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Abstract

One of the fundamental goals of systems biology is the experimental verification of the interactome: the entire

complement of molecular interactions occurring in the cell. Vast amounts of high-throughput data have been

produced to aid this effort. However these data are incomplete and contain high levels of both false positives

and false negatives. In order to combat these limitations in data quality, computational techniques have been

developed to evaluate the datasets and integrate them in a systematic fashion using graph theory. The result

is an integrated network which can be analysed using a variety of network analysis techniques to draw new

inferences about biological questions and to guide laboratory experiments.

Individual research groups are interested in specific biological problems and, consequently, network analyses

are normally performed with regard to a specific question. However, the majority of existing data integration

techniques are global and do not focus on specific areas of biology. Currently this issue is addressed by us-

ing known annotation data (such as that from the Gene Ontology) to produce process-specific subnetworks.

However, this approach discards useful information and is of limited use in poorly annotated areas of the inter-

actome. Therefore, there is a need for network integration techniques that produce process-specific networks

without loss of data. The work described here addresses this requirement by extending one of the most pow-

erful integration techniques, probabilistic functional integrated networks (PFINs), to incorporate a concept of

biological relevance.

Initially, the available functional data for the baker’s yeast Saccharomyces cerevisiae was evaluated to identify

areas of bias and specificity which could be exploited during network integration. This information was used

to develop an integration technique which emphasises interactions relevant to specific biological questions, us-

ing yeast ageing as an exemplar. The integration method improves performance during network-based protein

functional prediction in relation to this process. Further, the process-relevant networks complement classi-

cal network integration techniques and significantly improve network analysis in a wide range of biological

processes.

The method developed has been used to produce novel predictions for 505 Gene Ontology biological processes.

Of these predictions 41,610 are consistent with existing computational annotations, and 906 are consistent with

known expert-curated annotations. The approach significantly reduces the hypothesis space for experimental

validation of genes hypothesised to be involved in the oxidative stress response. Therefore, incorporation

of biological relevance into network integration can significantly improve network analysis with regard to

individual biological questions.
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Chapter 1

Introduction

The availability of whole genome sequences has spurred a revolution in biological analysis [1, 2].

Several sequenced strain collections have been established [3–6]. Technologies have been developed

for the mass production of data in a high-throughput (HTP) manner within a short space of time

[7–9]. The mRNA expression of all genes within a genome can be measured under a wide variety

of circumstances [10–13], genetic interactions can be screened on a genome-wide scale [14–17], the

subcellular location of proteins can be probed [3, 18], large-scale biochemical activity screens can

be carried out [19, 20] and techniques have been developed for the proteome-wide detection of both

binary protein interactions and protein complex membership [21–24]. Consequently, genes and their

products, complexes and pathways are no longer seen as isolated components to be studied solely in

a reductionist manner, but as parts of larger, more complex systems, which can now be analysed in

their entirety (Figure 1.1) [25, 26].

A wide range of online databases exists to store the resulting data, with new databases continuing to

be developed; the 2011 Nucleic Acids Research Database Issue reports on 1,330 curated biological

databases [27], an increase of 100 from the 2010 edition [28], and 160 from the 2009 edition [29].

Meanwhile, new computational techniques, drawing on knowledge from computer science, statistics

and physics, have been developed to study the wealth of data produced by these experimental tech-

nologies [30, 31]. The cross-disciplinary field of systems biology encompasses these experimental

and computational analyses [32, 33].

Systems biology is the study of biology in terms of whole systems in an iterative fashion, with data

analyses guiding experimental design, and experimental results, in turn, forming the basis for further

analyses and mathematical modelling [26, 34–36]. One of the fundamental goals of the field is the

experimental verification of the interactome: the entire complement of molecular interactions within

an organism [37, 38]. Achieving this goal requires the systematic confirmation of all interactions
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Figure 1.1: Systems biology.
Classical reductionist biology (dashed box) treats the components of the cell, DNA, RNA and pro-
teins, individually. Following the development of high-throughput experimental techniques, systems
biology analyses these cellular parts as whole systems in order to model the complex behaviour of
the cell (solid box).

occurring between the proteins, genes, ligands and other molecules of the cell [39]. However, even

for a relatively simple organism such as the baker’s yeast Saccharomyces cerevisiae, verification of

the interactome is a substantial task, involving the study of thousands of interactions occurring at all

stages of the cell cycle, and in response to all possible external stimuli [37].

Beyond the binary interactions of the interactome, a full understanding of the cell’s complex be-

haviour requires detailed knowledge of each interaction. Proteins have individual, and sometimes

multiple, functions and act in specific biological processes, form complexes and participate in path-

ways. These processes each occur at particular locations within the cell. Moreover, the function(s)

of each protein, its location(s) and the kinetics of each interaction can differ depending on cellular

conditions. In multicellular organisms such as humans, the interactome also encompasses all tissue

types, ages and disease states [40, 41].

1.1 Integrative Bioinformatics

A wealth of biological data has been produced in the past decades. These data are spread over

hundreds of diverse databases and are heterogeneous in nature. Data relating to interactions between

genes and gene products are of particular relevance to the work described in this thesis. However,

2



the number of interactions common to datasets from different experiments can be surprisingly low

[42–45], primarily because each individual experimental type can only provide information about

certain aspects of the cell’s behaviour and interactions [46]. For instance, a study by Beyer and co-

workers found that approximately 1% of genetically interacting proteins in humans have been found

to interact physically [47], indicating that the proteins act in separate but parallel pathways. In order

to fully characterise every aspect of highly complex cellular systems and infer new knowledge from

the data, diverse data sources must be systematically integrated [48, 49].

Integrative bioinformatics is a field which aims to develop methods for the large-scale integration of

heterogeneous data. Combining data sources can provide a more complete view of the cell and reduce

the impact of experimental noise [49, 50]. Data integration can also lead to a fuller understanding of

cellular interactions by combining several multiple sources of evidence [51] and by revealing global

properties not evident in a single data type [52]. Integrative bioinformatics approaches have been

applied to a number of biological questions including the study of human disease [40, 53–66].

1.2 Biological Networks and Graph Theory

The majority of experimental datasets can be represented as networks of parts and interactions [67,

68]. A network of protein-protein interactions (PPIs) represents the physical interactions between

the proteins of the cell [69], while synthetic genetic arrays (SGAs) produce networks representing

shared lethality of gene deletions [14]. Both PPI and SGA networks are undirected since the edges

link nodes equally in both directions. Biological networks may also have direction with edges linking

source nodes to destination nodes. For instance the kinase-target relationships of phosphorylation

data [20, 70, 71] and the pathway directionality in signal transduction and metabolic networks [72–

76]. Each type of biological network contains valuable information that can be integrated to infer

new hypotheses.

The networks generated by different experimental techniques differ in size and complexity [77] and

therefore efficient analysis requires specific tools and techniques. One of the most powerful compu-

tational approaches to the interpretation of heterogeneous data is network analysis. Networks can be

viewed as a graph [78]. Nodes in a graph correspond to genes or gene products and edges represent

the accumulated evidence links between nodes. The simplest graphs include an edge between two

nodes if there is evidence of a functional link between them from at least one data source (Figure

1.2 A) [79]. The resulting graph represents all the available evidence of linkage between all pairs

of nodes (Figure 1.2 B). More complex graph models can include nodes representing other entities,

such as pathways, ligands, annotations and publication references [80]. Graph theory has also been

3



Figure 1.2: Biological data can be visualised using graph theory.
Nodes (depicted as red circles) correspond to genes or gene products and edges (depicted as blue
lines) represent a summary of the evidence for interaction between them. A. A simple example of a
small sub-graph connecting seven yeast genes. B. A biological network of several hundred genes.

applied to other aspects of biology, for example the nucleotide interactions in ribosomal RNA [81]

and organism interactions in food webs [82].

A network representation allows biological data to be visualised and represented in a manner that is

tractable for human visual analysis as well as being computationally amenable [77, 83]. Networks

may contain additional information reflecting other aspects of their components’ biology such as

weights, directionality and types [84]. Many tools have been developed for the visualisation and ma-

nipulation of complex networks [85] and several formats have been developed to represent network

structure in a standardised manner [86, 87]. These tools allow complex network data to be used for

a number of applications, including: detection of protein complexes [88–90]; prediction of protein

functions [91, 92]; identification of evolutionary relationships [93, 94]; and inference of novel in-

teractions that were not detected experimentally [95, 96]. Therefore the use of graph theory for the

analysis of biological data can add substantially to our understanding of cellular behaviour.

1.3 Probabilistic Functional Integrated Networks

The quality of different datasets, in terms of coverage of the genome and accuracy of the identification

of interactions, depends upon the experimental technique used. Consequently, several methods have

been employed to assess data quality prior to integration. The most common scoring method involves

comparison of the data with a high-quality Gold Standard dataset [59]. A Gold Standard is a high-

confidence, often manually-curated, set of interactions believed to be biologically correct [97]. In

many cases these data represent a single data type obtained from a human expert-curated database
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[49, 98] such as shared metabolic pathway membership in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [99] database or shared biological process in the Gene Ontology (GO) [100].

Composite Gold Standards, derived from multiple data sources, can also be created [101].

Gold Standards can be used in two ways. Experimental datasets may be compared with a Gold Stan-

dard using a statistical test that produces a confidence score for each dataset. Scores from multiple

datasets can then be integrated using techniques such as Bayesian data fusion [49, 102]. The second

use of Gold Standards involves machine learning. Here, the Gold Standard is used to train a classi-

fier, such as a support vector machine (SVM) [103] or Markov random field (MRF)[104, 105], which

can then score raw datasets prior to integration. The final integrated networks, termed Probabilistic

Functional Integrated Networks (PFINs), are annotated with edge weights representing the level of

confidence in the evidence for each association. The weights allow the use of statistical algorithms

that take these confidence weightings into account [57]. For many types of analyses PFINs outper-

form unweighted networks, for example in protein functional inference [49, 103, 105–112].

As functional networks, PFINs are distinct from interactomes since they link pairs of proteins if

they have any type of association. Edges may represent a protein’s involvement in whole cellular

processes [113]. The greater density of links provided by functional data provides a more informative

basis for network analysis and functional discovery than physical interactions alone. PFINs have been

used to analyse data from several different species, including yeast [114, 115], mouse [116, 117] and

human [118], and to compare patterns of interaction across multiple species [119].

1.4 Motivation for this Work

PFINs, while far more informative than single source and unweighted networks, have several draw-

backs. Firstly, high-throughput data are very noisy, with estimates of false positive rates varying

from 20% to as high as 91% depending upon the technology used to generate the data [37, 120–122].

Estimates of false negatives range from 17% to 96% [122–124]. Secondly, many studies have shown

that the integrated networks, the Gold Standards and the individual data sources may be biased to-

wards specific cellular processes [42, 98]. For instance, co-expression data shows significant bias

towards interactions between genes involved in ribosome biogenesis [125]. Current approaches to

these problems usually involve attempting to identify, and subsequently remove, the noise [126, 127]

or bias [98]. However, these approaches may further complicate the analysis by removing true posi-

tive interactions, resulting in a loss of valid data.

More importantly, existing network integration methods do not take into account the relevance of

each experimental dataset to specific biological processes. Therefore functional prediction tech-
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niques applied to networks are global rather than tailored to a specific area of biology, despite the

fact that most network analysis is performed with regard to a specific biological question. Individual

research groups address different questions. While the use of PFINs can produce a wealth of novel

hypotheses, only a few will be of relevance to each group’s interests [128]. The issue of process

relevance has been addressed by using protein annotation data either to extract process-specific sub-

networks from the PFIN [59, 129] or to build process-specific networks using a subset of the data

[46, 130]. These methods also discard potentially useful information and are of limited use in areas

of the network that contain large proportions of unannotated proteins.

The inherent biases of experimental data are a valuable source of information. Bias exists in ex-

perimental data for several reasons: the type of experimental technique or conditions chosen; the

experimental design; or the choice of data for publication [131]. The combination of these fac-

tors gives each dataset its own unique set of biases and, consequently, when analysing the data, some

datasets will be more informative than others regarding a particular biological process. Further, given

the scale of HTP data, the noise in datasets with low relevance to a particular biological question may

mask the relevant data contained in more informative datasets.

1.5 Project Aims and Objectives

The aim of this project was to research and develop techniques to exploit, rather than eliminate, data

bias in order to optimise network predictions relevant to specific processes without loss of data.

To achieve this aim it was necessary to meet a number of objectives:

1. To investigate the inherent biases of functional data.

2. To use the biases to quantify dataset relevance to specific biological processes.

3. To develop and assess network integration techniques that harness process relevance.

4. To develop and assess process-specific network analysis techniques.

5. To apply the developed techniques to real data in order to produce novel hypotheses about the

yeast Saccharomyces cerevisiae.

6. To evaluate the hypotheses using computational and laboratory techniques.
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1.6 Thesis Structure

The remainder of this thesis is divided into the following sections:

• Chapter 2 provides background information and a literature review of functional data, graph

theory, PFINs and network analysis techniques. The basis of cellular ageing is also introduced

as the primary biological focus of this project.

• Chapter 3 details the biological datasets and computational methods utilised and developed in

this work. Section 3.2 then describes the laboratory techniques used to evaluate the resulting

hypotheses.

• Chapter 4 describes the development of a novel process-relevant network integration tech-

nique. The technique, RelCID, extends an existing integration method in order to tailor PFINs

to answer specific questions. A detailed evaluation of RelCID using S. cerevisiae ageing data

is then presented.

• Chapter 5 presents a systematic analysis of the effects of data curation on PFIN performance.

Source databases are constantly changing over time as new knowledge is gained. It is often

assumed that these changes lead to an improvement in PFIN performance over time. This

chapter demonstrates that performance in fact fluctuates over time due to bias and noise and

that process-tailored techniques, such as RelCID, may overcome some of these effects.

• Chapter 6 describes the optimisation of the RelCID technique and its application to a wide

range of biological processes. Several additional aspects of dataset relevance are identified

and incorporated into a composite network integration technique in order to produce optimal

PFIN performance. The relationship between network performance and biological area of

interest is also investigated and found to be closely associated with the structure of GO.

• Chapter 7 demonstrates the power of RelCID in hypothesis generation. Functional predictions

are produced for 505 GO terms and computationally evaluated before a single prediction is

chosen for laboratory analysis. Importantly, the RelCID technique is shown to significantly

reduce analysis time in comparison to traditional methods.

• Chapter 8 discusses the implications of this project and suggests areas for future extension and

analysis.

7



Chapter 2

Background

2.1 Functional Data

Experimental datasets are the building blocks of functional integrated networks. Unlike PPI net-

works, which only include direct physical interactions, a functional network links pairs of proteins

if there is any evidence that they are functionally related [69, 113]. Several different types of func-

tional association data exist and each provides information about a different aspect of cellular biology

[67]. Functional interactions include any evidence of a functional link between two genes or gene

products, such as complex formation, catalysis, genetic interaction, co-localisation and regulatory

relationships.

2.1.1 Physical Data

The detection of physical binding between proteins is the basis of the majority of molecular network

analyses [67, 132]. PPIs can be either binary or protein complex interactions [133]. In binary interac-

tions pairs of proteins have one-to-one physical contact (Figure 2.1 A) [69, 134]. In protein complex

interactions a group of proteins is associated as members of the same complex. However, there may

or may not be a direct physical interaction between any pair of proteins within the complex. Addi-

tionally, the physical interactions that occur in a complex may rely on other complex members and,

therefore, do not occur in a binary fashion (Figure 2.1 B). Both binary and complex interactions may

be either stable or transient [135, 136].

Several experimental technologies have been developed to detect binary and protein complex inter-

actions, and these methods differ in their methodology, interpretation and the interactions they detect

[69, 137–139]. Initially these methods were designed for small-scale analysis [140]. However, re-

cently HTP techniques have been developed for the detection of PPIs on a genome-wide scale [141],
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Figure 2.1: Binary and complex protein interactions.
A. In a binary interaction there is a one-to-one direct physical interaction between protein A and
protein B. B. In protein complexes interactions are inferred between all the members of a detected
complex. However the pairs of proteins may not interact physically. In this example protein B and
protein D interact as members of the complex but have no physical interaction. Additionally, a direct
interaction within a complex may not infer a binary interaction since the complex interaction may
rely on other members of the group for stability. For instance while protein A and protein D have a
small physical interaction, it may not occur in the absence of protein C and would not be detected by
binary detection methods such as Y2H.

allowing more sophisticated analysis of cellular biology [142, 143]. Two of these PPI detection meth-

ods have been used to produce genome-wide interaction networks in a number of species; yeast two

hybrid (Y2H) for binary interactions and tandem affinity purification (TAP) for complex detection.

2.1.1.1 Binary Interactions

Early methods for PPI detection, such as co-immunoprecipitation, co-fractionation and cross-linking

typically required protein purification [140]. Y2H was developed to overcome this requirement by

using the Saccharomyces cerevisiae Gal4 protein in a bottom-up approach [144]. Gal4 is a transcrip-

tional activator involved in the utilisation of galactose as a carbon source [145]. The Gal4 protein

consists of two distinct functional domains: an N-terminal DNA-binding domain; and a C-terminal

transcriptional activation domain. Since the two domains function independently it is possible to

physically separate them without loss of function [146]. The Y2H system exploits this independence

by fusing the separated domains to other query proteins. A bait protein is fused to the DNA-binding

domain, while a prey protein is fused to the activation domain [144]. If the bait and prey interact the

Gal4 protein is reconstituted and transcriptional activation occurs (Figure 2.2). By using a reporter

gene associated with the GAL4 transcription activation domain, interaction between the bait and prey

can be detected [147]. There are many reporter genes which use colour, fluorescence or selective

media growth as indication of gene activation. The Y2H system commonly utilises the lacZ reporter

gene which, when expressed, causes yeast colonies to turn blue in the presence of bromo-chloro-

indolyl-galactopyranoside (X-gal) [148].
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Figure 2.2: The yeast two hybrid (Y2H) method.
The Gal4 protein consists of two domains, the DNA binding domain and the transcription activation
domain. In the Yeast Two Hybrid system the binding domain and activation domain are physically
separated and fused to bait and prey proteins respectively. If the bait and prey interact, binding to
the GAL4 promoter brings the activation domain into close enough proximity for transcription of a
reporter gene to occur. In this example the lacZ gene is used as the reporter. When expressed lacZ
causes yeast colonies to turn blue in the presence of X-gal. Therefore, blue colonies are a positive
indicator of interaction between the bait and prey.
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Y2H can be implemented at different scales [132]. For the detection of specific interactions low-

throughput (LTP) Y2H is used. This technique involves one-to-one pairwise experiments. On a

larger scale a one-vs-all approach can be used to screen a specific protein or group of proteins against

the entire proteome [149]. Finally, at the most HTP level, Y2H can be applied in an all-vs-all manner

[150]. Fromont-Racine carried out the first large-scale Y2H study in 1997 [151]. Since then large-

scale Y2H studies have been carried out in several species (Table 2.1). In yeast, two large-scale

Y2H datasets are of particular note and have been systematically compared [108, 121]. In 2001,

Ito and co-workers [21] reported a comprehensive two-hybrid analysis, which identified over 4500

binary interactions among approximately 3000 proteins, using three different reporter genes and

multi-copy plasmid constructs. Of these interactions, a core high confidence dataset of approximately

800 interactions was selected. In an earlier study by Uetz and colleagues, two separate Y2H screens

were carried out using a single reporter and low-copy plasmid construct [22]. Unexpectedly, the data

of the Uetz and Ito datasets did not have many interactions in common [21]. This lack of overlap

was also observed in a later Y2H dataset [134] and appears to be a common phenomenon in Y2H

analysis. Two similar large-scale Y2H studies of human proteins [152, 153] showed a similar lack of

overlap with only six interactions in common [154, 155].

Several theories have been postulated to account for the lack of overlap between Y2H datasets

[21, 44, 122]. Since a protein’s function and binding is directly linked to its 3D structure, muta-

tions in one or both of the open reading frames (ORFs) may have affected the strength of protein

binding. Alternatively, one or both the proteins may have mis-folded due to fusion to the Gal4 pro-

Table 2.1: High-throughput Y2H screens.
Several high-throughput Y2H screens have been carried out in a range of species. Interaction num-
bers are taken from the BioGRID database (http://thebiogrid.org/ accessed 20th November
2010) except when marked ∗, in which case the data are taken from the publication. In the case of
the Ito 2001 dataset, only the core high-confidence data are available through BioGRID.

Species Interactions Reference
Saccharomyces cerevisiae 167 Fromont-Racine et al. 1997 [151]
Saccharomyces cerevisiae 875 Uetz et al. 2000 [22]
Saccharomyces cerevisiae 848 core (4549∗ total) Ito et al.2001 [21]
Saccharomyces cerevisiae 1778 Yu et al. 2008 [134]
Caenorhabditis elegans 4422 Li et al. 2004 [156]
Drosophila melanogaster 20130 Giot et al. 2003 [157]
Drosophila melanogaster 2185 Formstecher et al.2005 [158]
Campylobacter jejuni 11687∗ Parrish et al. 2007 [159]
Helicobacter pylori 1280∗ Rain et al. 2001 [160]
Plasmodium falciparum 2846∗ LaCount et al. 2005 [161]
Homo sapiens 755∗ Colland et al. 2004 [162]
Homo sapiens 2855 Rual et al. 2005 [152]
Homo sapiens 2527 Stelzl et al. 2005 [153]
Herpesvirus 296∗ Uetz et al. 2006 [163]
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tein domains. Differences in experimental design, such as the chosen reporter gene or copy number

of vectors, could impact the detection of interactions. Additionally, while these studies are large-

scale they are non-saturating in that no single study has assessed the entire complement of potential

interactions for a species. It has been suggested that false positives may be present in the datasets

owing to stochastic activation of the reporter genes. Finally, it has also been suggested that the low

overlap is not due to false positives but to poor sensitivity producing false negatives [134, 164]. It is

highly likely that the data contains both false positive and negative interactions (See Section 2.4.1).

However, the lack of overlap has yet to be fully understood and, consequently, systematic comparison

of the datasets with other data types is essential to identify true positive data [165].

Since the development of the Y2H technique, many variations have been produced and the technique

has been used to develop further PPI detection techniques [164]. The bacterial transcriptional repres-

sor LexA can be used as an alternative to Gal4 [166]. In this case binding of the bait and prey proteins

causes suppression of the reporter gene rather than activation. LexA and Gal4 based systems com-

plement one another and can, therefore, be used together to filter out false results [167]. The protein-

fragment complementation assay (PCA) is an in vivo technique that uses bait and prey proteins fused

to two complementary reporter protein fragments that will only assemble in close proximity. For

example the reporter may be an enzyme or fluorescent protein [168–170]. PCA has the advantage of

being carried out in the natural cellular environment, thus reducing false positives caused by interac-

tions between proteins that would not naturally meet in the cell. Two recent techniques, fluorescence

resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), are real

time Y2H variants where the bait and prey are fused to two different fluorescent or bioluminescent

molecules with distinct emission factors. Interaction causes energy transfer that changes the signal

from the cell [171–173]. The Mammalian protein-protein interaction trap (MAPPIT) is an in vivo

mammalian variation of Y2H that uses receptors, for instance the cytokine receptor, fused to the bait

and prey [174, 175].

Protein chips are also used for the detection of specific protein binding in vitro [176]. In this tech-

nique large numbers of proteins are immobilised by covalent bonding to a solid surface, for example

a glass slide, and then probed with a labelled substrate [177]. Protein chips are produced by high-

accuracy spotting robots, allowing a large number of proteins to be immobilised in a small space.

The substrate probes can be any type of biological molecule, for instance other proteins, antigens,

small molecules, drugs or nucleic acids [178]. Various reporters such as fluorescent proteins are used

to detect interaction. Whole-proteome chips are now available allowing genome-wide identification

of specific binding partners [4, 177].
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2.1.1.2 Complex Detection

Complexes are detected by pull-down proteomics methods. Pull-down experiments have three stages;

bait presentation, complex purification and analysis [179]. These techniques have the advantage of

being carried out in a protein’s natural state and at its normal abundance levels [180]. The tandem

affinity purification mass spectrometry (TAP-MS) technique has been developed for HTP detection

of protein complexes [181]. In the first stage of TAP-MS a bait protein is modified at its C-terminus

by fusion with a TAP tag. The tag consists of a calmodulin binding domain (CBD) and the bacterial

immunoglobulin-binding Protein A, separated by a tobacco etch virus (TEV) protease cleavage site

[182]. The modified bait is then added to a cellular extract, allowing proteins to bind the bait and

form a complex.

The complexed proteins are then purified in two affinity columns (Figure 2.3). The first column

consists of beads coated with the immunoglobulin IgG. Protein A binds the IgG beads, and the

bound complex is washed before release by protease cleavage at the TEV site. In the second column

the CBD binds calmodulin coated beads before further washing of the complex. Finally the bound

complex is released and the bait’s binding partners are identified by mass spectrometry (MS) [67,

179, 183]. The two-stage purification method of TAP-MS gives high sample purity, however it is

thought not to detect weak interactions or those interactions involving low abundance proteins well

in comparison to other methods [184, 185].

TAP-MS and related methods identify potential protein complexes. However, due to the nature of

complex binding (Figure 2.1 B) analysis of the data is difficult and the results can be interpreted in

different ways [186]. There are two major algorithms used to identify binary PPIs from TAP-MS

data [42, 184]. In the first, termed the spoke model, PPIs are inferred between the bait protein and

each of the identified preys (Figure 2.4 A). In the second, termed the matrix model, pairwise PPIs

are inferred between all pairs of proteins in the complex, including the bait (Figure 2.4 B).

The two models are trade-offs between completeness and accuracy [42]. The spoke model reduces

false positives but increases false negatives, while the matrix model increases false positives [187].

Combined models have also been developed for the interpretation of TAP-MS data. Some methods

vary the model chosen depending on the complex size [187]. Others calculate probabilities for each

individual interaction [45, 98, 188]. For instance, hypergeometric probabilities can be calculated that

downweight promiscuous proteins; those proteins which have a larger number of interactions in vitro

than are statistically likely to occur in vivo [98]. This downweighting can also be applied to other

data types, such as Y2H datasets, to reduce false positive results.
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Figure 2.3: Tandem affinity purification.
Cell extract is mixed with modified bait proteins which have been fused to a TAP tag. In the first
affinity column Protein A of the tag binds IgG coated beads and the bound proteins are washed to
remove un-complexed cell extract. After release of the bait protein by cleavage at the TEV site a
second affinity column is utilised. The calmodulin coated beads of the column are bound by the
CBD domain of the TAP tag before further washing and release of the bound proteins. The members
of the bound complex can then be identified, for instance by mass spectroscopy.
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Figure 2.4: Interpretation of TAP-MS data.
There are two methods to interpret the results of a TAP-MS screen. A. In the spoke model interactions
are inferred between the bait and each of the prey proteins in the complex. B. In the matrix model
pairwise interactions are inferred between all proteins of the detected complex.

Table 2.2: High-throughput TAP-MS screens.
Several high-throughput TAP-MS screens have been carried out in a number of species. Interaction
numbers are taken from the BioGRID database (http://thebiogrid.org/ accessed 20th Novem-
ber 2010) except when marked ∗, in which case the data are taken from the publication text. It should
be noted that while the publication text of Krogan et al. 2006 includes a set of 7,123 interactions,
several of the interactions have subsequently been removed from the BioGRID dataset.

Species Interactions Reference
Saccharomyces cerevisiae 3400 Gavin et al. 2002 [189]
Saccharomyces cerevisiae 3666 Ho et al. 2002 [190]
Saccharomyces cerevisiae 7079 Krogan et al. 2006 [24]
Saccharomyces cerevisiae 7592 Gavin et al. 2006 [23]
Escherichia coli 5254∗ Butland et al. 2005 [191]
Escherichia coli 11511∗ Arifuzzman et al. 2006 [192]
Homo sapiens 2068 Ewing et al. 2007 [193]
Homo sapiens 2555 Hutchins et al. 2010 [194]

Currently no model gives a complete set of the physical interactions of the interactome, and analysis

of the data in combination with other data types is necessary to accurately identify the protein com-

plex interactions of the interactome [95, 165]. However, all the interactions of both the spoke and

matrix models can be considered functional associations.

Affinity purification techniques have been used to detect protein complexes in a number of species

(Table 2.2). In yeast, three large-scale TAP-MS datasets [24, 189, 190] have been widely studied

[42, 45, 195–197]. Ho and co-workers used a set of 725 baits to capture potential complexes and

detected approximately 3500 interactions [190]. While Gavin and colleagues used a significantly

larger number of baits (1739), the final number of potential complexed interactions was also ap-

proximately 3500 [189]. A later study using approximately 4500 bait proteins applied two distinct
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MS-based methods to increase accuracy [24]. The results were then integrated as probabilities using

machine learning, producing a final high-confidence set of 7,123 interactions. Surprisingly, the three

TAP-MS datasets have low overlap with one another, with known complexes and with the large-scale

Y2H datasets (Section 2.1.1.1) [24, 38, 77, 154, 184]. Therefore, in order to increase coverage and

reduce noise, a separate combined dataset has been produced by the Krogan group by probabilistic

re-analysis of the available data using purification enrichment (PE) scoring [43].

2.1.2 Genetic Data

Genetic data can also be used to infer functional associations. Cells are complex systems with high

levels of co-ordination between cellular processes at the genetic level [33]. There are three main

types of genetic data:

• Coexpression. Genes are each expressed at specific times in response to varying cellular

conditions and requirements. Therefore, the expression patterns of genes can reveal underlying

cellular biology, since genes expressed at the same times are likely to be functionally related

[198].

• Gene Disruptions. The disruption of single genes may interfere with cellular processes and

can reveal their importance and give clues to their cellular roles [199].

• Genetic Interactions. When disruptions are combined, several different types of relationship

between pairs of genes can be inferred from the data [200].

2.1.2.1 CoExpression

The coexpression of genes in response to different cellular conditions can be used to infer func-

tional associations. Gene coexpression is measured at the mRNA level using DNA microarrays [13].

Microarrays are similar to protein chips in that they are robotically produced, with a high number

of probes immobilised on a small solid surface. However, rather than using proteins as probes,

microarrays use synthetic DNA oligonucleotides designed to bind specific RNA sequences [201].

Microarrays can contain tens of thousands of probes, allowing the parallel analysis of gene expres-

sion on a genome-wide scale. Large-scale microarrays have been used to study a wide variety of

organisms including S. cerevisiae [202], Drosophila melanogaster [203], Arabidopsis thaliana [204]

and H. sapiens [205]. The National Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO1) database stores HTP gene expression data for over 500 organisms in a standardised

format [206].
1http://www.ncbi.nlm.nih.gov/geo/ (accessed 14/1/11)
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Figure 2.5: Gene deletion in Sacharomyces cerevisiae.
An open reading frame may be deleted by replacement with a reporter gene such as the KanMX
module. Replacement is accomplished by homologous recombination in the flanking regions of the
gene (displayed as ×). The KanMX module consists of the kanamycin resistance gene flanked by
unique oligonucleotide sequences which act as a molecular bar-code for the deletion strain. Therefore
resistance to the antibiotic kanamycin is a positive indication of deletion.

While coexpression may represent a functional association between a pair of genes, the interpretation

of microarray data is non-trivial. Dozens of algorithms have been developed to detect coexpressed

genes and cluster the data into functionally-linked groups (for instance [11, 207–217]). However,

microarray data are extremely noisy and microarray datasets contain different signal to noise ratios

[10]. A large number of coexpressed genes are not functionally related since distinct processes

occur at the same time within the cell [10]. Therefore, inferring functional associations between all

coexpressed genes can add noise to the data and therefore obscure true positive interactions. Further,

functionally linked genes may be expressed sequentially rather than simultaneously [12].

Methods have been developed to detect false negative results [218] and to remove false positives

although these methods are unreliable [219]. Often gene expression data are used in combination

with other biological data in order to reduce false positives [41, 220–227]. The use of multiple

datasets can also improve the detection of co-expression [228]. However, the relationship between

microarray data and cellular biology remains difficult to interpret.

2.1.2.2 Gene Disruption

Disruption of a gene can reveal its function [199]. Gene disruption in S. cerevisiae can be accom-

plished in several ways. The overexpression of a gene can disrupt the processes in which it is involved

and give clues to its function [4, 229]. Genes may also be rendered functionally inactive by the in-

sertion of DNA, such as a transposon, within their sequences [5]. Finally, genes may be deleted

(knocked out) from the genome, often by replacement with a marker for the deletion such as the

KanMX module used by the Yeast Gene Deletion Project2 (Figure 2.5) [230]. The KanMX module

consists of the kanamycin resistance gene flanked by unique oligonucleotide sequences which act as

a molecular barcode for the deletion strain.

2http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html (accessed
11/1/11)
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Gene disruption can have several different effects. If a disrupted gene is required for viability the

disruption is lethal and the cells will not grow. These genes are termed essential, and make up

approximately 20% of the yeast genome. Essential genes cannot be permanently disrupted and must

be studied using temporary, conditional disruption [14, 231–233].

Cells may also exhibit abnormal growth, termed sickness, such as slow growth or small cell size.

In many cases the mutant cells will grow normally but show increased sensitivity to particular con-

ditions, such as oxidative stress or low iron [234]. These condition-specific reactions can reveal a

gene’s cellular role. Disruption mutant strains are available from the Yeast Deletion Project for 90%

of the yeast genome.

2.1.2.3 Genetic Interactions

A genetic interaction (GI) occurs when disruption of one gene enhances or suppresses disruption

of another [14]. In other words, the two disruptions have a combined effect that is not seen when

either gene is disrupted on its own. There are several types of GI which can be classified in different

ways. The BioGRID database (see Section 2.1.4.1) classifies GIs into eight types; dosage growth

defect, dosage lethality, dosage rescue, synthetic growth defect, synthetic lethality, synthetic rescue,

phenotypic enhancement and phenotypic suppression [235].

There are three basic effects of GI; growth defect (sickness), lethality and rescue. In many cases

two individual gene disruptions have no effect on the cell but when both genes are disrupted cause

growth defect or lethality (Figure 2.6 A-B). In other cases, where the disruption of a single gene may

cause growth defect or lethality, a disruption in a second gene will rescue this effect, returning the

cell to improved or normal growth (Figure 2.6 C). If the two disruptions are caused by deletion or

insertion the effects are termed synthetic by BioGRID, while if the second disruption is caused by

over-expression these effects are termed dosage effects. Finally, genetic interactions can have phe-

notypic effects in which the second disruption causes enhancement or suppression of the abnormal

phenotype produced by the first (termed epistasis [236]) .

Originally, GIs were screened in a LTP manner by disruption of specific genes of interest [237–

239]. Recently, three HTP methods have been developed to detect GIs on a genome-wide scale;

synthetic genetic array (SGA) [14, 16, 123, 240], diploid-based synthetic lethality analysis on mi-

croarrays (dSLAM) [15, 241–243] and epistatic miniarray profiles (E-MAPs) [17, 70, 244]. In SGAs

gene knockout strains are used to produce haploid double mutants by crossing single gene deletions

of interest against a large-scale array of single gene deletions [14]. The resulting mutants are then as-

sessed for synthetic interactions. dSLAM is the diploid version of SLAM [245], a microarray-based

screen of competitive mutant growth [15]. An E-MAP is also microarray-based. In this method,
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Figure 2.6: Genetic interactions.
A. In lethal interactions two individual genes disruptions have no effect on the cell but when both
genes are disrupted the cell is not viable. B. In growth defect interactions two individual gene disrup-
tions have no effect on the cell but when disrupted together cause sickness. C. In rescue interactions
one or both of the individual gene disruptions causes either lethality or sickness which is rescued by
the second disruption. In this example the two individual gene deletions cause sickness.

synthetic double mutants are screened for phenotypic responses, by comparison with single mutant

strains, to quantify the level of GI [17].

Genetically-interacting protein pairs are commonly components of the same pathway or complex and

have a relatively high level of conservation across species (approximately 29% between S. cerevisiae

and Schizosaccharomyces pombe) [246]. However, unlike PPIs, GIs connect genes with related

function but which are less likely to have a physical interaction. Further, using condition-specific

gene disruption it has been shown that the majority of GIs involve an essential gene [232]. Many

interacting pairs also have similar structure and, therefore, may share a structural basis for their

function [247]. Consequently it may be possible to predict GIs based on their conservation, function

and/or structural similarity (see Section 2.2.2).

Most GIs are thought to be either between or within pathways in the interactome (Figure 2.7) [248,

249]. In between-pathway interactions, the interacting pair have parallel roles in separate redundant

pathways [250]. Therefore, disruption of both genes blocks both of the pathways. In within-pathway

interactions, one pathway component can compensate for the disruption of another, however the

pathway is blocked if both components are disrupted. Genetically-interacting proteins of this type

are more likely to interact physically or be members of the same complex. The between-pathway

theory is the favoured explanation for the majority of GIs and its principles have been used to predict

underlying pathway information [200]. There are several theories as to how genetic redundancy of

this type has evolved (discussed in [251]).
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Figure 2.7: Between and within pathway genetic interactions.
A. In between-pathway interactions the yellow and blue components have parallel roles in sepa-
rate redundant pathways. Therefore, disruption of both genes blocks both of the pathways. B. In
within-pathway interactions, the blue component can compensate for the disruption of the yellow
component, however the pathway is blocked if both components are disrupted.

2.1.3 Other Data Types

Several other types of experimental data exist from which functional associations can be inferred,

including:

• Biochemical Activity: The modification of one protein by another, for instance by phospho-

rylation or ubiquitination [19, 20].

• Co-Localisation: The co-localisation of a pair of proteins within the same area of the cell

[3, 18].

• Transcription Factor Binding: The specific binding of proteins to DNA binding sites [252–

256].

• Literature Mining: The co-occurrence of gene and protein identifiers in scientific literature

[257–261].
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2.1.4 Biological Databases

A large number of online databases have been developed to store biological data [137, 262]. These

resources store a range of data types such as sequences, structures and interactions. The PathGuide

resource3 currently lists 325 databases [263]. However, many databases are poorly maintained, or

not maintained at all, and can consequently become out of date and contain errors [264].

Database development in bioinformatics has recently been the subject of considerable research [265–

269], and has been recognised as a scientific field in its own right [270]. The journal Database [271],

dedicated to biological database development and curation strategies, was launched in 2009. Due

to the large amount of data being produced, curation efforts have become increasingly important in

order to ensure data quality [272–275]. Errors such as inaccurate entry, unintended data duplication

or inadequate gene identification can be propagated through multiple databases and can be difficult

to identify and remove, particularly from poorly-maintained databases [264].

Nucleic Acid Research maintains an online collection4 of selected, high-quality molecular biology

databases. Databases are chosen for this collection based on applicability, relevance, coverage, and

accuracy [29]. In particular, the included databases all contain up-to-date, curated information. In

total 183 of the databases specifically store functional association data [27] (Table 2.3).

Many of these databases cover a wide range of species. For instance, the Biological General Repos-

itory for Interaction Datasets (BioGRID) [276], KEGG [277], the Database of Interacting Proteins

(DIP) [278] and the Munich Information Center for Protein Sequences (MIPS) [279] all store data

for model organisms and several other species. Other databases are area-specific, for example the

Proteins Interacting in the Nucleus (PIN) resource [280], the Transcription Factor Database (TRANS-

FAC) [281] and the Nuclear Protein Database (NPD) [282]. In addition, there are species-specific

resources such as the Saccharomyces Genome Database (SGD) [283], the Drosophila Interactions

Database (DroID) [284], Wormbase [285] and the Human Protein Reference Database (HPRD)

[286].

Table 2.3: The Nucleic Acid Research Database Collection as of January 2011.
The NAR maintains a collection of databases that store a wide range of data types including several
functional interaction types.

Data Type No. Databases
Protein-Protein Interactions 84
Metabolic 23
Signalling Pathways 7
Co-expression and Microarrays 69

3http://www.pathguide.org/ (accessed 11/1/11)
4http://www.oxfordjournals.org/nar/database/c/
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2.1.4.1 BioGRID

BioGRID is a comprehensive and highly-curated resource for functional association data [276]. The

database stores interactions of 27 different types, including both physical and genetic interactions5.

Each interaction is manually curated from the literature in an iterative curation strategy designed to

minimise errors6. Review articles are excluded from BioGRID, as are interactions from unpublished

data. A web-based interaction management system (IMS) allows multiple curators to upload data

while avoiding duplication [287]. In addition, the database curators actively encourage community

feedback regarding errors and missing data7. Due to BioGRID’s level of completeness and quality it

has been used as the source of data for a large number of studies (for instance [43, 133, 200, 288–

292]).

Originally called the GRID and designed to store S. cerevisiae data [293], BioGRID has now ex-

panded to store data from 18 different species (Table 2.4). Currently, complete literature coverage

is provided for the yeasts S. cerevisiae and S. pombe and for the thale cress A. thaliana [294]. In

addition the database provides a high-quality, stand alone literature-curated dataset for S. cerevisiae

derived from small-scale experimental data alone [235].

Table 2.4: BioGRID interaction statistics.
A summary of the data stored in the BioGRID database based on statistics from http://wiki.

thebiogrid.org/doku.php/statistics (accessed 13/1/11). Datasets with full literature cover-
age are marked with an asterisk.

Organism Total Unique Proteins Publications
Interactions Interactions

Arabidopsis thaliana∗ 5909 4160 2118 848
Bacillus subtilis 168 1 1 2 1
Bos taurus 70 58 84 31
Caenorhabditis elegans 7084 6833 3573 42
Canis familiaris 5 5 8 4
Danio rerio 33 33 38 15
Drosophila melanogaster 34655 26888 7578 1619
Escherichia coli K12 MG1655 43 42 51 9
Gallus gallus 45 37 54 23
Homo sapiens 54578 36737 10213 11188
Human Herpesvirus 1 13 10 12 3
Human Immunodeficiency Virus 1 209 185 187 5
Macaca mulatta 1 1 2 1
Mus musculus 4265 3554 2361 604
Rattus norvegicus 684 496 591 225
Saccharomyces cerevisiae∗ 244552 163188 6049 9706
Schizosaccharomyces pombe∗ 16205 13248 2110 1487
Xenopus laevis 121 99 111 39
Total 365574 253138 32475 24876

5http://wiki.thebiogrid.org/doku.php/experimental_systems
6http://wiki.thebiogrid.org/lib/exe/fetch.php/biogrid_workflow.pdf
7http://wiki.thebiogrid.org/doku.php/contribute#send_us_your_interaction_data
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Figure 2.8: The BioGRID database.
A screenshot of the BioGRID web browser output for the yeast gene AIM1 (accessed 4th March
2011). BioGRID provides curated functional interactions and annotations for each gene, together
with experimental details and publication links for each interaction. The interactions for individual
genes may also be downloaded as a separate datasets.

The BioGRID website provides comprehensive interaction information for each protein with multiple

links to external data sources (Figure 2.8). In addition, the BioGRID datasets are all available for

download from the BioGRID website8 and through a web service in four standardised formats: PSI-

MI XML; Osprey Custom Network; BioGRID TAB 2.0 tab delimited; PSI-MI TAB Version 2.5.

2.1.4.2 The Saccharomyces Genome Database

SGD9 is an integrated database of molecular biological information about the baker’s yeast S. cere-

visiae. It contains a wide range of data, including sequences [295], annotations [296, 297], phe-

notypes [298] and publication links for each ORF in the yeast genome and its product (Figure 2.9)

[299]. In addition, the database provides various tools, such as BLAST [300], Genome Snapshot

[301] and Proteome Browser [302], and has links to other external resources [283].

The SGD community maintains strict guidelines for the curation of new data and provides compre-

hensive records of all database changes10. Due to the high level of curation, SGD is one of the most

widely used molecular biology resources within the yeast research community.

8http://thebiogrid.org/download.php
9http://www.yeastgenome.org/

10http://wiki.geneontology.org/index.php/SGD_GO_HTP_guidelines\
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Figure 2.9: The Saccharomyces Genome Database.
A screenshot of the SGD web browser displaying the output for the yeast gene AIM1 (accessed 4th

March 2011). SGD provides sequence, annotation and phenotype data for each gene together with
publication links. In addition, the database provides a variety of analysis tools and links to other
external resources.

2.2 Deciphering the Interactome

2.2.1 The Interactome

The term interactome was first coined in 1999 by Sanchez and co-workers [303] and has since been

widely used in scientific literature (Figure 2.10). Initially the concept of the interactome of a species

was "the complete repertoire of interactions potentially encoded by its genome". This protein-specific

definition is commonly used [37, 304–306] and has also been applied to denote subsets of the inter-

actome, such as the microtubule interactome [307], the mitochondrial interactome [308], and the

ribonucleoprotein interactome [309].

However, there are several other factors that can be taken into account when defining the interactome.

The cell contains other molecules that interact with proteins and contribute to cellular biology [39,

52, 310]. Additionally, complex organisms have different cell types, such as tissues, with a specific

subset of interactions occurring in each type. Finally, a full definition of the interactome should allow

for differing cellular circumstances, since many molecules vary their function in response to cellular

conditions [38, 311].
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Figure 2.10: The usage of the term "interactome" in PubMed.
(http://www.ncbi.nlm.nih.gov/pubmed, accessed 09/04/11).

Systematic identification of the interactome is vital to understanding cellular biology [312]. How-

ever, given the complexity of the cell, defining the interactome is not straightforward [37]. Several

studies have attempted to define the meaning of the term interactome [303, 304] and estimate its

size in different species [42, 134, 184, 313–317]. Additionally, several computational PPI prediction

techniques have been developed to complement the available experimental methods [318, 319].

In this thesis the interactome is defined as "the entire complement of molecular interactions that may

occur within an organism under all circumstances and cell types".

2.2.2 Computational Protein-Protein Interaction Prediction

A full and accurate picture of the interactome requires small-scale LTP confirmation of each interac-

tion. However, there are approximately 6,000 estimated genes in S. cerevisiae [320] and therefore a

potential of 17,997,000 unique interactions (excluding self-interactions) to be studied. Clearly, many

of these interactions would never occur in the cell, since proteins are produced at different times and

are localised in different compartments. Therefore, identifying the correct interactions prior to ex-

perimental analysis can reduce experimental effort. Several methods have been employed to estimate

the number of interactions that may constitute the entire S. cerevisiae interactome with a wide range

of results (Table 2.5) and it remains unclear how large the true interactome is.

Computational analysis of HTP data can be used to detect potential false negatives and guide the ex-

perimental analyses to those interactions most likely to be biologically relevant [321]. Various types

of data can be used for PPI prediction including sequence, structures, expression and evolutionary

data [319, 322]. A number of databases have been designed to store predicted interactions including

PIPS [323], HAPPI [324], OPHID [325], STRING [326], POINT [327], Predictome [328] and UniHI

[155].
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Several aspects of genomic sequence can be used to predict PPIs. The context of a gene can reveal

potential interactions since interacting proteins have increased conservation of their gene order (often

as operons in prokaryotes) in comparison to non-interacting proteins [329–331]. Evidence suggests

that this prediction method is the most accurate in bacterial genomes [332]. Gene fusion events can

also indicate protein interactions by what is termed the Rosetta Stone method. Here, interacting pro-

tein pairs have homologs that are fused as one protein in one species, indicating a potential functional

link in other species in which they are coded as separate proteins [333–335].

Protein sequence can also be used to predict PPIs. Proteins contain specific domains which are crucial

to their role and are highly conserved [336, 337]. Interactions between domains are also conserved

between species and, therefore, the presence of specific domains and sequence signatures in pairs of

proteins can be indicative of PPI [338–344]. In addition, the physiochemical properties of a protein,

such as charge and hydrophobicity, can be used in combination with sequence to infer interaction

[345].

Many interactions are conserved across species and can be identified using orthology and cross-

species analysis [327, 346–351]. Conserved interactions, termed interologs, and conserved regula-

tory interactions, termed regulogs, can be of particular use where there is little interaction data for

a species [352, 353]. In addition, the distribution of gene sequences across species, termed the phy-

logenetic profile, is also conserved for many interacting pairs [93, 354–356]. This conservation is

thought to occur because interacting protein pairs evolve at the same rate [357]. Therefore, two ORFs

that have similar profiles are likely to have been co-conserved and, therefore, may interact physically

[94, 358–361].

The 3D structure of a protein forms the active site which is essential for its function. Surprisingly, the

number of 3D protein structures has been found to be relatively small in comparison to the potential

number of sequences [362]. Consequently it may be possible to predict GIs and PPIs based on a

protein’s 3D structure, for instance by docking or threading methods [247, 363–369].

Methods that combine sequence data and structural data can improve PPI prediction in comparison

with sequence or structural data alone [370]. The in silico two hybrid (i2H) takes advantage of

sequence and structural conservation to predict PPIs. The algorithm compares multiple sequence

alignments for correlated mutations and then calculates interaction scores based on a correlation

matrix which can also be used to predict specific residue binding [371]. The i2H method has been

applied to the bacterium Escherichia coli and the predictions are available through the EcID database

[372].

Proteins that are expressed at the same time are more likely to interact than those expressed at dif-

ferent times [108]. Moreover, co-expression patterns are conserved between species [373]. Conse-
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quently gene expression data can be used to predict functional links [198, 373–376].

An additional source of functional links is the wealth of biological literature stored in databases such

as MedLine and PubMed. Many of these publications contain data that is not available in functional

databases [377, 378]. Literature mining can be used to extract associations between pairs of proteins

by various methods such as pattern matching and natural language processing [258, 379–386].

Machine learning approaches are often used to predict PPIs using a wide variety of data types during

classifier training [110, 112, 339, 345, 387–394]. Alternatively, network-based methods, often using

heterogeneous data, can be used for PPI prediction [96, 109, 200, 323, 391, 395, 396]. The use

of multiple data types by these methods improves prediction accuracy over single-source prediction

methods [387, 397]. Network-based prediction of functional associations is discussed in Section 2.4.

2.3 Graph Theoretic Analysis

Graph theory allows biological data to be represented in a manner that is amenable to statistical

analysis and manipulation [77, 83, 398]. In graph theory, a graph is a mathematical representation of

the relationships between entities. A graph consists of a collection of nodes connected by a collection

of edges.

A simple graph G can be represented as:

G = (N,E) (2.1)

where N is a set of nodes and E is a set of edges. For instance the network depicted in Figure 2.11

consists of:

N = {a,b,c,d,e, f ,g} (2.2)

E = {{a,b},{a,c},{a,d},{a,e}{a, f},{e, f},{a,g}}. (2.3)

Representation in this manner provides a simple format for study of network structure and its bio-

logical implications [312, 321]. Several graph theoretic measures have been used to study network

properties and have revealed underlying aspects of network topology such as robustness, connectivity

and modularity [76, 399–408].
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Figure 2.11: A simple undirected graph, G, consisting of seven nodes (red circles labelled a-f)
and seven edges (blue lines).
This graph will be used as a exemplar for Section 2.3.

In simple graphs the nodes are of one type. However, graphs may contain multiple node types. Bi-

partite graphs contain two distinct types of nodes, N1 and N2, and are used to study the relationships

between the two groups [409]. At the most complex level, graphs can be multipartite with a range

of node types. Large collections of nodes can also be made more tractable for human visual analysis

using colour, size and shape, or by attaching attribute labels [77].

Edges can have several types. In simple graphs edges are undirected, with each node having equal

importance. Therefore:

E ⊆

N

2

 . (2.4)

An example of a simple undirected network of seven nodes and seven edges is shown in Figure 2.11.

More complex biological networks can have directed edges where one node is the source and the

other is the destination. In this case:

E ⊆ N×N. (2.5)

A path is a sequence of nodes within the network. For instance a path of length n is a sequence

of nodes v0,v1,v2, ...,vn, where (vi,vi+1) ∈ E for 0 ≤ i < n. Cycles are a specific type of path

where v0 = vn. A directed acyclic graph (DAG) is a specific type of graph, G = (N,E), in which

the edges are directed but with no cycles. Edges in a DAG are all directed away from root nodes in

parent-to-child relationships such that there are no circular paths from any node back to itself.
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In most graphs a single edge connects two nodes. However, edges can be more complex. In some

graphs an edge can be connected to the same node at both ends forming a self-loop. In multigraphs

a pair of nodes can be connected by several edges, termed multiedges [410]. Finally, hyperedges

may connect several nodes in a hypergraph [411]. In visualisations edges may also be coloured to

distinguish their type and may be labelled with edge properties such as weights.

Formal graph theoretical definitions are supplied in Appendix A.

2.3.1 Application of Graph Theory to Biological Networks

Biological data can be represented as networks, allowing for visual and graph theoretic analysis of

the network structure [357, 412–419]. Biological entities, such as genes, proteins or metabolites, are

represented as nodes [420]. In simple networks such as PPI networks or GI networks, nodes are of

a single type. Functional networks also have a single node type representing both the gene and its

product, since they are derived from several data types.

Many biological datasets consist of two distinct entity types and are represented as bipartite graphs.

For instance, regulatory networks have protein nodes and DNA nodes, and metabolic networks have

enzymes nodes and metabolite nodes. More complex multipartite graphs can be used to represent

multiple biological entities, such as DNA, RNA, proteins, metabolites and ligands, in order to repre-

sent cellular biology more accurately [80].

PPI networks are usually undirected, since protein binding is symmetric. Functional interaction

networks are also commonly undirected since an edge can represent multiple types of association

between a pair of nodes. However, many biological data types can also be represented as more

complex networks. DAGs are often used to represent hierarchical data such as annotation data (see

Section 2.5.4.3) [100]. Biological interaction data can also be directed. For instance, metabolic

networks represent reactions in which the nodes are enzymes, substrates and products, while the

edges represent the flux of metabolites [76]. Regulatory and signalling networks are also directed.

In regulatory networks the edges represent the binding of transcription factor proteins to their DNA

targets [255, 421, 422]. Signalling networks represent the transduction pathways between cellular

monitoring components and responses [423, 424]. In combination with PPIs, metabolic, regulatory

and signalling networks form a directed functional network in which a cellular signalling response

changes gene regulation, resulting in altered metabolic output [425, 426].

Complex edge types can aid in the representation of biological data. For instance, looping edges

can represent self-interactions such as dimerisations; multiedges can be represent multiple sources

of evidence for protein association [410]; and, hypergraphs can represent complex biological traits

such as the formation of protein complexes [411].

30



For the remainder of this thesis, unless otherwise stated, the term network refers to a functional net-

work of probabilistically-weighted edges where there are no self loops and where a node represents

both a gene and its product.

2.3.2 Network Properties and Statistics

2.3.2.1 Node Degree

The degree of a node is the number of edges connected to it. Where there are self-loops the looping

edges each count as two edges. In directed networks the degree of a node can be subdivided into

out-degree and in-degree to distinguish between edges starting and terminating at the node [412].

The out/in-degree ratio can be used to determine a protein’s high-level function [427]. In the sample

network depicted in Figure 2.11 node a has a degree:

D(a) = 6. (2.6)

A related measure is node connectivity. In this case the number of directly connected nodes, termed

the node’s neighbourhood, are counted. Therefore looping edges are ignored [400]. In Figure 2.11

node a’s connectivity is also 6 since it has no self-looping edges. Both the average degree and

average connectivity can be measured across the entire network [67].

The neighbourhood degree and neighbourhood connectivity of a node are the average measures,

across the node’s neighbourhood, of degree and connectivity respectively. In the example network

(Figure 2.11) node a has the neighbourhood degree:

ND(a) =
D(b)+D(c)+D(d)+D(e)+D( f )+D(g)

D(a)
=

1+1+1+2+2+1
6

= 1.33.

(2.7)

Random networks, known as Erdös–Rényi networks, can be used to reveal the statistical proper-

ties of biological data [428–431]. The degree distribution of a network, p(k), is the probability

a selected node has k links [432]. Degree distribution can be used to distinguish between differ-

ent types of network. The degree distribution of random networks follows the Poisson distribution

[433]. However, the degree distribution of biological networks is significantly different from random

networks, reflecting the high organisation of cellular processes [68].

Many biological networks are thought to be scale-free [76, 83, 312, 432, 434–436]. That is they con-

tain many low degree nodes and a small number of high degree nodes, making then highly resistant

to random perturbation [312, 414, 437, 438]. In scale-free networks the degree distribution follows
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the power law, p(k) k−γ [434]. Power law degree distributions have been found in several types of

data from a number of species [156, 157, 160, 416, 439].

Scale-free distribution has been observed in several other real world networks such as the world wide

web [440, 441] and social networks [442]. However, the scale-free model for biological data has been

disputed as the best fitting model in some cases [443–446]. While many biological datasets seem to

follow the power law there are other distributions, such as the log-normal and stretched exponential

distributions, which may fit some of the data [447]. A geometric random graph model has also been

suggested as a better fit for some biological datasets than the scale-free model [407, 448, 449].

Several studies have theorised that the power law distribution may be an artefact of noise in the data

or of experimental design, and that the true interactome does not fit this model [68, 430, 450, 451].

Rachlin and colleagues (2006) postulated that this distribution could be plausibly an artefact of the

aggregation across multiple process-specific contexts [452]. This view is supported by evidence

that in some networks sub-communities have different degree distributions from the network as a

whole [453, 454]. Further, some biological networks have been found not to follow the power law

[447, 455]. However, the scale-free model remains the most popular model for biological data [450]

and is supported by several evolutionary theories [68, 434, 439, 456].

Various models of network evolution have been proposed to account for the scale-free nature of bio-

logical data [68]. One of the earliest theories was the preferential attachment model which hypoth-

esised that "rich nodes get richer" over time leading to the network hubs [434]. The link dynamics

model extended the idea of preferential interaction gain to include interaction loss [457]. More re-

cently, new evidence suggests that a node’s probability of interaction gain or loss is fixed and does

not change through time [458]. Therefore, the scale-free nature of biological networks may have

arisen due to selection for robustness and evolvability.

