59 0.2582 3.33 0.34 2.99 

272 70.02 3.75 0.2574 3.5 0.37 3.12 

269.5 69.27 3.84 0.257 3.58 0.41 3.18 

261.3 67.72 4.01 0.2591 3.75 0.44 3.31 

255.1 66.08 4.18 0.2591 3.92 0.47 3.45 

251.6 64.37 4.35 0.2558 4.09 0.51 3.59 

247.8 62.55 4.52 0.2524 4.27 0.54 3.73 

247.8 0 4.66 0.2524 4.41 0.54 3.87 
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Appendix B 

 

Table B1:   Data for tensile test FEA simulation with absolute yield strength 
Data 

point  

Displacement 

(mm) 

Force (N) Nominal 

Strain 

(%) 

Nominal 

Stress 

(Mpa) 

True Strain 

(%) 

True 

stress 

(MPa) 

Plastic strain 

(%) 

256 0.193599 39.99804 0.387198 666.634 0.003864503 669.2152 1.79292E-10 

257 0.194988 40.20145 0.389976 670.0242 0.003892176 672.6372 2.76726E-05 

258 0.196452 40.40665 0.392904 673.4442 0.003921341 676.0902 5.68385E-05 

259 0.197932 40.61255 0.395864 676.8758 0.003950825 679.5553 8.63222E-05 

260 0.199253 40.8169 0.398506 680.2817 0.003977141 682.9927 0.000112638 

261 0.200584 41.02167 0.401168 683.6945 0.004003655 686.4372 0.000139152 

262 0.201927 41.22677 0.403854 687.1128 0.004030407 689.8877 0.000165904 

263 0.203297 41.43241 0.406594 690.5402 0.004057696 693.3479 0.000193193 

264 0.204652 41.63677 0.409304 693.9461 0.004084686 696.7865 0.000220183 

265 0.20601 41.83977 0.41202 697.3295 0.004111735 700.2027 0.000247232 

266 0.207364 42.04277 0.414728 700.7128 0.004138704 703.6188 0.000274201 

267 0.208733 42.24651 0.417466 704.1085 0.00416597 707.0479 0.000301467 

268 0.210128 42.45057 0.420256 707.5094 0.004193754 710.4828 0.000329251 

269 0.211539 42.65541 0.423078 710.9235 0.004221855 713.9313 0.000357352 

270 0.212959 42.86021 0.425918 714.3368 0.004250135 717.3793 0.000385632 

271 0.214361 43.06389 0.428722 717.7315 0.004278056 720.8086 0.000413553 

272 0.215767 43.26633 0.431534 721.1055 0.004306056 724.2173 0.000441553 

273 0.217208 43.46916 0.434416 724.486 0.004334751 727.6332 0.000470248 

274 0.218654 43.67193 0.437308 727.8655 0.004363546 731.0485 0.000499043 

275 0.220091 43.87271 0.440182 731.2119 0.00439216 734.4305 0.000527657 

276 0.22153 44.07295 0.44306 734.5491 0.004420814 737.8036 0.000556311 

277 0.222962 44.27313 0.445924 737.8854 0.004449327 741.1758 0.000584824 

278 0.224455 44.47416 0.44891 741.236 0.004479054 744.5635 0.000614551 

279 0.225962 44.67519 0.451924 744.5864 0.004509059 747.9514 0.000644556 

280 0.227466 44.87706 0.454932 747.9509 0.004539003 751.3536 0.0006745 

281 0.228962 45.0789 0.457924 751.315 0.004568787 754.7554 0.000704284 

282 0.230488 45.27959 0.460976 754.6599 0.004599168 758.1387 0.000734665 

283 0.232002 45.47836 0.464004 757.9727 0.004629308 761.4897 0.000764805 

284 0.233523 45.67646 0.467046 761.2744 0.004659587 764.8299 0.000795084 

285 0.235066 45.87354 0.470132 764.5589 0.004690303 768.1534 0.0008258 

286 0.236604 46.07039 0.473208 767.8399 0.004720919 771.4734 0.000856416 

287 0.238141 46.26726 0.476282 771.121 0.004751514 774.7937 0.000887011 

288 0.239698 46.46533 0.479396 774.4222 0.004782506 778.1347 0.000918003 

289 0.241289 46.66377 0.482578 777.7295 0.004814173 781.4826 0.00094967 

290 0.242895 46.86218 0.48579 781.0364 0.004846138 784.8306 0.000981635 

291 0.244482 47.05901 0.488964 784.3169 0.004877725 788.1519 0.001013222 

292 0.246099 47.25591 0.492198 787.5985 0.004909907 791.475 0.001045404 

293 0.247734 47.45231 0.495468 790.8718 0.004942446 794.7903 0.001077943 

294 0.249344 47.64734 0.498688 794.1223 0.004974487 798.0825 0.001109984 

295 0.250945 47.8409 0.50189 797.3483 0.005006347 801.3501 0.001141844 

296 0.252584 48.03487 0.505168 800.5812 0.005038963 804.6255 0.00117446 

297 0.254254 48.23081 0.508508 803.8469 0.005072195 807.9345 0.001207692 

298 0.255936 48.42763 0.511872 807.1272 0.005105664 811.2586 0.001241161 

299 0.257651 48.6236 0.515302 810.3933 0.005139789 814.5693 0.001275286 

300 0.259383 48.81646 0.518766 813.6076 0.00517425 817.8283 0.001309747 



     

255 

Table B1:   Data for tensile test FEA simulation with absolute yield strength continued  
Data 

point  

Displacement 

(mm) 

Force (N) Nominal 

Strain 

(%) 

Nominal 

Stress 

(Mpa) 

True Strain 

(%) 

True 

stress 

(MPa) 

Plastic strain 

(%) 