2.3.2.2 Average Path Lengths

The average path lengths within a network can reveal aspects of the underlying network structure.

The shortest path between two nodes is the smallest number of edges between the two nodes [459].

For instance the shortest path between nodes b and e in the example network shown in Figure 2.12:

SP(b,e) = 2. (2.8)

The diameter of the network is the longest shortest path within the network. In the example network:

D(G) = MAX(SP(a,b|a,b ∈ N)) = 2. (2.9)
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Figure 2.12: Shortest path.
The shortest path between two nodes (red circles) is the shortest number of edges (blue lines) con-
necting the two nodes. In this example the shortest path between node b and node e is 2.

The shortest path can be averaged for each pair of nodes in the network to give the network’s char-

acteristic path length [67]. Biological networks are termed small world networks since they have a

small characteristic path length and small diameter relative to an equivalently-sized random network

[75, 435, 439, 459, 460]. The nodes of small world networks are arranged in local dense regions

which are interconnected by a small number of edges [235]. Small world properties can be used

in evaluation of network data [461]. The small world phenomenon is also seen in other real world

networks such as social networks [462], collaboration networks [459], the world wide web [438]

and the internet [401]. Like scale-free networks, small world networks are resistant to perturbations

[312, 438]. Scale-free networks are sometimes referred to as ultra-small world networks [463, 464].

The clustering coefficient of a node is a measure of the degree to which its surrounding nodes cluster

together [459]. The clustering coefficient is measured as the ratio of the number of links in the

neighbourhood and the maximum possible number of links between them:

CC(a) =
2E(a)

(N(a)(N(a)−1))
(2.10)

where N(a) is the neighbourhood of node a and E(a) is the number of connected pairs within N(a).

In the example network in Figure 2.11 the clustering coefficient of node a is CC(a) = 2/(6∗5) =

0.0667. The distribution of the clustering coefficient in some networks has been observed to follow

a power law.

The average clustering coefficient across all nodes of a network can be calculated giving the net-

work clustering coefficient [459]. In small world graphs this property is significantly higher than for

random networks, while the characteristic path length remains the same.

33



2.3.2.3 Centralities

Several network measures assess the importance of nodes and edges in network information flow.

These measures are termed centralities [465, 466] and can be used to identify essential nodes in the

network [467, 468]. Many centrality measures have been developed, for example:

Closeness Centrality [466] of a node is the average of the shortest distance from it to all other nodes

in the network N:

Ccl(a) =
1

avgSP(a, t|a, t ∈ N)
(2.11)

where, t ranges over all nodes in the network and SP(a, t) is the shortest path between nodes a and

t.

Graph Centrality [469] measures the maximum shortest path from a node to all other nodes in the

network:

Cg(a) =
1

maxSP(a, t|a, t ∈ N)
(2.12)

where, t ranges over all nodes in the network and SP(a, t) is the shortest path between nodes a and

t.

Stress Centrality [469] is a measure of the number of network shortest paths passing through a

node:

Cs(a) = ∑
s 6=a6=t∈N

σ(s,a, t) (2.13)

where, s and t are the nodes in the network distinct from node a and σ(s,a, t) is the number of

shortest paths from s to t on which node a lies. Stress centrality can be considered a measure of a

node’s importance in network information flow.

Betweenness Centrality or node betweenness [469, 470] of a node extends stress centrality to cal-

culate the proportion of shortest paths passing through a node:

Cb(a) = ∑
s6=a6=t∈N

(σ(s,a, t)/σ(s, t)) (2.14)

where s and t are the nodes in the network distinct from node a, σ(s, t) is the number of shortest

paths from s to t and σ(s,a, t) is the number of shortest paths on which node a lies. This measure

reflects the control a node exerts on the interactions of other nodes in the network and is commonly

used as a measure of node essentiality. Nodes with high betweenness centrality and low connectivity

are often found linking network modules [471] and are referred to as bottlenecks since they restrict

the flow of information through the network [470]. Edge betweenness can also be measured as the
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number of shortest paths an edge lies on [442, 472, 473]. Betweenness centrality measures have been

used to identify potential drug targets [438] and to identify disease genes [474].

Bridging Centrality [475] measures the information flow through a node:

Cbr(a) = B(a)×Cb(a) (2.15)

where,

B(a) =
D(a)−1

∑i∈N(a)
1

D(i)

(2.16)

and, D(a) is the degree, N(a) is the neighbourhood and Cb(a) is the betweenness centrality of

node a. This measure can be used to identify nodes situated between highly connected regions of the

network that are likely to modulate network information flow. In biological data bridging centrality

has been found correlate with gene lethality and may be a good indicator for potential drug targets

[77].

Several other more complex centrality measures exist, each measuring different aspects of node im-

portance, including subgraph centrality [476], eigenvector centrality [477] and information centrality

[478].

2.3.2.4 Centrality-Lethality

Scale-free networks are extremely robust to random attack (mutation) since the removal of the major-

ity of nodes does not significantly change network structure [479]. However, these networks are vul-

nerable to attack targeted at the high degree nodes since the removal of these nodes adversely affects

network structure by increasing network diameter [438, 480]. In biological networks this property

is consistent with yeast experimental data since only a small number of gene mutants (18.2%) are

non-viable [5, 6].

The high degree nodes (generally >10 edges) in scale-free networks have been termed hubs [413].

If 2 ≤ γ ≤ 3 in the power law the hubs are considered significant to network structure [434]. Un-

surprisingly, node degree correlates with gene lethality and essentiality [416]. Hub proteins in GI

networks are also commonly hubs in PPI networks [481]. In functional networks hub proteins are

more likely to be essential than non-hubs [482, 483] and take part in more essential PPIs than non-

hubs [484]. Additionally, hub essentiality has been found to have a strong correlation with genetic

pleiotropy [134] and, in directed networks, with in- and out-degree [485]. Similarly, in protein struc-

ture networks hub proteins correspond to active sites and PPI interfaces [486]. However, unlike social

network hubs, those of biological networks tend not to interact with each other [402].
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Several theories have been proposed to explain hub protein essentiality including interaction dynam-

ics [487] and essential domains [488]. However, it has been shown that the essentiality of a protein

is due to its position within the network’s topology, a concept known as the centrality-lethality rule

[416, 489, 490]. Centrality-lethality has been observed in several species [482, 491, 492].

Hubs can be further categorised into two distinct groups [489, 493]. The first, termed party hubs,

take part in all their interactions at the same time and are thought to occur in functional modules. The

second, termed date hubs, interact with different proteins at different times, conditions or locations

and are thought to have regulatory roles. Using context-specific expression data party hubs have been

observed to be interactively conserved across contexts while date hubs are interactively varied with

different context-specific roles [452]. A more complex four category system of hub classification has

also been proposed based on gene expression characteristics [494]. However, the exact nature and

role of many hub proteins remains unclear [493, 495].

2.3.3 Network Modularity

Biological networks are highly complex and, while graph theoretic representation allows visualisa-

tion of the data as a network, in most cases large networks remain difficult to study in this format

given their scale [412]. Study of biological data has revealed that cellular parts are grouped into

node communities of similar function, and many known complexes have been identified as densely

connected regions in biological networks [52, 65, 404, 431, 452, 496, 497]. Additionally, it has been

observed that many biological networks have a highly-connected hierarchical structure of modules

within modules [432, 498]. Consequently, dense network regions are widely believed to relate to the

functional units of the cell, each of which performs specific tasks [52, 312, 498–502].

However, it should be noted that there is some evidence this assumption may be incorrect and that the

modular structures of PPI networks has less biological significance [451]. Nevertheless, an impor-

tant aspect of graph theoretic analysis involves identifying network patterns and partitioning large

networks into smaller subnetworks in order to identify patterns of connectivity that reveal the un-

derlying mechanisms of cellular biology [442, 503–505]. Since members of these dense areas tend

to share common functions, these modules can also be used for functional prediction (see Section

2.5.1) [52, 92, 312, 415, 504, 506–511]. Further, by cross-species comparison of network modularity

conserved evolutionary patterns can be identified [405, 512–515].
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2.3.3.1 Network Patterns

Various measures of edge density, in particular the centralities and degrees, can reveal topological

patterns within networks [432, 459, 461]. A subnetwork, or subgraph, is a subset of the whole

network. Several types of subnetwork pattern have been defined, including:

Cliques A clique is a subnetwork, sometimes called a complete subgraph, in which all nodes are

connected to one another (Figure 2.13 A) [431]. Often cliques are referred to as k-cliques where k is

the number of nodes in the clique. The simplest k-clique is the triangle where k = 3.

A maximal clique is a clique within a network which cannot be extended by the addition of further

nodes. Calculation of a dense network’s maximal cliques is considered non-deterministic polynomial-

time hard (NP-hard) [516]. However, maximal cliques can be calculated for most PPI datasets since

their edges are relatively sparse [517].

The maximum clique of a network is its largest fully complete subgraph. However, in large, com-

plex networks calculation of the maximum clique is an non-deterministic polynomial-time com-

plete (NP-complete) problem [516]. Therefore, the maximum clique is often approximated to reduce

computation time [518].

Figure 2.13: Network modularity.
Several types of subnetwork pattern can be defined. A. k-cliques are complete subgraphs of k nodes
(red circles) in which all the nodes are connected to one another. Here k = 7. B. k-cores are maximal
subgraphs where each node has ≥ k edges. Here, k = 4. C. Modules are a densely connected
region with tightly-connected high-degree inner nodes and low-degree outer nodes. Here two densely
connected modules are connected by four edges (blue lines).
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The k-clique definition of connectivity is very restrictive since many highly-connected network re-

gions do not have the symmetric connectivity required for a k-clique. Further, in terms of cellular

biology, it is unlikely that all members of a functional unit will be fully connected in this way. There-

fore, a more flexible definition is the n-clique in which the shortest path between all nodes is no

higher than n. Where n = 1 the clique is equivalent to a k-clique, while higher values of n allow for

missing edges within the subgraph [519].

k-Cores Patterns can be identified which have a fixed number of edges while not being fully con-

nected. A k-core is a maximal subgraph within a network in which each node has ≥ k edges (Figure

2.13 B) [520]. A k-core, therefore, has higher connectivity than an n-clique but is not as restricted

as a k-clique. A related subgraph pattern is the k-plex in which each node has at least degree |N|−k,

where |N| is the size of the subgraph [521].

Modules A module is defined as a densely connected region of a network with tightly-connected,

high-degree inner nodes and low-degree outer nodes (Figure 2.13 C) [431, 437]. Each network

module is considered a discrete cellular component with a specific task that is separable from other

cellular components [52, 432, 522]. In biological data modules can often be found in hierarchical

structures in which small modules can be grouped into larger modules [498, 523, 524]. Unlike cliques

and cores there is no widely accepted graph theoretic definition of network module connectivity.

However, several studies have defined a biological network module using either topological features

or additional functional data [429, 431, 472, 525, 526].

2.3.3.2 Clustering

Clustering algorithms use a network’s topological properties to search for dense regions in the net-

work or to divide the whole network into distinct parts [527]. There are dozens of network clustering

strategies and algorithms which can be applied to biological data (reviewed in [528] and [529]) and

the performance of these algorithms differs considerably for different data types [291, 530, 531]. It

is beyond the scope of this thesis to discuss each algorithm in depth so this section provides a discus-

sion of the main clustering approaches, concentrating on those algorithms designed for or commonly

applied to biological data. Six widely used algorithms, restricted neighbourhood search clustering

(RNSC), Girvan-Newman (GN) edge-betweenness, molecular complex detection (MCODE), clique

percolation (CP), super paramagnetic clustering (SPC), and Markov clustering algorithm (MCL) are

discussed in detail as examples of distinct clustering strategies. These algorithms are summarised in

Table 2.6.
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Table 2.6: Network clustering algorithms.
A summary of the clustering algorithms discussed in this section. O indicates overlapping clusters
are produced by the algorithm while W indicates networks with weighted edges can be analysed by
the algorithm.

Name Method O W Ref
Restricted Neighbourhood Iterative network partitioning based on a cost x x [532]
Search Clustering function.
Edge Betweenness Divisive partitioning by iterative removal of high

betweenness edges.
x x [442]

Molecular Complex Agglomerative clustering from seed nodes based x x [89]
Detection on neighbourhood densities.
Clique Percolation Clique merging to identify overlapping

√
x [453]

communities.
Super Paramagnetic Ferromagnetic model which assigns spins to x

√
[533]

Clustering network nodes and identifies spin correlation.
Markov Clustering Iterative network flow-based clustering. x

√
[534]

Algorithm

Many clustering methods aim to partition networks without loss of network elements. Various pa-

rameters are used to select natural partitions in the data. A common partitioning approach is to

examine shared interaction partners of the nodes [90, 521, 535–538], or of subgraphs [539], and par-

tition the network to optimise shared interactions within the clusters. Several partitioning algorithms

use cost-based functions to assess cluster quality in an iterative fashion. These approaches assume

that edge density within a cluster should be significantly higher than between clusters.

The RNSC algorithm is a local search clustering algorithm which partitions networks into densely

connected regions [532]. The algorithm first partitions the network into random clusters unless an

initial clustering is supplied by the user. Single nodes are then iteratively moved between clusters

to optimise densely connected regions. The algorithm uses two cost functions based on the number

of edges between and within the clusters; a naïve cost and a scaled cost. Higher costs correspond to

low density clusters with high between cluster connectivity. The naïve cost acts as a pre-processor.

At each iteration the cost function is calculated and nodes are moved between clusters until the cost

function is minimised. The process is then repeated until the scaled cost function has also been

minimised. RNSC runs until the cost functions have not been reduced for a user-specified number of

iterations.

Clustering algorithms can exploit the hierarchical modular structures present in biological data [540].

There are two approaches to hierarchical clustering; top-down division and bottom-up agglomeration

[541]. In the first approach the network is clustered in a top-down, divisive approach that iteratively
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removes network elements based on their topological properties. There are several parameters that

can be used to divide the network such as degree, clustering coefficient and centrality measures

[472, 475, 525, 526, 542]. One of the most popular measures for divisive hierarchical clustering is

edge betweenness.

The Edge-Betweenness Algorithm, often referred to as the Girvan-Newman (GN) algorithm, has

been widely used in divisive network clustering [221, 442, 473, 504, 543, 544]. In this approach

edges of high betweenness are sequentially removed from the network [442]. Edge betweenness

is calculated as the proportion of shortest paths in the network on which an edge lies (see Section

2.3.2.3). After initial calculation the highest scoring edge is removed. Calculation and edge removal

is then repeated for a given number of iterations or until a specified cut-off. The final clusters rep-

resent areas of dense low-betweenness edges. Unlike partitioning algorithms the clusters may not

contain all the original network elements since single nodes are not considered clusters.

Due to the requirement for iterative calculations the original GN algorithm is computationally in-

tensive and does not scale well for large complex networks [545]. A faster implementation of the

algorithm has since been developed where partial betweenness scores are calculated for a random

subset of the edges, giving an approximation of betweenness across the network [546]. An alterna-

tive fast approximation of betweenness can be achieved using a network structure index [547]. More

recently a parallel version of the GN algorithm has been developed to improve performance [548].

Networks can also be hierarchically clustered in a bottom-up agglomerative manner. These algo-

rithms begin with seed nodes and grow clusters based on network properties [549, 550]. Seed nodes

can be chosen based on several different properties such as distance measures [551, 552], shared

neighbours [536, 553] or node degrees [554]. In some cases groups of densely connected proteins

are chosen as seed "cores" [555]. Alternatively seed nodes can be specified by the user based on their

research interests [292, 541]. Fusion strategies can combine the agglomerative and divisive hierar-

chical approaches by using average subgraph degree to merge nodes and betweenness to filter them

[556]. Like divisive clustering, agglomerative methods do not necessarily cluster all the original

network components.

MCODE is a popular agglomerative clustering algorithm that has been incorporated into several

network visualisation tools (see Section 2.3.5) [89]. The algorithm first calculates neighbourhood

density weightings based on core clustering coefficient. The core clustering coefficient of a node is

the density of the highest k-core in the neighbourhood of the node, inclusive of the node itself. This

measure is then multiplied by the maximum k-core number, kMAX , of the node neighbourhood to give

a final density weighting. The highest weighted nodes are selected as seed nodes for agglomerative

clustering. In the second stage MCODE finds densely connected regions by recursively building
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modules from the seeds based on their neighbourhood weightings. Nodes are added to the core node

cluster if they score within a given threshold of the core node’s score. Optional post-processing of the

clusters allows the user to filter the clusters by connectivity. Finally, the clusters are ranked according

to size and edge density.

Several clustering approaches represent a network as a matrix of similarities between its elements.

The eigenvectors of the matrix are then used for network clustering [415, 443, 489, 557]. These

methods, termed spectral clustering, are popular as they reveal clearer clustering patterns than the

network connectivity alone [415, 529].

A drawback of many clustering strategies is the lack of overlap between the final clusters. Many

proteins can have multiple functions based on cellular conditions. Consequently, a protein may be a

member of several modules within the network, each with its own distinct function [453]. Therefore

biological networks contain overlapping communities rather than distinct partitions [96, 453, 498,

558–560]. Several clustering algorithms have been developed which can identify overlapping clus-

ters and allow nodes to be placed in multiple clusters [561]. Many of these methods are extensions

of existing clustering approaches such as the GN-based algorithm developed by Wilkinson and col-

leagues which can assign nodes to several clusters and provide confidence scores for each assignment

[544]. Additionally, clustering into communities of edges, rather than nodes, allows for overlapping

clusters since a node can be connected to several edges in different clusters [562–564].

The clique percolation (CP) algorithm, also termed clique merging, is a popular agglomerative

method which can be used to identify overlapping clusters and locate areas of module cross-talk

[453, 499, 558, 561, 565–567]. Cliques are densely connected subgraphs and therefore can be con-

sidered network modules (see Section 2.3.3.1) [566]. The CP algorithm uses cliques as seeds for

module detection and connects them together if they share k− 1 nodes, where k is the number of

nodes in the two cliques. The connected cliques, termed communities, can reveal areas of cross-talk

at shared nodes. A similar method developed by Spirin and Mirny (2003) identifies maximal cliques

as representative of overlapping network modules of different sizes [431].

The majority of clustering algorithms are designed for use with unweighted network data. However,

edge weights contain valuable information that can reveal more biologically significant connectivity

patterns than topology alone [88, 568]. Several clustering algorithms, many of which extend the

principles of existing clustering algorithms, have been designed for use with weighted data. For

instance, maximal cliques can be used as the seeds for agglomerative module discovery in weighted

networks [517].
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A hierarchical clustering algorithm that allows edge weights is SPC [431, 533, 569]. The algorithm,

also termed the Pott’s Model, simulates a ferromagnetic model subject to temperature dependent

fluctuation. SPC assigns a spin to each node in the network. Spins can be in several different states

and, where interactions occur, the spins affect one another. In densely connected regions these spins

correlate allowing the algorithm to cluster the network based on correlation patterns. Transitivity

clustering also allows for the use of edge weights between protein pairs [570]. This algorithm clusters

the network by addition and removal of edges using a weighted cost function.

Genetic algorithms can be used for cost-based clustering to produce overlapping clusters for weighted

or unweighted networks. These algorithms exploit the principles of evolution by simulating natural

selection [560]. At each iteration groups of nodes are moved between clusters, and the resulting

clusters are then assessed for fitness based on within-cluster edges. Those clusters that have improved

fitness are kept while those changes that reduce fitness are discarded. Evolutionary algorithms run for

multiple generations until a required level of fitness is reached. Importantly, since each generation is

changed at random, the results of two separate runs on the same network will not necessarily be the

same, allowing for several overlapping clustering patterns.

MCL is a clustering algorithm based on network flow simulation which can be used for weighted and

unweighted networks [534]. The algorithm uses mathematical bootstrapping by simulating random

walks across a probabilistic adjacency matrix. MCL then applies iterative expansion and inflation

to find strongly connected regions and weaken sparsely connected ones. In the expansion step flow

is simulated across the matrix. The inflation step then strengthens the areas of high flow and weak-

ens those of low flow. The final clusters represent areas of the network with high flow. A single

parameter, the inflation value, influences the final number of clusters produced. Clustering com-

parison studies have shown that MCL has higher accuracy than many other algorithms [429, 571].

The MCL algorithm has also been modified and extended for use with several specific data types

[214, 564, 572–574]. A similar algorithm, repeated random walks (RRW), produces overlapping

clusters on weighted networks based on random walks across the network [575].

Several clustering strategies use additional biological data to find and evaluate clusters in PPI net-

works. These techniques use the additional data either to enhance cluster discovery or in the post-

processing of clusters from existing algorithms. Many data types can be used, for instance gene

expression data [215, 227, 506, 576–579], functional annotations [504, 535, 580, 581], genetic inter-

actions [582] or domain profiles [583]. Conversely, PPI data can be used to enhance the clustering

of gene expression data [225].
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2.3.4 Alignment and Comparison

Network comparison can reveal a network’s underlying properties, detect noise, predict missing data

and reveal conserved areas of interaction [513, 584]. However, network comparison is non-trivial

and direct comparison of networks is computationally expensive and often impossible. For instance

subgraph isomorphism, which identifies whether a network is an exact subgraph of a larger network,

is an NP-complete problem. Consequently, heuristics such as global network properties and small

local motifs are commonly used for comparison [585], although some non-heuristic algorithms have

been developed [586].

Network comparison can be carried out at different levels. At the simplest level a biological network

can be compared to a network model [428]. In this context a network model is a randomised network

designed to match the biological network’s topological properties. Network edges are randomised

such that degree distribution, diameter, motif distribution or other topological characteristics are

preserved [434, 459, 587–589]. Accurate network models match several aspects of the biological

data and can be statistically analysed to predict missing data [448] and identify interesting motifs

[590] or used as null hypotheses for prediction algorithms [588]. Network models can also be used

to compare biological networks. Here each network’s topology is compared with the random model

and the resulting network profiles are then compared [512]. Similarity of the profiles can reveal the

underlying similarities of the networks.

Networks can also be compared directly by comparison of topological properties such as degree

distribution, clustering coefficient and diameter. However, two networks with similar topology can

be vastly different [408]. An alternative approach is to analyse the distribution of network motifs

[588]. Here, the distribution of small subgraphs, termed graphlets, is used as a network profile.

Network profiles can then be compared to reveal the underlying network similarities and differences.

Network alignment allows for a more accurate comparison between network structures [513] and can

reveal networks patterns such as those of disease genes [591]. Within-species alignment is relatively

straightforward since nodes can be merged based on protein identity [312]. Overlap between net-

works can be used to identify true positive interactions [44]. Several tools are available for simple

comparison of networks from the same species [400, 592].

At a more complex level networks can be compared across multiple species [417, 513, 593]. There

are two aspects to these alignments [594]. Locally small conserved regions can be aligned by match-

ing nodes or motifs, while globally entire network structures can be aligned. Cross-species analysis

is non-trivial since most biological networks are noisy and incomplete. Alignment complexity in-

creases with the size of the networks and with the number of networks to be aligned [594]. Addition-
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ally simple gene matching is not possible for cross-species alignment due to differing genome sizes

and naming conventions. Therefore, additional data such as annotation, sequence or topological data

are commonly used to aid alignment [595–597].

Additional data can be used for network alignment and comparison since protein function often

correlates with network topology [312]. Orthology and sequence similarity scores can be used to

identify conserved interactions, termed interologs, and patterns of conserved regulation, termed reg-

ulogs [596]. In these algorithms proteins are aligned based on sequence similarity and edges are then

merged if they link similar protein pairs in the two networks. Edges may also be inferred in one

species where highly similar proteins interact in another species [347, 598]. Similarly, enzyme clas-

sification can be used to align metabolic pathways [597, 599]. These cross-species analyses identify

areas of network conservation and can give clues into the evolutionary origins of network structure

[417, 584, 600–605]. The NetAlign11 tool provides a web-based server for cross-species network

alignment based on sequence similarity [606].

Data compression algorithms can also use annotation data to pre-process networks prior to compari-

son and alignment. Network compression, also termed network simplification, involves the iterative

contraction of network components. For instance edges and nodes can be compressed based on node

annotations, reducing the complexity of alignment [607–609].

2.3.5 Network Tools

Due to the complexity of biological data a number of tools have been designed for the analysis of

network data. These tools range from simple visualisation and layout platforms to more complex data

manipulation and analysis platforms (reviewed in [610] and [85]). Dozens of free to use visualisation

tools are available both on the web (for example [106, 611–617]) and as stand alone software (for

example [80, 618–627]). In some cases these tools are linked to specific databases allowing the

automatic import of network data [304, 615, 621, 622]. There are also tools designed for specific

types of biological data such as metabolic networks [628, 629], gene regulatory networks [630],

protein-small molecule networks [631], microarray data [616] and literature mined data [613].

Network visualisation is relatively straightforward for small, simple networks. However, as network

size and connectivity increases efficient visualisation becomes difficult [632]. A significant problem

in network visualisation is network layout. Several algorithms have been developed to address this

problem. These algorithms aim to arrange the nodes and edges to optimise ease of visualisation.

The GEM algorithm uses generalized expectation-maximization to minimise overlapping edges in

the network [633]. The force-directed algorithm also aims to reduce edge overlap, while at the same
11http://www1.ustc.edu.cn/lab/pcrystal/NetAlign
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time keeping edges at approximately equal length [634]. The spring embedded algorithm aims to

equally distribute the nodes while minimising the edge length between connected nodes [635].

Network topology parameters can be used to aid network layout. For instance, the BFL algorithm

calculates node betweenness and places high scoring nodes in optimal positions. Alternatively bio-

logical data, such as annotations (see Section 2.5.4), can be used to arrange network nodes in groups

of the same type [636]. Additionally, three-dimensional layouts can also aid efficient visualisation

[624]. The majority of network tools provide a number of layout options to suit a variety of data

types [610].

Many visualisation tools provide network manipulation options which permit dynamic interaction

with the data. Manipulation allows the user to customise the appearance of the network to suit

the network analysis problem being addressed. Nodes and edges may be moved, hidden, merged,

coloured or labelled in order to aid visualisation and reveal patterns of connectivity. Some tools also

link to biological databases, such as SGD and GO, allowing access to further annotation data.

Tools have also been developed for the analysis of network data, for instance the calculation of

network topological properties [592], subnetwork prediction [106, 637] and comparison [638], motif

analysis [639, 640] and clustering [78]. The most sophisticated network tools combine dynamic

visualisation with a wide range of layout and analysis options.

2.3.5.1 Cytoscape

Cytoscape12 is one of the most comprehensive and widely used network analysis platforms [641].

Cytoscape is an open source platform which provides dynamic visualisation and analysis of network

data (Figure 2.14) [619]. A web-based interface is also available [642].

The core Cytoscape program provides a wide range of visualisation and layout options13. Nodes and

edges may be coloured, annotated and filtered. The platform supports many input types14 ranging

from simple tab delimited text to standardised network formats such as BioPAX [643] and PSI-MI

[644].

In addition to its core platform, Cytoscape supports a wide range of plugins and its developers ac-

tively encourage plugin development. There are currently 133 Cytoscape plugins available through

the Cytoscape website15, 18 of which were first published during 2010 [553, 645–661].

12http://www.cytoscape.org/
13http://cytoscape.org/manual/Cytoscape2_8Manual.html#AutomaticLayoutAlgorithms
14http://cytoscape.org/manual/Cytoscape2_8Manual.html#SupportedNetworkFileFormats
15http://chianti.ucsd.edu/cyto_web/plugins/ (accessed 13th March 2011)
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Figure 2.14: Network visualisation in Cytoscape.
A screenshot of the Cytoscape network visualisation platform displaying a network of 339 nodes and
352 edges in the GEM layout.

Table 2.8: Cytoscape plugins.
Summary of the types and number of plugins available from the Cytoscape website.

Type Number of Plugins
Analysis 56
Network and Attribute Input/Output 30
Network Inference 8
Functional Enrichment 9
Communication/Scripting 8
Miscellaneous 22

Plugins allow a wide range of network analysis and manipulation (Table 2.8). The majority of the

plugins provide network analysis functions, such as the NetworkAnalyser plugin which calculates

topological parameters [400] and the MCODE network clustering plugin [89]. Additionally, several

plugins have been developed to allow access to external databases (for instance [304, 662, 663]).

Cytoscape was chosen as the primary network analysis tool for this project since it fulfils all the

necessary requirements for functional network manipulation and analysis.
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2.3.5.2 Ondex

Ondex16 is a stand-alone, open-source, semantic data integration platform which allows dynamic

visualisation of network data from a wide variety of biological sources [80]. Ondex produces a

semantically-rich integrated network which has multiple types of node (referred to as concepts) and

edge (referred to as relations). The concepts are displayed as differently coloured shapes for ease of

visualisation (Figure 2.15). The program uses workflow-based parsers to map entities from diverse

databases onto one another using an underlying ontology describing their biological relationships

(Figure 2.16). For instance, the concept Protein is linked to the concept Gene via the relation

is_encoded_by. Like Cytoscape, Ondex is customisable by the development of plugins for new

parsers, filters and statistical analyses.

Datasets are provided for S. cerevisiae, A. thaliana and H. sapiens through the Ondex website17

[664–666]. A B. subtilis dataset is also available through the Newcastle University website18. The

Ondex S. cerevisiae dataset was used during functional prediction evaluation in Chapter 7 since it

provides a more complete picture of the network interactions than a network with a single node type.

2.4 Network Integration

There are many types of functional data available (see Section 2.1). However, no single data type can

completely cover the interactome since each data type provides information about a different aspect

of the cellular biology [59, 667]. Therefore, heterogeneous data sources must be integrated to gain a

full picture of the cell [51, 420, 497, 668–671].

While LTP data are generally considered very accurate, it is small-scale. In comparison, HTP data

are noisy but can provide cell-wide information. Consequently the two data types complement one

another [68, 672]. Integration of multiple types of data can also aid in the interpretation of results

since combining diverse data sources of different scales provides a fuller picture of the functional

interactions occurring in the cell than is possible using a single data sources alone [83, 248]. Integra-

tion can reduce experimental noise, and enhance weak interactions present in multiple data sources

[48, 49, 51, 66, 67, 109, 342, 673]. Integrated network analyses have been shown to improve accuracy

in several applications, for example in inference of gene/protein function [92, 128, 342, 669, 674],

in prediction of novel functional interactions [318, 675–677], in detection of protein complexes

[90, 429, 534] and in identification of potential disease genes (see Section 2.5.3) [40, 678].

16http://www.ondex.org/
17http://www.ondex.org/doc.html
18http://research.ncl.ac.uk/synthetic_biology/downloads.html
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Network integration can be performed in a variety of ways. At the simplest level datasets can be

combined naïvely into a network in which nodes represent genes or gene products, and edges repre-

sent any type of interaction between the nodes [79, 508, 679, 680]. In this case no attention is paid

to the number of evidence types supporting an edge or the quality of the evidence (Figure 2.17 A).

Such networks are useful for the basic visualisation of integrated results.

At a slightly more complex level edge weights can represent the number of lines of evidence for each

interaction (Figure 2.17 B). This weighting provides a measure of edge confidence since interactions

with several sources of evidence are considered more likely to be true positives than those with only

one source of evidence [95, 133, 313, 328, 332, 508, 674, 679, 681–683]. Similarly, interactions

detected by two reciprocal bait-prey interactions in an Y2H screen are considered to be of higher

confidence than those detected in one bait-prey direction alone [123].

The concept of levels of edge evidence can be extended to consider just the intersection of datasets,

thereby discarding interactions with single lines of evidence, and producing a high confidence dataset

[184, 489, 508, 684]. However, each functional dataset has its own error rate [45, 313]. Consequently,

more sophisticated integration techniques are required to harness these differences in data quality.

Figure 2.17: Simple network integration.
Datasets may be combined in several different ways. Here two small datasets have three nodes in
common (blue circles). A. The datasets can be combined naïvely into a union of the available data.
Therefore the edges (black lines) have equal weighting. B. Edge weights can correspond to the
number of lines of evidence for an interaction. Therefore edges in the union of the two datasets are
up-weighted (as denoted by thicker lines).

50



2.4.1 Dataset Noise

Biological data, in particular HTP data, is incomplete and noisy [68, 69, 430, 673]. False results

can be either false positives, interactions that are identified but that do not occur in the cell, or false

negatives, true interactions that have not been detected. False results arise from two main sources;

technical or biological. Technical false results are directly attributable to the experimental method

used. If the method has low sensitivity many interactions may be missed leading to false negative

results. For instance, in TAP-MS weak interactions are less likely to be found due to the multiple

washing steps required (see Section 2.1.1.2) [184, 185]. Further, some physical interactions are so

transient they are difficult to detect.

Experimental methods may also be prone to false positive results. For example, the reporter genes

used in the Y2H technique may be transcribed in the absence of an interaction. The use of multiple

testing and multiple techniques to confirm interactions can reduce technical false results [108, 134,

184].

False results may also be caused by a number of biological reasons. Many experimental methods are

not carried out in natural cellular conditions [685]. In TAP-MS experiments proteins, which would

not naturally be found in the same time or place within the cell, may interact leading to false positive

results.

Protein folding and modification may also affect protein binding. In the Y2H system binding of the

proteins to the Gal4 domains can change some proteins’ folding, and alter post-translation changes

such as phosphorylations. These changes may lead to false positive interactions between some pro-

teins and to false negative interactions between others.

A surprisingly large amount of functional data are thought to be spurious [154, 235]. Several methods

have been used to estimate the level of these false results in S. cerevisiae data with widely varying

results (Table 2.9) [686]. Many of these methods utilise high-confidence data to estimate the noise in

HTP datasets. For instance, since LTP data are considered to be high-quality, comparison with HTP

datasets can reveal noise levels [121]. Co-expression of genes has been shown to correlate with true

positive interactions [687] and therefore can be used to identify potential false results [688].

Other data types, such as cellular localisation and other annotation data, can also reveal false results

since proteins involved in distinct processes or found in separate cellular locations are not very likely

to be functionally related [313]. Additionally, cross-species comparisons can detect noise in data

[120, 689].
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While estimates of noise in functional data vary, it is clear that a significant number of detected

interactions are false and the level of noise in HTP data is non-negligible [184]. Therefore, there is a

clear need to distinguish the true interactions from false results. Post-processing of the data can help

to reduce false results. For instance, highly promiscuous proteins, termed sticky proteins, are thought

to participate in many false interactions which do not occur in vivo. Promiscuous bait proteins tend

to have more reliable interactions than promiscuous prey proteins [157]. Therefore, these sticky

proteins can be filtered from the data to improve accuracy [690–692]. However, this method risks

the removal of hub proteins and therefore loss of true positive interactions.

The topology of a network can also be used to identify false results. One topology-based method is

IRAP (interaction reliability by alternative path) which attempts to remove false positives and restore

false negatives (add true positives) based on topological metrics [126, 127]. However this method

risks the removal of true positives and the addition of false positives to the network. Alternatively,

network models (see Section 2.3.4) can be used to filter the data since true interactions should fit the

network model well [693].

Finally, the principles of false result estimation can be used to remove noise from data by comparing

data types. Interacting proteins are thought to share similar annotations. Therefore, the similarity

of gene annotations, such as GO terms or KEGG Pathways, can be used to identify and filter out

potential false positives in the data [694, 695]. Similarly, genome context has been successfully used

to calculate the confidence of individual interactions [696].

2.4.2 Gold Standard Data

Methods that attempt to filter out false results risk the loss of true positives and therefore could

introduce false negatives to the network. Potentially, a more biologically accurate network can be

constructed by taking the quality of each dataset into account, without the loss of data [697]. Since

datasets differ in their reliability a significant challenge when integrating diverse datasets is estimat-

ing the relative importance and quality of each dataset in a consistent manner [49, 154, 698, 699].

The most commonly used method for calculating dataset quality is scoring against a Gold Standard

[43, 59]: a reference network containing a set of interactions believed, with high confidence, to be bi-

ologically correct [97, 669]. The Gold Standard represents a benchmark against which to calculate a

numerical estimate of dataset confidence and, thereby, allow the consistent integration of interactions

from differing experimental types [669, 699]. Additionally, Gold Standards can be used in assess-

ment and evaluation of analysis outcomes [700]. In some cases a second, negative set of interactions

that are believed not to occur in the organism is included in a Gold Standard [701].
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Gold Standard datasets are also commonly used in evaluation of a final, integrated system. Often the

Gold Standard data are split into testing and training sets [112, 683]. Alternatively, a second positive

Gold Standard from a different data source can be used in evaluation [49, 128]. In both cases the

integrated system is evaluated based on its ability to predict data from the evaluation Gold Standard

data, sometimes by leave-one-out analysis (see Section 2.5.5).

The quality of a Gold Standard is vital to the accuracy of conclusions drawn from integrated net-

work analysis [699]. Reference data are therefore commonly obtained from expert-curated databases

such as the KEGG database [99], MIPS [279], GO [100] or HPRD [111, 389]. The Gold Standard

benchmarks typically represent a set of biologically meaningful interactions of a single type, such

as:

• Shared metabolic pathway [49, 112, 128, 702].

• Shared biological process [46, 98, 106, 703].

• Shared molecular function [104, 107, 704].

• Shared complex membership [109, 110, 115, 133].

Additionally, small-scale LTP interactions which are considered high-quality can be used as Gold

Standards, for instance the High Confidence (HC) dataset available through BioGRID19 [235].

The creation of a negative Gold Standard can be problematic since it is hard to determine, with

high confidence, that an interaction does not occur in vivo under any circumstances [705]. A simple

method for negative Gold Standard generation is to include any interactions between the genes of the

Gold Standard that do not occur in the positive set [49, 60, 98, 106, 107, 112, 114, 115, 128, 706].

Negative Gold Standard datasets can also be based on cellular location, since proteins located in

separate areas of the cell are unlikely to interact [103, 109–111, 223, 683]. Alternatively a random

set of interactions can be generated to provide a negative Gold Standard [389]. Commonly the

randomised set of interactions is generated and then filtered, either to remove interactions of the

positive Gold Standard or based on cellular location.

2.4.3 Probabilistic Functional Integrated Networks

One of the most powerful approaches to reduce the extent of dataset noise during network integration

is the use of Probabilistic Functional Integrated Networks (PFINs) [49, 115, 128]. In PFINs nodes

correspond to genes or gene products and the edges to functional associations between nodes. A

19http://thebiogrid.org/downloads/archives/Published%20Datasets/HC-BIOGRID-2.0.31.tab
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PFIN, sometimes referred to an a functional linkage network (FLN), has edge weights which indicate

the level of confidence in the combined evidence for that edge. The edges are produced by statistical

comparison against a Gold Standard dataset [669, 686]. There are two major approaches to scoring

using a Gold Standard. In the first a statistical algorithm may be used to compare each dataset to the

Gold Standard prior to integration of the datasets in an effort to estimate the quality of each dataset

[49, 102, 342]. The dataset weights can be integrated in several ways. Simple naïve integration

involves summing each of the dataset weights to produce a network where an edge weight is the

combined sum of all the evidence for that edge (Figure 2.18).

However, this method of integration assumes that there are no dependencies between the available

datasets, an assumption which is unlikely given the nature of biological data. Lee and colleagues

(2004) attempted to overcome this difficulty by introducing a weighted sum during integration, to

successively down-weight evidence scores in order of magnitude:

WS =
n

∑
i=1

Li

D(i−1)
(2.17)

where L1 is the highest weighted line of evidence for the edge and Ln is the lowest weighted line

of evidence in a set of n datasets [49]. Division of the score by the D parameter means that, while

the highest score is integrated unchanged, subsequent weights are progressively down-weighted.

Therefore, a D value of 1.0 would produce a simple summed network as in the example in Figure

2.18, and higher values successively down-weight the confidence scores (Figure 2.19). The Lee

method of integration has been used to analyse network data from S. cerevisiae [49, 98, 128, 706],

C. elegans [703, 707], D. melanogaster [708] and A. thaliana [342].

The second use of Gold Standard data is in machine learning [103, 105, 133, 388]. Machine learning

algorithms aim to learn the characteristics of a training dataset in order to predict those of data of the

same type. In the case of PFINs Gold Standard data are used to train a machine learning classifier,

for instance a support vector machine (SVM) [103], random forest (RF) [388], Markov random field

(MRF) [105] or Bayesian network inference [709], to recognise true interactions in the datasets. Once

trained the classifier can be used to calculate the probabilities of true interaction between proteins

from diverse datasets. A PFIN is produced with edge weights indicating the probability of true

interaction.

However, a major drawback to machine learning algorithms is that the training Gold Standard may

not cover all characteristics of the real data, leading to uneven training. Therefore, a classifier may

be produced which only correctly assigns data that is very similar to the training Gold Standard.
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Figure 2.18: Probabilistic functional integrated networks.
PFINs have edge weights representing the confidence in the lines of evidence for each edge. In
this example two datasets of confidence 1.2 and 2.5 respectively are integrated by summing the
scores over each edge. Therefore, edges with multiple lines of evidence are up-weighted while the
datasets’ confidence values are also taken into account. Therefore, edges which only occur in the
first dataset are weighted 1.2, those only occurring in the second dataset are weighted 2.5, and those
edges occurring in both datasets are weighted 3.7. Simple summing of dataset weights in this way is
the most naïve method of edge weight calculation.

Additionally, since there is a high level of noise in biological data, overfitting may occur, producing a

classifier which models the characteristics of both the true data and the noise. These drawbacks may

be addressed by use of the training set expansion method of Yip and colleagues (2009) which uses

semi-supervised learning to improve Gold Standard coverage [710] or by the use of multiple Gold

Standard sources [101].

In both uses of Gold Standard data discussed above the final network of interactions is annotated

with edge weights corresponding to the confidence in that interaction being correct. PFINs have been

created for yeast (Table 2.10) and a number of other species (Table 2.11) using a variety of methods

and Gold Standards. These networks can then be used to detect protein complexes [90, 534, 592],

annotate proteins [92, 674, 711] and predict new interactions (see Sections 2.5.5) [318, 675].
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Figure 2.19: The D-value effect.
A D value of one results in a simple sum of the dataset scores. Higher values successively down-
weight confidence values.

2.4.4 Dataset Bias

In addition to varying levels of noise, functional datasets have been shown to have significant levels

of bias [42, 128]. Bias occurs for a number of reasons:

• Experimental method

• Experimental design

• Publication choice

• Level of interest

• Cellular bias

The experimental method chosen can be a source of bias. Experimental methods each have their own

strengths and weaknesses in the type of interaction they can detect [98]. For instance, TAP-MS de-

tects strong stable interactions but is poor at detecting weak transient interactions due to the multiple

washing stages of the technique.
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Conversely, Y2H can detect weak interactions but is poor at detecting interactions involving post-

translationally-modified proteins [721]. In addition, some types of proteins are under-represented

in functional datasets. For example, membrane proteins are insoluble due to their hydrophobic tail

regions and are, therefore, not suited to many experimental methodologies.

Bias also occurs due to experimental design [46]. Individual research groups have their own specific

interests. Therefore, each group will naturally design their experiments based on particular areas of

cellular biology, for example, by varying the choice of bait proteins in a Y2H screen. These choices

bias the final dataset towards the experimental focus.

Additionally, bias can be introduced into functional datasets by the choice of data for publication

[121]. Interactions detected in an HTP experiment may not be included in a published dataset if they

are not related to the major conclusions of the publication. Alternatively, since many journals issues

have a specific focus, only data related to that area may be chosen for publication.

Some areas of cellular biology are highly studied and are, therefore, over-represented in functional

data [98, 223]. For example, proteins which are associated with distinct phenotypes or diseases are

highly studied in many species [133]. Finally, there are natural cellular biases which lead to dataset

bias. In particular, the large number of ribosomal proteins of the cell tend to be over-represented in

functional data [125, 722].

In addition to bias in functional data, manually-curated Gold Standard data are thought to be biased,

particularly towards well-studied proteins and processes, and many of the databases chosen as Gold

Standard sources have a biased focus [133]. For instance KEGG focuses on metabolic pathways,

while MIPS focuses on physical protein-protein interactions. Consequently, a KEGG Gold Standard

would bias an integrated network towards metabolic pathways, while a MIPS Gold Standard would

bias the network towards PPIs [722]. The effect of Gold Standard bias may be addressed using a

bespoke hand-curated Gold Standard [125] or using multiple Gold Standard sources [101].

Bias in functional data may affect analyses of the integrated data and possibly mask areas of cellular

biology which may be of interest. Therefore, several studies have addressed this issue by attempting

to identify and remove bias from the data. For instance, Lee and co-workers discarded the GO term

protein biosynthesis from their Gold Standard to minimise training bias since it represented

almost a third of the Gold Standard protein pairs [98]. By removing these terms from the Gold

Standard, datasets biased to this process would be down-weighted during confidence scoring. The

same group used a similar method to discard GO terms from their Gold Standards for A. thaliana

and C. elegans [342, 703, 707]. However, removal of data has the disadvantage of introducing false

negative interactions into the network [128].
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2.5 Beyond the Interactome

Interactions between proteins form the structural basis of cellular biology. However, the verification

of all the interactions comprising the interactome of a species is only part of the task of systems bi-

ology. For a complete understanding of cellular biology we must also know which cellular processes

the interacting proteins are involved in, what functions the proteins perform, where the proteins act

within the cell and under what circumstances [31, 495, 723, 724].

2.5.1 Protein Function

Protein functional prediction and interactome mapping are fundamentally linked and complement

one another. In one direction, knowledge of shared role can be used to infer a link between protein

pairs and aid in the prediction of interactions. In the other, knowledge of a protein’s interactions can

be used to assign a role, since proteins involved in the same process tend to interact (Figure 2.20)

[725].

Methods to assign function have evolved rapidly in the post-genomic era, and what was once a time

consuming task, undertaken on a protein-by-protein basis, can now be carried out on a genome-

wide scale using various HTP experimental and in silico techniques. The annotation schemas used

to record protein function have also changed over time to include new evidence codes reflecting

the wide range of prediction methods available to assign function. Nevertheless, a large number of

proteins remain uncharacterised [674]. Several computational techniques have been developed to

predict protein function (for instance [726–728]), many of which rely on the similar principles to

those used in computational PPI prediction (see Section 2.2.2).

Figure 2.20: Protein Role and PPI Prediction.
A protein’s interactions are fundamentally linked to its cellular role. Therefore, interactions can be
inferred from cellular role and, conversely, role may be inferred from interactions. In this example
the orange node is predicted to be involved in the same role as its two neighbouring blue nodes and,
and conversely the blue nodes are predicted to have an interaction.
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Early functional prediction relied on sequence similarity and sequence features. Algorithms such

as FASTA [729], BLAST [300] and PSI-BLAST [730] were developed to compare the nucleotide

sequences of genes, and the amino acid sequences of proteins, with those of genes and proteins

of known function. By measuring pairwise alignment between two sequences, similarity scores

are produced for a pair of genes or proteins and, where similarity is high, shared function may

be inferred [731]. Sequence similarity can indicate divergence from a shared common ancestor,

termed homology. However, similar sequences are not always homologous and, while high sequence

similarity can indicate similar function, this is not always the case since some homologous proteins

have diverged to perform distinct functions [732, 733]. Conversely, other proteins have converged

to share similar function, but do not share a common ancestor, and are therefore not homologous.

Consequently, while sequence similarity can be indicative of shared function, there are limits to the

accuracy of these methods [734–738].

Areas of high sequence similarity between proteins may be restricted to small local sequence fea-

tures, rather than the global gene or protein sequence [739]. These features usually correspond to

the active sites of proteins. Mutations in the active site are far more likely to inactivate a protein

and, therefore, these sites are highly conserved between species [740]. Due to this conservation the

multiple alignment of protein or gene sequences can reveal areas of sequence that are of importance

to protein function [741, 742]. Consequently, multiple sequence alignment of proteins can be utilised

for functional prediction [743].

The availability of more extensive sequence data in recent years has allowed the development of

several functional prediction techniques which utilise genomic context [113, 744]. For example, in

prokaryotes protein function can be predicted based on the conserved chromosomal proximity of

genes in multiple species using the gene neighbourhood method [329, 331, 745]. In addition, groups

of prokaryotic proteins with highly conserved proximity, termed operons, often interact physically

and have related functions [746].

Similarly, the Rosetta Stone method, which identifies PPIs based on patterns of domain fusions,

may also be used to infer function [332–334]. This method identifies proteins in which domains

are found as a single polypeptide in one species but are found as separate proteins in other species.

Additionally, the phylogenetic profiles of proteins can also be utilised to predict function since the

correlated inheritance of protein pairs can indicate conservation of functional association due to

shared evolutionary pressure [94, 354, 355, 359, 747]. Finally, the conservation of interacting protein

pairs, termed interologs, or regulatory interactions, termed regulogs, can be predictive of protein

function [346, 351, 748]. The combination of several genome context methods can improve the
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Table 2.12: Protein structural alignment.
A summary of several protein structural alignment tools. Structural alignment can be used to infer
protein function since proteins with similar 3D structures tend to have similar cellular roles.

Name Method Availability Ref.
MATT Aligned Fragment Pair Chaining http://groups.csail.mit.edu/cb/matt [760]
SANA Core Alignment and Optimisation http://zhangroup.aporc.org/bioinfo/SANA. [754]
RSE Refinement with Seed Extension http://lmbbi.nci.nih.gov/ [761]
MAMMOTH Sequence Independent Heuristic http://physbio.mssm.edu/~ortizg/ [762]
MAPSCI Coordinate-based alignment http://www.geom-comp.umn.edu/mapsci [763]
CE Combinational Extension http://cl.sdsc.edu/ [764]
FATCAT Alignment of Fragment Pairs http://fatcat.burnham.org [765]
SAlign Dynamic Programming http://modbase.compbio.ucsf.edu/

salign-cgi/index.cgi

[766]

TALI Torsion Angle Alignment http://redcat.cse.sc.edu/index.php/

Project:TALI/

[767]

accuracy of prediction [332, 508]. The Prolinks20 database provides genome context predictions for

a number of organisms and includes an interactive navigator for the predicted functional linkages

[330].

Protein structure can also be used to predict protein function since the 3D structure of a polypeptide

is fundamentally linked its role [749]. Proteins with similar structures are likely to have a similar cel-

lular roles and, therefore, high structural similarity may be indicative of shared function [750–753].

Protein 3D structures can be aligned in a similar fashion to protein sequences. Several structural

alignment and functional prediction algorithms have been developed, many of which are freely avail-

able either online or as stand-alone packages (Table 2.12). In most cases these algorithms identify

and align the core of the protein, often the active site, before aligning the remaining residues [754].

Additionally, a combination of multiple structure-based methods can improve prediction accuracy

[755].

Several benchmark databases have been developed to store protein structures and alignments, for

instance the Homologous Structure Alignment Database21 (HOMSTRAD) [756], S422 [757] and the

Protein Data Bank23 (PDB) [758]. In addition, a standardised classification system, the Structural

Classification of Proteins (SCOP), has been developed to describe protein structures [759].

Following the availability of whole genome sequences it became possible to measure gene expression

on a genome-wide scale. Gene expression data are useful in inferring protein function since the

proteins involved in the same cellular process are likely to be expressed at the same time. Several

methods have been developed to cluster gene expression data and identify coexpressed protein pairs

(see Section 2.1.2.1). Conserved coexpression between species may also be used to infer protein

20http://mysql5.mbi.ucla.edu/cgi-bin/functionator/pronav
21http://www-cryst.bioc.cam.ac.uk/-homstrad/
22http://compbio.mds.qmw.ac.uk/~james/S4.shtml
23http://www.rcsb.org/pdb/
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function [373, 374]. However, coexpression-based techniques have the same limitations as they do

for PPI prediction due to noise and interpretation.

The wealth of available biological literature is also a source of functional data. Several methods

have been developed for the automatic annotation of proteins by literature mining [259, 768–775].

Finally, machine learning classifiers may also be used to assign probabilities to potential functional

annotations following training based on various properties of genes with known annotations [114,

388, 719, 776–778]. These properties range from sequence-based features to functional interaction

data. The use of multiple evidence types produces improved classification over a single data types

alone [779, 780].

2.5.2 Cellular Location

While knowledge of a protein’s interactions and the processes it is involved in is informative, a large

part of our understanding of the interactome also involves knowing a protein’s cellular location;

where it interacts and performs its function. For instance, a protein may be known to be involved in

transmembrane transport, however, there are several membranes in the cell and different molecules

are transported across different membranes [781]. Therefore, knowledge of cellular location can

enhance the understanding of a protein’s cellular role.

As with a protein’s function, its cellular location can be indicative of its potential interaction partners,

since interacting proteins must be located together. Conversely, protein location data can be used to

detect interactions unlikely to occur and, therefore, identify false positives in HTP data. In particular,

cellular location data are commonly used to filter positive Gold Standard data and to create negative

Gold Standards (see Section 2.4.2). The cellular location of a protein can also indicate its potential

function. For instance, a protein located at the telomere is very likely to be involved in telomeric

processes such as telomere capping or telomere maintenance.

Cellular location prediction, both experimentally and computationally, is non-trivial. Experimentally,

cellular location has been predicted using fluorescence tagged proteins [3], for instance by fusing a

target protein to green fluorescent protein (GFP) [782]. A protein’s location can then be identified

by microscopic visualisation of the cell. Proteins of the major structures of the cell, such as the

membranes and ribosomes, can be easily visualised in this way. However, the cell is a moving

system of parts. The majority of cellular proteins are in free fluid and can, therefore, be potentially

found anywhere in the cell, making determination of a protein’s functional location difficult.

Due to the difficulties of experimental prediction, computational cellular compartment prediction

has become important [783, 784]. Like the prediction of protein function, many of the computational
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methods are sequence based. Protein sequences contain sorting motifs that direct the protein to its

correct location [781, 785, 786]. Therefore shared signals can be used to identify location [787–

789]. However, there are several drawbacks to sequence-based methods. Firstly, proteins which

act in the cytoplasm, the compartment where protein production occurs, do not have sorting signals

[727]. Additionally, some proteins are transported as a complex in which only one protein may

contain a sorting signal [790]. These proteins may be mistaken for cytoplasmic proteins due to their

lack of signal. Further, a sorting signal may involve several areas of a protein’s sequence making its

identification difficult [791].

A protein’s composition can also be used to predict its location since it has been observed that the

amino acid composition of a protein can correspond to its cellular compartment [792–795]. Ad-

ditionally a protein’s cellular location may also be inferred using its phylogenetic profile using the

same method with which function may be inferred (see Section 2.5.1) [796].

Several classifier-based methods have been applied to the identification of cellular location includ-

ing neural networks [797, 798], SVMs [799–805], k-nearest neighbour [806, 807], semi-supervised

learning [808], Bayesian classifiers [809] and ensemble classifiers [810, 811]. Additionally, min-

ing of the literature for functional keywords may also be used to infer protein location [812, 813].

For instance, a protein associated with the keywords mitochondrial chromosome segregation could

naturally be annotated to the cellular compartment mitochondrion.

2.5.3 Human Disease

In multicellular organisms, particularly those with multiple organs such as humans, genes and pro-

teins may be associated with disease states and distinct phenotypes. Identification of the genes

associated with specific phenotypic states, termed candidate genes, is important and challenging

[814, 815]. Consequently, disease related genes and their orthologs tend to be highly studied and are

over-represented in functional data (see Section 2.4.4) [223].

Candidate genes can be identified using similar methods to those used in function prediction, for

instance sequence-based methods such as domain fusion patterns or homology [816–821]. Addition-

ally, conservation of expression across several species or similarity of phylogenetic profiles can be

used to prioritise candidate genes [822–826].

2.5.4 Annotation Data

Due to the complexity of cellular biology it is often difficult to consistently interpret the cellular role

of a protein. Many cellular processes may be described using several descriptions. For instance, a
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Table 2.13: Protein annotation schemas.
Annotation schemas use controlled vocabularies to describe various aspects of genes and their prod-
ucts including function, location and disease association.

Type Name Species Ref
Biological Process GO Biological Process Multiple [100]

MIPS Functional Catalogue (FunCat) Multiple [829]
Molecular Function GO Molecular Function Multiple [100]

MIPS FunCat Multiple [829]
Enzyme Commision (EC) Multiple [830]

Cellular Compartment GO Cellular Component Multiple [100]
MIPS FunCat Multiple [829]

Structural SCOP Multiple [759]
Metabolic Pathway KEGG PATHWAYS Multiple [99]
Orthology KEGG Orthology Multiple [99]
Disease Online Mendelian Inheritance in Man

(OMIM)
Homo sapiens [831]

process may be referred to as "transcription" by one study but described as "mRNA synthesis" or

"RNA biosynthesis" by another. Consequently, it is difficult to integrate data from diverse sources in

a consistent manner [827]. Therefore, there is a need for uniform descriptors of cellular biology to

produce consistency across biological datasets [273].

To fulfil this need, several annotation schemas have been developed to describe cellular processes

including protein functions, structures and locations, and the orthological and disease associations of

genes and proteins (Table 2.13). Annotation schemas use controlled vocabularies, often ontologies,

which have unique identifiers to consistently describe genes and their products. There are many

ontology schemas, some of which are species or area specific24 [828].

The following sections briefly describe the most comprehensive and widely used annotation schemas

which are of particular relevance to the work presented in this thesis; the Enzyme Classification (EC),

The Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO).

2.5.4.1 Enzyme Classification

The EC system was one of the first protein classification schemas designed to describe enzymatic

functions. Each EC annotation is a unique identifier which consists of four numbers in the format

n1.n2.n3.n4 [830]. The first number represents a high level of classification, with subsequent

numbers representing increasingly precise descriptions of protein function.