301 0.26469 49.39546 0.52938 823.2576 0.005279837 827.6158 0.001415334 

302 0.266471 49.59049 0.532942 826.5081 0.005315269 830.9129 0.001450766 

303 0.268253 49.7857 0.536506 829.7616 0.005350719 834.2134 0.001486216 

304 0.270084 49.98037 0.540168 833.0062 0.005387143 837.5058 0.00152264 

305 0.271922 50.17468 0.543844 836.2446 0.005423705 840.7924 0.001559202 

306 0.273776 50.37017 0.547552 839.5028 0.005460584 844.0995 0.001596081 

308 0.275648 50.56652 0.551296 842.7754 0.005497819 847.4215 0.001633316 

310 0.277568 50.76328 0.555136 846.0546 0.005536008 850.7513 0.001671505 

311 0.279488 50.95905 0.558976 849.3176 0.005574195 854.065 0.001709692 

312 0.281424 51.15437 0.562848 852.5728 0.005612699 857.3715 0.001748196 

313 0.283402 51.34932 0.566804 855.822 0.005652037 860.6728 0.001787534 

314 0.285387 51.54377 0.570774 859.0629 0.005691513 863.9662 0.00182701 

315 0.287389 51.7365 0.574778 862.2751 0.005731325 867.2312 0.001866822 

316 0.289395 51.929 0.57879 865.4833 0.005771214 870.4926 0.001906711 

317 0.291438 52.12104 0.582876 868.684 0.005811839 873.7473 0.001947336 

318 0.293488 52.31398 0.586976 871.8997 0.0058526 877.0176 0.001988097 

319 0.295604 52.50792 0.591208 875.132 0.005894672 880.3058 0.002030169 

320 0.297746 52.70163 0.595492 878.3605 0.00593726 883.5911 0.002072757 

321 0.299888 52.89509 0.599776 881.5849 0.005979845 886.8724 0.002115342 

322 0.30206 53.08684 0.60412 884.7807 0.006023025 890.1258 0.002158522 

323 0.304249 53.27715 0.608498 887.9524 0.006066541 893.3556 0.002202038 

324 0.306462 53.46722 0.612924 891.1203 0.006110533 896.5822 0.00224603 

325 0.308641 53.65564 0.617282 894.2607 0.006153846 899.7808 0.002289343 

326 0.310849 53.84346 0.621698 897.3909 0.006197734 902.97 0.002333231 

327 0.313107 54.03102 0.626214 900.517 0.006242614 906.1561 0.002378111 

328 0.315395 54.21987 0.63079 903.6645 0.006288088 909.3648 0.002423585 

329 0.317725 54.4077 0.63545 906.7949 0.006334395 912.5572 0.002469892 

330 0.320089 54.59489 0.640178 909.9148 0.006381376 915.7399 0.002516873 

331 0.322455 54.78062 0.64491 913.0104 0.006428394 918.8985 0.002563891 

332 0.32484 54.9673 0.64968 916.1217 0.006475787 922.0735 0.002611284 

333 0.327249 55.15257 0.654498 919.2095 0.006523655 925.2257 0.002659152 

334 0.329658 55.33543 0.659316 922.2571 0.00657152 928.3377 0.002707017 

335 0.332097 55.51681 0.664194 925.2801 0.00661998 931.4258 0.002755477 

336 0.334558 55.69827 0.669116 928.3044 0.006668874 934.5159 0.002804371 

337 0.337041 55.87891 0.674082 931.3151 0.006718202 937.5929 0.002853699 

338 0.339539 56.05904 0.679078 934.3174 0.006767827 940.6621 0.002903324 

339 0.342082 56.23805 0.684164 937.3008 0.006818342 943.7134 0.002953839 

340 0.344629 56.41675 0.689258 940.2792 0.006868935 946.7601 0.003004432 

341 0.347208 56.59469 0.694416 943.2448 0.00692016 949.7948 0.003055657 

342 0.349791 56.77137 0.699582 946.1894 0.006971463 952.8088 0.00310696 

343 0.352392 56.94661 0.704784 949.1102 0.00702312 955.7994 0.003158617 

344 0.355013 57.12027 0.710026 952.0046 0.007075172 958.764 0.003210669 

345 0.357622 57.29261 0.715244 954.8769 0.007126983 961.7066 0.00326248 

346 0.360306 57.46391 0.720612 957.7318 0.00718028 964.6333 0.003315777 

347 0.362993 57.63685 0.725986 960.6141 0.007233634 967.588 0.003369131 

348 0.36574 57.81163 0.73148 963.5272 0.007288177 970.5752 0.003423674 

349 0.368551 57.98602 0.737102 966.4337 0.007343987 973.5573 0.003479484 
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Table B1:   Data for tensile test FEA simulation with absolute yield strength continued 

Data 

point  

Displacement 

(mm) 

Force (N) Nominal 

Strain 

(%) 

Nominal 

Stress 

(Mpa) 

True Strain 

(%) 

True 

stress 

(MPa) 

Plastic strain 

(%) 

350 0.371398 58.15898 0.742796 969.3164 0.007400509 976.5164 0.003536006 

351 0.374259 58.33114 0.748518 972.1856 0.007457305 979.4626 0.003592802 

352 0.377147 58.50269 0.754294 975.0449 0.007514634 982.3996 0.003650131 

353 0.380041 58.67304 0.760082 977.884 0.007572079 985.3168 0.003707576 

354 0.382948 58.84145 0.765896 980.6908 0.007629779 988.2018 0.003765276 

355 0.385883 59.00905 0.771766 983.4841 0.007688031 991.0743 0.003823528 

356 0.388982 59.17596 0.777964 986.266 0.007749535 993.9387 0.003885032 

357 0.392106 59.34256 0.784212 989.0426 0.00781153 996.7988 0.003947027 

358 0.395231 59.51058 0.790462 991.843 0.007873542 999.6832 0.004009039 

359 0.398303 59.67996 0.796606 994.666 0.007934498 1002.59 0.004069995 

360 0.40142 59.84858 0.80284 997.4763 0.007996344 1005.484 0.004131841 

361 0.404556 60.01573 0.809112 1000.262 0.008058562 1008.355 0.004194059 

362 0.407748 60.18082 0.815496 1003.014 0.008121888 1011.193 0.004257385 

363 0.410934 60.34454 0.821868 1005.742 0.008185091 1014.008 0.004320588 

364 0.414166 60.50764 0.828332 1008.461 0.008249202 1016.814 0.004384699 

365 0.417436 60.66916 0.834872 1011.153 0.008314062 1019.594 0.004449559 

366 0.42071 60.83041 0.84142 1013.84 0.008378998 1022.371 0.004514495 

367 0.424038 60.99236 0.848076 1016.539 0.008445 1025.16 0.004580497 

368 0.42737 61.15494 0.85474 1019.249 0.008511078 1027.961 0.004646575 

369 0.430787 61.31644 0.861574 1021.941 0.008578836 1030.745 0.004714333 

370 0.434222 61.47748 0.868444 1024.625 0.008646947 1033.523 0.004782444 

371 0.437713 61.63807 0.875426 1027.301 0.008716164 1036.294 0.004851661 

372 0.441228 61.79749 0.882456 1029.958 0.008785851 1039.047 0.004921348 

373 0.44479 61.95562 0.88958 1032.594 0.008856465 1041.779 0.004991962 

374 0.448382 62.11196 0.896764 1035.199 0.008927669 1044.483 0.005063166 

375 0.451997 62.26873 0.903994 1037.812 0.008999324 1047.194 0.005134821 

376 0.455659 62.42499 0.911318 1040.416 0.009071906 1049.898 0.005207403 

377 0.459351 62.58002 0.918702 1043 0.009145076 1052.582 0.005280573 

378 0.463075 62.73425 0.92615 1045.571 0.009218875 1055.254 0.005354372 

379 0.466816 62.88943 0.933632 1048.157 0.009293006 1057.943 0.005428503 

380 0.470611 63.04364 0.941222 1050.727 0.009368201 1060.617 0.005503698 

381 0.474438 63.19648 0.948876 1053.275 0.009444024 1063.269 0.005579521 

382 0.478312 63.34839 0.956624 1055.807 0.009520773 1065.907 0.00565627 

383 0.482241 63.50016 0.964482 1058.336 0.009598606 1068.543 0.005734103 

384 0.486177 63.65036 0.972354 1060.839 0.009676571 1071.154 0.005812068 

385 0.490122 63.79823 0.980244 1063.304 0.009754708 1073.727 0.005890205 

386 0.494115 63.94417 0.98823 1065.736 0.009833789 1076.268 0.005969286 

387 0.498093 64.09045 0.996186 1068.174 0.009912568 1078.815 0.006048065 

388 0.502137 64.23714 1.004274 1070.619 0.009992647 1081.371 0.006128144 

389 0.506215 64.38307 1.01243 1073.051 0.010073393 1083.915 0.00620889 

390 0.510355 64.52893 1.02071 1075.482 0.010155359 1086.46 0.006290856 

391 0.514514 64.67392 1.029028 1077.899 0.010237696 1088.991 0.006373193 

392 0.518723 64.8169 1.037446 1080.282 0.010321015 1091.489 0.006456512 

393 0.522944 64.95763 1.045888 1082.627 0.010404564 1093.95 0.006540061 

394 0.527208 65.09776 1.054416 1084.963 0.010488958 1096.403 0.006624455 

395 0.531518 65.23559 1.063036 1087.26 0.010574255 1098.818 0.006709752 

396 0.535792 65.37141 1.071584 1089.524 0.010658832 1101.199 0.006794329 
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Table B1:   Data for tensile test FEA simulation with absolute yield strength continued 