24see http://www.obofoundry.org/
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For example the enzyme glutathione reductase, a cellular antioxidant (see Section 2.6.2.2), has the

classification 1.8.1.725 which refers to:

1 Oxidoreductase

.8 Acting on a sulfur group of donors

.1 With NAD+ or NADP+ as acceptor

.7 Glutathione-disulphide reductase

This tiered system of classification allows proteins to be classified at higher levels of function when

their specific function remains unknown. For instance, a protein may be classified as 1.8.-.- if it is

known to be an oxidoreductase acting on a sulfur group of donors but where its spe-

cific action is unknown.

2.5.4.2 KEGG

The KEGG database was originally created to store metabolic information based on the EC schema

[277]. The KEGG resource now consists of 16 databases describing several areas of biology includ-

ing metabolism, human disease, compounds and orthology [832–838].

The main KEGG database is the KEGG PATHWAYS resource which stores pathway data using the

EC annotation schema. A KEGG pathway consists of the enzymes, substrates and cofactors. Each

pathway may be visualized online using graph theoretic representation (Figure 2.21). Pathways may

also be downloaded in KEGG Markup Language (KGML) and tab-delimited format26.

KEGG reference pathways are manually curated from the literature by mapping EC numbers to

genes. KEGG then uses orthology to create species specific metabolic pathways from the reference

pathways. KEGG pathways are often used as Gold Standard data due to their high level of curation

[49, 112, 128, 703, 719].

In a KEGG Gold Standard protein pairs annotated to the same pathway form the positive Gold Stan-

dard, while those annotated to separate pathways form the negative Gold Standard. In addition to

its use as a Gold Standard, several software tools have been developed to utilise KEGG data during

computational analysis [839–847].

25http://www.genome.jp/dbget-bin/www_bget?enzyme+1.8.1.7
26http://www.genome.jp/kegg/download/ftp.html. It should be noted that the KEGG database will be available

only to paid subscribers from 1st July 2011.
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Figure 2.21: The KEGG pathway for glutathione metabolism.
KEGG Pathways are networks of enzymes, substrates and cofactors. Enzymes, such as TryS, are
shown as rectangles while substrates and cofactors, such as glutathione and NADPH, are shown
as small circles. Arrows representing the direction of reaction flux link the rectangles and circles.
Rounded boxes represent links to and from other KEGG Pathways. All elements of the pathway link
to detailed information through the KEGG databases. Alternate enzyme names based on orthologous
groups are shown in green text.

2.5.4.3 Gene Ontology

The Gene Ontology (GO) is the most comprehensive and widely used hierarchical annotation schema

[100, 848]; there are 3142 PubMed27 hits for the phrase "Gene Ontology" in comparison with 722

for "KEGG" and just 20 for the similar hierarchical annotation schema "FunCat" [829].

GO is a controlled vocabulary, which describes the molecular function of proteins, the biological

processes they are involved in and the cellular compartments in which they are found. Despite its
27http://www.ncbi.nlm.nih.gov/pubmed (accessed 18t̂h March 2011)
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name GO is not a true ontology but three controlled vocabularies each in the form of a DAG with

well-defined, structured terms describing three branches of biological knowledge28:

• molecular_function (MF) - the protein’s activity at the molecular level,

for example telomeric DNA binding.

• biological_process (BP) - the process in which the protein functions,

for example telomere maintenance.

• cellular_compartment (CC) - the protein’s cellular location,

for example telomeric region.

Each branch of GO is a collection of terms all of which have a unique identifier, name and descrip-

tion. For example the term identifier GO:0000723 refers to telomere maintenance and has the

description29:

"Any process that contributes to the maintenance of proper telomeric length and structure by affecting

and monitoring the activity of telomeric proteins and the length of telomeric DNA. These processes

includes those that shorten and lengthen the telomeric DNA sequences."

While the three branches of GO were originally intended to be treated separately, recently efforts

have been made to connect the three areas of biology in order to harness more complex cellular

relationships [849–854].

Terms in GO are connected to one another in a parent to child hierarchy with specific terms at the

bottom and general terms at the top, below the root term. The relationships between the terms have

direction. Therefore if term a is_a term b is_a term c then term c cannot be a term a. The GO

DAG currently has five types of relationship:

• is_a - term a is a subtype of term b.

• part_of - term a is a subpart of term b.

• regulates30 - term a regulates term b.

• positively_regulates30 - term a postively regulates term b.

• negatively_regulates30 - term a negatively regulates term b.

28http://www.geneontology.org/GO.doc.shtml#ontologies
29http://amigo.geneontology.org/cgi-bin/amigo/term_details?term=GO:0000723&session_id=

589amigo1301231935
30The regulates, positively_regulates and negatively_regulates relationships were added to the Gene Ontology structure

in April 2008 and were, therefore, not present during in the earlier parts of this project.
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Proteins may be annotated to multiple GO terms based on experimental evidence. Due to the hi-

erarchical structure of the GO DAG, annotation has transitivity. Therefore, annotation to a child

term automatically implies annotation to all parent terms of that term. For instance, in the example

in Figure 2.22, a protein annotated to the lowest term, cellular response to reactive oxygen

species (GO:0034614) is automatically annotated to all the terms in the example, since they are

parent terms of the annotation. Species-specific annotation files can be downloaded from GO31 and

from other species-specific databases such as SGD [855].

Figure 2.22: The Gene Ontology structure.
GO is structured as a hierarchical DAG with general terms at the top and increasingly specific terms
lower down. Terms are connected in directional parent to child relationships. In this example,
cellular response to stimulus is_a cellular process which in turn is_a biologi-

cal process. Therefore, biological process cannot be a cellular response to stim-

ulus or a cellular process. GO terms annotation also has transitivity. Therefore, any protein
annotated to the term cellular response to reactive oxygen species (yellow box) is au-
tomatically annotated to all the parent terms displayed in this example).

31http://www.geneontology.org/GO.downloads.annotations.shtml

70

http://www.geneontology.org/GO.downloads.annotations.shtml


Extensive metadata describes each GO annotation including the source, date and the type of evidence

for assignment of the term. The GO Consortium provides a range of experimental and computational

evidence codes for manually-curated annotations (full descriptions of these evidence types are sup-

plied in Appendix B):

Experimental Evidence Codes:
EXP: Inferred from Experiment
IDA: Inferred from Direct Assay
IPI: Inferred from Physical Interaction
IMP: Inferred from Mutant Phenotype
IGI: Inferred from Genetic Interaction
IEP: Inferred from Expression Pattern
Author Statement Evidence Codes:
TAS: Traceable Author Statement
NAS: Non-traceable Author Statement
Computational Analysis Evidence Codes:
ISS: Inferred from Sequence or Structural Similarity
ISO: Inferred from Sequence Orthology
ISA: Inferred from Sequence Alignment
ISM: Inferred from Sequence Model
IGC: Inferred from Genomic Context
RCA: Inferred from Reviewed Computational Analysis

Additionally, one evidence code, IEA: Inferred from Electronic Annotation, is reserved for the an-

notations produced by the Gene Ontology Annotation (GOA) project which are not curated [856].

The evidence codes are hierarchical with general codes acting as parents codes to more specific ev-

idence types. For instance the experimental EXP code acts as a parent to the other, more specific

experimental codes32.

Due to the hierarchical nature of the GO evidence codes, and the diversity of the evidence types, some

GO annotations are considered more reliable than others. Annotations with the IEA evidence code

are considered the least reliable since they are not manually-curated [857]. While the remaining GO

annotations are manually-curated, the different evidence types are also thought to differ in their ac-

curacy. In particular, computational evidence codes are generally considered to be less accurate than

the experimental codes [857] and the evidence with the codes inferred from sequence or structural

similarity (ISS), inferred from expression pattern (IEP) and non-traceable author statement (NAS) is

considered lower reliability than the other codes of their class [722].

Despite its manual curation their are several drawbacks to the computational analysis of GO. Several

studies have found that sequence-based annotations are error prone and inconsistent [272, 738, 858].

Further, inconsistencies have been identified between annotations from different evidence types

[297]. Despite these caveats GO is the most accurate and comprehensive gene annotation source

32http://www.geneontology.org/GO.evidence.tree.shtml
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available and is widely used in computational analysis. In particular, GO is commonly used as an

evaluation Gold Standard during functional prediction (see Section 2.5.5) [114, 859–861]. GO has

also been used as a Gold Standard for dataset scoring prior to PFIN integration [60, 98, 106, 114,

223, 342, 703, 719]. Finally, the representation of GO terms within groups of genes is commonly

assessed. When a term is over-represented in a group in comparison to its annotation in the genome

as a whole, functional hypotheses may be inferred for the genes [862].

The use of GO as a Gold Standard presents some problems due to the hierarchical nature of the

database. Many high level terms are too general to imply a realistic functional association [125, 863].

For example, the term metabolic process (GO:0008152) is a child of the root term biologi-

cal_process (GO:0008150). A total of 4315 yeast genes are annotated to this term33 and there are

many diverse metabolic processes occurring in the cell. Clearly assuming a functional link based on

this term would add noise to the Gold Standard by linking many protein pairs which do not participate

in the same process.

This problem may be overcome to some extent by ignoring the high-level terms at the top of the

DAG [98, 864, 865]. However, despite GO’s hierarchical nature, the level of a term in the DAG is

not necessarily indicative of a term’s specificity. Several methods have been applied to overcome

this problem. Some studies have looked at the number of annotations to a term and discarded those

terms above, and sometimes also below, a certain threshold [866]. An alternative method is to use a

GO term specificity score to chose appropriate terms for the Gold Standard. These scores combines

the number of annotations to a terms with its position in the DAG, thereby gaining a more accurate

measure of the term’s specificity (Figure 2.23) [867].

Specificity measures may also be used to compare the semantic similarity of GO terms in the DAG.

A large number of semantic similarity measures have been developed which range in accuracy and

bias (for example [868–870]). The semantic similarity of GO terms can be used in a number of

ways; to compare the functional similarity of proteins [864, 871–874], to identify network clusters

[875, 876], to evaluate PPIs [581, 870], to predict function [711, 876–880], to analyses coexpression

data [881–884] and, in taxonomic analysis [863, 867].

Another alternative method of generation of a GO-based Gold Standard data involves expert curation

of the annotation data [125, 157]. For instance a group of six expert biologists were chosen by

Myers and co-workers (2006) to vote on which GO terms to include in their Gold Standard, based

on whether the experts considered each term specific enough to infer a functional link [125]. Once

voting was complete only those terms with four or more votes were included in the Gold Standard.

33http://amigo.geneontology.org/cgi-bin/amigo/term_details?term=GO:0008152#lineage (accessed
29th January 2011)
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Figure 2.23: GO term specificity.
The level of a term in the DAG is not necessarily indicative of the term’s specificity. This exam-
ple shows three terms (yellow boxes), amine biosynthetic process, response to abiotic

stimulus and lipid biosynthetic process, which have the same specificity score but have
different depths from the root term in the DAG (4, 3 & 2 respectively). The is_a relationships are
shown in black while part_of relationships are shown as dashed red.

While manual efforts such as this overcome many of the problems associated with GO data, they

suffer from a lack of reproducibility. In this case approximately 1/5 of the terms (2031 of 9295)

were in the borderline three or four vote bracket. In fact, of the discarded terms over half (716 of

1366) had 3 votes and only 31 terms had no votes. The large percentage of borderline terms makes it

likely that a different group of experts could produce a markedly different final list of GO terms and,

therefore, a significantly different Gold Standard. In another expert-curated approach by Giot and

colleagues (2003), the interactions themselves were analysed based on complex and location data in

order to identify pairs of proteins that had a high probability of interaction [157].
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Due to GO’s popularity for computational analysis a large number of related tools have been devel-

oped to perform GO-based analyses. These tools include platforms for GO visualisation [850, 885–

887], GO term over-representation [862, 886, 888–892], GO-based gene list comparsions [846, 871,

893] and functional prediction [771, 894–896]. However, due to the hierarchical nature of GO the

performance of these tools varies [897].

2.5.5 Network-Based Prediction of Annotation

Since proteins which are involved in the same cellular process or located in the same cellular compart-

ment tend to interact [184, 898], functional interaction networks contain a valuable wealth of data that

may be utilised during annotation prediction [49, 60, 106, 508, 668, 708, 777, 780, 859, 899–903].

Network-based annotation prediction is often referred to as guilt-by-association (GBA) prediction

since annotations are transferred between pairs of connected nodes within the network [898, 904–

906].

GBA functional prediction algorithms each differ in their complexity and accuracy [509]. At the most

naïve level, GBA prediction may locally transfer annotations to a node from all nodes with which it

has a functional association. However, this level of annotation transfer can be noisy, particularly for

hub nodes, and consequently may transfer a high proportion of false annotations. For instance, the

central node in Figure 2.24 A has seven neighbouring nodes, which collectively have four different

annotations (blue, red, yellow and green). It is unlikely that the central node would be involved in all

four processes, given the level of noise in functional data.

Several studies have extended this naïve GBA method to take dataset noise into account. One ap-

proach is known as the Majority Rule [725]. In this case the annotation which is most highly repre-

sented in a node’s neighbourhood is transferred to that node. Therefore, the central node in Figure

2.24 A would be annotated to the blue process. A cut-off may also be applied to the number of

surrounding annotations whereby only annotations above the cut-off are transferred. A cut-off of 2

annotations in Figure 2.24 A would transfer both the red and blue annotations to the central node,

while a cut-off of 4 would not transfer any annotations.

PFINs have edge weights which may be taken into account during GBA annotation prediction. Edge

weights are particularly useful when calculated as the probability of functional-relatedness, such as

the weights produced by machine learning algorithms [60, 104, 109, 222, 507, 527, 704, 719, 907–

909]. Annotations may be transferred between nodes above a particular edge weight cut-off [728,

898, 904]. For example, an edge weight cut-off of 1.5 in Figure 2.24 B would transfer the green and

yellow annotations to the central node. Alternatively, the sum of edge weights for each annotation

can be calculated to take both frequency and confidence scores into account [910]. Therefore, the
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Figure 2.24: Guilt-by-association functional prediction.
Guilt-by-association algorithms differ in their complexity and each may produce a different outcome.
In this example the central node has seven neighbours which are collectively annotated to four pro-
cesses: blue, red, yellow and green. A. In an unweighted network naïve GBA would transfer all of
the surrounding annotations to the central node. However, this method may be noisy. Using the Ma-
jority Rule method the most highly represented annotation (blue) would be transferred to the central
node. A cut-off may also be applied to the number of surrounding annotations. Here a cut-off of
2 would transfer both the blue and red annotations to the central node while a cut-off of 4 would
not transfer any annotations. B. In a weighted network the edge weights can be taken into account
during annotation transfer. A cut-off may be applied to the edge weights so that annotations are only
transferred along edges above this value. Here a cut-off of 1.5 would annotate the central node to
the yellow and green annotations (1.6 and 2.0). The edge weights may also be summed for each
annotation and the highest-weighted chosen, in this case the red annotation (2.1). Finally, Maximum
Weight rule transfers an annotation along the highest-weighted edge. Therefore the central node
would be annotated to the green process (2.0).

highest weighted annotation in Figure 2.24 B would be the red annotation with a sum of 2.1. Finally,

annotations may only be transferred from only the neighbouring node attached along the highest-

weighted edge. In this case the central node in Figure 2.24 B would transfer the green annotation.

This method of GBA prediction is known as the Maximum Weight rule and has been shown to have

improved accuracy over other local GBA approaches [57].

Local GBA is restricted to a node’s immediate neighbourhood in the network, termed its level-1

neighbours, and is consequently of limited use in poorly annotated areas of the network. Therefore,

several functional prediction methods have been developed which take a larger area of the gene’s

surrounding network topology into account. Proteins which share annotation partners have a sig-

nificant chance of sharing function. Consequently, annotations can be transferred between nodes

which are connected by a path length of 2, termed level-2 neighbours [91, 911, 912]. A combination

of level-1 and level-2 annotation transfer produces improved performance over level-1 annotation

transfer alone [911]. Alternatively, Chi-squared statistics can be used to extend the Majority Rule to

a specified radius around a node of interest [913].
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Clustering of the network also allows annotations to be transferred between genes which are not

directly connected, since clusters are thought to represent the functional modules of the cell (see

Section 2.3.3.2) [725]. Therefore, a node clustering with a large number of other genes annotated to

a specific process can be predicted to be involved in that process [90, 564, 860, 914–916]. However,

the performance of clustering-based methods is low in comparison to local GBA for some networks

[291].

Annotations may also be transferred globally using the full topology of the network. Many of these

methods aim to globally maximise the edge weights of functionally associated proteins [92, 580, 894,

917, 918]. The Functional Flow algorithm is a widely used global functional prediction method that

simulates the flow of annotations through the network, from annotated to unannotated genes, based

on edge weights [902]. The algorithm is particularly useful in poorly annotated areas of the network

since the propagation of annotations is not restricted by path length. In other words, an annotation

may be propagated through several unannotated nodes if the edge weights are above a specified

threshold. Global functional prediction can be combined with local methods using machine learning

in order to optimise performance [114].

Evaluation of the quality of an integrated system is difficult due to the level of noise in functional

data. However, functional prediction algorithms can provide an objective method of evaluation by

utilising known annotation data. In these evaluations the network’s ability to predict the known

annotations is assessed using one of the functional prediction methods discussed above. A common

assessment technique is that of leave-one-out cross-validation [104, 510, 676, 676, 907, 911, 919]. In

this technique each known annotation is removed from the annotation set and the network assessed by

its ability to replace the missing annotation. In some cases, particularly with machine learning-based

algorithms, the known annotations are partitioned into groups prior to prediction and cross-validation

is carried out using all combinations of the groups as training and testing data.

Functional prediction evaluation allows the sensitivity and specificity of a network’s performance to

be calculated. Sensitivity is equivalent to the true positive prediction rate and is calculated as TP /

(TP + FN), where TP is the number of true positive hits and FN is the number of false negative hits

produced by the algorithm. Specificity represents the true negative prediction rate and is calculated

TN / (FP + TN), where TN is the number of true negative hits and FP is the number of false positive

hits. A receiver operator characteristic (ROC) curve can be plotted as sensitivity against 1-specificity

[920]. The area-under-the-curve (AUC) of a ROC curve represents the predictive power of the net-

work, with higher values indicating increased performance [921]. An AUC of 1.0 indicates perfect

classification of the known annotations, and an AUC of 0.5 indicates random classification (Figure

2.25).
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Network-based analyses, in particular those involving multiple data types, can also be used to predict

candidate genes for diseases and phenotypes [68, 118, 220, 678, 922–936]. Where some disease or

phenotype genes are known GBA can be used to propagate the annotation to candidate genes along

network edges [223, 591, 706, 825, 937–943]. The identification of potential drug targets is also

essential to combat disease [944]. Many drugs combat disease by interrupting the cellular processes

associated with the disease phenotype. Essential genes, in particular essential network hubs, are

potentially useful targets for drugs [598]. Therefore the topology of integrated networks may also be

used to identify potential targets [11, 118, 217, 664, 695, 945] and to predict possible side effects of

new drugs [946].

Despite the numerous network analysis tools available, the scale of functional networks often makes

them difficult to work with. In many cases research groups have their own specific research inter-

ests which focus one area of cellular biology. Therefore, only a subset of an integrated functional

network may be of interest to any individual group [83]. Consequently many network studies use

known annotation data, in particular from GO, to produce area-specific subnetworks from functional

interaction data.

There are two main methods with which to build these subnetworks. In the first, a network is in-

tegrated using all the available data and the process-specific sub-network extracted from it [41, 59,

129, 708, 947]. In the second, a process-specific subnetwork is built using a subset of the available

Figure 2.25: Area under curve.
The AUC of a ROC curve is indicative of network performance. Networks which produce an AUC of
0.5 do not perform any better than random (red), while those which produce an AUC of 1.0 perform
perfectly (blue). Generally, most networks produce an intermediate AUC (green).
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data [46, 130, 307, 720]. However, since these methods rely on existing annotations they have several

drawbacks. Like other biological data annotation data are biased towards highly-studied proteins (see

Section 2.4.4). Therefore, these methods are of little use for processes with few available annotations

or in poorly annotated areas of the integrated network. Further, since some types of annotation data,

particularly sequence-based data, are thought to be unreliable (see Section 2.5.4.3), the resulting sub-

network may also be unreliable. Finally, these methods potentially discard useful data which would

be of interest in relation to the process being studied [128].

2.6 Yeast as a Model Organism to Study Human Ageing

Saccharomyces cerevisiae, commonly known as baker’s yeast or budding yeast, is a eukaryotic model

organism [948]. S. cerevisiae is widely used to study human cellular processes since its genes encode

similar proteins to Homo sapiens and many of its genes complement human mutations [949–952].

In 1997 31% of yeast genes were known to have human homologs with conserved function [948]

and many human disease genes have yeast homologs [953]. The InParanoid database of eukaryotic

orthologs [954] listed 2154 orthologous clusters for S. cerevisiae and H. sapiens in November 201034.

Yeast is an ideal model organism for a number of reasons. As a eukaryote, yeast has a similar

subcellular structure to human cells [955] and its single-celled nature makes it cheap and easy to

work with in comparison to higher eukaryotes [949, 956, 957]. Additionally, yeast grows rapidly

making it an ideal experimental organism. The full genome sequence of S. cerevisiae has been

available for several years and the entire complement of ORFs has been identified [320]. A number

of powerful genome-wide techniques have been developed using yeast and providing a wealth of

genome-wide data to enhance analysis [958, 959]. For instance deletion mutants are available for all

non-essential yeast genes through the Saccharomyces Gene Deletion Project35 [6, 230] and mutant

sets containing genome-wide random insertions have been produced (see Section 2.1.2) [960] .

Ageing is a complex, multi-factorial, systems-wide phenomenon [961]. Chronological ageing of S.

cerevisiae is highly similar to the mammalian ageing process [962] and many associated processes

are conserved among eukaryotes [963]. Consequently, S. cerevisiae has been widely used to study

human ageing and ageing-related diseases [964, 965]. For example, the human premature ageing

diseases Werner’s Syndrome and Bloom’s Syndrome have been extensively studied in S. cerevisiae

[966–970]. The human genes associated with the two diseases have a single homolog in S. cerevisiae,

SGS1. When this gene is deleted, it results in a similar cellular phenotype and reduced life-span to

that seen in humans with the diseases [948, 968].
34http://inparanoid.sbc.su.se/cgi-bin/e.cgi (Data accessed 3rd November 2010).
35http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
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There are many theories relating to the ageing process, all of which have some overlap. Two groups

of theories concern two major aspects of cellular biology. The first is based on chromosome structure

and maintenance, in particular the maintenance of the telomere and the accumulation of DNA dam-

age. The second is associated with reactive oxygen species (ROS), oxidative stress and mitochondria

[971]. However, there is significant overlap between the theories in terms of biology and evidence

[972–974] and the specific relationships between the processes involved in the ageing process still

remains unclear [961].

2.6.1 Telomere Maintenance

The integrity of the genome is essential for a cell’s survival. Telomeres are repetitive regions of non-

coding DNA (in humans n(TTAGGG) repeats [975, 976]) and associated proteins that protect the end

of the chromosome from degradation and telomere-telomere fusion [977–979]. Telomeres are also

required for chromosome positioning and replication [976]. The telomere’s structure and telomere

related processes are highly conserved in eukaryotes [980, 981].

Every time a cell divides its telomeres become progressively shorter. The shortening occurs as the

replication machinery, DNA polymerase, is unable to replicate the full length of the DNA due to the

need for a RNA template at the end of the telomere to initiate lengthening [982]. This phenomenon

is referred to as the end replication problem [983]. Without maintenance the telomere eventually

becomes too small to protect the chromosome leading to replicative senescence, an irreversible arrest

of growth [984]. Due to this effect telomere length regulation and maintenance is central to the

telomere’s function.

One of the most important components of the eukaryotic maintenance system is the reverse- tran-

scriptase enzyme, telomerase. Telomerase utilises a segment of its RNA as a template to lengthen

the telomere by the addition of repeats onto its 3’ end, maintaining an average telomere length (Figure

2.26) [980, 981].

In S. cerevisiae telomere maintenance involves a large number of genes, covering a wide range of

biological processes and several genes of unknown function [985]. S. cerevisiae has a telomerase

enzyme which is similar to its H. sapiens equivalent [985–988]. In addition a number of the gene

products are known to bind the telomeric repeats [987]. These proteins cover a wide range of bio-

logical processes including DNA repair, DNA damage responses, telomere regulation and chromatid

cohesion [988–991]. Deletion or mutation of these genes can lead to shortening or lengthening of the

telomere [978, 992]. Baker’s yeast has been used as a model to study human telomere maintenance

and ageing since many of the genes involved in telomere function in S. cerevisiae have been found

to have homologs in H. sapiens.
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Figure 2.26: Telomere maintenance by telomerase.
The enzyme telomerase maintains the telomeres length by the addition of TTAGGG short repeats
using an RNA template.

Of particular note is the telomere capping protein Cdc13, which recruits telomerase to the telom-

ere. CDC13 is an essential gene and therefore cannot be deleted by conventional means. However,

the temperature sensitive mutant cdc13-1 provides a basis for genetic analysis. In the mutant strain

Cdc13 caps the telomere normally at low temperatures. At high temperatures (> 27◦C) telomeric un-

capping occurs. Two studies at the Centre for Integrated Biology of Ageing and Nutrition (CISBAN)

have studied this mutant using HTP technologies. In the first study, microarrays were used to study

the transcription of genes in response to telomeric uncapping in order to identify uncapping response

genes [993]. In the second study, a genome-wide SGA was carried out in which the cdc13-1 mutant

was crossed with the yeast deletion mutant collection to identify synthetic GIs associated to telomere

uncapping [16].

2.6.1.1 Telomere Shortening and Disease

In humans telomerase activity in germline cells maintains the telomeres at an average length [994].

However, the somatic cells (non-germline, diploid, body cells) have very low telomerase activity and

undergo a natural telomere shortening with age [995, 996]. Somatic cells have a finite lifespan [997]

and can divide a limited number of times [998]. The shortening of the telomeres has been linked

with the ageing process, since as telomeres become critically short it leads to the non-dividing final

state termed replicative senescence [972, 999]. Telomeric shortening is thought to act as a "mitotic

countdown" limiting the number of cell divisions [1000]. The telomere theory of ageing, sometimes

referred to as the Hayflick limit theory remains one of the major ageing paradigms [982, 997, 1001–

1003].

Telomere length and the breakdown of the telomere maintenance system has been associated with

cancer [995, 1000]. If senescence does not occur the telomeres become increasingly shorter, chro-

mosomes undergo damage and telomere–telomere fusions may occur. These circumstances lead to a

state known as cell crisis [979, 996]. When telomerase is present at high levels in somatic cells both
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senescence and crisis are prevented and the cells are known as immortal [979, 994, 996]. Telom-

ere shortening has been observed in cancerous tumours [1004] however many tumours also express

telomerase [1005]. Therefore reactivation of telomerase in somatic cells may be an important step in

tumour progression [995]. Potentially, telomerase is an effective target for cancer treatments [1000].

Telomere maintenance has also been associated with several other human diseases including prema-

ture ageing diseases [1006–1008]. Shortening of the telomere has been observed in a number of these

diseases, for example in Down’s syndrome [1009]. Many of the proteins implicated with premature

ageing diseases are associated with the telomere and DNA repair [1006, 1010]. For instance, the

WRN gene of Werner Syndrome [1011] and ATM of Ataxia Telangiectasia [1012].

2.6.2 Oxidative Stress

Oxygen is essential for cell viability, but is deadly in high quantities. Cellular enzymes maintain a

redox homeostasis within the cell which balances the production and consumption of reactive oxygen

species (ROS). Oxidative stress occurs when this system becomes unbalanced [1013, 1014]. The

imbalance can occur in three ways: by an increase in ROS, for instance due to chemical exposure;

by a decrease in antioxidants and the other ROS defence systems; or by a combination of the two

[1015]. When oxidative stress occurs an excess of ROS builds up in the cell causing macromolecular

damage and leading to growth arrest [1016]. The cell has several enzymatic and non-enzymatic

defence systems which protect against ROS and repair any subsequent damage. However at high

levels of ROS these repair systems are overwhelmed and controlled cell death, known as apoptosis,

occurs [1017]. In extreme circumstances the apoptosis pathways are bypassed and uncontrolled cell

death, termed necrosis, can occur [1017].

Oxidative stress has been linked to several human diseases and to the ageing process. S. cerevisiae

provides an excellent model with which to study the oxidative stress response since baker’s yeast

generates ROS through the same mechanisms as humans and other mammals, and has many of

the same antioxidant features [1018–1022]. ROS are produced during aerobic metabolism and in

response to chemical exposure. S. cerevisiae provides a convenient system to distinguish between

these responses since it can grow either by fermentation or by aerobic respiration. Therefore, growth

on a fermentable media allows the study of the chemical responses. Switching between fermentable

and non-fermentable growth media induces oxidative stress through respiration [1023].
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2.6.2.1 Reactive Oxygen Species

ROS are oxygen-derived oxidants and reductants which alter the natural redox homeostasis of the

cell. Many ROS are free radicals; that is, they contain an unpaired electron. Other ROS are molecules

which are easily converted to free radicals due to their reactivity [1024]. The oxidising potential of

ROS range from the relatively low reactivity of hydrogen peroxide (H2O2) to the highly reactive

hydroxyl radical (·OH) [1025].

ROS can be beneficial if the redox homeostasis of the cell is maintained correctly. Some immune cells

utilise the superoxide anion (·O−2 ) to kill invading pathogens by inducing apoptosis [1026, 1027].

ROS are also messengers in several cellular signalling cascades where they act by oxidising proteins

[1028–1031].

ROS are produced naturally in a number of ways. The coenzyme adenosine triphosphate (ATP) is

generated in the mitochondrion via oxidative phosphorylation and acts as the source of energy for

cellular reactions [1032]. Approximately 80% of cellular oxygen is utilised in this manner [1033].

Electrons produced by the electron transport chain can leak from the mitochondria leading to the

production of ROS. It is estimated that around 1% of O2 in the cell is converted into ROS in this

way [1034]. In humans the production of ROS has been linked with specific tissues. For instance

hydrogen peroxide production in the thyroid gland during hormone production [1035] and potentially

by wounded tissues during leukocyte recruitment [1036].

ROS can also be produced in the presence of metal ions. All transition metals, with the exception

of zinc, contain unpaired electrons and can change their oxidative state. For instance iron can cycle

between Fe2+ and Fe3+. Many of these metals are essential to the cell and play important roles in

enzymes where they act by redox cycling [1037]. However, as metal ions have variable oxidation

states they can catalyse ROS generation [1038, 1039]. Hydrogen peroxide can produce hydroxyl

radicals in the presence of transition metals such as iron by the Fenton Reaction [1040]:

H2O2 +Fe2+→ ·OH +HO−+Fe3+

Consequently there is an overlap between metal ion homeostasis and the oxidative stress response.

Several proteins involved in the oxidative stress response, such as metal binding proteins, have been

linked to iron homeostasis [1017].
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2.6.2.2 Redox Homeostasis

The cell has several systems to maintain redox homeostasis by protecting against ROS, detoxifying

oxidants and repairing cellular damage. These systems are made up of factors, termed antioxidants

[1041]. The enzymes superoxide dismutase (SOD), catalases and peroxidases are important in this

process.

The superoxide anion is relatively stable in comparison with the hydroxyl radical but it can be the

precursor for several more reactive species. SOD reduces the superoxide anion to hydrogen peroxide

using a bound metal ion [1042]:

·O−2 +2H+ −→ H2O2

Superoxide dismutase

The highly conserved enzyme catalase converts hydrogen peroxide to water and oxygen using a haem

group [1043–1045]:

2H2O2 −→ 2H2O+O2

Catalase

The tripeptide glutathione has several roles in redox homeostasis and is the most abundant antioxidant

in the cell [1046–1048]. When oxidised glutathione is a ROS scavenger that utilises its reactive

thiol group to detoxify free radicals. Additionally, oxidised glutathione (GSH) also protects the

cysteine side chains of proteins and other vulnerable groups from oxidative damage by the formation

of disulphide bonds to prevent irreversible protein damage [1040, 1045].

Glutathione can be oxidised or reduced:

GSH ⇐⇒ GSSG

oxidised ⇐⇒ reduced

High levels of reduced glutathione (GSSG) is indicative of oxidative stress and, therefore, the GSH:

GSSG ratio is indicative of the cellular redox state [1049, 1050]. Glutathione is produced by glu-

tathione synthase (Gsh1). Mutants with reduced glutathione, for instance by the deletion of GSH1,

display ROS hypersensitivity and are vulnerable to chemical oxidants [1051, 1052].
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Hydroperoxidases, such as glutathione peroxidase and thioredoxin peroxidase [1053, 1054] are ROS

scavengers involved in redox sensing [1055]. Peroxidases regulate cellular peroxide levels by con-

verting hydrogen peroxide to water using an electron donor such as glutathione [1056]:

H2O2 +2GSH −→ 2H2O+GSSG

Glutathione peroxidase

Two further redox maintenance systems are the glutaredoxins (GRXs) and thioredoxins (TRXs).

These systems utilise redox cycling to reduce oxidised proteins, and act to protect proteins against

oxidative damage [1057]. The GRXs utilise GSH as an electron donor [1058] and TRXs utilise

nicotinamide adenine dinucleotide phosphate (NADPH) [1059]. Both systems have cysteine groups

and are involved in the regulation of iron homeostasis [1060, 1061], mainly through negative regula-

tion of the iron-dependent transcription factor, Aft1 [1062, 1063]. In addition, the GRXs have a role

in the synthesis and protection of iron/sulphur clusters in enzymes [1064, 1065]. GRX and TRX are

therefore essential regulators of the redox state [1066].

There are many other defence systems against ROS including several non-enzymatic molecules (re-

viewed in [1017]). Vitamin C (ascorbate) and vitamin E in humans [1037, 1040, 1067], and their

yeast equivalents [1068, 1069], have antioxidant properties. Some quinones, for instance ubiquinone,

are lipid soluble antioxidants that can remove ROS by oxide reduction. Metals binding proteins such

as ferritin and metallothionein prevent ROS production by binding free metal ions [1070].

2.6.2.3 ROS Effects

High levels of ROS can overwhelm the natural cellular defences and cause damage to the macro-

molecular components of the cell by oxidation [1016]. Damage can occur to DNA, proteins and

lipids.

DNA damage can occur to individual nucleic acids and to the phosphate backbone. DNA base

modifications can cause distortion and mis-pairing leading to GC→ AT transversions [1071, 1072].

Damage to the DNA backbone can cause breakage of the DNA strands. Unsurprisingly mitochondrial

DNA incurs more damage than nuclear DNA due to the levels of ROS produced during respiration

[1073, 1074]. Oxidative damage due to ROS has also been associated with telomere shortening

[1075, 1076].

Damage to proteins can occur in several different ways. Protein side chains, in particular cysteine

and methionine groups, and the protein backbone can be damaged by ROS. Cross-links often occur
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which inactivate the proteins function [1077]. For instance by disulphide bridge formation between

thiol side chains:

· · ·−CH2−HS SH−CH2−· · ·

↓

· · ·−CH2−S−S−CH2−· · ·

The introduction of carbonyls to proteins by ROS also commonly occurs. For example the car-

bonylation of proline, arginine, lysine, and threonine residues [1078]. Protein sulphydryl groups, in

particular those on cysteine residues, are very vulnerable to oxidation by ROS into sulphinic, sul-

phonic and sulphenic acids. Some of these reactions can be beneficial to the cell. For instance, the

sulfinic acid switch is used in redox sensing and signalling [1079]. However, many of these reactions

are irreversible [1040, 1080]. Damage to a protein can alter its structure, function and hydrophobicity

causing incorrect interaction and denaturation. In some cases the damaged proteins aggregate with

potentially harmful effects [1081].

Lipids are also damaged under oxidative stress conditions. In particular the hydroxyl radical at-

tacks fatty acids creating a chain reaction of peroxyl radical production [1082]. Damage to the lipid

bilayers of cellular membranes can cause leakage and change the cell’s internal chemistry [1083].

2.6.2.4 The Oxidative Stress Response

Oxidative stress occurs when the redox state of the cell becomes unbalanced. Redox imbalance

occurs when the levels of ROS exceed the natural cell defences, when the antioxidant levels of the

cell are reduced, or by a combination of the two conditions. Oxidative stress can be induced by

chemical exposure, ionising radiation or UV light [1084, 1085]. Several compounds can induce

oxidative stress in S. cerevisiae by increasing ROS production and are consequently used in the

study of oxidative stress such as menadione, diamide, hydrogen peroxide, paraquat and tetra-butyl

hydroperoxide (tBOOH).

Many of these chemicals induce oxidative stress by redox cycling. The quinone menadione reacts

with the thiol side chains of some molecules to produce superoxide anions and reduces glutathione

levels [1086]. Diamides oxidise sulfhydryls leading to decreased cellular glutathione and an increase

in ROS [1087]. Hydrogen peroxide induces oxidative stress when present in higher quantities than

naturally found in the cell [1086]. Paraquat (1,1’-dimethyl-4-4’-bipyridylium) is a herbicide that

generates superoxide anions, hydrogen peroxide and hxdroxyl radicals through the oxidation of re-
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duced glutathione and NADPH [1088]. Finally, the synthetic alkyl hydroperoxide tBOOH can cause

free radical chain reactions leading to oxidative stress [1089].

Since heavy metals can induce ROS through the Fenton reaction they can also be used to induce ox-

idative stress. Arsenic and cadmium are not naturally found in the cell but can induce ROS production

following environmental exposure [1090, 1091]. These elements react with sulphur-containing com-

pounds such as thiol-containing glutathione, interrupting the redox balance of the cell [1092, 1093].

Cadmium is also thought to cause mitochondrial dysfunction in humans leading to increased ROS

production and oxidative stress [1094]. Interestingly it has been shown that different sources of ROS

produce different oxidative stress responses [1017, 1086, 1095–1097].

Several studies have investigated oxidative stress in S. cerevisiae using chemical oxidants [1091,

1097–1099]. Under oxidative stress conditions a number of genes are up-regulated by what is termed

the oxidative stress response [1100]. Many of the proteins involved in redox homeostasis (Section

2.6.2.2) are involved in this response, some of which remove excess ROS and others that repair ox-

idative damage. For instance glutathione synthase increases the levels of the ROS scavenger GSH

[1101] and the TRXs repair oxidised proteins [1041, 1102]. During the response arrest of the cell

cycle occurs [1103] and additional systems are up-regulated to repair oxidative damage. These sys-

tems include several DNA repair proteins [1104] and proteases which remove damaged proteins

[1105]. While the responses to different chemical oxidants have some overlap, each response has

unique features [1041, 1095]. Several transcription factors have been implicated in mediating the

oxidative stress response including Yap1 [1101, 1106–1108], Skn7 [1108, 1109], Msm2 and Msm4

[1110, 1111], Rox1 [1112, 1113], Met4 [1091], Mga2 [1112], and the metal ion sensing factor Aft1

[1060, 1114]. Many of these factors have roles in other stress responses [1115].

2.6.2.5 ROS, Ageing and Disease

There has long been evidence that ROS and oxidative stress-induced damage are linked with the

ageing process [1116]. The free radical theory of ageing was first coined in the 1950s. It postulated

that the accumulation of ROS damage over time is the cause of cellular ageing [1117]. The author

expanded his theory several years later to incorporate mitochondria as the major source of ROS

within the cells [1118]. The theory has evolved over the following years and remains one of the

major ageing theories, sometimes referred to as the oxidative stress theory or mitochondrial theory

[1119].

A great deal of evidence supports this theory [1120]. Damage produced by ROS has been shown to

increase with age. For instance the mitochondrial damage leading to decline in function [1121, 1122]

and the oxidative damage to proteins [1077]. Aged S. cerevisiae cells contain far higher levels of ROS
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[1123] and oxidatively modified proteins than young cells [1124, 1125]. Aged human cells also have

more carbonylated proteins [1126].

Redox homeostasis and oxidative stress response components are vital to lifespan in S. cerevisiae.

For example deletion of the SOD gene decreases lifespan [1127, 1128] while expression of other

redox homeostasis genes can overcome this deletion and lengthens lifespan [1129]. Similar evidence

has also been seen in several other species [1022].

Oxidative stress and ROS are linked to several diseases including include Huntington’s, Ataxia-

Telangiectasia, Down Syndrome and Werner Syndrome [1130, 1131]. ROS are also linked to cardiac

problems, autoimmune disease, cancers and chronic fatigue syndrome [1132]. Lowered SOD ex-

pression is linked to osteoarthritis [1133]. Increased ROS and oxidative damage have been seen in

neurological disorders [1134] and cancer [1104, 1135].

Protein carbonylation has been linked with several diseases including include Parkinson’s disease,

Alzheimer’s disease and some cancers [1080]. The brain requires high levels of oxygen in compari-

son with other organs therefore is naturally more prone to oxidative stress. Protein aggregation due

to oxidative stress is associated with neurodegenerative disorders and ageing [1081]. In Alzheimer’s

and Parkinson’s diseases the aggregations are of a single protein type which can compromise cell

viability. Notably many of the diseases associated with oxidative stress are also associated with

telomere dysfunction (see Section 2.6.1.1) [1131]. Due to these similarities the effects of ROS in

yeast and humans, S. cerevisiae is an ideal organisms in which to study the potential effects of drugs

in humans.

Oxidative stress responses have also been used in the development of disease treatments. Many anti-

cancer drugs are designed to induce programmed cell death in cancer cells through ROS production

[1028, 1092]. For instance arsenic has also been used to treat cancers in this way.

Although ROS and oxidative stress have long been believed to reduce lifespan it been observed that

at low levels ROS lead to an adaptive response resulting increased protection from higher doses

[1112]. This adaptation seems to be specific to the type of ROS utilised [1095]. The response

can be induced by calorie restriction since this state induces mitochondrial metabolism leading to

the gradual accumulation of ROS. When subsequently subjected to higher ROS levels a significant

increase in lifespan is observed. This process is termed mitochondrial hormesis has been seen in S.

cerevisiae [1136] and several other mammalian species [1137]. However, mitochondrial hormesis

has not been seen in humans to date [1138] and evidence suggests this effect may not be seen in H.

sapiens [1139].
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2.7 Summary

Deciphering the interactome is a massive undertaking involving understanding the interactions of

hundreds of proteins in multiple cellular conditions and phenotypic states. Recent developments

in high-throughput experimental technologies have produced a wealth of functional data which can

aid in achieving this task. Additionally, a large number of databases have been designed to store

these datasets, and several annotation schemas have been developed to describe functional data in

a consistent manner. There are many diverse types of functional data ranging from direct protein-

protein interactions to indirect functional relationships such as genetic interactions.

Each type of functional data provides information about a different aspect of cellular biology. There-

fore, integration of the heterogeneous data types can provide a fuller picture of the interactome than

any dataset alone and can reveal global properties which are not evident in a single data type. How-

ever, analysis of the available data is a non-trivial task due to its scale, levels of noise and biases.

Biological data can be visualised as a network and graph theory used to interpret the data in a manner

that is both human-friendly and computationally amenable. Many network tools have been devel-

oped for the visualisation and manipulation of functional data, and several types of graph theoretic

algorithms can be used to study network data, for instance to compute topological parameters, to

cluster the data and to align distinct networks.

PFINs are powerful tools with which to generate new hypotheses from functional data, since their

edge weights provide a measure of dataset accuracy. These weights can be incorporated into network

analyses to improve the accuracy of results. PFINs have been developed for multiple species and

used for a number of applications, including protein functional prediction, PPI prediction, module

detection and evolutionary studies.

However, while probabilistic scoring assesses the quality of individual datasets, it ignores their con-

tent. Each functional dataset has its own biases due to experimental design, technical limitations,

analysis methods and cellular bias. While several previous studies have attempted to remove these

biases, these approaches risk the loss of valid and useful data.

Individual research groups each have their own specific interests. Consequently, while a global

network analysis may produce a wealth of data, only a small fraction of the results will be relevant to

each specific biological question. Historically, this problem has been approached by using existing

annotation data to produce process-specific subnetworks from subsets of the available data. However,

this approach may also discard valid and useful data and is of limited use where annotation data

are sparse. Therefore, there is need for network integration and analysis methods that overcome

this drawback and produce process-relevant hypotheses without loss of data, allowing their use in
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unannotated areas of the interactome. The work presented in this thesis addresses this need.

Ageing provides an excellent exemplar process against which to develop and evaluate process-

relevant techniques. S. cerevisiae ageing has been extensively studied, due to its similarity to the

human ageing process and its links to human disease, producing a large amount of data. Ageing’s

multi-factorial nature provides several related and overlapping processes with which to assess net-

work accuracy. Further, yeast is inexpensive, fast-growing and easy to work with experimentally,

allowing straightforward laboratory evaluation of new hypotheses.
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Chapter 3

Methods

The aim of this project was the development and systematic evaluation of novel biological network

integration and analysis techniques which harness dataset relevance. In order to achieve this aim

several existing tools were utilised to build and assess networks, prior to the development of the

process-relevant network integration method. Computational and experimental evaluation of the

resulting networks was then carried out using several techniques.

This chapter outlines the tools and methods applied. Sections 3.1.1 to 3.1.4.7 deal with the computa-

tional analysis of the data and networks: the dataset versions chosen, the initial dataset analysis, and

the integration technique developed (see Chapters 4-6). Computational evaluation methods are then

discussed in Section 3.1.5. Finally, Section 3.2 describes the experimental techniques applied in the

final stage of validation (see Chapter 7).

3.1 Computational Techniques

3.1.1 Data Sources

The BioGRID database1 [276] for Saccharomyces cerevisiae was used as the source of interaction

data since it is highly curated and contains interactions of 27 experimental types (see Section 2.1.4.1).

The sets of interacting proteins were first split by PubMed ID (PMID)2 to identify pairs produced by

different experimental studies. Self-interactions, duplicates and interactions with proteins from other

species were removed from the dataset.

Datasets containing at least 100 interactions were treated as separate high-throughput (HTP) data

sources while the remaining low-throughput (LTP) studies were grouped together in accordance with

1http://thebiogrid.org/
2http://www.ncbi.nlm.nih.gov/pubmed/

90

http://thebiogrid.org/
http://www.ncbi.nlm.nih.gov/pubmed/


Table 3.1: Dataset file versions.
The file versions used in this study. Version numbers correspond to the BioGRID version number.
KEGG and GO data was taken from the file versions available at the BioGRID release date.

Chapter Section Version Release Date
4 4.1 Version 27 May 2007
4 4.3 Version 38 March 2008
4 4.19 Version 50 March 2009
5 5.4 Versions 17-52 July 2006-May 2009
6 6.2 Version 52 May 2009
7 7.2 Version 65 June 2010

the experimental categories provided by BioGRID (see Section 4.1.3.3) [235]. This cut-off of 100

interactions was used for all datasets unless otherwise stated.

To avoid ambiguity a standard dataset naming format was used. For HTP data:

[Version].Author.PMID.[Type],

for example V27.Pan.15525520.Synthetic_Lethality; and for LTP data,

[Version].Type,

for example V27.Synthetic_Lethality.

KEGG PATHWAY data was chosen as the source for the Gold Standard since KEGG is highly curated

(see Section 2.5.4.2). PATHWAY files for S. cerevisiae were downloaded from the KEGG database3.

The KEGG Gold Standard was constructed by selecting all possible pairs between genes annotated to

the same pathway. A negative Gold Standard was also constructed consisting of all possible pairs of

genes that were not annotated to the same pathway, excluding those S. cerevisiae genes not annotated

in KEGG (see Section 2.4.2).

Finally, GO annotations were chosen for use in network evaluation since GO is also highly curated

(see Section 2.5.4.3). Two files were downloaded to provide the annotation information: the Gene

Ontology from the GO Consortium4, and SGD-GO annotation mapping from the SGD5 [296]. The

Gene Ontology file provides details of all GO terms in use at the time of release, and of the hierarchi-

cal relationships between them, while the SGD file provides annotations to these terms in the form

of gene-term pairings.

The KEGG and GO annotation files available at the BioGRID release date were used during integra-

tion and evaluation unless otherwise stated. The file versions used in this study are summarised in

Table 3.1.
3http://www.genome.jp/kegg/
4http://www.geneontology.org/
5http://www.yeastgenome.org/
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3.1.2 Gene Ontology Analysis

The current version of GOstats [862], Version 2.2.6, was used to measure over-representation of GO

Biological Process terms (see Section 2.5.4.3) using a p-value cut-off of 0.00001. The low cut-off

was chosen to limit the results to only those terms with high over-representation to the POI. The

package was run in R Version 2.5.0 using the following input:

params <- new("GOHyperGParams",

ontology = "BP",

conditional = TRUE,

geneIds = data,

universalGeneIds = gene,

annotation = "YEAST",

pvalueCutoff = 0.00001,

testDirection = "over")

results <- hyperGTest(params)

results

summary(results)

where, data is a vector of the genes in the dataset and gene is a vector of the S. cerevisiae genes

from the BioConductor6 YEAST annotation package7.

Specificity of individual GO terms was calculated from the GO and the SGD data files using the

Information Content measure of Resnik [867, 1140] using equation 3.1, where, n(t) is the total

number of annotations to term t, including all child terms and N is the total number of annotations

to all terms. In all cases the term biological_process (GO:0008150) was taken as the root term

and annotations with the evidence code inferred from electronic annotation (IEA) were excluded

(see Section 2.5.4.3). For the Version 65 data, annotations with the new evidence code reviewed

computational analysis (RCA) were also excluded (see Section 7.1.1).

IC(t) = ln
(

n(t)
N

)
(3.1)

6http://www.bioconductor.org/
7Since completion of this project the YEAST annotation package has been replaced by the GO.db package
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3.1.3 Hierarchical Clustering

Hierarchical clustering was carried out using Cluster 3.08 with the default options [11]. Clusters

were visualised using Java Treeview 1.19.

3.1.4 Network Integration

3.1.4.1 Confidence Scoring

The confidence score was calculated by scoring the datasets against the KEGG PATHWAYS [277]

Gold Standard using the Bayesian statistics approach developed by Lee and colleagues (see Section

2.4.3) [49], which calculates a log-likelihood score for each dataset (3.2).

llsL(E) = ln
(

P(L|E)/¬P(L|E)
P(L)/¬P(L)

)
(3.2)

where, P(L|E) and ¬P(L|E) represent the frequencies of linkages L observed in dataset E between

genes annotated to the same and differing KEGG pathways, respectively, and, P(L) and ¬P(L)

represent the prior expectation of linkages between genes in the same and differing KEGG pathways,

respectively.

A score greater than zero indicates that the dataset links genes annotated to the same pathway. Higher

scores indicate greater confidence in the data. Datasets that did not have a positive score were dis-

carded (see Section 4.3.1).

3.1.4.2 Process of Interest

Each process of interest (POI) was based on Gene Ontology biological_process (GOBP) annotations.

Due to the hierarchical nature of the GO DAG a POI was defined as a term and any descendant of

that term within the DAG, with the exclusion of annotations with the evidence code IEA and, for

Version 65, annotations with the evidence code RCA (Figure 3.1).

3.1.4.3 Relevance Scoring

A hypergeometric test (Equation 3.3) [862] was applied to each dataset to score over-representation

of genes annotated to the POI, producing a Node Relevance score (see Section 4.2).

8http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv
9http://jtreeview.sourceforge.net
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Figure 3.1: Definition of a process of interest.
A process of interest is defined as the POI term and all children of that term in the GO DAG. In
this example the POI is the term GO:0007568 (ageing) is the POI (shown in orange). All genes
annotated to the term or to the eight child terms (shown in blue) are considered to be annotated to
the POI during the hypergemetric test. Note that this figure displays a subset of the child terms of
GO:0007568.

p(k;N,m,n) =

m

k

N−m

n− k


N

n

 (3.3)

where m is the number of S. cerevisiae genes annotated to the POI, k is the number of genes in the

dataset annotated to the POI, n is the dataset size in terms of genes, and, N is the total number of S.

cerevisiae genes. This test calculates the probability that there would be that many genes annotated

to the POI given the total number of genes annotated to the POI in the whole genome. The Node

Relevance score was used in Chapters 4 and 5.

In Chapter 6 two further relevance scores, Edge Relevance and Interaction Relevance, are introduced.

These scores were also calculated using the hypergeometric test (Equation 3.3).

For Edge Relevance m is the number of possible S. cerevisiae annotations containing at least one

gene annotated to the POI, k is the number of interactions in the dataset containing at least one

gene annotated to the POI, n is the dataset interaction size, and N is the total number of possible S.

cerevisiae interactions involving genes in the BioGRID database.
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For Interaction Relevance m is the number of possible S. cerevisiae annotations where both genes are

annotated to the POI, k is the number of interactions in the dataset where both genes are annotated

to the POI, n is the dataset interaction size, and N is the total number of possible S. cerevisiae

interactions involving genes in the BioGRID database.

3.1.4.4 Control Integration

Control networks were produced by integrating confidence scores using the weighted sum (Equation

3.4) described by Lee and colleagues [49]. This method integrates the datasets in order of their

confidence scores, giving a higher weighting to datasets with higher confidence, while allowing for

dependencies between the datasets.

WS =
n

∑
i=1

Li

D(i−1)
(3.4)

where L1 is the highest confidence score and Ln the lowest confidence score of a set of n datasets.

Division of the score by the D parameter means that, while the highest score is integrated unchanged,

subsequent weights are progressively down-weighted (see Section 2.4.3). With a D value of one the

integration is a simple sum of the scores. A D value of 1.1 was chosen for integration since at

higher values lower-ranking scores contribute little or nothing to the integration, discarding poten-

tially important information and reducing network performance (Figure 3.2). In the resulting network

highly-weighted edges have high confidence.

3.1.4.5 Relevance Integration

To produce the relevance networks the relevance scores were used to re-order the datasets prior to

integration of the confidence scores using Equation 3.4, giving a higher weighting to datasets with

higher relevance (see Section 4.2). In the resulting network highly-weighted edges have both high

confidence and high relevance to the POI. Java code to produce the relevance and control networks

is available in Appendix C.

3.1.4.6 Reversed Integration

The reversed networks were produced by integration of the datasets using Equation 3.4 in the reverse

order of that used in the control and relevance networks (see Section 4.3.1). Thus, a higher weighting

is given to datasets with low confidence and low relevance, respectively.

95



Figure 3.2: D-value choice.
Effect of the D parameter on the AUC for functional prediction of ageing and telomere maintenance.
A value of 1.1 was shown to optimise the area under curve value.

3.1.4.7 Composite Integration

Two composite networks were produced. In the first edge weights were calculated for each interac-

tion i using Equation 3.5 developed by Lycett [1141]. In the second the average edge weights were

calculated for each interaction using Equation 3.6.

In both cases WS(i)control , WS(i)node , WS(i)edge and WS(i)interaction are the edge weights for

interaction i in the control, Node Relevance, Edge Relevance and Interaction Relevance networks,

respectively (see Section 6.4.2).

WS(i) f inal = 1− ((1−WS(i)control)(1−WS(i)node)(1−WS(i)edge)(1−WS(i)interaction))

(3.5)

WS(i) f inal =
WS(i)control +WS(i)node +WS(i)edge +WS(i)interaction

4
(3.6)
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3.1.5 Network Visualisation and Evaluation

3.1.5.1 Visualisation and Topological Analysis

Networks were visualised in Cytoscape10 Version 2.5 [641] and Ondex11 Version 0.3 [80]. The

network Analyser12 plugin version 2.5.1 for Cytoscape was used to calculate topological statistics

[400].

The shortest path between all pairs of nodes in the networks was calculated using Dijkstra’s algorithm

[1142].

3.1.5.2 Network Clustering

The networks were clustered using the Markov clustering algorithm (MCL) algorithm13 (see Section

2.3.3.2) [534]. The default inflation value of 1.8 was used in all cases. The clusters containing nodes

annotated to the POI were identified in the relevance and control networks for visual comparison.

3.1.5.3 Functional Prediction

Functional prediction was carried out using the Maximum Weight decision rule [57] in which an-

notations were propagated along the highest weighted edge surrounding a node (see Section 2.5.5).

Leave-one-out cross-validation of known annotations to the POI was carried out using this algorithm

for both the control, relevance, reversed and composite networks.

Edge weight cut-offs were applied during functional prediction where stated. For combined predic-

tions the maximum weight results for several, topologically identical, networks were calculated and

the highest score selected for each network node (see Section 6.4.2).

3.1.5.4 Receiver Operator Characteristic

The performance of the networks was evaluated using ROC curves [920]. The AUC of the ROC

curves was used to estimate network functional prediction performance levels. An AUC of 0.5 in-

dicates the network has no predictive power while higher AUC values indicate increasing functional

prediction performance, with perfect classification giving an AUC of 1.0.

10http://cytoscape.org/
11http://www.ondex.org/
12http://chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=NetworkAnalyzer
13http://www.micans.org/mcl/
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In order to compare the relevance and control curves the error of the AUC was calculated using the

standard error of the Wilcoxon statistic SE(W) using Equation 3.7 [920, 921], where θ is the AUC,

Cp is the number of positive examples, Cn is the number of negative examples and Q1 and Q2 are the

probabilities of incorrect annotation assignment as defined by Equations 3.8 and 3.9, respectively.

SE(W ) =
√

θ(1−θ)+(Cp−1)(Q1−θ 2)+(Cn−1)(Q2−θ 2)/CpCn (3.7)

Q1 =
θ

2−θ
(3.8)

Q2 =
2θ 2

1+θ
(3.9)

3.2 Laboratory Techniques

3.2.1 Strains and Growth Conditions

Two Saccharomyces cerevisiae strains were used in the analysis14 (see Section 7.5.1); a wild type

(wt), BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0), and, the AIM1 deletion mutant, BY4741

aim1∆ (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 aim1::kanMX4).