Data 

point  

Displacement 

(mm) 

Force (N) Nominal 

Strain 

(%) 

Nominal 

Stress 

(Mpa) 

True Strain 

(%) 

True 

stress 

(MPa) 

Plastic strain 

(%) 

397 0.540108 65.50726 1.080216 1091.788 0.010744233 1103.581 0.00687973 

398 0.545521 65.64256 1.091042 1094.043 0.010851331 1105.979 0.006986828 

399 0.551864 65.77789 1.103728 1096.298 0.010976814 1108.398 0.007112311 

400 0.558072 65.91235 1.116144 1098.539 0.011099611 1110.801 0.007235108 

401 0.562522 66.04482 1.125044 1100.747 0.011187624 1113.131 0.007323121 

402 0.567009 66.17643 1.134018 1102.941 0.011276362 1115.448 0.007411859 

403 0.571531 66.30745 1.143062 1105.124 0.011365784 1117.756 0.007501281 

404 0.576066 66.43575 1.152132 1107.263 0.011455455 1120.02 0.007590952 

405 0.580605 66.5623 1.16121 1109.372 0.011545197 1122.254 0.007680694 

406 0.585198 66.68712 1.170396 1111.452 0.011635998 1124.46 0.007771495 

407 0.589802 66.81316 1.179604 1113.553 0.011727009 1126.688 0.007862506 

408 0.594449 66.93929 1.188898 1115.655 0.011818861 1128.919 0.007954358 

409 0.599131 67.06424 1.198262 1117.737 0.011911397 1131.131 0.008046894 

410 0.603889 67.1894 1.207778 1119.823 0.012005426 1133.348 0.008140923 

411 0.608647 67.31307 1.217294 1121.884 0.012099446 1135.541 0.008234943 

412 0.613436 67.43401 1.226872 1123.9 0.012194069 1137.689 0.008329566 

413 0.618256 67.55393 1.236512 1125.899 0.012289296 1139.821 0.008424793 

414 0.623101 67.67258 1.246202 1127.876 0.012385008 1141.932 0.008520505 

415 0.627997 67.79067 1.255994 1129.845 0.012481718 1144.035 0.008617215 

416 0.632902 67.90766 1.265804 1131.794 0.012578597 1146.121 0.008714094 

417 0.637852 68.02444 1.275704 1133.741 0.012676354 1148.204 0.008811851 

418 0.642795 68.14047 1.28559 1135.675 0.012773964 1150.275 0.008909461 

419 0.647803 68.25588 1.295606 1137.598 0.012872848 1152.337 0.009008345 

420 0.652984 68.37066 1.305968 1139.511 0.012975138 1154.393 0.009110635 

421 0.658398 68.48484 1.316796 1141.414 0.013082016 1156.444 0.009217513 

422 0.663831 68.5985 1.327662 1143.308 0.013189258 1158.488 0.009324755 

423 0.669037 68.7104 1.338074 1145.173 0.013292009 1160.497 0.009427506 

424 0.674246 68.82156 1.348492 1147.026 0.013394808 1162.494 0.009530305 

425 0.679479 68.9321 1.358958 1148.868 0.01349807 1164.481 0.009633567 

426 0.68476 69.04159 1.36952 1150.693 0.013602268 1166.452 0.009737765 

427 0.690069 69.15064 1.380138 1152.511 0.013707008 1168.417 0.009842505 

428 0.695418 69.259 1.390836 1154.317 0.013812526 1170.371 0.009948023 

429 0.70081 69.36634 1.40162 1156.106 0.013918881 1172.31 0.010054378 

430 0.706239 69.47384 1.412478 1157.897 0.014025955 1174.252 0.010161452 

431 0.711737 69.58021 1.423474 1159.67 0.014134377 1176.178 0.010269874 

432 0.717331 69.68621 1.434662 1161.437 0.014244681 1178.1 0.010380178 

433 0.723017 69.79086 1.446034 1163.181 0.014356786 1180.001 0.010492283 

434 0.728733 69.89339 1.457466 1164.89 0.01446947 1181.868 0.010604967 

435 0.734343 69.99383 1.468686 1166.564 0.014580053 1183.697 0.01071555 

436 0.739953 70.09381 1.479906 1168.23 0.014690622 1185.519 0.010826119 

437 0.745651 70.19439 1.491302 1169.906 0.014802914 1187.353 0.010938411 

438 0.751377 70.29621 1.502754 1171.604 0.014915745 1189.21 0.011051242 

439 0.757192 70.39615 1.514384 1173.269 0.015030317 1191.037 0.011165814 

440 0.763042 70.49473 1.526084 1174.912 0.015145565 1192.842 0.011281062 

441 0.768961 70.59273 1.537922 1176.545 0.015262158 1194.64 0.011397655 

442 0.775031 70.68977 1.550062 1178.163 0.015381713 1196.425 0.01151721 

443 0.781316 70.78552 1.562632 1179.759 0.015505486 1198.194 0.011640983 
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Table B1:   Data for tensile test FEA simulation with absolute yield strength continued 

Data 

point  

Displacement 

(mm) 

Force (N) Nominal 

Strain 

(%) 

Nominal 

Stress 

(Mpa) 

True Strain 

(%) 

True 

stress 

(MPa) 

Plastic strain 

(%) 

444 0.7878 70.87898 1.5756 1181.316 0.015633163 1199.929 0.01176866 

445 0.79423 70.97043 1.58846 1182.84 0.01575976 1201.629 0.011895257 

446 0.800283 71.06192 1.600566 1184.365 0.01587892 1203.322 0.012014417 

447 0.806321 71.15273 1.612642 1185.879 0.015997771 1205.003 0.012133268 

448 0.812432 71.24278 1.624864 1187.38 0.016118044 1206.673 0.012253541 

449 0.818564 71.33373 1.637128 1188.895 0.016238715 1208.359 0.012374212 

450 0.824718 71.42395 1.649436 1190.399 0.016359806 1210.034 0.012495303 

451 0.830957 71.51216 1.661914 1191.869 0.016482553 1211.677 0.01261805 

452 0.837202 71.5979 1.674404 1193.298 0.016605404 1213.279 0.012740901 

453 0.843461 71.68245 1.686922 1194.707 0.016728515 1214.861 0.012864012 

454 0.84974 71.76698 1.69948 1196.116 0.016852004 1216.444 0.012987501 

455 0.85605 71.84891 1.7121 1197.482 0.016976087 1217.984 0.013111584 

456 0.862374 71.92896 1.724748 1198.816 0.017100431 1219.492 0.013235928 

457 0.868694 72.00832 1.737388 1200.139 0.01722468 1220.99 0.013360177 

458 0.875036 72.08706 1.750072 1201.451 0.017349346 1222.477 0.013484843 

459 0.8814 72.16581 1.7628 1202.764 0.017474429 1223.966 0.013609926 

460 0.88782 72.24383 1.77564 1204.064 0.017600597 1225.444 0.013736094 

461 0.894275 72.32161 1.78855 1205.36 0.017727436 1226.919 0.013862933 

462 0.900779 72.39783 1.801558 1206.63 0.017855223 1228.369 0.01399072 

463 0.907303 72.47224 1.814606 1207.871 0.017983385 1229.789 0.014118882 

464 0.913835 72.54398 1.82767 1209.066 0.018111689 1231.164 0.014247186 

465 0.920374 72.61558 1.840748 1210.26 0.018240113 1232.537 0.01437561 

466 0.926934 72.68697 1.853868 1211.45 0.018368933 1233.908 0.01450443 

467 0.933519 72.75689 1.867038 1212.615 0.018498228 1235.255 0.014633725 

468 0.967123 73.10294 1.934246 1218.382 0.019157772 1241.949 0.015293269 

469 1.001666 73.42188 2.003332 1223.698 0.019835293 1248.213 0.01597079 

470 1.037464 73.72499 2.074928 1228.75 0.020536946 1254.246 0.016672443 

471 1.074314 74.00223 2.148628 1233.37 0.021258704 1259.871 0.017394201 

472 1.115779 74.26686 2.231558 1237.781 0.022070231 1265.403 0.018205728 

473 1.154989 74.50449 2.309978 1241.741 0.022837019 1270.425 0.018972516 

474 1.195246 74.72665 2.390492 1245.444 0.023623671 1275.216 0.019759168 

475 1.2365 74.92358 2.473 1248.726 0.024429163 1279.607 0.02056466 

476 1.278763 75.09852 2.557526 1251.642 0.025253684 1283.653 0.021389181 

477 1.323943 75.25402 2.647886 1254.234 0.026134363 1287.444 0.02226986 

478 1.368042 75.39058 2.736084 1256.51 0.026993223 1290.889 0.02312872 

479 1.412695 75.50526 2.82539 1258.421 0.027862121 1293.976 0.023997618 

480 1.458191 75.61279 2.916382 1260.213 0.028746647 1296.966 0.024882144 

481 1.504514 75.70112 3.009028 1261.685 0.029646449 1299.65 0.025781946 

482 1.521474 75.71838 3.042948 1261.973 0.029975686 1300.374 0.026111183 

483 1.605194 75.80168 3.210388 1263.361 0.031599321 1303.92 0.027734818 

484 1.689754 75.86313 3.379508 1264.385 0.033236575 1307.115 0.029372072 

485 1.774234 75.91746 3.548468 1265.291 0.034869607 1310.189 0.031005104 

486 1.859874 75.95519 3.719748 1265.92 0.036522345 1313.009 0.032657842 

487 1.945834 75.98196 3.891668 1266.366 0.038178516 1315.649 0.034314013 

488 2.030794 76.00005 4.061588 1266.667 0.03981273 1318.114 0.035948227 

489 2.098754 76.01048 4.197508 1266.841 0.041118027 1320.017 0.037253524 
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Appendix C 

Table C1: Mechanical properties variation with groove depths for wire specimens with 

0.2mm wide across-the- thickness channel cut 

Groove  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% reduction 

in ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction in 

displacement 

at fracture 

(mm) 

0 50.31 

  

67.97 

  

5.93  

0.1 50.29 0.025 

 

67.94 0.057 

 

5.78 2.626 

0.2 50.29 0.034 

 

67.89 0.119 

 

5.72 3.565 

0.3 50.26 0.090 

 

67.76 0.307 

 

5.15 13.127 

0.5 50.20 0.218 

 

67.23 1.090 

 

4.14 30.239 

0.75 50.00 0.603 

 

65.91 3.039 

 

3.54 40.373 

1 49.79 1.030 

 

64.16 5.612 

 

2.90 51.121 

 

 

Table C2: Mechanical properties variation with groove depths for wire specimens with 

0.2mm wide across-the- width channel cut 

Groove  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% reduction 

in ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction in 

displacement 

at fracture 

(mm) 

0 50.31 

  

67.97 

  

5.93  

0.1 50.28 0.044 

 

67.93 0.065 

 

5.71 3.837 

0.2 50.27 0.072 

 

67.81 0.238 

 

5.28 10.946 

0.3 50.23 0.159 

 

67.64 0.494 

 

4.75 19.867 

0.5 50.10 0.418 

 

66.86 1.633 

 

3.74 36.905 

0.75 49.86 0.898 

 

65.01 4.361 

 

3.17 46.641 

1 49.51 1.591 

 

62.40 8.199 

 

2.42 59.202 
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Table C3:   Mechanical properties variation with groove depths for wire specimens with 

0.1mm wide across-the- thickness groove. 

Groove  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% reduction 

in ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction in 

displacement 

at fracture 

(mm) 

 

50.31     67.97     5.93   

0.1 50.31 0.002   67.93 0.066   5.89 0.556 

0.2 50.3 0.022   67.91 0.092   5.65 4.735 

0.3 50.27 0.078   67.8 0.255   5.5 7.231 

0.5 50.19 0.238   67.5 0.698   4.52 23.869 

0.75 50.04 0.54   66.57 2.059   3.77 36.447 

1 49.81 0.996   65.19 4.102   3.19 46.083 

 

Table C4: Mechanical properties variation with groove depths for wire specimens with 

0.2mm wide across-the- thickness groove. 

Groove  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% reduction 

in ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction in 

displacement 

at fracture 

(mm) 

 

50.31     67.97     5.93   

0.1 50.29 0.025   67.94 0.057   5.89 0.64 

0.2 50.29 0.034   67.89 0.119   5.6 5.576 

0.3 50.26 0.09   67.76 0.307   5.23 11.802 

0.5 50.2 0.218   67.23 1.09   4.15 29.985 

0.75 50 0.603   65.91 3.039   3.21 45.921 

1 49.79 1.03   64.16 5.612   2.9 51.121 
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Table C5:   Mechanical properties variation with groove depths for wire specimens with 

0.3mm wide across-the- thickness groove. 

Groove  

depth 

(mm) 

Yield 

load 

(kN) 

% 

reduction 

in yield 

load (kN) 

 

Ultimate 

load 

(kN) 

% reduction 

in ultimate  

load (kN) 

 

Displacement 

at fracture 

(mm) 

% reduction in 

displacement 

at fracture 

(mm) 

0 50.31     67.97     5.93   

0.1 50.28 0.039   67.92 0.072   5.89 0.734 

0.2 50.27 0.072   67.88 0.131   5.54 6.622 

0.3 50.25 0.113   67.76 0.313   5.15 13.127 

0.5 50.18 0.241   67.29 1.001   4.14 30.239 

0.75 50.01 0.592   66.12 2.731   3.54 40.373 

1 49.76 1.081   64.39 5.264   2.61 55.988 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

262 

References: 

1 Abdel-Nasser, Y.A., Masaoka, K., and Okada, H., 2006. Ultimate strength of dented tubular. 

Alexandria Engineering Journal, Volume 45, Issue 1, January 2006, pages 37-46. 