S. cerevisiae strains were grown under several different growth conditions. For fermenting growth

the strains were grown in YPD medium (1% w/v yeast extract, 2% w/v bacto peptone and 2% w/v

glucose). For growth under limited iron conditions (Fe−) the strains were grown in YPD with 100

µM bathophenanthroline disulfonate (BPS). For growth under increased iron conditions (Fe+) the

strains were grown in YPD with 100 µM iron chloride (Fe2+). All strains were incubated at 30◦C in

a rotatory shaker at 180 rpm unless stated otherwise.

3.2.2 DNA Extraction

Chromosomal DNA was extracted from the wild type and mutant strains using the "smash and

grab" protocol developed by Hoffman [1143]. All reagents were supplied by Sigma unless other-

wise stated.To prepare the cells, 10 ml cultures were grown in YPD (1% w/v yeast extract, 2% w/v

14http://www.invitrogen.com/site/us/en/home.html
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bacto peptone and 2% w/v glucose) to stationary phase in sterile culture tubes. Cultures were cen-

trifuged for 5 minutes in a table top centrifuge (Sigma) at room temperature, after which supernatant

was aspirated. Cells were re-suspended in 0.5 ml water and microcentrifuged for 5 seconds at room

temperature. The supernatant was removed and the pellet disrupted by vortexing briefly.

To break open the cells the pellet was re-suspended in 200 ml breaking buffer (2% (v/v) Triton X-100,

1% (v/v) sodium dodecyl sulphate, 100 mM NaCl, 10 mM Tris-Cl, pH 8.0, 1 mM EDTA, pH 8.0),

then 0.3 g glass beads and 200 µl phenol alcohol were added before cell disruption in a Precellys 24

disrupter (Bertin Technologies).

200 ml TE buffer pH 7.5 (10 mM Tris-HCl pH 7.4, 1mM EDTA pH 8) was then added and the

solution vortexed briefly. Following microcentrifugation for 5 minutes at high speed the aqueous

layer was transferred to a clean tube with 1 ml 100% ethanol and mixed by inversion. Finally,

after microcentifugation for 3 minutes at high speed the supernatant was removed and the pellet

re-suspended in 0.4 ml of TE buffer.

To recover the DNA, 30 ml of 1 mg/ml DNAse-free RNase A was added to the DNA solution, mixed

and incubated for 5 minutes at 37◦C. 10 ml of 4 M ammonium acetate and 1 ml of 100% ethanol were

then added and mixed by inversion. After microcentrifugation at high speed, at room temperature for

3 minutes the supernatant was discarded and the DNA pellet dried before being re-suspended in 100

ml TE buffer, pH 7.5.

3.2.3 Polymerase Chain Reaction

The polymerase chain reaction (PCR) was carried out at a final volume of 50µl:

Kapa 2G Enzyme - Kapa Biosytems15(5 Units/µl) 0.5 µl

Forward Primer (100 µM) 0.5 µl

Reverse Primer (100 µM) 0.5 µl

Template 0.5 µl

Buffer 5 µl

dNTPs 1 µl

H2O 42 µl

15http://www.kapabiosystems.com/

99

http://www.kapabiosystems.com/


Primers as described in Section 7.5.1 were obtained from Integrated DNA Technologies, Glasgow,

UK16:

Forward primer 5’ - CGA TGC TAT TCT CTT TTT GAT TCG TC -3’

Reverse primer 5’ - GTG AGT AAC CAT GCA TCA TCA GG -3’

PCR was carried out in a T3 Thermocycler (Biometra17) with the following parameters:

Step 1: 94◦C 2 minutes

Step 2: 94◦C 30 seconds

Step 3: 50◦C 30 seconds

Step 4: 72◦C 1 minute

Repeat Step 2-4 for 30 cycles

Step 5: 72◦C 10 minutes

3.2.4 Stress Sensitivity Tests

3.2.4.1 Oxidative Stress

For spot tests, the wild type and mutant strains were grown to the middle of logarithmic phase in

YPD medium and diluted to an optical density of 0.2 at 600 nm before serial 10-fold dilution (1,

1/10, 1/100, 1/1000). A total of five microliters of each of the dilutions was spotted simultaneously

using a a 48-prong replicator (Sigma) onto solid YPD medium containing different concentrations

of oxidative stress inducing compounds (Table 3.2). Plates were incubated at 30◦C for 24 hours, and

sensitivity was examined.

Table 3.2: Stress sensitivity testing.
Concentrations of oxidative stress inducing compounds used in the stress sensitivity tests.

Compound Concentrations
tert-butyl hydroperoxide (tBOOH) 0.4 mM/0.6 mM/0.8 mM/1.0 mM
Diamide (Diazenedicarboxylic acid bis 1.5 mM/2.0 mM/2.5 mM/3.0 mM
(N,N-dimethylamide))
Hydrogen Peroxide (H2O2) 0.5 mM/1.0 mM/1.5 mM/2.0 mM/2.5 mM/3.0 mM
Menadione (2-methylnaphthalene-1,4-dione) 50 µM/100 µM/150 µM/200 µM
Cadmium(II) Sulphate (CdSO4.

8/3H2O) 0.08 mM/0.1 mM/0.12 mM
Sodium Arsenite (NaAsO2) 1.0 mM/1.25 mM/1.5 mM/1.75 mM/2.0 mM

16http://eu.idtdna.com/Home/Home.aspx
17http://www.biometra.de/
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3.2.4.2 Iron Response

For spot tests the wild type and mutant strains were grown to the middle of logarithmic phase (OD

0.2 AT 600 nm) in YPD medium at high, average and limited iron concentrations (Section 3.2.1).

Serial 10-fold dilutions of each strain were made up to 1/1000.

For fermenting growth 5 ml of each of the dilutions were spotted simultaneously using a a 48-prong

replicator instrument (Sigma) onto solid YPD medium (1% w/v yeast extract, 2% w/v bacto peptone

and 2% w/v glucose plus 2% w/v agar) containing various levels of iron:

• High iron: 100 µM/500 µM/1 mM iron sulphate

• Average iron: plain YPD

• Low iron: 100 µM BPS

For growth under respiring conditions (aerobic) the cells were washed in water to remove glucose

before serial 10-fold dilutions of each strain were made up to 1/1000. Each dilution was spotted

simultaneously using a a 48-prong replicator instrument (Sigma) onto solid YPG medium (1% w/v

yeast extract, 2% w/v bacto peptone and 3% w/v glycerol plus 2% w/v agar) .

Plates were incubated at 30◦C for 72 hours, and sensitivity was examined as above.
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Chapter 4

Harnessing Process-Relevance During

Network Integration

The aim of this study was to develop network integration and analysis techniques which harness the

inherent biases in functional data in order to improve network performance in relation to specific bio-

logical processes. Heterogeneous data sources each contain information about different aspects of the

cell. Therefore, integration of these diverse data sources can reveal new aspects of cellular processes

that could not be seen in one source alone. Probabilistic Functional Integrated Networks (PFINs) are

powerful integration tools, since they take the quality of individual datasets into account by confi-

dence scoring prior to integration (see Section 2.4.3) [49, 115, 128]. However, current techniques

ignore the content of the datasets. Individual studies each produce data with its own biases, (see

Section 2.4.4). These differences are important and can be harnessed during network integration, in

addition to the more conventional score of dataset confidence. Due to the nature of the biases some

datasets may be more informative about certain areas of biology than others. In this thesis this prop-

erty is referred to as process-relevance: the more informative a dataset is about a biological process,

the higher its relevance is to that process.

In order to identify relevant data and produce process-relevant networks several questions need to be

answered:

• What biases occur in functional data?

• How can relevance be quantified?

• How can relevance be incorporated during network integration?

• How can networks be evaluated in relation to process-relevance?

102



Prior to quantifying relevance, and incorporating it during data integration, it is essential to under-

stand the nature of dataset biases. In the Section 4.1 of this chapter the differences and similarities

between experimental types, and between individual studies of the same type, are investigated (Ob-

jective 1, Section 1.5). A dataset scoring and integration schema, RelCID, is presented in Section 4.2

which allows a dataset’s relevance to a process to be quantified is then developed. Finally, the Sec-

tion 4.2.1 of this chapter describes a comprehensive evaluation of the RelCID schema as it pertains

to yeast ageing.

4.1 Harnessing Process Relevance

4.1.1 Source Data

Datasets form the basis of any integrated resource. However, defining what constitutes a single

dataset is far from straightforward, and this definition can affect the performance of an integrated

system. In PFINs the individual datasets are confidence-scored prior to integration. Therefore several

aspects of source data choice and dataset definition can affect the final network:

• Redundancy: different databases can contain duplicate data, which can lead to biases within

the network, upweighting edges with duplicate evidence.

• Type: different labelling schemas exist to divide data by experiment type and each schema

may produce different final datasets.

• Accuracy: incorrect data can adversely influence dataset scoring and network performance.

• Standardisation: lack of unique identifiers can produce inaccurate mapping between datasets

during integration.

Consequently, it is important that the chosen data are up-to-date and contains metadata that accurately

describes its sources and methodologies. A large number of databases have been developed to store

functional data (Section 2.1.4). In this study the BioGRID was chosen as the data source for a

number of reasons. BioGRID is one of the most comprehensive databases available for the yeast

S. cerevisiae, comprising 22 diverse data types, each with source metadata linking to the original

publication [276]. The BioGRID dataset is manually curated to avoid errors and redundancy. The

curators use standardised unique gene identifiers and supply synonyms for all genes and proteins.

Importantly, the database curators actively encourage community feedback to identify incorrect data.

Finally, the BioGRID data are available in a computationally amenable flat-file format (Table 4.11).
1http://wiki.thebiogrid.org/doku.php/biogrid_tab_version_1.0
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Table 4.1: The BioGRID flat file format.
BioGRID stores functional interaction data for S. cerevisiae, amongst other organisms. The flat-file
format includes metadata for each interaction including gene synonyms, methodology and original
publication details (http://wiki.thebiogrid.org/doku.php/biogrid_tab_version_1.0).

Column Description
INTERACTOR_A Unique ID for Interacting Partner A
INTERACTOR_B Unique ID for Interacting Partner B
OFFICIAL_SYMBOL_FOR_A Official name of Interacting Partner A
OFFICIAL_SYMBOL_FOR_B Official name of Interacting Partner B
ALIASES_FOR_A List of common names for geneA, separated by ’|’
ALIASES_FOR_B List of common names for geneB, separated by ’|’
EXPERIMENTAL_SYSTEM System in which the interaction was shown
SOURCE Author/s of the interaction
PUBMED_ID PubMed_ID of the paper, separated by ’;’
ORGANISM_A_ID NCBI ID of Gene A Organism
ORGANISM_B_ID NCBI ID of Gene B Organism

4.1.2 Evaluation of Dataset Bias

In order to harness inherent dataset bias it is essential to understand how datasets differ, and the nature

of these differences. The BioGRID dataset for S. cerevisiae can be subdivided at three different

levels: by interaction type; by experimental type; or by individual study.

At the most abstract level the database distinguishes between physical and genetic interactions. The

two interaction types are then classified according to 22 evidence types (Table 4.2 and Appendix

D). Finally, at the lowest level, the data can be subdivided by PMID2 into individual studies. Each

individual PMID indicates a single study designed to analyse a specific biological question. These

studies may range in size from small-scale experiments of a few interactions to genome-wide screens

comprising hundreds, or even thousands, of interactions.

The datasets were evaluated and compared using three criteria;

• Genomic coverage: the coverage of the yeast genome in terms of the numbers of individual

genes.

• Interactome coverage: the coverage of the interaction space in terms of the numbers of indi-

vidual interactions.

• Biological coverage: the coverage of biological processes in terms of numbers of GO annota-

tions.

2http://www.ncbi.nlm.nih.gov/pubmed
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Table 4.2: The BioGRID experimental types.
The BioGRID data can be subdivided into 22 experimental types: 14 physical types and 8 genetic
types. Full experimental definitions are supplied in Appendix D.

Physical Interactions Genetic Interaction
Affinity Capture-MS Far Western Dosage Growth Defect
Affinity Capture-RNA FRET Dosage Lethality
Affinity Capture-Western Protein-Peptide Dosage Rescue
Biochemical Activity Protein-RNA Phenotypic Enhancement
Co-Crystal Structure Reconstituted Complex Phenotypic Suppression
Co-Fractionation Two-Hybrid Synthetic Growth Defect
Co-Localization Synthetic Lethality
Co-Purification Synthetic Rescue

Genomic and interactome coverage were assessed by gene identifier comparison. For biological cov-

erage over-representation of GOBP annotations was calculated using the GOstats R package (see

Section 3.1.2) [862]. The scale of the data produced by GOstats is beyond the scope of a full discus-

sion in this section. Therefore, some specific examples are presented. The full enrichment analysis

results are available in Appendix E.

4.1.3 Results

4.1.3.1 Interaction Type

At the highest level of organisation BioGRID distinguishes between two interaction types: genetic

and physical. The genomic and interactomic coverage of these types differ. Version 27 of BioGRID

contains 73029 interactions involving 5424 genes. Over 65% of the genes are present in both types

of interaction. However, the overlap of interactions between the two data types is significantly lower

at approximately 3% (Table 4.3).

Table 4.3: Genetic and physical interactions.
The genes and interactions represented by the physical and genetic interaction types of BioGRID.

Genes Pairs
Physical interactions only 1729 38259
Genetic interactions only 139 32508
Physical & genetic interactions 3556 2262
Percentage overlap 65.56% 3.10%
Total 5424 73029

The GOstats R package was used to assess the biological coverage of the two interaction types [862].

GOstats applies a hypergeometric test to calculate over-representation of GO terms in the gene anno-

tations of the dataset (see Section 3.1.2). Of the top ten over-represented terms, eight were common

to both the genetic and physical datasets (Table 4.4). Notably the majority of the over-represented
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terms were general terms with little specificity, such as high-level metabolic and regulatory processes.

The GOstats analysis was repeated excluding those genes present in the overlap of the physical and

genetic datasets. When the overlapping genes were excluded fewer terms were over-represented and

the majority of terms were lower level terms, with only one term in common (cellular process)

between the interaction types (Table 4.5). Moreover, there were distinct areas of biology observed

in the two datasets. The genes with physical interactions had high representation of metabolic and

biosynthetic processes, particularly those involving proteins and amino acids. Conversely, the genes

with genetic interactions were over-represented for processes involving nucleic acids.

Table 4.4: GO biological process enrichment for genetic and physical genes.
The GOstats output for the top ten over-represented GOBP terms for the genetic and physical in-
teraction types. In total there were 138 and 50 terms over-represented for the genetic and physical
datasets, respectively. Terms in common are highlighted in bold. Full enrichment results are supplied
in are supplied in Appendix E.

Genetic Interaction
GOBPID Pvalue OddsRatio Term
GO:0065007 5.84E-72 6.090048 Biological regulation
GO:0051641 2.07E-50 5.816283 Cellular localization
GO:0046907 4.73E-46 5.650174 Intracellular transport
GO:0006996 2.98E-44 3.083049 Organelle organization and biogenesis
GO:0044238 1.96E-40 2.370941 Primary metabolic process
GO:0044260 3.16E-40 2.641645 Cellular macromolecule metabolic process
GO:0051234 1.40E-38 2.91872 Establishment of localization
GO:0019538 5.69E-36 2.481291 Protein metabolic process
GO:0031323 4.85E-34 4.518281 Regulation of cellular metabolic process
GO:0050896 2.17E-32 5.51017 Response to stimulus
Physical Interaction
GOBPID Pvalue OddsRatio Term
GO:0044260 2.95E-30 5.755886 Cellular macromolecule metabolic process
GO:0019538 1.34E-29 5.553653 Protein metabolic process
GO:0044238 4.40E-25 3.453662 Primary metabolic process
GO:0016070 4.55E-21 4.870293 RNA metabolic process
GO:0051234 5.78E-19 4.049084 Establishment of localization
GO:0065007 6.93E-19 5.149184 Biological regulation
GO:0051641 7.24E-19 9.842371 Cellular localization
GO:0044237 3.55E-18 2.77375 Cellular metabolic process
GO:0006996 6.60E-17 4.774281 Organelle organization and biogenesis
GO:0022402 1.38E-13 9.546076 Cell cycle process
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Table 4.5: GO biological process term enrichment for the unique genetic and physical genes.
The GOstats output for the top ten over-represented GOBP terms for the unique genetic and physical
interaction types. In total there were 22 and 17 terms over-represented for the genetic and physi-
cal datasets, respectively. The term in common is highlighted in bold. Full enrichment results are
supplied in are supplied in Appendix E.

Unique Genetic
GOBPID Pvalue OddsRatio Term
GO:0009987 2.50E-28 3.390005 Cellular process
GO:0044255 7.27E-13 3.250492 Cellular lipid metabolic process
GO:0009058 3.69E-12 1.96516 Biosynthetic process
GO:0044271 8.71E-12 4.399649 Nitrogen compound biosynthetic process
GO:0009308 1.09E-10 2.919304 Amine metabolic process
GO:0006766 3.18E-10 4.598552 Vitamin metabolic process
GO:0006519 7.25E-10 2.922348 Amino acid and derivative metabolic process
GO:0019752 7.39E-10 2.466605 Carboxylic acid metabolic process
GO:0008652 8.81E-10 4.025441 Amino acid biosynthetic process
GO:0006811 1.89E-09 3.790611 Ion transport
Unique Physical
GOBPID Pvalue OddsRatio Term
GO:0006412 7.26E-20 3.159723 Translation
GO:0030490 1.72E-15 12.962713 Processing of 20S pre-rRNA
GO:0022613 3.99E-13 2.701273 Ribonucleoprotein complex biogenesis and assembly
GO:0019538 1.21E-12 1.840102 Protein metabolic process
GO:0044249 2.17E-12 1.962804 Cellular biosynthetic process
GO:0008152 2.35E-12 1.704595 Metabolic process
GO:0006365 1.02E-09 4.583565 35S primary transcript processing
GO:0044260 1.03E-09 1.693187 Cellular macromolecule metabolic process
GO:0009987 5.33E-09 1.711193 Cellular process
GO:0006364 7.16E-08 4.699056 rRNA processing

4.1.3.2 Experimental Type

BioGRID is divided into 22 experimental types. Figure 4.1 depicts a partial hierarchical clustering

of these evidence types by genomic coverage (see Section 3.1.3). Although the physical and genetic

interaction types tended to cluster together, there were distinct subgroups. Due to the number of

potential pairs in the yeast interactome a similar clustering of the datasets by interactomic cover-

age was not computationally feasible. However, visual analysis of the common interactions using

Cytoscape3 revealed different patterns of overlap from those observed for genomic coverage. In par-

ticular, several physical data types had higher overlap with genetic data types than with other physical

types (Figure 4.2). For instance, the two datasets in pair A of Figure 4.1, Affinity Capture-Western

and Reconstituted Complex, had low overlap in terms of interactions. In fact, the Affinity Capture-

Western dataset had significantly more interactions in common with several other datasets than with

the Reconstituted Complex dataset.

3http://www.cytoscape.org/
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GOstats analysis of the datasets’ biological coverage produced a varying number of common terms

between closely clustered datasets. Several of the over-represented terms reflected the type of exper-

imental method applied. For instance, the two RNA-based datasets of Group F in Figure 4.2 had high

enrichment of RNA-associated terms. Due to the scale of the data produced by GOstats six clustered

pairs were chosen for further analysis (A-F in Figure 4.1). The top five over-represented terms for the

example dataset pairs are shown in Table 4.6. In many cases the overlap for the clustered datasets was

limited to general, high-level processes, while specific low-level terms were unique to the individual

data types.

Figure 4.1: Genomic coverage of the experimental datatypes.
Partial heatmap of the data types clustered by genomic coverage. The six dataset pairs (A-F) used as
biological coverage examples are highlighted in colour.

Figure 4.2: Interactome coverage of the experimental datatypes.
Genetic data types are shown as squares and the physical data types as circles. The line widths
represent the number of shared interactions. The line colours vary from yellow (few interactions in
common) to red (many interactions in common). The datasets of pair A in Figure 4.1 (highlighted
in blue) clustered together by genomic coverage. However, their interactomic overlap is low. In
particular the Affinity Capture Western dataset has significantly more interactions in common with
several other datasets than with the Reconstituted Complex dataset.
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Table 4.6: The top five over-represented GO terms in pairs A-F of Figure 4.1.
The terms are displayed in order of over-representation. Terms in common between the pairs of
datasets are highlighted in bold. In the case of the Protein-RNA dataset only two GOBP terms were
over-represented. The full results including scores are presented in Appendix E.

Pair A
Affinity Capture Western Reconstituted Complex
Biopolymer metabolic process Organelle organization and biogenesis
Cellular localization Biological regulation
Organelle organization and biogenesis Cellular localization
Biological regulation Mitotic cell cycle
Regulation of cellular process Response to DNA damage stimulus
Pair B
Two Hybrid Affinity Capture Mass Spectroscopy
Localization Translation
Establishment of cellular localization Biological regulation
Biological regulation Chromosome organization and biogenesis (sensu Eu-

karyota)
Biopolymer metabolic process Cellular process
Response to stimulus Macromolecule metabolic process
Pair C
Synthetic Growth Defect Synthetic Lethality
Organelle organization and biogenesis Chromosome organization and biogenesis (sensu

Eukaryota)
Response to stimulus Organelle organization and biogenesis
Telomere maintenance Metabolic process
Chromosome organization and biogenesis (sensu
Eukaryota)

Biological regulation

DNA metabolic process Cellular localization
Pair D
Dosage Rescue Synthetic Rescue
Cellular localization Regulation of cellular process
Secretion Biological regulation
Biological regulation Primary metabolic process
Anatomical structure development Transcription
Regulation of cellular process RNA biosynthetic process
Pair E
Phenotypic Enhancement Phenotypic Suppression
Biological regulation Biological regulation
Response to stimulus Regulation of cellular process
Regulation of cellular metabolic process DNA metabolic process
Organelle organization and biogenesis Response to stimulus
Secretion Organelle organization and biogenesis
Pair F
Affinity Capture RNA Protein RNA
Nuclear mRNA splicing, via spliceosome Group I intron splicing
RNA splicing, via transesterification reactions RNA metabolic process
mRNA catabolic process
Biopolymer catabolic process
Cellular macromolecule catabolic process
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4.1.3.3 Experimental Scale

At the lowest level the BioGRID data can be split into individual studies by PMID4. However,

the majority of these studies are small-scale and contain very few interactions. Datasets of this

size are too small to treat as a single data source, since reliable confidence scoring against a Gold

Standard would not be possible due to the scale difference [128]. That is, the size of the dataset

would be too small in comparison to the Gold Standard’s size for accurate confidence assessment

since no Gold Standard has complete coverage of the genome. Therefore, a cut-off was chosen to

distinguish between large-scale and small-scale data. Figure 4.3 shows the distribution of dataset

size within Version 27 of BioGRID. Approximately 1% of the datasets contained greater than 100

interactions. These large-scale studies were treated as single datasets. The remaining datasets were

grouped by experimental method using the BioGRID evidence types (Table 4.2) since they were

too small for reliable confidence scoring individually. In fact, approximately 90% of the small-scale

studies contained less than ten interactions. This cut-off of 100 interactions has been used in previous

studies to distinguish between large-scale HTP and small-scale LTP BioGRID data [133, 1141].

When clustering of the 22 experimental types by genomic coverage was repeated in the absence

of the HTP data, a markedly different clustering pattern was observed (Figure 4.4). Similarly, the

number of over-represented GO terms for the 22 data types was significantly different when the HTP

data was excluded (Figure 4.5).

Figure 4.3: BioGRID dataset size.
The distribution of BioGRID dataset size by experimental study as defined by PMID. Approximately
1% of the datasets have >100 interactions. A cut-off was applied at this level to treat studies with
100 or more interactions as separate HTP datasets, and smaller studies as grouped LTP studies based
on BioGRID experimental type.

4http://www.ncbi.nlm.nih.gov/pubmed
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Figure 4.4: The LTP data clustered by genomic coverage.
The dataset clustering was significantly different in the absence of the HTP data. The dataset pairs
(A-F) of Figure 4.1 are highlighted.

Figure 4.5: Over-represented GO terms.
The number of over-represented terms for the 22 data types. The number of over-represented terms
is significantly higher when the HTP data are excluded.
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4.1.3.4 Multiple Data Types

Several of the HTP studies contained multiple evidence types (Table 4.7). Multiple data types com-

plicate the definition of a single dataset since the data may be treated in two ways. On one hand these

datasets are a single study, while on the other they may be sub-divided by evidence type. To address

this issue it was necessary to refer to the original publications.

In the majority of cases these datasets were primarily of one type (>70% of the interactions). In

some cases a second experimental method was used to verify data following a large-scale study.

For instance in the study by Sanders and colleagues (Sanders.12052880) HTP Affinity Capture-MS

was used to detect 480 interactions [1144]. Three of the interactions were then confirmed by a LTP

Affinity Capture Western technique. Mixed datasets of this type were treated as single datasets.

A number of datasets with multiple evidence types were genetic interaction analyses. The multiple

data types produced by these studies reflect the nature of genetic interaction detection. For instance,

phenotypic experiments, such as that of Collins and co-workers (Collins.17314980) [244], can de-

tect both phenotypic enhancement and phenotypic suppression interactions. These studies were all

treated as single datasets.

Two of the studies, Pan.15525520 and Zhao.15766533, did not have a clear majority (>70% interac-

tions) of evidence type. The first study used dSLAM to detect several types of genetic interactions

including synthetic lethals, rescues and growth defects [15]. These data were treated as a single

dataset, since all the interactions were detected using the same experimental technique. The second

study used a mixture of physical and genetic interaction detection techniques to investigate the chap-

erone Hsp90 [1145]. Due to the specific focus of this study, the data generated were was also treated

as a single dataset in order to preserve its unique biases.

4.1.3.5 Individual Studies

The final division of Version 27 of BioGRID at the 100 interaction cut-off produced 70 datasets: 22

LTP and 48 HTP. Figure 4.6 shows the hierarchical clustering of the datasets by genome coverage.

Several of the large-scale studies clustered together by experimental type, but there were distinct

clusters of a single type of data. For instance the Affinity Capture-MS datasets formed a large tightly

clustered group of six datasets in the tree (Figure 4.6 cluster 1A), and several separate smaller clus-

ters (Figure 4.6 clusters 1B-1C). In addition, one dataset of this type (Allen.11387327) clustered

separately with the FRET dataset (Figure 4.6 cluster 1D).

Similarly, the genetic interaction data types clustered together into three main groups (Figure 4.6

clusters 2A-2C). Finally, there are several clusters of mixed type, such as the cluster containing the
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Figure 4.6: Genomic coverage of the individual studies.
A partial heatmap of the 70 datasets clustered by genomic coverage using the same method as that for
Figure 4.1. Datasets of the same type tend to cluster together, for instance the Affinity Capture MS
datasets (1A-1C) and the genetic interaction types (2A-2C). However, there are clusters that contain
multiple data types (1D & 3).
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Table 4.7: Multiple data types.
Seventeen of the HTP datasets contain multiple experimental types. The major experimental type
and its coverage of the dataset in terms of nodes and interactions are summarised.

Dataset Type Major SubType Nodes (%) Interactions (%) Ref
Pan.15525520 Genetic Synthetic Lethality 57.3 55.7 [15]
Collins.17314980 Genetic Phenotypic Enhancement 99.3 80.5 [244]
Schuldiner.16269340 Genetic Phenotypic Enhancement 97.8 79.1 [17]
Pan.16487579 Genetic Synthetic Growth Defect 92.6 81.2 [243]
Frazier.16476776 Physical Affinity Capture-MS 88.9 93.2 [1146]
Sanders.12052880 Physical Affinity Capture-MS 100 100 [1144]
Hazbun.14690591 Physical Affinity Capture-MS 91.1 90.9 [64]
Measday.16172405 Multi Synthetic Growth Defect 96.6 81.4 [1147]
Krogan.15353583 Multi Synthetic Lethality 90.7 90.1 [1148]
Ingvarsdottir.15657441 Multi Synthetic Lethality 77.2 68.1 [1149]
Zhao.15766533 Multi Synthetic Lethality 59.6 58.6 [1145]
Tong.11743162 Multi Two Hybrid 100 99.6 [1150]
Krogan.14690608 Multi Synthetic Lethality 95.3 94.8 [1151]
Lindstrom.12556496 Multi Affinity Capture-MS 100 98.1 [1152]
Kong.15563457 Multi Synthetic Lethality 96.8 99.1 [1153]
Hannich.15590687 Multi Affinity Capture-MS 94.2 92.9 [1154]
Millson.15879519 Multi Affinity Capture Western 99.2 99.2 [1155]

Schuldiner.16269340, Miller.16093310 and Milson.15879519 datasets (Figure 4.6 cluster 3).

Due to the number of interactions, hierarchical clustering of the datasets by interactomic coverage

was not computationally feasible. However, the overlap between datasets in terms of interactions

could be assessed. The datasets varied in size and had large numbers of overlapping interactions.

Therefore, the percentage overlap between pairs of datasets was calculated (Figure 4.7). In order to

directly compare genomic and interactomic coverage the datasets were ordered as they clustered in

Figure 4.6.

The majority of dataset clusters had higher interaction overlap within the cluster than with other

clusters in the matrix. In particular, the densely connected Affinity Capture-MS datasets had a high

degree of overlap (Figure 4.7 F). However, there were several exceptions. For instance, two Affinity

Capture-MS genomic coverage clusters (Figure 4.7 A and B) had very low interaction coverage

overlap within the cluster but high overlap with a third Affinity Capture-MS cluster (Figure 4.7 H).

Visualisation in Cytoscape revealed that these two groups had very few interactions in common

within their clusters in comparison to their overlap with cluster F (Figure 4.8). In addition, three

genetic datasets also had higher interactomic overlap with cluster F than within their own cluster

(Figure 4.7 I).

GOstats analysis of the datasets’ biological coverage produced a varying number of over-represented

biological processes for the clustered datasets. In many cases the over-represented terms for the

individual studies were more specific than those of the experimental types (see Appendix E). Addi-

tionally, the over-represented terms for the datasets tended to reflect the genomic coverage clustering
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Figure 4.7: Genomic coverage of the individual studies.
The percentage overlap of the datasets in terms of individual interactions coloured from white (0%
overlap) to red (100% overlap). The matrix is not symmetrical, as it reflects the differing sizes of the
dataset pairs. The datasets are ordered as they clustered by genomic coverage in Figure 4.6 . The
clusters genomic coverage clusters tend to have high interaction coverage overlap (C-F). However,
several clusters have low overlap (A-B, G). Additionallly there are two areas of significant overlap
between clusters (H-I).
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Figure 4.8: Interaction overlap of clusters A, B and F.
Cluster A is coloured green, Cluster B yellow and Cluster F red. Edge weights reflect the number
of interactions in common, with thick edges indicating high overlap and thin edges indicating low
overlap. Clusters A and B have high genomic overlap within their datasets. However, interaction
overlap within these clusters is very low and many of the datasets do not have any interactions in
common. However, both clusters have high interaction overlap with cluster F.

to a greater extent than that for the experimental types (Section 4.1.3.2). Of particular note were two

clusters which contained mixed data types. The first cluster contained the FRET and Allen.11387327

datasets (Figure 4.6 cluster 1D). The over-represented terms for these datasets were very similar and

contained a large number of nucleic acid- and nuclear transport-related terms (Table 4.8). These

terms were consistent with the focus of the Allen.11387327 study which analysed the physical inter-

actions involved in the nuclear pore complex [1156].

The second cluster of mixed data types contained three datasets: Schuldiner.16269340, Miller.

16093310 and Milson.15879519 (Figure 4.6 cluster 3). The over-represented terms for these datasets

were very similar and contained a high proportion of transport related terms (Table 4.9). The terms

reflected the focus of the original experimental studies; Schuldiner and colleagues used E-MAPs to

find GIs involved in the yeast early secretory pathway [17], Miller and colleagues performed a Y2H

analysis of membrane proteins [1157] and Milson and colleagues used TAP to study the cytoplas-

mic chaperone Hsp90 [1155]. Each of these areas of cellular biology involves an aspect of cellular

transportation. Notably, the dataset produced by Zhao and co-workers [1145], which also focused on

Hsp90, did not cluster with the Milson dataset, but did share enrichment of the GO term protein

folding (GO:0006457) which is consistent with their shared experimental subject (Table 4.10).
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Table 4.8: GO biological process term enrichment for the datasets in cluster 1C.
The top five over-represented GOBP terms for the FRET and Allen.11387327 datasets. Full enrich-
ment results are supplied in are supplied in Appendix E.

FRET
GOBPID Pvalue OddsRatio Term
GO:0006408 4.63E-25 375.05 snRNA export from nucleus
GO:0006610 4.63E-25 375.05 Ribosomal protein import into nucleus
GO:0006607 4.63E-25 375.05 NLS-bearing substrate import into nucleus
GO:0006608 4.63E-25 375.05 snRNP protein import into nucleus
GO:0006609 2.09E-24 312.433333 mRNA-binding (hnRNP) protein import into nu-

cleus
Allen.11387327
GOBPID Pvalue OddsRatio Term
GO:0006913 2.33E-47 137.038352 Nucleocytoplasmic transport
GO:0051169 3.92E-44 121.659973 Nuclear transport
GO:0050658 1.46E-31 90.059671 RNA transport
GO:0006609 3.76E-31 370.587121 mRNA-binding (hnRNP) protein import into nu-

cleus
GO:0015931 2.72E-30 77.07231 Nucleobase, nucleoside, nucleotide and nucleic acid

transport

Table 4.9: GO biological process term enrichment for the datasets in cluster 3.
The top five over-represented GOBP terms for the Schuldiner.16269340, Miller.16093310 and Mil-
son.15879519 datasets. In the case of the Milson dataset only four terms were over-represented. Full
enrichment results are supplied in are supplied in Appendix E.

Schuldiner.16269340
GOBPID Pvalue OddsRatio Term
GO:0044255 9.41E-34 8.25 Cellular lipid metabolic process
GO:0016192 1.11E-31 6.18 Vesicle-mediated transport
GO:0006888 2.39E-30 18.51 ER to Golgi vesicle-mediated transport
GO:0051234 7.04E-24 3.24 Establishment of localization
GO:0043413 3.56E-20 12.39 Biopolymer glycosylation
Miller.16093310
GOBPID Pvalue OddsRatio Term
GO:0051179 9.74E-89 11.2 Localization
GO:0006810 3.05E-74 10.77 Transport
GO:0009100 4.98E-25 13.09 Glycoprotein metabolic process
GO:0006812 2.70E-24 10.7 Cation transport
GO:0006865 9.83E-17 25.11 Amino acid transport
Milson.15879519
GOBPID Pvalue OddsRatio Term
GO:0015849 9.63E-08 11.87 Organic acid transport
GO:0006457 1.67E-07 8.33 Protein folding
GO:0051234 3.07E-07 2.79 Establishment of localization
GO:0006865 7.09E-07 13.7 Amino acid transport
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4.1.4 Discussion

Section 4.1.3 fulfils the first and second objectives of this project (see Section 1.5). Data of different

types show clear differences in genomic, interactomic and biological process coverage. In particular,

interactomic coverage is significantly different from genomic and biological coverage at all three

levels of dataset division, while genomic coverage and biological coverage are similar. This pattern

of similarity suggests that the genes represented by a dataset, rather than the interactions detected,

are an indication of the dataset’s biases.

At the highest level, the genetic and physical interactions comprise two overlapping groups of genes.

Physical interactions outnumber the purely genetic interactions, with the majority of genes being

involved in both types of interaction. However, while the genomic coverage is relatively high, overlap

in terms of interactomic coverage is small. Unsurprisingly, physical interactions have bias towards

protein-related processes while genetic interactions have bias towards nucleic acid-related areas of

biology. These distinctions reflect the differing nature of the two interaction types since proteins with

GIs are less likely to interact physically (see Section 2.1.2.3) [200].

Splitting the data at this relatively high level reveals differences in data coverage which can be of

use during network, and other integrated, analyses. For instance, the 139 genetically interacting

proteins represent different areas of biology than the physically interacting group. Therefore, these

genes would probably be of less relevance to the analysis of the physical components of the cell,

such as the cell membranes. However, as biological data are incomplete and noisy the differences in

coverage observed may not represent the true ratio between genetic and physical interactions in the

cell. It is therefore necessary to split the data at a higher level of specificity.

Division of the data by experimental type reveals deeper biases, many of which reflect the underlying

experimental method. For instance, RNA-related terms are over-represented for RNA-based experi-

mental types. In the absence of the HTP data the experimental types cluster differently. In particular,

the two different interaction types-genetic and physical-are not clearly grouped. Additionally, the

Table 4.10: GO biological process term enrichment for the Zhao dataset.
The five over-represented GOBP terms for the Zhao.15766533 dataset. Full enrichment results are
supplied in are supplied in Appendix E.

GOBPID Pvalue OddsRatio Term
GO:0000723 1.52E-09 2.95 Telomere maintenance
GO:0009987 5.80E-09 2.07 Cellular process
GO:0006996 4.59E-08 1.8 Organelle organization and biogenesis
GO:0007001 8.78E-08 2.12 Chromosome organization and biogenesis (sensu

Eukaryota)
GO:0006457 4.28E-06 3.84 Protein folding

118



removal of the HTP data significantly increases the number of over-represented terms. These re-

sults suggest that HTP data heavily influences the biases of the experimental type and may mask the

underlying biases of the LTP data.

These HTP studies should therefore be treated as individual datasets, revealing the biases of experi-

mental design and focus. Many datasets of the same type cluster together, reflecting the similarities in

their experimental method. However, individual studies are tailored to answer specific questions and

these questions are reflected in the genomic coverage clustering of some datasets. The biological pro-

cess coverage at this level has little overlap since many of the over-represented terms are low-level,

specific terms. However, similar areas of biology are observed for some dataset groups and this as-

pect of the datasets is reflected in the genomic clustering (Figure 4.6). For instance the Schuldiner,

Miller and Milson datasets cluster together and have enrichment of transport-related terms, reflecting

their experimental focuses. Therefore, division of the data into individual studies in this way reveals

the specific biases of experimental design and focus.

Splitting the data into HTP studies (>100 interactions) and grouping the LTP data by experimen-

tal type allows dataset relevance to be assessed, while maintaining an adequate dataset size for

confidence scoring. GOstats uses a hypergeometric test to identify over-representation of biolog-

ical process annotations by testing all possible GO terms. The test produces a p-value for the

over-representation of each GO term. This value provides an ideal method with which to quan-

tify dataset relevance in relation to individual biological questions and therefore fulfils Objective 2

of this project (see Section 1.5). For instance the Schuldiner, Miller and Milson studies have high

over-representation of terms involved in cellular transport and, therefore, appear to have high rele-

vance to this process. Consequently a hypergeometric test may be used to measure dataset relevance

to specific processes. However, unlike GOstats, which tests all GO terms at the same time, the test

can be used to measure enrichment of a single term, reducing computational time and complexity.

This measure of dataset relevance can then be incorporated during network integration, as described

below.

4.2 The Integration RelCID Schema

The hypergeometric test produces a score of relevance to a process of interest (POI) between zero

and one, where zero represents high relevance and one represents low relevance to the POI (Section

3.1.4.3). These relevance scores allow the datasets to be ranked in order of relevance to the POI

(Figure 4.9).
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Figure 4.9: Relevance rankings.
The hypergeometric test allows the datasets to be ranked in order of relevance from zero (high
relevance) to one (low relevance). Here, datasets are ranked in order of relevance to the process
telomere maintenance (GO:0000723). Pan.16487579 has the highest relevance to this process
and Zhao.15766533 has the lowest relevance.

The Lee and colleagues integration method [49] applies a weighted sum which integrates the datasets

in order of their confidence scores, giving a higher weighting to datasets with higher confidence

(see Section 3.1.4.4). In the resulting network highly weighted edges have high confidence. The

weighted sum was used to incorporate the relevance rankings during integration by re-ordering the

datasets prior to integration of the confidence scores, giving a higher weighting to datasets with

higher relevance (Figure 4.10). Therefore, in the resulting relevance network highly weighted edges

have both high confidence and high relevance to the POI (Figure 4.11).

4.2.1 Evaluation Strategy

Relevance networks were produced for S. cerevisiae using two ageing-related POIs; telomere

maintenance (GO:0000723), and ageing (GO:0007568). Functional prediction was used as the

basis of network evaluation since it is the most objective evaluation available (see Section 2.5.5).

The networks were evaluated against the control network in four ways:

• Functional Prediction

The ability of the networks to predict known GOBP annotations was evaluated by leave-one-

out cross-validation of annotations to the POI using the Maximum Weight decision rule [57]

(see Section 3.1.5.3).
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Figure 4.10: Overview of the RelCID integration method.
A. A control network is produced using the method developed by Lee and colleagues [49] of inte-
grating the datasets in order of confidence rank. B. Relevance networks are produced by integration
of the confidence scores in order of relevance to the process of interest. The two networks have
identical topology but differ in the edge weightings between pairs of nodes.

• Clustering

The networks were clustered using the MCL algorithm [534] and the co-clustering of genes

annotated to the POI and to several other ageing-related terms (such as DNA repair, mitochon-

drion and telomeric region) was evaluated (see Section 3.1.5.2).

• Application to Real Data

The telomere maintenance relevant network performance was evaluated using two telomere-

related datasets produced by the Centre for Integrated Systems Biology of Ageing and Nutri-

tion (CISBAN)5 (see Section 2.6.1) [16, 993].

• New Predictions

New predictions to telomere maintenance (GO:0000723) and ageing (GO:0007568) were

produced for previously un-annotated genes using the maximum weight decision rule. These

annotations were subsequently compared with new annotations to these terms added to the GO

database in the year following network integration (March 2008 to March 2009).

5http://www.ncl.ac.uk/cisban/
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Figure 4.11: The relevance and confidence scores.
The datasets have a score of confidence and a score of relevance. In the control networks the edges
have high confidence (dashed area). However, high confidence edges may have low relevance. In
the relevance networks highly-weighted edges have both high confidence and high relevance (solid
box).

4.3 Results

4.3.1 Network Integration

Division of Version 38 of the BioGRID data for S. cerevisiae as described above produced 72

datasets: 50 HTP and 22 LTP. Dataset size ranged from 14421 interactions (Collins.17314980) to as

few as 33 interactions (Protein-RNA). Twenty-seven datasets were discarded due to negative scores

against the KEGG Gold Standard data. Negative scores occur when the dataset and Gold Standard

have little or no overlap. These datasets included many of the smaller HTP datasets and the small-

est of the combined LTP datasets (<100 interactions). Therefore, a final set of 45 datasets were

integrated.

Three networks were integrated using the RelCID ranked integration method (Section 3.1.4.5): a

network with relevance to the GO term ageing (GO:0007568); a network with relevance to telom-

ere maintenance (GO:0000723); and one with relevance to both ageing and telomere main-

tenance, produced by combining the annotations of both ageing and telomere maintenance.
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The control network was integrated using the confidence ranked scores (Section 3.1.4.4). In addi-

tion, four networks were produced by reversing the order of relevance and confidence integration

respectively, to act as a null hypothesis during functional prediction (Section 3.1.4.6).

Therefore, a total of eight networks were created:

• Control

• Telomere Maintenance

• Ageing

• Combined Telomere-Ageing

• Reversed Control

• Reversed Telomere Maintenance

• Reversed Ageing

• Reversed Combined Telomere-Ageing

All eight networks were topologically identical with 5143 nodes, 69091 edges and the same topo-

logical properties (Table 4.11). However the edge weights differed, reflecting the different orders of

confidence score integration. Table 4.12 summarises the relevance ranks produced for the top twenty

of the 45 datasets ordered by confidence score (the full rankings are presented in Appendix F). The

combined ageing-telomere rankings were more similar to those of the telomere relevance rankings

than the ageing relevance rankings (Figure 4.12).

Since the control network edges represented the highest possible sum of confidence scores, the dis-

tribution of edge weights was significantly lower for the relevance networks (Figure 4.13). However,

by altering the order of integration, datasets with high relevance were given a higher weighting in

the relevance networks. Therefore, edges with high-relevance evidence were up-weighted and those

with low-relevance evidence were down-weighted (Figure 4.14). For instance, the edge between

the genes YDR334W and YDL074C, which had evidence with high relevance to telomere mainte-

nance, scored 4.98 and 4.37 in the control and relevance networks, respectively. Conversely, the

edge between genes YMR200W and YGL027C, which had low relevance evidence, scored 2.49 in

the control network, but was down-weighted to just 0.05 in the relevance network.

Table 4.11: Network topology.
The topological properties of the eight networks. The networks were topologically identical but each
had different edge weights reflecting the different order of dataset integration.

Topological Property Value
Characteristic path length 3.194
Clustering coefficient 0.189
Average degree 26.9
Diameter 10

123



Figure 4.12: Ranking comparison.
The dataset rankings of the combined telomere-ageing network are closer to the telomere mainte-
nance network (orange) than to the ageing relevance network (blue).

Figure 4.13: Edge weight distribution.
The distribution of edge weights for the control and telomere maintenance networks. The control
network has a larger range of edge weights since its edges are integrated in order of magnitude,
highest confidence to lowest.0. The ageing and combined ageing-telomere network have similar
edge weight distribution and range to that of the telomere network.
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Table 4.12: Dataset rankings.
A comparison of integration order for 20 datasets in the control and relevance networks. Datasets
were integrated in order from rank 1 to 45. In the reversed ranking networks the datasets were
integrated in the opposite order, from 45 to 1.

Dataset Confidence Ageing Telomere Combined
Rank Rank (A) Rank (T) A & T Rank

Protein-peptide 1 39 17 37
Newman.11087867 2 40 45 41
Ingvarsdottir.15657441 3 19 37 24
Tong.11743162 4 42 36 40
FRET 5 45 44 45
Co-crystal Structure 6 30 21 27
Krogan.14759368 7 31 40 34
Collins.17200106 8 11 25 12
Co-localization 9 22 12 19
Co-purification 10 23 29 25
Co-fractionation 11 34 23 33
Affinity Capture-Western 12 8 7 7
Two-hybrid 13 15 9 13
Reconstituted Complex 14 17 6 15
Phenotypic Enhancement 15 10 1 6
Gavin.11805826 16 20 22 22
Far Western 17 37 38 39
Dosage Growth Defect 18 27 24 26
Biochemical Activity 19 24 13 21
Krogan.16554755 20 14 15 14

4.3.2 Network Evaluation

4.3.2.1 Functional Prediction

Leave-one-out functional prediction of annotations to the POIs was carried out for each of the rel-

evance networks, the reversed networks and the control network. The results were analysed using

ROC curves (Section 3.1.5.4). The control network produced an AUC of 0.684, 0.613 and 0.640

for ageing, telomere maintenance and the combined terms, respectively (Figure 4.15). The telomere

maintenance and combined relevance networks’ AUCs were both improved by 0.005, while the age-

ing network’s AUC increased by 0.018. Computation of the standard error of the Wilcoxon statistic,

SE(W) showed the improvements were statistically significant in each case (Table 4.13).

Table 4.13: Area under the curve.
Summary of the AUC measurements for the three relevance networks and the control. Standard error
of the Wilcoxon statistic, SE(W), measures the statistical significance of the change in AUC.

Process of Interest Relevant AUC Relevant SE(W) Control AUC Control SE(W)
Telomere Maintenance 0.618 0.00035 0.613 0.00035
Ageing 0.702 0.00177 0.684 0.00180
Combined 0.640 0.00030 0.635 0.00030
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Figure 4.14: Edge weight comparison.
Each point represents a single interaction in the control and telomere maintenance networks. The
points above the line are up-weighted in the relevance network and those below the line are down-
weighted.

The reversed control network produced an AUC of 0.684, 0.609 and 0.629 for ageing, telomere

maintenance and the combined terms, respectively. The changes in comparison to the control network

were not statistically significant in all three cases.

Conversely, the reversed relevance ranked network AUCs were significantly reduced at 0.632, 0.588

and 0.606, for ageing, telomere maintenance and the combined terms, respectively (Figure 4.15).

The drop in AUC in comparison with the control was larger than the increase in AUC produced by

the relevance networks for all three POIs, and all the changes were statistically significant.

4.3.2.2 Clustering

Clustering of the four networks was carried out using the MCL algorithm (Section 3.1.5.2) [534]. The

clusters were analysed for the presence of nodes annotated to the POI, and to other ageing-associated

processes such as DNA repair genes, mitochondrial genes and genes annotated to the Gene Ontology

cellular_compartment (GOCC) telomeric region. Additionally, nodes with unknown annotation were

noted as potential telomere maintenance genes.

The control network produced 573 clusters ranging in size from 164 nodes to one node. The relevance

networks each produced fewer clusters than the control: the telomere maintenance network had 523

clusters, the ageing network had 508, and combined ageing and telomere maintenance network had
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Figure 4.15: Receiver operator characteristic (ROC) curves.
The ROC curves for functional prediction of telomere maintenance, ageing and combined anno-
tations produced by the relevance networks in comparison with the control and reversed ranking
networks.
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Figure 4.16: Distribution of cluster size for the four networks.
Clustering was carried out using the MCL algorithm with an inflation value of 1.8. Each point
represents a single cluster. The linear trend lines, shown in black, are almost identical for each
network.

523. The cluster size distribution for all four networks was found to be scale-free (Figure 4.16).

A cluster of interest (COI) was defined as a cluster containing at least one node annotated to the

POI. Each of the relevance networks clustered into fewer clusters than the control, but those clusters

contained a higher percentage of COIs. Additionally, the average proportion of COIs in the network

increased as the minimum cluster size was raised (Table 4.14).

Similar analysis of COIs for a term unrelated to the POI, maintenance of protein location

(GO:0045185), showed that the total percentage of COIs was again higher for the relevance network

in all three cases. However, as cluster size was increased the percentage COIs slowly dropped below

that of the control.

Table 4.14: Clusters of interest (COIs).
A summary of the percentage clusters of interest (COI) for the networks in relation to the process of
interest. In all three cases the relevance networks’ proportion of COIs increased as minimum cluster
size was raised.

Network Clusters Total % COIs >2 nodes >3 nodes >4 nodes
Telomere Control 573 21.29 26.14 28.86 35.19

Maintenance (T) Relevant 523 22.37 27.73 31.75 36.92

Ageing (A) Control 573 5.06 6.14 7.02 6.53
Relevant 508 6.50 7.73 8.90 8.59

Combined Control 573 24.26 29.55 33.80 37.98
A & T Relevant 523 24.67 29.83 33.33 38.35
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Telomere Maintenance

In the telomere maintenance network there were 117 COIs. Several of these clusters contained a large

number of genes of interest. The largest COI contained 37 genes annotated to telomere maintenance

(Figure 4.17 A). Of these genes 29 were clustered together in the control network. However, the

remainder were spread between six other smaller clusters (Figure 4.17 B).

When assessed for the ageing-associated genes and unknowns, the relevance network cluster (Figure

4.18 A) contained far more genes of interest, and genes of unknown function, than the equivalent

control clusters (Figure 4.18 B). The ageing-related genes in this cluster are summarised in Table

4.15.

Figure 4.17: Telomere maintenance cluster.
Overview of the largest telomere maintenance cluster and equivalent clusters in the control network.
A. Whole COI in the telomere maintenance relevance network. B. Seven equivalent clusters in the
control network.

Figure 4.18: Telomere maintenance clustering.
The clusters from Figure 4.17 displaying nodes annotated to ageing-associated processes and un-
knowns. A. Relevant cluster. B. Largest control cluster.
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Table 4.15: Cluster annotations.
The number of ageing-related annotations and unknowns in the telomere maintenance and ageing
clusters in comparison to the equivalent control network clusters.

GO Term Telomere Maintenance Control Ageing Control
Telomere maintenance 35 27 5 1
Ageing 0 0 3 3
DNA repair 45 28 1 1
Mitochondrial 10 7 6 2
DNA damage checkpoint 10 2 0 0
Telomeric region 10 5 0 0
Unknown 25 9 4 3

Ageing

There were 33 COIs in the ageing relevance network. The genes annotated to the POI clustered to-

gether in the same small groups as they did in the control network. However, the clusters contained

a greater number of additional nodes. For instance, a cluster of three ageing genes occurred in the

relevance network together with ten genes annotated to ageing-related processes, including five ad-

ditional telomere maintenance genes and four unknowns (Figure 4.19 A). In the control network the

same three ageing genes clustered with only four genes annotated to the ageing-related processes and

three genes of unknown function (Figure 4.19 B).

Figure 4.19: Telomere maintenance clustering.
Example of the clustering of three ageing genes in the control network (A) and in the relevance
network (B).
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4.3.2.3 Application to Experimental Data

The functional prediction results and clusters of the telomere maintenance relevance and control

networks were compared with two telomere maintenance-related datasets: a microarray dataset of

genes that were up- and down-regulated during telomeric uncapping [993]; and a dataset of synthetic

interactions involving the temperature-sensitive telomeric capping mutant cdc13-1 [16] (see Section

2.6.1). In total the telomere relevance network correctly predicted 14 of the up-regulated genes, 13

down-regulated genes and 16 synthetic CDC13 interactions. The control network predicted 12 up-

regulated genes, 9 down-regulated genes and an overlapping but slightly different set of 16 synthetic

CDC13 interactions.

Several of the COIs contained genes from the datasets. In particular, three clusters contained sig-

nificant numbers of ageing-related genes and several candidates for annotations to telomere mainte-

nance:

Cluster 1

The first cluster contained 34 nodes and 75 edges (Figure 4.20). Of these genes eleven were down-

regulated during telomeric uncapping and two were involved in a synthetic interaction with CDC13.

Additionally, the cluster contained twelve genes annotated to telomere maintenance, some of which

overlapped with the telomere uncapping data. Several of the down-regulated genes (YAL021C,

YOL145C, YNL273W and YJL168C) were located between genes annotated to telomere mainte-

nance in the cluster, making them potential candidates for annotation to the telomere maintenance

GOBP.

A wide variety of GO term annotations were represented by the genes of the cluster, including a

large number of histone methylation and transcriptional genes (Table 4.16). In particular the cluster

contained the SET1 complex, a protein complex of seven proteins involved in histone methylation.

Several of the SET1 genes are annotated to telomere maintenance. The control network clustered the

genes of cluster 1 into several smaller clusters and did not cluster all members of the SET1 complex

together.

Cluster 2

The second cluster contained 12 nodes and 24 edges. Eight of the genes were down-regulated during

telomere uncapping. These genes included two nodes, YLR357W and YCR020W-B, which were

already annotated to telomere maintenance (Figure 4.21). The majority of the cluster’s genes were

annotated to chromatin remodelling and RNA elongation. There were also several DNA repair and

cell cycle genes in the cluster. Of particular note were the three down-regulated genes, YML127W,

YFR037C and YDR303C, which were connected to the two telomere maintenance genes and, there-
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Figure 4.20: Cluster 1.
A cluster of thirty-four nodes from the telomere maintenance network containing eleven down-
regulated genes, one synthetic genes and twelve telomere maintenance genes.
Node colouring: Telomere maintenance - green; Down-regulated - red; Synthetic - blue; Down-
regulated & telomere maintenance - orange; Down-regulated, synthetic & telomere maintenance -
yellow.

fore, could be considered candidates for annotation to the telomere maintenance GOBP. The control

network clustered this cluster’s genes into two smaller clusters of five genes (top) and seven genes

(bottom).

Cluster 3

The third cluster contained 18 nodes and 33 edges (Figure 4.22). Of these genes only one, YHR031C,

was down-regulated during telomeric uncapping. However, the cluster also contained five telomere

maintenance genes, two of which were directly connected to YHR031C. Additionally, the cluster

contained five mitochondrial genes in a fully connected clique (bottom right) and a large proportion of

DNA repair genes (Table 4.18). Of particular interest were the three DNA Repair genes, YDR386W,

YPL024W and YBR098W, which were located between the down-regulated gene and a telomere

maintenance gene in the cluster, making them potential candidates for annotation to the telomere

maintenance GOBP. The control network clustered the genes of this cluster into several smaller

clusters and did not connect the three repair genes to YHR031C.
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Figure 4.21: Cluster 2.
A cluster of twelve nodes from the telomere maintenance network containing eight down-regulated
genes two of which were annotated telomere maintenance genes. The control network clustered these
genes into two smaller clusters of five genes (top) and seven genes (bottom).
Node colouring: Down-regulated & telomere maintenance - orange; Down-regulated - red.

Figure 4.22: Cluster 3.
A cluster of eighteen nodes from the telomere maintenance network containing one down-regulated
gene and five telomere maintenance genes.
Node colouring: Telomere maintenance - green; Down-regulated - red.
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Table 4.16: Cluster 1 annotations.
The GOBP and GOCC annotations of cluster 1 (Figure 4.20). Only terms with more than one gene
annotation are displayed.

Term Annotations
Histone methylation 12
Telomere maintenance 12
Transcription from RNA polymerase II promoter 11
RNA elongation from RNA polymerase II promoter 9
Chromatin silencing at telomere 7
Histone deacetylation 4
Mitotic sister chromatid cohesion 4
Negative regulation of meiosis 4
Negative regulation of transposition, RNA-mediated 4
Nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay 4
Nuclear-transcribed mRNA poly(a) tail shortening 4
Regulation of transcription from RNA polymerase II promoter 4
Ascospore formation 3
Negative regulation of transcription from RNA polymerase II promoter 3
Regulation of transcription, DNA-dependent 3
DNA recombination 2
DNA replication checkpoint 2
Protein ubiquitination 2
Regulation of cell cycle 2
Response to DNA damage stimulus 2
Response to pheromone during conjugation with cellular fusion 2
Tubulin folding 2

Table 4.17: Cluster 2 annotations.
The GOBP and GOCC annotations of cluster 2 (Figure 4.21). Only terms with more than one anno-
tation are displayed.