2 Anderson T.L., 2005. Fracture mechanics fundamentals and applications, Third edition. CRC 

press, Taylor and Francis Group, ISBN -10:0-8493-1656-1. 

3 Askeland, D.R., and Phule, P.P., 2006. The science and engineering of materials. Fifth 

edition. Thomson Canada Limited, ISBN 0 534 55396 6.  

4 ASTM E8M, 2009. Standard Test Method for Tension Testing of Metallic Materials. 

American Society for Testing of Materials. 

5 Atzori B., Lazzarin P., and Filippi, S., 2001. Cracks and notches: analogies and differences of 

the relevant stress distributions and practical consequences in fatigue limit predictions. 

International Journal of Fatigue, Vol 23 pages 355-362. 

6 Bai, Y., and Bai, Q., 2005. Subsea pipelines and risers. Elsevier Incorporation, ISBN 0-080-

4456-67.  

7 Balart, M.J., and Knott, J.F., 2006. Effects of geometry and flow properties on the fracture 

toughness of a C-Mn reactor pressure vessel steel in the lower shelf region, International 

Journal of Pressure Vessels and Piping, Vol. 83, pages 205-215. 

8 Bayram, A., Uguz, A., and Ula, Murat., 1999. Effects of Microstructure and Notches on the 

Mechanical Properties of Dual-Phase Steels. Material characterisation, Vol. 43, pages 259-

269. 

9 Beghini, M., Bertini, L., and Fontanari V., 2006. Evaluation of the stress–strain curve of 

metallic materials by spherical indentation, International Journal of Solids and Structures, 

Volume 43, Issue 7-8, April 2006, pages 2441-2459.  

10 Bernauer G., and Brocks, W., 2002. Micro-mechanical modelling of ductile damage and 

tearing–results of a European numerical round robin. Fatigue and Fracture of Engineering 

Materials & Structures, 2002, Volume 25, Issue 4, pages 363 – 384. 

11 Besson, J., Steglich, D., and Brocks, W., 2003. Modeling of plane strain ductile rupture, 

International Journal of Plasticity, Vol. 19, Pages 1517-1541. 

12 Braestrup, M.W., Andersen, J.B., Andersen, L.W., and Christensen, C., 2005. Design and 

Installation of Marine Pipelines. Blackwell Science Ltd, ISBN-13: 978-0632-05984-3, page 

278. 

13 Broek, D., 1997. The Practical Use of Fracture Mechanics. Kluwer Academics Publishers, 

ISBN-90-247-3707-9. 

http://www.scopus.com/authid/detail.url?authorId=14122803300
http://www.scopus.com/authid/detail.url?authorId=7004518467
http://www.scopus.com/source/sourceInfo.url?sourceId=13907&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=14398&origin=recordpage
http://www3.interscience.wiley.com/journal/118547180/home
http://www3.interscience.wiley.com/journal/118547180/home
http://www3.interscience.wiley.com/journal/118934253/issue


     

263 

14 Bruehl, R., 1984. Defects in steel wires and its routine testing. Wire, Volume 34, Issue 2, 

March 1984, Pages 43-46. 

15 BS 7448-1, 1991.  Fracture mechanics toughness tests - Part 1: Method for determination of 

KIc, critical CTOD and critical J values of metallic materials. British Standards Institute. 

16 BS EN ISO 9513, (2002). Metallic materials, Calibration of extensometers used in uniaxial 

testing, British standards institutes. 

17 BS EN ISO13628-2, (2006). Petroleum and natural gas industries - Design and operation of 

subsea production systems - Unbonded flexible pipe systems for subsea and marine 

applications. British Standards Institute. 

18 Burks, B.M., Armentrout, D.L., Baldwin, M., Buckley, J. and Kumosa, M., 2009. Hybrid 

composite rods subjected to excessive bending loads. Composites Science and Technology, 

2009, pages 2625-2632. 

19 Burks, B., Middleton, J., Armentrout ,D. and Kumosa, M., 2010. Effect of excessive bending 

on residual tensile strength of hybrid composite rods. Composites Science and Technology, 

Vol 70, (2010) pages 1490–1496. 

20 Cabezas, E.E., and Celentano, D.J., 2004. Experimental and numerical analysis of the tensile 

test using sheet specimens. Finite Elements in Analysis and Design, Vol 40, 2004, pages 555-

575.  

21 Callister, W.D. Jr., 2007. Materials Science and Engineering-An Introduction. 7
th

 edition, 

John Wiley & Sons Inc, ISBN-13: 978-0-471-73696-7. 

22 Cao, Y.P., and Lu, Jian., 2004. A new method to extract the plastic properties of metal 

materials from an instrumented spherical indentation loading curve. Walled Structures, 

Volume 43, Issue 9, September 2005, Pages 1475-14.  

23 Carbonnie, J., Thuillier, S., Sabourin, F., Brunet, M., and Manach, P.Y., 2008. Comparison of 

the work hardening of metallic sheets in bending–unbending and simple shear. International 

Journal of Mechanical Sciences, Vol. 51, pages 122-130. 

24 Celentano, D.J., and Chaboche, J., 2007. Experimental and numerical characterization of 

damage evolution in steels. International Journal of Plasticity, 2007, Vol 23 pages 1739-1762. 

25 Chakrabarty, J., 2006. Theory of Plasticity. Elsvier Butterworth Heinemann, ISBN 10: 0-

7506-6638-2. 

26 Chao, Y.J., Liu, S., and Broviak, B.J., 2001. Brittle fracture: variation of fracture toughness 

with constraints and crack curving under mode I condition. Experimental mechanics, Vol. 41, 

Issue 3, pages 232-241. 

http://www.scopus.com/source/sourceInfo.url?sourceId=28914&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=22094&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=22094&origin=recordpage


     

264 

27 Chen, F.K., and Ko, S., 2006. Deformation analysis of springback in L-bending of sheet 

metal. Journal of Achievements in Materials and Manufacturing Engineering Vol. 18 Issue 1-

2. 

28 Chun, T.B., and Nho, I.S., 2005. Ultimate strength analysis of dented tubular members, 

Proceedings of the International Offshore and Polar Engineering Conference Vol. 2005, 

2005, pages 293-299. 

29 Coutarel, A., 2001.  Light weight flexible pipes for ultra deepwater developments. Offshore 

pipeline technology conference, Amsterdam. 

30 Davis, J.R., 2004. Tensile Testing. Second edition, ASM International, ISBN-0-87170-806-

X. 

31 Dieter, G.E., 1998. Mechanical metallurgy. McGraw-Hill Book Company, ISBN 0-07-

084187-X, page 659. 

32 Duan, L., Chen, W.F., and Loh, J.T., 1993. Analysis of dented tubular members using 

moment curvature approach. Thin-Walled Structures, Volume 15, Issue 1, 1993, pages 15-41. 

33 Duan, L., Chen, W. F., and Loh, J. T., 1994. Ultimate Strength of Damaged Tubular 

Members. International Journal of Offshore and Polar Engineering, Vol. 4, No.2, June 1994. 

34 Dunand, M., and Mohr, D., 2009. Hybrid experimental-numerical analysis of basic ductile 

fracture experiments for sheet metals. International Journal of Solids and Structures , Vol 47, 

Issue 9, May 2010, pages 1130-1143. 

35 Escoe, K.A., 2006. Piping and pipeline assessment guide, Gulf Professional Publishing. 

ISBN 13: 978-0-7506-7880-3.  

36 BS EN ISO 6892-1:2009. Metallic materials -Tensile testing -Part 1: Method of test at 

ambient temperature, British Standards Institute. 

37 BS EN ISO13628-2:2006. Petroleum and natural gas industries- Design and operation of 

subsea production systems - Unbonded flexible pipe systems for subsea and marine 

applications. British Standards Institute. 

38 Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., 1994. Strain gradient 

plasticity: theory and experiment, Acta Metallurgica, Vol 42, Issue 2, pages 475-487. 

39 Fukuda, N., Hagiwara, N., and Masuda, T., 2005. Effect of Prestrain on Tensile and Fracture 

Toughness Properties of Line Pipes. Journal of Offshore Mechanics and Arctic Engineering, 

Vol. 127, pages 263-268. 

40 Firat M., 2007. U-channel forming analysis with an emphasis on springback deformation.  

Materials and Design, Volume 28, pages 147-154. 

http://www.scopus.com/authid/detail.url?authorId=13410526900
http://www.scopus.com/authid/detail.url?authorId=6506869946
http://www.scopus.com/source/sourceInfo.url?sourceId=77392&origin=recordpage
http://www.scopus.com/authid/detail.url?authorId=24310518300
http://www.scopus.com/authid/detail.url?authorId=24288097600
http://www.scopus.com/authid/detail.url?authorId=7005450500
http://www.scopus.com/source/sourceInfo.url?sourceId=22094&origin=recordpage
http://www.sciencedirect.com/science/journal/00207683
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236102%232010%23999529990%231757124%23FLA%23&_cdi=6102&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7229486&md5=7c4223f785e4590bb3f9689881257504
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236102%232010%23999529990%231757124%23FLA%23&_cdi=6102&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7229486&md5=7c4223f785e4590bb3f9689881257504


     

265 

41 Garrell, M.G., Shi, A.J., Edgar, L., and Scattergood, R.O., 2003. Finite-Element Analysis of 

Stress Concentration in ASTM D 638 Tension Specimens, Journal of Testing and Evaluation, 

Vol. 31, No.1. 

42 Gau, J., and Kinzel, G.L., 2001. A new model for springback prediction in which the 

Bauschinger effect is considered. International Journal of Mechanical Sciences, 2001,Vol 43, 

Issue 8, pages 1813-1832. 

43 Gillstrom, P., and Jarl, M., 2006. Mechanical descaling of wire rod using reverse bending and 

brushing, Journal of Materials Processing Technology, Volume 172, Issue 3, 10 March 2006, 

pages 332-34. 

44 Gliha, V., and Rojko, D., 2003. The pre-cracking of wide plate specimens, International 

Journal of Pressure Vessels and Piping, Volume 80, Issue 6, June 2003, Pages 351-360. 

45 Harkegard, G., and Mann, T., 2003. Neuber prediction of elastic plastic strain concentration 

in notched tensile specimens under large-scale yielding. The Journal of Strain Analysis for 

Engineering Design, Vol. 38, pages 79-94 

46 Harsono, E., Swaddiwudhipong, S., Liu, Z.S., and Shen, L., 2010. Numerical and 

experimental indentation tests considering size effects. International Journal of Solids and 

Structures, Vol. 48, pages 972-978. 

47 Health and Safety Executive, 1998. Guidelines for integrity monitoring of unbonded flexible 

pipes. Offshore technical report, OTO 98 019, May, 1998. 

48 Health and Safety Executive, 2009. www.hse.gov.uk/pipelines/htm. Assessed 06/02/2009 

49 Hooputra, H., Gese, H., Dell, H., and Werner, H., 2004. A comprehensive failure model for 

crashworthiness simulation of Aluminium extrusions, international, Journal of 

Crashworthiness, Vol. 9, pages 449- 464. 

50 Huang, H., and Xue, L., 2009. Prediction of slant ductile fracture using damage plasticity 

theory. International Journal of Pressure Vessels and Piping, Vol. 86 pages 319-328 

51 Huratlt, L.T., Sallo, R.L., and Stricker, C.D., 1970.  Mechanical descaling of steel wire and 

rod. Wire Industry, Volume 37, Issue 441, September 1970, pages 843, 845-846. 

52 Ifergane, S., Barkay, Z., Beeri, O and Eliaz, N., 2010. Study of fracture evolution in copper 

sheets by in situ tensile test and EBSD analysis. Journal of Material Science, Vol. 45, pages 

6345-6352. 

53 Instron, 2003. 2518/2525-100 Series Load Cells. Catalog number 2525-108/112, 

www.instron.us/wa/acccatalog, assessed on 12/02/2011. 

54 Instron, 2004. 2630 Series Strain Gauge Extensometers. Catalog Number 2630-100, 

www.instron.us/wa/acccatalog, assessed on 12/02/2011. 

http://www.sciencedirect.com/science/journal/00207403
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235753%232001%23999569991%23253251%23FLA%23&_cdi=5753&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7229486&md5=5e262c1098283912845bdea8c7fe5b9c
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235753%232001%23999569991%23253251%23FLA%23&_cdi=5753&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7229486&md5=5e262c1098283912845bdea8c7fe5b9c
http://www.sciencedirect.com/science/journal/09240136
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235256%232006%23998279996%23617648%23FLA%23&_cdi=5256&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7229486&md5=18b5c40de78586b1f6dbb1081792c88d
http://www.sciencedirect.com/science/journal/03080161
http://www.sciencedirect.com/science/journal/03080161
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235735%232003%23999199993%23442740%23FLA%23&_cdi=5735&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=224739&md5=cd61ac3bfeb49b2d37fa145f5d32e870
http://www.hse.gov.uk/pipelines/htm
http://www.scopus.com/source/sourceInfo.url?sourceId=28915&origin=recordpage
http://www.instron.us/wa/acccatalog
http://www.instron.us/wa/acc_catalog


     

266 

55 Johnson, K.L., 1987. Contact Mechanics. Cambridge University Press, ISBN 0 521 34796 3. 

56 Kato, A., 1992. Design equation for stress concentration factors of notched strips and 

grooved shafts, Journal of Strain Analysis, Vol. 26, pages 21-28. 

57 Ken-ichiro, M., 2001. Simulation of materials processing: theory, methods and applications: 

proceedings of the 7th International Conference on Numerical Methods in Industrial Forming 

Processes--NUMIFORM 2001, pages 711-721. Paper presented by Cedric Xia, Z. 

58 Kim, J., Zhang, G., Gao, X., 2006. Modelling of ductile fracture: Application of the 

mechanism-based concepts. International Journal of Solids and Structures, Vol. 44, pages 

1844-1862. 