Term Annotations
Chromatin remodeling 7
RNA elongation from RNA polymerase II promoter 7
ATP-dependent chromatin remodeling 6
Double-strand break repair 2
Double-strand break repair via nonhomologous end joining 2
Establishment and/or maintenance of chromatin architecture 2
G1/S transition of mitotic cell cycle 2
G2/M transition of mitotic cell cycle 2
Regulation of cell cycle 2
Telomere maintenance 2
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Table 4.18: Cluster 3 annotations.
The GOBP and GOCC annotations of cluster 3 (Figure 4.22). Only terms with more than one gene
annotation are displayed.

Term Annotations
Mitochondrion inheritance 5
Telomere maintenance (htp data) 5
Actin filament organization 4
DNA repair 3
Double-strand break repair via nonhomologous end joining 3
Meiotic recombination 3
Protein targeting to membrane 3
Response to DNA damage stimulus 3
RNA export from nucleus 3
DNA topological change 2
Double-strand break repair via break-induced replication 2
Meiotic DNA double-strand break formation 2
Meiotic DNA double-strand break processing 2
mRNA export from nucleus 2
mRNA-binding (hnRNP) protein import into nucleus 2
NLS-bearing substrate import into nucleus 2
Nuclear pore organization and biogenesis 2
Nucleocytoplasmic transport 2
Protein export from nucleus 2
Protein import into nucleus 2
Ribosomal protein import into nucleus 2
snRNA export from nucleus 2
snRNP protein import into nucleus 2
tRNA export from nucleus 2
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4.3.2.4 New Predictions

The Version 50 GO annotation file (March 2009) was compared to the Version 38 file (March

2008) to identify genes that were annotated to ageing (GO:0007568) and telomere maintenance

(GO:0000723) after the networks were integrated in March 2008 and which, therefore, had no in-

fluence on the edge weights of the relevance networks. Eighteen new annotations to ageing were

identified. However, the number of annotations to telomere maintenance had been reduced from 276

to 68, with only five new annotations.

Functional prediction of ageing and telomere maintenance annotations was carried out using the

ageing, telomere maintenance and control networks. The predictions were compared with the new

annotations to assess the networks’ predictive power. Interestingly, prediction performance was ex-

tremely poor, with only three annotations predicted by the relevance networks and five predicted by

the control (Table 4.19). Only one annotation to telomere maintenance was predicted by both the

control and relevance networks.

The Version 38 clusters for the telomere maintenance, ageing and control networks were then com-

pared with the new ageing and telomere maintenance annotations to assess how well the newly-

annotated genes clustered with other annotations to the POIs. In the majority of cases, (4/5 for

telomere maintenance and 12/18 for ageing) the new annotations were clustered with at least one

other annotation to the POI in both the relevance networks and the control networks. However, the

control network clusters were smaller and contained fewer ageing-related genes than the relevance

clusters.

For example, the telomere maintenance annotations for the genes YJR078W and YPL157W were

not predicted by either the relevance or control networks, but were clustered with ageing-related

genes in the telomere maintenance relevance network. YJR078W clustered with a large number of

mitochondrial genes and a single ageing gene in the relevance network (Table 4.20). In the control

network YJR078W clustered with a single mitochondrial gene and the same ageing-related gene

(Table 4.21). Additionally, there were a significant number of unannotated genes in the relevance

network cluster. YPL157W was clustered with a large number of nuclear, ribosomal and mitochon-

drial genes, including one gene annotated to telomere maintenance, in the telomere maintenance

relevance network (Table 4.22). However, in the control network, this gene clustered with a single

gene of unknown function.
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Table 4.19: Prediction performance for new annotations.
The ageing relevance network correctly predicted two ageing annotations, while the control also
predicted two different ageing annotations. The telomere maintenance relevance network correctly
predicted only one telomere maintenance annotation, while the control correctly predicted three.

Term Gene Predicted
Control Relevance

Ageing

YBR140C
√

X
YCR084C X X
YDR310C X

√

YGL035C
√

X
YIL065C X X
YIL155C X

√

YKL085W X X
YKL106W X X
YLL001W X X
YLL026W X X
YLR318W X X
YLR319C X X
YLR368W X X
YOR005C X X
YOR360C X X
YOR384W X X
YPL157W X X
YPR024W X X

Telomere Maintenance

YJL092W
√ √

YJR078W X X
YLR071C

√
X

YNL139C
√

X
YPL157W X X
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Table 4.20: Relevance network cluster annotations.
The GOBP and GOCC annotations represented in the YJR078W cluster of the telomere maintenance
relevance network.

Term No. Annotations
Biological process unknown 7
Mitochondrion 6
NAD biosynthetic process 6
Cytoplasm 5
Nucleus 4
Cellular component unknown 3
Aerobic respiration 1
Chromatin silencing at rDNA 1
Chromatin silencing at telomere 1
Integral to membrane 1
Mitochondrial inner membrane 1
Mitochondrial outer membrane 1
Plasma membrane 1
Replicative cell aging 1
Ribosome assembly 1
Ribosome biogenesis and assembly 1
Translation 1

Table 4.21: Control network cluster annotations.
The GOBP and GOCC annotations represented in the YJR078W cluster of the control network.

Term Annotations
Nucleus 3
Cytoplasm 2
NAD biosynthetic process 2
Biological process unknown 1
Chromatin silencing at rDNA 1
Chromatin silencing at telomere 1
Endocytosis 1
Mitochondrial outer membrane 1
Mitochondrion 1
Replicative cell aging 1
Ribosome biogenesis and assembly 1
Threonine metabolic process 1
Cellular component unknown 1
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Table 4.22: Relevance network cluster annotations.
The GOBP and GOCC annotations represented in the YPL157W cluster of the telomere mainte-
nance relevance network. In the control network YPL157W clustered with a single gene of unknown
function.

Term Annotations
Nucleolus 8
Ribosome biogenesis and assembly 7
rRNA processing 7
Small nucleolar ribonucleoprotein complex 3
Biological process unknown 2
Box H/ACA snoRNP complex 2
Mitochondrion 2
Nucleus 2
Box H/ACA snoRNA 3’-end processing 1
Box H/ACA snoRNP assembly 1
Cell septum 1
Cytokinesis, completion of separation 1
Extracellular region 1
Fungal-type cell wall 1
Mitochondrial outer membrane 1
Nucleolus organization and biogenesis 1
Nucleoplasm 1
Plasma membrane 1
Proton transport 1
Regulation of pH 1
Ribosomal large subunit assembly and maintenance 1
Ribosome 1
rRNA modification 1
snoRNA metabolic process 1
snRNA capping 1
Telomere maintenance 1

4.3.3 Discussion

The RelCID technique described and evaluated here incorporates a measure of process-relevance

into probabilistic network integration, therefore addressing the third objective of this project (see

Section 1.5). Three relevance networks have been created using two ageing-related POIs; one with

relevance to the GO term ageing, one to the term telomere maintenance, and a combined net-

work with relevance to both terms. The shortening of telomeres over time has been linked to the

ageing process [972, 982, 997, 999, 1001–1003] and therefore some overlap between the ageing and

the telomere maintenance networks was expected. The overlap between the terms should therefore

be enhanced in the combined network. The networks were evaluated by comparison with a control

network integrated without a measure of relevance [49].
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The three relevance networks naturally had the same topology as the control since they were inte-

grated using the same datasets. However, the edges weights differed, reflecting the order of dataset

integration. In the control network the datasets are ranked in order of confidence score, with the

highest score ranked first [49]. In the relevance networks, although the scores integrated are still

measures of dataset confidence, the datasets are ranked prior to integration in order of relevance to

the POI, with the most relevant first. Therefore, in the control network highly-weighted edges have

high confidence, but in the relevance network the highly weighted edges have both high confidence

and high relevance.

Lower ranked datasets are sequentially down-weighted by the integration step. In the control net-

work the highest-ranking dataset is Protein-Peptide, which is integrated without modification. In

the telomere maintenance network this dataset is ranked 17th and is therefore down-weighted at the

integrated step. Conversely, the Phenotypic Enhancement data, ranked top for telomere maintenance

relevance, will be given a higher weighting in the telomere maintenance network than in the control.

The rank order of datasets in the combined network was far closer to that of the telomere mainte-

nance network than the ageing network, since telomere maintenance contributes approximately 78%

(276 of 355 genes) of the combined POI.

Importantly, while the order of integration differs between the datasets, the final scores themselves

are calculated using the dataset confidence scores. Consequently, datasets with high relevance but

low confidence will have a high rank, but their contribution to the final edge weight will be based on

their confidence score, and hence still take into account the reliability of the data. Since the control

integration represents the highest possible sum of the confidence scores, the weights on the edges of

the relevance networks are smaller and have a lower range. However, the relative weighting of edges

within the relevance networks reflects the level of relevance of its edges, with low relevance edges

down-weighted, and high relevance edges up-weighted.

The RelCID integration schema is extremely flexible and can be used with any existing confidence

scoring scheme and any Gold Standard dataset [97, 669]. For instance, the 27 datasets lost due

to negative scores against the KEGG Gold Standard may score well against an alternate gold stan-

dard. The integration method is also easily applicable to any existing annotation schemes, such as

MIPS FunCat [279], GO [100] or KEGG PATHWAYS [99] annotation. Additionally, unlike previous

methods for process-relevant network integration, no data are lost, even in unannotated areas of the

network. Like all weighted networks, the relevance networks produced by this schema can be subject

to an edge weight cut-off to identify up-weighted edges.

In order to assess the networks performance several existing global network evaluation techniques

were adapted for use with a single POI (Objective 4, Section 1.5). The performance of the rele-
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vance networks was compared against that of the control network in several ways. First, leave-one-

out functional prediction of known POI annotations was carried out using the Maximum Weight

algorithm [57]. This algorithm propagates annotations along the highest weighted edge surround-

ing a node. While more complex global functional prediction algorithms have been developed

[92, 580, 894, 917, 918], the local nature of this algorithm provides a simple method with which

to directly compare the networks’ performance and the effect of different edge-weighting systems.

The algorithm’s performance was statistically significantly better on the three relevance networks

than on the control network.

As a further control, four networks were also integrated with reversed confidence and relevance inte-

gration ranks and used for functional prediction. Reversal of the control rankings had little effect on

prediction performance. However, reversal of the relevance ranks significantly reduced performance

in relation to the POIs. Consequently, the relevance of the datasets appears to be more important in

functional prediction of a single process than the reliability of the datasets. In other words, if the

datasets have no relevance to the POI it appears that the order of integration has little effect on pre-

diction of that POI. Therefore, the relevance-ranked integration technique developed here provides

a method which increases the prediction accuracy of the networks by taking dataset relevance into

account, and as such is a valuable extension to standard data integration techniques for functional

prediction.

The networks were also clustered using the MCL algorithm [534]. Clustering allows large networks

to be broken down into manageable pieces for visual analysis and also identifies groups of associated

genes. MCL utilises the edge weights of a network allowing direct comparison between performance

of the relevance and control networks. The relevance networks produced fewer clusters than the

control network, with genes annotated to the POI in larger clusters than in the control network.

Genes annotated to the POI which appear in separate clusters in the control network co-occur in the

relevance networks’ clusters, making their relationship to each other, and to other genes, easier to

observe and investigate. In addition, a larger range of ageing-related genes and unknowns were found

clustered with the POI in the relevance networks than in the control clusters. Further, the clusters

containing genes annotated to telomere maintenance in the relevance network had higher propor-

tions of genes from two telomere capping-related datasets than the control clusters. The telomere

uncapping-related datasets were also predicted with more accuracy by the relevance networks than

by the control. Telomere uncapping triggers a range of cellular processes, some of which, such as

cell cycle arrest, are not directly associated with telomere biology [16, 993]. Therefore, the telom-

ere maintenance relevance network provides a method to identify the telomere-related areas of the

dataset by emphasising the relevant information within the network.
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While the performance of the relevance networks was improved over the control in relation to known

annotations to the POIs, PFINs are intended to generate new hypotheses and guide future exper-

iments. Therefore, in the final stage of evaluation the networks were used to produce functional

predictions to the POIs which were then compared with newer, up-to-date annotations. Since the

new annotations were not available at the time of integration they have no influence on the edge

weights of the relevance networks, allowing unbiased evaluation. Functional prediction performance

was poor for all the networks, including the control. However, clustering improved identification of

the newly annotated genes. The relevance networks clustered the genes in larger clusters containing

a higher proportion of ageing-related genes than the control network.

The gene annotations to ageing and telomere maintenance had changed significantly between

March 2008 and March 2009. The number of annotations to each GO term is naturally expected to

increase over time as new data are generated. However, this was not the case for both terms; ageing

had gained 18 annotations but telomere maintenance had lost 213 annotations with only 5 new

annotations added. This accounts for 76.45% of the annotations used to generate the relevance net-

work in March 2008. The reduction of telomere maintenance annotations is likely to have adversely

affected the results of this evaluation since the datasets relevance scores were based on the larger set

of annotations.

High-quality biological databases, such as GO, are constantly changing due to the curation process

[272–275]. While databases are expected to increase in size over time, the addition of data is only

one aspect of the curation process. In addition, curators must also identify and remove incorrect data

and change their database schemas to reflect current biological knowledge. These changes may have

a significant impact on integrated analyses, particularly if they occur in Gold Standard databases.

While the additional information provided by the relevance networks provides greater scope to draw

inferences from the data, changes to the source data can affect network performance. In this case

a significant number of the annotations used to generate the relevance network were subsequently

removed and, therefore, the network’s performance could not accurately be assessed. However, the

extent to which the database changes affects performance remains unclear. The next chapter presents

an investigation of the effect of database changes on PFIN performance by systematically comparing

network performance between all archived versions of the source databases.
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Chapter 5

Evaluation of the Effect of Database

Curation on PFIN Performance in

Saccharomyces cerevisiae

The quality and performance of any probabilistic integrated network is dependent upon the quality

of its component data, and of the Gold Standards chosen to evaluate it. Therefore, it is essential that

the data sources chosen are accurate and up-to-date, reflecting current biological knowledge [264].

Functional prediction for genes with known annotations can be used to evaluate PFIN performance

(see Section 2.5.5). However, since many functional annotations are themselves derived from known

functional interaction data, it is possible that the ability of the network to predict known annotations

is biased. Therefore, evaluation using data not present at the time of integration can more accurately

assess the network’s ability to predict unknown annotations.

In the previous chapter (Section 4.19), up-to-date GO annotation data was used to evaluate networks

integrated with previous dataset versions. However, the GO database had significantly changed over

time and, consequently, direct comparison and evaluation using these data was inconclusive.

Well-curated databases, such as KEGG, BioGRID and GO, change all the time as new data are added.

However, data addition is only one aspect of curation. Highly-curated databases are constantly evolv-

ing, in both content and structure, to reflect current biological knowledge [297]. It is often necessary

to edit or remove data when errors or inconsistencies are identified, often following community feed-

back, or when data are found to be incorrect in light of new studies [266]. For instance, false positives

in high-throughput datasets can later be identified by less error-prone small-scale studies.

Database schemas are also subject to change. In the case of annotation data such as GO, identifiers

may be added, removed or modified. These changes may in turn necessitate the addition, removal or
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reassignment of annotations to these identifiers, such as the changes observed in Section 4.19.

It is commonly assumed that the quality of interaction and annotation data improves as databases

grow and change, particularly for manually curated databases. This assumption is generally unwrit-

ten; it is implicit in our understanding of the scientific process that the more data available the more

can be learned from it. The validity of this assumption can be questioned, given the exponential

growth in raw data, coupled with the high false positive rate estimated for high-throughput data (see

Section 2.4.1).

Integrated network theory is based on the premise that the “whole is greater than the sum of its parts”

[1158], so it follows that the more high quality the parts, the greater the whole. For instance it would

be expected that a PFIN integrated using data from 2008 would perform better than one integrated

in 2007. However, this may not be the case since structural changes to the databases, such as those

presented in the previous chapter, could affect interpretation of the data.

This chapter describes a systematic evaluation of the changes in four manually-curated databases

and evaluates the effect of these changes on PFIN performance in relation to the ageing process. In

Section 5.2 the databases’ changes are evaluated. The effect of the changes on PFIN performance is

then assessed in Sections 5.3-5.4. Finally, the RelCID integration method described in Section 4.2

is applied to the same data to investigate how the use of process-relevance during integration may

improve network performance over time.

5.1 Source Data

All available versions of the BioGRID S. cerevisiae data files were downloaded from the BioGRID

archive1 [276]. In total 36 monthly versions were available, ranging from V17 released in July 2006,

to V52 on 1st May 2009. V27 and V28 were released on the same date and contained the same data.

V27 was therefore discarded, resulting in a final set of 35 BioGRID data files. The data from each

file was split using the 100 interaction threshold (Section 3.1.1) into HTP and LTP datasets. The

datasets were named using the standardised format described in Section 3.1.1.

The KEGG PATHWAY database was used as the source of Gold Standard data [277]. KEGG data

files are archived on a different release schedule from that of BioGRID. For instance, the 29/06/07

KEGG version was current for V17-V19 of BioGRID (Figure 5.1). Therefore, those versions of the

S. cerevisiae PATHWAY files that were current on the release data of each BioGRID version were

selected from the KEGG FTP archive2. In total 12 KEGG versions were available at approximately

1ttp://www.thebiogrid.org/downloads.php
2http://www.genome.jp/kegg/download/
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three-month intervals from June 2006 to March 2009. Gold Standards were constructed from each

file by selecting all possible pairs between genes annotated to the same pathway, as described in

Section 3.1.1.

Two files were downloaded to provide the annotation information for relevance scoring and func-

tional prediction: the Gene Ontology from the GO Consortium archive3, and the SGD-GO annotation

mapping from the SGD archive4. These files are updated daily and are archived at regular intervals

(GO monthly and SGD approximately weekly). As the SGD annotations are dependent on the Gene

Ontology structure, the two files were treated as a single GO data source. The GO and SGD file

versions that were current on the release data of each BioGRID version were downloaded, resulting

in a total of 35 GO-SGD file pairs corresponding to the 35 BioGRID versions (Figure 5.1).

For ease of analysis the GO files were named using the corresponding BioGRID version num-

ber. Since the KEGG file versions span several BioGRID files they were named using the earli-

est of the corresponding versions. Three ageing-related POIs were chosen for analysis; ageing

(GO:0007568), DNA repair (GO:0006281) and telomere maintenance (GO:0000723) follow-

ing discussion with colleagues at CISBAN5.

5.2 Database Changes

5.2.1 BioGRID

There were 35 versions of BioGRID available for download, ranging from V17 (June 2006) to the

most recent V52 (April 2009). The number of datasets increased from 63 to 88 between these ver-

sions (Figure 5.2 A). During this interval 26 new HTP datasets were added and one HTP dataset

(Ito.10655498) was removed. In addition, one of the HTP datasets, Stevens.11804584, was modified

by the removal of 75 interactions. This modification reduced this dataset’s size below the 100-

interaction HTP threshold, resulting in the remaining interactions being added to the LTP dataset for

the following versions (V23-V52). A new LTP experimental type, PCA, was also added producing a

new LTP dataset. Addition and removal of datasets is summarised in Figure 5.3.

3ftp://ftp.geneontology.org/pub/go/
4http://downloads.yeastgenome.org/
5
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Figure 5.2: Changes to the BioGRID dataset for Saccharomyces cerevisiae and its coverage of
the genome between July 2006 and May 2009.
A. Number of datasets. B. Number of total and unique interactions. C. Number of genes.
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The total number of interactions in the BioGRID dataset increased steadily with the only decrease

occurring in June 2007, corresponding to the removal of the Ito.10655498 dataset. The number of

unique interactions in BioGRID increased in a similar pattern (Figure 5.2 B) with the percentage of

unique interactions fluctuating between 61% and 66%.

The number of genes covered by the data fluctuated between 5,300 and 5,500 (Figure 5.2 C) with

a significant fall in June 2007, corresponding with the removal of the Ito.10655498 dataset, and a

significant increase in May 2008, corresponding to the addition of four new HTP datasets (McClel-

lan.17923092, Mitchell.18212056, Oeffinger.17922018 & Schoner.18194531).

The LTP datasets all gradually increased in size as new interactions were added, while the majority

of the HTP datasets did not change in size by more than 10 interactions between their earliest and

latest versions. There were two exceptions amongst the HTP datasets in addition to the reduction of

the Stevens.11804584 dataset from HTP to LTP (Figure 5.4). In the first, the Ito.11283351 dataset

was significantly reduced in size in June 2007. This change corresponded with the removal date of

another Ito.10655498 dataset. An enquiry to the BioGRID support team revealed that these changes

followed feedback about these datasets: “. . . 11283351 contains two sets of interactions, core and

non-core. We were informed that only the core set is reliable and removed the rest. The 10655498

publication contained interactions equivalent to the non-core and was also removed” [1159]. The

second significant HTP dataset change occurred at January 2009 where 128 interactions of the Mc-

Clellan.17923092 dataset were removed from the database. This change corresponded with the drop

in total coverage of genes in the same BioGRID version (Figure 5.2 C).

5.2.2 KEGG

There were 12 versions of KEGG available for download within the date range of the available

BioGRID versions. The number of genes covered by the KEGG datasets increased from 1,189 to

1,274 in this time, with the greatest coverage being 1,294 genes in September 2008. The number of

pathways in KEGG increased from 99 to 108, with the greatest number of pathways being 115, also

in September 2008. The distribution of genes per pathway and of pathway annotations per gene did

not change significantly between KEGG versions (Figure 5.5).

The Gold Standard datasets for this study were generated by selecting all possible pairs between

genes annotated to the same pathway in that KEGG version (Section 3.1.1). The number of pairs of

genes in the Gold Standard dataset fluctuated between 39,000 and 42,000. The number of connected

components in the Gold Standard (groups of genes connected to each other, but not to genes outside

the component) varied between 10 and 13 (Table 5.1). The change in the number of genes covered
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Figure 5.4: Significant changes in BioGRID dataset size from June 2006 to April 2009.
The LTP datasets all gradually increase in size. The majority of HTP datasets do not change by
more than ten interactions and are not shown. Two significant changes (>100 interactions) occur in
the HTP data: the Ito.11283351 dataset is reduced from around 4,000 interactions to less than 1,000
interactions, and the McClellan.17923092 dataset is reduced by 128 interactions.

Figure 5.5: KEGG PATHWAY genes and pathways.
The distributions of genes and pathways in the KEGG database. Each point represents a single
KEGG version. A. The number of genes per pathway. B. The number of pathway annotations per
gene.

150



by KEGG did not follow the same pattern as the pairs. For example, between March 2007 and June

2007 the number of genes covered by KEGG increased by one while the number of pairs in the Gold

Standard dropped by approximately 200 (Figure 5.6). Similarly, between December 2008 and March

2009, the size of KEGG increased by two genes, while the number of pairs decreased by around 450,

and the connected components of the Gold Standard decreased by one. Comparison of the earliest

KEGG Gold Standard with the latest version showed that the Gold Standards overlap by 1,127 genes

and 35,201 pairs, with 85 genes unique to the earliest version (Figure 5.7) and 235 genes unique to

the most recent (Figure 5.8).

Table 5.1: Summary of the Gold Standard produced from each KEGG version.
The changes in Gold Standard for each available version of KEGG. Due to the different release
schedule of the KEGG archive each KEGG version corresponds to several BioGRID versions. For
the remainder of this chapter each KEGG file is referred to by the earliest version number it covers.

Data Versions Total Pathways Total Connected
Genes Pairs Components

29/06/2006 V17-V19 1189 99 39770 10
29/09/2006 V20-V22 1189 100 39726 10
27/12/2006 V23-V25 1191 99 39733 10
28/03/2007 V26-V29 1200 99 39732 10
25/06/2007 V30-V32 1201 99 39534 10
24/09/2007 V33-V35 1206 101 39567 11
03/12/2007 V36-V38 1214 105 39715 11
24/03/2008 V39-V41 1238 108 40559 13
30/06/2008 V42-V44 1263 113 41012 12
29/09/2008 V45-V47 1294 115 41378 12
22/12/2008 V48-V50 1272 112 39984 12
30/03/2009 V51-V52 1274 108 39544 11

Figure 5.6: Comparison of Gold Standard size between KEGG versions.
Changes in the number of genes and pairs covered by the Gold Standards produced from the available
KEGG versions.

151



Figure 5.7: Version 17 unique genes.
The genes unique to the V17 KEGG Gold Standard when compared with the most recent V51 Gold
Standard. Genes are represented by pink circles and interactions by blue lines. Only connected genes
(79 of 85) are displayed.

Figure 5.8: Version 51 unique genes.
The genes unique to the V51 KEGG Gold Standard when compared with the V17 Gold Standard.
Genes are represented by pink circles and interactions by blue lines. Only connected genes (220 of
235) are displayed.
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5.2.3 Gene Ontology

The numbers of child terms associated with each of the three chosen POIs are presented in Figure

5.9 A. Since GO is structured as a hierarchy, genes annotated to child terms are automatically anno-

tated to the parent term and are, therefore, used in functional prediction (see Section 3.1.4.2). The

number of telomere maintenance terms increased from nine terms to 25 terms with two changes

occurring in September 2006 and January 2009. DNA repair terms increased from 72 to 81 in

a series of changes, including the addition and removal of several child terms between November

2006 and January 2007. The ageing-associated terms changed very little with only two changes: at

April 2007 the term GO:0010261 (organ senescence sensu Magnoliophyta) was reassigned

as an alternate ID for term GO:0010260 (organ senescence) and, in September 2008 a new term,

GO:0034652 (extrachromosomal circular DNA localization during cell ageing) was

added as a child term.

The number of genes annotated to each of the test terms is presented in Figure 5.9 B. The telom-

ere maintenance annotations changed very little until August 2008, when 110 annotations were

removed. The Gene Ontology Consortium records6 indicated that these annotations were based on

studies by Gatbonton and colleagues [992] and Askree and colleagues [978]. A decision was made by

the curators to represent the data from these studies as phenotypes rather than annotations, resulting

in the drop in number of telomere maintenance annotations.

Figure 5.9: Gene Ontology terms and annotations associated with the three test terms.
A. The number of child terms in the GO hierarchy as the Gene Ontology version changes. B. The
number of annotations to the three test terms in the SGD database for each version.

6http://wiki.geneontology.org/index.php/SGD_GO_HTP_guidelines
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The DNA repair annotations rose steadily, with the only decrease occurring in February 2008 when

one annotation was removed. The ageing annotations also increased steadily with a single decrease

of one annotation at June 2008.

5.3 Evaluation Strategy

Datasets were integrated using the two-step Bayesian statistics approach as described in Chapter 3.

The resulting PFINs were evaluated using guilt-by-association for the functional prediction of the

three POIs to produce ROC curves (see Section 3.1.5.4) [921].

A triplet of source datasets was required to build and evaluate each PFIN: a BioGRID file as the data

source; a KEGG file as a Gold Standard against which to score the datasets; and GO annotation data

for functional prediction (Figure 5.10). Each BioGRID-KEGG-GO triplet produces three ROC AUC

measurements, representing the PFINs’s functional prediction power for the three test GO terms.

In order to analyse the effects of data curation on the PFIN performance a three-stage approach was

used as detailed below. In the initial two stages networks were integrated using the control network

Figure 5.10: Overview of the integration and evaluation method.
Each PFIN is produced using four data sources-BioGRID, KEGG, Gene Ontology and SGD-shown
as blue squares. Individual datasets are first extracted from the BioGRID database, and each is scored
against the KEGG Gold Standard. Next, a weighted sum of the scores for each edge is calculated to
produce the PFIN. The Gene Ontology and SGD annotation files are treated as a single data source,
since they are dependent upon one another. Finally, leave-one-out functional prediction of known
annotations is used to produce a ROC curve for evaluation.

154



integration method of Lee and colleagues, with no element of relevance (Section 3.1.4.4).

First, the combined effect of the changes to all three data sources over time was assessed using the

BioGRID-KEGG-GO triplets that were current on each BioGRID release date. In total 35 PFINs

were produced, one for each BioGRID version (V17-V52) scored using the corresponding KEGG

file and evaluated using the corresponding GO file. This procedure produced 35 AUC measurements

for each test GO term, each of which represented a monthly time-point in the curation of the three

data sources (Figure 5.11 A).

In the second stage of evaluation, the contribution of each individual data source to the overall change

in performance was assessed. PFINs were integrated and evaluated in which two data sources in the

triplet were kept static and the third was iterated through all its available versions. This process

was carried out in two temporal directions (oldest to newest and newest to oldest) to investigate the

difference between the oldest and the newest file versions.

First, the oldest available version (V17) was used for the two static files, whilst the third file was

varied through V18 to V52. These triplets of data sets were referred to as historic controls (HC).

Each triplet in the group represented a monthly time-point of the varying data source (Figure 5.11 B).

Fewer KEGG files than GO and BioGRID files were available, so there were fewer triplets required

when the KEGG file was varied.

Figure 5.11: Examples of the data file triplets used in this study.
A. In the first stage of evaluation, triplets corresponding to the version dates of each BioGRID file
were used to analyse the combined changes to the data sources by integration and evaluation of a
PFIN. Each triplet represents a time-point in the curation of all three data sources. In the next stage
of evaluation, groups of PFINs were generated in which two data sources were kept static while
the other was changed through all its available versions. B. In the HC BioGRID study PFINs were
produced using each BioGRID version and the V17 KEGG and GO files. C. In the RC BioGRID
study PFINs were produced using each BioGRID version and the V52 KEGG and GO files. In both
cases the static files are outlined in bold. The HC and RC evaluations was then repeated for the
KEGG and GO files.
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Next, the process was repeated in the reverse direction with the most recent file (V52) used for the

two static files and the third file varied backwards through V51-V17. These triplets were referred

to as recent controls (RC). Each triplet in the group represented also a monthly time-point of the

varying data source (Figure 5.11 C).

Therefore, six groups of networks were produced, three historic controls and three recent controls

(Table 5.2). The use of the two control file versions allowed comparison of the oldest and newest

file versions (Figure 5.12). The datafile triplets summarised in Figure 5.11 are presented in full in

Appendix G.

In the final stage of evaluation networks were generated with relevance to the three POIs using

the RelCID integration method described in Section 3.1.4.5 and the file triplets described in Figure

5.11A. This procedure produced 35 additional relevance networks and AUC measurements for each

POI, each of which represented a monthly time-point in the curation of the three data sources.

Two relevance score cut-offs were also chosen and PFINs integrated using file triplets of Figure 5.11

A, but excluding those datasets scoring above the cut-offs. This procedure produced a further 70

relevance networks and AUC measurements for each POI, which also represented a monthly time-

point in the curation of the three data sources.

Table 5.2: Summary of the BioGRID-KEGG-GO triplets.
The file versions comprising the six groups of triplets used in this study. In total 158 PFINs were inte-
grated and evaluated. The KEGG and GO file versions are numbered by the corresponding BioGRID
version as set out in Figure 5.1.

Control KEGG version GO version BioGRID version Number of PFINs
BioGRID HC 17 17 18 – 52 34
KEGG HC 18 – 52 17 17 11
GO HC 17 18 – 52 17 34
BioGRID RC 52 52 17 – 51 34
KEGG RC 17 – 51 52 52 11
GO RC 52 17 – 51 52 34

5.4 Results

5.4.1 Combined Data Source Changes

Thirty-five versions of BioGRID, spanning a three-year period from July 2006 to May 2009, were

available for S. cerevisiae. PFINs were integrated by scoring each version using the KEGG PATH-

WAYS version available at the same date (Appendix G). The PFINs ranged in size from 43,809

interactions to 74,234 interactions, with a gradual increase in size over time corresponding to the

increase in size of the BioGRID dataset. The PFINs were evaluated by leave-one-out functional
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Figure 5.12: Overview of the HC and RC networks.
PFINs were integrated and evaluated in which two data sources in the triplet were kept static (outlined
in bold) while the third was iterated through each of its available versions. A. In the historic control
(HC) V17 is used for two of the triplet files while the other is varied. B. In the recent control (RC)
V52 is used for two of the triplet files while the third is varied. In these examples, the BioGRID data
file is varied, allowing comparison of the RC and HC file versions’ performance. This procedure was
then repeated for the KEGG and GO files, respectively.
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Figure 5.13: The combined effect of changes to the three data sources.
The functional prediction performance of the PFINs using the three test GO biological processes as
all three data sources change.

prediction of known GO annotations current at the date of the BioGRID file. Three GO biological

process terms were chosen for the evaluation: ageing (GO:0007568), DNA repair (GO:0006281)

and telomere maintenance (GO:0000723). The AUC of the ROC curves was calculated for each

PFIN in relation to the three test terms (Figure 5.13).

The AUC for telomere maintenance fluctuated between 0.6009 and 0.6159 from July 2006 until

August 2008 when it increased to a value between 0.7812 and 0.7983 for the remaining versions. The

highest scoring AUC for telomere maintenance was at September 2008, the lowest at September

2007, and the overall increase between first and last versions was 0.1815. The DNA repair AUC

fluctuated between 0.8296 and 0.8635 for all versions, with the highest value at March 2008, the

lowest at August 2006, and an overall increase of 0.0203. The AUC for ageing fluctuated between

0.6724 and 0.7059, with the highest value at December 2008, the lowest at November 2007, and an

overall increase of 0.0010 between V17 and V52.

The standard error of the Wilcoxon statistic showed that all of the changes for telomere main-

tenance and DNA repair were statistically significant. However, while the range of changes for

ageing was significant, the overall change between first and last versions was not (Table 5.3).

Table 5.3: Summary AUC measurements for the combined PFINs.
A summary of the AUC attained for the three test terms including range and Standard Error of the
Wilcoxon statistic, SE(W). Statistically significant results are highlighted in bold.

GO Term V17 V52 V52-V17 High Low Range SE(W) V17 SE(W) V52
Telomere
Maintenance

0.6072 0.7887 0.1815 0.7984 0.6009 0.1975 0.0004 0.0011

DNA Repair 0.8302 0.8506 0.0203 0.8635 0.8296 0.0339 0.0004 0.0003
Ageing 0.6824 0.6835 0.0010 0.7059 0.6724 0.0335 0.0020 0.0013
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5.4.2 Individual Data Source Changes

In order to assess the individual data sources contribution to the changes in functional prediction

performance, multiple PFINs were then integrated with a different version of one of the source files

used for each network. Two control datasets were used: a historic control (HC) corresponding to

V17, and a recent control (RC) corresponding to V52 (see Section 5.3).

5.4.2.1 BioGRID

PFINs were constructed and evaluated for all of the available BioGRID versions using the control

KEGG and GO files, resulting in 34 HC PFINs and 34 RC PFINs (Appendix G). The telomere

maintenance AUC for the recent control PFINs was approximately 0.2 greater than that of the

historic control PFINs for all BioGRID versions. The highest AUC attained for this term was at

March 2007 while the lowest of was at September 2007. The historic control PFINs showed a slight

overall decrease of 0.0075, while the recent control increased by 0.0130 (Figure 5.14).

Using DNA repair as the test term the recent control PFINs produced a greater AUC then the historic

control at all time points. The highest AUC for DNA repair was at September 2008 using the recent

control and the lowest at July 2007 using the historic control. Overall the historic control AUC

increased by 0.0001 and the recent control by 0.0177 (Figure 5.14).

The ageing AUC fluctuated between 0.6 and 0.7 in both cases with the historic control PFINs

performing slightly better until March 2008, after which the recent control performed better. The

highest AUC was attained at December 2008 using the recent control; the lowest at August 2007,

also using the recent control. The historic control showed a slight overall decrease of 0.0117 while

the recent control improved by 0.0285 (Figure 5.14).

In all three cases the range of changes to the AUC was statistically significant. However, while

the overall decrease in the historic control telomere maintenance and ageing AUCs was also

significant, the increase for DNA repair was not. The overall AUC increase for the recent control

PFINs was significant in all three cases (Table 5.4).

The integration method used to generate the PFINs ranked the datasets based on their confidence

score prior to integration. The datasets were then integrated in order of this score, from highest to

lowest, with successively lower weightings given to each dataset. Thus, the addition or removal of

BioGRID data affected the order of integration. Datasets scored greater than 0.0 if they tended to link

genes in the same pathway. Several of the datasets did not score using either of the Gold Standards

and were therefore not used for PFIN integration (see Section 4.3.1). Three datasets that scored using
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Figure 5.14: PFIN performances for the three test GO terms as the BioGRID file changes.
Each graph depicts the changes in functional prediction performance of the PFINs as the BioGRID
version is changed against the historic control V17 and recent control V52 files.
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Table 5.4: Summary statistics for BioGRID network area-under-curve.
Summary of the AUC gained for the BioGRID data against the historic and recent control datasets,
including the overall difference, range of change and Standard Error of the Wilcoxon statistic, SE(W).
Statistically significant results are highlighted in bold.

PFINs V17 V52 V52-V17 High Low Range SE(W) V17 SE(W) V52
HC Telomere
Maintenance

0.6072 0.5997 -0.0075 0.6072 0.5931 0.0141 0.0004 0.0004

RC Telomere
Maintenance

0.7757 0.7887 0.0130 0.8032 0.7757 0.0274 0.0012 0.0012

HC Repair 0.8302 0.8303 1E-04 0.8329 0.8228 0.0101 0.0004 0.0004
RC Repair 0.8329 0.8506 0.0177 0.8596 0.8329 0.0268 0.0003 0.0003
HC Ageing 0.6824 0.6707 -0.0117 0.6939 0.6475 0.0463 0.0020 0.0020
RC Ageing 0.6549 0.6835 0.0280 0.6989 0.6390 0.0599 0.0014 0.0013

the recent control (Davierwala.16155567, Loeillet.15725626 and Pan.15525520) did not score using

the historic control.

Dataset additions, removals and significant log-likelihood score (LLS) changes (>1.0) using the re-

cent control, are presented in Figure 5.15. The majority of LTP datasets increased in confidence

score over time with the exception of the Dosage Growth Defect dataset, which decreased. The

Ito.11283351 dataset’s score increased by 1.64 at the date its non-core data was removed (Figure

5.4). The datasets scored using the historic control showed a similar pattern of changes although the

Ito.11283351 score increase was lower, in this case at 1.48.

The changes in LLS altered the final rankings of the datasets and, therefore, the order of their inte-

gration. Table 5.5 summarises the top ten ranked datasets for BioGRID versions V17 and V52 when

scored using the recent control. Collins.17200106 and the evidence category PCA (Protein Com-

plementation Assay) were new datasets added to the BioGRID database after V17. Both of these

datasets scored highly. Consequently, while the LLS scores for Biochemical Activity, Reconstituted

Complex and Newman.11087867 changed very little, they dropped down the ranks due to the ad-

dition of the higher scoring datasets. Dosage Growth Defect also dropped down the ranks due to a

decrease in its score as the dataset grew (Figure 5.15). Inversely, FRET and Protein Peptide were

LTP datasets that did not score highly at V17 but increased in score as BioGRID grew. In fact, the

FRET dataset scored 0.0 until June 2008. A similar pattern of changes to the top ranked datasets was

seen when scored using the historic control.

5.4.2.2 KEGG

PFINs were integrated for each KEGG version in turn using the two controls. In total 22 PFINs

were produced: 11 historic controls and 11 recent control PFINs (Appendix G). The telomere

maintenance AUC was approximately 0.2 greater for the recent control for all KEGG versions.
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Figure 5.15: Summary of significant changes in LLS for the RC BioGRID PFINs.
Changes in LLS value greater than 1.0 and the addition and removal of datasets. These changes alter
the final order of dataset integration and affect the performance of the integrated network.

Table 5.5: The top ten datasets when ranked by confidence score.
The top ten datasets of the RC KEGG scored PFINs for BioGRID version 17 and version 52, ranked
in order of confidence score. This ranking is used to determine the order of dataset integration;
changes in rank alter the final edge weights of the PFIN and consequently affect the performance of
the integrated network.

V17 V52
Rank Dataset Rank Dataset
1 Ingvarsdottir.15657441 1 Ingvarsdottir.15657441
= Tong.11743162 = Tong.11743162
= Dosage Growth Defect = PCA
4 Co-Crystal Structure = FRET
5 Krogan.14759368 5 Co-Crystal Structure
6 Co-Fractionation 6 Collins.17200106
7 Co-Purification 7 Krogan.14759368
8 Reconstituted Complex 8 Protein-Peptide
9 Newman.11087867 9 Co-Purification
10 Biochemical Activity 10 Co-Fractionation
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The highest and lowest AUC measurements were both attained at December 2008 using the recent

control and historic control, respectively. The historic control showed an overall decrease of 0.0046

while the recent control increased by 0.0001 (Figure 5.16).

The DNA repair recent control AUC was approximately 0.02 higher than the historic control AUC

for all KEGG versions. The highest AUC for this term was at December 2007 and the lowest at

March 2009. The historic control showed an overall decrease of 0.0187 while the recent control also

decreased by 0.0125 (Figure 5.16).

The ageing AUC fluctuated at approximately 0.68 in both cases with the recent control performing

slightly better at each time point. The highest AUC was attained at September 2006 using the recent

control; the lowest was at September 2008, using the historic control. The historic control showed a

slight overall decrease of 0.0118, while the recent control decreased by 0.0008 (Figure 5.16).

In all three cases the range of changes to the AUC was statistically significant. The overall decreases

in both the historic and recent control measurements for DNA repair and ageing were also sig-

nificant. However, while the decrease in historic control AUC for telomere maintenance was

significant, the change for the recent control, which was the only overall increase, was not (Table

5.6).

Since the integration technique involves ranking datasets, and weighting their contribution according

to their ranking, changes to the Gold Standard affect the LLS confidence scores, and thus change the

final order of integration. The overall pattern of LLS changes for the KEGG PFINs was far more

dynamic than that seen for the BioGRID PFINs in Figure 5.15. Rather than a steady increase or

decrease in score, many of the dataset scores fluctuated between versions. In particular, there was a

significant increase in three of the LTP datasets, Biochemical Activity, Dosage Lethality and Recon-

stituted Complex, at January 2006 (Figure 5.17 A), and a fluctuation in the same three datasets be-

tween October 2007 and April 2008 (Figure 5.17 B). Additionally three Synthetic Lethality datasets

Table 5.6: Summary statistics for KEGG network area under curve.
Summary of the AUC gained for the KEGG data against the HC and RC datasets including the
overall difference, range of change and Standard Error of the Wilcoxon statistic, SE(W). Statistically
significant results are highlighted in bold.

PFINs V17 V52 V52-V17 High Low Range SE(W) V17 SE(W) V52
HC Telomere
Maintenance

0.6072 0.6026 -0.0046 0.6114 0.6026 0.0088 0.0004 0.0004

RC Telomere
Maintenance

0.7886 0.7887 0.0001 0.7965 0.7811 0.0153 0.001 0.0011

HC Repair 0.8302 0.8115 -0.0187 0.8303 0.8115 0.0188 0.0004 0.0004
RC Repair 0.8631 0.8506 -0.0125 0.8636 0.8506 0.0130 0.0003 0.0003
HC Ageing 0.6824 0.6706 -0.0118 0.6825 0.6704 0.0121 0.0020 0.0020
RC Ageing 0.6910 0.6835 -0.0075 0.6910 0.6756 0.0154 0.0013 0.0013
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Figure 5.16: PFIN performances for the three test GO terms as the KEGG file changes.
Each graph depicts the changes in functional prediction performance of the PFINs as the KEGG
version is changed against the V17 historic control and the V52 recent control files.
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Figure 5.17: Significant changes in LLS score as KEGG changes.
A. An increase in three of the LTP datasets, Biochemical Activity, Dosage Lethality and Reconsti-
tuted Complex, at January 2006. B. A fluctuation in the Biochemical Activity, Dosage Lethality and
Reconstituted Complex datasets between October 2007 and April 2008. C. The Loeillet.15725626
and Davierwala.16155567 datasets begin to score at June 2008, while the Pan.15525520 dataset be-
gan to score at September 2008.

(Pan.15525520, Loeillet.15725626 and Davierwala.16155567) did not score above 0.0 against the

early versions of KEGG. The Loeillet.15725626 and Davierwala.16155567 datasets began to score

above 0.0 at June 2008, while the Pan.15525520 dataset began to score above 0.0 at September 2008

(Figure 5.17 C).

The KEGG website provides details of changes to the pathways of the database7. Given that the

positive Gold Standard is built from genes annotated to the same pathway in KEGG (Section 3.1.1),

there are four types of changes to the database which could cause LLS scores to fluctuate:

1. New genes are added to KEGG which were not annotated before, causing an increase in both

positive and negative Gold Standard pairs.

2. Genes are lost from KEGG due to their annotations being removed, reducing the number of

positive and negative Gold Standard pairs.

3. New annotations are added to a gene, increasing the positive Gold Standard pairs and decreas-

ing the negative pairs.

7http://www.genome.jp/kegg/docs/updnote.html
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4. Annotations are removed from a gene, decreasing the Gold Standard positive pairs and increas-

ing the negative pairs.

At January 2006 several pathways were changed by the addition and removal of genes, includ-

ing the cell cycle (04110) pathway. A new pathway, snare interactions in vesicular

transport (04130), was also added to the database. The additional genes of the cell cycle

pathway overlapped with the Biochemical Activity, Dosage Lethality and Reconstituted Complex

while the Reconstituted Complex dataset also had overlap with the the new snare interactions

in vesicular transport pathway. These pathway changes accounted for the increase in these

datasets’ scores at this date.

Interestingly, the score changes between October 2007 and April 2008 could be mainly attributed

to four genes annotated to the ubiquitin mediated proteolysis pathway (04120). The anno-

tations were removed from KEGG at January 2008 and replaced at April 2008. The Biochemical

Activity, Dosage Lethality and Reconstituted Complex datasets each contained at least one of these

genes. However, the pairs that contained these genes overlapped the negative Gold Standard. There-

fore, removal of the genes reduced the datasets’ false positive count and, consequently, accounted for

these datasets’ score fluctuation between October 2007 and April 2008 (Table 5.7). Unfortunately,

although KEGG is a highly curated database, the curators kept no record of the reason for the removal

and subsequent re-addition of these annotations [1160].

Three new pathways were added to KEGG at June 2008: mismatch repair (03430), nucleotide

excision repair (03420), and base excision repair (03410). Comparison of the KEGG

pathway annotations with the Loeillet.15725626 and Davierwala.16155567 datasets indicated that

the addition of these three pathways, together with changes to the pathway DNA Replication

(03030), accounted for the datasets’ positive scores after June 2008. Two pathways were also added

to KEGG at September 2008: non-homologous end joining (03450), and homologous recom-

bination (03440). Comparison of these pathways with the Pan.15525520 dataset indicated that the

addition of these pathways accounted for this dataset’s positive score after September 2008.

Table 5.7: Dataset true positives and false positives.
The true positive (TP) and false positive (FP) counts for the Biochemical Activity, Dosage Lethality
and Reconstituted Complex datasets between V44 and V46. The removal of the annotations to four
genes of the ubiquitin mediated proteolysis pathway (04120) reduces the datasets’ FP count
and increases the final LLS scores.

V44 V45 V46
Dataset TP FP TP FP TP FP
Biochemical Activity 118 45 118 36 118 47
Dosage Lethality 61 19 59 16 61 25
Reconstituted Complex 234 66 231 50 238 69
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Table 5.8: The top ten datasets when ranked by confidence score.
The top ten datasets of the V52 BioGRID datasets scored against KEGG V17 and V52, ranked in
order of confidence score. This ranking is used to determine the order of integration; changes in rank
alter the final edge weights of the PFIN.

V17 V52
Rank Dataset Rank Dataset
1 FRET 1 FRET
= Ingvarsdottir.15657441 = Ingvarsdottir.15657441
= Newman.11087867 = PCA
= PCA = Tong.11743162
= Protein-peptide 5 Co-crystal Structure
= Tong.11743162 6 Collins.17200106
7 Co-crystal Structure 7 Krogan.14759368
8 Collins.17200106 8 Protein-peptide
9 Krogan.14759368 9 Co-purification
10 Co-localization 10 Co-fractionation

The changes in LLS altered the final rankings of the datasets and, therefore the order of their integra-

tion. Table 5.8 summarises the top ten ranked datasets of the recent control data when scored using

KEGG versions V17 and V52. While Newman.11087867 and Protein-Peptide scored highly against

V17, both these datasets drop down the rankings when scored against V52. Inversely, Co-crystal

Structure, Krogan.14759368 and Collins.17200106 have a higher ranking at V52 than at V17. A

similar pattern of changes to the dataset ranks was seen for the historic control.

5.4.2.3 Gene Ontology

The PFINs integrated using V17 BioGRID-KEGG and V52 BioGRID-KEGG files were evaluated

using each GO file version in turn during functional prediction, resulting in 68 AUC measurements

for each of the three POIs: 34 from the historic controls and 34 using the recent controls. While

the AUC measurements for the three terms fluctuated, the changes were far less frequent than with

the KEGG and BioGRID PFINs and the value of the GO AUCs remained unchanged for several

consecutive versions.

The AUC for telomere maintenance followed a similar pattern as that of the combined networks

and fluctuated around 0.61 until August 2008, when it increased to a value of approximately 0.79 for

the remaining versions. The highest AUC attained was 0.7930 between August and October 2008

using the historic control. The highest AUC using the recent control was also recorded during the

same period. Similarly, the lowest AUCs for both controls were recorded between July and August

2006, the two earliest versions. The historic control had an overall increase of 0.1793 while the

recent control increased by 0.1965 (Figure 5.18).

The historic control DNA repair AUC was greater than that of the recent control until August 2007
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Figure 5.18: PFIN performances for the three test GO terms as the Gene Ontology files change.
Each graph depicts the changes in functional prediction performance of the PFINs as the GO version
is changed against the historic control and recent control files.
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after which the recent control performed better. The highest AUC for this GO term was 0.8530 at

January 2009 using the recent control and the lowest of 0.8150 between July and August 2006, also

using the recent control. The historic control had an overall increase of 0.0107 while the recent

control also increased by 0.0356 (Figure 5.18).

The historic control ageing AUC was greater than that of the recent control until August 2007, after

which the recent control attained a higher score for the remaining versions. The highest AUC, 0.7125,

was recorded at September 2008 using the recent control; the lowest was 0.6556 between April and

May 2009 using the historic control. The ageing historic control showed an overall decrease of

0.0268, while the recent control decreased by 0.0128 (Figure 5.18). The range and overall changes

were significant for all three terms (Table 5.9).

These changes in functional prediction of the POIs did not reflect the changes to the structure of the

GO DAG (Figure 5.9). However, in several cases the changes in GO annotation to the POIs cor-

responded to the changes in performance. The 110 telomere maintenance annotations removed

from the database in August 2008, caused an increase in functional prediction performance for both

controls. The addition of nine DNA repair annotations at August 2007 corresponded with the in-

crease in the recent control functional prediction above that of the historic control. Similarly, the

addition of 8 ageing annotations at August 2008 corresponded with an increase in recent control

performance and decrease in historic control performance at this version. Additionally, the addi-

tion of another ageing annotation in August 2007 corresponded with an increase in recent control

performance.

5.4.3 Relevance Networks

In the final stage of evaluation networks were generated with relevance to the three POIs using the

RelCID integration method described in Section 3.1.4.5 and the file triplets of Figure 5.11 A. The

Table 5.9: Summary statistics for GO network area under curves.
Summary of the AUC gained for the GO data against the HC and RC datasets including the over-
all difference, range of change and Standard Error of the Wilcoxon statistic, SE(W). Statistically
significant results are highlighted in bold.

PFINs V17 V52 V52-V17 High Low Range SE(W) V17 SE(W) V52
HC Telomere
Maintenance

0.6072 0.7835 0.1763 0.7931 0.6072 0.1859 0.0004 0.0012

RC Telomere
maintenance

0.5923 0.7887 0.1965 0.7906 0.5923 0.1983 0.0004 0.0011

HC Repair 0.8302 0.8409 0.0107 0.8497 0.8302 0.0195 0.0004 0.0003
RC Repair 0.8150 0.8506 0.0356 0.8529 0.8150 0.0379 0.0004 0.0003
HC Ageing 0.6824 0.6556 -0.0268 0.6917 0.6556 0.0361 0.0020 0.0014
RC Ageing 0.6705 0.6835 0.0130 0.7125 0.6664 0.0462 0.0020 0.0013
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relevance networks were compared with the combined networks’ performance as a control (Section

5.4.1 Figure 5.13).

The AUC for telomere maintenance fluctuated between 0.6069 and 0.6198 until August 2008

when it increased to a value between 0.7712 and 0.7867 for the remaining versions. The highest

score attained for telomere maintenance was at May 2009 (the most recent file), the lowest at

April 2007. The overall increase between first and last versions was 0.1740, 0.0075 lower than

the increase for the control network. The relevance network and control performances fluctuated at

approximately the same level until September 2008 with the relevance network having a higher AUC

at 29 of the 36 time points. After this date the relevance networks performance dropped below the

control for the remaining time points (Figure 5.19).

The DNA repair AUC fluctuated between 0.8198 and 0.8732 for all versions, with the highest value

at March 2009 and the lowest at July 2006 (the earliest version). The overall increase was 0.0534,

0.0331 greater than the control network’s increase. The relevance network’s performance was lower

than the control network until April 2008, after which it performed higher than that of the control

network (Figure 5.19).

The AUC for ageing fluctuated between 0.6770 and 0.7222, with the highest value at August 2008

and the lowest at April 2007. The overall increase between V17 and V52 was 0.0106, 0.0096 greater

than the control network’s increase. At 23 of the 26 time points the ageing relevance network’s

performance was higher than the control network (Figure 5.19).

The standard error of the Wilcoxon statistic showed that all of the changes for the relevance networks

in comparison with the control were statistically significant. Additionally, the overall change between

first and last versions was also significant for all three networks (Table 5.10).

5.4.4 Cut-Off Networks

Two relevance score cut-offs were also chosen (Figure 5.20) and PFINs integrated using only those

datasets scoring below the cut-offs. This procedure produced 70 further AUC measurements for each

POI; 35 at cut-off 0.1, and 35 at cut-off 0.001 (Figures 5.21 and 5.22).

Table 5.10: Summary AUC measurements for the relevance PFINs.
A summary of the AUC attained for the three test terms including range and Standard Error of the
Wilcoxon statistic, SE(W). Statistically significant results highlighted in bold.

GO Term V17 V52 V52-V17 High Low Range SE(W) V17 SE(W) V52
Telomere
Maintenance

0.6127 0.7867 0.1740 0.7867 0.6069 0.1798 0.0004 0.0011

DNA Repair 0.8198 0.8706 0.0534 0.8732 0.8198 0.0534 0.0004 0.0003
Ageing 0.6918 0.7026 0.0452 0.7222 0.6770 0.0452 0.0020 0.0013
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In general the cut-off networks’ performances followed similar patterns to those of the relevance

networks with no cut-off. The telomere maintenance network AUCs were all significantly higher

before September 2008 for both cut-off networks, with higher values than the control network at all

time points, and the highest values attained using the 0.001 cut-off. The ageing cut-off networks

fluctuated far more than the relevance networks and had a higher number of AUC values above the

control, 32 of 36 at cut-off 0.1, and, 36 of 36 at cut-off 0.001. The DNA repair cut-off networks

followed the same fluctuations as those of the relevance network with no significant changes. In all

cases the cut-off networks produced a statistically significantly higher final AUC than the control

(Table 5.11).

Figure 5.20: The relevance cut-off.
The number of datasets scoring at a range of relevance score cut-offs. Since a score of zero indicates
high relevance and a score of one indicates low relevance, the number of datasets increases as the cut-
off is raised. Two cut-offs were chosen for networks integration: 0.001 and 0.1 (vertical orange lines).
At a cut-off of 0.001 all but the very high relevance datasets were excluded from the integration, while
at a cut-off of 0.1 only very low relevance datasets were excluded.

Table 5.11: The relevance cut-off effect.
The final AUC at version 52 in comparison with the control network. With no cut-off the ageing and
DNA repair final AUCs were higher than the control, while the telomere maintenance AUC was
lower. After the cut-offs were applied, the relevance AUCs were higher than the control network’s in
all three cases. All the changes were statistically significant.

Telomere Maintenance DNA Repair Ageing
Network AUC Increase AUC Increase AUC Increase
No cut-off 0.7867 -0.0020 0.8706 +0.0202 0.7026 +0.0200
Cut-off 0.1 0.8008 +0.0121 0.8695 +0.0190 0.6941 +0.0117
Cut-off 0.001 0.7967 +0.0080 0.8697 +0.0191 0.7154 +0.0870
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5.5 Discussion

The assumption underlying much research into data integration is that the quality, as well as the quan-

tity, of data in the major databases improves more-or-less steadily over time [1161]. For instance, the

BioGRID database archive8 states:

"This download directory contains BioGRID releases that have been retired and are no longer rep-

resentative of the most recent state of our curated interaction set. If you are starting a new project

using our data, it is HIGHLY recommended that you NOT use these data files as they are not the most

up to date version of our interaction dataset. The best dataset to use is in the CURRENT RELEASE

directory."

While this assumption may be valid globally, it is not necessarily the case when integrated systems

are used for a focused task such as the functional prediction of genes involved in specific biological

processes [1161].

Here, PFINs were used to study three biological process terms relevant to yeast ageing [957, 1136] in

order to further assess network performance in relevance to specific processes (Objective 3, Section

1.5). A chronologically-ordered series of PFINs was created using three highly curated data sources:

BioGRID, KEGG and GO. Each PFIN was created using the versions of the datasets current at

monthly timepoints. Therefore, the AUC measurements from these PFINs are those that would be

seen if PFINs were updated monthly using the latest data. BioGRID was used as the source of the

datasets [276] and KEGG as the Gold Standard against which each dataset’s confidence was assessed

[277]. The PFINs were evaluated by functional prediction of known GO annotations [100]. Three

GO ageing-related biological process terms were chosen for the evaluation (telomere mainte-

nance, DNA repair and ageing), and functional prediction performance was measured using the

area under the ROC curve [920, 921].

The performance of the integrated networks fluctuated as source data changed through time. The

overall pattern of change in functional prediction performance differed for each of the three terms.

While the AUC for telomere maintenance was significantly improved between V17 and V52,

this increase was not smooth. The ageing and DNA repair AUCs both fluctuated around a single

value at all time points, but while two of the terms’ overall increase was significant, that of the third

was not. In fact, in none of the three cases was the highest AUC attained using the most recent V52

data: telomere maintenance was highest at September 2008, DNA repair at March 2008, and

ageing at December 2008. While functional prediction performance increased for all three terms

between V17 and V52, it is clear that any assumption of monotonically increasing performance over

time is incorrect. However, as the three data sources are all changing simultaneously the extent

8http://thebiogrid.org/download.php
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Table 5.12: Summary of the maximum and minimum AUC achieved.
The maximum and minimum AUC achieved for each of the test GO terms and the file versions used
in each case.

Term AUC BioGRID KEGG GO
Telomere maintenance Highest 0.80316 V25 V52 V52

Lowest 0.59226 V52 V52 V17
DNA repair Highest 0.86358 V52 V23 V52

Lowest 0.81150 V17 V52 V17
Ageing Highest 0.71254 V52 V52 V44

Lowest 0.63901 V31 V52 V52

of their individual contributions is unclear from inspection of the combined results. Therefore, the

contribution of individual data sources was systematically evaluated.

PFINs were created in which only one data source version was changed at a time. Each PFIN

therefore represents a monthly time point in the curation of an individual data source, and changes

in the AUC directly reflect changes in that data source. The analysis was carried out in two temporal

directions (oldest to newest and newest to oldest), using V17 as a historic control and V52 as a recent

control. Therefore the overall differences between the oldest and newest data could be investigated.

Finally, the specific source dataset changes which caused the network performance changes were

identified.

The recent control data outperformed the historic control. However, as with the overall changes,

the highest performance was not produced by the most recent version of the data (Table 5.12), and

performance fluctuated rather than steadily improving. Additionally, changes to the three source data

types affected the PFIN performance in different ways.

The BioGRID database is manually curated to ensure the accurate entry of data from the original

literature [276]. Additionally, feedback is encouraged from authors and BioGRID users to identify

errors and correct any discrepancies9. Datasets produced using individual techniques each have

their own biases towards different processes (see Section 2.4.4). While the addition, removal, or

alteration of a dataset may not affect the functional prediction of one biological process, it may affect

the prediction accuracy of another, if the dataset has a bias towards that process. Conversely, the

addition of a high-confidence dataset with no relevance to the process being studied may negatively

affect performance by masking other more relevant data. Integrated systems such as PFIN are used to

generate new hypotheses (see Section 2.5.5), and when a particular biological process is of interest

the choice of data prior to integration is vital in order to optimise performance in relation to that

process. Importantly, these results indicate that the most recent raw data may not be the optimal data

source for any given process of interest.

9http://wiki.thebiogrid.org/doku.php/contribute#send_us_your_interaction_data
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High-quality Gold Standard data are commonly used to assess experimental dataset quality prior to

integration [43, 59, 97, 669]. Here, the Gold Standard dataset was created by selecting all possible

pairs of genes annotated to the same KEGG pathway [49, 112, 128, 702]. KEGG is also manually

curated, containing species-specific pathways created from reference pathways and orthology data

[277]. The scoring metric used during PFIN integration measures a similarity ratio between the Gold

Standard and the dataset [49]. Therefore, dataset size and composition is important; a dataset may

not score against a Gold Standard containing little similar information, and small changes in the sim-

ilarity ratios, due to the curation processes of KEGG and BioGRID, can alter the final dataset scores.

The overall changes in KEGG caused a statistically significant drop in performance for our three test

GO terms between V17 and V52. However, since changes in score are due to changing ratios of sim-

ilarity, it is likely that the performance of other terms would increase, particularly where the changes

to KEGG involve genes annotated to that process. Consequently, the choice of an appropriate Gold

Standard is important when scoring dataset confidence prior to data integration in a situation where

a specific area of biology is of interest [1161]. If a Gold Standard dataset has little relevance to the

process of interest the most useful datasets score poorly and performance may be low.

Annotation data are frequently used to evaluate the performance of an integrated network [104, 510,

676, 676, 907, 911, 919]. Here, the PFINs were evaluated by functional prediction of known GO

annotations [100]. The evaluation data was downloaded from two sources: the Gene Ontology struc-

ture10 and the SGD annotation data for S. cerevisiae11 [296]. Both of these data sources are manually

curated from the literature and are updated regularly as new knowledge is gained. The Gene Ontology

Consortium also maintains an extensive website12 documenting their curation and annotation strate-

gies, as well as any changes made to the database. Changes to the number of terms associated with

our POIs did not significantly affect the functional prediction performance of the PFINs. However,

the addition and removal of annotations to the terms were directly linked to functional prediction

fluctuations. These results indicate that, while annotations are dependent on the GO structure, the

observed changes in functional prediction performance are largely due to the curation of annotations,

rather than to alteration of the GO structure itself.

As knowledge of cellular biology improves, changes to annotations datasets are inevitable. In many

cases these changes are small, such as the removal of single annotations. However, occasionally

large changes to annotation data will be required, such as the removal of telomere maintenance

annotations observed in August 2008. This change involved the removal of 110 annotations derived

from two phenotypic experiments [978, 992]. In these studies disruption of the annotated genes

10http://www.geneontology.org/
11http://www.yeastgenome.org/
12http://wiki.geneontology.org/index.php/Main_Page
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caused either lengthening or shortening of the telomere. While phenotypic data from disruption mu-

tants can give clues to a gene’s role, this is not necessarily the case. In fact, many genes in SGD

currently have phenotypic data without any corresponding GO annotation, and vice versa. For in-

stance, the gene VMA1 has a mutant phenotype oxidative stress resistance, decreased13

[1041, 1162, 1163] but has no equivalent GO annotation. Conversely, the gene GRX3 has a GO an-

notation to cellular response to oxidative stress [1057, 1060] but no associated mutant

phenotype14.

Consequently, in August 2008 the SGD curators made the decision that phenotypic data alone was

not enough evidence for annotation to telomere maintenance and the annotations were removed.

It is likely that some of these genes will be annotated to telomere maintenance in the future

following further experimentation. However, the removal of these annotations appears to have been

the correct choice since network performance in functional prediction of telomere maintenance

is significantly improved following their removal.

The potential for large changes to annotation datasets, such as the one in August 2008, suggests that

in the case of annotation data the most recent data may be the most accurate, particularly when a

single GO term is the focus of study. However, while the curation of annotation data can lead to

increases in performance, such as that seen for telomere maintenance, there is no clear trend

towards improvement and fluctuations do occur. Annotation-based evaluations are only as accurate

as the available data and the most current data may not produce the best results. Further, since an-

notations are derived from experimental data, there is bias towards highly studied processes [133].

This characteristic of annotation data should be taken into account when evaluating a system’s per-

formance and interpreting results.

Most research groups using integrated systems such as PFINs are investigating a particular area of

biology [128]. Although it is intuitively right to use the most up to data in all analyses, it may

not produce the best results when investigating specific processes. Given the increasing volume of

data available, it is vital that the correct data are chosen prior to integration, in order to optimise

performance in relation to the process of interest. Individual datasets have unique biases towards

different biological processes and, therefore, the most recent data may not produce the best results if

it does not have relevance to the question being investigated. In fact, in many cases the addition of

low-relevance data may mask the information contained in high-relevance data.

In order to minimise the observed effects, a chronologically-ordered series of process-relevant PFINs

were created using the same data. Additionally, the integrations were repeated at two relevance

cut-offs to produce networks integrated from only high-relevance datasets. As with the control
13http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=VMA1
14http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=GRX3
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networks, the changes over time were not smooth, but a general trend towards improvement was

observed. However, the relevance networks produced higher AUCs than the controls and all the

changes were statistically significant, particularly when the cut-offs were applied to excluded low

relevance datasets. Therefore, while performance still fluctuates, the use of process relevance during

network integration can improve prediction performance and overcome some of the effects of dataset

curation. These findings should be applicable to any type of integrated system used to study a specific

area of biology (see Section 2.4).

The utility of process-relevant networks has been demonstrated in PFINs using yeast ageing as the

POI. However, the relationship between dataset relevance and network performance is clearly com-

plex. Ageing is just one of a wide range of cellular processes described by GO. Therefore, to under-

stand and optimise the effects of process-relevant integration, and complete the third objective of this

project, network performance must be evaluated in all areas of biology. The next chapter presents an

evaluation of process-relevance using all available GOBP terms followed by the optimisation of the

RelCID integration schema in light of the results of this evaluation.

179



Chapter 6

Assessment of GO Biological Processes

as POIs and RelCID Performance

Optimisation

In Chapter 4 a novel probabilistic network integration technique, RelCID, was presented. RelCID

incorporates the datasets’ relevance to specific biological processes, termed the POI, into the edge

weightings of PFINs. A dataset’s relevance is calculated based on the number of genes in the dataset

that are annotated to a specific GOBP term. The performance of this technique has been demonstrated

using the GO biological process of ageing as an exemplar. Functional prediction was significantly

improved over that of the control network, integrated without a measure of relevance. In addition,

network clustering produced larger clusters incorporating more nodes annotated to the POI and to

related processes. The relevance integration technique also produced improved performance to that

of the control network using datasets from different points in time (Chapter 5).

These improvements indicate that the bias of a dataset can be captured during integration, in addition

to a measure of the dataset’s quality, and used to improve network performance in relation to the age-

ing process. However, ageing is only one aspect of cellular biology described by GO, and functional

datasets each have their own biases and are evolving over time. Additionally, some areas of biology,

such as the ageing process, are more extensively studied than others. Therefore, it is unlikely that

every GOBP term will perform equally well when selected as the POI during relevance integration.

In the current chapter the RelCID technique is evaluated using all available S. cerevisiae GOBP terms

as POIs in turn. The differences in performance of the networks are assessed in light of the GO term,

dataset and network properties. Finally, the relevance integration method is extended and optimised

to include two further measures of a dataset’s relevance to the POI.
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6.1 Datasets

Version 52 of BioGRID was used as the source of the functional data and the datasets were split using

a 100 interaction cut-Foff as described in Section 3.1.1. The KEGG PATHWAY and GO datasets for

S. cerevisiae that were current at Version 52 of BioGRID were used as the sources of the Gold

Standard and evaluation data, as described in previous chapters.

6.2 A Full GOBP Sweep

PFINs were integrated using the control and relevance integration technique with a D value of 1.1

(Section 3.1.4) and evaluated by functional prediction of known annotations to each POI term using

the maximum weight decision rule (Section 3.1.5.3). Annotations with the evidence code IEA were

discarded as in previous evaluations.

All possible GOBP terms were initially chosen as potential POIs. Terms were discarded if they

had no annotations in S. cerevisiae or if they were not annotated to any genes in the BioGRID

dataset. Additionally, the root term biological_process (GO:0008152), was discarded since it

is annotated to every yeast gene and would, therefore, always produce perfect classification during

functional prediction. Consequently, a total of 2110 GOBP terms were used as POIs.

A set of 2110 relevance networks and a control network were produced. Two AUC measurements

were calculated for each of the 2110 terms; one from the control network and one from the relevance

network. The AUC for the control networks varied, with 507 terms scoring 0.5 indicating random

assignment of the annotations, and 68 scoring 1.0 indicating perfect classification (Figure 6.1).

The extent to which performance was improved using the relevance networks varied with the POI

chosen (Figure 6.2). In total, 60.1% of the term AUCs were improved using the relevance integration

method and 5.2% of the AUCs were unchanged between the relevance and control networks. The

majority of these unchanged terms were at the extremes of the AUC measurements, either having

very poor classification in the control network, or close to perfect classification (Figure 6.1).

The overall change in AUC between the relevance and control networks ranged from an increase of

0.38, for the terms:

GO:0000949 - aromatic amino acid family catabolic process to alcohol via Ehrlich

pathway

GO:0006559 - L-phenylalanine catabolic process

GO:0006569 - tryptophan catabolic process
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GO:0042436 - indole-containing compound catabolic process

GO:0046218 - indolalkylamine catabolic process,

to a decrease of -0.33 for the terms:

GO:0010286 - heat acclimation

GO:0051352 - negative regulation of ligase activity

GO:0051436 - negative regulation of ubiquitin-protein ligase activity involved

in mitotic cell cycle

GO:0051444 - negative regulation of ubiquitin-protein ligase activity

GO:0000117 - regulation of transcription involved in G2/M-phase of mitotic cell

cycle.

6.3 GO Term Choice

There are four factors which may have affected the relevance network performance in comparison to

the control network:

Figure 6.1: Distribution of the control AUCs.
The range of AUC measurements of all 2110 GO terms for the control network. In total 507 terms
scored 0.5 indicating random assignment of the annotations during functional prediction, and 68
scored 1.0 indicating perfect classification.
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Figure 6.2: The full GOBP sweep.
The AUC of the relevance networks plotted against the control AUC for 2110 GOBP terms. Each
point represents a single GO Biological Process term. Those above the diagonal have improved
functional prediction when used as the POI, those on the diagonal were unchanged and those below
were decreased. In total 60.1% of the AUCs were increased.

1. The GO term properties, such as size, specificity or the specific area of biology the term de-

scribes (see Section 2.5.4.3). For instance highly-annotated, highly-specific or highly-studied

terms may have improved performance over less annotated, general or under-studied terms.

2. The network topological properties, such as the connectivity of nodes annotated to the POI

(see Section 2.3.2). For instance, since the evaluation utilises local functional prediction, those

terms with little connectivity between their annotated genes in the network may not perform

well.

3. The scoring properties, such as the relationship between the confidence and relevance scores

for highly ranked datasets. For instance, if high relevance datasets have low confidence scores

their up-weighting would be limited and performance may not be increased.

4. Individual dataset’s topological properties, such as the connectivity of nodes annotated to the

POI term within the high relevance datasets. For instance, if the high relevance datasets have

little connectivity between the nodes annotated to the POI their up-weighting may not increase

network performance.
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6.3.1 Term Properties

Due to the structure of the GO DAG, each GO term varies in its size and its specificity. A term’s

size is the number of genes annotated to that term (including genes annotated to its child terms). A

term’s specificity reflects how specific a biological process the term describes. For example, GOBP

terms range from general processes, such as metabolic process (GO:0008152), to highly specific

processes, such as protection from non-homologous end joining at telomere (GO:0031848).

A term’s size may be indicative of its specificity since general terms tend to have more annotations.

However, high-specificity terms may have relatively high number of annotations if they describe

heavily studied areas of cellular biology. High-specificity terms also tend to be lower in depth in the

DAG but, again, this is not always the case (see Section 2.5.4.3). The information content measure

of Resnik and colleagues (1999) [1140] measures term specificity by combining a term’s size with

its location within the GO DAG. This measure provides a more accurate assessment of a term’s

specificity than size or depth alone (Figure 6.3).

Figure 6.3: GO term size and specificity.
A term’s size is the number of genes annotated to it (including to its child terms). A term’s specificity
reflects how specific a biological process it describes. Here, the term specificity is measured using
the information content measure of Resnik and colleagues [1140]. Low specificity terms tend to
have more annotations and are generally higher in the hierarchical DAG structure. Conversely, high-
specificity terms tend to have fewer annotations and are lower in the DAG structure. However, this
is not necessarily the case for highly studied areas of biology, and specificity measures such as this
provide a more accurate measurement than size or depth alone.
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The information content measure for each term was compared with the change in AUC values be-

tween the control and relevance networks to assess the influence of term specificity on functional

prediction performance. Figure 6.4 A depicts the specificity of each term plotted against the change

in AUC between relevance and control networks. The specificity of the terms did not correlate with

the AUC changes to any great extent. In general, the lower the specificity of the terms, the less vari-

able the AUC was (far right). However, high-specificity terms (far left) had highly variable AUCs

with some terms significantly increased and some significantly decreased.

The specific area of biology represented by a term may also influence its performance as the POI.

Therefore, 144 terms which had relatively high specificity but which had low variability in their

AUCs were selected for further analysis (Figure 6.4 B). These terms comprised 89 terms ( 62%)

which had increased performance for the relevance network over the control and 55 terms ( 41%)

which had decreased performance. None of the terms chosen had an unchanged performance be-

tween relevance and control networks. The connectivity of the terms in the GO DAG was visualised

in Cytoscape to assess how the DAG structure related to network performance.

The majority of the chosen terms were connected in one large cluster in the DAG (Figure 6.5). The

cluster consisted of a densely-connected central core with several distinct surrounding groups. A

large group of terms (group 3) and three smaller groups of terms were not connected to the main

group. The central core contained high-level processes, with a mix of increased (green) and de-

creased (red) AUCs. Conversely, the large surrounding groups of terms, and the unconnected groups,

contained more specific terms and had distinct areas of increased and decreased AUCs.

For instance, the terms of group 3 are all transport-related terms 6.6. Although this group had a

high level of connectivity in the DAG, a distinct pattern of functional prediction performance was

seen within the group (Figure 6.7). Terms directly below the term localisation (GO:0051179)

in the GO DAG had improved performance for the relevance networks in comparison to the control,

with the exception of those terms directly below, and including macromolecule localisation

(GO:0033036), which all had decreased performance. Each of the other groups 1-10 of Figure 6.5

had similar patterns of distinction within their parent-child term relationships.
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Figure 6.4: GO term specificity.
A. The GO terms’ information content measures plotted against the change in AUC of the relevance
network in comparison with the control network. Information content is a measure of how specific a
biological process the term describes. Each point represents a single GO biological process. Terms
above the line have increased AUC for the relevance network, terms below the line have decreased
AUC for the relevance networks, and terms on the line have no change between the two networks.
Term specificity decreases from left to right with high-level, low-specificity terms at the far right. B.
The control network AUC plotted against the information content specificity measure for 2110 terms.
Each point represents a single GO biological process, with the specificity of the terms increasing right
to left as the information content score decreases. Variability of the AUC increases with specificity.
A group of 144 terms with relatively low variability (shown in red) were chosen for further analysis.
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Figure 6.5: The 144 test terms.
The connectivity between the 144 test terms in the GO DAG. Green terms had increased AUC for
the relevance networks in comparison with the control and red terms had decreased AUC. The terms
form a highly connected core with several distinct surrounding groups (1-10). Group 3 and three
smaller groups are not connected to the core. The highly connected core contains high-level terms
while the groups each represent distinct lower-level areas of the GO DAG. The details of groups 1-10
are shown overleaf.
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Figure 6.6: The 144 test term clusters
The term details for groups 1-10 of 6.5. Terms with increased AUC between the relevance and
control networks are shown in green and those with decreased AUC in red. Each group contains
terms related to a distinct area of cellular biology.
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Figure 6.7: Connectivity of the group 3 terms.
The GO DAG structure for terms of group 3 in Figure 6.5. Those in green boxes had increased AUC
in the relevance networks while those in red boxes were decreased. A clear topological distinction
can be seen between the terms with increased performance (green boxes) and those with decreased
performance (red boxes). Terms below the term localisation (GO:0051179) are increased for the
relevance networks in comparison to the control, with the exception of those terms directly below,
and including macromolecule localisation (GO:0033036), which are all decreased.
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6.3.2 Network Topology

Since the functional prediction algorithm chosen for the GO term sweep utilised local rather than

global connectivity, the topology of the network in relation to genes annotated to the POI may reflect

the network’s functional prediction performance. For instance, if nodes annotated to the POI term

have no or low connectivity to one another in the network, performance will be low for the control

network. Additionally, if this is the case, the relevance networks’ performance will not improve

since the relevance measure takes all annotations to the POI into account, many of which would not

influence functional prediction performance. In other words, while nodes with high relevance have

up-weighted edges, the up-weighting would not affect functional prediction due to lack of direct

connectivity.

To measure the effect of connectivity on network performance several measures of node connectivity

were calculated and compared with the change in AUC between the relevance and control networks.

First, a baseline AUC was calculated for the 2110 available terms by transferring annotations to

each POI along any connected edge, irrespective of weighting. Therefore, any nodes annotated to

the POI which had local connections to one another would be correctly classified during functional

prediction. This baseline score, therefore, represented a measure of POI connectivity within the

network’s topology.

Terms with a low baseline AUC tended to have little or no change in AUC between the relevance and

control networks (Figure 6.8). Conversely, terms with a high baseline AUC have high variability in

AUC changes, with some terms significantly increased and some significantly decreased.

Two further measures of POI connectivity were calculated; the percentage of nodes annotated to

the POI which were directly connected to each other was calculated, and the average shortest path

between all pairs of nodes annotated to the POIs was calculated using Dijkstra’s algorithm (see

Section 3.1.5.1) [1142].

The AUC for terms with no or very low connectivity tended not to change irrespective of the term’s

average shortest path (Figure 6.9). Additionally, terms with a large average shortest path (>3) tended

to be less variable in AUC. However, neither the average shortest path nor percentage connectivity

correlated with the change in AUC to any great extent.

6.3.3 Dataset Ranking

The relevance scores of the datasets in relation to the POI may influence network performance.

For instance, a POI with very few high relevance datasets may not perform well during relevance

integration, irrespective of the dataset’s confidence scores, since there would be too little relevant
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Figure 6.8: The baseline AUC.
The baseline AUC plotted against the change in AUC between the relevance and control networks
for each term. The baseline AUC was calculated by transferring annotations to the POI along any
connected edge irrespective of weighting and, therefore, provides a basic measure of connectivity
between terms annotated to the POI. Each point represents a single GO term with the connectivity of
genes annotated to the terms increasing from left to right.

Figure 6.9: Average shortest path and percentage connectivity.
The average shortest path plotted against the change in AUC between the control and relevance
networks. Each point represents a single GO term and is coloured by percentage connectivity of the
genes annotated to this term.
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data to influence the edge weights to any great extent. The dataset relevance ranks and scores for

the 144 test terms of Figure 6.5 are depicted in Figure 6.10. Each line represents the ranked order of

datasets in relation to a single GO term. The further right the vertical part of the line, the more high-

relevance datasets are related to that term. At the left, several terms with few low relevance datasets

performed poorly in comparison to the control (shown in red). However, there are also terms with

low relevance datasets which performed well (green). Conversely, while the datasets the far right had

a large number of high-relevance datasets, a significant number performed poorly.

The relationships between the datasets’ confidence and relevance scores may also influence network

performance. For instance, if the high relevance datasets have very low confidence the effect of the

relevance ranked integration may not up-weight the most relevant edges significantly in comparison

to the high-confidence control. Therefore, the relevance networks’ performance may be reduced in

comparison with the control’s performance.

Due to the weighted sum used for integration, the two highest ranked datasets had the greatest contri-

bution to the edge weights (Section 3.1.4.4). Therefore, these datasets had the most influence on the

relevant networks performance. Several of the datasets were ranked highest in relation to multiple

POIs. However, POIs with the same highest-ranked dataset did not necessarily have similar perfor-

Figure 6.10: The relevance scores and ranks.
The relevance scores plotted against the datasets’ relevance ranks. Each line represents the ranked
order of datasets in relation to a single GO term. Those terms that had increased AUC between
relevance and control network are shown in green and those decreased shown in red. The further to
the right the vertical portion of a line is, the greater the number of high-relevance datasets for the GO
term.
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Table 6.1: The highest relevance ranked datasets for the 144 terms.
Several datasets had the highest relevance score for multiple POIs. The highest-ranked dataset has
the greatest contribution to the network edges weights. However, the performance of the networks for
POIs sharing the same highest-ranked dataset varied, with some AUCs increased and some decreased.

Dataset Increased AUC Decreased AUC
Affinity Capture-MS 3 0
Affinity Capture-Western 24 17
Biochemical Activity 3 0
Collins.17200106.Affinity Capture-MS 6 1
Collins.17314980.Phenotypic Enhancement 9 7
Dosage Rescue 2 0
Drees.11489916.Two-hybrid 3 0
Fiedler.19269370.Phenotypic Enhancement 4 2
Gavin.16429126.Affinity Capture-MS 4 4
Ho.11805837.Affinity Capture-MS 0 5
Krogan.16554755.Affinity Capture-MS 1 2
Miller.16093310.Two-hybrid 4 0
Pan.16487579.Synthetic Growth Defect 0 1
PCA 0 2
Phenotypic Enhancement 5 2
Phenotypic Suppression 0 1
Ptacek.16319894.Biochemical Activity 0 2
Schuldiner.16269340.Phenotypic Enhancement 2 1
Synthetic Lethality 1 0
Synthetic Rescue 6 6
Two-hybrid 1 0
Wilmes.19061648.Phenotypic Enhancement 11 2

mance. In fact, in many cases two POIs for which the same dataset was ranked highest in relevance

performed oppositely, with one AUC increased in comparison to the control network, and one AUC

reduced (Table 6.1). The proportion of AUC increases for each highest relevance datasets did not

correlate with the LLS of the datasets (Figure 6.11). In one case, where the highest relevance dataset

was also the highest confidence dataset, there was no improvement between the relevance and control

networks (top left). Further, there was no correlation between the LLS of the two highest relevance

datasets and the AUC change (Figure 6.12).

6.3.4 Dataset Topology

Although the highest relevance ranked dataset may have high confidence and high relevance, its

topology may also affect network performance. For instance, a dataset may contain several nodes

of interest that are not directly connected to one another in the dataset, and therefore will not be

correctly predicted by the local GBA functional prediction algorithm applied, irrespective of the edge

weights. The functional prediction of the POIs was therefore repeated using only the interactions of

the highest ranked dataset. Since all edges in a single dataset are equal, edge weights were not
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Figure 6.11: The highest ranked datasets.
The LLS score of the highest relevance ranked datasets in Table 6.1 plotted against the percentage
POIs increased for the relevance networks in comparison to the control. Each point represents a
single dataset.

Figure 6.12: The two highest ranked datasets.
The relationship between the LLS scores of the two highest relevance ranked datasets of the 144
terms and the change in AUC. Each line represents a single POI with the highest ranked dataset
marked as a circle and the length of the line the difference between the two LLS scores. In some
cases the highest ranked dataset has a higher LLS score than the second ranked, while in others the
second ranked dataset has the higher LLS score. Terms with increased performance in the relevance
network in comparison to the control are marked green and those with decreased performance are
marked red.
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Figure 6.13: The highest ranked datasets AUC.
The AUC for functional prediction of the 144 POIs using the highest relevance dataset only plotted
against the change in AUC for the POI between the relevance and control networks. Each point
represents a single POI.

required. Figure 6.13 shows the AUC of the highest weighted dataset plotted against the change

in AUC between the relevance network and control network for each of the 144 terms in Figure

6.5. There was no correlation between highest dataset’s AUC and the change. In fact, even when

the highest-ranked dataset produced perfect classification (AUC = 1.0), the change in AUC between

relevance and control networks varied, with some terms improved and some decreased.

The datasets were then individually visualised in Cytoscape to assess the topology of the nodes

annotated to the POI and those annotated to other processes. In many cases the datasets were not

fully connected and contained few interactions between POI-annotated genes. Further, in several

cases, datasets which visually appeared to be highly-relevant to a specific POI were not scoring

highly in the relevance ranking. For example, the Sanders.12052880.Affinity Capture-MS [1144] has

a high proportion ( 45%) of nodes annotated to the POI transcription from RNA polymerase

II promoter (GO:0006366) and contains several interactions between these nodes, and a large

number of interactions between these nodes and nodes annotated to other processes (Figure 6.14).

However, since the relevance score takes the ratio of annotated and un-annotated nodes into account,

this dataset does not score highly for relevance to this process. Consequently, datasets with the same

number of nodes annotated to the POI may have vastly different numbers of interactions between

these nodes and other nodes in the network (Figure 6.15).
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Figure 6.14: The Sanders.12052880.Affinity Capture-MS dataset.
Nodes annotated to the POI transcription from RNA polymerase II promoter

(GO:0006366) are coloured red while those annotated to other processes are coloured yellow.
The dataset contains 194 genes, 87 of which are annotated to the POI. A large number of interactions
involve these genes. However, while the dataset visually appears highly relevant to this process, it
does not score well due to the large number of genes which are not annotated to the GO:0006366.

6.4 Extending the Relevance Integration Schema

Given the results presented in Section 6.3 two further relevance scores were introduced to measure

additional aspects of dataset relevance:

• Interaction Relevance: the over-representation of edges involving at least one node annotated

to the POI.

• Edge Relevance: the over-representation of edges between two nodes annotated to the POI.

The original, node-based score will be referred to as Node Relevance for the remainder of this thesis.

Both of the new scores were calculated using the hypergeometric test (see Section 3.1.4.3). The

performances of networks integrated using the new scores were compared with the performance of

the control network and Node Relevance network. The three aspects of network relevance were then

combined to optimise functional prediction performance.
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Figure 6.15: Dataset POI connectivity.
Three example datasets of the same size, each containing four nodes annotated to the POI (shown in
red). Although the datasets each have the same number of genes annotated to the POI, the number of
interactions involving these genes differs. Dataset A has four interactions involving the nodes but no
edges connecting them. Dataset B has six edges connecting the nodes but no interactions between
the POI nodes and other nodes. Dataset C has a mixture of interactions involving the nodes and edges
between them.

6.4.1 Network Performance

Only 20% of the Interaction Relevance networks were improved in comparison with the control,

compared to 71% for the Edge Relevance and the 60% for the Node Relevance. Table 6.2 sum-

marises the improvements for individual POIs. Interestingly, no terms were improved using only

the Interaction Relevance network alone, while several were only improved by either the Node Rel-

evance or Edge Relevance networks, respectively. The largest group of terms (33) were improved

by both the Node and Edge Relevance networks. Only 13 terms were not improved by any of the

networks.

The relationships between the three relevance scores were highly variable. Figure 6.16 displays 3D

plots of the scores for five terms chosen as examples to illustrate this variability. In the plots the

three relevance scores are plotted on a single axis and each point represents a single dataset. Datasets

scoring in the lower left corner scored highly in all relevance aspects (red circle), while those in the

top right (blue circle) scored poorly in all three aspects of relevance (Figure 6.16 A).

The relationship between the dataset scores for the groups of terms in Table 6.2 were highly variable.
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Table 6.2: Relevance score improvements.
The number and percentage of the 144 terms that were improved by the different relevance networks.
A total of 20 terms was improved by all three relevance networks, while 13 terms were improved
by none of the networks. The majority of the terms (109 of 144) were improved using the Edge
Relevance followed by 82 of 144 by the Node Relevance score and just 42 of 144 by the Interaction
Relevance network.

Relevance Improvement Number Terms Percentage Improved
Node 16 11.11
Edge 33 23.23
Interaction 0 0.00
Node + Edge 40 27.27
Node + Interaction 6 4.04
Edge + Interaction 16 11.11
All three 20 14.14
None 13 9.09

In some cases, terms that did not have improved performance for the relevance networks had several

high-relevance datasets. For instance, reproduction (GO:0000003) had a group of high-scoring

datasets in the lower left corner of the plot and several other datasets with high Node Relevance and

high Edge Relevance (Figure 6.16 B). The term nucleocytoplasmic transport (GO:0006913)

also did not have improved performance for any relevance network but also had a large proportion

of datasets with high Node Relevance (Figure 6.16 C). Conversely, some terms which did not have

any improvement for the relevance networks, such as term autophagy (GO:0006914), had few high-

scoring datasets (Figure 6.16 D).

The relationship between the relevance scores for POIs which had improved performance for all

three relevance networks were also highly variable. For example the network performance for

two terms, modification-dependent protein catabolic process (GO:0019941) and regu-

lation of macromolecule biosynthetic process (GO:0010556), was improved in all three

relevance networks. GO:0010556 had an extremely high proportion of high relevance datasets, with

the majority of the datasets scoring in the lower left corner of the plot (Figure 6.16 E). Inversely,

while GO:0019914 had a high proportion of high Node Relevance datasets, the Interaction and Edge

Relevance scores were highly variable with many low scores (Figure 6.16 F).

6.4.2 Combining Relevance

The three aspects of relevance, and the high-confidence control, can be combined to give a single

AUC. Combination can occur at two different stages of integration and evaluation. In the first,

the individual network scores can be combined into a single network prior to functional prediction.

Alternatively, the four separate networks may be used for functional prediction and the results com-
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Figure 6.16: The three relevance scores.
3D plots of the three relevance scores for five POIs, GO:0000003, GO:0006913, GO:0006914,
GO:0010556 and GO:0019941 (B-F respectively). Datasets scoring in the lower left corner scored
highly in all relevance aspects (red circle), while those in the top right (blue circle) scored poorly in
all three aspects (A). Datasets B, C and D were not improved using any relevance scored integration,
while E and F were improved by all three relevance scores.
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bined prior to calculation of the AUC. Since the functional prediction algorithm is computationally

intensive the first method of combining the scores has the advantage of reducing computational time,

while the second method has the advantage of preserving the distinct areas of dataset relevance during

functional prediction.

As the networks were topologically identical there were multiple methods by which their relevance

scores could be combined. Here the scores for each edge were combined into a single composite

network using two simple approaches:

1. A weighted sum of the four scores [1141]:

WS(i) = 1− ((1−WS(i)control)(1−WS(i)node)(1−WS(i)edge)(1−WS(i)interaction))

where, WS(i)control , WS(i)node , WS(i)edge and WS(i)interaction were the edge weights for

interaction i in the control, node relevance, edge relevance and interaction relevance networks,

respectively. Therefore, while some of the individual edge weights were small, integration of

the weights could produce a high final weight.

2. An average of the edge weights over the four networks :

WS(i) = WS(i)control+WS(i)node+WS(i)edge+WS(i)interaction
4

where, WS(i)control , WS(i)node , WS(i)edge and WS(i)interaction were the edge weights for

interaction i in the control, node relevance, edge relevance and interaction relevance networks,

respectively. Therefore, the final score was the average of the four network scores.

Composite networks were integrated for the 144 terms of Figure 6.5 using the two methods of score

combination. In both cases the majority of the networks had improved performance in functional

prediction over the control network. Using the weighted sum 72.2% of the AUCs were improved

(Figure 6.17 A), while using the average score 73.6 % of the AUCs were improved (Figure 6.17

B). However, in the majority of cases the improvements were smaller than those produced by the

individual relevance networks.

The functional prediction algorithm produces a score for each gene in relation to a POI. Since the

algorithm is used to predict a single POI at a time, any genes that are not predicted to be involved in

this term are weighted 0.0. Therefore, while one network will score a particular gene 0.0, another may

assign a higher score. The results of functional prediction from the three relevance networks were

combined with those of the control by selection of the highest weighted score of the four networks

for each individual gene, therefore maximising functional prediction of the POI (Figure 6.18).

In order to assess the contribution of each network to the final AUC all possible combinations of net-

work results were computed for the 144 terms. In all cases the combined functional prediction results
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Figure 6.17: Composite network performance.
The AUC of the weighted sum composite networks in comparison with the AUC of the control
network. Each point represents a single biological process. Those processes above the line were
improved by the composite relevance integration and those below were decreased. In total 72.2% of
the terms were improved.
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Figure 6.18: Combination of the functional prediction results for two networks.
A simple example of the effect of combining the functional prediction results for an unknown green
node which should correctly be assigned to the annotations of both the red node and blue nodes.
The first network (A) assigns 0.0 to the node for the red annotation since it is not on the highest
edge. In network B the red annotation would be correctly assigned along the highest-weighted edge
(solid line). Conversely, network A would assign the blue annotation correctly but network B would
assign 0.0. When the predictions from the two networks are combined by the selection of the highest
weighted prediction for the each annotation, both the red and blue annotations are correctly assigned.
It should be noted that using real data the edge weights would not be identical for the two POIs,
however, this effect would still be seen when combining functional prediction results of real data.

produced better performance than the control networks, the relevance networks and the composite

networks. Those combinations that included the control and either the Edge or Node Relevance had

high performance with 100% of the terms improved in comparison with the control network alone

(Table 6.3). However, the combination of all four networks performed best, with 100% of the AUCs

increased over those of the control networks and the majority (59%) of the highest AUCs for the

terms (Figure 6.19).

Table 6.3: Combined prediction results.
The percentage of terms improved and the proportion of highest AUCs for each of the combined
functional predictions.

Network Percentage Terms Number Percentage
Improved Highest AUCs Highest AUCs

Node + Interaction 88 3 2.1
Node + Edge 94 3 2.1
Interaction+Edge 97 1 0.7
Control+Node 100 0 0
Control+Interaction 99 0 0
Control+Edge 100 1 0.7
Node+Interaction+Edge 99 6 4.2
Node+Interaction+Control 100 17 11.8
Node+Edge+Control 100 19 13.2
Interaction+Edge+Control 100 9 6.3
All Four 100 85 59
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Figure 6.19: Combined functional prediction.
The AUC produced by the combined functional prediction results plotted against the control net-
work AUC. Each point represents one of the 144 GO Biological Process term with the red points
representing the combined functional prediction score and the blue points representing the original
node relevance scores of Figure 6.2. Those above the diagonal had improved functional prediction
and those below were decreased. The combined results were improved for 100% of the terms in,
comparison to the 62% increase of the Node Relevance network alone.

6.5 Discussion

While the RelCID integration method improved protein function prediction performance in relation

to ageing, the ageing process is only one area of cellular biology described by GO [100, 848]. There-

fore, PFINs were produced for all GO terms using the RelCID method and compared with a control

network, integrated without a measure of relevance [49]. Network performance was assessed using

several novel process-relevant techniques developed during this project to fulfil Objective 4 (see Sec-

tion 1.5). Performance of the networks varied across the terms with performance increasing for some

terms and decreasing for others. Several factors may influence network performance in relation to

specific POIs and each has been investigated in order to allow selection of appropriate POIs prior to

integration.

The properties of the GO terms themselves seem to have little effect on network performance. In

particular, GO term specificity [1140] has no significant correlation with functional prediction per-
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formance, although low specificity terms tend to have a smaller range in performance variation. The

small range is likely to reflect the number of annotations to these terms. In other words, when terms

are annotated to the majority of the genes there is a lower likelihood of incorrect classification during

GBA functional prediction [57] and therefore the AUC changes little.

The differences in term performance are reflected in the parent-child relationships of the GO DAG

[100]. If a term’s performance is decreased by the relevance integration method, its child terms’

performances are also decreased. This effect is a reflection of the structure of the DAG and the

transitivity of child-parent annotations. Since an annotation to a child term automatically annotates

a gene to its parent terms, there are areas of the DAG where groups of connected terms are annotated

to the same or very similar groups of genes. Therefore it follows that the relevance scores, and

relevance networks, will be highly similar and perform in the same way. The relationships of the

DAG could therefore potentially be used to select appropriate POIs prior to integration and to infer

the performance of closely-related terms.

The connectivity of genes annotated to the POI within the network would be expected to influence

network performance due to the local nature of GBA functional prediction [57]; if the genes are not

connected performance will be zero irrespective of edge weights. However, while it would intu-

itively be expected that increasing connectivity would have a linear relationship with network per-

formance, this was not the case. Where connectivity was very low the performance of the networks

did not vary to a great extent. However, at relatively low levels of connectivity (>25%) the perfor-

mance change became very variable, with some terms increasing and some decreasing. Similarly,

the average shortest path between genes annotated to the POI did not correlate well with network

performance. Therefore, these factors cannot be used to select appropriate POIs. However, while the

connectivity of genes annotated to the POI did not correlate with local GBA functional prediction

performance, it may potentially influence global functional prediction. Therefore, the adaptation of

a global algorithm, such as Functional Flow [902], for use with the relevance edge weights could

potentially improve performance in unannotated areas of the genome, in particular where the POI-

annotated genes have a small average shortest path [1142].

The relationship between confidence and relevance scores would also be expected to influence net-

work performance and be potential factors in the selection of appropriate POIs. For example, POIs

with few high-relevance datasets or those where high-relevance datasets score poorly for confidence

were expected to perform poorly. Interestingly, this was not the case. While most POIs with few

high-relevance datasets performed poorly, a significant number performed well. Conversely, many

POIs with a large number of high-relevance datasets performed poorly. In addition the confidence

scores of the high-relevance datasets appear to have little effect on relevance network performance.
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While the GO term chosen, the network topology and the dataset scores were expected to influence

networks’ performance, it appears that the topology of the individual datasets in relation to the POI is

the most important factor in functional prediction. A dataset may contain several nodes annotated to

the POI but may have few interactions involving these nodes, and conversely, a dataset may contain

only one node annotated to the POI but a large number of interactions involving it. Further, a dataset

that appears visually to be highly relevant to a POI may not score well using the original Node

Relevance score. Therefore, the connectivity of nodes annotated to the POI must be taken into

account to accurately assess dataset relevance.

The original relevance score, termed Node Relevance, does not capture every aspect of dataset rel-

evance since it is simply based on node counting and ignores the number of edges in which nodes

are involved. Consequently, two further relevance scores were developed; Edge Relevance, based on

edges between nodes annotated to the POI; and Interaction Relevance, based on interactions between

nodes annotated to the POI and other nodes. The performance of the relevance networks varied.

The Edge Relevance performed best while the Interaction Relevance performed worst. This effect

is directly due to the limitations of the evaluation metric applied. Local GBA functional predic-

tion transfers annotations between directly connected nodes [57]. Therefore a dataset with a high

level of Edge Relevance-nodes annotated to the POI which are directly connected-will perform well.

However, given that a small percentage of protein functions are accurately known, many new predic-

tions are treated as false positives when they may in fact be biologically correct. Given this aspect

of the evaluation, datasets with high Interaction Relevance, such as the Sanders.12052880.Affinity

Capture-MS dataset [1144], are adversely affected in their performance despite containing relevant

data. As the number of known protein functions increases this effect will be reduced and network

performance should improve.

Since the three relevance networks capture different aspects of the dataset relevance, integration of

these aspects potentially optimises the relevance effect. The results were, therefore, integrated in

two ways. First, the four networks were combined into a composite network prior to functional

prediction. Second, the functional prediction results of the four networks were integrated into a

single combined functional prediction result.

The composite networks were produced in two ways; by the average of the edge weights, and by a

weighted sum of the edge weights. Both the composite networks performed well, with the majority

of POIs improved. Combination of the networks in this way is computationally less intensive than

combining the functional prediction results, since only a single functional prediction calculation

is required. However, many of the true positives predictions made by the individual networks are

lost, and improvement is not 100%. Conversely, combination of the individual functional prediction
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results into a combined functional prediction preserves the distinctions between the networks and

produces optimised performance for all GO terms. Therefore, while computationally intensive the

combined functional prediction method produces the optimal results and was used in the remainder

of this project.

As with the single relevance networks, Interaction Relevance has the poorest performance in the com-

bined networks. However, PFINs are ultimately used to produce new hypotheses and guide future

experiments. Therefore, while the Edge Relevance networks perform well for known annotations,

due to up-weighting of the datasets with high connectivity between these known genes, the Interac-

tion Relevance networks are equally valid for inclusion since they capture the interactions between

known genes and genes potentially involved in the POI.

While the inclusion of the control network in the combined network may initially appear counter-

productive to the relevance integration technique, this is not the case. Some datasets may score poorly

in in all three relevance aspects but contain a small number of high-confidence interactions involving

the POI that will not be captured by any of the relevance networks. Even a single interaction involving

a node annotated to the POI is valuable information. Inclusion of the high-confidence control in the

combined functional prediction allows these interactions to be correctly classified during functional

prediction.

The combination of the three relevance networks with the control captures all aspects of dataset

relevance and dataset confidence and produces the highest functional prediction performance when

evaluated using known annotations, successfully completing Objective 3 of this project (see Section

1.5). However, since PFINs are intended to produce new hypotheses (see Section 2.5.5), their per-

formance must be evaluated based on new predictions (Objectives 5 and 6). In the next chapter the

combined functional prediction technique is used to produce novel predictions for over 500 GOBPs.

The predictions are then evaluated using computational analysis before a single prediction is chosen

for experimental validation.
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Chapter 7

Computational and Laboratory Analysis

of Network-Generated Predictions

In the previous three chapters of this thesis, the development and evaluation of a novel network inte-

gration algorithm, RelCID, which incorporates dataset relevance to a specific process during network

integration, has been described. The algorithm has been evaluated using a number of network analy-

sis techniques and has been shown to have improved performance over a control network, integrated

without a measure of relevance, for over 500 GOBP terms.

PFINs are ultimately intended to generate novel hypotheses based on functional interaction data. In

this chapter, the RelCID integration algorithm is applied to S. cerevisiae functional data in order

to generate new functional predictions (Objective 5, Section 1.5). The new predictions are first

evaluated by comparison with known curated GO annotations, and with GO annotations generated

by other computational methods. Then, a single prediction to the ageing-related GO term response

to oxidative stress (GO:0006979) is chosen and experimentally evaluated (Objective 6).

7.1 Functional Prediction

7.1.1 Datasets

The BioGRID version 65 (June 2010) data for S. cerevisiae was used as the source of functional

interaction data. Datasets were split at a cut-off of 100 interactions into HTP and LTP datasets,

following the protocol outlined in Section 3.1.1. The equivalent June 2010 KEGG PATHWAYS data

was used to generate a Gold Standard, and confidence scoring was carried out as in Section 3.1.4.1.

GO and SGD annotation data from June 2010 was used for dataset relevance scoring and functional
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prediction (see Sections 3.1.4.3 and 3.1.5.3). Annotations with the evidence codes IEA and RCA

were excluded during the network integration and functional prediction stages and used in the initial

evaluation (see Section 7.3.2).

7.1.2 GO Term Selection

The information content specificity score was calculated for all available GOBP terms (see Section

3.1.2). A total of 505 terms was chosen with a specificity score between -2.0 and -5.0, in order to

optimise the number of known annotations, while discarding those general terms at the top of the GO

DAG.

Networks were generated and functional predictions produced using the optimised RelCID integra-

tion schema described in Section 6.4.2 (Figure 7.1). A D value of 1.1 was chosen as before (Section

3.1.4.4). A total of 1516 networks was produced; 505 Node Relevance, 505 Edge Relevance and 505

Interaction Relevance, and, a control network integrated without a measure of relevance. Functional

prediction was carried out for each of the terms using the maximum weight rule and the most highly

weighted prediction was selected for each gene (see Section 6.4.2).

7.2 Prediction Results

In total 319766 predictions were made for the 505 terms, covering 5423 S. cerevisiae genes (Objec-

tive 5, Section 1.5). The highest scoring prediction (26.11711) was produced by the control network

to the term gene-specific transcription from RNA polymerase II promoter (GO:0032569).

The lowest scoring predictions (both 0.00118) were produced by the Edge and Interaction Relevance

networks to the terms regulation of primary metabolic process (GO:0080090) and regu-

lation of macromolecule metabolic process (GO:0060255). These two low-scoring terms

are both child terms of the general process regulation of metabolic process (GO:0019222).

The number of predictions per gene ranged from 26 to 2429 with an average number of predictions

of 633.2 (Figure 7.2 A). The gene with the largest number of predictions was YJR120W, a protein

of unknown function which had 128 interactions in the network. The number of predictions per term

ranged from 1 to 418 with an average of 59 (Figure 7.2 B). The annotation predicted the most often

was to the general term biological regulation (GO:0065007).

Approximately half of the predictions (161130) were based on control network scores (Figure 7.3).

Of the relevance network predictions, the Edge Relevance networks produced the fewest predictions

(24310), while the Interaction Relevance networks produced the most predictions (93192). In order
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Figure 7.1: The extended RelCID functional prediction schema.
The functional datasets are confidence scored using a KEGG Gold Standard and relevance scored
using Gene Ontology data. Four networks are integrated for each GO term using the confidence- and
relevance-ranked datasets. In all four cases, the confidence scores are integrated into the edge weights
in ranked order. Functional prediction is then carried out using the maximum weight decision rule.
The maximum scoring predictions for each gene are chosen from the four prediction sets to produce
the final functional predictions.
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Figure 7.2: Prediction distributions.
A. The number of predictions per gene. B. The number of predictions per GOBP term.

to further evaluate the relevance integration algorithms, the predictions produced by the relevance

networks were selected for further analysis.

7.3 Computational Evaluation

In total, 158636 functional predictions were produced. The majority of the predictions, 120421,

(75.9%), scored below 2.0, with just under half the predictions, 73017 (46.0%), scoring below 1.0

(Figure 7.4). The predictions were evaluated by comparison with known GO annotation data to fulfil

the first stage of the finall objective of this project (see Section 1.5).

7.3.1 Consistency with Existing Annotations

Predictions were first evaluated for consistency with known curated annotations, based on the parent-

child relationships of the GO DAG. A prediction was considered consistent with the known annota-

tions if it was to a child term of an existing annotation to the same gene. In other words, the predicted

function for a gene was a sub-process of a process in which the gene is known to be involved. In

total 0.57% (906) of the relevance predictions were consistent with known annotations. For exam-

ple, the gene YBR149W is known to be involved in cellular carbohydrate metabolic pro-

cess (GO:0044262) and was predicted by the Node Relevance network to be involved in hexose

catabolic process (GO:0019320), a child term of GO:0044262 (Figure 7.5)1.

1http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019320#term=info
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Figure 7.3: Source of the functional predictions.
The maximum scoring prediction was chosen for each gene from the functional predictions produced
by the four networks. The majority of the maximum scoring predictions were produced by the control
network. Of the three relevance networks the Interaction Relevance networks produced the most
predictions and the Edge Relevance the fewest.

Figure 7.4: Score range of the functional predictions.
The majority of the predictions (75.9%) scored below 2.0, with just below half (46.0%) scoring below
1.0.
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Figure 7.5: Example of a child term prediction.
A section of the GO DAG with is_a relationships depicted as black arrows and part_of rela-
tionships as dashed red arrows. The gene YBR149W is annotated to cellular carbohydrate

metabolic process (green). YBR149W is predicted by the Node Relevance network to be in-
volved in hexose catabolic process (red), which is a child term of cellular carbohydrate

metabolic process. Therefore, the prediction to hexose catabolic process is consistent
with the existing annotation data for this gene.
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Figure 7.6: Prediction score frequencies.
A. The distribution of the scores for predictions that were consistent with known curated annotations.
B. The distribution of the scores for predictions that were matches to IEA and RCA annotations.

While 40.0% of the new predictions scored below 1.0, the majority of the consistent predictions,

621 (68.5%), scored over 1.0 (Figure 7.6 A). The highest scoring of the consistent annotations was

produced by the Edge Relevance network for the gene YIL021W to the process transcription

initiation from RNA polymerase II promoter (GO:0006367). YIL021W codes for the pro-

tein RNA Polymerase B, which is well known to be involved in transcription [1164]. Consistent

predictions of this type are far more likely to be correct than those to terms unrelated to a known

annotation.

7.3.2 Consistency with Previous Computational Predictions

Predictions were also evaluated by comparison with those annotations with the evidence codes IEA

and RCA (see Section 2.5.4.3). These annotations were excluded during relevance scoring and func-

tional prediction and, therefore, did not have any influence on the network edge weights or prediction

results. While annotations with the evidence codes RCA and IEA are considered to be less reliable

than other annotations, predictions that are consistent with these annotations may be considered more

likely to be correct than those which are inconsistent with known annotations. In total, 0.37% (581)

of the relevance predictions were exact matches to these annotations. Again, the majority of the

matching predictions, 467 (80.3%), scored over 1.0 (Figure 7.6 B).
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The highest-scoring matching prediction was for the gene YGR274C to the term chromatin mod-

ification (GO:0016568). YGR274C has an IEA annotation to GO:0016568 based on Swiss-Prot

keyword mapping [1165]. The gene codes for a TATA binding protein-associated factor that is known

to bind chromatin and is, therefore, annotated with the Gene Ontology molecular_function (GOMF)

term chromatin binding (GO:0003682). While the prediction to GO:0016568 has no consistency

with YGR274C’s curated GOBP annotations, it can be considered consistent with its GOMF anno-

tations.

The evaluation was then repeated to consider consistency with child terms of the RCA and IEA, as

above. When the child terms of these annotations were included, 26.23% (41610) of the predicted

annotations were consistent with the computational annotations.

7.3.3 Multiple Functional Predictions

Of the 5423 genes in the network, 4515 had multiple functional predictions. In particular 24 genes

had multiple predictions scoring above 14.0 (Figure 7.7). Analysis of the prediction scores and

dataset ranks indicated that these multiple predictions were to associated terms, and, in many cases

the relevance ranks for the datasets were unchanged for the predicted groups of terms. In other

words, the same datasets were of high relevance for all the terms. For example, the gene YJL140W

had three high scoring predictions, two of which scored the same:

1. GO:0022411 cellular component disassembly - 17.71

2. GO:0032984 macromolecular complex disassembly - 17.83

3. GO:0034623 cellular macromolecular complex disassembly - 17.83

These terms are directly linked in the GO DAG and the dataset rankings for all three terms were

the same. Additionally, the dataset scores differed only slightly and were, in fact, identical for

GO:0034623 and GO:0032984 (Table 7.1).

7.3.4 Discussion

Sections 7.2 and 7.3 address Objectives 5 and 6 of this project (see Section 1.5) using 505 GOBP

terms as POIs. Ultimately, PFINs are intended to produce novel functional predictions prior to labo-

ratory analysis. Therefore, in this section the relevance network integration and functional prediction

schema was used to produce new predictions for a variety of POIs. GOBP terms were chosen as POIs

based on their information content specificity measure. Therefore, the chosen terms were relatively
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Figure 7.7: Multiple predictions.
The number of genes with multiple GOBP predictions above a specific score cut-off. The majority of
the multiple predictions scored below 3.0, with only 24 genes having high-scoring (>14.0) multiple
predictions.

Table 7.1: Dataset relevance ranks.
The Node Relevance ranks for the three GOBP terms predicted for the gene YJL140W. The ranks are
identical for the three genes and the dataset scores for GO:0032984 and GO:0034623 are identical.
The Edge and Interaction Relevance ranks and scores were also highly similar.

GO:0022411 GO:0032984 and GO:0034623
Dataset Score Dataset Score
Baetz.14729968 3.62E-26 Baetz.14729968 1.58E-26
Affinity_Capture-MS 1.19E-22 Affinity_Capture-MS 1.15E-22
Gavin.16429126 3.80E-20 Gavin.16429126 9.87E-22
Sanders.12052880 1.23E-17 Sanders.12052880 3.74E-18
Krogan.14759368 8.56E-17 Krogan.14759368 2.17E-17
Gavin.11805826 5.62E-15 Gavin.11805826 3.70E-16
Affinity_Capture-Western 9.99E-15 Affinity_Capture-Western 5.10E-15
Collins.17200106 1.58E-13 Collins.17200106 9.16E-15
Dosage_Rescue 3.11E-12 Dosage_Rescue 3.46E-12

specific, while having a sufficient number of annotations to form the basis for relevance scoring and

functional prediction. While the relevance integration method would work for more specific terms,

the low number of annotations to some of these terms would limit the scope of local GBA functional

prediction.

Prediction was carried out using the optimised RelCID integration and functional prediction method,

in which predictions from the three relevance networks and the control are combined by selection

of the highest scoring prediction for each gene. The majority of these high-scoring predictions were
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produced by the control network. This result is unsurprising since the control network edge weights

represent the highest possible sum of the confidence scores (see Section 4.3.1).

While the control network produced more predictions, the relevance network predictions are of more

interest since they are based on up-weighting of relevant data. Therefore, these predictions are only

produced when a measure of dataset relevance is incorporated during network integration. Of the rel-

evance networks, the Interaction Relevance produced the most predictions and the Edge Relevance

the least. The difference in the number of predictions is due to the nature of these relevance scores.

Interaction Relevance measures the number of interactions between genes annotated to the POI and

other genes in the dataset. Consequently, many edges of this type are up-weighted in the network

during integration. Given that the local GBA algorithm transfers annotations along edges from an-

notated to unannotated genes, the Interaction Relevance network has greater scope for annotation

transfer in its up-weighted edges.

Conversely, the Edge Relevance score measures the number of interactions in the dataset involv-

ing two genes annotated to the POI. Many of these edges are up-weighted in the resulting network.

While these edges are highly relevant to the POI, they offer less scope for annotation transfer. Conse-

quently, while the Edge Relevance networks perform best during leave-one-out evaluation of known

annotations, they do not produce as many new predictions as the other relevance scored networks.

However, the novel predictions of the Edge Relevance network are as valid as those of the other

networks.

Evaluation of new predictions is non-trivial. While known annotation data can be used to assess

network performance by the production of ROC curves, as seen in Chapters 4-6, there is very little

data with which to assess new functional predictions. Ultimately, the only true evaluation of new

predictions is by small-scale experimental analysis. Clearly, the experimental analysis of 158636

functional predictions is beyond the scope of this project, both in time-scale and cost.

However the predictions may be evaluated, to some extent, by their consistency with known anno-

tation data. This type of evaluation is possible due to the hierarchical nature of the GO DAG. In

total, 0.57% of the predictions were consistent with known annotation data. That is, the predictions

were to child terms of a known annotation for the same gene. While this percentage is low, the other

predictions cannot be considered incorrect, since a lack of supporting data does not in itself refute a

novel hypothesis. However, the consistent predictions may be considered more likely to be correct

given current data.

Interestingly, while 46% of the predictions scored below 1.0, the majority of the consistent predic-

tions, 68.5%, scored over 1.0. The higher scores of the consistent predictions may indicate that

higher scoring predictions are of higher quality. However, the difference in scores may also be due
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to the levels of evidence involving a particular GOBP term. Therefore, the terms with a high level

of associated experimental data, such as those describing highly studied processes, will have higher

scores and also be more likely to have consistent predictions.

A second computational evaluation was possible due the exclusion of RCA and IEA annotations

during integration and prediction. RCA annotations are produced by integrated analyses similar

to the method developed in this thesis. In fact, the functional prediction results produced in this

chapter can be considered putative RCA GO annotations (see Appendix B). Logically, using RCA

annotations to produce RCA annotations is counter-intuitive and, consequently, the RCA annotations

were excluded.