59 Kim, Y., and Chao Y.J., 2008. Numerical simulation of cup-cone fracture in a round tensile 

bar, Proceedings of PVP2008, 2008 ASME pressure vessel and piping division conference, 

July 28-3, 2008, Chicago, Illinois, USA. 

60 Kossakowski, P.G, 2010. An analysis of the load-carrying capacity of elements subjected to 

complex stress states with a focus on the microstructural failure. Archive of civil and 

mechanical engineering, Vol. 10, no 2, pages 15-39. 

61 Krishnadev, M., Maude, L., Lakshmanan, I., and Sridhar,  R., 2008. Metallurgical failure 

analysis of a Guy rope assembly, Engineering Failure Analysis, Volume 15, Issue 7, pages 

894-902.  

62 Kut, S., 2010. The application of the formability utilization indicator for finite element 

modelling the ductile fracture during the material blanking process. Materials & Design, Vol. 

31, Issue 7, August, pages 3244-3252. 

63 Lhermet, G., Vessiere, G., and Bahuaud, J., 1987. Determination of stress intensity factors 

from stress concentration factors for V-notched beams. Engineering Fracture Mechanics, Vol. 

28, Issue 3, Pages 331-343. 

64 Ling, Y., 1996. Uniaxial True Stress-Strain after Necking.  AMP Journal of Technology Vol. 

5 June, 1996, pages 37-48. 

65 Li, Z., and Guo, W., 2001. Three-dimensional elastic stress fields ahead of blunt V-notches in 

finite thickness plates. International Journal of Fracture, Vol.107, pages 53-71. 

66 Liu, S., and Chao, Y.J., 2003.Variation of fracture toughness with constraint. International 

Journal of Fracture, Vol.124, pages 13-117. 

67 Livieri, P., 2003.  A new path independent integral applied to notched components 

under mode I loadings. International Journal of Fracture, Vol. 123, Pages 107-12. 

 

http://www.sciencedirect.com/science/journal/13506307
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235714%232008%23999849992%23685877%23FLA%23&_cdi=5714&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=224739&md5=a6b28b3c51d7026596f409dea3db14d8
SIMULATION%20AFTER%20VIVA%20FOR%20THESIS%20CORRECTIONS/science/journal/02613069
SIMULATION%20AFTER%20VIVA%20FOR%20THESIS%20CORRECTIONS/science%3f_ob=PublicationURL&_tockey=%23TOC%235581%232010%23999689992%231988686%23FLA%23&_cdi=5581&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=224739&md5=b599da71b7d8be210b382e5aa342871a
SIMULATION%20AFTER%20VIVA%20FOR%20THESIS%20CORRECTIONS/science%3f_ob=PublicationURL&_tockey=%23TOC%235581%232010%23999689992%231988686%23FLA%23&_cdi=5581&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=224739&md5=b599da71b7d8be210b382e5aa342871a


     

267 

68 Lothian, E., Hermann, K., Stewart, M., 1981. An Atlas of Metal Damage. Wolf Publishing 

Limited, ISBN 0 7234 07509. 

69 Mahmoud, K.M., 2007. Fracture strength for a high strength steel bridge cable wire with a 

surface crack. Theoretical and Applied Fracture Mechanics, Vol. 48, Issue 2, Pages 152-160. 

70 Mahmudi, R., Mohammadia, R., and Sepehrband, P., 2003.  Determination of tearing energy 

from uniaxial tension tests of aluminum alloy sheet. Journal of Materials Processing 

Technology, Vol. 147, pages 185-190. 

71 Mapelli, C., and Barella, S., 2009. Failure analysis of a cableway rope, Engineering Failure 

Analysis, Volume 16, Issue 5, July 2009, pages 1734-1739. 

72 Meneghetti, G., and Lazzarin, P., 2006.  Significance of the elastic peak stress evaluated by 

FE analyses at the point of singularity of sharp V-notched components, Fatigue Fracture of 

Engineering Materials and Structures, Volume 30, pages 95-106. 

73 Mesarovic, S.D., and Fleck, N.A., 1999. Spherical indentation of elastic-plastic solids. 

Procedure of the Royal Society, London, volume 455, pages 2707-2728. 

74 Moir, Stephen., and Preston, J., 2002. Surface defects- evolution and behaviour from cast slab 

to coated strip. Journal of material processing technology, Vol-125-126, pages 720-724. 

75 Montmitonnet, P., Edlinger, M.L. and Felder, E., 1993. Finite element analysis of 

elastoplastic indentation: part 1-homogeneous media. Jounal of Tribology, Transaction of the 

ASME 115, 10-14. 

76 Murakami, Y., Noda, N., and Nishitani, H., 1981. The analysis of stress concentration of a 

cylindrical bar with a semi-elliptical circumferential notch under tension. Transactions of the 

Japan Society of Mechanical Engineers, pages 1194-1203. 

77 Narasaiah, N., Tarafder, S., and Sivaprasad, S., 2010. Effect of crack depth on fracture 

toughness of 20MnMoNi55 pressure vessel steel. Materials Science and Engineering A, Vol. 

527, Pages 2408–2411. 

78 Nayebi, A., El Abd, R., Bartier, O., and Mauvoisin, G., 2002. New procedure to determine 

steel mechanical parameters from the spherical indentation technique. Mechanics of 

Materials, Vol. 34, pages 243-254. 

79 Neimitz,  A., and  Galkiewicz, J., 2006. Fracture toughness of structural components: 

influence of constraint. International Journal of Pressure Vessels and Piping, Vol. 83 pages 

42–54. 

80 Noda, N.A., Sera, M., and Takase, Y., 1995. Stress concentration factors for round and flat 

test specimens with notches, International Journal of Fatigue, Vol. 17, No. 3, pages 163-178. 

http://www.sciencedirect.com/science/journal/01678442
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235777%232007%23999519997%23665308%23FLA%23&_cdi=5777&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7381125&md5=619c2a1c2766ff556b6b1a7eb7b73115
http://www.sciencedirect.com/science/journal/13506307
http://www.sciencedirect.com/science/journal/13506307
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235714%232009%23999839994%231059051%23FLA%23&_cdi=5714&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=224739&md5=14d1b41954e395cd791570347a2c774d


     

268 

81 Noda, N., and Takase, Y., 2006. Stress concentration formula useful for all notch shape in a 

round bar (comparison between torsion, tension and bending), International Journal of 

Fatigue, Vol. 28, pages 151–163. 

82 Oberkampf, W.L., Trucano, T.G., Hirsch, C., 2004. Verification, validation, and predictive 

capability in computational engineering and physics, Applied Mechanics Rev. Vol 57, Issue 

5, pages 345-384. 

83 Oberkampf, W.L., and Trucano, T.G., 2008. Verification and validation benchmarks. Nuclear 

Engineering and Design, Vol. 238, pages 716-743. 

84 Paik, J. K., Lee, J.M., and Lee, D.H., 2003. Ultimate strength of dented steel plates under 

axial compressive loads, International Journal of Mechanical Sciences, Vol. 45, pages 433–

448. 

85 Paik, J.K., 2005. Ultimate strength of dented steel plates under edge shear loads, Thin-Walled 

Structures, Vol. 43, Issue 9, September 2005, Pages 1475-1492. 