Additionally, the lower-quality IEA annotations were excluded from integration and functional pre-

diction, as in previous chapters. IEA are computational annotations produced by automated transfer

of annotations from other databases, such as SwissProt2, and are not curated. The RCA and IEA

annotations, therefore, provide a further evaluation of the new functional predictions. In total, 0.37%

of the predictions matched the RCA and IEA annotations and 26.23% were consistent with them.

Again, while the numbers are relatively low, the other predictions cannot be considered incorrect.

While these evaluation methods are far from ideal and limited in scope, they remain the only useful

methods of computational evaluation available, given the lack of data. Potentially, evaluation may

be extended to include consistency with GOMF and GOCC annotations. However, this type of

evaluation is difficult and time-consuming, requiring a high level of human curation to map the

separate branches of GO to one another. Several projects are currently ongoing to provide these

mappings (see Section 2.5.4.3). Once these projects are complete, evaluations using GOMF and

GOCC data would be more feasible.

In addition, a wealth of data which may be used to assess individual predictions, such as domain and

phenotypic data, is stored in diverse biological databases. These data may (or may not) be consistent

with a novel prediction. For instance, a prediction to a membrane-associated GOBP may be made

for a protein containing a transmembrane domain, or, a prediction to a stress response GOBP may

be made for a gene with a known stress-related phenotype. However, database searching is laborious

and difficult to carry out in a systematic fashion given the number of databases available and the

heterogeneous nature of the data. Therefore, database searching is not feasible for large numbers of

predictions, and may only be carried out efficiently on a gene-by-gene basis.

Many of the genes in this study had multiple functional predictions to several GO terms. In many

cases, these groups of terms were directly linked in the GO DAG. Multiple predictions of this type are

a product of the DAG structure and the overlap between gene annotations. The same genes are often

2http://expasy.org/sprot/
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annotated to the same group of annotations. When this is the case, the datasets’ relevance scores

are highly similar (if not identical) and, therefore, produce similarly weighted networks, leading

to similar functional predictions. This DAG-based effect was also seen in Section 6.3.1 where the

performance of the POIs was linked to the DAG structure.

Despite the difficulties of to computational evaluation where there is available evaluation data for

the genes, the relevance integration algorithm appears to perform well. Although the number of

consistent and matching annotations was low, it is not possible to say with any certainty that any of

the predictions are false. It is impossible to confirm that a novel hypothesis is correct using existing

data. New data are required to computationally evaluate each new hypothesis. Therefore, a single

functional prediction was chosen for detailed experimental analysis.

7.4 Laboratory Evaluation of a Functional Prediction

Many research groups have a specific focus and would apply integrated network analyses, such as

the methods described in this thesis, to specific biological questions, rather than to the broad collec-

tion of GO terms used in the previous section. The focus of this project is on the ageing process.

One important aspect of ageing is the response to oxidative stress since ROS have been associated

with the ageing process (see Section 2.6.2.5). The GO term response to oxidative stress

(GO:0006979) is defined as: "a change in state or activity of a cell or an organism (in terms of move-

ment, secretion, enzyme production, gene expression, etc.) as a result of oxidative stress, a state often

resulting from exposure to high levels of reactive oxygen species, e.g. superoxide anions, hydrogen

peroxide (H2O2), and hydroxyl radicals"3.

The term response to oxidative stress provides an ideal POI for the laboratory evaluation of

predictions for a number of reasons. The term is relatively specific, but 88 genes are annotated to

it in S. cerevisiae which provides a good basis for relevance scoring and functional prediction. In

addition, oxidative stress is easy to study in S. cerevisiae, since it can be induced by a number of

readily available chemicals. Further, a response to oxidative stress can be quantified by simple spot

testing of colony growth.

7.4.1 Choice of Prediction

In total, there were 368 predictions to response to oxidative stress (GO:0006979) produced

by the networks, 181 of which scored greater than 1.0. Predictions to unannotated genes potentially

3http://amigo.geneontology.org/cgi-bin/amigo/term_details?term=GO:0006979&session_id=

2617amigo1305289785
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provide more interesting and novel hypotheses than those to previously annotated genes. Therefore

the 33 predictions to unannotated genes were selected. Predictions produced by the control networks

were also discarded, since they were produced in the absence of a relevance measure.

This selection process produced a final short list of two functional predictions to GO:0006979,

YGL015C and YAL046C, both with a score of 1.6. The control network predicted YAL046C to

be involved in transcriptional termination (GO:0030847 and GO:0030846) and YGL015C to be in-

volved in the osmotic stress response (GO:0006970). Analysis of the genes’ neighbourhoods was

used to assess the level of evidence supporting the predictions. The first prediction, to the gene

YGL015C, was supported by one line of evidence, while the second, to the gene YAL046C, was

supported by two lines of evidence (Figure 7.8). Due to the time-scale of this project it was only

possible to investigate one of these predictions, therefore the prediction to YAL046C was chosen for

laboratory evaluation.

Prior to experimentation, the available data regarding YAL046C was investigated to assess the plau-

sibility of this prediction. YAL046C codes for the protein Aim1, an unannotated 118 amino acid

protein which has been linked to mitochondrial genome maintenance [1166]. The prediction to

GO:0006979 was transferred to Aim1 along two equally-weighted edges from the genes YDR098C

and YER174C. The experimental evidence for both of these edges was produced by a HTP Y2H

screen by Yu and co-workers (2008) [134]. YDR098C and YER174C code for the Grx3 and Grx4

glutaredoxins. Grx3 and Grx4 are involved in the glutathione-glutaredoxin system and iron ion

homeostasis [1060], two processes which are important during the oxidative stress (see Section

2.6.2).

Figure 7.8: The evidence for the Aim1 prediction.
The prediction for the Aim1 gene (YAL046C) was transferred from the genes YDR098C and
YER174C during functional prediction. YDR098C and YER174C code for the Grx3 and Grx4
glutaredoxins which also interact with each other in the network.
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Figure 7.9: The extended neighbourhood of Aim1.
Nodes are coloured by general Gene Ontology biological process groups. It should be noted that
there is overlap between the groups displayed. Most notably, the three oxidative stress response
genes, YDR098C, YPL059W and YER174C, are also involved in the iron response, and, the iron
response gene YGL220W is also involved in transcription.

The neighbourhood of Aim1 was visualised in Cytoscape and Ondex. The extended neighbourhood

of the Aim1 in the PFIN contained several other mitochondrial genes, in addition to genes involved in

oxidative stress, glutathione biosynthesis, telomere maintenance and the iron response (Figure 7.9).

Notably, the neighbourhood also contained several genes related to transcription, the process in which

the control network predicted Aim1 to be involved. The genes of the neighbourhood were annotated

to a wide variety of GOBP terms including several other stress responses (Table 7.2). Additionally,

several of the neighbourhood genes had mutant phenotypes associated with ageing-related processes

(Table 7.3). Surprisingly, while many of the genes have oxidative stress-related phenotypes recorded

in SGD, only four have been annotated to the term response to oxidative stress.

The Aim1 protein contains a BolA-like domain. The BolA superfamily4 contains homologues of the

E. coli protein BolA. In E. coli BolA is a stress-induced protein which is thought to have a role in the

general stress response [1167, 1168]. Interestingly, the protein has also been linked to transcription

[1169]. Most notably, two other genes in the Aim1 neighbourhood of the network, YGL220W

4http://supfam.org/SUPERFAMILY/cgi-bin/scop.cgi?sunid=82657
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Table 7.2: Gene Ontology biological process neighbourhood of Aim1.
The GOBP annotations of the genes in the Aim1 neighbourhood. GOBPs associated with ageing and
oxidative stress are highlighted in bold, including, glutathione biosynthesis processes, mitochondrial
terms and the responses to ROS producing compounds.

Orf Gene GOBP Type
YDR098C GRX3 Cellular response to oxidative stress LTP

Actin cytoskeleton organization LTP
Cellular iron ion homeostasis LTP

YER174C GRX4 Cellular response to oxidative stress LTP
Actin cytoskeleton organization LTP
Cellular iron ion homeostasis LTP

YDR392W SPT3 Ascospore formation LTP
Chromatin modification LTP
Conjugation with cellular fusion LTP
Gene-specific transcription from RNA polymerase II promoter LTP
Histone acetylation LTP
Invasive growth in response to glucose limitation LTP
Pseudohyphal growth LTP

YOR232W MGE1 Protein import mitochondrial matrix LTP
Protein refolding LTP

YLR291C GCD7 Regulation of translational initiation LTP
YJL101C GSH1 Glutathione biosynthetic process LTP

Response to cadmium ion LTP
Response to hydrogen peroxide LTP

YKR034W DAL80 Negative regulation of gene-specific transcription from RNA poly-
merase II promoter

LTP

Nitrogen catabolite repression of transcription LTP
YGL220W FRA2 Negative regulation of transcription from RNA polymerase II pro-

moter in response to iron
LTP

YAL043C PTA1 mRNA cleavage LTP
mRNA polyadenylation LTP
Termination of RNA polymerase II transcription, exosome-dependent LTP
Termination of RNA polymerase II transcription, poly(A)-coupled LTP
tRNA processing LTP

YKR019C IRS4 Autophagy LTP
Cellular response to starvation LTP
Chromatin silencing at rDNA LTP
Fungal-type cell wall organisation LTP
Inositol lipid-mediated signalling LTP

YOL027C MDM38 Cellular potassium ion homeostasis LTP
Mitochondrial respiratory chain complex III biogenesis LTP
Mitochondrial respiratory chain complex IV biogenesis LTP
Positive regulation of mitochondrial translation LTP
Potassium ion transport LTP
Protein insertion into mitochondrial membrane LTP
Proton transport LTP

YGR262C BUD32 Positive regulation of transcription from RNA polymerase II promoter LTP
Protein phosphorylation LTP
Telomere maintenance LTP
Threonycarbamoyladenosine metabolic process LTP
Cellular bud site selection HTP

YPL059W GRX5 Cellular response to oxidative stress LTP
Iron-sulfur cluster assembly LTP
Response to osmotic stress LTP
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Table 7.2: Continued
The GOBP annotations of the genes in the Aim1 neighbourhood. GOBPs associated with ageing and
oxidative stress are highlighted in bold, including, glutathione biosynthesis processes, mitochondrial
terms and the responses to ROS producing compounds.

Orf Gene GOBP Type
YDL185W VMA1 Cellular protein metabolic process LTP

Intron homing LTP
Vacuolar acidification LTP

YIL098C FMC1 Mitochondrial proton-transporting ATP synthase complex LTP
YGL071W AFT1 High-affinity iron ion transport LTP

Positive regulation of transcription from RNA polymerase II promoter LTP
YJR120W - Cellular respiration LTP

Mitochondrial organization LTP
Sterol transport LTP

Table 7.3: Phenotypic neighbourhood of Aim1.
Several genes in the Aim1 neighbourhood have disruption phenotypes associated with ageing and
oxidative stress responses. Oxidative stress response phenotypes are highlighted in bold. Many of
these genes are not annotated to the corresponding GOBP terms.

Orf Gene Mutant Scale Phenotype
YAL046C AIM1 Null HTP Mitochondrial genome maintenance: abnormal
YDR098C GRX3 Null HTP Resistance to BPS: decreased
YER174C GRX4 Null HTP Metal resistance: decreased
YDR392W SPT3 Null LTP Chronological lifespan: increased

Null HTP Metal resistance: decreased
YOR232W MGE1 Conditional LTP Mitochondrial transport: decreased

Repressible HTP Mitochondrial morphology: abnormal
YJL101C GSH1 Null LTP Glutathione accumulation: decreased

Null LTP Oxidative stress resistance: decreased
Null HTP Resistance to cadmium chloride: decreased

YGL220W FRA2 Null LTP Mitochondrial genome maintenance: abnormal
YKR019C IRS4 Null HTP Resistance to BPS: decreased
YOL027C MDM38 Null LTP Mitochondrial morphology: abnormal

Null HTP Glutathione excretion: increased
Null HTP Mitochondrial morphology: abnormal

YPL059W GRX5 Null LTP Oxidative stress resistance: decreased
Null LTP Mn-superoxide dismutase (Sod2p) activity: decreased
Null LTP Replicative lifespan: decreased
Null HTP Oxidative stress resistance: decreased
Null HTP Resistance to arsenite(3-): decreased

YDL185W VMA1 Null LTP Metal resistance: decreased
Null LTP Oxidative stress resistance: decreased
Null HTP Mitochondrial morphology: abnormal
Null HTP Oxidative stress resistance: decreased

YIL098C FMC1 Null HTP Glutathione excretion: increased
Null HTP Mitochondrial genome maintenance: abnormal
Null HTP Oxidative stress resistance: decreased

YGL071W AFT1 Activation LTP Metal resistance: increased
Null LTP Metal resistance: decreased
Null LTP Resistance to BPS: decreased
Null HTP Metal resistance: decreased
Null HTP Oxidative stress resistance: decreased
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and YAL044W-A, contain BolA-like domains, and both of the genes also interact with Grx3 and

Grx4 (Figure 7.10). YGL220W codes for the protein Fra2, a 120 amino acid protein involved in

the regulation of the iron regulon [1065, 1114]. Additionally, like Aim1, Fra2 has also been linked

to mitochondrial genome maintenance [1166]. The interactions of Fra2 with Grx3 and Grx4 both

have multiple lines of evidence, from both HTP and LTP studies [21, 24, 190, 1065, 1114, 1170].

YAL044W-A is a putative 110 amino acid unannotated protein. Notably, the protein is linked to Grx3

and Grx4 by theY2H screen by Yu and co-workers which also links Aim1 to these proteins [134].

Interestingly, these are the only three S. cerevisiae proteins that possess BolA-like domains5.

Since the shared interaction partners of Aim1, Grx3 and Grx4, are both involved in both oxidative

stress and iron regulation, a plausible hypothesis is that Aim1’s predicted involvement in the oxidative

stress response may be linked to iron homeostasis, since excess iron ions can produce ROS via the

Fenton Reaction (see Section 2.6.2.1). To test this hypothesis, the network integration and functional

prediction was repeated using the GO term iron ion homeostasis (GO:0055072) as the POI.

YAL046C was predicted to be involved in this process and, therefore, the involvement of Aim1 in the

response to oxidative stress and iron homeostasis can be considered a plausible functional prediction

for laboratory analysis. Consequently, several simple stress tests were designed to evaluate the Aim1

deletion mutant’s response to oxidative stress and varying iron levels (see Section 3.2).

7.4.2 Comparison with Traditional Database Searching

The RelCID method produces a list of candidate genes for annotation to a POI. Each candidate

prediction has an associated score based on the level of evidence for the prediction. Predictions to

unannotated genes were chosen here since they present more interesting hypotheses than predictions

to genes with known function. Of the predictions, two had the highest score of 1.6. Since the

prediction for AIM1 had more lines of evidence supporting it, this prediction was considered to be

the highest confidence prediction.

The total time taken to produce and assess this prediction is shown in Table 7.4. The first two stages

of the process were automated, requiring six inputs; the BioGRID, KEGG, SGD and GO input files,

a D-value for integration, and, a GO term of interest as POI (see Section 4.2). Stage 2 produced a list

of predictions ranked in order of score, from which the highest-confidence prediction was selected.

In stages 3-6, manual database searching was carried out to evaluate the plausibility of the prediction.

In total the 6 stages took 21 hours.

5http://www.yeastgenome.org/cgi-bin/protein/domainPage.pl?dbid=S000003188#domains
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Figure 7.10: Protein domains of Aim1, Fra2 and YAL044W-A.
The Aim1 (A), Fra2 (B) and YAL044W-A (C) proteins contain BolA-like domains. In E. coli BolA
is a stress-induced protein that is involved in stress responses and transcription.
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The RelCID method produces a list of candidate genes for annotation to a POI. Each candidate

prediction has an associated score based on the level of evidence for the prediction. Predictions to

unannotated genes were chosen here since they present more interesting hypotheses than predictions

to genes of known function. Of the predictions, two had the highest score of 1.6. Since the prediction

for Aim1 had more lines of evidence supporting it, this prediction was considered to be the highest

confidence prediction.

The total time taken to produce and assess this prediction is shown in Table 7.4. The first two stages

of the process were automated, requiring six inputs; the BioGRID, KEGG, SGD and GO input files,

a D-value for integration, and, a GO term of interest (see Section 4.2). Stage 2 produced a list of

predictions ranked in order of score, from which the highest-confidence prediction was selected. In

stages 3-6, manual database searching was carried out to evaluate the plausibility of the prediction.

In total the 6 stages took 21 hours.

In the absence of a network-based, or other statistical, analysis any gene with an interaction involving

the POI may be considered a candidate for annotation to that term. Given the scale of interaction data,

identifying candidate genes is non-trivial, even when the data are represented as a network (Figure

7.11). Traditionally these candidates would have been identified by database searching. For instance,

the Gene Ontology database provides the genes annotated to the POI and the BioGRID database

Table 7.4: Analysis time for the AIM1 prediction.
Computational stages are shown in italics. Stages 1 and 2 are fully automated. Six inputs are re-
quired; the BioGRID, KEGG, SGD and GO input files, a D-value for integration, and, the GO term
of interest. Four networks are produced as input for stage 2. Stage 2 then produces a list of functional
predictions with associated score from which the highest confidence prediction may be selected for
analysis. This stage may involve a small amount of human input if there is more than one high-
est scoring prediction. Stages 4-6 involve manual database searching for evidence supporting (or
disproving) the prediction.

Analysis Stage Description Time (hours)
1. Network Build Dataset scoring and integration into three relevance

networks and a control network.
0.5

2. Prediction and Functional prediction using the maximum weight 6.5
Selection decision rule and selection of the highest confidence

predictions.
3. Visualisation Visualisation of Aim1’s interactions in Cytoscape

and Ondex.
3

4. SGD Survey of the available data for Aim1and its sur-
rounding neighbourhood in the network.

3

5. Other databases Survey of other database evidence regarding Aim1
and its surrounding neighbours in the network.

4

6. Literature Literature survey of Aim1 and its interaction part-
ners.

4

Total 21
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Figure 7.11: The level-2 Aim1 neighbourhood.
The extended neighbourhood of Aim1 (red) includes any node within a shortest path of 2 from the
gene. The neighbourhood consists of 339 nodes and 352 edges. In the circled area alone there are 4
genes annotated to the response to oxidative stress (yellow) and, consequently, 23 potential candidate
genes including Aim1. In the absence of a statistical method to score candidate genes, such as the
one presented in this thesis, there is no way to narrow down the hypothesis field and, therefore, each
candidate must be manually assessed. As the size of the network increases to level-3 neighbours and
beyond, the network becomes too large for easy visual analysis and the number of genes interacting
with the POI increases.

provides the interactions involving the genes. In this case, all candidates are equally weighted and

must be individually assessed using the available literature and evidence.

A total of 87 genes were annotated to response to oxidative stress in June 2010. There were

90 interactions involving pairs of these genes and 1984 interactions between these genes and other

genes. Of the 1984 interactions with other genes, 51 involved unannotated genes. The identification

of the 51 candidate genes took 2 hours.
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Since analysis of the Aim1 prediction took 14 hours (stages 3-6 of Table 7.4), it would potentially

take 716 hours (2 hours + 14 hours*51) to identify and evaluate all 51 candidates. Therefore, tra-

ditional database searching could require up to 7.9 weeks (based on a 40 hour working week) to

identify a high confidence and plausible prediction for laboratory analysis, an increase of 97% in

analysis time.

7.5 Experimental Results

7.5.1 Strain Confirmation

The wild type (wt) strain, BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0), and, the AIM1 deletion

mutant, BY4741 aim1∆ (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 aim1::kanMX4) were acquired from

Invitrogen6. The deletion was confirmed by PCR. Two primers, approximately 800 bp apart, were

designed to span between the upstream region of AIM1 gene and the middle of the KanMX module

(Figure 7.12). PCR produced a clear 800 bp band for the mutant strain, confirming deletion of AIM1

(Figure 7.13).

7.5.2 Stress Responses

The wild type and aim1∆ mutant strains were subjected to oxidative stress tests by spotting them

onto plates containing a variety of oxidative stress-inducing compounds-hydrogen peroxide, mena-

dione, diamide, tBOOH, cadmium and aresenic- at various concentrations (see Section3.2.4.1). The
6http://www.invitrogen.com/site/us/en/home.html

Figure 7.12: Strain confirmation.
In the mutant strain the AIM1 gene has been deleted by replacement with the KanMX resistance
module. This replacement was confirmed by PCR. Primers were designed to amplify a region of
approximately 800 bp spanning the AIM1 upstream region and the KanMX module.
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Figure 7.13: PCR result.
Separation of the PCR products following amplification of the target region. Lane 1 contains the
PCR products of the wt strain. Lane 2 contains the PCR products of the aim1∆ mutant strain. The
expected band at approximately 800 bp is labelled.

mutant and wild type strains did not show any difference in growth under oxidative stress-inducing

conditions (Figure 7.14).

To test the mutant’s response to iron, the wild type and aim1∆ mutant strains were grown in liquid

culture to stationary phase under three different conditions: average iron, low iron, and, high iron.

For average iron the strains were grown in YPD medium. For growth under limited iron conditions

(Fe−) the strains were grown in YPD with 100 µM bathophenanthroline disulfonate (BPS). For

growth under increased iron conditions (Fe+) the strains were grown in YPD with 100 µM iron

chloride (see Section 3.2.1).

Therefore, 6 different cultures were produced:

1. wild type

2. aim1∆

3. wild type + low iron

4. aim1∆ + low iron

5. wild type + high iron

6. aim1∆ + high iron

The six cultures were spotted onto plates containing average, low and high iron. No difference in

growth between mutant and wild type strains was observed under any condition (Figure 7.15).

The six cultures were then subjected to oxidative stress testing by spotting onto plates containing

several different oxidative stress-inducing reagents, as above. Again, no difference in growth between

the mutant and wild type strains was observed under any condition (Figure 7.16).
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Figure 7.14: Oxidative stress response.
Serial dilutions of the wild type and aim1∆ mutant strains were spotted onto plates containing various
oxidative stress-inducing reagents. The first row contains the wild type strain and the second row the
aim1∆ mutant.

Finally, the six cultures were plated on YPG plates in order to provide the growth conditions for

respiration (see Section 3.2.4.2). No difference in growth between the wild type and mutant strains

was observed under this growth condition (Figure 7.17).

7.6 Discussion

Section 7.4 fulfils the final objective of this project (Objective 6, Section 1.5) using oxidative stress as

an exemplar ageing-related POI for laboratory evaluation of a novel prediction. Ageing is a complex

phenomenon that has recently been the focus of considerable research due to its association with

many diseases [964, 965]. Many biological processes have been linked to the ageing process and

several theories of ageing have been postulated, all of which have some overlap (see Section 2.6).

Of the two major theories, one is based on chromosome structure and maintenance, in particular the

maintenance of the telomere and the accumulation of DNA damage [982, 997, 1001–1003], and the

other is associated with ROS, oxidative stress and the mitochondria [1116–1119]. There is thought

to be significant overlap between these theories in terms of biology and evidence, but many aspects

of the ageing process remain unclear [972–974].
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Figure 7.15: Iron response.
The wild type and aim1∆ mutant strains were grown under average, low and high iron conditions.
Iron chloride was used to produce high iron conditions and the iron chelator bathophenanthroline
disulfonate (BPS) to produce low iron conditions. Serial dilutions of the cultures were spotted onto
plates containing average, low and high iron. The top two row are average iron growth, the middle
two rows are low iron growth and the bottom two rows are high iron growth. The wild type strain is
the top row in all three cases.

Figure 7.16: Oxidative stress response.
The wild type and aim1∆ mutant strains were grown under average, low and high iron conditions and
serial dilutions of the cultures were spotted onto plates containing various oxidative stress-inducing
reagents. The top two row are average iron growth, the middle two rows are low iron growth and the
bottom two rows are high iron growth. The wild type strain is the top row in all three cases.
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Figure 7.17: Response to differing carbon source.
The wild type and aim1∆ mutant strains were grown under average, low and high iron conditions.
Serial dilutions of the cultures were spotted onto YPD plates for fermenting growth and YPG plates
for respiring growth. The top two row are average iron growth, the middle two rows are low iron
growth and the bottom two rows are high iron growth. The wild type strain is the top row in all three
cases.

The oxidative stress response is thought to be important to lifespan in yeast and humans [1120].

Oxidative stress is caused by the presence of ROS. ROS are thought to accumulate over time, causing

damage to cellular components and, therefore, contributing to the cellular ageing [1016]. Since the

mitochondria are the major source of ROS within cells, the mitochondria are also linked to ageing

[1118].

The oxidative stress response in S. cerevisiae is an ideal POI for laboratory evaluation of the network

integration and functional prediction schema developed in this thesis. S. cerevisiae is cheap, fast-

growing and easy to work with [949, 956, 957]. Further, mutant disruption strains are available for

the majority of the S. cerevisiae genome (see Section 2.6). Oxidative stress may be induced in S.

cerevisiae using several relatively cheap reagents such as hydrogen peroxide and diamide [1087].

Additionally, oxidative stress occurs during respiratory growth [1023]. Finally, phenotypic changes

in S. cerevisiae can be easily identified by spot testing of colony growth.

In this section, 368 functional predictions for the GOBP term response to oxidative stress

(GO:0006979) were produced using the RelCID integration and functional prediction method. Since

the predictions each have scores, based on the network edge weights, they may be ranked in order of

confidence and the highest-scoring prediction selected. Here, predictions to unannotated genes were

selected as the focus of analysis since they have more scope for novel discovery. However, it could

be argued that predictions for genes which have known annotations to a parent term of the POI, may

be of greater interest since they are consistent with known data.
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The highest scoring prediction produced by the networks was for the gene AIM1. This gene has no

annotations, but has been linked to mitochondrial genome maintenance by phenotypic data [1166].

However, despite being associated with the mitochondrion, and having several mitochondrial genes

in its level-2 neighbourhood, Aim1 only has one direct interaction with another mitochondrial gene,

a negative genetic association from a study by Costanzo and colleagues (2010) [1171]. Nevertheless,

given that the mitochondrion is associated with oxidative stress and ageing, the association of Aim1

and the mitochondrion is consistent with the prediction.

Several other aspects of Aim1 and its neighbouring network also support the prediction, including

phenotypic (Table 7.3) and domain data (Figure 7.10). Further, the involvement of its neighbours

Grx3 and Grx4 in iron ion homeostasis [1060] suggests a possible link between Aim1 and the iron

response. This potential link was subsequently supported by further network analysis. Therefore,

the highest-scoring prediction produced by the network is plausible and is supported by additional

data. Consequently, the final hypothesis for the laboratory evaluation was that Aim1 is involved in

the response to oxidative stress, possibly through an association with iron homeostasis.

The control network predicted Aim1 to be involved in several general transcription-related terms.

This prediction is also plausible given the link between BolA and transcription [1169]. However,

transcription is a very general process. Every gene which is transcribed has a role in a specific

process, and many genes are transcribed in response to specific conditions. Therefore, it is reasonable

to hypothesise that Aim1 may have a role in transcription as part of the oxidative stress response. If

this were the case, both the relevance network and control network predictions would be correct.

However, while the control network only predicted an involvement in transcription, the relevance

networks predicted a more specific role. Cases such as this highlight some of the drawbacks of the

GO structure. When annotations are taken out of context important observations may be missed.

However, currently there is no systematic method to link GO annotations to one another beyond

the relationships of the GO DAG. A connection between the distinct processes can only be made

by referring to the original literature supporting the annotations or, in some cases, by referring to

the official SGD description of the gene. Neither method is amenable to large-scale computational

analysis. However, it could be argued that developing linkages of this type may over-complicate

what is already an intricate annotation schema.

The RelCID approach identified a high-confidence prediction in just seven hours. Evaluation of the

prediction then took fourteen hours. In comparison to traditional database searching, the network-

based approach reduces analysis time by approximately 97%, since it would take up over 17 weeks

to individually evaluate each candidate gene by hand. In reality, this extrapolation in time is likely

to be an over-estimate, since it is unlikely that every gene would require fourteen hours of analysis.
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Further, in some cases an interesting prediction may be found for experimental validation before all

the candidates have been assessed. If this were the case, it is possible that a better and more inter-

esting hypothesis may be present in the group of genes that was not evaluated. Therefore, traditional

database searching is more subjective than statistically-based network analyses since it has no nu-

merical aspect. Further, other GOBPs may have more or fewer candidate genes than GO:0006979.

Consequently, the RelCID technique reduces analysis time, potentially to a large extent by providing

a quantitative measure of prediction confidence.

The initial experimental results did not show any link between Aim1 and the oxidative stress or iron

responses. However spot tests, such as the ones carried out, are the simplest and least sophisticated

method to identify phenotypic changes in mutant strains. Many genes associated with a particular

biological process do not have an equivalent phenotype when disrupted. For instance Grx3 and Grx4

are annotated to the response to oxidative stress but neither gene has a related mutant phenotype for

single deletions [1057]. The two genes must be disrupted as a double mutant for a phenotypic effect

to be seen.

Consequently, while the prediction for AIM1 may be correct, more sophisticated experimental tech-

niques are required to validate it. One possible approach is to examine transcript levels in the mutant

strain by either real-time PCR or sequencing. Differences in transcript levels for genes associated

with the oxidative stress and iron responses between wild type and aim1∆ mutant would support the

prediction. A second approach would be to examine double mutants in which AIM1 and a second

POI-related gene has been deleted. If Aim1 acts in a parallel role to another protein a phenotypic

effect may be seen in the double mutant. Since two other genes in the Aim1 neighbourhood contain

BolA-like domains and share interaction partners with Aim1 [21, 24, 134, 190, 1065, 1114, 1170],

they are both potential candidates for parallel roles.
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Chapter 8

Discussion and Future Work

The aim of this project was to investigate and develop techniques to exploit data bias in order to

optimise PFIN performance in relation to specific biological questions. In order to achieve this the

six objectives set out in Section 1.5 have been met. In Chapter 4 the available functional data was

evaluated revealing the differences and similarities of the datasets, and the individual dataset biases

(Objective 1). These biases allowed dataset relevance to be quantified in relation to specific biolog-

ical processes (Objective 2). A relevance measure was incorporated into a novel PFIN integration

technique, RelCID, which harnesses dataset relevance in order to direct network analyses to answer

specific biological questions (Objective 3).

During the initial stages of the project significant changes to the source databases were observed

owing to the curation process. Investigation of the effect of these changes on network performance in

Chapter 5 revealed that the assumption of increasing network performance over time is incorrect. In

fact network performance fluctuates. However, the RelCID technique was demonstrated to improve

network performance and overcome some of the effects of the curation process (Objective 3).

Existing network evaluation techniques were global in that they assessed network performance across

all areas of biology. Therefore evaluation of RelCID required the development of several process-

specific evaluation techniques throughout this project (Objective 4). Following thorough evaluation

and optimisation in Chapter 6, RelCID was applied in Chapter 7 to produce several novel hypotheses

for the yeast Saccharomyces cerevisiae (Objective 5). Computational assessment of the hypotheses

demonstrated RelCID’s utility in tailoring analyses to specific biological processes (Objective 6). In

particular RelCID significantly reduces analysis time. Finally an initial laboratory evaluation of a

single prediction was carried out (Objective 6). The techniques developed and conclusions drawn

during the fulfilment of these objectives are discussed in detail in the following sections.
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8.1 Introduction

Computational analysis has become essential to biology due to the recent explosion in new high-

throughput experimental technologies [1]. There is simply too much data to analyse manually within

a reasonable time-scale, and the amount of biological data available continues to grow. The field

of Systems Biology aims to analyse this wealth of data by drawing on the principles of computing

science, mathematics and statistics [26, 32–36]. At the heart of Systems Biology is the elucidation of

the interactome: the entire complement of molecular interactions that may occur within an organism

under all circumstances and for all cell types [37]. However, this is a substantial task.

Available biological data are spread over hundreds of databases and are heterogeneous in nature

[27, 67]. The datasets have differing levels of noise, bias and genomic coverage [42, 68, 69, 128,

430, 673]. In order to fully characterise every aspect of highly complex cellular systems, and infer

new knowledge from the data, diverse data sources must be systematically integrated [48, 49, 51,

420, 497, 668–671].

PFINs are one of the most powerful graph-theoretic approaches to data integration; they reduce

the impact of dataset noise by taking a measure of dataset confidence into account during network

integration [49, 115, 128]. In PFINs nodes correspond to genes or gene products and the edges to

functional associations between nodes. The edge weights of PFINs indicate a level of confidence

in the combined evidence for that edge, usually calculated by statistical comparison against a Gold

Standard dataset [669, 699]. Therefore, edges with multiple lines of evidence may be up-weighted,

although where the corresponding evidence is of low confidence, the weighting is reduced.

Graph-theoretic algorithms may be adapted to take PFIN edge weights into account [57, 88, 431,

517, 533, 534, 568, 569]. For instance, rather than propagating gene annotations along any edge in

a network during GBA functional prediction, annotations may be propagated only along the highest

confidence edges using the Maximum Weight rule [57]. By including this measure of dataset confi-

dence into network analysis, PFINs have produced improved accuracy in a number of graph theoretic

applications; for instance, in the detection of protein complexes [90, 534, 592], the annotation of pro-

teins [49, 92, 103, 105–112, 674, 711] and the prediction of new interactions [318, 675].

The majority of research groups have specific research interests [128]. While available functional

data contains a wealth of valuable information, only a subset of the data has relevance to each specific

biological question. Often this relevant data may be difficult to distinguish from the large amount

of other data in a network. In particular, high confidence data that is not relevant to the biological

question being addressed may obscure more relevant data when edge-weighted analyses are carried

out. In other words the data that is of no relevance to the process under investigation can act as
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additional noise in the network.

Given the growing amount of the data available it will become increasingly necessary for many

purposes to focus on a subset of an integrated network. Previously, methods to produce area- or

process-specific subnetworks have relied on known annotation data as the basis for data filtering

[46, 59, 129, 130]. However, many areas of the interactome contain very few (or sometime no) anno-

tated genes [902]. Further, many annotations are high-level, general terms which lack the specificity

needed for process-specific analysis.

8.2 The RelCID Algorithm

RelCID, the novel algorithm described in this thesis, allows process-relevant PFINs to be integrated

without loss of data, by harnessing dataset biases. Process-relevant edge weightings are produced by

ordering the datasets according to their relevance to a specific biological process of interest (POI),

prior to integration of their confidence scores. Therefore, a higher weighting is given to the most

relevant datasets. However, since the edge weights are based on dataset confidence, dataset noise is

still reduced as in classical PFINs. Since relevance and confidence are calculated independently, the

RelCID method can be applied to any confidence scoring schema using any Gold Standard dataset

and any POI.

Importantly, while known annotations are used for the relevance scoring, an entire dataset is scored

as a whole. Therefore, all a dataset’s edges are treated equally, inclusive of those involving unan-

notated genes. Therefore, unlike previous process-relevant methods, the up-weighting of relevant

data is global and is not limited to well-annotated areas of the interactome. Consequently, the PFINs

produced by RelCID have far less bias in weighting towards known and highly-studied genes, giving

more scope for the generation of novel process-specific hypotheses.

The relationship between dataset relevance and PFIN performance is complex and involves a number

of factors. Several conclusions regarding this relationship and the use of process-relevant networks

were drawn during this research:

• As previously demonstrated [46, 98, 121] datasets have their own unique biases in relation to

specific biological questions.

• The incorporation of a measure of dataset relevance by the RelCID algorithm improves net-

work performance with respect to the prediction of protein function.

• The relationship between dataset relevance and network performance is highly complex.
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• The manual curation of source databases alters network performance over time.

• The RelCID algorithm produces plausible novel hypotheses that cannot be produced in the

absence of a measure of relevance.

These conclusions are discussed in the following sections.

8.2.1 Dataset Relevance

Datasets generated by different experimental approaches show clear differences in the areas of biol-

ogy that they cover (see Section 4.1.2). In particular, genetic data have a distinct focus in comparison

with physical data, and different experimental types have different biases in relation to biological

processes. These distinctions are not unsurprising, given the nature of the experimental methodolo-

gies. For instance, experimental methods that identify physical interactions, such as Y2H [144] and

TAP-MS [181], are likely to be biased towards processes involving the physical binding of proteins,

such as complex formation. Conversely, experimental methods for the detection of genetic interac-

tions, such as SGAs [14], dSLAM [15] and E-MAPs [17], are biased towards processes that include

indirect functional relationships, such as regulatory relationships. However, the differences between

physical and genetic data types are generally too high-level to infer relevance to specific biological

questions.

It appears that individual studies also have more specific low-level biases due to their experimental

design and focus (see Section 4.1.3.5). These biases can reflect similarities between datasets of

different experiment types. Naturally, some studies are more relevant to specific areas of biology than

others and therefore by measuring the levels of bias a dataset’s process-relevance may be quantified.

Given that individual research groups have their own specific interests, these biases are not unsur-

prising. In fact, a research group conducting both experimental and network-based analyses is likely

to find its own experimental datasets have high, if not the highest, relevance to their POI. In this case

the use of a process-relevant integration technique allows iterative refinement of a process-relevant

network. Experimental data can be up-weighted in the network, analysis of which can, in turn,

guide further experiments. This type of iterative analysis is the basis of the field of Systems Biology

[26, 32–36].

8.2.2 Harnessing Relevance

The hypergeometric test provides a measure of dataset relevance to specific biological processes.

The test produces a p-value for the representation of a GO term in a dataset’s gene annotations in
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comparison to its representation in the S. cerevisiae genome as a whole. A group of datasets may

therefore be ranked in order of relevance to a POI. RelCID uses these ranks to extend the integration

method developed by Lee and co-workers in 2004 [49].

Lee and colleagues observed that there are likely to be dependencies between available biological

datasets (see Section 2.4.3) and consequently attempted to overcome this difficulty by introducing a

weighted sum during network integration. The sum successively down-weights dataset confidence

scores in order of magnitude. Therefore, the method gives a higher weighting to datasets with higher

confidence and produces a network in which highly-weighted edges have high confidence (see Sec-

tion 3.1.4.4).

In the RelCID schema the weighted sum is adapted to incorporate the relevance rankings by re-

ordering the datasets prior to integration of the confidence scores, giving a higher weighting to

datasets with higher relevance. Therefore, in the resulting relevance network highly-weighted edges

have both high confidence and high relevance to the POI. The relevance network is topologically

identical to a network integrated without a measure of relevance and differs only in its edge weights.

The weighting differences are directly attributable to the up-weighting of the more relevant datasets

in the network.

In this project, four manually-curated data sources are used to integrate the process-relevant net-

works: BioGRID as source data, KEGG PATHWAYS as the Gold Standard for confidence scoring,

and GO and SGD to provide annotations for relevance scoring. While two distinct databases were

chosen for confidence and relevance scoring respectively, the relevance integration schema could be

applied using GO for both of the scores. The use of GO in this way would be possible since the two

scores measure distinct aspects of a dataset’s GO annotation. A dataset may have high confidence

(many genes sharing the same annotation) but have low relevance (few or no genes annotated to the

POI), and vice versa. A dataset may also have both high confidence and high relevance, or both low

confidence and low relevance. Similarly, KEGG PATHWAY annotations could be used as the basis of

relevance scoring as could other Gold Standard datasets (see Section 2.4.2). Therefore, the RelCID

algorithm is highly versatile and is applicable using any combination of Gold Standard datasets.

8.2.2.1 Evaluation Strategy

Four evaluation methods were chosen to assess the relevance networks’ performance in relation to

a control network that was integrated without a measure of relevance. A common use for PFINs

is the inference of protein function [104, 510, 676, 676, 907, 911, 919]. Functional inference pro-

vides an excellent approach to network evaluation since it produces a numerical measure of network

performance as the AUC of a ROC curve [920, 921]. Many functional prediction algorithms have

238



been developed (see Section 2.5.5). Since relevance and control networks are topologically identical,

the functional prediction algorithm chosen should utilise the networks’ edge weights rather than just

their topology.

In this project, the local GBA algorithm Maximum Weight was chosen for network evaluation [57].

This algorithm propagates annotations locally along the highest weighted edge, and has been shown

to have the most accurate performance of local GBA algorithms. Since the relevance and control

networks differ in edge weighting alone, Maximum Weight provides a simple and direct comparison

of network performance.

Both the relevance and the control networks’ edge weights are produced by integration of the datasets

in a ranked order [128]. Therefore, as a control for the evaluation, functional prediction was repeated

for networks integrated with these ranks reversed. These networks acted as a null hypothesis, since

if the ranked integration produces optimal performance as expected, reversal of the ranks should

decrease network performance in relation to the POIs.

Clustering is a common method by which large complex networks may be divided into smaller, visu-

alisable sub-parts [527]. The MCL clustering algorithm was chosen since it also uses edge weights

[534]. Unlike functional prediction algorithms, clustering algorithms do not produce a numerical

estimate of network performance. Evaluation of clustering is therefore more subjective, relying on

visual analysis and interpretation of the data. Since the networks in this project were focussed on the

ageing process, a selection of ageing-related GO terms was chosen to evaluate the clusters, including

several DNA damage and repair, mitochondrial and telomeric region terms. The co-clustering of

genes annotated to these ageing related terms was then used to assess clustering performance.

Integrated networks are often intended to generate new hypotheses for laboratory validation. There-

fore, it was also essential to evaluate the relevance networks’ performance in light of new data.

This evaluation was achieved in two ways. First, the functional prediction results and network clus-

ters were compared with two ageing-related datasets [16, 993] which had been produced after the

networks were integrated. Second, the functional prediction results were compared with new anno-

tations to the POI, which had been added to the GO database after network integration. Many GO

annotations are derived from existing functional interaction data, and therefore some dependencies

exist between the integrated datasets and the GO annotations used to assess them. By using data that

was not available at the time of integration these dependencies were eliminated, giving an objective

evaluation of network performance.
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8.2.2.2 Network Performance in Relation to Ageing

Initially, a relevance measure was developed based on the number of genes within a dataset that are

annotated to a specific GOBP, termed the POI. Due to the transitive nature of the GO DAG, any

genes annotated to a child term of the chosen term were included in the POI [100]. This relevance

measure was termed Node Relevance and was incorporated into network integration, in addition

to a measure of dataset confidence [49]. The performances of the process-relevant networks were

compared to those of a control network, integrated based on dataset confidence alone. The networks

were topologically identical, since they were integrated using the same source data, but differed in

their edge weights. S. cerevisiae ageing was used as a test POI.

Several results were apparent regarding the ageing networks’ performance in relation to the control:

• The relevance networks’ functional prediction performance was significantly improved over

that of the control network.

• Reversal of the relevance integration order significantly reduced functional prediction perfor-

mance, while reversal of the control network integration order had little effect on functional

prediction performance.

• The relevance networks had fewer clusters than the controls and a higher percentage of clusters

containing genes annotated to ageing-related processes, and unknown genes.

• Genes annotated to the POI in the relevance networks appeared in separate, smaller clusters in

the control network.

• The clustering improvements apparent in the relevance networks were not observed when the

networks were analysed with regard to processes unrelated to ageing.

• When compared to ageing-related data which was not available at the time of integration,

relevance network clustering of the new data was improved over that of the control network.

• Relevance network performance in relation to the assignment of new annotations could not be

conclusively assessed due to significant changes in the GO database.

It appears that the content of datasets is of greater importance than the datasets’ confidence scores

when network analysis is applied in relation to a specific process. Reversal of the order of the

confidence-ranked integration of the control networks has little effect on network performance in

relation to ageing. This observation is initially surprising, given that the power of PFINs is attributed

to their confidence-based edge weights [49, 115, 128]. However, in this study performance is only
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assessed in relation to a single biological process. It is highly likely that, if assessed globally for

all GOBP terms, reversal of the control network order of integration would cause a larger drop in

functional prediction performance. However, due to the scale of GO a full evaluation of the effect of

score rank reversal was beyond the time-frame of this project.

Significantly, in relation to ageing reversal of the order of relevance-ranked integration causes a

significant performance decrease. Given that this reversal gives lower edge weightings to the most

relevant datasets this effect is expected. When relevant data are down-weighted in this way it is

masked by less relevant data during functional prediction.

Conversely, when the datasets are integrated in order of relevance a significant performance increase

is observed compared to the control network. This observation suggests that high relevance data

may be masked by high confidence but low relevance data in the control network. Dataset content

is clearly of high importance when network analyses are focused on a specific biological question.

Therefore, incorporating a measure of relevance during network integration improves functional pre-

diction performance.

Many PFINs are too large to easily analyse visually. While computational algorithms can identify

patterns in data, many novel observations can only be made by visual examination of a network

based on expert knowledge, a task which is beyond the current capabilities of computers. Clustering

a PFIN allows it to be broken down into several, visually comprehensible parts [527].

Unlike functional prediction, network clustering is generally a non-quantitative technique. Compar-

ison of different clustering patterns is non-trivial in many cases, due to the complexity of biological

data. However, if process-relevant networks are integrated to study a specific question, this com-

plexity is reduced by restricting cluster assessment to one area of biology. Therefore, quantitative

assessment of the clusters is possible using GO annotations associated with the POI. In the analy-

ses carried out during this project, it is clear both quantitatively and visually that the clustering of

process-relevance networks is improved over that of the control since the ageing-related nodes were

clustered together in large clusters in the relevance network.

Potentially the most interesting genes in an integrated network are the unknowns: genes with no

annotations. In the control network the majority of the unknowns cluster together in small, poorly-

annotated groups, a scenario which gives little scope for hypothesis generation. This clustering is

likely to be due to bias of the control network edge weightings towards highly-studied processes.

Therefore, highly-weighted edges are likely to be between annotated nodes rather than between

annotated nodes and unknowns.

In the relevance networks this bias is overcome by the up-weighting of edges that are relevant to the

POI. Nodes annotated to the POI cluster together, allowing easy visualisation of the most relevant
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data. While many unknown genes still cluster in small, poorly annotated clusters in the relevance

networks, several of the clusters containing genes annotated to the POI also contain a large proportion

of unknowns. Additionally, the clusters contain a large number of nodes from ageing-related datasets

[16, 993] which were produced after the networks were integrated. Since the MCL algorithm utilises

edge weights [534], the difference in clustering of unknown genes is directly attributable to the up-

weighting of the ageing-relevant data. The unknowns clustering with genes annotated to the POI in

the relevance networks are, therefore, potential candidates for involvement in the ageing process.

These functional prediction and clustering differences demonstrate the power of the RelCID algo-

rithm. Incorporation of a measure of relevance during network integration improves the functional

predictive power of the networks. The up-weighting of relevant data also allows relevant nodes to

cluster together and overcomes the biases of the control network towards high-confidence but poten-

tially low relevance data. Further, the large clusters produced by the relevance networks have greater

scope for hypothesis generation than those of the control when focussing on a specific biological

process.

Ideally, functional predictions should be compared with new annotations to evaluate the networks’

performance in light of new data. However, this is not always possible. High-quality biological

databases, such as GO, are constantly changing [297]. As discussed in depth in Section 8.2.4, cu-

rators often identify and remove incorrect data and change their database schemas to reflect current

biological knowledge. These changes may have a significant impact on integrated analyses. For

instance, the removal of 76.45% of telomere maintenance annotations from the data used to

generate the relevance networks in March 2008 made the comparison of these networks with those

derived from March 2009 data impossible (see Section 4.19). Changes such as these are common

in biological data. Therefore, careful selection of source data and analysis of results is crucial to

accurate computational hypothesis generation in Systems Biology.

8.2.3 Choice of POI

Ageing is only a small aspect of cellular biology. Therefore, the integration and functional prediction

evaluations carried out for the ageing terms were repeated using each GOBP in turn as POI. Cluster-

ing evaluations were not carried out, since clustering does not produce a numerical result that may

be compared across multiple networks.

The performance changes of the networks were not consistent. Some relevance networks exhibited

increased performance over the control, while network others had decreased performance. Several

aspects of the GOBP terms, datasets and networks were assessed in relation to functional prediction

performance and several results were apparent:
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• The performance of PFINs differs for different GOBP terms.

• The size and specificity of a GOBP term does not significantly influence PFIN performance in

relation to that term.

• The performance of GOBP terms as POI was related to GO’s DAG structure in that parent-

child groups of terms exhibited similar performance.

• Network functional prediction performance is not correlated with any of the global network

topological properties assessed, such as the average shortest path between the nodes annotated

to the POI.

• Network performance was correlated neither with dataset relevance or confidence scores, nor

with the dataset relevance or confidence ranks.

• The connectivity of genes annotated to a POI within individual datasets is related to network

performance for that term.

• The Node Relevance score does not capture all aspects of dataset relevance to the POI.

The Node Relevance score is not sufficient to capture every aspect of a dataset’s relevance to a

POI. To have relevance to a POI a dataset must contain some nodes annotated to the that process,

but the connectivity of these nodes can differ greatly. The Sanders.12052880 Affinity Capture-MS

dataset [1144] is an excellent example of this effect. This dataset contains 193 nodes, 87 of which are

annotated to the POI. Due to the high proportion of unannotated nodes, the dataset’s Node Relevance

score is not very high. However, >95% of this dataset’s interactions involve a node annotated to the

POI. Consequently, this dataset’s relevance to this process is far higher than the numerical value

produced by the Node Relevance calculation.

Two further relevance scores were therefore introduced, based on interactions involving the POI:

Edge Relevance, to measure the level of interaction between two nodes each annotated to the POI;

and Interaction Relevance, to measure the level of interaction between nodes annotated to the POI

and their non-POI neighbours. The performance of the three network scores (Node Relevance, Edge

Relevance and Interaction Relevance) differed for each POI in relation to known annotations.

In the majority of cases the Edge Relevance networks’ performances were the highest. However, this

result is largely influenced by the nature of the Edge Relevance score and the functional prediction

algorithm chosen. The Edge Relevance algorithm up-weights datasets with a large number of edges

between nodes annotated to the POI. During leave-one-out functional prediction evaluation, annota-

tions are transferred between nodes annotated to the POI. Due to the local nature of the algorithm,
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the annotation that is "left out" during evaluation must be attached along its highest-weighted edge

to a node which is also annotated to the POI in order to be correctly assigned [57]. Therefore, it fol-

lows that networks integrated using Edge Relevance perform well. However, despite the bias towards

edges between nodes annotated to the POI, datasets which score highly for Edge Relevance are also

likely to contain other, unannotated, nodes which are relevant to the POI.

The Interaction Relevance networks performed the worst. Again, this result is largely due to the

nature of the Interaction Relevance score and the functional prediction algorithm applied to the net-

works. The Interaction Relevance algorithm up-weights edges involving a single node annotated to

the POI. Therefore, the majority of up-weighted edges have no influence on the functional prediction

evaluation. However, this score is important since it includes the unannotated nodes. In fact, due

to this aspect of the relevance scores, the Interaction Relevance algorithm produces far more novel

hypotheses than the other scores when used to infer functional predictions. For instance, a large pro-

portion of the edges of the Sanders.12052880 Affinity Capture-MS dataset [1144] are up-weighted

in the Interaction Relevance network. Interaction Relevance is therefore, potentially very useful in

the discovery of novel hypotheses.

The relationship between network functional prediction performance and the three dataset scores

was highly variable and complex. In some cases, terms with many high-relevance datasets per-

formed poorly. Conversely, some terms with few high relevance datasets performed well. Further,

the relationship between the three dataset scores was also complex. While it was observed that a POI

required some high relevance datasets to have improved performance, little correlation was observed

between relevance scores and the corresponding network’s performance. For instance, a GOBP term

may have many high Interaction Relevance datasets and few high Node or Edge Relevance datasets

but may only have improved performance when used as POI in the Edge Relevance network. Many

of the aspects of dataset relevance to a POI are unclear. The most likely explanation for this am-

biguity may be noise in the data. Therefore, as biological data slowly improves through curation,

false interactions will be identified and removed (see Section 8.2.4), and these relationships should

become clearer.

8.2.3.1 Combining Measures of Relevance

The three relevance scores (Node Relevance, Edge Relevance and Interaction Relevance) measure

different aspects of a dataset’s relevance to the POI. In combination, therefore, they could potentially

combine all of these aspects into a single network. This combination is possible at different stages

of integration and evaluation of the data. The individual network scores can be combined into a

single network prior to functional prediction, or the separate networks may be used individually for
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functional prediction and the results combined prior to calculation of the AUC. Ideally, the construc-

tion of a single network combining all aspects of relevance and confidence is preferable, since the

functional prediction stage is the most computationally intensive step of the RelCID algorithm.

Since the networks are topologically identical, differing in edge weights alone, integration of the

different relevance measures into a composite network is straightforward and can be accomplished

in a number of ways. Here, two simple methods of integration were chosen: averaging over the edge

weights from the different networks and calculating a weighted sum of the edge weights from the dif-

ferent networks (see Section 6.4.2). Both types of composite networks perform well in comparison to

the control network. However, neither method of score integration produces improved performance

for all GO terms. In fact, the performance of the composite networks for a large number of terms

is reduced, and many of the true positive predictions of the single relevance networks are actually

missed. Additionally, the improvement in performance for the composite networks is often smaller

than the improvements produced by some of the networks integrated with a single measure of rel-

evance. However, there may be more complex strategies of edge weight combination which may

produce improved performance over the two chosen here.

It appears that the different aspects of network relevance cannot be combined into a single network

in these ways without loss of information. To preserve the unique strengths of the different relevance

scores, the networks must be created separately, and the functional prediction results combined (see

Section 6.4.2). Combination of the results in this way is relatively straightforward, as the networks

are used to predict annotations to a single process. Therefore, a node is predicted either to be involved

in a process or not by each network. Since the predictions each have scores based on the edge weights

of their evidence, the highest score for a gene can be considered the highest confidence prediction.

Combination of the functional prediction results produces improved performance for all of the POIs.

As with the single relevance networks, Interaction Relevance performed the poorest and Edge Rel-

evance the best when in combination with the other networks. Again, as discussed above, this re-

duced performance is due to the nature of the Interaction Relevance score. The information in these

networks can be considered more valuable than that of Edge Relevance networks since they take

unknowns into account.

The difference in performance between composite networks and combined functional prediction is

not surprising. While it is computationally preferable to have a single network combining all aspects

of relevance, such a network is not optimal for performance. The relevance scores measure distinct

aspects of the datasets’ contents, with little dependency between the scores. Therefore an edge may

have a very different weighting in each network. If edge weights are combined into a single network,

for instance by averaging, the high weighted edges of some networks are potentially down-weighted,

245



leading to incorrect functional assignment. Conversely, if functional prediction is carried out on

the networks individually, the high weighted edges of each network may be utilised, preserving the

information harnessed by the individual scores and improving functional assignment.

The best performance produced by the relevance networks is seen when the functional prediction

results of all three networks are combined. Network performance is even further improved by the

inclusion of the results of the control network. Inclusion of the control network in the combined

prediction results may initially appear counter-productive, since relevance network integration is de-

signed specifically to out-perform the control in relation to specific processes. However, due to the

nature of functional interaction data, the control networks inclusion is essential to optimise perfor-

mance. For instance, a dataset may contain 1000 nodes and 3000 edges, with two nodes, annotated

to the POI, that interact only with one another. This dataset would score poorly in all three aspects

of relevance since it only has two nodes and one interaction involving the POI. Therefore, the edge

between these nodes would be down-weighted in the relevance networks. However, if the dataset is

of very high confidence, this edge would be up-weighted in the control network. Further, if the edge

was only found in this dataset then it would follow that the control network is likely to be the only

network to correctly assign these annotations. Inclusion of the control network in the combined re-

sults is therefore essential to account for high confidence data which is not present in high relevance

datasets.

8.2.4 Source data

The performance and accuracy of PFINs are dependent on the quality of the Gold Standards chosen

[699]. Currently, Gold Standard datasets are derived from high-quality, manually-curated databases

such as KEGG [49, 112, 128, 702] and GO [46, 98, 106, 703]. However, there are drawbacks to

the use of Gold Standard data. Manually-curated databases tend to be biased towards intensively

studied proteins and processes [98, 133, 223]. Therefore, Gold Standard datasets are non-saturating,

in that they do not cover all areas of cellular biology. This situation which may lead to an incorrect

assessment of dataset confidence. In this study several of the medium sized datasets were discarded

since they did not score against the Gold Standard (see Section 4.3.1). It was, therefore, impossible

to judge the accuracy of these datasets, since their lack of score may be due to bias in the Gold

Standard, dataset inaccuracy, or most likely a combination of the two. Similarly, the datasets which

do have positive scores may also be affected by Gold Standard bias to varying extents.

An additional drawback to the use of Gold Standard data are that it is highly likely that some of the

data may be derived from the experimental datasets being assessed. In other words, some KEGG

PATHWAY annotations may be manually curated from the experimental datasets being scored and
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integrated. Unfortunately, in the case of KEGG, references to the original source of annotations are

unavailable [1160]. Further, if literature references are available, filtering out annotations directly

linked to the source datasets may significantly reduce the size of the Gold Standard. If this is the case

accurate assessment of the datasets is impossible due to lack of Gold Standard data. Certainly, given

the number of datasets in this study which did not score against the complete KEGG Gold Standard,

it is likely that even more datasets would not score if the the Gold Standard were to be filtered in this

way, resulting in considerable loss of data.

Despite the obvious drawbacks to the use of Gold Standard data, to date no other reliable method

of assessment of dataset quality is available. KEGG was chosen as the Gold Standard in this work,

as it is a manually-curated database [277], and also since GO was chosen as the Gold Standard for

relevance scoring and evaluation [100]. As the confidence score and relevance scores were based

on separate sources, the two scores can be considered independent from one another. It should

be noted, however, that there is almost certainly some overlap of the evidence in the literature for

annotations between the two databases. Unfortunately this type of overlap is unavoidable given that

these biological databases are based on the manual curation of all of the available literature. However,

since the KEGG PATHWAYS and GOBP annotations represent different areas of biology, metabolic

pathways and biological processes respectively, this overlap is as reduced as possible.

PFINs are more powerful than unweighted networks, since they include a measure of dataset confi-

dence, derived from comparison with Gold Standard data [49, 115, 128]. However, the limitations

of Gold Standard databases impose limitations on scoring methods. In fact, despite the development

of numerous analysis methods, the size of interactomes and the levels of noise in HTP data remain

unknown, with estimates ranging widely even in a well-characterised organism such as S. cerevisiae

[42, 154, 184, 313–317]. The only accurate measure of a dataset’s confidence may be computed by

comparison with the interactome itself; a true "Gold Standard" that will not be available for many

years, if ever.

However, a rational assumption is that despite these drawbacks network performance is improving

over time as more data are gathered and more knowledge of the interactome is gained [1161]. A

major factor in this assumption is the effect of data curation. Database design and curation are

becoming increasingly important in the field of biology and the number of papers published on these

subjects is increasing rapidly. For instance, the journal Database was launched in 2009 as a dedicated

forum for biological databases and curation strategies [271].

Highly curated databases are considered to be of high quality, as they are constantly manually up-

dated in an attempt to accurately reflect current knowledge from the literature [266]. The curators

of databases such as GO [100], KEGG [99] and SGD [283] add, remove and modify data on a daily
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basis to try to keep the databases up-to-date. It therefore follows that integrated networks derived

from the most recent database versions should outperform those integrated using previous versions.

Surprisingly this study found that this was not the case. While the newest data generally outper-

formed older data, network performance does not steadily improve through time but fluctuates as the

available data changes and grows (see Section 5.4). In the case of changes to Gold Standard data,

fluctuations are very likely to be due to bias in the Gold Standard data, rather than to inaccuracy. As

the bias of a Gold Standard changes due to the addition and removal of data, dependent datasets’

scores also change, causing a change in network performance. Datasets with high relevance to a POI

may score poorly if the Gold Standard is biased against that process. Therefore, if a Gold Standard

bias changes away from a POI, performance will drop despite the high quality of the Gold Standard

dataset.

The performance of process-specific networks may also be affected by changes to raw datasets. In

this case the fluctuations in network performance are very likely to be attributable to dataset noise.

In particular, large, noisy datasets with little relevance to a POI may mask the data of smaller, more

relevant datasets.

Bias and noise remain significant problems in network analysis and are unlikely to be overcome

easily, given the nature of biological research: some biological processes will always attract more

interest than others [98, 223], and technologies, particularly the HTP ones, will continue to produce

large, valuable, but noisy datasets [68, 69, 430, 673]. Computationally, these problems may be

addressed by attempting to remove the noise in HTP data [690–692] and correct biases [342, 703,

707]. However, noise removal methods are computationally and theoretically non-trivial. Since the

true interactome remains unknown it is impossible to determine with any accuracy what is noise

or bias and what is true data. Therefore, it is likely that noise removal methods may introduce

false negatives to the datasets. In other words, useful true positive data are discarded. The RelCID

algorithm overcomes these problems by harnessing dataset bias in order to see past the noise in the

data.

Integrated networks are designed to generate new hypotheses in order to build a clearer picture of the

interactome. However, while Gold Standard data may be of high quality it is constantly changing.

It is clear that the assumption of better data leading to improving network performance over time is

incorrect. Rather, network performance changes dynamically, based on the biases in current datasets.

As current knowledge becomes closer to the true interactome, fluctuations in network performance

are likely to decrease.

Manual curation is important to avoid errors in data, but the curation process is far from perfect.

Several significant curation decisions which directly affected network performance were identified
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during this project. In BioGRID a large HTP dataset was removed following community feedback

[1159]. The annotations of one KEGG pathway were removed and subsequently re-entered into the

database between versions. The reasons for these pathway changes were not recorded [1160], but

the removal of the data appears to have possibly been a simple human error. Finally, a large number

of annotations were removed from the GO database following a decision by the curators regarding

phenotypic data1.

Each of these changes could directly affect network performance. Therefore, while it is important

to choose manually curated databases as source data and Gold Standards for integrated analyses,

it is important to remember that these datasets may still contain a level of noise and bias which

must be taken into account during interpretation of the results. By focussing on individual processes

the RelCID technique overcomes some of this noise and produces a smoother increase in network

performance over time.

8.2.5 Novel Hypotheses

PFINs are often utilised to infer new knowledge from biological data, for instance in the production

of novel functional predictions prior to laboratory analysis. Evaluation of novel hypotheses is non-

trivial. While known annotation data can be used to assess network performance by cross-validation,

there is usually very little data with which to assess new functional predictions. The most accurate

evaluation of new predictions is done using small-scale experimental analysis.

While the hierarchical structure of the GO DAG can cause problems for many applications, such as

the generation of a Gold Standard (see Section 2.5.4.3), this structure provides a means to assess

new predictions. Due to the transitivity of the DAG an annotation to a child term automatically

implies annotation to the parents of this term [100]. Conversely, it is logical to assume that a gene

annotated to a parent term is more likely to be involved in the child processes of this term than are

genes annotated to other processes. Therefore, predictions can be evaluated to some extent by their

consistency with known GO annotations by considering whether a prediction is to a child term of a

known annotation for the gene. In total, 0.57% of the predictions produced by the RelCID schema are

consistent with known annotation data. However, the other 99.43% cannot be considered incorrect,

since a lack of supporting data does not in itself refute a novel hypothesis.

A second type computational evaluation is possible using the reviewed computational analysis (RCA)

and inferred from electronic annotation (IEA) annotations which in this project were omitted from

the original analysis. The lower-quality IEA annotations were excluded from RelCID because they

1http://wiki.geneontology.org/index.php/SGD_GO_HTP_guidelines
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are computational annotations which are not manually curated. RCA annotations are produced by in-

tegrated computational analyses similar to the RelCID method. Naturally, the RCA annotations were

also excluded from the RelCID schema since using RCA annotations to produce RCA annotations is

counter-intuitive. The RCA and IEA annotations therefore provide a means for further evaluation of

new functional predictions, since consistency with these annotations would indicate increased confi-

dence in the prediction. In total 26.23% of the new predictions are consistent with these annotation

types.

The scores for the novel predictions ranged from 26.11711 to 0.00118 (see Section 7.2). Interest-

ingly, while 46% of the predictions score below 1.0, the majority of the consistent predictions had

higher scores, with 68.5% scoring above 1.0. These higher scores indicate that the predictions are of

higher confidence, since they are based on higher confidence evidence. However, the higher scores

may also be due to the levels of evidence involving the POI, as discussed above. Nevertheless, predic-

tions scoring above 1.0 can be considered higher quality, and are consistent with known annotations.

Therefore, this score cut-off was chosen during novel hypothesis filtering.

While the control network produced more predictions, the relevance network predictions are poten-

tially of more interest since they are based on up-weighting of relevant data. The selection of a pre-

diction for experimental validation was, therefore, limited to those made by the relevance networks.

The Interaction Relevance network produces the most predictions (93912) and the Edge Relevance

the least (24310). This result is consistent with the observations made during the leave-one-out eval-

uation; the Interaction Relevance network up-weights interactions involving only one node annotated

to the POI and, therefore, has greater scope for annotation transfer and novel hypothesis generation

than the Edge Relevance network.

Many nodes in the network had functional predictions to several GO terms. However, these multiple

terms arose because the DAG structure produces overlap between gene annotations. When a group

of genes is annotated to the same group of terms, the datasets’ relevance scores are similar, leading

to similar functional predictions when these terms are used as POIs. Due to this effect the GO struc-

ture seems to be closely related to network performance. The performance of the POIs follows the

DAG structure during evaluation, with directly linked terms having similar performance. Addition-

ally, the parent-child relationships of the DAG influence the predictions when novel hypotheses are

produced. The relationship between DAG and performance is clearly complex and requires further

investigation. It may be possible in future to select the optimum POI from a group of terms based

on these relationships. However, since there was no correlation between GO term specificity and

network performance, the development of a new numerical measure may be required to harness this

DAG-based effect.
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8.2.5.1 Laboratory Evaluation

A single functional prediction arising from the relevance networks was chosen for laboratory evalu-

ation during this project. The ageing-related GOBP term response to oxidative stress pro-

vided an ideal POI for the laboratory evaluation of predictions for a number of reasons (see Section

7.4). The RelCID networks for S. cerevisiae produced 368 functional predictions for response to

oxidative stress.

The predictions were filtered in several ways to select the highest confidence and potentially most in-

teresting hypothesis for laboratory evaluation. First, the predictions produced by the control network

were discarded, to focus on the predictions that would not be produced in the absence of relevance

scoring. Second, predictions to unknown genes were selected, since they represent potentially more

interesting hypotheses than predictions to genes with a known function. Next, the prediction scores

were used to select the highest-confidence prediction. Finally, since there were two high-scoring pre-

dictions, the prediction with the highest level of evidence supporting its associated network edge(s)

was selected. The chosen prediction was for the gene AIM1. A great deal of evidence supports the

involvement of this protein in the ageing process:

• The protein Aim1 has been linked to mitochondrial genome maintenance [1166].

• The evidence for the prediction was transferred to Aim1 from the oxidative stress response

proteins Grx3 and Grx4, based on an experimental study by Yu and colleagues [134].

• Grx3 and Grx4 are involved in the glutathione-glutaredoxin system and iron ion homeostasis

[1060, 1061].

• The extended neighbourhood of Aim1 in the process-relevant PFIN contains several other mi-

tochondrial and oxidative response stress genes, in addition to several genes involved in asso-

ciated processes such as glutathione biosynthesis, telomere maintenance and the iron response

(see Figure 8.1 and Table 7.2).

• The Aim1 neighbourhood also contains several other stress response genes and genes with

ageing-related mutant phenotypes (see Table 7.3).

• The Aim1 protein contains a BolA-like domain, a member of a family of domains associated

with the general stress response [1167, 1168].

• Two other proteins in the Aim1 neighbourhood, Fra2 and YAL044W-A, contain BolA domains

and interact with Grx3 and Grx4 [21, 24, 134, 190, 1065, 1114, 1170].
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• Fra2 is involved in the iron regulon, and has also been linked to mitochondrial genome main-

tenance [1065, 1114, 1166].

Given this evidence, the prediction of the response to oxidative stress as a process in which Aim1

is involved appears plausible. Additonally, the prediction can be extended to include an association

with iron homeostasis. The prediction was assessed by spot testing for growth levels under a range

of oxidative stress-inducing conditions and varying levels of iron (see Section 3.2.4).

The initial experimental results did not produce any clear link between Aim1 and the oxidative stress

or iron responses during stress testing. However due to the time-scale of this project, these experi-

ments only analysed the single Aim1 deletion mutant. In many cases phenotypic changes are not seen

in single disruption mutants. In fact, due to the redundancy inherent in biological pathways [250],

the disruption of two genes is often required to produce a mutant phenotype [1057]. Therefore, a

double mutant may be required to observe an oxidative stress-induced phenotype involving the dis-

ruption of AIM1. Since two other proteins in the Aim1 neighbourhood contain BolA-like domains

Figure 8.1: The extended neighbourhood of Aim1.
Nodes are coloured by general Gene Ontology biological process groups. It should be noted that
there is overlap between the groups displayed. Most notably, the three oxidative stress response
genes, YDR098C, YPL059W and YER174C, are also involved in the iron response, and, the iron
response gene YGL220W is also involved in transcription.
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[1167, 1168] and interact with the glutaredoxins, Grx3 and Grx4, they potentially have roles parallel

to that of Aim1.

In addition, spot tests of mutant growth are the simplest method by which phenotypic changes may

be identified, and many genes annotated with a particular biological process do not have an associ-

ated phenotype. For instance, while the proteins Grx3 and Grx4 are both annotated to the response

to oxidative stress, neither gene has a related mutant phenotype [1057]. Consequently, the single

aim1∆ mutant strain and several double mutant strains are currently being investigated using more

sophisticated experimental techniques as a follow-up project.

8.3 Contribution

The RelCID technique provides an integration method which exploits dataset bias in order to tai-

lor PFINs to the investigation of specific biological questions. Unlike previous process-relevant

approaches [41, 46, 59, 129, 130, 307, 708, 720, 947], no data are lost, and unannotated areas of

the network are not neglected, allowing greater scope for hypothesis generation. RelCID is also

extremely flexible and can be applied to all types of biological data.

The final, combined functional prediction results harness all aspects of a dataset’s confidence and its

relevance to a POI. By combining three forms of relevance-weighted network with a high-confidence

control network, functional prediction performance is improved in comparison to the control network

for all of the GOBP terms tested. Therefore, the extended RelCID integration and functional predic-

tion schema produces improved performance in relation to a specific biological process.

The RelCID approach also produces novel protein functional predictions which are not produced in

the absence of a measure of relevance and have, therefore, not be produced by previous PFIN integra-

tion techniques. Many of these predictions are for unannotated, and therefore potentially interesting,

genes. Further, many of the predictions are consistent with known biological data. Consequently,

RelCID provides a valuable tool for the network-based analysis of specific biological questions and

provides considerable scope for the generation of novel hypotheses.

The field of Systems Biology aims to study biology in terms of whole systems in an iterative fashion,

with data analyses guiding experimental design, and experimental results, in turn, forming the basis

for further analyses and mathematical modelling [26, 34–36]. However, a truly iterative approach to

Systems Biology is often difficult. To date, very few network studies have demonstrated feedback

between computational and experimental analyses in the iterative fashion suggested. In many cases

networks are integrated and evaluated across all biological processes [49, 92, 103, 105–112, 674,
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711]. Therefore, while a wealth of novel predictions are often made, the results are generally not

applicable to a single biological question.

A process-targeted approach such as the RelCID technique improves the scope for systems-based

analyses by overcoming to some extent dataset noise. Networks can be targeted to specific areas of

biology and used to guide experimental studies. The data from these studies may, in turn, be used to

refine the POI in an iterative fashion.

Importantly, RelCID significantly reduces analysis time compared to traditional methods. In this

study the RelCID method produced a high confidence prediction for the GO term response to ox-

idative stress in less than a day. While a large amount of evidence supports the prediction, it could

not be produced by a control network integrated without a measure of relevance. In the absence

of a network-based approach, such as RelCID, any gene with an interaction involving a POI is a

candidate for annotation to that term. Given the large size of most interaction datasets, identifying

candidate genes for any given process is non-trivial. There were 51 unannotated candidate genes for

the term response to oxidative stress. However, for other POIs there may be considerably

more candidates. Given that each individual prediction may take 14 hours to assess manually (based

on the time taken to assess the Aim1 prediction), assessment of all candidate genes may take consid-

erable time, up to weeks. The RelCID approach drastically reduces this analysis time by providing

a numerical score of prediction accuracy. Further, the process-centred approach of RelCID produces

more novel predictions to the POI by up-weighting the most relevant data in the network.

8.4 Future Work

During analysis of the results of this project several aspects of the relevance network integration

algorithm which may be further investigated in order to optimise performance were identified:

• Investigation of different Gold Standards.

KEGG was chosen as the Gold Standard during this study. However, several other manually-

curated datasets exist which may be used as Gold Standard datasets. Given the biases inherent

in many databases, some Gold Standards may have more relevance to specific biological ques-

tions than others. Therefore, the RelCID technique may potentially be extended by applying a

measure of relevance to the Gold Standard data in order to further optimise performance.

• Subnetwork generation.

As the amount of biological data continues to grow network size and complexity may make

many manual and visual network-based analyses impossible. In many cases, particularly where
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there is a very specific area of interest, it may therefore become advantageous to produce

a process-specific subnetwork prior to analysis. One method of subnetwork generation was

demonstrated in Chapter 5. The subnetworks were produced by the integration of datasets

scoring above a specified relevance cut-off. Low relevance datasets were discarded, reducing

network complexity and improving network functional prediction performance in relation to

the POI.

Using the RelCID method, a process-specific subnetwork could be extracted from the whole

network using the edge weights, either by selection of high-weighted edges or by selection of

up-weighted edges following comparison with a control network. Since the RelCID algorithm

upweights edges in the network without regard to the annotation status of the genes involved,

the subnetworks will contain both annotated and unannotated genes, unlike most previous

subnetwork generation methods.

These two methods of subnetwork generation are a trade-off between dataset confidence and

dataset relevance. The high-weighted subnetwork will contain edges with high confidence,

some of which have low relevance. Conversely, the up-weighted network will contain edges

of high relevance, some of which have low confidence. Potentially, a combination of the two

subnetworks may optimise both relevance and confidence.

• The choice of functional prediction algorithm.

In this project, the local GBA algorithm Maximum Weight was chosen for network evaluation,

since it provides a simple and direct comparison of network performance. More sophisticated

algorithms may produce different, and potentially more valuable, results. Protein function

prediction is a complex field and subject of ongoing research [1172–1181].

• Laboratory evaluation.

While the initial experiential results did not show any link between Aim1 and the oxidative

stress or iron responses, the prediction remains plausible with a large amount of supporting

evidence. Many genes associated with a particular biological process do not have an equivalent

phenotype when disrupted, such as oxidative stress response genes GRX3 and GRX4 [1057].

Often two genes must be disrupted together for a phenotypic effect to be seen. Consequently,

further investigation of AIM1 using more sophisticated experimental techniques is currently

ongoing.

In addition, several other ageing-related functional predictions produced by RelCID are also

being investigated as a follow up project.
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Given the versatility of the RelCID method, it is applicable to the construction of integrated net-

works in virtually any area of biology for which there is sufficient Gold Standard data available. In

particular, two areas of biology may be particularly valuable for future investigation via the RelCID

technique:

• Subcellular Location.

The Cellular Component branch of GO remains the poorest annotated. While many experi-

mental methods exist to tag proteins in order to locate them in the cell, these methods tend

to be inaccurate due to the fluid nature of the cell. Put simply, proteins may be found where

they do not act. In particular, all proteins will, at some point, be located in the cytoplasm

where they are produced. Currently2, the majority of yeast proteins are annotated to either the

nucleus (2015 genes, 34%), cytoplasm (2116 genes, 36%), or in some cases to both (918

genes, 16%). In order to reconstruct the interactome, more specific subcellular locations must

be determined for all yeast proteins.

Given the limitations of experimental determination of protein cellular location, computational

methods provide powerful tools to aid our understanding of this aspect of the interactome. De-

spite the lack of specific GOCC annotations, many GOBP and GOMF terms may be consid-

ered to be cellular component specific. For instance the GOBP term telomere maintenance

(GO:0000723) and the GOMF term telomeric DNA binding (GO:0042162) may be con-

sidered indicative of the GOCC annotation telomeric region (GO:0000781) respectively.

Therefore, annotations to these terms allow the POI to be extended beyond GOCC annotations

alone. Consequently, RelCID could be used to construct cellular component-relevant networks

allowing the prediction of more specific subcellular locations.

• Human Disease.

Identification of the genes associated with human disease is essential. A large number of genes

has already been associated with human diseases, and these data are stored in the OMIM3

database. Candidate disease genes can be predicted using GBA-based approaches as used for

functional prediction, by propagation of annotations along the edges of PFINs. A disease can

therefore be considered as a POI and the disease-related genes used during relevance scoring

to construct a disease-relevant network. Given that H. sapiens functional interaction data are

of a far greater size and much noisier than that of S. cerevisiae, the use of RelCID to produce

disease-relevant networks could potentially provide a powerful tool in the understanding of

human disease.
2http://www.yeastgenome.org/, accessed 2nd July 2011
3http://www.ncbi.nlm.nih.gov/omim
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8.5 Concluding Remarks

PFINs have been demonstrated to be powerful tools for analysing genome-scale data. However,

assessing dataset quality alone ignores dataset content. Data from different sources contain differing

levels of bias and noise. While it is possible to attempt to remove bias and noise during network

integration, this results in loss of data.

Given the amount of functional data currently being produced and the levels of noise in these data,

computational methods, such as network-based analyses, are required to analyse them and gener-

ate new hypotheses. However as the amount of available biological data continues to grow, global

network analyses become non-trivial. Therefore, process-specific approaches which utilise all the

available data will become increasingly important.

While dataset bias can be problematic when analysing cellular biology on a global scale, it can be

valuable when investigating specific areas of biology. Network integration may exploit dataset bias

in order to tailor PFINs to answer specific questions. By assessing each dataset as a whole, no data

are lost and unannotated areas of the network may be treated in the same way as well annotated areas,

allowing greater scope for hypothesis generation.

RelCID allows research groups to tailor network analyses to their specific interests without loss

of data. Therefore, the networks’ performance is increased and more relevant hypotheses may be

produced to guide experimental studies. Further, the algorithm is extremely flexible and can be

applied to any area of biology using a variety of Gold Standard data. Therefore, RelCID provides a

powerful tool to aid in this major aim of Systems Biology: the elucidation of the interactome.
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Appendix A

Graph Theoretic Definitions

Graph theoretic definitions based on those of Cormen and colleagues (2003) [1182]:

• Undirected Graph

An undirected graph is a graph, G = (N,E), where N is the set of nodes and E ⊆

N

2

 is the

set of edges.

• Directed Graph

A directed graph is a graph, G = (N,E), where N is the set of nodes and E ⊆ N×N is the set

of edges.

• Path

A path of length n is a sequence of nodes v0,v1,v2, ...,vn, where (vi,vi+1) ∈ E for 0≤ i < n.

• Cycle

A cycle is a path, v0,v1,v2, ...,vn, of length n, where v0 = vn.

• Directed Acyclic Graph (DAG)

A DAG is a directed graph G = (N,E) in which there are no cycles.

• Bipartite Graph

A bipartite graph is a graph, G = (N,E), where N consists of two groups, N1 and N2, and

u,v ∈ E⇒ u ∈ N1∧ v ∈ N2∨u ∈ N2∧ v ∈ N1.

• Weighted Graph

A weighted graph is a graph, G = (N,E), where each edge e has an associated weight w(e)

given by the function w : E→ R.
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Appendix B

Gene Ontology Evidence Types

Descriptions of the Gene Ontology evidence types as provided by the GO Consortium1:

B.1 Experimental Evidence Codes

EXP: Inferred from Experiment This code is used in an annotation to indicate that an experimental assay
has been located in the cited reference, whose results indicate a gene product’s function, process involvement,
or subcellular location (indicated by the GO term). The EXP code is the parent code for the IDA, IPI, IMP,
IGI and IEP experimental codes.

IDA: Inferred from Direct Assay The IDA evidence code is used to indicate a direct assay was carried out
to determine the function, process, or component indicated by the GO term. For instance, enzyme assays, in
vitro reconstitution (e.g. transcription), immunofluorescence (for cellular component), cell fractionation (for
cellular component) and physical interaction/binding assay.

IPI: Inferred from Physical Interaction Covers physical interactions between the gene product of interest
and another molecule (such as a protein, ion or complex). IPI can be thought of as a type of IDA, where the
actual binding partner or target can be specified, using "with" in the with/from field. For example 2-hybrid
interactions, co-purification, co-immunoprecipitation and ion/protein binding experiments.

IMP: Inferred from Mutant Phenotype The IMP evidence code covers those cases when the function, pro-
cess or cellular localization of a gene product is inferred based on differences in the function, process, or
cellular localization between two different alleles of the corresponding gene. The IMP code is used for cases
where one allele may be designated ’wild-type’ and another as ’mutant’. It is also used in cases where allelic
variation occurs naturally and no specific allele is designated as wild-type or mutant. For example:

• Mutations, natural or introduced, that result in partial or complete impairment or alteration of the func-
tion of that gene.

• Polymorphism or allelic variation (including where no allele is designated wild-type or mutant).

• Any procedure that disturbs the expression or function of the gene, including RNAi, anti-sense RNAs,
antibody depletion, or the use of any molecule or experimental condition that may disturb or affect
the normal functioning of the gene, including: inhibitors, blockers, modifiers, any type of antagonists,
temperature jumps, changes in pH or ionic strength.

• Overexpression or ectopic expression of wild-type or mutant gene that results in aberrant behavior of
the system or aberrant expression where the resulting mutant phenotype is used to make a judgment
about the normal activity of that gene product.

1http://www.geneontology.org/GO.evidence.shtml
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IGI: Inferred from Genetic Interaction Includes any combination of alterations in the sequence (mutation)
or expression of more than one gene/gene product. This code can therefore cover any of the IMP experiments
that are done in a non-wild-type background. If there is a single mutation or difference between the two strains
compared, use IMP. If there are multiple mutations or differences between the two strains compared, use IGI.
When redundant copies of a gene must all be mutated to see an informative phenotype, use IGI. Examples
include: "traditional" genetic interactions such as suppressors and synthetic lethals, functional complementa-
tion, rescue experiments and inference about one gene drawn from the phenotype of a mutation in a different
gene.

IEP: Inferred from Expression Pattern The IEP evidence code covers cases where the annotation is inferred
from the timing or location of expression of a gene, particularly when comparing a gene that is not yet char-
acterized with the timing or location of expression of genes known to be involved in a particular process. For
instance, transcript levels or timing (e.g. Northerns, microarray data) and protein levels (e.g. Western blots).

B.2 Author Statement Evidence Codes

TAS: Traceable Author Statement Any statement in an article where the original evidence (experimental
results, sequence comparison, etc.) is not directly shown, but is referenced in the article and therefore can be
traced to another source. The TAS evidence code covers author statements that are attributed to a cited source.
Typically this type of information comes from review articles. Material from the introductions and discussion
sections of non-review papers may also be suitable if another reference is cited as the source of experimental
work or analysis.

NAS: Non-traceable Author Statement The NAS evidence code should be used in all cases where the author
makes a statement that a curator wants to capture but for which there are neither results presented nor a specific
reference cited in the source used to make the annotation. The source of the information may be peer reviewed
papers, textbooks, or database records. For some annotations using the NAS code, there will not be an entry
in the with/from field. Examples include database entries that don’t cite a paper (e.g. UniProt Knowledgebase
records, YPD protein reports) and statements in papers (abstract, introduction, or discussion) that a curator
cannot trace to another publication.

B.3 Computational Analysis Evidence Codes

ISS: Inferred from Sequence or Structural Similarity The ISS evidence code or one of its sub-categories
should be used whenever a sequence-based analysis forms the basis for an annotation and review of the evi-
dence and annotation has been done manually. If the annotation has not been reviewed manually, the correct
evidence code is IEA, even if the evidence supporting the annotation is all sequence based. ISS should be
used if a combination of sequence-based tools or methods are used. If only one particular type of sequence-
based evidence is used then one of the more specific sub-categories of ISS may be more appropriate for the
annotation.

ISO: Inferred from Sequence Orthology The ISO code is a sub-category of the ISS code. Orthology is
a relationship between genes in different species indicating that the genes derive from a common ancestor.
Orthology is established by multiple criteria generally including amino acid and/or nucleotide sequence com-
parisons and one or more of the following phylogenetic analysis, coincident expression, conserved map loca-
tion, functional complementation, immunological cross-reaction, similarity in subcellular localization, subunit
structure, substrate specificity or response to specific inhibitors.

ISA: Inferred from Sequence Alignment The ISA code is a sub-category of the ISS code. It should be used
whenever a sequence alignment is the basis for making an annotation, but only when a curator has manually
reviewed the alignment and choice of GO term or if the information is in a published paper, the authors
have manually reviewed the evidence. Such alignments may be pairwise alignments (the alignment of two
sequences to one another) or multiple alignments (the alignment of 3 or more sequences to one another). For
example sequence similarity with experimentally characterized gene products, as determined by alignments,
either pairwise or multiple (tools such as BLAST, ClustalW, MUSCLE). BLAST produces pairwise alignments
and any annotations based solely on the evaluation of BLAST results should use this code. GO policy states
that in order to assert that a query protein has the same function as a match protein, the match protein MUST
be experimentally characterized.
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ISM: Inferred from Sequence Model The ISM code is a sub-category of the ISS code. The ISM code should
be used any time that evidence from some kind of statistical model of a sequence or group of sequences
is used to make a prediction about the function of a protein or RNA. Generally, when searching sequences
with these modeling tools, the results include statistical scores (such as e values and cutoff scores) that help
curators decide when a result is significant enough to warrant making an annotation. If an annotator manually
checks these scores and determines if the result makes sense in the context of other information known about
the sequence and decides that the evidence warrants a particular annotation, then the evidence code is ISM.
For instance, prediction methods for non-coding RNA genes such as tRNASCAN-SE, Snoscan, and Rfam,
predicted presence of recognized functional domains or membership in protein families, as determined by tools
such as profile Hidden Markov Models (HMMs), including Pfam and TIGRFAM, predicted protein features
using tools such as TMHMM (transmembrane regions), SignalP (signal peptides on secreted proteins), and
TargetP (subcellular localization) and any other kind of domain modeling tool or collections of them such as
SMART, PROSITE, PANTHER, InterPro, etc.

IGC: Inferred from Genomic Context - This evidence code can be used whenever information about the
genomic context of a gene product forms part of the evidence for a particular annotation. Genomic context
includes, but is not limited to, such things as identity of the genes neighboring the gene product in question
(i.e. synteny), operon structure, and phylogenetic or other whole genome analysis.

RCA: Inferred from Reviewed Computational Analysis - The RCA code should be used for annotations
made from predictions based on computational analyses of large-scale experimental data sets, or on compu-
tational analyses that integrate multiple types of data into the analysis. Acceptable experimental data types
include protein-protein interaction data (e.g. two-hybrid results, mass spectroscopic identification of pro-
teins identified by affinity tag purifications, etc.) synthetic genetic interactions, microarray expression results.
Sequence-based data based on the sequence of the gene product, including structural predictions based on
sequence, may be included provided that the analysis included non-sequence-based data as well. Sequence
information related to promotor sequence features may also be included as a data type within these analyses.
Predictions based on mathematical modelling which attempts to duplicate existing experimental results are
also appropriate for use of this evidence code. Examples include predictions based on computational analyses
of large-scale experimental data sets and predictions based on computational analyses that integrate datasets
of several types, including experimental data (e.g. expression data, protein-protein interaction data, genetic
interaction data, etc.), sequence data (e.g. promoter sequence, sequence-based structural predictions, etc.), or
mathematical models.

B.4 Computationally-assigned Evidence Codes

IEA: Inferred from Electronic Annotation - Used for annotations that depend directly on computation or
automated transfer of annotations from a database, particularly when the analysis is performed internally and
not published. A key feature that distinguishes this evidence code from others is that it is not made by a
curator; use IEA when no curator has checked the specific annotation to verify its accuracy. The actual method
used (BLAST search, Swiss-Prot keyword mapping, etc.) doesn’t matter. Examples include annotations based
on "matches" in sequence similarity comparisons if they have not been reviewed by a curator, annotations
transferred from database records, if not reviewed by a curator and annotations made on the basis of keyword
mapping files, if not reviewed by a curator.
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Appendix C

Relevance Network Production

The Java code to build the relevance and control networks is available on the attached disc in the folder
appendixC.

The folder contains the src folder which, in turn, contains the following packages:

• annotations - SGD file parsers.

• bioGRID - BioGRID file parser.

• go - GO file parser.

• goldStandard/kegg - KEGG file parser and Gold Standard construction.

• llsScore - Confidence scoring against the Gold Standard.

• relNet - Network integration.

• relScore - Relevance scoring.

The network build requires the following parameters:

• BioGRID file

• KEGG PATHWAYS file

• SGD annotation file

• GO OBO file

• D-value

• GO term of interest as POI

Networks are built using the following command:

java ProduceNetworks BioGRIDfile KEGGfile SGDfile OBOfile GOid Dvalue

Four network files are output:

1. Control network integrated without a measure of relevance

2. Node Relevance network

3. Edge Relevance network

4. Interaction Relevance network

File are named: VersionDvalue[POI]Type.txt
for example V52D1.1GO0000723NodeRelevance.txt and V52D1.1Control.txt

Network files are in tabbed format: Gene Gene Score

for example YML064C YEL066W 3.4761283869785937
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Appendix D

BioGRID Evidence Types

The official BioGRID descriptions of the experimental evidence codes1:

D.1 Physical interactions

• Affinity Capture-Luminescence An interaction is inferred when a bait protein, tagged with luciferase,
is enzymatically detected in immunoprecipitates of the prey protein as light emission. The prey protein
is affinity captured from cell extracts by either polyclonal antibody or epitope tag.

• Affinity Capture-MS An interaction is inferred when a “bait” protein is affinity captured from cell
extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified
by mass spectrometric methods.

• Affinity Capture-RNA An interaction is inferred when a bait protein is affinity captured from cell
extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern
blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

• Affinity Capture-Western An interaction is inferred when a Bait protein affinity captured from cell
extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by
Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an
interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any
co-purification experiment involving affinity capture in that the co-purification experiment involves at
least one extra purification step to get rid of potential contaminating proteins.

• Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon an-
other, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The
“bait” protein executes the activity on the substrate “hit” protein. A Modification value is recorded
for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation,
Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing,
Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.

• Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray crystallography.
Also used for NMR or Electron Microscopy (EM) structures. If a structure is demonstrated between
3 or more proteins, one is chosen as the bait and binary interactions are recorded between that protein
and the others.

• Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially
purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, one is
chosen as the bait and binary interactions are recorded between that protein and the others.

1http://wiki.thebiogrid.org/doku.php/experimenta\T1\l_systems
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• Co-localization An interaction is inferred from co-localization of two proteins in the cell, including co-
dependent association of proteins with promoter DNA in chromatin immunoprecipitation experiments.

• Co-purification An interaction is inferred from the identification of two or more protein subunits in a
purified protein complex, as obtained by classical biochemical fractionation or affinity purification and
one or more additional fractionation steps.

• Far Western An interaction is detected between a protein immobilized on a membrane and a purified
protein probe.

• FRET An interaction is inferred when close proximity of interaction partners is detected by fluo-
rescence resonance energy transfer between pairs of fluorophore-labeled molecules, such as occurs
between CFP (donor) and YFP (acceptor) fusion proteins.

• PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in
which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments
of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal
fragment of the same reporter protein. Interaction of bait and prey proteins bring together complemen-
tary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

• Protein-peptide An interaction is detected between a protein and a peptide derived from an interaction
partner. This includes phage display experiments.

• Protein-RNA An interaction is detected between and protein and an RNA.

• Reconstituted Complex An interaction is detected between purified proteins in vitro.

• Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a
transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

D.2 Genetic Interactions

• Dosage Growth Defect A genetic interaction is inferred when over expression or increased dosage of
one gene causes a growth defect in a strain that is mutated or deleted for another gene.

• Dosage Lethality A genetic interaction is inferred when over expression or increased dosage of one
gene causes lethality in a strain that is mutated or deleted for another gene.

• Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene
rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

• Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phe-
notype, but when combined in the same cell results in a more severe fitness defect or lethality under a
given condition.

• Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one
gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mu-
tation or over expression of another gene.

• Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one
gene results in suppression of any phenotype (other than lethality/growth defect) associated with muta-
tion or over expression of another gene.

• Positive Genetic Mutations/deletions in separate genes, each of which alone causes a minimal pheno-
type, but when combined in the same cell results in a less severe fitness defect than expected under a
given condition.

• Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of
which alone causes a minimal phenotype, result in a significant growth defect under a given condition
when combined in the same cell.

• Synthetic Haploinsufficiency A genetic interaction is inferred when mutations or deletions in separate
genes, at least one of which is hemizygous, cause a minimal phenotype alone but result in lethality
when combined in the same cell under a given condition.
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• Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes,
each of which alone causes a minimal phenotype, result in lethality when combined in the same cell
under a given condition.

• Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the
lethality or growth defect of a strain mutated or deleted for another gene.
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Appendix E

GO Term Enrichment

GOstats outputs for the datasets analysed in Section 4.1.3.1. The full R output for the datasets
analysed in Sections 4.1.3.2-4.1.3.5 are supplied on the attached disk in the folder appendixE.

Table E.1: The top twenty enriched GO Biological Process terms for all the Genetic interactions
(138 enriched terms in total).

GOBPID Pvalue OddsRatio ExpCount Count Size Term
GO:0065007 5.84E-72 6.090048 497.30535 704 783 biological regulation
GO:0051641 2.07E-50 5.816283 355.03664 503 559 cellular localization
GO:0046907 4.73E-46 5.650174 330.26664 467 520 intracellular transport
GO:0006996 2.98E-44 3.083049 632.58765 817 996 organelle organization and biogenesis
GO:0044238 1.96E-40 2.370941 996.51608 1208 1569 primary metabolic process
GO:0044260 3.16E-40 2.641645 757.07277 947 1192 cellular macromolecule metabolic pro-

cess
GO:0051234 1.40E-38 2.91872 592.57457 760 933 establishment of localization
GO:0019538 5.69E-36 2.481291 758.34302 938 1194 protein metabolic process
GO:0031323 4.85E-34 4.518281 291.52383 403 459 regulation of cellular metabolic process
GO:0050896 2.17E-32 5.51017 232.45691 329 366 response to stimulus
GO:0009653 2.19E-29 8.78097 156.87666 231 247 anatomical structure morphogenesis
GO:0045449 4.34E-29 5.059919 222.29486 312 350 regulation of transcription
GO:0016070 1.64E-28 2.780615 455.38689 583 717 RNA metabolic process
GO:0050794 2.79E-25 12.906108 114.32307 172 180 regulation of cellular process
GO:0007001 1.16E-24 4.697779 198.79511 277 313 chromosome organization and biogene-

sis (sensu Eukaryota)
GO:0022402 7.16E-24 6.305788 152.43076 219 240 cell cycle process
GO:0016192 7.11E-23 8.85 120.03922 177 189 vesicle-mediated transport
GO:0048523 8.18E-22 6.302801 138.45794 199 218 negative regulation of cellular process
GO:0006259 4.14E-21 4.152711 189.26819 260 298 DNA metabolic process
GO:0043283 8.98E-21 3.168457 258.49716 341 407 biopolymer metabolic process
GO:0000723 1.39E-20 4.478048 170.84948 237 269 telomere maintenance
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Table E.2: The top twenty enriched GO Biological Process terms for all the Physical interactions
(50 enriched terms in total).

GOBPID Pvalue OddsRatio ExpCount Count Size Term
GO:0044260 2.95E-30 5.755886 1071.016 1164 1192 cellular macromolecule metabolic pro-

cess
GO:0019538 1.34E-29 5.553653 1072.81301 1165 1194 protein metabolic process
GO:0044238 4.40E-25 3.453662 1409.75176 1507 1569 primary metabolic process
GO:0016070 4.55E-21 4.870293 824.82608 894 918 RNA metabolic process
GO:0051234 5.78E-19 4.049084 863.46172 931 961 establishment of localization
GO:0065007 6.93E-19 5.149184 703.52813 764 783 biological regulation
GO:0051641 7.24E-19 9.842371 502.26338 552 559 cellular localization
GO:0044237 3.55E-18 2.77375 1338.77 1420 1490 cellular metabolic process
GO:0006996 6.60E-17 4.774281 660.39997 716 735 organelle organization and biogenesis
GO:0022402 1.38E-13 9.546076 358.50284 394 399 cell cycle process
GO:0044249 2.34E-13 3.195953 755.64132 809 841 cellular biosynthetic process
GO:0006412 2.13E-12 8.842463 334.24325 367 372 translation
GO:0006259 1.10E-11 4.595069 451.94719 490 503 DNA metabolic process
GO:0050794 2.42E-11 4.950508 413.31154 449 460 regulation of cellular process
GO:0000278 7.53E-11 28.740361 219.23482 243 244 mitotic cell cycle
GO:0006325 1.44E-10 27.996992 213.8438 237 238 establishment and/or maintenance of

chromatin architecture
GO:0006464 3.52E-10 3.888303 445.65766 481 496 protein modification
GO:0019222 2.53E-09 3.564092 438.46964 472 488 regulation of metabolic process
GO:0006351 2.83E-09 3.666876 423.19508 456 471 transcription, DNA-dependent
GO:0050896 1.03E-08 2.526431 640.63289 680 713 response to stimulus

Table E.3: The top twenty enriched GO Biological Process terms for the Genetic genes (22 enriched
terms in total).

GOBPID Pvalue OddsRatio ExpCount Count Size Term
GO:0009987 2.50E-28 3.390005 549.0056769 661 4342 cellular process
GO:0044255 7.27E-13 3.250492 27.6905212 67 219 cellular lipid metabolic process
GO:0009058 3.69E-12 1.96516 115.8197144 183 916 biosynthetic process
GO:0044271 8.71E-12 4.399649 14.0349217 42 111 nitrogen compound biosynthetic pro-

cess
GO:0009308 1.09E-10 2.919304 27.9434027 63 221 amine metabolic process
GO:0006766 3.18E-10 4.598552 11.0003441 34 87 vitamin metabolic process
GO:0006519 7.25E-10 2.922348 25.1617065 57 199 amino acid and derivative metabolic

process
GO:0019752 7.39E-10 2.466605 38.817306 77 307 carboxylic acid metabolic process
GO:0008652 8.81E-10 4.025441 13.0233958 37 103 amino acid biosynthetic process
GO:0006811 1.89E-09 3.790611 13.908481 38 110 ion transport
GO:0015698 1.72E-08 21.053942 2.0230518 12 16 inorganic anion transport
GO:0042364 7.65E-08 5.890443 5.5633924 20 44 water-soluble vitamin biosynthetic pro-

cess
GO:0051186 1.25E-07 2.735093 21.115603 46 167 cofactor metabolic process
GO:0006066 2.48E-07 2.723789 20.2305178 44 160 alcohol metabolic process
GO:0006733 4.03E-07 4.57751 7.0806812 22 56 oxidoreduction coenzyme metabolic

process
GO:0006595 5.04E-07 Inf 0.8850852 7 7 polyamine metabolic process
GO:0046467 7.68E-07 3.851806 8.9772923 25 71 membrane lipid biosynthetic process
GO:0009117 7.70E-07 3.093905 13.7820403 33 109 nucleotide metabolic process
GO:0006769 1.02E-06 5.286611 5.3105109 18 42 nicotinamide metabolic process
GO:0046474 1.43E-06 5.925188 4.4254258 16 35 glycerophospholipid biosynthetic pro-

cess
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Table E.4: The enriched GO Biological Process terms for the Physical only genes (17 enriched terms
in total).

GOBPID Pvalue OddsRatio ExpCount Count Size Term
GO:0006412 7.26E-20 3.159723 52.731464 119 372 translation
GO:0030490 1.72E-15 12.962713 6.095304 29 43 processing of 20S pre-rRNA
GO:0022613 3.99E-13 2.701273 45.50215 94 321 ribonucleoprotein complex biogenesis

and assembly
GO:0019538 1.21E-12 1.840102 169.250989 248 1194 protein metabolic process
GO:0044249 2.17E-12 1.962804 119.212799 188 841 cellular biosynthetic process
GO:0008152 2.35E-12 1.704595 434.325821 526 3064 metabolic process
GO:0006365 1.02E-09 4.583565 11.056597 33 78 35S primary transcript processing
GO:0044260 1.03E-09 1.693187 168.967487 236 1192 cellular macromolecule metabolic pro-

cess
GO:0009987 5.33E-09 1.711193 615.483915 680 4342 cellular process
GO:0006364 7.16E-08 4.699056 8.221572 25 58 rRNA processing
GO:0006625 3.45E-07 16.861931 2.126269 11 15 protein targeting to peroxisome
GO:0016070 4.47E-07 1.609983 130.127645 180 918 RNA metabolic process
GO:0042273 4.93E-07 4.076642 8.930329 25 63 ribosomal large subunit biogenesis and

assembly
GO:0015992 5.85E-07 8.605679 3.40203 14 24 proton transport
GO:0015986 2.57E-06 9.201355 2.835025 12 20 ATP synthesis coupled proton transport
GO:0006753 2.57E-06 9.201355 2.835025 12 20 nucleoside phosphate metabolic pro-

cess
GO:0046034 2.57E-06 9.201355 2.835025 12 20 ATP metabolic process
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Appendix F

Dataset Integration Rankings

Table F.1: The ranked order of intergration for the datasets to produce the networks described in
Section 4.3.1.

Dataset Confidence Ageing Telomere Combined
Rank Rank (A) Rank (T) A & T Rank

Protein-peptide 1 39 17 37
Newman (PubMed:11087867) 2 40 45 41
Ingvarsdottir (PubMed:15657441) 3 19 37 24
Tong (PubMed:11743162) 4 42 36 40
FRET 5 45 44 45
Co-crystal Structure 6 30 21 27
Krogan (PubMed:14759368) 7 31 40 34
Collins (PubMed:17200106) 8 11 25 12
Co-localization 9 22 12 19
Co-purification 10 23 29 25
Co-fractionation 11 34 23 33
Affinity Capture-Western 12 8 7 7
Two-hybrid 13 15 9 13
Reconstituted Complex 14 17 6 15
Phenotypic Enhancement 15 10 1 6
Gavin (PubMed:11805826) 16 20 22 22
Far Western 17 37 38 39
Dosage Growth Defect 18 27 24 26
Biochemical Activity 19 24 13 21
Krogan (PubMed:16554755) 20 14 15 14
Drees (PubMed:11489916) 21 38 28 38
Dosage Lethality 22 25 10 20
Affinity Capture-MS 23 13 32 16
Synthetic Growth Defect 24 3 4 4
Wong (PubMed:17634282) 25 28 27 29
Dosage Rescue 26 12 5 11
Sanders (PubMed:12052880) 27 29 35 31
Phenotypic Suppression 28 4 3 2
Synthetic Rescue 29 9 2 5
Ito (PubMed:11283351) 30 36 26 36
Synthetic Lethality 31 2 8 3
Uetz (PubMed:10688190) 32 26 39 30
Ubersax (PubMed:14574415) 33 41 41 42

Continued on next page
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Table F.1: The ranked order of intergration for the datasets to produce the networks described in
Section 4.3.1.

Dataset Confidence Ageing Telomere Combined
Rank Rank (A) Rank (T) A & T Rank

Gavin (PubMed:16429126) 34 16 34 18
Schuldiner (PubMed:16269340) 35 43 43 43
Daniel (PubMed:16157669) 36 21 33 23
Tong (PubMed:14764870) 37 5 16 8
Ho (PubMed:11805837) 38 32 11 28
Tong (PubMed:11743205) 39 18 14 17
Lesage (PubMed:15166135) 40 33 31 32
Ye (PubMed:16729061) 41 6 30 9
Collins (PubMed:17314980) 42 7 18 10
Miller (PubMed:16093310) 43 44 42 44
Ptacek (PubMed:16319894) 44 35 19 35
Pan (PubMed:16487579) 45 1 20 1
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Appendix G

Dataset Versions

The dataset file versions used in the database curation study of Chapter 5.

Table G.1: File Versions used to produce and evaluate the combined PFINs depicted in 5.13 of the
main text.

Version BioGRID KEGG Gene Ontology
17 01/07/06 29/06/06 01/07/06
18 01/08/06 29/06/06 01/08/06
19 01/09/06 29/06/06 01/09/06
20 01/10/06 29/09/06 01/10/06
21 01/11/06 29/09/06 01/11/06
22 01/12/06 29/09/06 01/12/06
23 01/01/07 27/12/06 01/01/07
24 01/02/07 27/12/06 01/02/07
25 01/03/07 27/12/06 01/03/07
26 01/04/07 28/03/07 01/04/07
28 01/05/07 28/03/07 01/05/07
29 01/06/07 28/03/07 01/06/07
30 01/07/07 25/06/07 01/07/07
31 01/08/07 25/06/07 01/08/07
32 01/09/07 25/06/07 01/09/07
33 01/10/07 24/09/07 01/10/07
34 01/11/07 24/09/07 01/11/07
35 01/12/07 24/09/07 01/12/07
36 01/01/08 03/12/07 01/01/08
37 01/02/08 03/12/07 01/02/08
38 01/03/08 03/12/07 01/03/08
39 01/04/08 24/03/08 01/04/08
40 01/05/08 24/03/08 01/05/08
41 01/06/08 24/03/08 01/06/08
42 01/07/08 30/06/08 01/07/08
43 01/08/08 30/06/08 01/08/08
44 01/09/08 30/06/08 01/09/08
45 01/10/08 29/09/08 01/10/08
46 01/11/08 29/09/08 01/11/08
47 01/12/08 29/09/08 01/12/08
48 01/01/09 22/12/08 01/01/09
49 01/02/09 22/12/08 01/02/09
50 01/03/09 22/12/08 01/03/09

Continued on next page
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Table G.1: File Versions used to produce and evaluate the combined PFINs depicted in 5.13 of the
main text.

Version BioGRID KEGG Gene Ontology
51 01/04/09 30/03/09 01/04/09
52 01/05/09 30/03/09 01/05/09

Table G.2: File Versions used to produce and evaluate the historic control BioGRID changes in 5.14
of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
17 01/07/06 29/06/06 01/07/06
18 01/08/06 29/06/06 01/07/06
19 01/09/06 29/06/06 01/07/06
20 01/10/06 29/06/06 01/07/06
21 01/11/06 29/06/06 01/07/06
22 01/12/06 29/06/06 01/07/06
23 01/01/07 29/06/06 01/07/06
24 01/02/07 29/06/06 01/07/06
25 01/03/07 29/06/06 01/07/06
26 01/04/07 29/06/06 01/07/06
28 01/05/07 29/06/06 01/07/06
29 01/06/07 29/06/06 01/07/06
30 01/07/07 29/06/06 01/07/06
31 01/08/07 29/06/06 01/07/06
32 01/09/07 29/06/06 01/07/06
33 01/10/07 29/06/06 01/07/06
34 01/11/07 29/06/06 01/07/06
35 01/12/07 29/06/06 01/07/06
36 01/01/08 29/06/06 01/07/06
37 01/02/08 29/06/06 01/07/06
38 01/03/08 29/06/06 01/07/06
39 01/04/08 29/06/06 01/07/06
40 01/05/08 29/06/06 01/07/06
41 01/06/08 29/06/06 01/07/06
42 01/07/08 29/06/06 01/07/06
43 01/08/08 29/06/06 01/07/06
44 01/09/08 29/06/06 01/07/06
45 01/10/08 29/06/06 01/07/06
46 01/11/08 29/06/06 01/07/06
47 01/12/08 29/06/06 01/07/06
48 01/01/09 29/06/06 01/07/06
49 01/02/09 29/06/06 01/07/06
50 01/03/09 29/06/06 01/07/06
51 01/04/09 29/06/06 01/07/06
52 01/05/09 29/06/06 01/07/06

Table G.3: File Versions used to produce and evaluate the recent control BioGRID file changes
depicted in 5.14 of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
17 01/07/06 30/03/09 01/05/09
18 01/08/06 30/03/09 01/05/09
19 01/09/06 30/03/09 01/05/09
20 01/10/06 30/03/09 01/05/09

Continued on next page
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Table G.3: File Versions used to produce and evaluate the recent control BioGRID file changes
depicted in 5.14 of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
21 01/11/06 30/03/09 01/05/09
22 01/12/06 30/03/09 01/05/09
23 01/01/07 30/03/09 01/05/09
24 01/02/07 30/03/09 01/05/09
25 01/03/07 30/03/09 01/05/09
26 01/04/07 30/03/09 01/05/09
28 01/05/07 30/03/09 01/05/09
29 01/06/07 30/03/09 01/05/09
30 01/07/07 30/03/09 01/05/09
31 01/08/07 30/03/09 01/05/09
32 01/09/07 30/03/09 01/05/09
33 01/10/07 30/03/09 01/05/09
34 01/11/07 30/03/09 01/05/09
35 01/12/07 30/03/09 01/05/09
36 01/01/08 30/03/09 01/05/09
37 01/02/08 30/03/09 01/05/09
38 01/03/08 30/03/09 01/05/09
39 01/04/08 30/03/09 01/05/09
40 01/05/08 30/03/09 01/05/09
41 01/06/08 30/03/09 01/05/09
42 01/07/08 30/03/09 01/05/09
43 01/08/08 30/03/09 01/05/09
44 01/09/08 30/03/09 01/05/09
45 01/10/08 30/03/09 01/05/09
46 01/11/08 30/03/09 01/05/09
47 01/12/08 30/03/09 01/05/09
48 01/01/09 30/03/09 01/05/09
49 01/02/09 30/03/09 01/05/09
50 01/03/09 30/03/09 01/05/09
51 01/04/09 30/03/09 01/05/09
52 01/05/09 30/03/09 01/05/09

Table G.4: File Versions used to produce and evaluate the historic control KEGG file changes de-
picted in 5.16 of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
17 01/07/06 29/06/06 01/07/06
20 01/07/06 29/09/06 01/07/06
23 01/07/06 27/12/06 01/07/06
26 01/07/06 28/03/07 01/07/06
30 01/07/06 25/06/07 01/07/06
33 01/07/06 24/09/07 01/07/06
36 01/07/06 03/12/07 01/07/06
39 01/07/06 24/03/08 01/07/06
42 01/07/06 30/06/08 01/07/06
45 01/07/06 29/09/08 01/07/06
48 01/07/06 22/12/08 01/07/06
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Table G.5: File Versions used to produce and evaluate the recent control KEGG file changes depicted
in 5.16 of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
20 01/05/09 29/09/06 01/05/09
23 01/05/09 27/12/06 01/05/09
26 01/05/09 28/03/07 01/05/09
30 01/05/09 25/06/07 01/05/09
33 01/05/09 24/09/07 01/05/09
36 01/05/09 03/12/07 01/05/09
39 01/05/09 24/03/08 01/05/09
42 01/05/09 30/06/08 01/05/09
45 01/05/09 29/09/08 01/05/09
48 01/05/09 22/12/08 01/05/09
52 01/05/09 30/03/09 01/05/09

Table G.6: File versions used to produce and evaluate the historic GO file changes depicted in 5.18
of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
17 (HC) 01/07/06 29/06/06 01/07/06
18 01/07/06 29/06/06 01/08/06
19 01/07/06 29/06/06 01/09/06
20 01/07/06 29/06/06 01/10/06
21 01/07/06 29/06/06 01/11/06
22 01/07/06 29/06/06 01/12/06
23 01/07/06 29/06/06 01/01/07
24 01/07/06 29/06/06 01/02/07
25 01/07/06 29/06/06 01/03/07
26 01/07/06 29/06/06 01/04/07
28 01/07/06 29/06/06 01/05/07
29 01/07/06 29/06/06 01/06/07
30 01/07/06 29/06/06 01/07/07
31 01/07/06 29/06/06 01/08/07
32 01/07/06 29/06/06 01/09/07
33 01/07/06 29/06/06 01/10/07
34 01/07/06 29/06/06 01/11/07
35 01/07/06 29/06/06 01/12/07
36 01/07/06 29/06/06 01/01/08
37 01/07/06 29/06/06 01/02/08
38 01/07/06 29/06/06 01/03/08
39 01/07/06 29/06/06 01/04/08
40 01/07/06 29/06/06 01/05/08
41 01/07/06 29/06/06 01/06/08
42 01/07/06 29/06/06 01/07/08
43 01/07/06 29/06/06 01/08/08
44 01/07/06 29/06/06 01/09/08
45 01/07/06 29/06/06 01/10/08
46 01/07/06 29/06/06 01/11/08
47 01/07/06 29/06/06 01/12/08
48 01/07/06 29/06/06 01/01/09
49 01/07/06 29/06/06 01/02/09
50 01/07/06 29/06/06 01/03/09
51 01/07/06 29/06/06 01/04/09
52 01/07/06 29/06/06 01/05/09
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Table G.7: File versions used to produce and evaluate the recent control GO file changes depicted in
5.18 of the main text. The static control files are highlighted in bold.

Version BioGRID KEGG Gene Ontology
17 01/05/09 30/03/09 01/07/06
18 01/05/09 30/03/09 01/08/06
19 01/05/09 30/03/09 01/09/06
20 01/05/09 30/03/09 01/10/06
21 01/05/09 30/03/09 01/11/06
22 01/05/09 30/03/09 01/12/06
23 01/05/09 30/03/09 01/01/07
24 01/05/09 30/03/09 01/02/07
25 01/05/09 30/03/09 01/03/07
26 01/05/09 30/03/09 01/04/07
28 01/05/09 30/03/09 01/05/07
29 01/05/09 30/03/09 01/06/07
30 01/05/09 30/03/09 01/07/07
31 01/05/09 30/03/09 01/08/07
32 01/05/09 30/03/09 01/09/07
33 01/05/09 30/03/09 01/10/07
34 01/05/09 30/03/09 01/11/07
35 01/05/09 30/03/09 01/12/07
36 01/05/09 30/03/09 01/01/08
37 01/05/09 30/03/09 01/02/08
38 01/05/09 30/03/09 01/03/08
39 01/05/09 30/03/09 01/04/08
40 01/05/09 30/03/09 01/05/08
41 01/05/09 30/03/09 01/06/08
42 01/05/09 30/03/09 01/07/08
43 01/05/09 30/03/09 01/08/08
44 01/05/09 30/03/09 01/09/08
45 01/05/09 30/03/09 01/10/08
46 01/05/09 30/03/09 01/11/08
47 01/05/09 30/03/09 01/12/08
48 01/05/09 30/03/09 01/01/09
49 01/05/09 30/03/09 01/02/09
50 01/05/09 30/03/09 01/03/09
51 01/05/09 30/03/09 01/04/09
52 (RC) 01/05/09 30/03/09 01/05/09
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Appendix H

Functional Predictions

The high confidence (>1.0) functional predictions produced by the RelCID integration method are

available on the attached disk in the folder appendixH.

The folder contains two files:

1. NewPredictions.txt containing the predictions in the tabbed format:

term gene score network

where C = control, N = node relevance, I = interaction relevance and E = edge relevance.

For example:

GO:0000447 YDR440W 1.6424146271356803 I

2. TermDetails.txt containing the details of the predicted GOBP terms in the tabbed format:

GOID description

For example:

GO:0000041 transition metal ion transport
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