86 Pardoen, T., Scheyvaertsa, F., Simara, A., Tekoglu, C., and Onck, P., 2010. Multiscale 

modeling of ductile failure in metallic alloys. Comptes Rendus Physique, Vol. 11, Issues 3-4, 

April-May 2010, Pages 326-345. 

87 Petti, J.P., and Dodds, R.H., 2004. Constraint comparisons for common fracture specimens: 

C(T)s and SE(B)s. Engineering Fracture Mechanics, Vol 71, pages 2677–2683. 

88 Pipa, D., Morikawa, S., Pires, G., Camerini, C., and Marcio, S., 2010.  Flexible Riser 

Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive 

Filtering. EURASIP Journal on Advances in Signal Processing, Volume 2010, Article ID 

176203, 14 pages. 

89 Qingfen, Li.,  Shenghai, Hu., and Xinji, Pan., 1990. Effects of crack depth and shape on 

fracture toughness in a spring steel. Engineering Fracture Mechanics, Vol. 36, Issue 1, Pages 

1-7  

90 Ragab, A.R., 2004. A model for ductile fracture based on internal necking of spheroidal 

voids. Acta Materialia, Vol 52, pages 3997-4009. 

91 Rakin, M., Cvijovic, Z., Grabulov, V., Putic, S., and Sedmak, A., 2004. Prediction of ductile 

fracture initiation using micromechanical analysis. Engineering Fracture Mechanics, Vol 71, 

pages 813-827. 

http://www.scopus.com/authid/detail.url?authorId=7102939646
http://www.scopus.com/source/sourceInfo.url?sourceId=22094&origin=recordpage
http://www.scopus.com/source/sourceInfo.url?sourceId=22094&origin=recordpage
http://www.sciencedirect.com/science/journal/16310705
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%237237%232010%23999889996%232444755%23FLP%23&_cdi=7237&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=aab7546a6e612031cfbad9e6139fe1a6
http://www.sciencedirect.com/science/journal/00137944
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235709%231990%23999639998%23396897%23FLP%23&_cdi=5709&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=647da87646c9eab6c8037bda74b40a86


     

269 

92 Savruk, M., and Kazberuk, A., 2010. Two-dimensional fracture mechanics problems for 

solids with sharp and rounded V-notches. International Journal of Fracture, Vol. 161, pages 

79-95. 

93 Schrems, K., and Maclaren, D., 1996. Failure analysis of a mine hoist rope. Engineering 

failure analysis, Vol 4, No 1, pages 25-38. 

94 Shen, J., Mao, J., Reyes, G., Chow, C., Boileau, J., Su, X., and Wells, J., 2009. A 

Multiresolution Transformation Rule of Material Defects. International Journal of Damage 

Mechanics, Vol. 18, November 2009, pages 739-758. 

95 Shigley, J.E., Mischke, C.R., and Budynas, R.G., 2004. Mechanical Engineering Design. 

Seventh Edition, Mc Graw Hill Higher Education, ISBN 0-07-252036-1. 

96  Simulia, 2007. Abaqus documentation, Abaqus Incorporation, Dassault Systemes. 

97  Smith, B. O., Jenning, A. P., and Grimshaw, A. G., 1957.  A portable lamination detector for 

steel sheet, The British Iron and Steel Research Association, Battersea Park Road, London 

98  Smith, C.S., and Dow, R.S., 1981. Residual strength of damaged steel ships and offshore 

structure, Journal of Constructional Steel Research, Volume 1, Issue 4, September 1981, 

Pages 2-15. 

99 Smith, G.D.W., and Easterling, K.E., 1993. Handbook of cases of histories in failure analysis, 

Vol 2, ASM International, ISBN: 0-87170-495-1. 

100 Soboyejo, W. O., Mechanical properties of engineered materials. Marcel Dekker 

incorporation, ISBN 0-8247-8900-0. 

101 Springmann, M., and Kuna, M., 2004. Identification of material parameters of the Gurson-

Tvergaard-Needleman model by combined experimental and numerical techniques. 

Computational Material Science, 2005, Vol 32, pages 544-552. 

102 Strandberg, Morten., 1999. A numerical study of the elastic stress field arising from sharp 

and blunt V -notches in a SENT-specimen. International Journal of Fracture, volume 100, 

pages 329-342. 

103 Takeda, T., and Chen, Z., 1999. Yield Behavior of a Mild Steel after Prestraining and 

Agingunder Reversed Stress. Metallurgical and Materials Transactions A, Vol 30A, pages 

411-416. 

http://www.springerlink.com/content/100274/?p=ec52de4ae87542e38937cb19e9cdfa8e&pi=0
http://www.scopus.com/authid/detail.url?authorId=24497421200
http://www.scopus.com/authid/detail.url?authorId=24497421200
http://www.scopus.com/source/sourceInfo.url?sourceId=16274&origin=recordpage


     

270 

104 Tlilan, H. M., Shyyab, A. S., Al- Jawarneh, A. M., and Ababneh, A. K., 2008. Strain 

concentration factor of circumferentially V-notched cylindrical bars under static tension. 

Journal of Mechanics, Vol. 24, No. 4, December 2008, pages 419-427. 

105 Toribio, J., and Valiente, A., 2004. Approximate evaluation of directional toughness in 

heavily drawn pearlitic steels. Materials Letters, Volume 58, Issues 27-28, pages 3514-3517. 

106 Toribio, J., and Valiente, A., 2006. Failure analysis of cold drawn eutectoid steel wires for 

prestressed concrete. Engineering Failure Analysis, Volume 13, Issue 3 pages 301-311. 

107 Troina, L.M.B., Rosa, L.F.L., Viero, P.F., Magluta, C., and Roitman, N., 2003. An 

Experimental Investigation on the Bending Behaviour of Flexible Pipes. Proceedings of the 

International Conference on Offshore Mechanics and Arctic Engineering - OMAE Volume 2, 

2003, pages 637-645. 

108 Tvergaard, V., and Needleman, A., 1984. Analysis of the cup-cone fracture in a round tensile 

bar, Acta Metallurgica, Vol 32, Issue 1, pages 157-169 

109 Tvergaard, V., (1987). Ductile shear failure at the surface of a bent specimen. Mechanics of 

materials, Vol 6, pages 53-69.   

110 Ueda, Y., 1991. Modern Method of Ultimate Strength Analysis of Offshore Structures, 

International Journal of Offshore and Polar Engineering, Vol. 1, No. 1, March 1991 (lSSN 

1053-5381). 

 

 

 

 

 

                           

 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/journal/0167577X
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235585%232004%23999419972%23522345%23FLA%23&_cdi=5585&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=224739&md5=78939ef4aef2e3b79501b6bbff588c9c
http://www.sciencedirect.com/science/journal/13506307
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235714%232006%23999869996%23611027%23FLA%23&_cdi=5714&_pubType=J&view=c&_auth=y&_acct=C000014659&_version=1&_urlVersion=0&_userid=7381125&md5=10d028503b5ed85c70c303e591ec9fca
http://www.scopus.com/scopus/source/sourceInfo.url?sourceId=91440
http://www.scopus.com/scopus/source/sourceInfo.url?sourceId=91440

